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Abstract

The quest for higher data rates has led to significantly more complex physical layer signal 

processing algorithms. This complexity impacts the design and implementation of wireless 

communication systems in two different ways. First, the great computational demands can 

exceed the performance available from even high-end processors. Hence, it is important 

to investigate architectural techniques that facilitate the implementation of the necessary 

real-time signal processing instead of using a faster, but increasingly expensive and more 

power-hungry, conventional processors. Second, significant design effort must be dedi

cated to simulating and verifying alternative signal processing algorithms. For example, 

the Monte Carlo (MC) simulation technique is commonly used to evaluate the bit error- 

rate (BER) performance of these systems. While software simulations are widely used in 

the design and verification of communication systems, the required MC simulation times 

are now becoming prohibitively long. Fortunately, hardware-based techniques can speed 

up simulation by several orders of magnitude. Hardware-based simulation can also help 

to identify implementation bottlenecks and calculate design metrics for different candidate 

algorithms at early stages in the design.

Since the bit error rate of wireless communication systems strongly depends on radio 

channel characteristics, it is important that the chosen channel model reproduce the statisti

cal properties of the real world channel as faithfully as possible. Moreover, since attenuation 

at the receiver is commonly modeled as a sequence of variates with a Gaussian probability 

distribution function (PDF), random variates near the center of the distribution do not con

tribute significantly to the probability of error in low bit error rate systems. Hence, to obtain 

accurate BER results in simulation, the PDF of generated noise must be especially close to 

the true Gaussian PDF at the tails of the PDF.
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This thesis reports significant progress in several key building blocks used in the design 

and evaluation of wireless communication systems as follows:

•  The design and implementation of the fastest and most compact disclosed hardware 

Gaussian variate generator with accurate statistical properties.

•  An improved hardware fading channel model based on the sum-of-sinusoids (SOS) 

approach and its implementation.

•  An accurate and compact implementation of a parameterized hardware fading channel 

simulator using digital filters.

•  Mapping and implementation of the layered space-time decoding algorithm onto a 

moderately-parallel and scalable single-instruction multiple-data (SIMD) processor archi

tecture that was developed at the University of Alberta.
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Chapter 1

Motivation

Wireless communication systems have evolved rapidly to meet user demands for higher 

spectral efficiency, better quality of service (QoS), and higher energy efficiency. Since 

the bandwidth and power are scarce resources, the capacity limitations of single antenna 

systems make these systems unsuitable for many high data rate applications. Smart (i.e., 

adaptive) antenna systems have increased efficiency by using multiple antennas at one side 

of the communication link (typically the less power-constrained base-station side) with a 

single antenna on the client device [1]. Such systems utilize diversity schemes to miti

gate multipath fading, use multiple channels to increase capacity, and use beamforming for 

interference reduction.

As the requirements to increase the data rate and QoS have continued to rise, and while 

limited bandwidth and power continue to pose severe limitations, multiple-input multiple- 

output (MIMO) systems have emerged as a new paradigm for wireless communications. 

MIMO systems use multiple transmitter and receiver antennas to improve the reliability 

and robustness of wireless communication links and to increase the data throughput in the 

presence of rich multi-path fading, without increasing the transmitted power or signal band

width [2], While traditional wireless communication systems mitigate multipath propaga

tion effects, MIMO is the first communication technique that exploits multipath propagation 

to increase link capacity. It has been shown that in a richly-scattered channel, such as in 

indoor wireless communications, for high enough signal-to-noise ratio (SNR) values, the 

spectral efficiency grows linearly with the smaller of the number of transmitter or receiver 

antennas [2]. This capacity increase can greatly exceed that of systems with a single antenna 

at one or both ends of the communication link.

The significant theoretical advantages of MIMO technology introduce several chal-

1
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lenges to communication system designers. In addition to the size, cost, and complexity 

of the radio front end that scales with the number of antennas, the signal processing re

quired to recover the transmitted symbols from the jumble of received signals at the MIMO 

receiver is computationally demanding [3]. For example, signal decoding using optimal al

gorithms increases the computational complexity exponentially in the number of antennas, 

which is prohibitive even for moderate number of antennas [4]. The high computational de

mands of MIMO signal decoding at the receiver can exceed the performance available from 

even high-end DSPs. Therefore, an important challenge is to investigate architecture and 

circuit techniques that facilitate implementation of the required computationally-intensive 

signal processing algorithms in a power-efficient and cost-effective manner.

Another important design challenge is the rapid evaluation of alternative signal process

ing algorithms in order to reduce design time and, hence, allow faster time to market. Many 

physical layer (PHY) algorithms have been proposed in the literature to meet key goals 

such as high data rate and low probability of error. Thus, hardware system designers face 

a large variety of alternative PHY algorithms, possibly with very different computational 

complexities, that must be evaluated in the early stages of the design cycle. Decisions made 

at the algorithm design phase are quite important because they have dramatic impact on 

the rest of the product development process. Hence, a significant part of the design effort 

must be dedicated to the simulation and verification of PHY signal processing algorithms. 

Moreover, the process of candidate algorithm selection and evaluation may require several 

time-consuming iterations.

While software simulations are widely used in the design and verification of wireless 

communication systems, the main drawback of conventional software-based Monte Carlo 

(MC) simulation is the increasingly long required simulation times. The simulation time 

is mainly related to the error rate performance [5] (the lower the error rate, the longer the 

simulation) and also to the channel conditions. For example, the slower the fading, the 

longer the fade duration, thus requiring longer simulation times to get meaningful results. 

Serial instruction execution and the lack of specialized hardware for MC simulation will 

also lengthen the simulation time. Hence, the simulation time can become unacceptably 

long especially when evaluating the performance of candidate algorithms that operate at 

very low error rates, over slow-fading wireless channels on a general-purpose processor 

(GPP).

When the MC simulation technique is used to evaluate the error rate performance of

2
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1.1 Thesis Contributions

communication systems, the statistical properties of the inputs and also the accuracy of the 

approximated models impact the simulation results. All wireless communication systems 

operate over a wireless channel with adverse propagation conditions such as time-varying 

multipath fading. Since the resulting error rate strongly depends on radio channel char

acteristics, it is important to use a real radio channel when designing and testing mobile 

communication systems. However, field testing to obtain empirical measurements is costly 

and inflexible, preventing the more thorough exploration of alternatives. Also, propagation 

conditions are almost impossible to repeat for the purpose of comparative analysis. More

over, field testing is hard to generalize because different locations have different geometry 

structures. Another option is to use commercially available but costly and bulky fading 

channel emulators [6,7]. Therefore, another challenge is to accurately model propagation 

characteristics for the simulation/prototyping platform. While there are various published 

models for wireless fading channels, a thorough analysis of these models is required to make 

sure that the chosen model reproduces the statistical properties of the real world channel as 

faithfully as possible [8].

Another challenge addressed in this thesis is the accurate modeling of noise at the re

ceiver, which is commonly modeled as a sequence of variates with a Gaussian probability 

distribution function (PDF). Since small values of noise variates are readily tolerated by 

systems that operate at a very low error rate, random variates near the center of the dis

tribution do not contribute significantly to the probability of error. For a MC simulation, 

the PDF of generated random numbers must be especially close to the true Gaussian PDF 

at the high a  regions (the tails of the PDF), where a  denotes the standard deviation of the 

Gaussian distribution. Since the tail of the Gaussian PDF decays exponentially, another 

important challenge in the rapid performance evaluation of communication systems is the 

fast generation of Gaussian variates (GVs) with accurate PDF, especially at the tails of 

distribution.

1.1 Thesis Contributions

This thesis makes contributions in four areas:

•  We describe the design and implementation of the fastest and most compact disclosed 

digital Gaussian variate generator (GVG) with accurate statistical properties. The GVG 

occupies only 1% of a single Xilinx Virtex-II XC2V4000-6 Field programmable gate array 

(FPGA) and operates at 253 MHz [9], generating 506 million GVs per second within a

3
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1.1 Thesis Contributions

range of ±9.41(7. The design can be easily configured to achieve higher tail accuracy at a 

small cost in extra hardware and with only slightly decreased operating rate.

•  Two compact implementations of a fading channel simulator based on the sum-of- 

sinusoids (SOS) approach are described. The implemented SOS-based fading simulator 

uses only 1% of the Xilinx Virtex2P XC2VP100-6 FPGA and operates at 221 MHz, gener

ating 221 million complex fading coefficients per second.

•  An improved SOS-based fading channel model is presented. The proposed model 

improves the statistical properties of generated fading variates compared to previously pro

posed models. A fixed-point implementation of the fading channel simulator on a Xilinx 

Virtex-II XC2Y4000-6 FPGA utilizes only 5% of the configurable resources and generates 

over 200 million 16-bit fading variates per second.

•  A much more compact and yet accurate implementation of a parameterized fading 

channel simulator using digital infinite-duration impulse response (HR) filters is described. 

A novel filter design scheme is proposed to implement both the shaping filter and the in

terpolation low-pass filters together on a single FPGA. Conventional implementations are 

commonly realized on heterogeneous architectures (usually consisting of GPPs, DSPs, FP

GAs, etc.) to implement the required computationally-intensive multi-rate signal processing 

algorithms of filter-based techniques. The new design is the first digital baseband fading 

channel simulator that is realizable on a fraction of a single FPGA. The fixed-point imple

mentation of Rayleigh fading channel simulator on a Xilinx Virtex-II XC2V4000-6 FPGA 

utilizes only 4% of the configurable slices, 20% of the dedicated multipliers, and 2% of the 

available memories on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million 

fading variates per second. The parameterized mobile channel simulator can be reconfig

ured to accurately simulate a wide variety of different channel characteristics.

