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Abstract

Clustering aims at grouping data objects into meaningful clusters using no (or

only a small amount of) supervision. This thesis studies two major cluster-

ing paradigms: density-based and semi-supervised clustering. Density-based

clustering algorithms seek partitions with high-density areas of points (clusters

that are not necessarily globular) separated by low-density areas that may con-

tain noise objects. Semi-supervised clustering algorithms use a small amount

of information about data to guide the clustering task.

In the context of density-based clustering, we study (a) the validation of

density-based clustering and (b) hierarchical density-based clustering.

The validation of density-based clustering, i.e., the objective and quanti-

tative assessment of clustering results, is one of the most challenging aspects

of clustering. Numerous different relative validity criteria have been proposed

for the validation of globular clusters. Not all data, however, are composed of

globular clusters. We propose a relative density-based validation index, DBCV,

that assesses the quality of an arbitrarily-shaped clustering based on the rela-

tive density connection between pairs of objects. Our index is formulated on the

basis of a new kernel density function, which is used to compute the density of

objects and to evaluate the within- and between-cluster density connectedness
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of clustering results.

In addition to the DBCV, we make several major contributions in the area

of hierarchical density-based clustering. We improve on the AUTO-HDS frame-

work for automated clustering and visualization of biological data sets by re-

moving a parameter thereby making the cluster extraction stage simpler and

more accurate. We also propose a theoretically and practically improved gen-

eral hierarchical density-based clustering, called GHDBSCAN, which general-

izes the density-based clustering by recognizing its essential components and

based on this generalization we propose two algorithms, GHDBSCAN(NMRD)

and GHDBSCAN(NMRD+PF), which improve over previous state-of-the-art

methods both theoretically and practically.

Regarding semi-supervised clustering, we use the knowledge available about

a dataset in the form of constraints to guide the clustering algorithm. In this

context, we provide two approaches for model selection that allow the user to

select the best model based on few constraints and/or the DBCV value and also

discuss a framework for extracting a partitional clustering from a hierarchical

clustering tree.
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Chapter 1

Introduction and Motivation

Over the past decades a variety of high dimensional data that contain different

types of data have been collected at an increasing rate. These data can be

from different applications, including genetic information, medical images and

geographical image data. Many of these data sets contain valuable information

in their structure that can be revealed using data mining techniques.

One of the primary unsupervised learning data mining tasks is clustering.

Although there is no single consensus on the definition of a cluster, the clus-

tering procedure can be characterized as the organization of data into a finite

set of categories by abstracting their underlying structure, either by grouping

objects in a single partition or by constructing a hierarchy of partitions to de-

scribe data according to similarities or relationships among its objects [1, 2, 3].

Clustering methods have broad application in many areas, including medicine

and bioinformatics, financial markets, anomaly detection, image segmentation,

web mining, and education, to mention just a few [4, 3, 5, 6].

In recent decades, different clustering definitions have given rise to a number

of clustering algorithms, showing significant field development, and clustering

techniques have become the subject of active research in several fields such

as statistics, pattern recognition and machine learning [7, 8, 9]. It is useful

to distinguish between the unsupervised classification of data, which normally
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occurs in clustering, and the supervised classification. In supervised classifica-

tion labels of objects are available, and are used in the process of the class’s

description learning, which in turn is used for the problem of finding the new

object’s class label. However, in clustering there is little or no prior information

available about the object labels, and the problem is to categorize the unla-

beled data into clusters. In the case of semi-supervised clustering, the problem

is to categorize the data into clusters using partially labeled objects or other

kinds of constraints (e.g., pairwise should-link and should-not-link constraints)

[10, 11]. Unsupervised learning is also used in other data analysis approaches

such as dimensionality reduction methods which try to discover compact repre-

sentations of high-dimensional data, e.g., locally linear embedding (LLE) is an

unsupervised learning method that computes low-dimensional, neighborhood-

preserving representations of high dimensional data [12].

In this study we examine two major paradigms for clustering algorithms.

First, in the context of density-based clustering, we study an approach to val-

idating arbitrarily-shaped clustering solutions. This approach enables users to

compare algorithms and select parameters. We also study hierarchical density-

based clustering to generate a complete hierarchy describing data in different

granularity or density thresholds. Second, in the context of semi-supervised

clustering, we study semi-supervised extraction of flat clusterings from local

cuts through cluster hierarchies by considering cluster quality/ constraint sat-

isfaction as an objective function. We also study semi-supervised model se-

lection, by considering constraint satisfaction and cluster quality, to select the

most appropriate model for a given problem. In the following sections (1.1 and

1.2), we discuss density-based cluster analysis and semi-supervised clustering.

1.1 Density-Based Cluster Analysis

Density-based clustering is a popular clustering paradigm, and the notion of

density is an important topic in statistics and many data mining tasks such
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as anomaly detection and image segmentation. The main idea behind density-

based techniques for data analysis is that the data set represents a sample

from an unknown probability density function (p.d.f.). The estimation of such

a p.d.f. for a data set can be tackled using parametric or non-parametric

approaches for density-estimation. In parametric approaches the assumption

is that the data are drawn from a known parametric family of distributions;

for example, the normal distribution of the density f of the underlying data

can be estimated by estimating the mean and variance from the data. In non-

parametric approaches the assumptions are less rigid and the data can speak

for themselves in determining the estimates of f [13].

In cluster analysis, there is also a contrast between parametric and non-

parametric approaches. Some popular algorithms, such as k-means and EMGM

(expectation maximization for Gaussian mixtures) that correspond to a para-

metric approach, produce a predetermined number of clusters that tend to be

of convex (hyper-spherical or hyper-elliptical) shape. From a statistical point

of view, these algorithms produce a predetermined number of clusters of convex

shape because an unknown p.d.f. is assumed to be composed of a mixture of

k Gaussian distributions, each of which is associated with one of the k clus-

ters supposed to exist in the data (where k typically must be provided by the

analyst) [14].

The limitation to convex-shaped clusters is also present in other tradi-

tional clustering algorithms, such as average-linkage, Ward’s, and related tech-

niques [1], which do not make explicit use of parametric models. In common

among these methods there is an underlying principle of “minimum variance,”

in the sense that all of them directly or indirectly seek to minimize a given

measure of variance within clusters. The limitations of such methods, includ-

ing their inability to find clusters of arbitrary shapes, have encouraged the

development of alternative clustering paradigms and related algorithms that

allow for more complex structures to be found in the data [15, 16], including
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density-based clustering methods. Many density-based clustering algorithms

have been proposed in the literature, such as [17, 18, 19, 20, 21] that are popu-

lar algorithms that explicitly or implicitly incorporate elements from the theory

of non-parametric density estimation [22].

However, existing methods have a number of limitations and pose difficulties

for users, who not only have to select the clustering algorithm best suited for a

particular task, but also have to properly tune its parameters. The limitations

are as follows: (i) There are many density-based clustering methods, so it is

hard to compare the results of these methods because usually there is no ground

truth available in any given clustering task. (ii) Most approaches have some

parameters and the quality of the resulting clustering depends on an appropri-

ate choice of parameters (e.g., ε and MinPts in DBSCAN [23], smoothness h

and the noise level ξ in DENCLUE [24] and rshave in AUTO-HDS [25], along

with other parameters in [26, 27, 28]). (iii) Some methods (e.g., DBSCAN [23]

and DENCLUE [24]) can only provide a “flat” (i.e. non-hierarchical) labeling

of the data objects, based on a global density threshold. Using a single density

threshold can often improperly characterize common data sets with clusters of

very different densities and/or nested clusters. (iv) Among the methods that

provide a clustering hierarchy, some (e.g., gSkeletonClu [29]) are not able to

automatically simplify the hierarchy into an easily interpretable representation

involving only the most significant clusters. (v) Many hierarchical methods,

including OPTICS [30] and gSkeletonClu, suggest only how to extract a flat

partition by using a global cut/density threshold, which may not result in the

most significant clusters if these clusters are characterized by different den-

sity levels. (vi) Some methods are limited to specific classes of problems, such

as networks (gSkeletonClu), point sets in the real coordinate space (e.g., DE-

CODE [26], and Generalized Single-Linkage [27]). (vii) Some methods are

defined based on only a specific density-estimation method which usually have

some limitations.
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We discuss the aforementioned issues in more detail in the following sections

1.1.1 and 1.1.2.

1.1.1 Density-Based Clustering Validation

In recent decades, different clustering definitions have given rise to a number

of clustering algorithms, resulting a significant development in the field. The

variety of clustering algorithms, however, poses difficulties to users, who not

only have to select the clustering algorithm best suited for a particular task, but

also have to properly tune its parameters. To make such decisions, one requires

procedures capable of assessing clustering results in a quantitative and objective

fashion, which would allow the user to select which is the best suited result

among a collection of results. Such choices are closely related to clustering

validation, one of the most challenging topics in the clustering literature, as

stated by Jain and Dubes [1]: “without a strong effort in this direction, cluster

analysis will remain a black art accessible only to those true believers who have

experience and great courage”. More striking than the statement itself is the

fact that it still holds true after 26 years, despite all the progress that has been

made.

Clustering is an unsupervised learning task and usually there is no ground

truth knowledge about data structure; therefore, determining the significance

of clustering results remains a large challenge. A common approach to eval-

uating the quality of clustering solutions involves the use of internal validity

criteria [1], which is the validation of results using only the information in-

trinsic to the data alone. Many of such measures allow one to rank solutions

according to their quality and are hence called relative validity criteria. Be-

cause internal validity criteria measure the clustering quality based solely on

information intrinsic to the data, they have great practical appeal in contrast

to the external validity criteria which need ground truth information about

data. Thus numerous internal validity criteria have been proposed in the lit-
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erature [31, 1, 32, 33]. The vast majority of relative validity criteria are based

on the idea of computing the ratio of within-cluster scattering (compactness)

to between-cluster separation. Measures that follow this definition have been

designed for the evaluation of convex shaped clusters1 (e.g. globular clusters)

and fail when applied to validate arbitrarily-shaped, non-convex clusters. They

are also not defined for noise objects. These measures are primarily suitable

for partitions with convex shaped clusters that have minimum variance within

clusters and maximum separation in terms of the criterion definition. To this

extent, such measures are more appropriate in the context of parametric clus-

tering, i.e., when clusters in a data set are drawn from a p.d.f. that is composed,

for example, of mixtures of k Gaussian distributions, in which each Gaussian

distribution is associated with one of the k clusters in the data [14].

Density-based clusters are relevant to various contexts such as geographical

applications, which have clusters of points belonging to rivers, roads, power

lines, or any connected shape in image segmentation [20]. Some attempts have

been made to develop relative validity measures for arbitrarily-shaped clusters

[35, 36, 37, 38, 39]. As we shall see, however, these measures have serious

drawbacks that limit their practical applicability.

Only a few attempts so far in the context of arbitrarily-shaped clustering

account for adaptations of relative clustering validity criteria that were orig-

inally developed for evaluation of convex clusterings. Such measures do not

directly take density-based assumptions into account, however. They provide

only rough estimates of cluster quality based on the distribution of several rep-

resentative points from the clusters, such as their cohesiveness and separation,

and introduce several parameters that are undesirable to the validation task.

For instance, the validation index CDbw [36] that was proposed for assess-

ing arbitrarily-shaped clusters defines the compactness and separation of clus-

1That such measures were developed for the evaluation of globular clusters does not
necessarily mean that they perform well on such a task [33, 32, 34].
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ters similar to clustering validation indices that are used for spherical shaped

clusters, and to handle the arbitrarily-shaped density-based clustering, it uses

multiple points rather than a single point as representatives in each cluster.

To overcome the lack of appropriate measures for the validation of density-

based clusters, we propose a measure called the Density-Based Clustering Vali-

dation index (DBCV) that is suitable for validating arbitrarily-shaped clusters.

DBCV employs the concept of Hartigan’s model of density-contour trees [3] to

compute the least dense region inside a cluster and the most dense region

between the clusters, which are then used to measure the within- and between-

cluster density connectedness of clusters.

In the following Section 1.1.2 we introduce and expand in more detail

upon hierarchical density-based clustering and its respective challenges that

we briefly discussed in Section 1.1.

1.1.2 Hierarchical Density-Based Clustering and Extrac-

tion of a Partition from a Hierarchy

An important paradigm in cluster analysis is hierarchical clustering2, in which

a clustering solution is represented as a tree describing hierarchical relation-

ships between nested clusters [1, 40]. This paradigm has been of particular

interest in a large variety of application areas. The reasons are manifold. First,

it is a property of real data sets that clusters may be nested. Typically, nested

clusters are characterized by having different densities, which is essentially the

rationale behind Hartigan’s classic definition of density-contour trees [3] as a

conceptual hierarchical model for data clustering. In addition, in some areas,

such as biology, domain experts may prefer tree representations, as they are

more accustomed to them. In fact, sometimes the underlying application do-

main is hierarchically structured in its nature, as it is usually the case in areas

2If clusters are permitted to have subclusters, the hierarchical clustering is obtained, which
is a set of nested clusters organized as a tree
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such as biological taxonomy and document categorization, just to mention a

few examples [41]. In conceptual clustering, for example, the hierarchical struc-

ture can also provide an attribute-value description that allows interpretation

of the resulting clusters [42, 43, 44]. Furthermore, hierarchical models are useful

tools for visualization of high-dimensional data, e.g., in the form of a traditional

dendrogram3 [1, 40], a compacted cluster tree [28, 27], a reachability-like plot

[30, 45], or a silhouette-like plot [25]. For all these reasons, hierarchical models

often represent a natural choice to describe clustering structures.

Hierarchical models are able to provide richer descriptions of clustering

structures than those provided by “flat” models, in which a given label (pos-

sibly null, representing “noise”) is assigned to each object of the data set. In

spite of that the hierarchies provide richer descriptions of clustering structures,

applications in which the user also (or even only) needs a flat solution are com-

mon, either for further manual analysis by a domain expert or in automated

KDD processes in which the output of a clustering algorithm is the input of

a subsequent data mining procedure — e.g., pattern recognition based on im-

age segmentation. In this context, the extraction of a flat clustering from a

hierarchy may be advantageous when compared to the extraction directly from

data by a partitioning-like (i.e. non-hierarchical) algorithm. One reason is that

hierarchical models describe data from multiple levels of specificity/generality,

providing a means for exploration of multiple possible solutions from different

perspectives while having a global picture of the cluster structure available.

For example, as we will discuss in Chapter 4 and Chapter 5, for a multitude of

types of hierarchies we can effectively evaluate the quality of clusters according

to their behavior along different hierarchical levels.

The usual approach to extract a flat solution from a hierarchical clustering is

by (manually or automatically) choosing one of the levels of the hierarchy. How

3A dendrogram is a tree diagram that is used to illustrate the arrangement of the clusters
produced by a hierarchical clustering (e.g., Figure1.1(b))
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Figure 1.1: (a) Illustrative data set and (b) its single-linkage dendrogram (Eu-
clidean distance).

to choose the most appropriate level is the well-known problem of performing a

horizontal cut through a dendrogram, which has been widely studied in classic

cluster analysis [31, 1]. In spite of its widespread use in practice, this approach

has a major limitation, as it cannot provide solutions composed of clusters

described at different levels of abstraction or granularity [46, 47]. The toy

example in Figure 1.1 illustrates one possible consequence of such a limitation.

Specifically, it is clear that there is no horizontal cut through the single-linkage4

dendrogram in Figure 1.1(b) that would be able to simultaneously provide

clusters A1, A2, A3, B, and C as a flat clustering solution for the data set in

Figure 1.1(a), even though this is a discernibly valid alternative.

Situations like the one described above and illustrated in Figure 1.1 can also

occur when considering hierarchical clustering algorithms other than single-

linkage [48]. In particular, in the case of hierarchical algorithms based on

density estimates, such as OPTICS [30, 28], AUTO-HDS [49, 25], and gSkele-

tonClu [29], a horizontal cut corresponds to a clustering solution induced by a

single, global density threshold. As has been discussed in the literature, it is

4Single-linkage clustering is a hierarchical clustering algorithm in which at the beginning
each element is in cluster of its own. Then at each step two clusters separated by the shortest
distance are combined into a larger clusters, until all objects end up being in the same cluster.
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often not possible to simultaneously detect clusters of varied densities by using

such a threshold [30, 50, 17, 20], which is also a major shortcoming of many

density-based non-hierarchical algorithms, such as DBSCAN [23] and DEN-

CLUE [51], among others. Devising appropriate means to perform local cuts

at different hierarchical levels for different branches (subtrees) of a cluster tree

or dendrogram is therefore an important problem.

Performing local cuts through a clustering hierarchy is equivalent to adopt-

ing different density thresholds for different subsets of the data and allows

one to get flat solutions that cannot be obtained by the traditional horizontal,

global cut. Although there is a plethora of different methods for hierarchical

clustering, very few are (either directly or indirectly) able to automatically per-

form some sort of local cut in the resulting hierarchy [28, 50, 52, 27, 25]. For

example, the most recently proposed method, “Automated Hierarchical Den-

sity Shaving (AUTO-HDS)” [25], which is hierarchical density-based clustering

in the context of clustering biological data, automatically selects a flat parti-

tion through local cuts from the hierarchy by first selecting the cluster that

is present in more hierarchical levels and then looking for the second most

prominent cluster that does not have any overlap with the first cluster and so

on.

In the following we will introduce semi-supervised clustering and more

specifically motivate and discuss semi-supervised extraction of a flat partition

from a hierarchy along with semi-supervised model selection.

1.2 Semi-Supervised Clustering

In many different application scenarios, a certain but usually small amount of

information, about the data may be available. This information, which can be

from various sources such as information provided by the user or topological

features extracted from gene interaction networks [53], allows one to perform

10



clustering in a semi-supervised way, using it to guide the clustering task so

the final clustering can be more in accordance with background knowledge.

These external, explicit constraints are provided by the user or analyst or that

come from a different source of information in addition to the internal, implicit

constraints that follow from the inductive bias of the adopted clustering model.

Here we discuss a common type of external constraints used in literature and

known as “Instance-level Constraints."

• Instance-Level Constraints: Instance-level constraints provide infor-

mation about the assignment of the objects to clusters. Two common

types of instance-level constraints are should-link and should-not-link

constraints.

– “Should-link” Constraints: Should-link constraints encourage pairs

of objects to be grouped together in the same cluster. Should-

link(x,y) implies that objects x and y should be in the same cluster.

– “Should-not-link” Constraints: Should-not-link constraints en-

courage pairs of objects to be separated apart into different clusters.

Should-not-link(x,y) implies that x and y should not be in the same

cluster.

Should-link and Should-not-link constraints have transitive and closure

properties as follows:

For each three objects x,y,z if:

– should-link(x,y) and should-link(y,z) then should-link(x,z).

– should-link(x,y) and should-not-link(y,z) then should-not-link(x,z).

As illustrated in example in Figure 1.2, if we consider each constraint as an

edge between two objects, the transitivity of should-link constraints form iso-
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lated complete graphs5 of should-link constraints, e.g., two complete component

graphs with green edges shown in Figure 1.2, meaning that if some should-link

constraints form a connected component graph6, this connected component

should be a complete graph of should-links. If an object involves a should-

not link with one of the objects in the complete should-link graph, it forms

a should-not link with all other objects in that graph (see Figure 1.2), form-

ing a bipartite graph of should-not-links7. Therefore if the should-link and

should-not-link constraint must be satisfied, we need to check only a fraction

of these constraints to ensure that they are satisfied, e.g. checking a Minimum

Spanning Tree (MST) in a complete graph of should-link constraints8.

When considering these types of constraints, it is important to note that

they can be used as hard (must be satisfied) or soft (can be violated) constraints

[11]. Only soft constraints may be violated in a final solution, given that the aim

of soft constraints is usually to minimize the number of constraint violations

or maximize the number of constraint satisfactions. With hard constraints, by

contrast, all constraints must be satisfied in a final solution. Furthermore, there

are three possible approaches to utilizing constraints to improve the clustering

task. The first approach is using the constraints in the preprocessing step of

the data [54]. The second approach is using the constraints in the process of

clustering. There are several methods in the literature that use constraints in

this way, including those that use constraints to change the similarity matrix

in the process of clustering or satisfying the constraint in the process of con-

structing the cluster tree, e.g., by incorporating propositional logic solvers into

5A complete graph is an undirected graph, in which every pair of vertices is connected by
an edge.

6A connected component of an undirected graph is a subgraph in which every two vertices
are connected to each other through at least one path.

7A bipartite graph is a graph whose vertices can be divided into two disjoint set of vertices
V and U such that every edge connects a vertex in V to a vertex in U. E.g., in Figure 1.2,
V = {A,B} and U = {C,D,E} connected by should-not-link constraints (red edges).

8Given a weighted connected graph, a spanning tree of that graph is a subgraph that is a
tree and connects all the vertices together, and a minimum spanning tree is a spanning tree
that has the minimum sum of the weights of edges among all spanning trees.
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E

Figure 1.2: Example of transitive closure for some given constraints: with given
constraints should-link(A,B), should-link(C,D), should-link(C,E) and should-
not-link(B,C), the should-link(D,E) (dotted green link) and should-not-link
constraints, (A,C), (A,D), (A,E), (B,D) and (B,E) (dotted red links), can be
induced.

the construction loop [55]. Finally, it is possible to use the constraints after

the clustering task to choose between different clustering choices [56].

In this manuscript we use instance-level constraints in a soft way to extract

a flat partition from a hierarchy and also to select models in a semi-supervised

way. We discuss them further in the following, Section 1.2.1.

1.2.1 Semi-Supervised Extraction of a Flat Partition from

a Hierarchy and Semi-Supervised Model Selection

As we noted in Section 1.1.2, hierarchical models are able to provide richer

descriptions of clustering structures than those provided by flat models, in

which a given label (possibly null, representing noise) is assigned to every ob-

ject of the data set. However, there are also applications in which the user

requires a flat solution in addition to hierarchical solution. Along with unsu-

pervised approaches for extracting the flat solution from the hierarchy, there

has been a growing interest in semi-supervised hierarchical clustering meth-
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ods, i.e., methods that produce cluster trees using partial supervision in the

form of labels or constraints that represent previous knowledge about the data

[57, 43, 58, 59, 60, 55]. These methods should be distinguished from those

that use hierarchical clustering and partially labeled data to categorize unla-

beled data into predefined categories (semi-supervised categorization; e.g., see

[61, 62]).

The area of semi-supervised clustering has earned particular attention in

recent years [10], and the branch of hierarchical approaches has followed a sim-

ilar trend. Formulations of the problem have been discussed from a theoretical

perspective [63, 59] and semi-supervised hierarchical clustering algorithms have

been developed to deal with constraints in different ways. These algorithms are

mostly based on some form of distance learning [64, 57, 65, 66, 58, 60] or on

the adaptation of agglomerative [63, 59, 55, 67] and divisive [68, 69, 70] hier-

archical methods9 to enforce constraint satisfaction during the construction of

the cluster tree.

In spite of these advances, the focus has only been on constructing hier-

archies only, by satisfying constraints completely or as much as possible. To

the best of our knowledge, the problem of selecting clusters to compose a flat

solution from a cluster tree, when such a solution is needed or desired, has been

virtually untouched in the semi-supervised clustering literature. The only op-

tion is the traditional horizontal cut approach, which imposes an arbitrary and

unnecessary additional constraint on the problem. In fact, by requiring that all

extracted clusters must lie on the same level of the hierarchy, one would never

be able to fully satisfy user-specified constraints that suggest the existence of

A1, A2, A3, B, and C as clusters in the example of Figure 1.1.

As regards semi-supervised model selection, in spite of the advances in semi-

supervised clustering that we discussed in this section, the focus has been

9Hierarchical clustering is agglomerative (bottom-up) if it starts with single objects and
aggregates them into clusters and is divisive (top-down) if it starts with the complete data
set and breaks it up into smaller clusters.
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only on how to obtain potentially better clustering solutions through semi-

supervised guidance. The problem of semi-supervised model selection has,

notably, been overlooked.

As we discussed in Section 1.1.1, different clustering algorithms or even

the same algorithm with different configurations for its parameters (e.g., the

number of clusters k when this quantity is required as an input) may come up

with significantly different solutions when applied to the same data. Selecting

the best solution is the fundamental problem of model selection, i.e., choosing

a particular algorithm and/or a particular parameterization of the algorithm

amongst a diverse collection of alternatives. As we discussed in Section 1.1.1,

one can use relative clustering evaluation criteria as quantitative, commensu-

rable measures of clustering quality [31, 1, 71]. This approach, however, has

a few drawbacks [32], such as the well-known fact that the evaluations and

performance of different existing criteria are highly data-dependent, in a way

that makes it very difficult to choose one specific criterion for a particular data

set. To overcome these drawbacks we study semi-supervised model selection

using small amount of information in the form of instance-level constraints.

1.3 Contributions

In this thesis, we make several contributions to density-based clustering and

semi-supervised clustering.

First, as regards density-based clustering:

1. In the context of density-based clustering validation, we propose Den-

sity Based Clustering Validation (DBCV) for density-based, arbitrarily-

shaped clusters. DBCV assesses clustering quality based on the relative

density connection between pairs of objects. This work has been pub-

lished in [71]. As regards DBCV, we make five important contributions:

• We propose a new core distance definition, which evaluates the den-
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sity of objects with respect to other objects in the same cluster;

these distances are also comparable to distances between objects

inside the cluster.

• We propose a novel approach to estimate the density inside and

between clusters by constructing the Minimum Spanning Tree using

symmetric reachability distances, which, in turn, are computed using

our definition of core distance.

• We propose a new relative validity measure based on our concept of

core distance, which allows for the validation of arbitrarily-shaped

clusters (along with noise, if present).

• We propose a novel approach that makes other relative validity cri-

teria proposed in the literature capable of handling noise.

• We provide theoretical proofs of the properties of the DBCV method

and we also present extensive experimental evaluation results of clus-

tering validity criteria using a variety of real-world and synthetic

data sets that demonstrate the effectiveness of our method.

