w

l* ~ National Library
ot Canada

. Canadian Theses Division

. du Canada

Ottawa, Canada
K1A ON4

49057

Blblaotheque nationale

" Division des théses canadiennes

- N\

0—a@ib44@%X;

\

PERMISSION TO MICROFILM — AUTORISATION DE mcn’OHLMEﬁ -

¢ Please brint or type — Ecrire en lettres moulées ou dactylo‘gréphier

Full Name of Author — Nom cbmplet de l'auteur

ANTONY G Clensms

Date of Birth — Date de naissance

y

Country of Birth — Lieu de naissance

CArAD A

7955 1/ 15
Permanent Address — Résidence fixe ‘
QOOE 738 <rres7
'ED/770<\J v, ALBE/ZT??

TE5R OF ¢

Title of Thesis — Titre de la thése
{

] owARrDS Ao ARRAY Tuzs o E77¢ F(./AJ(}’?Q//A/_

LA NG LA G E

rTHE ""ﬁff?d(EANCODIr OF i?&DC(NlD/J'\JC/

University — Université
[

Ar8eTH

3 ’ ty

Degree for which thesis was presented — Grade pour lequel cette thése fut presentee

/MSc,

Year this degree conferred — Année d'obtention de ce grade

7980

Name of Supervisor — Nom du directeur de these

W.S. 4ocms

Permission is hereby granted to the NATIONAL LIBRARY OF
CANADA to microfilm this thesis and to lend or sell coples of
the film.

The author reserves other publication rights, and neithér the
thesis nor extensive extracts from it may be printed or other-
wise reproduced wnthout the author's wrltten permission.

N

Y

[

L'autorisation est, par la présente, accordée a la BIBLIOTHE-

'QUE NATIONALE DU CANADA de microfilmer cette these et de

préter ou de vendre des exemplaires du film-

L'auteur se réserve les autres droits de publication; ni la thése
ni de longs extraits de celle-ci ne doivent étre imprimés ou
autrement reproduits sans I'autorisation écrite de 'auteur.

Date

Signature

/

A s e e B el

l * National Library -of Canada

Collections Development Branch

Canadian Theses on

Microfiche Service sur microfiche

. NOTICE

The quality of this microfiche is heavily dependent
upon_the quality of the original thesis submitted for

microfilming. Every effort has been ‘made to ensure:

the highest quality of reproduction possible.

If pages are missing, contact the university which
granted the degree.
F
Some pages may have indistinct print especially
if the original pages wer& typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

'PrevioUs’Iy- copyrighted ‘materials (journal articles,

published tests, efc.) are not filmed.

x

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authosization forms which
accompany this thesis. ' o

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

Ottawa, Canada \\
K1A ON4 |

* Bibliotheque nationale du Canada
Direction du dévelo'ppemgnt des collections

. T
Service des théses canadiennes

~AVIS

La qualité de cette microfiche dépend grandement de °

la qualité de la thése soumise au microfilmage. Nous
avons tout fait pour assurer une qualité supérieure

de reproduction.

S'il manque des pages, veuillez .communiquer
avec 'université qui a conféré le grade.

- La qualité d'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
dactylographiée\s a l'aide d'un ruban usé oy si l"'univer-
Sité nous a, fait' parvenir une photocopie de mauvaise
qualité. o

Les documents qui font déj3 l'objet d'un droit
d’auteur (articles de revue, examens publiés, etc.) ne
sont pas microfilmés.

- La reproduction, méme partielle, "de ce microfilm
est soumise a la Loi canadienne sur le droit d‘auteur,
SRC 1970, c. C-30. Veuillez prendre connaissance des
formules d’autorisation qui accompagnent cette these.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

o -

R 1

F
~ THE UNIVERSITY OF ALBERTA

Towards an'Array Theoret c Functional Language:

2 The Artful Encoding of Redundancy.

' a ' by R ’ 4 -
(:::) . Antony Gene Olekshy :

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCHT

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

MASTER OF SCIENCE

- DEPARTMENT OF COMPUTING SCIENCE

EDMONTON, ALBERTA
FALL, 1980

THE UNIVERSITY OF ALBERTA
FACUTLY OF GRADUATE STUDIES AND "RESEARCH

The undersigned centify that they heve read, and
recommend‘ to the Faculty of Graduate Stud1es and Research,
for acceptance, a .thes1s entltled "Towards - an Array
Theoretic_A,Functional Language The Arfful Encoding of
Redundancy." submitted by Antony Gene.’ Olekshy, in partial
fulfilment of‘ the requirements . for the degree of Master of

Science in Comput1ng Sc1ence.

o

.............................

. " Abstract

-

The use of - computers as Ainteractive :problem-éo]ving

‘tools is increasing. In such . an environment, efficient

production algorithms are not usually required. Instead,

-

~the probiem~SOIVer requires a_sophisticated~work-benchaom

which to exper iment ’with his problem and potential

‘so]utions The pr1mary requtrement ‘of such an env1ronment

is the ab111ty to converse w1th the problem-solver on a very

h1gh level.

“In addition;.'many attempts at developing very:large

systems%are failing because of the psychological complexityv.

of the programs that are being 'devetoped. Some of the

features of the.problem?sojvers work-beheh and'some of the.
“mechanisms for the reduction of the psyehological cémplexity

of very large systems are Known . However, it is apparent

that these features -and mechanisms. are themselves too

psycho]og1ca11y complex to be successfu]ly 1mp1emented ‘with

the facilities already available.

Instead, - it will be necessary to bootstrap a_hierarchy’
- of more and more sophisticated facilities, each of which can

‘be implemented wi thin ‘the features and mechanisms of its

pre@eceésor. We must beg1n with the pr1mary l1m1tatlons of

Aexisting fa01]1t1es. ‘their lack of a conceptually elegant,

data structure and their: lack .of a conceptually elegant

modularization mechanism.

A functional language supporting 7generalized‘ arrays»
reduces these limitations. The functlonal notatlon prov1des
the modularization mechan1sm The generallzed arrays

provide the data structure The goal of thts the51s 1s the

- development of such a functlonal notat1on the development

of the general1zed-array data-structure; and the development"

of a su1table system conceptu§l1zat1on for the supporg of
these features in a work- bench env1ronment .\~§
The resulting work-bench can then be used by 1tself for
'solv1ng problems that are difficult to solve w1th 'ex1sting
work bench fac1l1t1es It should be particularly’ usefuﬁ to
those problem-solvers who find the existing work-benoh
facilities too simple-minded for their abilities.
Furthermore _the resuits of this'experiment can be used as.a
level in ~ the bootstrap hierarchy of more . and ‘more‘~’

soph]st1cated progrpmmlng fac1l1t1es

’.'Preface

. In this thesis, direct’ quotation will be.
~indicated by the left and right 1ndent1ng of s1ngle
‘spaced text. .

' The fo]low1ng typograph1cal conventions will be

throughout this thesis. .

used

The f1rst occurrence of a word in the sentence that

def1nes it will be set in Bold type.

An ordinary var1ab]e will be set in 'lower case
italic type. .

A variable Pestr1cted to the domain - of generalized

arrays will be set in upper case APL type.

' A'.spec1f1c‘ genq{gt1zed array will be set in upper
‘case BOLD type. .

- An afbﬁtrary 'function will be represented by the.

delta symbol {a). ‘/

A specific function introduced for d1scu551on will
be set in lower.case bold type.

The format used for proofs is

antecedent s consequent
> consequent
“«->
> consequent "

®

rule
rule -

rule

In the first chapter, and in the first three sections of

'the second chapter the notation will be 1nforma1 and
be chosen to suit the d1scuss1on " From sectwon 2.4 dh;

formal notation of section 2.4 will be followed.

will

the

/-

TabTe offConténtS

Chabter Onef Foundat ions oL .?; N
-1.1:vPsycho]oéical AspéctS'of Compiexity ;

Redundancy #1Tows sim‘plificatjbnj

Human Cbmprehehsion ijitafiéns
1.2:‘H1¢rérchical Modularization .

'Tempus Fidgets, Hora SCOpés
1.3: The Complexity Hypothesis

The State oﬁ‘Software Deve lopment
"The DimenSﬁonS of Representation Complexity
;The‘Complex1ty Reduct1on Campa1gns
t:4: The Langugage Classifications

The Sequencihg-lnformation Axis

The Data Aggregation Axis .

The Language Class1f1cat1on Plane .
| o e
Chapter Two: A Notational Framework

2.1: The Control»§trupture,Aliernatives
| The Alternative-Selection Controi Structgre
The Repetition Controi Structure
The Control Structure.Requibements
'2.2: The History'Sensitivity Qf;Funcfional,Lang%ages
2.3: A Computational Model | |
2.4: A Forma].Expressioh Notation
The Formal Character Set

The Formal Symbols

26
27
28 .
31
34

37
39
40
42

Chapter Three: Geheralized:Arraysv

The Rules of Scope P
The Denotation of’Expressiohs .
The Rules for Sdbstitution

. Functional Forms

» oy

3.1: The Se]ecfion‘of an Aggregate Data-Structuréﬁl“wT4“

The Propérties of Actual Data

Alternate Aggbegrate Daté-étructures

A Pictbrial-Repfesentation of Genéfa1izéd Arrays
An Axiomatic Theory‘of.déneralized Afrays
;The Primitives of the Pure Theory . ‘
Some Derivations from the Pure ?heqry .

- The Composition Transform
The AppliedrTheory |

Individuals Are Included as Motés
Extending. the Pure Theqry |

Array Structure and Pervasﬁve Fpncfions {
Equality, Shépe, Reshape, and V%cate
~Pair, Single, and Sublist

;
i
{

‘Unite, Union, and®Suit . .
Extract, Tail, Last, and List
Count, Valency, and Link
TypeAand'Prototype

Augmented Values, Empty Lists, and Void

The Replacemenf, Positional, and Each Transforms

The Reduction Transform .

43

46,
47
. 49

51

52
52
57

62
63
66
67

69

69

71

71
72

74
75

76
17

78

82
83
86

.
~

Numerate; Enumérate, and Addresses . . - 88

Pick, Box, and Projection 89 .

Locate, Seek, and Find91

‘Occurrence, Membership, Deletion, and Separation 93

@

fhe‘Equal Predicate and UnifoFmity o9

Trim, Form, and Pack R LY

Permeate Functions T <

The Arithmetic Functions°. g7

A\ R -1

~ The Predicgte?Calculus Functions

' The Relational Functions"00
,Taﬁ?‘and Scan00
The Cartesian Product . 5 . T\t
Drdpl Mésh,‘Sp]it, and Sections , . . .’.f105’
Transpose, Mix, and-fhe Use of Sectfons'. ﬂ ... 107
) Supplant, Rendering, and éanonical oL Y 09

3.4: i \

Chapter Four: Implications 114

A ") '
4.1:. Systems Considerations {/T‘. . 114

Postscript to Chaptethhree:l R R)

The Shared-Varaible Model : e 116
The Interface té the Scheduler 120
The History Process Interface ﬂ;.fl .12t
‘The Services of the.Intérpreter o 5), . ./125,

4.2: Review and Conclusions 126"

‘Bibliography 136

1.2-1:
v1.3-1:,
2 3-1;
2.451:
3.8-1:

- . List of Figures .
X ,

v

& . .)
A | ,
The\yatch Completion Time Ratio .
The Number qf.Changes Required

System Model as Seen by a Process .

Functidn,Scope Example .

IllUstration of Type

X

Chapter. One: Foundat ions

- | |
& '~ "What we need is imagination. . We have
A to find a new view of the world." S

Richard P. Feynman

~ The arguments presented‘fn.this-theSis.ére intehded to
'support the hypothesis that the Qeneraliied'arrby ie}theg
arrﬁhgement best suited for the. conceptualization ' of data
strectures; Arguments will be presented‘in fevor of thé use
of generalized_arrays.‘embededhin a functional notafion, for
the diseQSSion of system structure and for the;

conceptualization of algerithms;

This first chapter reviews both the".-nmitatiohs
experfenced by hu%ane solving comblex probiems,'aﬁd the
modular1zatlon of solutlons to permit their compfehensien;
The hypothes1s is presented and related to the complex1tyf7
limitations® The concepts - dlscussed _in the rema1njng

chapters are introduced.

1.1 Peychological Aspects of Complexity
.

o Redundancy Al lows Simpl if icat ion.

\

- The centra?y task of a natural sctence is con51dered by
Herbert S1mon1 to be the detectlon of patterns hidden 1n the
'.»env1ronment ‘being studied. He f1ndsz‘ that it ‘is , the
‘redundancy ,within a comptex etructure whfch allows the
complex structure to be descrlbed by a 51mp1e structure COA
structure with no redundancy can only be exh1b1ted since

~any s1mpl1f1catlon would result in a loss of 1nformat1on

As a simple example. ~consider the summation of ' the
integers 'from one} to n. 'A person could be instruCted to
per form thts feat with the command "add one tou two and to -
the result' add‘ three and ‘to the result add ... and.to thev.
result add n- 1 and to the result add n." The redundancy
th1s solution can easily be detected in the recurrrng phrase

and to the- result add." An encoded formulatlon would make"

'use of the simpler command "begln with one and then add each

'number from two through n to the sum obta1ned so far." Th1§

4
a~

is. a stmplification of the description, at the cost of the
increased interpretation performed“by_the processer. Were

.#;,_

' Simon, Herbert A., The Sczences of the Artiflcral',
(Cambrtdge Mass. The M I. T. Press, 1969) , 1. .

2 Ibid., p. 110.

the processer able to perform mu]tipliéation and division,
and .interpret algebraic . expressions, the 'entire process
could be encoded as nx(n+1):2. But if no such redundancy
'\cah be ’found, or if no processOrr can be found that
Qnderstands the encoding, then the complete description must

be provided.

&

It 1is exactly this pattern—deécription task that is
central to the design of algorithms. 'The goal of algorithm
design is a sinplé represéntafion for a co&p]ex process, a
represeniationéhcoding the redundancy of the brocess ag ah

algorithm. For the designer, the representation is the

solution. : .&

How complex or simple a structure "is depends
critically upon the way in which we describe it.
Most of the complex structures found in the wor 1d
are enormously redundant, /and we can use this
redundancy to simplify their description. But to
use it, to achieve the simplification, we must find
the right representation’ "

e Human Comprehéhsion Limitations.
. ?

The methods that a problem-solver uses to discover :a

redundancy encodihg»aré‘,poorly undeﬁstbod?: vNevertheless, , ;

-
o
s
;
i
i)
;

once an encoding has been postulated, the hypothesis must be

1 Ibid., p. 117.

2 . Wilson, Kellogg V., personal communication, Décember,
1979. ' : :

tested. Normally, this testing requires that ‘the encoding be
expressed by some abstract representation. 'The
problem-solver must be able to comprehend the representation

as an expression of the encoding.

Our ?h@rt term memory is capable of retaining only about
five chunks of information, and.once we are jnter}upted.
only about two chunks can 'reliably be remembered.
Furthermore, there s a measureable chuhK‘trénsfer fime of

about five seconds between short-term and long-term memory!

Once the short-term memory cabacity 'of a designer/ is
exceeded, his ability to correctly test his hypothesiéed
redundancy pattern deteriorates. Certainly; an experiehced
programmer is able to include far mofe information in a
chunk than a beginner, Just as an experienced chess player
s ‘abTe to treat an entire board situation or play strategy
as'avsing]e chunk? EVenvso, if a-situation is too complex,
conSidering the experience of the designer, then the

following probbéms are encountered.

! The exact bound on the size of an information chunk is
: not known, but it is small. For a discussion of these
limits, and of the memory transfer time, see Simon, The
Sciences of the Artificial, p. 39-42., and Miller,

some limits on Our Capacity for Processing Information," P

George A., "The Magical Number Seven, Plus or Minus Two:

The Psychological Review 63, 2(March 1956):81-96. B

‘ ' . : :) . a ’ x
? Hofstadter, D. R., Gddel, Escher, Bach: an Eternal : g

Golden Braid, T(New York: Basic Books Inc., 1979),
p. 285-287. ‘ . L ‘

First, the span of absolute judgment, and the span’
of immediate memory, impose severe limitations on
the amount of information that we are able to
receive, process, and remember ! '

Subjects get into trouble simply because they forget
where they are, what assignments they have made
previously, and what assumptions are implicit in the

~assignments they have made conditionally?

In all the living systems we studied, as the
information input rate "went up, the output rate
increased to 'a maximum and thereafter decreased,
showing signs of overload3 -

1.2: Hierarchical Mbdu]a}ization

The "solution to the memory problems discussed in the

pheVious section is the hierarchical modularithiOn of the

problem being solved.

In the best of all possible worlds—at least for the

. designer—we might hope: to be able to characterize -
the main properties of the system and its behaviour
without elaborating the detai] of either the outer
or the inner environments. We might looK towards a
science of the artificial that would depend on the
relative simplicity of the interface as its primary
source of generality*

P Miller, "The Magical Number Seven," p. 96.
* { Simon, The Sciences of the Artificial, p. 35.

3 Miller, James G., Living Systems, (New York: McGraw-Hil]
* Book Company, 1978), p. 195. ‘

* Simon, The Sciences of the Artificial, p. 9.

BB i ey

- Whenever the solution to a problem is needed, and. the
details of the solution ane~hidden behind an interface the

.comp]exity of = the comprehen51on of the solution is reduced

to the complex1ty of the comprehens1on of the 1nterface If

- the interface is simple enough, then its comprehension may
only require a single chunk. of short-term memory. If a
particularly comp]ek a]gorithm can be modularized in such é‘
way that the tndividual modu les perform' simple tasks, and-
can therefere be eaeily understood,‘and if the interfaces
between the modules are sjmpte enough, then the entire
hierarchy will be easier to understand than a monolithic
so]utioh, because the designer will be able to restrict his
attention to one simple module at a time, in which each

interface requires only a single chunk of short-term‘memohy;

o Tempus f idgets, Hora scopes.

With the following parable, Simon illustrates the /

advantages of the hierarchical approach! Two watchmakers
‘ S , 7,

Tempus and Hora, manufacture fine watches of about one

thousand pérts each. The watches are constructed by Tempus
in such -a way that“any interruption, such as the answer ing
of the telephone causes the entire watch to fall to pieces.

’Conversely, the watches made by Hora are built of

* 1bid., p. 91-93.

/

hierarchical sub-assemblies, each-Sub—aéSembTy éonsisting of -

‘about ten smaller sub-assemblies. Consequent 1y, Hoba loses

no more than ten operations.when' a sub-assembly falls to

pieces due to an interruption.

In- Simon’s.ﬁanalysis of ‘the watchmakers, the expeciedf

time for the completion of a watch by Tempus can be computed
\) .

from the expected'timé.for the completion of a watch by. Hora -

as

t

It

Tempus N p | "~ Hora
where -

p is the probability of being interrupted while
adding a part, |

n is the number of elemental parts in the entire

assembly, and

m is the number of sub-modules in a-module;
In Simon's example, where n=1000 and m=10, if p=0.01
then Tempds would take about four thousand times as long as

Hora to'complete a watch. Figure 1.2-1 shows some: of - the

effects of these parameters on the completioh time ratio, -

for n=1000.

St 5

pI S e

T R o RS

Figure 1.2-1: The Watch Completion Time Ratio

FErN

PR I s e

This parabte_,accurgtely ‘11lustrates, the monolithic
software deve]opment problem. In the 'watchmaker me taphor,
watches are equtvafent to systems sub-assemblies eree
equivalent to modules, and elemental Jparts are equ1va1ent to
chunks. (he d1¥f1cult1es experienced oy Tempus will be

exper1enced by the software developer unless Hora's approach

is used.

1.3: The Complexity Hypothesis

X The previous two .seotions have established that the
human phoplem solveh must limit the comp]exttxf.of. the
solutions_'which he attempts'-to"comprehend. and that the
: hiererchical modutérization}of a solution accomplishes this
limitation. = In this section, our goal will be established
to be the simplificatton of the representation of the

solution to a problEm.~

Claséjce] programming languages_.are not sufficiently
powerful ’for the represehtat{on. of complex a}QOrithms.
These llanguages are FSO closely coupled to the under lying -
machine, a particutarly simple -minded machihe, thet theyv
requ1re tremendous detail even for the descr1pt10n of swmple
= algorithms. - Software teams attempt1ng the development of
_Lﬂﬁra-large ~systems are beg1nn1ng to rea11ze that they are
incapable of comprehend1ng algorlthms expressed in - so

- complex: a form

2

The description of-a solution is less complex 'when the

intended processor has the capability to comprehend-more

complex operations without running out of 'memory. chunks.
Therefore, the complexity of the representation will be

reduced by increasing the capabi]ity of the proéessor, in

| the :sahe way « as fhe winniné ability of the chess player

depends on his capability to chunk advanced chess concepts.

»

* The State of Software Development.

Terry Winogfad' makes the following observations about

the state of software develbpment:

[1] Computers are not primarily used for ~solving
well - structured mathematical problems or data

- processing, ,but instead are components of - complex
systems. ' S

[2] The building blocks out of - which systems are
built are not at the level of programming language
constructs. They are ‘"subsystems" or "packages, "
each of which is an integrated collection of data
structures, programs, and protocols. :

[3] . The main activity of programming is not the

origination of new independent programs, but the
- integration, modification, = and = explanation :of

existing ones. ' ' . -

‘Winograd also makes obéervations about requirements that

a representation must satisfy. In pafticu]af: L
' Winograd, t Terry, " "Beyond Programmin .‘Languagés,“
Communciat ions of the ACM 22, ‘7(July 1979?:391-401 '

We need a consistent way of talking about
modularization and interaction be tween
semi -independent modules which can be applied to
system structure at all ‘levels of detail.

v X ‘ .
In many cases, much of what is now thought of as
control structure can be implicit in the data
structure, leading to notions of "nonprocedural” or
"procedureless” languages. The interaction between
control -and data structure needs to be put into a
theonetlcal f ramework .

