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Abstract

The class of finite mixture models is widely used in many areas, including

science, humanities, medicine, engineering, among many others. Testing ho-

mogeneity is one of the important and challenging problems in the application

of finite mixture models. It has been investigated by many researchers and

most of the existing works have focused on the univariate mixture models,

normal mixture models on the mean parameters only, and normal mixture

models on both mean and variance parameters. This thesis concentrates on

testing homogeneity in multivariate mixture models, scale mixtures of normal

distributions, and a class of contaminated normal models.

We first propose the use of the EM-test (Li, Chen, & Marriott, 2009) to

test homogeneity in multivariate mixture models. We show that the EM-test

statistic has asymptotically the same distribution as the likelihood ratio test

for testing the restricted mean of a multivariate normal distribution given

one observation. Based on this result, we suggest a resampling procedure to

approximate the p-value of the EM-test.

Scale mixture of normal distributions, i.e., mixture of normal distribu-

tions on the variance parameters, has wide applications. However, an effective

testing procedure specifically for testing homogeneity in this class of mixture

models is not available. We retool the EM-test (Chen & Li, 2009) for testing

homogeneity in the scale mixture of normal distributions. We show that the

retooled EM-test has the simple limiting distribution 1
2
χ2

0 + 1
2
χ2

1.

Large-scale hypothesis testing problem appears in many areas such as mi-

croarray studies. We propose a new class of contaminated normal models,



which is a two-component normal mixture model with one component mean

being zero and different component variances, and can be used in large-scale

hypotheses. We further design a new EM-test for testing homogeneity in this

class of mixture models. It is shown that the new EM-test statistic has a

simple shifted 1
2
χ2

1 + 1
2
χ2

2 limiting distribution.

In all the three scenarios, extensive simulation studies are conducted to

examine whether the limiting distributions approximate the finite sample dis-

tributions reasonably well and whether the EM-tests have appropriate power

to detect heterogeneity in the alternative models. To demonstrate the appli-

cation of the proposed methods, several real-data examples are analyzed.
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Chapter 1

Introduction

1.1 Finite Mixture Modeling

In this thesis, we contribute to testing homogeneity in finite mixture models,

i.e., testing if the data come from a homogeneous or heterogeneous popula-

tion. Before moving to the details, we give a general introduction and provide

definitions about finite mixture models in this section.

1.1.1 General introduction

The concept of finite mixture modeling can be dated back to more than one

hundred years ago. In 1894, Professor Karl Pearson used a mixture of two

normal distributions to model the heterogeneity in the crab data (Pearson,

1894). After that, finite mixture models have been widely used in many areas

involving statistical modeling such as science, humanities, medicine, engineer-

ing, and so on. Comprehensive reviews can be found in Titterington, Smith, &

Makov (1985), Lindsay (1995), McLachlan & Peel (2000), Schlattmann (2009),

Zucchini & MacDonald (2009) and references therein.
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In general, finite mixture models are called for if several subgroups of data

are mixed together but the group label for each observation is unobserved,

missing, or unknown due to some other reasons. In some cases, we may have

prior knowledge on the the number of subgroups. In this situation, our in-

terest is to recover the group labels and to estimate the proportion of each

subgroup. For example, in microarray studies, we observe the gene expres-

sion levels of a large number of genes of both healthy individuals and patients

with a certain disease. The purpose is to identify those differentially expressed

genes in two samples. A t-test often serves this purpose. To account for the

multiple hypothesis testing issue, geneticists favour the notion of controlling

the false discovery rate (Benjamini & Hochberg, 1995). Among many recipes

for controlling this rate, Efron (2004) used a finite normal mixture to clas-

sify the genes into the null and alternative subgroups based on the z-scores

derived from the individual t-tests. A mixture of two normal distributions is

often used to model the z-scores due to the existence of null and alternative

subgroups (McLachlan, Bean, & Jones, 2006; Dai & Charnigo, 2010). Based

on this model, we can estimate the proportion of the differentially expressed

genes and calculate the probability that a given gene is differentially expressed

in two samples.

More often in practice, the number of groups can not be given by externally

existing information. Sometimes, we even do not know whether the mixture

structure truly exists. In this scenario, a first and foremost step is to estimate

the number of groups.

In the following, we give two examples which illustrate the wide applica-

tions of finite mixture models.

Example 1.1. (Crab data) The crab data, collected by a biologist Professor

2



Walter Weldon, consist of the forehead breadth to body length ratios for 1000

crabs sampled at Naples. Weldon (1892) noticed an obvious asymmetry pattern

in the histogram of 1000 ratios (See also, McLachlan & Peel, 2000, pp. 3,

Fig. 1.1). He suspected that there may exist evolutionary divergence of crab

species, which well explains Pearson (1894)’s motivation of using a mixture of

two normal distributions to model the crab data.

Example 1.2. (Emergency department visit data) It is important to

monitor and study the patient flow in a certain hospital for patients, medical

care staff, and the hospital administrators. The patient flow in hospital emer-

gency department (ED) is mainly represented by the patients’ bed occupancy

time. Patients visit the ED for different reasons; some come for acute care,

some for rehabilitation, and some for long-term-care. Due to such a difference,

the occupancy time in ED may not be reasonably modeled by a homogeneous

distribution such as exponential distribution (Harrison, 2001). Instead, a mix-

ture of two or three exponential distributions is thought to be more suitable,

given the presence of acute care, rehabilitation, and possible long-term-care

patients (Harrison & Millard, 1991; Li & Chen, 2010). A question of practi-

cal importance is the existence of the patient subgroups. If they exist, what is

the number of patient subgroups? Obviously, this is a typical example for the

second situation we discussed above.

1.1.2 Definitions

In last subsection, we illustrate the use of finite mixture models in different

areas. In this subsection, we give formal definitions of finite mixture models

and the identifiability in the finite mixture model context. We further define

3



some notation that are used throughout the thesis.

Finite mixture models can be formulated with an incomplete-data struc-

ture. Denote X1, X2, . . . , Xn as a random sample of size n. For each random

variable or vector Xi, we define an associate group-label vector Zi of dimen-

sion m. The jth element Zij of Zi is defined to be one or zero, depending on

whether Xi is from the jth group or not. Let f(x; θ) be a density function

from the parametric distribution family {f(x; θ)|θ ∈ Θ ⊆ R
d, d ≥ 1}.

Suppose Zi independently and identically follows a multinomial distribu-

tion with size 1 and m categories with corresponding probability vector being

(α1, α2, . . . , αm)τ such that αj ≥ 0 and
∑m

j=1 αj = 1. Precisely,

Pr{Zi = zi} = αzi1

1 αzi2

2 · · ·αzim

m ,

where zi = (zi1, . . . , zim)τ . Further we assume that X1, X2, . . . , Xn are condi-

tionally independent given Z1,Z2, . . . ,Zn with conditional density function:

f(xi|zij = 1) = f(xi; θj).

Under this formulation, the marginal distribution of X1, X2, . . . , Xn is a m-

component finite mixture model:

m∑

j=1

αjf(x; θj). (1.1)

Let Ψ be the cumulative distribution function with m support points in Θ

4



such that

Ψ(θ) =

m∑

j=1

αjI(θj ≤ θ).

Then the finite mixture model in (1.1) can be further written as

f(x; Ψ) =

∫

θ∈Θ

f(x; θ)dΨ(θ) =
m∑

j=1

αjf(x; θj). (1.2)

In (1.2), f(x; θ) is called the kernel or the component density distribution;

Ψ(θ) is the mixing distribution; m is the number of components in, or the order

of, the finite mixture model; the weights αj , j = 1, 2, . . . , m are the mixing

proportions; and θj , j = 1, 2, . . . , m are the mixing parameters or component

parameters.

In Example 1.2, Li & Chen (2010) suggest that the following exponential

mixture model is the most suitable one to model the ED data:

f(x; Ψ) = α1θ1e
−θ1x + α2θ2e

−θ2x + α3θ3e
−θ3x, x > 0.

In this mixture model, the component density distribution f(x; θ) is the prob-

ability density function of the exponential distribution with rate θ; the order

m = 3; the mixing distribution Ψ(θ) is given as

Ψ(θ) =

3∑

j=1

αjI(θj ≤ θ).

We now define an important concept associated with finite mixture models

– identifiability. Identifiability of parameters in general models means that in

a parametric distribution family, the same distribution infers the same set of

5



parameters. In other words, different sets of parameters must define different

distributions in that family. The identifiability in finite mixture models is

similarly defined, but allows permutations among the component parameters.

Definition 1.1. (Identifiability) Let f(x; Ψ) =
∑m

j=1 αjf(x; θj) be a mem-

ber of the parametric family of finite mixture models. This family of mix-

ture models is defined as identifiable if for any two distributions f(x; Ψ) and

f(x; Ψ∗),
m∑

j=1

αjf(x; θj) =

m∗∑

j=1

α∗
jf(x; θ∗j ),

infers that m = m∗, (α1, . . . , αm) = (α∗
1, . . . , α

∗
m), and (θ1, . . . , θm) = (θ∗1, . . . , θ

∗
m)

after permutations of the component labels.

The identifiability of finite mixture models has been well studied in the

literature. The aforementioned finite mixture of normal models in Example

1.1 and finite mixture of exponential models in Example 1.2 are both shown

to be identifiable (Teicher, 1963). We refer to McLachlan & Peel (2000, pp.

26–28) and Charnigo & Pilla (2007).

We finish this section with some discussions. In applications, the order m

in (1.2) may not be known in advance. Sometimes we even do not know if the

data come from a homogeneous (m = 1) or heterogeneous (m > 1) population.

This thesis mainly concentrates on testing homogeneity, i.e., testing m = 1 in

some finite mixture models. In the next section, we first review the inference

procedures on the order of a finite mixture model, which include testing m = 1

as a special case. In Section 1.3, we justify the importance of testing m = 1

and present our contributions and the organization of the thesis.

6



1.2 Inference on the Order of a Finite Mixture

Model

In the application of finite mixture models, the order m is a crucial parameter.

From the theoretical point of view, if the used order is larger than the true

order, the optimal convergence rate of the mixing distribution can only be

at most n−1/4, instead of n−1/2 (Chen, 1995). In real applications, the order

often has important scientific implications, see Chapter 6 of McLachlan & Peel

(2000), Li & Chen (2010), and Chen, Li, & Fu (2012). More specifically, in

Example 1.1, the order of the normal mixture model represents the number of

crab species at Naples. In Example 1.2, the order of the exponential mixture

model is the number of patient subgroups in the ED. Another enlightening

example in statistical genetics is presented below.

Example 1.3. (Genotype detection) The phenotypes that display contin-

uous or quantitative variation in human population are decided by genes and

slightly affected by the environment. In the simplest case, the phenotype is

decided by a gene with two alleles A and a. There are three genotypes AA, Aa

(equivalent as aA), and aa that one individual can possess. Suppose the phe-

notypes associated with individuals possessing the three different genotypes are

distributed as N(µAA, σ2
AA), N(µAa, σ

2
Aa), and N(µaa, σ

2
aa) respectively. Here,

N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Then

the finite normal mixture model can be applied to model the population pheno-

type distribution (Schork, Allison, & Thiel, 1996; McLachlan & Peel, 2000).

The order m = 1 represents the proposition that the hypothesized major gene

does not exist; the order m = 2 implies that there are two different phenotypes

and the major gene is dominant; the order m = 3 means that the major gene is

7



additive; the order m > 3 tells that there may exist multiple influential genes.

Due to the importance of the order in the application of finite mixture

models as illustrated in the above examples, determining the order (also known

as the order selection problem) is a very important problem in the mixture

model area. In recent decades, there have been considerable developments on

the order selection problem. The major procedures include: (1) information-

based approaches; (2) penalized distance based approaches; (3) penalized log-

likelihood based approaches; (4) fully Bayesian approaches; (5) hypothesis

testing based approaches. We briefly review these five types of procedures in

the following five subsections.

1.2.1 Information-based approaches

The information-based approaches mainly consider Kullback-Leibler (KL; Kull-

back & Leibler, 1951) information (Akaike, 1973, 1974; Ishiguro, Sakamoto,

& Kitagawa, 1997; Pan, 1999; Smyth, 2000; Miloslavsky & van der Laan,

2003; Windham & Cutler, 1992; Bozdogan, 1990, 1993), Bayesian informa-

tion (Schwarz, 1978; Raftery, 1996; Roberts et al., 1998; Ishwaran, James, &

Sun, 2001; Frühwirth-Schnatter, 2004), and classification-based information

(Biernacki & Govaert, 1997; Celeux & Soromenho, 1996; Biernacki, Celeux, &

Govaert, 1998).

The Kullback-Leibler information measures the distance between two den-

sity functions f(x; Ψ) and f(x; Ψ̂) in terms of

KL(f(x; Ψ), f(x; Ψ̂)) = Ef(x;Ψ) log{f(X; Ψ)/f(X; Ψ̂)}

= Ef(x;Ψ) log f(X; Ψ) − Ef(x;Ψ) log f(X; Ψ̂). (1.3)

8



Here Ψ̂ is the estimator of Ψ for a given order. Minimizing the KL distance

of the true model and the fitted model is a natural way of model selection. In

(1.3), there are two terms, only the second term −Ef(x;Ψ) log f(X; Ψ̂) is affected

by the fitted value Ψ̂. Thus, minimizing KL(f(x; Ψ), f(x; Ψ̂)) is equivalent to

maximizing Ef(x;Ψ) log f(X; Ψ̂), which is the expected log fitted density. A

simple estimator of the expected log fitted density is

1

n

n∑

i=1

log f(xi; Ψ̂) =
1

n
ln(Ψ̂), (1.4)

which uses the empirical distribution function to calculate the expectation.

Here ln(Ψ) is the log-likelihood function of Ψ for the given data. However,

this approximation often overestimates the expected log fitted density. Let

F (x; Ψ) be the cumulative distribution function of f(x; Ψ). To deal with the

bias b(F ) of (1.4) as an estimator of the expected log fitted density, several

different approaches are proposed in literature. These different approaches

lead to different model selection criteria.

The Akaike information criterion (AIC; Akaike, 1973, 1974), is based on

the fact that the bias equals d asymptotically, where d is the total number of

parameters in the model. In the context of order selection, the AIC criterion

selects the order that minimizes

−2ln(Ψ̂) + 2d.

In this formula, Ψ̂ is the maximum likelihood estimate (MLE) of Ψ, and d is

the number of free parameters under the given order. In late 1990s, the bias

term was proposed to be estimated using bootstrap (Efron, 1979) by Ishig-

9



uro, Sakamoto, & Kitagawa (1997) and Pan (1999). The Efron (bootstrap)

information criterion (EIC) selects the order that minimizes

−2ln(Ψ̂) + 2b(F̂n).

Here, b(F̂n) denotes the nonparametric bootstrap bias given by B bootstrap

samples. Another bias correction approach proposed by Smyth (2000) is via

cross-validation. This cross-validation-based information criterion (CVIC) uti-

lizes v-fold cross-validation (v ≥ 1) to estimate the expected log fitted density.

The CVIC was further developed by Miloslavsky & van der Laan (2003). The

minimum information ratio criterion (MIR; Windham & Cutler, 1992) and

the informational complexity criterion (ICOMP; Bozdogan, 1990, 1993) also

stemmed from the KL information minimization approach.

The Bayesian information criterion (BIC; Schwarz, 1978) is developed un-

der the Bayesian framework. The objective function to be minimized is

−2ln(Ψ̂) + d log n,

which is equivalent to maximizing the leading term of the posterior probability

of a given model. Although the BIC is derived under the certain regularity

conditions, which are not satisfied by finite mixture models, it is still widely

used to select the order of a finite mixture, see Fraley & Raftery (1998), Ler-

oux (1992), Roeder & Wasserman (1997), Campbell et al. (1997), Dasgupta &

Raftery (1998) and reference therein. On the basis of the Laplace’s approxima-

tion to the posterior probability of a given model, Raftery (1996) proposed the

Laplace-Metropolis Criterion (LMC). Unlike the technique used in the BIC,
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the LMC used the simulated posterior replicates of Ψ to calculate the poste-

rior probability. The Laplace-Empirical Criterion (LEC) is close to BIC and

LMC. The only difference is that the posterior probability is approximated by

utilizing the empirical information matrix, see Roberts et al. (1998). Other

similar methods include weighted Bayes factor method with decomposition of

the posterior probability for a given model (Ishwaran, James & Sun, 2001)

and the Bridge sampling techniques (Frühwirth-Schnatter, 2004).

The classification-based criteria concentrates on the notion of classification

likelihood, which is referred to as the complete-data likelihood in the EM

framework. Suppose that X1, . . . , Xn is a random sample from f(x; Ψ). With

the notation defined in Section 1.1.2, the classification log-likelihood (or the

complete-data log-likelihood) is given as

lc(Ψ;Z1, . . . ,Zn) =
n∑

i=1

m∑

j=1

zij{log αj + log fj(Xi; θj)}. (1.5)

The posterior probability of the observation Xi belonging to the j-th compo-

nent is defined as

τij = τj(Xi; Ψ) =
αjfj(Xi; θj)∑m
k=1 αkf(Xi; θk)

.

With the MLE of Ψ, we estimate τij as:

τ̂ij = τj(Xi; Ψ̂), i = 1, 2, . . . , n, j = 1, 2, . . . , m.

Replacing zij and Ψ in lc(Ψ;Z1, . . . ,Zn) in (1.5) by τ̂ij and Ψ̂, respectively, we
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have

lc(Ψ̂;Z1, . . . ,Zn) = ln(Ψ̂) +
n∑

i=1

m∑

j=1

τ̂ij log τ̂ij . (1.6)

In the context of classification, negative of the second term on the right

hand side in (1.6) is called the entropy EN(τ̂ ) of the fuzzy classification ma-

trix τ̂ = (τ̂ij)n×m. Based on (1.6), Biernacki & Govaert (1997) proposed the

classification likelihood information criterion (CLC), which minimizes

−2ln(Ψ̂) + 2EN(τ̂ ).

Other classification-based criteria include the normalized entropy criterion

(NEC; Celeux & Soromenho, 1996) and the integrated classification likelihood

(ICL; Biernacki, Celeux, & Govaert, 1998). The detailed description and dis-

cussion can be found in McLachlan & Peel (2000) and reference therein.

1.2.2 Penalized distance based approaches

Penalized distance based approaches use the distance between the fitted mix-

ture model with a certain order and the nonparametric estimate of the pop-

ulation distribution. In literature, there are several penalized distance based

methods. Different methods use different measures of distance or different

penalty functions. We review three of them in details here. Other methods

use similar ideas and can be referred to the reference therein.

Chen & Kalbfleisch (1996) proposed adding a penalty term
∑m

j=1 log αj to

the distance measure and then choosing the model by minimizing the penalized

distance. It is shown that the estimated order is strongly consistent under

some regularity conditions. In James, Priebe, & Marchette (2001), the order
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selection procedure in normal mixture model was suggested by minimizing

the penalized KL distance. The fitted model is the convolution of a normal

distribution and a finite normal mixture distribution with a given order. They

showed that the estimated order has almost sure convergence towards the true

order. Another approach was proposed by Woo & Sriram (2006, 2007), which

minimizes the penalized Hellinger distance. Through simulations, this method

is shown to be robust and perform well under model misspecification.