2. In the context of hierarchical density-based clustering, we propose several

methods that improve upon previous hierarchical clustering approaches.

In detail:

• First, we propose an improvement to the state-of-the-art algorithm

AUTO-HDS by removing its parameter rshave, thereby making the

cluster extraction stage of AUTO-HDS simpler and more accurate.

This is joint work with Campello and Sander and has been published

in [72].

• Second, we review a hierarchical clustering algorithm, called HDB-

SCAN. HDBSCAN provides a clustering hierarchy whose extracted

flat partition from a hierarchy consists of the most significant clus-

ters that can be obtained. The HDBSCAN algorithm was proposed
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by Campello, Moulavi and Sander [73] with participation of the au-

thor.

• Third, we propose a general density-based clustering approach called

GHDBSCAN, which is the generalization of the DBSCAN and HDB-

SCAN algorithms. We recognize two essential components of density-

based clustering, density at each data point and density of a path

between two points, and show that it is possible to replace these two

components to define new density-based clustering algorithms.

• Fourth, we propose two methods to improve on each of these compo-

nents that are used in state-of-the-art density-based clustering algo-

rithms. We build two new algorithms based on these two new pro-

posed methods, namely, GHDBSCAN(NMRD) and GHDBSCAN

(NMRD+PF). GHDBSCAN(NMRD) improves on HDBSCAN by

providing a better estimate of the density along paths between ob-

jects. GHDBSCAN(NMRD+PF) incorporates our new parameter-

free kernel for estimating the density at objects, which makes it a

hierarchical density-based clustering method without parameters.

• Fifth, we propose a new measure of cluster stability, called Bounded

Excess of Mass, that can be used in extracting a flat partition of

significant clusters from possibly different levels of a hierarchy pro-

duced by GHDBSCAN method.

Second, as regards semi-supervised clustering we make the following contri-

butions:

• We propose a framework for semi-supervised model selection that allows

the user to select the best model based on few constraints along with

the DBCV relative validation index, called GSS-MS. We also provide a

framework for semi-supervised model selection based on cross-validation
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technique called CVCP (the framework CVCP was proposed by Pour-

rajabi and Moulavi et al. [54] with participation of the author). We

also review a framework for semi-supervised Optimal Extraction of Clus-

ters from hierarchies, called FOSC (the framework FOSC was proposed

by Campello, Moulavi, Zimek and Sander [56] with participation of the

author);

• We combine FOSC and GHDBSCAN (FOSC-GHDBSCAN) and use it

along with our GSS-MS model selection approach, then present extensive

experimental evaluation of results for each method and for combined sce-

narios on a variety of real-world data sets. These experiments show that

all of our approaches outperform state-of-the-art algorithms from the lit-

erature. We also demonstrate that the combination of our approaches

even further improves the quality of clustering results.

Outline:10

The remainder of this thesis is organized as follows: In Chapter 2 we review

background material and related work, including the problem of density-based

clustering validation and density-based hierarchical clustering. In this chapter

we also review studies on semi-supervised clustering related to semi-supervised

hierarchical clustering and semi-supervised model-selection. In Chapter 3, we

propose a density-based clustering validation method to evaluate arbitrarily-

shaped density-based clustering methods. We also present experiments on syn-

thetic and real-world data to show the effectiveness of our method for the

evaluation and selection of clustering algorithms and their respective parame-

ters.

In Chapter 4, we propose different hierarchical methods in chronological

and progressive order. First, in Section 4.2 we propose a new approach to

10A substantial amount of the text and content from the works published in [71, 72, 73,
56, 54] has been used in this manuscript.
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improve the algorithm AUTO-HDS proposed by [25] by removing the user-

defined parameter rshave, making the cluster extraction stage of AUTO-HDS

simpler and more accurate. Second, in section 4.3 we propose a method called

GHDBSCAN, which is the generalization of density-based clustering algorithms

that are based on Hartigan’s model of density-based clustering. We recognize

two essential components of density-based clustering and then we propose two

methods to improve on each of these components in Sections 4.4.1 and 4.4.2. We

provide two new algorithms based on these two new proposed methods, namely,

GHDBSCAN(NMRD) and GHDBSCAN(NMRD+PF). GHDBSCAN(NMRD)

improves over HDBSCAN by providing a better estimate of the density along

paths between objects. GHDBSCAN(NMRD+PF) incorporates our new ker-

nel parameter free kernel for estimating the density at objects, which makes

GHDBSCAN(NMRD+PF) a parameter-free hierarchical density-based cluster-

ing. We also propose a new measure of the stability that can be used to extract

the most prominent clusters from a hierarchy. A collection of experiments is

presented that involves clustering hierarchies of different natures, a variety of

real-world data sets, and comparisons with state-of-the-art methods from the

literature. Through these experiments we show that all of our hierarchical

density-based clustering algorithms outperform the state-of-the-art algorithms

from the literature.

In Chapter 5, we discuss the use of a small amount of knowledge in the form

of constraints to guide the clustering task and provide a framework for optimal

extraction of flat clusterings from local cuts through cluster hierarchies, then

provide two frameworks for semi-supervised model selection. We also present

extensive experimental results using FOSC with the GHDBSCAN hierarchy

and use our model selection approaches on a variety of real-world data sets to

compare our methods with state-of-the-art algorithms. Finally in Chapter 6

we give some final remarks and propose further research directions to extend

the works proposed in this thesis.
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Chapter 2

Background and Related Work

In this chapter we survey sets of literature that are relevant to this thesis. First,

Section 2.1 reviews the related work on density-based cluster analysis; Subsec-

tion 2.1.1 reviews the related work on density-based clustering validation, and

Subsection 2.1.2 reviews the work related to hierarchical density-based clus-

tering. Second, in Section 2.2, we discuss related work on semi-supervised

clustering, focusing specifically on semi-supervised extraction of clusters from

a hierarchy and semi-supervised model selection in Subsection 2.2.1.

2.1 Density-Based Cluster Analysis

The notion of density is a major concept in statistics and many data min-

ing tasks. As described in Section 1.1, two approaches called parametric and

non-parametric density estimation are utilized in cluster analysis techniques.

If the distribution of the underlying unknown p.d.f. in the data set is known

a priori for some or all of the clusters, the parametric models for data clus-

tering can be utilized. For example, well-known clustering algorithms, such as

k-means and EM (Expectation Maximization), correspond to parametric ap-

proaches in which an unknown p.d.f. is assumed to be composed of a mixture of

k Gaussian distributions. From a procedural view, these clustering algorithms
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find a predetermined number of clusters that tend to be of convex shape, so

that within-cluster similarities and between cluster dissimilarities are maxi-

mized. Notions of within-cluster similarity and between-cluster dissimilarity

are defined using the given dissimilarity (distance) function. The tendency to

produce convex-shaped clusters is also intrinsic to other traditional clustering

algorithms such as average-linkage, complete-linkage and Ward’s [1, 74], which

do not use the parametric density estimation explicitly.

In contrast to these methods, density-based clustering methods are non-

parametric approaches, where the clusters are high density areas separated

from other clusters with lower density areas [3]. Density-based clustering al-

gorithms, such as the well-known DBSCAN [23] and DENCLUE [51], do not

make assumptions about the underlying density f of data. They also do not

require number of clusters as a priori knowledge. Thus density-based clusters

do not necessarily have high within-cluster similarity as measured by dissim-

ilarity function, but they can have arbitrary shape in the feature space, and

thus these clusters are sometimes referred to as “natural clusters" [3].

Wishart [74] adopted the term “minimum-variance” in the late 1960s to re-

fer to clustering methods that produce convex-shaped clusters, and listed 13

clustering algorithms as just a few representatives of the plethora of meth-

ods in this category. In his paper, Wishart [74] raised some objections about

these algorithms and described why they may fail when applied to real-world

data sets, while also elaborating on the limitations of single-linkage clustering.

Wishart [74] then proposed a non-parametric density-based clustering called

One Level Mode Analysis, followed by its hierarchical version, the Hierarchical

Mode Analysis (HMA), which can be seen as a first attempt at non-parametric

density-based clustering. To estimate the density of the objects, Wishart pro-

posed using a distance threshold r and a frequency threshold k. He noted,

however, that these thresholds must be chosen by the user, which is a major

limitation and has become a point of criticism of the One Level Mode Analysis.
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To reduce the problem of selecting distance threshold r and frequency threshold

k by the user, he proposed the Hierarchical Mode Analysis algorithm, which is

based on the order of the distances in which points become dense. Estimating

density by using parameters r and k also have other disadvantages, as the den-

sity of an object depends only on the distance of the object to a single point in a

data set. Hierarchical Mode Analysis may also overcome the chaining problem

that has affected some clustering methods, such as the well-known clustering

algorithm single-linkage1.

Wishart’s method searches for "modes" by using a density threshold rinverse

of the underlying multivariate distribution without restricting this distribution

to any particular shape. He observed that " ... if probability density function

has two or more modes at the level of probability threshold rinverse, then the

covering will be partitioned into two or more disjoint connected subsets of

points". Indeed, the methods proposed by Wishart [74] include a number

of ideas that have also been utilized by more recent density-based clustering

algorithms.

Hartigan [3] generalized and extended the definition of density-based clus-

tering, describing a density-based cluster as a higher density region separated

from other clusters with lower density regions. He specifically defined density-

contour clusters and density-contour trees. A density contour cluster C ∈ Rd at

density level f1 is a maximally connected set of objects x for which f(x) ≥ f1 ,

where f(x) is the density at each object. The density-contour tree is the tree of

nested clusters that is conceptually conceived by varying the density threshold

f1.

Forty-five years after Wishart’s proposal and 40 years after Hartigan’s pro-

posal for practical arbitrarily-shaped density-based clustering, challenges still

exist in this area. To explore the major challenges: a) we study related work

1In single-linkage clustering, a cluster grows gradually by adding one element at a time.
This may result in heterogeneous straggly clusters that is known as chaining phenomenon.
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on evaluation of the arbitrarily-shaped clusterings in Section 2.1.1, and b) we

study related work on hierarchical density-based clustering and extraction of

flat partition from these hierarchies in Section 2.1.2.

2.1.1 Density-Based Clustering Validation

One of the major challenges in clustering is the validation of results, which has

been described as one of the most difficult and frustrating steps in cluster anal-

ysis [1, 31]. Clustering validation can be divided into three scenarios: external,

internal, and relative [1].

External clustering validity approaches such as the Adjusted Rand Index

[75] compare clustering results with a pre-existing clustering (or class) struc-

ture, i.e., a ground truth solution. Although arguably useful for algorithm

comparison and evaluation [76], external measures do not have practical appli-

cability, since, by definition, clustering is an unsupervised task, with no ground

truth solution available a priori.

In real-world applications, internal and relative validity criteria are pre-

ferred, and widely applied. Internal criteria measure the quality of a clustering

solution using only the data themselves. Relative criteria are internal criteria

that can compare two clustering structures and point out which one is better in

relative terms. Although most external criteria can also meet this requirement,

the term “relative validity criteria” usually refers to internal criteria that are

also relative, and this convention is adopted hereafter. There are many relative

clustering validity criteria proposed in the literature [33, 32]. Such measures

take as input the results of a clustering algorithm and provide a quantitative

evaluation of the results, based on intrinsic information of the data alone. These

measures are based on the general idea of computing the ratio of within-cluster

scattering to between-cluster separation, with differences arising from different

formulations of these two concepts.

Although relative validity measures have been successfully employed in the
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evaluation of globular clustering results, they are not suitable for the evalua-

tion of arbitrarily-shaped clusters, as obtained by density-based algorithms. In

the density-based clustering paradigm, clusters are defined as dense areas sepa-

rated by sparse regions [3]. Therefore, clustering results can contain arbitrarily-

shaped clusters and noise, which such measures cannot handle properly, given

they are originally defined to evaluate the globular clustering. One approach to

handling the noise is de-noising the data [77]; however, this method changes the

original data set by removing the objects defined as noise and does not address

the arbitrarily-shaped clustering. In spite of the extensive literature on relative

validation criteria, little attention has been paid to density-based clustering

validation; indeed, only a few preliminary approaches are described in the lit-

erature. In an effort to capture arbitrary shapes of clusters, some authors have

incorporated concepts from graph theory into clustering validation. Pal and

Biswas [35] build graphs for each clustering solution, e.g., Minimum Spanning

Trees, and use information from their edges to reformulate relative measures

such as the Dunn Index [78]. Although the use of a graph can, in principle,

capture arbitrary cluster structures, the measures introduced by the authors

still compute compactness and separation based on a Euclidean view, favoring

globular clusters. Moreover, separation is still based on cluster centroids, which

is not appropriate for arbitrarily-shaped clusters. Yang and Lee [79] employ a

Proximity Graph to detect cluster borders and develop tests in order to ver-

ify whether a clustering is invalid, possibly valid or good. The problem with

such an approach is that it does not result in a relative measure. Moreover,

the tests employed by the authors require three different parameters from the

user. Finally, in both [35] and [79], graphs are obtained directly from distances;

therefore, no density concept is employed.

Density concepts have also been taken directly into account during clus-

tering validation. Chou et al. [37] discuss the advantages and disadvantages

of Dunn’s [78] and Davies-Bouldin’s [80] measures, showing that each cap-
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tures some aspects of clusters while missing other aspects. The authors [37]

then introduce a measure that combines concepts from Dunn [78] and Davies-

Bouldin [80] and is aimed at dealing with clusters of different densities. The

measure cannot, however, handle arbitrarily-shaped clusters; as shown by the

authors, it is only appropriate for spherical-shaped clusters with different den-

sities.

Of the four measures [38, 81, 82, 36] that try to capture the arbitrary shape

and density-based properties of the methods simultaneously, CDbw [36] is by

far the most employed method and is in fact a enhancement of the SD and

S_Dbw measures [82, 81]. The Pauwels and Frederix [38] index was an attempt

in the context of image segmentation that did not become popular at all. We

discuss them in the following.

Pauwels and Frederix [38] introduced two validity indices to help in select-

ing the proper clustering in the context of image segmentation. The first index

is the “Isolation” measure, which is defined as the average of k-nearest norms

of objects inside the cluster, where k-nearest norm of object x is defined as a

fraction of the k nearest neighbors of x that have the same cluster label as x.

As Pauwels and Frederix [38] mentioned in their paper, the major drawback of

this measure is that it does not notice when two clusters are merged. To deal

with this drawback they propose the “Connectivity” measure, which tries to

determine whether a cluster is connected. To quantify the Connectivity, they

choose several pairs of random points (e.g., a and b) in the same cluster and

connect them using a straight line, then picking the testpoint t halfway along

this connecting line in order to seek its local density maximum. Finally, they

average these values to achieve the connectivity indicator value. To come up

with a single measure that deals with “Isolation” and “Connectivity” simulta-

neously, they combine these two measures.

Even though the combination approach occasionally solves the problem of

its indices, it still suffers from many of the disadvantages of each of its indices
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which we will discuss them in the following. First, all three measures (Isolation,

Connectivity and combination) have critical parameters that are difficult to set,

such as the parameter k in the “Isolation” measure and a number of representa-

tive pairs of objects in the “Connectivity” measure and both parameters in the

combination approach. Second, even if two clusters are not density-separated

(having overlapping objects), the “Isolation” index can be inconclusive because

(a) most of the objects can still be in non-overlapping areas and (b) this in-

dex can vary significantly when different values of k are chosen. Third, as the

authors noted, it is possible that in the “Connectivity” measure, the testpoints

may be attracted to one of the objects in the initial pair. Thus, in the case

of two separated clusters, not all of these testpoints get stuck in the void be-

tween the high density regions, if they do not, it is not possible to measure the

separation properly. Fourth, because each of the two indices depends on pa-

rameters and constraints, the value of the indices is non-deterministic, making

it hard to compare two clustering solutions properly. Finally, the authors fail

to propose an approach to handling noise, which is intrinsic to the definition

of density-based clustering.

The SD index [81] is based on two concepts: average scattering within

clusters and separation between clusters considering the variance and distance

between the centroids of the clusters. The measure is defined as the sum of these

two terms. Motivated by taking into account density variations among clusters,

the S_Dbw measures [82] have definition similar to the SD index [81], in terms

of the concept of scattering within clusters and separation between clusters

considering the variance and distance between the centroids of the clusters.

Then the measure is defined as the sum of this two terms. Neither measure

can, however, deal with arbitrarily-shaped clusters, given that they consider the

center of clusters within their definitions, which is not a representative point

in density-based arbitrarily-shaped clusters.

The measure called CDbw [36] reflects an attempt to overcome several of the
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drawbacks of the SD and S_Dbw measures. CDbw is, as far as we know, the

most frequently employed relative measure for density-based validation. Similar

to SD and S_Dbw , validity index CDbw also assesses the compactness and

separation of clusters defined by a clustering algorithm. However, the approach

adopted by CDbw is to consider multiple representative points per cluster,

rather than one per cluster, and thereby to capture the arbitrary shape of a

cluster based on the spatial distribution of such points. CDbw has, however,

several major drawbacks related to the multiple representatives it employs.

The first of these drawbacks is that the measure does not specify how to

determine the number of representative points for each cluster. Given that

clusters of different sizes, densities and shapes are under evaluation, employ-

ing a fixed number of representatives for all clusters does not seem the best

approach. Even if a single number of representative points is employed for

all clusters (as the authors suggest), this number can still be critical to the

performance of the measure and consists of a parameter, which is, at the very

least, undesirable. Second, assuming that a reasonable number of represen-

tative points can be defined, the representative points themselves have to be

determined. Different approaches can be employed in such a task for CDbw,

as suggested by the authors. The adoption of different approaches in order to

find representative points can be seen not only as another parameter, but as a

significant source of instability, given that two different sets of representatives

containing the same number of points, but generated by different approaches,

which can lead to different evaluations. A latter minor modification of CDbw

[83] suffers from the same drawbacks as the original measure [36].

2.1.2 Hierarchical Density-Based Clustering

Apart from methods aimed at finding approximate estimates of level sets and

density-contour trees for continuous-valued p.d.f. — e.g., see [27] and references

therein — not much attention has been given to hierarchical density-based
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clustering in more general data spaces. The works most closely related to ours

in Hierarchical Density-Based Clustering are those in [30, 28, 29, 25].

In [30], the authors proposed an algorithm, “Ordering Points To Identify

the Clustering Structure” (OPTICS), which provides a graphical and interac-

tive method of creating an augmented ordering of the database. This algorithm

represents the density-based clustering structure of the database and its reach-

ability plot, a one-dimensional plot which can display the structure of clusters,

with respect to parameters ε and mpts (parameters to find density in DBSCAN

algorithm). A post-processing procedure to extract a simplified cluster tree

from the reachability plot produced by the algorithm was also proposed. This

procedure has not become as popular as OPTICS itself, probably because it

is very sensitive to the choice of a critical parameter, ξ, that cannot easily be

determined or understood. Moreover, no automatic method to extract a flat

clustering solution based on local cuts in the obtained tree has been described.

In addition both methods estimate the density based on a distance to a sin-

gle point (the kth nearest neighbor); this density is not as robust as density

estimates that consider more objects from the neighborhood [71].

Sander et al. [28] proposed an improved method of extracting trees of signif-

icant clusters from reachability plots which is less sensitive to the user settings

than the original method in [30]. In approach [28] there are two different pro-

posals. The first one is an algorithm to transform an OPTICS reachability plot

into an equivalent density-based dendrogram. The second one is a method to

derive from those plots a compacted tree containing only significant clusters.

However, this method is based on heuristics with embedded threshold values

that can strongly affect the results. In addition the problem of extracting a flat

solution from local cuts in the cluster tree was practically untouched; the only

(ad-hoc) approach mentioned by the authors was to arbitrarily take all the leaf

clusters and discard the others.

In [29], the original findings from [30, 28, 84] were recompiled in the par-
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ticular context of community discovery in complex networks. However, no

mechanism to extract a simplified cluster tree from the resulting single-linkage-

like clustering dendrogram was adopted, and only a method producing a global

cut through the dendrogram was described. Parameter setting is still critical in

this algorithm, e.g., in small-scale networks with big communities, an example

mentioned by the authors [29].

The algorithm AUTO-HDS proposed in [25], like our method, is based on

a principle used to simplify clustering hierarchies, which in part refers back

to the work of [85], and also to the concept of a “rigid cluster” introduced

by Hartigan [3] and the method for providing compact hierarchy suggested in

[74]. The clustering hierarchy obtained by AUTO-HDS is typically a subset of

the one obtained by Wishart’s Hierarchical Mode Analysis (HMA) method [74].

Conceptually, clustering stage at AUTO-HDS is equivalent to a sampling of the

HMA full hierarchical levels, from top to bottom, at a geometric rate controlled

by a user-defined parameter, rshave. Such a sampling can lead to an underes-

timation of the stability of clusters (clusters can appear before and disappear

after sampled levels) or even to missed clusters, and these side effects can only

be prevented if rshave → 0. In this case, however, the asymptotic running

time of AUTO-HDS is O(n3) [49] (in contrast to O(n2 log n) for “sufficiently

large” values of rshave), equal to the asymptotic running time of Wishart’s HMA

method.

AUTO-HDS also attempts to perform local cuts through the hierarchy in

order to extract a flat clustering solution from density-based hierarchies pro-

duced by the HDS algorithm [49], but it uses a greedy heuristic procedure

guided by the stabilities of the candidate clusters to select clusters that may

give suboptimal results in terms of overall stability. It also suffers from the

problem, discussed above, of estimating the density using distance directly. In

addition, the stability measure used in AUTO-HDS has a few undesirable prop-

erties: first, it depends on the parameter rshave; second, in calculating stability,
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only the approximation of levels in which clusters appear in or disappear from

the hierarchy is considered; and third, the stability value for a cluster in one

branch of the hierarchy can be affected by the density and cardinality of other

clusters lying on different branches.

In the following we review the related works in semi-supervised clustering

and more specifically the works related to semi-supervised extraction of a flat

partition from a hierarchy and semi-supervised model selection.

2.2 Semi-Supervised Clustering

In [86], the authors propose a semi-supervised clustering algorithm that through

modification of the clustering objective function satisfies the constraints. In

2001, shortly after the first semi-supervised clustering attempt [86], Wagstaff et

al. showed that using instance-level should-link and should-not-link constraints

in the clustering task produces more desirable clusters when clustering GPS

trace data from automobiles using the k-means algorithm [87]. Since the initial

work by Demiritz et al. [86] and Wagstaff et al. [87], many studies have been

done in the area of semi-supervised clustering. We study these in Section 2.2.1,

with the focus on the works most related to ours: semi-supervised extraction

of a flat partition from a hierarchy and semi-supervised model selection.

2.2.1 Semi-Supervised Extraction of a Flat Partition from

a Hierarchy and Semi-Supervised Model Selection

Many studies have addressed the topic of partitional semi-supervised clustering;

these include the works proposed in [88, 89, 90, 91, 92] just to mention a few.

These clustering algorithms have proved to be effective when a small amount

of information is available along with a large amount of unlabelled data. Other

important studies have addressed the semi-supervised construction of clustering

hierarchies [64, 57, 63, 68, 65, 66, 69, 43, 58, 59, 93, 94, 60, 70, 55, 67, 95], but
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we are not aware of any approach in the literature for the semi-supervised

extraction of clusters based on optimal cuts through a generic cluster tree.

The works of [96, 84, 97, 91] are most closely related to our work in the

area of semi-supervised extraction of clusters from a hierarchy. The HISS-

CLU [96] algorithm is an algorithm based on OPTICS that can be described

in two steps. In the first step, HISSCLU starts the OPTICS expansion from

all given labeled objects. During the expansion, they use a distance learning

method to change the distance between objects. The reachability plots are

then concatenated and reordered to produce one single reachability plot. In

the second step, horizontal cuts are made to extract the clusters. The density

threshold cuts that are done by the user-provided parameter are a disadvan-

tage of this approach. The algorithm SS-DBSCAN [84] uses semi-supervision

in the form of partially labeled objects and implicitly provides as a result a

collection of clusters that would be equivalent to local cuts through the OP-

TICS hierarchy [30] performed so as to ensure that clusters are maximal and

pure. SS-DBSCAN is an improvement over HISSCLU [84], which, as noted

earlier, obtains clusters based on concatenation of horizontal cuts through a

related hierarchy and whose cut levels depends on a user-specified parameter

[84]. An underlying, restrictive assumption of SS-DBSCAN, however, is that

there should be at least one labeled object from each data category in order to

be discovered as a cluster; the method cannot discover natural clusters whose

objects are not involved in the partial information provided a priori by the

user. The C-DBSCAN [91] is a modified version of DBSCAN that can use

instance-level constraints. The two main disadvantages of C-DBSCAN are a)

that it uses a single global density threshold (like DBSCAN) and b) that the

algorithm deals with instance-level constraints in a hard sense. Therefore, in

order to completely satisfy the constraints, the algorithm violates the density-

based assumption, i.e. it must merge two clusters if the objects inside these

clusters are involved in should-link constraints. In [97] a heuristic algorithm
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partially inspired by the OPTIC idea of cluster expansion was proposed as an

alternative to incorporating should-link constraints in the process of clustering

biological data, but it requires that three user-defined parameters be set in

order to handle the should-not-link constraints.

Apart from the methods described in Section 2.1.2, which extract a flat

partition from hierarchies in unsupervised domain [30, 28, 29, 25], a few other

methods are able to explicitly or implicitly provide local cuts through some

kind of clustering hierarchy. The most related of such works to ours are those

found in [46, 47, 52, 50, 27].

Boudaillier and Hebrail [46, 47] described an interactive tool for manual

local cuts in traditional dendrograms based on exploratory visualization. In

regard to automated methods, Ferraretti et al. [52] proposed a greedy heuris-

tic approach to iteratively select clusters to be split, top-down through a tradi-

tional dendrogram, attempting to improve the Dunn’s validity index as a global

measure of cluster quality; the remaining clusters are extracted as the final flat

solution. Stuetzle [50] and Stuetzle and Nugent [27] proposed algorithms to

detect clusters of spatial point sets as modes of continuous-valued density es-

timates. These algorithms are equivalent to performing local cuts through a

single-linkage-like dendrogram, but in both cases the cuts are based on criteria

that are critically dependent upon a user-specified threshold.

