
University of Alberta

USING DESCRIBERS TO SIMPLIFY SCRIPTEASE

by

Neesha Desai

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Neesha Desai
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

Examining Committee

Duane Szafron, Computing Science

Walter Bischof, Computing Science

Michael Carbonaro, Department of Educational Psychology

Abstract

A high level of programming knowledge is needed in order to script a video game. This

prevents video game design from being accessible to non-programmers. ScriptEase is a tool

that was designed to solve this problem. While ScriptEase has been shown to be accessible

to 10th grade English students there remains areas for further simplification. This thesis

focuses on changing the way authors set options within ScriptEase by introducing a new

technique called Describers. Describers allow authors to adapt plain English sentences to

provide a description of each option. A user study was conducted that compared Describers

against the original technique of using definitions. The participants were able to complete

significantly more statements and showed a preference for the Describer. Simplifications

such as the Describers will lower the entrance bar for an author. The underlying structure

of the Describer can be used to simplify creating conditional statements.

Acknowledgements

First, thanks to my supervisor, Duane Szafron, for helping me refine my ideas and encour-

aging me.

Next, thanks to everyone involved in the ScriptEase research group for their help, sup-

port and suggestions.

Thanks to the Department of Computing Science at the UofA for giving me so many

opportunities to get involved.

To Tom Johnson, thnks for sponsoring my study and allowing me to run my user study

with participants from psych 104/10.

Thanks to Mike Carbonaro for providing insight into understanding my user study re-

sults and Walter Bischof for helping with the stats.

To all the grad students I’ve hung out with, you know who you are, thanks for the

support, putting up with venting, and making the experience so worthwhile.

Finally, thanks to my family for all their support over the years.

Table of Contents

1 Introduction 1
1.1 Video Game Content Problem . 2
1.2 ScriptEase . 2

1.2.1 ScriptEase Encounter Patterns . 3
1.2.2 Definitions in ScriptEase . 5
1.2.3 Difficulty using Definitions . 7

1.3 Contributions and Outline . 9

2 Related Work 10
2.1 Programs for Non-Programmers - Alice and Scratch 11

2.1.1 Alice and Storytelling Alice - CMU 11
2.1.2 Scratch - MIT . 14

2.2 Video Game Included Tools . 16

3 Describers 20
3.1 Definition Problems . 20

3.1.1 Content Overload . 21
3.1.2 Multiple Workspaces . 21
3.1.3 Linking Definitions . 23

3.2 Describers - What are they and how do they work? 24
3.2.1 Describer Labels . 27
3.2.2 Text Colors . 28
3.2.3 Setting Options / Linking Describer Lines 31
3.2.4 Arrows . 31
3.2.5 Red X’s . 33

3.3 Knowledge representation - Graphs / Categories 33
3.3.1 Similarities . 34
3.3.2 Graphs . 35
3.3.3 Choice Nodes . 36
3.3.4 Categories . 37

3.4 Using Describers to solve the Definition problems 37
3.4.1 Content Overload . 38
3.4.2 Multiple Workspaces . 38
3.4.3 Linking Definitions . 39

4 Study Evaluation 41
4.1 The User Study . 41

4.1.1 The Participants . 41
4.2 Test Scenarios . 42

4.2.1 Experimental Setup . 43
4.3 Module Results . 45

4.3.1 Time . 46
4.3.2 Participants vs. Themselves . 47

4.4 Survey Results . 48
4.4.1 Everyone . 48
4.4.2 Gender . 49

4.4.3 Gamers/Non-Gamers . 50
4.4.4 Programmers/Non-Programmers 51

4.5 More Data . 53

5 Future Work and Conclusion 54
5.1 Summary . 54
5.2 Future Work . 55

5.2.1 More User Studies . 55
5.2.2 Further Simplification . 56

5.3 Concluding Remarks . 56

Bibliography 57

A Test Scenario 59

B Survey 89

C Debriefing Document 92

List of Tables

4.1 The four different user study groups. 43
4.2 Number of completed statements. 44
4.3 A 3-Factor ANOVA test comparing the interaction effects of the order, sce-

nario and method on the number of completed statements. 45
4.4 The average time by each group on completing the first statement using

both methods. 47
4.5 The average time by each group on completing the first statement using

both methods. 47
4.6 Number of participants who created x many more statements using the De-

scriber. 48
4.7 Rankings used on Survey and the associated numerical value used in eval-

uating. 48
4.8 Survey results of all participants (everyone). 49
4.9 Survey results of female participants. 49
4.10 Survey results of male participants. 50
4.11 Survey results of participants who play video games at least once a month. . 51
4.12 Survey results of participants who do not play video games. 51
4.13 Survey results of participants with programming experience. 52
4.14 Survey results of participants who do not have programming experience. . . 52

List of Figures

1.1 The Module Start encounter pattern in ScriptEase. 4
1.2 Adding an action to an encounter pattern in ScriptEase. 5
1.3 The definition block in an encounter pattern. 6
1.4 Definitions categories and examples in ScriptEase. 6
1.5 Complete definition in ScriptEase. 7
1.6 Set option to definition in ScriptEase. 8

2.1 Example of an Alice project. 13
2.2 Example screenshot of Scratch. The hand points to an example empty space

in an if statement. The missing piece of code is on the right side of the hand. 15
2.3 Example of NWScript code. 17
2.4 Screenshot of the Aurora Toolset. 19

3.1 ScriptEase window showing the encounter panel on top and the option panel
on the bottom. 22

3.2 Example of the definition block containing a single definition. 22
3.3 Example of setting an option to a definition. 23
3.4 The panel for setting an option in the original ScriptEase. 25
3.5 The initial describer panel. 26
3.6 The menu an author sees when choosing to set an option. 26
3.7 Updated panel after the author chose to Describe it with the category near-

est object. The first line is the option line while the second is an example of
a describer line. 27

3.8 Menu to change a describer line’s label. 28
3.9 Popup window allowing the author to change a describer line’s label. 29
3.10 Example with new describer line label Nearest Object. 29
3.11 Example describer lines displaying the various text colors used. The dis-

played menu lists the alternative choices to plus. 30
3.12 The menu for adding an option segment. 32
3.13 The menu is displayed by selecting a left pointing arrow, allowing the au-

thor to remove or change the optional segment. 32
3.14 An example of a complete description. 33
3.15 Tree of creature nearest definitions . 35
3.16 Tree of creature random definitions . 35
3.17 Tree of enterer/exiter definitions . 36
3.18 Describer line representing enterer/exiter graph. The menu shows the op-

tions for changing module. 37
3.19 Describer displaying the complete description for awarding gold to a PC

that is equal to the PC’s level times 100. 39
3.20 Describing the level to early. 40

4.1 Graph showing the average number of statements participants were able to
complete on each method by scenario. 46

Chapter 1

Introduction

Video games are a multi-billion dollar industry in North America. In 2007 alone, consumers

spent $18.85 billion on games and consoles [1]. Video gaming is a fast-growing industry

that is quickly catching up to the movie industry [17, 1] (or exceeding depending on what

counts as movie profits). This rapid growth can be explained by a changing consumer

market that includes more older gamers and more female gamers, and an increase in length

and interactivity of the games that has improved their replay and sequel value [17, 1].

Since the demand for video games has been growing each year, the video game industry

has been struggling to keep up. For example, Grand Theft Auto IV [10] took three and a

half years to develop, cost $100 million to make, making it one of the most expensive

video games to date, and involved over 1000 people [12]. Another game, Assassin’s Creed

2 [22] took about 2 years to develop and involved a development team of about 450 [13].

However, even with the long development times and high cost of development, there are

multiple areas where the industry continues to cut corners when creating new games. A

popular example is in the scripting of non-player characters (NPCs) or, more accurately, the

lack of scripting. It is not uncommon to see characters stare at a wall, walk into objects, or

repeat the same lines.

Video games are created by teams that usually number in the hundreds like Assassin’s

Creed 2, but may number into the thousands (Grand Theft Auto IV), with each person having

a specific role, such as programmer, graphic artist, voice actor, story author, tester, marketer

and sound engineer. However, there are some inherent flaws in this process. Specifically,

the story author must communicate ideas clearly to the programmer. If there is some mis-

communication the game may end up very different from what the author had in mind.

Most story authors are unable to program, and therefore must rely on the programmers to

interpret this communication correctly. Only after a programmer has implemented a con-

1

cept can a story author test it and provide feedback. This process creates a large bottleneck

in creating video game content related to the story.

1.1 Video Game Content Problem

Although top-of-the-line graphics can initially help sell a game, it is the content that makes

a video game a success. However, the process of developing this content is currently a large

bottleneck. Video game content is usually created by designers, including story authors,

and then implemented by programmers. This means that designers have to communicate

their ideas to programmers, wait for a programmers to implement them, test the ideas, and

then go back to the programmers to request any changes and start the process over again.

Imagine a scenario in a game where the player character (PC) is in a room in a castle.

In the room there is a locked heavy door, a chest containing a potion, a locked lever and

a troll. In the chest is a Potion of Death Armour that will help the PC to defeat the troll.

Defeating the troll will unlock the lever and pulling on the unlocked lever will unlock and

open the door and allow the the PC to exit the room.

This scenario is simple to understand and many video game toolsets can allow a non-

programmer to easily assemble the objects into a story module. However, if the module was

then played, nothing would happen when the PC killed the troll. This is because no scripts

have been written and attached to the various objects, specifying what should happen and

when. For example, the troll requires a script that details the actions that need to happen

when it dies; in this case, the lever should be unlocked. The same goes for the lever, which

requires a script detailing that the door in the room will open when the lever is pulled. A

programmer is usually needed to write these scripts.

However, learning to script a video game requires a steep learning curve and cannot be

quickly taught to designers.

1.2 ScriptEase

ScriptEase [20, 15] is one solution to the scripting problem. It allows non-programmers

to design their own video game modules for BioWare’s NeverWinter Nights video game.

This has been verified by experiments where ScriptEase was successfully used by Grade 10

English students who were able to make their own modules [9, 21, 8, 3, 4, 5]. ScriptEase

works by supplying a pattern catalogue that authors choose from. ScriptEase has four types

of patterns (encounter, dialogue, behavior and quest) but, for the purpose of this research,

2

we focus on encounter patterns.

1.2.1 ScriptEase Encounter Patterns

An encounter pattern is triggered by a specific event and consists of a set of actions to

execute in response to that event. An example encounter pattern would be the PC pulling

a lever to open a door. The pulling of the lever is the event that triggers the pattern and

the action is to open the door. Events are typically caused by the PC’s interaction with the

game environment such as pulling a lever, opening a chest or killing a troll.

Within ScriptEase, encounter patterns are generalized so that they may apply to a num-

ber of game objects. Instead of calling the pattern Pull lever - open door the equivalent

encounter pattern in ScriptEase is called Placeable use - toggle door. This generalization

allows the designer to be creative in the object chosen to toggle the door while still being

able to keep the pattern catalogue small. For example, this pattern could also be used to

have a door close when the PC looks inside a chest. The pattern catalogue would have

grown exponentially if the patterns were object specific and become a burden to use.

For a pattern to be generalized, the pattern cannot be pre-assigned to specific game

objects. Instead, all game objects required by the patterns become options, with the pattern

specifying the specific type for each option. For example, in the Placeable use - toggle door

pattern there are two options: a placeable and a door. The types are conveniently placeable

and door. Options can usually be set in one of three different methods.

1. The author can choose from a drop down list that contains the names of the options

that have been previously set within the encounter. Selecting an option name binds

the current option to the value of the option whose name was selected.

2. The author can use a game object picker to choose from the objects in the module or

when appropriate enter a specific string/number.

The third method is more complicated. There are times when neither method provides

enough flexibility and the author must first create one or more definitions and then set the

option to the definition.

