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Abstract

I develop a Lie theory for certain unipotent algebraic quotients of the affine group
scheme G represented by the Hopf Shuffie algebra.

I prove that the Lie algebra of the Hopf Shuffle algebra is an algebra of Lie Series and
that the Lie algebras of some unipotent algebraic quotients of G are quotients of the

free Lie algebra.

[ show that the affine group scheme of upper triangular unipotent matrices U,,, for all
n € N, is a quotient of the affine group scheme represented by the Hopf shuffle algebra
by injecting the representing algebra of U, into the Hopf Shuffle algebra as a sub Hopf
algebra.

As an application of the Lie theory that I constructed, I give a simple proof that
the Hopf shuffle algebra is a free commutative algebra, a result first proved by Rad-

ford [Rad79] in a rather involved way using combinatorics.
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Introduction

In chapter 1 I give the basic definitions of Hopf algebras and their morphisms taken from [Swe69].
Following Gerhard P. Hochschild [Hoc81], I attach a Hopf algebra over a field to every abstract
group and I define algebraic groups and their Hopf algebras of polynomial maps.

I prove that every finitely generated Hopf algebra over an algebraic closed field with no non-
zero nilpotents is isomorphic to the algebra of polynomial maps of some algebraic group. This

motivates the concept of affine scheme to be used in the next chapter.

In chapter 2 I introduce the Hopf Shuffle algebra A [Ree38]. Let G := Homp_ag(A. —) be the
affine group represented by A. I define some quotients Gy of G represented by some subalgebras
An of A. I prove that the Lie algebra of G is an algebra of Lie series and that the Lie algebra of
Gn is a quotient of the free Lie algebra on a finite alphabet /. I prove that the upper triangular

unipotent group scheme is a quotient of G.

In chapter 3 I prove that the Hopf shuffle algebra A and its subalgebras Ay are coconnected
which will show that their corresponding affine group schemes G and G N are unipotent.

If the alphabet I is finite, Gy will be an algebraic unipotent affine group to which classical Lie
theory will apply: I construct an exponential map and a logarithm map for the affine group Gy.
I prove that these maps are polynomial maps inverse of each other.

Since Lie(Gx) is a vector space, it has the structure of a vector group. The exponential map
will provide an isomorphism of algebraic sets between the vector group Lie(Gn) and the algebraic
affine group G (F) which will allow me to identify polynomial maps on Gn(F) with polynomial
maps on Lie(Gn). This will show that Ay is a polynomial ring. Finally, I will prove that the Hopf
shuffle algebra A is a free commutative algebra, which was first proved by [Rad79]. My proof uses
no combinatorics like his and it is based on the Lie theory that I developed for the quotients G
of G.



Chapter 1

Hopf Algebras and algebraic

groups

In this chapter we give the basic definitions of Hopf algebras and their morphisms. Following
Gerhard P. Hochschild [Hoc81], we attach a Hopf algebra over a field to every abstract group.
We define algebraic groups and their Hopf algebras of polynomial maps. Then, we show that
every finitely generated Hopf algebra over an algebraic closed field with no non—zero nilpotents is
isomorphic to the algebra of polynomial maps of some algebraic group. This motivates the concept
of affine scheme to be used in chapter 2.
Let F be a commutative ring with 1, which will be our base ring throughout this chapter. If §

is a set, let ids : S — S be the identity map.

1.1 Algebras and coalgebras, and their morphisms
An F-algebra is a triple (A, u, u) where

A-1 Ais an F-module,

A-2 (multiplication) 4 : A@® A — A is an F-linear map,

A-3 (unit) u: F —+ A is an F-linear map,



such that foralla € F,a€ A, ifp1 : FRA = A a®ars aa, andps : AQF = 4, aa — aa,

are the canonical maps, then the following diagrams commute.

7 AQF -2 4
u®ldAl id,x@ul /

AR A AR 4
AQARA— a4
idA@“J' lu

AR A —+ 4

I3
F is an F-algebra where 4 = p; = p» and u = idp.
Let (A,p,u) and (A, p', u’') be F-algebras. A morphism of F-algebras is a linear map

h : A— A’ such that the following diagrams commute.

ARA L4 F—4

ror l" \, l"

AI ®AI —,—+A, AI
B

Dually, we define an F~coalgebra as a triple (C, 4, €) where
C-1 C is an F-module,

C-2 (comuitiplication) 6 : C —+ C @ C is an F-linear map,
C-3 {counit) € : C ~ F is an F-linear map,

such that for all ¢ € C, ifq1:C—>F®C,cr—)1®c,a.ndqg:C—>C®F,c»-+c®1, are the

canonical maps, then the following diagrams ~ommute.

FRe+—E ¢ CRF2_¢
t@idcT / idc@,T /
cC®C CRC

CRCRC+—EL __c@c

idc@JT T&

CRC+ c




F is also an F—coalgebra where § = ¢; = ¢, and € = idp.
Let (C,4,¢) and (C’,8’,¢’) be F~coalgebras. A morphism of F'—coalgebras is a linear map

h : C' — C such that the following diagrams commute.

cRC+— ¢ F+=—cC
h@hT Ih \Ih
C’®C’4j‘,—C’ c’

1.2 Bialgebras and Hopf algebras, and their morphisms
An F-bialgebra is a five tuple (B, g, u, 4, €) where

B-1 (B,u,u) is an F-algebra,

B-2 (B,4,¢) is an F—coalgebra,

B-3 4 and € are F-algebra morphisms.

Let (B,p,u,0,¢) and (B, y’, u',8’,&’) be bialgebras. A morphism of F-bialgebrasis a linear
map h : B — B’ such that A is an algebra and a coalgebra morphism.

The multiplication to be defined in the following proposition will be used throughout this thesis.

1.2.1 Proposition Let (C,d,¢) be an F-coalgebra and let (A, pu, u) be an F-algebra. Let
Hompg(C, A) be the F-module of all linear maps from C to A. Then, there is an F-algebra
structure on Homp(C, A) where the multiplication of two linear maps h. k : C - A is defined as

the composite p4 o (h ® k) o d¢c, and the neutral element is A9EC.

Proof. For h,k,l € Hom,(C, A),

(Rl =pao((h®kod)®!)o0é
=pao(h®k®l)o(d®idc o4d)
=pao(h®k®!l)o(idc ® § 06), since C is a coalgebra
=pao (h®@(k®lcd))od
= h(kl).



Also, we have

h(uaoec) = pso (h® (usoec)) odc
=pao(h®uys)o(idc ®ec)odc
=pso(h®uy)oqa, since Cisa coalgebra
=pao(ida®ua)o(h@idp)oq,
=p20(h®idF) o gs, since 4 is an algebra

= h, since A is a module.

Similarly, one shows that (u4 o ec)h = h. a

We will usually write hk = (h ® k) 0 6c omitting 4.

Let (H,p,u,d,¢) be a bialgebra. Letting C = A = H in proposition 1.2.1, we obtain an F-
algebra structure on Endp(H) = Homp(H, H ). The multiplication of this algebra structure on
Endfr(H) is called convolution.

An F-Hopf algebra is a bialgebra (H, g, u,§, ¢) such that idg has an inverse n with respect
to the convolution in Endp(H) which is an algebra antimorphism. 7 is called the antipode of the

Hopf algebra H. So for the antipode of a Hopf algebra the following diagram commutes.

HRH— g HQH
idn@ﬂl Jf lﬂ®idn
HRH F HRH

N

F is a Hopf algebra where n = idp.
Let (H,p,u,d,e,1) and (H',p¢',u',& ¢, n') be Hopf algebras. A morphism of F-Hopf
algebras is a bialgebra morphism A : H — H' such that the following diagram commutes.

H—up

. l l"'

H—h"H'

Let (A, p, u) be an algebra. A sub—algebraof A is a submodule A’ of A such that u(A/@ A") C
A’ and u(F) C A'.

Let (H,p,u,d,¢,n) be a Hopf algebra. A sub—~Hopf algebra of H is a sub-algebra H’ of H
such that §(H') C H' @ H' and n(H') C H'.




1.3 A coalgebra as a locally finite module over its dual

The result of this section is due to Gerhard P. Hochschild, who proved it over a field, but actually
it holds over any ring. It will be used to show that certain groups attached to a Hopf algebra are
algebraic.

Let (C, d,€) be a coalgebra over a ring F and let C° = Homp(C, F) be the set of all linear maps
from C into F. By proposition 1.2.1, we know that for the coalgebra C' we have a muitiplication

on C° that makes it into an F-algebra. For any z € C° let
l(z) = (idc ® z) 0§ and r(z) = (z @ idc) 0 4.
If we identify CQ F=C = F@C, then
l{(z), r(z) € Endp(C).
1.3.1 Proposition  Let (C,d,¢) be a coalgebra. Then,

e the map
[: C° —————Endp(C)
Z————(idc®z)o0d

is an injective morphism of F-algebras, i.e. C is a faithful left C°-module,

e the map
r: C° ————— Endr(C)
Th————(z®idc) 0o d

is an injective antimorphism of F-algebras, i.e. C is a faithful right C°-module,

e forallz, yeC°,
l(z)or(z) =r(z)ol(z),

so C is a two-sided C°~module,

o this two-sided module is locally finite, i.e. every element of C is contained in a finitely

generated sub F-module of C that is two-sided stable under the action of C°.

Proof. We first show that for z,y € C°, I(zy) = (z)(y).

{(z)l(y) = (idc ®z)0do(idc @y) 06
=(idc ®z) o (idc ®idec ® y) o (6 @ ide) 04,



~&

and since C is a coalgebra

=(idc®z)o(idc®idc @ y)o(idc ® ) 08
= (idc ® z) o (idc @ ide @ (yo 8)) 04
= (idc® (z®y) oo')) 08
= l(zy).
Also,
() = (idc ® €) o4 = idc, since C is a coalgebra.
Hence, the map [ : C° — Endp(C) is a left C°~module on C. From the definitions it follows that

zy =z ol(y),

indeed zol(y) = zo(idc ®y) 0od = (z® y) 08 = zy. In particular, ¢ ol(r) = exr = r, since ¢ is the
unit of the algebra C°. Hence, [ is injective with inverse ¢ o —.
In a similar way, one shows that the map r: C° — Endp(C) is a faithful C°-module on C.

Next we show that

l(z) o r(y) = r(y) o i(z).

[(z)or(y) = (idc ®z)odo(y®idc) 0 s
=(yQidc ®@z)o (idc ®6) o6
=(y®idc ®z) o (§ @ idc) 0 4, since C is a coalgebra
=(y®idc)odo(idc®z)0d
= r(y) o l(z).
So, C is a two—sided C°-module.

We finally show that C is locally finite. Let ¢ € C. We show that there is a finitely generated

sub F-module of C containing ¢ that is two sided-stable under the action of C°. Write
3(c) = Tiepern) ® €(a)-

Let £ € C°, then = - c = (I(z))(c) = idc ® z(Zeycq) ® cz)) = Eeyz(e(ay)eqy, so {C°) -¢ C
Span({cq1)}. Similarly, r(C°)-c C Span.){c2j}. So, for all the ¢(1)’s, r(C°) - ¢(1) is contained
in a finitely generated sub F-module of C, and then r(C°) - I(C°) - c is also. Hence there is a
finitely generated sub F-module of C containing c that is two sided-stable under C° since the

endomorphisms in [(C°) commute with the endomorphisms in r(C°). O



1.4 The Hopf algebra of a group over a field

Let F be a field and let G be an abstract group. If S is a set, let FS be the F-algebra of maps
from S into F. Let §;; be 1 if i = j and 0 else.

Following Gerhard P. Hochschild, we will define a Hopf algebra S¢[G] of certain maps from G
to F. It will turn out that in case G is an algebraic group a certain sub—Hopf algebra of S¢[G],
the algebra of polynomial maps, will determine the group structure of ¢ completely.

Let us start with an elementary lemma in linear algebra. This lemma will be needed to char-

acterize the image of a map which will be used to construct the comultiplication of Sp[G].

1.4.1 Lemma Let S be a set and let V be an n-dimensional subspace of FS. Then, there is

a basis (vy,va, -+ ,v,) of V and a subset (s1,82,--+,84) of S such that
v,-(sj) = (Sfj, 1<i, j<n.

Proof. By induction on k, where k counts how many sj’s have been selected so far for a given
basis of V. Let £ =0 and let v; g,-- - +Un,0 be a basis of V.
Let k = 1. Let 51 € S such that vy o(s;) #0. Let v; ; = v1,0(s1) " tvr0. Forl1<i<n, let

vi,1 = vi,0 — vi0(s;)vy ;.