•  A flexible and compact filter processor architecture, called “Python”, is designed 

to efficiently implement a multipath fading channel simulator on FPGAs. Python uses 

a simple and short instruction set to generate multiple sequences of fading variates for 

simulating wideband and MIMO channels. The Python filter processor uses only 2% of the 

configurable slices, 9% of dedicated multipliers and 14 on-chip BlockRAMs on a Xilinx 

Virtex-II XC2V4000-6 FPGA.

•  An existing moderately-parallel and scalable architecture, called DSP-RAM, that 

combines the single-instruction multiple-data (SIMD) and processor-in-memory (PIM) ap

proaches to increase the performance of moderately data-parallel signal processing applica-

4
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tions is applied efficiently to the MIMO signal decoding problem. Integrating simple fixed- 

point datapaths, also called processing elements (PEs), with the local memories exposes 

the enormous data bandwidth between the two, and eliminates the bottleneck that other

wise occurs on an external bus between the memory chips and processor(s) in conventional 

architectures. The DSP-RAM can be readily mapped to standard FPGAs. By efficiently 

mapping the layered space-time (LST) MIMO algorithm onto the DSP-RAM architecture, 

it is shown that for a typical indoor wireless environment, a 100-MHz DSP-RAM can po

tentially provide more than 10 times greater decoding throughput at the receiver of a (4,4) 

MIMO system compared to a conventional 720-MHz DSP. The degree of parallelism (i.e., 

the number of PEs) can be easily scaled up to increase the throughput of a parallel algorithm. 

Also, one has the option of using increased parallelism to run at a slower clock frequency 

to simplify the implementation and still meet the required processing performance.

1.2 Thesis Outline

The thesis is organized as follows: Chapter 2 starts with a review of background material 

on random processes, linear systems and different transformations, and base-band signal 

processing. It briefly presents two fundamental components that are used to characterize 

wireless systems, multipath fading channels and noise models. Array antenna wireless sys

tems and tradeoffs in the published transmission strategies are discussed next. The tradeoffs 

in algorithm efficiency and architecture for such components are explored. The feasibility 

of prototyping on FPGAs for rapidly evolving wireless standards is further discussed.

Chapter 3 presents the design and implementation of a fast, compact and accurate GVG. 

In this chapter, various candidate algorithms for generating GVs are compared. The statis

tical properties of different digital pseudo-random number generators are evaluated and 

their impact on the accuracy of generated GVs is discussed. Efficient implementations of 

trigonometric functions are considered. Various standard statistical tests are applied to the 

implemented GVG and the test results are presented.

Chapter 4 considers modeling and implementation of SOS-based Rayleigh fading chan

nel simulators. In this chapter, various SOS-based fading channel models are presented and 

their statistical properties are compared. Two compact implementations of the most accu

rate SOS-based fading simulator are presented. Also, a novel fading channel model based 

on the SOS approach is presented. This model accurately reproduces the desired statis

tical properties of the standard Rayleigh fading envelope. Implementation results of the

5
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proposed fading simulator on several widely available FPGAs are given.

Chapter 5 presents a novel design and implementation scheme to realize a parame

terized fading channel simulator on a single FPGA. A new HR filter design is presented 

to implement the required shaping filter and interpolation low-pass filters together to effi

ciently implement a compact fading channel simulator. Also, a flexible and compact filter 

processor architecture is presented that can simultaneously generate multiple independent 

sequences of fading variates for simulating wideband and MIMO channels.

Chapter 6 presents an efficient parallel algorithm and architecture for implementing 

LST decoding for MIMO systems. The computational complexity of different detection 

schemes, such as maximum likelihood, lattice decoders, and LST decoders, are compared. 

Efficient mappings of common MIMO detection algorithms are implemented and evaluated.

Conclusions and promising directions for future work are discussed in Chapter 7.

6
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Chapter 2

Introduction

Typically, digital communication system designers have a set of goals to meet including 

minimizing the required system bandwidth, maximizing the transmission bit rate, minimiz

ing the probability of bit error, minimizing the required power (transmit and computational), 

maximizing system utilization (i.e., to provide reliable QoS for a maximum number of users 

with minimum delay and maximum resistance to interference), and minimizing the system 

complexity and computational load. Other important practical and economic objectives in

clude minimizing the time to market, the physical size, and the overall cost. In the available 

design space trade-offs, decisions must be carefully made as they might strongly impact 

other objectives. In this chapter, we will review architectural tradeoffs, efficiency mea

sures for signal processing algorithms, and the significant role of hardware prototyping and 

hardware-accelerated characterization when developing wireless communication systems.

This chapter is organized as follows. Section 2.1 briefly reviews the required back

ground information that is referenced throughout this thesis. Specifically, different fre

quency domain representations of signals, random processes and statistical properties, lin

ear systems, multirate signal processing, baseband processing, digital modulation, and the 

geometric view of signals are presented. A standard noise model for the receiver in com

munication systems is discussed in Section 2.2. The impact of the wireless channel on the 

transmitted signals is briefly presented in Section 2.3. Section 2.4 reviews the throughput of 

different transmission strategies. Different measures of algorithm efficiency are discussed 

in Section 2.5. The architectural design space for wireless applications is presented in Sec

tion 2.6. Finally, the feasibility of rapid prototyping and its significance in the design cycle 

of wireless algorithms is discussed in Section 2.7.

7
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2.1 Background

2.1 Background

2.1.1 Frequency Domain Representations of Signals

Fourier analysis defines the frequency-domain representation of a given signal x(t )  in that it 

specifies the complex amplitude of the various frequency components (or spectral content) 

of the signal [10,11]. A Fourier series allows a periodic signal to be decomposed into 

a sum of real-valued sine and cosine waveforms (or, more generally, a sum of complex 

exponentials). However, most signals are aperiodic. The Fourier transform (FT) is used 

to analyze the frequency content of an aperiodic signal. The FT of the signal x ( t ) can be 

obtained using the analysis equation

/OO

x{t)  exp(-y '27r/f)d t
-OO

where x(t )  can be written using the synthesis equation

/OO

X (/)e x p ( j2 7 r /t )d / .

-OO

In general, the FT X ( f )  is a complex function of frequency /  that may be expressed in the 

form

X ( f )  = \ X ( f ) \ ^

where the amplitude function |X ( / ) |  is called the continuous magnitude spectrum of x(t )  

and 9( f )  is the continuous phase spectrum of x{t).  The result of computing a Fourier 

transform is sometimes referred to as the Fourier spectrum or simply the spectrum. The FT 

analysis and synthesis equation can also be written in terms of angular frequency u  as

/OO

x(t )  exp(—ju t ) d t ,  and
-OO

1 f ° °
x (t) =  —  J  X( u j ) e xp ( j u t ) du ,

respectively.

Assume a signal x(t )  is sampled at intervals Ts =  1/ FS, where the &>th sample corre

sponds to x( t  = kTs), and the last sample is at k — K  — 1. If the signal is causal (i.e., 

the first sample is at k  =  0), giving a total K  samples, the discrete-time Fourier transform 

(DTFT) of x(t )  can be written as

x u )  =  £  z[fc]exP (  i 2™ k y  (2-1)
k=0

8
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2.1 Background

By assuming a finite number of data points, we implicitly assume that x ( t ) is periodic with 

a period of K  samples (or K T S seconds). Hence we need to evaluate the above equation 

at zero frequency and at harmonics of the fundamental frequency f 0 =  l / ( K T s) = Fs/ K  

(i.e., K  discrete frequencies 0, /„ , • • • , ( K  — 1 ) / 0). We can write the DTFT of x(t )  by 

simplifying equation (2.1) using the time index k  and the frequency index n  as

The reason that n  =  0 ,1 ,, • • • , K j 2 is that since the discrete signal x[k\ is sampled at 

Fs, then the signal has image components above Fs/ 2. In other words, the DTFT of a 

signal x(t )  is periodic in the frequency domain. When evaluating equation (2.1), it is only 

necessary to evaluate it up to Fs/ 2  (i.e., first K / 2 — 1 discrete frequency samples). Thus 

we need only one period of X(e>w) (i.e., u> G [0, 27t] or [—tt, ir], etc) for analysis and not 

the whole infinite domain. The inverse DFT can be written as

A fast technique to calculate the DTFT of a signal is the fa st Fourier transform (FFT) 

algorithm that takes advantage of the fact that the calculation of the coefficients of the DTFT 

can be carried out in an iterative manner [11]. It is shown that to compute the DTFT of a 

sequence of K  samples using the FFT algorithm, in general K  log2 K  complex additions 

and K  log2 K  complex multiplications are required (compared to direct implementation 

that requires K ( K  — 1) complex additions, K 2 complex multiplications) [12]. Hence, by 

using the FFT algorithm, the number of arithmetic operations is reduced by a factor of 

K /  log2 K  which is considerable savings for relatively large K  values.

2.1.2 Random Processes

Many random phenomena are functions of time. Consider a random experiment specified 

by the outcome (fc from some sample space f2 =  {Ci, C'2 , ■ • • } with a probability Pr(Cfc). 

A function of time can be assigned to every outcome ^  that generates a sequence X ( t ,  £). 