1.2.3 Penalized log-likelihood based approaches

The third important stream of the order selection procedure is based on the

penalized log-likelihood function. The AIC and BIC can also be regarded as

two approaches in this class. Under some regularity conditions, Leroux (1992)

proved that the AIC and BIC do not underestimate the true order almost

surely. Keribin (2000) further showed that BIC can consistently estimate the

order. More recently, Chen & Khalili (2008) suggested adding two penalty

terms to the log-likelihood function. One of the penalty is to prevent any of

the mixing proportions from being too close to zero. The other penalty is

to prevent fitting a mixture model whose sub-populations only differ slightly.

Under some regularity conditions, the estimated order is strongly consistent.

Two other penalized log-likelihood approaches focusing on the normal mixture

model were proposed in Fujisawa & Eguchi (2006) and Huang, Peng, & Zhang

(2013) respectively.
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1.2.4 Fully Bayesian approaches

In the literature, there are two main types of Bayesian approaches for selecting

the order a finite mixture model. The first type is to compute the posterior

probability for all possible orders and then select the order with the largest

posterior probability. The challenging part is the computation of the posterior

probability. This type of Bayesian approach has been already reviewed before

in Section 1.2.1.

The second type is to sample from the joint posterior density

p(m, Ψm|X1, . . . , Xn),

where Ψm is the mixing distribution with the order m. The major difficulty is

that the dimension of the parameters varies with the order m. This violates

the condition of convergence in usual Markov chain Monte Carlo (MCMC)

methods. Carlin & Chib (1995) proposed the product-space MCMC to sam-

ple from mixtures with varying number of components. Richardson & Green

(1997) used the reversible jump MCMC methods developed by Green (1995).

By splitting or combing the mixture sub-populations, the model moves forward

or backward with different order m. Stephens (2000) proposed the birth-death

MCMC. The model parameters are viewed as a point process with each point

representing one mixture component. Then a continuous time Markov birth-

death process is constructed allowing the mixture components to be “born”

and to “die”. Recently, McGrory & Titterington (2007) showed that the vari-

ational approach gives automatic selection of the order in the normal mixture

model. It is shown that the variational approach is a useful alternative to

MCMC.
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1.2.5 Hypothesis testing approaches

The last but not least procedure for selecting the order is the hypothesis testing

based method. In the following, we review the results for testing m = 1, whose

importance will be discussed in Section 1.3. We defer the discussion about

testing the general order to Chapter 5.

The testing of homogeneity or testing m = 1 under finite mixture models

has attracted much attention in the last two decades. The likelihood ratio

test (LRT) is the most extensively studied method for this kind of hypothesis

testing problem. Because of the nonregularity of mixture models, the limit-

ing distribution of the LRT is no longer the χ2–distribution but involves the

supremum of a Gaussian process and is not convenient in practice (Chen &

Chen, 2001; Dacunha-Castelle & Gassiat, 1999; Liu & Shao, 2003). Further-

more, the limiting distribution of the LRT is derived under two undesirable

conditions: (i) the compactness of the parameter space; and (ii) the finite-

ness of the Fisher information in the mixing proportion direction, see Chen

& Chen, 2001, Dacunha-Castelle & Gassiat, 1999, and Li, Chen, & Marriott,

2009. If the parameter space Θ for the mixing parameter is not bounded, the

LRT diverges to ∞ as the sample size n goes to infinity (Hartigan, 1985; Liu,

Pasarica, & Shao, 2003; Liu & Shao, 2003).

The modified likelihood ratio test (MLRT) proposed by Chen (1998) and

Chen, Chen, & Kalbfleisch (2001) can be implemented easily. Under some

mild conditions, the limiting distribution of the MLRT is a mixture of χ2 dis-

tributions when the mixing parameter is univariate. The result of the MLRT

for multivariate mixture models is however not available. Also, the asymp-

totic results of the MLRT depend on the compact parameter space and finite
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Fisher information conditions mentioned above. Later on, Chen & Kalbfleisch

(2005) applied the MLRT to test the homogeneity in normal mixture models

with common and unknown component variance. They found that the asymp-

totic upper bound of the MLRT is the χ2
2 with the exact limiting distribution

remaining unknown.

Charnigo & Sun (2004, 2008) proposed a class of D-test for testing the

homogeneity in finite mixture models. The D-test measures the L2-distance

between the homogeneous model and the alternative mixture model. They

show that the D-test has many computational advantages and nice asymptotic

properties under univariate mixture models and under normal mixture models

with common and unknown component variance (Charnigo & Sun, 2010).

Later on, the D-test has further been applied to the contaminated models with

one component being fully specified, and contaminated normal mixture model

with one component mean being 0 and the common and unknown component

variance (Dai & Charnigo, 2007, 2008, 2010; Charnigo, Zhou, & Dai, 2013). It

is worth noting that the asymptotic properties of the D-test also rely on the

compact parameter space and finite Fisher information conditions.

The EM-test was proposed recently by Chen & Li (2009) and Li, Chen,

& Marriott (2009). Some of the ideas of the EM-test can be traced back

to the MLRT, but it has several additional advantages. Most notably, it is

more widely applicable; for example, when used to test homogeneity under

univariate mixture models, its limiting distribution does not rely on the two

aforementioned undesirable conditions. Subsequently, Chen & Li (2011) pro-

posed a computer experiment based approach to address the tuning parameter

selection issue for the EM-test. The approximation precision of the EM-test is

further improved. Note that all the published results for the EM-test are for
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(i) univariate mixture models; (ii) normal mixture models with common and

unknown component variance; (iii) normal mixture models on both means and

variances.

1.3 Contributions and Outline of the Thesis

Testing homogeneity, that is, testing whether the data come from a homoge-

neous or a heterogeneous population, is one of the most important problems

in the application of finite mixture models. For the sake of parsimony, if

the data come from a homogeneous population, there is no need to apply a

mixture model. In some applications, the order m = 1 is often proposed to

represent some default proposition with scientific significance; the rejection of

which usually leads to propositions of greater interest (Chen, Li, & Fu, 2012).

For instance, in Example 1.1, m = 1 represents the default proposition that

the evolutionary divergence of crab species does not exist; the rejection of this

supports the existence of evolutionary divergence. In Example 1.3, m = 1 rep-

resents the default proposition that the suspected major gene does not exist;

the rejection of this supports the existence of a major gene.

Due to the importance of testing homogeneity in the application of finite

mixture models, this thesis makes further contributions to this area of re-

search. We devote to developing effective hypothesis testing procedures for

three classes of finite mixture models: multivariate mixture models, scale mix-

tures of normal models, and a class of contaminated normal mixture models.

Multivariate mixture models, or mixture models with multivariate mixing

parameters, have a lot of applications. For example, the mixture of multino-

mial distributions has been used to model the heterogeneity in the transformed
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repeated reaction times of 197 children in a developmental psychology study

(Cruz-Medina, Hettmansperger, & Thomas, 2004). Detecting the heterogene-

ity in the reaction times is an important problem with scientific interest. As

we have reviewed in Section 1.2.5, the asymptotic results for most existing

methods concentrate on the univariate mixture models. Motivated by this

example, we propose the use of the EM-test for testing homogeneity in multi-

variate mixture models in Chapter 2. We show that the EM-test statistic has

asymptotically the same distribution as the likelihood ratio test for testing the

restricted mean of a multivariate normal distribution based on one observation.

On the basis of this result, we suggest a resampling procedure to approximate

the p-value of the EM-test. Simulation studies show that the EM-test has

accurate type-I error and adequate power, and is more powerful and compu-

tationally efficient than the bootstrap likelihood ratio test. Two real-data sets

are analyzed to illustrate the application of our theoretical results.

Scale mixtures of normal distributions, i.e., mixtures of normal distribu-

tions on the variance parameters, are widely used to model the heavy-tailed

data. They have a lot of applications in clinical chemistry, image data, fi-

nance, and economics. The testing of homogeneity is one of the fundamental

problem in the application of scale mixtures of normal distributions. Chen &

Li (2009) proposed a class of EM-tests for testing homogeneity in mixtures

of normal distributions on the mean parameters only and in mixtures of nor-

mal distributions on both the mean and variance parameters. An effective

testing procedure specifically designed for the scale mixtures of normal dis-

tributions is lacking in the literature. In Chapter 3, we retool the EM-test

proposed in Chen & Li (2009) for testing homogeneity in scale mixtures of

normal distributions. We show that the retooled EM-test has the simple lim-
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iting distribution 1
2
χ2

0 + 1
2
χ2

1. We also use a computational method to provide

an empirical value for the tuning parameter selection. Simulation studies show

that the retooled EM-test has an accurate size and is more powerful than ex-

isting methods such as the likelihood ratio test and the method in Chen & Li

(2009). To demonstrate the application of the proposed method, we analyze

two real-data examples.

This work of Chapter 4 is mainly motivated by modelling the z-scores de-

rived from the two-sample t-tests (see pp. 2 in Section 1.1.1) in large-scale

hypothesis testing problem. Dai & Charnigo (2010) suggested modelling the

z-scores by a contaminated normal model, which is a two-component normal

mixture with one component mean being zero and the common and unknown

component variances. They further proposed testing the existence of differen-

tially expressed genes by testing homogeneity in the proposed contaminated

normal model. We observe that in many applications, the component variances

may not be the same. One particular example will be given in Section 4.4.

More examples can be found in Efron (2004) and McLachlan, Bean, & Jones

(2006). In Chapter 4, we first suggest modelling the z-scores by a new class of

contaminated normal model. The new model is also a two-component normal

mixture model, in which one component mean is still zero, but two compo-

nent variances can be different. We further propose an EM-test to detect the

existence of the differentially expressed genes by testing the homogeneity in

the new class of contaminated normal models. We show that the EM-test

statistic asymptotically has a simple shifted 1
2
χ2

1 + 1
2
χ2

2 distribution. Exten-

sive simulation studies show that, the proposed testing procedure has accurate

type-I error and adequate powers for detecting the heterogeneity. A real-data

example is analyzed to illustrated the proposed method.
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Chapter 5 includes a brief summary of the thesis and provides some future

works.
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Chapter 2

EM-test in Multivariate

Mixture Models1

2.1 Introduction and Motivating Example

The class of multivariate mixture models has attracted growing attention in

the literature and has applications in genetics, biology, epidemiology, psychol-

ogy, and many other fields. A mixture of multivariate normals is the most

popular statistical model for model-based clustering analysis (McLachlan &

Peel, 2000). A mixture of multivariate Poisson distributions is often used for

multivariate count data, where the incidences of several related events are ob-

served (Karlis & Meligkotsidou, 2007). For example, a mixture of bivariate

Poisson distributions has been used to model the number of two dependent

kinds of claims in automobile insurance (Partrat, 1994), the number of surface

and interior faults of lenses (Karlis & Meligkotsidou, 2007), and the number of

1A version of this chapter has been published. Niu, X., Li, P., & Zhang, P. (2011).
Canadian Journal of Statistics, 39, 218–238.
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parasites in two species of pheasants (Kopocinski, 1999). A mixture of multi-

nomial distributions is useful for categorical data exhibiting overdispersion or

heterogeneity. See Cruz-Medina, Hettmansperger, & Thomas (2004), Morel &

Nagaraj (1993), and Cadez, Smyth, & Mannila (2001) for its applications to a

psychological study, a housing satisfaction study, and marketing, respectively.

More examples involving multivariate mixture models can be found in John-

son, Kotz, & Balakrishnan (1997), McLachlan & Peel (2000), Roos (2003),

Karlis & Meligkotsidou (2007), and the references therein.

In the following, we present a motivating example showing a possible ap-

plication of multivariate mixture models.

Example 2.1. (Reaction-time data) It is well accepted that there are large

differences among individuals, especially children, with regards to their visual,

hearing, neurological, and mental abilities. In developmental psychology, this

different performance is characterized by different probability distributions cor-

responding to a task. The reaction time captures the main characteristic of the

response process. The data come from a reaction-time experiment that studied

normally developing nine-year-old children. Each received two visual stimuli

and indicated by pressing the appropriate key whether the image on the right

was an exact copy or a mirror image of the one on the left. Six repeated

measurements were recorded for each child. The data set is composed of the

reaction time (in milliseconds) for every trial of the 197 children who responded

to all six trials correctly (Cruz-Medina, Hettmansperger, & Thomas, 2004).

As stated in Cruz-Medina, Hettmansperger, & Thomas (2004), the question

of interest is whether the reaction-time data provide strong evidence for the

hypothesis that there are subgroups of respondents, each following a different

reaction-time distribution. Instead of imposing parametric assumptions on the
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reaction-time distribution, Cruz-Medina, Hettmansperger, & Thomas (2004)

suggested dividing the real line into d + 1 nonoverlapping intervals. For each

child, a (d + 1)-dimensional vector is then obtained by counting the number of

measurements from the six trials that fall into each of the d + 1 intervals. If

there are subgroups of respondents with different reaction-time distributions, a

mixture of multinomial distributions is appropriate for modeling the (d + 1)-

dimensional count vectors; otherwise a homogeneous multinomial distribution

is more suitable. Therefore, a testing procedure for homogeneity under the

mixture multinomial distribution will provide the necessary justification.

As we have discussed in Chapter 1, most results of the existing methods for

testing homogeneity can not be directly applied to multivariate mixture mod-

els. In this chapter, we propose the use of the EM-test for testing homogeneity

under multivariate mixture models. We explore its asymptotic properties and

develop software implementing the test for some commonly used multivari-

ate kernels. The software is written in the R language (R Development Core

Team, 2011).

The rest of this chapter is organized as follows. In Section 2.2, we set up

the problem and present the asymptotic results of the EM-test. A resampling

procedure is proposed to approximate the p-values of the EM-test based on its

asymptotic results. In Section 2.3, simulation studies are performed to explore

the type-I error and the power of the test, and to compare the EM-test with

the bootstrap LRT (McLachlan, 1987). Two real-data examples are included

in Section 2.4. For ease of presentation, all the proofs are in the last Section

2.6.
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2.2 Main Results

Suppose X1, . . . , Xn are a random sample of size n from the two-component

multivariate mixture model

(1 − α)f(x; θ1) + αf(x; θ2),

where f(x; θ) belongs to a parametric family of probability density functions,

the mixing parameters θj = (θj1, . . . , θjd)
τ ∈ Θ for j = 1, 2, and the mixing

proportion α ∈ [0, 1]. We aim to test

H0 : α(1 − α)(θ1 − θ2) = 0,

that is, to test whether the data are from a homogeneous model f(x, θ). With-

out loss of generality, we will assume that α ∈ [0, 0.5]. Throughout this chap-

ter, we use θ instead of θ to denote the mixing parameter to emphasize that the

mixing parameter is a vector. In this chapter, the random variables X1, . . . , Xn

can be of dimension one or higher. For simplicity of presentation, we still use

the notation X1, . . . , Xn.

In this section, we first present the EM-test and then investigate its asymp-

totic properties.

2.2.1 The EM-test

We denote the log-likelihood function as

ln(α, θ1, θ2) =

n∑

i=1

log{(1 − α)f(Xi; θ1) + αf(Xi; θ2)}
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and define the modified log-likehood function to be

pln(α, θ1, θ2) = ln(α, θ1, θ2) + p(α).

The penalty function p(α) is a continuous function of α, and it is used to

prevent α from taking a value close to zero. A concrete recommendation for

p(α) will be given in Section 2.3.

Before giving the details of the procedure, we want to highlight the basic

idea of the EM-test. The primary motivation of the EM-test is to gain back

the efficiency lost by the constrained LRT in which the mixing proportion α

is fixed to be α0 ∈ (0, 0.5]. The goal of using the EM-algorithm (Dempster,

Laird, & Rubin, 1977) to update the mixing proportion and other component

parameters is to improve the power of the test. The resulting EM-test statistic

is defined as the maximum of the LRT statistics from several different starting

values of α, and usually a few iterations suffice.

The EM-test procedure is initialized by choosing a finite set of {α1, . . . , αJ} ⊂

(0, 0.5] for α and a positive integer K. An example of {α1, . . . , αJ} is {0.1, 0.3, 0.5}.

Here K is the number of EM-iterations at the time the test is applied.

For each j = 1, 2, . . . , J , compute

(θ
(1)
j,1 , θ

(1)
j,2) = arg maxθ1,θ2

pln(αj, θ1, θ2).

The EM-algorithm or the downhill simplex method (optim function in R) can

be used to search for θ
(1)
j,1 and θ

(1)
j,2 . Let α

(1)
j = αj. The EM-iteration starts

from here.

Suppose α
(k)
j , θ

(k)
j,1 , and θ

(k)
j,2 are available. The calculation for k = 1 has
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been illustrated above. For i = 1, 2, . . . , n, and the current k, we use an E-step

to compute the posterior probabilities

w
(k)
ij =

α
(k)
j f(Xi; θ

(k)
j,2 )

(1 − α
(k)
j )f(Xi; θ

(k)
j,1 ) + α

(k)
j f(Xi; θ

(k)
j,2 )

and then update the mixing proportion α and the two mixing parameters θ1,

θ2 by an M-step such that

α
(k+1)
j = arg maxα

{ n∑

i=1

(1 − w
(k)
ij ) log(1 − α) +

n∑

i=1

w
(k)
ij log(α) + p(α)

}

and

(
θ

(k+1)
j,1 , θ

(k+1)
j,2

)
= arg maxθ1,θ2

{ n∑

i=1

(1−w
(k)
ij ) log f(Xi; θ1)+

n∑

i=1

w
(k)
ij log f(Xi; θ2)

}
.

The E-step and the M-step are iterated K − 1 times.

For each k and j, we define

M (k)
n (αj) = 2{pln(α

(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) − pln(0.5, θ̂0, θ̂0)}

where θ̂0 = arg maxθ pln(0.5, θ, θ). The EM-test statistic is then defined as

EM (K)
n = max{M (K)

n (αj), j = 1, 2, . . . , J}.

We reject the null hypothesis when EM
(K)
n exceeds some critical value of the

limiting distribution presented in the next subsection.
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2.2.2 Asymptotic properties

We first investigate the asymptotic behavior of the EM-test procedure by pre-

senting a result that sheds light on the iteration process.

Theorem 2.1: Suppose that f(x; θ) and p(α) satisfy the regularity conditions

in Section 2.6.1. Under the null distribution f(x; θ0), for each given αj ∈

(0, 0.5] and k ≤ K, we have

α
(k)
j − αj = op(1), θ

(k)
j,1 − θ0 = Op(n

−1/4), θ
(k)
j,2 − θ0 = Op(n

−1/4),

and (1 − α
(k)
j )(θ

(k)
j,1 − θ0) + α

(k)
j (θ

(k)
j,2 − θ0) = Op(n

−1/2).

Note that the iteration changes the value of α by only an op(1) quantity.

This is the crucial property that simplifies the asymptotic theory of the EM-

test.

To present the limiting distribution, we need some additional notation. For

i = 1, . . . , n and 1 ≤ h < l ≤ d, let

Yih =
∂f(Xi; θ0)/∂θh

f(Xi; θ0)
, Zih =

∂2f(Xi; θ0)/∂θ2
h

2f(Xi; θ0)
, Uihl =

∂2f(Xi; θ0)/(∂θh∂θl)

f(Xi; θ0)
,

and

b1i =
(
Yi1, . . . , Yid

)τ

,

b2i =
(
Zi1, . . . , Zid, Ui12, . . . , Ui1d, Ui23, . . . , Ui2d, . . . , Ui d−1 d

)τ

.

For j, k = 1, 2, set Bjk = E [{bji − E(bji)}{bki − E(bki)}
τ ] . Here the expecta-

tion is taken with respect to the true model f(x; θ0) under the null hypothesis.