Then, for 1 <i<n, v,-‘l(sl) = d;1.

Let £+ 1 < n and assume, by induction, that for 1 < J £k, all the s;’s have been chosen with
the required property for a given basis ULk, " ,Unk Of V. Let sgyy € S such that Vr1.k(Sk41) #0.
Let vky1 k41 = Vesrk(Ske1) " vrprn. Forall 1<i<nm, i £ k41, let

Vik+1 = Vik — Vi k(Sk41)Vkt1 kg1
Then, for 1<i<n, 1<j<k+1, Vi k+1(5;) = &;; and the lemma follows by induction. g
If p € F5*S let the partial functions of p be defined by
Pr: S——F Py: S————F
Yy———p(z, y) T ———rp(z, y).

1.4.2 Proposition  The canonical morphism

I: FSQFS —+ FSxS

Ef 89— (@ v) = Zf(2)a(v)




is injective and its image is the set of all functions p such that F-Span{py }yes is finitely generated,
or equivalently of all functions p such that F-Span{p:}:es is finitely generated.

Proof. Let T;f; ® g; € KerII. Assume that not all f; are zero and let {v;,--- .v,) be a basis of
F-Span{f;}; such that for some (z, --- 1Tn) € S, vi(zj) = d;; as in lemma 1.4.1. Then. there are
hi € FS such that
Lifi ® gj = Tiv; @ hy.
We have 0 = I[I(Z;v; ® hi)(z,, yy = hj(y), for all j and for all y € S. So, all the h;i’s are zero and II
is injective.
Let
p=IZ: fi @ i)

be in the image of IT and let

Py: S — F

T — (p(:c, y) = Z.’ff(-l')!li(y))

be a partial function of p, then F-Span{py}yes C F-Span{f;};. Hence the space spanned by the
partial functions of p is finitely generated by the f;'s.
Conversely, assume that for some p € FS*5 forally € S, py €Span{fi.---. fo} C FS. Then.

for some g; € F3,

Py =q1(U)fi + -+ gn(y) fa,
hence, by definition of I, p = [I(Zf; ® g;). a
Let m : G x G = G be the group multiplication of G. Transposing m we get a map

m’: FG + FGxG

fr— —+ (=, ) = F(mlz, ¥))-
We will write zy for m(z, y) as usual, so
m*(f)(z, y) = flzy).

Similarly, transposing the right and left actions of G on itself by translations, we make F€ into a

two sided G-module which we write as

(v ) = flzy), (f - z)y) = f(zy).




A function f € FC splits iff m‘(f) € I(FC® FS). So, by proposition 1.4.2, f splits iff
{y - f}yec is finite dimensional. Let Sg(G) be the subalgebra of F€ of all split functions from G

into F'. From this characterization of split functions we obtain the following result.

1.4.3 Corollary Sr(G) is a two—sided sub G-module and a sub algebra of FC. g
By definition of Sp(G), we know that m*(Sp(G)) C II(FC @ FS), but actually there is always a
representation of an element of S¢(G) such that the factors in which it splits also lie in Sp(G).
1.4.4 Proposition  [I7! o m‘(Sr(G)) C SF(G) ® Sr(G).
Proof. Let f € Sr(G), then m'(f) € I(FS® FS). Since II is injective there is a unique
%;f; ® g; € FC @ FC such that II(Z; f; ® gj) = m*(f). Let

I~ (m'(f)) =i f; ® g;.

Assume that not all f; are zero and let (v;, -, v,) be a basis of F-Span{f;}; such that for some

(1,1 2a) €G, vi(zj) =4d;;j as in lemma 1.4.1. Then, there are h; € FG such that
Eifi ® g; = Livi @ k.
For y € G,
m(F e, = T(Eivi @ hi)(x;,5) = Sivi(zj)hi(y) = hy (y).
So, for all y € G f(z;y) = h;(y), and hj = f -z;. Since f € Sp(G) and Sr(G) is a G-module, it
follows that h; € Sp(G), hence Z;v; ® h; € FC X Sr(G).

Similarly, letting (w;); be a basis of F-Span{h;}; such that for some (¥5); € G. wi(y) = &,
one shows that IT~! o m‘(f) € SFr(G) ® Sr(G). a

Let § =II"' om* : Sp(G) — Sp(G) Q@ Sr(G). § is an algebra morphism since IT and m! are.
For f € Sp(G), if we write §(f) = L fa) ® fz), then

flzy) = 25y fa) () fi2)(y), forall z,y € G.

Since the multiplication of G is associative then for all z,y z2€G

f(z(y2)) = f((zy)2).

Hence,

Zinfoy (@) fay(y2) =y fa)(zy) fry (2), and

@S forn @ fe () = S0 far () f1) e, (W) f2) (2).

10




Since the canonical map

FG® FG®FG + FGxGxG
Lifi © 9i @ hit———— ((z,y, 2) = i fi(z)gi(y)hi(z))

is injective (this is shown as the injectivity of the map in proposition 1.4.2), it follows that

Enfn © Byanfiarg, @ frg = S0 Zua fia S fiye @ fia)
(isp(6) ®8) 0 8(f) = (§ R is. () © (),

and the following diagram commutes.

§®ids ()

Sr(G)® Sr(G) ® Sr(G) Sr(G) @ Sr(G)

idsF(G)GJT T&

Sr(G) @ Sr(G) + Sr(G)

é

Let € : Sp(G) — F be specialization at 1 € G, i.e. for f € Sr(G),
e(f) = £(1).
As any specialization, ¢ is an algebra homomorphism. Since 1 € G is the identity element then

Einfoy (W fay(z) = f(zl) = f(z) = f(1z) = sy fr1)(2) fi2y (1), hence
(eQise(c)) 0d(f) =q1(f) and (is.(q) ®€) 0 8(f) = q2(f).

and the following diagrams commutes.

F ® Sr(G) +——"— 5p(G) Sr(G)® F +——— S¢(G)
midw{ / ids,,(a,@,{ >
Sr(G) @ Sr(G) Sr(G) @ Sr(G)
So, (SF(G),p,u,d,¢) is a bialgebra.

Let
n: Sr(G) —— Sr(G)
fr—f(-"1,
where f(~~!) : G = F is defined by z — f(z~'). By direct verification, one sees that n is an

algebra morphism. From the inverse operation of G it follows that

Enfay (@) fay(z™Y) = f(zz™) = f(1) = f(z™'z) = Enfa) (") fia)(z), hence
kolispc)®m)od(f) =uoce(f) and po(n®ise(q)od(f) =uoe(f),

11



so the following diagram commutes.

Sr(G) ® Sr(G) +— Sr(G) —*— Sr(G) ® S¢(G)
idsp(G)@’l‘[ € 1”®id5r(6)
Sr(G) ® Sr(G) 1[ Sr(G)® Sr(G)
Sr(G)

1.4.5 Proposition  (Sp(G),pu,u,d,¢, 1) is a Hopf algebra. a

1.5 Algebraic groups and their morphisms

For a field F, the F-algebra F[V] of regular functions on an algebraic set I (the common zeros
of some polynomials in F[X,--- + Xn]) is of finite type, that is, it is generated by finitely many
elements, and as an algebra of functions with values in the field F, it is reduced, that is. it has no
non-zero nilpotents. If F is algebraically closed, it follows from Hilbert’s Nullstellensatz that, by

associating with a point £ € V' the maximal ideal of regular functions vanishing at x,

I(z) = {f € F[V]: f(z) = 0},

one gets a bijection between V and the set Specm(F [V]) of all maximal ideals of the coordinate ring
F[V]. Since every maximal ideal of F[V] is the kernel of an F —algebra homomorphism from F[V]
into the base field, one gets a bijection between V and all such homomorphism. This motivates
the following abstract definition of algebraic set.

Let F be a field. An F-algebraic set is a pair (V, Polg(V)) where

AS-1 V is a non-empty set, and
AS-2 Polp(V) is a finitely generated sub algebra cf FV, such that evaluation at elements of V

Evay : Vv * Homp_g1g(Polp(V), F)

U p— + (P"*P(U))

is a bijection between V' and the set of all algebra homomorphisms from Polp(V) into F.

Polp(V') is the algebra of polynomial functions of V.
Let S C V. Consider the restriction map

/s : Polp(V) ——— S
Pt————p/s,
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which is an algebra homomorphism. Let Polp(S) = Im(/s) = {p/s : p € Polp(V)} and let
Js =Ker(/s) = {p € Polr(V) : p/s = 0}. Then,

Polp(S) = Polp(V)/Js, as F-algebras.
Since Evay is injective, we see that

Evag: § — Hom p_q1g(Polp(S), F)

§ b— -+ (pr—rp(s))

is also injective; indeed let sy, s € S and assume that Evag(s,) = Evag(sa). Then Evag(s1)(p) =
Evas(s2)(p) for all p € Polp(S). Then p(s1) = p(s2) for all p € Polp(S) by definition of Evag.
Then p(s1) = p(s2) for all p € Polp(V), since Polp(S) := {p/s : p € Polg(V)}. Then Evay(s;) =
Evay (s2) by definition of Evay. Hence s1 = s3 since Evay is injective and it follows that Evas is
injective.

We would want Evag to be also surjective, so that (S, Polr(S)) would be an algebraic set. A

closed subset of V in the Zariski topology is the set of zeros of a subset of Polg(V). Let
V(Js) = {v € V : Evay (v)(Js) =0},

clearly, S C V(Js). Also, § = V(Js) if and only if S is a closed set. and in this case, Evag
is surjective. Since if ¢ : Polp(S) — F is an algebra homomorphism, then composing with the

canonical projection Polr (V') = Pol(V)/Js we get an evaluation at some element v € V,
Evay (v) : Polp(V) —— Pol(V)/Js = Pol(S) —— F.

But since Evay (v)(Js) = 0 then v € V(Js) = S, since S is closed, and ¢ = Evas(v). An algebraic
subset S of V is a closed subset of V.
Let V and V' be algebraic sets. A morphism of algebraic sets or a polynomial map is a
map h : V = V' such that
Polp(V') o h C Polp(V).

1.5.1 Observation Every abstract F-algebraic set (v, Polp(V)) is isomorphic to an algebraic
subset (loci of polynomials in the naive sense of classical algebraic geometry over a field) of some
suitable affine space F™. For it suffices to take some generators py, - - - , p, of the finitely generated
algebra Polr(V) and to use them to embed V (via the identification given by Evay) in F™.
Indeed, via Evay each element of V is (identified with) an F-algebra homomorphism Polp(V) —

F' and every such homomorphism is determined once we know its values on a set of generators
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P1,--- . pn of Polp(V). So, (p,-)KKn is a set of coordinate functions for the algebraic set V. i.e.
v — Evay (v) — (E"aV(")(P‘))LSKn = (pi(v))1<icn € F"

is an injection. Define an F-algebra homomorphism from the polynomial ring in n letters onto
Polp(V) by
F[Xy,---, Xp] —— Polp (V)
Xi— + Pi,

(this map surjects since the p; generate Polp(V')) and write the algebra of polynomial maps as a

quotient,
Polp(V) = F[X,,---, X,]/I,

Then, the ideal of relations I is finitely generated (Hilbert’s basis theorem) by, say, Hi.--- . fs €
F[Xy,---,X,] and

Jilpr,---, pn) =0€Polp(V), for L<i<s.
So

fi(pr(v),---, pn(v)) =0 € F, forall v € V and for 1 <i<s,

and hence the elements of V' are (identified with) common loci of finitely many polynomials

{fih<i<s C F[Xy,---, Xal,ie. Visan algebraic subset of the affine space F™.

We want V' x V' to be an algebraic set. By proposition 1.4.2, we can identify Polp(V) & Polp (V")
with its image in FY*Y' and we define Polp(V x V') as this image. By considering elements of

the form p® 1 and 1 ® ¢, with p € Polp(V) and q € Polp(V’), we see that the map

Evayyv:: V x V/ + Homp_y1g(Polp(V x V'), F)

(v, v') — —+ (P’—*P(U: v'))

isinjective. Let us fill out the details, let v;, w; € V and va, wz € V'. Suppose that Evay v/ (vy, ) =

Evay v/ (wy, wo). We show that (v1,v2) = (wy, w»). By definition, we have
Polp(V x V') = (Polr (V) (X) Polp (V).
Then, considering elements p® 1, with p € Polp(V) it follows that

Evay xv+ (v, v2)(I(p® 1)) = Evay xv: (w1, w2) (I(p @ 1))
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So, p(v1).1r = p(w1).1F, hence p(v;) = p(w;) for all p € Polp(V'). This means that Evay (v;) =
Evay (w), and since Evay is injective we have v; = w;. By considering elements of the form 1 @¢
with ¢ € Polp(V’) one similarly shows that v, = w», and it follows that Evay .y is injective.

