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A B S T R A C T   

In recent decades freshwater lakes have seen an increase in human presence. A common byproduct of this human presence is eutrophication, which readily results in 
harmful cyanobacteria (CB) blooms. In this work we propose a model that couples the socio-economic and ecological dynamics related to cyanobacteria systems. The 
socio-economic dynamics considers the choices a human population makes regarding whether or not to mitigate their pollution levels. These choices are based on 
various costs related to social ostracism, social norms, environmental concern and financial burden. The coupled model exhibits bistable dynamics, with one stable 
state corresponding to high mitigation efforts and low CB abundance, and the other to low mitigation efforts and high CB abundance. Furthermore, we consider social 
interactions among a network of lakes and present dynamic outcomes pertaining to various associated costs and social situations. In each case we show the potential 
for regime shifts between levels of cooperation and CB abundance. Social ostracism and pressure are shown to be driving factors in causing such regime shifts.   

1. Introduction 

Cyanobacterial harmful algal blooms (CHABs) are an ever present 
global concern in aquatic environments. The presence of CHABs often 
leads to several adverse outcomes both ecologically and economically. 
For example, CHABs can decrease ecosystem productivity by creating 
anoxic conditions and producing toxins as metabolic byproducts (Orr 
and Jones, 1998; Kaebernick and Neilan, 2001). Economically, CHABs 
add costs to water treatment, lower recreational and tourism value, and 
add risks when using freshwater for agricultural purposes. Although 
CHABs occur for a variety of reasons they are most commonly a result of 
eutrophication. Eutrophic conditions occur when an excess amount of 
nutrients required for organismal growth is in an aquatic ecosystem. 
Furthermore, eutrophication often occurs as a result of anthropogenic 
nutrient pollution from agriculture, industrial and urban run-off (Paerl, 
2014). In this sense there is a noteworthy connection between anthro-
pogenic nutrient pollution and economic costs due to CHABs. 

The study of systems where human and environmental dynamics are 
intertwined is beginning to receive more attention in the literature. For 
example, the importance of linking human and social dynamics to 
climate models to understand climate trajectories has been addressed 
(Beckage et al., 2020; Bury et al., 2019). Other researchers have used 
social processes to better understand disease outbreaks (Pedro et al., 
2020; Fair et al., 2021). Ecologically, social dynamics have been coupled 
to forestry, fishery and other common-pool resource models to gain 

insight towards the balance between sustainable resource use and profit 
seekers (Satake et al., 2007; Farahbakhsh et al., 2021; Lee and Iwasa, 
2011; Wang et al., 2016). Socio-ecological mechanisms to support 
persistent of native species of grasses that are under stress from 
anthropogenic nitrogen sources and invasive species have also been 
studied (Thampi et al., 2019). Finally, coupled socio-economic and 
ecosystem models for lake eutrophication have been considered by 
Iwasa et al. (Iwasa et al., 2007; Iwasa et al., 2010), but do not consider 
phytoplankton dynamics. In essence, human activities often result in 
changes in the ecological system, however changes in the ecological 
system will, in-turn, have an impact on the human behaviours thus 
creating a feedback loop. These types of systems are thought of as an 
integration between an ecological system and socio-economic system. 
Mathematical modelling of such systems typically involves the coupling 
of an ecological model that has terms dependent on human decisions to a 
human socio-economic model with outputs dependent on the state of the 
ecology (Satake et al., 2007; Iwasa et al., 2007). 

Socio-economic models can be derived by considering social norms 
and pressures, monetary costs and psychology associated with the 
ecological system (Fransson and Gärling, 1999). As is the case in many 
current environmental issues, social ostracism can occur when an indi-
vidual does not behave in a way that is environmentally favourable 
(Poon et al., 2015). Social ostracism happens when a group or individual 
excludes or slanders another group or individual based on an action, 
opinion or response. Psychologically, being ostracised is harmful as 
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humans have a basic want of being accepted (Williams, 2007). As a 
response to ostracism humans often change behaviour to further avoid 
ostracism (Williams and Nida, 2011). In the context of environmental 
issues, such as lake pollution, groups who assume non-environmentally 
favourable roles are often ostracised more than those that do (Iwasa 
et al., 2007; Poon et al., 2015; Sun and Hilker, 2020) adding costs to the 
defection role. This means that modelling of socio-economic systems 
should include factors that account for social pressures. In addition, 
social norms often influence a person to assume a strategy regardless of 
its environmental impacts (Kinzig et al., 2013). Social norms are 
described as the set of rules and behaviours a society deems appropriate 
and are often established based upon the behaviour of the majority, 
regardless of any implications. Intrinsically, there exists pressure to 
adhere to these social norms although it is indirect. Socio-economic 
dynamics may be dependent on the frequency of each strategy, and 
not on the costs alone. Furthermore, the social costs due to ostracism and 
adherence to norms can be non-local and come from distanced social 
connections. Costs associated with pro-environmental roles often exceed 
the non-environmentally favourable role. These costs are often mone-
tary and involve the investment in infrastructure to filter or treat urban 
water run-off. Additionally, lakes with low water quality and persistent 
CHABs face additional costs associated with decreased land value, rec-
reation, tourism based on the presence of toxins, and the visually and 
olfactorily unpleasant nature of CHABs (Nicholls and Crompton, 2018; 
Wolf and Klaiber, 2017). 

In many cases socio-economic models often have a game-theoretic 
component in which players choose one of several strategies based on 
the associated utility differences to the other strategies (Farahbakhsh 
et al., 2021; Iwasa et al., 2007; Iwasa et al., 2010; Sun and Hilker, 2020; 
Suzuki and Iwasa, 2009). Each strategy then has an associated distur-
bance of the ecological system, i.e. high vs. low pollution or deforesta-
tion rates. Individuals assume strategies at rates that are dependent on 
the perceived costs of each strategy, or fitness in game theory literature, 
and can be modelled in many different forms. For example, the logit 
best-response dynamics assumes there is a probability an individual 
assumes a strategy based on associated costs alone, where as the repli-
cator dynamics assumes that the individual first learns of an alternate 
strategy and chooses it with a probability proportional to the cost dif-
ferences allowing for strong conformity (Bury et al., 2019; Farahbakhsh 
et al., 2021; Iwasa et al., 2007; Sun and Hilker, 2021). By explicitly 
considering distinct strategies and their associated costs ecosystem 
managers can use these models to gain insight towards policy imple-
mentation to obtain a favourable outcome. 

Many phytoplankton models have been used for the study of algal 
dynamics and take various forms including discrete time models, ordi-
nary and partial differential equations (ODEs and PDES, respectively). In 
this study we extend a stoichiometric model that has been well estab-
lished in the literature (Heggerud et al., 2020; Wang et al., 2007; Berger 
et al., 2006). Ecological stoichiometry is defined as the study of the 
balance of energy and resources in ecological systems (Sterner and Elser, 
2002). This is a powerful tool as it allows the study of large scale phe-
nomena, like cyanobacteria (CB) abundance, by considering small scale 
components like internal energy and nutrients. The use of ecological 
stoichiometry has become increasingly common because of its ability to 
mechanistically capture the effects of resource limitations on ecological 
systems. For example, ecological stoichiometry has been used to study 
predator prey systems (Mitra and Flynn, 2005; Branco et al., 2018), 
producer-grazer systems (Wang et al., 2008; Loladze et al., 2000), 
phytoplankton dynamics (Wang et al., 2007; Klausmeier et al., 2004), 
toxicology (Peace et al., 2021) and plant-disease dynamics (Lacroix 
et al., 2017) with great success. Ecological stoichiometry has been used 
to discuss the timescale separation between nutrient uptake and both 
algal growth and available nutrient depletion in Heggerud et al. (Heg-
gerud et al., 2020). Separation of timescales allowed for the in-depth 
study of algal transient dynamics and driving mechanisms. This, along 
with many other studies, has established a solid modelling framework 

for phytoplankton dynamics (Wang et al., 2007; Berger et al., 2006; 
Huisman and Weissing, 1994). Additional complexity arises when 
coupling such ecological models to socio-economic models, both 
mathematically and in terms of timescales (Hastings, 2016; Hastings, 
2010). Human behaviour may change slower than the ecological dy-
namics and furthermore, the response of the ecological systems to 
human management strategies may be delayed (Hastings, 2016; Car-
penter, 2005). 

Phosphorus is commonly considered to be a nutrient of interest in 
aquatic systems (Carpenter, 2005; Whitton, 2012). Furthermore, the 
Redfield ratio (C:N:P = 106:16:1) (Redfield, 1934) implies that CB de-
mands phosphorus more than other elements, except perhaps nitrogen 
(Sterner and Elser, 2002; Whitton, 2012). However, since the demand 
for phosphorus is high the uptake rates and cell quotas for phosphorus 
will also be larger than other elements, expect perhaps nitrogen, and 
thus the corresponding phosphorus dynamics in the media occur on 
similar timescales to other ecological processes (Heggerud et al., 2020; 
Whitton, 2012). Other nutrients, such as iron, can limit phytoplankton 
growth in a significant way by limiting photosynthesis, such as the case 
of peat lakes in the Netherlands (Smolders and Roelofs, 1993) and re-
gions of the Antarctic (Koch et al., 2019). The extended Redfield ratio 
implies the requirement of iron is much less than phosphorus and as a 
result cell quota values are small compared to those for phosphorus 
(Cunningham and John, 2017). This means that the iron dynamics in the 
media may occur on a different timescale than the remaining ecological 
dynamics (Wurtsbaugh and Horne, 1983). Thus, the timescale of the 
ecological dynamics depends on the study species and the nutrient being 
considered as uptake and growth rates can vary among species and 
nutrient (Whitton, 2012). 

In this paper we couple the ecological dynamics of cyanobacteria 
with the socio-economic dynamics of humans at each lake. We consider 
a network of lakes which are connected via social interactions only, 
allowing for presence of social norms and ostracism to influence human 
decision making. The ecological dynamics are given by extending the 
well established stoichiometric CB model of (Heggerud et al., 2020; 
Wang et al., 2007). The socio-economic model is an extension of the 
models discussed in (Iwasa et al., 2007; Iwasa et al., 2010; Sun and 
Hilker, 2020; Suzuki and Iwasa, 2009) in which individuals in a popu-
lation choose to either cooperate by lowering pollution rates, or defect, 
by continuing to pollute at higher rates. The individuals choose their 
strategy based on costs associated with social pressure, concern for CB, 
tourism and recreation value, and infrastructure investment (Iwasa 
et al., 2007). We fully derive the network model and offer several useful 
simplifications in Section 2. Our analysis begins in Section 3 where we 
consider the coupled dynamics at a single lake. The analysis of the single 
lake case is done by utilizing the separation in time scales in several 
different ways, including a phase line analysis for when phosphorus is 
the polluting nutrient in Section 3.1 and phase plane analysis when iron 
is the polluting nutrient in Section 3.2. In each case we observe bistable 
behaviour and gain insight towards the socio-economic parameter re-
gions that lead to favourable outcomes. Lastly, in Section 4, we revisit 
the network model. We simplify the network model to allow the system 
to be studied in the restricted phase plane showing three possible 
equilibria corresponding the low, high, and mixed levels of cooperation 
regimes throughout the network. Finally, discuss several two-parameter 
bifurcation plots which highlight under which parameter regions each 
regime occurs. 

2. A coupled cyanobacteria-socio-economicnetwork model 

In this section we extend a well established CB model (Heggerud 
et al., 2020; Wang et al., 2007; Berger et al., 2006) to account for socio- 
economic dynamics that alter the amount of anthropogenic nutrient 
input. The CB model considers three state variables: CB abundance, cell 
quota, and available nutrient. The socio-economic component tracks the 
proportion of cooperators given by the best-response dynamics (Iwasa 
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et al., 2007). We separately consider phosphorus and iron as the limiting 
nutrient and introduce the phosphorus in this section. Several approxi-
mations of certain mechanistic modelling components are provided to 
aid in later analysis. We assume that several distinct lakes are connected 
via social connections, due the presence of social communication. Each 
individual in the network assumes one of two strategies, cooperation or 
defection denoted with C and D , respectively. Locally, each strategy 
will face costs associated with the abundance of CB but only defectors 
will face a cost associated with social ostracism. In addition, we assume 
that each strategy faces a societal cost from the lake network that is 
proportional to the frequency of players of opposing strategies, this is 
referred to as a network social norm cost. 