Hence, X ( t .  C) can be viewed as a function of two variables. When £ has a fixed value 

Oc and n  is treated as independent (non-random) index variable, the X[n,  Oc] is called a 

realization or a sample sequence of the random process. We can think of X  [n, £fc] as a 

vector of (possibly) infinite duration where the entire sequence is generated from a single

K - 1

9
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2.1 Background

outcome of the underlying experiment. When £ is treated as a variable and n  =  is 

fixed, X[nfc,C] is a random variable (RV). When both £ and n  are fixed, then X[rik,Ck] 

is a number x. X [n, £] with both £ and n  treated as variables is called a random process 

(RP) or stochastic process [11]. A RP X[n,  £] is thus a set of indexed RVs, one RV for 

each index variable n. If f is a continuous time variable then X ( t ,  £) is a continuous-time 

random process, and if t  is a discrete time index then X [n, £] is a discrete-time random 

process or a random sequence. The set of all possible sequences, {A[n, £]}, constitutes 

an ensemble of sample sequences. The number of possible sample functions in such as 

ensemble is usually assumed to be extremely large; often it is infinite [11]. We sometimes 

suppress the £ to simplify the notation and use X[n\  to denote both random sequences and 

single realizations.

2.1.2.1 Specifying Random Variables

We are typically interested in specifying the joint behaviour of random variables within a 

family (i.e., the stochastic process at various time instants). Here we will start with random 

variables and then we will present important statistical properties of random processes. 

A random variable X (£) represents the functional relationship between a random event £ 

and a real number x . For notational convenience we denote X (£) by X .  The distribution 

function F x ( x )  =  P r(X  <  x)  represents the probability that the value of random variable 

X  is less than or equal to a real number x,  and is called the cumulative distribution function 

(CDF). The probability density function (PDF) is defined as f x ( x )  =  &Fx{x)/&x.  Thus 

the probability of an event X  over the domain interval [xi, x 2] equals

P r(* i < X < x 2) = P v ( X  <  x2) -  P r(X  <  x x) =  Fx (x2) -  Fx (x  1 ) =  /  f x (x) dx.

In other words, the probability of the events {xi <  X  <  x 2} is the area under the PDF over 

the domain x i  < X  < x 2. The probability that X  has a value x  can be written as

In the limit as A x approaches zero, P r(X  =  x) =  f x ( x ) .  The mean m x  or expected value 

E[AT] of a random variable X  is defined as

P r(x  < X  < x  + A x) «  f x ( x ) Ax.

or
X

10
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for a continuous-valued and a discrete-valued random variable X , respectively, where E[-] 

is the expected value operator. The variance of X  is defined as

/OO

(x -  m x )2f x ( x ) d x  =  E [(X  -  m x ) 2] =  E [X 2] -  m 2x
-OO

where E [X 2] is called the mean-square value of X .  Similarly, for complex-valued random 

variables, the variance is defined as

a \  =  E [ |X |2] -  |E [X ]|2 =  E [ XX * ]  -  E[X](E[X])*

where X*  denotes the complex conjugate of X .

Consider a pair of random variables X \  and X 2. The joint moment Ej.X1 .X2 ] is defined 

as their correlation. The correlation of centered random variables X i  — E[Xi] and X 2  — 

E[X 2] is

E [(X i -  m x i) (X 2 -  m x 2)] =  E [X iX 2] -  m x 1m x 2

and is called the covariance of X i and X 2. Two random variables are uncorrelated if their 

covariance is zero, which is equivalent to E [X iX 2] =  E[X i]E[X 2] =  m x 1m x 2. Statistical 

independence can be applied to random variables defined on a sample space generated by 

combined experiments or by repeated trials of a single experiment. If the experiments result 

in mutually exclusive outcomes, then the probability of an outcome in one experiment is 

independent of an outcome in any other experiment. Multidimensional random variables 

X i , • • • , X n are said to be statistically independent if and only if

f ( x  i,X 2, - ”  ,Xn) = f x 1( x i ) f x 2(X2 ) ■ ■ ' f x n(xn)

or equivalently

F ( x ,®n) =  FX l { x\ )Fx2{X2) ■ ■ ■ FXn{xn).

If X i and X 2 are statistically independent, then they are also uncorrelated; however, if 

they are uncorrelated, they are not necessarily statistically independent. X i and X 2 are 

orthogonal when X \  and X 2 are uncorrelated and either one or both of the random variables 

has zero mean (i.e., E [X iX 2] =  0).

2.1.2.2 Specifying Random Processes

Similar to statistical averages for random variables, statistical averages can also be de

fined for stochastic processes. Such averages are called ensemble averages. A  RP can be

11
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specified by its joint probability on X ( t \ ) ,  ■ • • , X ( t m) over all finite sets of time indexes. 

Commonly, a RP is described by its mean and autocorrelation functions. The mean m x ( t k )  

of stochastic process X  (£) is a function of time and defined as

/OO

x f x ( t k) (x)dx
■OO

where X(tf~) is a random variable obtained by observing the random process at time £& 

and f x ( t k)(x ) is the PDF of X( t k )  (the density over the ensemble of outcomes at time 

ffc). The autocorrelation R x ( h , h )  is a function of £ 1  and £ 2  and is defined as the joint 

moment of X (£i) and X(£2) (random variables obtained by observing X ( t )  at times £ 1  and 

£2 , respectively)

R x ( t i ,£ 2) =  E [X (£ i)X (t2)]

where if X  (£) is a complex-valued random process

R x ( t 1, h )  = E{ X( t l ) X* ( t 2)}.

The auto-covariance K x(£ i, £2) is defined as the covariance of X { t \ )  and X(£2) as

Kx (£i ,£2) =  e [ (X(£!)  - m x ( h ) ) { X ( t 2) -  m x (t2))'

If the process is zero mean (i.e., E[X(£)] =  0 for each £) then K x  (£1 , i 2) =  E [JC (£2 )] - 

The variance of X{ t )  can be obtained from K ^(£ i, £2)

Var [*(£)] =  K x (t , t )  =  e [(X (£ )  -  m x (£i))2' .

The cross-covariance K x y (£ i,£ 2) of X{ t )  and Y (£) is defined by

K x y (£ i,£ 2) =  e [ (X (£ i)  -  m x (£ i)) (F (£ 2 ) -  m y ( t2))

=  R x y (£ i,£ 2) -  m x ( t i ) mY (t2 )

where R x y (£ i, £2) =  E [X (£ i)Y (£2 )] is the cross-correlation. Similarly, the covariance of 

two real-valued random vectors X  and Y  can be defined using a covariance matrix as

Kx y  =  E [ ( X  -  E[X]) (Y  -  E [Y ])] .

To specify the covariance matrix of two complex random vectors, four real-valued matrices 

are required
K XiYi K XiYq
K X qYi K XqYq j 

12
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Two stochastic processes X ( t )  and Y ( t )  are orthogonal if R x y ( t i , h )  =  0 for all fi and 

t 2 - The processes X ( t )  and Y ( t )  are said to be uncorrelated if K x y i t i t h )  =  0 for all t \  

and t% (i.e., R x y ( h , t 2 ) =  E [X (ti) ]E [Y (f 2 )])-

A random process X ( t )  is a Gaussian RP if the random variables X \  = X ( t i ) ,  ■ • • , 

X k  = X ( t k )  are jointly Gaussian random variables for all k  and all choices of t \ ,  • • • , t^. If 

X[n] is a sequence of independent Gaussian random variables with mean m x  and variance 

o 2x , then (1) the sum process has mean n m x  and variance n a \ ,  and (2) the covariance 

matrix for i i ,  • ■ ■ , ffc is K x ( U ,  t j ) =  ax I. A zero mean Gaussian process X (t ) is a zero 

mean RP for which, for any integer m  >  0 the RVs X ( t i ) ,  • • • , X ( t m ) are jointly Gaussian 

(and, of course, zero mean). For a RP X  =  ( X i , X 2 , • • • , X m ), the covariance between 

each pair of RVs can be represented by the covariance matrix K x  =  R [ X X T]. For a vector 

of normalized independent and identically distributed (i.i.d) Gaussian RVs, R \X iX j \  =  0 

for i ^  j  and one for i — j .  Thus K x  =  I m.

A complex-valued random process can be written as Z{t)  =  X ( t )  + j Y ( t ) where 

X  (t) and Y  (t ) are random processes for the real and imaginary components, respectively. 

The complex-valued random process is commonly used in the representation of narrow

band band-pass signals and noise in terms of equivalent low-pass components. Important 

properties of Z( t)  can be expressed by its autocorrelation function (ACF) defined as

Rzz(<i,*2) =  lElZfaJ.Z'tfe)] =  lE [[(X (tO  +  jY(t,)] [(X(t2) - }Y{ t2)\]

=  +  1 ^ 2 ) +  j [R .Yx( t i , t2 )  -  R x y ( t i , t 2 ) ]  j ,

where R z z ( h , t 2) sometimes denoted by R z ( h ,  h)-  

2.1.2.3 Stationary Random Processes

Many random processes have the property that the nature of the randomness in the process 

does not change with time. In fact, an observation of the process within the time interval 

( t \ , <2 ) exhibits the same statistical properties as an observation in some other time interval 

(to + r, t \  + r ) .  In this case, the random process is called a stationary RP. A RP is stationary 

in the strict sense if none of its statistics are affected by a shift in time. The mean (and 

variance) of a stationary RP is constant and independent of time as

m x (t) =  m x - (2.2)

13
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Also, the auto-correlation and the auto-covariance of X ( t ) can depend only on the time 

difference £ 2  — h  where

R x ( t u t 2) =  R x ( i 2 - t i )  =  R x ( r )  =  E [X (t)X ( t  +  r)]  =  E [ * ( t  +  r ) X ( f ) ] ; V ii,t2 

K x (ti)f2 )  =  K x i h  — ti)', V fi,t2. (2.3)

The conditions in Equation (2.2) and (2.3) are not sufficient to guarantee that X  (t) is strictly 

stationary. However, if these conditions hold, then X  (t) is wide-sense stationary (WSS) or 

stationary in the wide sense [11]. Typically, in communication systems random processes 

are considered complex WSS. Also, for practical applications, it is not necessary that a RP 

be stationary for all time, but only over some observation interval of interest. A complex RP 

is WSS if its real and imaginary parts are jointly WSS. For a complex-valued WSS random 

process,

R x ( r )  =  E [X (t +  r)X * (t)]

where R x(0 ) =  E |X ( i ) |2 is the second moment of the samples. If the WSS RP is 

discrete then

R x[m \ = E [X[k  + m\X*{k}]

where m  = k — % and Rx[0] =  E[|X[fc]|2] can be interpreted as the power of the random 

process.

