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Introduction

Imam (1999) and Imam et al. (2005) developed a critical state
constitutive model capable of capturing the response of cohesionless
sands. To model artificially or naturally cemented sand, the model
requires some modifications to consider the effect of cementations.
Cemented soils have a structure that has important effects on their
mechanical responses (Yu et al. 2007). The structure in natural soils
is believed to be a combination of fabric and bonding, which can be
destroyed by plastic deformation (Yu et al. 2007; Yang et al. 2011).
Bonding in a general sense includes all types of cohesive forces at
the interparticle level by cementing agents (Lee et al. 2004).

Other models have been developed for uncemented and struc-
tured sands, such as the disturbed state concept (DSC) (Desai 2000;
Liu et al. 2000). In the DSC, continuum deformation is divided
into two reference states: the virgin state, or relative intact
state, and the disturbed state, or fully adjusted (FA) state. The FA
state is often taken to the critical state for sands (Desai and Wang
2003). Disturbance is evaluated using the disturbance degree (D).
A disturbed function is used to predict the change of the distur-
bance with influential factors (for example, plastic deformation).

Because bonding between soil particles gives rise to an increase
in stiffness and strength, the initial yield surface is expected to
enlarge. This has been supported by experimental observations.
However, regardless of the sources of cementation, the engineer-
ing effects of the factors due to cementation are similar because
they all result in increased stiffness and the development of higher
cohesion and tensile strength (Lee et al. 2004). This is why many
new models for cemented geomaterials assume a larger yield
surface compared with the corresponding uncemented materials

(Gens and Nova 1993; Nova et al. 2003; Nova 2006; Navarro et al.
2010). Many models adopt a modified Cam-clay framework
because many cemented materials are often clayey in nature. This
makes them unsuitable for cemented sands because sand does not
have a unique normal consolidation line, which is required in the
Cam-clay framework (Jefferies 1993; Yu et al. 2007).

In this new model, cementation is first implemented into the
base sand model by incorporating tensile strength and cohesion
into the formulation of constitutive relationships. Definitions of the
yield function, elastic moduli, plastic-hardening modulus, flow
rule, and other components of the model are modified accordingly.
After the incorporation of the tensile strength and cohesion into the
model, the new model is reformulated using the framework of
bounding surface plasticity (Dafalias 1986; Dafalias and Herrmann
1986). By incorporating bounding surface plasticity, the model has
the potential of modeling cyclic loading (Imam and Chan 2008).

Bounding surface plasticity was first proposed for metal by
Dafalias and Popov (1975). In this theory, stress states are assumed
to be bounded by a surface called the bounding surface. Hence, the
bounding surface provides an exterior limit for all permissible stress
states. It is also assumed that the stress states always lie in another
surface called the loading surface. During plastic flow, the bounding
surface and loading surface can uniformly expand/contract, move, or
even rotate. The bounding surface, however, always contains the
current stress state because a stress state outside the bounding surface
has no physical meaning. That is, regardless of the size of the
loading surface, the bounding surface always encompasses the
loading surface. The loading surface may touch the bounding surface
tangentially at a point or even become identical with it, but never
intersects it. The elastic nucleus is another surface in which the
plastic modulus gets an infinite value rather than an explicit value.
However, for simplicity, it is usually assumed that the elastic domain
diminishes to a single point, meaning the plastic deformation occurs
as soon as the loading embarks in the stress space.

The remarkable feature of the bounding-surface concept is that
hardening of the loading surface and the resulting magnitude of the
plastic deformation depend on the proximity of the stress state to
the bounding surface. The loading surface becomes a reference
surface for complex stress paths of plastic deformation. In fact,
plastic deformation at any stress point inside the bounding surface
is computed by dividing the plastic modulus of the loading surface
into two segments: the bounding modulus and the additive plastic
modulus. Then, radial mapping is used to evaluate the
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corresponding unique image stress point on the bounding surface
needed to calculate these two moduli (Reilly and Brown 1991).

Description of the Base Model

The theory and formulation of the base model can be found in Imam
et al. (2005). In this model, the yield function is expressed as

f = (η−α)2 −M2
α 1 −

ffiffiffiffiffi
p

pc

r !
= 0 (1)

M2
α = (5Mp − α)(Mp − α) (2)

where η = stress ratio; p= mean effective normal stress; α= scalar
constant whose magnitude is zero for isotropically consolidated
sands; and pc = effective preconsolidation pressure, which is a
hardening parameter controlling the size of the yield surface.