We now couple a socio-economic model (Iwasa et al., 2007; Iwasa 
et al., 2010; Suzuki and Iwasa, 2009) with a stoichiometric phyto-
plankton model (Heggerud et al., 2020; Wang et al., 2007; Berger et al., 
2006) whose parameter definitions and values are to be discussed in the 
following model derivation and in Tables 1 and 2, respectively. In (Iwasa 
et al., 2007; Suzuki and Iwasa, 2009) a discrete time socio-economic 
model coupled to water quality through nutrient inputs was analyzed 
and a continuous time analog was considered in (Iwasa et al., 2010). The 
previous models neglect explicit consideration of costs due network 
pressures, and common pool resource degradation. Here we extend 
these models to consider a continuous time socio-economic model 
coupled to CB abundance instead of water quality with the consideration 
of additional socio-economic costs pertaining to network pressure and 
intrinsic habitat value. In order to capture the CB dynamics we use a 
previously well studied stoichiometric cyanobacteria model (Heggerud 
et al., 2020; Wang et al., 2007; Berger et al., 2006) but allow for the 
external nutrient inputs to depend on the socio-economic dynamics. 
Lastly, the extension of both models to a network system is novel and to 
our best knowledge has not been previously considered. By considering 
network social connections we are able to capture the influence non- 
local factors, such as social norms, may have on the entire lake 

system. The model we consider is given by 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dBi

dt
= rBi

(

1 −
Qm

Qi

)

h(Bi) − νrBi −
D
ze

Bi,

dQi

dt
= ρ(Qi,Pi) − rQi

(

1 −
Qm

Qi

)

h(Bi),

dPi

dt
=

D
ze
(I(Fi(t) ) − Pi ) − Biρ(Pi,Qi),

dFi

dt
= ri,DC (Fi,Bi)(1 − Fi) − ri,CD (Fi,Bi)Fi,

(2.1)  

where Bi, Qi, Pi and Fi represent the concentration of CB carbon biomass, 
the internal phosphorus to carbon nutrient ratio (cell quota), dissolved 
mineral phosphorus and the frequency of cooperators, respectively at 
lake i. The functions h(B) and ρ(Q,P) represent the light dependent 
growth of CB and phosphorus uptake, respectively. Both functions 
follow the form of (Heggerud et al., 2020; Wang et al., 2007) with 

h(B) =
1
zm

∫ zm

0

Iinexp
[
−
(
Kbg + kB

)
s
]

H + Iinexp
[
−
(
Kbg + kB

)
s
] ds

=
1

zm
(
Kbg + kB

)ln

(
H + Iin

H + Iinexp
[
−
(
Kbg + kB

)
zm
]

)

,

(2.2)  

and 

ρ(Q,P) = ρm
QM − Q

QM − Qm

P
M + P

. (2.3) 

The anthropogenic phosphorus addition is given as 

I(Fi(t) ) = pi,D (1 − Fi(t) )+ pi,C Fi(t), (2.4)  

where pi,C and pi,D are the phosphorus input concentrations of the co-
operators and defectors, respectively, with pi,C ≤ pi,D . 

The derivation of h(B) is based on sound principles and assumptions 
of algal growth rates and light attenuation via the Lambert-Beer law. 
However, as with many other mathematical models, approximations of 
complex but meaningful functions can prove useful in analysis. We note 
that the key features of h(B) are that it is monotone decreasing and that 
limB→∞h(B) = 0. Thus, we assume that h(B) is sufficiently approximated 
as follows: 

Table 1 
Definitions and values for ecological parameters of system 2.1.  

Par. Meaning Value 
for sim. 

Biological Values Ref. 

r Maximum CB specific 
production rate 

1 1 /day (Diehl et al., 
2005) 

Qm CB cell quota at which 
growth ceases 
(minimum) 

0.004 0.004 gP/gC (Diehl et al., 
2005) 

QM CB cell quota at which 
nutrient uptake ceases 
(maximum) 

0.04 0.04 gP/gC (Diehl et al., 
2005) 

zm Depth of epilimnion 7 >0 − 10m (Kalff, 2002) 
νr CB respiration loss rate 0.35 0.05–0.6 /day (Berger et al., 

2006; Whitton, 
2012) 

D Water exchange rate 0.02 m/day (Berger et al., 
2006) 

H Half saturation 
coefficient of light- 
dependent CB 
production 

120 120 μmol/(m2 ⋅ s) (Diehl et al., 
2005) 

ρm Maximum CB 
phosphorus uptake 
rate 

1 0.2–1 gP/gC/day (Berger et al., 
2006; Diehl 
et al., 2005) 

M Half saturation 
coefficient for CB 
nutrient uptake 

1.5 1.5 mgP/m3 (Diehl et al., 
2005) 

Kbg Background light 
attenuation 

0.3 0.3–0.9 /m (Berger et al., 
2006; Diehl 
et al., 2005) 

k Algal specific light 
attenuation 

0.0004 0.0003–0.0004 
m2/mgC 

(Berger et al., 
2006; Diehl 
et al., 2005) 

Iin Light intensity at water 
surface 

300 300 μmol/(m2 ⋅ s) (Diehl et al., 
2005)  

Table 2 
Definitions and values for the socio-economic parameters of system (2.1).  

Par. Meaning Value Units 

pi,C  Concentration of influx of dissolved inorganic 
phosphorus for strategy C .  

50 mgP/m3 

pi,D  Concentration of influx of dissolved inorganic 
phosphorus for strategy C .  

770 mgP/m3 

s Rate players make a decision to change 
strategies. 

0.001 day− 1 

β Level of determinism in changing strategies. 0.1 (costunit)− 1 

β̃  Slope of approximated line in (A.1) 0.0201 (costunit)− 1 

ci,C  Baseline cost to cooperate. 50 (costunit) 
ci,D  Baseline cost to defect. 1 (costunit) 
ϕ Cost conversion coeff. For CB 10 (costunit)/ 

mgC/m3 

α Cost conversion for social pressure due to CB 3 (costunit) 
ξ Strength of frequency dependence for social 

pressure 
10 −

ψ Level of social concern for CB 0.02 (mgC/m3)− 1 

dji connectedness of lake j to i. – – 
dD  Cost conversion coeff. of social norms for 

defecting. 
1 (costunit) 

dC  Cost conversion coeff. of social norms for 
cooperating. 

1 (costunit)  
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h(B) ≈ happ(B) =
1

ãB + b̃
, (2.5)  

where ̃a and ̃b are values such that h(B) = happ(B) for B = 0 and B = 1/kzm 

and are given as b̃ = 1/h(0) and ã = kzm
h(1/kzm)

− kzm
h(0). The comparison of h 

(B) and happ(B) is given in Fig. 1. 
Many previous studies have established socio-economic dynamics 

based upon cost functions (Farahbakhsh et al., 2021; Iwasa et al., 2007; 
Iwasa et al., 2010; Sun and Hilker, 2021). That is, costs functions based 
upon social ostracism, ecological concern and economics costs are 
established for each strategy in (Iwasa et al., 2007; Iwasa et al., 2010; 
Sun and Hilker, 2021). We modify these cost functions to suit our study 
by additionally considering social norm pressure. Let Ci,C (Bi) and 
Ci,D (Fi,Bi) denote the cost associated with cooperating and defecting at 
lake i, respectively. Each strategy has an associated baseline cost, ci,C 

and ci,D with ci,C > ci,D as discussed in (Iwasa et al., 2007; Iwasa et al., 
2010; Sun and Hilker, 2021). Following Iwasa et al. (Iwasa et al., 2007) 
we assume the defectors face an additional cost due to social ostracism 
that depends on the CB abundance and frequency of cooperators at lake 
i. We assume that the magnitude of social ostracism is low when the CB 
abundance is low, and is increased when the level of cooperation, or CB 
abundance increases. Furthermore, we assume that the players under-
stand the basic concept that defecting is the non-environmentally 
favourable strategy and thus social ostracism based on the notion of 
potential future repercussions still occurs when cooperation is low and 
CB abundance is non-zero. Both strategies also face a ‘recreational’ cost 
associated with the abundance of CB. This shared recreational cost is a 
key issue in common pool resource problems in which both strategies 
face identical costs associated with the repercussions of the environ-
mental outcome. Since the costs are felt similarly between both strate-
gies mitigation incentives focused at this specific cost are much less 
likely to invoke change. Additionally, unlike in previous studies, we 
assume each strategy faces a network social norm cost that is propor-
tional to the connectivity to each lake in the network and frequency of 
players of opposing strategy at that lake. The costs faced by the defector 
and cooperator are given respectively by 

Ci,D (Fi,Bi)= ci,D
⏟⏞⏞⏟

baselinecost

+α(1+ξFi)ψBi
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

socialostracism

+ ϕBi⏟⏞⏞⏟
costofCB

+ dD F,
⏟̅⏞⏞̅⏟

socialnormpressure

(2.6)  

Ci,C (Bi) = ci,C +ϕBi + dC (1 − F)
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅⏟

social norm pressure

, (2.7)  

where F =

∑
j
djiFj(t)
∑

j
dji 

is the weighted average of the frequency of co-

operators in the network. Further assume that the actual cost of each 
strategy is stochastic with a known cost and a random cost, given by 
UC = CC + εC and UD = CD + εD . Since we are considering εC and εD 

to be additional random costs, their maximum values are of most in-
terest. Thus, we assume that εC and εD follow the extreme value 
(Gumbel) distribution. Conveniently, the difference between two 
extreme value distributed random variables follows a logistic distribu-

tion (Hofbauer and Sigmund, 2003). That is, εd = εC − εD ∼

Logistic
(

0, 1
β

)

with CDF 1
1+e− βx. Thus, when a player evaluates their 

strategy they will defect with probability PD = P(UD < UC ) = P(εD −

εC < CC − CD ) (or cooperate with probability PC = P(UD > UC ) =

P(εD − εC > CC − CD )) given by the logistic distribution. 
Finally, the rate of switching is given as the probability of choosing a 

strategy, multiplied by the rate at which one evaluates their strategy: 

ri,DC (Fi,Bi) =
s

1 + eβ[Ci,C (Bi)− Ci,D (Fi ,Bi) ]
, (2.8)  

ri,CD (Fi,Bi) =
s

1 + eβ[Ci,D (Fi ,Bi)− Ci,C (Bi) ]
, (2.9)  

where s is the level of conservatism of the population interpreted as the 
rate at which a player evaluates their strategy. If s is small the population 
switches strategies infrequently. β is a parameter controlling the level of 
stochasticity. Large β means the population deterministically chooses a 
strategy based on cost, whereas a small β will make the switching more 
random as seen in Fig. 2. Furthermore, the last equation in (2.1) can be 
written as 

ri,DC (Fi,Bi)(1 − Fi) − ri,CD (Fi,Bi)Fi = ri,DC (Fi,Bi) − sFi. (2.10) 

The switching rates described in (2.8) and (2.9) arrive from a sound 
derivation and are quite intuitive and often referred to as the logit best- 

Fig. 1. Light dependent growth function, h(B), and its approximation, happ(B) given by (2.5).  

Fig. 2. Shows the comparison of the logistic function (given in (2.8)) and the 
approximating ramp function in (A.2) for various values of β and the corre-
sponding β̃ values. We take s = 1 here. 
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response model for choice probabilities. However, as previously dis-
cussed the approximation of complex functions by mathematically 
tractable functions is an incredibly useful tool. Using a piecewise linear 
function we arrive at the approximation: 

ri,DC (Fi,Bi) ≈ r̂ i,DC (Fi,Bi) = s⋅max
{

0,min
{

1,
1
2
+ β̃
(
Ci,D − Ci,C

)
}}

.

(2.11) 

The difference between ri,DC (Fi,Bi) and ̂ri,DC (Fi,Bi) is shown in Fig. 2 
and details of the approximation are given in Appendix A. 

The parameters and their values corresponding to the ecological 
components of model (2.1) are summarized in Table 1. In-depth dis-
cussion and descriptions of the ecological parameters can be found in 
(Heggerud et al., 2020; Wang et al., 2008) and the references therein. 
The parameters corresponding to the socio-economic dynamics are 
summarized in Table 2 and are taken from the ranges in (Iwasa et al., 
2007) and are justified by arguing a comparable scale of all terms in 
(2.6) and (2.7). 

3. Dynamics of a single lake model 

In this section we consider the single lake version of model (2.1) 
where the external network pressure is treated as a constant. We sepa-
rately consider the dynamics under phosphorus limitation and iron 
limitation, proceeding with a phase line and phase plane analysis, 
respectively. In each case bistability scenarios arise and bifurcation re-
sults are obtained. 