Furthermore, we orthogonalize b1i and b2i by introducing b̃2i = b2i −
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B21B
−1
11 b1i, which has variance-covariance matrix B̃22 = B22 − B21B

−1
11 B12.

The following theorem presents the limiting distribution of the EM-test.

Theorem 2.2: Assume the same conditions as in Theorem 2.1, and that

α1 = 0.5. Let w = (w1, . . . , wd(d+1)/2)
τ be a zero-mean multivariate nor-

mal random vector with variance-covariance matrix B̃
−1

22 . Under the null

distribution f(x; θ0) and for any fixed finite K, as n → ∞,

EM (K)
n → wτ B̃22w − inf

v
(w − v)τ B̃22(w − v) (2.1)

in distribution. Here

v = (v2
1 , . . . , v

2
d, v1v2, . . . , v1vd, v2v3, . . . , v2vd, . . . , vd−1vd)

τ

consists of the lower triangular elements of the symmetric matrix

(v1, . . . , vd)
τ (v1, . . . , vd).

All the possible values of v form a cone in d-dimensional space.

It should be noted here that the right-hand side of (2.1) is the distribution

of the LRT for testing v = 0 against v 6= 0, based on one observation from the

multivariate normal distribution with mean vector v and variance-covariance

matrix B̃
−1

22 . When d = 1, v = (v2
1) can take only nonnegative values and

therefore the distribution in (2.1) is 0.5χ2
0 + 0.5χ2

1, which is the same as the

result in Li, Chen, & Marriott (2009). Theorem 2.2 extends the result to

d ≥ 2.

The limiting distribution depends on the matrix B̃22. For some kernels, it
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has a simple form. For example, for a multivariate normal kernel MN(θ, Id)

with mean vector θ and known variance-covariance matrix equal to the identity

matrix Id, we have

B̃22 = diag



0.5, . . . , 0.5︸ ︷︷ ︸

d

, 1, . . . , 1︸ ︷︷ ︸
d(d−1)/2



 .

For a d-dimensional multivariate product Poisson distribution MultiPois(θ1, θ2, . . . , θd),

with the density
d∏

i=1

θxi

i e−θi

xi!
,

we have

B̃22 = diag

{
1

2θ2
1

, . . . ,
1

2θ2
d

,
1

θ1θ2

, . . . ,
1

θ1θd

,
1

θ2θ3

, . . . ,
1

θd−1θd

}
,

where diag{·} denotes a diagonal matrix constructed from its argument. As

for the multivariate product Poisson kernel, the calculation of B̃22 may depend

on the value of θ0, which can be estimated by θ̂0.

2.2.3 A resampling procedure

In applications, the limiting distribution is often used to calculate the approx-

imate p-value of the test. However, the limiting distribution in Theorem 2.2

may not have an explicit form when d ≥ 2. To overcome this difficulty, we

propose the following resampling procedure to approximate the p-values of the

EM-test on the basis of its limiting distribution.

Step 0. Calculate B̃22. If necessary, estimate θ0 by θ̂0.

Step 1. Generate M random vectors,
{
w(m), m = 1, . . . , M

}
, from the
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multivariate normal distribution with mean vector zero and variance-

covariance matrix B̃
−1

22 . The appropriate choice of M depends on the

desired precision level.

Step 2. For each vector w(m), calculate the LRT statistic (denoted by

Qm) for testing v = 0 against v 6= 0. That is,

Qm = (w(m))τB̃22(w
(m)) − inf

v
(w(m) − v)τB̃22(w

(m) − v).

Then, {Qm, m = 1, . . . , M} can be viewed as M random observations

from the limiting distribution.

Step 3. Approximate the p-values of the EM-test statistics by

#{m : Qm > EM
(K)
n }

M
.

We have written an R function (R Development Core Team, 2011) to cal-

culate the approximate p-values from the limiting distribution.

2.3 Simulation Studies

2.3.1 Simulation results for the EM-test

We first conduct extensive simulation to check whether the limiting distribu-

tion approximates the finite sample distribution of the EM-test reasonably well

and whether the EM-test has appropriate power to detect heterogeneity in the

alternative models. We use the penalty function p(α) = log(1−|1−2α|), with

K = 2 or 3 iterations, and three initial values of α ∈ {0.1, 0.3, 0.5} to calculate
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the EM-test statistics.

We consider the dimension d = 2 or 3 and two kernels: (i) multinomial

distribution Multinom(m; θ1, . . . , θd+1) and (ii) multivariate product Poisson

distribution MultiPois(θ1, . . . , θd). For each of the four combinations of the

kernel and the dimension, we choose two null models and four alternative

models. The four alternative models are formed by mixing the two null models

with 1−α = 0.5, 0.25, 0.1, 0.05. In total, there are eight null models and sixteen

alternative models. The details of the null models are given in Table 2.1. The

details of the alternative models together with their corresponding Kullback-

Leibler (KL) information with respect to the null model are given in Table

2.2.

Table 2.1: Eight null multivariate mixture models.

No. Model No. Model

N1 Multinom(12; 1/3, 1/3, 1/3) N2 Multinom(12; 1/4, 1/2, 1/4)

N3 Multinom(12; 1/4, 1/4, 1/4, 1/4) N4 Multinom(12; 1/6, 1/3, 1/3, 1/6)

N5 MultiPois(5, 5) N6 MultiPois(3, 5)

N7 MultiPois(5, 5, 5) N8 MultiPois(1, 3, 5)

Table 2.2: Sixteen alternative multivariate mixture models.

No. Model 100KL No. Model 100KL

A1 0.5N1+0.5N2 2.03 A2 0.25N1+0.75N2 1.22

A3 0.1N1+0.9N2 0.34 A4 0.05N1+0.95N2 0.11

A5 0.5N3+0.5N4 2.03 A6 0.25N3+0.75N4 1.29

A7 0.1N3+0.9N4 0.38 A8 0.05N3+0.95N4 0.13

A9 0.5N5+0.5N6 1.22 A10 0.25N5+0.75N6 0.85

A11 0.1N5+0.9N6 0.27 A12 0.05N5+0.95N6 0.09

A13 0.5N7+0.5N8 29.76 A14 0.25N7+0.75N8 23.32

A15 0.1N7+0.9N8 8.11 A16 0.05N7+0.95N8 3.23
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In each simulation, we consider three significance levels, 10%, 5%, and 1%,

and two sample sizes, n = 100 and 200. We compute the null rejection rates

under each of the eight null models based on 5000 repetitions and the powers

under each of the sixteen alternative models based on 1000 repetitions. The

resampling procedure presented in Section 2.3 with M = 10000 is used to

calculate the approximate p-values of the EM-test statistics.

The null rejection rates of the EM-test are given in Table 2.3. We find that

the simulated null rejection rates are quite close to the nominal levels in all

eight selected null models. In Fig. 2.1, we present the histograms of the EM-

test statistic EM
(2)
n based on the 5000 repetitions together with the kernel

density estimates of the limiting distribution based on M = 10000 random

observations from the limiting distribution. We consider four null models N1,

N3, N5, and N7 with n = 200. It is shown that the density estimate of the

limiting distribution matches the finite sample distribution well in all four null

models. Therefore, we conclude that the limiting distribution provides a good

approximation to the finite sample distribution of the EM-test.

The powers of the EM-test are given in Table 2.4. To save space, only pow-

ers at the 5% significance level are reported. In all sixteen alternative models,

the powers of the EM-test are larger than the nominal level and increase as the

sample size increases. We also observe that as the mixing proportion 1−α in-

creases from 0.05 to 0.5, for instance, from Model A4 to Model A1, the power of

the EM-test increases. This is because there is cumulating information about

the heterogeneity. We notice that for some alternative models, such as A3, A4,

A7, A8, A11, and A12, the corresponding Kullback-Leibler information with

respect to the null model is quite small. This explains why the power of the

EM-test is quite low for those models. The large Kullback-Leibler information
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Figure 2.1: Histograms of EM
(2)
n and kernel density estimates of limiting

distribution under N1, N3, N5, and N7 with n = 200 in the multivariate
mixture models.
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Table 2.3: Simulated type-I error rates (%) of the EM-test under null multi-
variate mixture models.

Level=10% Level=5% Level=1%

Model EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n

n = 100

N1 8.9 9.1 9.1 4.4 4.5 4.6 0.9 0.9 0.9

N2 9.4 9.6 9.6 4.7 4.8 4.8 0.8 0.8 0.8

N3 9.3 9.5 9.5 4.8 4.9 5.0 1.0 1.1 1.1

N4 9.4 9.4 9.5 5.0 5.2 5.3 1.1 1.1 1.1

N5 9.0 9.1 9.1 4.4 4.5 4.5 0.8 0.8 0.8

N6 9.6 9.6 9.6 5.2 5.3 5.3 1.0 1.0 1.1

N7 9.3 9.5 9.6 5.4 5.6 5.6 1.0 1.1 1.1

N8 9.5 9.7 9.8 5.4 5.5 5.6 0.9 0.9 0.9

n = 200

N1 9.0 9.1 9.1 4.4 4.4 4.4 0.9 0.9 0.9

N2 9.6 9.6 9.6 4.9 4.9 4.9 0.8 0.8 0.8

N3 8.5 8.6 8.6 4.3 4.3 4.4 0.8 0.9 0.9

N4 9.4 9.5 9.5 4.8 4.9 4.9 0.9 0.9 0.9

N5 9.1 9.1 9.1 4.4 4.4 4.4 0.9 1.0 1.0

N6 9.1 9.1 9.1 4.9 5.0 5.0 1.0 1.0 1.0

N7 9.3 9.4 9.5 4.7 4.7 4.8 1.1 1.1 1.1

N8 9.6 9.6 9.7 5.1 5.1 5.1 0.7 0.8 0.8

of model A16 explains the large power of the EM-test, although the mixing

proportion for the first component is small.

2.3.2 Comparison with the bootstrap LRT

In this subsection, we compare the EM-test with the bootstrap LRT, measuring

the computational time to obtain the corresponding p-value, the type-I error,

and the power. To compare the computational time, we first generate two

random samples of size 100 and 200, respectively, from each of four models,
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Table 2.4: Powers (%) of the EM-test at the 5% significance level under alter-
native multivariate mixture models.

n = 100 n = 200

Model EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n

A1 55.2 55.2 55.2 79.6 79.7 79.7

A2 33.6 33.6 33.6 59.8 59.9 59.9

A3 12.5 12.8 12.8 20.8 20.8 20.8

A4 8.0 8.2 8.2 10.4 10.4 10.4

A5 42.3 42.4 42.4 71.4 71.4 71.4

A6 26.7 27.1 27.1 49.5 49.6 49.6

A7 13.5 13.6 13.7 17.0 17.2 17.2

A8 8.2 8.4 8.4 11.8 11.9 11.9

A9 34.1 34.2 34.2 56.9 56.9 56.9

A10 25.0 25.1 25.1 47.5 47.5 47.5

A11 13.7 13.9 13.9 18.4 18.5 18.6

A12 7.2 7.4 7.4 10.8 10.8 10.9

A13 100 100 100 100 100 100

A14 100 100 100 100 100 100

A15 95.6 95.6 95.6 99.9 99.9 99.9

A16 69.0 69.4 69.4 90.3 90.4 90.5

N1, N3, N5, and N7. For each random sample, we calculate the p-values of

the EM-test statistic using the procedure in Section 2.3 with M = 10000, and

the p-values of the LRT statistic using the parametric bootstrap procedure

(McLachlan, 1987) with a bootstrap size of 500. The computational times

are given in Table 2.5. All the results are obtained using the same computer.

For the EM-test, it takes less than two minutes to obtain the corresponding

p-value for d = 2 and less than three minutes for d = 3. The sample size

does not greatly affect the computational time. For the bootstrap LRT, it is

computationally intensive to obtain the p-value, especially for the multinomial

mixture.
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Table 2.5: Computational time (in minutes) of the EM-test and the bootstrap
LRT in the multivariate mixture models.

n = 100 n = 200

Model EM-test Bootstrap LRT EM-test Bootstrap LRT

N1 1.0 226.8 1.4 571.0

N3 2.2 258.9 2.5 666.4

N5 1.1 9.1 1.1 16.0

N7 2.6 25.3 2.6 46.2

Next we compare the type-I error and the power of the EM-test with the

bootstrap LRT. We consider two null models, N5 and N6, and four alternative

models, A9, A10, A11, and A12. A bootstrap size of 500 is used for the

bootstrap LRT. We compute the type-I errors and the powers of the bootstrap

LRT based on 500 repetitions. The results at the 5% level are reported in Table

2.6. Comparing Table 2.6 with Tables 2.3 and 2.4, we see that the EM-test has

larger power than the bootstrap LRT under A9 and A10 and similar power to

the bootstrap LRT under A11 and A12.

Table 2.6: Simulated type-I error rates (%) of the bootstrap LRT at the 5%
significance level under two null and four alternative multivariate mixture mod-
els.

Bootstrap LRT

Model n=100 n=200

N5 5.0 5.4

N6 6.4 3.8

A9 31.8 48.8

A10 22.4 39.2

A11 12.4 16.6

A12 7.8 10.6
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2.4 Real-data Examples

Example 2.1. (Continued) We now apply the EM-test to the reaction-

time data. Following Cruz-Medina, Hettmansperger, & Thomas (2004), ten

cut points are chosen: 500, 1000, 1200, 1400, 1600, 2000, 2500, 3000, 4000,

and 5000. This leads to eleven intervals that start with [448, 500] and end

with [5000, 7919]. For each child, the six measurements are then transformed

to an eleven-dimensional vector by counting the number of measurements in

each of the eleven intervals. The EM-test is then applied to the resulting 197

eleven-dimensional vectors. Under the null hypothesis, the maximum likeli-

hood estimate is

θ̂0 = (0.0008, 0.0440, 0.0753, 0.1328, 0.1294, 0.2217, 0.1633, 0.0990, 0.0880,

0.0305, 0.0152)τ .

The EM-test statistics are found to be EM
(1)
n = 237.1917, EM

(2)
n =

238.1338, and EM
(3)
n = 238.3934. To generate the random samples from

the limiting distribution, we need to minimize a function in a ten-dimensional

space. To save computational time, the approximate p-values for the EM-test

statistics are calculated based on the resampling procedure with M = 1000

repeated samples, and they are all found to be zero. Thus, the data provide

overwhelming evidence for the existence of subgroups of children, each of which

follows a different reaction-time distribution. The total computational time

for obtaining the EM-test statistics and their p-values is 4.7 minutes.

We next fit a two-component multinomial mixture model and then cluster
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the 197 children into two subgroups according to the posterior probabilities.

Figure 2.2 gives the histograms and kernel density estimates of the reaction

time of the children in the two subgroups. Clearly, the density functions of the

reaction time in these two subgroups are fairly different, which is in accordance

with the EM-test result.

Example 2.2. (Lens-fault data) This example considers the counts of

surface and interior faults in 100 lenses. These data were analyzed with a

multivariate Poisson-log normal distribution (Aitchison & Ho, 1989), which is

a continuous mixture of bivariate product Poisson distributions, and a finite

mixture of bivariate product Poisson distributions (Karlis & Meligkotsidou,

2007).

Karlis & Meligkotsidou (2007) used the Akaike information criterion (Akaike,

1974) to choose the order of the finite mixture and found that a mixture model

is more suitable than a homogeneous model. However, they did not derive a

homogeneity test procedure. For illustration, we applied the EM-test to the

lens-fault data. Under the null hypothesis, the maximum likelihood estimate

θ̂0 = (3.25, 2.93)τ . The EM-test statistics are found to be EM
(1)
n = 31.786,

EM
(2)
n = 31.786, and EM

(3)
n = 31.786. The resampling procedure in Section

2.3 with M = 10000 gives the approximate p-values as zero for all three statis-

tics. Therefore, we have strong evidence in favor of the alternative hypothesis,

that is, a mixture of bivariate product Poisson distributions is more suitable

for the lens data. The total computational time for obtaining the EM-test

statistics and their p-values is 1.1 minutes.
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Figure 2.2: Histograms and kernel density estimates of the reaction time of
the children in first subgroup (upper panel) and in second subgroup (lower
panel).
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2.5 Discussion

Comparing the EM-test with the bootstrap LRT

Both the EM-test in multivariate case and the bootstrap LRT involve resam-

pling procedures to calculate the approximate p-values for the corresponding

test statistics. The difference is that for the EM-test, the random observations

are generated from its limiting distribution; while for the bootstrap LRT, the

random observations are generated from the corresponding finite sample dis-

tribution. The EM-test was shown to be more computationally efficient than

the bootstrap LRT for obtaining the approximate p-values. Moreover, the

EM-test is more powerful than the bootstrap LRT when one of the two mix-

ing proportions in the alternative model is close to 0.5, and it has comparable

power to the bootstrap LRT when one of the two mixing proportions in the

alternative model is close to 0.

Choice of the penalty p(α)

To make the asymptotic results in Theorems 2.1 and 2.2 valid, the penalty

p(α) must satisfy Condition A0 in Section 2.6.1. The penalty p(α) = log(1 −

|1 − 2α|) and the penalty proposed in Chen, Chen, & Kalbfleisch (2001),

p(α) = C log{4α(1−α)}, both meet the requirement. Our empirical experience

shows that both penalty functions can tightly control the type-I error of the

EM-test. However, the EM-test based on the penalty p(α) = log(1− |1− 2α|)

has larger power than that based on p(α) = C log{4α(1−α)} when one of the

mixing proportions in the alternative model is close to 0 or 1. Furthermore,

the penalty p(α) = log(1 − |1 − 2α|) does not complicate the implementation
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of the EM-test. In the M-step of the EM-iteration, the value of α can be easily

updated as follows:

α
(k+1)
j =





min{(n + 1)−1(
∑n

i=1 w
(k)
ij + 1), 0.5}, n−1

∑n
i=1 w

(k)
ij ≤ 0.5,

max{(n + 1)−1
∑n

i=1 w
(k)
ij , 0.5}, n−1

∑n
i=1 w

(k)
ij > 0.5.

More details can be found in Li, Chen, & Marriott (2009).

Choice of the set {α1, . . . , αJ}

In general, the specific choice of the set {α1, . . . , αJ} is not crucial. Our

recommendation is {0.1, 0.3, 0.5}. The updated α-values from either α = 0.3

or α = 0.4 are likely to be close after two iterations. Further increasing J may

not significantly improve the power of the EM-test, which is verified through

the simulation.

Optimization issue in (2.1)

To generate the random sample from the limiting distribution, we need to find

the infimum of a quartic polynomial of v1, . . . , vd, that is,

inf
v

(w − v)τB̃22(w − v)

with v = (v2
1, . . . , v

2
d, v1v2, . . . , v1vd, v2v3, . . . , v2vd, . . . , vd−1vd)

τ . For any given

w, the infimum is greater than or equal to 0 and bounded above by wτ B̃22w.

The downhill simplex method (optim function in R) is used to search for the

infimum. Since the quartic polynomial may have multiple local minimizers,

we suggest using multiple initial values for v1, . . . , vd. In our simulation and
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real examples, we use five randomly generated initial values for v1, . . . , vd.

Further increasing the number of initial values to ten gives the same results.

The global minimizer may not be unique, but this does not complicate the

computation. Our experience indicates that the same infimum value for the

quartic polynomial function can always be found.