Each encounter consists of one or more action atoms. These action atoms also have

their own set of options like encounters for generalization. However, some of the options

are linked by the designer to the options that are set for the encounter. For example, the

encounter pattern has an option specifying a door that the author sets to be the Metal Door.

When creating the encounter pattern, the designer wants the door specified at the encounter

3

level to open and includes an action atom that does so. Instead of requiring the author to

bind the same door to a new option for the action atom, the designer can pre-set the option

to link to the same object selected at the encounter level. This decreases the number of

options the author must set.

Once a pattern is chosen, the author can adapt the pattern by adding or removing actions.

For example, the author could add an additional action that has the PC speak a one liner

when the lever is pulled. Additional action statements will contain more options. All of

these options must be set by the author.

Let us expand on the scenario of the troll in the castle. Instead of the room consisting

of one chest that contains the potion, assume there are now five chests spread about the

room, but only one contains the potion. This scenario can be created by simply adding the

additional chests to the room and placing the potion inside a specific chest. However, if

the same chest is always used, the location would be obvious to the player if the game was

played a second time or the PC died and the player restarted from a saved game. To make

the scenario more rewarding the author might want the potion to appear in a random chest.

This changes the decision of what chest to place the potion in from being predetermined to

being decided while the game is being played.

Figure 1.1: The Module Start encounter pattern in ScriptEase.

We can turn this into a ScriptEase encounter pattern by using the Module start encounter

pattern, which contains only a placeholder action, as shown in Figure 1.1. The author must

replace the placeholder by one or more actions. In this case, the author wants the module

to randomly choose a chest and place the potion inside. To do so the author would start by

choosing to add a new action, specifically the action Give an item to a creature/placeable

as shown in Figure 1.2. The author now has three options to set: who provides the item,

what the item is, and who receives the item. The first two can be set using the picker to

choose the Blue Chest (in this case, no one actually gives the item to the chest so we can

4

use any object) and the Potion of Death Armour. The receiver is the tricky one as it needs

to randomly choose between the five chests in the room. At this point, the author can no

longer easily set the option value and must use definitions to describe the chosen chest.

Figure 1.2: Adding an action to an encounter pattern in ScriptEase.

1.2.2 Definitions in ScriptEase

Definitions are used when the author needs to either compute an object/value that changes

while the game is running, such as a the nearest creature to a door, a roll of the dice, or

a creature’s statistic like hit points. They are also used when the author wants to compare

values (who has more hit points? or is the PC’s charisma greater than 15?). Definitions

provide the author with more flexibility in assigning options as multiple definitions can

be linked together to compute more complex objects/values. Definitions can be added to

an encounter at any time and all the definitions within an encounter are listed within a

5

definition block as shown in Figure 1.3. The definitions are available to all the actions

within the encounter and can be used to set options.

Figure 1.3: The definition block in an encounter pattern.

Figure 1.4: Definitions categories and examples in ScriptEase.

To add a new definition to an encounter pattern the author must first select from various

categories of definitions such as binary (are two spells the same?), math functions (adding

two numbers together) and object properties (a creature’s hit points) and then within the

definitions in a category as shown in Figure 1.4. Like encounters and actions, some defini-

tions have their own set of options. For example, the definition to add two values together

requires two numbers as options. Also like encounters and actions, these options can be

6

set using the same methods, including using other definitions. However, while actions are

aware of all the definitions in the encounter, definitions only have knowledge of the defini-

tions that are listed before them in the definition block.

Figure 1.5: Complete definition in ScriptEase.

Let’s return to the example of placing a potion in a random chest. We need to find a

definition that will randomly choose a single object from a set of objects. Looking in the

Finding Objects category, we can use the single definition Find a random object that has

same tag as a specific object, as shown in Figure 1.4. This definition has one option, the

object whose tag we are trying to match. Figure 1.5 shows the complete definition after

setting the option to: Chest. Now, the original action can be finished by setting the Receiver

option to the ”Random Object” definition as shown in Figure 1.6.

1.2.3 Difficulty using Definitions

The current structure of definitions within ScriptEase can cause difficulties for the author

due to the volume of information and the rules the author must adhere to when using them.

Because all the definitions are available at any time, the author must always sort through

a long list of definitions, including those that do not make sense based on what the author

is trying to accomplish. As ScriptEase contains hundreds of definitions, this can quickly

7

Figure 1.6: Set option to definition in ScriptEase.

become overwhelming.

Once the author selects the correct category of definitions, there are many definitions

that are similar but have subtle differences. For example, look at the following two defini-

tions.

• Find the nearest object to a specific object that has the same tag as another object

• Find the nearest n-th object to a specific object that has the same tag as another object

The second definition contains the extra word n-th. This addition changes the definition

from returning the nearest object as the first definition does, to returning the object that is

n-th many away from the specific object, where n is an integer greater than or equal to 1.

And even then, if the author chooses an n-th value of 1, the definition is now semantically

equivalent to the first. When looking down a list of definitions that are all somewhat similar

it is easy to miss small distinctions like the “n-th” and choose the wrong one or even try to

use them interchangeably.

Some other difficulties with definitions include linking multiple definitions together and

matching option types. All of these problems may confuse the author and discourage the use

of definitions. My research contribution is to address these issues using a new mechanism

8

called Describers.

1.3 Contributions and Outline

Definitions allow the author greater expressibility when implementing a story. However,

the current level of difficulty in using definitions may discourage authors from using them

and can limit the author’s originality. I claim that Describers, a new method for setting

options, would be easier to use and preferred by authors, thereby allowing authors to create

more original stories with less effort.

The next chapter takes a step back and looks at the related work that has already been

done on making video game design accessible to the non-programmer. This includes a look

at Scratch, created at MIT and Alice, created at CMU, as well as tools used by various video

game companies, like BioWare, that allow authors to create their own modules.

The primary contribution of this thesis is Describers and this technique is discussed

in detail in Chapter 3. Describers work by allowing the author to choose a description

category. Each category represents multiple definitions presented as a single describer line

which the author can modify as needed.

A user study was conducted using 1st year Psychology students to compare the De-

scriber against using definitions, the results of which are presented in Chapter 4. The user

study showed that the participants were able to complete more tasks while using the de-

scribers and that they overwhelmingly chose the Describer over using definitions.

Finally, Chapter 5 concludes this work with a summary and a look at future work such

as condition statements.

9

Chapter 2

Related Work

Tools to allow both programmers and non-programmers easier ways to create their own

video games started appearing in the late 1990s. Since their inception these tools have

become more and more popular to the point that there are now “games” where the gamer is

really buying a game creation tool rather than a game. Two examples are Spore by EA [14]

and Kodu by Microsoft Research [19].

To help gain acceptance many of these tools have a community of some sort, where

authors can share their creations, ask questions, and get help. For NeverWinter Nights, in

its first 3 months there were over 1000 user created modules uploaded to the community

site [11], a site that is still active today. This community extends the life of a game since

gamers interested in playing new scenarios can access more content and authors interested

in designing games have a huge field of players to test and comment on their creations.

The tools generally fall into two categories: a non-programmer-friendly research moti-

vated tool or an add-on for a commercial game. The first category includes programs like

Alice and Scratch while the second category includes tools like the Aurora Toolset for Nev-

erWinter Nights and the TES Construction Set for Oblivion by Bethesda [2]. However, this

distinction is becoming blurred by tools like ScriptEase (research motivated, but applies to

a commercial game) and Kodu a commercial game designed to enable non-programmers to

create their own games.

In the following sections I examine two programs designed specifically for non-programmers,

Alice and Scratch, and then at the characteristics of tools included with commercial video

games.

10

2.1 Programs for Non-Programmers - Alice and Scratch

ScriptEase is not the only environment that has been designed with non-programmers in

mind, nor is it the only one designed at a University. Specifically, Alice [6] (and Storytelling

Alice [7]) from CMU and Scratch [16] from MIT are similar environments. However, there

are a couple of big differences between them and ScriptEase.

ScriptEase currently generates code for NeverWinter Nights modules, which means that

ScriptEase does not need to implement graphics for the game module as the graphics are

all supplied by NeverWinter Nights. Since NeverWinter Nights is a commercial game the

graphics are of fairly high quality. Even though NeverWinter Nights is now seven years

old, the graphics are still of much better quality than Alice or Scratch. Alice and Sctrach

have built-in graphics designed specifically for their tool and contain a library of images the

author can use. Scratch’s library consists of 2-D images of fairly poor quality, while Alice’s

library is more extensive, containing 3-D images and landscapes. The types of images in

both libraries also indicate a younger target audience than NeverWinter Nights, with many

images of cute animals and school related items. However, similar to NeverWinter Nights,

the author can create and import new objects.

Scratch and Alice were both designed to help teach programming concepts. Unlike

ScriptEase, which hides the scripting from the authors (although it is available for them to

view), these programs require the authors to direct the action and interaction of objects by

using syntax similar to a programming language. The next section describes their syntax in

detail.

2.1.1 Alice and Storytelling Alice - CMU

Alice is probably one of the longest existing tools designed to allow non-programmers to

create their own video games. Alice 2.0 was initially released in 1999, although modi-

fications and updates have occurred since. A new beta version of Alice 3.0 is currently

available. While Alice was the original, there is now a second sister program called Story-

telling Alice that aims to lower the entry bar and make the tool more accessible to younger

authors. One way Storytelling Alice attempts that is to focus on creating stories or movies

versus interactive games. Because the actual usage of both tools is almost identical, I have

just presented the information on Alice.

To use Alice, the author must first populate the game world by choosing from the li-

brary of objects, or creating their own and importing them into the program. Once the world

11

has been populated with objects, the author can construct scripts to control how the objects

act and react during game play. An example screenshot of Alice is shown in Figure 2.1.

Scripting is done by dragging predefined lines of “code” into a main code window which

represents a single method on a world. Multiple methods can be created and they may in-

clude parameters and variables. Methods can be invoked by game events or other methods.

For example, in Figure 2.1, the When the world starts event invokes the my first method

method on the world object. All objects in the game world, including the ground, camera,

and lights, come with a preset group of properties, methods and functions. In addition, a set

of control statements exist: Do in order, Do together, If/Else, Loop, While, For all in order,

and For all together. Alice also includes the ability to print (which prints to a sort of log

screen that appears below the game screen), comment the code, and to wait (which stops

game play for a specified period of time).

Authors build their game world by selecting pre-built lines from a code library and

adding them to a method to build up a sequence of actions. For many of the code segments,

the author must set parameter values which are similar to the options an author sets in

ScriptEase. After dragging a code segment onto a method, if there is a parameter, a menu

immediately pops up requesting the author to select from a set of possible bindings. For

example, if the author chooses to have a chicken move towards the cow, they would choose

the Chicken move toward method. This code segment requires two pieces of information

from the author: how far to move and towards what game object. The author may select

from some preset distances of 1/4, 1/2, 1 and 2 meters or enter a value. Next the author

selects what game object the chicken should approach, in this case the cow. Once the

required parameters have been set, the code segment appears as a sentence; for example,

Chicken move 1 meter toward the cow more..., where Chicken, 1 meter and cow are all

buttons allowing the author to change these parameters at any time. The more... is also

a button that produces a menu of other parameter values that can be associated with the

code segment, but that don’t need to be specified as they have defaults. For the Chicken

move toward code, these optional parameters include as seen by (an object that controls the

camera) and duration (how long the action lasts). A loop in which the chicken turns and

walks towards the cow for one meter before turning away is shown in Figure 2.1.

However, Alice does not provide an easy mechanism for creating complex descriptions.