In this paper we assume that when considering phosphorus almost all 
ecological processes occur on a fast time scale, thus the quasi-steady 
state approximation (QSSA) reduces the model to a single equation 
that represents the human dynamics on the slow timescale. When iron is 
considered, only the cell quota and CB dynamics occur on the fast time 
scale thus, the QSSA reduces the model to two differential equations on 
the slow timescale that represent the human and available iron dy-
namics. Hence, two types of analysis are performed. First, we consider a 
phase line analysis for the phosphorus system in Section 3.1. Second, we 
perform a phase plane analysis for the iron system in Section 3.2. 

To start, assume that all other lakes are in a fixed state allowing us to 
drop the subscript i. Thus the cost difference  

CC − CD = cC − cD − α(1 + ξF)ψB + dC (1 − F) − dD F  

can be written as cC − cD − α(1 + ξF)ψB+ δ̂, where δ̂ is treated as a 
parameter. In this section we study the following model: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB
dt

= rB
(

1 −
Qm

Q

)

h(B) − νrB −
D
ze

B,

dQ
dt

= ρ(Q,P) − rQ
(

1 −
Qm

Q

)

h(B),

dP
dt

=
D
ze
(I(F(t) ) − P ) − Bρ(P,Q),

dF
dt

= rDC (F,B)(1 − F) − rCD (F,B)F =
s

1 + eβ(CC − CD )
− sF.

(3.1)  

3.1. Dynamics of the phosphorus explicit model 

In this section we simplify system (3.1) and use parameter values 
given for the phosphorus system in Tables 1 and 2. The simplifications 
lead to a single differential equation that is analyzed on the phase line to 
gain in-depth understanding of the single lake dynamics and the bistable 
nature of the system. 

We perform a nondimensionalization of system (3.1) as outlined in 
Appendix B.1 and then apply the quasi-steady state approximation 

(QSSA) as outlined in Appendix B.2 arriving at the following 
differential-algebraic model representative of our system dynamics: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF
dτ̃ =

1
1 + eη− σ(1− ξF)u − F, (3.2a)

0 = κ2(1 − F) − λu(1 − v)
w

1 + w
, (3.2b)

0 = u
(

1 −
1
γv

)

ĥ(u) − β2u, (3.2c)

0 = ω(1 − v)
w

1 + w
−

(

v −
1
γ

)

ĥ(u), (3.2d)

where 

ĥ(u) =
1

u + k1
log
(

1 + I
1 + Iexp( − u − k1)

)

, (3.3)  

is the non-dimensional light dependent growth term from (2.2) and its 
nondimensional approximation stemming from (2.5) is given as 

ĥ(u) ≈ ĥapp(u) =
1

au + b
. (3.4) 

All nondimensional parameters and variables are defined in Table 3. 
Denote u*(F) as the solution to the algebraic system (3.2b)-(3.2d). 
Theorem B.1 ensures that there is a unique solution to the algebraic 
system for our chosen parameter values. 

Remark 3.1. Theorem B.1 also applies when using ĥapp(u) in place of 
ĥ(u). The condition for existence and uniqueness of a positive solution 
remains the same and an explicit form of u*(F) can be obtained. 

Remark 3.2. When the condition in Theorem B.1 is not satisfied a 
unique trivial solution can only exist when F = 1. Otherwise, no positive 
solution exists. 

3.1.1. An approximation for the cyanobacteria abundance 
In this Subsection we explicitly compute u*(F) by utilizing the pre-

viously established approximation for ĥ(u), given in (3.4), and solving 
(3.2b)-(3.2d). Without approximations or simplifications the unique 
positive solution to (3.2b)-(3.2d) is verified to exist by Theorem B.1 but 
can only be implicitly given. However, by utilization of the 

Table 3 
Dimensionless parameters for system (B.2) and Eq. (3.7).  

Parameter Definition Value 

β1 D
szm  

0.2857 

β2 νr/r 0.35 
ω ρm

r(QM − Qm)
5.556 

γ QM

Qm  

10 

κ1 pC

M
β1  

9.5238 

κ2 pD

M
D

rzm  

1.4667 

λ QM

QM − Qm

ρm
Mrkzm  

52.9 

k1 zmKbg 2.1 
I Iin/H 2.5 
η β(cC − cD + δ̂) − 5 to 7 

η̂  β̃(cC − cD + δ̂) − 1 to 1.5 

σ αβψ/kzm 2.1429 
σ̂  αβ̃ψ/kzm  0.4307 

ε s/r <0.01 
b 1/ĥ(0) 2.13 

a 1
ĥ(1)

− b  0.57   
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approximation given in (3.4) we obtain an explicit form as shown in 
Appendix B.3 and given by 

u*(F) =
γp1(1 − β2b)(1 − F)
β2aγp1(1 − F) + 1

=
a1(1 − F)

a2(1 − F) + 1
, (3.5)  

where a1 = γp1(1 − β2b) > 0 and a2 = β2aγp1 > 0. 

Remark 3.3. As shown in Fig. 3 the explicit version of u*(F), as in 
(3.5), is a reasonable approximation to the numerical solution of (3.2b)- 
(3.2d). Note that both solutions give u*(1) = 0. However, in reality even 
with 100% cooperation we would predict a small but non-zero CB 
abundance due to the non-zero pollution rate of the cooperators. In our 
QSSA this term (κ1F) disappears, and is hence essentially deemed 
negligible resulting in u*(1) = 0. 

3.1.2. A simplifying approximation for the governing differential equation 
We now apply the approximation discussed in (2.11) to (3.2a) to 

solve for equilibrium values. From Section 3.1.1 we obtained an explicit 
approximation of the solution to the algebraic system (3.2b)-(3.2d) 
given by (3.5). Thus, the entire system (3.2) is reduced to the following 
equation: 

dF
dτ̃ =

1
1 + eη− σ(1+ξF)u*(F)

− F, (3.6)  

where u*(F) is given by (3.5). We further simplify (3.6) by using the 
nondimensionalized version of the approximation given in (2.11). Thus, 
(3.6) is approximated by 

dF
dτ̃ = max

{

0,min
{

1,
1
2
− η̂ + J(F)

}}

− F, (3.7)  

where 

J(F) = σ̂(1+ ξF)u*(F) = σ̂(1+ ξF)
a1(1 − F)

a2(1 − F) + 1
, (3.8)  

and the remaining nondimensional parameters are given in Table 3. 

3.1.3. Equilibrium and phase line analysis of the simplified single lake 
phosphorus model 

Here we discuss the possible equilibrium, their stability and bifur-
cation structure of Eq. (3.7) with respect to the parameter η̂. Recall that 
η̂ = β̃(cC − cD + δ̂), which can be thought of as being proportional to 
the difference between the base costs of each strategy plus the relative 
cost of social norm pressure. That is, when η̂ is positive the combination 
of base costs and social norm pressures for cooperating exceeds that of 
the cost of defecting and the contrary when η̂ is negative. Eq. (3.7) has 
four possible steady state solutions given by Fl* = 0, F1* = 1, Fh*, and Fu* 
where Fh* and Fu* are internal equilibrium given by the solution to 
J(F) = F+ η̂ − 1/2. The analysis is supplemented graphically in Fig. 5 
where intersections of the nonlinear curve J(F) with the linear curve F +

η̂ − 1/2 for various values of ̂η represent the equilibria. Furthermore the 

structure of the equilibrium is shown in a bifurcation diagram (see 
Fig. 4) where three critical values of η̂ are highlighted. 

By (3.7) an internal equilibrium must satisfy the equation J(F) = F +

η̂ − 1/2 for some F ∈ [0,1], and we show in Appendix B.4 that two in-
ternal equilibrium Fh* and Fu* exist in addition to the boundary equil-
brium Fl* = 0 and F1* = 1 leading to the following stability results. 

Theorem 3.1. The equilibrium and stability of (3.7) are given by the 
following: 

• (i) If η̂ < η̂1 = − 1/2 then F1* is the only equilibrium to exist and is 
globally stable. 

• (ii) If η̂1 < η̂ < η̂2 then Fh* is the only equilibrium to exist and is 
globally stable. 

• (iii) If η̂2 < η̂ < η̂3 then Fl*, Fu* and Fh* exist. Bistability occurs 
where Fl* and Fh* are locally stable, and Fu* is unstable. 

• (iv) If η̂ > η̂3 then Fl* is the only equilibrium to exist and is 
globally stable. 

The proof for Theorem 3.1 is given in the Appendix B.5. Further-
more, we define a saddle node bifurcation as a point when two steady 
states collide and annihilate each other as a bifurcation parameter 
changes. Following this definition we conclude the following corollaries. 

Corollary 3.1. A saddle node bifurcation occurs at the point (F, η̂) =
(
F*

h, η̂3
)
. 

Corollary 3.2. A saddle node bifurcation occurs at the point (F, η̂) =
(
F*

l , η̂2
)
. 

The bifurcations discussed in Corollaries 3.1 and 3.2 are illustrated 

Fig. 3. Comparison of the approximation given by (3.5) and the numerical solution for u*(F).  

Fig. 4. Solid line: Bifurcation plot of equilibria solutions to the approximated 
model (3.7) with respect to ̂η. Dotted line: Bifurcation plot of the reduced model 
(3.6) with η values scaled to η̂ values. η̂ = β̃(cC − cD + δ̂), which represents the 
cost differences between cooperating and defecting without social ostracism. 
Note the two plots are qualitatively similar other than Fl* is small but non zero 
and F1* does not exist in the full model and is explained in Remark B.3. 
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intuitively in Fig. 4 and by noting the intersections of J(F) with F + η̂ −

12 in Fig. 5. The detailed proofs are given in Appendix B.6. Remark B.3 
highlights that the results given for the approximated model (3.7) also 
hold for the full model (3.6). 

3.2. Dynamics of the iron explicit model 

Here we consider different parameter values where the nutrient of 
focus is iron instead of phosphorus. These new parameter values allow 
us to look at the dynamics of the coupled CB and socio-economic model 
in the phase plane. The parameter values chosen for Section 3.1 (given in 
Tables 1 and 2) represent a typical system in which phosphorus pollu-
tion occurs. However, we now consider the situation where iron is the 
focal nutrient. When considering iron instead of phosphorus we must 
alter certain assumptions and parameters in our model. First, the values 
of QM and Qm are decreased by nearly an order of magnitude as implied 
by the extended Redfield ratio (Cunningham and John, 2017; North 
et al., 2007). Similarly, the uptake rate (ρm) is smaller (Cunningham and 
John, 2017; Downs et al., 2008; Larson et al., 2015). However the half 
saturation constant may not need to decrease, meaning the phyto-
plankton are inefficient at ‘finding’ iron at low concentrations. As 
before, we nondimensionalize the system, but where P now represents 
the iron concentration and the values of only the following parameters 
are changed: QM = .4e− 4,Qm = .4e− 5, ρM = 1e− 3, ξ = 5, pD = 100,pC =

50. All other parameter values remain as in Tables 1 and 2 but are 
interpreted for iron. 

Following the non dimensionalization process of (3.1) and applica-
tion of the quasi-steady state approximation outlined in Appendices C.1 
and C.2 we arrive at the follow differential-algebraic system. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = u
(

1 −
1
γ

1
v

)

ĥ(u) − β2u, (3.9a)

0 = ω(1 − v)
w

μ + w
−

(

v −
1
γ

)

ĥ(u), (3.9b)

dw
dτ̃ = β1(F + κ(1 − F) − w ) − λu(1 − v)

w
μ + w

= g(F,w), (3.9c)

dF
dτ =

1
1 + eη− σ(1+ξF)u) − F = f (F,w), (3.9d)

where τ = rt, u = kzmB, v = Q
QM

, w = P
pC 

and the remaining nondimen-

sional parameters are given in Table 4. Additionally, ĥ(u) is the nondi-
mensional light dependent growth originating from (2.2) given by (3.3) 
and approximated by (3.4). Denote u*(w) and v*(w) as a solution to the 

algebraic system defined by (3.9a) and (3.9b). Theorem C.1 gives a 
condition to guarantee existence of uniqueness of a solution to the 
algebraic system. Thus, following Remark C.1 we take the solutions to 
system (3.9a) and (3.9b) as 

u*(w)=max{0, û(w)} and v*(w)=max{v(w), v̂(w)}, (3.10)  

3.2.1. Phase plane analysis of the simplified single lake iron model 
We now proceed with studying (3.9) in the phase plane. Changing 

the value for η in system (3.9) will result in various phase portraits that 
are topologically different. One such instance shows a bistable scenario 
that is lost through either one of two saddle-node bifurcations. 