Winograd goes on to consider many of the very high level

features of existihg application-oriented languages, . in

order to define the requirements of a very high level

- general purpose language., However, it soon bécomes°apparent

that the development of such a very high . level language

would grossly exceed the very complexity.Wimitétions that
already confound attempfs at]arge‘systems, leading him to
conc tude that:

’ &

There will have to be. a very careful program of
bootstrapping to get from today’'s languages and
systems to the one I have described. The reason for
~writing a paper of this sort ... is the recognition
that the relevant ideas need more development, and
the hope' that people w1l1 turn their attent1on to
them. -

e The Dimensions of Representation Complexity .-

We. have determ1ned that we requ1re a processor capable
of comprehend1ng more complex representat1ons. We‘ have
determined that we will have to reduce complexity .in those
areés that are represeﬁtative of the current trends in

-

~software developmeht, and we have determined that we will

have to. teach comprehensioH to our processors by adding

3

small increments to their domain of comprehension. In what

-direction should the first increments.be added?

- The "software crisis”" is the result of our human
limitations in dealing with complexity. To “solve'

. the problem we must reduce the "apparent complexity”
of programs, and this reduction must occur in the
program text We know something about the way
humans have traditionally dealt with understanding
complex problems ... and we can try to mold the
expression of a program so that it fac1l1ta¢es these
techniques! -

The first increments to be added to the domain of.

comprehension of our processors must be directed towards the

"reduction of the .apparent complexity of the program source

code. The apparent complexity of the program source code is

dependent on the number of chunks of ‘information fhat the
’reader of the representation must attempt to ~manage.
Therefore, the reduct1on of this apparent compﬂex1ty depends
- on the reduction of the number of chunks of 1nformat10n that
mus t bermenaged. " How can we reduce tHe‘humber of chunks of

~information that must be managed?

»

A «formulafion of. this_reduction task has been made by

! Wulf, W. A., " Some Thoughts on the Next Generation of

- Programming Languages," 1in Perspectives of Computer

Science, ed. A. K. Jones, (New York: Academic Press,
1877). - :

12

22 | e Ty, i

dacob Schwartz!‘ He considers. é_'program to be é set of
elements. The‘compréhensioh of‘eaCh element requires, :in
addjiion to the compréhehsion of the element itself, fhe
- comprehension of the eﬁtire‘set of cohstraints placed on the

element by the other eleménts'of the b%ogram. _This set. of

constraih;s is Known.as the local.complexity of the elemeht.:

‘ Psychological1y, ‘the probability of 'successfuT1y
understandihg'an-element~within‘ its énViﬁonment decreases

“rapidly as the local complexity of the element increases.

Schwar tz points out that the inverse of this‘probébility

~of success is a metric of the difficulty of understandiqg »

the program, and therefore is a metric of the time required

>

to undehétgnd the program. Furthermore, he suggests that

. : .)
each programmer will have a 'local-complexﬁty’threshold,

above which he will be unablé to understand a program in a-

reasonable amount of time.

The reduction of the number of chunks that must be

managed is therefore dependent on the reduction of three

1

seperate complexifies:

v

1 o the reduction of the number of elements in the program,

2 o the reduction of the complexity of the individual

e

' - Schwartz, Jacob T., On Programming: An Intenm'RepOrt on
“the SETL Project, (New York: Courant Institute of
Mathematical Science, revised>1975), p. 1-3.

13

i"l

L]

elements of the program, and
3 o the reduction of the number of constraints “that the
elements of a program place‘on each otherr |
" The Complexity Reduct ion Campaigns.
~ o

- Qur approach to the reduotiOn of .these complexities can

~be conveniently divided into the following three oampaigns.

The first approach Known as the intra- modu]e campaign,

will attack: 'the complex1ty of the express1ons w1th1n the

modoles‘h Its goals will 1nclude the reductwon of the

requ1rements for sequencing 1nformat1on that is not 1nherent,

in the problem, the reductlon of the: requ1rements for the
specification Ofrialgorithms to manage data structures, and
the reduotton of theredoireaents for the spectfication of
: detait; .These'reductions will be achievedaby extehding the

Knowledge of'the prooessor until it‘oan infer the sequences,

data structure management, and details of the solution from

the context of the less comp lex descr1pt1on As a result of
the 1ntra module campa1gn the responsibility for many of
the constralnts in the local complex:ty of the elements will

be transferred from the programmer to the machrne

The - second ‘approach'-.Known a% the modularlzat1on

'»campa1gn will attacK the local COmplex1ty of the elements

of a program by mov1ng ‘elements out of the programm

Whenever a subset of the elements of a program"can be

14

transferred to a well-defined module with well- deflned
imports and well- deflned exports the local como&ex;ty of

the. elements w:ll be decreased, since the pnogrammer will no

Ionger have to comprehend the constralnts orlglnally rmposed-

by the elements of the Pemoved subset (Of course the

Jocal complexity of ~the removed subset wﬂll be similarly
S . ‘ . | .

reduced. ! . : -

The th1rd approach Known as the trans -modu le campa ign,

is in fact requ1red to support the modular1zat1on campa1 n.

When modules are dependent on’ the 1nternal worK1ngs of each

other, a change that is. requ1red in one module may requ1re'
\some other module to be‘changed in order that the two remain
in concert However the subtlety of the 1nterdependance~

may hide the conseqqsnt change unttl the ‘system wwth the

antecedent change is tested, consequently, a second release
of the” system may be necessary Similarly, the changes made
~in the n’ th release may requ1re'changes to dezmade in the

n+1' th retéase.

Consider gkmatrix inmwhich each ij'th element is the

'probability that a cnange requ1red 1n module i will require

a change in module J. Haney‘
‘ j

. J

' Haney, Fredertck M' Module Connection Analy51s——A Tool

for Scheduling Software Debugglng Act1v1t1es, in the
Fall Joint Computer Conference
Press, 1972) 41:173-179. e

Montvale, N, J.: AFIPS

A ph A

BT

ehOWS ‘that . when the principa1 eigenva]ue of the

interconnection matrix is . greater than one, the system of

| modules ts so unstable that hosjtive feedback may cause a
_sing1e required chahge‘to generate an eVer-increasinghnumbeh
of errors. thure 1-3-1 shows ,a' typica] reldtidnéhip
between the average 1nterconnect1on probab111ty, the number
' ef.chengeS- requ1red, and the number-kof’ times requ1red
Chenges have- been ﬁade As a retht of‘the trans module

campaign; the stabtlrty of the system wrll be guahanteed by

FigOPOUSIy enforcing the interfaces between the moduleés.

Overall theh,"this is a proposal for a - language
experiment. It is an experiment in the .reduct1on of the

' complexity of the representat1on of algor1thms It is ah

7

experiment intended to move programmlng one step away from-

the hardware’'s monolithic, paleolinguistic soFtware,_one
step'towards the“problemFSOIVer’s requirements.

@,
'»t.4: The Langugage Classificatiens
The 1ntent of th1s sect)on is the cla531f1cat1on of both

the negat1ve characterlst1cs of - the c]ass1cal languages and

the alternatives that can overcome the1r d1sadvantages The

distinctions between’ the procedural and the -funct1onalgl

t{cont‘d)

\)}.

16

17

200
180 / i
8466 '
D - b
: 140 : 1
; /
a™ M““ [kt ane
Sy ,:‘:"‘““ ‘ i
& eof ST -
A e gy B
Ave. Oi ‘ \ \\\\\\\\\\:::‘::‘:“.\ S .:T-.;?' _.)
ONNECT'OGO \f-;;._] _ 012 '- 16

10
S ON SE° NUMBER

Pp- 000y 2 4 8 8
ROBHB‘}OL}IT';{TERNRL RELER

Figure 1.3-1: The Number of Changes Required

language classes are defined. . The distinctions between

piece-wise data-structures and Aaggrégrate data-structdres

are made. These two distinctions are seen to define a plﬁhe*

on which é‘language may be located relative to the location‘

~of - the other languages on the plane. A par{icular'language
will rarely be purely functional or purely procedural, or
allow dh]y the piece-wise manipulation of data or support

fully aggregate data-structures. But two languages can

usUally be ordered with respect to their fuhctiona]ity or

‘aggregation power .

e The Sequencing-Information Axis.

- The dis%inctioﬁ‘beiween the procedural and flnctional
]angﬁagé_ cfasses depends on the ambuht of sequencing
infbrmatﬁoh ihat must be specified by representations in the
; 1anguage. -As'explained below, procedural 1anguages tend to
requiré' the addition of sequencing specification not
inherenfr to fhé problem being solved. Functiona] 1anguages

tend to minimize this. requirement.
' .

| The solution to a tprbblem' may contain sequehcing'

restrictions that must'be'répheéented in an encoding of the

solution. For example, if instructed to move . from the

inside of a room to the butside of the room, through a door
which is now closed but can be opened, then the solution
wi]l'w_usually require 'thei obenfng' of " the doér before

traversing the threshold, rather than after (thereby

18

allowing one to save face) . In this case, the
representation of the solution must encode the before/after

sequence, _ s

-

A procedural language is charactefized by the abundance
‘of sequencing information that is incidental to thé,solution
being.en%oded in the algorithm, but is essential to “the
representation itseif. For‘ examp]e,' wheh .a solution
requires a .function to be appliéd to each member of a subset
of a data structure, and the\solution/dées not require the

app]icafion‘to be carried out in any particular order, then

the management of a particular ordé?ju;t increases the -

local complexity of the other elements in th

of the solution. /

Typically, a procedural representation is a descﬁiption
of how’to.effeCt the solution, as opposed to a deScription

of what the solution is.'kAlthough this distinction is not

often intuitivly eiegant, that is only because almost all of.

the languages that exist today are procedural languages!

The examples discuséed later should provide insight_into'the

c

difference.

' Leavenworth, B. M., and Sammet, J. E., "An Overview of
Nonprocedural Languages,” in Proceedings of a Symposium
on Very High Level Languages, ACM SIGPLAN Notices 9,
A{April 1974):1-12. -

representation

19

i R e L st

.

¥

A functional language is characterized by a set of

requirements. Functional languages have no .statements.
'Eéch function in the languége is Jjust an éxpression. There
is no assignment in a functional 1ahguage and consequéhtly
there .are no variables,‘and SO no existingcfh%brmation is
ever altered in the'evaluatiom of a function. There are no
parameters in a functional language, the functions are

simply applied to'their argument .

Actually, these réduirements are unimportant. The
essenfia] charactepistic of a functional 1anguage is that it
tends to minimize the requirements for . the ~addition of
\sequencing infofmation. to the solution, and it tends to
§becify‘what a solution is, inétead of how'to carry out the

solution.

e The Data Aggregation Axis.

The classical programming languages are based on the-

classical éomputer;Aconsequently they share; many of the

limitations df' these devices. In particular, most of them

share the very low leVé] on which data items are
manipulated. Much of the complexity of classical languages
can be traced to this low-level view, and much of it can be

eliminated by switching to a high-level view.
’ £

20

RO N

A classical computer s characterized by' a central
processing unit, with a small amount of internal storage
connected to an external storage device via a narrow

communication channel. A1l of the computer’s instructions

andﬁdata are stored in the external medium and must " be

traneported to the processor via the communicationAchannel;
In order to accomplish this transfer, the 'location of the
instructionv or data lteh must be obtained, and unless this
locat1on can be computed from the 1nformatlon already within

the small amount of 1nternal.storage, more]nformat1on will

have to be obtained from the external medium. of course,

this often leads to the problem of finding the location of

the location, and so on. Typically, this results in a

bidirectional traffic bottleneck- at the .communication

channell

As a result of the channel-bottleneck constraint,
programming has largely become an exercise in controlling

the traffic at the bottleneck, rather than a study of the

overall behaviour of the programs. Classical languages are

" characterized by their a551gnment based operat1ons each

imitating thet s1ngle word fetch and store Jnstruct1ons of
by . BN

E Backus, J. ‘W., "Can Programmlng be Liberated. from 1Its"

~von Neumann Style? A Functional Style and Its Algebra

of Programs,” 1978 ACM Turing - Award Lecture, Research .

- Report RJ2234(30357)4/25/78, - (San Jose: IBM Resedrch
Laboratory, 1978), p. 6-10. . iy

21

the machine and, by'their control structures, each imitating

- the branch instructions of the machine.

Certain’more'powerful languages are characterized by

their aggregate data structures In 4APL, for‘example every

data item is a rectangular array of arb1trary shape and in

LISP, every data item is a b1nary list of arb1trary nest1ng
These 1anguages are character1zed by their data structures
because their pr1m1t1ves are des1gned to use them. In the

c]ass1ca] 1anguages the pr1m1t1ves are des1gned to thandle

only very 11m1ted data structures,.such as l1near str]ngs'

and simple scalars! -

The advantage of these aggregate data structures is that
a so]ut1on representaf’bn which makes use of these aggregate

data structures does not have to supply 1nformat1on on how

to use the aggregrate data-structures. Since this

~information does not have to be described, the complexity of

amount of 1nformat1on that an algorithm must supply -about

its data structures, we w111 use a generalized data
, { : ,

structure that mirrors as many of the properties of real

‘data structures as possible.

! A data structure built of po1nters is Just a vector of

scalars with an interpretation supplied by the sof tware.
It is not an aggregate data structure.

\

29

:

- the ‘representation is reduced. In order to minimize the

A generalized array is such an' aggregrate. data

structure - Athough - the theory of generalized ‘arrays

con51dered here]n does not define an ~array (in--the -‘same

sense " that set»theory does not define a set), an intuitive
" notion of a generalized array- can. be given. Generalized

arrays have no shape or nesting constra1nts Every element

of a generalwzed array is a generalized array. A
generalized array: is rectangulari Any slice normal to any .

‘particular axis will be of the same shape ‘as any other slice .

normal to that same axis. A generalized array js of
arbitrary dimension, that is, it can have any number of

axes.,

« The Language Classif ication Plane.

-~ As has‘ already been noted, most languages cannot be
absolutely classified' ' into any of these categor1es
However, some languages can cleary be seen to be elther more
ory less functional than other languages, and certain
languages can be seen to' handle either more or less

‘aggregate data-structureS' than other languages | Together,

- these two axes of d1fferent1atlon def1ne a plane on which a

language may be located.

' Leavenworth, B, M., and Sammet, J, E., "An Overview of
Nonprocedural Languages," p. 3. c . :

23

In-review, one' axis d1st1ngu15hes between functional

1ahguages and . pPOCedUPa] languages, and one axis

distinguishes between piece-wise data-structures and

-

- adQregrate data-structures, where

1 °‘procedura1 languages tend_to specify the Stebs involved
; ' Y ' : : '
in the execution of a solution, and consequently tend to
pequire the addition of sequencing ‘information to the

repfésentaton of the solution,

2 ° functional languages tend to specify what the solution
is and therefore tend not to require the addition of

extra seqguencing information,

3 ° piece-wise data structures tend to be close]y coupled to

the Classical computer and therefore tend to requ1re the

add1t1on of extra information for the 1nterpretat1on of

" data structures, and the addition. of the associated

‘extra sequencing information and local complexity, and

aggregrate_ data- structures tend to model the properttes

-
°

of realj data structures and therefore tend not <o

increase the comptex1ty of the representation.

'Sinceé both the procedura]"eharacteristics andw»the
L pieCe-wise data‘structurésrware ‘related fto the c]assica]

comPuter, most languages tend to be burdened w1th both of

" them. On the other hand since - both the | funct1ona1

charécteristics and the aggregrate'data-structuresAtend to

24

reduce the complexity of the solutions

them, the language of this experiment will

“and will handle genera1ized»array§.'

s

that' make usevof

‘be functional,

25

Chapter Two: A Notational Framework

"The formal ization of a science usually
admits of the possibility of introducing
néew signs into that science which were
not explicitly given at the outset."”

Alfred Taréky

A functionallnotational-?ramework.is‘deveioped‘ in 'this
Chapter.. In.”thé 4first’ secfion; the ClaSSica]Anotion'of}
controllstructures is exémined, ahd_(the “control - structure
reduireménts of the functjonal'notétion afe determined. The
;‘secohd Section- examiﬁeg the concept of history, .and
defermines ‘the ‘hfstéry réqUireménts of - the funCtioné]
notation. The thfrd section defines the cbmputétional mode 1
' of ~the system tHat' will be attempting to understand the
| solutions that we represent to. it in our funcfidnai

notation. .

’Seétion four marks the beginning of the formalization of
this languége experiment. In this.séctién, the .syntdx of
the fﬁhctional .notation is .developed; section five then
expands the syntéx'{o provide an easier metbdd for the use

of meta-functions.

The goal of this language experiment has been defermined
to be the. éxaminatiOn of the generalized .array data
structure and some of the other alternatives. to the

L4

o

‘claSSicat programming Tanguages. " The definition of a-

particular alternative language is ' not a goal.
Consequentty, the notational and computationat framework
' deye]oped - here is .fatrly ’arbitrary, and need only be

representative of the concepts of the experiment ~and

conven1ent for the exper1ment itself. Furthermore, there is

- no need for comp]ete rigor in the deve]opment of this
framework, and so no attempt W111 be made to be completely

rigorous.

2.1: The Control Structure Alternat ives

For the purposes of th]S discussion, a control structure

'~ is considered to be -a method for the alterat1on of what

~would otherwise be a linear sequence of representaion.

' Procedural “languages have 'only‘_two classes of controla

structures: a repetition class (typified by the While

structure) which causes a set of .instructions to be

repeated, and an alterhative-selection class (typ1f1ed by -

the if - structure) wh1ch selects one of a set of alternate

paths tohfollow through the instructions. Th]S sectlon

reviews the reasons why these strutUresv‘exist,’ and.

-

determines the control structure requirements = of our

functional notation.

27

B | AR St e sy

(]

e The Alternative-Selection Control Structure.

A

A11 alternative-selection control structures aré. based

on the 'conditional ‘construct. A conditional dOhStpuct is -

one which selectS‘befwéen tWo’alternate subfsedtions of a

representation depending on the value of an'eXpréssion. The

conditional construct is wusually used in one of two

applications.

Firstly, the condftioha1~\consfrUct is - used” when a

selection must be made between- a section of the

to be used when .the sqlution is being
the boundry of 'its"applicébiljty, cand a
f“be uséd when not at~thét boundry. "For-example,

in4th?; fJbrial_program o 'v - v ' L
f(n) IS IF n = 0 THEN 1 ELSE nxf(n-1)

" _ . o
"“tional'constbuct seleéts-between the expreSsion to

at the boundry n=0 and thé expression'to‘be used

??at that boundry.

Secondly, the conditional construct s Rused when a

selection must be made be tween two- séctions of a

represeﬁtation that are apb]icable at different ‘bdundrﬁes,_

for'example

giﬁ{n)lls IF. m = "yes" THEN p(n) ELSE q(n).

where t_f ;ylue of m s either "yes" or "no". In this

28

.eXample the value of glm) at the bbundry m="yes" is p(n) and

- is g(n) at the boundry m="no".

The theory of'generé]ized ahrays whichlwil}_be presented

in Chapter Three obviates much of _the néed_ for the.

-

alternative-selection concept.

- Even though the if-then-else construction is

" ~certainly useful 'and necessary in many areas of

“programming, the power of this conditional to

- circumvent any difficulty represents an inherent
weakness in programming as a conceptual discipline!

Instead- of relying on the ‘alfernétive-seleption'
: conétruct} an axiométic*fheory~which ddeélnot require‘such a
construct can be developed. Fo? example, if_,thél system_
‘lerocessing the factorial fﬁncfion f already Knows the axiom

f(0)=1, then the definition f(n) IS nXF(n-1i,i$ sufficient,

' -because’vthé system will not invoke this defintionfwhen n=0,

but will simply ~use the axiom. ~ The discussion of

generalized arnays. in Chapter'Three'wiii.make USé‘of'this:*-

s

| axiomatic élternatfve; and will ﬁot;ruse«qthe ,conditional

, construct.

t

Even thopgh this axiomatic alternative to the

'condjtionél cohstruct Works Well when ',diScdssing the

primitives of our language, it fails when we discuss more

! 'Moré; T., JThe Nested Reétangu]ar;Arbay as” a Model of
Data," ACM-STAPL/SIGPLAN Proceedings APL79 Conference,
(May 1979):69. . : \ S

29

“involved applications of the primitives. The function g
illustrates a typical situation in ‘which the boundry

,:cohditions may not be able tQ_be'incorporated in the process

. '. ¢ -
as axioms. In these applications, the conditional structure

will be needed.

‘Thenefobe,'the complexity costs of the following spéCia]

structure can be justified! The expression
P1 » Q13 P2 > Q23 ...; Pn > @Qn; D

is read as: if P1 then @1 else if P2 then @2 else if
else if Pn then q¢n else D. The value of the expression is

theAvaer of the sUbexpreésion Qi which corresponds . to the

first éubexpression Pi which evaluates to a logically true:

value. If no Qi is true then the result is D.. In pure LISP

this service is'provided‘by the COND function. A method for

implementing this structure entirly within the formal

hotafion of this chapter will be preSehtpd in Chapter Four.

"This‘ condﬁtional form -is familiar from the predicate

calculus expression;(P+Q)A(~P+R). Another level of . nesting “

can be handled with an expression of the form

((PAQ)R)A(PA~Q>S)) a(<P>T).