By a direct verification we also see that Evay .y is surjective;

the details follow. Let f : Polp(V x V') — F be an F-algebra homomorphism. So
f - TI(Polp(V) ®Polp(V')) — F. by definition of Polg(V" x V).
consider now f o II : Polp(V) @ Polp(V’) —+ F and let

iy : Polp(V) —————+ Polg (V) @ Pols (V")
P— —+p®1,

i2 : Polp(V) —8 —— Polp (V') @ Polg (V')
q: +1®¢q

be the canonical injections. Then, folloi; € Hompg—a15(Polp(V), F) and follois € Hompg-a1g(Polp (V’), F).

So by the surjectivity of Evay and Evay: there exist v € V and v’ € V' such that

folloi; = Evay(v) and
folIloi; = Evay(v').

It now easily follows that f = Evayxv+(v, v'), indeed let p € Polp(V x V') = I(Polg(V) @ Polr(V")).
Then,

Evay xv:(v, v')(p) = p(v, v')

= II(Zipi ® ¢i)(v,v'), for some p; € Polp(V) and g¢; € Polg(V*)
= Zipi(v)qi(v')
= X;Evay (v)(pi)Evay (v')(g:)
=Zif ollody(p;)f o Mo ia(g;)
=Lifoll(p; ®1)f o (1 ® ;)
=Zif o I(p; @ i)
= f(I(Zipi ® 1))
= f(p).

hence Evay xv- is surjective. So (V x V', Polp(V x V') is an algebraic set.

An algebraic F-group is a pair ((G, m, inv), Polr(G)) where
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= AG-1 (G,m,inv) is a group,
AG-2 (G, Polp(G)) is an algebraic set, and
AG3m:GxG—-Gandinv:G — G are morphisms of algebraic sets.

Let ((G,m, inv), Polr(G)) and ((G', m, inv), Polp(G')) be algebraic groups. A morphism of
algebraic groups is a polynomial map & : G — G’ which is a group homomorphism.

The following proposition gives a dictionary between algebraic groups and Hopf algebras.

1.5.2 Proposition  Let F be a field. Let (G, m, inv) be a group and let Polg(G) be a finitely
generated sub algebra of F& such that (G, Polp(G)) is an algebraic set. Polp(G) is a sub Hopf
algebra of SF(G) iff m: Gx G —= G and inv : G — G are morphisms of algebraic sets.

Proof. Assume that Polr(G) is a sub Hopf algebra of Sp(G),
then Polp(G) C Sp(G), §(Polp(G)) C Polp(G) ®Polp(G) and n(Polr(G)) C Polp(G)
by definition of sub Hopf algebra,
then for all f € Polp(G), f € Sr(G), 4(f) € Polp(G) ®Polp(G) and 7n(f) € Polg(G),
then for all f € Polp(G), f € Sp(G), It om!(f) € Polg(G) ®Polp(G) and foinv € Polg(G)
by definition of § and p,
then for all f € Polp(G), f € Sr(G), m*(f) € [I(Polp(G) ®Polp(G)) and f oinv € Polg(G),
then for all f € Polp(G), f € Sp(G), fome I(Pols(G) ® Polp(G)) and foinv € Polp(G)
by definition of m*,

then for all f € Polp(G), f € Sr(G), fom € Polp(G x G) and foinv € Polp(G)
by definition of Polr(G x G),

L P IV

then Polp(G) € Sp(G), Polr(G) o m C Polg(G x G) and Polp(G) o inv C Polp(G),

then m and inv are morphisms of algebraic sets.

Conversely, assume that m and inv are morphisms of algebraic sets. We show that Polp(G) C

Sr(G), 6(Polr(G)) C Polp(G) and 1(Polp(G)) C Polp(G). Indeed, since m : G x G — G is a
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morphism of algebraic sets it follows that

Polp(G) o m C Polr (G x G),
then for all f € Polp(G), f o m € II(Polg(G) (X) Polr(G))
by definition of Polp(G x G),
then for all f € Polp(G), m*(f) € II(Polr(G) (R) Polr(G))
by definition of m°,
then for all f € Polp(G), m‘(f) € (F¢ Q) F°)
since Polp(G) C F€ by definition of Polp(G).
So, we have proved that for all f € Polg(G), f € Sr(G) by definition of Sp(G),
and that m‘(f) € [I(Polp(G) (X) Polr(G)),
then for all f € Polp(G), f € SF(G) and II™* o m‘(f) € Polp(G) (R) Polr(G)
since II is injective,
then for all f € Polp(G), f € Sr(G) and é(f) € Polp(G) ®Polp(G)
by definition of 4,

then Polp(G) C Sp(G) and 6(Polr(G)) C Pols(G) Q) Pols(G).

Also, looking at the morphism of algebraic sets inv : G — G we have Polg(G)oinv C Polg(G), then
for all f € Polp(G), foinv e Polr(G), and it follows that r)(Polp(G)) C Polp(G), by definition
of n.

Hence, Polp(G) is a sub Hopf algebra of Sp(G). a

1.5.3 Remark  Even if F is not a field, Polp(G) is still a Hopf algebra.

This fact leads to the study of the algebraic group scheme represented by a finitely generated
Hopf algebra and, if Polg(G) is not finitely generated, to the study of its associated affine group
scheme. A very useful way of studying affine schemes is to approximate them as a projective
limit by algebraic schemes, or in the contraequivalent category of Hopf algebras, to approximate
Polg(G) as an inductive limit by finitely generated Hopf algebras (cf. proposition 3.1.3). One
tries to understand the finitely generated pieces, and then one hopes that the property under
consideration passes over the limit. This is exactly what we will do to study an affine group G in
the following chapters.

I see two reasons to look at Hopf algebras. Firstly, it is much easier to compute Hopf algebra
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maps than to compute affine group scheme maps (cf. proposition 2.4.2). Secondly, to study an
abstract Hopf algebra (not starting from a group scheme) will hopefully shed light in already known
algebraic groups (cf. corollary 2.4.3).

1.6 The algebraic group of a finitely generated Hopf algebra
For a group G and a field F we have G C Sp(G)°, where for z € G,

z: Sp(G) —— F
P———p(z).
By proposition 1.2.1, we know that for the coalgebra Sr(G) we have a multiplication on Sg(G)°
that makes it into an F-algebra. In case G is algebraic, we will see that if we restrict this
multiplication to Homp_aig(Polg(G), F) we will recover the group structure of G. This suggests
how to attach an algebraic group scheme to any finitely generated Hopf algebra over an arbitrary
ring and, more generally, how to attach a group scheme to any Hopf algebra.

Let (H,u,u,d,e,n) be a Hopf algebra over a ring F and let
GH(F) =Homp_ag(H, F)

be the set of all F-algebra homomorphisms from H into F. We now see that Gyg(F) is a group
with multiplication

zy=pro(z®y)od.

The neutral element is up o€ and the inverse of an F-algebra homomorphism z is ro7. We usually
write zy = (z @ y) o § omitting the multiplication of F. We have already proved that Gg(F) is a
monoid (see 1.2.1), but for convenience of the reader we will give the whole argument. Gy (F) is

a group because H is a Hopf algebra, indeed let z,y,z € Gy,

(z¥)z=((rQ@yod)®@z)0é
=(zQy®z)o(§Qidy od)
=(z®y®z)o(idy ® 6 04), since H is a coalgebra
=(z®@(y®z008))od

= z(yz).
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Also,

z(up ocr) = pr o (¢ @ (ur 0 2xr)) 0 0
=(zQup)o(idy ®eg)ody
= (¢ Q uFr) o qa, since H is a coalgebra
=(idr@uF)o(z®@idr)og2
=p20(z®idF) o g2, since F is an algebra

=r, since F is a module.

Similarly one shows that (ur o ec)z = z. Finally, we have

zz ' =(z@zon)od

=(x®z)o (idg ® n) o4,
==zopo(idgy ®n) o4, since z is an algebra morphism
=zouog, since H is a Hopf algebra

= upoe, since r is an algebra morphism.

Similarly one shows that =z = up oc. a

Incidentally, this same proof shows that the set Gg(A) of all F-algebra homomorphisms from
H into any F-algebra A forms a group which is completely determined by the Hopf algebra H.

1.6.1 Lemma Let (H,p,u,8,e,n) be a Hopf algebra over a field F and let G = Gu(F).
Consider the F-algebra morphism

“: H—————FG

P———+(z — z(p)).

Then # C Sr(G) and ~ is a Hopf algebra morphism. If F is algebraically closed and H is finitely
generated then Ker(™) = Nilradical(H).

Proof. To prove that & C Sr(G), by proposition 1.4.2 it is enough to show that F -Span,¢z{z-p}
is finite dimensional for all p € H. We have that
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where the dot on the left of this equality stands for the action of G C H° on H defined in
proposition 1.3.1 and the dot on the right stands for the action of the group G on F€ defined on
page 9. Indeed, forallg € G

z-p(g) = ((idg @ z) 0 6(p)) ™ (9)

=g((idw ® z) 0 §(p))

=(g® )0 d(p)

= (9=)(p)

= p(gx)

=z - (plg))-
By proposition 1.3.1 H is a locally finite H°-module, in particular F-Span_¢y.{r - p} is finite
dimensional. Since G C H® and £-p = z - 5 then F -Span_cg{z - p} is finite dimensional as

required.
We now show that ~ is a Hopf algebra morphism. Let p € H. Firstly we show that

JSF(G) o™ = (~®~) odpy.
dse(Gy© ~(P) =65.(6)(P)
=[! om‘(ﬁ)
=" (Fom)

=H'l(5oypo (-9 -) oJH)
writting dg (p) = Z,)p(1) ® p(2) this is equal to

=" Zp)p) P2))
=) P(1) ® P(2))
=("® ) o du(p).

Secondly we show that ~ preserves counits
EH = Esp(G)°™;

recall that €sp(G) is evaluation at the unit of the group G which in this case is cg. Indeed,

€sp(G)(P) = Plerr) = e (p). Thirdly, we show that ~ preserves antipodes,
Msp(G) © ~ =" ong.
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So we need to show that for all p € H, s (G)(P) = na(p). Since these are two functions on G let
us check that they agree for all g € G.

(150 @) (@) = Ba™")
= plg o nar)

= (gonx)(p)

= nu(p)(g)-
Finally assume that F is algebraically closed and that H is finitely generated. Then, by Hilbert’s
Nullstellensatz, every maximal ideal of H is the kernel of some F-algebra morphism ¢ € G and

Nilradical(H) = | M.
MAH

Let pe H. p=0iff for all g € G, g(p) = 0, and by Hilbert’s Nullstellensatz this happens iff
g € Nilradical(H). a

1.6.1 Theorem Let (H,p,u,d,¢,n) be a finitely generated Hopf algebra over an algebraically
closed field F. Let G = Gg(F) and let Polp(G) = H, where ~ is the map of the lemma. Then
(G, Polg(G)) is an algebraic group. Moreover, if H has no non—zero nilpotents then A = Polp(G)
as Hopf algebras.

Proof. From the lemma it follows that Polp(G) = H /Nilradical(H) as Hopf algebras. Since
an algebra homomorphism from H into (the reduced ring) F annihilates nilpotents, every g € G
factors through Nilradical(H). It follows that there is a bijection between G and Homp_alg(f{ , F),
so (G, Polp(G)) is an algebraic set. Also, from the lemma it follows that Polg(G) is a sub Hopf
algebra of Sg(G), hence by proposition 1.5.2 G is an algebraic group. The “moreover” part follows
at once from the lemma as well, since if H is reduced then ~ is an injective morphism of Hopf

algebras. a

The additive group G4 (F') of F is an algebraic group if one defines its polynomial algebra as
the algebra of functions from F' — F generated by X = idr which we identify with the polynomial
ring F[X]. The Hopf algebra structure of Polp(Ga(F)) is given by

(X)=19X+X®1
g(X)=0
n(X)=-X.
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A little more general, every vector space F™ is an algebraic group G4 (F™), called a vector
group, if one considers its additive group with polynomial algebra equal to the algebra of maps
F™ — F generated by the coordinate functions, which we identify with F[X\,---.X,]. The Hopf

algebra structure is given by

(Xi)=10X:i+X;®1
e(X;)=0
n(Xi) = —-X;.
The multiplicative group Gm (F) of F is an algebraic group if one defines its polynomial algebra
as the algebra of functions from F~ into F which can be written as polynomial in X and X-!

where X is identified with idp. So, Polp (Gm(F)) = F[X,Y]/ < XY — 1 > with Hopf algebra
structure defined by

IX)=X®X
gX)=1
n(X)=Y.