In the following we assume that u*(w), v*(w) are defined as in (3.10). 
The bifurcation plot, with respect to η of system (3.9) is shown in Fig. 6. 
Recall that the parameter η = cC − cD + δ̂ partly describes the differ-
ences in base costs and network social norm costs faced by the cooper-
ator and defector, respectively. 

The first case we explore is for η values that are relatively ‘large’. 
Fig. 7 shows the phase portrait for values of η that represent the base 
costs of cooperating to be relatively much higher than that of the 
defector. In this case the equilibrium E1, defined by a low level of 
cooperation and a relatively high concentration of iron, is numerically 
globally attracting and the only equilibrium to exist. See Appendix C.3.1 
for details. 

Now we look at the case where η is relatively ‘small’. Here the values 

(a) (b)

Fig. 5. (a) Phase line of Eq. (3.7) for the four cases given in Theorem 3.1. (b) Curve J(F) and line F + η̂ − 1/2 for four values of η̂ corresponding to the cases in 
Theorem 3.1. The points of intersection give the equilibria of Eq. (3.7). 

Table 4 
Dimensionless parameters for the iron system (C.2).  

Parameter Definition Value 

β1 D
szm  

0.2857 

β2 νr/r 0.35 
ω ρm

r(QM − Qm)
2.7778 

γ QM

Qm  

10 

κ pD

pC  

2 

μ M
pC  

0.03 

λ QM

QM − Qm

ρm
pC skzm  

0.7937 

k1 zmKbg 2.1 
I Iin/H 2.5 
η β(cC − cD + δ̂) – 

σ αβψ/kzm 2.1429 
ε s/r <0.001  
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of η represent the base costs of cooperating to be relatively close to that 
of the defectors. Fig. 8 shows the phase portrait for this scenario. Here, 
the equilibrium E3, defined by a high level of cooperation and a rela-
tively low concentration of iron, is numerically globally attracting and 
the only equilibrium to exist. This means the phase portrait in Fig. 8 
represents an environmentally favourable outcome. We show the local 
stability in Appendix C.3.2. 

Now we show the dynamics for intermediate values of η such that a 
bistable scenario occurs. These values of η represent an intermediate 
region where the cost of cooperating and defecting are close to being 
balanced. Fig. 9 shows the phase portrait of the bistable scenario, where 
the topology near equilibrium E1 and E3 are qualitatively consistent to 
that shown in Figs. 7 and 8, respectively. That is, E1 and E3 are both 
locally stable for our chosen parameter region. A new equilibrium, E2, 
appears as seen in Fig. 9 which is unstable, as shown in Appendix C.3.3. 

We have shown that the socio-economic and ecological regime is 
highly connected to costs associated with each strategy. The dynamic 
properties have been explored in the phase plane which included a high 
cooperation regime, a low cooperation regime, and a bistable scenario. 

Fig. 6. Bifurcation diagrams for system (3.9c) and (3.9d). Left: equilibrium values for the proportions of cooperators (F). Right: Equilibrium values for the con-
centration of iron. 

Fig. 7. Phase plane for ‘large’ values of η. E1 is the only equilibrium and at-
tracts all solutions. The F nullcline does not exist for certain values of F and is 
discussed in C.2. 

Fig. 8. Phase plane for ‘small’ values of η. E3 is the only equilibrium and at-
tracts all solutions. 

Fig. 9. Phase plane for ‘intermediate’ values of η. In this case E1 and E3 have 
similar topology as in Figs. 7 and 8 and thus have the same stability. The shaded 
regions represent the attraction basin of the respective equilibrium. E2 is un-
stable. The F nullcline does not exist for certain values of F and is discussed 
in C.2. 
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3.3. Interpretation and management implications 

In this section we will interpret the results of Sections 3.1 and 3.2 and 
discuss their potential management and societal implications. The re-
sults of both the phosphorus and iron explicit models are convergent on 
the phenomena of bistability and hysteresis. However, the two systems 
have different assumptions about the timescales of the nutrient dy-
namics and thus require the different approaches to understand that 
dynamics. Interestingly, regardless of the varying assumption between 
the two models the results are similar and are interpreted in similar 
light. 

Theorem 3.1, Fig. 4 and Fig. 6 give an understanding of the possible 
regime outcomes of the single lake dynamics based on the parameter 
η̂ = β̃(cC − cD + δ̂), which indicates the cost difference between 
cooperating and defecting with respect to baseline costs and social norm 
pressure (no social ostracism). For the phosphorus system the results of 
Theorem 3.1 are summarized graphically in Fig. 5. For the iron system 
the results are seen graphically in the various phase portraits (Figs. 7,8, 
and 9) and accompanying bifurcation diagram (Fig. 6). We interpret that 
for very small values of η̂ the total cost of cooperating becomes small 
relative to the cost of defecting and thus expect to see a regime where the 
level of cooperation is high and CB abundance is low. On the other hand, 
when the values of η̂ are very large we expect to see low level of 
cooperation and high level of CB abundance, as shown in the bifurcation 
plots in Figs. 4 and 6. Large values of η̂ correspond to a significantly 
large difference between the baseline costs and significantly more social 
norm pressure to defect. Small values of η̂ correspond to a small dif-
ference between baselines costs and significantly more social norm 
pressure to cooperate. 

Intermediate values of η̂ bring rise to the potential for bistable dy-
namics and hysteresis. For example, Theorem 3.1 and Fig. 4 suggest the 
following situation may arise: A lake in a high cooperation state can shift 
to a regime with low cooperation if η̂ is increased past η̂3 by either 
increasing (decreasing) social norm pressure to defect (cooperate) or 
increasing (decreasing) the baseline cost to cooperate (defect). More-
over, to return to the high cooperation state it is not enough to decrease 
η̂ back to η̂3 but rather it is required to decrease η̂ beyond η̂2. That is, 
simply reversing the action that caused the shift from high cooperation 
to low cooperation will not cause a shift from low to high cooperation. 
This is typical example of hysteresis and it is important to managers to 
understand that reversal of actions does not equate to reversal of out-
comes. However, this phenomena is beneficial in the context of moving 
from low to high cooperation because once the system is in the high 
cooperation state there is an allowance for small fluctuations in η̂ that 
guarantee a small perturbation will not force the system back down to 
the low cooperation regime. 

4. Dynamics of a network system 

We now return to the network model proposed in (2.1) with 
parameter values given for the phosphorus dynamics in Tables 1 and 2. 
The study of the network model allows us to understand the influence 
non-local social influences and connections can have on both the single 
lake dynamics and the entire network. Here we consider the nondi-
mensional version of (2.1) and, upon further simplifying assumptions, 
reduce the entire network model to a system of two ODEs which are 
studied in the phase plane. A series of two parameter bifurcation plots 
are provided to show regime outcomes for various parameter regions 
associated with the socio-economic dynamics. 

4.1. Reduction of the network model 

We now make a series of simplifying assumptions to reduce the 
network model (2.1) to a system of two ODEs. 

We wish to further understand how socio-economic pressures can 

lead to regime shifts. In Section 3 we consider these pressures on a local 
scale, we now consider these pressures when they originate from distant 
social connections. For this reason, let us consider a network with N 
lakes. Assume that each lake is modelled with identical parameter values 
and that if the network is not connected, each lake exhibits the bistable 
dynamics discussed in the phase line analysis (Section 3.1). Note that the 
nondimensionalization of the network model (2.1) is equivalent to what 
is shown in (B.2) with the explicit subscripts for lake i and the term δ̂ is 
to be a function of the weighted average of the frequency of cooperators 
in the network. 

Assume a given lake is initially either in the high cooperation state 
(Fh*) or the low cooperation state (Fl*) at equilibrium as discussed in 
Figs. 5a and 4. Since the system is bistable, we can assume that our 
network has N − k lakes in the low cooperation state (Fl*) and k lakes in 
the high cooperation (Fh*) state. 

By assuming that every lake in the network has the same environ-
mental parameters we can conclude that the dynamics of lakes with the 
same initial conditions will be identical. We introduce two new state 
variables Fh and Fl. Fh represents the dynamics of frequency of co-
operators that start in a high cooperation state. Fl is the dynamics of 
those that start in a low cooperation state. Indeed a requirement based 
on these assumptions is that Fh(0) > Fl(0). 

Thus, since we now explicitly consider network connections social 
norm costs, from the network are not longer constant and now depend 
on the frequency of cooperation throughout the network. Thus, instead 
of δ̂ being treated as parameter, as in Section 3, we assume: 

δ̂(F(t) ) = δ̂(Fl,Fh) = δC (1 − F) − δD F, (4.1)  

where δC and δD are the cost conversion coefficients for cooperating 
and defecting, respectively. Since all lakes of the same regime are in the 
same state, then F =

(k)Fh+(N− k)Fl
N . Furthermore, assuming that the 

ecological dynamics of each lake are in steady state and occur on a faster 
timescale (by the QSSA discussed in Section B.2) the entire network is 
reduced to a two dimensional system of equations: 

dFh

dτ1
=

1
1 + eη− u*(Fh)(1+ξFh)+δ(Fl ,Fh)

− Fh = f1(Fh,Fl), (4.2a) 

dFl

dτ1
=

1
1 + eη− u*(Fl)(1+ξFl)+δ(Fl ,Fh)

− Fl = f2(Fh,Fl), (4.2b)  

where u*(F) is the unique equilibrium of the ecological system discussed 
in Theorem B.1, η = β(cC − cD ). All other parameters are defined as in 
Table 3. The system (4.2) then represents the coupled socio-economic 
and ecological dynamics of a network of lakes where Fh and Fl repre-
sent the social dynamics of lakes that start in a high and low cooperation 
regime, respectively. 

4.2. Phase plane analysis of the reduced network model 

We now use the phase plane to explore the possible long term dy-
namics of the network dependent on socio-economic parameters. Three 
stable steady states can occur that correspond to high, low and mixed 
levels of cooperation throughout the network. By manipulating pa-
rameters a network shift from mixed to either high or low cooperation 
can occur. 

Note that under the condition δ̂(Fl, Fh) = 0 the system is decoupled 
and each lake would exhibit bistable behaviour. Further note that given 
our assumptions we must limit the phase plane to the region Fl ≤ Fh. We 
assume that the system will start the prescribed initial condition of N − k 
lake in a low cooperation state (corresponding Fl*) and k lakes in the 
high cooperation state (corresponding to Fh*). This means that the initial 
condition of our system is Fh(0) = Fh* and Fl(0) = Fl*. 

The stable equilibria are El, Eh, and Em and the unstable equilibria are 
Eul and Euh as shown in Fig. 10. These stability results are shown through 
graphical arguments in Appendix D. 
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El is representative of a low cooperation regime in the entire 
network, Eh is representative of a high cooperation regime in the entire 
network, and Em is representative of the regime where some lakes 
cooperate and high levels and some at low levels and are not qualita-
tively different from the initial condition of the network (i.e. N − k lakes 
remain in a low cooperation state and k lakes remain in a high coop-
eration state). We explore the loss of stability or disappearance of Em. 
That is, when Em loses stability or vanishes the dynamics must either 
shift to El, or Eh and the shift will be decided by the basins of attraction 
near bifurcation points. From graphical methods, we can show that 
when Em exists it is stable. However, Em can disappear through one of 
two saddle node bifurcations: (i) The equilibrium Euh collides with Em 
and (ii) The equilibrium Eul collides with Em. 

4.2.1. Case (i): Euh collides with Em 
In this case, we see that the lower two branches of the Fl nullcline 

would be to the left of the rightmost branch of the Fh nullcline as 
depicted in Fig. 11. The separatrix is approximately the middle branch of 
the Fh nullcline and runs vertically through Eul. With initial conditions 
such that k lakes are in a high cooperation state and N − k lakes in a low 
cooperation state the network dynamics will eventually tend to Eh based 
on the attraction basins. The phase plane of this situation is shown in 
Fig. 11. 

4.2.2. Case (ii): Eul collides with Em 
Here the two rightmost branches of the Fl nullcline will be above the 

lowest branch of the Fh nullcline. The separatrix is now the (roughly) 
middle branch of the Fh nullcline and runs horizontally through Euh. 
With initial conditions such that k lakes are in a high cooperation state 
and N − k lakes in a low cooperation state the network dynamics will 
eventually tend to El based on the attraction basins. The phase plane of 
this situation is shown in Fig. 12. 

We have shown via phase plane analysis that three main dynamical 
outcomes occur. First, when additional network pressure is small then 
the system will stay in a state of mixed regime, i.e. k lakes in high 
cooperation state and N − k lakes in a low cooperation state as in Fig. 10. 
Second, when additional network pressure adds sufficiently more costs 
for the defectors a bifurcation occurs such that all lakes will tend to a 

high cooperation state as in Fig. 11. Lastly, when additional network 
pressures add sufficiently more costs to the cooperators a bifurcation 
occurs such that all lakes will tend a low cooperation state as in Fig. 12. 