The value of Mp is evaluated for compression and extension,
respectively, using the following equations:

Mp,c =
6 sinφp,c

3 − sinφp,c
(3)

Mp,e =
6 sinφp,e

3 + sinφp,e
(4)

in which φp,c and φp,e = friction angles at peak shear stress in
triaxial compression and triaxial extension, respectively. They are
calculated by

sinφp,c = sinφμ − kpψp (5)

sinφp,e = sinφμ − kpψp − ap (6)

where ψp = e− ep, in which e = void ratio and ep = is the critical
state void ratio, which is evaluated at mean normal pressure
corresponding to the peak point of shear stress (i.e., at p= pp);
φμ = friction angle associated with ψp = 0 in triaxial compression
and is usually close to the interparticle friction angle; and kp and
ap = model parameters.

Similar to conventional plasticity, isotropic elasticity is
represented by two elastic parameters: the bulk modulus and shear
modulus. They are expressed as a direct function of the mean
effective stress and inverse function of the void ratio as follows:

G =Ga
(2:973−e)2

1 + e

p

pa

� �n

(7)

K = Ka
(2:973−e)2

1 + e

p

pa

� �n

(8)

where Ga and Ka = reference elastic moduli considered as material
parameters; and pa = atmospheric pressure. A value of 0.5–0.6 is
usually used for n, depending on the type of sand.

Following the work of Wood (1990) and Manzari and Dafalias
(1997), the stress–dilatancy relationship is defined as

d =
_εpp
_εpq
= A(MPT − η) (9)

Ac =
9

9 + 3MPT ,c − 2MPT ,cη
(10)

Ae =
9

9 − 3MPT ,c − 2MPT ,cη
(11)

where

sinφPT ,c = sinφcs + kPTψ (12)

sinφPT ,e = sinφcs + kPTψ + aPT (13)

in whichMPT = phase transformation stress ratio when volumetric–
plastic strain (and, as a result, dilatancy) changes its sign, resulting
in a change in the sign of _p; φcs = critical state friction angle
(a model parameter); ψ = e− ecs = state parameter representing the
difference between the current void ratio and the critical state void
ratio at the current mean normal stress (Been and Jefferies 1985;
Jefferies 1993); and kPT and aPT = material parameters. The phase
transformation stress ratio for compression (MPT,c) and extension
(MPT,e) is obtained using sinφPT,c and sinφPT,e similarly as for
Mp,c and Mp,e. Because of the dependency of MPT on the state
parameter, the effect of the void ratio and mean normal effective
pressure is indirectly included in the flow rule. Compression and
extension behavior are different, and appropriate laboratory tests
should be conducted to determine the parameters (Desai 2007).

Hardening in this model depends on the proximity to the critical
state, in contrast to conventional critical state models that couple the
size of the yield surface to the void ratio and obtain a hardening law
based on plastic volumetric strain using a constant p stress path
(Schofield 1993; Wood 1990; Bardet 1986; Yu 2006; Yu et al.
2007; Suebsuk et al. 2010, 2011). This is similar to Jefferies’s
approach (1993), which formulates the size of hardening as a
function of the difference between the current maximum hardness
and the current size of the yield surface.

The pure shear hardening law is expressed as

∂pc
∂ε

p

q

=
hGini

( pf −pc)ini
( pf − pc) (14)

in which h= model parameter; pf = failure mean normal effective
stress, which is obtained by substituting the failure stress ratio (Mf )
for η in the yield function equation; and (pf −pc)ini = initial value of
(pf − pc) at the end of consolidation and prior to shearing. The value
of Mf is calculated using sinφf , which itself is obtained by
adopting a Mohr–Coulomb-type failure criterion as follows:

sinφf = sinφcs − kfψ (15)

where kf = model parameter. The value ofMf = maximum attainable
stress ratio at the current stress state.

Critical State Framework for Bonded Sand

Modification of the base model is carried out using experimental
observations that show the differences between the response
of cemented/bonded and equivalent uncemented/unbonded soils.
Fig. 1 schematically represents the effect of bonding on the iso-
tropic compression curve. It is seen that bonded geomaterials exist
at a higher void ratio for the same mean normal pressure, leading
to broader admissible states compared with unbonded materials.
Differences in the void ratios of bonded and equivalent unbonded
materials at their loosest possible state under a specific mean
pressure can signify the degree of bonding. As shown in Fig. 1, the
degree of bonding may also be taken into account as the difference
between the mean normal stresses at the loosest possible state for
the bonded and unbonded material under the same void ratio
(Vatsala et al. 2001).