Let F[X11,---,Xna] be a polynomial ring in n? letters. Let X be the n x n matrix whose

components are X;j, and let M;; be the matrix obtained from X by deleting the i-th row and
Jj—column.

The group of invertible mairices GLyn (F) is an algebraic group if one defines its polynomial
algebra as the quotient ring F[Xi1, -+, Xnn, Y]/ < det(X)Y —1 >, where ij is identified with the

corresponding coordinate function from GL,(F) — F, with the following Hopf algebra structure.
0(Xij) =Tk Xik ® Xkj, hence §(Y)=Y QY
£(Xij) = d;j, where d;j is the Kronecker delta
n(Xi;) = (=1)"* det(Mj;)Y.

The special linear group SLy,, (F') of matrices over F with determinant equal to 1 is an algebraic
group if one defines its polynomial algebra as the quotient ring F{Xyy,- -, Xan]l/ < det(X)—-1>
with the following Hopf algebra structure,

0(Xij) = e Xik @ Xij
€(Xij) = &;j, where 4;; is the Kronecker delta

n(Xij) = (—1)"+ det(M;;).
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Lastly, let us introduce a group which will play an essential role in chapter 3. The group of
upper triangular unipotent matrices (that is, upper triangular with 1’s on the diagonal) Un(F) is

an algebraic group with polynomial algebra F[X:j : 1 < j] whose Hopf algebra structure is defined
by

6(Xij) = Xij ® 1+ 1@ Xij + Zickcj Xik ® Xij
€(Xij) = dij, where d;; is the Kronecker delta

n(Xi;) = (—1)"* det(Mj;).

23



Chapter 2

The affine group G represented by
the Hopf Shuffle Algebra and its

Lie algebra of Lie Series

In this chapter we introduce the Hopf Shuffle algebra A [Ree58] and study its corresponding affine
group scheme G and some quotients G of G. We show that the Lie algebra of G is an algebra of
Lie series and that the Lie algebra of Gy is a quotient of the free Lie algebra on the alphabet /.
We show that the upper triangular unipotent group scheme is a quotient of G.

The introduction of the shuffle product is due to Ree [Ree58] while he was studying Lie poly-
nomials. Actually in a footnote of this paper Ree attributes the idea of using shuffles to the
referee. A signed shuffle product appears in earlier papers of MacLane [Mac50] and of Eilenberg
and MacLane [EM53]. Today the shuffle product is well understood under the scope of Hopf alge-
bra theory [Swe69]. In the last section we will introduce Lyndon words which appeared in the work
of Lyndon [Lyn54, Lyn55]. We use the fact that the shuffle algebra is a free commutative algebra
over the set of Lyndon words; this result is due to Radford [Rad79] who gave a combinatorial proof.

2.1 Nilpotent Lie algebras and Free Lie Series

In the theory of Lie algebras over an algebraic closed field of characteristic zero a cornerstone
result is Lie’s Theorem [Jac62] from which it follows that for any finite dimensional vector space

V and any solvable Lie algebra L C gl(V) there is a suitable basis of V relative to which the
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matrices of L are upper triangular. If one considers a nilpotent Lie algebra L C gl(V') from Engel’s
Theorem [Jac62] it follows that there exists a basis of V relative to which the matrices of L are
strictly upper triangular.

Among all Lie Algebras, the nilpotent Lie algebras are very important because of strong results
such as the ones mentioned above. Given a set X we can construct LS(X) the algebra of free
Lie series on X [Bou75]. It turns out that LS(X) is a free object in the category of nilpotent Lie
algebras which justifies the study of an algebra of Lie Series. In this context it is natural to ask:

is there an affine group whose Lie algebra is an algebra of Lie Series?

2.2 The Hopf Shuffle algebra

Let K be a field of characteristic zero which will be our base ring. An affine group scheme [Wat79],
or simply an affine group, is a representable functor from the category of K-algebras into the
category of groups. In [BP96] and [BP97] Billig and Pianzola found that the multiplication of
certain basic polynomial functions on a free Kac-Moody group was related to the shuffle product
of words over an alphabet. Since the shuffle algebra A (see below) admits a Hopf-algebra structure
then Pianzola studied its corresponding affine group scheme H om(A, —) [Pia].

An alphabet is a set /. An index or a letter is an element of I. Let W := M o(I) be the free
associative monoid (constructed on I) [Bou73]. A word is an element of W. 1 € W is the

empty word. If a € W then a is the length of a. Ifa € W is nonempty we can uniquely write
a=ay---ag ay,---,aq €. (2.1)

There is also a unique reduced expression
a=2a;' ---ag° witha, #3,,;, and nx > 0. (2.2)

Leta:=a; ---az,I=1land W={a: a€ W} (reduced words). By convention we agree that
the empty word 1 corresponds to the case a = 0 in (2.1). The support supp(a) of the word a
is the set of indices appearing in (2.2).

Consider the family of K-modules {Ka}acw and let

A= @Ka

agw
be the coproduct of this family. The K-module A has a K-algebra structure defined by the shuffle

product [Reu93]
a®bw— a#b = Lseshap)s a, beWw
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where Sh(a,b) denotes the set of shuffies of a and b, each of these shuffles taken into account
with multiplicity. The shuffle algebra (constructed on I) is the K-module A with the above
algebra structure. For example let I := {i, j}, then iii#j = jiii + ijii + iij1 + iiij.

The shuffle algebra A has a Hopf algebra structure defined by [Reu93]

Coproduct: A:a— Sp—pyu®v
Counit: e :a >4, ¢

Antipode: S :a— (—1)%a, ---a;.

The Hopf shuffle algebra (constructed on I) is A with the above Hopf algebra structure. For
example let I := {i, j}, then A(iji) = 1Qiji+iQji+ij@i+iji®1, (iij) =0, (1) =1, S(iyj) = —jji.
For ¥ € N let Ay be the associative subalgebra of the shuffle algebra A generated by all words
a € W of length a < V. It follows from the fact that A is an algebra homomorphism and S is an
algebra anitmorphism that A(Ax) C Ax ® Ay and S(An) C An hence A~ is a Hopf subalgebra
of A.
Consider the affine groups

G = Homg(A, -)
Gn = Homg(An, -).

2.3 Lie(G) and Lie(Gp)

Let us now define the Lie algebra of an affine group. If B is a K-algebra, a derivation of B is a
linear map D : B — B satisfying Leibniz rule for the product, i.e.

D(ab) = aD(b) + bD(a), for a, b € B.

Let Der (B) be the set of derivations of B.

If B is a Hopf algebra, a derivation D : B —+ B is left—-invariant iff
AoD=(idg® D)o A.
Similarly, D is right—invariant iff

AoD=(D®idg)o A.
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Usually Lie algebras for affine groups are defined with left invariant derivations, but for the appli-
cation that we have in mind it is more natural to work with right invariant derivations.

The Lie algebra Lie(G) of the affine group G represented by B is the K-space of all right—
invariant derivations D : B — B. If D; and Ds are in Lie(G), one can trivially check that the
bracket [Dy, D2} = Dy D> — D2 D, is also in Lie(G) and that Lie(G) is a Lie algebra.

This definition of Lie(G) gives the Lie algebra properties very quickly, but for computations
it is much easier to work with e-derivations. We can identify Lie(G) with the set Der (B.X) of
¢—-derivations of B (i.e those d € Hom (B, K) satisfying d(a#b) = e(a)d(b) + =(b)d(a)).

2.3.1 Theorem ([Wat79]) Let G be an affine group with representing algebra B. There is a
canonical bijection between the e~derivations Der (B, K) and the right-invariant derivations Lie(G)
given by

Der (B,K) 3 d+— (d®id) o A € Lie(G).

Proof. Let D : B — B be a derivation. Then triviallyd := co D : B — K is an e-derivation,
indeed, fora, b€ B
€ 0 D(ab) = e(aD(b) + bD(a))
= g(a)e o D(b) + £(b)e o D(a), since ¢ is a K-algebra morphism
= g(a)d(b) + (b)d(a).
If. in addition, D is invariant then d determines D, indeed,
D =(idg ®<)AD
=(dp ®¢)(D®idg)A
= (idg ® d)A.

Conversely, let d : B — K be an e—derivation, then it is routine to check that D := (d @ idg)A is

a derivation, indeed
D(ab) = (d ® idg)A(ab)
= (d®@idg)A(a)A(b)
=(d®idp) (S(a)a(l) ® a(Zp)b) @ b(z))
= (d®ids) (S(a)m)ab) @ aapbe)

= Za),)d(a(1)b(1y)agz)bia),
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and since d is a e—derivation,

= o). (slaqw)dr) + e(beny)d(ag) ) agzybea)
= Z(a).0)8(a(1))d(b(1))a(2)b(2) + (b(1))d(agr))aczybia
= Z(a).0)E(a(1))d(b(1))a(2)b(2) + T(a).6)(b(1))d(a1y)aga)bia)

= Z(a)&(aq))ae Zeeyd(bn))be) + Zes)e(b(1))b(2) Sayd(agn))aga).
and since ¢ is a counit for A in the Hopf algebra B,

= a Tyd(b(1))b2) + b T(s)d(a(1y)aca)
= ad @ idpA(b) + bd @ idp A(a)
= aD(b) + bD(a).

Moreover, it is easy to check that such D are actually invariant, indeed,

(D®idg)Aa = ((d@idp)A ® idg)Aa
=(d®idg ® idg)(A ® idg)Aa;

and if A(a) = £b; ® c;, coming from the other side we have

ADa = A(d® idg)Aa
= Ed(b,)A(C,)
=(dQ®idp ®idg)(ids ® A)A(a).

Since B is a Hopf algebra, A is coassociative, hence both sides agree. 0

Fori€ I let d; : A —+ K be the linear map defined by

0 ifa#i,
di(a) =
1 ifa=i.

It is routine to see that d; is an e—derivation; indeed, it is enough to show that for a,b € W we

have
di(a#b) = e(a)d;(b) + (b)d;(a).

If a#b = i then, by definition of shuffle product, either a = i and b = 1 in which case
e(a)di(b) + e(b)di(a) = 0.0+1.1=1= di(a#Db), or a =1 and b = i in which case e(a)di(b) +
¢(b)di(a) = 1.1 + 0.0 = 1 = d;(a#b).
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If a#b # i then a#b is equal to 1, a letter different from i or a sum of words of length > 1, in
any case both sides of (2.3) are zero (by definition of & and by definition of dj).

The corresponding right invariant derivation (see theorem 2.3.1) D; := (d; ® id) o A satisfies

0 if a # i,
Di(a) = (2.3)
a---a, ifa; =1.
It is clear from this that the associative subalgebra D of Endg(A) generated by {D;:i€ [} isa
free associative algebra. Indeed, if for s =s; - - -85 € W we define

D® = D,, --- Dy,

then (2.3) shows that the D*’s are K-linearly independent (if there is a K linear combination
ZrcD* =0, by evaluating at each s, it follows that each ¢, = 0). By Witt’s Theorem [Jac62] it
follows that the Lie subalgebra L C gi(A) generated by {D; :i€ [} is a free Lie algebra.

So from now on we identify the free associative algebra on the alphabet I with D and the free
Lie algebra on the alphabet I with L via wdentifying a letteri € [ with the right invariant derivation
D;.

For d € Hom(A,K) and k € N define d; € Hom(A,K) by

de(a) = d(a; ---a;), ifa =k,
0, if a # k.

2.3.1 Proposition  Assume that the alphabet [ is finite. Let D & Lie(G) and let d €
Der(A,K) be such that D = (d®id) o A. For k € N let D, := (dx ® id) o A. Then

(1) D =%kenDr.

(ii) Dx = X,z dk(s)D®, in particular Dx € D.

(iii) D is a right invariant derivation of A and d; is an e—derivation of 4.

(iv) Dy € L.