4.3. Bifurcation conditions 

We now discuss necessary conditions for the bifurcations to occur. 
These necessary conditions are based on model parameters and thus 

Fig. 10. The phase plane of Fh and Fl for similar social norm pressure. The 
region above the line Fl = Fh is excluded based on the condition Fl < Fh. The 
shaded regions represent the attraction basins of the stable equilibrium, the 
initial condition is located within the green region. In this case no regime shifts 
occur based on the prescribed initial condition. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 11. Phase plane after Em collides with Euh. This phase plane corresponds 
with parameter values that favour cooperation (i.e. cD − cC , cD − cC , δD − δC 

and/or k/N are relatively large). The region above the line Fl = Fh is excluded 
based on the condition Fl < Fh. The shaded regions represent the attraction 
basins of the stable equilibrium, the initial condition is located within the green 
region. In this case a regime shift to high cooperation occurs based on the 
prescribed initial condition. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Phase plane after Em collides with Eul. This phase plane corresponds 
with parameter values that favour defection (i.e. δD − δC and/or k/N are 
relatively small). The region above the line Fl = Fh is excluded based on the 
condition Fl < Fh. The shaded regions represent the attraction basins of the 
stable equilibrium, the initial condition is located within the green region. In 
this case a regime shift to low cooperation occurs based on the prescribed initial 
condition. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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offer insight to the parameter values that result in certain regime shifts 
giving insight to effective mitigation for environmentally favourable 
outcomes. 

Graphically we notice that the signs of A|Em do not change as we vary 
parameter values. However, near either bifurcation point we require the 
signs A|Eul or A|Euh to change. This observation leads us to the following 
two theorems. 

Remark 4.1. Necessary conditions for each bifurcation to occur are 
highlighted as follows: 

(i) If system (4.2) is close to the bifurcation point where Eul collides 

with Em then df1
dFh

⃒
⃒
⃒
⃒Eul < 0. 

(ii) If system (4.2) is close to the bifurcation point where Euh col-

lides with Em then df2
dFl

⃒
⃒
⃒
⃒Euh < 0. 

Remark 4.1 is justified by graphical inspection. First, when suffi-
ciently far away from the bifurcation point discussed in case (i) the 

Jacobian, A|Eul =

(
+ +

+ −

)

. A necessary condition at the bifurcation 

point is det(A|Eul) = 0. Now, at the bifurcation point we require A|Eul =

A|Em, and graphically we can see that near the bifurcation point only the 

first entry in A|Eul will change sign. Thus, near the bifurcation point df1
dFh

⃒
⃒
⃒
⃒Eul 

must be negative. The argument for case (ii) follows identical logic to the 
above discussion. Thus, by Remark 4.1 we have necessary conditions for 
the bifurcations to occur. These conditions involve model parameters, 
thus offering insight towards system characteristic that promote, or 
prevent, bifurcations from occurring. 

4.4. Bifurcation diagrams for the reduced network 

We now explore the possible regime shifts dependent on the socio- 
economic parameters δC , δD , k and N and focus on the bifurcations 
related to Em. The model parameters considered offer insight towards 
implementing additional costs as to prevent non-environmentally 
favourable outcomes or to promote environmentally favourable 
regime shifts. 

Figs. 13, 14, and 15, show two parameter bifurcation diagrams for 
the combination of parameters δC , δD and k/N. We assume that the 
initial condition of (4.2) corresponds to populations in the bistable state 
of the single lake model i.e., Fh(0) = Fh* and Fl(0) = Fl*. The region 
denoted with ‘high coop.’ represents the region in parameter space 

where lake populations will tend to a high cooperation regime (Fig. 11). 
Conversely, the region denoted with ‘low coop.’ corresponds to the 
network shifting to a low cooperation regime (Fig. 12). The region 
denoted ‘mixed coop.’ represents when there is no regime shift (Fig. 10). 
There are two remaining regions in the parameter space where either El 
or Eh disappear. These regions correspond to the bifurcation that would 
occur when either i) Eul and El collide, and ii) Euh and Eh collide and are 
denoted with ‘high coop. only’, and ‘low coop. only’, respectively. In 
both cases the resultant regime will not change but the system becomes 
monostable instead of bistable offering the potential for global attrac-
tiveness of the regime. 

Remark 4.2. There is a cusp bifurcation shown in Figs. 14 and 15. The 
cusp bifurcation is the point in which Em,Eul, and Euh all collide and one 
unstable equilibrium remains. Past the cusp bifurcation no bifurcation 
occurs, but the location of the unstable equilibrium varies and the size of 
the attracting basins changes accordingly. Thus, past the cusp bifurca-
tion we label the region ‘high coop.’ if remaining unstable equilibrium is 
along the bottom-most branch of the Fl nullcline, and label the region 
‘low coop.’ if it is along the rightmost branch of the Fh nullcline. Fig. 16 
shows two phase portraits near the cusp bifurcation. 

4.5. Interpretation and management implications 

In this section we will interpret the results given in Sections 4.2 and 
4.4 and discuss their potential management and societal implications. 
The main result shown is the occurrence of tristability when considering 
network social connections among lakes. Furthermore, we numerically 
showed that altering socio-economic parameters can lead to bifurcations 
corresponding to regime shifts between various levels of cooperation 
and CB abundance throughout the network. 

The series of two parameter bifurcation plots presented in Figs. 13, 
14, and 15 give insight to parameter values that will yield a favourable 
regime shift. Interestingly, the parameters δC , δD , k and N can be altered 
strategically with three possible regime outcomes. δC and δD are the 
cost conversion coefficients for cooperating and defecting, respectively. 
This means that for δC = 0 cooperators feel no social norm costs from 
any of the defectors, on the other hand, for large values δC cooperators 
will experience a large social norm cost from the defectors. δD is like-
wise interpreted but social norm costs are imposed on the defectors by 
the cooperators. The value of k is the number of lakes within the network 
that, without network connections, have equilibrated to the high 
cooperation regime as described in Section 3.1. Thus, through man-
agement strategies aimed at increasing/decreasing social norm 

Fig. 13. Shows the two parameter bifurcation for δC = 0.6. The solid line is the curve in parameter space where Em collides with Eul. Below the solid is described in 
Case (ii). The dashed line is the curve in parameter space where Em collides with Euh. Above the dashed line is described in Case (i). The region between the curves is 
where the equilibrium Em persists. To the right of the dotted line El vanishes and the equilibrium Eh is the only equilibrium. 
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pressures and connecting lakes of similar initial regimes we can alter the 
values of δC , δD and k/N. We now discuss the outcomes and their im-
plications when such parameters are altered. 

The three possible regimes that arise in our system are: high coop-

eration with low CB abundance at every lake, low cooperation with high 
CB abundance at every lake, a mixed level of cooperation throughout the 
network. Our results illustrate which parameter changes will cause a 
shift among the possible regimes. First, we note that a regime shift oc-

Fig. 14. Shows the two parameter bifurca-
tion for k/N = 0.5. The orange dashed line is 
the curve in parameter space where Em 
collides with Euh. The region below this line 
is described in Case (i). The solid blue line is 
the curve in parameter space where Em 
collides with Eul. The region above this line 
is described in Case (ii). The solid and 
dashed lines meet at a cusp bifurcation (see 
Remark 4.2). The other two lines show 
when El or Eh vanish. Crossing these lines 
transition from bistable state to a mono-
stable state. (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 15. Shows the two parameter bifurcation for δD = 2δC . The solid line is the curve in parameter space where Em collides with Eul. Above the solid is described in 
Case (ii). The dashed line is the curve in parameter space where Em collides with Euh. Above the dashed line is described in Case (i).The solid and dashed lines meet at 
a cusp bifurcation (see Remark 4.2). 

Fig. 16. Shows the phase portrait just beyond the cusp bifurcation in Figs. 14 and 15. The left phase portrait shows the unstable equilibrium on the rightmost branch 
of the Fh nullcline, thus this parameter region is labelled as ‘low coop’. The right phase portrait shows the unstable equilibrium on the bottom-most branch of the Fl 
nullcline, thus is labelled as the ‘high coop.’ region. 
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curs when the current state of the system is placed into another basin of 
attraction, either by a bifurcation or perturbation. We notice that by 
changing parameter values to strongly favour cooperation (large δD , 
small δC and large k/N) or defection (small δD , large δC and small k/N) 
we observe a loss of tristability resulting in either a monostable or 
bistable system. In the case of the bistable system, only the high coop-
eration and low cooperation regimes exist. However, unlike in the single 
lake scenario, the monostable case only arises for extreme parameter 
values and likely require unreasonable management efforts to achieve. 
This means that forcing the phase plane to change from being mono-
stable with only the high cooperation regime to only the low coopera-
tion regime, and vice versa, is very difficult to achieve and would require 
significant changes in the parameter space. Furthermore, the interme-
diate state acts a buffer to prevent a direct shift between the high and 
low cooperation regimes making this transition even more difficult to 
achieve. This result should heed caution to managers in attempting to 
force regime shifts when the population is in a mixed state as if the 
wrong shift were to occur our results suggest there is no simple way to 
undo it. 

However, another possible mechanism to force regime shifts is 
through perturbations of the human population. That is, issuing short 
term incentives to individuals can abruptly change the frequency of 
cooperators and potentially force the system into another basin of 
attraction and thus, changing the observed regime. However, these 
perturbations involve actively forcing players to change strategies 
without necessarily altering any other costs, or associated parameters 
and much more socio-economic research would be required to under-
stand how such societal perturbations could be induced. 

5. Discussion 

The study of CB dynamics is important to effectively mitigate po-
tential risks associated with toxin production and ecosystem health as 
well as to reduce the associated agricultural, recreational, and water 
treatment costs. However, CB dynamics are intertwined with human 
dynamics through anthropogenic nutrient pollution (Paerl, 2014). In 
order to make meaningful management strategies to reduce the effects of 
CHABs we must also consider the associated socio-economic dynamics. 

In this paper we study the coupled socio-economic dynamics and 
abundance of CB in a single lake, and a network of lakes. The model 
presented is an accumulation and extensions of previously studied socio- 
economic and phytoplankton models. Similar systems have been studied 
but only consider the nutrient dynamics and neglect the deeper issue of 
CB abundance (Iwasa et al., 2007; Iwasa et al., 2010). This distinction is 
important as many landowners are more concerned with the risks 
associated with CHABs as a result of eutrophication than the eutrophic 
conditions themselves. For this reason we explicitly consider the influ-
ence human dynamics have on CB abundance. This is done by extending 
the models established by Iwasa et al. (Iwasa et al., 2007; Iwasa et al., 
2010) to consider CB abundance as the main environmental concern. 
The CB model is derived from a series of stoichiometric models (Heg-
gerud et al., 2020; Wang et al., 2007; Berger et al., 2006). By using the 
framework of ecological stoichiometry we are able to create a more 
mechanistic model for CB dynamics which in turn allows for a deeper 
understanding of the various timescales and driving factors of the sys-
tems dynamics. The coupling of the ecological and socio-economic 
models yields the existence of multiple stable states and hysteresis 
creating deeper implications for effective management of such systems. 

We consider the dynamics of our model for both phosphorus and 
iron. In the case of phosphorus the ecological dynamics occur on a faster 
timescale than the human dynamics. This observation allows us to apply 
the QSSA, simplifying the analysis. We further apply a series of ap-
proximations and arrive at a single tractable differential equation that 
describes the entire single lake system. Equilibria and their stability are 
studied through a bifurcation analysis with respect to the parameter η in 
Theorem 3.1. The results are supported by graphical inspection, inspired 

by the analysis of the classical Spruce Budworm model (Ludwig et al., 
1978). For the iron case, the nutrient dynamics occur on the same 
timescale as the human dynamics with the CB and cell quota remaining 
on the faster timescale. We again apply the QSSA and graphically study 
the system in the phase plane. The graphical results show two saddle 
node bifurcation points with respect to the parameter η. Each bifurcation 
point results in a loss of bistability and either the high or low coopera-
tion equilibrium become globally attracting. This type of dynamic is 
akin to the typical hysteresis phenomenon (Carpenter, 2005; Beisner 
et al., 2003). 