Fig. 2, obtained from experiments, exemplifies that the yield
(mean effective) stress increases with an increase in cement contents,
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implying a larger size for the initial yield surface. Initial yielding
is considered as the point at which breakage of the cement bonds
commences and is regarded as a state where the compression plane
and stress–strain curves deviate from the initial linear response.

Fig. 3 suggests that by increasing the cement contents, there is an
increase in the normalized initial yield stress (and peak stress). The
position of the yield point also shifts toward the left, implying a
stiffer response with an increase in the cement content. It is clear
that the tendency for a brittle response under the same confining
stress increases with cement content. In an ideal case, the shear
stress–strain curve for structured soils will ultimately be identical to
that for remoulded soils at a critical state when all cemented bonds
have been destroyed. This, however, does not always materialize
because some bonds may not be broken, even after an appreciable
amount of shearing occurs well beyond the initial yield point (Lee
et al. 2004). That is, cemented soil may arrive at the ultimate void
ratio after a large amount of shearing rather than at the critical state
void ratio, which is associated with constant volume and is
independent of the initial state. This is one of the existing challenges
in applying the critical state theory in cemented soil, especially in
cemented sand. Thus, the CSL may be expected to depend on the
initial void ratio for cemented sand, as observed experimentally by
Marri (2010). The application of a nonunique CSL has been
reported for cohesionless sand, as well. For example, in Bardet’s
work (1986), different critical state lines are used to calibrate the
response of loose and dense Sacramento River sand.

In considering the additional strength, the yield surface for the
unbonded geomaterials must be enlarged toward the right. It must
also be expanded toward the left to account for the cohesion/
tensile strength.

Fig. 4(a) illustrates the schematic of the modified yield surface
and the representation in three-dimensional (3D) stress space is
shown in Fig. 4(b). For simplicity, the original shape of the yield
function is preserved. Expansion toward the right and left are
indicated by po and pt , respectively. The value of pb controls the
yielding of the bonded material in isotropic compression, which
governs the size of the enlarged yield surface, whereas po controls
the growth in size of the initial elastic domain. The degree of
bonding may be expressed as po / pc.

The surface is closed in isotropic compression and it is smooth.
In fact, the tangent plane of the surface is perpendicular to the

Fig. 2. Effect of cement content on the initial yield point of cement-
treated Portaway sand (adapted from Marri 2010, with permission)

(a) (b)

Fig. 3. Effect of cement content on the location of the initial yield point (small bold circles) (reprinted from Marri 2010, with permission):
(a) triaxial tests with confining pressure of 1MPa; (b) triaxial tests with confining pressure of 4MPa

ln p

e

p

eΔ

(unbonded)ICL

(bonded)ICL

*e

*e e e= +Δ

bond strength

Fig. 1. Idealized representation of compression response for
bonded soil
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p-axis for isotropic material. A singularity point exists under pure
tension, that is, shear stress q= 0. At this point, the normal surface
is different for points approaching from positive q and negative q.
In this model, tensile failure is not governed by the plastic flow
rule. A tension cutoff scheme is used.

The yield function, flow rule, hardening modulus, and elastic
properties are modified to create a new constitutive model suitable
for cemented sand. A brief discussion of the modifications for the
new constitutive model is presented herein.

Elasticity

On the basis of experimental observations indicating bonded
geomaterials have higher stiffness values compared with their
reconstituted counterparts (Marri 2010; Yu 2006), the definition of
the elastic properties are modified similar to the approach adopted
by Yu et al. (2007), as follows:

G =Ga
(2:973−e)2

1 + e

p

pa
1+

ffiffiffiffiffi
po
p

r !" #n
(16)

K =Ka
(2:973−e)2

1 + e

p

pa
1+

ffiffiffiffiffi
po
p

r !" #n
(17)

Yield Function

f =
q

p+pt
−α

� �2

−M2
α 1−

ffiffiffiffiffiffiffiffiffiffiffi
p + pt
pb

r !
= 0 (18)

pb = pt + pc + po (19)

where α and M2
α are defined similar to the definitions given in the

base model. For triaxial conditions, α = 0 and M2
α = 5M2

p . The
original yield function has been modified according to Gens and
Nova (1993). Similar assumptions have also been considered for

the relationships between additional strengths and pc:

po
pc

= b (20)

pt
pc

= βb (21)

These assumptions suggest a direct relationship between two
additional strengths, as follows:

pt = βpo (22)

Hence, pb consists of two components:

pb = pc + (1 + β)po (23)

where pc plays the same role as the maximum preconsolidation
pressure for uncemented soil.