1 MéCarthy; J.,. ~“Recursive Functions of Symbolic -

- Expressions and their Computation by Machine, Part 1,"
- Communciations of the ACM 3, 4(April 1960):184-195. '

’-

L

In order to prevent an increase in the local complexity

of the elements of a représentation, fuﬁfher levels of

| nesting, should be accomplished either- with the introduction

~ of additional modules, . or with -the implementation of a

table-driven representation. This enforcement of a well
organized modularization of the sqlution into non-procedural
functions is necessary to meet 'the 'objectiyes of section

<

1.2.

*» The Repetition Cootfol Structure.

The 'repetition control structure is used in exactly two
cases: for: the application of a section of a representation

to each bf a set of elements, and for the determination of

the effect of a section which depends on the effect of the

Y
I
A

same section of the representation. - RN

A procedural language uses its repetition structure

whenever an algorithm is to be applied to a subset of the
elements of an aggregrate data structure! The most common

form of this repetition is

FOR i FROM 1 T0O n DO x(i) = fty(i)).

T A functional representation of this repetition is typically

1 More, T., "The Nested Rectangular Array as a Model of

Data,” p. 61-63.

31

A

of the form
APPLY f TO EACH y | T

or f:y, which does not require the temporary counter |, does

not require explicit knowledge of n, the shape of y, .and-

does not hequire the temporary variable X, in which }o store

the result.

~|

_ \
The common axis operations (such as 4PL's. +/[11X) can

typically be described in a functional form as

APPLY £ TO AXIS. n OF x

or fxn:x, but requires the complex procedural form
A .
zZ = a - oo
FOR i FROM 1 TO n DO
FOR j FROM 1 TO m DO
z0i) = f(z(i),x(i,j));.

These axis operations are a variant of the
subset-application case of the procedural
repetition-structUres. The procedural form is vastly more
complex. It requires thé maintenance of three temporary
variables, fhe ihtrqduction of two sequence orders 'not

réquired. in the functional form, explicit knowledge of the

shape of x, and initia]izatidn of the result. The

application of f to a different axis_réquires alteration of

the subeXpressions of the procedural form, but requires bnly
a value change in the functional form. The syhtax'of the

procedural form depends on the number of axzti. whereas the

32

T

functional syntax is invariant.

A procedural language also uses its repetition control

structure whenever the value of a function depends on a .

previous value of the function! A common éxample of this

fdrm of repetition is the factorial program
nt IS f =1; FOR i FROM 1 TOn DO f = f x i; f,

A functional form of this program would take advantage of
the bbundary condition (0! IS f = 1; 1) and the - recurrence

relation i! = j x (j-1)!, to define the recursive form
nt IS (n=0) » 15 n x (n~1)1.

The fhnctiona] form prevents the representation'from having

to maintain the two tempdrary variables f-and i.

Even this recursive solution can introduce - more
sequencing .information than 1is required. The recursive

factorial algorithm can be replaéed by the even more

1

functional form:

n! IS the product of the first‘h integers.

This second form is similar to 4PL's x/1N. Notice that this

more functional form also relies on the axiomatic behaviour

t .

of the:‘system at the boundry to prevent the use of the
. o

' Burge, "Recursive Programming Techniques,' p. 18-21..

33

‘conditional construct. =

R

Many other 'Iinear sequence problems, such as reading a

book, are naturally solved with recursive algorithms like

read-rest (book)
IS

read-page first(book), read-rest rest (book),

and are easily programmed in such a form.

+

e The Control Structure Requirements

'These control structure classes are an ovehwhelming
complexity burden for the programmer. If .a problem
explicitly‘requirés the type of control provided by a

recursive solution or explicitly requires the selection of

unrelated alternatives (that cannot be generated without

selection) then the recursive or alternative-selection

o

functional forms can be used. therwise, the responsibility'

for the maintehance-of the control‘sfructures that speéify
how to obtain the solution should be transferred from the
programmer to the mach%ne, and the‘programmer Should return
td the consideration of what is requifed of thé so}ution. A

functional language allows this transfer of responsibility.

i

34

-

' 2.2: The History Sensitivity of Functional Languages

Data that must be stoned<for later retrival by, a name
that s assoclated w1th it at .the time of ‘storage is
historic information. Slnce ag7purely functlonal language
has no statements, no a551gnment, and no varlables, a purely

functional language’has no method for storing values for

Jater use. For the pubposesiqf the study.of the theory of

geheralized arrays, thls'will present‘no‘prcblem,e and will

actually allow for the 'very elegant expression of the

theory. In Fact it does not ever present 'any theoretical .
problem because the entire env1ronment can ih pﬁlhciple, be

passed 1nto the top level funct1on and the - .necessary - parts

of that envihonment can be selected wherever reduired.

;This history-independeﬁce ‘decreases“ the apparent -

complexity of representations‘by elimlnating;the management

of historic information from the representation. In the
funct1onal form of an algor1thm values are calculated where

| ,they are needed., Stncevthere are no varlables there is no

need to worry_abOUt'prognam'side-effects, order-of-execution

problems, or name-scope control!

' - Wiedman, Clark, "APL Problems with Order of Execution,”

University Computing Center, Graduate Research Center.
University of Massachusetts, Amherst, Mass

35

On the other jﬁénd, the‘ expensive re—calcu]ationk of
values may. seriously impéC{\the performance of a program. A
‘pngram’é”ihabifity to access‘values_ that Were ppévioUs]y
generated and its inabi]ity to save values for later uSé
represents a major réstrictioh; The decrease in history

comp1exity fmay actually offset the recalculation costs;

“however, historic information generated in some other

environment may occasionally be required, or a program may
wish to generate historic information and later re-access it

in order to prevent exorbitant recalculation costs.

_fn such cases, rather than destroy the functionélity of
fhe language,‘ éuf system model will include a history
p;ocess which runs in parallel with thegothér processes on

the system. This history proéess will simply maihtaiﬁ a

list of all the historic information sent to it via the

: communication_ facilities of the system, _and will, on

request, be ablé to send the information back to a process.

The use of this histbry-process is sfmi1ar to the use of

" the input/outpUt operations of a procedural language. Its

use is no more comp lex thah_lhe assignment operations of the

procedural languages, but remains functional. Since it is a
‘part ‘of the support system, and not the language, it does
not ‘have to be axiomatized at this time (but might be once

experience with its use has been gained):

-

36

A functional output‘attempt accepts_és' its argument a
name for the data (somewhat Tike»a'file-name'in a procedural

WRITE) and the data Gtself. The data is remembered as being

‘associated wifh the partdcular name. ‘The result of the

primitive is an indication of the success of the output

attempt.

A functional "ihput attempt accepts as its argument the

7

‘name of a previously remembered item. The result of the

primitive is either the item itself, or an indication of the

failure of the input attempt.

2.3: A Computational Mode]

Even though our primary intent is the examination of the

theory of generaTized,arrays, théirlactual‘usefulness'wil]

not be determined until their implications are interpreted

in a ‘number of application environments. In order to be

able to interpret the implications of a set of ;aXioms, we

need: !

‘ . : , o o o o
' Minsky, M., Computation: Finite and Infinite Machines,
(London: Prentice-Hall International, Inc., 1972},

p. 103-107. 4 ’ ‘

37

1 o a language in which to express the axioms and

implications, and
2 ¢ a machine ' which can interpret statements in the
language. | A

4 Of course, providing that an interpretive system is as

A]

powerful ras .a ’Universa] Turing Machine, that interpretive"

system is'capable‘of carrying out any effective procedurey

A statément-interpreting machine is just a string
transformer, conver ting input strings (stateménts) into
output strings (interpretations)! This machine model is the

- model of each of the set of processes in our system.

Even though our functional language is independent of

any execution-environment considerations, it will be

necessary to discuss certain such considerations. Of

. 'particular importance are the input/output operations

introduced in the previous section and other operations for
»sysfém communication‘ such ‘as the control functions for
concurFéht;' processes. ‘ Consequent]y, our funct}bnal
framework must inélude a model of the framework in which the

processes are interpreting.

' pPost, Emil., "Formal Reductions of the General

Combinatorial Decision Problem," American Journal of
Mathematics, 65(1943):197-268. ‘

38

The'system model must be'geheral enough to suSport the
discussion of any.real-machine consideration. At the same
time, the model must be.simple enough to prevent extraneous
cdnsiderat{ons - fr?m entering"the discussion. The APL

shared-variab]e model is one such model! A shared-variable

system supports multiple concurrent processes and allows:

»generalized arrays to be”transferred between the processes.

_With the shared-variable model- any particular, process

Sees a ‘structurally equivalent mode] of the system (W1th a'

d1fferent set of other- processes of course) as shown in

f1gure 2.3-1. The express1on to be evaluated by a processf'

is spec1f1ed when' the process - is conceived. _The’ process
communicates w1th fhe rest. 6f the world- via the shared

variable primitives. . I

!

2.4f A Formal Expression Notatibn

Natural languages are too cumbersome, amb1guous and

irregular for the description of effect1ve proceduresz'

'Instead; we will use a formal language. A forma] 'language

! Latﬁwe]l, R. H., "System Formulation and 4PL Shared
- Variables," IBM dbunnal of Research and Development 17
4(Jduly 1970) 356- 357

2 Kleéne, S. C., Introduction to Metamathemat ics,
(Amsterdam:. North-Holland Publ1sh1ng Co., 1952),
p. 59-62. .

39

st e] e gL .

S ot

40

S]
A Process - Evaluates |———| An Expression
.
s 1. Primitive Functions
Knows |—=| | 2. Defined Functions
3. Shared Variables : ' See
The World |«—

Figure 2.3-1: System Model As Seen By A'Process.

is described by a set of ‘formal symbols and a method for

bui-lding formaT expressions. from the formal éymbols!

e The Formal Character Set.

The.proceéses of tHe previous section<pro¢ess'strfngs bf
characteré. Eéch'exbreséion .of the{'language is such a
string. ﬁ?" the pUrposes" of this experimenf.' it is
Convenjent Fo bevable‘to use singIe'characters to represent

the primitive funétions of the theory, and so the set’of

t Ibid., p. 69-81.

®

i

characters to “which we have access is enhanced by allowing

simple symbol-combination.

The characters sent to and received from a process are

‘related to the ‘characters. received by and sent from the

proceSS‘as follows. A user sees a collection of graphics on
his output device. The three graphics +XB may, for -example,
i be the output representation of the f1ve character sequence

1%Bb5] in_ which bs denotes 'the character wh1ch causes‘

adJacent output characters to be overstruck (the backspace
§ &
vcharacter) That character sequence is composed from the

set ~of symbo]s {t,a,\,4,B;DS,D}, "and could have been

} generatedf by the keystroke sequence L OS e \'os - Q@ er B bs |
-0 in which os is the Keystroke which causes symbols to be

composed 1nto_ characters (overstr1ke) ‘and er is the :

keystroke which erases the previous character _From the

string (error).

The process - sees only the characters generated by the

user’s keystrokegg# and the ‘user sees only the graphics

generated‘ by the characters sent to his output device. The

error and overstrike keystrokes are never ‘'seen by the

prOCess, and the backspace symbol is never seen by the user.

Certain' symbol and character subsets will be-reserved

for particular purposes, as an aid to the .reader of the

expressions. pThe,'symbon 4 through Z, all the characters

composed of a ‘symbol from 4 through- Z and ahy ‘other

41

‘5the underbar character (_), are the set - of
if ‘characters The digits 0 through 9, and all the

T ;composed of a digit and any other character form

the g F numeric characters.
. ormal Symbols

symbols . of the language are built out of
charactefg. An eXpressioh is erKen into formal symbols' as
follows. : |
1 o Any cff€acter which is. ne1ther alphabetic nor numeric is

a fo 5 ymbo I itself (except a dot (.) between two

numer ic characters);'

2‘9 Any substr1ng consisting only of alphabet1c characters

and numerlc characters 1,beg1nn1ng 'w1th an alphabet1c '

character, and del1m1ted on both sides by a character
which is neither a]phabetic_nor 'numeric,; is a formal

symbol.

3 ¢ Any substring cons1st1ng only of numeric characters and

dots, delimited on both sides by a character ‘which is
‘neither alphabet1c, numer1c, nor a dot, is a formal
~symbol.

4 o Other than their use as formal symbol delimiters,

ot

strlngs of blanks serye no formal purpose.

5 The parentheses (C and)),‘apostrophe ('), and dot (.)

formal—symbq}s are reserved for use as,grouping symbols.’

6 o Formal symbols consisting only cf}numeric ¢haracters,andf

42

. dots represent numeric constants.

7 o Strlngs of formal 'symbols containing “only paired‘

apostrophes A-and dellmlted at each end by a sxngle
apostrophe, represent character constants

8 ?:Formal. symbols which are neither grouping Symbols..‘

) numeric' constants, “nor character 'constants, are the

names of functions.
/ L_/—'_‘/

A mumeric constant may or may not be well formed A
‘well formed numeric constant consists of one or more dlglts
‘followed opt1onally by a dec1mal point followed by one or'
more digits. This . syntax may be eas1ly extended to 1nclude
a formal notat1on lfor sc1entlflc,‘crat1onal,' and - compleg
.values, but for our discussion of array1tneorypthese nunbers?

i

will be sufficient.

e The Rules of Scope.
- Once an expression has been parsed:lnto formal'_symbols,

the meaning of*the expressionvcan be determined by applying

each naﬁed_functionrto'the;gyalue' of its arguments. The

juxtaposition of function names will be assumed to imply the

compos1t10n of the funct1ons1 The'juxtaposition of twoi or

more function names is- amb1guous wi thout rules of scope to -

' Composition is an operator to be discussed in chapter .
three. When . two functions are composed the - result of
~ one becomes the argument of the other.

o fem et e e e e

determine the 1mpl1ed grouplng of the compos1t1on arguments

.The rules of scope are as follows1

Every formal function which expects a right argument

takes, as its right argument,‘ the shortest well-formed

expression‘to“lts right.. If the funct1on expects ‘al left

vargument then the functton takes, as its left argument the

longest well-formed express1on to 1ts-left These are Known

as the short rlght scope and long left scope rules Numerlc

and character constants behave 1iKe funct1ons wh1ch take no -

arguments and which have as the1r value the constant denoted? v

by the name

The parenthe51s group1ng symbols alter the scope. rules;,
B allow1ng extended r1ght scope -and- l1m1ted left scope . A vt

. parenthes1sed express1on is’ well formed only if all the left.

parentheses are balanced by correspondlng right parentheses
%]

A dot (.) suffixed to a functlon name expect1ng a right

argument extends the right scope to the longéfit well- formed

expression to the right. A prefix dot re-asserts Jthe Tong.

left scope of a function name appearing'in the extended

right scope of some -other function. There is no other

implied hierarchy in the expressions,

~ More, T., Axloms and . {heorems for a Theory of Arrays
IBM)dburnal of Research and Development 17, 2(March
1973):138-139.

44

tfu g. (vhw .j. xky) 12

e tfu g, ((vhw) j. xky) 1z
« tfu g (((vhw) j (xky)) 1 z)

er (tful g (((vhw) § (xky)) 1 2)

t

where t'through Z expect no arguments, and f through
1 expect left and right arguments. '

Figure 2.4-1: Function Scope‘Exémple

An expression cah be converted to the fully
paﬁenthes}sed‘form as follows (see Figure 2.4-1 for an
example) . Replace each prefix dot (proCeedihg from left to

right) with a right parenthesis, and a corresponding . left

parenthesis = as far to the left as poséible without altering

‘the scppe‘defined by the parenthesis already in p]ace.. Then
vréplace each suffix dot (prdceeding from left tQ right) with
a left parenthesis, and a cbrresponding right parenthesis as
far to the. right as possible}withdut altering the scope
defined bylﬂthe parenthesis already 1 in' place. The

well-formed parenthesis rules and the long-left/short-right

scope rules now completely determine the scope extent of all

the names.

This §et of scope rules has been chosen from a number of

- equally viable alternatives. Scope rules can provide for
long or short scope for either argument of a function.

Certain functions (the operators in APL, for example) could

45

b N NS e otk <

| have different scope rules than other functions. The
expressions could be in prefix or postfix form instead of in

infix form.

It has be argued, for example, that A4PL's expressions.

read constructively from left to right and ana]ytically fromi

right to left. On the other hand, experience shows that the
readers of APL expressions parse them from both”énds and
within parenthesised subexpressions! The adoption of the

mirror syntax simp]y reverses the directions for both cases.

The particu}af '+ scope rules explained above are
compatable with vMore’s work., 'They have an unexpected
‘advantage in that there need be no special symbol to
indicate the sign of a numeric constant, because the short
right scope aflows the negate function to be‘appliéd to a
posftive constant to yield a negative .constant, without
having. to introduce any additional grouping symbols.

. The Denotation of Expressions.

Forﬁél' systems' usually include a naming concept?
Instead of having to exhibit an expression whenever it is to

be referred to, a name can be associated’ with the

! Iyerson,yK. E., personal conversation, February'1980.

2 K[éene,_s. C., Introduction to Metamathematics, p. 70.

46

expression. The riame then denotes the expressioﬁ} and can be

used instead of the expression in any 'place that the

expression could itself be used. Such a named expression is

Known as a function.

The formal symbol "2 (read as is) 1is used in this
experiment to indicate the association between a name and an
expression. A name n may be associated with an expression e

with the expression

which then ‘allows the name n to be used in place of the

expression . Although the denotation is, for the purposes

~of the discussion of the array theory, considered to be a

meta-operation, a name -manager similar to the history

process can easily be included as a process in the

" shared-variable model.

e The Rules for Substitutégn

In addition to a naming convention, formaf éystems
usually include a substitution rule! For examﬁle,'Church’s

lambda-calculus .allows explicit substitutions to be

v Kieehe, S C., Introduction to Metamathematics, p. 78.

47

performed in an expression! On the other hand, the FFP

notation of Backus avoids explicit . substitution by -

distributing a construction of functions over an assumed
left argument? In this experiment, substitution will be

L3 .
performed with the following alpha-omega substitution rule,

l ' ‘ . s ,
Whenever the name of an expression is interpreted, any

occurrence of the formal symbol « will be replaced by the
value of the left argument of the name, and any occurrence
of the formatl symbol w will be replaced by the value of the

right argument of the name, according to the scope rules.

When a function name is adjaceht to an object on the
left, then. a definition of the name that contains an « must
be used. When‘a function name is adjacent to an object on

the right, then a definition of the name that contains an w

must be used. The valency of a function can be determined"

by the occurrences of o« and w in the f nction definition; A

~name definition with neither an ¢ nor an w is a niladic
definition. ‘A definition with only an « is left-monadic. A

~definition with only an w is right-monadic. A definition

with both « and » is dyadic.

1]

v

' Church, A., The-Calculi of Lambda-Conversion, Annals of
- Mathematics Studies, Number Six, (Princeton: Princeton
University Press, 1941). _

2 Backus,fd. W., "Can Programming Be Liberated...," p. 28.

48

2.5: Functional forms ‘

.The language framework propoéed so far- has a serious

drawback. There ' is ‘no way to interpret the meaning of an
expression encoded}as an object of the languagé. The power
of the Universal Turing Machine includes the ability to
inferpnet the deecription‘%2>a machine encoded on the input
tape. This ability to manipulate the descriptions of
expressions is required here. .

'

When the,expressions of a language are made up of the
same characters as the objects of the language, an object

can be used to represent an expression. In order to prevent

the: evaluation of the expression, it can be enclosed inf
quotation symbols and thereby become an object itself. The

objecf can then be manipulated by,other expressions, and can |

be evalugﬁed when_desired'by an evaluation function 1like

execute (s) in APL, or EVAL .in" LISP. This evaluation

fuqefion is the UTM, a process in our mode 1. One . can Be
exp]icft]y invoked with fhe primitive function interpret,
which 15 denoted by the formal symbol i-beam (x). The
application of the interpret function to an expression
encoded as an object yieldsvthe meaning of the object;“ that

is, the‘expression<itse1f.

~ Although this solution is theoretically complete, it is

difficult to use .becaUSe of the explicit quoting and

interpretation requfred. If APL required this of its

49

operators then we would have to write something 1ike

AN (T4 0B instead of just A+.xB, As an
alfennative, the'érguments of 'a function can be forced to be
interpreted as functions whenever the function expects its

arguments to be funcfions. A1l that wevneéd to know ;s that
the function expects a fﬁnétiop as its afgument and the
 $ubstitutioh symbol will represéﬁt é»function instead of an

ohject.

A modified substitution symbol is used to ‘represent a

function argument. A left function-argument is indicated by

‘the formal symbol & and a right function-argument is.

indicated by the formal symbol &. Each occurrence of & will
be replaced by the left-argument function and - each

occurrence of & will be replaced by the rightjargument

function. The entire‘éxpreséion, with the substutions, js'

then intérpreted as the definitiom of the resulting

functiog:

Any function which expects a function argument is a

member of the specjal’cléSS of functions known as operators.

Operators have up to two arguments (& -and &) and are |

function valued. Operators are also known as transforms.

The wvalence of a transform is determined in the same

manner as the valence of\a_nbn-operator_function except that

the Iéft—aﬁgument symbol is a and the right-argument symbol

U

is @,

50

ChapterﬂThree: Generalized Arrays

“In tlmes of general dispersion and

separation, a ‘great idea provides a

focal point for the organization of
- recovery."

From the Huan Hexagram in the I Ching

As discuSsed.in Chapter One, the complexity of solutions

represented -in the classical programming ,languages is

greatly increased by their lack of aggregrate
data-structures. Due to this lack. of aggregrate
data-structures, a representation has to - include the

explicit simulation of its aggregate data-structures using
only the piece-wise data operations that are available. A"
: sufficient]y power ful aggregate data-structure removes this
soureel of cohp]exity, and' allows algorfthms tol be
convehiegtly expressed - in a funct1ona1 form ' In tbisy
chapter the theory of the genera11zed array aggregrate

data- structure is developed.