As regards semi-supervised model selection, the evaluation of semi-supervised

clustering results may involve two different problems, external evaluation and

internal, relative evaluation2 of results provided by multiple candidate cluster-

ing models (algorithms and/or parameters) using only the data and labels or

constraints available, particularly to help users select the best solution for their

application.

Regarding the external evaluation problem, the main challenge is dealing

2Similar problems have been discussed in unsupervised scenario in Sections 1.1.1 and
2.1.1.
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with objects involved in the partial information (labels or constraints) used

by the semi-supervised algorithm to be assessed. Indeed, without a suitable

setup for the evaluation, this process can actually mislead the assessment of

the clustering results. The literature contains a variety of approaches for the

external evaluation of semi-supervised clustering, which can be divided into

four major categories: (i) use all data: in this naïve approach, all data objects,

including those involved in labels or constraints, are used when computing

an external evaluation index between the clustering solution at hand and the

ground truth. This approach is not recommended, as it clearly violates the basic

principle that a learned model should not be validated using supervised training

data. Some authors [91, 98, 60, 99] do not mention the use of any particular

approach to address this issue in their external evaluations, which suggests

that they might have used all the data both for training and for validation;

(ii) set aside: in this approach all the objects involved in labels or constraints

during the training stage are just ignored when computing an external index

[57, 68, 96, 84, 56]. Obviously, this approach does not have the drawback

of the first approach; (iii) holdout : in this approach, the database is divided

into training and test data, then labels or constraints are generated exclusively

from the training data (using the ground truth). Clustering takes place with

respect to all data objects as usual, but only the test data is used for evaluation

[100, 61]. In practice, this is similar to the second (set aside) approach described

above in that both prevent the drawback of the first approach (use all data), but

a possible disadvantage of holdout is that objects in the training fold that do

not happen to be selected for producing labels or constraints will be neglected

during evaluation; (iv) n-fold cross validation: in this approach the data set

is divided into n (typically 10) folds and labels or constraints are generated

from (n − 1) training folds combined together. The whole database is then

clustered but the external evaluation index is computed using only the test

fold that was left out. As usual in classification tasks, this process is repeated
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n times using a new fold as test fold each time [101, 87, 102, 103, 90, 104].

Note that this latter procedure alleviates the dependence of the evaluation

results on a particular collection of labels or constraints. For the other three

approaches, this can be achieved by conducting multiple trials in which labels

or constraints are randomly sampled from the ground truth in each trial; then,

summary statistics such as mean can be computed, as it has been done in most

of the references cited above.

Apart from the aforementioned external evaluation scenario, a more prac-

tical problem is how to evaluate the results provided by semi-supervised clus-

tering algorithms in real applications where ground truth is unavailable, i.e.,

when all we have is the data themselves and a subset of labeled objects or a

collection of clustering constraints. In particular, given that different parame-

terizations of a certain algorithm or even different algorithms can produce quite

diverse clustering solutions, a critical practical issue is how to select a particu-

lar candidate amongst a variety of alternatives. This is the classic problem of

model selection, which aims at discriminating between good and not-as-good

clustering models by some sort of data-driven guidance. Notably, to the best

of our knowledge, this problem has not been discussed in the literature on

semi-supervised clustering.
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Chapter 3

Density-Based Clustering

Validation

3.1 Introduction

Hartigan’s model of Density Contour Trees [3] defines density-based clusters

as regions of high density separated from other such regions by regions of

low density. Considering such a model, we can expect a good density-based

clustering solution to have clusters in which the lowest density area inside each

cluster is still denser than the highest density area surrounding clusters.

Relative validity measures, deemed as “traditional,” take into account dis-

tances to quantify cluster variance that, combined with their separation, then

amounts for clustering quality. Minimizing cluster variance and separation,

however, is not the objective in density-based clustering. Therefore, a relative

measure for evaluation of density-based clustering should be defined by means

of densities rather than by distances. Examples of using density-based valida-

tion index include recognizing the proper arbitrarily-shaped clustering solution

in geographical or image domains.

Below we introduce the Density Based Clustering Validation (DBCV) which

considers both density and shape properties of clusters. To formulate DBCV,
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we define the notion of all-points-core-distance (aptscoredist) which is the in-

verse of the density of each object with respect to all other objects inside its

cluster. Using aptscoredist, we define a symmetric reachability distance (similar

to the definition by Lelis and Sander [84]) which is then employed to build a

Minimum Spanning Tree (MST) inside each cluster. The MST captures both

the shape and density of a cluster, since it is built on the transformed space

of symmetric reachability distances. Using such MSTs (one for each cluster),

DBCV finds the lowest density region in each cluster and the highest den-

sity region between pairs of clusters. In the following Section, we discuss our

proposed DBCV validation measure.

3.2 Density-Based Clustering Validation

In the definitions of our concepts we use the following notations. Let O =

{o1, · · · ,on} be a data set containing n objects in the Rd feature space where

d is the dimensionality of the feature space. Let Dist be an n × n matrix

of pairwise distances d(op,oq), where op,oq ∈ O, for a given metric distance

d(·, ·). Let KNN (o, i) be the distance between object o and its ith nearest

neighbor. Let C = ({Ci} , N) 1 ≤ i ≤ l be a clustering solution containing l

clusters and (a possibly empty) set of noise objects N , for which ni is the size

of the ith cluster and nN is the cardinality of noise.

To estimate the density of an object within its cluster, a traditional ap-

proach is to take the inverse of the threshold distance necessary to find K ob-

jects within this threshold [3, 73]. This way, however, the density of an object

is based on the distance to a single point (the kth nearest neighbor). As such,

this density is not as robust as density estimates that consider more objects

from the neighborhood, such as Gaussian kernel density estimate. Moreover,

this definition introduces a parameter (K), which is not desirable in validation.

In the following we aim to propose a new, more robust, and parameterless
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definition of a core distance that can be interpreted as the inverse of a density

estimate and be used in the definition of a mutual reachability distance. To

achieve this goal such a core distance should have the following properties:

first to act as a more robust density estimate it should not depend on a single

point, but rather consider all the points in a cluster in a way that closer objects

have a greater contribution to the density than farther objects. This is a

common property in density estimate methods such as Gaussian kernel density

estimation. Second, since in the definition of a mutual reachability distance

[84], the core distance of an object is compared to the distances of the object

to other objects in the cluster, the core distance should be comparable to these

distances. Third the core distance of an object should be approximately to the

distance of a Kth nearest neighbor where K is adjusted automatically based

on the size of the data set, representing a neighborhood of the object.

We define the core distance of an object o with respect to all other objects

inside its cluster (aptscoredist) as follows.

Definition 3.2.1 (Core Distance of an Object). The all-points-core-distance

(inverse of the density) of an object o, belonging to cluster Cj with respect to

all other nj − 1 objects in Cj is defined as:

aptscoredist(o) =


∑

oi∈Cj

oi 6=o

(
1

d(o,oi)

)d
nj − 1


− 1

d

(3.1)

In the following we show that our definition of aptscoredist has the three

aforementioned properties.

The first property holds because we calculate the inverse of the distances

to the power of dimensionality in aptscoredist , resulting in higher weight of the

contribution of closer objects. Note that this effect could be made stronger by

using the squared Euclidean distance instead of Euclidean distance as dissimi-

larity.
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In Proposition 3.2.1 we show that the second property holds for aptscoredist ,

i.e., we prove that the aptscoredist has values between the second and the last

(nth) KNN distances of the objects.

Proposition 3.2.1. The all-points-core-distance of each object o, aptscoredist(o),

with respect to all other n− 1 objects in a d-dimensional data set X is between

the second and last nearest neighbor distance of that object, i.e.,

KNN (o, 2) ≤ aptscoredist(o) ≤ KNN (o, n)

Proof. Proof is provided in Appendix A on page 144.

Finally, in Propositions 3.2.2 and 3.2.3 we show that the third property

holds for our definition of aptscoredist in uniform distribution using Euclidean

distance and similarly we prove for Squared Euclidean distance in Proposi-

tions 3.2.4 and 3.2.5.

Proposition 3.2.2. Let n objects be uniformly distributed random variables

in a d-dimensional unit hypersphere and o be an object in the center of this

hypersphere. For the all points core distance of o we have:

aptscoredist(o) = ((ln(n− 1) + γ + ε)−
1
d ≈ ln(n)−

1
d (3.2)

where γ ≈ 0.5772 and ε ≈ 1
2n

which approaches to zero as n goes to infinity.

Proof. Proof is provided in Appendix A on page 145.

Proposition 3.2.3. For calculated aptscoredist(o) in Proposition 3.2.2, we

have:

aptscoredist(o) ≈ ln(n)−
1
d ≈ KNN(o, j), (3.3)

with j being the closest natural number to n
ln(n)

and KNN(o, j) being the ex-

pected value of jth nearest neighbor distance to object o.
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Proof. Proof is provided in Appendix A on page 147.

This proposition shows that the core distance of the object o approximating

distance to the same Kth nearest neighbor independent of the dimensionality

of the data space.

Although the core distance of object o, aptscoredist(o), is approximately

equal to KNN (o, j) for an uniform distribution for some j ≈ n
ln(n)

(Proposi-

tions 3.2.2 and 3.2.3), note that, when we have a distribution other than the

uniform distribution, its behavior follows our first desired property. If most of

the objects are close to o, aptscoredist tends to be a smaller value. Contrarily

if most of the objects are distributed far away from o, aptscoredist tends to be

a greater value.

In Propositions 3.2.2 and 3.2.3, Euclidean distance is assumed as dissimi-

larity, however, the conclusions are similar for Squared Euclidean distance and

are shown in Propositions 3.2.4 and 3.2.5.

Proposition 3.2.4. If the dissimilarity measure in Proposition 3.2.2 is Squared

Euclidean distance the all points core distance of o is:

aptscoredist(o) ≈ (1.645 ∗ n)−
1
d (3.4)

Proof. Proof is provided in Appendix A on page 147.

Proposition 3.2.5. For aptscoredist(o) (Proposition 3.2.4), we have:

aptscoredist(o) ≈ (1.645 ∗ n)−
1
d ≈ KNN (o, j), (3.5)

with j being the closest natural number to
√

(n/1.645) and KNN(o, j) being

the expected value of jth nearest neighbor distance to object o.

Proof. Proof is provided in Appendix A on page 148.

Similar to Proposition 3.2.3 this proposition also shows that the core dis-

tance of the object o is approximately equal to the same nearest neighbor
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distance of o independent of the dimensionality of the data space. Comparing

propositions 3.2.3 and 3.2.5 confirms that by applying Squared Euclidean dis-

tance the effect of the first property becomes stronger and the core distance

represents smaller neighborhood of the objects. We prove this property in

Proposition 3.2.6.

Proposition 3.2.6. For the core distances of object o calculated in Propositions

3.2.2 and 3.2.4, we have: aptscoredist(o)Sq−Euclid. ≤ aptscoredist(o)Euclid.

Proof. Proof is provided in Appendix A on page 149.

aptscoredist is used to calculate the symmetric mutual reachability distances

in Definition 3.2.2, which can be seen as the distance between objects con-

sidering their density properties. In Definition 3.2.4 we define the minimum

spanning tree using mutual reachability distances to capture the shape of the

clusters together with density properties. These definitions are then used to find

the lowest density area (density sparseness) within—and highest density area

(density separation) between—clusters in Definitions 3.2.5 and 3.2.6, which are

then used to define the relative validity index DBCV in Definitions 3.2.7 and

3.2.8.

The following proposition shows that to calculate the aptscoredist, we do

not need to raise values to power of dimensionality, and instead we can use the

log properties to calculate aptscoredist.

Proposition 3.2.7. For the core distance of an object o calculated with respect

to all other n− 1 objects in data set X, we have:

aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

= bP

where P = −1
d
× (logb

1+
∑
oi∈X1

bd×(logb
d(o,oc)−logb

d(o,oi))

− logbn−1) + logb
d(o,oc),
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oc can be any arbitrary object in X different than o, X1 = X − {o, oc} and b

can be any Real number greater than 1.

Proof. Proof is provided in Appendix A on page 150.

Definition 3.2.2 (Mutual Reachability Distance). The mutual reachability

distance between two objects oi and oj in O is defined as dmreach(oi,oj) =

max{aptscoredist(oi), aptscoredist(oj), d(oi,oj)}.

Note that the comparison of aptscoredist and d(oi,oj) in Definition 3.2.2 is

meaningful because of the properties of aptscoredist shown in Propositions 3.2.1,

3.2.3 and 3.2.5.

Definition 3.2.3 (Mutual Reach. Dist. Graph). The Mutual Reachability Dis-

tance Graph is a complete graph with objects in O as vertices and the mutual

reachability distance between the respective pair of objects as the weight of

each edge.

Definition 3.2.4 (Mutual Reach. Dist. MST).

Let O be a set of objects and G be a mutual reachability distance graph. The

minimum spanning tree (MST) of G is called MSTMRD .

We present, in brief, the overall idea behind DBCV. Considering a single

cluster Ci and its objects, we start by computing the aptscoredist of the objects

within Ci, from which the Mutual Reachability Distances (MRDs) for all pairs

of objects in Ci are then obtained. Based on the MRDs, a Minimum Spanning

Tree (MSTMRD) is then built. This process is repeated for all the clusters in

the partition, resulting in l minimum spanning trees, one for each cluster.

Based on the MSTs obtained in the previous steps, we define a density-based

clustering validation index based on the following notions of density sparseness

and density separation. The density sparseness of a single cluster is defined as

the maximum edge of its corresponding MSTMRD , which can be interpreted

as the area with the lowest density inside the cluster. We define the density
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separation of a cluster with respect to another cluster as the minimum MRD

between its objects and the objects from the other cluster, which can be seen

as the maximum density area between the cluster and the other cluster. These

two definitions are then finally combined into our validity index DBCV.

Let the set of internal edges in the MST be all edges except those with one

ending vertex of degree one. Let the set of internal objects (vertices) be all

objects except those with degree one. The density sparseness and separation

of clusters are given by Definitions 3.2.5 and 3.2.6.

Definition 3.2.5 (Density Sparseness of a Cluster). The Density Sparseness

of a Cluster (DSC) Ci is defined as the maximum edge weight of the internal

edges in MSTMRD of the cluster Ci, where MSTMRD is the minimum spanning

tree constructed using aptscoredist considering the objects in Ci.

Definition 3.2.6 (Density Separation).

The Density Separation of a Pair of Clusters (DSPC) Ci and Cj, 1 ≤ i, j ≤

l, i 6= j, is defined as the minimum reachability distance between the internal

nodes of the MSTMRDs of clusters Ci and Cj.

Now we can compute the density-based quality of a cluster as given by

Definition 3.2.7. Note that, if a cluster has better density sparseness than the

density separation, then we obtain positive values of the validity index. If the

density inside a cluster is lower than the density that separates it from other

clusters, then the index is negative.

Definition 3.2.7 (Validity Index of a Cluster). We define the validity of a

cluster Ci, 1 ≤ i ≤ l, as:

VC(Ci) =

min
1≤j≤l,j 6=i

(
DSPC (Ci, Cj)

)
−DSC (Ci)

max

(
min

1≤j≤l,j 6=i

(
DSPC (Ci, Cj)

)
,DSC (Ci)

) (3.6)

The density-based clustering validity, DBCV, is given by Definition 3.2.8.

Note that, although noise is not explicitly present in below formulation, it is
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implicitly considered by the weighted average that takes into account the size

of the cluster (|Ci|) and the total number of objects under evaluation, including

noise, given by |O| in Eq. (3.7).

Definition 3.2.8 (Validity Index of a Clustering). The Validity Index of the

Clustering Solution C = {Ci} , 1 ≤ i ≤ l is defined as the weighted average of

the Validity Index of all clusters in C.

DBCV (C) =
i=l∑
i=1

|Ci|
|O|

VC(Ci) (3.7)

It is easy to verify that our index produces values between −1 and +1,

with greater values of the measure indicating better density-based clustering

solutions.

3.3 Experimental Setup

The evaluation of a relative validity index is usually performed as follows [32,

105]: (i) several partitions are generated with different clustering algorithms;

(ii) for each clustering algorithm the ability of the new measure to identify the

correct number of clusters, as defined by the ground truth partition of each data

set, is verified. Although commonly employed, this evaluation procedure has

drawbacks [32]. In brief, it quantifies the accuracy of a given relative validity

criterion according to whether or not it identifies the correct number of clusters

for a data set, ignoring completely relative qualities of the partitions under

evaluation. Although a partition may have the correct number of clusters, it

can present an unnatural clustering, misleading the evaluation.

Since we use data sets with a known ground truth, we choose to employ a

methodology that takes full advantage of external information. This method-

ology was introduced by Vendramin et al. [32] and has been subsequently em-

ployed successfully [34]. It assesses the accuracy of relative criteria by com-
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paring their scores against those provided by an external criterion, such as the

Adjusted Rand Index (ARI) [1]. A relative criterion is considered to be bet-

ter the more similar its scores are to those provided by an external criterion.

Similarity, in this case, is measured by the Pearson correlation. Although this

procedure is far from perfect [76], it probably is the best procedure available.

The methodology is summarized as follows:

1. Given a data set with known ground truth, generate nπ partitions with

different properties by varying the parameters of one or more clustering

methods.

2. Compute the values of the relative and external validity criteria for each

one of the nπ partitions.

3. Compute the correlation between the vectors with the nπ relative validity

measure values and the nπ external validity measure values. This correla-

tion quantifies the accuracy of the relative validity criterion with respect

to the external validity measure (ARI).

An important aspect in the evaluation of the relative measures for density-

based clustering is how to deal with noise objects, given that partitions gener-

ated with density-based clustering algorithms may contain noise. As far as we

know, DBCV is the first relative validity measure capable of handling noise.

Since other relative indices do not have this capability, noise has to be handled

prior to their application for a fair comparison. To the best of our knowledge,

there is no established procedure in the literature defining how to deal with

noise objects in a partition when applying a relative validity index. We see

at least five possible alternatives: (i) assign all noise to a single cluster, (ii)

assign each noise point to its closest cluster, (iii) assign each noise point to a

singleton cluster, (iv) remove all noise points, and (v) remove all noise points

with a proportional penalty.

Following approach (i), real clusters end up embedded in an unique cluster

of noise. Approach (ii) modifies the solutions under evaluation, causing other
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relative indices to evaluate clustering solutions different than the ones evaluated

by our measure. In approach (iii), singleton clusters become close to most of the

real clusters, resulting in a poor overall separation, which degrades the results

of all measures. Just removing the noise without any penalty in approach (iv)

is not a good strategy because the coverage is not considered. For instance, a

solution which has one object from each cluster and all other objects as noise

results in a perfect score. However penalizing lack of coverage as in approach

(v) allows the measures to deal with noise in an well behaved way. Therefore

we adopt this approach in our evaluation, i.e., we evaluate measures only on

points in clusters and multiply the resulting score with (|O| − |N |)/|O|, where

|N | being the cardinality of noise objects and |O| being the cardinality of all

objects in the data set.

Note that this is the same approach adopted for DBCV (Equation 3.7) and

we prove this in the following Proposition 3.3.1

Proposition 3.3.1. Here we show that the weighted averaging approach from

DBCV, as shown in Equation 3.7, is exactly the same as penalizing the other

relative validity measures based on the proportion of the noise objects in the

data set.

Proof. Let |N | be the cardinality of noise objects and |O| be the cardinality of

all objects in the data set.

DBCV (C) =
∑i=l

i=1
|Ci|
|O| VC(Ci)

= |O|−|N |
|O|

∑i=l
i=1

|Ci|
|O|−|N |VC(Ci)

(3.8)

Note that
∑i=l

i=1
|Ci|
|O|−|N |VC(Ci) is equal to removing the noise objects and calcu-

lating DBCV, whereas |O|−|N ||O| is penalizing the resulting value proportional to

the number of noise objects that are left out from the partition.

In our implementation we use the Squared Euclidean distance since it ampli-
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fies the effect of Property 1, which helps to better score solutions with clusters

at largely different scales of separation.

3.3.1 Relative Measures

We compare our measure against five well-known relative measures from the

literature, namely, Silhouette Width Criterion (SWC) [106], Variance Ratio

Criterion (VRC) [107], Dunn [78], and Maulik-Bandyopadhyay (MB) [108].

We also evaluate CDbw [36], which is, as far as we know, the most employed

measure for density-based validation. All measures are available in the Cluster

Validity Library [109].

Note that different studies use different methodologies and set of data sets

to compare validation measures (e.g., see [31, 32]). It is noticed that conclusions

and results of different studies hold for a particular collection of data set that

were used which are mostly for volumetric data sets [33, 32]. However, here we

focus on evaluating the arbitrarily-shaped clustering, thus we use well-known

and representative validation measures that are most employed in the literature.

3.3.2 Clustering Algorithms

During the evaluation of our measure we consider three different density-based

clustering algorithms for generating partitions: (i) the well-known DBSCAN

algorithm [23] (ii) the heuristic method by Sander et al. [28], referred to here

as OPTICS-AutoCluster, which consists of the extraction of the leaf nodes of a

density-based cluster tree constructed from an OPTICS reachability plot [30]

also used in [56] and, (iii) HDBSCAN [73], which produces a hierarchy of all

possible DBSCAN* partitions, each of which is evaluated by the aforementioned

relative validity measures.

Considering parameters for such algorithms, we simulate a scenario in which

the user has no idea about which values to choose, i.e., a scenario in which a
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relative density-based validation index is useful.

Two different parameters are needed as input for DBSCAN, MinPts and

ε. In the case of MinPts we choose MinPts ∈ {4, 6, . . . , 18, 20}. For ε, we

obtain the minimum and maximum values of pairwise distances for each data

set and employ 1000 different values of ε equally distributed within this range.

OPTICS-AutoCluster also demands MinPts , which was set equally to MinPts

of DBSCAN. The speed-up control value ε in OPTICS was not used (ε =

Infinity). For minimum cluster ratio we use 250 different values from 0.001 to

0.5 with steps of 0.002. Finally, for HDBSCAN we set mpts equally to MinPts

of DBSCAN, and use, MinClSize = mpts as employed by its authors [73].

3.3.3 Data Sets

We employ real and synthetic data sets during our evaluation. We use real

data from gene expression data sets and the well-known UCI Repository [110].

We use three gene expression data sets: (i) Cell Cycle 237 (Cell237), with

237 objects, 17 features and 4 clusters; (ii) Cell Cycle 384 (Cell384), with 384

objects, 17 features and 5 clusters both Cell237 and Cell384 were made public

by [111]; and (iii) Yeast Galactose (Yeast), with 205 objects, 20 features and

4 clusters used in [112]. From UCI Repository [110], we use four data sets: (i)

Iris, with 150 objects, 4 features and 3 clusters; (ii) Wine, with 178 objects, 13

features and 3 clusters; (iii) Glass, with 214 objects, 9 features and 7 clusters;

and (iv) Control Chart (KDD), with 600 objects, 60 features and 6 clusters.

Besides the real data sets, which are multidimensional, we also employ four

2D synthetic data sets, with different numbers of objects, clusters and noise, as

depicted in Figure 3.1. We generated these synthetic arbitrarily-shaped data

sets and added noise objects because such data sets are useful to illustrate the

behavior of our measure for arbitrarily-shaped clusters.
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Index Data set

Cell237 Cell384 Yeast Iris Wine Glass KDD

DBCV 0.62 0.39 0.96 0.60 0.24 0.29 0.56
SWC 0.52 0.33 0.90 0.57 0.29 0.28 0.37
VRC 0.40 0.33 0.73 0.21 0.01 0.28 0.37
Dunn 0.35 0.16 0.38 0.13 0.01 0.28 0.56
CDbw 0.55 0.30 0.75 0.55 0.23 0.28 0.54
MB 0.43 0.15 0.73 0.23 0.01 0.28 0.56

Table 3.1: Best ARI found by each relative measure.

Index Data set

Cell237 Cell384 Yeast Iris Wine Glass KDD

DBCV 0.76 0.79 0.87 0.97 0.65 0.81 0.84
SWC 0.72 0.75 0.81 0.93 0.67 0.78 0.57
VRC 0.25 0.17 0.34 0.11 0.00 0.19 0.66
Dunn 0.64 0.29 0.65 0.25 0.10 0.62 0.51
CDbw -0.37 -0.39 -0.06 0.83 0.59 0.09 0.01
MB 0.40 0.14 0.41 0.15 0.06 0.35 0.52

Table 3.2: Correlation between relative indices and ARI.

3.4 Results and Discussion

3.4.1 Real Data Sets

Results for real data sets are shown in Tables 3.1 and 3.2, for which the best

values for each data set are highlighted. Table 3.1 shows the Adjusted Rand

Index (ARI) of the best partition selected by each relative validity criterion.

Note that DBCV outperforms its five competitors in most of the data sets.

Considering the results for the Wine data set, in which SWC provides the

best result, DBCV is a close second. For the Glass data set, DBCV provides

the best ARI value, which is the maximum obtained by all three clustering

algorithms employed in the evaluation. Therefore, DBCV recognizes the best

solution that is available to it. This also holds for other data sets, given that

the relative measures can only find partitions as good as the ones generated by

the clustering algorithms, which explains the low ARI in some cases. Table 3.2

shows the correlation between each relative measure and ARI. In all but one

case, DBCV outperforms its competitors. Again, for Wine, in which the best

correlation is obtained by SWC, DBCV provides close results to SWC.

One interesting aspect that can be observed in this evaluation is that some
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Figure 3.1: Synthetic 2D Data Sets.

relative measures developed for globular clusters perform relatively well. In

fact, Silhouette even provides the best results for one data set. This is easily

explained by three facts. The first one is the adaptation we introduced to deal

with noise for such measures, making them capable of handling partitions with

noise, which can be considered an additional contribution of this dissertation.