Proof. (i)
D(a) = (d®id) o A(a)

=Xi-od(a1---ak)arsr - --ag
=Yi—odk(a) - --ak)agy; - - -a,
= Zi=o Dk (a)
= Zk>0Dk(a).
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(1)

Di(a) = Z{_qdr(ay - -a;)aip1 - ag
=dr(ay---ar)aksr---ag

= di(ay -- -ax) DB %) (a),

So, Dr = Eyews=xdi(s)D*. Since the alphabet is finite, there are only finitely many words of
length k hence this sum is finite and D, € D.
(iii) That Dy is right-invariant is straightforward; indeed, it is enough to show that fora € W,
A(Dx(a)) = (D ®id4) o A(a),
(De ®idg) o Aa) = Dr ® ida(ZE_oar - -ax @ agy; ---a,)
=Dr(l)®a;---a, +

Di(a;)®az---a; +

Di(a1a2)®ag---ag+---+

Dr(ar---a2)®1,

but Di(a) = dk(a; - - -ak)arsr - - -aq, SO Di(w) =0, if w < k, hence this is equal to

=Di(a;---ag) ®agsr---ag +
Di(a; ---akars1) @arss---ag +
Di(ar---akak1ak42) @ akys---ag +--- +
De(ay - - akarqra542---a4) ® 1

=dr(a; - -ar) Dagy; ---a, +
di(ay - -ak)aks) ® akqa---ag +
de(ar - -ag)agsiarta @agss---ag + - -+
de(ar - - - ak)aks12k 428643 - - 25 Q 1

= di(a1 - --ac)A(arsr - ag)

= A(di(ay ---ag)ags; -- -ag)

= A(Dr(a)).
If a,b € W then by comparing the terms of degree a + b — k on the left and right side of
D(a#b) = a#D(b) + b#D(a) (2.4)
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one sees that D is a derivation; indeed, the terms of degree a + b — k on the left of (2.4) are
azfd(by - - -be)bry1- - -by + b#d(a; - -ak)ags; - - -ag

and by definition of di this equals to

= a#dk(bl .. 'bk)bk+1 ---bp + b#dk(a]_ .. ~ak)ak+[ ---ag

= a#Dk(b) + b#Dk(a).
On the other hand if we expand the right hand side of (2.4) we get

D(a#b) =d ®ids o A(a#b)
=d®ida(A(a)A(b))

=d®ida(T{0ar- -2 @aiy - -agEi ob1---bj@ajy - -bs)

=d®ida(SfoZipar ---a;#b; ---b; ® a;y; - - -ag#ajyr ---by).
Looking now at the terms of degree a + b — k on this expression we get

Th=od(ar---an#by - -br_s)any; -- ‘ag#br_pir-- by

= Zh-odx(ar - -an#tby - -br_p)anss - -ag#bg_spr - by

= Dy (a#b)
Since the terms of degree a + b — k on the left and right of (2.4) are equal it follows that
Di(a#b) = a# Dk (b) + b#Di(a).

We have thus establish that Dy € Lie(G), hence by theorem 2.3.1 d is an s—derivation.

(iii) The algebra D being free associative admits a unique comultiplication § [Reu93] satisfying
6(Di)=D;®@1+1® D

Let # : A@Q A — A be the linear map shuffle product of the Hopf algebra A. We show that for
all DeD

#6(D)(z®@y) = D(z#y) forallz,yc Aand w e w; (2.5)

it is enough to show this for D = D¥, w € W, by definition of D. To show (2.5) for D% we
proceed by induction on the length w of w. That D; is a derivation of the shuffle algebra gives the

beginning of the induction,
#(8(Di)(z @) = Di(=#ty) forall z, y € 4; (2.6)
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indeed,
Di(z#y) = z#Di(y) + y#Di(z)
= D;(y)#z + y#D;(z), since # is commutative
= #(Di(y) ® z) + #(y ® Di(z))
=#(Di(y) ® z + y ® Di(x))
=#(8(Ds)(z ® ).
Trivially one shows the inductive step
#(DV)(zQy) = D¥(z#y) forallz,yc Aand w € W

indeed write D% = DV D; and assume that (2.5) holds for DY, then

D™ (z#y) = D" Di(z#y)
= D"#(¢(D)(z @), by (2.6)
= #4(D") (6 (Di)(z® y)) , by the inductive hypothesis
= #46(D"Y D;)(z ® y), since 4 is a homomorphism for the concatenation product [Reu93]
=#5(D")(z®y).
Using (ii) we write
0(Dk) =Dk ®1+1® D + T ap5=k capD* @ DP.

a<lk b<k
If a and b are as in the sum above then by (2.3), by the definition D* = D,, ---D,, and by

definition of Dy it follows that
#6(Dr)(a ® b) = can.
We now show that all the c,p, are zero.
cab = #4(Dr)(a® b)
= Di(a#b), by (2.5) applied to D € D
= Di(a)#Db + a# Dy (b), since Dy is a derivation of 4 by (it)

=0, sincea<k, b<k.

By Friederick’s Theorem [Jac62] Dy € L. a

2.3.2 Theorem  Assume that the alphabet [ is finite. Then, Lie(Gy) = L/Ly where Ly is
the ideal X5 4(L N A") of L (A™ is the subspace of A spanned by the words of length n).
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Proof. The quotient homomorphism™ : G —+ Gy yields a Lie algebra homomorphism
~ : Lie(G) — Lie(Gw)

such that if D € Lie(G) then D is the restriction of D to Ax. This Lie algebra homomorphism is
surjective because given any e-derivation d € Lie{(Gy) there is an extension of d to an e—derivation
de Lie(G). Indeed, consider an F-basis {v;}; of the vector space Ay and extend it to a basis of
the vector space A. Simply define d : A — F as the linear map given by

d(v;) ify; € Ay,

d:=
0 ifv,'GA—AN.

As e(w) = 0 if w > 0 then the e-Leibniz rule for the product holds:
d(a#b) = e(a)d(b) + £(b)d(a), fora, b € W.

So d is an e-derivation in Lie(G) which extends d. So d= d and ~is surjective as claimed.

By definition, L is the Lie algebra generated by the right invariant derivations D; : A 5 A,ie [ ,
hence every D€ L is a right invariant derivation, since the bracket of right invariant derivations
is a right invariant derivation. So L C Lie(G) and we have a homomorphism~ : L — Lie(Gy) of
Lie algebras. Since Ay is generated by words of length < N, the kernel of this map is precisely
Ly. We now show that it is surjective. Given z € Lie(Gw) choose D € Lie(G) such that D = .
Now part (i) of proposition 2.3.1 gives D = TenDy. Since z € Lie(Gn), £ = SkSN-D_k. By part
(iv) of the same proposition it follows that Le<NDir €L. So, z = m and  surjects Lie(Gy)

from L. (]

Let I be finite. A formal series or series on the alphabet I over K is a map §: W([) = K,
where W(I) = W is the free monoid on the alphabet I. As usual, we write a series as a formal
infinite linear combination

S = Swew S(w)w.

For example, the usual formal power series from complex analysis are the formal series on
I = {i} (a singleton set) over K = C, the field of complex numbers. So, in this case the formal
series are the usual series C[[T]], where T is defined by i ~ 1, all other words to zero.

Let A(I) be the free associative algebra on I over K (so A(I) = A as K-modules, but A has
the shuffle product as an algebra and A(I) has the usual concatenation product as an algebra).

Let A(I) be its completion (i.e. A([) is the product module [1n>0 A™(f) with multiplication rule
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(a.b)n = E7_gaibn—; [Bou75]). The free Lie algebra L on I over K is identified with its canonical
image in A(J) (Witt’s theorem [Jac62]). The Lie algebra of Lie series L([) is the completion
of L(I) in A(I) [Bou75]. If we let S € A() be a series on [ over X and write it as sum of its
homogeneous components

S =Z%.>05,

(if w = n then S,(w) = S(w) and if w # n then Sn(w) = 0). Then S is a Lie series if each S, is
a Lie element, i.e. an element of the free Lie algebra on I over K (with the obvious identification).

The Lie Series form a Lie algebra where the bracket is the unique possible extension of the
bracket of the free Lie algebra, i.e. given two Lie series, their Lie bracket is computed as the Lie

bracket of the corresponding Lie elements approximating the Lie series up to degree n.

2.3.3 Theorem  Lie(G) is the algebra of Lie series on {D; :i € I }-

Proof. Let D € Lie(G). By proposition 2.3.1, part (i), D = £,enDi. We can think of D as an
element of the completion D of the free associative algebra D on [ over K. By part (ii) of the
same proposition, Dy is the homogeneous component of D of degree k, while part (iv) shows that
Drel. a

2.4 The affine group of upper triangular unipotent matrices

as a quotient of G

From now on we will let our base ring K be the field of rational numbers Q.Leta, u, ve W. If
a = uv then u is a left factor of a and v is a right factor of a.

By the axiom of choice we can assume that I is totally ordered which in turn induces a lexico-
graphic total order < in the free monoid W. A non-empty word £ € W is a Lyndon word [Reu93]

if it is smaller than all its non-trivial right factors, i.e. if £ = uv, u>0and v > 0 then £ < v.

2.4.1 Theorem ([Rad79]) The shuffle algebra A is a free commutative algebra over Q freely
generated by {£ € W: £is a Lyndon word}. a

We will now make some observations, many of them trivial, to see what the Lyndon words look
like. To simplify notation assume that the alphabet has two letters, I := {i, j} . withi<j.
Length 0: in this case w = 1 so w is not a Lyndon word by definition.

Length 1: if w =i then w is a Lyndon word since it has no non-trivial right factors. Similarly, for

the letter j (or any other letter if we had more).
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Length > 1: For further reference we note that w = i*, n> 1, is not a Lyndon word because by
definition of “<” in W, w ¢ i(»~1). Similarly, w = j» (and w = a™ where a is any letter we might
have).

A Lyndon word must start with a letter since it is non-empty. What can this letter be? If

w =jx. x €W, x# 1, then w is not a Lyndon word because
e if x =j", i.e. w does not contain any i’s, then as noted above, j(*+1) is not a Lyndon word:
e if x =xix”, x/,x"” € W, then w « ix” where ix” is a non-trivial right factor of w.

This also shows that if a Lyndon word w starts with a certain letter, then all the letters in
Supp w must be greater or equal (in the order of the alphabet) to the first letter of the Lyndon
word.

E.g.: Let I = {a,b,c}, a< b < c and let w = bw’aw”, w/, w’ € W. w is not a Lyndon
word since w £ aw”, where a w” is a non-trivial right factor.

A Lyndon word of length > 1 can not start with the greatest letter of the alphabet, if such a
letter exists.

So, in our case (an alphabet with two letters), the Lyndon words must start with the letter i.
Let w be a Lyndon word (of length > 1). So, w = ix, x # 1,x € W. By a case above, w must

contain a j (since i®, n > 1, is not a Lyndon word). So, let
w=§tTiname .tk ™ where k >=1, and n; > 0 (it has to start with an i).

Then mi > 0, i.e. w can not end in the letter i. If not, i is a non-trivial right factor of w and
w £ i. So we can assume all m; and n; are > 0.

A Lyndon word of length > 1 can not end in the smallest letter of the alphabet. a

The last letter of a Lyndon word of length > 1 can not be smaller than the first letter of the
word. a

A Lyndon word can not end with a sub-word with which it began. Indeed, if w = xw’'x, x. w’ €
W, x # 1, then w is not a Lyndon word since w £ x, where x is a non-trivial right factor. a

It follows that n; >= n;, for all i. Because if ny < n; for some i then w £ i™ --., where i":- ..
is a non-trivial right factor of w.

E.g.: let w = iiijjiiiij then w # iiiij.

So, we must add the restriction m; > 0 (so as to have n; <= np).

If n; = n; then m; > m,. If not, w £ i?j™ - -, where i’j*--- is a non-trivial right factor of

w.
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All these conditions are necessary as we have seen. But, they are also sufficient since any such
word w is a Lyndon word.

So, we have proved the following result.

2.4.1 Proposition If I := {i,j},i < j,and £ € W is a Lyndon with € > 1 then ¢ =
it yminagme .. ink e where
e k>1,

L4 ni>0r i=11"'1k7

* ﬂl“>0, i=11"')k1

ny > ng for all k;

if ng = n;, for some k, then mg > m;.
Moreover, if I = {iy,---,i.} then iisiz-- ik, for 1 < k<t ik <ig+1,is a Lyndon word. a
Let n € N. As define at the end of chapter 1, let B = K[X;;[1 < i< j < n] with
AB(Xij) = Xij @ 14+ 1® Xij + Sickej Xir ® Xk
and let UT, be the affine group of upper triangular unipotent matrices represented by B.

2.4.2 Proposition  The following gives an injective Hopf algebra map f : B — A, where the
alphabet I = {iy,..., in_;} is finite and ix < ix41.

(1 & ide Bbds ... .. . [lie
0 1 i s iaisig '

(Xi5)= o o 1 is isly  igigis ... : ,

\O .. . . /
where we mean by this the K-algebra map which sends X;; to the entry ij of the above matrix,

forl<i<j<n. So
f(Xij) =i -1,
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Proof. By lemma2.4.1 all the words i;isi3 . .. where ix < ix41 are Lyndon words. By theorem 2.4.1
this map is injective. From the definition of A for B and for the shuffie algebra A, it follows that

this map preserves the comultiplication. Indeed, we have to show that
Asof=f®foAp
agree. Since both sides of this identity are K-algebra maps, it is enough to show the following.