Suppose we have a room with two doors and a person, Bob, pacing the room. After 5

seconds of pacing, we want Bob to move to the closest door and open it. Alice does not

provide a predefined code segment to find the closest object to another object. Instead,

12

Figure 2.1: Example of an Alice project.

13

the author must calculate the distance from Bob to each door, determine which number

is smaller, and then have Bob walk to the correct door. If the author requires a similar

calculation for Mary, the author must recreate a similar segment of code for Mary, since

Alice does provide the ability for an author to use the same method on multiple objects

(there are no classes). The only alternative to copying and pasting code is to use a method

on the world and pass in Bob or Mary. Methods on the world are essentially static methods.

In a sense, functions in Alice are similar to definitions in ScriptEase, and methods in Alice

are similar to action atoms in ScriptEase. Alice also contains Events which can be used

to trigger some methods but not all. There are two types of methods in Alice, instance

methods on objects that cannot be shared and global methods on the world.

ScriptEase has always aimed to provide an experience where authors see plain English

sentences whenever possible, just as Alice does. Alice’s code segment structure where op-

tions are accessible within a sentence and the more button that allows an author to add more

information to a sentence are not available in the current version of ScriptEase. However,

these two features heavily influenced my design of Describers as I found them great ways

to request information from the author without losing the context of what the information

is describing.

2.1.2 Scratch - MIT

Scratch is a relatively recent video game design program that was first available in 2007, al-

though initial research dates back to at least 2003 [16]. Scratch is designed for authors who

are 8 years old or older and has an active user community. Scratch’s website allows authors

to upload their creations to share with others in the Scratch community which supports their

slogan of imagine - program - share. Like Alice, Scratch was designed to teach program-

ming skills and therefore uses a syntax that mirrors actual code. An example screenshot of

Scratch is shown in Figure 2.2.

To program with Scratch, an author selects puzzle-like pieces of code of different shapes

that can snap together if they can be connected. Unlike Alice, Scratch provides no hint to

the author that a parameter must be set or how to set it. Control statements, like loops, just

provide an empty space indicating the author can insert code at that location as shown in

(Figure 2.2), with the only indication of what can be inserted identified by the shape of the

hole.

Unlike Alice, which allows the author to create very distinct methods, all code for a

single object in Scratch is placed in the same code window. The code segments do not need

14

Figure 2.2: Example screenshot of Scratch. The hand points to an example empty space in
an if statement. The missing piece of code is on the right side of the hand.

15

to be connected, allowing for multiple methods to be created. Figure 2.2 shows three code

segments on a single object. Each method must have an event as the first component.

Scratch has two techniques to share information. The first technique allows a game

object to broadcast a text message that other game objects can receive. This can be used to

pass control between various blocks of code. The second technique is by using variables.

Authors can make both global and local variables. However, as a variable must be bound

to a number and the broadcast messages are text which cannot be parsed, Scratch strictly

limits the amount and type of information the author can pass between code blocks.

While Scratch provides an easy to learn interface, the actual ability of the author is

quite limited on multiple fronts. As already mentioned, Scratch limits the amount and type

of information that can be shared between code blocks. The graphics provide no support

for 3D images, and creating a slide-scrolling 2D game is extremely difficult. Scratch also

comes with a preset collection of code segments with no way for the author to create new

segments. The limited code library allows an author to quickly learn everything that can be

done in Scatch. However, this also means that the author may quickly outgrow Scratch as

the author’s programming knowledge increases. Scratch limits an author’s complex control

of game creation by limiting the scope of programming.

2.2 Video Game Included Tools

At the same time Alice was first being introduced at the end of the 1990s, video game

companies were starting to include the ability for players to modify and create their own

content for games. NeverWinter Nights was one of the first games that heavily promoted

both its included toolset and a community of players formed to share their modules.

Today there are many games that include tools and communities where amateur authors

post their own content that other players comment on and play. However, even as the use

and production of these tools has increased, the actual ease of use of the tools has not.

Many times the tools were designed to aid in the construction of the original game and are

included as an extra. Since these tools were not intended for consumers they are difficult to

use. The tools usually rely heavily on a scripting language designed for the game. These

scripting languages are usually specific to a single game, but may be used across sequels

and often have a syntax that is similar to C and Java. This provides a roadblock for non-

programmers who want to create modules for multiple games as they need to learn multiple

scripting languages and cope with the quirks of each language. For example, Neverwinter

16

Figure 2.3: Example of NWScript code.

17

Nights uses the scripting language NWScript. An example of NWScript code can be found

in Figure 2.3.

With these game-specific scripting languages, the authors must rely heavily on the

game’s community for support to learn the language and tool. Unlike more common pro-

gramming languages such as Java and C++, multiple books are not being published on these

game scripting languages and examples are not prevalent on the internet.

When learning the language, the authors suffer another setback when it comes to finding

and eliminating bugs. Video games are usually designed to fail silently so as to not interrupt

the game play. This makes it difficult when playing through a scenario to figure out when

and why it failed or if it even did. The tools where scripting is done usually have very

limited warnings for errors. Bugs that other programming environments would catch are

often missed.

There are benefits to using these integrated tools such as the community support and

the tight coupling between the tool and the game. Because ScriptEase is not integrated with

NeverWinter Nights or the Aurora Toolset it allows the authors to script a module but does

not provide support for designing and placing objects. Tools like the Aurora Toolset allow

the author to do everything all in one place but, of course, this means the author must use

the scripting language of the game. Figure 2.4 shows a screenshot of the Aurora Toolset.

Another benefit of these tools is the interest they create within the games community

for the game. As mentioned before, this ability for the players to add more content to

their game can greatly extend a game’s life. It can also provide an interactive and exciting

workspace where the author can learn to program. It’s not hard to see that learning to

program in a visually enriched environment will be more engaging than the typical “Hello

World” program taught to first year computer science students.

Therefore, while ScriptEase may not be an all-in-one tool like the Aurora Toolset, it

makes up for this by not requiring authors to learn a scripting language and by shortening

the learning curve. However, ScriptEase can be made even easier by further simplification.

My research involves simplifying how options are set on actions and encounters by creating

a new method called Describers which is presented next.

18

Figure 2.4: Screenshot of the Aurora Toolset.

19

Chapter 3

Describers

The use of definitions was one of the main areas of ScriptEase identified as more compli-

cated than necessary. Definitions are necessary when an author wants to access an object’s

properties (find a creature’s hit points), combine values (do arithmetic to compute a crea-

ture’s heading), or set option values to be calculated at run time (find the nearest creature

to a door). Ultimately, definitions are used to set options or to provide the condition for a

ScriptEase if construct. To use definitions, an author has to sort through a lengthy list of

definitions to find the one that matches the goal.

To simplify how an authors finds and uses definitions, I developed a new way to set

option values. This new process uses Describers to allow the author to start with an English

sentence and modify it to describe the option they want to set.

This chapter will discuss the problems with definitions, what Describers are and how

they work, how knowledge is represented within Describers and, finally, how Describers

solve the definition problems.

3.1 Definition Problems

Describers were developed to solve the problems inherent in definitions. While examining

the pattern catalogue I discovered three problems with definitions as listed below.

1. Content overload.

Option types.

Similar definitions.

2. Multiple workspaces.

3. Linking definitions.

I then developed Describers with the intent of finding solutions to these problems.

20

3.1.1 Content Overload

When the author needs to create a new definition the entire definition catalogue is always

available and visible. The author sees all the definition patterns whether or not they relate to

the goal for the current definition. ScriptEase does attempt to focus the author by grouping

the definitions into multiple categories as shown in Figure 1.4. However, even after the

definitions are grouped there is still an overwhelming amount of data presented to the author

with about 20 groups averaging 15 definitions per group.

When an author is looking for a definition there are two concerns. First, the type of

object being defined must match the type of the option being set or be binary to be used as

a condition. Second, the semantics of the definition must match the goal. In ScriptEase the

definitions are grouped by semantics. This means the author must continue to sort the data

to find those that contain the correct definition type.

Option Types

In order to assign a definition to an option, the type of the defined object must either be the

same as the option type, or one of the option type’s subtypes. For example, an option of

type object can be set to a defined object of type creature because a creature is a subtype

of object. This does not work both ways, as an option of type creature cannot be set by a

definition of a generic object. Since ScriptEase has no knowledge of the option or condition

type when a definition is being constructed it is up to the author to remember the goal type.

Similar Definitions

Within the definition categories there are many definitions that look almost identical, but

contain small differences. An example of this can been seen in Figure 1.4. For example,

there are many definitions to find the nearest object, each with subtle differences. When an

author is searching for a definition it is important to notice these so that the correct definition

can be selected.

3.1.2 Multiple Workspaces

When using definitions the author must shift focus from the option panel as shown in Fig-

ure 3.1 to the encounter panel to create the new definition. The author must add the appro-

priate definitions to the definition block which can be seen in Figure 3.2. Most definitions

have their own options. For example, the definition random object shown in Figure 3.2 has

an option called object that describes the tag the random object must match. In addition to

21

Figure 3.1: ScriptEase window showing the encounter panel on top and the option panel on
the bottom.

Figure 3.2: Example of the definition block containing a single definition.

22

setting options in definitions, the author may need to link multiple definitions together. An

example of definition linking is given in section 3.1.3.

Once the definition is complete the author must move back to the original option or

condition panel and use the select object button to set the option to the completed definition

as shown in Figure 3.3. When switching from the option panel, the author must remember

the type of the option they are setting. Once the author has finished creating the definition,

the original option still must be linked to the new definition in the option panel.

Figure 3.3: Example of setting an option to a definition.

3.1.3 Linking Definitions

Forward chaining requires that the author reach the goal by building from the small details

towards the overall goal. For example, the author wants to determine how much gold to

award a PC for completing a task. To provide a scaleable adventure the author wants to

award the PC an amount of gold that is equal to the PC’s level times one hundred. To

complete this task the author must create some definitions. This task will require the author

to use two different definition patterns, one that finds the PC’s level and one that multiplies

two numbers together. To start, the author would need to create the definition Define The

Level as <invalids>’s level and set the creature option (currently invalid) to the PC. Next,

23

the author needs to create the definition Define Product as 0 times 0. In this definition the

author needs to set the first number (currently 0) to the PC’s level by using the known list to

reference the first definition. The second number can be set by choosing to enter a constant

and using the keyboard to enter one hundred.

If the author thought about this problem in the opposite order, i.e. first noting they

needed to multiply two numbers together and second that they needed to find the PC’s

level, they would run into difficulty. The definition that multiplies two numbers together

would be unable to “see” the definition of the PC’s level because of scope.

Scope determines which definitions are available to the other definitions within a def-

inition block. Specifically, a definition can only reference the definitions that are listed

before it. In the gold award example, if the author decided to create the two definitions in

the reverse order, the product definition would not be able to see the PC’s level definition

because of scope. The author does not receive any information as to why the definition is

not available in the known objects list and it would be up to the author to trouble-shoot the

problem.

It is common for an author to link multiple definitions. When linking is necessary, it

is important to understand both the types of the objects being defined and the scope of the

individual definitions. In addition, if definitions are linked together within the definition

block, the author must remember to set the original option to the final definition.

Describers provide a practical solution to these problems. At the end of this chapter we

will revisit this list to see how the Describers solved each of the three problems.

3.2 Describers - What are they and how do they work?

Describers were developed to solve the shortcomings of definitions. However, it was impor-

tant to retain the expressive power of definitions while preventing authors from catchable

errors, such as incorrect type matching.

The main concept of Describers is to have the author make a series of guided decisions.

Based on each decision, a template is provided that the author can modify as needed.

In the original version of ScriptEase when the author needs to set an option, a panel

similar to the one shown in Figure 3.4 is presented. This panel allows the author to select

a previously defined object from the known objects list by using the Select Object button.