The first section of this chapter reviews the properties
of real data-structures and relates these propert1es to the
requ;rements of a general purpose aggregate data- structure
The second section ‘Presents the axiomatic theory of
generalized arrays. The third section extends the axiomatic
theory to a pract1cal version known as the appl1ed theory.

The fourth section reviews the _results of the preceeding

sections of the chapter.

J

3.1: The Selection of an Aggregate Data-Structure

*

‘The purpose of a generalized data-structure is the

reduction of the complexity of the representation of a.

solution by allowing the easy representation of the data

structﬁres of the solution. ConseqUently, ~fhe generalized
data-structure musf be sufficiently powerful to easi]y,"
represent any data structure that will occur in the

‘representations.

. TheiPPoperties of Actual Data.

In order to determine the properties of ‘a sufficientiy-
powerful data structure, ‘we will first vexamine the
: propertles of actua]A data The eight distinct proeerties
that have been isolated by Trenchard More' will be presented.
. here.. Many~}of these pr1nc1p1es have been ‘prev1ously

_discussed? but it is their joint effect that is important.

[1] A data “structure should .subport“the Principle Of

Aggregation. A collection is said to hold objects as items.

Items are said to occur at locations in the collection.

Eggs, for example, often occur at depressibns in crates.

- ' More, T., "The Nested Rectangular Array As A Model Of.

Data," p. 57-59.

2 See, for example, Honig, W. L. and Carison, C. R.,

"Toward An Understand1ng Of (Actual) Data Structures,"”
The Computer dJournal 21, 2(May 1978):98-104. ’

¢

52

'.7;
The crate\holds_the egg-objects as itemé.}

[2] A data structure should suppbrt the Principle‘ Of
i

Nesting. Every item of an aggregation should again be an

aggregation. In ,é library, for example, floors hold

shelves,, shelves hold books, books hold chaptersh»chapters'

~ hold séntences, sentences hold words and words hold letters.

(3] A data structure should support the Pﬁﬁhdip]e of
~Well-ordering. All collections Should‘haVe a first item. A

well-ordered‘sub—collection is the result of the{de]etion.of

the first item of a collection.: A new deck of cards, for

eXample, is always in a specific bbder.‘ Although.unordered :

data structures are easily mappable into ordered ones by
just ignoring the ‘order, the converse is not true. It is

much moFe difficult to manage the introduction of order into

an unordered data structure, since it requires the

management of the set-tpeoretic ordered pair.

[4] A data structure should sUppohtﬁ the Principle Of
Repetition. Identical items -'6ccurring ~at different
1ocations. should be preserved. A box of animal crackers‘
for éxample, has identiéai'animals occurring at different
locations. If necessafy, the idenfica]‘ items can be

eliminated or ignored, but the retention of identical items

at different locations in a data structure which does not

support the principle of repetition requires the addition of

~unique identifying tags to the identical items.

53

[5] A eata stricture should support the Pr1nctp1e Oftu
Va]eney. The items of any collection should be organized
' élene an intrinsic number of’axes. "This allows their eccess
along different dimensions. A chessboard,.forvexample;‘ has
two axes, the ranks and the files. Of eoarse, tt on]y’ene
- axis is»required for a particular app]ication; then. such a
structure may be used. On the other hand, simulatjonief'a'
multtjaxis structure‘with a linear one 'destroys the very
convenient notion ef adjacency. The moves of a king, For
example, are defined in terms . df trayersal to adjacent
squares Furthermore, nested lists eannot'-disttnguish

between a two by three table of quadrup]es and - a bair of

three by four tables.

61 A data strUcture’ should support the Principle Of
Smoothness. Any section of ,items normal to a particular
axis will have.the same length.. A'typed page of paper can,
for e*ample . be considered to be a two-axis array of
characters (w1th trailing space type of course) On the
other hendr if the page is to be con51dered to be'a list of
lines of variable length then it can be sO represented

within these prtnclples.

(71 A data structure should support the Principle Of
Arrangementwp By specifying the position of an item W1th

respect towgheh of the axes, the 1tem should be un1que]y
spec1f1ed. In a city, for example, any corner should be

uniquely specified by the names of the streets that

intersect there. The br}nciple of arrangement does not,
Jhowever, ‘determine the >structUPe of the address
spéCification. b . : -‘ //

[8] A\ data structure should support the; Princib]e of
Orfentatién; The specification of;théviocation.of an item
“should be a list of the]ocations.éf thelftem along each of
the axes. >This positidnal form will be chosen primari]y for
the pufposes of closure, as'discusSedrbelow. ‘The principle
of orientétion defermihes “the structure of the address

(3

specification.

If 'a.'Single uqiform data'structure'Can~support all of

these principles, independent of their Simulation by a

representation, then that data structure will make the
specification of real-data -mode]s much -less complex.
Otherwise,. thé representation will haye to specify an

~Instruction séquence and an encoding on a simple data

,structufe, in order to,represent,the real data. This extra ‘

work-increases the local complexity of the algorithms.

A-Tinked list, for example, which makes a poor base for .
“an indexed list, can be conveniently represented as a

collection of two items in which the first item is the head

of the list and the second item is the tail of the list.

A binary tree, for example, can be easily répresented‘By

~a triple in which the first item is the value of the node ,

the second item is the left son, and the third item is the

55

e . 3

it

P}

right son,

A keyword data - structure can be - represented by a

‘strUCture of pairs, in which the first item of a such a pair.

is ‘the keyword and the second 1tem is the value of the

Keyword. . In the b1nary tree example a triple of pairs

wou id bea_used, the first items of which might be "value",

'ﬂleft-son“; and "right-son" reSpectiyely.

A

Sometimes it is necessary for the data in a data

structure 'to contain 1nformat1on about the data structure

r

Citself. A data structure conta1n1ng such information is 'tn

fact a meta-data-structure. In many 1cases, instead of

having a location hold an item, it may be desired to ’have

the locatlon ho]d the locat1on of the 1tem This may befthe
case 1n a directed graph "~ Such a meta -data-structure ;is

easily represented by having the_IOCation-holding locations

actually hold the character string which describes the

location: ' The' target item may then be obta1ned s1mp1y by

interpreting the locatton hold1ng item with the pr1m1t1vet
‘ 1nterpret function. Th1s sort of nest1ng, equ1valent to the

. use of po1nters in the classical 1anguages, can be carr1ed

to arbitrapy

_depth by 1nclud1ng the interpret funct1on

bcation-holding items. /

the vgeneralized' -array lies in. the

— -
independent of the specrflcatfon of any algorrthm to

descrtptrons of - the data structures,-

56

interpret their structure.

e . Alternate Aggregrate Data-Structures.

A number of-different mode 1s of the generalized array

have heen‘ proposedf- Four typical ones will be‘discussedj

here. and.one‘willrbe'chosen.v

_5~

[1] Many authors have suggested that the ex1st1ng APL array
can serve as a recursive data structure. ~Iverson',, for
- example vhas suggested the introduction. ot an enc]ose

function, which would returnv a scalar encodlng of its

argument (someth1ng Tike the argument’stodel number), and -

- the inVerse disc]ose~function. AAlthough'these would allow

_the t representat1on ~of .all: the above properties, the

cont1nual enc]os1ng and d1501051ng is 1nconven1ent =for the

study of the theory and so w111vbe avo1ded Nevertheless -

such a schene would be | viable ° for 1mplementat1on

part1cu1arly within the ex1st1ng structure of APi

(2] The recursive data structure:of Gull and denkin52 is one
of the' best known models of the genera11zed array

Unfortunately, the1r mode | does not d1rect1y ‘support all oft

§.

' Iverson, K. E., personat_oomMunioation February 1980.

2 Gull, W. "E. and denkxns, - M. A.; Recurs1ve Data
: Structures In APL, Communrcations of the ACM 22,
2 (January 1979) :79-96. v

57

the'principles of data. They define a generalized array in

terms of itststruotUral properties} instead;of deriving it

from the principles of data. The i’ system treats the empty
array~ as a ‘special “case, thereby~ adding' yet another
consideration to the local complexity of their expressions.

All of thetitems of their Collections are reStricted to be

of the same type (the1r arrays are homogeneous) contrary -to

" the pr1nc1p1e of nestlng

[3] Thevrecursive data'structurefOf Ghandour and Mezei' is

similar . to. More’s .arrays. Their system; however ,. is not

‘axiomatic, does not present any extensions to More’'s - work,.

and has not.been as completely deve]oped-as More’s has.

- 58

(4] The recurstve-data structure ofVMore2‘supports the eight

princip]es"of' data and the additional features discussed

" pelow. A1l references to generalized arrays will

hereinafter refer to those of More“unless otherwisel

k3

qualified~ The theory of general1zed arrays presented here

is based on vers1on five of More’s ax1omat1zat1on 1n wh1ch@

.the errors in the, prev1ous four versions have been

e11m1nated

' Ghandour, Z. and Mezei, J., “Generalized Arrays,

Operators and Functions," - IBM Journal of Research and

Development 17, 4(1373),355- 352,

2 See: More, T., "The Nested Rectangular Array As A Model

-~ 0f Data", ‘and the other works by More as cited in the
bibliography. . ' ‘ R v

Just as a set is not defined 'in axiomatic set theory,
and a line 1is not defined in absolute geometry, a

generalized array is not defined in More's axiomatic array

'theory. On the other bhand, the axioms of the theory .

. describe the effect of certain actions on certain objects.
The interpretation of the objects as generalized arrays is
an intuitive interpretation of the objects acted on by the

axioms..

The axioms of More’é theo}y describe the objects of a
‘standard, closed, oné-sqrted theory. A standard theory is
oﬁe in which all primitive operations are defined fdr all
J objects. A closed theory is oné in which the application of
any function to any object .in the Qniverse ;;turns an object

in the universe. A one-sorted theory is one in which there

is only one domain of discourse.

More’s notation is clear and concise and does not

“introduce a meta-notation for the.diScussion_of the arrays

and primitives (as Gull and Jenkins do). The notion of

adjacency is maintained. The axioms apply without variation.

to all objects. There are no special cases such as a single

kind of empty array (as there are in the systems of Gull and

JenkKins and of Backus'

' Backus, J. W., “Can Programming Be Liberated...."

- Notice that the functions make a special case for the

empty array and the undefined array.

-

59

), consequently, the exponential growth of special sub-cases
 in the proof of the meaning of an expreséion is avoided.

)

e A Pictorial Representation of Generalized ‘r'nays.
' &,

For the purposes of the presentétiqp of the theory of
generalized .arrays, inv the rest of this chapter, the
following pictorial !representation of generaliigd arréys
will be convenient. The representation is only able to
represent arrays of up.io two axes .(althngh it cah be

extended)} but that is a11 that'is required for the purposes

of this chapter.

The strucfure of a generalized array will be indicated

by a collection of boxes that contain the items held at the

locations represented by the ‘boxes. For example, the'

following diagram represents a particular two'row'by three

column matrix of pairs.

‘(cont’'d) ..

60

The humber of axes in a diagram is usually apparent from
the adjacency of the boxes in the diagraﬁ. In the previous
example, there are clearly two axes, ofvlength two and
three. However, when an axis is of length one, a mechanism
is needed to indicate the existence of the axis. In the
following example, the arfay to the left has. no axes, the
array in the‘middie has éne axis, and the array to the righf

has two axes.

The boxes that do not contain ofher boxes contain
expressions. The value of the item in the box is the value
of the expreSSioh. In the following vector, the first item

is the numeric constant 24, the second item is the first

character of the alphabet, and the third item is the value

of the function F applied to the object 4.

24 | 4 | F A

Thé methods for the constraction of fhese arrays will
become apparent infthe.later‘sectiOns of this thesis. Two

special notations: that will be parficularly convenient are

the scroll and the string. A scroll is a method for

repreSenting-a.sui&'of objects (which will be defined later)
by juxtaposing the objects, seperated by blanks, within

square brackets. ' The following two arrays are equivalent.'

61

e b e i S e e

3 | 1 4| 1 [[3 1304 113

&

A string is a representation of a character constant as

described in section 2.4. The scroll ['4' 'B' 'C'] is
'equfvalent to the character string '4BC'. As will]ater‘ be
éeen,“since a scroll is a suit, the string '4' is equal to
the mote which fepresents the first wcharactef' of the

alphabet. *

3.2: An Axipmatic Theory.of Generalized Arrays’

The potential'benefits of the axiomatization of a formal)

system are well known. More has axiomatized a pure theory

of 'genéralized arrays which parallels the'axiomatizatfoh of

the set theory of Zermelo, Skolem, and -yFEanKel!,
Consequently, the mathematical derivations - based on
axiomatic set theory can be followed in ~ the

gehera]iied-array theory in the parallel sense.

+1 See, for example, Suppes,iP., Axiomat ic Set Theoﬁy. (New

York: Dover Publications Inc., 1872). The axiomatic
"equivalents are obtained from More, T., "Axioms and
Theorems for a Theory of Arrays," IBM dJournal of

Research and Development 17, 2(March 1973):135-175 and

More, T., "The Nested Rectangular Array as a Model of

‘Data,” p. 57-59.

62

7o
£ 4

S :
The axiomatic theory, in addition to ordinary logic,

. requifes the notions of the empty list of oﬁdinal,numbers,

and the nine operations: equatihg, pairing, “sublisting,
‘reshaping, shaping, _numerafing,"Uniting, extracting, and

replacement . ~These . notions " are related ~to the

Zermelo-Skolem-Frankel. axioms and the eight principles of

data.

e The Primitives of the Pure Theory.

The nine primitive operations and their relations to the
axioms of set theory and to the properties of

data-structures are as defined as follows.

The primitive opénation of equalfty corresponds to the
axiom of -exfensiona]ity and‘the principle of orientation.

The 4=B equality of two arrays is true if and only if the

arrays 4 and B hold the same items at the same 1ocation$ and -

have the same orientation.

The primitive operation of pairing corresponds to the
axiom of elementary classes and the principle of nesting.
The null array 6 is the empty list of the ordinal numbers.

The null s primitive and corresponds'to the empty set in

set theory. The 45B pairing of tWo arrays giVes"an array

which holds 4 as its first item and B as its second item.

63

The primitive‘operation of sublisting corresponds to the

axiom schema of separation and the principle of arrangement.

The 4\B sublisting of an array B by an array 4 is the

one-axis array of the items of B, 1in main order, that
correspond to the itéms of'A'which are true. The main order
of’the items of the array is‘obtéined‘byincreasing the last
item in the vector of;iocation positions most rapidly; the
\secdnd 1asf pdéition only when the lgst position overflows
the length of the last axis;_and so on through 'ihe first
positiéni (with :the initial 1o¢atibn specified as the first

location along all axes).

The primitive operation of shaping corresponds to the
principle of wvalency, but does not corfespond to any set
_theoretiq\gxiom'7since‘ set .thedry does not support the
principle fof valency. The .~A’ shape of an array 4 is a
one-axis array holdfng the 1engtﬁs of eacH ‘axis of A
according to the princip]es of valency and orientation. The

shape of an array is said to measure the array.

The primitive operation of reshaping corresponds to the

prinéiple of repetitjon, buf has no correspondence with a

set theoretic axiom since set theory does not support the

principle of repetitibn.-/The ~ApB reshaping of an array B

to have the shape of 4 is .an array with shape_.~A whose
, ,

items, in main order, are obtained, in main order, from B.

1f the number of items in B is less than the number ofvitems.f‘

in 4 then the items of B are repeated with‘the first item

64

following the last. -

The primitive operation of replacement corresponds to

‘the axiom of”rép]acement. It applies to any collection.

The replacement transform :44 of a monadic function 4
. L , : ;
applied to an array 4 is the array obtained by replacing

each item of 4 by the result of the application of & to the

item. :4.45B =. aA;AB.
a,t

The primitive operation numerate COrrespbndé to the
axiom of powers and the principle of smoothness. . The 1~4

numeration of an array ~4 is an array of shape ~4 in which

each ~item is the address f{or location specification) of

itsélf..according to the_ principles ‘of arrangement and

 orientation. "By convention, the first jtem of a list will-

be at location zero. The address ‘pf an item. therefore

specifies the distance of the item from the origin of the

axis, as‘oppoéed to the number of the item in the sequence -

- along the axis.-

The prim{tive operation unite corresponds to‘the axiom

of unions and the principle df aggregratibn. The v4 unite

of an array 4 is an array of one axisvwhich holds the items,

~in main order, of the items, in main order, of 4.

The primitive operation extract corresponds to the axiom
of choice and the property of.we]l-orderihg. The »4 extract
of én array 4 is the first item of the vmain order of ‘the

.items of A. 4 = o, 4:B.

65

» Some Derivations from the Pure Theory.

- The single‘of a particular arréy is an array whiCh ho]ds

. \ v
as its single item the particular array. It 1s equal to the

nu]] reshaping of the part1cu]ar array paired w1th itself:

o s'ep(w;m.

The f1rst 1tem of the single of an array

itself: sod=4.

The ravel of an array is a one-axis array or list of the

elements of the array -in main order It is

unite of the s1ngle of the array:
, = Vew,

The count of a particular array is
contains as its s1ng]e 1tem the ordinal wh1c
the number of items in the part1cular array

‘the shape of the . list of the array:

HE o~

is the rray

4

equal to the

an array which

corresponds to

It js equal to

Von Neumann'’s set-theoretic construction of the ordinals

can be wused to construct the ordinals in array theory as

well:

" nnn
\' S
D

CD

= #(0:0)

66

The value false can be represented by the ordlnal -Zero

and the value true can be represented by the other ord1nals

Ar]thmetic and logical operat1ons can be def1ned in the

same mannerias they are in set theory or in APL, for

~ example:

+ .
n

Z Hu.asw

B4

1
mn

<
{11

atw,

[

In thet pure theory there‘are'no‘possibTe errors, all

functions are defined for all objects.

s The CompositiontTnansform.

The juxtaposttion-of two or’more functions 1mp11es the

composwtlon of those funct1ons accord1ng to the scope rules
of Chapter Two For example the list functton is def1ned
to be the composition of the unite and single functions

appljedlto a right argumentf yEUuow, The introduction of

‘explicit compose and apply names~is not required here, since

their invocation is “implied . by the juxtaposition of

 functions and obJects , ‘ o s

The function & is the compos1tlon transform of the two

funotions a and &. The I'ddw' mean1ng of the funct1on wh1ch,

is the composition of-(the right-monadic functions) & and o

as applied to (the right argument] w is: the object which is .

B
¥

the result of the application of a to the object which is

the ‘result of the application of & to the object w. In the
-lTist example, unite is applied to the application of shape

. to w.

¢

The compostt1on operation can be def1ned in terms of

: appl1catton Ustng o to denote compos1t1on and ¢ tokudenote E

application (for the remainder of this sentence only):

°2d:(diw). . App]tcatton is obta1nab1e from the pure theory

fo]tow1ng the set theorettc def1n1t1on of relat1ve produot

gn his deye]dpment of the'pure'array theory; Morekhas

generated\a composition table for pairs of primitive and

certain der ived funct1ons 2 The table s a particularly
usefut collect1on of 1dent1t1es; in whichA.theorems like

vivese=,o can b found. Although the table will not be

reproduced here, its study ts particulariy. 1nterest1ng to \

)

student of the theory Many of the paradoxes in the flrst

four vers1ons of More\s theory were d1scovered with the aid

\}}

of the table.

g

_égy»'
“é’ °

! ':See Suppesg "Axiomatic Set Theory," p. 63, The relative

Scientific Center, May' 1976) ‘ {}

68

product of two. relations is defined therein ' as
A/B={<x,y>: (3z)(xAz & sz)} ' .
2 More, T., tonngghe Comp081tton of Array Theoretic -
~Operations," Techn¥gal Report G320- -2113, (Cambrtdge IBM

3.3: The Applied Theory

‘e Individuals Are Included as Motes.

Although‘the pUre theory is complete, it 1s d1ff1cult to
use because of its lack of elemental ‘data items. In order
to - obta1n the appIIed theory, Quine’s! representat1on of an

individual is added to the pure theory An:'1nd1v1dua]' is

represented by a mote, a zero axis array-which ho]dsbitSeTf-

as its single item? Consequently, 4 is a mote if and on]y'

if Ad=o4. Furthermore 4 is. a mote if and: on1y if e 24

.oA:bA ++ DoAz=>D4 A:B-»AAV:'.AB
+> A=>4 . DeA=z4

The value of a numeric formal symbol is the mote which

represents the number represented by the forma] symbol. The

valoe of .a character-string is a suit (to be defined later)
in which each 1tem is the mote whose value is the character
represented in the correspond1ng location in- the string.

The @ is the c1pher, a mote which is nelther a number nor a

character The C]pher'1s' usually interpreted as meaning -

"undefined. The © .is the mote which represents logical

‘ 'Qu1ne W. V. “Unification of Unlverses in Set TheOry,"
: Journal of Symbollc Logic 21, (1956):267-279. -

2 More, T., “Notes on the Development of- Theory of
" Arrays," Technical ‘Report 320-3016, (Ph1]adelph1a IBM
- Scientific.Center, May 1978) p. 26-33 L

69

_that, in all cases, identifies classes c

i

falsity, or 0=6=0, and 1 is the mote whtch represents
logical truth,vor B=06. Add]twonat types of motes can be
added to the theory as- necessaryﬁ(for example, complex or

rational values).

-/

The treatment of tndividuals “as motes;‘R%s ‘several
advantages. Stnce motes are not’ dtsttnct from arrays. the
theory remains one sorted There is no need for a pleIttve_ :
mote-predicate Jike ATOM in LISP 81nce the moteness of an

array 4 can ‘be tested with the 'expression AzoA. _Theﬁ

intuitive relation =>...21=1 js preserved when 1 is a mote.