The second is the fact that some of the data sets employed have globular clus-

ters. The third is that in some of the data sets ground truth labeling does

not follow the density-based structure of the data, e.g., although ground truth

consist of three globular clusters in the Iris data set, two of these clusters are

overlapping and therefore form a single cluster from a density-based perspec-

tive. In such cases, DBCV prefers 2 clusters whereas traditional measures

prefer 3. The combination of these three factors makes such measures capable
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Index Data set
Data set 1 Data set 2 Data set 3 Data set 4

DBCV 0.91 0.90 0.74 0.99
SWC 0.72 0.21 0.19 0.31
VRC 0.51 0.01 0.02 0.01
Dunn 0.20 0.01 0.01 0.01
CDbw 0.84 0.71 0.04 0.92
MB 0.51 0.01 0.01 0.01

Table 3.3: Best ARI found by each relative measure.

of recognizing good globular partitions in the presence of noise, as generated

by density-based clustering algorithms. Note that we emphasize globular, since

our adaptation of such measures is useful only for such data sets. In case

of arbitrarily-shaped data sets, such measures are still not appropriate, as we

illustrate in the following with synthetic 2D data.

3.4.2 Synthetic 2D Data Sets

To show how the relative measures perform in the presence of noise in arbitrarily-

shaped clusters, we consider the four synthetic data sets shown in Figure 3.1.

Results for this data sets are shown in Figures 3.2 and 3.3. We show plots of the

best partitions selected by four relative measures, i.e., DBCV, SWC, CDbw ,

and VRC. Results for other relative measures designed for the evaluation of

globular clustering solutions follow the same trend as the ones shown here. In

all figures, noise points are denoted by blue dots. For all data sets, DBCV

is the only measure capable of recognizing the true structure present in the

data. Other relative measures, like SWC and VRC, often find a large number

of clusters, breaking the true clusters into multiple small sub-clusters of small

size.

As shown in Figures 3.2 and 3.3, CDbw is the only competitor measure

that finds some arbitrarily-shaped structure in the data sets, although it has

some flaws. Considering data set 1, for instance, the best partition it finds has

a large portion of the clusters assigned to noise (blue dots). In data set 2, it
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Index Data set
Data set 1 Data set 2 Data set 3 Data set 4

DBCV 0.66 0.76 0.37 0.86
SWC 0.39 -0.25 -0.31 -0.35
VRC -0.15 -0.05 -0.14 -0.43
Dunn -0.21 -0.05 -0.31 -0.32
CDbw 0.49 0.71 0.15 0.86
MB -0.14 -0.16 -0.12 -0.21

Table 3.4: Correlation between relative indices and ARI.

recognizes a clustering solution with merged clusters which is clearly not the

best solution. This is also the case in data set 4. In data set 3 it is simply not

capable of recognizing the best partition, which is composed of two spirals and

random noise.

Finally, we show in Tables 3.3 and 3.4 the best ARI values found with

each measure and their respective correlation with ARI, for each data set. For

all the 2D data sets, DBCV finds the best solution. It also displays the best

correlation with ARI for all data sets (along with CDbw in data set 4). In brief,

this shows that only DBCV can properly find arbitrarily-shaped clusters.

3.5 Summary

We have introduced a novel relative Density-Based Clustering Validation index,

DBCV. Our new index is formulated on the basis of a new kernel density func-

tion, which is used to estimate the density inside and between clusters, which in

turn used to compute within-cluster density connectedness and between cluster

density separation of clustering results. Unlike other relative validity indices,

our method not only directly takes into account density and shape properties

of clusters but also properly deals with noise objects, which are intrinsic to the

definition of the density-based clustering.

We also propose an adaptation to make other relative measures capable

of handling noise. We conducted extensive experiments to evaluate the per-

formance of DBCV and five other state-of-the-art validation methods. Both
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DBCV and our noise adaptation approach showed promising results, confirming

their efficacy and applicability to clustering validation.
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(b) Data set 2, best partitions found

Figure 3.2: Best partitions found for datasets.
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(d) Data set 4, best partitions found

Figure 3.3: Best partitions found for datasets.
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Chapter 4

Hierarchical Density-Based

Clustering

4.1 Introduction

In this chapter, we provide an extended description and discussion of our several

hierarchical density-based clustering methods that are discussed in chronolog-

ical and progressive order. Each approach utilizes some concepts from the

previous approach and improves on it both theoretically and practically.

Gupta et al. [25] proposed a framework called AUTO-HDS for the auto-

mated clustering and visualization of biological data sets. In our method, called

Improved AUTO-HDS (see Section 4.2), we extend that framework by show-

ing that it is possible to get rid of the user-defined parameter rshave, making

the cluster extraction stage of AUTO-HDS simpler and more accurate. The

asymptotic running time of AUTO-HDS is O(n3) [25]; we show that it is pos-

sible to reduce this asymptotic running time, while increasing the accuracy

of the clustering solution. In addition, the cluster stability measure used in

AUTO-HDS has a few undesirable properties: (i) it depends on the parameter

rshave, and (ii) the stability of a cluster in one branch of a hierarchy can be

affected by characteristics (such as cardinality and density properties) of the
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clusters in other branches of the hierarchy, thus affecting the final selection of

a flat clustering solution. We discuss this stability in Section 4.2 and propose

the Bounded Excess of Mass stability, which does not have any parameters and

is not affected by clusters in other branches of a hierarchy, in Section 4.3.

Then we propose our generalized hierarchical density-based clustering method,

called GHDBSCAN, in Section 4.3. GHDBSCAN is the generalization of the

clustering algorithms that use Hartigan’s model of density-based clustering,

including DBSCAN and HDBSCAN algorithms. In this section, we first de-

scribe the modified version of the algorithm DBSCAN [23] and then we review

the algorithm HDBSCAN, which was proposed in 2013 by Campello, Moulavi

and Sander [73] with participation of the author. There are two essential com-

ponents of Hartigan’s model of density-based clustering, namely, density at

each data point and density of a path between two data points. It is pos-

sible to replace these two components in a density-based algorithm to define

a new density-based clustering algorithm. First we propose an improvement

over the method used in HDBSCAN to estimate the density of a path between

pairs of objects and show that our new approach estimates the density of a

path between two objects in a more appropriate way. We then discuss the

estimation of density at each data point. The previous methods including DB-

SCAN, Improved AUTO-HDS and HDBSCAN, use distance threshold (ε) and

number-of-objects threshold (mpts) to estimate the density of objects1. Such

estimations have two undesirable properties: a) the estimated density of an

object is based on the distance to a single point (the kth nearest neighbor)

and b) setting the value of the user-defined parameter mpts is challenging and

depends on the characteristics of each data set, such as the size of the data

set and amount of background noise2. We propose a new approach to calcu-

1Other, similar methods (e.g., HMA [74] and OPTICS [30]) also estimate the density in
a similar way.

2As Gupta et al. [25] noted and argued, different choices of mpts can give dramatically
different clusterings; choosing these parameters is thus a potential pitfall for the user.
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late the density of the objects based on all other objects in a data set, and

we show how this density estimation can be replaced with the one that esti-

mates the density with the kth nearest neighbor to resolve the aforementioned

problems and make the HDBSCAN algorithm more accurate. We also propose

two novel hierarchical density-based clustering methods GHDBSCAN(NMRD)

and GHDBSCAN(NMRD+PF) by replacing the two essential components that

have been noted.

4.2 Improved Automated Hierarchical Density

Shaving (Improved AUTO-HDS)

AUTO-HDS is a useful clustering framework, proposed by Gupta et al. [25],

that can be used to discover relevant data clusters from biological data sets.

It is composed of a clustering stage, a cluster ranking and selection stage, and

a visualization stage. The clustering stage is based on the HDS algorithm,

proposed by the same authors [49]. HDS is a density-based hierarchical clus-

tering algorithm that performs a sampling of the possible hierarchical levels

(each of which represents a particular density threshold that discriminates be-

tween dense objects and noise) by using a geometric sampling rate controlled

by a user-defined parameter, rshave. The complete hierarchy will be obtained as

rshave → 0. In this case, however, the asymptotic running time of the method

is the same as the worst case running time of an analogous method (HMA)

proposed by Wishart [74], namely O(n3), where n is the number of data ob-

jects [49, 113] and is prohibitive for large data sets. The use of sufficiently large

values of rshave allows for the sampling of a logarithmic number of hierarchical

levels, reducing this complexity to O(n2log(n)) [25, 49, 113]. Further gains have

been shown to be possible by using parallel computing techniques, but only for

very low dimensional spaces [114]. However, the sampling of hierarchical levels

performed by HDS represents a loss of information that may affect the results
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provided by the subsequent stages of AUTO-HDS, i.e., the ranking/selection of

clusters based on their stability and the visualization tool. In fact, when not all

hierarchical levels are calculated, the birth and/or death of clusters cannot be

precisely captured, so their stability cannot be exactly computed. In the worst

case, a cluster may even be born and then disappear in between two sampled

levels in such a way that it is not detected or presented to the user. Therefore,

rshave represents a trade-off between accuracy and the computational burden

of AUTO-HDS.

In Section 4.2.1, we discuss that the complete hierarchy that would be

obtained as rshave → 0 can actually be computed faster than O(n3) without

any need for sampling. In Section 4.2.2, we discuss how the same procedure for

ranking and selection of clusters used by AUTO-HDS can still be applied to

the complete hierarchy regardless of rshave. We also discuss some implications

of our observations for the AUTO-HDS visualization tool.

4.2.1 Complete Hierarchical AUTO-HDS

Gupta et al. [25] have proposed a framework for clustering and visualization of

biological data, the constituent parts of which are presumed to be replaceable.

In order to replace the HDS clustering algorithm with another one capable of

producing a fully compatible yet complete hierarchy, we need first to recall the

discussions by the authors in [25] on the connections between HDS and other

related density-based clustering algorithms of particular interest. In [25], when

referring to the DBSCAN algorithm [23] and particularly to the choice of its

parameters (mpts and ε), Gupta et al. argued that different choices of ε and

mpts can give dramatically different clusterings; choosing these parameters is

a potential pitfall for the user. While this is true concerning the combination

of the two parameters, one should note that mpts is fully equivalent to the

parameter nε of HDS, which is a classic smoothing factor found in different

density-based clustering algorithms [84, 73, 25, 23, 30, 26, 29, 27].
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As concerns ε, the OPTICS algorithm [30] is known to produce a bar plot,

called a reachability plot, that, for a given value of mpts, encodes in a nested

way all possible DBSCAN-like clusterings with respect to ε, except for eventual

differences in the assignment of border objects. In [28], it was shown that a

hierarchical dendrogram can be extracted from a reachability plot such that

each level of the resulting hierarchy corresponds to a horizontal cut through the

plot. This horizontal cut, in turn, corresponds to a DBSCAN-like clustering

(with possible differences in the assignment of border objects) for a specific

value of ε [30]. At this point, one should notice that the only difference between

a DBSCAN clustering with respect to ε and the HDS clustering at density level

rε is the presence of border objects in DBSCAN. As Gupta et al. [25] observe,

“in DBSCAN, it is possible to label points that are not dense but rather on the

periphery of a dense neighborhood.”

However, removing the border objects from OPTICS and, accordingly, from

the DBSCAN-like hierarchy that can be extracted from it, can be easily done by

simply redefining the reachability distances in a symmetric way, as described in

[84]. Therefore, as observed in [84], it follows that OPTICS reduces to an MST

algorithm in a transformed space of symmetric reachability distances. This

means that it produces a complete hierarchy in which the hierarchical levels

are fully equivalent to those of HDS with respect to all density thresholds rε.

This means that the clustering procedure of AUTO-HDS can be replaced

with the complete hierarchical dendrogram obtained from OPTICS reachabil-

ity plot or the later procedure. Using OPTICS this can be implemented in

O(n2 log(n)). The complete density-based hierarchy can even be computed

faster in O(n2) as first proposed in Campello, Moulavi and Sander [72] and

later elaborated in the HDBSCAN algorithm which is described in Section

4.3.1. Once the complete hierarchy is available, the relabeling and smoothing

(particle removal) procedures described in [25] can be normally applied; this

procedure is discussed in more detail in Section 4.4.3.
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4.2.2 Ranking, Selection, and Visualization

Gupta et al. [25] defined the stability of a cluster as the number of shavings

between the first and the last iteration of HDS in which the cluster appears:

Stab(C) =
log(nec)− log(ns−1c )

log(1− rshave)

where nci is the total number of objects inside cluster C at the ith hierarchical

level, e is the level where cluster C first appears, and s is the last level at

which C survives. The selection of clusters described in [25] depends only on

the ranking (relative ordering) of the clusters. As the authors of [25] observe,

the denominator of Stab(C) is a constant for all clusters C. This means that

the ranking (and selection) of clusters can be performed using only the total

number of objects inside a cluster when the cluster appears (nec) and disap-

pears (ns−1c ). In HDS, however, the total number of objects inside a cluster

implicitly depend on rshave. By contrast, in the complete hierarchy that can be

produced as described in Section 4.2.1, they depend only on the (ranks of the)

density thresholds rε associated with their respective hierarchical levels. These

terms can thus be readily derived from the hierarchy or even pre-computed and

stored during its construction, if desired. Hence, rshave is not needed when the

complete hierarchy is considered. In the following proposition we prove this

property.

Proposition 4.2.1. Consider two clusters Ci and Cj, in a hierarchy. The

relative stability of clusters Ci and Cj is not dependent on parameter rshave and

can be computed using the following formula:

RelativeStability(Ci, Cj) = log

ne
ci

ns−1
ci
ne
cj

ns−1
cj

Proof. Proof is provided in Appendix A on page 151.
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Visualization

One side effect of the geometric sampling controlled by rshave is a further com-

paction of the hierarchy allowing for a log-scale visualization that enables us

to emphasize smaller clusters with respect to bigger ones, as observed by the

authors in [25]. A direct consequence of having the complete hierarchy avail-

able is that, if desired, these sampled hierarchical levels can be pre-computed

and stored during the construction of a hierarchy, or can be derived later from

the final hierarchy.

This means that such a visualization is now possible for any value of rshave

without the need for re-clustering. In other words, one can still use rshave for

visualization, if desired, and results for different values can be produced simply

by sampling the levels of the complete hierarchy.

4.3 Generalized Hierarchical Density-Based Clus-

tering

In this section, we introduce a generalized hierarchical clustering method,

GHDBSCAN, that can be seen as a conceptual and algorithmic improvement

over OPTICS and HDBSCAN. Before describing the hierarchical density-based

clustering methods, we first describe a slightly modified version of the DBSCAN

algorithm [73] and its properties. Our definitions follow the standard defini-

tions of DBSCAN [23] and the only slight difference as described in [84], is in

the way that density connection between two objects is calculated.

The Algorithm DBSCAN*. Let X = {x1, · · · ,xn} be a data set of

n objects, and let D be an n × n matrix containing the pairwise distances

d(xp,xq), xp,xq ∈ X, for a metric distance d(·, ·).3 We define density-based

clusters based on core objects alone:

3The matrix D is not required if distances d(·, ·) can be computed from X on demand.
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Definition 4.3.1. (Core Object Condition): The condition in which the ε

neighborhood of an object contains more than or equal to mpts objects, i.e.,

|Nε(xp)| ≥ mpts, is called core object condition for an object xp where Nε(xp) =

{x ∈ X | d(x,xp) ≤ ε} and | · | denotes cardinality.

Definition 4.3.2. (Core Object and Noise Object): An object xp ∈ X is called

a core object with respect to parameter ε if the core object condition holds for

object xp. An object is called noise if it is not a core object.

Definition 4.3.3. (Core Distance): The core distance of an object xp ∈ X

with respect to mpts, dcore(xp), is the distance from xp to its mpts-nearest neigh-

bor (including xp). It can be seen as minimum possible ε that core condition

holds for the object.

Definition 4.3.4. (ε-Reachable): Two objects xp and xq are ε-reachable if

xp ∈ Nε(xq) and xq ∈ Nε(xp) and core object condition holds for both objects

with respect to ε and mpts.

Definition 4.3.5. (Density-Connected): Two core objects xp and xq are

density-connected with respect to ε and mpts if they are directly or transitively

ε-Reachable.

Definition 4.3.6. (Cluster): A cluster C with respect to ε and mpts is a

non-empty maximal subset of X such that every pair of objects in C is density-

connected.

Based on these definitions, we can devise an algorithm DBSCAN* (similar

to DBSCAN) that conceptually finds clusters as the connected components of

a graph in which the objects of X are vertices and every pair of vertices is

adjacent if and only if the corresponding objects are ε-Reachable with respect

to user-defined parameters ε and mpts. Non-core objects are labeled as noise.

Note that the density of each object and each path connecting two objects

inside such a connected component graph are greater than the density threshold
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1
ε
. Because, every pair of vertices is adjacent if and only if the corresponding

objects are ε-Reachable, thus, there is always a path between the objects in a

connected component (a cluster) in such a graph with all edge weights (mutual

reachability distances) less than or equal to ε. In the following proposition we

prove that core distance of each object inside such a connected component is

less than or equal to ε. This means that density of objects and a path between

pair of objects inside a connected component (a cluster) is greater than or equal

to density threshold 1
ε
(dcore ≤ ε).

Proposition 4.3.1. Let X be a set of objects in the connected components

(clusters) of graph described above. Core distances of all such objects are less

than or equal to ε.

Proof. Let xp be any arbitrary object and in X. This means that there is at

least one edge in the connected component graph with weight less than or equal

to ε that is connected to xp, let xq be the vertex in the other side of this edge.

Thus based on Definition 4.3.4, dcore(x) ≤ ε.

Note that the original definitions of DBSCAN also include the concept of

border objects, i.e., non-core objects that are within the ε-neighborhood of

a core object (border objects) are also included inside the cluster. Our new

definitions are more consistent with a statistical interpretation of clusters as

connected components of a level set of a density (as defined, e.g., in [3])4, since

border objects do not technically belong to the level set as their estimated

density is below the threshold. The new definitions also allow us to observe a

precise relationship between DBSCAN* and its hierarchical version.

4Hartigan noted that “For a cluster C at level fo, the density inside C is no less than fo,
but for every path connecting x in C to y outside C the density somewhere on the path is
less than fo.” This holds true for all objects belonging to a cluster C that obtained by the
DBSCAN* algorithm, and not true for border objects in DBSCAN clusters.
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4.3.1 The HDBSCAN Clustering Algorithm

Here we describe hierarchical clustering method, HDBSCAN [73], which has as

its single input parameter a value formpts, which is a classic smoothing factor in

density estimates. Different density levels in the resulting density-based cluster

hierarchy will thus correspond to different values of the radius ε.

For a proper formulation of the density-based hierarchy, we first define the

notions of symmetric reachability distance (following the definition used in [84])

and the notion of a conceptual, transformed proximity graph.

Definition 4.3.7. (Mutual Reachability Distance): The mutual reachability

distance between two objects xp and xq in X with respect to mpts is defined as

dmreach(xp,xq) = max{dcore(xp), dcore(xq), d(xp,xq)}.

Definition 4.3.8. (Mutual Reachability Graph): The mutual reachability graph

is a complete graph, Gmrd, in which the objects of X are vertices and the weight

of each edge is the mutual reachability distance between the respective pair of

objects.

LetGmrd,ε ⊆ Gmrd be the graph obtained by removing all edges with weights

greater than ε from Gmrd. From Definitions 4.3.2, 4.3.6, and 4.3.8, it can be in-

ferred that DBSCAN* clusters (withmpts and ε) are the connected components

of core objects in Gmrd,ε while the remaining objects are noise. Consequently,

all DBSCAN* partitions for ε ∈ [0,∞) can be produced in a hierarchical way

by removing edges in decreasing order of weight from Gmrd.

Proposition 4.3.2. Let X be a set of n objects described in a metric space

by n× n pairwise distances. The partition of this data obtained by DBSCAN*

with respect to mpts and ε is identical to the one obtained by first running

Single-Linkage over the transformed space of mutual reachability distances, then

cutting the resulting dendrogram at level ε of its scale, and treating all resulting

singletons with dcore(xp) > ε as a single class representing “Noise.”

Proof. Proof sketch as per discussion above, after Definition 4.3.8.
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Algorithm 1: HDBSCAN main steps
1. Compute the core distance with respect to mpts for all data objects in X.
2. Compute an extended MST (MSText) of Mutual Reachability Graph (Gmrd), by
first constructing an MST of Gmrd and then adding for each vertex a “self-edge” with
the core distance of the corresponding object as weight.
3. Extract the HDBSCAN hierarchy as a dendrogram from MSText:

3.1 For the root of the tree assign all objects the single cluster.
3.2 Iteratively remove all edges from MSText in decreasing order of
weights (in case of ties, edges must be removed simultaneously):

3.2.1 Before each removal, set the dendrogram scale of the current
hierarchical level as the weight of the edge(s) to be removed.
3.2.2 After each removal, assign labels to the connected component(s)
that contain(s) the end vertex(-ices) of the removed edge(s), to obtain
the next hierarchical level: assign a new cluster label to a component
if it still has at least one edge, else assign it a null label (“noise”).

Proposition 4.3.2 states that a hierarchical version of DBSCAN* can be im-

plemented by first computing a single-linkage hierarchy on the space of trans-

formed distances (i.e., mutual reachability distances) and then processing this

hierarchy to identify connected components and noise objects at each level. A

more efficient and elegant equivalent solution is described in the following.

A density-based cluster hierarchy has to represent the fact that an object o

is considered as noise below the level l that corresponds to o’s core distance. To

represent this in a dendrogram, consider including an additional dendrogram

node for o at level l representing the cluster containing o at that level and

higher. To directly construct such a hierarchy, consider an extension of a an

MST of the Mutual Reachability Graph Gmrd, from which the extended den-

drogram by removing edges in decreasing order of weight can be constructed.

More precisely, the MST extended with edges connecting each vertex o to it-

self (self-edges), where the edge weight is set to the core distance of o. These

“self-edges” will then be considered when removing edges.

Algorithm 1 shows the pseudo-code for HDBSCAN, which has as inputs a

value for mpts and the data set X. It produces a clustering tree that contains

all partitions obtainable by DBSCAN* (with respect to mpts) in a hierarchical,

nested way we call it the HDBSCAN hierarchy.
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4.4 Generalized Hierarchical Density-Based Clus-

tering, GHDBSCAN

In this section, we discuss the essential components of the density-based clus-

tering methods and try to generalize those approaches. Before introducing the

formal definitions required to describe this approach, we first give basic defini-

tions and an overview of the approach. It is based on Hartigan’s [3] informal

definition of density-based clusters, which “may be thought of as regions of high

density separated from other such regions by regions of low density.” Based on

this informal definition he described the concept of a density-contour cluster

and density-contour tree.

According to Hartigan’s model [3], a density-contour cluster is a subset

C ⊂ < at density level λ, such that: (i) every object x ∈ C satisfies f(x) ≥ λ,

(ii) C is connected, and (iii) C is maximal. f(x) being the density function

defined for each x as a value proportional to the number of points per unit

volume at x.

Consider the example in Figure 4.1, in which there are two clusters C1 and

C2 at density level λ = 2. This means that: (i) For every object x ∈ C1 ∪ C2,

we have f(x) ≥ 2. (ii) For every pair of objects xC1
i , x

C1
j ∈ C1 there is a path

xC1
i , x

C1
i+1, x

C1
i+2, . . . , x

C1
j , between the two objects such that xC1

l is linked to xC1
l+1

for each i ≤ l ≤ j. This link can be seen as an approximation of the density

of the area between objects xC1
l and xC1

l+1, and it should be greater than λ = 2.

This holds true as well for all pairs of objects in cluster C2. In addition, for

every path connecting two objects that are not in the same cluster, density

drops below λ = 2 somewhere along the path5. (iii) For every object x with

f(x) ≥ 2, if there is a path with density greater than or equal to two that

connects x to any object inside cluster C1, then x ∈ C1 (this also holds for

5This pair of objects can consist of objects from separate clusters C1 and C2 or noise
objects in the areas outside these two clusters.
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similar object connected to cluster C2).
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Figure 4.1: At density level 2, two clusters C1 and C2 can be found. Objects
inside each cluster have densities greater than 2, and there is a path with
density greater than 2 that connects objects inside each cluster. On every
path connecting objects that are not in the same cluster, density drops below
2 somewhere along the path.

As noted above, Hartigan’s model has two essential components: (a) density

f defined at each object, and (b) density f defined at each path between the

objects in the space. We argue that clustering algorithms based on Hartigan’s

concept of density-based clustering, including density-contour tree, DBSCAN,

OPTICS and HDBSCAN, contain these two major components. We then show

that it is possible to obtain a new density-based clustering algorithm by replac-

ing these two components in an algorithm.

Consider that the density of objects is estimated by parameters ε andminpts

and that we use the HDBSCAN algorithm. As noted in Section 4.3.1, let

Gmrd,ε ⊆ Gmrd be the graph obtained by removing all edges from Gmrd having

weights greater than ε (density less than 1
ε
). Based on Definitions 4.3.2, 4.3.6,
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and 4.3.8, it is straightforward to infer that clusters defined by DBSCAN* with

respect to mpts and ε are the connected components of core objects in Gmrd,ε;

the remaining objects are noise.

Each connected component in the Gmrd,ε graph has the following prop-

erties: (i) every object has a density ( 1
dcore

) greater than or equal to 1
ε
(see

Proposition 4.3.1); (ii) for every pair of objects (nodes in Gmrd,ε) inside each

cluster, meaning that both objects are in the same connected component graph,

there is a path between these objects in the Gmrd,ε graph such that the edge

weights (dmreach) on this path are always less than or equal to ε (meaning that
1

dmreach
≥ 1

ε
) ; (iii) every Gmrd,ε graph component is maximal.

As we can easily see, the essential components of HDBSCAN are similar to

those of Hartigan’s model: (a) density f defined at each object, which is at

least 1
ε
, and (b) density f defined on a path between the objects in the space,

which essentially depends on the density between pairs of objects and which is

equal to 1
dmreach

. In the following we discuss the properties of these components

and propose a replacement for each of them.