Application scope of the asymptotic results

The validity of the asymptotic results in Theorems 2.1 and 2.2 requires that the

kernel function f(x; θ) satisfies Conditions A1–A5 in Section 2.6.1. The kernel

functions satisfying these conditions include the multinomial kernel, multivari-

ate product Poisson kernel, and multivariate normal kernel with a known and

same-component covariance matrix. Unfortunately, the multivariate normal

kernel with unknown covariance matrix and the multivariate Poisson kernel

introduced in Karlis & Meligkotsidou (2007) do not satisfy Condition A5,

a weaker version of the strong identifiability condition introduced in Chen

(1995). If Condition A5 is not satisfied, the mixture model is not strongly

identifiable. Therefore, the best convergence rate n−1/4 for the mixing distri-

bution may not be achieved (Chen, 1995). Further study is needed for this

special class of mixture models.

2.6 Proof

2.6.1 Regularity conditions

The proofs are based on the following regularity conditions for the penalty

function and the kernel density function.

42



A0 The penalty function p(α) is continuous, maximized at α = 0.5, and

approaches negative infinity as α approaches zero.

A1 (Wald′s integrability conditions) (i) E(| log f(X; θ0)|) < ∞; (ii) for suf-

ficiently small ρ and for sufficient large r, E[log(1 + f(X; θ, ρ)] < ∞ for

θ ∈ Θ and E[log(1+ϕ(X, r)] < ∞, where f(x; θ, ρ) = sup
‖θ

′

−θ‖<ρ
f(x; θ′)

and ϕ(x, r) = sup
‖θ‖≥r

f(x; θ); (iii) f(x; θ) → 0 in probability as ‖θ‖ →

∞. Here ‖θ‖ =
√∑d

i=1 θ2
i is the norm of θ, where θ = (θ1, . . . , θd)

τ .

A2 (Smoothness) f(x; θ) has common support and continuous 5th order

partial derivatives with respect to θ.

A3 (Identifiability) For any distribution functions Ψ1 and Ψ2 with two

support points such that
∫
Θ

f(x; θ)dΨ1(θ) =
∫
Θ

f(x; θ)dΨ2(θ) for all x,

we must have Ψ1 = Ψ2.

A4 (Uniform boundedness) For all h ≤ 5 and θ1, . . . , θh, there exists a

function g with finite expectation such that

∣∣∣∂
hf(Xi; θ0)/∂θ1 · · ·∂θh

f(Xi; θ0)

∣∣∣
3

≤ g(Xi).

Moreover, there exists a positive ǫ such that

sup
‖θ−θ0‖≤ǫ

∣∣∣∂
5f(Xi; θ)/∂θ1 · · ·∂θh

f(Xi; θ0)

∣∣∣
3

≤ g(Xi).

A5 (Positive definiteness) The variance-covariance matrix B of (bτ
1i,b

τ
2i)

τ

is positive definite.

A6 (Interior point) θ0 is an interior point of the parameter space Θ.
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2.6.2 Technical lemmas

To prove Theorems 2.1 and 2.2, we need the following three technical lemmas.

Lemma 2.1 shows that any estimator with a large likelihood and α not close to

zero is consistent for θ1 and θ2 under the null model. Lemma 2.2 strengthens

the result of Lemma 1 by providing the exact convergence rate. Lemma 2.3

shows that an EM-iteration will only change the value of α by an op(1) quantity.

The theorems then follow easily.

Lemma 2.1: Suppose that Conditions A0–A6 hold. Let (α, θ1, θ2) be the

estimators of (α, θ1, θ2) in Λ = [δ, 0.5] × Θ × Θ for some δ ∈ (0, 0.5].

Assume that

pln(α, θ1, θ2) − pln(0.5, θ0, θ0) ≥ c > −∞. (2.2)

Under the null distribution f(x; θ0), we have θ1 −θ0 = op(1) and θ2 −θ0 =

op(1).

Proof. The assumption in (2.2) together with Condition A0 implies that

ln(α, θ1, θ2) − ln(0.5, θ0, θ0) ≥ c > −∞. (2.3)

The classic consistency result by Wald (1949) is that if Ψ̂n = (1 − α̂)I(θ̂1 ≤

θ) + α̂I(θ̂2 ≤ θ) satisfies

ln(α̂, θ̂1, θ̂2) − ln(0.5, θ0, θ0) ≥ c > −∞,

for all n, where I(·) is the indicator function, then Ψ̂n is consistent for Ψ0 =

I(θ0 ≤ θ), the mixing distribution under the null hypothesis. This result
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and (2.3) lead to the consistency of Ψ = (1 − α)I(θ1 ≤ θ) + αI(θ2 ≤ θ) for

Ψ0, which is possible only if θ1 − θ0 = op(1) and θ2 − θ0 = op(1) under the

assumption that α ∈ [δ, 0.5] for some δ > 0.

Lemma 2.2: Suppose that the conditions of Lemma 2.1 hold. Then under the

null distribution f(x; θ0),

θ1 −θ0 = Op(n
−1/4), θ2 − θ0 = Op(n

−1/4),

m1 = (1 − α)(θ1 − θ0) + α(θ2 − θ0) = Op(n
−1/2).

Proof. Let R1n(α, θ1, θ2) = 2[pln(α, θ1, θ2)− pln(0.5, θ0, θ0)]. It has a natural

lower bound

R1n(α, θ1, θ2) ≥ 2c.

The rest of the proof is devoted to finding an upper bound for R1n, which

leads to the order assessment results.

Since the penalty function p(α) is nonpositive, we have

R1n(α, θ1, θ2) ≤ 2[ln(α, θ1, θ2) − ln(0.5, θ0, θ0)] = 2

n∑

i=1

log(1 + δi)

with δi = (1−α){ f(Xi;θ1)

f(Xi;θ0)
−1}+α{ f(Xi;θ2)

f(Xi;θ0)
−1}. By the inequality log(1+x) ≤

x − x2/2 + x3/3, we then get

R1n(α, θ1, θ2) ≤ 2

n∑

i=1

log(1 + δi) ≤ 2

n∑

i=1

δi −

n∑

i=1

δ2
i + 2/3

n∑

i=1

δ3
i . (2.4)

Next we need to find the asymptotic expansion of each term in (2.4). We

start with the linear term. By Lemma 2.1, both θ1 and θ2 are in a small

neighborhood of θ0. Using the 2nd order Taylor’s Expansion on f(Xi; θ1) and
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f(Xi; θ2) around θ0, we obtain

δi = (1 − α){
f(Xi; θ1)

f(Xi; θ0)
− 1} + α{

f(Xi; θ2)

f(Xi; θ0)
− 1}

=
d∑

h=1

{(1 − α)(θ1h − θ0h) + α(θ2h − θ0h)}
∂f(Xi; θ0)/∂θh

f(Xi; θ0)

+

d∑

h=1

{(1 − α)(θ1h − θ0h)
2 + α(θ2h − θ0h)

2}
∂2f(Xi; θ0)/∂θ2

h

2f(Xi; θ0)

+
∑

h<l

(1 − α)(θ1h − θ0h)(θ1l − θ0l)
∂2f(Xi; θ0)/∂θh∂θl

f(Xi; θ0)

+
∑

h<l

α(θ2h − θ0h)(θ2l − θ0l)
∂2f(Xi; θ0)/∂θh∂θl

f(Xi; θ0)
+ ǫin,

where ǫin is the remainder term. The above equation and the notational

substitution of Yih, Zih, and Uihl lead to

δi =
d∑

h=1

m1hYih +
d∑

h=1

m2hZih +
∑

1≤h<l≤d

shlUihl + ǫin,

with

m1h = (1 − α)(θ1h − θ0h) + α(θ2h − θ0h),

m2h = (1 − α)(θ1h − θ0h)
2 + α(θ2h − θ0h)

2,

shl = (1 − α)(θ1h − θ0h)(θ1l − θ0l) + α(θ2h − θ0h)(θ2l − θ0l),

for 1 ≤ h < l ≤ d. Therefore, the linear term has the following asymptotic

expansion

n∑

i=1

δi =
n∑

i=1

(
d∑

h=1

m1hYih +
d∑

h=1

m2hZih +
∑

1≤h<l≤d

shlUihl

)
+

n∑

i=1

ǫin. (2.5)
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Let

m = (m11, . . . , m1d, m21, . . . , m2d, s12, . . . , s1d, s23, . . . , s2d, . . . , sd−1d)
τ (2.6)

and

bi = (Yi1, . . . , Yid, Zi1, . . . , Zid, Ui12, . . . , Ui1d, Ui23, . . . , Ui2d, . . . , Ui d−1 d)
τ .

Then, (2.5) becomes
n∑

i=1

δi =
n∑

i=1

mτbi +
n∑

i=1

ǫin. (2.7)

For clarity, we first assume that the remainder term

n∑

i=1

ǫin = op(1) + op(n){||m||2}, (2.8)

and we defer its proof to the end.

Since the remainder terms resulting from the square and cubic sums in

(2.4) have at least the order of the remainder term from the linear sum, we

obtain the following asymptotic expansions for the quadratic and cubic terms

in (2.4):

n∑

i=1

δ2
i =

n∑

i=1

(mτbi)
2 + Op

(
n∑

i=1

ǫin

)
, (2.9)

n∑

i=1

δ3
i =

n∑

i=1

(mτbi)
3 + Op

(
n∑

i=1

ǫin

)
. (2.10)

By the law of large numbers and the positive definiteness of B as assumed in
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Condition A5,
n∑

i=1

(mτbi)
2 = nmτBm{1 + op(1)}. (2.11)

Similarly,
n∑

i=1

(mτbi)
3 = op(n)||m||2. (2.12)

Combining (2.4) and order assessments (2.7)–(2.12), we arrive at the upper

bound

R1n(α, θ1, θ2) ≤ 2mτ

n∑

i=1

bi − nmτBm{1 + op(1)} + op(1). (2.13)

With the lower bound R1n(α, θ1, θ2) ≥ 2c, the above upper bound implies

that m = Op(n
−1/2). Let α ∈ [δ, 0.5] for some δ ∈ (0, 0.5], then

θ1 − θ0 = Op(n
−1/4), θ2 − θ0 = Op(n

−1/4),

and m1 = Op(n
−1/2).

We now proceed to prove (2.8). We expand the remainder term to order 5
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and get

n∑

i=1

ǫin

=

n∑

i=1

d∑

j1,j2,j3=1

(1 − α)

3∏

s=1

(θ1js
− θ0js

)
∂3f(Xi; θ0)/∂θj1∂θj2∂θj3

3! f(Xi; θ0)

+

n∑

i=1

d∑

j1,j2,j3=1

α

3∏

s=1

(θ2js
− θ0js

)
∂3f(Xi; θ0)/∂θj1∂θj2∂θj3

3! f(Xi; θ0)

+
n∑

i=1

d∑

j1,...,j4=1

(1 − α)
4∏

s=1

(θ1js
− θ0js

)
∂4f(Xi; θ0)/∂θj1 · · ·∂θj4

4! f(Xi; θ0)

+
n∑

i=1

d∑

j1,...,j4=1

α
4∏

s=1

(θ2js
− θ0js

)
∂4f(Xi; θ0)/∂θj1 · · ·∂θj4

4! f(Xi; θ0)

+
n∑

i=1

d∑

j1,...,j5=1

(1 − α)
5∏

s=1

(θ1js
− θ0js

)
∂5f(Xi; ξ1)/∂θj1 · · ·∂θj5

5! f(Xi; θ0)

+
n∑

i=1

d∑

j1,...,j5=1

α
5∏

s=1

(θ2js
− θ0js

)
∂5f(Xi; ξ2)/∂θj1 · · ·∂θj5

5! f(Xi; θ0)
,

where the ξj are between θj and θ0, j = 1, 2. By Condition A4 and the

consistency of θ1 and θ2, we further have

∣∣∣∣∣

n∑

i=1

ǫin

∣∣∣∣∣
= Op(n

1/2)(‖θ1 − θ0‖
3 + ‖θ2 − θ0‖

3) + Op(n
1/2)(‖θ1 − θ0‖

4 + ‖θ2 − θ0‖
4)

+Op(n)(‖θ1 − θ0‖
5 + ‖θ2 − θ0‖

5)

= op(n
1/2)(‖θ1 − θ0‖

2 + ‖θ2 − θ0‖
2) + op(n)(‖θ1 − θ0‖

4 + ‖θ2 − θ0‖
4).(2.14)

49



Since α ∈ [δ, 0.5] for some 0 < δ ≤ 0.5, the first term in (2.14)

op(n
1/2)(‖θ1 − θ0‖

2 + ‖θ2 − θ0‖
2)

= op(n
1/2)(

d∑

s=1

m2s) = op(n
1/2)(||m||)

≤ op(1) + op(n)||m||2

and the second term in (2.14)

op(n)(‖θ1 − θ0‖
4 + ‖θ2 − θ0‖

4)

= op(n)(
d∑

s=1

m2
2s)

= op(n)||m||2.

Therefore,

∣∣∣∣∣

n∑

i=1

ǫin

∣∣∣∣∣ = op(1) + op(n)||m||2.

Now we show that under the null distribution, the EM-iteration changes

the fitted value of α by only op(1). Let (α, θ1, θ2) be estimators of (α, θ1, θ2).

Define

wi =
αf(Xi; θ2)

(1 − α)f(Xi; θ1) + αf(Xi; θ2)
,

Rn(α) =
∑n

i=1(1−wi) log(1−α)+(
∑n

i=1 wi) log α, and Qn(α) = Rn(α)+p(α).

The EM-algorithm updates α by searching for α∗ = arg maxQn(α).

Lemma 2.3: Suppose the conditions in Lemma 2.1 hold and α − α0 = op(1)

for some α0 ∈ (0, 0.5]. Then under the null distribution f(x; θ0), we have
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|α∗ − α0| = op(1).

Proof. The proof is similar to that of Lemma A3 in Li, Chen, & Marriott

(2009) and is therefore omitted.

2.6.3 Proof of Theorem 2.1

With the above three technical lemmas, the proof is the same as that of The-

orem 2.1 in Li, Chen, & Marriott (2009).

2.6.4 Proof of Theorem 2.2

Since the null model f(x; θ) is regular, the following classical expansion is

applicable

R0n = 2{pln(0.5, θ̂0, θ̂0) − pln(0.5, θ0, θ0)}

=

(
n∑

i=1

b1i

)τ

(nB11)
−1

(
n∑

i=1

b1i

)
+ op(1).

Let R1n(α
(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) = 2{pln(α

(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) − pln(0.5, θ0, θ0)}. With the

results in Theorem 2.1, the upper bound in (2.13) is applicable. Hence,

R1n(α
(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) ≤ 2(m(k))

τ
n∑

i=1

bi − n(m(k))τB(m(k)){1 + op(1)} + op(1),

where m(k) is defined similarly to (2.6) with (α, θ1, θ2) replaced by (α
(k)
j ,θ

(k)
j,1 ,θ

(k)
j,2 ).

With the order assessment in Theorem 2.1, we further have

R1n(α
(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) ≤ 2(m(k))

τ
n∑

i=1

bi − n(m(k))τB(m(k)) + op(1). (2.15)
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To further explore the upper bound in (2.15), we re-parametrize as follows.

By the definition of m
(k)
1h , we have

θ
(k)
j,2h − θ0h =

m
(k)
1h − (1 − α

(k)
j )(θ

(k)
j,1h − θ0h)

α
(k)
j

, h = 1, 2, · · · , d.

Substituting the above equation into the definitions of m
(k)
2h and s

(k)
hl , we obtain

m
(k)
2h =

1 − α
(k)
j

α
(k)
j

(
θ

(k)
j,1h − θ0h

)2

+ op(m
(k)
1h ),

s
(k)
hl =

1 − α
(k)
j

α
(k)
j

(θ
(k)
j,1h − θ0h)(θ

(k)
j,1l − θ0l) + op(m

(k)
1h ) + op(m

(k)
1l ).

Let

v
(k)
h =

√√√√1 − α
(k)
j

α
(k)
j

(
θ

(k)
j,1h − θ0h

)
,

v(k)

=
(
(v

(k)
1 )2 . . . (v

(k)
d )2 , v

(k)
1 v

(k)
2 , . . . , v

(k)
1 v

(k)
d , v

(k)
2 v

(k)
3 , . . . , v

(k)
2 v

(k)
d , . . . , v

(k)
d−1v

(k)
d

)τ

,

and t(k) = ((m
(k)
1 )τ , (v(k))τ )τ with m

(k)
1 consisting of the first d elements of

m(k). Using the order assessment in Theorem 2.1, m(k) = t(k) + op(n
−1/2).

Therefore,

R1n(α
(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) ≤ 2(t(k))

τ
n∑

i=1

bi − n(t(k))τB(t(k)) + op(1).
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Letting m̃
(k)
1 = m

(k)
1 + B−1

11 B12v
(k), we get

2(t(k))
τ

n∑

i=1

bi − n(t(k))τB(t(k)) = 2(m̃
(k)
1 )

τ
n∑

i=1

b1i − n(m̃
(k)
1 )τB11(m̃

(k)
1 )

+2(v(k))
τ

n∑

i=1

b̃2i − n(v(k))τB̃22(v
(k)).

Hence,

R1n(α
(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) ≤ 2(m̃

(k)
1 )

τ
n∑

i=1

b1i − n(m̃
(k)
1 )τB11(m̃

(k)
1 )

+2(v(k))
τ

n∑

i=1

b̃2i − n(v(k))τB̃22(v
(k)) + op(1).

For M
(k)
n (αj), we have

M (k)
n (αj) = R1n(α

(k)
j , θ

(k)
j,1 , θ

(k)
j,2 ) − R0n

≤ sup
m1

{2m1
τ

n∑

i=1

b1i − nmτ
1B11m1} + sup

v
{2vτ

n∑

i=1

b̃2i − nvτB̃22v}

−

(
n∑

i=1

b1i

)τ

(nB11)
−1

(
n∑

i=1

b1i

)
+ op(1)

≤ sup
v

{2vτ
n∑

i=1

b̃2i − nvτB̃22v} + op(1).

Here v = (v2
1, . . . , v

2
d, v1v2, . . . , v1vd, v2v3, . . . , v2vd, . . . , vd−1vd)

τ . The leading

term in the above equation does not depend on α and therefore it also serves

as the upper bound of EM
(K)
n .

We now show that the upper bound is achievable. Since the EM-iteration

increases the modified likelihood (Dempster, Laird, & Rubin, 1977), we only

need to show that this is the case when k = 1. To prove this for k = 1, we

only need to find a set of parameter values α̂, θ̂1, θ̂2 at which the upper bound
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is attained. We first calculate

v̂ = arg sup
v

{2vτ

n∑

i=1

b̃2i − nvτB̃22v}

and

m̂1 =

(
n∑

i=1

b1i

)τ

(nB11)
−1

(
n∑

i=1

b1i

)
+ B−1

11 B12v̂.

Next we choose α̂ = 0.5, then determine θ̂1 by the equations

v̂h =

√
1 − α̂

α̂

(
θ̂1h − θ0h

)
, h = 1, . . . , d

and θ̂2 by the equation

m̂1 = (1 − α̂)(θ̂1 − θ0) + α̂(θ̂2 − θ0).

The existence of θ̂1 and θ̂2 is obvious. It can be shown that

θ̂1 − θ0 = Op(n
−1/4), θ̂2 − θ0 = Op(n

−1/4).