AA o f(X,'j) = A,{(i.‘ .- -ij_]_)

= 1@ -ijoy + i @ digr - By +hilig) @i - Bjmy + - - + byigyr -l ® L
On the other hand, we have

f@®folAp(Xi;)=f® f(1® Xij + Xiis1 @ Xiv1j + Xiip2 ® Xigaj + -+ Xijo1 @ Xjo1j + Xi;j=1

=1®di- - djoy + i @ digr - it +ihigs @digr - djor 4 -+ iihigr - ijor ® L.

So Aso f(Xij) = f® f o Ag(Xij)-

But since any map between groups preserving multiplication also preserves units and inverses,
it follows that this is a Hopf algebra map (an algebra homomorphism between Hopf algebras which
preserves A must automatically preserve the antipode and the counit, see chapter 3, section 1).

a

Let G be an affine group with representing algebra A and let F be another affine group with
representing algebra B. A homomorphism G — F between affine groups is a quotient map if
the corresponding Hopf algebra map (given by Yoneda’s lemma, see chapter 3, section 1) B — 4
(notice the reversal of direction) is injective. The reason for this definition is that the following
universal property holds [Wat79]: let F — G be a quotient of affine group schemes with kernel N.
Then any affine group homomorphism F — G vanishing on N factors through G.

2.4.3 Corollary The affine group of upper triangular unipotent matrices is a quotient of G.
a
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Chapter 3

The shuffie Algebra as a free

commutative algebra

Let F be a field of characteristic zero which will be our base ring throughout. We show that the
shuffle algebra is a free commutative algebra using the knowledge of the Lie algebras Lie(Gy) and
Lie theory for Gy. Our proof does not make any use of combinatorics.

As in classical Lie theory, we will introduce the exponential map for the affine group Gy. To
do this we will need a characterization of unipotence for algebraic affine groups (theorem 3.5.1),
namely coconnectedness, taken from [Wat79]. In order to prove this theorem, we will give some
background from affine group theory in the first three sections.

We will show that the shuffle algebra A is coconnected, hence G. and in turn Gy, will be
unipotent affine groups.

If the alphabet [ is finite then there are only finitely many words of length < N, hence Gy
is algebraic, i.e. Ay is finitely generated. So, Gx will be an algebraic unipotent affine group to
which classical Lie theory will apply.

Since Lie(Gn) is a vector space, it has the structure of a vector group. The exponential map
will provide an isomorphism of algebraic sets between the vector group Lie(Gx) and the algebraic
affine group Gy (F). This will show that Ay is a polynomial ring since the Hopf algebra of the
vector group Lie(Gy) is the polynomial ring S (Lie(Gn)): the symmetric algebra of the vector space
Lie(Gn). In turn, this will allow us to identify polynomial functions on Gn(F) with polynomial
functions on Lie(Gw). Since Lie(Gy) has already been computed (cf. theorem 2.3.2), we will be

able to relate the algebraically independent generators of the polynomials Ay and Apy. Finally,
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this will show that the Hopf shuffle algebra A is itself a polynomial ring.

3.1 Homomorphism of affine groups and closed subgroups
For future reference, let us recall the following well known result.

3.1.1 Lemma  (Yoneda) Let C be a category. Let ¥ : C — Set be a functor. Let A € 0b(C).
Let 1,4 be the identity C-morphism of A. Then, there is a bijection

Y: Nat(Homc(A, —), F) = F(A)
which sends each natural transformation (H ome(A,-),n, .7-') to na(la)-
Proof. Given r € F(A) we will define a natural transformation
n°:Home(ly,~) —— F .
Consider R € Ob(C) and define a function
1g - Home(A, R) —— F(R)
(AD Ry ——— F())(2).

Let R; 4 Ra € Mor(C). We will show that the following rectangle commutes.

R, Hom¢(A, Ry) —"R—l*f(Rl)
f o
X Homc (A, Ry) —=2+ F(Rs)

If A3 R, € Home(A, Ry), then
F(f) 0 12, (A) = F(AF (M) (2)) = F(f 0 N)(z)
Mk, © Home (A, £)(A) = 1}, (f o A) = F(f 0 A)(2).
Hence, n* € Nat(Hom¢ (A, —), F). Define a function

F(A) —Z— Nat(Homc (A4, ~), F)

TH — 7"

Consider a natural transformation 1 : Homc (A, —) —F . Then n,4(14) is an element of F(A).

Define a function
Nat(Home (A, -), F) —2— F(4)
M——————74(14).
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If z € F(A), then
@0 ¥(z) = &(1°) = n5(La) = F(La)(z) = Lrcay(e) = =.
If n e Nat(Hom¢ (A, —), F), then
Vo ®(n) = ¥(na(la)) = nr2lla),
We show that n74(!4) = . Let R € Ob(C). Let A: A — Rbe a C-homomorphism. Then,
nr(A) = nr(A el 014) = nr(Home (14, A)(14)) =

since 7 is a natural transformation

= F(A)(1a(La)) = nl24) ().

Let Y = &. O

3.1.2 Corollary Let F — Alg be the category of F-algebras. Let 4, B € Ob(F — Alg). Let
Homp_a1g(B,—) : F — Alg — Set
be the hom-functor. Let 14 be the identity F — Alg-morphism of A. Then, there is a bijection
Y: Nat(Homp_a1g(A,~), Homp_a1g(B, -)) = Homp_a1g(B, A)
which sends each natural transformation (Homp_,ug(A, =) 1, Homp_ arg(B., —)) to na(la).

Proof. Let F = Homp_a1g(B,—). By 3.1.1 the result follows. a

Let G and H be affine groups with representing algebras F [G] = A and F[H] = B respectively.
A homomorphism of affine groups is a natural transformation & : G — H, i.e. for each F-
algebra R, G(R) — H(R) is natural group homomorphism. By Yoneda’s lemma such maps corre-
spond to algebra homomorphisms B — A, but since each G(R) = H(R) is a group homomorphism,
it is trivial to check that such natural transformations correspond to Hopf algebra homomorphisms
B — A. Indeed, let f : B — A be the F-algebra homomorphism corresponding, by Yoneda’s
lemma, to ¢. Then, for any F-algebra R and any g, h € G(R) we have ®g(gh) = Pr(9)Pr(A).

So, if we denote by ug the multiplication in R,

Brog®@hoA o f=ppo(go f)® (ho f)oAp,
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in particular, letting R = ARAandg:aa®l, h:a— 1Q® a, a € A, be the canonical

injections, then
Ka@a°9®@hoA s =psg40(90f)®@(hof)oAg.
Since Ba® Aa°gQ@h= id4 @ 4 this gives
Ajpof=fodAp,
l.e. f preserves the comultiplication. From ®r(l(r)) = la(m it follows. letting R = F that
2r(ler)) = laer)-

But from chapter 1 we know that lg(ry = €4 and ly(r) =€p, and

eEaof=¢p.

Hence f preserves counits. From ®gr(g~!) = ®r(g)~! it follows that, if S; and Sg are the
corresponding antipodes,

goSaof=gofoSp.
Hence for R = A and id4 € G(A) we get

Saof=foSs,

hence f preserves the antipode. It follows that f is a Hopf algebra map.

Now suppose that f : B — A is an F-algebra morphism between the two Hopf algebras B and
A that it is assumed to preserve only the comultiplication. Let ® : G — H be the corresponding
(by Yoneda) natural set transformation. We show that for each F -algebra R, ®r : G(R) = G(H)
is a group homomorphism, which will imply that f must preserve that antipode and the counit

also, so that f will be a Hopf algebra morphism. Indeed, we know that
f®folAp=A,0f.

Let g, h € G(R) then

®r(gh) = @r(prog® hoA,)

=prog®hoA,of
=prog@hof® foAp
=pro(gof)® (ho f)oAp
= ®r(g)Pr(h)-
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Hence ®g is a group homomorphism and @ is an affine group morphism. Since a group ho-
momorphism automatically preserves the unit and the inverses then ®r(lg(r)) = lgr) and
®r(9™') = ®r(g)~!. Hence, we have that €4 o f = e5 and Saof = foSp,and so fis a
Hopf algebra morphism.

For example, the determinant of an invertible matrix over R gives an affine group homomor-

phism det : GL, —+ G,, and the corresponding Hopf algebra map is

det: F{X] — 4 F[Xu1,--- , Xom, 1/ det]
X+ ﬁ‘det(Xu,--' ann)-

Let H' and G be affine groups represented by B’ and A respectively. Let ¥ : H' — G be a
homomorphism. If the corresponding Hopf algebra map A = B’ is surjective, we call v a closed
embedding. It is then an isomorphism of H’ onto a closed subgroup H of G represented by a
Hopf algebra B (isomorphic to B’) which is a quotient of A, i.e. H is defined by the polynomial
equations defining G together with some additional ones. For example, SLy, is a closed subgroup
of GL,.

From the definitions of the Hopf shuffle algebra A and of Ay, for V.M € N N < M, it follows

that the following diagram commutes, where the arrows are inclusions.

AN

N

A

/

Apm

Given any compatible family {fy : Ay — B} nexn of Hopf algebra morphims, there is a unique
Hopf algebra homorphism f : A — B, since A = Uy An,and for N, M €N, N < M, the following
diagram commutes.

ANn
\ In
A B
/ Iac
Apm
So A, with the inclusions Ay —» A, N € N, as canorical injections, is the inductive limit in

the category of Hopf algebras of the system {Aw, 1%} N.MeN,N<M Where iﬁ’, : Ay — Aar is the
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inclusion morphism:
A= @AN.

The inclusion iﬂ', :AN = Ap, N < M, which is a Hopf algebra morphism, induces by Yoneda
a morphism of affine group schemes qff,f :Gy = Gy, N < M. This simply means that for
any F-algebra R, ¢ (R) : Gy (R) — Gn{(R) is the group homomorphism given by sending any
(9 : AM = R) € Gu(R) to its restriction g/, : Ay — R. Similarly, the inclusion Ay — A
induces a quotient homomorphism of affine group schemes gy : G = Gy. Since the category of
Hopf algebras is contra-equivalent to the category of affine groups schemes we have the following

proposition.

3.1.3 Proposition  The affine group scheme G, with the quotients g5 : G =+ Gy, NEHN, as

canonical projections, is the inverse limit in the category of affine group schemes of the system

{Gn. e} }vaten v,
G= l&l GnN.

Proof. Let H be an affine group scheme represented by a Hopf algebra B. Suppose that there
is a family of affine group homomorphisms H —+ Gn, N € N, such that for N < M the following

diagram commutes.

Gn (3.1)

Hence, by Yoneda’s lemma, there is a corresponding commutative diagram in the category of Hopf

algebras with the arrows reversed.

Ay

AN
7

Ap
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Since A = IQAN in the category of Hopf algebras, the above diagram can be completed to the
following.
An

N

/ A B
Am
Going back to the category of affine group schemes, diagram (3-1) can be completed to the following
commutative diagram.
G~
N
w G+—H
o
Gum

So, (G, {gn}nen) is the projective limit of the system {Gy, q}\",’}N'MQN'NSM. a

3.2 Comodules of Hopf algebras

A F-group functor is a functor from the category of F-algebras into the category of groups (not
necessarily affine, i.e. representable).

Let G be a group functor and let V be an F-vector space. For each F -algebra R define
GLv(R) = Autr(V X) R),

this defines a group functor. A linear representation of Gon V is a homomorphism G —+ GLy.
If V is finite dimensional, then in any fixed basis automorphisms correspond to invertible matrices,
and linear representations are maps to GL, where n = dimg V.

Let us look at the following Hopf algebra equivalent of a linear representation of an affine group.

3.2.1 Proposition Let G be an affine group represented by A. Then linear representations of
G on V correspond to F-linear maps p: V — V @ A such that the following diagrams commute.

vV—L—v®4a v<3vea
pl lidv@A idvl lidv@t
VRA—VRARA V—=3VaF
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a

Proof. Let ® be a representation. For id4 € G(A) we get an A-linear map ®(ids) : V@R A -
V @ A which is determined by its restriction to V 2 V®p F. We call this restriction p. Let

f : Ri = Rj be an F-algebra map. Then the naturality of & means that the following rectangle

commutes.
R: G(R1) —24+ Autp, (V@ R)
J,! Cv’(f)J> lGLv(f)=(idv®!)(—)
Ra G(R,) Y Autg, (V@ R.)
Let ¢ : A— R € G(R) for some F-algebra R. Then the following rectangle commutes.
A G(A) 22+ Aut4(V ® A)
19 G(!)l lGLV(9)=(idV®9)(-)
R G(R) —Q;‘*A““R(V‘gR)

Hence, evaluating at id4 € G(A4),
GLv (g) o ®4(ida) = ®r o G(g)(id4)-
Note that G(g)(ids) =goids =g, so
GLv(g) o ®a(id4) = ®r(g),
and restricting these two maps to V we get

(idv ® g) o p = ®r(g)/V.