For the sake of simplicity and without loss of generality, the inverse of

density values have been utilized in the DBSCAN and HDBSCAN algorithms

(see Definitions 4.3.2 and 4.3.7), for two main reasons: (i) it is easier to discuss

clustering using distances instead of densities, and (ii) the final solution is

similar in both cases. We will follow the same trend in the following.

4.4.1 Estimation of Density on Each Path in Data Space

To estimate the density area between two objects by considering their density

and distance, we defined mutual reachability distance in Section 4.3.1 (Defini-

tion 4.3.7) as follows:

Mutual Reachability Distance: The mutual reachability distance between

two objects xp and xq in X with respect to mpts is defined as dmreach(xp,xq) =

max{dcore(xp), dcore(xq), d(xp,xq)}.
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Our definition of mutual reachability distance is similar to the definition of

reachability distance in the OPTICS algorithm [30], but the difference is that

our definition is symmetric (we do not include border objects that were origi-

nally defined in DBSCAN, which makes our definition symmetric). Although

the clustering created by a cut level through the OPTICS plot tries to include

border objects defined in DBSCAN, it also misses some border objects. This

is described in [30], which states that the clustering created through a cut:

“is nearly indistinguishable from a clustering created by DBSCAN. Only some

border objects may be missed when [clusters are] extracted . . . ”.

Using the symmetric mutual reachability distance allows us to build an un-

directed graph of mutual reachability distances: however, like the definition

of reachability distance in OPTICS [30], it has unsmooth behaviour, and in

many cases it does not differentiate between the density of areas with differ-

ent density characteristics6. We illustrate this problem in Figure 4.2, in which

the circles represent the core distance of the objects o1, o2, o3, o4 and we have

(dcore(o2) = dcore(o3)) ≤ (dcore(o1) = dcore(o4)). Based on our definition of

mutual reachability distance, dmreach(o1, o2) = dmreach(o1, o3) = dmreach(o1, o4).

However, the density at points o2 and o3 is estimated to be higher than the

density at point o4, and thus the mutual reachability distances dmreach(o1, o2)

and dmreach(o1, o3) should be smaller than dmreach(o1, o4). In addition, the prox-

imity of point o2 to o1 is closer than the proximity of o3 to o1; therefore, the

mutual reachability distance of o2 and o1 should be smaller than that of o3 and

o1.

We define a new mutual reachability distance, based on the core distances

of objects, that is symmetric and consider the differences (as discussed above)

as follows:

6Mutual reachability graphs and MSTs created using these mutual reachability distances
have many edges with the same weight, and usually there are many possible MSTs for each
data set.
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Figure 4.2: Objects o1, o2, o3, o4 and their core distances.

Definition 4.4.1. (New Mutual Reachability Distance): The new mutual

reachability distance between two objects xp and xq in X with respect to core dis-

tance and distance is defined as dnmreach(xp,xq) = (dcore(xp)+dcore(xq))

2
+ d(xp,xq)

We can easily see that with the new definition, we have dnmreach(o1, o2) <

dnmreach(o1, o3) < dnmreach(o1, o4), as desired. Our new mutual reachability

distance also has the properties that have so far been discussed for mutual

reachability distance. In the following we state the property that we stated in

Proposition 4.3.1 for our new mutual reachability distance.

Proposition 4.4.1. Let nGnmrd,ε
be a set of objects in the connected components

(clusters) in Gnmrd,ε
7. Core distance of all such objects are less than or equal

to ε.

Proof. The proof is a bit trickier than that provided for Proposition 4.4.1. Let

o1 and o2 be any arbitrary pair of objects whose mutual edge belongs to the set

of edges in Gnmrd,ε. This means that the weight of the edge (o1, o2) is less than

7Gnmrd is a graph similar to Gmrd and Gnmrd,ε is a graph similar to Gmrd,ε that were
built using our new mutual reachability distances
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or equal to ε (dnmreach(o1, o2) ≤ ε). Without loss of generality let’s consider

that dcore(o2) ≤ dcore(o1). If dcore(o1) ≤ d(o1, o2) we can easily infer that

dcore(o1) ≤ dnmreach(o1, o2) ≤ ε. If alternatively, d(o1, o2) < dcore(o1), as we can

see in Figure 4.2, the object o2 is inside the dcore(o1) neighborhood of the object

o1, and as we can also see in the Figure 4.2, the dcore(o1) neighborhood of the

object o1 cannot contain the whole neighborhood of the object o2. Otherwise,

the dcore(o1) must be smaller than the current dcore(o1), which is not possible

because dcore(o1) is defined as the smallest neighborhood that contains minpts

objects. Therefore, dcore(o1) ≤ dcore(o2) + d(o1, o2)

⇒ dcore(o1) ≤ dcore(o2) + 2× d(o1, o2)

⇒ dcore(o1)

2
≤ dcore(o2)

2
+ d(o1, o2)

⇒ dcore(o1)

2
+
dcore(o1)

2
≤ dcore(o1)

2
+
dcore(o2)

2
+ d(o1, o2)

⇒ dcore(o1) ≤
dcore(o1) + dcore(o2)

2
+ d(o1, o2) = dnmreach(o1, o2)

⇒ dcore(o1) ≤ ε⇒ dcore(o2) ≤ ε

With this new definition of mutual reachability distance, the problem of

border objects is also solved, because when calculating mutual reachability

distance, we distinguish whether an object with low density is close to a dense

object or the same object with low density is close to a non-dense object.

By utilizing the new concept of mutual reachability distance, we can define

our algorithm GHDBSCAN(NMRD). Algorithm 2 gives the pseudo-code for

GHDBSCAN(NMRD), similar to the standard pseudo-code for SL algorithm

and also HDBSCAN, withmpts value and the data setX as an input. Note that,

in contrast to HDBSCAN, we did not include the self-edges in this algorithm

meaning that a cluster as in Definition 4.3.6 needs to have at least two objects.

However one can consider isolated core object similar to the HDBSCAN as a
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cluster by adding the self-edges in step 3 of the algorithm.

In the following Section (4.4.2), we discuss a new possible way of estimating

the density of each object.

4.4.2 Estimation of Density at Each Object

To estimate the density of an object, a traditional approach is to take the inverse

of the threshold distance necessary to findmpts objects within this threshold [73,

23, 30, 3]; this approach is used in the Improved-AUTO-HDS and HDBSCAN

algorithms. This approach, however, has its disadvantages. First, the estimated

density of an object is based on the distance to a single point (the kth nearest

neighbor). As such, this estimate is not as robust as density estimates that

consider more objects from the neighborhood, as does the Gaussian kernel

density estimate. Second, this definition introduces a parameter mpts . Setting

user-defined parameter mpts is challenging as it depends on the characteristics

of each data set, such as size of data set and amount of background noise.

In the following, we provide a new, more robust, and parameter-less defi-

nition of a density that can be used in the mutual reachability distance and

new mutual reachability distance8. To achieve this goal, the density definition

should have the following properties:

(1) To be more robust, a density estimate should not depend on a single

point, but should rather consider all of the points in such a way that closer

objects make a greater contribution to the density than do farther objects.

This is a common property in density estimate methods such as Gaussian kernel

density estimation.

(2) In the definition of mutual reachability distance [84] and new mutual

reachability distance, which we introduced in Section (4.4.1) and which we

8The definition of core distance is explored in more detail in the context of density-based
clustering validation in Chapter 3. Here we give a concise and self-contained overview of it
and its properties and repeat some of those material and discuss them in the context of the
density-based clustering.
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apply in our methods, the core distance of an object is compared to the distance

of the object to other objects. Therefore the core distance should be comparable

to those distances.

(3) The core distance of an object should be approximately that of the

kth nearest neighbor from the object, where k is not too large (hence the core

distance represents a small neighborhood of the object).

We define the core distance of an object o (aptscoredist) with respect to all

other objects in a data set as follows.

Definition 4.4.2 (Core Distance of an Object). The all-points-core-distance

of an object o, belonging to the d-dimensional data set X with respect to all

other n− 1 objects inside that data set is defined as:

aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

(4.1)

In Chapter 3, Section 3.2 we proved that properties one and two hold for

this definition of core distance.

In Propositions 4.4.2 and 4.4.3 we show again that the third property holds

for our definition of aptscoredist in uniform distribution using Euclidean dis-

tance and we describe the behaviour of this density in other distributions in-

tuitively based on its behaviour in uniform distribution.

Proposition 4.4.2. Let n objects be uniformly distributed random variables

in a d-dimensional unit hypersphere and o be an object in the center of this

hypersphere. For the all points core distance of o we have:

aptscoredist(o) = ((ln(n− 1) + γ + ε)−
1
d ≈ ln(n)−

1
d (4.2)

where γ ≈ 0.5772 and ε ≈ 1
2n

which approaches to zero as n goes to infinity.

Proof. Proof is provided in Appendix A on page 145.
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Note that when we have a distribution other than the uniform distribution,

its behavior follows our first desired property. If most of the objects are close

to o, density and aptscoredist tend to be larger and smaller values respectively.

By contrast, if most of the objects are distributed far away from o, density

and aptscoredist tend to assume smaller values.

Proposition 4.4.3. For calculated aptscoredist(o) in Proposition 4.4.2, we

have:

aptscoredist(o) ≈ ln(n)−
1
d ≈ KNN(o, j), (4.3)

with j being the closest natural number to n
ln(n)

and KNN(o, j) being the ex-

pected value of jth nearest neighbor distance to object o.

Proof. Proof is provided in Appendix A on page 147.

This proposition shows that the core distance of the object o approximating

distance to the same Kth nearest neighbor independent of the dimensionality

of the data space.

By using aptscoredist value for each object as the core distance of the ob-

ject and using these core distance values to calculate the new mutual reach-

ability distance as defined in Definition 4.4.1, we can define our algorithm

GHDBSCAN(NMRD+PF). Algorithm 2 gives the pseudo-code for GHDB-

SCAN(NMRD+PF) with the data set X as an input. As described in Section

4.4.1, one can consider isolated core objects as a cluster by adding the self-edges

in step 3 of the algorithm.

4.4.3 Hierarchy Simplification

The hierarchies of density-based clustering algorithms introduced so far can

easily be visualized as a traditional dendrogram or as related representations.

However, these plots are not easy to interpret or process for large and “noisy”

data sets, so it is a fundamental problem to extract from a dendrogram a
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Algorithm 2: GHDBSCAN (NMRD+PF) and GHDBSCAN (NMRD)
main steps.
1. Compute the aptscoredist core distance of each object with respect to all other
objects (in case of GHDBSCAN(NMRD) compute core distance with respect to
mpts).
2. Compute the new mutual reachability distance between pairs of objects using
calculated core distances of the objects.
3. Compute an MST of New Mutual Reachability Graph (Gnmrd), by constructing
an MST of Gnmrd.
4. Extract the GHDBSCAN hierarchy as a dendrogram from MST :

4.1 For the root of the tree assign all objects the single cluster.
4.2 Iteratively remove each edge from MST in decreasing order of
weights (in case of ties, edges must be removed simultaneously):

4.2.1 Before each removal, set the dendrogram scale of the current
hierarchical level as the weight of the edge(s) to be removed.
4.2.2 After each removal, assign labels to the connected component(s)
that contain(s) the end vertex(-ices) of the removed edge(s), to obtain
the next hierarchical level: assign a new cluster label to a component
if it still has at least one edge, else assign it a null label (“noise”).

summarized tree of only “significant” clusters. We provide a simplification

of these hierarchies based on a fundamental observation about estimates of

the level sets of continuous-valued probability density functions (p.d.f.), which

refers back to Hartigan’s concept of rigid clusters [3], and which has been

employed similarly by Gupta et al. in [25]. For a given p.d.f., there are only

two possibilities for how the connected components of a continuous density

level set evolve when increasing the density level [85] in which the size of the

component reduces but remains connected, up to a density threshold at which

either (i) the component is divided into smaller ones, or (ii) it disappears. This

observation can be applied to our hierarchies to select only those hierarchical

levels in which new clusters arise by a “true” split of a cluster, or in which

clusters disappear; these are the levels at which the most significant changes in

the clustering structure occur. When increasing the density level, the ordinary

removal of noise objects from a cluster is not a true split; only the size of the

cluster reduces in this case, so it should keep the same label.

As in [73] we can generalize this idea by setting a minimum cluster size, a

commonly used practice in real cluster analysis (see, e.g., the notion of a particle
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Algorithm 3:Hierarchy Simplification Using Parameter mclSize ∈ N
After removing each edge to obtain the next hierarchical level in a
hierarchy as described before, process each cluster that contained the
edge(s) just removed, by relabeling its resulting connected
subcomponent(s):

Label spurious subcomponents as noise by assigning them the
null label. If all subcomponents of a cluster are spurious, then
the cluster has disappeared.
Else, if a single subcomponent of a cluster is not spurious, keep
its original cluster label (cluster just reduced the size).
Else, if two or more subcomponents of a cluster are not spurious,
assign new cluster labels to each of them (“true” cluster split).

in AUTO-HDS [25]). With a minimum cluster size, mclSize ≥ 1, components

with fewer than mclSize objects are disregarded, and their disconnection from a

cluster does not establish a true split. We can adapt the produced hierarchies

accordingly by changing labelling Steps of algorithms 1 and 2 (step 3.2.2 in

1 and step 4.2.2 in 2) as shown in Algorithm 3. In simplification process a

connected component is deemed spurious if it has fewer than mclSize objects.

Any spurious component is labeled as noise and its removal from a larger com-

ponent is not considered as a cluster split. In practice, this can reduce the size

of the hierarchy dramatically. The optional parameter mclSize represents an

independent control for the smoothing of the resulting cluster tree, in addition

to mpts where needed. To make the hierarchies produced by algorithms that

have mpts parameter more similar to previous density-based approaches and to

simplify their use, we can optionally set mclSize = mpts, which turns mpts into a

single parameter that acts as both a smoothing factor and a threshold for the

cluster size.

4.4.4 Model Selection

In many applications, a user is interested in extracting a flat partition of the

data, consisting of the best clusters. Those clusters, however, may have very

different local densities and may not be detectable by a single, global density
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threshold (i.e., a global cut through a hierarchical cluster representation). We

describe here methods of automatically selecting the number and location of

the best clusters. To select these clusters, we introduce our novel stability

criterion, called Bounded Excess of Mass, in order to rank the clusters.

4.4.5 Bounded Excess of Mass Cluster Stability

Using a simplified hierarchy generated by the process discussed in Section 4.4.3,

makes it easier to extract a flat clustering solution from a hierarchy. However to

select a flat clustering solution from a hierarchy, we need to define the stability

criterion for each cluster. Using stability values for each cluster makes it possi-

ble to extract a flat clustering solution from a hierarchy with maximum overall

stability. In this section we describe our proposed stability criterion, called

“Bounded Excess of Mass”. Without loss of generality, let us initially consider

that the data objects are described by a single continuous-valued attribute x.

Following Hartigan’s model [3], the density-contour clusters of a given density

f(x) on < at a given density level λ are the maximal connected subsets of the

level set defined as {x | f(x) ≥ λ}. Most density-based clustering algorithms

are, to some extent, based on this concept. As we described in Section 4.4,

the differences between them lie in the way the density f at each object and

density of a path between two objects are estimated.

Each of our described hierarchical density-based clustering algorithms pro-

duces a hierarchy with respect to all possible density thresholds λ. Intuitively,

when increasing λ, clusters get smaller and smaller, until they disappear or

break into sub-clusters; more prominent clusters will “survive” longer after they

appear. To formalize this concept, we adapt the notion of excess of mass [115].

Imagine increasing the density level λ, and assume that a density-contour clus-

ter Ci appears at level λmin(Ci). The excess of mass of Ci is defined as:

E(Ci) =

∫ (
f(x)− λmin(Ci)

)
dx (4.4)
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For our density-based clustering hierarchies where we have a finite data set,

thus having finite density thresholds, we can write Equation 4.4 as:

E(Ci) =
∑
x∈Ci

(
f(x)− λmin(Ci)

)
(4.5)

Excess of Mass, as introduced above, has a few properties that make it inap-

propriate to use as a cluster stability: (i) It exhibits a monotonic behaviour

along any branch of the hierarchical cluster tree. As a consequence, the excess

of mass of a parent cluster is always greater than the sum of excess of mass

of its children, thus Excess of Mass can not directly be used to compare the

stabilities of nested clusters. (ii) If a few objects inside a cluster are very close

to each other, the quality of that cluster goes to infinity. This causes two unde-

sirable problems: (a) other objects inside that cluster will not have any effect

on the quality of that cluster, and (b) it will not be meaningful to compare

values close to infinity to find the best cluster. Although, the Relative Excess

of Mass that was originally proposed in HDBSCAN method [73] resolves the

first problem, it still suffers from the two problems mentioned in (ii). To resolve

these problems we propose Bounded Excess of Mass by adapting the Excess of

Mass and its relative version as a stability measure for a cluster as follows:

Bounded-E(Ci) =
∑
xj∈Ci

(λmax(xj,Ci)− λmin(Ci)

λmax(xj,Ci) + λmin(Ci)

)d
(4.6)

where λmin(Ci) is the minimum density level at which Ci exists, λmax(xj,Ci)

is the density level beyond which object xj no longer belongs to cluster Ci,

and d is dimensionality of the data space. We can easily see that our proposed

bounded excess of mass for cluster Ci is a number between 0 and |Ci| where |Ci|

is the cardinality of the cluster Ci and our proposed stability criterion does not

suffer from the aforementioned problems and has following properties: First, it
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is local, which means that it can be computed independently for each cluster

and that the stability of one cluster does not depend on the stability of the

other clusters. Second, the sum of the stabilities of child clusters is comparable

to the stability of their parent cluster. These two properties are required for

a stability measure to be eligible for use in the optimal extraction of a flat

solution from a hierarchy, which we describe it in Chapter 5 in detail. Third,

the value of such stability is bounded, which is a desired though not necessary

property. We define the stability of a clustering partition as the sum of the

stabilities of its clusters. For example, in Figure 4.3, the bounded excess of

mass stabilities for each cluster are illustrated. It is possible to extract several

non-overlapping partitions from this cluster tree, e.g., the partition including

clusters C2 and C3 which has a stability of 11 (Bounded-E(C2) + Bounded-

E(C3) = 6 + 5 = 11). The partition including the clusters C2, C7, C8 and C9

is the most prominent flat partition, with a maximum stability of 25 among

all possible partitions (Bounded-E(C2) + Bounded-E(C7) + Bounded-E(C8)

+ Bounded-E(C9)= 6 + 8 + 5 + 6 = 25). It is possible to find the most

prominent flat partitions in every cluster tree by using a method analogous

to the one used in error-based pruning of decision-tree classifiers. We apply

this method to extract the most prominent partition from a cluster tree (not

selecting the partition that contains only the root cluster) in our algorithms,

see Chapter 5.

4.5 Complexity Analysis

In this section, we analyze the complexity of our methods. Consider first a

scenario where the data set X with n d-dimensional objects is given as input.

Provided that the distance between objects can be computed in O(d) time, the

core distances of all objects can be computed in O(dn2) time in the worst case

(for both mpts and aptscoredist core distances). When the core distances have
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Figure 4.3: Bounded excess of mass stability values for each cluster in a
cluster tree. The partition including the clusters C2, C7, C8 and C9 has
maximum sum of stabilities.

been pre-computed, each mutual reachability distance can be computed in O(d)

time when the SL algorithm demands it. One of the fastest ways to compute SL

is by using a divisive method based on the Minimum Spanning Tree (MST) [1].

It is possible to construct an MST in O(dn2) time by using an implementation

of Prim’s algorithm based on an ordinary list search. The divisive extraction

of the SL hierarchy from the MST does not exceed this complexity. Once

the hierarchy is available, the relabeling and smoothing procedures (removal

of clusters smaller than mclSize) can be normally applied. These procedures

likewise do not exceed this complexity. The extraction of a flat solution from

the hierarchy is O(n) (see Section 5.3.2 for more detail).

In summary, then, the overall worst-case asymptotic time complexity of

the algorithms, when the data set X is given as input, is O(dn2). Regarding

main memory requirements, one needs O(dn) space to store the data set X

and O(n) space to store the core distances (for both mpts and aptscoredist

core distances). The MST requires O(n) space to be stored. In the divisive

extraction stage, only the currently processed hierarchical level, which requires

O(n) space, is needed at any point in time. Hence, the overall space complexity

of the algorithm is O(dn). If the distance matrixMS is given instead of the data
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set X, the only change affecting the runtime is that one can directly access any

distance dS(oi, oj) from MS in constant time. In such a case, the computations

no longer depend on the dimension d of the objects, and, as a consequence,

the worst case time complexity decreases to O(n2). On the other hand, this

requires that matrix MS be stored in main memory, which results in O(n2)

space complexity.

4.6 Experiments and Discussion

Data Sets. We report the performance on 6 individual data sets plus

the average performance on 2 collections of data sets, representing a large

variety of application domains and data characteristics (number of objects,

dimensionality, number of clusters, and distance function). The first two

data sets (“CellCycle-237”, and “CellCycle-384”) represent gene-expression data.

CellCycle-237 and CellCycle-384 were made public by Yeung et al. [111]; they

contain 237 respectively 384 objects (genes), 4 respectively 5 known classes,

and have both 17 dimensions (conditions). For these data sets we used Eu-

clidean distance on the z-score normalized objects, which is equivalent to us-

ing Pearson correlation on the original data. The next two data sets are the

Glass, and Iris from the UCI Repository [116], containing 214, respectively

150 objects in 9, respectively 4 dimensions, with 7, respectively 3 classes. For

these data sets we used Euclidean distance. The last two individual data sets

consist of very high dimensional representations of text documents. In partic-

ular, “Articles-1442-5”, made available upon request by Naldi et al. [117], is

formed by 253 articles represented by 4636 dimensions. “Cbrilpirivson” [118]

is composed of 945 articles represented by 1431 dimensions and is available

at http://infoserver.lcad.icmc.usp.br/infovis2/PExDownload. The number of

classes in all two document data sets is 5, and we used the Cosine measure as

dissimilarity function.
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In addition to individual data sets we also report average performance on

two collections of data sets, which are based on the Amsterdam Library of

Object Images (ALOI) [119]. Image sets were created by randomly selecting k

ALOI image categories as class labels 100 times for each number k = 2, 3, 4, 5,

then sampling (without replacement), each time, 25 images from each of the k

selected categories, thus resulting in 400 sets, each of which contains 2, 3, 4,

or 5 clusters and 50, 75, 100, or 125 images (objects). The images were repre-

sented using six different descriptors: color moments (144 attributes), texture

statistics from the gray-level co-occurrence matrix (88 attributes), Sobel edge

histogram (128 attributes), 1st order statistics from the gray-level histogram

(5 attributes), gray-level run-length matrix features (44 attributes), and gray-

level histogram (256 attributes). We report average clustering results for the

texture statistics, denoted by “ALOI-TS88”, which is typical for the individual

descriptors. We also show results for a 6-dimensional representation combining

the first principal component extracted from each of the 6 descriptors using

PCA, denoted by “ALOI-PCA”. We used Euclidean distance in both cases.

Algorithms and settings. In first set of experiments we compare the per-

formance of the HDBSCAN (see Section 4.3.1) with original settings [73], with:

(i) AUTO-HDS [25]; and (ii) a method referred to here as “OPTICS(AutoCl),”

which involves first running OPTICS, and then using the method proposed by

Sander et al. [28] to extract a flat partitioning. We setmpts (nε in AUTO-HDS,

mpts in OPTICS) equal to 4 in all experiments. The speed-up control value ε

in OPTICS is set to “infinity,” thereby eliminating its effect. For AUTO-HDS,

we set the additional parameters rshave to 0.03 (following the authors’ sugges-

tion to use values between 0.01 and 0.05) and particle size, npart, to mpts − 1.

In this set of experiments we show that HDBSCAN outperforms other algo-

rithms. We then compare performance of HDBSCAN with performance of

two new algorithms provided in Section 4.3, GHDBSCAN(NMRD) and GDB-

SCAN(NMRD+PF). To extract flat partition from the hierarchies the stability
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is measured based on bounded excess of mass. For text data sets for calculating

stabilities d is set to one. Minimum cluster size, mclSize, was set equivalently

to 4 in all algorithms.9

Quality Measures. The measure we report is the Adjusted Rand Index

[75], denoted by “ARI,” which is the measure commonly used in the litera-

ture. In addition, we also report the fraction of objects assigned to clusters (as

opposed to noise), denoted by “%covered.”

Clustering Results. The results obtained in our experiments are shown in

bar plots in Figure 4.4 and Figure 4.5. Each sub-figure has two groups of bars;

the group on the left side represents the ARI for each method, and the group

on the right side represents %covered. We first compare HDBSCAN algorithm

with other state-of-the-art algorithms, OPTICS(AutoCl) and AUTO-HDS, in

Figure 4.4.

Note that HDBSCAN outperforms the other two methods in a large major-

ity of the data sets (in many cases by a large margin) and, in almost all cases,

it covers a larger fraction of objects while having high ARI values. A large

fraction of clustered objects is only good when also the clustering quality is

high. E.g., for CellCycle-384, OPTICS(AutoCl) covers 100% of the data, but

results in an ARI of 0, a meaningless clustering. In the only case where HDB-

SCAN does not perform best, CellCycle-237, its ARI and %covered is much

higher than ARI and %covered of AUTO-HDS and is close to the “winner,”

OPTICS(AutoCl). The collections of image data sets, ALOI-TS88 and ALOI-

PCA, allowed us to perform paired t-tests with respect to ARI, confirming

that the observed differences in performance between all pairs of methods is

statistically significant at the α = 0.01 significance level. This means that the

methods are indeed doing different things, and, in particular, that HDBSCAN

significantly outperforms the others on these data set collections.

Second, we compare GHDBSCAN(NMRD) and GHDBSCAN(NMRD+PF)

9We also tried other values of mpts, rshave, and npart/mclSize, with similar results.