When considering the destruction of bonds, the following
simple linear relationship is assumed:

dpo = − γpod εpq
�� �� (24)

Flow Rule

Rowe derived the stress dilatancy relationship for soils using the
minimum energy consideration for particle sliding (cited in Imam
1999), as follows:

R =KD for TC (25)

R =
K

D
for TE (26)

where R = ratio of the major principal stress to the minor principal
stress; K = material parameter; TC = triaxial compression;
TE = triaxial extension; and D = dilatancy parameter written
using increments of volumetric and major principal strains. The
constant K is based on the assumption that the ratio of work done

Shifting due to
breakage of 
bonding

pbp0p,maxcptp

csM

M
q

22

11

33

,PTcM

,PTeM

p

Cemented
loading surface

Phase transformation
surface

pb

tp

op

Unbonded
loading surface

c

Hydrostatic axis
�

� �

�

�

�

(a) (b)

Fig. 4. (a) Schematic of the modified yield surface; (b) representation in 3D stress space of the modified yield surface
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by the driving stress to the work done by the driven stress in any
strain increment should be a constant. Driving and driven stresses
for triaxial compression, respectively, are axial and radial stresses.
That is, for triaxial compression (Wood 1990)

σa _εa
− 2σr _εr

=K =
1 + sinφf

1 − sinφf
(27)

R, K, and D mathematically are expressed as follows:

R =
σ1
σ3

(28)

K = tan2 45 +
φf

2

� �
φμ < φf < φcv (29)

D = 1−
dεv
dε1

(30)

Incorporation of varying φf in the constitutive model is difficult
(Imam 1999), as φf varies between interparticle-friction and critical
state friction angles. Thus, a constant value is assumed for φf .
Assuming a constant value for φf (which means a constant volume
or critical state friction angle) and neglecting elastic strains, Wood
formulated Rowe’s stress–dilatancy relationship for the compression
and extension of soils, respectively, as follows (Wood 1990):

d =
_εpp
_εpq
=

9(Mcs,c − η)
9 + 3Mcs,c − 2Mcs,cη

(31)

d =
_εpp
_εpq
=

9(Mcs,e − η)
9− 3Mcs,e − 2Mcs,eη

(32)

Rowe’s relationship, however, does not capture the stress–
dilatancy behavior of cemented sand. The deviation of predictions
from observed volumetric behavior in some cases become very
pronounced, although one may arrive at better predictions for the
shear stress–strain curve.

The change in volumetric behavior in the cemented soil mainly
depends on the cementation and breakage of particle bonding (Lee
et al. 2004). Laboratory test results have suggested that dilatancy is
not only affected by the friction angle φf , but also by interparticle
cohesion. Also, it is believed that the total work performed by the
stresses is dissipated partly through friction and partly through
destroying the structure. Thus, it is logical to incorporate cohesion
into the dilatancy relationship. One approach is by changing the
parameter K as follows (Yu et al. 2007):

K = tan2 45 +
φf

2

� �
+
2c
σ3

tan 45 +
φf

2

� �
(33)

Normalizing cohesion with respect to the minor principal stress
implies that cohesion decreases with an increase in the minor
principal stress. This is compatible with experimental observations
where the response of bonded materials under triaxial compression
change from brittle to ductile with an increase in the confining
stress. Crushing of the particles may be one reason for this shift.
Even though some experimental evidence suggests the suppression
of dilatancy by cohesion (Yu et al. 2007), counter observations
regarding the impact of bonding on stress–dilatancy have been
reported, as well. For instance, Clough et al. (1981), Asghari et al.
(2003), and Marri (2010) found that an increase in the cement
contents had a tendency of inducing dilatancy and subsequently
reduced compression. According to Fernandez and Santamarina
(2000), cemented sand seems to be more dilative than its reconstituted

counterpart. Higher dilation under undrained conditions implies that
lower excess pore-water pressure is produced by shear, and sand is
also less prone to liquefaction. This suggests that bonding enhances
the liquefaction resistance of sand (Gao and Zhao 2012). What is
clear, however, is that dilatancy is influenced by bonding. The stress–
dilatancy relationship, by incorporating cohesion for compression,
may be calculated by (Yu et al. 2007)

d =
9(Mcs − η)+ 6cp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2Mcs + 3)(−Mcs + 3)

p

9 + 3Mcs − 2Mcsη + 4cp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2Mcs + 3)(−Mcs + 3)

p (34)