For example, if the action requires the creature who entered a trigger, this dynamic creature

24

Figure 3.4: The panel for setting an option in the original ScriptEase.

will be placed in the known list by the trigger event. Alternatively, the author could use the

picker to select a game world object statically included in the module or set a numerical

or string value, or select from an enumerated list. For example, if the action requires the

Grumpy Dwarf who was placed behind the bar it can be selected using the picker. If the

author wants a dynamic object that does not have a previous definition, a definition must be

created. For example, if the author wants the action to be performed by the creature that is

currently nearest to a specific door, a new definition must be added to compute this creature.

Unfortunately, if an author needs to create a definition, the focus must move away from this

panel as discussed in section 3.1.2. With Describers I wanted to avoid the author having to

move between various panels by keeping all the information required by a single action in

the same panel.

When an author needs to set an option using Describers the panel looks like the one in

Figure 3.5. The author still retains the ability to set the option using any of the three methods

used in the original version of ScriptEase: known objects, picking, and new definitions.

These three methods have been renamed in the Describer to Recall it (the known objects),

Pick it (the picker) and Describe it (definitions). This order represents the relative difficulty

of using each method, with recalling being the easiest and describing the most difficult. To

access these choices with a Describer, the author clicks on the <invalid> text in the panel

and is given a menu to choose from as shown in Figure 3.6

The Recall it and Pick it options work the same way as with the original version of

ScriptEase. The Recall it option presents a hierarchical menu of known objects. The Pick it

25

Figure 3.5: The initial describer panel.

Figure 3.6: The menu an author sees when choosing to set an option.

26

option opens the picker dialog. However, suppose the author wants to select an object that

cannot be recalled or picked.

For example, suppose the author wants to describe the option as the nearest object to

Grumpy Dwarf. The author would choose to Describe it and select the Nearest Object

category from the menu. The panel would be updated and now look like Figure 3.7. The

line The () nearest object to <object 2> () is known as a describer line. Every describer

line is preceded by a label (in this example Object 1), which is used to indicate how/where

the line fits within the description. A single description can consist of multiple describer

lines.

Figure 3.7: Updated panel after the author chose to Describe it with the category nearest
object. The first line is the option line while the second is an example of a describer line.

At this point there are five things to note within Figure 3.7. The following five sub-

sections will discuss what each of these means to the author. First, that the describer line

starts with a label, Object 1. Second, the use of colored text: the label is green and the

describer line option, <object 2>, is red. Third, that the text on the first line, the option

line, (<invalid>) has changed to Object 1 which is the same as the label. Fourth, within

the describer lines there are sets of parentheses followed by a green arrow. And, fifth, that

both lines begin with a red x.

3.2.1 Describer Labels

Each describer line the author creates is given a default unique label. The labels are created

based on the type of object being described by the line. A number is added to make the label

27

unique. The labels are used to link where a describer line fits within the overall description.

An option that has been set by describing is updated with the label of the describer line it

created. For example, the label Object 1 was updated in the option line when the author

chose the description that transformed Figure 3.6 to Figure 3.7.

The default labels are not particularly informative to the author. However, the author

can change the labels to something more meaningful. In the above example the author chose

to use the Nearest Object category, so the author may want to change the label from Object

1 to Nearest Object. If the author clicks on the label at the start of a describer line, a single

menu option appears, Change line label, as shown in Figure 3.8. Once selected, Figure 3.9

shows the popup window that appears. Here the author enters the new label. Finally, once

the author clicks OK, the label on the main panel is updated with the new label, as shown

in Figure 3.10. The label is updated in two locations within the main panel: the start of the

describer line and the option line.

Figure 3.8: Menu to change a describer line’s label.

Labels also have a secondary use that is not as apparent as matching a describer line to

an option. The label of each describer line is added to the known objects list so the author

can reuse each describer line.

3.2.2 Text Colors

Text colors have always been used in ScriptEase to highlight information. Specifically, col-

ored text represented options the author can set. The different colors were used to represent

how an option was set, such as by a definition, selected from the known objects list, chosen

28

Figure 3.9: Popup window allowing the author to change a describer line’s label.

Figure 3.10: Example with new describer line label Nearest Object.

29

by using the picker, or selected from an enumeration of constants.

In the Describer, colors are used to identify not only how an option was set, but also

to inform the author how to interact with the describer line. The following list of colors

explains the meaning of each color, while Figure 3.11 shows an example set of describer

lines displaying all the colors.

• Red - an option that needs to be set.

• Orange - a choice point in the describer line. When clicked on, the author sees a small

set of choices that change the meaning of the describer line.

• Green - a label for a describer line. Green text within a describer line indicates that

an option was set by choosing to Describe it and guides the author to the label of the

created describer line that follows.

• Blue - an option set by choosing from the Recall it list.

• Pink - an option set by choosing from the Pick it list, where the picker either allowed

the author to manually set a value (number or string) or choose from an enumeration

(like from a list of effects or the state of a door).

• Purple - an option set by choosing from the Pick it list, where the author selected an

actual static module object (a door, creature, trigger, etc).

Figure 3.11: Example describer lines displaying the various text colors used. The displayed
menu lists the alternative choices to plus.

30

3.2.3 Setting Options / Linking Describer Lines

Describer lines may themselves contain one or more options that the author needs to set.

To set an option in a describer line the author is shown a similar menu to the one presented

when the author first chose to set the action option: Recall it, Pick it, and Describe it. If the

author chooses to Recall it or Pick it the result is inserted into the describer line, replacing

the option’s label and updating the option’s text color. An example of this can be seen in

Figure 3.11 where Grumpy Dwarf was chosen using Pick it and Enterer was chosen from

Recall it.

Should the author choose instead to Describe it a submenu is displayed showing a list

of categories. The category choices may be different from when the author chose the initial

describer line as the list is based on the type of the option in the describer line rather than

the type of the option in the original action. Once a choice is made, a new describer line is

added to the panel and the option’s text is changed to green and updated to the label of the

new describer line.

Figure 3.11 contains two describer lines with the labels: Nearest Object and Integer

1. The first label, Nearest Object is also found on the option line while the second label,

Integer 1 is repeated within the first describer line. The matching text is used to indicate

the connection between two pieces of information. The Nearest Object label found in the

option line indicates the object to which the original action option was set, in this case a

describer line, and it directs the author to the describer line with the matching label, Nearest

Object. Within the first describer line, the author decided to further describe Integer 1 as

specified by the green text. Once again, the label text, Integer 1, directs the author to the

matching describer line.

To understand the description presented in Figure 3.11, the author starts by reading

from the first describer line. Whenever the author reaches a green label, they move to the

describer line indicated by the label’s text and continue reading from there. After reaching

the end of a describer line, the author returns back to the label in the previous describer line

and continues reading. For example, the description in Figure 3.11 can be read: The (5 plus

<Number 5> th) nearest object to Grumpy Dwarf with same tag as Enterer.

3.2.4 Arrows

Each describer line is actually a representative of multiple plausible definitions. The author

can access the various potential definitions by modifying the describer line. One way the

author can modify a describer line is by adding optional phrases which are represented

31

by a pair of parentheses and a green arrow. The green arrows provide the mechanism for

adding a phrase. A right pointing arrow indicates that there is an option phrase that can

be inserted in the parentheses at the arrow’s location. Figure 3.12 shows an example menu

for expanding a describer line. Once an optional phrase has been added, the green arrow

changes to point to the left. A left pointing arrow follows an existing optional phrase and

can be used to either remove the current phrase or to change it, as shown in Figure 3.13.

Figure 3.12: The menu for adding an option segment.

Figure 3.13: The menu is displayed by selecting a left pointing arrow, allowing the author
to remove or change the optional segment.

32

3.2.5 Red X’s

ScriptEase uses a small red x located on the left hand side of a line to indicate that a pattern

is incomplete. I have extended this convention to apply to the describer panel where a red

x indicates an incomplete describer line. Examples of red x’s can been seen in most figures

within this section including Figure 3.13. A describer line is incomplete if there remains a

visible option that is not set, or if a describer line that was created to set an option within

the current line is incomplete. Once all sections of the description are complete, all red x’s

are removed and the author knows the description is complete. An example of a complete

description is shown in Figure 3.14.

Figure 3.14: An example of a complete description.

3.3 Knowledge representation - Graphs / Categories

In order to allow the author to select an initial definition and then modify it for context, the

way the definition knowledge was represented within ScriptEase needed to change. Def-

initions with similar information needed to be found and the similarities noted and a new

method for displaying and storing this information needed to be created. For example,

there are five definitions that return a nearest creature in ScriptEase. To display the sin-

gle describer line shown in Figure 3.14 requires all five of these similar definitions to be

combined into a single template.

33

3.3.1 Similarities

The describer uses two techniques to reduce the amount of information the author has to

view to set an option. The first technique was to show only definitions whose type matches

the option’s type. This can either be a direct match (doors only show doors) or the definition

type can be a subtype of the option type (doors are a subtype of objects). Since a container

is either a placeable or a creature, a container option can use a placeable or creature de-

scription. The second technique was to replace a set of similar definitions with a single

template. The first step in identifying the templates is to sort the definitions into categories

based on similarities of function. For example, look at the following list of definitions.

I have modified the definition names slightly from the original ScriptEase terminology to

highlight the similarities.

• Find different random creature with same tag as a specific creature

• Find random creature with same tag as a specific creature

• Find nearest creature to an object with same tag as another creature

• Find nearest creature to an object

• Find n-th nearest creature to an object

• Find n-th nearest creature with same tag as another creature

• Find different nearest creature to an object

There are two definitions containing n-th, two containing different, five with nearest

creature, two with random and four containing with same tag as. One way to group these

definitions is to construct two categories: nearest creatures and random creatures. In fact,

by simply looking at this list it is possible to find other definitions that would make sense

but are not listed, such as Find random creature and Find different random creature. This

allows a designer to find feasible definitions that otherwise may have been missed. Within

a group of sentences it is easy to note the areas that are similar and where the differences

are. For example, within the nearest creatures group all lines contain Find and nearest

creature, while only some of the sentences contain n-th, different and with same tag as

another creature. Within those differences it can be further noted that n-th and different are

never found in the same sentence, but both can be paired with with same tag as another

creature. This kind of analysis allows us to identify a single abstract description that spans

a large number of existing definitions and potentially missing definitions.

34

3.3.2 Graphs

By noting the similarities between groups of definitions it was possible to turn each group

into an abstract description represented by an acyclic directed graph. Two example graphs

representing the definitions presented in the last section can be seen in Figures 3.15 (nearest

creatures) and 3.16 (random creatures). The black nodes in the graph represent text, the red

nodes are options that need to be set by the author, the green dotted nodes are optional

nodes and the orange nodes (not shown) are choice nodes.

Find Creature Object

Creaturedifferent
with

same tag
as

tonearest

n-th number

Figure 3.15: Tree of creature nearest definitions

CreaturerandomFind

different

Creature
with

same tag
as

Figure 3.16: Tree of creature random definitions

This abstraction of definitions greatly reduces the amount of information visible to the

author. Each graph/group was given a name. When the author decides to use Describe it to

set an option, a description category must be selected. The category the author chooses has

a direct mapping to a single graph. Once a category is chosen, the author is given a default

description, also known as the initial describer line. This line is created by beginning at

the start node of the graph. Each graph has one start node which is the only node that has

no edges entering it. The describer line is generated by starting with the start node and

repeatedly moving to one of the next nodes that is either black or red. The line finishes

35

when there are either no more nodes to move to, or the only remaining nodes are green. If

there is more than one node to choose from (see Figure 3.17), the generator selects the first

node in the list created by the describer pattern designer. In the case of Figure 3.15, the line

would be Find nearest creature to object, and in Figure 3.17 the initial line would be The

creature who entered the module module.