This order assessment can be used to show that

EM (K)
n ≥ M (1)

n (0.5) ≥ R1n(0.5, θ̂1, θ̂2) − R0n

= sup
v

{2vτ
n∑

i=1

b̃2i − nvτB̃22v} + op(1).
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Combining the lower and upper bounds of EM
(K)
n , we have

EM (K)
n = sup

v
{2vτ

n∑

i=1

b̃2i − nvτB̃22v} + op(1)

= sup
v

{2vτB̃22B̃
−1

22

n∑

i=1

b̃2i − nvτ B̃22v} + op(1).

Note that n−1/2B̃
−1

22

∑n
i=1 b̃2i asymptotically follows the zero-mean multivari-

ate normal distribution with variance-covariance matrix B̃
−1

22 . Then

EM (K)
n → sup

v
(2vτB̃22w − vτB̃22v)

in distribution, where w is a random vector from the zero-mean multivariate

normal distribution with variance-covariance matrix B̃
−1

22 and v still takes the

form (v2
1, . . . , v

2
d, v1v2, . . . , v1vd, v2v3, . . . , v2vd, . . . , vd−1vd)

τ . After some simple

algebraic work, we have

EM (K)
n → sup

v
(2vτB̃22w − vτB̃22v) = wτB̃22w − inf

v
(w − v)τB̃22(w − v).

The right-hand side of the above equation is just the distribution of the LRT

for testing v = 0 based on one observation w from the multivariate normal

distribution with mean v and variance-covariance matrix B̃
−1

22 . This finishes

the proof for Theorem 2.2.
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Chapter 3

EM-test in a Scale Mixture of

Normal Models1

3.1 Introduction and Motivating Example

The class of scale mixtures of normal distributions, i.e., mixtures of normal

distributions on the variance parameters, contains many continuous unimodal

and symmetric distributions on the real line, such as the Student t family, the

logistic distribution, the Laplace distribution, and the stable family; see An-

drews & Mallows (1974), West (1984), and West (1987). Since it has heavier

tails than the normal family, this class serves as a natural alternative to the nor-

mal family when heavy tails are observed in the data. Naylor & Smith (1983)

applied a two-component scale mixtures of normal distributions to model the

heavy tail and heterogeneity in some biochemical measurements in clinical

chemistry. Wainwright & Simoncelli (2000) and Doulgeris & Eltoft (2010)

used scale mixtures of normal distributions in the analysis of image data. The

1A version of this chapter is ready for submission.
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model has also played an important role in finance and economics. It has been

used to explain the heavy tail in future price movements (Hall, Brorsen, &

Irwin, 1989) and daily changes in the logarithm of exchange rates (Boothe &

Glassman, 1987; Rocha, Pestana, & Menezes, 2012). It has also been widely

used in the analysis of data with outliers (West, 1984 and references therein).

In practice, before one tries to apply a scale mixtures of normal distri-

butions, it is helpful to know whether the data arise from a homogeneous or

heterogeneous population. Applying the model to data from a homogeneous

population may result in an efficiency loss when estimating the unknown pa-

rameters. We present below a motivating example showing the application of

a scale mixtures of normal distributions.

Example 3.1. (Blood chloride data) In clinical chemistry, the clinical

assessment of biochemical measurements is typically carried out by reference

to a “normal range,” which is the 95% confidence interval of the mean mea-

surement for a “healthy” population (Naylor & Smith, 1983). One way of

obtaining such a normal range is to first collect a large sample of biochemi-

cal measurements from a healthy population. However, in practice, it may be

difficult to collect measurements only from healthy individuals. Instead, mea-

surements from a contaminated sample, containing both healthy and unhealthy

individuals, are obtained. Because of the potential existence of heterogeneity

in the contaminated sample, mixtures of normal distributions are widely used

in such analyses.

Naylor & Smith (1983) used a scale mixture of two normal distributions

to model a contaminated sample of 542 blood-chloride measurements collected

during routine analysis by the Department of Chemical Pathology at the Der-

byshire Royal Infirmary. Based on this mixture model, they derived the normal
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range for the healthy population. A statistical problem of interest here is to test

whether unhealthy individuals really exist. If not, the normal range derived

from a scale mixtures of normal distributions may not be as accurate as that

derived from a homogeneous normal distribution.

The design of an effective method for testing homogeneity is a challenging

problem for scale mixtures of normal distributions. The likelihood function

is unbounded (Hathaway, 1985; Chen, Tan, & Zhang, 2008), and the Fisher

information on the mixing proportion direction can be infinity (Chen & Li,

2009). Because of these two irregularities, many elegant asymptotic results

for existing methods such as the LRT, the MLRT, and the D-test (Charnigo

& Sun, 2004) cannot be directly applied unless the parameter spaces for the

mean and variance are constrained.

In Chen & Li (2009), a class of EM-tests were proposed for testing ho-

mogeneity in normal mixture models on the mean parameters and in normal

mixture models on both the mean and variance parameters. In these two cases,

the EM-tests have a χ2-type limiting distribution without any constraints on

the parameter spaces for the mean and variance. In principle, the EM-test

for testing homogeneity in normal mixtures on both the mean and variance

parameters can be applied to scale mixtures of normal distributions. However,

a tailor-made testing procedure specifically for the scale mixtures of normal

distributions is expected to be more powerful.

In this chapter, we retool the EM-test for testing homogeneity in scale mix-

tures of normal distributions. The retooled method first applies a penalty func-

tion on the component variances to obtain a bounded penalized log-likelihood.

Based on this penalized log-likelihood, we define the EM-test statistics and

show that the limiting distribution of the retooled EM-test is 0.5χ2
0 + 0.5χ2

1.
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The penalty function contains a tuning parameter that affects the precision of

the test. We use a computational method to provide an easy-to-use empirical

value for the tuning parameter. Simulation studies show that the retooled EM-

test has an accurate size. When the data is generated from the scale mixtures

of normal distributions, the EM-test is more powerful than the likelihood ratio

test and the method in Chen & Li (2009). When the data is generated from

a normal mixture on both means and variances, the EM-test is again more

powerful than the likelihood ratio test in most situations and is more powerful

than or comparable to the method in Chen & Li (2009) when the sample size

is small or the mixing proportion in one component is small. Software imple-

menting the test has also been developed in the R language (R Development

Core Team, 2011).

The rest of this chapter is organized as follows. In Section 3.2, we present

the EM-test procedure, its asymptotic properties, and the empirical value for

the tuning parameter. In Section 3.3, we present simulation studies, and in

Section 3.4, we apply the retooled EM-test to two real-data examples. For

convenience of presentation, all the proofs are given in Section 3.5.

3.2 Main Results

Suppose X1, . . . , Xn is a random sample of size n from a scale mixture of two

normal distributions

(1 − α)f(x; µ, σ1) + αf(x; µ, σ2).
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Here f(x; µ, σ) denotes the probability density function of the normal distri-

bution N(µ, σ2) with mean µ and variance σ2. We aim to test

H0 : α(1 − α)(σ1 − σ2) = 0.

Without loss of generality, we assume α ∈ [0, 0.5].

3.2.1 The EM-test statistic

We denote the log-likelihood function as

ln(α, µ, σ1, σ2) =

n∑

i=1

log{(1 − α)f(Xi; µ, σ1) + αf(Xi; µ, σ2)}

and define the penalized log-likelihood function as

pln(α, µ, σ1, σ2) = ln(α, µ, σ1, σ2) + pn(σ1) + pn(σ2) + p(α).

The penalty function p(α) is the same as the one used in Chapter 2. We still

use p(α) = log(1 − |1 − 2α|). More discussions can be found in Section 2.5.

The smooth-penalty function pn(σ) goes to negative infinity when σ goes to

either 0 or infinity. We recommend

pn(σ) = −an{s
2
n/σ

2 + log(σ2/s2
n)}

with s2
n = n−1

∑n
i=1(Xi−X)2 and X = n−1

∑n
i=1 Xi. The choice of the tuning

parameter an will be discussed in Section 3.2.3. The penalty pn(σ) prevents

the fittings of σ1 and σ2 from being close to zero, which results in the bounded

penalized log-likelihood.
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Similar to Chapter 2, the EM-test statistics is constructed in the following

iterative way. We first choose a finite set of {α1, . . . , αJ} ⊂ (0, 0.5] and a posi-

tive integer K. As suggested in Chapter 2, we use {α1, . . . , αJ} = {0.1, 0.3, 0.5}

and K = 2 or 3.

For each j = 1, 2, . . . , J , we proceed as follows. Let

(µ
(1)
j , σ

(1)
j,1 , σ

(1)
j,2 ) = arg maxµ,σ1,σ2

pln(αj, µ, σ1, σ2).

Further let k = 1 and α
(1)
j = αj .

Then we update (α, µ, σ1, σ2) by using the EM-iteration K − 1 times. In

each iteration, for i = 1, . . . , n, and the current k, we first use an E-step to

calculate the posterior probabilities,

w
(k)
ij =

α
(k)
j f(Xi; µ

(k)
j , σ

(k)
j,2 )

(1 − α
(k)
j )f(Xi; µ

(k)
j , σ

(k)
j,1 ) + α

(k)
j f(Xi; µ

(k)
j , σ

(k)
j,2 )

.

Then we use an M-step to update α via

α
(k+1)
j = arg maxα

{ n∑

i=1

(1 − w
(k)
ij ) log(1 − α) +

n∑

i=1

w
(k)
ij log(α) + p(α)

}

and (µ, σ1, σ2) via

(
µ

(k+1)
j , σ

(k+1)
j,1 , σ

(k+1)
j,2

)
= arg maxµ,σ1,σ2

{ n∑

i=1

(1 − w
(k)
ij ) log f(Xi; µ, σ1)

+

n∑

i=1

w
(k)
ij log f(Xi; µ, σ2) + pn(σ1) + pn(σ2)

}
.

Let k = k + 1. The EM-iteration continues until k = K.
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Define the test statistics

M (K)
n (αj) = 2{pln(α

(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(0.5, µ̂0, σ̂0, σ̂0)}

where (µ̂0, σ̂0) = arg maxµ,σ pln(0.5, µ, σ, σ). The EM-test statistic is then de-

fined as

EM (K)
n = max{M (K)

n (αj), j = 1, 2, . . . , J}.

We reject the null hypothesis when EM
(K)
n exceeds some critical value of the

limiting distribution presented in Section 3.2.2.

3.2.2 Asymptotic distribution

The asymptotic distribution of EM
(K)
n is obtained via a careful choice of the

two penalty functions p(α) and pn(σ).

C1 The penalty function p(α) is continuous, maximized at α = 0.5, and

approaches negative infinity as α approaches 0 or 1.

C2 supσ>0{|pn(σ)|} = o(n).

C3 p′n(σ) = op(n
1/6) at any σ > 0.

C4 pn(σ) ≤ 4(log n)2 log(σ), when σ ≤ n−1 and n is large.

The penalty functions recommended in Section 3.2.1 satisfy Conditions

C1–C4. Since the user has the freedom to choose the penalty functions, these

conditions are not restrictive as long as such functions exist. The following

theorem presents the limiting distribution of EM
(K)
n ; the proof is given in

Section 3.5.
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Theorem 3.1: Suppose that the penalty functions p(α) and pn(σ) satisfy Con-

ditions C1–C4 and that α1 = 0.5. Under the null hypothesis and for any

fixed finite K, as n → ∞,

EM (K)
n →

1

2
χ2

0 +
1

2
χ2

1

in distribution.

The limiting distribution of the EM-test is quite simple and can be conve-

niently used to calculate the asymptotic p-values of the EM-test statistic. Its

approximation to the finite-sample distribution of the EM-test statistic will be

examined in Section 3.3 through a simulation study.

3.2.3 Choice of tuning parameters

The definition of EM
(K)
n involves a few tuning parameters: the finite set

{α1, . . . , αJ} for α, the iteration number K, and the penalty functions p(α)

and pn(σ). As suggested in Chapter 2, we recommend using the initial values

α ∈ {0.1, 0.3, 0.5}, K = 2 or 3 iterations, and p(α) = log(1 − |1 − 2α|). For

the penalty function pn(σ), we recommend

pn(σ) = −an{s
2
n/σ

2 + log(σ2/s2
n)}.

The penalty function pn(σ) satisfies Conditions C2–C4 with an = o(n1/6).

That is, the specific choice of an will not affect the limiting distribution. Care-

fully tuning the value of an will improve the precision of the approximation of

the limiting distribution to the finite-sample distribution of EM
(K)
n .

Ideally, we wish to choose the value of an such that the limiting distribution
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is the same as the finite-sample distribution for all x > 0, that is,

Pr(EM (K)
n ≥ x) = 0.5Pr(χ2

1 ≥ x).

Unfortunately, such an an may not exist. Let q, usually 5%, be a given signif-

icance level and x2q be the 1− 2q upper quantile of the χ2
1 distribution, which

is also the 1 − q upper quantile of the limiting distribution 0.5χ2
0 + 0.5χ2

1. We

then consider choosing the value of an such that

Pr(EM (K)
n ≥ x2q) = 0.5Pr(χ2

1 ≥ x2q).

That is, we choose the value of an such that the 1 − q quantiles of the finite-

sample distribution and the limiting distribution of EM
(K)
n are the same. The-

oretically, this can be challenging even though q is given. Instead, we developed

an empirical value for an through a computational method (Chen & Li, 2011).

The idea is as follows. First, we choose several representative sample sizes

n and an values. Next, for each combination of n and an, we generate M

random samples of size n from the null distribution N(0, 1) and record the

percentage of times that the EM-test statistic EM
(K)
n is greater than or equal

to x2q. We denote this observed percentage, also called the simulated type-I

error rate, by q̂. Last, we define a discrepancy between the simulated type-I

error and the target significance level q as

y = log{q̂/(1 − q̂)} − log{q/(1 − q)}.

We then fit a regression model between y and (n, an). Setting the fitted value

ŷ equal to 0, we then obtain an empirical value for an.
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In our computer experiment, we set q = 0.05 because this is the most

commonly used significance level. In the simulation study, we also checked

the precision of the EM-test at the 1% level. We consider three sample sizes,

n ∈ {100, 300, 500}, and six an values, an ∈ {1/128, 1/64, 1/32, 1/16, 1/8, 1/4}.

Hence, a 3 × 6 full factorial design is used in our computer experiment. For

each combination of n and an we generate 2500 random samples from N(0, 1),

and for each random sample we use K = 2 to calculate the EM-test statistic

EM
(K)
n . The discrepancies between q̂ and q in terms of y = log{q̂/(1 − q̂)} −

log{q/(1 − q)} with q = 0.05 are reported in Table 3.1.

Table 3.1: Discrepancy between q̂ and q in terms of y under the scale mixtures
of normal distributions.

an=1/128 an=1/64 an=1/32 an=1/16 an=1/8 an=1/4

n = 100 -0.021 0.021 0.041 -0.065 -0.134 -0.402

n = 300 0.101 -0.021 -0.134 0.101 -0.088 -0.287

n = 500 0 0.081 0.041 -0.043 -0.158 -0.315

By analysis of variance, we observe that only an has a significant effect on

the response y. After some exploratory analysis, the covariate in the form of

an itself gives the most satisfactory outcome. We next fit a linear regression

between y and an. Based on the 18 observations, the fitted model is

ŷ = 0.05194 − 1.5019an

with R2 = 81.1%. Setting ŷ = 0 gives the empirical value an = 0.035.

Note that since our method is invariant to the scale transformation, the

value an = 0.035 is applicable to the general null distribution N(µ, σ2). The

performance of the EM-test with an=0.035 will be examined in the next section
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through a simulation study.

3.3 Simulation Study

The purpose of the simulation study is twofold: (i) to check the approximation

of the limiting distribution to the finite sample distribution; and (ii) to examine

the power of the retooled EM-test. The EM-test is calculated based on the

recommendations for {α1, . . . , αJ}, K, and the two penalty functions p(α) and

pn(σ) in Section 3.2.3.

We consider the null model N(0, 1) since EM
(K)
n is invariant to the scale

transformation. For the null model N(0, 1) and the 11 sample sizes 50, 100, . . .,

1000, we calculate the simulated type-I error rates based on 10000 repetitions.

The simulation results for two significance levels, 5% and 1%, are summarized

in Table 3.2. For comparison, we further conducted the simulation for the EM-

test in Chen & Li (2009), designed for homogeneity under a normal mixture

on the mean and variance parameters. We use ẼM
(K)

n to denote this EM-test

in Chen & Li (2009). The same null model and sample sizes are considered.

The results for 5% and 1% significance levels of ẼM
(K)

n are also tabulated in

Table 3.2.

From the results in Table 3.2, we observe that our proposed approach has

comparable accuracy with that in Chen & Li (2009). The simulated type-I

error rates of both methods are quite close to the significance level for all the

considered sample sizes. Hence, we conclude that the limiting distribution

provides an accurate approximation of the finite-sample distribution for both

tests.

To examine the power of the retooled EM-test, we choose eight alternative
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Table 3.2: Simulated type-I error rates (%) of the retooled EM-test and the
EM-test in Chen & Li (2009) under the scale mixtures of normal distributions.

Retooled approach Method in Chen & Li (2009)

n EM
(1)
n EM

(2)
n EM

(3)
n ẼM

(1)

n ẼM
(2)

n ẼM
(3)

n

Level=5%

50 5.3 5.4 5.4 4.6 4.8 4.8

100 5.2 5.2 5.3 5.2 5.2 5.3

200 4.8 4.8 4.9 5.5 5.5 5.6

300 4.7 4.7 4.8 5.4 5.4 5.4

400 4.9 4.9 4.9 5.5 5.5 5.5

500 4.8 4.8 4.8 5.5 5.5 5.5

600 4.8 4.9 4.9 5.5 5.5 5.5

700 4.6 4.6 4.6 5.4 5.4 5.4

800 4.7 4.8 4.8 5.6 5.6 5.6

900 4.8 4.8 4.8 5.4 5.4 5.5

1000 4.7 4.7 4.7 5.3 5.3 5.3

Level=1%

50 1.2 1.3 1.3 0.8 0.9 0.9

100 1.1 1.1 1.1 1.0 1.0 1.0

200 1.0 1.0 1.1 1.1 1.1 1.1

300 0.9 1.0 1.0 1.1 1.1 1.1

400 1.1 1.2 1.2 1.2 1.2 1.2

500 1.1 1.1 1.1 1.1 1.1 1.2

600 1.2 1.2 1.2 1.2 1.2 1.2

700 1.1 1.1 1.1 1.2 1.2 1.2

800 1.1 1.1 1.1 1.1 1.1 1.1

900 1.0 1.0 1.0 1.2 1.2 1.2

1000 1.0 1.0 1.0 1.1 1.1 1.1
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models in the form of (1 − α)N(µ, σ2
1) + αN(µ, σ2

2), as well as another eight

models in which the means in two components are different. The parameter

settings and their Kullback–Leibler (KL) information with respect to the null

model are listed in Table 3.3 and Table 3.4. We compare the power of the

retooled EM-test EM
(K)
n with the likelihood ratio test (LRT) and the EM-test

ẼM
(K)

n in Chen & Li (2009). Since the limiting distribution of the LRT is un-

known when the parameter spaces of the mean and variance are unconstrained,

the quantiles of the LRT are obtained from 10000 repetitions under the null

model. Further, to avoid an unbounded log-likelihood, we add a penalty on

σ1 and σ2 to the log-likelihood to obtain the maximum likelihood estimator of

the unknown parameters.

Table 3.3: First set of eight alternative models (1 − α)N(µ, σ2
1) + αN(µ, σ2

2).