Cohesion is assumed to decrease with plastic shear strain, as
follows:

dc= ce−ξd εpqj j (35)

Compatible with Imam’s approach (Imam et al. 2005), the
dilatancy relationship is written in terms of the variable phase
transformation stress ratio rather than the constant critical state
stress ratio. For triaxial compression conditions

d =

ffiffiffi
2
3

r
A(MPT − η)+

6B
C

� �
(36)

A =
9
C

(37)

C = 9 + 3MPT ,c − 2MPT ,cη + 4B (38)

B =
c

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2MPT + 3)( −MPT + 3)

p
(39)

Hardening Modulus

A pure size shear–hardening law is adopted for the modified
model. Similar to the base model, shape hardening due to varia-
tions of Mp is neglected in the modified model. After some
manipulation, and that ensuring the state of stress remains on the
modified yield surface, the following formula is derived for the
normalized hardening modulus under triaxial conditions:

Hn = −
ffiffiffi
2
3

r
1
∂f
∂q

��� ��� ∂f∂pb
∂pb
∂εpq

(40)

where

∂f
∂pb

= −
M2

α

2pb

ffiffiffiffiffiffiffiffiffiffiffi
p + pt
pb

r
(41)

∂f
∂q

=
2

p + pt

q

p + pt
− α

� �
(42)

∂pb
∂ε

p
q

=
∂pc
∂ε

p
q

+ (1 + β)
∂po
∂ε

p
q

=
hGini

(pf −pc)ini
(pf − pc) − (1 + β)γpo (43)

∂f
∂p

=
− 2q

(p+pt)
2

q

p + pt
− α

� �
+
1
2
M2

α

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pb(p + pt)

p (44)

pf =
p

1−(Mf −α)2

M2
α

h i2 (45)

Consistent with Gens and Nova (1993), the plastic-hardening
modulus is calculated from two competing terms. That is, the
variation of the bonded yield surface is controlled by two different
mechanisms: (1) an unbounded hardening law, hardening/softening
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the unbonded yield surface due to void ratio reduction/augmentation;
and (2) bond degradation, shrinking the bonded yield surface by
virtue of plastic deformation. Thus, softening occurs when the
resultant sign of the plastic modulus becomes negative.

Material Parameters

Five additional model parameters have been introduced in the
bonded model:
1. Initial value of po,
2. Initial value of tensile strength to evaluate β,
3. Decay parameter of bond strength (γ),
4. Cohesion (c), and
5. Rate of degradation of cohesion (ξ).

The initial value of po is equal to the difference between
the initial values of pb and pc. The initial value of pc for the
triaxial test is taken as the maximum mean normal stress
characterizing the initial elastic domain for uncemented soil. The
initial value of pb can be evaluated by conducting an isotropic
compression test on soft rock to determine the initial yield value of
pb (Nova 2005).

The parameter β, which controls the size of the tensile strength
surface, is obtained when the initial value of the tensile strength is
evaluated using results from a tensile test. If there is no data
regarding the tensile strength, the unconfined compressive strength
may be considered as an approximation for the tensile strength
(tensile strength is in the range of 5–20% of the unconfined
compressive strength); otherwise, a typical value in the range of
0.05–0.25 may be selected as a value for β.

The parameter γ controls the rate at which bonds are broken.
It can only be determined by fitting the theoretical outcomes to the
experimental data. The higher value of γ, the faster the bonded
yield surface becomes identical to the unbonded yield surface.

The parameter c can be evaluated using the bonded yield
function or Mohr–Coulomb yield function.

The parameter ξ can be evaluated by fitting theoretical results
to measured experimental data.

If a zero value is assigned for all five additional material
parameters, the base model will be recovered.