The optional points in the graph, the green nodes, indicate where in the describer line

the green arrows should appear and what menu choices the author will have. In Figure 3.15

the first green arrow would represent two choices for the author: n-th or different.

The red nodes are the options that the author will need to set. The text within the nodes

indicates the type of the object that the node represents.

3.3.3 Choice Nodes

Some graphs contain choice nodes, which are locations in the graph where there are two

or more valid paths from a node and exactly one path must be chosen. The Enterer/Exiter

graph in Figure 3.17 is an example where the author must decide whether to select enterer

or exiter. A second choice node occurs in this graph where the author must choose between

module, area, and perimeter. The nodes where these choices exist show up in the describer

line as orange text, as stated in section 3.2.2 on text colors. Figure 3.18 displays an example

view of this graph as a describer line, with the menu for changing the second choice node

from module to area or perimeter displayed.

Figure 3.17: Tree of enterer/exiter definitions

36

Figure 3.18: Describer line representing enterer/exiter graph. The menu shows the options
for changing module.

3.3.4 Categories

Grouping definitions together based first on definition type and then on similarities allowed

us to reduce the total count of definitions without reducing the number of expressible def-

initions. In fact, the process of creating these graphs can discover definitions that were

initially missed. The graphs also allow new definitions to be included as alternative paths

through existing description graphs, without substantially increasing the information the

author sees.

Each graph is given a name to describe the overall context of the graph. The names

for the three graphs presented in this section are nearest creature, random creature, and

enterer/exiter. These names are presented to the author when the author chooses to describe

it. By referring to a description name the author can quickly find the appropriate category

and customize the generated describer line to suit the story.

3.4 Using Describers to solve the Definition problems

Now that we understand how the Describers work, let’s recall the original three problems

with definitions and examine how Describers can be used to solve them.

37

3.4.1 Content Overload

In section 3.1.1 I showed the volume of information the author is exposed to every time they

need to create a new definition. Since the definitions were created separately from where the

options are set, ScriptEase had no information as to the required option type and, therefore,

ScriptEase had to show all definitions. With Describers, ScriptEase now has the ability to

display only the describer lines (definitions) that match the correct option type. We took this

one step further by using graphs to represent data as discussed in section 3.3, allowing us to

combine multiple definitions into a single description line. This representation means that

the authors need only see a list of categories, each one representing a single graph, instead

of all the individual definitions. The ability to modify a describer line allows an author to

express all the definitions. For example, there are forty-one definitions for type creature.

These can be grouped into 10 graphs.

Option Types

As mentioned in section 3.4.1, ScriptEase can use Describers to access the option type

when the author decides to use Describe it. This allows the describer lines to be filtered

based on the option type. This knowledge continues when the author decides to set one of

the describer line options with a description of its own. The choices for the new describer

line are based on the current option the author is trying to set. This allows the author to

focus on definitions relevant to what they are working on instead of being overwhelmed by

all the possible definitions.

Similar Definitions

Describers work by grouping similar definitions together into a single category. The author

then chooses a category to work from and can modify the describer line as needed. Since

all similar definitions have been grouped together the author does not need to worry about

singling out the definition they want.

3.4.2 Multiple Workspaces

With definitions, if the author can’t use Recall it or Pick it to set an option in the option

panel, the author must add a definition to the definition block in the encounter panel. With

Describers, the author can use Describe it to set an option in the option’s panel. In addition,

if a describer line also needs to have an option set, its new description follows the describer

line in the option panel. The author can set any options, modify them, or replace them

38

with a new description. Since all of this is done within the same option panel, unlike with

definitions, the author always knows the context in which they are working.

3.4.3 Linking Definitions

Definitions required the author to use forward chaining where the author starts with the

entire game state and must construct a series of definitions that maps this game state to

the option required. Describers instead require backward chaining, where the author works

from the overall goal towards the small details (current game state).

Let’s use the same example as in the earlier section 3.1.3. The author wants to determine

how much gold to award a PC for completing a task. The PC will be awarded an amount

of gold that is equal to the PC’s level times one hundred. In the Describer the author starts

by choosing to Describe it and selects the category Math - Add, Subtract, Multiply, Divide,

Negate. The panel now shows the initial describer line <number 1> plus <number 2>. The

author would then need to click on plus and change it to multiply. Then the author would

set <number 1> by choosing to Describe it and the category Creature’s Statistics. The new

describer line would appear below the first: The <creature 1> gold. In this new describer

line the author needs to set the creature to the PC and change gold to total level. Finally,

the author needs to set <number 2> by choosing to pick it and entering 100. Figure 3.19

shows the final result.

Figure 3.19: Describer displaying the complete description for awarding gold to a PC that
is equal to the PC’s level times 100.

This design permits the author to work in only one direction, thereby preventing the

39

author from creating definitions before they are needed. In the example, suppose the author

had decided to start by describing the PC’s level (which is valid since level matches the

option type, number) first. Once the author had set the parameters in the resulting describer

line, the description would be complete. The author would be unable to include the de-

scriber line that multiplies the two numbers together as shown in Figure 3.20. By being

unable to continue, direct feedback is given to the author that the description being created

cannot be completed with the initial describer line chosen.

Figure 3.20: Describing the level to early.

The author may need to link multiple describer lines together, as in the example of

computing the reward amount, to create the complete description they have in mind. When

setting an option within a describer line the author always has the choice to Describe it

or Recall it or Pick it. This exists for all options within any describer line. If the author

chooses to Describe it a new describer line is created. Because all of the work is done

within the same workspace there is an immediate link between each new describer line and

the option that created it. This means the author does not need to create the description

and/or describer lines and then link them back to the option being set.

Once we had a working prototype of the Describers it was time to compare them with

definitions. The next chapter discusses the results of the user study we conducted comparing

the two tools.

40

Chapter 4

Study Evaluation

In order to evaluate the Describer, I ran a user study in which the participants used a mod-

ified version of ScriptEase containing Describers and the original version of ScriptEase

containing definitions. For the study, we referred to the two versions of ScriptEase as the

Describer and the Definer. The goal of the study was to determine which method the par-

ticipants found easier to use, preferred over all, and which method was more efficient.

4.1 The User Study

The user study was run at the University of Alberta in the Department of Computing Sci-

ence. This study received ethics approval from the Arts, Science and Law Research Ethics

Board under number 2040. The study lasted for one hour. All participants used both meth-

ods: the Describer and the Definer. Each participant was given two different test scenarios

and used each method on a different scenario. Each scenario consisted of five statements

(ScriptEase actions), with the first statement including a walkthrough on how to use the

specific method required for that scenario.

The object of the study was to compare the performance of the participants using the

two different methods. Were they able to complete more statements using one method

than the other? Did they prefer one method? Was there a transfer of knowledge (learning)

between the first method they used and the second? Was there a difference between female

and male participants on tool preference?

4.1.1 The Participants

The participants in this study were from the University of Alberta’s Psychology 104/105

classes in the Winter 2009 semester. The study’s participants were undergraduate university

students from 18 to 22 years of age (mean and median of 19). In exchange for participating

41

in the study, the students received course credit. Unfortunately, not all of the participants

were able to successfully complete the first statement using both methods. Since the first

statement was a walkthrough, data from these students was eliminated from the study. In

addition, some participants failed to record all the information required in the study or had

technical problems with their data files. After screening out these participants, there were

49 complete data records from the original 83 participants.

Of the 49 participants there were 33 females and 16 males. Only four participants had

any prior experience with programming and 33 of the 49 played video games a minimum of

once a month. Ninety percent used the computer daily, while the other 10% used it several

times a week. The participants ranged from 1st to 3rd year students (mean: 1.7, median: 1).

4.2 Test Scenarios

There were two different test scenarios designed for this experiment designated A and B

and they both consisted of five statements. Each statement described an action such as: The

chest spawns a penguin near the block of ice that is x closest to the pc. X is determined by

a roll of a 4 sided dice. In order to complete each statement, the participants would open a

specified module in ScriptEase. The module contained an action that represented the state-

ment. The participants were required to set all of the options for the action to make it match

the statement description. The first statement contained a walkthrough that introduced one

of the two methods to the participants. This walkthrough showed the participants exactly

how to set each option of the action to match the statement, using one method, either the

Describer or the Definer.

I wanted the participants to use a different set of statements for each method so that the

mechanism they used to set an option using the first method would not bias the way they

tried to set the same option using the second method. However, I also didn’t want to make

any method inherently easier by providing a set of statements specific to that method. To

prevent this, I created two different scenarios but had two groups use scenario A with the

Describer and scenario B with the Definer while the other two groups used scenario A with

the Definer and B with the Describer, resulting in the four different groups of participants.

Two of the groups used the Definer first and two of the groups used the Describer first to

prevent one method from having an advantage over the other. This ordering created the

four groupings listed in Table 4.1. The table also includes the number of participants in

each group.

42

Group Number 1st Method 1st Scenario 2nd Method 2nd Scenario Participants
1 Definer B Describer A 11
2 Describer A Definer B 14
3 Describer B Definer A 12
4 Definer A Describer B 12

Table 4.1: The four different user study groups.

This approach determined that I needed four test scenario booklets, two for each sce-

nario with the walkthrough individualized for each method. I kept the first statement in both

scenarios identical in order to keep the introduction to the two methods consistent. Two of

the four test scenario booklets can be found in Appendix A representing both scenarios and

methods (Describer A and Definer B).

Each action statement was saved in its own module file using a name such as 32ADesc4.mod

where the 32 was replaced by a participant number, A referred to the test scenario (A or B),

Desc referred to the method (Desc for Describer or Defn for Definer), and 4 referred to the

target statement, from 1 to 5. After completing a statement the participants were instructed

to save their module and open the next one.

4.2.1 Experimental Setup

Upon arrival, each participant was randomly assigned to one of the four groups. This as-

signment was done by having the students fill the room starting from the front to the back.

The computers had been set up ahead of time such that the four groups were cycled.

The study started with a brief introduction to the participants and the participants were

asked to sign a participant consent form. They were informed of their participant number

and reminded to use it on all of the forms they completed. I then told them that it was

important to record the time they finished each statement. The participants were instructed

to start with the top test scenario booklet (which was also numbered) and that they would

have twenty minutes to work on the statements. They were told to focus on correctness over

quantity. At this point they were instructed to start.

After the first twenty minutes, the participants were told to stop and save their work.

An assistant and myself then switched each computer to the alternate method and opened

up the next module for them. The participants were again reminded to record the time for

each statement and given 20 minutes to work on the second method. The first statement of

the second method was also a walkthrough.

43

At the end of the second twenty minutes, the participants were once again instructed to

stop and save their work. I then had them complete the survey found in Appendix B. The

survey was designed to collect three types of information. First, demographic information

about the participant including age, gender, year of study, experience with video games and

use of the computer. Second, participant preferences between the two methods based on

ease of use, intuitiveness, speed and overall preference. And third, to provide any written

comments and feedback.

Group 1 Group 2 Group 3 Group 4

Definer B Definer B Definer A Definer A
1 2 1 1
1 2 1 1
1 2 1 1
1 2 1 1
1 1 1 1
1 1 2 1
3 1 1 1
1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 1

2 1 1
3
1

Describer A Describer A Describer B Describer B
2 1 2 3
2 1 2 1
2 1 2 3
2 2 3 1
3 1 3 3
2 1 3 4
3 1 1 5
2 3 2 4
1 2 4 2
2 1 3 1
1 1 1 4

2 2 4
2
1

Table 4.2: Number of completed statements.

Once they finished the survey they received a debriefing document (found in Appendix C)

44

that explained the purpose of the study and how to contact me if they had any further ques-

tions.