Consider two random processes X \  (t) and X 2(t) with A C F R x ^ t i , f 2) and R x 2 

respectively. The two cross-correlation functions (CCFs) of X \  (f) and X 2 (t) may be de

fined as

R'A’i,X2(<l)f2) =  E [X i(f)X 2(f)]

R x 2,X i ( t i , t 2) =  E[2f2(f)X ! (t)].

The correlation properties of the two RPs can be expressed as a correlation matrix as fol

lows:
Rxi(h,t2) R-XiX2(^1) 2̂)

R x 2X i ( t l , t 2) R-X2( t l , t 2)R ( t u t 2) =

2.1.2.4 Power Spectral Density

A stationary RP is an infinite energy signal and thus its FT does not exist. The power spec

trum of a random signal is obtained by computing the FT of the ACF, that is the distribution
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2.1 Background

of power with frequency. If X ( t )  is a WSS RP with mean m x  and ACF R x ( r ) ,  then the 

power spectral density of X  (t) is given as

/OO

R x ( r ) e - ^ TdT

-OO

where #[•] denotes the Fourier transform operation. Similarly, for a discrete-time WSS 

random process with mean m x  and ACF R x [k], the PSD can be written as

OO

G x [ /]= f f{ R x [fc ]} =  £  R x [ k ] e ~ ^ k .
k = —oo

G x  [/] is periodic in /  with period one and hence we need only consider frequencies in the 

range of —1/2 <  /  <  1/2. In other words, G x [/]  =  G x [ /  +  k] for k  =  ±1 , ± 2 , • • •. This 

is a characteristic of the Fourier transform of any discrete-time sequence such as R x  [n\ 

[11].

2.1.3 Linear Systems Response to Random Signals

Signal processing typically involves transformations from a time function into one or more 

other functions. If x(t )  is the input to a linear system and y(t)  is the system output,

/OO

h{T' ,t )x{r)  d r
-OO

where the operator * denotes the convolution (which has commutative, associative, and 

distributive properties) and h(r; t) is the system’s impulse response. The system is real if its 

impulse response is real-valued and complex if its impulse response is complex-valued. The 

response of a linear time-invariant (LTI) system (i.e., holds additive and scaling properties) 

to an arbitrary input x( t )  is

/oo ro c
h(r)  x ( t  — t ) d r  =  / h(t — t ) x ( t ) d r  (2.4) 

-OO J  — OO

where h(t)  is the impulse response of the LTI system, r  is the excitation time and t  is the

response time. h(t  — r )  can be thought of as being h(r)  folded  in time and delayed by

t. The relation (2.4) is called the convolutional integral and it shows that an LTI system is

completely specified by its impulse response. A system is called stable if every bounded

(finite) input produces a finite output. For LTI systems, a necessary and sufficient condition

for stability is that the impulse response must be absolutely integrable J2%L-<x> IMn ll <  00

[10]. A system is called causal if the output for n  =  no depends only on the values of the

input for n  < no. For LTI systems, this implies that the impulse response sequence is zero

15
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2.1 Background

for n  < 0. Thus the lower limit of integration in (2.4) can be changed to zero if the system 

is causal.

If x \n ] is a discrete-time signal that results from sampling a continuous-time signal, 

then x[n] can be written as
OO

x[n] = ^ 2  *[&] &{n  ~  k]
k = —oo

where (5[n] denotes the Kronecker delta function in discrete time. Output y[n] can thus be 

expressed as
OO OO

y[n] =  ^ 2  *[^1 h[n  — k } — ^  x[n — k]h[k\.
k = —oo fc=—oo

If we assume that the input is a sequence x[n\ =  eJwn of complex exponentials, then
OO OO

y[n] = J 2  /j[fc]eiw M )  =  e3’“n (  J 2  h \ k \ ^ jujk)  = e junH { e ^ ) .
k = —oo k = —oo

Thus, the complex exponential sequence is an eigenfunction of LTI systems where 

the output response to sinusoidal input is sinusoidal with the same frequency as the input 

and with an amplitude and phase determined by the system (i.e., H { e ^ ) ) .  The eigenvalue 

H ( e ^ )  is called the frequency response or the transfer function of the system. We can 

see that frequency response of an LTI system is simply the FT of the impulse response as 

follows

h[n] = ^ ~  T  H{e>u ) e ^ ndw.2tt J _7r

Since iJ (e JW) is a periodic function of the frequency with period 27r, we need only specify 

H (e iu ) over an interval of length 2n. In general i f ( e JW) is complex and can be represented 

in polar form (i.e., in terms of magnitude and phase) as

H(e>u ) =  \H(eju,)\ej ^ H(-ej^ .

Since the convolution of a pair of time functions is transformed into the multiplication 

of their Fourier transforms, we can write

Y (e ^ )  =  H (e juJ)X{e jul) (2.5)

where the magnitude and phase of the FTs of the system input and output are related by

|Y (e ^ ) | =  \ H { e n \ . \ X { e n \  (2.6)

Z Y (e ^ )  =  ZH{e>“) + / . X ( e j u ). (2.7)

nonum ber  (2.8)
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Here \H{ePu )\ is the magnitude response or amplitude response and / . H ( e ^ )  is the phase 

response or the phase shift of the LTI system. As given in Equation (2.6), if |7f(eJW)| is 

small for a particular range of frequencies, then the frequency components of the input are 

suppressed in the output for those frequencies.

An alternative representation of a discrete-time linear system can be expressed using 

the z-transform  of h[n] as

OO
H[z] =  Z[h\n]\  =  ^ 2  h[n\z~~n

n = —oo

where z =  \ z \e ^  is a complex variable, \z\ is the attenuation and cu is the real angular 

frequency. Multiplication of h[n] by z ~ n corresponds to delaying the input sequence by 

n  samples. The function \z\ =  1 (or z  = =  ej2?r^ =  e70, if the unit of frequency

is in radians/sec, hertz, or radians/samples, respectively) denotes a circle of unit radius in 

the complex z-plane and is called the unit circle. The complex function H[z] is called the 

system function or transfer function. The values of H[z] when evaluated on the unit circle in 

the z-plane give the frequency response. Similarly, it can be shown that [10] the z-transform 

of the output of an LTI system is related to the z-transform of the input and the z-transform 

of the system impulse response as

y  W  =  H (z )x ( z )

where any LTI system is completely characterized by its system function H{z) .

An important class of LTI systems are the ideal frequency-selective filters (systems) 

where the frequency response is unity over a certain frequency ranges (i.e., \H{e?“)\ =  1) 

and zero elsewhere. This implies that the filter passes complex exponentials at one set 

of frequencies and completely rejects the complex exponential at other frequencies. Filters 

usually are described in the time domain by their impulse response h{t), or in the frequency 

domain by their magnitude frequency response |.H"(u>)|. h(t)  is usually derived from the 

filter’s frequency domain description rather than directly in the time domain and is usually 

expressed in complex low-pass equivalent form (explained below).

Among four common types of filters (i.e., low-pass, high-pass, band-pass and band- 

stop), the low-pass filter (LPF) has been used the most since the transfer function of other 

filters can be computed from the normalized low-pass filter through a standard transforma

tion of variables [13]. The LPF selects the low-frequency components of the signal and 

rejects the high-frequency components. An ideal LPF with cut-off frequency uic can be
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defined as a discrete-time LTI system with the frequency response

=  !or[ 0  for (jjc <  |w| <  7r

that is periodic with period 2n. Note that since the frequency response of discrete-time 

sequence is periodic, it is completely specified by its behaviour over the domain — tt < u> < 

—7r. The corresponding impulse response is given by

u  l 1 r c i u n A sin u cnh\n\ =  —— / eJ auj = -----------, —oo <  n <  oo
2tt J _ Wc n n

which implies that the ideal LPF is non-causal (h[n] ^  0 for n  <  0) and also is not abso

lutely summable. The sequence h[n] approaches zero as n  approaches infinity (implying 

that H(e>ul) has discontinuity at u  =  u>c). Moreover, the phase response is zero.

Since the impulse response of an ideal LPF extends from — oo to oo, the output of 

an ideal LPF cannot be completed with finite computation. A class of practical LTI sys

tems that can be implemented as an approximation to ideal frequency-selective filters cor

responds to the constant-coefficient difference equation. This class is further explained and 

utilized in Chapter 5.