83



ARI % Covered
0

0.2

0.4

0.6

0.8

Glass

ARI % Covered
0

0.5

1

Iris

ARI % Covered
0

0.2

0.4

0.6

0.8

CellCycle−237

ARI % Covered
0

0.5

1

CellCycle−384

ARI % Covered
0

0.2

0.4

Cbrilpirivson

ARI % Covered
0.5

0.6

0.7

0.8

0.9

Articles−5

ARI % Covered
0.4

0.6

0.8

ALOI−TS88

ARI % Covered
0.4

0.6

0.8

ALOI−PCA

HDBSCAN OPTICS(AutoCl) AUTO−HDS

Figure 4.4: ARI results and percentage of the data clustered for algorithms
HDBSCAN, OPTICS(AutoCl) and AUTO-HDS.
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with HDBSCAN algorithm in Figure 4.5. Note that HDBSCAN outperforms

both of the other methods only in one data set, CellCycle-384, where its ARI

is slightly better than both of these two methods. GHDBSCAN(NMRD+PF)

outperforms HDBSCAN in four out of eight data sets and GHDBSCAN(NMRD)

outperforms in CellCycle-237 and two collections of image data sets, ALOI-

TS88 and ALOI-PCA, by a large margin, and its results are quite similar to

that of HDBSCAN in four data sets (Glass, Iris, Cbrilpirvison and Ariticle-5).

We performed paired t-tests with respect to ARI on two collections of image

data sets confirming that the large margin differences in performance are sta-

tistically significant at the α = 0.01 significance level.

4.7 Summary

In this chapter we proposed and discussed in several novel density-based clus-

tering approaches. First, we discussed the AUTO-HDS framework and show

that the particular algorithm adapted in the clustering stage of the framework

can be replaced so that a user-defined parameter is eliminated and the clus-

tering stage and extraction can be performed in a simpler, faster and more

accurate way. Then, we introduced a novel generalized density-based clus-

tering approach by recognizing the two essential components of density-based

clustering. We proposed two methods for replacing these components by first

proposing a novel, theoretically sound approach to estimating the density of the

objects along the path, and second proposing a novel approach to estimating

the density of the objects without having any parameters and only based on

the distances to all other objects in the data set that improve on HDBSCAN

which produces a complete density-based clustering hierarchy representing all

possible DBSCAN* solutions for all possible density thresholds.

In an extensive set of experimental evaluations using a wide variety of

real-world data sets, we have demonstrated that our density-based cluster-
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ing algorithms perform in general significantly better and more robustly than

state-of-the-art methods. There are several interesting challenges for possi-

ble future research such as utilizing other density estimation methods in our

general framework or to investigate other alternative stability measures. One

can also investigate combination of different stability measures that capture

different aspects of the quality of the clusters to improve on extraction of flat

clustering solution. One can also use a small amount of information about data

in the form of constraints in the selection process; one type of integration of

semi-supervision to the clustering procedure is discussed in Chapter 5.
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Chapter 5

Semi-Supervised Extraction of a

Flat Partition from a Hierarchy

and Model Selection

5.1 Introduction

In this chapter, in order to show practical application of semi-supervised clus-

tering, we first describe the Framework for Optimal Selection of Clusters frame-

work, called FOSC, which is the semi-supervised and unsupervised extraction

of flat partition from a hierarchy (FOSC was proposed by Campello, Moulavi,

Zimek and Sander [56] with participation of the author). Then we instanti-

ate that framework in the context of density-based clustering for our proposed

GHDBSCAN method, and show that this combination approach outperforms

other state-of-the-art semi-supervised and unsupervised clustering algorithms.

We then propose a semi-supervised model selection framework, General Semi-

Supervised Model Selection (GSS-MS), which works based on a small amount

of instance-level constraints and also on our proposed density-based clustering

validation measure, DBCV. We use GSS-MSS along with GHDBSCAN to show

that combining all the methods that have been proposed in this thesis further
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improves the quality of the clustering results. Then we provide a model selec-

tion method for semi-supervised clustering algorithm, CVCP, based on a sound

cross validation procedure (the framework CVCP was proposed by Pourrajabi

and Moulavi et al. [54] with participation of the author).

The remainder of this chapter is organized as follows. In the following

section, Section 5.2, we define and formulate the extraction of a flat parti-

tional clustering from a cluster tree as an optimization problem. In Section

5.3 we present a globally optimal solution to this problem along with an algo-

rithm that can efficiently compute the globally optimal solution in the semi-

supervised and unsupervised scenarios. In Section 5.4 we discuss the problem

of semi-supervised model selection and provide two semi-supervised model se-

lection frameworks, GSS-MS and CVCP. In Section 5.5 we provide an extensive

experimental evaluation of our approaches. In Sections 5.5.2 and 5.5.3 partic-

ularly, we show that the combination of the approaches that we introduced in

this thesis even further improves the quality of the clustering results.

5.2 Semi-Supervised Extraction of a Flat Par-

tition from a Hierarchy Problem Statement

5.2.1 Preliminaries

LetX = {x1, · · · ,xn} be a data set containing n data objects and {C1, · · · ,Cκ}

be the collection of clusters in a clustering hierarchy of X from which a flat

solution has to be extracted. We represent the clustering hierarchy as a cluster

tree in which each node is associated with a particular cluster. Let C1 be the

root of the tree, which represents the all-inclusive “cluster” composed of the

entire data set (i.e. C1 = X). Without any loss of generality, we consider that

the cluster tree is binary, for two main reasons: (i) it is simpler to formalize the

problem for binary trees; and (ii) the solution of the problem can be straight-
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forwardly generalized to deal with non-binary trees. Formally, the tree is such

that each internal node, associated with a given cluster Ci, has two child nodes

associated with nested sub-clusters of Ci. These nodes are denoted as Cil and

Cir , in reference to the left and right child of Ci, respectively. The leaf nodes

of the tree are associated with clusters that do not have sub-clusters.

Problem Overview

Before running into possible complications associated with the different aspects

of clustering that will be considered in this chapter, we first provide the reader

with a more abstract overview of the problem and outline the basic solution

strategy that will be further elaborated in Section 5.3. Let us assume that we

are given a cluster tree as described above and a numerical value associated

with each cluster, which quantifies a certain property of interest related to the

clusters. The fundamental problem we want to solve is to select a collection of

clusters from the tree that represents a flat clustering solution and for which a

predefined form of aggregation of the corresponding numerical values is max-

imized. For instance, if the meaningful aggregation for the problem at hand

is the sum, then we want to maximize the sum of the numerical values associ-

ated with selection of clusters that do not overlap. Possible meanings for such

numerical values are not relevant at this point.

Consider the example cluster tree in Figure 5.1(a). To obtain a flat solu-

tion, no other cluster can be selected in the subtree rooted at a given selected

cluster. Among the solutions that satisfy this condition, the one composed of

{C3,C4,C5}, is optimal as it maximizes the sum of the values displayed beside

the clusters in the figure. To find such a solution efficiently, it is worth noting

that the sub-selection of clusters in any subtree represents a sub-problem of

the same nature of the original problem (i.e., the one that refers to the com-

plete tree). Based on this observation, a dynamic programming strategy can be

applied that incrementally solves sub-problems (subtrees) of increasing sizes,
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starting from the leaves and aggregating the intermediate solutions upwards in

the tree [56]. At this very high level of abstraction, this strategy is analogous

to the one used in error-based pruning of decision-tree classifiers.

In the example of Figure 5.1(a), starting from the deepest leaves, C8 and

C9 must be discarded as their values sum up to 2.9, which is worse than C5

(21.1). At the level above, C5, as the best sub-selection in its subtree, and C4,

as a subtree on its own, are together (37.5) better than C2 (32.7), which is

then discarded. In the other branch, clusters C6 and C7 are also discarded as

they are together (2.4) worse than C3 (36.9). In the end, clusters C3, C4, and

C5 remain, which is the optimal global solution, with a total value of 74.4. In

the following, this strategy will be specialized, extended, and formalized as an

algorithm for applications in different contexts of clustering.

Hierarchies with Noise Objects

It is worth remarking that many clustering hierarchies are not only able to

represent parent-children relationships involving groups of objects with valid

cluster labels, but they can also model the fact that some objects in a given

parent cluster may become noise before this cluster is split into its children

(from a top-down perspective on the cluster tree), thus no longer belonging to

any cluster below the respective hierarchical level. Noise objects are a natural

consequence when using density-based hierarchical algorithms [e.g. 30, 28, 25],

as such algorithms produce hierarchies in which the hierarchical levels are as-

sociated with different density thresholds, and objects whose density is below

the threshold are deemed noise at the corresponding levels. The concept of

noise, however, can be easily extended to other types of hierarchies, for in-

stance, by using a minimum cluster size, mclSize , commonly used in real cluster

analysis (see, e.g., the notion of a particle in AUTO-HDS [25]) and that we

discussed it in Chapter 4 and here we extend our discussion in the context of

semi-supervised clustering in which we consider as in [56] the concept of virtual
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Figure 5.1: Simplified cluster trees of the hierarchy in Table 5.1. Figures beside
the nodes denote: (a) cluster quality (stability); (b) fractions of constraint sat-
isfactions. Boldfaced solid nodes indicate optimally selected clusters. Dashed
circles in (b) are virtual nodes representing noise objects.

nodes for the objects that become noise along the hierarchical levels.

As an example, Figure 5.2 shows a simple data set and its average-linkage

dendrogram, where there are 27 clusters (including 14 singletons), 9 of which

have been highlighted. Table 5.1 shows the idea described above for the den-

drogram in Figure 5.2(b), with mclSize = 2. When a single object, as a subcom-

ponent with fewer than mclSize objects, is disconnected from a cluster top-down

along the hierarchy (which reads from left to right along the table), the origi-

nal cluster is regarded only as having decreased in size, so it keeps its original

label. This procedure reduces the 27 clusters in the dendrogram to 9 more

prominent ones (labeled “1” to “9” in Table 5.1)1, which however may exhibit

different configurations along different hierarchical levels (e.g., cluster “4” with

and without objects x4 and x2). In our framework, such different configurations

can be modeled as parent-child nodes in the tree of candidate clusters, which

in this case would not be strictly binary. Optionally, the cluster tree and the

corresponding cluster extraction problem can be simplified by considering as

significant hierarchical levels only those in which a cluster is truly split, giving

rise to new sub-clusters. The clusters at such hierarchical levels are those high-

lighted in Figure 5.2(b) (C1, · · · ,C9) and refer back to Hartigan’s concept of

1Note that such a reduction may be even more noticeable for higher values of mclSize .
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Figure 5.2: (a) Sample data set and (b) its average-linkage dendrogram.

rigid clusters [3], which is adopted in this chapter and has also been explored,

e.g., by [85, 25]. The corresponding cluster tree is displayed in Figure 5.1(a).

x1 1 2 4 4 4 4 4 4 4 4 0 0 0 0
x2 1 2 4 4 4 4 4 0 0 0 0 0 0 0
x3 1 2 4 4 4 4 4 4 4 4 0 0 0 0
x4 1 2 4 4 0 0 0 0 0 0 0 0 0 0
x5 1 2 5 5 5 0 0 0 0 0 0 0 0 0
x6 1 2 5 5 5 5 5 5 8 8 8 8 8 0
x7 1 2 5 5 5 5 5 5 9 9 9 9 0 0
x8 1 2 5 5 5 5 5 5 8 8 8 8 8 0
x9 1 2 5 5 5 5 5 5 9 9 9 9 0 0
x10 1 3 3 0 0 0 0 0 0 0 0 0 0 0
x11 1 3 3 3 3 3 6 6 6 6 6 0 0 0
x12 1 3 3 3 3 3 6 6 6 6 6 0 0 0
x13 1 3 3 3 3 3 7 7 7 0 0 0 0 0
x14 1 3 3 3 3 3 7 7 7 0 0 0 0 0

Scale 9.42 5.78 2.8 2.56 2.02 1.83 1.72 1.44 1.28 1.22 1.17 0.78 0.6 0

Table 5.1: Hierarchy for the data in Figure 5.2(a) with mclSize = 2. Higher
(lower) hierarchical levels are on the left (right). Scale values (bottom bar) are
the average-linkage distances. The remaining values are labels: a non-0 value i
in the jth row means that object xj belongs to cluster Ci at the corresponding
level, whereas a 0 value denotes noise.

Note that the cluster tree, as represented in Figure 5.1(a), does not explicitly

account for the fact that object x10 of cluster C3 is not part of either of C3’s

children, namely, C6 (C3l) and C7 (C3r), as x10 is already deemed noise at

the level at which C6 and C7 appear as clusters and below. The same holds

true with respect to object x5 and clusters C5, C8 (C5l), and C9 (C5r). We

will see later that these objects can affect the optimal extraction of clusters
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in the semi-supervised case. For this reason and for the sake of generality, we

assume that the information about objects that are part of a cluster yet not

part of its sub-clusters (if any) is available in the hierarchy to be processed.

This information can be represented in the cluster tree by means of “virtual”

nodes, like the ones displayed in dashed lines in Figure 5.1(b).

To simplify the formulation, we assume that every internal node of the

cluster tree has one virtual child node, even though only some of them are

actually associated with noise objects and remaining ones store no information

at all.2 The virtual child node of a cluster Ci in the cluster tree will be denoted

hereafter as C∅i , no matter whether it actually stores information or not.

5.2.2 Problem Formulation as a Programming Task

Assumed that we are given a cluster tree of a data set X and also a collection

of should-link and should-not-link constraints that being satisfied or violated

to different degrees by the clusters in the cluster tree (when such a collection of

constraints is empty will be discussed later as a unsupervised extraction case).

Our primary objective is to extract a flat solution from the cluster tree that

is globally optimal with respect to the constraints, that is, to extract a collection

of clusters that altogether maximize the number of constraint satisfactions

computed over the whole data set X = {x1, · · · ,xn}. Unsupervised measures

of cluster quality such as bounded excess of mass that we discussed in Chapter

4 or the one described in Section 5.2.3 will in principle be considered as a

secondary objective. The primary objective function can be written as:

J =
1

2nc

n∑
j=1

γ(xj) (5.1)

where nc is the number of available should- and should-not-link constraints and

γ(xj) is the number of constraints involving object xj that are satisfied (not

2In the example of Figure 5.1(b), these nodes would be virtual children of C1 and C2,
which have been omitted for the sake of clarity.
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violated). The scaling constant 1⁄2 is due to the fact that a single constraint

involves a pair of objects and, as such, it is taken into account twice in the sum.

Term nc in the denominator is used to normalize J in the unit interval. Thus, J

is the fraction of constraints that are satisfied or, equivalently, the complement

of the fraction of constraints that are violated. Evidently, maximizing J is

equivalent to minimizing the number of constraint violations.

The candidate clusters are all the clusters in the cluster tree. However, in

the following, we exclude C1 from the collection of eligible clusters, which is

therefore E = {C2, · · · ,Cκ} which does not change the essence of the problem.

When selecting clusters for a flat clustering solution, nested clusters in the

tree must be mutually exclusive, i.e., each object can only be assigned a single

label (possibly null, representing noise). This condition can be formulated as

a set of constraints for the problem of maximizing J in Equation (5.1). By

noticing that terms γ(·) in Equation (5.1) are a function of the clusters that

will be selected, the optimization problem can be written as:

maximize J in Eq. (5.1)
δ2, . . . , δκ

subject to


δi ∈ {0, 1}, i = 2, · · · , κ∑
j ∈ Ih

δj = 1, ∀h such that Ch is a leaf cluster

(5.2)

where δi (i = 2, · · · , κ) is an indicator that denotes whether cluster Ci is

included in the flat solution (δi = 1) or not (δi = 0) and Ih is the set of

indexes for those clusters on the path from leaf cluster Ch (included) to the

root (excluded). The constraints in Problem (5.2) enforce that exactly one

cluster will be selected along any branch from the root to a leaf. Accordingly,

they ensure that each data object will be either assigned to a single cluster or

labeled as noise for not being part of any selected cluster. It is worth remarking

that, since a noise object is, by definition, not clustered with any other object,
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then a should-not-link constraint involving one or both objects labeled as noise

is deemed satisfied, while a should-link constraint is deemed violated.

In problem (5.2) if the objects of a parent cluster are not involved in any

constraints, then it is not possible to discriminate between this cluster and

its sub-clusters in terms of constraint satisfiability. This is a particular case

of a tie between nested (and therefore “competing”) clusters, which can also

occur in more general scenarios, even for clusters involved in constraints (as we

will see in an example in Section 5.3.1). In these cases, there will be multiple

valid cluster selections with the same globally optimal value for the objective

function in Problem (5.2). In practice, this means that, one might return as

a result a clustering that is only partially flat, possibly including subtrees of

nested clusters whose selection is undecidable. If the user does require a truly

flat solution, the ties can be decided arbitrarily or a secondary objective must

be considered to solve such subtrees. As a secondary objective, we consider

an overall aggregation of the individual qualities of the composing clusters.

Specifically, let S(Ci) be a given unsupervised measure of quality for cluster

Ci. Then, an overall aggregation of the qualities of those clusters selected from

the cluster tree to compose a flat solution can be written as:

J =
κ∑
i=2

δi S(Ci) (5.3)

Using J given by Equation (5.3) in lieu of Equation (5.1) allows for resolving

ties in subtrees. By doing so, when the whole tree is indistinguishable with

respect to constraint satisfiability, because it has been successfully constructed

by enforcing that all clusters satisfy all the constraints or because there are no

constraints at all, then the problem falls into the particular, unsupervised case

and clusters are purely extracted based on their qualities S(Ci). For example,

Bounded excess of mass proposed in chapter 4 or the measure that we describe

in Section 5.2.3 can be used as an unsupervised measure of quality.
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5.2.3 Unsupervised Measures of Cluster Quality

A suitable unsupervised measure of cluster quality depends on the character-

istics of the cluster tree at hand. Cluster trees can be of varied natures and be

produced by algorithms based on different paradigms. We have discussed two

other appropriate measures for cluster trees of all possible types in Chapter 4.

Here, we will describe a measure that can be applied to any algorithm that

produces hierarchies of the same nature as that illustrated in Table 5.1. This

includes, for instance, density-based methods [e.g. 28, 49] and all the methods

that produce traditional dendrograms as a result [e.g., see 1, 40], and to which

the hierarchy simplification technique based on minimum cluster size and noise

labels described in Section 5.2.1 can be applied.

The measure considered here [56] is based on the premise that more promi-

nent clusters will survive longer after they appear, which is the rationale behind

the definition of cluster lifetime as a measure of cluster stability in classic clus-

ter analysis [1]. The lifetime of a given cluster in a dendrogram is defined as

the length of the dendrogram scale along the hierarchical levels that cluster

exists. For hierarchies like the one in Table 5.1, this concept can be adjusted

to account for different lifetimes of the objects of a cluster. The adjustment we

consider here, which will be used in all related experiments reported in Section

5.5, is summing up the lifetimes of the objects belonging to the cluster.

For example, from a bottom-up perspective of the hierarchy in Table 5.1,

cluster C4 appears with 2 objects at level 1.22 of the scale and disappears when

it is merged with C5, giving rise to C2 at level 5.78. In between these levels,

a third and fourth objects join the cluster at levels 1.72 and 2.56 respectively.

Then, the stability of this cluster is given by S(C4) = 2∗ (5.78−1.22)+(5.78−

1.72) + (5.78−2.56) = 16.4. The values for the other clusters can be computed

analogously and are displayed beside the nodes of the tree in Figure 5.1(a).

Cluster stability should have two important properties that are required

for a quality measure to qualify for use in the framework proposed in this
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chapter. First, it is local in the sense that it can be computed for each cluster

independently of the clusters that will be selected to compose the final flat

solution, which are obviously unknown beforehand. Second, it is additive with

respect to the objects that compose the cluster. This means that adding the

values corresponding to the clusters to be selected is meaningful and compatible

with the aggregation operator used in the objective function of the optimization

problem, which is the sum operator in the case of Equation (5.3).

5.3 Optimal Cluster Extraction

5.3.1 Problem Solution and Algorithm

Recalling that E = {C2, · · · ,Cκ} is the whole collection of eligible clusters,

let F ⊆ E be any candidate flat clustering solution satisfying the structural

constraints of Problem (5.2). Furthermore, let XL ⊆ X be the subset of data

objects that have a non-null label in such a candidate flat solution, i.e., XL =

{xj | ∃Ci ∈F : xj ∈Ci}. Finally, let XL be the subset of data objects that

have a null label (noise) in this candidate solution, i.e., XL = X−XL. Then,

the objective function in Equation (5.1) can be rewritten as:

J =
1

2nc

∑
xj∈XL

γ(xj) +
1

2nc

∑
xj∈XL

γ(xj)

=
κ∑
i=2

δi Γ(Ci) +
1

2nc

∑
xj∈XL

γ(xj)
(5.4)

where Γ(Ci) = 1
2nc

∑
xj∈Ci

γ(xj) is the fraction of constraint satisfactions in-

volving the objects of cluster Ci (which is zero for clusters whose objects are

not involved in constraints). For example, let us consider three should-link

constraints, (x1,x6), (x2,x5), and (x5,x8), as well as two should-not-link con-

straints, (x4,x9) and (x3,x10), for the data set in Figure 5.2(a). Given the clus-

ters in Table 5.1, we can compute Γ(C9) = 1
2×5 (γ(x7) + γ(x9)) = 1

10
(0 + 1) =
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0.1. The values for the other clusters can be computed analogously and are

displayed beside the (non-virtual) nodes of the tree in Figure 5.1(b).

Similarly to the first term of Equation (5.4), we can also decompose its

second term, which refers to objects labeled as noise, into a sum of fractions,

each of which is associated with a virtual node of the cluster tree. Every object

labeled as noise in a flat solution extracted from the tree is associated with one

of the virtual nodes. Hence, we can rewrite Equation (5.4) as:3

J =
κ∑
i=2

δi Γ(Ci) +
m∑
l=1

ϕl Γ(C∅l ) (5.5)

where m is the number of virtual nodes in the tree (m = κ−1
2

for binary

trees, i.e., the number of internal nodes), ϕl is an indicator that denotes

whether the objects associated with the virtual node C∅l (the virtual child

of Cl) are labeled as noise in the flat solution (ϕl = 1) or not (ϕl = 0), and

Γ(C∅l ) = 1
2nc

∑
xj∈C∅l

γ(xj) is the fraction of constraint satisfactions involving

the noise objects associated with C∅l . For instance, considering the same set of

constraints as in the example above (and recalling that a should-not-link con-

straint involving one or both objects labeled as noise is deemed satisfied, while

a should-link constraint is deemed violated), one has Γ(C∅3) = 1
10
γ(x10) = 0.1

and Γ(C∅5) = 1
10
γ(x5) = 0, which are the values displayed beside the respective

virtual nodes in Figure 5.1(b). For virtual nodes not associated with any noise

object at all (those omitted in Figure 5.1(b)), Γ(C∅l ) is defined as zero.

Notice that the objects associated with a virtual node C∅l will end up being

labeled as noise (ϕl = 1) if and only if any descendant of Cl is included into the

final solution. This means that ϕl (l = 1, · · · ,m) is a function of the original

3Notice that Γ has the same properties as S discussed in Sections 4.4.5 and 5.2.3: it can
be computed locally for each node and it is additive with respect to the objects in the node,
so it is compatible with the aggregation operator (sum) used in the objective function in
Equations (5.1) and (5.5).
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decision variables δi of Problem (5.2), which can then be rewritten as:

maximize J in Eq. (5.5)
δ2, . . . , δκ

subject to


the same constraints as in (5.2)

ϕl =

 1 if l ∈ A

0 otherwise

(5.6)

where A = {l | ∃ i 6= l : δi = 1 ∧ Cl is an ancestor of Ci} are the indexes of

clusters that are ancestors of any cluster Ci to be selected as part of the final

flat solution (δi = 1). In brief, Problem (5.6) formulates the maximization of

the constraint satisfactions, written as a sum of fractions associated with the

original and virtual nodes of the tree, provided that: (a) clusters located along

a common branch of the tree (nested clusters) must be mutually exclusive; and

(b) if a cluster is selected, then the objects associated with all virtual nodes of

this cluster’s ancestors must be labeled as noise.

To solve Problem (5.6), we process every cluster node except the root,

starting from the leaves (bottom-up), deciding at each node Ci whether Ci or

the best-so-far selection of nodes in Ci’s subtrees should be selected. To be

able to make this decision locally at Ci, we propagate and update the sum

of constraint satisfactions Γ̂(Ci) of nodes provisionally selected in the subtree

rooted at Ci in the following, recursive way:

Γ̂(Ci) =


Γ(Ci), if Ci is a (non-virtual) leaf node

max{Γ(Ci), Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i )},

if Ci is an internal node

(5.7)

where Cil and Cir are the sub-clusters of Ci, while C∅i is its virtual child.
Algorithm 4 gives the pseudo-code [56]. Note that Step 3.3 does not specify

a particular criterion to resolve ties. Different decisions when resolving a tie

will lead to different flat solutions, but the value of the primary objective func-
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Algorithm 4: Solution to Problem (5.6)
Input: Cluster tree and fraction of constraint satisfactions for each node, Γ(·).
1. Initialize δ2 = · · · = δκ = 1.
2. Initialize the Γ̂ values of the leaf nodes as Γ̂(Ch) = Γ(Ch).
3. For every internal node Ci (except the root C1), starting from the deepest
levels and going up the tree, do:

3.1 If Γ(Ci) < Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ):
Set Γ̂(Ci) = Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ) and remove Ci from
the list of candidate clusters by setting δi = 0.

3.2 Else If Γ(Ci) > Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ):
Set Γ̂(Ci) = Γ(Ci) and remove from the list of candidates (by
setting their δ(·) values to 0) all the clusters in Ci’s subtrees.

3.3 Otherwise, resolve the tie by performing either the actions in
Step 3.1 or those in Step 3.2, according to a secondary criterion.

4. Return: δ2, · · · , δκ.

tion in Equation (5.5) will necessarily be the same for any of these solutions.