4.3 Module Results

To interpret the module results of the user study I ran a 3-factor ANOVA test, using the

R statistical analysis software [18], to compare the main effects and interaction effects of

the order, method and scenario on the number of statements the participants were able to

complete. Table 4.2 contains the raw data and Table 4.3 presents the results of the test.

The immediate conclusions that can be made from the table results are that all three factors

produce statistically significant main effects on the number of statements the participants

were able to complete. These results indicate that students were able to complete more

statements using the Describer method than the Definer method. The results also indicate

that students completed more statements using the second method used (order) than the

first method which shows that learning took place from one method to the other. Finally,

students were able to complete more statements for scenario B than for scenario A.

Df Sum Sq Mean Sq F value Pr(>F)
Order 1 4.500 4.500 7.7398 0.0065803
Method 1 20.088 20.088 34.5502 6.933e-08
Scenario 1 8.295 8.295 14.2678 0.0002843
Order:Method 1 0.535 0.535 0.9195 0.3401833
Order:Scenario 1 0.008 0.008 0.0142 0.9055538
Method:Scenario 1 2.641 2.641 4.5419 0.0358010
Order:Method:Scenario 1 0.025 0.025 0.0426 0.8368916
Residuals 90 52.327 0.581

Table 4.3: A 3-Factor ANOVA test comparing the interaction effects of the order, scenario
and method on the number of completed statements.

The other conclusion from these results is that there is a significant interaction effect

between the method and scenario. This interaction effect is clear in Figure 4.1. The par-

ticipants were able to complete almost an equal number of statements on the Definer for

both scenarios. However, the participants able to complete considerably more on scenario

B than scenario A when using the Describer.

45

Figure 4.1: Graph showing the average number of statements participants were able to
complete on each method by scenario.

4.3.1 Time

As part of the study, the participants were asked to record the time they started each method,

and then the time they finished each statement. Because few participants were able to com-

plete more than one statement using the Definer, I only analyzed the time it took partici-

pants to complete the first statement using each method. The average times per group are

presented in Table 4.4. The four groups produced very similar average times on the first

method. The improvement in time was also similar between the groups.

I ran a second ANOVA test to compare the three factors (order, scenario and method)

against the time. The results of the ANOVA are shown in Table 4.5. These results show

that the order had a statistically significant influence on the amount of time it took the

participants to complete the statement. Apparently, students learned enough about setting

options in statements when they used the first method to significantly reduce the time it took

to complete a similar statement using the second method. However, the actual method and

scenario had no significant influence.

It is unfortunate that there were not enough participants able to complete more state-

ments using the Definer, since comparing the times for the later statements would provide

46

Group 1st 1st Average 2nd 2nd Average
Number Method Scenario Time Method Scenario Time

(min:sec) (min:sec)
1 Definer B 10:24 Describer A 7:22
2 Describer A 10:17 Definer B 7:43
3 Describer B 11:20 Definer A 6:49
4 Definer A 10:30 Describer B 7:27

Table 4.4: The average time by each group on completing the first statement using both
methods.

Df Sum Sq Mean Sq F value Pr(>F)
Order 1 248.39 248.39 30.5018 3.568e-07
Method 1 0.94 0.94 0.1155 0.7348
Scenario 1 6.56 6.56 0.8057 0.3719
Order:Method 1 0.27 0.27 0.0338 0.8546
Order:Scenario 1 0.01 0.01 0.0007 0.9794
Method:Scenario 1 0.14 0.14 0.0172 0.8960
Order:Method:Scenario 1 5.46 5.46 0.6700 0.4153
Residuals 85 692.19 8.14

Table 4.5: The average time by each group on completing the first statement using both
methods.

more information about how quickly the participants were able to grasp one method versus

the other. However, as the participants were able to complete statistically more statements

using the Describer than using the Definer, I can conclude indirectly that the speed with

which participants learned to effectively use the Describer must have been faster than the

speed they learned to use the Definer. Direct evidence of this result will require another

study.

4.3.2 Participants vs. Themselves

For a final analysis of the results, I looked at how many statements the individual partici-

pants completed using the Describer and compared it to the number they completed using

the Definer. The results are presented in Table 4.6. The four participants (8%) who com-

pleted more statements using the Definer were all part of Group 2. About 55% of the

participants completed at least 1 more statement using the Describer, and just over 37%

completed the same. Of the participants who completed more using one method versus the

other, they were almost 7 times more likely to do so using the Describer than the Definer.

47

more statements -1 0 >0 +1 +2 +3 +4
of participants 4 18 27 14 7 5 1

Table 4.6: Number of participants who created x many more statements using the Describer.

4.4 Survey Results

Part of the study required the participants to fill out a survey providing demographic infor-

mation along with rating the two methods over four characteristics: Easier, Faster, More

Intuitive and Overall Preference. The participants were asked to rank each of the four char-

acteristics on the scale shown in Table 4.7.

Rank Definer Definer Slightly Same Describer Slightly Describer
Better Better Better Better

Value 1 2 3 4 5

Table 4.7: Rankings used on Survey and the associated numerical value used in evaluating.

The results of the survey are presented in four parts by grouping the participants: ev-

eryone, gender, gamers, and programmers.

4.4.1 Everyone

The results of all 49 participants are summarized in Table 4.8. The first five rows show the

number of participants who choose each ranking for the four characteristics. The following

three rows group the totals of the Better and Slightly Better for each method. The third last

row provides the mean which was calculated by assigning each ranking a value from one

to five. The associated rank and value can be seen in Table 4.7. A mean of 3 would rate

the two methods as equal, while a mean > 3 leans towards the Describer and < 3 leans

towards the Definer. The final 2 rows are the results of a T-Test which was calculated with

an expected mean of 3.

For all four characteristics the mean of the results was above 3, in support of the De-

scriber. However, only three of the four results produce statistically significant results:

Easier, Faster and Overall Preference. The strongest value comes from the Overall Prefer-

ence characteristic with a mean of 3.71. The fourth characteristic, More Intuitive, produced

a p-value of 0.07698, which is not below the 0.05 value needed for 95% confidence.

48

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 15 18 10 21

Describer Slightly Better 17 12 14 8
Same 7 7 12 11

Definer Slightly Better 0 5 8 3
Definer Better 10 7 5 6
Total Describer 32 30 24 29
Total Definer 10 12 13 9
Total Same 7 7 12 11

Mean 3.55 3.59 3.33 3.71
T-Test t-value 2.6444 2.8726 1.8073 3.5729
T-Test p-value 0.01103 0.006045 0.07698 0.0008159

Table 4.8: Survey results of all participants (everyone).

4.4.2 Gender

The next step I took was to break the results down based on gender. There were 33 female

and 16 male participants.

Females

The results of the female population produced even stronger z-values towards the Describer

then the overall results. As Table 4.9 shows, all four categories produced statistically sig-

nificant p-values. In fact, the number of participants who preferred the Definer went from

a range of 17-27% for everyone down to a range of 12-21% for females. Once again, the

strongest characteristic was the Overall Preference.

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 10 11 6 14

Describer Slightly Better 12 8 11 5
Same 6 7 9 10

Definer Slightly Better 0 4 5 2
Definer Better 5 3 2 2
Total Describer 22 19 17 19
Total Definer 5 7 7 4
Total Same 6 6 9 10

Mean 3.67 3.61 3.42 3.82
T-Test t-value 2.8611 2.6347 2.1257 3.8018
T-Test p-value 0.007379 0.01287 0.04124 0.0006091

Table 4.9: Survey results of female participants.

49

Males

There were only 16 male participants and none of the data was able to produce statistically

significant confidence values as shown in Table 4.10. The strongest characteristic for the

males was Faster, with none of the males ranking the two methods as equal. However, the

most interesting result was the characteristic More Intuitive, where the males were spread

almost equally across all five ranks. The total results of the rankings do appear to give the

Describer an edge in Easier, Faster and Overall Preference, but more data is needed to be

able to give a conclusive result.

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 5 7 4 7

Describer Slightly Better 5 4 3 3
Same 1 0 3 1

Definer Slightly Better 0 1 3 1
Definer Better 5 4 3 4
Total Describer 10 11 7 10
Total Definer 5 5 6 5
Total Same 1 0 3 1

Mean 3.31 3.56 3.13 3.5
T-Test t-value 0.7346 1.3147 0.3333 1.1677
T-Test p-value 0.4739 0.2084 0.7435 0.2611

Table 4.10: Survey results of male participants.

4.4.3 Gamers/Non-Gamers

I then decomposed the results based on whether or not the participant played games. Those

who stated they played at least once a month were categorized as gamers and everyone else

as non-gamers. There were 33 gamers and 16 non-gamers.

Gamers

Did gaming experience change the participants’ feelings? Table 4.11 would indicate it did

not. Once again there were clear statistically significant results in the Easier, Faster and

Overall Preference categories.

Non-Gamers

The 16 non-gamers did not produce any statistically significant results as shown in Ta-

ble 4.12. Interestingly, the strongest characteristic was Easier and was borderline confident.

50

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 11 13 7 15

Describer Slightly Better 13 7 10 7
Same 1 5 7 5

Definer Slightly Better 0 4 6 3
Definer Better 8 4 3 3
Total Describer 24 20 17 22
Total Definer 8 8 9 6
Total Same 1 5 7 5

Mean 3.58 3.64 3.36 3.85
T-Test t-value 2.1177 2.5525 1.6445 3.6129
T-Test p-value 0.04207 0.01567 0.1099 0.001025

Table 4.11: Survey results of participants who play video games at least once a month.

The two lowest results were More Intuitive and Overall Preference which are also the results

where the total number of participants who preferred the Describer was less than half. The

Easier and Faster results do appear to lean towards the Describer but more data is needed

to provide any conclusive results. It is important to note that non-gamers are not a target

group of ScriptEase, as it is highly unlikely for a non-gamer to be involved with designing

a video game. However, the results from non-gamers can still provide interesting insights

as they will present a different view.

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 4 5 3 6

Describer Slightly Better 4 5 4 1
Same 6 2 5 6

Definer Slightly Better 0 1 2 0
Definer Better 2 3 2 3
Total Describer 8 10 7 7
Total Definer 2 4 4 3
Total Same 6 2 5 6

Mean 3.50 3.50 3.25 3.44
T-Test t-value 1.5811 1.3284 0.7746 1.1634
T-Test p-value 0.1347 0.2039 0.4506 0.2628

Table 4.12: Survey results of participants who do not play video games.

4.4.4 Programmers/Non-Programmers

Finally I looked at the results based on prior programming experience.

51

Programmers

There were 4 participants who had any programming experience. Because of the low num-

ber of programmers, I am unable to make any claims about the two methods or run a T-Test.

I have presented the data in Table 4.13, which shows that the four participants all leaned

heavily towards the Describer. More participants are needed before the results can be ana-

lyzed. I expected that the programmers might see no difference between the two methods

because they are two ways of accomplishing the same task. For programmers, both methods

can be viewed as a way to set function arguments.

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 2 2 0 4

Describer Slightly Better 2 2 3 0
Same 0 0 0 0

Definer Slightly Better 0 0 1 0
Definer Better 0 0 0 0
Total Describer 4 4 3 4
Total Definer 0 0 1 0
Total Same 0 0 0 0

Table 4.13: Survey results of participants with programming experience.

Non-Programmers

Of the 49 participants, 45 had no programming experience. The results for the non-programmers

are shown in Table 4.14 and are very similar to the everyone group results.

Survey Answer Easier Faster More Intuitive Overall Preference
Describer Better 13 16 10 17

Describer Slightly Better 15 10 11 8
Same 7 7 12 11

Definer Slightly Better 0 5 7 3
Definer Better 10 7 5 6
Total Describer 28 26 21 25
Total Definer 10 12 12 9
Total Same 7 7 12 11

Mean 3.47 3.51 3.31 3.6
T-Test t-value 2.1062 2.3304 1.6132 2.8657
T-Test p-value 0.04092 0.02443 0.1139 0.00636

Table 4.14: Survey results of participants who do not have programming experience.