That is, ¢ is determined by p. Since ¢ is the unit of the group G(R) and &g is an action then
®r(e)v = v for all v € V, hence (idv ® €) o p = idy and the second diagram commutes; also for
any g, h € G(R) we have ®r(g9)Pr(h) = Pr(gh), and hence if we denote the multiplication of R
by pr we see that

idv ® go(p@idp)oidy @ hop= (idv®((g®h)oA)) op
(idv ® (rrog ®h)) o (p®ida) op = (idv @ (urOo g @ h)) o (idv © A) o p.

In particular, setting R = AQ@A and letting g :a = a® 1, h:a — 1 ® a be the canonical
injections, it follows that idy ® (9 ® h) = dyv @ a® . so we get

idv®A®AO(p®idA)Op:idV®A®Ao(idv®A)op
(p®ida)op = (idv ® A)op,
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and the first diagram commutes.

Conversely, for any p : V — V @ A such that both diagrams commute we obtain a natural set
map ¢ : G(R) = Endgr(V @ R) by defining ®(g) := (idv 2 g) o p. From the commutativity of the
first diagram it follows that ®(g)®(h) = ®(gh) and from the second one it follows that £ = lg(r)
acts like the identity. ]

Such a vector space V with an F-linear map p : V — V @ A satisfying (idyv © g)p = idy and
(idv @ A)p = (p @ id4)p is called an A~comodule. An important example to be used in the
linearization theorem of algebraic groups is V = A with p = A, whose corresponding representation
is the regular representation.

A subspace W of V is a subcomodule if po(W) C W @) A, or equivalently if G(R) maps W® R
to itself.

3.3 Algebraic groups as matrix groups

3.3.1 Proposition Every comodule V for a Hopf algebra A is locally finite.

Proof. Let v € V. We show that v is contained in a finite dimensional subcomodule. Let {a;} be
an F-basis of A and let
p(v) = T‘vi ® a;,

where all but finitely many v; are zero. Let
Afa;) = Sr;jkaj ® ag..

Then,
Ep(vi) @ ai = (p®ida)p(v) = (idv ® A)p(v) = Sv; ® rijra; ® ay.
Comparing the coefficients of a; we get p(vz) = Zv; @ rijka;. Hence the subspace W spanned by
v and v; is a finite dimensional subcomodule. a
An affine group is algebraic iff its representing algebra is finitely generated. We have the
following linearization theorem which shows that any possible multiplication for an algebraic affine

group is just matrix multiplication.

3.3.1 Theorem Every algebraic affine group G over a field F is isomorphic to a closed sub-

group of some GL,,.

Proof. Let A be the Hopf algebra representing the given algebraic affine group. Then A is

a comodule with p = A. By proposition 3.3.1, there is a finite—-dimensional subcomodule V
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of A containing finitely many algebra generators of A. Let {vj} be a basis of V', and write
A(vj) = Zv; ® a;;. Consider the Hopf algebra map

F[Xllr tt :J{nny I/det] - A

corresponding (by Yoneda's lemma) to the regular representation of G. The image of this map
contains the a;;, images of X;;. But v = (e ®ida)A(vj) = Ye(vi)aij. so the image contains V
and hence is all of A. O

Whenever we want to make sense of a concept for the affine group G represented by the Hopf
shuffie algebra A, we can look at the algebraic affine groups Gy since G is an inverse limit of
these algebraic affine groups, or equivalently, the Hopf shuffie algebra A is an inductive limit of the
finitely generated Ay. And by the above linearization theorem, we should always look at matrices

first.

3.4 Unipotent matrices

We want to define an exponential map for certain affine groups, so let us look at a version of
nilpotence which makes sense for elements of a matrix group. A matrix g € GL,(F) is unipotent
if g — 1 is nilpotent, i.e. all eigenvalues of g are 1. In order to motivate the definition of unipotent
affine group let us look at a classical theorem from group theory which is the precise analogue of

Engel’s Theorem for Lie algebras.

3.4.1 Theorem (Lie—Kolchin fixed point theorem) Let G be a subgroup of GL,(F) such
that all its elements are unipotent. Then in some basis all elements of G are unipotent upper

triangular matrices (that is, zero below the diagonal and 1 on the diagonal). a

3.4.1 Remark  This is a fixed point theorem because it is enough to have some v; 20 € F*
fixed by all g € G. Indeed, if such a fixed point exists then G acts by unipotent maps on F*/Fu,.
If ve F" let [y] = v+ F™ € F*/Fu,. By induction on the dimension there is a basis [va],- - -, [n]
of the quotient with each g[vi41] — [vi1] lying in k[va] +-- -+ k[v;]. Hence every g in G is strictly

upper triangular in the basis vy,-- -, v,.

By the above remark we see that to prove the theorem all we need is a fixed point. A system
of linear equations on v,

(g-1vn=0,9€G
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has a non zero solution in F™ iff it has a non-zero solution in its algebraic closure F. So it can
be assumed that F is algebraically closed. Let W be a non-zero subspace of minimal dimension
mapped to itself by G and denote by Tr(f) the trace of an endomorphism f of W. An application
of Schur’s lemma to an irreducible subspace of {f € Endp(W) : Tr(gf) = 0, for all g € G} gives
the existence of a fixed point. The details can be found in [Wat79].

3.5 Unipotent affine groups

The above fixed point theorem suggests how to define unipotence for an arbitrary affine group. An
affine group is unipotent iff every non—zero linear representation has a non—zero fixed vector

v €V, ie. for the corresponding comodule
pv)=v@®1,

hence for any g € G(R), g.v = v.

Let us recall from chapter 1 the affine group of upper triangular unipotent matrices (that
is, upper triangular with 1’s on the diagonal) Un(F) which is an algebraic affine group with
representing algebra F[X;; : i < j] whose Hopf algebra structure is defined by

0(Xij) = Xij ® 1+ 10 Xij + Tickaj Xik @ Xj
£(Xij) = d;j, where §;; is the Kronecker delta

1(Xi;) = (—1)"*7 det(Mj;).

Geometrically, we think of U, (F) as the subgroup of automorphisms of F™ preserving the complete
flag {V;} where V; is the span of the standard basis vectors e1,---,¢€;, and acting as the identity

on the successive quotients Viy; /V;.

3.5.1 Theorem Let G be an algebraic affine group. The following are equivalent.
1. G is unipotent.

2. In any closed embedding of G in GL,, some element of GLn(F) conjugates G to a closed

subgroup of the affine group of upper triangular unipotent matrices U,,.
3. G is isomorphic to a closed subgroup of some U,,.

4. The Hopf algebra A representing G is coconnected, i.e. there is a chain of subspaces
CoCCyCCyC--- with Cy = F and UC: = A such that A(C,) C EC:Q Cr .
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The proof of this theorem will be included for the sake of completeness.
Proof. The Lie-Kolchin fixed point Theorem shows that 1. implies 2. Theorem 3.3.1 gives 2.
implies 3.

We now show that 3. implies 4. It is enough to show 4. for U,,. Indeed let A be the representing
algebra of Un. Since G is a closed subgroup of U, hence its representing algebra is a Hopf algebra
quotient A/ and taking images of the C; shows that 4. holds for the quotient 4/7.

Let j — i be the weight of Xij € A, so that a monomial HX?J-" has weight n;;(j — i). Let
Cm be the span of the monomials of weight < m. Then Co = F and 4 = |JCpn, and also we
have C;C; C Ciyj. We just need to show that A(Cm) C ZC; @ Cm—i, which follows by direct
checking for the X;;. Inductively, if it holds for monomials P, Q of weights r, s respectively, we
have A(PQ) = A(P)A(Q) lying in

(EC: Q) Cr-i) (2C; R Ci—;) € T(CiC; @) Cr-iCs—j) € £Cit; Q) Criomivy.

Finally, assume 4. and let p : V — V @ A give a comodule. Let V, = {veV:pv) e VRC ).
Then, V=JV;. If0 £ visin V;, then p(v) has the form v’ ® 1, and applying ¢ we see that v/ = v,
so that v is a fixed point. So it is enough to show that V, = 0 would imply V.; = 0. We have
P(Vr41) C V@ Cryy, and so (idy @ A)p(Vry1) C VR ZCi@Cry1-i. Hence Vi, goes to 0 in
the induced map down to V @ 4/C. ® A/C,. But the map (idv @ A)opis equal to (p®id4) 0 p,
since p is a comodule. We have V — V & A/C; injective since V, = 0, and again applying p & id,
we have V — (V@ A/C,) ® A/C; injective. Hence Vegr1 =0. Q

3.5.1 Observation Let G be a not necessarily algebraic affine group with representing algebra

A. If A is coconnected then G is unipotent.

Proof. In the proof of the above theorem, the fact that the representing algebra is finitely generated

was not used to show that 4. implies 1. O

3.5.2 Proposition  The affine group G represented by the Hopf shuffle algebra A is unipotent.

Proof. Let A" be the subspace of A spanned by the words of length n. Define C; = @) _, A™.

Clearly, the C; form a chain of subspaces
COCCl CC'.ZC"'v

Co = F and | JC; = A. Also, by definition of the comultiplication of the Hopf shuffle algebra it
follows that A(C,) C £5C; & C:—;, hence A is coconnected and G is unipotent. a
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3.5.3 Proposition Any quotient of a unipotent affine group is unipotent.

Proof. Let G be 2 unipotent affine group with representing algebra A. Let H be a quotient of G
represented by a Hopf algebra B. Then, there exists an injective Hopf algebra morphism B — A.
Let R be an F-algebra. If V is a comodule for B then it is a comodule for A where g € G(R) acts
on V as the restriction g/B. Since G is unipotent, then V has a fixed point which is also a fixed

point for the action of H on V. Then H is unipotent. a

3.5.4 Corollary G is unipotent.

Proof. The representing algebra Ay of Gy is a sub Hopf algebra of the Hopf shuffle algebra
A. So, G is a quotient of the unipotent affine group G represented by the Hopf Shuffle algebra.

Hence G is unipotent by the above proposition. a

3.5.5 Corollary Assume that the alphabet 7 is finite. Then Ay is an integral domain.

Proof. Since the alphabet is finite there are only finitely many words of length < V. hence Ay
is finitely generated. So Gy is a unipotent algebraic affine group over a field of characteristic
zero, and hence Gy is connected as an affine group, i.e. Ay modulo its nilradical is an integral
domain [Wat79]. But by Cartier’s Theorem (loc. cit.), Hopf algebra over fields of characteristic

zero are reduced. O

3.6 Lie Theory for Gy

3.6.1 Observation Let K be a Q-algebra. Let z be a nilpotent element of A". Define
z =z "
XP(z) = e T T T
BAP(E) =141+ gr+ o+ Tt
Then, EXP(z +y) = EXP(z)EXP(y) if z, y are nilpotents elements which commute.

Let u be a unipotent element of K (i.e. 1 — u is nilpotent). Define

l—u_(l—u)"’_ (1 —u)”

LOG(u) = —

If z is nilpotent then EXP(z) is unipotent and LOG(EXP(z)) = z. If u is unipotent then
LOG(u) is nilpotent and EXP(LOG(u)) = u. a

Assume that the alphabet I is finite. Then there are only finitely many words of length < N,

hence Gy is algebraic, i.e. An is finitely generated. In particular, Lie(Gw) is finite dimensional.
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e~

In chapter 1 we saw that given any finite dimensional vector space V', the group (V,+) is an
algebraic group with the symmetric algebra on the dual of V, S(V*), as its algebra of polynomial
maps. Let us view the vector space Lie(Gy) as a vector group where the polynomial functions are
the polynomials in the elements of the dual vector space Lie(Gy)°.

For any linear functional z € Homp(An, F) let
r(z) = (z®idg,) 0 A.