In other words, the choice of the secondary objective does not affect the opti-

mality of the final solution with respect to the primary objective. Therefore,

in order to provide a single optimal solution to Problem (5.6), ties can be re-

solved arbitrarily. However, a more justified approach is to consider a suitable

measure of cluster quality as a secondary objective. Specifically, a tie can be

decided analogously to Steps 3.1 — 3.2, but replacing Γ(·) with an unsupervised

measure of cluster quality S(·) and considering it to be null for virtual nodes

(S(C∅i ) = 0). Under these conditions, J in Equation (5.5) becomes structurally

equivalent to the unsupervised objective function given by Equation (5.3). In

this case, the solution of a sub-problem that refers to a subtree involved in a tie

will therefore be optimal with respect to this secondary, unsupervised objective

function. The detailed pseudo-code is given in Algorithm 5.

When there are no constraints, Algorithm 5 processes the whole tree in an

unsupervised way, as in the example displayed in Figure 5.1(a). We have shown

in Section 5.2.1 that the optimal solution in that example consists of clusters

C3, C4, and C5, with J in Equation (5.3) equal to 74.4.

When the collection of five constraints is considered (Figure 5.1(b)), the
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Algorithm 5: Solution to Problem (5.6) with quality-based tiebreaker
Input: Cluster tree, the fraction of constraint satisfactions for each node,
Γ(·), and the unsupervised quality of each non-virtual node, S(·) (null for
virtual nodes).
1. Initialize δ2 = · · · = δκ = 1.
2. Initialize Γ̂ and Ŝ for the leaf nodes as Γ̂(Ch) = Γ(Ch) and Ŝ(Ch) = S(Ch).
3. For every internal node Ci (except the root C1), starting from the deepest
levels and going up the tree, do:

3.1 If Γ(Ci) < Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ):
Set Γ̂(Ci) = Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ) and remove Ci from
the list of candidate clusters by setting δi = 0. Also, set
Ŝ(Ci) = Ŝ(Cil) + Ŝ(Cir).

3.2 Else If Γ(Ci) > Γ̂(Cil) + Γ̂(Cir) + Γ(C∅i ):
Set Γ̂(Ci) = Γ(Ci) and remove from the list of candidates
(by setting their δ(·) values to 0) all the clusters in Ci’s
subtrees. Also, set Ŝ(Ci) = S(Ci).

3.3 Otherwise, resolve the tie in an unsupervised manner:
3.3.1 If S(Ci) < Ŝ(Cil) + Ŝ(Cir), then do the same as if the
condition in Step 3.1 had been satisfied.
3.3.2 If S(Ci) >= Ŝ(Cil) + Ŝ(Cir), then do the same as if
the condition in Step 3.2 had been satisfied.

4. Return: δ2, · · · , δκ.

solution changes to C2 and C3, with J in Equation (5.5) equal to 0.8. In

details, C8 and C9 are discarded as they are together (along with C∅5) worse

than C5. At the level above, the pair C4 and C5 is also discarded as C2 is

better. In the other subtree of the root, there is constraint satisfiability tie:

either C3 or its children (C6, C7, and C∅3) would add the same amount of 0.1

to the objective function, but C3 is kept in this case because its unsupervised

quality (36.9) is higher than that of C6 and C7 together (2.4), which are then

discarded. In what concerns the secondary objective in Equation (5.3), this

sub-selection is optimal for the subtree rooted at C3.

5.3.2 Efficient Implementation and Complexity Analysis

Note that Step 3.2 of Algorithm 4 (or Algorithm 5) can be implemented in a

more efficient way by not setting δ(·) values to 0 for discarded clusters down
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in the subtrees. Instead, in a simple post-processing procedure, the tree can

be traversed top-down in order to find, for each branch, the shallowest cluster

that has not been discarded (δ(·) = 1) by Step 3.1. This way, the solution

can be found with two traversals of the tree, one bottom-up and another one

top-down. This means that the complexity of the algorithm, is O(κ), i.e., it is

linear with respect to the number of nodes (or candidate clusters) in the tree,

both in terms of running time and memory space.

It is worth noticing that, if the cluster tree results from a hierarchy simpli-

fication procedure like the one described in Section 5.2.1, κ is typically much

smaller than the number of data objects (κ � n). It is theoretically possible,

however, that a cluster split is observed at each of the n hierarchical levels,

leading to the worst case in which κ = 2n− 1, i.e., κ is O(n).

The pre-computation of the input values Γ(·) and S(·) depends on the nature

of the hierarchy. S(·) also depends on the particular cluster quality measure to

be adopted. For the type of hierarchies in the examples and experiments pro-

vided in this chapter, which are dendrogram-like hierarchies possibly modeling

noise, it follows that: (i) it is straightforward to compute Γ(·) associated with

both the original and virtual nodes of the tree with a single pass through the

hierarchical levels for each constraint, checking the labels of the pair of objects

involved in that constraint. So, the complexity to compute Γ(·) for all nodes

of the tree is O(nc n), where nc is the number of constraints; and (ii) similarly,

it is also straightforward to compute S(·) for all cluster nodes of the tree by

means of a single bottom-up screening of the hierarchy, which is O(n2) (i.e., no

greater than the complexity of computing the clustering hierarchy itself). In

the Section we describe our framework for semi-supervised model selection.

5.4 Semi-Supervised Model Selection

Typical clustering algorithms will find different results depending on input

parameters. Relative cluster validity criteria [32] could help to distinguish
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those parameters that fit better to the data set at hand from those that are not

a good fit. However, this approach has few drawbacks. Using relative criteria

gives only a relative comparison of solutions, and the selection of the validity

criterion is a highly subjective choice. In the presence of additional criteria

such as partly labeled data or some constraints such as instance-level should-

link and should-not-link constraints, the best model for the task at hand can

be selected in a much more objective manner.

Given that many clustering algorithms are parameter dependent, our goal

is to provide the basis for selecting the best of a set of possible models. In the

following we discuss two semi-supervised approaches for model selection.

5.4.1 General Semi-Supervised Model Selection GSS-

MS

Let’s consider that we have a set of instance-level, should-link and should-

not-link constraints. We run a specific clustering algorithm with parameter p

by setting n different values to its parameter to produce the set of clustering

partitions {Cp1 , · · · ,Cpn}.

Our primary goal is to find a clustering solution that maximizes the number

of constraint satisfactions (see Equation 5.1). In our framework, the results of

a clustering algorithm will be evaluated based on the fraction of the constraint

that are satisfied for the given set of parameters. Then the partition with the

maximum fraction of constraint satisfactions will be reported.

If there is more than one partition with the maximum number of con-

straint satisfaction among given {Cp1 , · · · ,Cpn} clustering partitions, we then

consider as a secondary objective another semi-supervised measure of cluster

quality (e.g., number of clusters in each partition) or an unsupervised measure

of cluster quality such as the value of the DBCV cluster validation measure

that we proposed in Chapter 3. Algorithm 6 gives the pseudo-code for this
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Algorithm 6: GSS-MS main steps
Input: The data set X, range of parameter values.
1. Run a general clustering algorithm with parameter value p to generate a partition,
in the case of semi-supervised clustering with the given set of constraints.
2. For the generated partition, determine the fraction of the constrain satisfied and
set this value as the quality of the partition.
3. Repeat (Step 1) and (Step 2) for a different parameter setting.
4. Select the partition with the highest quality value. If more than one partition has
the highest quality value:

4.1 Resolve ties according to a secondary criterion.

framework. In Step 4.1 any particular criterion can be used to resolve ties

that can give different clustering solutions. However, the number of the con-

straint satisfaction for these different solutions will be the same. It means that

the choice of the secondary criterion will not affect the amount of constraint

satisfactions of the final solution.

However, this model selection approach can also be used with some semi-

supervised clustering algorithms (such as FOSC) that treat constraints as soft

constraints, in the case of semi-supervised clustering algorithms it is crucial that

the information used in the semi-supervised clustering process not be used in

the error estimation of the final clustering solution. We discuss this issue and

our approach to semi-supervised model selection, which has been customized

for semi-supervised clustering, further in Section 5.4.2.

5.4.2 Cross-Validation for Finding Clustering Parame-

ters, CVCP

The following framework describes our second model selection approach.

step 1: Determine the quality of a parameter value p for a semi-supervised

clustering algorithm using n-fold cross-validation by treating the gener-

ated partition as a classifier for constraints. A single step in the n-fold

cross-validation is illustrated in Figure 5.3.

step 2: repeat (step 1) for different parameter settings
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Figure 5.3: Illustration of a single step in an n-fold cross validation to determine
the quality score of a parameter value p in step 1 of our framework. This step
is repeated n times and the average score for p is returned as p’s quality.

step 3: select the parameter p* with the highest score

step 4: run the semi-supervised clustering algorithm with parameter value p*

using all available information (labels or constraints) given as input to

the clustering algorithm.

The crucial, non-trivial questions for this general framework are how to

evaluate (step 1) and how to compare (step 3) the performance of different

models. The question of what constitutes appropriate evaluation in the context

of semi-supervised clustering involves several different issues.

First, as we described above it is crucial to not use the same information

(e.g., labels or constraints) twice in both the learning process (running the

clustering algorithm) and in the estimation of the classification error of the

learned clustering model. Otherwise, the classification error is likely to be

underestimated. We discuss this problem and a solution in Section 5.4.3

Second, we will have to elaborate on how to actually estimate the classifi-

cation error. For measuring and comparing the performance quantitatively, we

will transform the semi-supervised clustering problem to a classification prob-

lem over the constraints — which are originally available or that have been

extracted from labels — and then use the well-established F-measure. We

provide further details on this step in Section 5.4.4.
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(a) Scenario I: Labeled objects are provided.(b) Scenario II: Constraints are provided.

Figure 5.4: Objects are distributed in n - 1 training folds and 1 test fold.
(a) Constraints are derived from the labeled objects in n - 1 folds for the
training set and from 1 remaining fold for test set. (b) The transitive closure
of constraints are computed for all objects in n - 1 training folds for training
set and for the objects in the test fold for the test set.

Finally, we explain the selection of the best model, based on the previous

steps, in Section 5.4.5.

5.4.3 Ensuring Independence Between Training and Test

Folds

We suggest the use of cross-validation for the evaluation step and provide a

description for cross-validation that ensures independence between training and

test folds in the following.

The problem associated with cross-validation, or any evaluation procedure

based on splitting the available information into training and test partitions,

can be most easily seen by considering the transitive closure of constraints

as we discussed in Chapter 1. Let us consider the available objects and the

available constraints (whether given directly or derived from the labels of some

objects) as a graph where the data objects are the vertices and the constraints

are the edges, e.g., with weight 0 (should-not-link) and weight 1 (should-link).

The transitive closure provides all edges that can be induced from the given

edges, an example of transitive closure of constraints was demonstrated in

Introduction chapter in Figure 1.2.

We partition the available information into different folds, to use some part
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for training and some part for testing. The transitive closure of pairwise in-

stance level constraints, whether explicitly computed or not, can lead unin-

tentionally to the indirect presence of information in some fold or partition.

For example, suppose a training fold contains the constraints should-link(A,B)

and should-not-link(B,C). If the test fold contains the constraint should-not-

link(A,C), this is information that was, implicitly, already available during the

clustering process even though only the explicit constraints in the training

folds were given. Therefore, an ordinary setup for cross-validation for semi-

supervised clustering evaluation can lead to significantly underestimating the

true classification error with respect to the constraints. A more sophisticated

cross-validation procedure, for example, would have to split the graph of con-

straints, possibly cutting some of the edges, in order to identify truly non-

overlapping folds. This graph-based approach can provide a solution to avoid

this pitfall at an abstract level. In the following, we provide a more detailed

description of two scenarios for a proper cross-validation procedure, (I) using

labeled objects, and (II) using pairwise instance-level should-link and should-

not-link constraints. In both scenarios, we implement an efficient procedure

that essentially results in correctly cutting the graph of constraints, to ensure

independence between training and test folds.

Scenario I: Providing Labeled Objects

First consider the simpler and more widely applicable scenario where the user

provides a certain percentage of labeled objects. This scenario is more widely

applicable because, from labeled objects, we can derive instance level pairwise

constraints (should-link and should-not-link constraints), and so use algorithms

that require labeled objects as input as well as those that require a set of

instance level constraints. This setup of the framework is as follows.

We partition the set of all labeled objects into the desired number of folds

n as illustrated in Figure 5.4(a). As usual in cross-validation, one of the folds
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is left out each time as a test set and the union of the remaining n − 1 folds

provides the training set. Instance level constraints can then be derived from

the labels, independently for the training set (n− 1 folds together) and for the

test set. When two objects have the same label, this results in a should-link

constraint; different labels for two objects result in a should-not-link constraint.

If the framework is applied with an algorithm that uses labels directly, then we

do not need to derive the constraints for the training set, only for the test set.

In either case, only the labels or constraints coming from the union of the n−1

training folds are used in the clustering process. For the test fold, constraints

are necessarily derived and they will obviously not have any overlap with the

information contained in the training folds. Only these constraints are used for

the estimation of the classification error for the clustering result.

The procedure is repeated n times, using each of the n folds once as the

test fold.

Scenario II: Providing Pairwise Instance-Level Constraints

If we are directly given a set of (should-link/should-not-link) constraints, we

extend this set by computing the transitive closure (e.g., if we have a should-

link(A,B) and a should-link(B,C), we can derive a should-link(A,C)).

To ensure our cross-validation procedure avoids the pitfall of using the same

information for training and testing, we partition the data objects involved in

any pairwise constraint in training folds and test fold, then delete all constraints

that involve an object from the training fold and an object from the test fold.

For n-fold cross validation, we partition the objects into n folds and use, in

turn, n − 1 folds as training set and the remaining fold as test set, as illus-

trated in Figure 5.4(b). This way, when provided with pairwise instance-level

constraints, the cross-validation procedure essentially reduces to the approach

of Scenario I.
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5.4.4 Transforming the Evaluation of Semi-Supervised

Clustering to Classification Evaluation

Regardless of whether the clustering algorithm uses the labels or constraints,

we can use the constraints to estimate the quality of a partition produced by

the clustering algorithm. We can consider a produced partition as a classifier

that distinguishes the class of should-link (class 1) from should-not-link (class

0) constraints. In other words we evaluate for pairs of objects in the test fold

whether their constraint has been “recognized” by the clustering procedure (as

opposed to evaluating the performance at an object level where we would con-

sider if a single object is a member of an appropriate cluster in some clustering

solution). A given clustering solution provides the basis to assess the degree

to which the constraints in the test fold are satisfied or violated. As a conse-

quence, we can use the well established F-measure to estimate the constraint

satisfaction of a given solution.

The semi-supervised clustering problem can then be considered as a clas-

sification problem as follows: for each test fold, we have a set of should-link

constraints (class 1) and should-not-link constraints (class 0). The clustering

solution satisfies a certain number of these constraints: pairs of objects that

are involved in a should-link constraint are either correctly paired in the same

cluster (true positive for class 1 and true negative for class 0) or not (false

negative for class 1 and false positive for class 0); likewise, pairs of objects that

are involved in a should-not-link constraint are either correctly separated in

two clusters (true positive for class 0 and true negative for class 1) or paired in

the same cluster (false negative for class 0 and false positive for class 1). Based

on these numbers, precision and recall, and the F-measure can be computed

for each class. The average F-measure for both classes is the criterion for the

overall constraint satisfaction of one test fold (see again Figure 5.3).
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5.4.5 Model Selection

So far, we have noted a possible problem in evaluating semi-supervised clus-

tering based on pairwise constraints when using some partition-based (hold-

out) evaluation such as cross-validation, and we have elaborated how cross-

validation can avoid this problem. Based on this improved formulation of a

cross-validation framework for semi-supervised clustering (depending on the

nature of the provided data, according to scenario I or scenario II), we can now

discuss the process of model selection.

Cross-validation is suitable for estimating the classification error of a semi-

supervised clustering algorithm on some given data set and given labels or

pairwise constraints based on using n times a certain fraction of the available

information for clustering (n−1
n

) and, in each case, the remaining fraction (i.e.,
1
n
) for evaluation. The average of the average F-measure over all n test folds is

the criterion for the constraint satisfaction of some cluster model.

Based on this overall error estimation, we can compare the performance

of some semi-supervised clustering algorithm when using different parameters.

Users who apply this framework can now select the best available model for

clustering their data. To do so, any algorithm is evaluated in cross-validation

for each parameter setting that the user would like to consider, resulting in

different cluster models of different quality.

Picking the best model based on the error estimate from a cross-validation

procedure is still a guess, assuming that the error estimation can be generalized

to when complete information is available. In what follows, we provide an

outline of how well this assumption works for a variety of clustering algorithms

applied to different data sets.
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5.5 Experimental Evaluation

In the following, after describing the data sets, we first provide a brief evaluation

of our model selection approaches in Section 5.5.1. We then demonstrate the

results for FOSC framework applied to our hierarchical clustering methods

and compare them with those of other state-of-the-art clustering algorithms

in Section 5.5.2. Finally in Section 5.5.3 we further evaluate the performance

of semi-supervised model selection when applied on our proposed hierarchical

clustering algorithm.

Data Sets. We used real data sets with a variety of characteristics (no.

of objects, dimensionality, and no. of clusters) and from different domains,

namely, biology, text, image, and UCI data sets. Two data sets, “Articles-

5” and “Cbrilpirivson”, consist of very high dimensional representations of

text documents. They are formed by 253 and 945 articles represented by

4636 and 1431 dimensions, respectively, both with 5 classes. Articles-5 is

made available upon request by [117] and Cbrilpirivson [118] is available at

http://infoserver.lcad.icmc.usp.br/infovis2/PExDownload. We used the

Cosine measure as dissimilarity function for these data sets. Two data sets,

“CellCycle-237” (made public by [111]) and “YeastGalactose” (used by [112])

represent gene-expression data and contain 237 respectively 205 objects (genes),

17 respectively 20 dimensions (conditions), and 4 known classes. For these

data sets we used Euclidean distance on the z-score normalized objects, which

is equivalent to using Pearson correlation on the original data. Two data sets,

“Wine” and “Ecoli”, are from the UCI Repository [116]. They contain 178 re-

spectively 336 objects in 13 respectively 7 dimensions, with 3 respectively 8

classes. For these data sets we used Euclidean distance.

In addition to individual data sets, we also report average performance on

two data set collections based on the Amsterdam Library of Object Images

(ALOI) [119]. Image sets were created by randomly selecting k ALOI image
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categories as class labels 100 times for each k = 2, 3, 4, 5, then sampling (with-

out replacement), each time, 25 images from each of the k selected categories,

thus resulting in 400 sets, each of which contains 2, 3, 4, or 5 clusters and 50,

75, 100, or 125 images (objects). The images were represented using 6 different

descriptors: color moments, texture statistics from the gray-level co-occurrence

matrix, Sobel edge histogram, 1st order statistics from the gray-level histogram,

gray-level run-length matrix features, and gray-level histogram, with 144, 88,

128, 5, 44, and 256 attributes, respectively. We report results for the texture

statistics (as a typical case), denoted by “ALOI-TS88”, and for a 6-dimensional

representation combining the first principal component extracted from each

of the 6 descriptors using PCA, denoted by “ALOI-PCA”. We used Euclidean

distance in both cases.

5.5.1 Experimental Results for Semi-Supervised Model

Selection

In the following, we first provide a brief evaluation of our model selection

approaches (more results are shown in [54]) and also further discuss model

selection experimental results in Section 5.5.3. Here we report the performance

of GSS-MS and CVCP compared to the expected performance when having to

guess the right parameter from the given range for Wine, Ecoli, YeastGalactose

and a subset of ALOI-TS88, which contains 5 categories, ALOI-TS88-k5.

Experimental Setting. We apply GSS-MS and CVCP using a method

referred to here as FOSC-OPTICSDend [56], which is FOSC applied to the

equivalent dendrogram that can be constructed from an OPTICS reachabil-

ity plot by using the transformation algorithm described in [28]4. FOSC-

OPTICSDend is a density-based clustering method that requires a parame-

4We also report the results for the semi-supervised k-means algorithm, called MPCK-
means, in our publication [54]. Here we only report the results for density-based clustering
algorithms because our research in this thesis is focused on the density-based paradigm.
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ter MinPts that specifies the minimum number of points required in the ε-

neighborhood of a dense (core) point. GSS-MS and CVCP select the best

parameter values from a range of considered values. This range for MinPts

values were set to {3, 6, 9, 12, 15, 18, 21, 24}.

We evaluate the performance of the clustering algorithms for different amounts

of instance-level constraints. We first use the ground truth to generate a can-

didate pool of constraints by randomly selecting 10% of the objects from each

class and generating all constraints between these objects. From this pool of

constraints, we then randomly select subsets of 20% and 50% as input to the

clustering method. All reported values are the average values computed over

50 independent experiments, each using a new set of constraints. We report

“Overall F-Measure” [120] as an external evaluation measure by considering

only the objects that are not involved in the constraints given to the semi-

supervised clustering method (see Section 2.2.1). We report the performance

of FOSC-OPTICSDend with the parameter values selected by GSS-MS and

CVCP and compare it with the expected performance when having to guess

the right parameter from the given range. The expected performance is defined

as the average Overall F-Measure for FOSC-OPTICSDend, measured over all

MinPts parameter values.

Clustering Results. In Table 5.2 we show the results for the scenario

when constraints are provided directly as input to the semi-supervised clus-

tering methods (the results for the label scenario were similar to those for the

constraint scenario, giving the same overall picture, see [54] for further results).

The values shown are the mean of the performance when selecting MinPts us-

ing GSS-MS and CVCP, and the mean of the expected performance for the

MinPts in the given range. In all data sets, using GSS-MS and CVCP always

results in much better performance than the mean of the expected performance.

Also, the results improve when using larger numbers of constraints in a large

number of the cases. For the ALOI data set collection, we did the test for all
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20 percent constraints 50 percent constraints
Data Set GSS-MS CVCP Expected GSS-MS CVCP Expected

Mean Mean Mean Mean Mean Mean
ALOI-TS88-k5 0.851 0.846 0.721 0.854 0.852 0.723
Wine 0.627 0.617 0.553 0.643 0.576 0.525
Ecoli 0.695 0.644 0.596 0.714 0.602 0.558
YeastGalactose 0.96 0.971 0.897 0.976 0.97 0.898

Table 5.2: Results for FOSC-OPTICSDend average performance using 20 and
50 percent constraints from the pool of constraints. 100/100 and 100/100 of
GSS-MS results and 99/100 and 99/100 of CVCP results in the ALOI data
set were significantly better than expected mean results for 20 and 50 percent
constraint scenarios, respectively.

of the data sets in the collection; the number of data sets for which a difference

is statistically significant is given in the caption of Table 5.2.

As we can see, GSS-MS in general has better performance than does CVCP.

This can be due to a few reasons. First, the FOSC framework is a post-

processing approach in which the constraints do not have any effect on the

construction of the hierarchy. Thus the GSS-MS framework combined with the

FOSC framework can be seen as the way to find the optimal solution to the

constraint satisfaction problem over all input parameters. Second, when using

GSS-MS we have more constraints from which to select the best parameter, as

in CVCP where some constraints were lost when enforcing the independence

of training and test sets. In the following we demonstrate the experimental

evaluation of FOSC used along with GHDBSCAN. We further study the per-

formance of our GSS-MS semi-supervised model selection method in Section

5.5.3.

5.5.2 Experimental Results for Semi-Supervised Extrac-

tion of a Flat Partition from GHDBSCAN Hier-

archies

In this section and also in Section 5.5.3 we report the Adjusted Rand Index

(ARI) [75] in all experiments in which it is calculated by removing the objects
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that were involved in the constraints. We have also computed the Overall F-

measure [120], but the results are omitted for the sake of compactness as the

conclusions that can be drawn are the same as for ARI. Here we used “FOSC”,

on the hierarchies produced by both of our proposed generalized density-based

clustering algorithms, namely, our density-based clustering algorithm with new

mutual reachability distance, GHDBSCAN(NMRD), and our parameter-free

density-based clustering algorithm, GHDBSCAN(NMRD+PF), (see Chapter

4). Utilizing the sum of the lifetimes stability that was reviewed in Section

5.2.3, we refer to these approaches as “FOSCsum-GHDBSCAN(NMRD)” and

“FOSCsum-GHDBSCAN(NMRD+PF).” FOSCsum-GHDBSCAN(NMRD) and

FOSCsum-GHDBSCAN(NMRD+PF) are compared with the following algo-

rithms: (i) Semi-Supervised DBSCAN (SS-DBSCAN) [84], which is a semi-

supervised density-based clustering algorithm based on OPTICS; (ii) the heuris-

tic method by [28], referred to here as “OPTICS-AutoCl,” which consists of the

extraction of the leaf nodes of a compacted, density-based cluster tree from an

OPTICS reachability plot.

Experimental Settings. We performed our experiments in the semi-

supervised scenario when some constraints were available. The methods based

on OPTICS demand a parameter MinPts , which is a smoothing factor also

used by other density-based clustering algorithms e.g., [23, 25, 29, 73]. We set

MinPts = 4 in all experiments in this section, which is a value commonly used

in the literature. The speed up control value ε in OPTICS was not used (ε =

“infinity”). The parameters required by OPTICS-AutoCl is set as suggested

by the authors. Finally, in all the experiments, we applied the procedure from

Section 5.2.1 with mclSize = MinPts = 4, also as a smoothing factor.

The partial information provided to the semi-supervised methods was ob-

tained in the form of labeled objects randomly selected from the data sets.

These objects were not considered when assessing the quality of the results. SS-

DBSCAN uses the labels explicitly. Our methods use should-link and should-
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not-link constraints that can be derived from the labels. We set the number of

labeled objects to 2, 4, 6, 8, and 10 percent of the number of objects in each

data set. The results reported are averages over 100 random selections of label

sets. Note that OPTICS-AutoCl is an unsupervised method, therefore their

results do not change with the number of labeled objects available.