52

4.5 More Data

The study provided conclusive results in almost all aspects. However, due to the incon-

clusive results from the survey regarding intuitiveness, the lack of male participants and

the lack of programmers, I intend to add data to this study by repeating the experiment

with more participants. Adding participants should lower the variance. Obtaining more

programmers may involve finding participants from a wider pool.

53

Chapter 5

Future Work and Conclusion

In this chapter I present a summary of the work presented in this thesis followed by some

suggested future work. I then finish with a few concluding remarks.

5.1 Summary

This dissertation discusses the development of a new technique, Describers, for setting

options in ScriptEase. Describers were created to solve the three problems identified with

the current technique of using definitions.

1. Content overload - all definitions are available at all times which means the author

needs to be aware of the option type and the definition’s return type. The Describer

limits the amount of information the author sees in two ways, by only displaying

descriptions that match the option type and grouping similar descriptions.

Option types - descriptions are filtered such that only those that match the type

of the option being set are accessible for setting an option.

Similar definitions - similar descriptions are grouped together to form acyclic

directed graphs so that an author can choose a category (mapped to a single graph)

and then, by modifying the resulting statement, can access the various descriptions.

2. Multiple workspaces - instead of the author needing to leave the option panel to

create one or more definitions, all the work is done in the option panel which allows

the author to work in the context of the option being set.

3. Linking definitions - linking multiple definitions requires the author to make sure the

definitions have been correctly ordered in the definition block and to correctly match

definition return types with option types. Since all work in the Describer remains

in a single panel, ScriptEase can do the description to option type matching for the

54

author by filtering the descriptions. The author can connect multiple descriptive lines

together by choosing Describe it when setting an option.

The efficiency and desirability of the Describers was tested in a user study where the

participants tried to complete a set of statements using the Describer and using an origi-

nal version of ScriptEase referred to as the Definer. The results were conclusive that the

Describer was more efficient than the Definer. The participants were able to complete an

average of 2.14 statements using the Describer compared to the 1.27 using the Definer. The

participants overall preferred the Describer, as did the females and gamers. The results of

males, non-gamers and programmers were inconclusive.

5.2 Future Work

As always, finishing one phase of research produces new questions and paths for future

work. For my work with Describers there are two main paths that I believe should be

explored next: more user studies and further simplification.

5.2.1 More User Studies

The results we gained were excellent, but there are still unanswered questions. We know

that females preferred the Describer but were unable to make any conclusions about what

males prefer. The same can be said for programmers as we had such a small number of

participants with any programming experience.

While females produced a conclusive result on which tool was more intuitive, and the

result for gamers was right on the edge of statistically significant, it was not significant

for everyone. I believe that another study designed to focus specifically on evaluating this

characteristic is needed. This also suggests that there may be some other part of ScriptEase

that authors are finding difficult to use that is affecting how intuitive the participants found

the methods. A new study would be able to look into this in more depth.

One of the early motivations for further simplification was to make ScriptEase more

accessible to younger students. As mentioned in the related works (Chapter 2) both Scratch

and Alice are aimed at younger students, placing them in a different category from ScriptEase.

ScriptEase has been successfully used by Grade 10 students before [9, 21, 8, 3, 4, 5], but has

never been used in a study with authors younger than Grade 10. A new study with Grade 6

or 7 students trying to use a version with Describers would allow us to see how accessible

ScriptEase is for younger authors.

55

5.2.2 Further Simplification

While simplifying ScriptEase with the creation of Describers is a large step forward to-

wards simplifying ScriptEase, it is not the only area that can benefit from simplification.

For my research, I implemented Describers to set options for encounters. However, options

also need to be set in Behaviors and Quests patterns, and Describers should also be im-

plemented for these patterns. Another area for simplification exists in creating conditions

within patterns.

While programmers understand if-statements and how to create the conditional state-

ment, this is a task many non-programmers find extremely difficult. However, these same

non-programmers understand how to phrase yes-no questions and this type of question can

be easily translated into conditional statements behind the scenes. I believe that the un-

derlying structure of Describers can be transferred easily over to solving the problem of

creating conditional statements by having the authors describe yes-no questions.

5.3 Concluding Remarks

As the video game industry continues to grow, the bottleneck created by content creation

will become a larger strain. Tools can help ease the scripting bottleneck by aiding designers

who are usually non-programmers. Video games often include tools to allow authors to

create their own levels and modules but require the authors to learn a scripting language

specific to the game. ScriptEase is one of the few available tools that attempts to bridge this

gap.

My thesis looked at how to further simplify ScriptEase and make it even more accessible

by changing the way options are set. The new technique, Describers, was then shown

through a user study to be much more efficient and was preferred over the original method of

using definitions. Further research through more user studies and future simplification will

continue to make video game design more accessible to non-programmers and eventually

may eliminate the content creation bottleneck while providing more engaging games.

56

Bibliography

[1] Eric Bangeman. Growth of gaming in 2007 far outpaces movies, mu-
sic. Website, 2009. http://arstechnica.com/gaming/news/2008/01/
growth-of-gaming-in-2007-far-outpaces-movies-music.ars.

[2] Bethesda. Oblivion. Website, 2009. http://www.elderscrolls.com/home/
home.php.

[3] Mike Carbonaro, Maria Cutimisu, H Duff, Stephanie Gillis, Curtis Onuczko, Jonathan
Schaeffer, A Schumacher, Jeff Siegel, Duane Szafron, and Kevin Waugh. Adapt-
ing a commercial role-playing game for educational computer game production. In
GameOn North America, 2006.

[4] Mike Carbonaro, Maria Cutimisu, Matthew McNaughton, Curtis Onuczko, Thomas
Roy, Jonathan Schaeffer, Duane Szafron, Stephanie Gillis, and Sabrina Kratchmer.
Interactive story writing in the classroom: Using computer games. In Digital Games
Research Association (DIGRA), pages 323–328, 2005.

[5] Mike Carbonaro, Maria Cutumisu, Harvey Duff, Stephanie Gillis, Curtis Onuczko,
Jeff Siegel, Jonathan Schaeffer, Allan Schumacher, Duane Szafron, and Kevin Waugh.
Interactive story authoring: A viable form of creative expression for the classroom.
Computers and Education, in press, 2007.

[6] CMU. Alice. Website, 2009. http://www.alice.org.

[7] CMU. Storytelling alice. Website, 2009. http://www.alice.org/kelleher/
storytelling/index.html.

[8] Maria Cutimisu, Curtis Onuczko, Duane Szafron, Jonathan Schaeffer, Matthew Mc-
Naughton, Thomas Roy, Jeff Siegel, and Mike Carbonaro. Evaluating pattern catalogs
- the computer games experience. In International Conference on Software Engineer-
ing (ICSE), pages 132–141, 2006.

[9] Maria Cutumisu, Curtis Onuczko, Matthew McNaughton, Thomas Roy, Jonathan
Schaeffer, Allan Schumacher, Jeff Siegel, Duane Szafron, Kevin Waugh, Mike Car-
bonaro, Harvey Duff, and Stephanie Gillisr. Scriptease: A generative/adaptive
programming paradigm for game scripting. Science of Computer Programming,
67(1):32–55, June 2007.

[10] Rockstar Games. Grand theft auto iv. Website, 2009. http://www.
rockstargames.com/IV/.

[11] Yahoo! Games. August 30: Neverwinter nights press release - over 1,000 mod-
ules now available. Website, 2009. http://www.videogames.yahoo.com/
news-1113872.

[12] GI GamesIndustry.biz. Gta iv: Most expensive game ever devel-
oped? Website, 2009. http://www.gamesindustry.biz/articles/
gta-iv-most-expensive-game-ever-developed.

57

[13] GameZine.co.uk. Assassin’s creed development team triples in size. Website, 2009.
http://www.gamezine.co.uk/news/games/a/assassin-s-creed-2/
assassin-s-creed-development-team-triples-in-size-\$1296733.
htm.

[14] Electronic Arts Inc. Spore. Website, 2009. http://www.spore.com/.

[15] M. McNaughton, M. Cutimisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker.
Scriptease: Generative design patterns for computer role-playing games. In 19th IEEE
International Conference on Automated Software Engineering (ASE), pages 88–99,
2004.

[16] MIT. Scratch. Website, 2009. http://scratch.mit.edu.

[17] Otter. The movie industry vs. the gaming industry. Website, 2009.
http://www.associatedcontent.com/article/1015720/the_movie_
industry_vs_the_gaming_industry.html?cat=19.

[18] R Project. R project for statistical computing. Website, 2009. http://www.
r-project.org/.

[19] Microsoft Research. Kodu. Website, 2009. http://research.microsoft.com/
en-us/projects/kodu/.

[20] ScriptEase. Scriptease. Website, 2009. http://www.cs.ualberta.ca/˜script.

[21] Duane Szafron, Mike Carbonaro, Maria Cutimisu, Stephanie Gillis, Matthew Mc-
Naughton, Curtis Onuczko, Thomas Roy, and Jonathan Schaeffer. Writing interactive
stories in the classroom. Interactive Multimedia Electronic Journal of Computer-
Enhanced Learning(IMEJ), 7(1), 2005.

[22] Ubisoft. Assassin’s creed 2. Website, 2009. http://assassinscreed.com/.

58

Appendix A

Test Scenario

59

Test Scenario B – Definer

Participant Number: _______

Instructions: Work your way through the below statements by using the describer to set
the options according to the statement. When you open the module, the options that are to
be set appear as <invalid>. After you complete each statement save the current file,
record the time and open the next one according to the directions.

File Names: Each file is named using first your participant number, then the test scenario
A or B, then Desc or Defn for describer or definer and finally the statement number.
Ex: For example, 32BDesc4.mod is the file for participant 32, on Test Scenario B, using
the Describer for statement 4. Replace the 32 by your participant number.

Focus on making sure your solutions are correct. It is not important to finish all parts in
the time given.

The first statement includes a walk-through to introduce you to the tool.

Time Starting

Statement 1: When the trigger is entered, a random object with the same tag as Bob
opens the metal door.

After opening the module and expanding the tree in the top frame ScriptEase should now
look similar to the below picture:

The red x’s are to let you know that there are remaining options that need to be set. You
will notice that these red x’s also appear in the describer pane on the bottom.

In the top frame, click on the line A <invalid>* closes <invalid> to bring it to focus.
Notice that the bottom pane has changed and there are four tabs: Description, User, Door
and Open.

We need to change three things: set the User to a random object with tag Bob, set the
Door to the metal door, and change the Open option from close to open. However, we are
going to set them in a different order.

Let’s start with setting the Door. If you click on the Door tab you will see there are two
radio buttons at the bottom of the frame. The top says Select Door and the bottom says
Module Blueprint. All options will provide two similar options for setting the with slight
variations.

The top radio button allows you to set the option by reusing an option you have previous
set. If you click on the top radio button, you will notice you can now use the dropdown
menu to the right. In it you will find one option, Door (Metal Door). By selecting the
Door (Metal Door) the option is now set.

However, there is another way you can set this option, and that is by using the Pick
button. If you click the Pick button the Picker (seen below) will open up and you can
choose the door from there.

Next let’s change closes to opens. If you click on the Open tab, it will look similar to
what you originally saw on the Door tab. This time, instead of getting to use the Pick
button at the bottom, you are setting a constant so there is a drop down menu with the
two possible values – open and close. Since we want the Door to open, change the
dropdown menu to open. Your screen should now look similar to the one below:

Finally, we need to set the User to be a random object. To do so, we will need to use a
definition.