‘ A]though the notton of se]f membershtp.fppears d1ff1CU]tv

to comprehend in ‘terms of ~physical objects a box ~ for

examp]e,‘ cannot contain itself). it is the stngle property

‘single member (individuals) from all other classes The

, class of dlamonds is not - an 1nd1v1dua1 because it contains

iboth thegplass of the Hope| diamond and the class of the Pink

Panthervdiamond But the class of the Pink Panther dtamond

is - an 1nd1v1dual because the only class it contatns is the)

otass of the P1nk, Pantherh diamond, that is: ‘itself.

Simtlar]y} a mote is a generalized array containing only
' : . : ‘ J

vitself.'

4

The motes of the applted theory represent the numbers

and characters that form the data we w1sh to manlpulate

6“%afﬁ1ng only a

t

70

E

N

L T
[
.

. EXtending,tne Pure Theory .

The apolied theory requires the standard notions ° of

logic, the universe of motes as described above, and the

-'primitive functions descrtbed be low. The primitive

funct1ons of: the app11ed theory are those of’ the pure theory
plust those functtons which transform motes ‘into other

motes, such as. the arithmetic operat1ons

A number of useful deriyed functions will also be

. presented herein. The interpretation of the function and

,its. useful prOpertiEs’ will be d1scussed in 'each‘case

Additlona] term1nology will be 1ntroduced where necessary

e Array Structure and Pervasive Functions;

Two arrays have the same structure when. they are of the_'

same shape and all of the1r 1tems are of the same structure

Clearly, motes are of the same structure A function A isy

said to be pervasive. when : 4= s4. Such a function returns

- ? an array of the same structure as its 'argument array in

-

B

S ff
A e

wh1ch each mote 1s replaced by the result of the appl1cat1on'

of & to the mote For example, if 4 is, pervas1ve then'

8.1525.354 s equal to A(1:2)78(3:4) which is equal to

(A1542)5 (A3 44) . ‘ If pervas1ve operat1ons are to ~work for
,numbers, then each number must be treated as an 1nd1v1dual

‘rather than as a collectlon of e d1g1ts | }Consequently,

r

numbers are motes themselves

71

i On the. ot
characters as.

apart the‘ str

characters, ot

her hand, the

_a mote means -

treatment

of a string of

that there is no way to take

ing for Qperations . on

her :than‘ to 1ntroduce pr1m1t1ve character .

the : 1nd1v1dual

separat1on funct1ons]1Ke en-mote and de-mote. Instead, the‘

~ applied theory

motes.

treats'-a»strlng of chagacters as a list of

'v.‘ Equality, Shape, Reshape, and Vacate

.{F

The A B equa11ty of two arrays A and B 1s logvcally true

if and only

if 4 and B hold the equal 1tems at the ‘same

'locat1ons and have the same or1entat10n

"L

ﬁ

The ~4 shape of and' array A

lengths of the

i

s a suit hold1ng ‘the

axes of 4. A su1€21s an - apovalent array: it-

has the mlngmum number of axes necessary tdﬁhold 1ts 1tems

the shape of a

one- ast array

is

. The shape of a no ax1s array is the empty 11st of ord1nals,

the mote holdlng the

ord1na1 that measures the length ofvthe ax1s, and the shape

ordinal lengths of the axes.

pnimary'array,

Q

e

of a two or morevax1s array is

‘ and

a

oA

one- axis -

suit

array of: the

of ordanais'is_a

72

" The ~ApB. reshape of an array B to have the shape ~4 is
an array of the same shape as 4 in which the jtems ih main
order are- selected from the items (in main order) of B.

COnsequently; ~(~ApB)=~4,

0| 1|2
30|t =f3|3|slo|t|2]3] .
(2 (3|0 ,

‘:‘The \4 vacate of an array 4 is obtained by selecting no
items from 4.
\A 2 Opw.

The Vacate Qf' an array is an array of one axis holding‘no

items. Consequently, O=~\4. Anf array holding no items is

said to be empty. -

| The 8 empty array obtained by vacating an ordinal is the
null.

t

D
"

*\0.

The null reshaping of an array is an array of shape

null. Since the shape of an array is a suit of the lengths

'of the axes, the null reshap1ng of an . array A is an array of)

v‘

: no axes,» the v1tems of wh1ch are selected from 4 in ma1n

-

order. But the array Bp4 of no axes can hold ~at most‘ one

1tem, the first 1tem in the main order of A The address of .

the item is a su1t of the locatlons of the 1tem w1th respect

to each axis,;put since there are no axes the address is the

null, the empty list of ordinals specifying the location on

~each axis. v » . *
]

A mote can be metaphorically thought of as an item
surrounded by an ihf%nite number of infinitely thin skins.
-Any ﬁumber of these skins can bé added or removed, and there
will still be an item surrouhded by an infinite number of
infinitefy thin skins. The onion has no axes, but can still
hold a single item at iés\center. However, as sdon as two
or more of these onions are collected fogether, at least ohe
axis of orientation is rgquired. fo‘ distinguish their

&

locations.

e Pair, Single, and Sublist.

The A;B pair of fhe array A with the array B is an array
which quds‘as its first item the array 4 and which holds as
its second item the array_B. Consequently. the array 4;B is
é one-éxis_array of thWiEems; 2=~(A;B). Any one?axis array

) b
- wWith two items is a pair. . 4
- b

The ¢4 single of an array 4 js defined to be the no-axis
array which holds 4 as its single item.

o = Bplwsw) and Bz~od.

Any no-axis array is a single. . Any éne-item”array'is ~

singular.

R
U g ne
»

74

75

It is very important to remember that for any mote M,
) ’

M=oM and M=oM. This applies for all the numbers and

characters, since they are motes.

0 equals 0 equals 0

The A\B sublist of an - array B by .an array 4 is a
one-axis array of the items of B (in main order) which
~correspond to logically true items in the main order of
~BpA. - The count of the sublist is'équél,to the - number of
items fn ‘;BpA which are true. Vacate.issihe same as the

/

‘everywhere-false sublisting: \A4=0\4.

3.4 |56 | =[os101\|1.2|34]|586]7.8

e Unite, Union, and Suit.
The v4 unite of an arréy A is a one-axis array ~which
--fholds‘(in'main order) the items of fhe’items of 4.

u(ods°B) =. A3B,

#
‘%

0001021011127 =y

[0 0] | [0 11 | [0 23
(101 | 0113 | 1 2]

)

The AuB union of two arrays 4 and B is a one-axis array

of the items of 4 in main order followed by the items of B

- in main order:

The 4 suit of an
possible number of

order. 4 is a suit if

.a50 and ocAucB =, 4

B,

array 4 is an. array of the least

axes hblding the ‘items of 4 in main

and onTy if ;4=4.

[]

¢ Extract, Tail, Last, and List.

The =24 extract of

an array 4 is the single which holds

the first item in the main order of 4. The extraét of the

single of an array is

‘the array itself.

204z4 and >(A;B)=A4.

The #4 tail of an

array 4 is the one-axis array which

holds all the items of 4, in main order, except the first.

42 ou(~wpi)\w.

$oA=\od and ($.45B) z. 1peB.

The c4 Iast of an

in main order:

c\A=

arbéy A is the'1a$t-of thé itéhs ofl A

© & 5,3 (~wpOus)\w

\A cod=4 (<.A43B)=B

76

BT s i AL S ALK 4 s et L -

The A list of . an array A4 is a one-axis array which
holds the items of 4 in main order. Therefore, "1ist can be
defined as the union of thehsiﬁgle which contains the array

or as the everywhere-true sublist:

V', % oyew and |, \w

| Any one-axis array is a list. A function & is
idempotent if and only if AAA=ad. Listing is idempotent:

A= AL A solitary is a list which holds exactly one item.

-4 is a list when .A A, A is a-solltary when ~4=1.

e . Count, Valency, and Link.

The #4 cdunt of an arrzy A is equal to theenUmber of

items in 4. ‘The number of itefs in an array is equal to the

number of items in the 112; of the array. The number of’

items in a list is equal to the shape of the Tist.
Therefore, ‘count can be defined to be the shape of thellist

of 4:

0=#0. 1=#ed. 2:#A3B. #,A=~,4.

=%

The valency (number of axes) of an array is equal to the
count of the ‘shape of the array. . - o

O=f~o4. 1e#~.A3B. 1=#~\4.

-

These definitions of cbunt and valeﬁ%y provoked the

earlier decxs1on to make the result of shape a suit instead.

. of a list. Since the count and valency of an array are

-

77

. : e
ordinal numbers, they should be motes. 1f shape yielded a

list, then count gnd valencyfwould be solitaires instead of

0

motes. Instead, since shape yields .a suit, count and

valency yield singles containing motes, which are by

definition the motes thémselves.

The 4,B 11nk of an array 4 with an array B is a 11st of

,'the items of 4 in main order %ol lowed by B 1tself

. .
sy = auow

. A S
'HIE IPNE. 2 | 7
, = 3| 1] 4] 1
4 | 1 1] 8 1118
112135 |4]:= 1] 2 3} 4

The followind arrays are equal:

_A5B oAveB oA,B ,eA,B- B8,4,B.
R o -

. Type'and‘Pnototype}

' Since th1s 1s a standard theory, the obJect =\A must be

©an arr‘ay}.'?.h But what 1s the fi?st item of the empty array \4?

" Suppose that I is a list of 1ntegers If I has more than-

\

one item, then =4I Will/hg an integer. In the interests of

78

>

B PP

| , N

g?

generality, even if I holds only one integer, =11 should be

an integer. However, if I holds only a single integer, then

$1=\I, so that =\I should be-an integer. Moreover, if B - is
an array obtainedf‘by ,vacating A, then the extract of B

should be typtcal of the itehs_of A,

The object =\4 has rece1ved cons1derab]e attention in

version five of More’ s theory! In. order to solve the

problem the T4 type of an array‘A has been formalized.

=)
'Intu1t1vely. the type of‘an array is an array of the same

structure vaév the array, in which each mote is replaced by

1ts type The type of an 1nteger is the. archetype 0, the

' type of a truth value is the archetype o,. and_the type of a

character is the archetype 'B' (the space character) .

An array is mohotypic if and only ifialt of ite items
are of the same type otherwise it is polytypic ‘ An array‘A
typifies and array B 1f and ohly 1f A=TB. The arrays‘A and
y:; depictA each other 1f ahd only if TA-f?.v An array 4 ie
‘typicaj-ifzand only if A=t4. If an array is-mohotypic_ then
‘the type of the‘ first item of the array typifies all the

other items of the_array;d No item of a polytypic array

‘typifies all the other items in the array. The T24 type of

the first item of an array is the prototype of the array.-

v

1 Morgé 6ghe Nested Rectangu]ar ‘Array as a Model of Data,
p

79

AR e s b e s Soino S

The type primitive must satisfy four properties. First,

the type operation must be pervasive, for types are only

defined for motes. Second, the type of a typical mote muét

~equal the:typicalv moté, so the type primitive must. be ‘.

idempotent . o | o

- Third, the type of an array 4 is an array of the same

“structure as the array 4 holding the type of each of the

~items of the array. But since the empty array holds no-
items, an array of the same structure holding the types of
‘the items of the emgty array must-also hold no items. The

type of an empty arhay ‘A must be an empty array of theifame :

‘structure as \4, so that for an empty array \A, T\4z\4, and
\4 is vacuously typical. But if an array is typical then
obviously eaCh item -of the arfay}must be'typiCal, so that

the first item of an empty‘arrayrmust be typical.

- Fourth, by previbus argumeht, it is desireable to have

. the first item of an emptygarray typify the items that the

array held before being emptied. Si;be fhe'protOtype of a
monotypic Array, typifies theA éntire array, and since an
empty arra?’is vacuously monot»pic. the . prototype 6# an
“empty array"\A' should equal the type 6f‘the first item of

.the‘érray 4.

In summary, the type prihitive should satisfy the

following'fodb properties:

80

Yok rete G b A e S e SE e ew U

.81

}A = :Tﬁi . pervasiye conjecture
TA = TTA ‘idempoteht conjecture
>\A = 12\4 typical cohjectore
To\A = T24 - prototype conjecture

The typ1ca1 conJecture states that the eXtract of

#*®
- empty array is equal to the prototype of the empty array..
Therefore even though an empty array does not actually hold

Ay

any 1tems 1t must reta1n its prototype

From the typical-conjecture, 1t folllows that
' S\oA - T:\oA
yﬂano by the propotype—cohjecture f - | S
}'} | . ';;:\'oA = tan o
so that. | ‘

o\ed =.7T4.

In*vtew-of these results, the“detinitton
| 7= ’k:\°)“, -

: and the prototype axiom

B | “ ' 2\4 = 124

are introduCed The def1n1tlon states that the type of an

array 1s equal to the r?placement transform&f ‘the extract

of the vacate of the s1ng]e the array. The axiom states

that the extract of the vacate of an- array is equal tov~the

:type of the ftrst item the array This bts.ctearly'a."q

recur51ve deflnttton of the type functlon

For any mote M; M=eM and H:DM For any funotlon A,
:hodz=end. So, for M.afmoteESTM is equal to ,TM.because T'is
| pervasive,. whiCh'vis equal to :TeM because MiiS'mote, which
is equal to =TM. Since TMzoTM it foltows that when M is a

mote, TM is a mote:

éThe“ pervaston of the type funct1on converges at motes s

The example in F1gure 3 3-1 1llustrates the process

o
T.(152)5(354) «» :(2\e). (152)5(334) « = -, TE:(2\e)
o 0o+ 2\e (152) 5 2\0(354) - S def’n of :
«> 120(152) 5 720(354) . 2\4=T>4
o T(132) 5 T(day © 2eA=4
e 2 (2Ve)(152) 3 :(2\e)(3‘4) S TERi(2\)
«> . 25\o153\0 2 :Q‘D\ 352\ 04y def’n of :
e 2\ 152\2 5. ='\3:3\4, : v Motes.
«> 2153722 5. 12337124 : 27 2\A=T>4
“«r 113 T2 5. 73574 ‘ . Motes

“r (0 0) :.(O:O) . ;_‘ - Mote type

Flgure 3. g f‘fllfu$trat1on of Type

ﬁﬁi

o Augmented Values, Empty Lists, and Void.

‘The definition of. a truth vdlue is extended for <
conven1ence, to ‘aUgmented truth 'vatues, as follows. Any
typibal mote 1s equ1valent to the © truth value false Any

rrother' mote IS equtvalent to the 1 truth value true. Alt of

82

;rthe functlons wh1ch expect a truth value for an argument are -

extended to accept augumented truth values. In pgrtlcular,

| 'the integers zero and one nNow correspond to the truth values_'

false and true respect1vely S ': _ j

Analogous to the augmented truth values are aUgmented

numeric . values The o truth value is equ1valent to 0 as;an

augmented numeric value and the L truth value is equivalentv

to 1 as an augmented numer1c value

- As prev1ously def1ned the null 1s the empty llst of the

4ord1nals 6-\O.v The] ntl is the empty list of characters

o=\'B’ which is equal to ''. The % nix is the empty list of

ciphers: X=\[.

In order to .obtain an empty llst with. prototype T4

. instead of T24 'it»ﬂis necessary to empty the single

T

" containing 4. The \<4 void of an ‘array A is the’empty list

]

with prototype TA.

-

.« The Replacement,'Positional, andVEach Transforms.
| A *

The replacement transform of the appl1ed theory can now

" be defined:

B~wp. od20 v :dtw

- This recursive definition reads as: the--result 'cf' the

applicetlon ‘of iA to 4 is obtained by reshapvng to shape ~A

the unlon of o454 with the application of :4 to #4.

¢

83

;becauSe oAu\B;iA,eccordthg to the éefinition of union.

‘In order to terminate this recursive definition, the:

\ effect of the rep1acementhtransform on an empty list must be

determined.
tA\A «+ ~\Ap. oA5\A u :A}\4 o def n- of :
“> Op. oa2\A.u :AP\4 e 0=~\4
«> \oAD\4 o (Op sAuB)=\oA
P \.obA}TDAW o)] D\A ToA
i T::A\A»e+ T2\ oAT24 ' above resu]t
o +“> 2\ \eAT24 T To4=5\4
«+ 2\ oATDA . ‘ , \\A:\A
«> TPoAT24 _ : o To4=>\4A

s« TATOA . XV LV I

- Consequently, the‘applicatipn of :4 to an empty list \A

[kieﬁah‘emptyvjjst the prototype of wh1ch is the type of the

application of & to the prototype ova, ta\A is an empty

array with pretotype TATSA.,

~ Notice that the abeye' defihitioh of the replacement
‘transfprm does ,nOt use ~any control strUcturéhsuch as the
ycohditiohat if-then-else structure. - It ;is hha simple
'recbrSive definition which embodies its own termination
?cr1ter1a. thereby preservzng the intent of section 2. 1 7They‘
recursion term1nates at empty ltsts because the result of

the epplication of :a to an'empty_llst is an empty lwst,'anq'

L

g Corresponding to the monadic replacement~transform of a

monadlc ‘function is the dyadlc posit1ona1 transform of a

dyad1c funct1on ', If 4 and B are the same. shape then_the -

~A:AB positional transform of A 1s def1ned to be =

Z ~ap. o(:a. @ :u) v '(ia@’w ;hu).

i

84. :

N

\

o
K]

'For empty arrays ‘\4 and \B the shapes are 0=4\A.and

0=~\B and so, following the proof of'reddction on an .empty

Carray:

\A:A\B = \ (T4 & ToB)

Consequently;uithe positional-a ‘transform on two empty

R

arrays A and Btis an empty array‘forrwhich-the pro" ' e is
the prototype of the result of A on the prototypes of A 3nd S

B, For npn empty arguments the recurslon contlnues untll iu”

=S

‘~and tu are empty and the result1ng empty-llst d1sappears 1n"

the ‘union operation, Just as slt' did. for fthe ‘Feplacementon

"transform L o B

~The above' definition' "of' the 'positional transform?

actually applles to all argument arrays 1ndependent of the1rg‘

,’shape The . result of 4:4B will always be of shape ~A in

which the 1tems of 4 (1n main order) are pa1red ‘w1th_'the

1tems- of B (1n main order). Consequently. the result of

oA:AB will be .4p2B but the result of _AiaeB will be an

array of shape ~A in which the. flPSt item is =24AB and thev

J' th 1tem of A 1s replaced by JA\B.

In view of the above positional-transform result~v‘theqe’

_]are dyad1c \transforms .for comb1n1ng a left argument W1th o

'each item of a r1ght argument and for -comb1n1ng a r1ght

argument w1th each item of left argument ‘The AZaB

each- right transform of 4 on A and B is an array of shape ~B '

in wh1ch each 1tem I of ‘B is replaced by AAI

85

86

v

H
N Y
(=3
m.
IR
o>
[{e]

2 | ¢ |6t 9

S1m11arly, the VEYY: each left transform of & on A and B
in wh1ch- eachyltem_I of 4'is

.]S an Larray of shap/e‘ ~A
replaced byeIAB:.". A o S ,
' o ' 5 E‘a':B (~apow). SO | :gy')
" Consider the fOIIOW1ng spec1a1 cases for the *each rtght B

and each left transforms (as 1llustrated w?thmthe each- r1ght

: transform). If the r1ght argument is empty then

% .
S AEANB <~ (opeA> B -
o o M)
e\ (T4 A3T=B), " S U .
Consequently. the each r1ght transform of AW th the .~
left ‘argument A and the empty rtght argument \B is ap empty/ /
. B, { -

list with prototype equal to the protot ; ‘ﬁ;

<

if the left argument 1s empty then

o ‘Qn' the other hand)
the result is Just an array of shape ~8 1n wh1j7/each ltem I /

of B is replaced by \4aI. - oo S : :
. T . o, ,
‘ : v ' SR
""TeéexThé;Beducfion‘TranSform. ~ jvf'*"'“’f“* AT
’u;JSUPPose that Lis the list 458, c, D conta1n1ng the four‘,v~» B
reduction‘ D

;A;;-Byp ¢, and . Intu1t1ve1y.' the - ¢A

transform of the dyadt;
:’~ A . L —"',—H_i","’* */*;‘j.f—'—#— T 7‘\& .

*5funct1on A should have the tollow1ngr; ST

"effect:

4&L =. AABACAD. vt

The obvious recursive definition:
d 2 2w 0 4@ tw .

along with the reduction axiom

- 48(A5B) =. AABY™

is sufficiént except for the following impWipations:

o .
Abod =, A A TA A TA A

AANA =, TS5A A To4 A T24 A

Intuitively, if + is the dyadic addition function then
‘ | 243 5.3+ 0+ 0+ ...
~which is equal to 3. But for the union function

su3 =. 3 u 0 v O‘u

which is equalvto three uniondthe fnftnfte list of zeroes,

Y 2
- Cod
In APL, the) problen’i is soived _by \&éi/in‘g f/1p6 equal pr
itself, and by having £/0pG §qua].z, the right-zero o% f
(xfz-= x). This is less than optimal, since‘X/SS ‘is equal

to . 55, and th right” zero for many defined‘?uﬁctions is
' .‘ C As - .
unknown. However, it does ° support the intuitively

e
[2 %
<

satis%ying relationship

AM(ASB) =. phoA A 4boB

Alternately, the value of 44e4 and 44\4 can both be)
3 1 - \ .