2.1.4 Baseband Processing

Two particular sequences are extremely important in analyzing digital communication sys

tems: sinusoidal sequences and complex exponential sequences. A sinusoidal sequence has 

the general form of

cc[n] =  Acos(a;on +  </>), n  e  Z

where uiq is the frequency of the sinusoid and <j) is the phase. For a periodic sequence with 

period IV G Z

A  cos(u>on +  <f>) = A  cos(a>on +  uiqN +  (p) 

which is true for uiqN = 2nk. A  complex exponential sequence can be written as

x[n] =  |A |e^w°n+^  =  \A\ cos(uJon + 4>) + j \ A \ sin(won +  <j>)

where the real and imaginary parts of exp [j(uon  +  <j>)] vary sinusoidally with n. For any 

complex exponential sequence of period N

eju0(n+N) __ ejw0n 
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is true for loqN  =  2irk. Two important points regarding these signals are: (1) Depending 

on the value of too, the complex exponential or sinusoid sequence may not be periodic at all 

(e.g., if wo =  1 there are no integer values for N  or k  that satisfy the periodicity). (2) For 

a discrete-time sinusoid signal as uoq increases from 0 to 7r, x\n\ oscillates more and more 

rapidly, and as too increases further from 7r to 27t, the oscillations becomes slower. Thus, 

for complex exponential and sinusoid signals, values of too in the vicinity of uiq =  2nk  for 

k  €  Z are referred to as low frequencies (relatively slow oscillations), while values of u>o in 

the vicinity of too — (tr +  2irk) are referred to as high frequencies.

2.1.4.1 Base-band Signals Representation

Consider a real-valued signal s(t). The signal s(t)  is a band-pass signal if its FT S ( f )  

is non-negligible only in a band of frequencies over total bandwidth 2W  centered about 

some carrier frequency f c. In the majority of communication systems the bandwidth 2W  

is much smaller compared to / c, and thus such a signal is referred to as a narrow-band 

signal. A band-pass waveform is also called a digital waveform (although the waveform 

is sinusoidal and is analog) because it is encoded with digital information. The band-pass 

signal (sometimes is called the carrier) s ( t) can be expressed as

s(t) = a( t ) cos 9{t) =  a(t) cos [27r/ct  +  cf>(t)\

where a(t)  is the time-varying amplitude called the (natural) envelope of the band-pass 

signal s ( t) and 9(t) is the time-varying angle. 9(t) is typically denoted as 9(t) = 2rrfct  +  

<j>{t) where toc = 2ir / c is the radian frequency of the carrier and 4>{t) is the time-varying 

phase of the signal.

The band-pass signal sit )  also can be written as

s{t) = $l{st(t) exp(j27r/ct)}  (2.9)

where s f t )  is the complex envelope of the signal (i.e., base-band message or data in com

plex form) and e-?27r̂ ot is the carrier in complex form. The process of multiplying these two 

signals is called modulation and s{t) (i.e., the real part of the product) is the transmitted 

signal. The spectrum of the complex envelope si( t) is limited to the band —W  < f  < W  

(typically less than a few MHz) and centered at the origin [12], Thus si(t) is a low-pass sig

nal. During modulation the base-band waveform s; (t) is frequency translated by a carrier 

wave to a frequency that is much larger than the spectral content of si(t).
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In general, si( t) is a complex-valued signal that can be expressed as

Si(t) =  sH(t) +  j s lq(t) = \si(t)\ejeW (2 .10)

where \si(t)\ =  ^ s 2u (t) +  sfq(t) and 9{t) =  ta n  1 siq( t ) / sn ( t ) are both real-valued low- 

pass functions. Note that both su(t)  and su(t)  are limited to the band —W  < f  < W .  A  

band-pass signal s(t)  in (2.9) can be produced by a quadrature type modulator as [11]

s(t)  =  su(t) c o s ( 2 t t f ct) -  Siq(t) sin(27r/cf).

Whether we represent the band-pass signal s(t)  in terms of its in-phase and quadrature 

components, or in terms of its envelope and phase as in (2.10), the information content of 

s(t)  is completely represented by the complex envelope si(t).

Let the signal s(t)  be applied to an LTI band-pass system with impulse response h(t)

and transfer function H( f ) .  The output also is a band-pass signal y(t) = h( t ) * s(t) [11]. 

The analysis of a band-pass system, which is complicated by the presence of the multiplica

tive factor exp(j27r/cf), can be replaced by an equivalent (but simpler) low-pass analysis. 

According to the equivalence theorem [12], performing band-pass linear signal processing 

followed by frequency translation down to the base-band yields the same results as first 

converting the band-pass signal to base-band, then performing linear signal processing to 

the base-band signal. The complex envelope yi(t) of the output signal of a band-pass sys

tem can be obtained by convolving the complex impulse response hi (t ) of the system with 

the complex envelope si(t) of the input band-pass signal and can be written as

Vl(t) = Vi(t) + 3Vq{t) = [hu(t) + j h iq(t)] * [sK(i) +  j s lq(t)) (2.11)

Using the distributive property of convolution in Equation (2.11), the in-phase and quadra

ture components of the complex envelope yi(t) can be written as

yi (t) = hu (t) * SU (t) -  hiq (t) * Siq it)

Vq{t) =  hiq(t) * SU(t) +  h u (t) * Slq(t).

Thus evaluating the response of a band-pass system to an input band-pass signal requires 

four convolution operations and two addition in the low-pass equivalent model. The final 

output y(t)  can be written as y(t) = 5R[j/j(f) exp(,7'27r/cf)] .
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2.1.4.2 Modulation

A (message) symbol rrn is a group of q bits drawn from a finite symbol set or constellation 

Q  where the size M  of alphabet is 2q. Each signal in an M -ary constellation (alphabet) can 

be related to a unique sequence of q bits. For a base-band transmission, each m* will be 

represented by one of the base-band pulse waveforms g i ( t ) ,  where i  — 1, • ■ • , M . Thus we 

will use the terms symbol and waveform interchangeably. For typical band-pass transmis

sion, each g i ( t ) pulse will be represented by one of the band-pass waveforms S i ( t ) .  Hence, 

first the incoming binary data is mapped into complex symbols, then the sequence of com

plex symbols are mapped into base-band waveforms, and finally, base-band waveforms are 

modulated to pass-band signals.

Band-pass modulation is the process by which an information signal (digital symbol 

with duration Ts) is converted to a sinusoidal waveform. Translation (or shifting) of the 

spectmm of a low-pass or base-band signal si(t) to a higher frequency involves multiplying 

the base-band signal with a carrier waveform cos(2ir f ct). This operation can be explained 

by the following two important properties of the Fourier transform

Thus if a signal s ( t ) is time-shifted by to , the amplitude of S ( f  ) is unaffected but its phase 

is changed by —2 n f cto. Conversely, multiplication of s(t)  by a complex sinusoidal factor 

e x p (j2 7 r /fo )  is equivalent to frequency-shifting its FT in the positive direction by / c.

Since each modulated sinusoid s(t) = a( t ) cos[uct  +  can be distinguished from 

other sinusoids with three available parameters (i.e., amplitude, frequency, and phase), dif

ferent modulation techniques have been introduced [11]. For example, phase shift keying 

(PSK) modulation scheme uses

where Ts =  log2 M.T& is the symbol duration, is the time duration of each data bit, E s is 

the symbol energy and the phase term has M  discrete values f i  = 2 m / M .  Clearly, binary 

PSK (BPSK) uses M  =  2 and shifts the phase of waveform s*(f) to one of two states zero or 

7i\ In PSK modulation scheme, the signal constellation is chosen such that the amplitude is 

the same for all signal points, by placing the signal points on a circle in the complex signal 

space. In this scenario the transmitted information is carried by the phase of the carrier. In

s( t  -  t 0) S ( f )  e x p (- ;2 7 r / t0)

s(f) exp(j27r/f0) ^  S ( f  -  /„)• (2 .12)

S
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Figure 2.1: (a) BPSK modulator, (b) QAM modulator.
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Figure 2.2: Two different constellations.

the more general case such as quadrature amplitude modulation (QAM), both amplitude 

and phase are allowed to change between signal alternatives [11]. A QAM signal can be 

expressed as

Si(t) =  cij(f) cos(woi) +  bi(t) sin(u>oi)

where [a j(f), 6;(i)] denotes the i-th signal point in the QAM constellation. The block dia

gram of BPSK and QAM modulation are shown in Figure 2.1.

One common constellation is to place the signal points on a regular rectangular grid 

in the signal space. For example, in a 16-QAM modulation scheme, the signal points 

are spaced with the distance 2d along the axes, as shown in Figure 2.2(a). Assume 

each complex signal point s*. is represented as =  s; +  j s q. When M  is an even 

square (e.g., 16), there will be \ [ M  possible amplitudes for both S{ and sq. In fact, s* e  

{± d , ±3d, • • • , ± ( V M  — l)d}  and sq €  {±d, ± 3 d, • • ■ , ± ( \ /M  — 1 )d}. While the signal 

power is proportional to the distance from signal point in the constellation to the origin,
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the probability of error is related to the distance between the signal points in the constel

lation [12], The energy of the signal Sk(t) is Ek  =  ||s’/c(i)||2 =  ||sfc||2 and the distance 

between Sk(t) and sm (t) is ||Sk(t) — sm(f)|| =  ||sfe -  sm ||. Clearly, as M  increases, the 

energy must be increased to allow the minimum distance between points to remain at the 

same value (i.e., to maintain a fixed error rate).