Bounding Surface Model for Cemented Sand

Elasticity and Flow Rule

For simplicity, all assumptions made for the elasticity and flow
rule of the modified bonded model are retained here and remain
unchanged.

Bounding and Loading Surfaces

The cemented bounding and loading surfaces in terms of
conventional triaxial variables are written as follows:

FCBS =
q

p+pt
−α

� �2

−M2
α 1 −

ffiffiffiffiffiffiffiffiffiffiffi
p + pt
pb

s0
@

1
A= 0 (46)

FCLS =
q

p+pt
−α

� �2

−M2
α 1−

ffiffiffiffiffiffiffiffiffiffiffi
p + pt
pb

r !
= 0 (47)

in which

pb = pt + pc + po (48)

pt = βpo = βpo (49)

The superimposed bar signifies variables of the bounding surface.
The relationship of the tensile strength suggests that β and po

cannot both be chosen arbitrarily because they must result in the
same tensile strength obtained from β and po. This means only one
of them, for instance po, can be chosen as a material parameter. To
avoid having more model parameters, po may be obliged to obtain
an initial value that produces the same initial bonding for the
cemented bounding surface than that for the cemented loading
surface. From this simplifying assumption, it can be shown that

β =
βpo
po
pc

� 	
pc

=
βpc
pc

(50)

Thus,

pb = pc + β 1 +
1

β

� �
po (51)

The initial values of pc and pc are evaluated from the confining
pressure and failure mean normal pressure at the commencement
of shearing, respectively. Fig. 5 illustrates the proposed bounding
surface model, where LS, CLS, BS, and CBS, respectively, stand
for loading surface, cemented loading surface, bounding surface
(which is associated with loading surface), and cemented bound-
ing surface (associated with cemented loading surface).

For simplicity, the size ratio between the cemented loading and
cemented bounding surfaces is assumed to remain fixed in the
course of plastic loading. The application of a fixed size ratio
between the loading and bounding surfaces already has been
practiced by several researchers (Al-Tabbaa 1987; Hau 2003;
McDowell and Hau 2004).

Projection Rule

The radial mapping rule is used to associate any current stress
point with a corresponding unique image point. This is achieved
by the intersection of the cemented bounding surface with a line

p

q

cp bptp 0p cp
0p bp

LS

CLS

BS

CBS

Fig. 5. Schematic representation of the proposed bounding surface
model within a conventional triaxial (p, q) space
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passing through the projection center and the current stress point
(see Fig. 6). Because of the similarity in shape and radial sym-
metry of the surfaces, the unique image stresses (p, q) can be
evaluated using the current stresses (p, q) as follows:

p + pt
p + pt

=
q

q
=
pb
pb

= b 1 ≤ b≤∞ (52)

Because the projection center is not at the origin of the
coordinate system, stress ratios at the current stress point and
the corresponding image point are not the same. However, they are
equal at the limiting state when all structures have been destroyed
(i.e., tensile strength reduces to zero).

The mapping rule is not invertible (i.e., although a unique
image stress exists on the bounding surface for a given current
stress on the loading surface, a given image stress may correspond
to many stress states (Dafalias 1986).

Hardening Modulus

In line with the mainstream approach for bounding surface
plasticity, the plastic-hardening modulus is divided into two parts:
the bounding surface modulus and the additive plastic modulus.

Hn =Hn +Hf (53)

The additive plastic modulus indicates a dependency of the
response on the relative distance between the current stress point
and corresponding image point. The dependency of the plastic
response on the distance between the current stress and its image
point stemmed from experimental observations where uniaxial
stress–strain curves asymptotically approached fixed or variable
bounds in the stress space under complex loading histories (Chen
1994; Chen and Han 2007). The following formula is proposed for
the additive plastic modulus:

Hf =
Γ � p � δ
(δo−δ)2

(54)

The parameter Γ= dependency of the response to the type of
material; and δ= distance between the current stress point and the
corresponding image point:

δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pð Þ2 + q−qð Þ2

q
(55)

where δo is the initial value of δ.

This definition guarantees that Hf is always positive and has an
infinite value at the start of shearing. The value of Hf reduces
to zero when the loading surface and bounding surface for the
cementation coincide. These are prerequisite for the additive
plastic modulus definition (Vermeer and de Borst 1984).