‘taken to be [, or undefined. . AU j

(

7
/
K4
. e
{ "
v %
Y
A\

87

The .ﬁon-termination' of the recursive'defihition of a
funétion,»for a particular value, does not necessérily imp]y.
that the function is undefined at that value. Some other
def1ntlon of the function m¥ng term1nate for that vajue
The previous def1n1fﬁon of reduction does not terminate for
singles and empty arrays, but some other definition of
reduction'mighp; At this point‘howevér,'there appears to be
no way to reconciTe the underlying question: “what is the
.effect of ‘a dyadig'function appliéd to a single angument?",
wi thout being ablé to find the. right-zeré of a function.
Perhaps a future result wisl improve this situation. |

. ' \
o Numerate, Enumerate, and Addresses. |

4

The \~4 numerate of an array ~4 is an array of shape ~4

in whicﬁaeach item is the address of itself. If 1 dis an.-

»

item in 1~4 then I will be at location I in 1~4.
¥ . . .

A]ternately, 1~4 is Known as the enumerate of an aHray A.

Numerate 1is only defined for arguments which are valid

shapes. If there is no array 4 such that B=~4 then }B;E.

The first item of 1~4 is the address of the first item
of 4, which ig #~Ap0. But that is exactly equal ioAa suit
witﬁ a zero for each item in ~4, so >1~4zT~4, The
profotype or type of the first item, of 1~4 is the type of
ari address in 4 and so must depict an address in 4. But
51~ A T~4 SO To1~A=TT~A Wthh is T~A because 71 is 1dempotent

Consequent]y, T~4 is both the extract and the prototype of
! .

88 .

A .
- If 2:3 = ~4 then 4.is an array of two. rows and three
columns. The enumerate of 4 is equal to the numerate ‘of the
Is%ape of 4 which is eaual to r.2:3.v The result must ‘be a

two by three table, each item of which is its own address.

Consequent ly:

8 4
#
: 0 0 0 1 0 2
1 2 3 =
1 0 1 1 1 2

h ‘

The shape of-x& is equal to 4. 1 is‘aq\array of shape 1

holding O‘at location 0: 115 ,0. 10 is an array of shape 0

which must. therefore hold no items. But it must also “hold

the addresses of its items, thefefore 10 = 8. 16 is an array
. :

~of shape 8 which means that 16,isva‘single. The Singlé‘item

of 10 must be the address of itself. Consequently, 18 = o§.

» Pick, Box, and Projection.

o
The A=B pick of an array B by an array 4 is the item of
B which occur#jat}address A.) ‘
o > 2 5(1~wSzq\w)

When 4-is not an address of B the left argument of the
sub-1ist function will be all o and so 428 will equal \B,

the prototype of B.

B ; o | f\\;\x_/* ~
_ - — } |

30

319 :=1010]>

a ') ' . . SRR
The 4°B box of an array B by an array A is an array of -

shape ~4 in which each item is the item of B pchQg by the'

£

correspond1ng 1tem 1n;A

o = qsaw:,u A
0|3 110 1].6 1|8
1] 8 0|t o] 3 3|9

&

The items of A4 in 4cB are addresses for B. If an item

of A is not an address of ‘B, .then the corr Sponding item of

AnB is, by the def1n1t1on of pic equal' to »2\B, the

prototype of B. If 4 is a mote then ABB = o (4=B).

o - o

A = o4 ..
A2 B <« 4 35>8 , def'n of =
T «> ~A p. o(24 > B) ... def'n of 5
* “«> ep o(24 > B) : B = ~o4
- <> Bp. o (A>B) : e : Ded = A
A «> o(A>B) ' : . BPPX = X

t

The'A;B projecfion of an array 4 on an array B is an

array of shape ~B in which each item I of B is replaced by

i N N \ . .
the_item at address 4 of I. 4 is an address for the items of

91

r % acow,.

o{o |} o 1] 0|2

= - 11] o 117;12~

#

The above definitions ofbkpiCK, box, “and pPOJeCt1‘

"
R

illustrate a-vefy‘powerfﬁl technique." The p]CK function is
- defined only for the extraction of. a s1ngle 1tem from a
single array. Extension by the eaeh-left tfansferm defines

e function which selects many items‘ frdm a single array.
Extension by the each-right = transform def1nes a funct1on
which picks a swngle item from many 1tems Each of' these
box and project functions can further be extended w1th the
eaeh transforms to generate more compllcated Operat1ons

This theme. will reappear in the def1n1tlon of many of the

. more complex funct1ons of array theory

e Llocate, Seek, and Find.

)The A°B locate of 4 in an array B -is a list of the
‘addresses of all the occurrences of 4 in B:

; E’qa:w \ 1~w .
If. 4 does not occur in B, which is the case when B is empty,

~
~

then 4¢B=\o~B.

i

not occur in B then 43B is equal to ~B.

| def1n1t1on of the flnd funct1on in terms of

Ao\B «-+ A €=\B \1~B i def’'n of o
“«> \(TA = T2B) \ ~B ASA\B=\(TAAT>B)

' <> \1~B N def'n of \
def’'n of \

-« \031~B

«~> \o~B"

'T:X =T2Y > \x=\Y

4e \B is empty and has as prototype the type of the shape

‘of B. 4°\B is the emply list of addresses for B.

The A§B seek for A in B is a primary array conta1n1ng

the address of the first oc&hrrence of 4 in B. If 4 does

Seek is defined to

be

35 o(acw, ~u)

" Notice that 4%B > 430B=6.

\

v The A B find of an array A in. -an array B 1s an array of

shape A

of its f1rst occurrence in B. If a
in B then the 1tem is rep]aced by ~B. Theé

part1cular. item“ of 4

doeS> not occur

def1n1tlon of f1nd is

1 . ‘ <1 B 'EX P

"AR' 'T'

) lFU' ‘ "L'

[0, 11{C2 2] = ['T* 'o'] }

Again, we see the power of the each transforms in the

function, and in the defin1t1on' of the seek function in

terms of the‘locate function. This same mechanism appears'

in the -following definition - of deletion in terms of

1n wh1ch each item 1n A is rep]aced by “the address

the seek

it
ST ey

i

IS
A .

>membersh1p, and of membership in terms of occurhehée.,-
. Oécurnenéé,'Mémbehship,gDeJéfion,land Seperation.

7

" The AEQ'occurreqbe of an array 4 in an arrayvﬁiis 1oif
and ohly‘ if tﬁehe is an item in B8 whiéh;fs equal to 4. An
array 4 occurs in an array B only if the 1ist of addresses
- of 4 in B is not empfy; éonééquently:' |

§ 20,0z, #avw.

“'.Thg» AeB membergﬁib of .the items of the array‘A’in Thg
afréy B is an array of shape}A in.which'each item of 4 is
‘replaced by .the: true or false value of the ptediéate “the
item occurs jn'B." 'Cbnsequent]y,"

€ % adiéw

,/ .
The A%B deietion of the items of an‘array'B;by the items
of an array A is.tﬁe list éf ail the items of B that are not
picked by the.addresses in 4.

¥ = oE=(1~95<a)\w.

- Consequently, 4%B is the sublist of all the items of B 'that
f

remain after each item of B selected by an aédress in 4 is

deleted.

The 5AA[separation of an array A4 by-a monadic hpbedicate
& s the .sublist of all the items of 4 that correspond to
true objects in :44.

2 2 ow\w

b}

g3

e The Eg&al Pnedicate and Upiformity,

. The =4 equal pred1cate is true 1f and only if all of the
items of 4 are equal to each other, whigh is the case if and
‘only if all of the items are equal to the first item.

- :E.O:,OE,D(‘)'C':M

- An array is UniShabe if and only 'if each item in 4 is of

“the same shape as every other Gtem . in A, TheredeE. an:

array 4 is unishape if and only if =:~4. The ~>4 protoshape

of an array 4-is the shape of the first item of 4. An array’

4 s univalent if and only if each item of 4 has the same
valence as evefyvother'item in 4. Therefore, an array A is
uniValent if and 6nly~if =i (#=)4. An array is unitype if
and only if the type of each item of 4 is equal to the type
of every other 1tem in A Therefore, and array 4 is un]type

'3
if and“on]y 1f

v ' . ,‘k | yr
e Trim, Form, and Pack..

The ~4 tr1m of an array 4 is obtained from{4 as follaWS/

First, 4 is " made univalent by append1ng singular axes (axes -

of Tength one) to the shape of 4. Second, the corresponding
.nonﬁeingular axes of the items of}the beeult of‘the.first
step are made to be the same length by truncating all
corresponding nqn-singular axes to the length of the
shéF?esf corresponding non-siggular a;is. Third,-eaeh 1tem

of the .result of the second step is replicated along its

94

1

singular? axes so as to make the array unishape.

L)
The: :~4 form of an array 4 is am array of the same shapé

as 4 in which each”item is replaced by its shape.

The,foliowing sequence shows the transformation of the
N oW _ e 7

form of an exaMQle array being trimmed>»

((3 41037805 0 23] L
[[3 4 1103 1 11[1 1\11[5 0 211 step 1
(030 1303 1 1301 1 1103 0 217 step 2
(030 213 0 2113 0 2103 0 211 step 3

The packed array +4 is obtained by first trimming 4 and
then interchani rMfg the top two levels of 4. As arésult,

~34 = ~3x4 and ~oi4 = ~vA.

1f,
of triples. The items in the first triple of 4 are, in
main order, the first items in the pairs of 4. The items in

the second triple of 4 are, in main order, ‘the second items

in the pairs of 4.

£[[1 2303 4105 611 = [[1 3 51[2 4 61].

example, 4 is a triple of pairs, then i4 is a pair

.95

‘g =

: 3.| 4]

301 || 4]
A
5 19 [|[»2]6 || =+]|5]2 g |6
5 | 3 5 | 8 — .
-
5 | 5 3|8 |¢
i |

In general, for any unishape array U, the array il is of

¢

96

shape ~2U and the items of iU are of shape ~U. Aq/item Qf“:'

FIQ at address I holds, in main ordér, the items-at address I-

of‘thé,itemél in main order, of U. Consequently,

+ £ 1~2rwltw.

-

The effect of this definition can be seen in this

example of +[[1 213 41(5 611: 4.

J \~>=[[1 2103 4315 61 51'[[1L23[3 4115 611 .
| v =01 2] 32 [T1 2103 41(5 61]
o 10 13 3: Y1 21034305 61 [
« [L0 = [1 2103 4105 611 [1 = [1 21(3 41[5 611]
< [[1 3512 4.61]

 The following re]ationships hold for;any array 4 and any
.vUnishape array U. _ L o \) 7 ra

4 /

i
[N

S R T - e e i T D T A e L A

S

i i

3{[]:;:5‘] o syl/z>>y
t54U=sU \ul=\>y
& ::}_U:DDU‘:’ . :.\ilj:i\u
R £:3Uz0:4 40 L1, U=, 4U
N T o~lU=~2y di7U=51U°
~24U=~U FRYELY
' f ' IFEYERY.

’

Permeate. Functions.

v @

" A permeate function has the :follQWing properties.
First, ‘a,’bermeate‘function fs_monadic. Seccnd: a permeate
- function i's defined for any argument which is a list of
motes. Third, a pérmeate' func! on s extends to non-list
arguments acéording to the relationship AA'Q :Ai.#. If S is
a suit or list df motes and 4 is a permeate fuﬁction then -~
is'eQUal Qp 184,55 which is equal to :44S which is equal to

1808 -which is Equal to .a5 Therefore, the result of a

permeate function appTied to a suit or list\ of motes is-

~always a mote. Any permeate- function 4 has a dyadic
equivalent of the sahevsymbol: A 2 Alasw). | -

¥

o The Arithmetic Functions. "

The +4 sum of an array 4 is defined for lists .of motes o

to be the sum of the items of the list. Any occurrence of o

is considered to represent a zero, and any occurrenceé of a i

k!

is 'consfdered'to represent a 1. If any~item'is not a valid.

number thén the sum is I. Sum is a permeate function. fh@
dyadic equivalent of SUm'is;caTled‘pIUS. An'e&le.of the

operatjon.of~plu§ is

g7

98

[2 31pf0 123 45]+.[221p[6 7 8 9] :
+. [2 3)e00 1 23 45];.02 21p(6 7 8 9]
:+4,.02 31p[0 12 3 4 51:.02 21p[6 7 8 9]

:++.02 3]p[0 1 2 3 451;.02 2]1p(6 7 8 9)

t+. 102 2J52[2 21pl0 1 3 415.02 21p(6 7.8 9] .
o :+. [27°23p000 0100 1101 0301 13152 ., .

t+. [2 2]p[(0 6101 7103 8][4 9]]

[2 2]p.+[0 615+[1 7],+[3 81,+[4 9]

(2 21006 8 11 137

The x4 product }of an array A'is_deﬂined fortlists~of
motes to be the,produot of ‘the items. bf the list. ~ Any
occurrence bf“ O is cons1dered to be a 0 and any occurrence
of 1 is cons1dered to be atl. If any 1tem is a zero then

the product is zero, otherw1se if any: 1Qem is not a val1d

1

‘number then the product is [. Product is F/ permeate R

functionh The dyad1c equwvalent of product is called t1mes

Tne -A negat1on of an array 4 is a pervas1ve funct1on :
For any'mote M, if M 1s a number then -M 1s the mote wh1ch
is bthe. additive 1nverse of M.‘ M+-M=0. The - mote © is
"considered to be 0 and the mote 1 is‘considered to be 1. If
M is -not a valid number tben -M is @.. The dyadic equivalent“'
of negaF@ is called subtract and is defined aé - . at-o.
The d@uble negatlve --A; converts any array 4 to striot
numer ic va]ues in which all o map to 0, 51) 1 map to.1, and

)
-all characters map to o

% \

The #4 reciprocal of an array 4 is,a pervasive function.
For'any mote M, if Mis a'number other'then zero then +M s
the mote whlch 1s the mu]t1p11cat1ve 1nverse of M. MX+M 1.

The mote o is con51dered, to be. 0" and the mote . . is

. .

!

T
i

considered to bé 1. If M=0 then +M=@. If M is not a valid

humber tRen M is (). The dyadic equivalent of‘reciprocal is

called divide and is defined as. + = ax+w.

[

. The PredzcaterCaIculus.Functlons

iThe'nA‘\logi'cal not of an array A _is - a pervasxve‘
- functlon , For' any mote M, —M=.o=M, except that 0= @

double negative naA converts any array A to strict truth :

B values in wh1ch each false augmented truth value is’ replaced

by o and each true augmented truth value is replaced by 1.

- 'The.AzB'inequality of two'arrayg Aland’B is defined as:
| | 2 % mgzw.. | -

The monadic;predicate unedual is defined as:

* 2 -z

The AA all of an array 4 is defined for lists of motesth'

If any. mote of the list is E then the value of‘AA is 0.
Otherwise, if any mote of the llst is © then the value of =4

o

is . Otherw1se, the value of AA s L. All 1s_a.permeate

P

funct1on The dyadic equ1valent.of all is and.

The 'v4 some of an array A is def1ned for. llsts of motes

to be 1+ if any of the motes in the Tist aﬁe true augmented"

e
truth values. Otherw15e. if any mote of the su1t or . list 1s

@ then the Value of v4 is o, 0therw1se, the value of oy jsA

“Some is a permea{e functiony The,dyadicr'equlvalent of

B O L

s is or.

» The Relational Functions. L

The 24 pred?cate increasing is defined for unitype lists
of motesi. If 4 is not unitype or is all [then 24 is @. 'If

0=T124 then if there exists a subligt S of 4 such that =S fis

: numericdlly greéter than a3}S, then 24=0, otherwise 24=1.
. A &' .. Y

Otherwise, if 'Bh'=124 then if there exists a sublist S of 4
. .) . @ oy
such that 24 is lexicographically greater than =15, then

>4=0, otherwise 24=1. The predicate "increasing'“is . a
permeate functidnf§w3The dyadic equivalent of increésdng is

i

‘greater, or equal. - ' . “‘

The >A'predjcét¢ strictly inCreasingz the <4 predicate

decreasing, and-xﬁgépred1cate <4 strictly decreasing are all

defined‘analogbusly to the predibate jncreasing” _Tﬁe names

of the dyadic counterparts are_greatér,‘]ess or equal, and-

less respectively.

o Take and Scan. {
J

The AtB take of“an array B by an array 4 is an array df
‘shape 4 in which each item of 4 specifies the number qof

SN o .
citems to be selected from "B along tfe axis of ‘B

P
N

corresponding to the dtem in 4:

"4 2 1a0w.

) ¢

If i{ems are to be chosen along an axis that is'shqrtef than-

!

. - e
t . . . :
: *

‘i»’l-x;n* B

100

o the corresponding value ih_B'thén the chosen items are, by

the definition of>D, equal to \B.

- 1] 213
’ 1 2
. - =[2 2] + | 4 5 §)
™7 Tl | :
o |7 8 9

* The /a4 scan of an array 4 is a list of shape #4 inh

“which the i’th item of the result is obtained,by applying &
to the list containg the first i items of ,4:

» £ 2 oid. t+ife 51 L0
" For example, #+[4 B ¢ D] is equal to

:+[[AJ(A BI[4 B CI[A B C D]]

» . The Cartesian Product.

®
3y

The éﬁ‘cart of an.array 4 is. an array of shape uv:-~4,
Each item I of e4 is obtained from 4 by a two step proéess.
First, the address of I in ®4 is partitioned into sublists
with 1ength§’corresbondjng to the valencies‘of‘the'items of

4 and this list of sub-lists is reshaped to the shape of 4.

Second, each of the items of the result of.the first step is

used as an address into the corresponding item in 4.

Fon"example,‘if 4 is a two by.three téble with fofm

:?A =. [2 3jp[[3 4102 13027416 71[5 6 73[1 41]
“then ‘é _ |
~®4 = [3421246756714].

101

Ly

and

’ " t(#~),4 = [2 2223 2]

The -item at location [2 2 00 1 3423330 2] of &4,

for example, is determined by dividing that address up

'aqcordigg to the 2 2 2 2 3 2 valencies of the items of 4:
23t 200 BJC1 3104 2103 3 3100 213, |

and .usfﬁg each of the ifems Qf this result as an address

into thenéorresponding item ‘o? 4. The [3 3 3] item at

address [1 1], for example, would be uséd as an address - for

. “ - ‘ .
picking an item from the five- by six by seven table at

[
1

qddress [1:jf of 4.

The apgve example i]]ustrateé the modularization that is
g 7

used in the definition of the cart function. An example

follows the definition.

The func&ion
pa = ~w p. 0, f+ :(#~) w
applied to;an array A returns an array of the same shape as
A4, in which ah;item‘at location I is the sum of the - number

of axes in e&ch item of 4 that occurs, in ,4, before the

item at locaiion 1. | |
The function |
' anipaw+':1. {(#H)w
N

,appiied to an array A returns an array of the same shape as
L3 '1 A:/

. Y A . .
-4 in which an item at location Ifis a }list of the numbers of

the axes of the item at location{I in 4, where the axes are

N\

102

*\"\\} .

B SN
Rt -\ TN ES ot s CHRVINE RISl

/

numbered beginning at zero for the first axis of the first

item of 4. :

The array uv:~4 is an array of the.Same shape as ®4 in
which each item is its own address. The function

sa £ an w 3o (yui~w

103

applied to an array 4 yields an array Qi’§hape ~®4 in which

_ \ L
which are sub-lists of the address of 1I. Each -of \ these

each "item I is of the same shape as 4, and contaidi items

sub-1ist items . contains as many elements as there are axes.

in the corresponding'item in 4.

Now the cart function itself can be defined.

® 2 sa w 5:0 w

This is the array‘of shape 1u:~4 . in which each item 1is of -

shape ~A, the items of which are the»iteﬁs of the items of 4

selected by the addresses n the,items of sa 4.

As an example, consider an array 4 which is a two by two

‘table of.three by four by five tables:

#4 = 4
7 ~A = [2 2]
3 4 5 3 4 5 #~4 = 2
~A4 =
- ' 31 3
3 4. 15 314 5 t(#~)A =
- - 3 3

/

/
/

In this example, pa 4 is equal to

4
0|3 .
6 9
and an 4 is equal to
.
0 1 2 3 4 5
6 7 8 9.] 10 11 S

{

The item at location [0 12 123234024)of sad, for

example, will be

(2 2]p[00 1 2101 2 3102 3 4][0 2 41]

and so the items of the item at location [0 1 2 12 32 3 4

0 2 4) of ® will be the item at location [0 1 2] of the
item at location [0 0] of 4, the item at location [1 2 3] of
the item at location [0 1] of A, the item at location [2 3
41 of the item at location [1 0] of 4, and the item at

location [0 2 4] of the item at location [1 1] of 4.

The dyadic 4®B cartesian of ad/array 4 and an array B is

~defined to be

A

105

1l a | 1[5
1123 |e|a|s5|=|l2]a|ll2]s
3| 4 3|5

° Dnop, Mesh, Split, and Sections.