To transmit the symbol m u  the digital waveform Sj(£) will be transmitted over Ts sec

onds. The data (bit) rate can be written as R  — log2 M / T s bits per second (bps). Similarly, 

the symbol rate can be written as R s =  R /  log2 M . Thus the modulator yields an output 

symbol rate R s that is a factor of log2 M  smaller than the input data bit rate R. The band

width efficiency of a digital communication system that transmits log2 M  bits in Ts second 

using a bandwidth of W  Hz can be expressed as

Note that in practice the occupied bandwidth is W  = R s(l  +  a)  where a  is excess band

width factor [10]. The a  factor is due to the fact that the shaping filter uses a raised cosine 

filter where its sharpness is described by the a. If the filter has a perfect (“brick wall”) 

characteristic with sharp transitions (i.e., a  =  0), the occupied bandwidth would be equal 

to symbol rate.

2.1.4.3 Multirate Signal Processing

A real signal x( t )  is band-limited if there exists a finite frequency /  such that X  (j '27t / )  is 

zero for f  > W  where W  is called the signal bandwidth. A band-limited signal a;(t) with 

bandwidth W  can be reconstructed from its samples values x[n] =  x[nTs] if the sampling 

frequency Fs = 1 /T S is greater than twice the bandwidth W  of x(t ),  i.e., Fs > 2W  (or 

Ts < 1 /2WO [10]. The sampling rate 2 W  for a band-limited signal is called the Nyquist 

rate. It is shown in [10] that the signal x(t )  can be reconstructed from its discrete-time 

samples as follows

For a pass-band signal, the bandwidth W  is defined as the bandwidth of the positive 

frequency part only (i.e., —W j 2 +  f c <  /  <  W^/2 +  f c) and negative frequencies are not 

counted. The frequency of the equivalent base-band signal is — W / 2  < f  < W /2 ,  which 

implies that the bandwidth is W^/2. Thus the complex base-band signal has half of the 

bandwidth of the corresponding pass-band signal. If W  is the double sided bandwidth of

( t ) =  x[nTs} s in c ( - ynT s) (2.14)
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the base-band signal si(t) (i.e., the spectrum is non-zero only fo r - W n <  W  < W p, where 

W  =  W n -f W p), then the sampling frequency of the quadrature branches of base-band 

signal each should be at least Fs > W .  This should not be confusing as some interpretations 

use the highest frequency component as W  (so if the lowest signal component is —W ,  then 

double sided bandwidth is 2W )  and the sampling frequency must be Fs > 2W .

According to (2.5), if x(t )  is bandlimited to W \  and h(t)  is bandlimited to W 2 , then y(t)  

can be reconstructed without error if Fs >  2W  where W  = max(Vt/i, W 2 ). If a system 

has several signals (or processes) with different bandwidths W\,  • • • , W n, then sampling at 

a single rate Fs =  2W ,  where W  =  max(H/i, • • • , W n), may entail unnecessary compu

tation when the W f  s are relatively different. In addition to being inefficient, using a single 

sampling rate may introduce additional round-off errors due to the redundant computations. 

A more efficient processing scheme is for each random process (signal) to be sampled at a 

rate just sufficiently fast to satisfy the sampling theorem for that signal.

One feature of multi-rate digital signal processing systems is that the sampling rate of 

individual signals may have to be increased or decreased, leading to the two fundamental 

operations of interpolation (or up-sampling) and decimation (or down-sampling), respec

tively. If the original sampling rate is Fs (i.e., the input signal is bandlimited to half sam

pling rate), then to increase the sampling rate by an integer factor I ,  the output sequence 

should first be up-sampled by inserting I  zero samples between each input sample. As a 

consequence, all the spectral images within [—I F s/2,  I F S/ 2} of the input spectrum appear 

at the output signal at the multiples of the input sample rate Fs. Then an interpolation low- 

pass filter (ILPF) is typically used to retain only the desired spectral components. The ILPF 

operates at a higher sampling rate than Fs, thus a flexible and yet computationally efficient 

scheme is desired. A polyphase structure is an efficient scheme that uses I  parallel branches 

operating at the lower sampling rate [10]. For a sampling rate conversion by any rational 

factor I / D ,  the signal is first interpolated by I  and then decimated by an integer factor D.

2.1.5 Geometric View of Signals and Transformations

A geometric (vector) view of signals is useful for representing base-band signals. A signal 

space S  is a vector space that consists of a set of vectors that represent waveforms. Each 

waveform is represented by a finite-energy complex function s(t). The function s(t)  can be
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represented as a vector s where

lls ll2 =  /  \s(t)\2dt
J  —OO

is the energy in s. A set of vectors, s i,  ■ • • , sn in a vector space <S is linearly dependent if 

Y a =i aiSi =  0 for some set of scalars a* that are not all equal to 0. Equivalently, the sets 

is linearly dependent if any one of those vectors is a linear combination of others. A set of 

vectors is linearly independent if Y^i= i a isi ~  0 only if each on =  0. The dimension of a 

vector space is the number of vectors in the largest linearly independent set in that vector 

space. The inner product of two vectors x  and y  is defined as

Two vectors x  and y  are orthogonal if and only if (x, x) =  0. Clearly, (x, x) =  Y a - \  \x i I2 =  

| |x | | 2  where ||x || is the norm of the vector x  (i.e., the distance from 0 to x  or the length of 

x). Since the length or norm of a signal is the square-root of the signal energy, the energy 

of the difference of two signals can be interpreted as the square of the distance between the 

two signal vectors. When the receiver is aware of the set of possible signal waveforms, it 

uses the minimum distance criterion to choose the signal from the set of known symbols 

that is closest to the received signal as

where y  is the received signal (vector), sm is the m-th signal chosen from a set of known 

signals {sm, 1 <  m  < M }.

Consider the linear transformation H s =  y. For every linear transformation, there 

is one and only one corresponding matrix. This transformation can be represented by the 

matrix-vector notation H s or by a system of equations. The transpose of H , denoted as H r , 

is the matrix obtained from H  when the rows and columns are exchanged. One important 

property of the transpose operator is that (A B )r  =  B TA r . A square matrix H  e  R nXn 

is orthogonal if H H r  =  I, where I  is an identity matrix. Thus an orthogonal matrix is 

always invertible. If H  is orthogonal, then its columns h i ,  ■ ■ • , h n (or its rows) form an 

orthonormal basis for Rn (i.e., |h ;| =  1 and (hf, h j)  =  0 for all i ^  j) .  If there is a vector 

vR n ^  0 such that H v  =  crv for some scalar a, then a  is called the eigenvalue of H  with 

corresponding (right) eigenvector v . The minor of an n  x n  matrix H  is the determinant of 

k  x  k  matrix M  obtained from H  by deleting n  — k  rows and n  — k  columns of H  where

N

(2.15)

m in { ||y — sm ||2} =  min { ||y ||2 +  ||sm ||2 -  23?{(y, sm)}} (2.16)
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2.2 Noise Models at the Receiver

k  < n. The cofactor C y  is defined as C y  — (—1)®+J-M y  and is used to compute the 

determinant o f a matrix as |H | =  /iy C y .

The conjugate of H  G Cnxn, denoted by H*, is obtained from H  when each elements 

of H  is replaced with its complex conjugate. The complex conjugate operator is distributive 

under complex addition and complex multiplication. The conjugate transpose matrix (also 

called the adjoint matrix) is defined as =  (H *)T where (A B )H =  A H. A square 

matrix H  G C n x n  is a hermitian matrix if H  =  H ^ .  A square matrix H  G C nxn is unitary 

if H ^ H  =  H H W =  I  or H 77 =  H -1 . Also, if H  is unitary, then (a) H  is non-singular 

(i.e., its determinant is nonzero and thus it has a matrix inverse) and H h  =  H -1 , (b) H H 

is unitary too, (c) the columns (the rows) of H  form an orthonormal basis for C n. If the 

columns of H  form an orthonormal set, then applying H  to a vector does not change its 

length (i.e., |H s | =  |s|).

2.2 Noise Models at the Receiver

In digital wireless communication systems there are various sources of error-performance 

degradation such as noise, fading, and interference due to the filtering at the transmitter 

and receiver and also bandwidth-limited channel [12]. Noise is defined as unwanted and 

usually uncontrollable signal components that distort the intended signal. For example, 

noise signals can arise from harmonics of the natural frequency, atmospheric disturbances, 

and crosstalk from other communication systems.

Two common noises at the receiver are thermal noise and quantization noise [12]. Ther

mal noise in a circuit is primarily due to the random fluctuations of electrons. Quantization 

noise in a digital system is due to distortions caused by conforming to the finite word length 

that is available to represent a signal. It is commonly assumed that a noise source at the 

receiver emanates an equal amount of power per unit bandwidth at all frequencies. This 

implies that the noise, on the average, has just as much power per hertz in low-frequency 

fluctuations as in high-frequencies, which can go up to about 1012 Hz [12]. A correspond

ing random process X  (t ) for representing noise has a flat PSD over all frequencies of in

terest (positive and negative) with fixed amplitude G x { f ) =  N 0/2  W/Hz. The factor 1/2 

has been included to indicate that half the power is associated with positive frequency and 

half with negative frequency. Noise that has such a uniform spectral density, is also called 

white noise, where “white” refers to the analogous case of white light which contains equal 

amounts of all frequencies within the visible band of electromagnetic radiation. Thermal
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Figure 2.3: (a) PSD of white noise, (b) ACF of white noise.

noise and other sources of noise introduced by the amplifiers, mixers, and analog-to-digital 

converters are also ordinarily modeled as white noise [12]. Interestingly, quantization error 

has approximately a white power spectrum mainly due to the randomness of the signal [12]. 