The value of Hn is calculated by coercing the state of stress to
remain on the bounding surface for a special case when two sur-
faces coincide. Under triaxial conditions, it can be shown that

Hn = −
ffiffiffi
2
3

r
1
∂F
∂q

��� ��� ∂F∂pb
∂pb
∂εpq

(56)

in which

∂F
∂pb

= −
M2

α

2pb

ffiffiffiffiffiffiffiffiffiffiffi
p + pt
pb

s
(57)

∂F
∂q

=
2

p + pt

q

p + pt
− α

� �
(58)

∂pb
∂εpq

=
∂pc
∂εpq

+ β 1 +
1

β

� �
∂po
∂εpq

(59)

∂pc
∂εpq

=
hGini

pf −pc

 �

ini

pf − pc

 �

(60)

It is assumed that linear destruction of the structure by plastic
shear deformation gives rise to changes in the size of the cemented
loading surface. Its shape, however, is supposed to remain un-
changed because of this destruction. That is

∂po
∂εpq

= − γpo (61)

With the application of six additional model constants, the base
model is modified to replicate the response of cemented sands
using bounding surface plasticity.

Assessment of the Proposed Bounding Surface
Model

The proposed bounding-surface model is evaluated against the
drained triaxial compression tests of two artificially cemented sands
under different void ratios and confining pressures. The first set of
experimental observations comes from the observed behavior
of artificially cemented Ottawa sand (Wang and Leung 2008).
Figs. 7–9 compare the simulated and measured response of
cemented Ottawa sand for different cement contents in terms of
shear stress–strain, void ratio–axial strain, and volumetric strain–
axial strain plots. Table 1 lists the model parameters for Ottawa
cemented sand with 1% cement content. The same material para-
meters are used also for prediction of behavior of 2 and 3% cement
content samples, excluding critical state friction angle, critical state
line, and cohesion. Experimentally measured cohesion and critical
state friction angles of 11.5 kPa and 30.9° were used for 2% cement
content samples, whereas values of 44 kPa and 31.1° were used for
3% cement content samples. The following ultimate state lines were
also adopted for 2 and 3% cement content samples:

ecs(2%) = − 0:00635p*3+ 0:03670p*2 − 0:11991p*

+ 0:790(p* inMPa)

p

q

pb pbp

(p, q)
q

p

q
(p, q)

Projection center

Radial mapping line

Fig. 6. Radial mapping rule for a conventional triaxial (p, q) space
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Fig. 7. Measured and predicted response of cemented Ottawa sand for deviator stress versus axial strain curve under different cement contents

Fig. 8. Measured and predicted response of cemented Ottawa sand for void ratio versus axial strain curve under different cement contents

Fig. 9. Measured and predicted response of cemented Ottawa sand for volumetric strain versus axial strain curve under different cement contents
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ecs(3%)= − 0:00635p*3 + 0:03670p*2 − 0:11991p*

+ 0:8725(p* in MPa)

It is believed that after a large shear-induced volume change,
cohesionless sand ultimately arrives at a unique void ratio
independent of its initial state (initial void ratio and confining pres-
sure). This unique void ratio is associated with the complete
destruction of the soil structure and a theoretically infinite amount
of shearing. Fig. 8, however, reveals a noteworthy point for the
ultimate state of the same cemented sand with different cement
contents. It is clear that samples with different cement content
arrive at different ultimate void ratios after an appreciable amount
of shearing. This implies there is no unparallel critical state line
that forms the ultimate state for all distortional processes. That is,
CSL depends on cement content. It also can be inferred that the
CSL for higher cement contents lies at a high position in the
compression plane (e− ln p) because it gives rise to a higher ultimate
void ratio at a given confining pressure. These observations

are confirmed by the computed ultimate void ratios for cemented
Portaway sand.

As seen in Figs. 8–9, the predicted and measured volumetric
behaviors are in good agreement. The change of response from
contractive to dilative, which is associated with strain softening,
is captured in all tests. This change of behavior is predicted
numerically by a change of the dilatancy rate sign from positive
to negative. This causes an immediate change in the sign of
the plastic volumetric strain increment. The sign of the total
volumetric strain increment also varies owing to this change
after a short time. It is also clear from Figs. 7–9 that samples
with higher cement content show stronger dilative and more
brittle behavior. There is a small discrepancy in the predicted
and observed stress-strain behavior of the test with 3% cement
content. That is, the model has predicted weaker softening
response for the postpeak region of the test with 3% cement
content. It can only approximate the softening postpeak response
of the material.