The AvB drop of an array B by an array 4 is obtained. by
delet1ng, a]ong the I"th axis of B, the first i=4 items:

L - 1(~w-u) 5+.a o w

11 01+t 31004 B C D F F)
e 1([2 31-01 01) 3+ [1 0] & w
> [1 313+ [10] =
> [1 31p000 0IL0 17C0 231 3+ [1 0] o w
e [1 33pC01 0101 11{1 211 2 [ABCDE FJ
«> [1731p[D E F] ‘ -

The 'AkB;é mesh of the pair B;C is'a list of shape‘#4 in
which each 0 in 4 selects the next item from B and .each 1 in
| A‘seleétsithe next item from C:
x él#ﬁp.'ob(bunw), ta x (Du;.O 1w
-For examplé, [0 1 0 11=([4 B]LC D11 is equal fo each of the’

following

N
4p. o4,. 10 1 x [[BIC D)) \
. ‘ 4p. o4, . 3p. °C,o 0 1 x [[B],[DJ]. |
- Ap. e4,. 3p. °C,. 2p. °B,. 1 x [[][D]]
4p, oA 3p‘. o, . 29. °B, . 1p. oD, . e"((01013
b4p. oA,. 3p. °C,. 2p. oB,. 1p. oD,. Op. ...
(4 ¢ B DI. | f '

The 43B 9p1it of an array B by an array 4 is obtained

from B by mov1ng certa1n axes of orientation from B ,to - the

items of B accord1ng to A. For example,

. [[4 DIIB EILC F])

" 03([2 31pl4 B CDE FI)

(2 BJp[A BCDE F]J:

[[4 B CIDEFI]

Each axis not named: in 4 appears 1n the result so that

*(1# BeA)\1# ~B =. ~(A¥B): Each axis named in A appeérs in

the 1tems .of the result so that 1#73€A\1#~B =, ~2(A4IB),
The definition of split is: |
3=z @, 1#~wcd cx, 1(a¥~w) 5; :1(ad~w) o

o ' Y

For . example, if 4=[13]. and ~B=[2 3 4 5 6] then
A4~B=[2 4 6] and 4=~B=[3 5. The array 1[2 4 61 is a two by

four by six array in which each item is -its .own address.

Call this array P. The array :1[3 5] is 'equal' to
} -
L0 1 210 1 2 3 41). Call this array ¢. The array P5;Q is

a‘two’by fodr by six array of péirs, each pair holding first .

its address .in P5;Q and;second’tbe ‘array Q@ itself. -Call

such a pair R.

Then, [oi010]€x.P55¢ is a two by’four-By“six array in

which each item is [010101xR. At location [12 4] for
‘ example,'the value is

(01300 1 2102100 1 2 3 41041].

106

Each bf these items aré replaced by the cért of itself, the
}v§1Ué at location [1 5 41, for eXgmp]é,'be06Mjng a ithree by
‘five matrix which addresses the jtgmé of the three by five
matrix at location 1 on the first axis, 2 on the third axis
~and 4 on thé'fifth axis.“gach item of 43B at addr%ss ; will
be’fhe thbee»bydfivé array at addreﬁs/19] on the first axis,

2;1 on the third axis, and 3=I on the fifth axis of 5.

Each item of 4Y8 is a section of B, Intuiiiyely, the
item' atﬂ“address I in ATB é&n be.viewed as‘the section
paraflél té the axes of B named in A.and,nopmal to.the other
' axeé of "B ‘at the locations specified in 7. THe monadic
split of an array ié-defined to be _ ;v‘ .

v B #;Q—1 M 4?

)

- If all the axes of B are named in 4 then there will be

no axes in AYB, so 4%B will be a single. On the other hand,

.all the axes will appear in the item of 438, but their

oriéntatioﬁﬂ will be rearranged by permuting the axes.

aécording/fo A. Consequently, 1#~434=04.

e .Transpose, Mix, and the Use of Sections.

Thé A®B1transpbse of an array is obtained by reversing

the axes order:

107

The 47B mix of an array'A‘byAan array B‘islylgﬁséinverse
to split in the sense that if 4 is a sujt or&list of
distinct axis numbenS'fOr B then B :.v A¥.AIB. B &ie-‘first
trimmed, and then the axes of the items of 5 that are named
.1n 4 are moved up to become axes of the result 1tse1f The

monad1c mix of an array is defined to be

¥ #~w toaf~iw T,

‘For example, the value of 1 €4 1302 31pl4 B C D E F] is
(LLB CILE F11, and the value of 14 [[BCIE FI] is

02 21p(B C E F1.. o S

For many functions, the mix of the functicn'applied:to

the split of an object has the effec

function to - all the sections selected b

arguments Var1at1ons of the functions can be written jto'.

A ¥
accept instead of the wusual arguments, an argument

"specifying the usual argument and the axis acplication

information For example, the sub11st funct1on can accept

as left argument a pair specifying both the se]ec@con mask
and the appl1cat1on axes. The new definition (in terms of
the old one) might be |

2caf, obuz\(caiw). R

[{»(
."’

‘ Pervasvve funct1ons can be applied to slices ~with jthe

expression A(AIB)

'applying 'the
- the sp]1tl

108

Notice that the transpose function can in fact be
~ v :
defined in terms of these re-axising operations:

SRR N

. Supplant, Rendering, and Canonical.

The A;é;c supplant of an array ¢ by a pair‘A;B is the

same as C except as follows. 4 specifies an address in C.

If the address is valid, then the item of C at that address

is supplanted by‘B;
* 2 ~wp. 1#~w 5=">q ¥, saf,w ;. éa.

For.&le, [2 51215 s equal to [0 1 53 4].
|)

ThHe v4 rendering of an array 4" is primitive to the

hinterpréting, system. Wheréas‘ the interpret function =z

returns the value of.its‘argumént treated as an expression,
the " v function returns the function iféprasenfed by its

agrument. If 4 is not a valid function represéﬁ%afion;'fhén_

“the -value of V4 is the everywhere-l function =(P;w) which

always returns the value . If the argument-is of the form =

'hief then the name n may appear in the expression e to

effect a recursive definition.

The v4 canonical representation of a function & returns

a nil-adic‘;function' which is ‘equal to the object which"

represents the definition _bf the ~ function &a. . If & is

primitive then va='a", N : .

109

Thisfséction has illustrated the defjnfion of a number
of complex functions using on1y the arré& ;ﬁéor;\primitfves,
mote tnansfonmatfoﬁ functions, and - the"primitjves of the
interpreting system. ~ Given ﬁhié foundatidn;"many more

.useful functions can be defined, and . the * encoding of the

‘redundancy in a solution can be représented‘%ﬁ‘a functional

«

\

way. . . , ‘f
- 3.4: Postschipt,to Chapter Three

; The theory of arrays is not bound €o' fhe' syntéxb used
here for its exbosition. jhese;formaT expression are simply
| convenient fgr the level of description -at which we are
' WOnKing. | It is far more imbortant}}hat the representatiog
is a funcfional one in which every expression, returns‘ a
result without the use of transfer of contbo}; ahd no
expression'prqduces‘side effects. The lambda célculus‘ of
Chubch and the FFP notation of Backus are two a]feﬁnate

systems for the formalization of functions, although ~théy

have éXpJﬁct]y beehl avoided because of their unnecessary .

complexity.

The‘notibhs”bf the type and the prototyper of an _empty

array, although 3perhaps'initia11y disturbing, are formaily

simple and‘Seem }o work well in the defihition of 'complex

1 fuhctidns.muA1though othéf schemes would work,” the prétotype

appears to be’aﬁ,elegéﬁt.fdea._?}n~ the definition of\\the

=110

e e W I E e T et

- locate function, vfor' example, an empty right ‘argument

reSUIfs “in an empty 1ist'of‘addresses, just as one would

. .
expect.

As well, motes are a notion. that seems to be effective,
even though the concept.is not straightforward. En-mote and

de-mote functions for converting dtrings to motes and motes

to. strings might be interesting since they would allow the

extension of the notion of type. The justification for the

multiplicity of empty arrays ,and.fortthe.self-nesting of

—motesviies}in their_support‘of. the axiomatiZation' of 'the»

A]

theory. The impor tance of the eiimination'of special cases

from the éxioms. such as is required for the',eqUivalent of

motes and~ empty arrays: in. other theories, cannot be
overemphasized Wi.thout this uniformity, the number of

cases to be examined in a. proof ‘grows exponentially, with

.

the uniformity, the proof remains iinear

S]

Many of the recursdive definitions terminate on one of

the fOIIOWing two conditions “The appiication of a function

to the items of a mote.is equivalent to the application of

the function to wthe' motei'itseif Pervasjve functions,
: therefore, stop at motes The union of a ‘singlei‘with the
empty reshaping of any array is the item of the Single

ioAu\B =4. Therefore, any function which ‘can - computef the
number_ of items in its.-result can select Just that many
items,.end‘can therefore}terminate at 'an eXpressionmuhich

unites .a- single to the empty reshaping of the recursive
. oo B o 3 : ' R /

£

£

e

St e o

R

o~

applioation of the ”funotion. (See the definition of the
mesh funotionrfor an example.) "These‘boundry conditions are
N <v &21 a

more uniform than those establlshed arbitrarily by a

cond1t1onal eXpress1on

The power of the pr1m1t1ves and the data structure can

"be seen ln the easé of. defln1t}on of the more compllcatedt
functlons in sect1on 3.3. The definition of 'paoh, for

box, which is based off pick, Wthh 18 based on SUbllst The

-example, is based on numerate and project, Which is baied .on
each- transforms used - to bu1ld the h1erarchy are themse lves
bu1lt only of the shape reshape subtist, pa1r and " union
~pr1m1t1ves and the aX1oms which allow the term1natlon of

recursion. Even for funct1ons as compllcated as 'cart, an
‘ >

understand1ng of the s1mple‘pr1m1t1ves and the hierarchical

development of the definition is all Ehat is reouired to

completely understand‘its effect.

The each and replacement transforms, in particular¢the

//

each-left and each right transforms (whlch are an 'eXtension

of More s work developed in this exper1ment), can be seen to

"be a partﬁgularly powerful tool in the development of 5

algorithms based on general1zed arrays This effect is a

most interesting result of the theory. = | I o

As a further example of'this hierarchical oombdnation of

the items of one object with the items of another object’

study the definition of a 'function‘ similar to- APt’s 3

112

113

duter-product funétion:

| \ - | op, = ;wasau_ ”
'This(fuﬁétibn builds ébtaﬁie of the resullsyof?the ‘argumenf o
function & -applied to eacﬁ pairfhg of the eleMents of @ and
..

P

¥

The)overfidihg consideration fér extension Qf thé
interpretatién‘ of the axioms, for'the_introduction ofinew}
axidms;.and for the definition of new functions, is fhe'
maintenancé of= the theory as closed, standa;d. one-sorted,
and axiomaticf ,These\siggerties ensure thé minim}zqtion‘ of *

the apparent complexity of representatiogs.‘f 4

Cﬁapteh Four: Implications ~>\\"//

\

- "When 'the mind grapples with a great and
dntricate problem, it makes its advances step by
Step, but with Tittle realization of the gains
it has made, until suddenly, with an effect of
abrupt illumination, it realizes its victory."

H. G. Wells

In Chapter Four the system model established in Chapter
Two will be expanded upon.. As well, the results of the
thesis are revieWed and certain areas of extension a;e

outlined. - J

-

4.1: Systems Considerafions

The motivation for this high-level bootstrapping prééess‘
was estab]ished to be the atiaﬁﬁﬁent of a very-high-level
ltanguage tailored For'thé problemfsolver. In order to fully
grasp ‘the ‘potentia] of the functional, generalized array
approach, the view of the rest‘of the system as seen by a

processor musffbe understood, for it is the powerful suppoft

system that'completés the uséfUlness this approach.

This discussion is, hbwever,'ndt to be considered as a
| proposal. % Many alteénate formulations of . the system can be
made. The particular . formu]ation below is intended 'to
reveal = a ;systems ;philosophy; within which it is intended

that any paffighlar system should operate.

N

The system proposed here is’téilored for a deve]opmeht
envirpnment.v The system 1is not designed>for large scale
éroduétion computing. Increasingly though, the problems
encountered during the developmént of a large scale
proéﬁction/(;ystem- are more difficult than the those
encobntered during its production life. The success of
Systeﬁs such as the UNIX/PWBf\brogrammers woerench pfovide

a -basis for the continued discussion of this development

environment .

In the development environment, the efficiency of the
: schedu]er’s’ a]gorithm and the ease of use bf the system by
the naive user are far less important than the power of the
'system' from the point of view of the exper{enced user
. requiring a wbrk-bench. The experienced; user appreciates

elegance, simplicity, clarity, and generality.. Most offen,

the software generated by him will lnbt be used for long

: periods of time and will not be required to perform.

computationally difficult tasks, at least in the breadboard

stage.

L4

! Dolotta, T. A., Haight, R. C., and Mashey, J. R., "The
_ Programmer’ s Workbench,” The Bell System Technical
Journal 57 (Part 2), 6(July-August 1978):2177-2200.

115

e The Shared-Variable Model .

As shown in figure 2.3-1, the underlyjng«mode] for . our
dﬁscussion of systems considerations is. the sharkd-variable

2

system. A shared variable system provides three<services:

<

A . AN _
“%n interpreter capabié of determining the

1 o Support of
meaning, in tefms‘of a result objeét,"of an argument . to
the interpret (1) function. Inherent in this ability
is, of coursé,.the'Know]edge of all the functions used

in the expression presented aS;&he argument .

: SN '
2 o Support of a scheduler which mand@q; the allocation of

the proCessors of the system (and intérleaves the tasks

/ B
/
/

" in.the time-sharing case).

3 ° Support of a shared—vériable processor capébie of
_switching geﬁera]ized arrays betweegk processes. The
interpret function obtains a processor capable of the
interpretaion (the‘one it is rﬁnning on, for example)
and waits for the result. \The scheduler is accessed by

the ihterpreter. for the purpose of. parallel task

control, via. the shared-variable processor..

The effects of the interpreter are.those discussed in
the previous chapter: the intérpretation of the strings
representing expressions and of their operation on

generalized arrays.

T SR S

e e R b

The scheduler is‘]argely unimportant* from tns_point of

the developer, and of course, should therefore not be of

concefn to him. Nevertheless, there are a few scheduler

functions that he may need-directly. Since the scheduler .

and the shared-variable supporter are not ignorant of -each
other, the useh'can communicate with the scheduler via the
same shared variable methanism that is used for all other

communications.

The shared-variable support. rests on a few ,functioné
which ~are primitive to the support'system,‘as described
be low. These functions parallel those discussed by

Lathwell! but include explicit communication functjons sﬁnce

‘there is no assignment operation in which to hide the

support.

Communication with another processor is estab]ished with
a shared-variable offer via the @ functiqn; In order for a

processor (ME for example) to tender ~ the

' commun%cation-interface offer, a suit of quintuples must be

- established as the argument for the B primitive; The first

item of each quintuple should be'the-string '"TENDER' 4 The
second item of each quintuple .should be the string that

denotes the processor that the offer is being tendered to,

£y

' Lathwell, "System Formulatioh and APL Shared Variables,"

p. 356-357.

117

¥

tyou' for exémple. The third item should be a string which |

will denote this particular offer ‘and which will be required

for the discussion of the offer by other shared variable
functioné,"MSG‘_for example. Theffourth‘itéﬁ should. be the
access cbﬁtrol bvector.l(referred to as theiACV)-diécussed
below. Theyfifth item should be ‘éither '"WAIT' or 'FREE'
depending on whether the system ié to return from the offer

as‘soon as il is made or wait for the offer to be matched.

3

A general offer, to any probessor, may be made by

specifying'thevnil processor- name o.

———

The value of B4 is a‘suit with either o to indicate that-

‘the correspbnding‘ offer has not been matched or 1 to

indicate that it has.

—a
N5

‘The . access-control vector can consist of any of the

following characters:

"R" to indicate that two successive receptions by ME require

an intervening transmission by YOU.

-

"T" to indicate that two successive transmissfohs by. ME

require an intervening reception by YoU. .

"B" to indicate that ﬁ@o successive receptions by YoU

require an intervening transmission by ME .

‘0" to indicate that two successive transmissions by YOU

require an intervening reception by ME.

118

The actual access-control state is the logical sum of

these = constraints. If ‘a constra1nt occurs in the

access-control vector as spec1f1ed by elther user then the

_ constraint occurs - in the access-contro] state. »When the:

access- contro] state requ1res a partlcular ‘inter]eaving‘ of

BN

- the commun1cat1on a transm1ss1on or recept1on may be

‘requ1red ‘to wait unt1l the other processor in the share has
~made the appropr1ate access. Initially, there wil1 be no

constraints imposed except those specified in the offer.

The B function can be used toyspecify a change in . the
constraints, by Qspecifying an argument ‘like‘that of.the
of fer but with the following difference. The first item of
the quadrup]e should be the string 'CONTROL', .The'remaining
items?are the sameqp The . result items are e1ther 1 to
'indicate that .the controil has been changed or o to indicate

that it has not 1f the.fourth item of the qu1ntup}e is ©

then the access state is reset to no constra1nts otherwise -

the new constraints are added to the existing ones.

Ead
Ea

- The B function can be used to disconnect an interface.

In this case the argument items are triples consisting of

the string 'RETRACT', the processor name, ‘and the share
name. The result 1tems log1ca11y 1nd1cate the success of

the retractions.

119.

120

The B function can be- used to 1nqu1re into the.
. access-control state status. The argument 1tems are triples
consisting of the string 'QUERY'- followed by the processor

name ‘and the sharevnamer' The resu]t items are pairs ho]d1ng

~the access—control-state string described above, and the v

name of the processor offering the match (o if unmatched) \j\«

The B transmit functton accepts a suit of triples
consisting of }the‘ name of the processort the name-of the
share and the value to be transmitted.’ The 1tems of the
‘value of the funct1on logtcally/1nd1cate the succe7s of the

transmtss1ons

- LY

The B receive function accepts a suit of pairs
consisting of the name of the processor, an&\ih; name of the
share. The items of the result are the va]ueﬂ f the shared

4

arrays.

e The Interface to. the Scheduler.

’

Communication with the scheduler is accomplished via the
spec1a1 shared-variable l The argument to B is, like B, a
surt -of su1ts and the result is a suit in which the items
correspond to the argument items. | |

If an argument item is a triple consisting of the string
"CONCEIVE', a processor name, and an expression‘encoded as a
.string, then a process of the indicated name.wtll be created

to interpret the inoicated expression. The result item will

a7

logically indicate the suaccess of the conception.

. ‘:If an argument item is a pair consisting of the string

~

) 'VAIT"and the processor name, then'the*current process will
.be made to wait for the named process :o term1nate The
resu]t item will be the value of the express1on executed by
the process. Once a process has successfu]ly waited for the
comqletidn of a process, the‘completed,process and the yalue
of its expression will be forgotten..

Otheb coordinattoh commands such as. the die and wound

d1rect1ves may be stm]larly provided!

If an argument 1tem 1s a pair cons1st1ng of the"‘string

'QUERY' and a . processor name then the result will be a

string indicating - the status of_-thé. orocessor: "RUN',

'"WAIT', or 'DEAD', fof.,example. If the.resutt item is’o'.

" then the named process is unknown.

.

o The History Process Interface.

As was stated in Chaoteh -Two,' the entlre dynam1c‘[

environment cou]d theorettcally be passed about between the

e

' Easwaran, K. P., Gray, J. N., et ~al, "The Notions 'of.

Consistency -and Predicate Locks in a Database System'“
Communlcatlons of the ACM 19, 11(1978): 624 633. SRR

12t

\,
N

~executing functions (as.proposed by . . Backus')%
Alternatively, the shared variableléystem,can support one or
more.history processes, somewhat akin»to the file sYstems of
. the ciassicél operating-syétems. An example of ‘such a

,histbry pﬁbcess follows.

The history process is accessed via a system assigned
name such as 'MEMORY'. A shared-variable interface.must be

established .to the history. process, after which the receive

and transmit functions may be used to store and retreive

arrays. The transmission of a tripie consisting of the

string 'STORE', a name, and a value, remembers the value as
being assoqiated with the name. The transmission of a pair
consisting of the string 'FETCH' and a name _retrieyés the

value associated with the name.

The history function keeps a suit of pairs consisting of“

némes}and values. A storé réquest unites a new name with
specified value to the éuit,'if the naﬁe is not in the
replacement eXtracf of the list. 'If the name‘is there-’then
the‘corhésponding item is supplanted by the name>paired with

the new value.

o

' Backus, "Can Programming Be Liberated...," p. 74-88.

122

A retreive request simply looks . for the namé'jn,the |

-

replacement-extract of the history suit and rétuhhs' the

corresponding value -(or @ if no name is matched). 'The

completion of "an operation by the history process. is

followed 'by its reinvocation of itself'pas$ing as its new

o

~argument the new hfstory suit.

o123

On the death of a process, all the history items

associated with the process can be forgotten. Certqinnitems

-

can, however, 'be identified to the history process as

archived items in whiéh case they will remain ;Uhﬁﬁ]i'

! .
/

explicitly deletéd via such an imperative.’

of course, the history process can be arbitrairly more

‘sophisticated than the one just sketched. In particdlar}_é-

' hierafchiéal directory structure such as the UNIX;;file _

system' would be easily implementable. o Y

i
/

- The conceptual view of such a history process is as a .
" hame space. In a name-space environmeht, certainj'functiohs

which are not Jlocal to the name-space of a process can be

identified by their name and name-space identification. A

~user-defined addition function, "+

the primitive sum function by explicitly identifying the

! Ritchie, D. M., "The UNIX Time-Sharing‘ System: A
Retrospective," The Bell System Technical Journal 57,
6(July-August 1978):1953-1954.) .

for example, could use

»

,Ename space of the symbol when it 15 used. Unless otherwise
fspec1f1ed the current name space is always assumed to be
the domalntof d1scourset ~
. Now it is poss1ble for vlibraries 'of 'Functions to be

”establ1shed 1n name spaces in order to allow the1r repeated

.usé: B convent1 n, the 1nterpreter can’ con51der a name
use.” By | |

o cons1st1ng of a left part followed by the reference symbolf

: shrlekv(') followed by a rlght-part to be a reference to the
function named by the rlght part in the name-space named by

the left part

Dur1ng the creat1on of a process for a user s terminal,

':the system can’ ask' the hlstory process for the arch1ved

“1n1t1al express1on to be - executed at the term1nal If the

user has not. spec1f1ed an initial- expre551on then a default

- such as SXSTEM!TERMINAL could be used.