Model α µ σ1 σ2 100KL

A1 0.5 0 0.5 1.1 2.502

A2 0.25 0 0.5 1.05 2.392

A3 0.1 0 0.5 1.25 2.490

A4 0.05 0 0.5 1.55 2.573

A5 0.5 0 0.5 1.2 3.418

A6 0.25 0 0.5 1.15 3.571

A7 0.1 0 0.5 1.4 3.935

A8 0.05 0 0.5 1.85 4.891

In the comparison, we consider three sample sizes: n = 50, 100, 200. For

each model and sample size, we calculate the power of each test at the 5%

level based on 5000 repetitions. The simulation results are summarized in

Table 3.5 and Table 3.6. As expected, in the first set of eight models, the

retooled EM-test is more powerful than that in Chen & Li (2009) for detecting

heterogeneity in scale mixtures of normal distributions. The retooled EM-test
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Table 3.4: Second set of eight alternative models (1−α)N(µ1, σ
2
1)+αN(µ2, σ

2
2).

Model α µ1 µ2 σ1 σ2 100KL

A9 0.5 0 0.5 0.5 1.1 2.875

A10 0.25 0 0.5 0.5 1.05 3.095

A11 0.1 0 0.5 0.5 1.25 3.045

A12 0.05 0 0.5 0.5 1.55 2.950

A13 0.5 0 0.5 0.5 1.2 3.761

A14 0.25 0 0.5 0.5 1.15 4.331

A15 0.1 0 0.5 0.5 1.4 4.604

A16 0.05 0 0.5 0.5 1.85 5.392

is comparable to the LRT and is sometimes more powerful than the LRT for

detecting heterogeneity in scale mixtures of normal distributions. Compared

with the LRT, another advantage of the retooled EM-test is that we do not

need to use the bootstrap method to calculate the quantiles.

In the second set of eight models, there is a 0.5-difference in two component

means. The results in Table 3.6 show that our proposed method is quite robust

against the existence of mean difference. In all the eight models, the retooled

EM-test has adequate powers. With sample sizes n = 50 and 100, the retooled

EM-test has even higher power than that in Chen & Li (2009). With n = 200,

the retooled EM-test is slightly less powerful than that in Chen & Li (2009)

under models A9 and A13, where two mixing proportions are equal to 0.5.

In other models, the retooled EM-test is slightly more powerful. Again, the

retooled EM-test has comparable power to the LRT.
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Table 3.5: Comparison of powers (%) of the retooled EM-test, the EM-test
in Chen & Li (2009), and the LRT at the 5% level in the first set of eight
alternative scale mixtures of normal distributions.

Retooled approach Method in Chen & Li (2009)

Model EM
(1)
n EM

(2)
n EM

(3)
n LRT ẼM

(1)

n ẼM
(2)

n ẼM
(3)

n

n = 50

A1 42.8 42.7 42.5 37.9 25.2 25.1 25.2

A2 41.4 41.3 41.2 40.3 27.7 27.4 27.2

A3 42.4 42.3 42.3 39.7 31.2 31.0 31.0

A4 40.2 40.1 40.0 40.8 31.1 31.0 31.0

A5 53.7 53.7 53.5 48.0 31.2 31.0 30.9

A6 52.9 52.7 52.6 50.2 35.7 35.7 35.6

A7 52.2 52.2 52.0 51.6 41.9 41.9 41.8

A8 49.5 49.6 49.5 51.1 43.4 43.2 43.2

n = 100

A1 69.9 69.9 69.8 63.5 47.6 47.6 47.6

A2 67.3 67.3 67.1 63.2 47.6 47.6 47.6

A3 66.6 66.6 66.6 64.3 51.9 51.9 51.9

A4 63.6 63.6 63.5 62.2 53.0 53.1 53.1

A5 79.7 79.7 79.6 74.3 58.8 58.8 58.7

A6 81.4 81.4 81.3 77.7 63.7 63.6 63.6

A7 77.5 77.4 77.4 76.8 66.9 66.8 66.8

A8 75.1 75.1 75.1 75.1 67.4 67.2 67.1

n = 200

A1 92.1 92.2 92.1 89.4 78.5 78.5 78.5

A2 91.3 91.3 91.3 88.6 78.7 78.7 78.6

A3 88.3 88.3 88.2 88.4 79.0 79.0 79.0

A4 85.0 85.0 85.0 85.4 77.8 77.8 77.8

A5 96.9 97.0 96.9 95.9 90.1 90.0 90.0

A6 97.4 97.4 97.4 95.7 91.7 91.6 91.6

A7 95.3 95.3 95.2 94.7 91.5 91.4 91.4

A8 93.2 93.2 93.2 93.0 89.6 89.5 89.5
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Table 3.6: Comparison of powers (%) of the retooled EM-test, the EM-test
in Chen & Li (2009), and the LRT at the 5% level in the second set of eight
alternative scale mixtures of normal distributions.

Retooled approach Method in Chen & Li (2009)

Model EM
(1)
n EM

(2)
n EM

(3)
n LRT ẼM

(1)

n ẼM
(2)

n ẼM
(3)

n

n = 50

A9 40.5 40.6 40.3 36.9 36.4 36.4 36.3

A10 48.8 48.9 48.8 45.1 39.3 39.0 39.0

A11 44.3 44.2 44.2 49.7 36.3 36.2 36.2

A12 42.6 42.4 42.4 42.8 36.8 36.8 36.8

A13 48.6 48.5 48.5 41.5 42.8 42.6 42.6

A14 59.3 59.3 59.0 54.8 49.3 49.0 49.0

A15 58.6 58.4 58.3 56.9 47.7 47.6 47.6

A16 53.4 53.4 53.4 54.6 46.7 46.4 46.3

n = 100

A9 62.8 62.8 62.7 56.1 62.2 62.4 62.5

A10 74.2 74.0 74.0 69.5 68.0 68.1 68.1

A11 72.6 72.6 72.5 70.7 62.6 62.6 62.6

A12 65.8 65.7 65.6 66.9 58.0 58.0 58.0

A13 74.3 74.4 74.1 67.9 73.2 73.3 73.3

A14 84.8 84.8 84.7 81.8 78.5 78.5 78.5

A15 82.2 82.2 82.0 81.8 73.1 73.1 73.1

A16 77.6 77.6 77.6 76.3 70.8 70.9 70.9

n = 200

A9 85.5 85.6 85.4 81.0 92.5 92.5 92.5

A10 94.9 94.9 94.9 93.4 94.1 94.1 94.1

A11 93.9 93.9 93.8 93.6 88.1 88.1 88.1

A12 88.3 88.3 88.3 87.9 83.0 83.0 83.0

A13 93.1 93.2 93.0 91.5 95.8 95.8 95.8

A14 98.7 98.7 98.7 97.8 97.1 97.0 97.0

A15 97.2 97.2 97.2 96.9 94.9 94.9 94.9

A16 94.1 94.1 94.1 94.4 91.6 91.6 91.5
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3.4 Real-data Examples

Example 3.1. (Continued) We now apply the retooled EM-test to the 542

blood-chloride measurements. The retooled EM-test statistics are EM
(1)
n =

33.56, EM
(2)
n = 33.58, and EM

(3)
n = 33.59. Calibrated by the limiting distri-

bution 0.5χ2
0 + 0.5χ2

1, the corresponding p-values are all around 3e − 9. The

p-values of the EM-test statistics ẼM
(1)

n , ẼM
(2)

n , and ẼM
(3)

n in Chen & Li

(2009) are all around 1e − 8. Both methods suggest overwhelming evidence

against the homogeneous model. This leads to the conclusion that the data

support the existence of unhealthy individuals in the collected sample. Since

the retooled EM-test is specifically designed for testing homogeneity in scale

mixtures of normal distributions, it provides stronger evidence than the test

in Chen & Li (2009), which is designed to be more general.

Figure 3.1 compares the fittings of the scale mixture of two normal distri-

butions (dashed line) and the homogeneous normal distribution (solid line).

Clearly, the former provides a better fit, which further supports the results for

the retooled EM-test.

Example 3.2. (Age of onset of schizophrenia) This example considers

the age of onset of schizophrenia for 152 male schizophrenics from a schizophre-

nia study reported in Lewine (1981). As suggested by Lewine (1981), there

may be two types of schizophrenia. The first type is characterized by early-

onset, typical symptoms and poor premorbid competence; the second is asso-

ciated with late-onset, atypical symptoms and good premorbid competence.

An interesting question is whether the two types of schizophrenia really exist.

Everitt, Landau, & Leese (2001) analyzed the data by fitting a two-component

normal mixture on the mean and variance parameters to the logarithm of the
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Figure 3.1: Histogram and two fitted densities of 542 blood-chloride mea-
surements: the density from the homogeneous normal distribution (solid line)
and the density from the two-component scale mixture of normal distributions
(dashed line).
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152 observations. They used the LRT to test homogeneity in this model.

Chen & Li (2009) applied the EM-test for homogeneity; they found that the

p-values of ẼM
(1)

n , ẼM
(2)

n , and ẼM
(3)

n are all around 1e − 3. Therefore, the

data strongly support the heterogenous model for the 152 log-transformed ob-

servations. They further noticed that the means for the two components are

almost the same, and the variances for the two components are quite differ-

ent. For the purposes of illustration, we fit the 152 log-transformed observa-

tions by a two-component scale mixtures of normal distributions and apply

the retooled EM-test. The retooled EM-test statistics are EM
(1)
n = 11.3380,

EM
(2)
n = 11.3380, and EM

(3)
n = 11.3380 with corresponding p-values around
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4e − 4. Therefore, the retooled EM-test also strongly supports the existence

of two types of schizophrenia, and it is more powerful than that in Chen & Li

(2009).

Figure 3.2 compares the fittings of the homogenous normal model and the

scale mixture of two normal distributions. Clearly, the mixture model provides

a more reasonable fit, which again supports the results for the retooled EM-

test.

Figure 3.2: Histogram and two fitted densities of 152 log-transformed ages of
onset of schizophrenia for males: the density from the homogeneous normal
distribution (solid line) and the density from the two-component scale mixture
of normal distributions (dashed line).
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3.5 Proof

Since the retooled EM-test is invariant to the scale transformation, without loss

of generality, we assume that the true distribution under the null hypothesis

is N(0, 1).

3.5.1 Two useful lemmas

We first present two useful lemmas. The first is about the consistency of

(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) under the null hypothesis.

Lemma 3.1: Suppose that Conditions C1–C4 are satisfied. Then under the

null distribution N(0, 1), we have, for j = 1, 2, . . . , J and any finite K,

α
(K)
j − αj = op(1), µ

(K)
j = op(1), σ

(K)
j,1 − 1 = op(1), and σ

(K)
j,2 − 1 = op(1).

Proof. The proof is similar to that of Theorem 3 in Chen & Li (2009) and is

therefore omitted.

The next lemma concerns the expansion of the modified log-likelihood

function when (µ, σ1, σ2) are in small neighborhoods of the true values. For

i = 1, 2, . . . , n, we define

Zi =
X2

i − 1

2
, Ui =

X3
i − 3Xi

6
, and Vi =

X4
i − 6X2

i + 3

24
.

Lemma 3.2: Assume that the conditions of Lemma 3.1 hold. Suppose (α, µ,

σ1, σ2) are estimators of (α, µ, σ1, σ2) such that (µ, σ1, σ2) = (0, 1, 1)+op(1)

and α ∈ (δ, 0.5] for some δ > 0. Under the null distribution N(0, 1), we
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have

2{pln(α, µ, σ1, σ2) − pln(0.5, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

Here, (x)+ denotes max{x, 0}, the positive part of x.

Proof. We first write 2{pln(α, µ, σ1, σ2) − pln(0.5, 0, 1, 1)} as the sum of two

terms:

2{pln(α, µ, σ1, σ2) − pln(0.5, 0, 1, 1)}

= 2{ln(α, µ, σ1, σ2) − ln(0.5, 0, 1, 1)}

+2{pn(σ1) + pn(σ2) + p(α) − 2pn(1) − p(0.5)}.

We next find separate upper bounds for the two terms on the right-hand side

of the above equation.

From (A.20) in Chen & Li (2008), we directly have

2{ln(α, µ, σ1, σ2) − ln(0.5, 0, 1, 1)}

≤ 2
{
t1

n∑

i=1

Xi + t2

n∑

i=1

Zi + t3

n∑

i=1

Ui + t4

n∑

i=1

Vi

}

−
{

t21

n∑

i=1

X2
i + t22

n∑

i=1

Z2
i + t23

n∑

i=1

U2
i + t24

n∑

i=1

V 2
i

}
{1 + op(1)} + op(1).

Here

t1 = m1,0, t2 = m2,0 + m0,1, t3 = m3,0 + 3m1,1, and t4 = m4,0 + 6m2,1 + 3m0,2
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with

ml,s = (1 − α)µl(σ2
1 − 1)s + αµl(σ2

2 − 1)s, l = 1, 2, 3, 4, s = 1, 2.

We notice that ml,s can be simplified to

ml,s = µl{(1 − α)(σ2
1 − 1)s + α(σ2

2 − 1)s}.

Given the conditions on (α, µ, σ1, σ2), the tl’s are as follows:

t1 = µ, t2 = t̃2 + op(t1), t3 = op(t1), t4 = t̃4 + op(t1)

where t̃2 = (1−α)(σ2
1−1)+α(σ2

2−1) and t̃4 = 3{(1−α)(σ2
1−1)2+α(σ2

2−1)2}.

Hence, the upper bound of 2{ln(α, µ, σ1, σ2)− ln(0.5, 0, 1, 1)} can be refined to

2{ln(α, µ, σ1, σ2) − ln(0.5, 0, 1, 1)}

≤ 2
{
µ

n∑

i=1

Xi + t̃2

n∑

i=1

Zi + t̃4

n∑

i=1

Vi

}

−
{

µ2
n∑

i=1

X2
i + t̃22

n∑

i=1

Z2
i + t̃24

n∑

i=1

V 2
i

}
{1 + op(1)} + op(1). (3.1)

We now consider the upper bound for 2{pn(σ1) + pn(σ2) + p(α)− 2pn(1)−

p(0.5)}. Using Conditions C1 and C3, we get

2{pn(σ1) + pn(σ2) + p(α) − 2pn(1) − p(0.5)}

≤ 2{pn(σ1) + pn(σ2) − 2pn(1)} = op(n
1/6){|σ2

1 − 1| + |σ2
2 − 1|}

≤ op(n)
{
t̃22 + t̃24

}
+ op(1). (3.2)
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Combining (3.1) and (3.2) gives

2{pln(α, µ, σ1, σ2) − pln(0.5, 0, 1, 1)}

≤ 2
{
µ

n∑

i=1

Xi + t̃2

n∑

i=1

Zi + t̃4

n∑

i=1

Vi

}

−
{
µ2

n∑

i=1

X2
i + t̃22

n∑

i=1

Z2
i + t̃24

n∑

i=1

V 2
i

}
{1 + op(1)} + op(1)

≤ sup
µ, t2, t4

[
2
{
µ

n∑

i=1

Xi + t2

n∑

i=1

Zi + t4

n∑

i=1

Vi

}

−
{
µ2

n∑

i=1

X2
i + t22

n∑

i=1

Z2
i + t24

n∑

i=1

V 2
i

}]
+ op(1).

Here t2 = (1−α)(σ2
1 −1)+α(σ2

2 −1) and t4 = 3{(1−α)(σ2
1 −1)2 +α(σ2

2 −1)2}.

Since t4 ≥ 0, we further have

2{pln(α, µ, σ1, σ2) − pln(0.5, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

This finishes the proof.

3.5.2 Proof of Theorem 3.1

Let

r1n(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) = 2{pln(α

(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(0.5, 0, 1, 1)}

and

r2n = 2{pln(0.5, 0, 1, 1)− pln(0.5, µ̂0, σ̂0, σ̂0)}.

Then M
(K)
n (αj) = r1n(α

(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) + r2n.
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The conclusion of Lemma 3.1 implies that the upper bound in Lemma 3.2

is also applicable to r1n(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ). That is,

r1n(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 )

= 2{pln(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(0.5, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1). (3.3)

Applying some of the classic results about regular models, we have

r2n = −
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

−
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+ op(1). (3.4)

Combining (3.3) and (3.4), we get

M (K)
n (αj) = r1n(α

(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) + r2n ≤

{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

The leading term in the above equation does not depend on α, and therefore

it also serves as an upper bound of EM
(K)
n , i.e.,

EM (K)
n ≤

{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

We now show that the upper bound is achievable. Since the EM-iteration

increases the penalized log-likelihood (Dempster, Laird, & Rubin, 1977), we

only need to show that this is the case when K = 1. It suffices to find a set

of parameter values α̂, µ̂, σ̂1, σ̂2 at which the upper bound is attained. Let
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α̂ = 0.5 and µ̂ =
∑n

i=1 Xi/
∑n

i=1 X2
i . We choose σ̂1 and σ̂2 such that

0.5(σ̂2
1 − 1) + 0.5(σ̂2

2 − 1) =

∑n
i=1 Zi∑n
i=1 Z2

i

,

3{0.5(σ̂2
1 − 1)2 + 0.5(σ̂2

2 − 1)2} =
{(
∑n

i=1 Vi)
+}∑n

i=1 V 2
i

.

It can be checked that σ̂1 and σ̂2 exist. Further, µ̂ = Op(n
−1/2), σ̂2

1 − 1 =

Op(n
−1/4), and σ̂2

2 − 1 = Op(n
−1/4). With this order information, we obtain

2{pln(α̂, µ̂, σ̂1, σ̂2) − pln(0.5, µ̂0, σ̂0, σ̂0)} =
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

Because the EM-iteration always increases the penalized log-likelihood, we

must have

EM (K)
n ≥ M (1)

n (0.5) ≥ 2{pln(α̂, µ̂, σ̂1, σ̂2) − pln(0.5, µ̂0, σ̂0, σ̂0)}

=
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

This shows that the asymptotic upper bound of EM
(K)
n is identical to its lower

bound, which implies that

EM (K)
n =

{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ op(1).

By central limit theorem,

∑n
i=1 Vi√∑n
i=1 V 2

i

→ N(0, 1)

in distribution. Therefore, EM
(K)
n asymptotically follows the distribution

1
2
χ2

0 + 1
2
χ2

1.
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Chapter 4

Testing Homogeneity in a

Contaminated Normal Model

4.1 Introduction

This chapter is mainly motivated by detecting the alternative hypotheses in

large-scale hypothesis testing problem, in which we need to conduct thousands

and sometimes millions of hypothesis tests on parallel data sets. One particular

area involving large-scale hypothesis testing is the microarray study. The

following is an illustrating example from this area. More applications can be

found in Efron (2010).

Example 4.1. (Prostate data) The prostate data consist of the gene ex-

pression levels of n = 6033 genes for 102 male individuals: 52 prostate cancer

patients and 50 normal control subjects. The principal goal of the study is

to find the genes that are differentially expressed between the prostate cancer

patients and the normal control subjects. Such genes will be used for further

investigation.
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For the ith gene, we test

H0i : gene i is not differentially expressed in two samples or gene i is “null”.

Hence we need to deal with over 6000 hypotheses at the same time. The com-

monly used test statistic for H0i is the traditional two-sample test statistic ti.

Under H0i, ti follows or approximately follows a t-distribution with 100 degrees

of freedom. Efron (2010) suggested transforming ti to zi by

zi = Φ−1(F100(ti)),

where Φ and F100 are the cumulative distribution functions for N(0, 1) and

t-distribution with 100 degrees of freedom. Under H0i, zi follows or approxi-

mately follows N(0, 1), known as the theoretical null distribution. Efron (2010)

then used zi to test H0i.