Therefore, the total noise at the receiver is typically modeled as white noise.

It is generally assumed that there is no correlation between samples of the equivalent 

time-domain noise process X ( t ) ,  i.e., R x ( r )  =  0 for r  0. For areal white noise process 

X ( t ) ,  the autocorrelation function is

which is the delta function weighted by the factor N 0/2  and occurring at r  =  0, as shown 

in Figure 2.3(b). As shown in Figure 2.3(a), white noise has a two-sided PSD of a constant 

amplitude N 0/2  over all frequencies — oo <  /  <  oo. Hence the noise variance (that is, the 

average noise power, since the mean is zero) is

Although the variance for white noise is infinite, practical systems have finite bandwidth 

and hence the noise is typically band-limited to some 2W  Hertz (i.e., —W  <  /  <  W).  For 

example, the received signals (and noise) at the very front end of a receiver in communica

tion systems involves processing by band-limited (typically narrow-band) filters. The PSD 

of a WSS white noise process whose frequency components are limited to —W  < f  < W  

is shown in Figure 2.4(a). The average power in such an ideal case can be written as

R x ( r )  =  S{G X (/)}  =  E [ X ( t ) X ( t  +  r)]  =  ^ d ( r )

a 2 =  E [X 2( i ) ] = £ ^ d /  =  oo.

The ACF can be written as

N 0 e- ^ Wr -  e ^ Wr _  iV0sin(27rPEr)
2 —j 2 n r  2 ttt2 ttt
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it At)
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Figure 2.4: (a) PSD of bandlimited white noise, (b) ACF of bandlimited white noise.

As shown in Figure 2.4(b), X  (t) and X ( t  +  r )  are uncorrelated at the zero-crossing r  =  

± k / (2W )  where k =  1,2, • • •. This implies that samples in the time domain are uncorre

lated (independent in the Gaussian case). If Fs =  2W ,  then the variance of the samples is

White noise is commonly described as a Gaussian random process X ( t ) ,  and hence 

called white Gaussian noise (WGN), whose value (noise amplitude) at any arbitrary time t 

is statistically characterized by the Gaussian PDF

where is the variance of X .  The normalized or standardized Gaussian density function 

of a zero-mean process is obtained by setting the standard deviation a x  — 1. The normal

ized PDF is shown in Figure 2.5. Figure 2.5 shows that most probable noise amplitudes are 

those with small (positive or negative) small values.

The main reason that the Gaussian distribution is often chosen as the system noise 

model is due to the Central Limit Theorem (CLT) [14]. The CLT can be explained as 

follows. Assume that {2Q}, 1 <  i <  N ,  is a set of N  i.i.d, zero mean random variables, 

with finite variance a \ .  For convenience we use the normalized random variable

with zero mean and unit variance. The normalized (by l / \ / N )  random variable Y  is defined 

as the sum

N 0Fs/2.

(2.17)

(2.18)
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Figure 2.5: Normalized Gaussian PDF.

also has zero mean and unit variance. In the limit as N  —► oo, the CLT implies that the CDF 

of Y  approaches the Gaussian distribution. Although it is assumed that random variables in 

the sum are identically distributed, the assumption can be relaxed by summing independent 

random variables each with PDF f x i ( x ) and finite variance a \ .  [13].

The WGN noise model has been widely used in the modeling and verification of many 

communication systems [12]. For example, the narrow-band noise appearing at the out

put of digital filters at the receiver is commonly modeled as a Gaussian random process 

[15]. Narrow-band noise X ( t )  is usually represented in terms of its in-phase and quadra

ture components, similar to narrow-band signals of the form X( t )  — X i ( t )  cos(2nfct) — 

X q( t) s in (2n fct). Since X( t )  is Gaussian, then the complex-valued Gaussian RP X( t )  

consists of two jointly Gaussian real-valued processes. By jointly Gaussian we mean that 

any arbitrary set of samples of the real and imaginary parts is a Gaussian set of random 

variables [11].

In addition to modeling white noise at the receiver using a Gaussian process, memo- 

ryless channels are also modeled using a Gaussian process. Under a memoryless channel 

assumption, a scaled or attenuated amplitude version of the original signal is received at the 

receiver. The widely used communication channel model is the additive white Gaussian 

noise (AWGN) channel in which there is assumed to be a noise signal superimposed on the 

desired signal. Note that since samples of AWGN are independent, the noise effects each 

transmitted symbol independently.

One of the standard dimensionless parameters used in the error rate performance eval-

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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uation of digital communication systems is the signal-to-noise ratio (SNR), defined as the 

ratio of the average signal power to the average noise power. Being able to accurately es

timate the receiver noise and SNR at the receiver improves the receiver’s ability to make 

correct symbol decisions (probability of error), and hence increase the rate of reliable data 

transmission. A related figure of merit, Eb/N0, is sometimes used where Eb is the bit en

ergy (i.e., binary signal power S  times bit time T&) and N0 is the one-sided noise density 

(i.e., noise power N  divided by the bandwidth W).  Thus

Thus Eb/N0 is just signal-to-noise ratio normalized by the bandwidth and bit rate. The 

smaller the required Eb/N0, the more efficient is the detection procedure for a given prob

ability of error [12]. If Pr  is the average transmitted power, the average energy per symbol 

can be written as Es = P tT s =  q Eb, where q =  log2 M  and M  is the size of the constel

lation. The received power P r  to noise PSD and the received bit-energy Eb to noise PSD 

are related as

In a typical urban area or indoor environment, the height of a transmitter antenna is often 

lower than many of the surrounding structures. Thus, a direct path or a line o f sight (LOS) 

path between the transmitter and the receiver is often absent. Due to the processes of reflec

tion (which occurs when a waveform meets an object that is much larger than the signal’s 

wavelength), diffraction (which occurs when the surface encountered by the signal has ir

regularities such as sharp edges), and scattering (which occurs when the medium contains 

a large number of objects near the same size as the signal’s wavelength) from objects in the 

path [16], multiple copies of the transmitted signal, called multipath signal components or 

rays, arrive at the receiver via several paths with different angle o f arrivals (AQAs), time 

delays, and amplitude. More importantly, changes in the path length by A d  over a short 

time interval A t causes a phase shift

E b _  S T b _  S /R  _  S  W  Joule _  W att.s
N0 N /W  N /W  N '  R  W att per Hz W att.s

Pr  _ Eb Ft Es r?
N0 N0 N0 s '

Thus

2.3 Wireless Channel Effects

27rAd
A

2 n v A t  cos a
A
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2.3 Wireless Channel Effects

where v  is the velocity of the mobile unit (MU) and a  is the AOA. Clearly, as the path length 

changes by a wavelength A (30 cm at 1 GHz), the signal phase changes by 27r. Due to the 

significant phase changes, scattered components may add constructively at one location but 

add destructively at a location just a short distance away, according to their relative arrival 

times, amplitudes, and phases. The received signal envelope (level), not averaged over an 

area, fluctuates rapidly and randomly about the local mean over a short period of time or 

travel distance (typically over distances of about half a wavelength). When the signal power 

drops significantly, the channel is said to be in a fade and this phenomenon is called small- 

scale fading  [17] as shown in Figure 2.6. The occasional deep amplitude fades coincide 

with rapid phase variations. For example, small-scale fading can attenuate the signal by 40 

dB when the mobile moves as little as half a wavelength.

DC
3
i
%c

s
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E -20

-25

-30 400
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600 800 1000200

Figure 2.6: Typical simulated Rayleigh fading at the receiver.

If the transmission medium changes or if there is a relative motion of the antennas, the 

path length and/or geometry changes by A d  and each multipath signal component expe

riences an apparent shift in frequency, called a Doppler shift. The Doppler frequency is 

defined as
j. _  1 A<p _  i/cos a  _  f cv c o s a  
*d = 2n~At =  A-  “  c

where f c is the carrier frequency, c « 3 x  108 m/s is the free-space velocity of the electro

magnetic wave, and a  is the direction of motion of the mobile with respect to the direction 

of multipath signal arrival. The motion of the MU will introduce changes in the channel at

the rate of fd  Hz. For a constant mobile velocity, as f c increases, the Doppler shift becomes
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larger. If a sinusoidal signal at the carrier frequency f c is transmitted, the received signal 

spectrum, called the Doppler spectrum, will have components lying in the range of f c — fd  

to f c +  fd- If the receiver is moving toward the transmitter, i.e., —7r/2 <  9 < n /2 ,  the 

Doppler shift is positive (i.e., the apparent received frequency f  = f c + fd is increased); 

otherwise, if the receiver’s movement reverses direction then the Doppler shift is negative. 

Relative to the carrier frequency, the Doppler shift is typically quite small, but relative to 

baseband frequencies it can be relatively large.

Fluctuations in the received power are not the only effects of fading. Fading may also 

affect the shape of the pulse as it is being transmitted through the channel [18,19]. If the 

received multipath components are resolvable [20], then multipath effects can result in the 

broadening of the transmitted pulse, leading to inter-symbol interference (ISI), where the 

pulses of adjacent symbols interfere at the symbol sampling times. It should be noted that 

the small-scale fading is caused by changes in phase rather than by path attenuation since the 

path lengths change by only a small amount over small distances. However, if the mobile 

moves over larger distances (3> A), due to the changes in terrain features, the received 

signal strength can attenuate significantly. Fading over a large distance, called large-scale 

fading, may be mitigated by the use of power control, for example, while small-scale fading 

will introduce the need of an equalizer that is capable of removing the time-varying ISI 

introduced by the multipath propagation.