. Thevdetection’of'an interrupt by the interpreter could

~-cause the 'lnterpreter to have the scheduler suspend the

U. 1nterrupted process and schedule an 1nterrupt handler named

. the\ history-process. The "interrupt handler can, of

course, control the lnterrupted'process via the scheduler.

The def1ned funct1ons of the system can now exist as

_strings remembered by' a history process. Both the

interpreter and the user can access these strings, and the

interpreterv can‘lapply them with the ' render pr1m1t1ve

Consequently, the user can access the utiltt1es of his

124

choice for.the management of the data and defined func

e The Services of the Interpreter. \\\“,

of his name-space.

~

The inferpﬁeteh will, - in addition to performing the

125

interpretations required by vChapter ‘Three; provide the‘ ‘

following services.

If the stored representat1on is not a suit of chdracters
then a s1ng]e union w111 be performed Th1s a]lows the user

his functions as a suit of strings for ease of

hsion. .

;;S (a) will be de]eted Th1s allows docdméntary

}nts to be 1ncluded 1n the source code

ditional notation and the name-space references,will be

coéyerted to the'appropriate_function inyocgﬁions.

- The oond1t1ona] notatlon P>Q;R will be converted 1nto.an
expression equ1va1ent to IP>.'Q'5'R". Alternate conditional
expressions, such as the para]lel eva]uat1on of a predlcate

, set: foliowed by the parallel evaluation of the consequent

sUb-listing, coold, by convention, be similarly'supported;

y characters OCcurring 'between “matched illumination

‘f%he conventions ‘supported by the interpreter such as the.

126

This ‘support system is general enough to al]ow the

- conceptualization of a complete deve]opment env1ronment As
g/fé exper1ence is‘ gained in the use of the system, many of the
- ’h1gh leve] actlons descr1bed here1n may be replaced by mor.e
‘eff1c1ent low-level 1mplementatlons but the high- levet

mode] will remain as the conceptual view of the system

4.2: Review and Conc]usions.

| Many of the convent1onal\ programm1ng 1anguages today
attempt to prov1de the ‘user with all the poss1b1e features'
that he could require.: ' As ‘a resu]t 'these vlanguages have
becomev-garganfuan monsters, capab]e of devour1ng a student e
»tn"a single'pass Alternately, Iverson s‘ phllosophy of
| | prov1d1ng the ‘minimum necessary Features and a very powerfuI
1 ;\\tpp] for the1r comb1nat1on can prevent unchecked growth ofuiz
N langua/es o Perhaps ' more powerful pr1m1t1ves w111 be~:
prodésed someday, but the features prov1ded by the behemoths -

have clearly outstr1pped the needs of the user

fgd‘v_‘g Modern i procedural vlanguages areﬂ too d1ff1cu1t :to:n)
| understand too d1ff1cu1t to put together _and too d1ff1cult!;i.
‘tov reparr after one of the1r too frequent breakdowns

Instead of encourag1ng the haphazard -speclfrcat1on of@ an

v fIVerson,_K. EL,fpersona1;conversation;hﬁebruary'1989.;d1

N - o
- algorithm via‘expiicit but arbitrary boundary conditions and

~

termination7 cr1ter1a the functional array4processing

127

‘ methodology requ1res carefu] thought before a solution can- .-

_ % expressed with the notat1on *;

Moreoyenz ‘the functional methodojogy results in the

‘specification of a general Valgdrtthm one - in which' the

'Ubundary_.conditibns are determ1ned by the structure of the.
; N‘.data'and'not by a set of arbitrary values. -The use . of

control | structures and the consequent]y tcomplexev'

?

) state transformat1on descr1pt1on of the solut1on 1s ‘largely

)

L avo1ded by the, funct1onal man1pulat1on of an aggregate
data- structure., The 1tem w1se transformatlon of the data by
functions wr1tten for single-item operat1on a]lows the

simple descr1pt10n of the so]ut1on in terms of operat1ons on

A
“the data

~

Largely, this power is due to the ability of the
s | . 1

géneralized‘ arrays to support ‘the properties of a

data- structure that allows ‘the easy conceptua]1i€t1on of the
d

‘effects of. operat1ons on the data. The number of ‘accessible
complexity components required for the comprehension of an'
‘expression is reduced to the knowledge of the structure of

the data and the effect of the primitives on the data. /.

Furthermore expre551ons and the proof of the mean1ng of_

‘an expre551on are greatly 51mp11f1ed w1th the aid of the

Vvtheorems of the funct1onal language.v If a particular .

b

cohposition of a set of functions can be located in a table

of compositions, and an equivalent but simpler composition

‘can be found there, then the simpﬁen compositon’ c¢an be used
in. place of ‘the more complex compOsition. . The simpler
composition may even provide conceptual insjght into the

solution being_rebresented.';

These principles apply to the operators as well as the -

]

functions of the language, so that there are no control
strutures that need be explicitly "accounted for in the

proofs of algori%hm correctness.

Many differént_ genéra]ized-array axiQmatiEatjons and
inte}pretations of generalized-array axioméﬁizations are
poésible. For'exampTe,,instead of the present hieroglyphic
notation that .proveé so convenient - for ~ the abstract
black-board discussion of the axiomat{zgifpn; a keyword or
even context-direéted notation codld be used. As well, the

notion of type as;the typical member of a family could be

extended to allbw something like user-def ined types.'

Cldsses of user-de%iﬁed motes could have typical items

different from those of the>exiStihgﬂarchetypes.

The extension of boolean values to the integers zero and

‘one and the extension of the notion o} boolean values to

typical versus non-typical items is sjmpiy a convenience.

~ The relationship' specifying that a ﬁi]liliter of water is

equal to a cubic éentimeter of water and weighs one gram is

128

another example of a particularly conventient relationship.

o e

- Perhaps the individuals of the theory shou]d be

n-dimensional numbers. Complex nuﬁbers wou]d then be. just
two-dimensional motes. Real numbers would: be" comp lex
numbers with no complex part. - Integers would be real

numbers with no fractional part. Characters could just be

integer indicies into character generating devices.
: A

- Before any of these extenéions-are made, as always, the
power of the‘é ditional features must be weighed against
'fheir practicjéity. Instead of introduéing complex or
rational numbers as motes (with the bequired ‘associated
‘axioms, of course),hthey can siﬁply,be represented as a pair
of real and immaglh;;y.pants or numerator and denominator
values. As the . wusage | patterns stabilize, certain
conventions or standards mayAemerge, but it is not necessary

to pre-specify these standards in the formal system.

This same tradeoff arises in the discussion of the
taggfhg of arrays. Currently, the addresses of the arrays
are brdina]s. Alternéte]y, a mapping between other
‘addresses and ‘these ordinals could be- supported by the
system so .that general 'associative éddressing can be
per formed on axis-location hames. A rainfall “table could,
foF example, have one axis addressed with the numbers Té?O

through 1980 and the other axis addressed with the strings

129

P

'JAN' through 'DEC'. In order to supp?2} such a scheme, an *°

i

C

t

axiomatization would be required. Alternately, the mappings

can be supported by table driven mapping functions, and for

.this conceptualiiation, they are.

A similar tradeoff arises during the consideration of

the mbdifjer problem.! Certain functions have very closely

related relatives, such- as the structural functions on

differentﬁaxes.‘ Perhaps these related functions could be

represented by a family name and a modifier. . On the other

hand, functional versions of these modifiers can be used,

and for this conceptualization, they are.

The functions introduced in Chapter Three do not produce

. t N . .
error messages. .Instead, they always return an array,:

although its value may be [. The suggestion that the [

should have a LISP-like property list on ‘which a functfon‘

could label a detected error has been entertained.

A]ternately, funct1ons which could generate error messages

can be de51gned to return a pair cons1st1ng of the status of

the result and the value of the result. ‘In | this

'conceptualization, they are.

a Iverson, K. . "Operators and Functions," Research

Report RC7091 (#30399) (San Jose: IBM Research

\\H//Dﬁvision 1978), p. 13- 15,

130

Clearly, thereA is room for expansion on these
foundations. The intent;héfein is not, however, to provide
these expansions, but rather to provide a stfong enough
foundation for @ the study of the expansion itself. The

foundations ‘bf the procedural languages were certainly

strong. enough for some. tiMe,.\but they are beginmiﬁg to

crumble under the magnitude of the algorithms curreni1y

being represented.

;,BacKus has suggested that it is the very procedural
languagés themselves that have caused the stagnatfon of
innovative hardware deéign! The procedura]g accent léarned
with the procedural Tlanguages prevénts designers frgﬁ

attempting a more functional solutiqn to their programs.

Perhaps, it is felt, the exposure of functiona1 sQlutiohs to
moré students at éarlier phases 1in their studies will

prevent that accent from being acquired and will eventually

lead to innovative hardware configurations. not centered

around the von Neumann bottleneck.

!

In addition to changes in the hardware itself, advances
in automatic optimization allow functional solutions to be
optimized as they ‘are interpreted. For example, the

i

composition of two functions can be replaced by a single

%

* Backus, J. W., "Can Programming be Liberated..., "

p. 88-90.

131

function which accepts, in addition to its arguments, the
address of a part%Cu]ar item which is reduired. In this
way, items that are neVér used in a'ca]culatioh never need

be calculated. : 24

ol

"‘ In ?APL,. for example, the index function 1 does not
actually generate the set of integers from one to its
argument. - Instead, it generatés a'triple to describe an

arithmetic,progression vector: the first item, incriment,

/ '
and number of items in the vector. In this way addition of -

‘@ constant, multiplication by a Constanf; and the deletion

of]eéding elements can be’handled"by.simply altering‘the
triple. ‘Consequehtly, the 4PL expreséidn (a-1)v1w yié]ds
~the integers from « to w, 'independent of their magni tude,
without actually generating 1w vaers. -The expression in
concebtﬂally simple, aﬁd'fhe automatic optimization of its

implementation yields a‘cdmputationally simple result.

If a notational framework provides no machinery for
explicitly indicatihg the 'delaYed evaluation of the
arguments of‘ a function, the framework is inadequate! For
this,reason,vChurch’s']ambda caiculus delays thé evaluation

of all its arguments until after sUbstitution. The

! Wegner, P., Programming Languages, Informat jon

- Structures,- and Machine Organization, ed. R. W. Hamming

~and E. A. Feigenbaum, (New York: McGraw-Hill Book Co.,
1968); p' -187,' . . . : ' ‘

(€3]

[N

functional framework developed herein prevents this probiem
by allowing evaluation before 'substution (the case for

functions) or after’ substution (the case for operators) .

L3

AlthoUgh the promotion of memorj-leés execution Tis-

usually not respebted, we can see that the provision of. a

message-switching system allows historic-information access
to be treated just like the input-output operation it is.
Eventually, as the mémory—access bottleneck is relieved, the’

access to historic information - will probably become ‘an

inter-process message problem anyway.

The author has recently "completed a vcommercial
applicaton using a functiohal form of APL, A translation
system maintains the functional text and generates the

equivalent 4PL functions. The translation system is written

in iteself. A project planning tool of about the same

133

magnitude as the translation system was then devéloped.»~f

Together, this effort represents .about' two hundred 4PL
- functions averaging ~about ‘eight lines translated from

twelve. This represents~abouf 1600 APL-eXpressidns.

¥

The plannihg tool thk the author only a few man-weeks

to complete. The customer obtained the system quickly. The.

system was not expensive to develop and, in the planning

environment, is not expensive to operate. The system is .

very friendly to the user. No modyle is more than a dozen
_or two.lines, including-all documentation. And of course,
- N Q -

\

\

Y

the system is completely modular and heirarchical.

This planning tool illuétrates the feasébilify of the
functional approéch. The' largest problems encnuntered_in
its development were the data-structUre"»and' “operator
limitations imposed by APL. These are just the problems

thatihave,béen addressed in this thesis.

Ihis fnnctional notation for handling generalized arrays
is, as can be seen from the above discussion, only in its

infancy. - Neverthe]ess,'the‘resUlts'that aré‘being obtained

.are clear indications that many of the not1ons which More'

and BacKus have captured in the1r inspirations are sound.

When arguments were originally. being made: for the

reduction of ‘the use of expl1cwt branch1ng in procedural

~languages, opponents of the proposal ‘v1gorously protested

the 1mmag]ned ' loss of brevity in representation. ‘and |

efficency in execution. Experiénce has shown, however, that
without the complexity' reduction that accompanies - the
branching reduction, large | representations cannot be

comprehended at all. ' o

Dpponents of the notions developed in this thes1s

‘present a svm11ar argument when faced with the 1oss of their

familiar procedural tools, but their concern is mmsp]acedo

for the same reasons..
) [

134

The practice of first developing a clear and
precise definition of a process without regard to
~efficiency, and then using it as a guide and a test -
in exp]oring equivalent processes possessing: 'otheru
characteristics such as greater efficiency, is very
common = «in mathematics - It is. a wvery fruitful -
practice. which . should not be blighted by premature’
emphaSis on’ effiCiency in compter .execution’.’

s 3

There Will aiways be room for any technique that can ‘be“,
used to so]ve a prob]em Situations which need the fineness;

- of description characteristic of -th procedurai languagee}'

135

and item- Wise data structures may always exist‘ but there is o

[

no doubt that 51tuations which reqUire «%hee power' of thev

generalized arrégz—;hd_the functional decriptions do now>

exist.

- In particu1ar,'a proceduraiiform tends'to‘restriot ones

intuitive grasp of"awproblem;-and~so is partioulariy poor

- for the solution of. comp]ex prob]ems and for ‘the teaching of, .

the concepts' of computing SCience A procedurai,soiution’
should only be attempted once the‘ performance off,~ap
. functional solution shows. its neceSSity A procedural mode 1

should only be taught to ;students who have grasped the

concepts as exposed‘by a functional mode]r |

o Iverson K. E., "Notation ae.a Tool” of Thought,” 1979
ACM Turing Award Lecture, Communlcatlons of the. ACM 23
8(August 1980):444-465 ,

"Bibliography'

,‘Backus,;qgraW;;”"Can Programm1ng be L1berated from Its von
| Neumann' Style7. A Funct1ona1 Sty]e and Its Algebra of}
Programs, _‘1978 ACM Tur1ng Award Lecture, ‘Research
Report Rd2234 30357)4/25/78 (Sanh_dosai' iéM Researoh
Laboratory, 1978) | . O

K_Berke {P.; "Data Des1gn w1th Array Theory," TeChnical Report
r G320 2123 (Cambr1dge IBM So1ent1flc Cénfer,'Uuly 1978)

":yrBérKe‘ P., "Tables Fi]és and Relat1ons in Array Theory.

Technlcal Report G320- 2122 (Cambrldge IBM Scientific
' Center duly 1978) | ‘ \

‘Bufge[-w;._H Recursrve Progqammlng Technlques (Reading,

| Mass- Add1son Wesley Inc. 1975}

Chorch;lA;, The ‘CalCuIi,,of' Lambda-Conversion, Annals of
Mathematics Studies, Number Six, (Princeton: Princeton .

“University Press, 1941) o
i . B) ' : "“\\‘
Dolotta, T. A., Haight, R. C., and Mashey, J. R.,

Progr-anmer’/s" Workbench," The Bell SyStem' Tec hic
Journal 57 '(Part 2), &(July- August 1978)

Easwaran, K. P., Gray, J.. N., et .al} \\Wmar ons of
Consistency “and Pradicate Locks in a Database System, "
~Communicat ions of the ACM 19, 11(1976) |

‘v,

- 136 -

Ghandour, Z. and Mezei, J., "Generalized Arrays, Operators .

and Functions," IBM Journal of Research and Development

17, 4(1973) B N

Gull, W. E. and Jenkins, M. A., "Recursive Data Structures

In APL,"lCommuniCatfons of the ACM 22,‘2(aanua5y.1979)

| Haney, Frederick M »: '‘Module- Connect1on Ana1y51s——A Tool for
- Schedu]1ng Software Debugg1ng Act1v1t1es tnj the .Fa]J
Joint Computer . Conference, (Montva]e, N:' J.: AFIRS
Press, 1972) |

fHofstadter; D. R., Godef, Escher, Bach: = an vEternal Golden

Braid, (New York: Basic Books Inc., 1979)

| ~

Honig, W. L. and Carlson, C. R., “Toward.An Understanding'Of
(Aotual) Data Strudturee,“ The Computer dournal',Qf,
2(May 1878) R

| Iverson, -K.,‘E.,/ Notat1on as a Toot of Thought " 1979 ACM

Turlng Award Lecture Communlcatlons of the ACM 23,

4

8(August 1980)

e

Iverson' K. - E., Dperators and Funct1ons," Research Report

RC7OQ1 (#30399) (San Jose: IBM Research Division, 1978)

‘Iverson R: E:,-/"The Role of Operators tn CAPL," ACM-

STAPL/SIGPLAN Proceedlngs APL79 ConfePence (May 1979)

'ﬂKleeneJ s C, Intnodactionmté’MétamathematiCS,;(Amsterdam:
“North-Holland Publishing Co., 1952)

137

*138

Lathwell, R. H., "System Formulation and APL.FShared‘
Variables," IBM Journal of Research and Development '17,‘

4(July 1970) -

Leavenwoéth, B. M., and Sammetr‘d.'ﬁ,f “An DverQiew of
| Nonprocedural Languages, Jin ProCeedings of a Sympos1um“
1 on Very H1gh Level Languages -ACM SIGPLAN Notlces 9
4(Apr11;1974) |

‘McCarthy, ‘J., "Recursive Functions of’.Symbblic ;Epressionsqf
. and - their. Computation by Machine, Part 1.°

Communciations of the ACM 3, 4(April'1960)’ ‘

Miller, George A., "The Magical Number'Seven,“PIUs or .MinUS‘:
-~ Two: Sdme " limits -on Dpf Capacity’ for _ProcesSing'

' Information," The Psychological Review 63, 2(March 1956)

Miller, James G., Living Systems, (New York: McGraw-Hi 11

" Book Company, 1978)

M1nsky, Mf, Computatlon anlte and Inflnlte Machlnes

(London gB%ent1ce Hall Internat1onal Inc., 1972),

3

More, T., "A Theory of Arrays with}'Aablications' to Data -
‘Bases," Technical Report G320-2106, (Philadelphia, IBM

Scientific Center, May 1973) . ST

\
More, T., "An Interactive Method .for Algebraic Proofs,”
Technical Report 320-3005, (Phiiadelphia, IBM Scientific
Center, September 1971) T | .

:7Ax1oms and Theorems for a Theory of Arrays IBM _

Pl of Research and Development 17, 2(March 1973)

e

Jiresses, and Paths,”. ACH- STAPL/SIGPLAN PPoceedlngs
PL79 Conference, (May 1979) |

 Mord TT.{ "NoteSlon the Axioms for a- Theory *of ,Arbays,"

S entTFTC Cent‘er, May 1973}

More,

T, Notes on the Development of a Theory of Arhayst"
~ Tollcal Report 320- -3016, (PthadeTphla IBM Scientific

Cdfiter, May ‘978T-~'

-f.Moref | T.,} "dn .the Composition of Ahray-TheoretTCI
| Opebations " Technlcal Report G320- 2113 (Cambridge: IBM
SC1ent1f1c Center May,1976)

,}Moﬁe" T., The Nestedfﬂectangular Array as a Model of: Data,
| ACM‘STAPL/SIGPLAN Proceedlngs APL79 Conference (May
- 1979) o

More;‘T;;i"Types'and"Prototypes ‘an a Theory of Arrays,"
Technical Report 320-2112, (Cambridge, IBM Scientific"
Center, May 1976) | |

Post, Emil., "Formal Reduct1ons of the General Comb1nator1al
- Decision Problem," American do_unnal of Mathematlc-s
65(1943) | PR

ihhnical' Report - G320-3017, (Philadelphia: IBM ™.

AN

139

Y 7Nested. ReotanguTar Arrays for Measures,g/g;ﬁ'

10

‘Qu1ne ?RW; V.' Un1f1catlon'.of Un1verses in. Set Theory, L
dournal of' Symbollc Loglc 21, (1956) | ’
thchfe,"DL?’M;ﬁ_'ffThé‘ NI ‘Time—Sharing;f‘systemé A
 Retrospective,” The Bell System Technical Journal 57,
6(July- August 1978) R L
‘éeHWartz ‘dacob Tf; On Programmlng An Interm Report on the |
7-v“SET PFOJeCf (New YorK ' Courant“,,lnstwtute ofe.
Mathemat1ca1 Sc1ence revised 1975) - ‘
Y~Sim6n' Herbert‘- ~The Sc:ences of_ifthé” Artificial,
“.'g_ (Cambr1dge Mass f The M,IHT. Pressr,fgsg)' |
’-SUppesr P., ijomatie’}'Set‘ Thebnyﬂe?(New York: Dover iy
Pub}ications Inc., 1972), . |
EWe T, P., Programmlng Languages Informatign Structures,
- nd Machlne Organlzatlon ed.g"R.-‘w. Hamming and
ﬁ; A, Felgenbaum (New York: McGraw H111 Book Co., 1968)‘
N - / ‘A ; .' } . . ‘ o » ‘ ! ..
.1Wiedman"Clark o Problems with Order of Execution,”

-
Unlver31ty Comput1ng Center. Graduate Research Center ‘

Un1vers1ty of Massachusetts. Amherst, Mass,

z Winggrad;' : Terry,, - “Beyond‘ - Programming . Languages, "

. Communciat ions of‘the‘ACM‘zz,'7(uuiy 1979)

WUTf}r W. A, '“Spme nThoughts on the Next Generatlon of

Programming Lahguageslh 1n Perspectlves of . Computer o
Scrence, ced. A. K dones, (New York Acagemvc Press, |

1977)