In large-scale hypothesis testing problem, scientists are not interested in

controlling the type-I error individually. Instead they prefer the notion of

controlling the false discovery rate (Benjamini & Hochberg, 1995). Among

many methods for controlling this rate, Efron (2004) proposed the use of a

finite normal mixture to model the z-scores zi’s. See also McLachlan, Bean, &

Jones (2006) and Dai & Charnigo (2010). An appropriate candidate model is

(1 − α)f(x; µ1, σ1) + αf(x; µ2, σ2)

with the 1st component corresponding to the null genes and the 2nd component

corresponding to the differentially expressed genes. Here f(x; µ, σ) denotes the

probability density function of the normal distribution N(µ, σ2).
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In theory, f(x; µ1, σ1) should be the probability density function of N(0, 1),

the theoretical null distribution. In practice, the theoretical null distribution

may fail to work due to several reasons. For example, the null distribution of

ti may not be the exact t-distribution, see Efron (2010, pp. 105–109). Hence

Efron (2010) suggested the notion of empirical null distribution, which in many

examples can be well approximated by N(0, σ2
1). Hence we suggest modelling

z-scores by a contaminated normal model:

(1 − α)f(x; 0, σ1) + αf(x; µ, σ2). (4.1)

Before identifying the genes that are differentially expressed in two samples,

we first detect the existence of these genes by testing the homogeneity under

the contaminated normal model (4.1). That is, we aim to test

H0 : α = 0 or (0, σ1) = (µ, σ2). (4.2)

Developing an effective testing procedure for (4.2) is again a challeng-

ing problem. Similar to the scale mixtures of normal distributions, the log-

likelihood function is unbounded and the Fisher information in the mixing

proportion direction may be infinity. The asymptotic results for all the ex-

isting methods can not be directly applied. In this chapter, we design a new

class of EM-tests specifically for (4.2) under the contaminated model (4.1).

The rest of this chapter is organized as follows. In Section 4.2, we describe

the new EM-test procedure, and present the asymptotic properties. In Section

4.3, simulation studies are used to check the type-I errors and powers of the

new EM-test. We further compare the performance of the new EM-test with
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other methods in the literature. In Section 4.4, a real-data example is analyzed

to illustrate the proposed EM-test. All the proofs are given in Section 4.5.

We finish this section with two remarks.

Remark 4.1. Dai & Charnigo (2010) suggested modelling the z-score by

another contaminated normal model:

(1 − α)N(0, σ2) + αN(µ, σ2). (4.3)

They further proposed two methods: the MLRT and the D-test for testing

homogeneity in (4.3). The motivation of our new model in (4.1) is twofold.

First, in some examples, the variances in two components are observed to be

different. One particular example is given in Section 4.4. Second, as shown in

Section 4.3, the proposed EM-test based on model (4.1) is comparable to the

two methods in Dai & Charnigo (2010) even when z-scores are generated from

model (4.3). The proposed EM-test becomes more powerful when z-scores are

not generated from model (4.3).

Remark 4.2. Another stream for detecting the existence of differentially

expressed genes is based on p-values: pi = 2{1 − Φ(|zi|)}, i = 1, . . . , n. A

commonly used model for modelling p-values is the contaminated Beta model:

(1 − α)B(1, 1) + αB(a, b), (4.4)

where B(a, b) denotes the Beta distribution with two parameters a and b.

Note that B(1, 1) is also the uniform distribution over (0,1). See Allison et al.,

(2002), Peng (2003), Dai & Charnigo (2008), and the reference therein. Dai

& Charnigo (2008) further proposed the use of MLRT and D-test for testing
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homogeneity in (4.4). In Section 4.3, our new EM-test is further compared with

these two tests for detecting the existence of differentially expressed genes.

4.2 Main Results

4.2.1 The new EM-test procedure

Suppose X1, . . . , Xn are a random sample of size n from the contaminated

normal model (4.1). We are interested in the homogeneity test problem in

(4.2).

We denote the log-likelihood function as

ln(α, µ, σ1, σ2) =

n∑

i=1

log{(1 − α)f(Xi; 0, σ1) + αf(Xi; µ, σ2)}

and define the modified log-likelihood function as

pln(α, µ, σ1, σ2) = ln(α, µ, σ1, σ2) + p(α) + pn(σ1) + pn(σ2).

The penalty function p(α) is used to prevent the fitting of α being close to 0.

Here we do not penalize the fitting of α being close to 1 since in large-scale

hypothesis testing problem, the true value of α is in general quite small, for

example, smaller than 0.25 (Efron, 2010). One example for p(α) is p(α) =

log(α), which has been used in Fu, Chen, & Li (2008) for testing homogeneity

in a class of contaminated von Mises model. The penalty pn(σ) prevents the

fitting of σ2
1 and σ2

2 being close to 0, which help avoid the unbounded likelihood
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(Chen, Tan, & Zhang, 2008). An example of pn(σ) is

pn(σ) = −an ·

(
σ̂2

0

σ2
+ log

σ2

σ̂2
0

)
,

where σ̂2
0 =

∑n
i=1 X2

i /n is the maximum likelihood estimator of the variance

parameter under the null model. Using the penalty function, σ̂2
0 also maximizes

the modified log-likelihood function under the null hypothesis. The choice of

an is discussed in Section 4.2.3.

Similar to Chapters 2 and 3, the EM-test statistics are constructed in

the following iterative way. We first choose a finite set of {α1, . . . , αJ} for α

and a positive integer K. The specific choices of {α1, . . . , αJ} and K will be

suggested in Section 4.2.3.

For each j = 1, 2, . . . , J , compute

(µ
(1)
j , σ

(1)
j,1 , σ

(1)
j,2 ) = arg maxµ,σ1,σ2

pln(αj, µ, σ1, σ2).

Further let k = 1 and α
(1)
j = αj . The EM-iteration starts from here.

In the E-step of the k-th iteration (k = 1, . . . , K), we compute the posterior

probabilities

w
(k)
ij =

α
(k)
j f(Xi; µ

(k)
j , σ

(k)
j,2 )

(1 − α
(k)
j )f(Xi; 0, σ

(k)
j,1 ) + α

(k)
j f(Xi; µ

(k)
j , σ

(k)
j,2 )

.
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In the M-step of the k-th EM-iteration, we then update (α, µ, σ1, σ2) by

α
(k+1)
j = arg maxα

{ n∑

i=1

(1 − w
(k)
ij ) log(1 − α) +

n∑

i=1

w
(k)
ij log(α) + p(α)

}
,

µ
(k+1)
j = arg maxµ

{ n∑

i=1

w
(k)
ij log f(Xi; µ, σ2)

}
,

(
σ

(k+1)
j,1 , σ

(k+1)
j,2

)
= arg maxσ1,σ2

{ n∑

i=1

(1 − w
(k)
ij ) log f(Xi; 0, σ1) + pn(σ1) + pn(σ2)

+

n∑

i=1

w
(k)
ij log f(Xi; µ

(k)
j , σ2)

}
.

For each k and j, we define

M (k)
n (αj) = 2{pln(α

(k)
j , µ

(k)
j , σ

(k)
j,1 , σ

(k)
j,2 ) − pln(1, 0, σ̂0, σ̂0)}.

The EM-test statistic EM
(K)
n is defined as

EM (K)
n = max{M (K)

n (αj), j = 1, 2, . . . , J}.

The null hypothesis is rejected when EM
(K)
n exceeds the critical value of the

limiting distribution given in section 4.2.2.

4.2.2 Limiting distribution of the EM-test

We derive the limiting distribution of the EM-test statistics EM
(K)
n under the

following conditions on the penalty functions p(α) and pn(σ).

D1 The penalty function p(α) is continuous, approaches negative infinity as

α approaches zero. Further p(1) = 0.

D2 sup{|pn(σ)|} = o(n).
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D3 p′n(σ) = op(n
1/6) at any σ > 0.

D4 pn(σ) ≤ 4(log n)2 log(σ), when σ ≤ n−1 and n is large.

Conditions D1-D4 are very similar to Conditions C1-C4 in Chapter 3.

These conditions guarantee that the new EM-test has a simple limiting dis-

tribution. They are satisfied by the suggested penalty functions in Section

4.2.1.

Theorem 4.1: Suppose that the penalty functions p(α), pn(σ) satisfy Con-

ditions D1-D4 and the initial set {α1, . . . , αJ} ∈ (0, 1). Under the null

hypothesis and for any fixed finite K, as n → ∞,

EM (K)
n →

1

2
χ2

1 +
1

2
χ2

2 + 2 maxj p(αj)

in distribution.

The result in Theorem 4.1 needs some interpretations. In the EM-test

procedure, α is bounded away from 0. With α 6= 0, testing homogeneity in

(4.1) is to test µ = 0 and the homogeneity of variances in two components.

For any given αj, M
(K)
n (αj) contains two terms: a term due to log-likelihood

difference and a term due to penalty functions. Testing µ = 0 contributes

a χ2
1 to the limiting distribution of the term due to log-likelihood difference;

testing the homogeneity of variances contributes to another 0.5χ2
0+0.5χ2

1 to the

limiting distribution of the term due to log-likelihood difference, as shown in

Chapter 3. Roughly speaking, adding two parts together, the term due to log-

likelihood difference in M
(K)
n (αj) has a 1

2
χ2

1 + 1
2
χ2

2 limiting distribution. Hence

EM
(K)
n has the limiting distribution given in Theorem 4.1 with 2 maxj p(αj)

coming from the penalty functions.
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4.2.3 Choice of the penalty functions

Before the EM-test is implemented in applications, we need to specify several

tuning parameters: the finite set {α1, . . . , αJ}, the iteration number K, the

penalty functions p(α) and pn(σ).

For {α1, . . . , αJ}, we suggest using {0.05, 0.15, 0.25}. As discussed in Efron

(2010), in most situations, the value of α is quite small, for example less than

0.25. Hence we choose three initial values which are less than or equal to 0.25

for α. Empirical experience suggests that further increasing the number of

initial values may not significantly improve the power of the EM-test. Similar

to Chapters 2 and 3, we use K = 2 or 3 as the iteration number. For p(α),

we use the penalty p(α) = log(α) as suggested in Fu, Chen, & Li (2008).

This penalty function satisfies Condition D1 for the theoretical development.

Further, in the M-step of the EM-iteration, α can be updated via an explicit

form. For the penalty pn(σ), we recommend

pn(σ) = −an ·

(
σ̂2

0

σ2
+ log

σ2

σ̂2
0

)
.

As long as an = o(n1/6), pn(σ) satisfies Conditions D2-D4. Carefully tuning

the value of an in the penalty functions will further improve the precision of

the approximation of the limiting distribution to the finite-sample distribution

of EM
(K)
n . We adapt the computer experiment approach used in Chapter 3

and Chen & Li (2011) to obtain an empirical formula for an.

The idea of computer experiment is similar to that in Section 3.2.3. We

omit it here. At the beginning of the computer experiment, we carry out pilot

experiment for many choices of sample sizes n. We find that when an ≤ 1.4

the simulated type-I errors of the EM-test are larger than the nominal levels.
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Hence, in designed experiment, an is chosen to be from 1.6 to 4.0, with the step

length 0.2. In total, 13 values of an are considered. We consider three quite

large sample sizes: 500, 1000, and 1500 since in large-scale hypothesis testing

problem, the number of parallel hypotheses are around thousands. Then a

13 × 3 full factorial design is used in our computer experiment. For each

combination of an and n, 5000 random samples of size n from the N(0, 1)

are used to calculate the simulated type-I errors q̂ of EM
(2)
n at the target

significance level q. Similar to Section 3.2.3, the discrepancy between q̂ and q

is calculated as

y = log{q̂/(1 − q̂)} − log{q/(1 − q)}.

Table 4.1 presents the discrepancy between q̂ and q when q = 0.05, the same

level used in Section 3.2.3.

Table 4.1: Discrepancy between q̂ and q in term of y under the contaminated
normal models.

an n=500 n=1000 n=1500

1.6 0.157 0.175 0.278

1.8 0.061 0.101 0.210

2.0 0.081 0.081 0.157

2.2 0.061 0.101 0.101

2.4 0.061 0.041 0.138

2.6 0.000 0.101 0.101

2.8 -0.043 0.041 0.061

3.0 -0.043 0.061 -0.021

3.2 -0.111 0.041 -0.021

3.4 -0.065 -0.021 0.138

3.6 -0.111 -0.065 0.081

3.8 -0.021 0.041 0.041

4.0 -0.234 -0.065 0.061
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Analysis of variance suggests both n and an have significant effects on y.

After some brainstorming and exploratory analysis, the covariates in the form

of 1/n and log{an − 1.4} gives the most satisfactory outcomes in terms of

both the goodness of fit and the simplicity of the resulting formula for an.

The covariate log{an − 1.4} effectively confines the value of an in (1.4,∞), as

suggested by our pilot study.

We next regress y in 1/n and log{an − 1.4}. Based on 39 observations, the

fitted regression model is

ŷ = 0.158 − 82.899/n − 0.094 log(an − 1.4)

with R2 = 73.9%. Setting ŷ = 0 gives the following empirical formula for an:

an = exp(1.681 − 881.904/n) + 1.4.

Since our EM-test procedure is invariant to the scale transformation, the em-

pirical formula of an is applicable to the general null distribution N(0, σ2). In

the next section, we examine the performance of the derived empirical formula

of an and other suggested tuning parameters.

4.3 Simulation Study

The purpose of simulation study is twofold: (i) check if the limiting distri-

bution of the EM-test provides accurate approximation to the finite sample

distribution; (ii) compare the power of the EM-test with the MLRT (λn,N) and

the D-test (dn,N) proposed in Dai & Charnigo (2010) under the contaminated

normal model in (4.3) and the MLRT (λn,B) and the D-test (dn,B) proposed in
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Dai & Charnigo (2008) under the contaminated Beta model in (4.4). Note that

all the five methods can be used to detect the existence of the gene that are

differentially expressed in two samples. The EM-test statistics are calculated

based on the recommended tuning parameters in Section 4.2.3.

To check the approximation of the limiting distribution of EM
(K)
n , we gen-

erate 10000 replications respectively for n = 100, 200, . . . , 1000, 1500, 2000, . . .,

4500, 5000, 10000 from the null model N(0, 1). The limiting distribution in

Theorem 4.1 is used to calculate the critical values. The simulated type-I er-

ror rates of EM
(K)
n at the nominal levels 10%, 5%, and 1% are summarized in

Table 4.2. As we can see, for all considered sample sizes, the simulated type-I

errors are very close to the nominal levels, which indicates that the limiting

distribution approximates the finite sample distribution reasonably well.

Next, we conduct the simulation under the alternative models. We choose

twelve alternative models, which are listed in Table 4.3. The first six are the

alternative models used in Dai & Charnigo (2010). In these models, the com-

ponent variances are the same for all components. In the second six models,

the component variances are chosen to be different; other settings are the same

as the first six models. In all these twelve models, σ1 is set to be 1.

We consider sample sizes n = 100, 200, 500, 1000, 1500. For each combi-

nation of model and sample size, 5000 replications are used to compute the

power of the five tests: EM
(K)
n , λn,N , dn,N , λn,B, and dn,B. We only present

the power comparison with sample size n=500 at the 5% level in Table 4.4.

The simulation results for other sample sizes and significance levels show the

similar trend and therefore we omit them.

From Table 4.4, we have the following two observations:
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Table 4.2: Simulated type-I error rates (%) of the EM-test under the contam-
inated normal model.

Level=10% Level=5% Level=1%

n EM
(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n EM

(1)
n EM

(2)
n EM

(3)
n

100 9.4 9.9 10.3 4.9 5.2 5.4 0.9 1.0 1.1

200 10.3 10.5 10.7 5.1 5.3 5.4 1.1 1.1 1.1

300 10.1 10.3 10.5 5.0 5.1 5.2 0.9 0.9 1.0

400 10.2 10.3 10.5 5.1 5.1 5.2 0.9 0.9 0.9

500 10.1 10.2 10.3 5.0 5.1 5.1 1.0 1.0 1.1

600 10.1 10.2 10.2 5.0 5.0 5.0 0.9 1.0 1.0

700 10.0 10.1 10.2 4.9 4.9 4.9 1.0 1.0 1

800 9.5 9.6 9.7 4.7 4.7 4.8 1.0 1.0 1.0

900 9.6 9.6 9.7 4.6 4.6 4.7 0.8 0.8 0.9

1000 9.7 9.7 9.8 5.0 5.0 5.0 1.0 1.0 1.0

1500 9.5 9.5 9.6 4.7 4.7 4.8 1.0 1.0 1.0

2000 9.7 9.7 9.7 4.8 4.8 4.8 1.0 1.0 1.0

2500 9.6 9.6 9.6 4.8 4.8 4.8 0.9 0.9 0.9

3000 10.1 10.1 10.1 5.1 5.1 5.1 1.0 1.0 1.0

3500 9.7 9.7 9.7 4.9 4.9 4.9 0.9 0.9 0.9

4000 10.2 10.2 10.2 5.3 5.3 5.3 1.0 1.0 1.0

4500 10.3 10.3 10.3 5.0 5.0 5.0 1.0 1.0 1.0

5000 10.0 10.0 10.0 4.9 4.9 4.9 1.1 1.1 1.1

10000 10.0 10.0 10.0 5.0 5.0 5.0 1.0 1.0 1.0
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Table 4.3: Twelve alternative contaminated normal models.

No. Model

A1 0.95N(0, 1) + 0.05N(1, 1)

A2 0.95N(0, 1) + 0.05N(2, 1)

A3 0.9N(0, 1) + 0.1N(1, 1)

A4 0.9N(0, 1) + 0.1N(2, 1)

A5 0.9N(0, 1) + 0.05N(1, 1) + 0.05N(−1, 1)

A6 0.9N(0, 1) + 0.05N(2, 1) + 0.05N(−2, 1)

A7 0.95N(0, 1) + 0.05N(1, 2)

A8 0.95N(0, 1) + 0.05N(1, 0.5)

A9 0.9N(0, 1) + 0.1N(2, 2)

A10 0.9N(0, 1) + 0.1N(2, 0.5)

A11 0.9N(0, 1) + 0.05N(1, 2) + 0.05N(−1, 0.5)

A12 0.9N(0, 1) + 0.05N(2, 2) + 0.05N(−2, 0.5)

(i) EM
(K)
n is more powerful than λn,N and dn,N under A2 and A9, in which

we may observe quite large z-scores. EM
(K)
n is also more powerful than

λn,N and dn,N under A5-A6 and A11-A12, in which the estimator of µ is

very close to 0.

(ii) EM
(K)
n is more powerful than or comparable to λn,B and dn,B under A1-

A4 and A7-A10. However, EM
(K)
n has less power than λn,B and dn,B

under A5-A6 and A11-A12.

Based on these two observations, we conclude that (i) the new EM-test based

on model (4.1) is as powerful as or more powerful than than the MLRT and

D-test based on model (4.3); (ii) the new EM-test based on model (4.1) is as

powerful as or more powerful than the MLRT and D-test based on model (4.4)

when z-scores are generated from model (4.1); (iii) the new EM-test becomes

less powerful than the MLRT and D-test based on model (4.4) when there is

symmetry between overexpression and underexpression.
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Table 4.4: Powers (%) of the EM-test under twelve alternative contaminated
normal models at the 5% significance level, n=500.