Lastly, we extend the phase line analysis to study the long term 
behaviour of a network of lakes. We assume that each lake is ecologi-
cally similar and that the only connections among lakes are through 
social interactions. The analysis is done in the phase plane where mul-
tiple stable states exist. Each state corresponds to a regime of high, low 
or mixed levels of cooperation throughout the network. Two main 
bifurcation branches are observed which correspond to the loss of the 
mixed cooperation equilibrium. Through a series of bifurcation dia-
grams we gain understanding as to what the long term regime outcome 
is based on parameter values pertaining to social pressures. 

The results presented in this paper all have various implications to-
wards policy and management strategies. In the phase line analysis of 
the phosphorus model our main result, Theorem 3.1, gives analytical 
conditions for bifurcation points. The bifurcation points correspond to 
the loss of bistability as the parameter η is changed. Recall that η rep-
resents the difference in baseline costs to cooperate and defect plus the 
difference in costs of external social pressures. That is, a large η repre-
sents a larger cost to cooperate, whereas a small η represents a larger cost 
to defect. Our results are not surprising in the sense that large η leads to 
lower cooperation and vice versa, but what is noteworthy to managers is 
the presence of hysteresis. A lake could be in a high cooperation state 
and suddenly shift to a low cooperation state if η exceeds its bifurcation 
point (η3). However, attempts to lower η back down to η3 will not be 
sufficient in re-achieving the high cooperation state due to the presence 
of the hysteresis phenomenon. 

The results of the iron system reiterate the conclusions of the phos-
phorus system with respect to bistability, but explicitly show the high 
and low pollution states. Additionally, the dynamics of iron and phos-
phorus are assumed to act on different timescales with respect to CB and 
anthropogenic inputs (Whitton, 2012; Cunningham and John, 2017). 
We assume that phosphorus dynamics occur on a similar scale to the 
ecological dynamics, whereas iron dynamics occur on the slower time 
scale similar to the human dynamics. This distinction is important when 
suggesting management strategies for a specific nutrient as the transient 
dynamics of the systems can differ significantly and moreover, the 
response of the human system may not yield a satisfactory response in 
the ecology for significantly longer periods of time (Hastings, 2016). 

In general, adding costs that are associated with social norm pres-
sures on the defectors can help sway the long term outcomes to be 
environmentally favourable. For instance, a large associated social norm 
pressure to cooperate, combined with a low associated pressure to defect 
will result in an overall environmentally favourable outcome. Also, 
when social network connections are added the initial state of the 
network can be a predictor of the regime outcome. We show that when a 
large majority of lakes start in a high cooperation state, it is unlikely that 
parameters can be changed enough so that the long term outcome will 
be a state of low cooperation, although mixed levels of cooperation 
throughout the network is possible. 

We have shown that bistability and hysteresis is observed in a single 
lake system. These results reiterates what has been hypothesized to 
occur in many nutrient explicit lake systems with or without human 
influence (Iwasa et al., 2010; Suzuki and Iwasa, 2009; Carpenter, 2005). 
Although in our case bistability does not occur in the CB model without 
the socio-economic coupling (Heggerud et al., 2020; Wang et al., 2007). 
Our results do differ from the discrete time models of (Iwasa et al., 2007; 
Suzuki and Iwasa, 2009) in that no periodic, oscillatory or chaotic 
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dynamics occur, however as in the continuous time model of (Iwasa 
et al., 2010) oscillatory dynamics might occur if the human behaviour 
changes on timescales similar or faster than the ecological dynamics, 
which we deemed this to be an inaccurate assumption for our system. 

When a network system is considered our results show that trist-
ability occurs as in Fig. 10. Few ecological systems have been shown to 
exhibit such behaviour. The implication of tristability is interesting in 
the sense that three regime outcomes are possible and that attempts to 
shift regimes may require significantly more effort. That is, if the system 
is in a low cooperation regime, it must first transition to a mixed regime 
state before achieving the environmentally favourable outcome. 
Furthermore, a system in the mixed regime can be perturbed in either 
direction to cause a regime shift, as opposed to the bistable case where 
perturbations can only shift the regime in one direction. In this sense 
tristable systems are more fragile to environmental fluctuations which 
can both be beneficial if transitioning from a less favourable regime, or 
detrimental if in a favourable state. Future work of this study should 
include deeper consideration of tristable systems and their implications 
towards management. 

In much of our analysis we make the QSSA or similar simplification. 
Although these simplifications make the model tractable for analysis 
they do take away some key aspects of the dynamics, mainly the pos-
sibility for interesting transient dynamics. Our results pertain to only 
long-term dynamics which may be insufficient in the eyes of policy 
makers as the ecology can change drastically on a smaller timescale 
(Heggerud et al., 2020; Hastings, 2010; Hastings et al., 2018). Further-
more, certain mechanisms are deemed negligible via the QSSA which, 
although reasonable, do take away from the dynamics of the full system. 

The socio-economic component of our model uses the logit best- 
response dynamics to model human decision making and is extended 
from Iwasa et al. (Iwasa et al., 2007; Iwasa et al., 2010). We present 
justifications for using this form, although the replicator dynamics are, 
perhaps, more commonly used. Indeed the replicator dynamics are more 
mathematically friendly, but they are based on the assumption that in-
dividuals learn strategies from other individuals (Sun and Hilker, 2021) 
and adopt that strategy with a probability proportional to the difference 
in costs between the two strategies. The best-response dynamics assumes 
that an individual bases their decision partly on the current environ-
mental state and the associated social norms (Farahbakhsh et al., 2021; 
Sun and Hilker, 2021). That is, in the best-response dynamics, a strategy 
is chosen based solely on payoff. Furthermore, replicator dynamics as-
sumes that the population could entirely assume a strategy whereas the 
best-response dynamics will have some persistence of both strategies. 
Furthermore, we assume that individuals in our system understand the 
link between nutrient pollution and bloom formation, and further do not 

learn a strategy from interacting with other individuals. For our system 
we deem the assumptions around the best-response dynamics reason-
able. However, for deeper mathematical understanding the simpler form 
of the replicator dynamics may prove useful. 

Our analysis of the network model is greatly simplified with the strict 
assumption that all lakes had identical ecological dynamics and socio- 
economic parameters. This assumption may be inaccurate in reality, 
but allows for a simplistic understanding of the potential regimes, and 
shifts among them. We assume the social norm pressures from the 
network are dependent on the proportion of cooperators at each lake, 
when in reality this pressure is also dependent on the population size at 
each lake. Additionally, explicit weighted network connections can 
result in coupling between pairs of lakes in which we expect to see 
scenarios where regime shifts can propagate through the network (Keitt 
et al., 2001). In future extensions of our model these assumptions should 
be revisited and addition of weighted network connections that are non- 
uniform should be considered. By relaxing our assumptions on the 
network model we expect many new and exciting results pertaining to 
social dynamics and propagation of regime shifts. 

The current study shows the importance of the interconnection of 
ecological and socio-economic dynamics in aquatic systems by por-
traying the various dynamical outcomes that can occur in the coupled 
system. Social pressures and ostracism influence the role an individual 
assumes with respect to environmental issues by adding associated costs. 
Furthermore, social pressures can lead to favourable regime shifts 
within a network of lakes giving valuable insight to policies and miti-
gation strategies. This study builds a valuable framework for future 
studies of coupled CB and socio-economic systems. 
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Appendix A. Approximation of to the switching function (ri,DC (Fi,Bi)) 

Here we provide details about the approximation of ri,DC (Fi,Bi). Note that the logistic function ( 1
1+eβx ) is readily approximated by the ramp function 

1
1 + e− βx ≈

⎛

⎜
⎜
⎜
⎝

0 x ≤ − c*,

1
2
+ β̃x − c* ≤ x ≤ c*,

1 c* ≤ x,

(A.1)  

where c* = 1
2̃β 

and ̃β is a parameter found by minimising L 1 norm of the difference between the two functions for a given value of β. Thus, ri,DC (Fi,Bi) is 

approximated by 

r̂ i,DC (Fi,Bi) = s⋅

⎛

⎝
0 1

/
2 + β̃

(
Ci,D − Ci,C

)
≤ 0,

1
/

2 + β̃
(
Ci,D − Ci,C

)
0 < 1

/
2 + β̃

(
Ci,D − Ci,C

)
. < 1,

1 1 ≤ 1
/

2 + β̃
(
Ci,D − Ci,C

)
.

(A.2) 

Furthermore, due to the dependencies of the of the conditions on Ci,D − Ci,C (A.2) can be written in terms of min and max functions: 
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r̂ i,DC (Fi,Bi) = s⋅max
{

0,min
{

1,
1
2
+ β̃
(
Ci,D − Ci,C

)
}}

. (A.3)  

Appendix B. Single lake phosphorus explicit model 

In this appendix the mathematical details of the analysis of the phosphorus explicit single lake model are given. 

B.1. Nondimensionalization 

We begin by nondimensionalizing system (3.1) by letting τ = rt, u = kzmB, v = Q
QM

, w = P
M, and F remains unchanged as F is dimensionless by 

definition. Making these substitutions into system (3.1) yields: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = u

(

1 −
Qm

QM

1
v

)

h(au) −

(

νr +
D
ze

)

r
u

dv
dτ =

ρm

rQM

QM − QMv
QM − Qm

w
1 + w

−

(

v −
Qm

QM

)

h(au),

M
dw
dτ =

D
rze

(pC F + pD (1 − F) − Mw ) −
ρM

rkze
u

QM − QMv
QM − Qm

w
1 + w

,

dF
dτ =

s
r

(
1

1 + eβ(cC − cD − α(1+ξF)ψau+̂δ )

− F
)

.

(B.1) 

Upon substitution of the nondimensional parameters given in Table 3 we have: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = u

(

1 −
1
γ

1
v

)

ĥ(u) − (εβ1 + β2)u

dv
dτ = ω(1 − v)

w
1 + w

−

(

v −
1
γ

)

ĥ(u),

dw
dτ = ε(κ1F − β1w) + κ2(1 − F) − λu(1 − v)

w
1 + w

,

dF
dτ = ε

(
1

1 + eη− σ(1+ξF)u) − F
)

,

(B.2)  

where 

ĥ(u) =
1

u + k1
log
(

1 + I
1 + Iexp( − u − k1)

)

, (B.3)  

is the non-dimensional light dependent growth term from (2.2) and its nondimensional approximation stemming from (2.5) is given as 

ĥ(u) ≈ ĥapp(u) =
1

au + b
, (B.4)  

where b = 1/ĥ(0) and a = 1
ĥ(1)

− b. 

B.2. Application of the quasi-steady state approximation 

We now further reduce the model by utilizing the QSSA. The nondimensional system (B.2) contains the parameter ε = s/r, where s is given as the 
rate at which players reevaluate strategies and r is the maximal growth rate of CB. The rate at which players are able to reevaluate their strategy is very 
small in comparison to many ecological processes. Here we assume that the ecological dynamics of the CB occur on the order of days or weeks, whereas 
the social dynamics, or the maximum rate a player can switch strategies, is on the order of several months, or years. Thus, ε is a small parameter. 

By re-scaling time with the small parameter ε in system (B.2) we apply the QSSA. We introduce a new time scale ̃τ = ετ creating a slow time scale. 
The time scale ̃τ is the slow timescale in which the human (F) dynamics occur, while τ is the fast timescale where most of the ecological dynamics 
occur. We note that certain aspects of the ecological dynamics such as water exchange rates can also occur on the slow timescale. Upon re-scaling time 
to ̃τ we arrive at the following system: 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε du
dτ̃ = u

(

1 −
1
γv

)

ĥ(u) − (εβ1 + β2)u,

ε dv
dτ̃ = ω(1 − v)

w
1 + w

−

(

v −
1
γ

)

ĥ(u),

ε dw
dτ̃ = ε(κ1F − β1w) + κ2(1 − F) − λu(1 − v)

w
1 + w

,

ε dF
dτ̃ = ε 1

1 + eη− σ(1+ξF)u) − εF.

(B.5) 

Now, by the QSSA, which assumes that the fast dynamics are in an equilibrium state, and letting ε go to zero we arrive at the differential algebraic 
system: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dF
dτ̃ =

1
1 + eη− σ(1 + ξF)u

− F, (B.6a)

0 = κ2(1 − F) − λu(1 − v)
w

1 + w
, (B.6b)

0 = u
(

1 −
1
γv

)

ĥ(u) − β2u, (B.6c)

0 = ω(1 − v)
w

1 + w
−

(

v −
1
γ

)

ĥ(u). (B.6d)

Denote u*(F) as the solution to the algebraic system (3.2b)-(3.2d) (or (B.6b)-(B.6d)). The following theorem ensures that there is a unique solution 
to the algebraic system for the given parameter values. 