Clustering Results. The results are shown in Figures 5.5. FOSCsum-

GHDBSCAN(NMRD) and FOSCsum-GHDBSCAN(NMRD+PF) outperform

unsupervised OPTICS(AutoCl) in most of the data sets and usually by large

margin. In one of the only two cases, YeastGalactose, where OPTICS-AutoCl is

better, its performance is very close to that of FOSCsum-GHDBSCAN(NMRD)

and this small difference in results vanishes gradually by adding some con-

straints. Also note that all algorithms except SS-DBSCAN perform close to

perfect on this data set and there is not much room for improvement. In the

Article-5 data set, the results are quite high and overall results of our algorithms

FOSCsum-GHDBSCAN(NMRD) and FOSCsum-GHDBSCAN(NMRD+PF) are

quite similar to that of OPTICS-AutoCl. In all other data sets, both of our

proposed approaches outperform the unsupervised method of OPTICS-AutoCl

by a large margin as expected.

In regards to comparison of semi-supervised scenarios, both FOSCsum-

GHDBSCAN(NMRD) and FOSCsum- GHDBSCAN(NMRD+PF) outperform

SS-DBSCAN in all cases and in most of the cases by a large margin. Experimen-

tal results show that, both FOSCsum-GHDBSCAN (NMRD) and FOSCsum-

GHDBSCAN (NMRD+PF) perform well even by using a very small num-

ber of constraints. In many cases this can be explained by knowing that

FOSC operates based on an unsupervised selection method using cluster qual-

ity as a secondary objective, which can help the algorithm in the absence

of constraints or ties to decide between clusters in the cluster tree. Fur-

thermore, both of our proposed methods improve faster than SS-DBSCAN

as the number of labeled objects increases. For example, as demonstrated
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in Figure 5.5, in ALOI-PCA and Article-5, SS-DBSCAN can only achieve

the same quality results as FOSCsum-GHDBSCAN(NMRD) and FOSCsum-

GHDBSCAN(NMRD+PF) when the amount of labeled objects available is

about 10%.

In some of the data sets such as CellCycle-237 and Ecoli, the performance of

SS-DBSCAN deteriorates when larger amounts of constraints were added. This

effect of adding constraints possibly decreasing the performance of clustering

algorithms has been observed and discussed in the semi-supervised clustering

literature [121]. In our experiments, we have excluded the objects involved in

constraints when computing the evaluation measures, thus occurrence of this

effect is particularly plausible. In the case of our proposed methods, how-

ever, such a behavior is rarely observed, and in these experimental results only

FOSCsum-GHDBSCAN(NMRD) shows such behaviour for the Wine data set.

We further discuss this in the next section. In most of the data sets, FOSCsum-

GHDBSCAN(NMRD) and FOSCsum-GHDBSCAN(NMRD+PF) with 2% con-

straints outperform SS-DBSCAN even when SS-DBSCAN uses 10% of labeled

objects as supervision.

In regards to comparison of our two proposed approaches, we can see

that in most of the data sets FOSCsum-GHDBSCAN(NMRD+PF) outper-

forms or gives a comparable results to that of FOSCsum-GHDBSCAN(NMRD).

This can be explained because in contrast to FOSCsum-GHDBSCAN(NMRD),

which uses the same k in KNN distance density estimation to estimate the den-

sity, FOSCsum-GHDBSCAN(NMRD+PF) uses a self-adjusting density estima-

tion. In the following section we will use our proposed GSS-MS model selection

framework along with our proposed DBCV clustering validation index to select

a more appropriate parameter for the FOSCsum-GHDBSCAN(NMRD) algo-

rithm.

119



5.5.3 Experimental Results for Combination of Model

Selection, FOSC and GHDBSCAN

In this section we provide an evaluation of our proposed method GSS-MS,

which finds the parameters of our clustering method GHDBSCAN(NMRD)

when used along with FOSC framework.

After discussing the experimental setup we demonstrate the performance

of our clustering approach FOSCsum-GHDBSCAN(NMRD) when the param-

eter values selected by GSS-MS compared to the expected performance when

the user has to guess the right parameter from the given range of param-

eters to use with our FOSCsum-GHDBSCAN(NMRD) algorithm. The ex-

pected performance is defined as the average ARI values for the FOSCsum-

GHDBSCAN(NMRD) results measured over all parameter values.

Experimental Setting. Our method FOSCsum-GHDBSCAN(NMRD)

requires parameter mpts which specifies the minimum number of objects re-

quired in the ε-neighborhood of dense objects (similar to the MinPts parameter

of OPTICS described in Section 5.5.2). We use our GSS-MS framework, which

finds the partitions with maximum constraint satisfaction, with our density-

based clustering validation method, DBCV (see Chapter 3) as a secondary

criterion by applying to on our method FOSCsum-GHDBSCAN(NMRD) to

select the best parameter values from a range of 8 parameters from [3, 6, 9, 12,

15, 18, 21, 24] for mpts values. In all the experiments, we applied the procedure

in Section 5.2.1 with mclSize = 4. We set the number of labeled objects to 2,

4, 6, 8, and 10 percent of the number of objects in each data set. All reported

results are average values computed over 50 random selections of label sets.

Clustering Results. The clustering results are shown in Figure 5.6. In all

of the cases the clustering results with GSS-MS selected parameters (GSS-MS

Mean in Figure 5.6) outperform the expected performance of the FOSCsum-

GHDBSCAN(NMRD) algorithm results (Expected Mean in Figure 5.6) by a
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large margin. Note that in the Wine data set, even though the expected per-

formance deteriorates by adding more constraints (similar to the results of the

previous section), this effect is not seen in the GSS-MS average results. One

reason for this effect is the distribution of the constraints over different classes,

which along with a specific mpts parameter deteriorates the clustering results.

However, GSS-MS finds the appropriate parameter to prevent this effect and

finds the clustering that better matches the ground truth. Note that almost in

all the cases the performance of FOSCsum-GHDBSCAN(NMRD) with GSS-

MS selected parameter using only 2% constraints is much better than the per-

formance of FOSCsum-GHDBSCAN(NMRD) using 10% constraints when the

right parameter selected randomely from the range of paramters.

Furthermore, in two collections of image data sets, ALOI-TS88 and ALOI-

PCA we performed paired t-tests with respect to ARI confirming that the

large differences in performance are statistically significant at the α = 0.01

significance level.

5.6 Summary

In this chapter we have introduced several approaches for the semi-supervised

clustering.

In the first approach we study extracting flat clusterings from cluster hier-

archies in a semi-supervised way. We described an optimal extraction of a flat

clustering from a hierarchy, called FOSC [56], which can use unsupervised mea-

sures of cluster quality as well as semi-supervised measures such as constraint

satisfaction. Then, we combined our proposed hierarchical density-based clus-

tering algorithms GHDBSCAN(NMRD) and GHDBSCAN(NMRD+PF) with

FOSC to select partitions consisting of most prominent clusters. Unlike most

non-hierarchical (partitioning-like) algorithms for clustering, FOSC provides

not only an optimal solution with respect to the different criteria it optimizes,
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Figure 5.6: ARI results of FOSCsum-GHDBSCAN(NMRD) with GSS-MS se-
lected parameter (GSS-MS Mean) compared to the expected performance of
FOSCsum-GHDBSCAN(NMRD) when the user has to guess the right param-
eter from the range of 8 given parameters.
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but also the number of clusters as a byproduct, rather than as an explicit or

implicit input parameter. FOSC can, in principle, be applied to hierarchies of

varied natures, so it is not hooked on a particular clustering inductive bias.

Our experimental results of using FOSC along with our proposed hierarchical

density-based clustering algorithms on a wide variety of real-world data sets

shows that our approaches outperform other algorithms from the literature.

In the semi-supervised extraction case, only a cluster tree and the degree

to which the clusters in the tree satisfy instance-level constraints provided

by the user is needed. We have not considered weighted constraints, but all

the approaches in this chapter can be straightforwardly generalized to do so.

When the user provides no constraints at all (unsupervised case) or part of

the clusters in the hierarchy cannot be distinguished in terms of constraint

satisfactions/violations, then unsupervised measures of cluster quality can be

applied. An important topic for future research is the study of quality measures

suitable for clustering hierarchies of varied natures, eventually constructed in a

semi-supervised way by using constraints of different types possibly other than

should-link and should-not-link, e.g., see [59, 55, 60].

In the second and third approach to semi-supervised clustering, we study

two methods for model selection. First, we provided a General Semi-Supervised

Model Selection framework, GSS-MS, which can be used to find the most appro-

priate model (e.g., density-parameters) for a given problem. GSS-MS provides

an optimal solution with respect to the constraint-satisfaction criterion. Sec-

ond, we provided a semi-supervised model-selection method, CVCP, based on a

sound cross-validation procedure. The future work for our model selection ap-

proaches includes the investigation of how such approaches could be extended

to also allow the comparison and selection of different clustering methods. In

regards to GS-MSS one can also investigate the weighted combination of pri-

mary and secondary criteria to select the best model.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented a number of advances in two major clustering

paradigms, density-based and semi-supervised clustering. In particular, in the

context of density-based clustering, we have studied both the validation of

density-based clustering, and the hierarchical density-based clustering.

Our proposed Density-Based Clustering Validation index, DBCV, provides

an effective evaluation for arbitrarily-shaped clustering. Our index is formu-

lated based on new kernel density function, which is used to compute the

density of the objects and the density of the path between pairs of objects that

in turn are used to evaluate the within- and between-cluster density connect-

edness and separation of clustering results. DBCV directly takes into account

density and shape properties of clusters, and also properly deals with noise ob-

jects, which are intrinsic to the definition of density-based clustering. We also

adapted our approach of dealing with noise to other relative validity criteria in

order to allow them handle noise properly.

Our method allows the user to select the most appropriate clustering model

and set proper parameters, e.g., selecting the most appropriate density-based

clustering algorithm among several density-based clustering algorithms and

also finding the proper density-parameters or number of clusters for such algo-

rithms. By experimenting on results of various density-based clustering algo-
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rithms with many different parameter settings on a variety of real-world and

synthetic datasets, we showed that DBCV outperforms specialized methods

from the literature and that our noise adaptation approach also shows promis-

ing results.

In addition to DBCV, in the density-based clustering context we make ma-

jor contributions in the area of hierarchical density-based clustering methods.

We proposed several hierarchical density-based approaches that were intro-

duced and discussed in chronological and progressive order because each ap-

proach has utilized some concepts from the previous algorithm and improved

on it both theoretically and practically.

We proposed an improved version of AUTO-HDS by getting rid of its user-

defined parameter rshave in such a way that the cluster extraction stage of

AUTO-HDS can be implemented in a simpler and more accurate way. We

reviewed HDBSCAN algorithm, a complete density-based clustering hierarchy

representing all possible DBSCAN-like solutions for an infinite range of density

thresholds. We then proposed a novel generalized density-based clustering

approach, GHDBSCAN: (i) having recognized the two essential components

of the DBSCAN algorithm, we discussed the possibilities of replacing these

two components to improve on the current state-of-the-art methods; (ii) we

proposed a novel, theoretically sound approach to estimating the density of the

objects along the path, and we proposed an approach to estimating the density

of the objects based on all other objects in the data set, which can be used to

replace the k nearest neighbor density-estimate, which has certain limitations

and (iii) we proposed two novel hierarchical density-based clustering methods

GHDBSCAN(NMRD) and GHDBSCAN(NMRD+PF).

By undertaking an extensive experimental evaluation on a wide variety

of real-world data sets, we have shown that our methods for density-based

clustering perform, in general, significantly better and more robustly than state-

of-the-art methods.
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In the context of semi-supervised clustering, we first described FOSC [56],

a framework that enables the user to use a small amount of information in the

form of instance-level should-link and should-not-link constraints to extract a

flat clustering solution from optimal local cuts through cluster hierarchies. Sec-

ond we combined FOSC with our proposed hierarchical density-based clustering

approaches GHDBSCAN(NMRD) and GHDBSCAN(NMRD+PF) to further

improve their performance, and we also provided two semi-supervised model

selection frameworks to select the best parameter values for clustering algo-

rithms.

In the FOSC framework, the extraction of a flat clustering from a cluster tree

has been formulated as an optimization problem and also a linear complexity

algorithm and with respect to time and memory it provides the globally optimal

solution to this optimization problem. We applied FOSC to the hierarchies

obtained by our proposed density-based clustering methods and on varied real-

world data sets. The results of these experiments show that our approach

outperforms other state-of-the-art unsupervised and semi-supervised clustering

algorithms.

In regards semi-supervised model selection, we have provided two approaches,

GSS-MS and CVCP. First we provided a General Semi-Supervised Model Se-

lection framework, GSS-MS, that can be used to find the most appropriate

model (e.g., density-parameters) for a given problem. GSS-MS provides an

optimal solution with respect the constraint-satisfaction criterion and consid-

ering a secondary unsupervised criteria. Second we provided a semi-supervised

model-selection method, CVCP, based on a sound cross-validation procedure.

6.1 Future Work

There are several interesting challenges for possible future research for all our

methods discussed here.
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Regarding DBCV, based on our new view in density-based clustering as we

discussed in Chapter 4, there are two essential components for density esti-

mation; density estimation at each point and density estimation at each path

between pairs of objects. Each of these components can affect the quality of

density estimation and thus would affect our final evaluation process. One can

investigate the effect of each component on the density-based validation index

separately and propose new ways to calculate each of these components to im-

prove on DBCV. We also used the estimates of minimum density area inside

the cluster and maximum density area between clusters to measure the cluster

quality; another future study would be investigating the use of the average

density of paths between pairs of objects.

The hierarchical clustering methods described in this thesis are based on

using the k nearest neighbor and all-points core distance for density-estimation

that were used in estimating the density at each object and the paths between

objects. Our generalization of the density-based clustering algorithms opened

up a vista for future development of density-based clustering that can allow

use of other density estimations. One can also investigate applying other types

of density estimation to improving different aspects of our methods; one aspect

that can be improved is the quality of the clustering results in certain scenarios.

Another direction for future research is to investigate other alternative stability

measures in order to measure the quality of clusters in the selection process. We

introduced bounded excess of mass and sum of life times stability measures in

this thesis; one can investigate other types of quality measures and/or combine

them with current measures to capture different aspects of the quality of the

clusters.

In the context of semi-supervised clustering approaches, all our methods

can lead to much new research. In regards to semi-supervised extraction of

flat solution from a hierarchy, research can be conducted on the extraction of

the flat solution in a semi-supervised way by using different types of should-
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and should-not-link constraints (e.g. see [59, 55]) or other types of constraints.

Also, one can study applying similar strategies in different stages of hierarchical

clustering, e.g., with a similar strategy constraints can be used in a similar way

during the clustering stage instead of post-processing stage of hierarchical clus-

tering algorithms. Similar approaches can also be applied in semi-supervised

model selection. Future work in regards to semi-supervised model selection

also includes the investigation of how such approaches could be extended to

allow the comparison and selection of different clustering methods. In regards

to GS-MSS, one can also investigate the weighted combination of primary and

secondary criteria to select the best model.
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Appendix A

Appendix

A.1 Proofs

In this section we present concise proofs related to the propositions presented

in Chapters 3 and 4.

Proposition A.1.1. The all-points-core-distance of each object o, aptscoredist(o),

with respect to all other n− 1 objects in a d-dimensional data set X is between

the second and last nearest neighbor distance of that object, i.e.,

KNN (o, 2) ≤ aptscoredist(o) ≤ KNN (o, n)

Proof. For i ∈ {2, 3, . . . , n}, we have:

0 < KNN(o, 2) ≤ KNN(o, i)→
(

1

KNN(o, i)

)d
≤
(

1

KNN(o, 2)

)d
(A.1)

Therefore,

n∑
i=2

(
1

KNN (o, i)

)d
≤ (n− 1)

(
1

KNN (o, 2)

)d
(A.2)
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(n− 1)

1
KNN(o,2)

d

n− 1

− 1
d

≤


∑n

i=2

(
1

KNN(o,i)

)d
n− 1


− 1

d

We have

(n− 1)

1
KNN(o,2)

d

n− 1

− 1
d

= KNN (o, 2) and also

aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

=


n∑
i=2

(
1

KNN (o,i)

)d
n− 1


− 1

d

(A.3)

leading to Equation A.4.

KNN(o, 2) ≤ aptscoredist(o). (A.4)

The upper bound inequality can be similarly proved.

Proposition A.1.2. Let n objects be uniformly distributed random variables

in a d-dimensional unit hypersphere and o be an object in the center of this

hypersphere. For the all points core distance of o we have:

aptscoredist(o) = (ln(n− 1) + γ + ε)−
1
d ≈ ln(n)−

1
d (A.5)

where γ ≈ 0.5772 and ε ≈ 1
2n

which approaches to zero as n goes to infinity.

Proof. First we prove the following:

∀1 ≤ i ≤ j ≤ n,
KNN(o, i)

KNN(o, j)
=

(
i− 1

j − 1

) 1
d

(A.6)

where KNN(o, i) and KNN(o, j) being the expected values of the ith and jth

nearest neighbors of the center object o in the hypersphere respectively.

For o ∈ Rd, let ‖o‖ denote its Euclidean norm. LetE(o, r) = {x : ‖x− o‖ 6 r} ⊆

Rd be a hypersphere centered at o with radius r.
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Let

V =
π

d
2

Γ
(
d
2

+ 1
)rd.

denote the volume of the hypersphere.

Consider Vi be the average minimum volume of the hypersphere centered at o

with radius ri that contains the ith nearest neighbor to object o and KNN(o, i)

being expected distance of ith nearest neighbors from object o. Therefore we

have KNN(o, i) = ri. Also in uniform distribution the ratio of the average

volumes of such hyperspheres that contain the ith and jth nearest neighbors to

object o is Vi
Vj

= i−1
j−1 . Therefore from above discussion we have:

Vi
Vj

= (
ri
rj

)d (A.7)

ri
rj

=
KNN(o, i)

KNN(o, j)
=

(
i− 1

j − 1

) 1
d

(A.8)

Thus we have:
1

KNN(o, i)
=

(
n− 1

i− 1

) 1
d 1

KNN(o, n)
(A.9)

also we have KNN(o, n) ≈ 1 therefore,

aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

=


n∑
i=2

(
1

KNN (o,i)

)d
n− 1


− 1

d

=


∑n

i=2

(
n−1
i−1

1
d

)d
n− 1


− 1

d

=

(
(n− 1)

∑n
i=2

(
1
i−1

)
n− 1

)− 1
d

=

(
n∑
i=2

(
1

i− 1

))− 1
d

= (ln(n− 1) + γ + ε)−
1
d

≈ ln(n)−
1
d

where γ ≈ 0.5772 is the Euler-Mascheroni constant and ε ≈ 1
2n
− 1

12n2 + 1
120n4 <

1
2
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which approaches to 0 as n goes to infinity. We used the properties of the

harmonic series (
∑n

i=1
1
i
) in the above proof.

Proposition A.1.3. For calculated aptscoredist(o) in Proposition A.1.2, we

have:

aptscoredist(o) ≈ ln(n)−
1
d ≈ KNN(o, j), (A.10)

with j being the closest natural number to n
ln(n)

and KNN(o, j) being the ex-

pected value of jth nearest neighbor distance to object o.

Proof. We know that KNN(o, n) ≈ 1, therefore considering Equation (A.6)

we have:

KNN(o, j)

KNN(o, n)
≈

(
n

ln(n)
− 1

n− 1

) 1
d

≈

(
n

ln(n)

n

) 1
d

= ln(n)−
1
d (A.11)

thus we have, aptscoredist(o) ≈ KNN(o, j).

Proposition A.1.4. If the dissimilarity measure in Proposition A.1.2 is Squared

Euclidean distance the all points core distance of o is:

aptscoredist(o) ≈ (1.645 ∗ n)−
1
d (A.12)

Proof. If the dissimilarity measure is Squared Euclidean distance, we have:

∀1 ≤ i ≤ j ≤ n,
KNN (o, i)

KNN (o, j)
=

(
i− 1

j − 1

) 2
d

(A.13)

Therefore:
1

KNN (o, i)
=

(
n− 1

i− 1

) 2
d 1

KNN (o, n)
(A.14)

Thus,
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aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

=


n∑
i=2

(
1

KNN (o,i)

)d
n− 1


− 1

d

=


∑n

i=2

(
(n−1
i−1 )

2
d

)d
n− 1


− 1

d

=

(∑n
i=2

(
n−1
i−1

)2
n− 1

)− 1
d

=

(
(n− 1)2

∑n
i=2

(
1
i−1

)2
n− 1

)− 1
d

=

(
(n− 1)

n∑
i=2

(
1

i− 1

)2
)− 1

d

≈ (1.645 ∗ n)−
1
d

using well-known Basel problem it can be easily proved that:

1 ≤
n∑
i=1

(
1

i

)2

< 1.645

For i = 5 the sum is equal 1.4636 and for i =10 the sum is equal to 1.5498

Proposition A.1.5. For calculated aptscoredist(o) in Proposition A.1.4, we

have:

aptscoredist(o) ≈ (1.645 ∗ n)−
1
d ≈ KNN (o, j), (A.15)

with j being the closest natural number to
√

(n/1.645) and KNN(o, j) being

the expected value of jth nearest neighbor distance to object o.

Proof. We know that KNN (o, n) ≈ 1, therefore, considering Equation (A.13),

we have:
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KNN (o, j)

KNN (o, n)
≈

(√
n

1.645
− 1

n− 1

) 2
d

≈

(√
n

1.645

n

) 2
d

≈ (1.645 ∗ n)−
1
d

thus we have, aptscoredist(o) ≈ KNN (o, j).

Proposition A.1.6. For the core distances of object o calculated in Proposi-

tions A.1.2 and A.1.4, we have:

aptscoredist(o)Sq−Euclid. ≤ aptscoredist(o)Euclid. (A.16)

Proof. For i ∈ {2, 3, . . . , n}, we have:

1 ≤ n− 1

i− 1

Therefore:
n∑
i=2

(
1

i− 1
) ≤

n∑
i=2

(
n− 1

i− 1
∗ 1

i− 1
)

Thus:

(
n∑
i=2

(
n− 1

i− 1
∗ 1

i− 1

))− 1
d

≤

(
n∑
i=2

(
1

i− 1

))− 1
d

Considering that KNN(o, n) ≈ 1 and using Equation A.9 we can easily

prove that: aptscoredist(o)Euclid. = (
∑n

i=2(
1
i−1))−

1
d also using Equation A.14 we

can easily prove that: aptscoredist(o)Sq−Euclid. =
(∑n

i=2

(
n−1
i−1 ∗

1
i−1

))− 1
d , thus:
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aptscoredist(o)Sq−Euclid. ≤ aptscoredist(o)Euclid.

It can be easily seen that equality only holds for n = 2.

Proposition A.1.7. For the core distance of an object o calculated with respect

to all other n− 1 objects in data set X, we have:

aptscoredist(o) =


∑

oi∈X
oi 6=o

(
1

d(o,oi)

)d
n− 1


− 1

d

= bP

where P = −1
d
× (logb

1+
∑
oi∈X1

bd×(logb
d(o,oc)−logb

d(o,oi))

− logb
n−1) + logb

d(o,oc), oc

can be any arbitrary object in X different than o, X1 = X − {o, oc} and b can

be any Real number greater than 1.

Proof. Using log properties for 0 < ai we can easily prove the following:

logb
∑n

i=1 ai = logb
a1 + logb

1+
∑n

i=2 b
(logb

ai−logb
a1 )

(A.17)

also we have:

aptscoredist(o) = blogb
aptscoredist(o) (A.18)

we can also calculate the following:

logb
aptscoredist(o) = −1

d
× (logb

∑
oi∈X−{o}

(
1

d(o,oi)

)d

− logbn−1) (A.19)
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considering equation A.17 we have:

logb

∑
oi∈X−{o}

(
1

d(o,oi)

)d

=logb
( 1
d(o,oc)

)d + logb
1+
∑

oi∈X1
b(logb

( 1
d(o,oi)

)d

−logb

( 1
d(o,oc)

)d

)

=d× logb(
1

d(o,oc)
) + logb

1+
∑

oi∈X1
bd×(logb

( 1
d(o,oi)

)
−logb

( 1
d(o,oc)

)
)

=logb
1+
∑

oi∈X1
bd×(logb

d(o,oc)−logb
d(o,oi))

− d× logb(d(o,oc))

(A.20)

where X1 = X − {o, oc}, therefore by substituting the value obtained in

Equation A.20 in Equation A.19 we have:

logb
aptscoredist(o) =− 1

d
× (logb

1+
∑

oi∈X1
bd×(logb

d(o,oc)−logb
d(o,oi))

− d× logb(d(o,oc)) − logbn−1)

=− 1

d
× (logb

1+
∑

oi∈X1
bd×(logb

d(o,oc)−logb
d(o,oi))

− logbn−1)

+ logb
(d(o,oc))

(A.21)

considering Equations A.18 and A.21 we have:

aptscoredist(o) = bP (A.22)

where P = −1
d
× (logb

1+
∑
oi∈X1

bd×(logb
d(o,oc)−logb

d(o,oi))

− logb
n−1) + logb

d(o,oc), oc

can be any arbitrary object in X different than o, X1 = X − {o, oc} and b can

be any Real number greater than 1.

Proposition A.1.8. Consider two clusters Ci and Cj, in a hierarchy. The

relative stability of clusters Ci and Cj is not dependent on parameter rshave and

can be computed using the following formula:

RelativeStability(Ci, Cj) =
Stab(Ci)

Stab(Cj)
= log

n
cs−1
i

nce
i

n
cs−1
j

nce
j
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Proof. We have:

Stab(C) =
log(nec)− log(ns−1c )

log(1− rshave)

thus,

Stability(Ci, Cj) =
Stab(Ci)

Stab(Cj)

=
log(neci)− log(ns−1ci

)

log(necj)− log(ns−1cj
)

=
log

ne
ci

ns−1
ci

log
ne
cj

ns−1
cj

= log

ne
ci

ns−1
ci
ne
cj

ns−1
cj
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