Model No. λn,N dn,N λn,B dn,B EM
(1)
n EM

(2)
n EM

(3)
n

A1 19.2 19.2 10.0 10.9 17.5 17.6 17.7

A2 54.8 54.8 74.8 79.3 79.0 79.0 79.1

A3 57.2 57.2 26.5 29.9 54.6 54.7 54.8

A4 97.1 97.0 99.8 99.8 99.5 99.5 99.5

A5 5.3 5.3 25.6 28.5 6.4 6.4 6.5

A6 5.0 5.0 99.7 99.8 52.5 53.0 53.3

A7 54.4 39.8 76.8 82.7 81.5 81.5 81.6

A8 19.2 19.2 7.1 8.2 17.1 17.2 17.3

A9 100 99.9 97.4 98.9 100 100 100

A10 97.5 97.6 98.2 99 96.9 97 97.1

A11 45.4 31 78.2 83.3 74.7 74.7 74.8

A12 74.8 65 99.1 99.8 92.2 92.3 92.3

4.4 Real-data Example

Example 4.2. (Police data) This example is taken from Efron (2010,

pp. 95–97). In 2006 at New York City, a study was conducted to investigate

whether there are some police officers that have racial bias with pedestrian

stops. The preliminary data included xij , the vector of covariates for police

officer i, stop j; yij= 0 or 1, the indicator of whether the stopped person

belonged to a certain minority group or not. A logistic regression model

log
Pr(yij = 1)

1 − Pr(yij = 1)
= βi + γτxij

was used to estimate the “officer effect” βi (Efron, 2010). The z-score of the

i-th officer is defined as

zi = β̂i/se(β̂i).
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In total, n = 2749 z-scores are obtained. Large positive zi’s are considered as

signs of possible racial bias.

Figure 4.1: Histogram and two fitted densities of the police data: the density
from the homogeneous normal distribution (solid line) and the density from
the two-component contaminated normal distribution (dashed line).
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Figure 4.1 shows the histogram of the 2749 z-scores. The solid line and the

dashed line are the fitted density curves for the homogeneous normal distribu-

tion and the contaminated normal distribution in (4.1), respectively. Merely

based on this figure, it is hard to tell which model provides a better fitting.

Hence a formal test is required here. The EM-test statistics in this exam-

ple are found to be EM
(2)
n =41.026 with the p-value being around 1.7e − 10

calibrated by its limiting distribution. Based on the p-value, the null hypoth-

esis is soundly rejected. We also apply the MLRTs and D-tests under both

96



the contaminated normal model in (4.3) and the contaminated Beta model

in (4.4) to the police data example. The p-values for the test statistics λn,N ,

dn,N , λn,B, and dn,B calibrated by their respect limiting distributions are re-

spectively 7.2e−06, 3.9e−1, 0, and 0. Clearly, the proposed EM-test provides

stronger evidence than λn,N and dn,N . It looks that λn,B and dn,B provide even

stronger evidence.

The fitted contaminated normal model for the 2749 z-scores is

0.951N(0, 1.3912) + 0.049N(0.021, 2.6102).

The two component variances are quite different, which explains why the pro-

posed EM-test is more powerful than λn,N and dn,N . Further note that first

component distribution is quite different from the theoretical null distribution

N(0, 1). Efron (2010) derived the empirical null and found its variance is 1.402,

which is quite close to 1.3912 but far away from 1. Both suggest that the the-

oretical null distribution may not work here. To see the effect of the failure of

theoretical null distribution on λn,B and dn,B, we get 10000 random samples

of sample size n = 2749 from N(0, 1.3912) and find that the simulated type-I

error rates of λn,B and dn,B at the 5% level are around 100%. Hence the lim-

iting distributions of λn,B and dn,B do not provide reasonable approximations

if the theoretical null distribution fails to work. Therefore the results based

on λn,B and dn,B are questionable. However, the EM-test, λn,N , and dn,N are

invariant to the scale transformation and hence the conclusion based on these

three tests are more trustable.
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4.5 Proof

Since the EM-test EM
(K)
n is invariant to the scale transformation, without loss

of generality, we assume that under the null hypothesis the true distribution

is N(0, 1). All the derivations are under this distribution.

The roadmap of the proof for Theorem 4.1 is similar to that of Theorem

3.1. We first prove two useful technical lemmas. Lemma 4.1 shows the con-

sistency of (α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) and Lemma 4.2 derives an upper bound for

the modified log-likelihood difference, which will be used to derive an upper

bound for EM
(K)
n . Next, we show the upper bound of EM

(K)
n is achievable

and derive the limiting distribution of EM
(K)
n .

Lemma 4.1: Suppose Conditions D1-D4 are satisfied. Then under the null

distribution N(0, 1), we have, for j = 1, 2, . . . , J and any k ≤ K,

α
(k)
j − αj = op(1), µ

(k)
j = op(1), σ

(k)
j,1 − 1 = op(1) and σ

(k)
j,2 − 1 = op(1).

Proof. The proof is similar to that of Lemma 6, Lemma 7, and Theorem 3 in

Chen & Li (2009). Thus it is omitted.

The next lemma concerns the upper bound of the modified log-likelihood

difference when (µ, σ1, σ2) are in small neighbourhood of the true values. For

i = 1, 2, . . . , n, we define

Zi =
X2

i − 1

2
, Ui =

X3
i − 3Xi

6
, and Vi =

X4
i − 6X2

i + 3

24
.

These notation are the same as those in Section 3.5.1.

Lemma 4.2: Assume that the same conditions in Lemma 4.1 hold. Suppose
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(α, µ, σ1, σ2) are estimators of (α, µ, σ1, σ2) such that (µ, σ1, σ2) = (0, 1, 1)+

op(1) and α ∈ (δ, 1− δ) for some δ > 0. Under the null distribution N(0, 1),

we have

2{pln(α, µ, σ1, σ2) − pln(1, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2p(α) + op(1).

Proof. Let

r1n(α, µ, σ1, σ2) = 2{ln(α, µ, σ1, σ2) − ln(1, 0, 1, 1)}.

Then

2{pln(α, µ, σ1, σ2) − pln(1, 0, 1, 1)}

= r1n(α, µ, σ1, σ2) + 2{pn(σ1) + pn(σ2) + p(α) − 2pn(1) − p(1)}. (4.5)

The upper bounds for the two terms in the above summation will be assessed

separately.

We first consider r1n(α, µ, σ1, σ2). From (A.20) in Chen & Li (2008), we

directly have

r1n(α, µ, σ1, σ2) ≤ 2
{
t1

n∑

i=1

Xi + t2

n∑

i=1

Zi + t3

n∑

i=1

Ui + t4

n∑

i=1

Vi

}

−
{

t21

n∑

i=1

X2
i + t22

n∑

i=1

Z2
i + t23

n∑

i=1

U2
i + t24

n∑

i=1

V 2
i

}
{1 + op(1)}

+op(1).
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In this inequality, tl are defined by

t1 = m1,0, t2 = m2,0 + m0,1, t3 = m3,0 + 3m1,1, and t4 = m4,0 + 6m2,1 + 3m0,2,

where ml,s are the first four moments of the mixing distribution such that

ml,s = (1 − α)0l(σ2
1 − 1)s + αµl(σ2

2 − 1)s.

After some simple algebra calculations, we have the following simpler forms of

tl:

t1 = αµ, t2 = t̃2 + op(t1), t3 = op(t1), t4 = t̃4 + op(t1),

where t̃2 = (1−α)(σ2
1−1)+α(σ2

2−1) and t̃4 = 3{(1−α)(σ2
1−1)2+α(σ2

2−1)2}.

Hence

r1n(α, µ, σ1, σ2) ≤ 2
{
t1

n∑

i=1

Xi + t̃2

n∑

i=1

Zi + t̃4

n∑

i=1

Vi

}

−
{

t21

n∑

i=1

X2
i + t̃22

n∑

i=1

Z2
i + t̃24

n∑

i=1

V 2
i

}
{1 + op(1)}

+op(1). (4.6)

We now assess the upper bound for 2{pn(σ1)+pn(σ2)+p(α)−2pn(1)−p(1)}.

Similar to (3.2), using Conditions D1 and D3, we have

2{pn(σ1) + pn(σ2) + p(α) − 2pn(1) − p(1)}

≤ 2{pn(σ1) + pn(σ2) − 2pn(1) + p(α)} = op(n
1/6){|σ2

1 − 1| + |σ2
2 − 1|} + 2p(α)

≤ 2p(α) + op(n)
{

t̃22 + t̃24

}
+ op(1). (4.7)
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Combining (4.5)-(4.7), we get

2{pln(α, µ, σ1, σ2) − pln(1, 0, 1, 1)}

≤ 2
{
t1

n∑

i=1

Xi + t̃2

n∑

i=1

Zi + t̃4

n∑

i=1

Vi

}

−
{
t21

n∑

i=1

X2
i + t̃22

n∑

i=1

Z2
i + t̃24

n∑

i=1

V 2
i

}
{1 + op(1)} + 2p(α) + op(1).(4.8)

Define

Q(t1, t2, t4)

= 2
{
t1

n∑

i=1

Xi + t2

n∑

i=1

Zi + t4

n∑

i=1

Vi

}
−
{
t21

n∑

i=1

X2
i + t22

n∑

i=1

Z2
i + t24

n∑

i=1

V 2
i

}

as a function of (t1, t2, t4) with t4 ≥ 0. With

t̂1 =

∑n
i=1 Xi∑n
i=1 X2

i

, t̂2 =

∑n
i=1 Zi∑n
i=1 Z2

i

, and t̂4 =
(
∑n

i=1 Vi)
+

∑n
i=1 V 2

i

, (4.9)

this quadratic function is maximized. Further the maximized value of Q(t1, t2, t4)

is

Q(t̂1, t̂2, t̂4) =
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

.

Together with (4.8), we get

2{pln(α, µ, σ1, σ2) − pln(1, 0, 1, 1)}

≤ Q(t̂1, t̂2, t̂4) + 2p(α) + op(1)

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2p(α) + op(1).

This finishes the proof.
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We now move to the proof of Theorem 4.1. The consistency results in

Lemma 4.1 enable us to apply Lemma 4.2 to 2{pln(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) −

pln(1, 0, 1, 1)}. That is,

2{pln(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(1, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2p(αj) + op(1).

Note that classic theory for regular models implies

2{pln(1, 0, σ̂0, σ̂0) − pln(1, 0, 1, 1)} =
(
∑n

i=1 Zi)
2

∑n
i=1 Z2

i

+ op(1).

Hence

M (K)
n (αj) = 2{pln(α

(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(1, 0, σ̂0, σ̂0)}

= 2{pln(α
(K)
j , µ

(K)
j , σ

(K)
j,1 , σ

(K)
j,2 ) − pln(1, 0, 1, 1)}

−2{pln(1, 0, σ̂0, σ̂0) − pln(1, 0, 1, 1)}

≤
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2p(αj) + op(1).

The upper bound of EM
(K)
n is then given by

EM (K)
n ≤

(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2 maxj p(αj) + op(1). (4.10)

Next, we show that the upper bound in (4.10) is achievable. Since the EM-

iteration increases the modified likelihood (Dempster, Laird, & Rubin, 1977),

we only need to show that this is the case when K = 1. If suffices to find a

set of parameter values α̂ and (µ̂, σ̂2
1, σ̂

2
2) at which the upper bound (4.10) is
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attained.

We first choose α̂ such that p(α̂) = maxj p(αj). Without loss of generality,

we assume that α̂ = α1. We next choose (µ̂, σ̂2
1 , σ̂

2
2) such that





α̂µ̂ = t̂1,

(1 − α̂)(σ̂2
1 − 1) + α̂(σ̂2

2 − 1) = t̂2,

3{(1 − α̂)(σ̂2
1 − 1)2 + α̂(σ̂2

2 − 1)2} = t̂4,

where the expressions of t̂l are given in (4.9). It can be checked that (µ̂, σ̂2
1, σ̂

2
2)

exists and

µ̂ = Op(n
−1/2), σ̂2

1 − 1 = Op(n
−1/4), σ̂2

2 − 1 = Op(n
−1/4).

With these order information, we obtain

2{pln(α̂, µ̂, σ̂2
1, σ̂

2
2) − pln(1, 0, σ̂0, σ̂0)}

=
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2p(α̂) + op(1).

Note that α̂ = α1 and p(α̂) = p(α1) = maxj p(αj). Thus for EM
(K)
n , we have

EM (K)
n ≥ M (1)

n (α1) ≥ 2{ sup
µ,σ1,σ2

pln(α1, µ, σ1, σ2) − pln(1, 0, σ̂0, σ̂0)}

≥ 2{pln(α̂, µ̂, σ̂2
1, σ̂

2
2) − pln(1, 0, σ̂0, σ̂0)}

=
(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2 maxj p(αj) + op(1).

This shows the asymptotic upper bound of EM
(K)
n is also the asymptotic lower
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bound, which implies

EM (K)
n =

(
∑n

i=1 Xi)
2

∑n
i=1 X2

i

+
{(
∑n

i=1 Vi)
+}2

∑n
i=1 V 2

i

+ 2 maxj p(αj) + op(1).

By central limit theorem, both
∑n

i=1 Xi

/√∑n
i=1 X2

i and
∑n

i=1 Vi

/√∑n
i=1 V 2

i

converge in distribution to N(0, 1). Further Xi and Vi are uncorrelated. There-

fore, EM
(K)
n asymptotically follows the distribution

1

2
χ2

1 +
1

2
χ2

2 + 2 maxj p(αj).

This finishes the proof.
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Chapter 5

Summary and Future Work

In this chapter, we first summarize the main contributions of the thesis and

then outline some future research problems.

5.1 Summary of the Thesis

In this thesis, we have considered testing homogeneity in three classes of finite

mixture models: multivariate mixture models, the scale mixtures of normal

distributions, and a new class of contaminated normal models in (4.1).

In Chapter 2, we propose the use of the EM-test for testing homogene-

ity in multivariate mixture models. We derived the limiting distribution of

the EM-test statistic. Based on that, a resampling procedure is designed to

approximate the p-values of the EM-test. Simulation studies show that the

EM-test has accurate type-I error and adequate power, and is more powerful

and computationally efficient than the bootstrap likelihood ratio test.

In Chapter 3, we retool the EM-test proposed in Chen & Li (2009) for

testing homogeneity in scale mixtures of normal distributions. We show that
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the retooled EM-test has the simple limiting distribution 1
2
χ2

0 + 1
2
χ2

1. We also

use a computational method to provide an empirical formula for the tuning

parameter selection. Simulation studies show that the retooled EM-test has

an accurate size and is more powerful than existing methods when the data

is generated from the scale mixtures of normal distributions. Further the

retooled EM-test has adequate power and sometimes is more powerful than

other methods even when the two component means in normal mixture models

are slightly different.

In Chapter 4, we propose a class of contaminated normal models for mod-

elling the z-scores in large-scale hypothesis testing problem and develop a new

EM-test for homogeneity in this model. We show that the EM-test statistic

asymptotically has simple shifted 1
2
χ2

1+ 1
2
χ2

2 distribution. Extensive simulation

studies show that, the proposed testing procedure has accurate type-I error

and prominent powers for detecting heterogeneity. Further the new EM-test

also compares favourably to other existing methods.

5.2 Future Work

In this section, we outline some future research problems.

Strong identifiability of a multivariate mixture model

As we discussed in Section 2.5, the developed theory for the EM-test in multi-

variate mixture models can be applied only if the kernel density f(x; θ) satisfies

Condition A5, a weaker version of the strong identifiability condition (Chen,

1995). Verifying this condition in practice is a tedious work. Chen (1995)

and Holzmann, Munk, & Stratmann (2004) used the characteristic function
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technique to show that many univariate mixture models and von Mises mix-

ture model are strongly identifiable. In the future, we would like to develop

some general theory about the strong identifiability of multivariate mixture

models. Based on that, we plan to find some easy-to-use criterion for checking

the strong identifiability of multivariate mixture models. Further, developing

the asymptotic distribution of the EM-test when the model is not strongly

identifiable is another interesting topic.

Testing the order of a multivariate mixture model

Testing the order of a multivariate mixture model is an interesting, important,

and more general hypothesis testing problem. In the literature, Dacunha-

Castelle & Gassiant (1999) and Liu & Shao (2003) have derived the limiting

distribution of the LRT for testing

H0 : m = p versus HA : m = q

with q > p. In general, the limiting distribution involves the supremum of a

Gaussian process, which may not be easy to use in practice. Chen, Chen, &

Kalbfleisch (2004) proposed a MLRT for testing

H0 : m = 2 versus HA : m > 2

in univariate mixture models. The limiting distribution of the MLRT is shown

to be a mixture of χ2-distributions. Recently Li & Chen (2010) and Chen, Li,
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& Fu (2012) proposed two classes of EM-tests for testing

H0 : m = m0 versus HA : m > m0

in univariate mixture models and in normal mixture models with unknown

component variances. They showed that for any positive integer m0, the lim-

iting distributions of the EM-tests are the χ2-type. We expect that the EM-

test idea will be effective in developing a convenient statistical procedure for

testing the order of a multivariate mixture model. We plan to investigate the

possibility in details in the future.

Homogeneity test in general contaminated models

The contaminated models have many applications. The contaminated expo-

nential distributions and more generally the contaminated Gamma distribu-

tions have been used in software reliability analysis, see Slud (1997) and Liu,

Pasarica, & Shao (2003). The contaminated von Mises distributions have been

used in paleoflow direction study, see Grimshaw, Whiting, & Morris (2001) and

Fu, Chen, & Li (2008).

A contaminated model takes the following model:

(1 − α)f(x; β0, γ1) + αf(x; β, γ2) (5.1)

with β0 being known and (β, γ1, γ2) being unknown. The contaminated normal

model is a special case of the above formulation. Testing homogeneity in the

contaminated model is an important problem, see the discussion in Chapter 4,

Liu, Pasarica, & Shao (2003), and Fu, Chen, & Li (2008). Due to the success

108



of the EM-test in Chapter 4, we plan to further apply the idea of EM-test to

test homogeneity in the general contaminated model in (5.1).

EM-test in finite mixture of regression models

Finite mixture of regression (FMR) model , which is a natural extension of

finite mixture model to incorporate the covariate information, has been widely

used in many areas such as machine learning (Jacobs et al., 1991; Jiang &

Tanner, 1999a, 1999b), finance and social science (Kamakura et al., 2003;

Skrondal & Rabe-Hesketh, 2004), clinical, medical and psychological studies

(Schlattmann, 2009), and so on.

In the literature, the identifiability issue in FMR models was addressed by

Hennig (2000). The variable selection problems in FMR models were explored

through AIC and BIC in 1990s. Recently, Khalili & Chen (2007) proposed the

new variable selection approaches using the least absolute shrinkage and selec-

tion operator (LASSO; Tibshirani, 1996) and the smoothly clipped absolute

deviation (SCAD; Fan & Li, 2001). The study on testing the order of a FMR

model is quite limited. Zhu & Zhang (2004) investigated the asymptotic dis-

tributions of the LRT and the MLRT for testing homogeneity in FRM models.

Dai & Charnigo (2007) considered testing homogeneity in a contaminated re-

gression model using the MLRT and the D-test. Applying the idea of EM-test

for testing homogeneity or more generally testing the order of a FMR model

is an interesting research problem. Continuing effort on this problem is part

of my future research plan.
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