Theorem B.1. There exists a unique positive solution to the algebraic system defined by Eqs. (3.2b) to (3.2d) (also given in (B.6b)-(B.6d)) if 
(

1 −

1
γ

)

ĥ
(

ωκ2(1− F)
β2λ

)

− β2 > 0. 

Proof. First, by multiplying eq. (B.6b) by ω/λ and adding eq. (B.6c) multiplied by v and Eq. (B.6d) multiplied by u we arrive at the equation: 

0 =
ω
λ

κ2(1 − F) − β2uv, (B.7)  

⇔ u =
ωκ2(1 − F)

β2λv
= G(v). (B.8) 

Substituting u = G(v) into Eq. (B.6c) divided by u gives 

0 =

(

1 −
1
γv

)

ĥ(G(v) ) − β2 = S(v). (B.9) 

G(v) is a decreasing function of v and furthermore, recall that ĥ(u) = 1
u+k1

log
(

1+I
1+Iexp(− u− k1)

)

is a decreasing function of u, by construction. Thus, S(v) 

is a strictly increasing function of v which guarantees uniqueness. Now, by construction of the biological system, v ∈

[
1
γ, 1
]

and S(1/γ) < 0. Thus, if 

S(1) =
(

1 − 1
γ

)

h
(

ωκ2(1− F)
β2λ

)

− β2 > 0 then by the intermediate value theorem a solution to (B.9) exists. Lastly, eqs. (B.6b) and (B.6d) yield linear 

equations in w ensuring uniqueness. 

Remark B.1. Theorem B.1 also applies when using ̂happ(u) in place of ĥ(u). The condition for existence and uniqueness of a positive solution remains 
the same and an explicit form of u*(F) can be obtained. 

Remark B.2. When the condition in Theorem B.1 is not satisfied a unique trivial solution can only exist when F = 1. Otherwise, no positive solution 
exists. 

B.3. Explicit approximation of the cynabobacteria abundance (u*(F)) 

Proceeding, from Eq. (B.8): 

v =
ωκ2(1 − F)

λβ2u
= p1

(1 − F)
u

. (B.10) 

We explicitly solve for u*(F) by utilizing the approximation for ĥ(u) given by ĥapp(u) in (B.4), using v as in (B.10), and solving (B.6c) for u gives 

u*(F) =
γp1(1 − β2b)(1 − F)
β2aγp1(1 − F) + 1

=
a1(1 − F)

a2(1 − F) + 1
, (B.11)  

where a1 = γp1(1 − β2b) > 0 and a2 = β2aγp1 > 0. 
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B.4. The internal equilibria of Eq. (3.7) 

The internal equilibrium of 3.7 are given by the solutions to the equation: 

J(F) = F + η̂ − 1/2, (B.12)  

⇔ 0 = − F + 1
/

2 − η̂ + σ̂(1+ ξF)
a1(1 − F)

a2(1 − F) + 1
, (B.13)  

= (1/2 − η̂ − F)(a2(1 − F)+ 1 )+ σ(1+ ξF)(a1(1 − F) ), (B.14)  

= F2(a2 − σa1ξ)+F(σa1(ξ − 1) − 1 − a2 − a2(1/2 − η̂) )+ σa1 +(1/2 − η̂)(a2 + 1), (B.15)  

for some F ∈ [0,1]. The solutions to this equation are shown graphically in Fig. 5b as the intersections of the curve J(F) with F+ η̂ − 1/2. Let Δ denote 
the discriminant of (B.15). Then 

Δ =

[

σa1(ξ − 1) − 1 − a2 − a2

(
1
2
− η̂
)

.

)]
2 − 4(a2 − σa1ξ)

(

σa1 +

(
1
2
− η̂
)

+ a2

(
1
2
− η̂
))

(B.16)  

= a2
2

(
1
2
− η̂
)

2 + B̂
(

1
2
− η̂
)

+ Ĉ, (B.17)  

where B̂ = [2a2 (a2 − a1 σ (ξ − 1) + 1 ) − (a2 + 1)(4a2 − 4a1 σ ξ) ] and Ĉ = (a2 − a1 σ (ξ − 1) + 1 )2 − a1 σ (4a2 − 4a1 σ ξ). Two solutions to (B.12) exist 
when Δ > 0 however, since Δ is given as a quadratic function in 1/2 − η̂, Δ is not positive everywhere for all values of η̂. Note that for the given 
parameter values B2 − 4a2

2 Ĉ > 0, thus Δ = 0 has two solutions given by 

η̂3,4 = −

(
− B̂ ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B̂
2
− 4a2

2 Ĉ
√

2a2
2

)

+
1
2
± 4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a1 σ (a2 − a1 σ ξ)(a2 + ξ + a2 ξ)

√
,

=
− 2a2 − a2

2 + 2a1 a2 σ + 4a1 σ ξ + 2a1 a2 σ ξ
2a2

2 ,

(B.18)  

where a1σ ξ − a2 > 0 for our parameter region. Numerically we have η̂3 = 1.0464 and η̂4 = 32.3. Thus, if η̂ < η̂3 two solutions exist to (B.15). Also, if 
η̂ > η4 two solutions to (B.15) exist, but the solutions are values of F that are much greater than one and are not considered. These solutions occur for 
values of F that exceed the vertical asymptote of J(F). Thus, we conclude that η < η3 is a necessary condition for solutions to (B.12) to be in [0,1] and 
that the solutions are given by 

F*
h =

3a2 − 2a2 η̂ + 2a1 σ − 2
̅̅̅̅
Δ

√
− 2a1 σ ξ + 2

4(a2 − a1 σ ξ)
, (B.19)  

F*
u =

3a2 − 2a2 η̂ + 2a1 σ + 2
̅̅̅̅
Δ

√
− 2a1 σ ξ + 2

4(a2 − a1 σ ξ)
, (B.20)  

with Fh* > Fu*. Furthermore, 

dF*
u

dη̂ = −
− a2 +

dΔ

d̂ η
2
̅̅̅
Δ

√

2(a1 σ ξ − a2)
. (B.21) 

When η̂ < η̂3, dΔ
d̂η

< 0 since Δ is a concave up quadratic and η̂3 is the left root. Thus it is easily verified that dF*
u

d̂η
> 0 when η̂ < η̂3. 

Observe that 

dF*
h

dη̂ =
a2 +

dΔ

d̂ η
2
̅̅̅
Δ

√

2(a1 σ ξ − a2.)
. (B.22) 

We show that a2 +

dΔ

d̂η
2
̅̅̅
Δ

√ < 0. Since Δ is positive and dΔ
d̂η 

is negative for η̂ < η̂3 we examine 

2a2
̅̅̅̅
Δ

√
< −

dΔ
dη̂ , (B.23)  

⇔ 4a2
2Δ <

(

−
dΔ
dη̂

)
2, (B.24)  

⇔ 4a2
2

(
a2

2 η̂2
+ B̂ η̂ + Ĉ

)
. <

(
2a2

2 η̂ + B̂
)2, (B.25) 
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⇔ 4a4
2 η̂2

+ 4a2
2 B̂ η̂ + 4a2

2 Ĉ < 4a2
2 η̂2

+ 2a2
2 B̂ η̂ + B̂

2
, (B.26)  

⇔ 0 < B̂
2
− 4a2

2 Ĉ, (B.27)  

which is verified true as in (B.18). Thus, dF*
h

d̂η
< 0 for η̂ < η̂3. 

Since the internal equilibrium of our system are given by Fh* and Fu*, and we have further shown that Fu* is an increasing function of ̂η, while Fh* is 
decreasing. We now search for the critical points for ̂η in which Fh* < 1 and Fu* > 0. First, when ̂η = η̂1 = − 1/2, we note that Fh* = 1 as seen visually 
from Fig. 5b and verified mathematically from both (B.19) and (B.12). Second, when ̂η = η̂2 = 1/2+ σa1/(a2 + 1), we note that Fu* = Fl* = 0 as seen 
visually from Fig. 5b and verified mathematically from both (B.20) and (B.12). Lastly, we note that Fh* = Fu* when ̂η = η̂3 and for ̂η > η̂3, Fh* and Fu* 
have imaginary parts and are not considered equilibrium. The above discussion leads us to the following theorem regarding stability and bifurcations 
of (3.7). 

Remark B.3. In the non-approximated model (3.6) the equilibrium F1* = 1 does not exist. The equilibrium Fh* approaches one, but does not equal 
and there is no transition from F1* to Fh* seen in Fig. 4. Furthermore, the equilibrium Fl* will be small, but non zero. These differences are explained by 
the linear approximation made at the tails of the logistic curve being set to one or zero accordingly as shown in Fig. 2. Furthermore, we conjecture that 
the flows near corresponding equilibrium are topologically equivalent between the two models (3.6) and (3.7) and that the analysis presented for (3.7) 
holds for (3.6). 

B.5. Proof of Theorem 3.1 

Proof of Theorem 3.1. First, we note that η̂1 < η̂2 < η̂3 and J(F) > 0 for all F ∈ (0,1). Assume that η̂ < η̂1 < − 1/2 then F + η̂ − 1/2 < 0 for all F ∈
[0,1] and J(F). > F + η̂ − 1/2 for all F ∈ (0,1). Hence, dF

d̃τ
> 0 for all F ∈ (0,1) and dF

d̃τ
= 0 for F = 1, thus proving (i). 

When η̂ = η̂1, Fh* = F1* = 1. Since dF*
h

d̂η
< 0, and necessary condition for Fh* ∈ [0,1] is η̂ > η̂1. Now, assume that η̂1 < η̂ < η̂2, then Fu* < 0 because 

Fu* = Fl* = 0 when η̂ = η̂2 and dF*
h

d̂η
> 0. Moreover, J(F) = F + η̂ − 1/2 has only one solution for F ∈ [0,1] then by the concavity of J(F): 

J ′
′

(F) = −
2a1 σ (a2 + ξ + a2 ξ)
(a2(1 − F) + 1 )3 < 0, (B.28)  

for all F, J(F). > F + η̂ − 1/2 for all F ∈ [0,Fh*) and J(F). < F + η̂ − 1/2 for all F ∈ (Fh*,1]. Hence, J(F) + 1/2 − η̂ > 0 for all F ∈ [0,Fu*) and J(F) + 1/

2 − η̂ < 1 for all F ∈ (Fu*,1]. This implies that dF*
h

d̂η
> 0 for all F ∈ [0,Fh*) and dF*

h

d̂η
< 0 for all F ∈ (Fh*,1] thus proving (ii). 

When ̂η = η̂3, Fh* = Fu* as seen in (B.19) and (B.20). Now assume that ̂η2 < η̂ < η̂3, then 1 > Fh* > Fu* > 0 by their respective monotonicity. Since 
J(F) = F + η̂ − 1/2 for F = Fh* and F = Fu*, we deduce that 0 < J(F) + 1/2 − η̂ < 1 near Fh* and Fu*. Furthermore, by the concavity of J(F), J(F). >
F + η̂ − 1/2 for all F ∈ (Fu*,Fh*) and J(F). < F + η̂ − 1/2 for all F ∕∈ [Fu*,Fh*] thus proving that Fh* is locally stable, and Fu* is unstable. Lastly, if F < Fu* 
then J(F). < F+ η̂ − 1/2. Which furthermore implies that J(F) − η̂ + 1/2 ≤ 0 for F near F = 0, thus proving that F = 0 locally stable and concluding 
(iii). 

Finally, assume ̂η > η̂3, then both Fh* and Fu* are imaginary roots and not considered to be equilibrium. Furthermore, J(F). < F + η̂ − 1/2 for all F 
∈ [0,1] and hence, J(F) − η̂ + 1/2 < 1 for all F ∈ [0,1] implying that dF

d̃τ
< 0 for all for all F ∈ (0,1] and dF

d̃τ
= 0 for F = 0 proving that F = Fl* is globally 

stable concluding (iv). 

B.6. Proofs of Corollaries 3.1 and 3.2 

Proof of Corollary 3.1. The two equilibria Fh* and Fu*, which are stable and unstable respectively collide, are equivalent at η̂ = η̂3 and do not exist 
for η̂ > η̂3. Furthermore, when η̂ = η̂3, 0 < J(F) − η̂ + 1/2 < 1 near Fu* = Fh*, since J(F) − η̂ + 1/2 = F and dF

d̃τ
= 0 at Fu* = Fh*. Lastly, we check that 

d(J(F)+1/2− η̂− F )

dF = 0 which is equivalent to J′(F) = 1 at Fh* and η = η3. 