The second set of experimental data was obtained from the
observed responses of artificially cemented Portaway sand
(Marri 2010). Figs. 10–11 show the simulated and observed
behavior of cemented Portaway sand under different cement
contents for deviatoric stress–strain and volumetric strain–axial
strain curves. Fig. 12 exhibits the predicted response for the void
ratio–axial strain curve. Material parameters and their assigned
values for the simulation of Portaway cemented sand with a 5%
cement content are presented in Table 2. For the 10% cement
content test, measured cohesion of 3.18 MPa and critical state
friction angle of 36° have been used. The other remaining ma-
terial parameters for the 10% cement content samples are the
same as those used for the 5% cement content samples. For 0%
cement content samples, zeros were assigned for all five addi-
tional material parameters related to cementation. Except for the
critical state line, the other material parameters for the 0% ce-
ment content test are the same as the unbounded material
parameters for the 5% cement content samples. The follow-
ing ultimate state lines are adopted based on experimental
observations:

ecs(10%) = 0:60 − 0:0097 ln(p*)(p* inMPa)

ecs(0%) = 0:402 − 0:0086 ln(p*)(p* inMPa)

Table 1. Material Parameters Used for Calibration of Cemented Ottawa
Sand (1%), p* = p + pt

Parameter name Ottawa cemented sand (1%)

kp 1.5
φμ 20
φcs 28.8
kPT 1.4
Ga 6 × 106

Ka 8 × 106

h 1
kf 0.75
ecs − 0:00635 p*3 + 0:03670 p*2

− 0:11991 p* + 0:760 ( p* in MPa)
po 0:12 × 106

γ 10
β 0.107
c 0:0075 × 106

ξ 0.08
Γ 1

Fig. 10. Measured and predicted response of cemented Portaway sand for deviator stress versus axial strain curve under different cement contents
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Figs. 10–11 show that the proposed model has captured the
progressive compressive and ductile behavior of 0 and 5% ce-
ment content samples well. The sign of the dilatancy rate and
volumetric strain increment remains unchanged throughout
shearing for tests with ductile behavior. Though the 5% cement
content sample shows compressive response, the tendency for
compression is less compared with that of the 0% cement con-
tent sample. This decreasing trend for compression is seen in the
10% cement content sample, as well, so that the change of
compressive to dilative behavior is observed clearly for the
sample with 10% cement content. The model is less accurate in
capturing the strain-softening characteristics for 10% cement
content. The weaker drop in the peak deviator stress has been
predicted by the model for the postpeak region. The selection of
an alternative flow rule can improve the prediction of the brittle
response. However, defining a reliable stress–dilatancy re-
lationship is a challenging task for cemented soil in general and
for cemented sand in particular because it is difficult to si-
multaneously match both observed volumetric and shear beha-
viors perfectly for the samples with brittle response.

Fig. 11. Measured and predicted response of cemented Portaway sand for volumetric strain versus axial strain curve under different cement contents

Fig. 12. Predicted response of cemented Portaway sand for void ratio versus axial strain curve under different cement contents

Table 2. Material Parameters Used for Calibration of Artificially Cemented
Portaway Sand (5%)

Parameter name Portaway cemented sand (5%)

kp 1
φμ 32
φcs 34
kPT 1.25
Ga 10 × 106

Ka 28 × 106

h 1
kf 0.75
ecs 0:49− 0:00925 ln(p + pt)

(p and pt in MPa)
po 8 × 106

γ 5
β 0.10
c 1:08 × 106

ξ 2
Γ 1

© ASCE 04015049-10 Int. J. Geomech.
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Conclusion

A bounding surface model for monotonic loading of cemented
sands has been presented in this paper. Two sets of triaxial com-
pression tests on artificially cemented sands with different cement
contents, void ratios, and confining pressures were chosen to
assess the performance of the proposed modified model. In line
with the existence of various ultimate void ratios, different critical
state lines were selected for the calibration of cemented sands
under different cement contents. A comparison of the simulated
and observed behaviors shows the model’s effectiveness in cap-
turing both the stress–strain behavior and volume change char-
acteristics of cemented material. It is often difficult to capture the
bond degradation of cemented material resulting in softening
behavior and volume change characteristics. The proposal has its
limitation in predicting the strain softening response for material
with high cement content.
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