To add a definition, right click where in the top frame where it says “Trigger enter – open
door.” From the menu that appears, choose Add a Definition, then in move to Finding
Objects and select the definition Find a Random Object that has the same tag as a
specific object, which should be listed third from the top. Your screen should now look
like the picture below:

Expand the highlighted line Define Random Object and select the definition.

The bottom frame should look similar to what you saw earlier when you were setting the
Door. This time we need to set the Object to be Bob. So click on the Object tab, and then
use the Pick button to set the object to Bob.

At this point, our definition is all set. However, the definition’s name is Random Object
which is only slightly descriptive. To make the name easier to recall move back to the
Description tab. At the very bottom it says “Label” followed by a text field that specifies
the definition’s name – currently Random Object. Change the label to read Random Bob
instead.

Finally, we need finish by setting the User back in our original definition. So click on the
line <invalid>* opens Door (Metal Door) and then click on the User tab. Since we have
already created the definition of the user we want so we use the top radio button Select
Object. Select the radio button, and then use the drop down menu to choose Random Bob.

Now that you’ve finished working through the first statement, record your time. The rest
of the statements do not provide a walkthrough. If you get stuck, please raise your hand
and we will assist you.

Time Finished

Save module, and then open next module 32BDefn2.mod. (Change 32 to your participant
number)

Statement 2: Then, create a potion of Cure Critical Wounds 1.7m in front of the Enterer.

Time Finished

Save module, and then open next module 32BDefn3.mod. (Change 32 to your participant
number)

Statement 3: Fred then faces the created item.

Time Finished

Save module, and then open next module 32BDefn4.mod. (Change 32 to your participant
number)

Statement 4: Then, the x nearest creature to Fred with tag Polar Bear picks up the
created item. X is determined by the roll of a 6 sided dice.

Time Finished

Save module, and then open next module 32BDefn5.mod. (Change 32 to your participant
number)

Statement 5: Then give the Enterer some gold. The amount of gold is equal to the
current gold owned by the enterer plus their age. Name the gold amount Reward.

Time Finished

Save your module and then close ScriptEase.

Test Scenario A – Describer

Participant Number: _______

Instructions: Work your way through the below statements by using the describer to set
the options according to the statement. When you open the module, the options that are to
be set appear as <invalid>. After you complete each statement save the current file,
record the time and open the next one according to the directions.

File Names: Each file is named using first your participant number, then the test scenario
A or B, then Desc or Defn for describer or definer and finally the statement number.
Ex: For example, 32ADesc4.mod is the file for participant 32, on Test Scenario A, using
the Describer for statement 4. Replace the 32 by your participant number.

Even though you are recording your time, do not focus on trying to complete all the
statements but on getting them correct.

The first statement includes a walk-through to introduce you to the tool.

Time Starting

Statement 1: When the trigger is entered, a random object with the same tag as Bob
opens the metal door.

After opening the module and expanding the tree in the top frame ScriptEase should now
look similar to the below picture:

The red x’s are to let you know that there are remaining options that need to be set. You
will notice that these red x’s also appear in the describer pane on the bottom.

In the top frame, click on the line A <invalid>* closes <invalid> to bring it to focus.
Notice that the bottom pane has changed and there are four tabs: Description, User, Door
and Open.

We need to change three things: set the User to a random object with tag Bob, set the
Door to the metal door, and change the Open option from close to open. However, we are
going to set them in a different order.

Let’s start with setting the Door. If you click on the Door tab you will see xDoor (Door):
<invalid> . The first part of the line Door (Door) specifies first the name of the option
and then in brackets the option type. In this case, they’re both the same. The x means it
hasn’t been set yet.

The <invalid> is where you start to set the option. If you change the Door from <invalid>
in the bottom pane it will change in the top frame. Let’s click on <invalid> and try to set
it. You will notice that you have three choices: Recall it, Pick it, and Describe it. You will
always have these three choices when setting a option.

Recall it: This is used when you want to reuse an option you have previously set.
Pick it: If you want to choose a specific object directly (ie you know what creature,
placeable, number, etc you want to use).
Describe it: This is used when you want a more complex option description. In this
example we will use describe it to set the random object for the User.

For the door, there are two ways we can set it. We can use pick it to choose the Metal
Door in the drop down window (as seen below) or we can use recall it and choose “The
Door (Metal Door).” Notice that if you use pick it the text in the top frame changes to
“<invalid>* closes Metal Door” but if you use recall it, the top frame’s text becomes
“<invalid>* closes The Door (Metal Door).”

Next let’s change closes to opens. If you click on the Open tab, it will look similar to
what you originally saw on the Door tab. This time it says “Open (Binary): close”. The
option name is Open, the type is Binary and it is currently set to close. If you click on
close, you will notice that this time you only have one choice, to pick it. The pick it
window is different for this type then it was for the Door. You only get two options, open
and close. Since we want the Door to open select open and click ok. Your screen should
now look similar to the one below:

Finally, we need to set the User to be a random object. First click on User tab. Because
we want to set the value to something more abstract – we don’t know what creature, just
that it’s a random one – we need to describe the User. So this time after clicking on
<invalid> choose to describe it. Here you will notice you have a set of choices similar to
the recall it menu. Since we want a random object, let’s choose that menu item. The
bottom pane should now look like the picture below.

We’re not quite done, as the statement specified that the random object has to have the
same tag as Bob. You should see two green triangles next to two sets of brackets. These
green triangles allow you to expand the brackets to change the statement. If you click on
them, you should notice that each shows an optional descriptive phrase different and with
same tag as. Since we want to set the same tag, we will use the second triangle and add
with same tag as. The line should now have expanded to look like below.

The last thing we need to do is set the new option that appeared in the statement <object
2> Since we know we want the same tag as Bob, we can use pick it to find him in the
creature section. The statement should be complete, and the red x’s should have
disappeared from both the bottom pane and the line in the top pane. It may continue to
show the red x’s on the first two parts of the tree, but if you select the very top line they
should all disappear. If they do, then that means all options have been set and you are
done.

Notice that the line in the top pane now reads Object 1* opens Door (Metal Door). Object
1 is not very descriptive. We can change this text by clicking on the Object 1: line
(second line) in the bottom pane. This will display a menu item to change the line label.
Let’s do so and set it to Random Bob. Click ok and now the line in the top pane makes
more sense. “Random Bob* opens Door (Metal Door).

Now that you’ve finished working through the first statement, record your time. The rest
of the statements do not provide a walkthrough. If you get stuck, please raise your hand
and we will assist you.

Time Finished

Save module, and then open next module 32ADesc2.mod. (Change 32 to your participant
number)

Statement 2: Then, Bob creates a chest 2.5m in front of the bench. Name the location
Chest Location.

Note: Chests are found under placeables.

Time Finished

Save module, and then open next module 32ADesc3.mod. (Change 32 to your participant
number)

Statement 3: Sally then takes a the Potion of Owl’s Wisdom from the chest created in the
previous statement.

Time Finished

Save module, and then open next module 32ADesc4.mod. (Change 32 to your participant
number)

Statement 4: Then, the chest spawns a penguin near the block of ice that is x closest to
the pc. X is determined by a roll of a 4 sided dice.

Note: Ice Blocks are found under placeables.

Time Finished

Save module, and then open next module 32ADesc5.mod. (Change 32 to your participant
number)

Statement 5: The spawned penguin then starts attacking the x nearest object to the
Enterer with tag Chicken. X is the total number of npcs in the City Area minus 3. Name
the attacked Chicken.

Time Finished

Save module and close ScriptEase.

Appendix B

Survey

89

Post-Study Questionnaire

Participant Number: ______

Age: ___

Gender: ___

Current Degree and Major: ___

Year of Study: ______

How regularly do you play video games? (check one)

Never □ Once a month □ Once a week □ Several times weekly □ Daily □

How many computer or console role-playing games (RPGs) have you played? (check one)

0 □ 1 □ 2 □ 3 □ 4-6 □ ≥7 □

Have you written computer programs before? (check one)

Yes - lots □ Yes - little □ No - Never □

How often do you use a computer? (check one)

Once a month □ Once a week □ Several times weekly □ Daily □

What do you use the computer for? (check all that apply)

Word processing (ex. Microsoft Office) □ Playing games □ Email □

Social Networking (ex. Facebook) □ Internet □ Multimedia (videos/music) □

For the following section you are comparing the two different versions of ScriptEase – the
Describer and the Definer. For each question, use the scale to select which tool you think the
statement apply to best and circle your choice.

Easier?
Describer Better … Slightly Better … The Same … Slightly Better … Better Definer

Faster?

Describer Better … Slightly Better … The Same … Slightly Better … Better Definer

More intuitive?
Describer Better … Slightly Better … The Same … Slightly Better … Better Definer

Overall Preference?

Describer Better … Slightly Better … The Same … Slightly Better … Better Definer

Comments (optional):
__
__
__
__
__
__
__
__
__

Appendix C

Debriefing Document

92

Debriefing
Is it more intuitive to describe versus define in ScriptEase?

Thank you for participating in this study. As I’m sure you’re aware, video games are a growing
market. More recently, video games have started providing tools to the player allowing them to
become a designer and design their own levels. The more sophisticated tools allow the designer to
create games with intricate storylines. However, in order to successfully use these tools, the
designer usually needs to have a programming background as the control of the characters and
objects in the game are in a series of scripts. This means that a lot of designers can’t create their
own games without going through a steep learning curve of teaching themselves to program.

ScriptEase has been designed with the designer in mind. The goal behind ScriptEase is to make
video game design accessible to all users regardless of programming experience. However, there
is only so much simplification that can take place before the amount of customization is impeded.
This means that some areas of complexity have to be retained to allow the designer full control.

The describer and the definer are an example of such an area. When choosing what to attach a
script too, a user shouldn’t be limited only to the choices they can pick from a list. A fun game
has dynamic capabilities where not everything is completely decided ahead of time.

For example, if the player character walks into a room that has three guards randomly wandering
the room. In the middle of the room is a chest which the guards are guarding. If the player
character starts to approach the chest, it makes more sense for the guard that is closest to the
player character to approach and warn the player character then it does for the guard farthest
away. In order to do this, the guard that is assigned to approach the player character should be
chosen while the game is running, not ahead of time as we don’t know which guard will be
closest. To set this in ScriptEase we need to define or describe it instead of statically setting it to a
specific guard.

At the end of the day, we are trying to find how to keep all the complexity while staying
accessible to non-programmers. This experiment is looking at the Definer and the Describer. We
want to see which version is easier to use to complete the same task. To do so all participants
were given one of four scenarios:

1) Use the Definer with Test A, then the Describer with Test B
2) Use the Definer with Test B, then the Describer with Test A
3) Use the Describer with Test A, then the Definer with Test B
4) Use the Describer with Test B, then the Definer with Test A

The four scenarios are set up so that when we are analyzing the results, we can check to see if
experiment A or B was inherently easier, and if the order of using the two tools made any
difference in overall preference.

Our hypothesis is that a describer will be easier to use than a definer. We believe that the definer
allows the user too many options making it easier to get lost and make mistakes when trying to
define a statement. The describer on the other hand limits the set of choices the user sees based on
the return type a particular option needs. This should help guide the user to the correct solution.

Once again, thank you very much for participating. If you have any questions about the study you
can contact Neesha Desai via phone (780 492-3725) or email (neesha@cs.ualberta.ca) or Dr.
Duane Szafron via phone (780 492-5468) or email (duane@cs.ualberta.ca).

If you have questions about your research participation, please e-mail your questions to the
Research Participation Coordinator at rescred@ualberta.ca, or you may contact Dr. Tom Johnson
(Director of the Research Participation Program) at 492-2834.