If we identify Av @ F = Ay = F @ Aw., then r(z) € Endr(An).
By corollary 3.5.4 and theorem 3.5.1 it follows that Ay is coconnected, so there is a chain of
subspaces Co C Cy CCy C - -+ with Cy = F and UCr = An such that A(Cr) C Z5C: Q@ Crs.
We now show that for any e—derivation d : Ay — F, r(d) is locally nilpotent on Ay. Actually,
r(d)(Cr) C Cr—l- Indeed
(d®iday) 0 A(Cr) Cd®iday(Z5C: (R) Crei)
= Ei_0d(Ci)Cr~;
= d(CO)Cr + Zg:ld(ci)cr—iy

and since Cy = F,

= £7_,d(Ci)Cr—i
C Cr—l .

Since r(d)(Co) = 0, if a € C, then r(d)"+1(a) = 0. Consequently, EX P(r(d)) = Zn>05%£ is
a well defined F-automorphism of Ay for every d € Lie(Gn). By theorem 2.3.1, since d is an
e-derivation then r(d) is a derivation. So, EX P(r(d)) is an F-algebra endomorphism of A, hence

€0 EXP(r(d)) is an element of the group Gy (F). Let
exp(d) := € o EXP(r(d)).

Assume that F is algebraically closed. We now show that ezp : Lie(Gn) — Gn(F) is a polynomial
map, Le. that Pol(Gn(F))oezp C Pol(Lie(Gx)). Let f : GN(F) = F € Pol(GN(F)). The algebra
An is finitely generated and with no nilpotents (actually it is a domain by corollary 3.5.3). By
theorem 1.6.1 f is evaluation at an element a € An: f = Eva(a). Since Ay = UCr, assume that

a € C, for some r € N then

Eva(a)oezp: Lie(GN) ———+ F

d——— o5, &' (q)
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is an element of Pol(Lie(Gx)). This means the following: let {X),---,X,} be an F-basis for
Lie(Gy), the dual basis of which gives coordinates for the vector group Lie(Gy). Write

d = X, X?(d)X:, (3.2)

so the coordinates of an element d in the vector group are (X?(d))i1<t<s- Replacing with (3.2)
inego E,?:o'—(:v?i(a) and recalling that ¢ vanishes on every word of length > 1, it follows that this
expression is a polynomial in the coordinate functions (X2 (<)) 1<cees-

Let g € Gn(F). Then ida, —r(g) is locally nilpotent on Ay because (iday ~r(9))(Cr) C Cry
and (ids, — r(g))(Cs) = 0. Indeed, if a € C, then

idAN’(a) - r(g)(a) =a—g9gx idAN(a)
Ca—g(l)a - E59(Ci)Cr;
= =Xi19(Ci)Cr—;

CCray

and since (iday — r(9))(F) = 0 then (id,, — r(g))(a)™' = 0. It follows that LOG(r(g)) =
—Z:,,>oh_:(ﬂE is an element of Endp(An) which clearly is locally nilpotent on Ax. Following
an idea of Gerhard P. Hochschild we now show that LOG(r(g)) is a derivation. Consider the
polynomial ring An[T] and the formal power series ring AN[[T]]. For z € Ay consider the formal

power series for the exponential,
Iﬂ
EXP(.‘!:T) = Enzo FT" .

Given elements a and b in A, there is a positive integer m such that LOG(r(g))™+! annihilates
a, b, and the shuffle product a#b, since LOG(r(g)) is locally nilpotent on Ay . Then, if ¢ is any of

these elements, we have

EXP(LOG(r(g))(c)T) = =, LOG(r(9))™(e) 1

n!

Hence the formal power series
EXP(LOG(r(9))(a#?)T) — EXP(LOG(r(g))(a)T) EX P(LOG(r(9))(6)T) € Ax[[T]]

is actually a polynomial p(T) € An[T]. From the calculus of formal power series we know
that EXP(2:T + 2:T) = EXP(2:T)EXP(22T) and that EXP(LOG(r(g))(z)) = r(g)(z), for
T1, T2, € An. For every natural number n, write nLOG(r(9))(z) = LOG(r(g))(z) + - -- +
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LOG(r{g))(z), then we have

EXP(nLOG(r(g))(z)) = EXP(LOG(r(g))(z) +---+ LOG(r(g))(z))
= EXP(LOG(r(g))(z)). --- .[EXP(LOG(r(g))(z)), n times

=r(9)"(z).

By a direct computation it follows that if g is an F-algebra homomorphism from Ax — F then r(g)
is an F-algebra endomorphism of An. Let n €N, then p(n) = r(g)" (a#tb) — r(9)"(a)#r(g)"(b) =
0. Hence the polynomial p(T) has infinitely many roots (i.e. all the natural numbers) which implies

that every coefficient of it is zero. Equating the coefficient of T to zero it follows that
LOG(r(g9))(a#b) = LOG(r(g))(a)b + aLOG(r(g))(b),

and thus LOG(r(g)) is indeed a derivation of Ax. Therefore £ o LOG(r(g)) is an e-derivation and
belongs to Lie(Gy). Let
log(g) := e 0 LOG(r(g)).

We now show that log : Gn(F) > Lie(Gy) isa polynomial map, i.e. that Pol(Lie(Gx))olog C
Pol(Gn(F)). Let f: Lie(Gny) » F ¢ Pol(Lie(Gn)). Let {X;,--- + X5} be the Lie elements in the
free Lie algebra L on the alphabet I over F of degree < N. By theorem 2.3.2, these Lie elements
form an F-basis of Lie(Gn). So, any polynomial map in Lie(Gy) is a polynomial on the dual
basis {X?,---, X?}. Since An ={JC;, assume that all these Lie elements {X,,--- .X;} C C, for
some r € N. It is enough to look at f=X?,for1<i< s since the X7 generate the algebra of
polynomial maps Pol(Lie(Gx)) and a polynomial of polynomial maps is a polynomial map since
Pol(Lie(Gn)) is an algebra. Then

X7 olog: Gn(F) —+ F
g — —+co _E:‘>0 (ida v:l(g))' (X;)

is an element of Pol(Lie(Gx)) and hence log is a polynomial map. This simply means the following:
any set of algebra generators of Ay provides coordinate functions for the algebraic group Gy (F) by
theorem 1.6.1, j.e. if {Wk }x are the words of length < N which generate AN then the coordinates
of g € Gn(F) are (y(wk)) & S0 a set of coordinate functions for the algebraic group Gy (F) are
{eva(wr )}« where eva(wi)(g) = g(we). Expanding ¢ o -Xiso M(X;) and recalling that
€ vanishes on words of length > 1 it follows that this is a polynomial in the coordinates of Gy (F)

{eva(wi)}x.
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For example, let | = {a,b}, and look at A,. Let us use the Hall basis for the free Lie algebra,
so we know that Lie(G») = Fa+ Fb + FJa, b]. Let X; =a, Xo =b, X3 = [a,b] = ab — ba. Let
g € G2(F). Then,

X7 olog(g) = g(a), so X o log = eva(a).
X3 olog(g) = g(b), so X3 o log = eva(b).
X3 o log(g) = g(ab) + g(a)g(b) — g(ba) — g(b)g(a) = g(ab) — g(ba)

= g(ab — ba), so X3 olog = eva(ab — ba).

From formal properties of the power series for the exponential and the logarithm it follows that

the polynomial maps
exp : Lie(Gy) = G and log : Gy — Lie(Gy)

are mutually inverse of each other; indeed, first we observe that for any linear functional z €

Hompg(Ax, F)
gor(z) ==z, (3.3)
because if a € Ax writing A(a) = £b; ® ¢; we have
é(r(z))(a) =€ 0 (z @ iday)(Thi @ c;)
= ¢e(Sz(bi)e;)
= ‘“J:(b,-)e(c,-)
= I(Eb; D e(c,-))

= z(a), since ¢ is a counit for the Hopf algebra Ay.

Let g € Gy (F) then

ezp(log(g)) = ezp(e o LOG(r(g)))
=e0 EXP(r( 0 LOG(r(s))) )

=EXP (5 or(LOG(e o r(g)))) , since ¢ is an F~algebra homomorphism

= EXP(LOG(g)) by (3.3)

=g, by formal properties of EXP and LOG.




Similarly, let d € Lie(Gy)

log(ezp(d)) = log (= o EX P(+(d)))
=0 LOG(r(eo EXP(r(d))))
= LOG(E or(EXP(eo r(d)))) , since ¢ is an F-algebra homomorphism
= LOG(EXP(d)) by (3.3)
=d, by formal properties of EXP and LOG.

So, we have proved the following result.

3.6.1 Theorem  Let F be an algebraically closed field of characteristic zero and let the alphabet
I be finite. The map sending each e—derivation d € Lie(Gn) onto the element exp(d) € Gy (F) is
an isomorphism of affine algebraic F-sets from Lie(Gwn) to Gn(F). The inverse of which is given

by the map sending each g € Gn(F) onto the element log(g) € Lie(Gy). ]

3.7 The Hopf shuffle algebra A as a polynomial ring

3.7.1 Theorem Let F be a field of characteristic zero and let the alphabet [ be finite. Then

the Hopf shuffle algebra A is a free commutative algebra over F.

Proof.

First we prove the theorem assuming that the field F is algebraically closed.

Consider the algebra Ay which is finitely generated and with no nilpotents. Then, by theo-
rem 1.6.1, we can identify Ay with the algebra of polynomial maps of the algebraic group Gy (F)
of F-algebra homomorphisms from Ay to F,

Ay = Polp(Gy(F)). (3.4)

Recall from theorem 1.6.1 that this identification simply means “an element a in Ay is the polyno-
mial function on G (F) evaluation at a”. By theorem 3.6.1, the exponential map is an isomorphism

of algebraic F-sets, hence we can identify
Polp(Gn(F)) 2 Polp(Lie(Gy)). (3.5)

From the identifications (3.4) and (3.5), and because Polp(Lie(Gw)) is a polynomial ring by defi-

nition of a vector group it follows that Ay is a polynomial ring.
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By theorem 2.3.2 Lie(Gn) can be identified with the subspace of L spanned by the Lie elements
of degree < N, if we take the brackets modulo degree(N +1), i.e.

Lie(GN) = L/L1V1

where Ly is the ideal Sp5 & (LN A") of L (A" is the subspace of A spanned by the words of length
n). Suppose that L has an F-basis {X;};jen. Then the X of degree < N form an F-basis of
Lie(Gwx). The dual of which, say {X?,---,X?}, is an algebraically independent set of generators
for the polynomial algebra Polr (Lie(Gy)) since Lie(Gn) is a vector group. The identification (3.5)
means that the functional X7 :Lie(Gny) = F, 1< j<r, goes to

log . X;
Gn(F)—— Lie(GN) —— F

which is a polynomial map on Gy “evaluation at Y;” for some Y; € Ax. So, if {X},--- X, } are
the Lie elements of a basis for L of degree < N then Ay is a commutative free algebra on the

corresponding elements {Y;}; C A, i.e.
AN =F[Y11"' ,)/r]

Let B be a commutative F-algebra and let ¢ : {Y;}jen — B be a set map. Then o/ :
{Y1,---,Y:} — B extends to an algebra map 6y : Ay — B. Note that the following diagram is

comnmutative where the horizontal arrow is the inclusion.

ANC—————— ANy

B

Since A = liﬂAN the family {¢nx}nven gives a unique algebra map :; : A — B extending &, by the
universal property of liﬂAN. This finishes the proof of the theorem for the case of an algebraic
closed field F.

Now suppose that F is a field of characteristic zero (not necessarily algebraically closed). Let
{X;}jen be an F-basis of L. Extending scalars to an algebraic closed field F containing F, we see,
by what we have just proved, that for the F-basis {1®8X;}jen of F®p L there is a free generating

set {Yj}jenof F® r A over F. The theorem now follows from the following proposition.

3.7.1 Proposition  Let k C K be a tower of fields. Let 4 = @.n>0 A" be a graded k-algebra.
If K@, A is a polynomial ring over K then A is a polynomial ring over &.
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Proof. Consider the k—vector space V = BDn>; A®/ B,5, A™ and its symmetric algebra S(V).
We show that A = S(V) as k-algebras.
Let {Xj};jes be a k-basis of V. The k-linear map

f: V——4y

X—ji—er

extends, by the universal property of the symmetric algebra, to a k-algebra map S(f) : S(V) = A
which we will show is a k-linear isomorphism. It is enough to show that S(f)" : S(V)* 5> A" isa
k-linear isomorphism.

The grading of A induces a compatible grading in the extension

EQA=PER 4.

n>0 k
Since K@) A = S(K @, V) as K-algebras then K®.S(f) : K@, S(V) » K@, A is a ho
mogeneous K -algebra isomorphism. In particular, (K @, S(f))" : K R SV)* > K@, A" isa
K-linear isomorphism. Since we are tensoring over a field, this happens iff S(f)" : S(V)* — 4"

is a k-linear isomorphism. a
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