Recall Fh* as given in (B.20) and η̂3 as in (B.18). Then at η̂ = η̂3: 

F*
h = F*

l = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a1 σ (a2 − a1 σ ξ)(a2 + ξ + a2 ξ)

√

− a2 − a2
2 + a1 σ ξ + a1 a2 σ ξ

a2
2 − a1 a2 σ ξ

. (B.29) 

Thus, via substitution and tedious computations that are verified using MATLAB’s symbolic software 

J ′ ( F*
h

)
=

a1 σ
(

ξ − 2F*
h ξ + a2 ξ − 2F*

h a2 ξ + F*2

h a2 ξ − 1
)

(
a2 − F*

h a2 + 1
)

2
, (B.30)  
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=

a1 σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ + a2 ξ − 1

+
2ξ
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− a1 σ (a2 − a1 σ ξ)(a2 + ξ + a2 ξ)
√

− a2 − a2
2 + a1 σ ξ + a1 a2 σ ξ

)

a2
2 − a1 a2 σ ξ

+
2a2 ξ

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a1 σ (a2 − a1 σ ξ)(a2 + ξ + a2 ξ)

√
− a2 − a2

2 + a1 σ ξ + a1 a2 σ ξ
)

a2
2 − a1 a2 σ ξ

+
a2 ξ
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− a1 σ (a2 − a1 σ ξ)(a2 + ξ + a2 ξ)
√

− a2 − a2
2 + a1 σ ξ + a1 a2 σ ξ

)
2

(
a2

2 − a1 a2 σ ξ
)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(

a2 +
a2

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− a1 σ (a2 − a1 σ ξ) (a2+ξ+a2 ξ)

√
− a2 − a2 2+a1 σ ξ+a1 a2 σ ξ

)

a2 2 − a1 a2 σ ξ + 1

)

2

(B.31)  

= 1. (B.32)  

Proof of Corollary 3.2. In (B.12) we see that Fu* and Fl* are equivalent (collide) at η = η2 and are equal to zero. Furthermore, for η < η2 neither 
steady state exists as Fu* < 0 as Fu* is a increasing function of η and 0 = J(Fl*) + 1/2 − η2 implies that J(Fl*) + 1/2 − η > 0 for η < η2. Thus the point 
(F, η̂) =

(
F*

l , η̂2
)

is a saddle node bifurcation. 

Appendix C. Single lake iron explicit model 

In this appendix the mathematical details of the analysis of the phosphorus explicit single lake model are given. 

C.1. Nondimensionalization 

We now continue with the non-dimensionalization of system (3.1) by the making the substitutions, τ = rt, u = kzmB, v = Q
QM

, w = P
pC

, yielding: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = u

(

1 −
Qm

QM

1
v

)

h(au) −

(

νr +
D
ze

)

r
u,

dv
dτ =

ρm

rQM

QM − QMv
QM − Qm

w
M/pC + w

−

(

v −
Qm

QM

)

h(au),

pC

dw
dτ =

D
rze

(pC F + pD (1 − F) − pC w ) −
ρM

rkze
u

QM − QMv
QM − Qm

w
M/pC + w

,

dF
dτ =

s
r

(
1

1 + eβ(cC − cD − α(1+ξF)ψau+̂δ )

− F
)

.

(C.1) 

Upon substitution of the dimensionless parameters that given in Table 4 we arrive at: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du
dτ = u

(

1 −
1
γ

1
v

)

ĥ(u) − (εβ1 + β2)u,

dv
dτ = ω(1 − v)

w
μ + w

−

(

v −
1
γ

)

ĥ(u),

dw
dτ = ε

(

β1(F + κ(1 − F) − w ) − λu(1 − v)
w

μ + w

)

,

dF
dτ = ε

(
1

1 + êη− σ(1+ξF)u)
− F

)

,

(C.2)  

where ĥ(u) is the nondimensional light dependent growth originating from (2.2) given by (3.3) and approximated by (3.4). 

C.2. Application of the quasi-steady state approximation 

We now apply the QSSA to (C.2). As in Section 3.1 we introduce the new timescale ̃τ = ετ. ̃τ now represents the slow timescale in which the socio- 
economic and iron dynamics mainly occur, whereas the CB growth dynamics occur on the fast time scale τ. Lastly, we apply the QSSA and let ε → 
0 arriving at the system: 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = u
(

1 −
1
γ

1
v

)

ĥ(u) − β2u, (C.3a)

0 = ω(1 − v)
w

μ + w
−

(

v −
1
γ

)

ĥ(u), (C.3b)

dw
dτ̃ = β1(F + κ(1 − F) − w ) − λu(1 − v)

w
μ + w

= g(F,w), (C.3c)

dF
dτ =

1
1 + eη− σ(1+ξF)u) − F = f (F,w), (C.3d)

reducing our problem to a differential- algebraic system. Denote u*(w) and v*(w) as a solution to the algebraic system defined by (C.3a) and (C.3b) 
(also given by (3.9a) and (3.9b)). The following theorem gives a condition to guarantee existence of uniqueness of a solution to the algebraic system. 

Theorem C.1. There exists a unique positive solution, (û(w) , v̂(w) ), to the algebraic system defined by (C.3a) and (C.3b) (also given by (3.9a) and (3.9b)) if 
(

1 − 1
γ̂v(w)

)

ĥ(0) − β2 > 0. The trivial solution (0, v(w) ) always exists. 

Proof. Observe that (0, v(w) ) where 

v(w) =
ω w

μ+w +
1
γ ĥ(0)

ω w
μ+w + ĥ(0)

, (C.4)  

solves (C.3a) and (C.3b). Now, we compute the positive solution by first adding eq. (C.3a) multiplied by v/u to Eq. (C.3b) arriving at 

0 = ω(1 − v)
w

μ + w
− β2v. (C.5) 

Thus, 

v̂(w) =
ω w

μ+w

ω w
μ+w + β2

=
ωw

ωw + β2(μ + w)
. (C.6) 

Now we see that v̂(w) is only dependent on parameters as w is treated as a parameter in the algebraic system. Thus, (C.3a) can be reduced to a 
problem with a single unknown: 

0 =

(

1 −
1

γv̂(w)

)

ĥ(u) − β2. (C.7) 

Recall, by the construction of h(B) in (2.2) it and its nondimensional analog, ĥ(u) = 1
u+k1

log
(

1+I
1+Iexp(− u− k1)

)

, are monotone decreasing functions and 

limu→∞ ĥ(u) = 0. Thus, if 
(

1 −
1

γv̂(w)

)
1
k
log
(

1 + I
1 + Ie− k

)

− β2 > 0, (C.8) 

then a unique positive solution exists via the intermediate value theorem. 

Remark C.1. Note that the condition in the theorem is also satisfied for values of w, such that w > wc, where wc is the critical point such that v(wc) =

v̂(wc). wc can be written explicitly as 

wc = −

1
γ ĥ(0)μβ2

ωβ2 +
1
γ ĥ(0)ω + 1

γβ2 ĥ(0) − ωĥ(0)
. (C.9)  

The equation v(w) = v̂(w) is reduced to a linear equation in w thus verifying wc is unique. For w < wc the only solution to the system (C.3a) and 
(C.3b) is given by (0, v(w) ). For w > wc the positive solution (û(w) , v̂(w) ) (where û(w) is the solution to (C.7)) also exists and (0, v(wc) =

(û(wc) , v̂(wc) ). It can be shown that the trivial equilibrium of the fast subsystem is unstable if w > wc thus, we take the solutions to system (C.3a) and 
(C.3b) as 

u*(w) = max{0, û(w) } and v*(w) = max{v(w) , v̂(w) }, (C.10)  

where û(w) is the solution to (C.7). 

C.3. Stability of equilibria 

The phase plane of system (3.9) shows three equilibria as described in Figs. 7, 8 and 9. 

C.3.1. Stability of E1 
We show via graphical arguments the local stability of E1 as in Fig. 7 below: 
It is enough to observe the sign changes of f(F,w) and g(F,w) as we cross the nullclines near the equilibrium point E1 given in the phase plane (see 
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Fig. 7). The Jacobian of system ((3.9c) and (3.9d)) has the following form: 

A|E1 =

(
fF fw
gF gw

)

E1 =

(
− +

− −

)

. (C.11) 

By the signs given in A|E1 we conclude that, Tr(A|E1) < 0 and det(AE1) > 0. Thus, the matrix A|E1 has eigenvalues with negative real parts and we 
conclude that equilibrium E1 is locally stable. 

C.3.2. Stability of E3 
Near the equilibrium point, E3 in Fig. 8, we observe the sign changes of f(F,w) and g(w,F) as the nullclines are crossed. The Jacobian of system 

(3.9c) and (3.9d) has the following form: 

A|E3 =

(
fF fw
gF gw

)

E3 =

(
− +

− −

)

. (C.12) 

We conclude that Tr(A|E3) < 0 and det(AE3) > 0. Thus, the matrix A|E3 has eigenvalues with negative real parts and we conclude that equilibrium E3 
is locally stable. 

C.3.3. Stability of E2 
First by graphical methods, the Jacobian evaluated near E2 is, 

A|E2 =

(
fF fw
gF gw

)

E2 =

(
+ +

− −

)

. (C.13) 

From this alone, we can not make any conclusions. Graphically, the gradients evaluated on the nullclines are such that dw
dF

⃒
⃒
⃒
⃒g=0 < 0, dw

dF

⃒
⃒
⃒
⃒f=0 < 0, and 

dw
dF

⃒
⃒
⃒
⃒g=0 > dw

dF

⃒
⃒
⃒
⃒f=0, near E2. Furthermore, 

dw
dF

⃒
⃒
⃒
⃒g=0 = −

gF

gw
>

dw
dF

⃒
⃒
⃒
⃒f=0 = −

fF

fw
, (C.14)  

⇒ −
gF

gw
> −

fF

fw
,

⇒
gF

gw
<

fF

fw
,

⇒fw
gF

gw
< fF ,

⇒fwgF > fFgw,

⇒0 > fFgw − fwgF,

⇒det(A). < 0.

Thus, E2 is an unstable saddle. Note that the above comes from taking the derivative of the level set f(F,w) = 0 and graphical observation. 

Remark C.2. In Figs. 7 and 9 we note that there is a region of F values where the F nullcline does not exist. This atypical phenomenon is explained by 
the dependency of the nullcline on the solution to the algebraic system (3.9a) and (3.9b), u*(w). That is, the F nullcline is given by the solutions to 

0 =
1

1 + eη− σ(1+ξF)u*(w).)
− F, (C.15)  

⇔ u*(w) =
log
(

1
F − 1

)

− η

− σ(1 + ξF)
. (C.16)  

The right hand side of (C.16) has one local max, one local min, and one inflection point in [0,1]. Also, note that as F → 0 the RHS of (C.16) goes to 
− ∞ and as F → 1 the RHS of (C.16) goes to +∞. However, u*(w) is a saturating function of w, and is bounded between zero and some positive constant. 
The positive bound results from CB self-shading and light limitation. Thus, for certain values of F, the right hand side of (C.16) exceeds the upper 
bound of u*(w) resulting in no solution to the equation. Furthermore, vertical asymptotes occur as F approaches the regions of nonexistence 
accordingly. 

Appendix D. Stability of equilibria of network model (4.2) 

The stability of equilibrium of the model (4.2) described in Figs. 10, 11 and 12 are described below. 
The Jacobian of system (4.2) near El has the form 

A|El =

⎛

⎜
⎜
⎜
⎝

df 1

dFh

df 1
dFl

df 2

dFh

df 2
dFl

⎞

⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

El =

(
− +

+ −

)

. (D.1) 
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Thus, Tr(A|El) < 0. Moreover, 

dFl

dFh

⃒
⃒
⃒
⃒f1=0 = −

df 1

dFh

/
df 1

dFl
>

dFl

dFh

⃒
⃒
⃒
⃒f2=0 = −

df 2

dFh

/
df 2

dFl
, (D.2)  

⇒ −
df 1

dFh

/
df 1

dFl
> −

df 2

dFh

/
df 2

dFl
,

⇒ −
df 1

dFh

df 2

dFl
< −

df 1

dFl

df 2

dFh
,

⇒det
(

A|El

)
. > 0.

Thus, El is stable. The stability of Em and Eh can be verified in an identical fashion as El. The instability of Euh and Eul is concluded similarly with 

A|Eul =

(
+ +

+ −

)

⇒det
(

A|Eul

)
. < 0, (D.3)  

and 

A|Euh =

(
− +

+ +

)

⇒det
(

A|Euh

)
. < 0. (D.4)  
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