To evaluate the performance of wireless communication systems in laboratories, a chan

nel simulator must faithfully model both the large-scale and small-scale effects of time- 

varying propagation environments. Mainly, two approaches are utilized for modeling mul

tipath fading channels: ray-theoretical modeling [21] and impulse-response modeling [22]. 

The ray-theoretical model illuminates essential characteristics of the channel based on ge

ometric propagation theory and physical rays caused by reflections and diffractions. How

ever, the high computation and lack of detailed terrain and building databases make these 

models difficult to use [23]. By far the most popular channel simulation models are stochas

tic parametric models. In this approach, the channel impulse response is characterized by a 

set of deterministic and random parameters. The values of the parameters and the probabil

ity distributions governing their behavior are selected according to empirical measurements. 

A multipath fading channel is commonly modeled as a linear time-varying (LTV) system 

and can be fully described by its impulse response [22,24-26]. The complex impulse re-
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sponse c(t, r )  is a low-pass equivalent model of the actual real band-pass impulse response

m -1

C(*’T) =  (2-19) 
e=o

defined as the response observed at time t  to an impulse applied at time t  — r ,  where 

t  is the delay parameter, t  is the time, and L(t)  is the number of resolvable multipath 

components [20]. The t?-th signal component experiences a different path environment 

which will determine the amplitude ae, carrier phase shift 4>g, time delay rt, AOA a t, and 

Doppler shift /<*. In general each of these parameters are time-varying. The amplitude ag(t) 

is usually modeled as a Rayleigh-distributed random variable as

f x ( x )  = ~ r e ' x2/2ct2, x >  0 
a x

while the phase shift <f>t(t) is uniformly distributed. Note that the channel model in Equation

(2.19) does not consider the AOA of each multipath component. It is usually assumed that 

the scatterers surrounding the mobile station are about the same height as or are higher 

than the mobile. This implies that the received signal at the mobile antenna arrives from 

all directions after bouncing from the surrounding scatterers. Under these conditions, the 

Gans assumption that the AOA is uniformly distributed over [0, 2w] is valid [25]. The 

classical Rayleigh fading envelope with deep fades approximately A/2 apart arises from 

this model [26].

The effects of multipath channel and noise on transmitted signals in a wireless com

munication system are shown in Figure 2.7. The transmitted baseband signal s ( t ) will 

convolve with an L-ray multipath fading channel and then AWGN will be added to produce 

the output samples z(t).  The signal observed at the receiver can be written as

z ( t ) =  s(t) * c(t , t ) +  n(f)

where c(r, t ) is the time-varying channel’s impulse response to represent the impact of the 

channel on the transmitted signal s(t),  and n(t)  is AWGN. The equivalent lowpass received 

signal is given by
L - 1

z ( t ) =  ^ 2  ae(t)e~j<l>ê s ( t  -  £TC) +  n(t)
1=0

where L  resolvable paths are spaced at Tc time intervals. Wireless channel modeling will 

be discussed in detail in Chapter 4 and Chapter 5. Decoding, which is the process of map

ping the received signal z(t ) into one of the possible transmitted symbols, will be further 

discussed in Chapter 6.
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Figure 2.7: Block diagram of wireless communication systems.

2.4 High-Throughput Wireless Communication Systems
It is dangerous to  p u t lim its on w ireless  

(G. Marconi, 1932).

Consider a band-limited channel of bandwidth W  Hz in which the signal is corrupted only 

by AWGN having a single-sided power spectral density of N0 watts/Hz. Claude Shannon 

defined the channel capacity to be the maximum error-free average data rate that a channel 

can support [27]. Shannon showed that for AWGN channels, the channel capacity is given 

by

C  =  W \ o g 2 ( l  +  f )  =  W \ o g 2 [ l  +  1 ^ ]  (2.20)

where C  is the channel capacity in bps. Clearly the requirement for higher data rates di

rectly translates into a wider bandwidth requirement and/or higher transmitted power which 

may exceed the design constraints. Since the radio spectrum is a limited (and regulated) 

resource, more efficient spectral utilization is attractive. Spectral efficiency is usually de

fined as the number of bits per second that can be transmitted per Hz of bandwidth. Let 

Eb =  S /C  denote the energy per information bit at the receiver. Using Equation (2.20) the 

SNR E b/N 0 can be expressed as:

Eb = K ( 2C/ W -  1)
N0 C K 1

(2.21)

where C /W  is the maximum achievable spectral efficiency. The simplest way to increase 

the spectral efficiency is by increasing Eb/N0, which in turn implies increasing the trans

mitted signal power, or increasing the transmitter and receiver antenna gain, or decreasing 

the receiving system noise, or some combination of these measures [12]. It seems that data 

transmission at rates beyond the Shannon limit is only possible by increasing the capacity 

of the transmission channel itself.
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In wireless communications, transmitted signals that are attenuated and undergo fading 

can have a severe impact on system performance. One effective approach to combat fading 

and increase the channel capacity is to deploy multiple antennas at the transmitter and/or 

receiver. Multiple antenna communications is popularly known as space-time (ST) wireless 

or wireless using smart antennas. Such multiple antenna systems can theoretically increase 

capacity by up to a factor equal to the minimum of the numbers of transmit and receive 

antennas [2]. The key idea in multiple antenna systems is that if several paths have channel 

coefficients that are statistically independent, it is unlikely that they will all fade together, so 

the probability of unreliable detection is greatly lessened. Diversity refers to the existence 

of two or more signal paths that fade independently. Various spatial diversity (or antenna 

diversity) schemes have been utilized in single-input multiple-output (SIMO) deployments 

[2]. Multiple-input single-output (MISO) systems have used transmit diversity schemes [2]. 

Utilizing diversity techniques in SIMO and MISO communication structures provides SNR 

gain, increases spectral efficiency on multipath channels, mitigates the effects of fading, 

and increases the channel capacity, especially when multiple antennas are also available at 

the receiver. However, the capacity increase may not be sufficient for future requirements 

of wireless communication systems.

MIMO communication systems with n r  transmit antennas and h r  receive antennas 

were introduced to provide diversity gain, array gain, interference reduction, and multi

plexing gain [2]. The resulting diversity order increases by n r  x t i r  in which the depth 

of fades reduces considerably and the mean signal level increases, i.e., the signal suffers 

less from deep fades. In addition, in richly-scattered multipath wireless channel, deploying 

multiple antennas at both the transmitter and receiver can achieve high data rates with

out increasing the total transmission power or bandwidth. The capacity of MIMO systems 

over richly scattered channel has been shown to grow linearly up to m in (n r, u r )  fold [2]. 

This maximum data rate increase is limited by the richness of the multipath environment 

(i.e., correlated fading across receive antennas). To assure independent fading, the receive 

and transmit antennas must be sufficiently separated in space and/or polarization to create 

independent propagation paths. The asymptotic behaviour of the ergodic capacity of multi

antenna systems is shown in Figure 2.8. MIMO is a key element in 802.1 In , which is an 

emerging standard for next-generation of 802.11 that could boost throughput to 100 Mbit/s 

while maintaining backward compatibility with existing 802.11a/6/g devices.
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Figure 2.8: Ergodic capacities of uncorrelated multiple antenna systems for SNR=18 dB.

2.5 Algorithm Efficiency

In the evolutionary domain of wireless signal processing, careful analysis of proposed al

ternative algorithms is essential. For example, numerous models have been proposed for 

time-varying wireless channel models during the past three decades [28-39]. However, 

some of the well-known models do not generate correct statistical properties of free-space 

propagation [34,37]. Unfortunately, they have been used in many channel simulators and 

thus likely have led to inaccurate performance evaluations.

Another important decision that a designer must make is that given several alternative 

algorithms for a given task, which one should be considered for implementation. Specif

ically, for signal decoding at the receiver, numerous algorithms with various bit error rate 

(BER) versus SNR performance characteristics have been proposed. In addition to reliabil

ity of the algorithm, which is usually measured in the average BER versus SNR, other char

acteristics of an algorithms such as numerical stability and computational complexity are 

important. For example, heuristic MIMO decoding algorithms have at least cubic computa

tional complexity in the number of antennas while some other techniques have exponential 

complexity [2]. Hence, some of the published decoding algorithms may not be practical 

for real time implementation even for a moderate number of antennas and low-order digital 

modulation schemes.

One important challenge is, therefore, to minimize the computational complexity and
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increase the efficiency of the decoding algorithm at the receiver. An important question that 

arises is how to assess the efficiency of a signal processing algorithm? The efficiency of a 

decoding algorithm relates to the amount of computation (i.e. the complexity) required to 

decode the received signals to achieve an acceptable BER. Most of the proposed decoding 

approaches for MIMO systems consider only the average number of elementary operations, 

such as complex additions and multiplications per decoded symbol or bit, as a measure of 

the complexity of the algorithm [40]. The execution time of an algorithm on a sequential 

machine is usefully expressed as [41]

execution tim e  =  I C  x C P I  x C T  (2.22)

where IC , C P I  and C T  represent the instruction count, the average number of clock cycles 

per instruction and the clock period, respectively. Equation (2.22) shows that the execution 

time depends directly on the clock period (technology-dependent), the instruction count 

(depends on the instruction set architecture (ISA), operating system, programming style, 

programming language and compiler, etc.), and the average number of clock cycles per in

struction (depends on the implementation of the ISA). Consequently, the performance of 

the algorithm can be expressed as I  P C  x clock frequency /  IC , where I  P C  is the av

erage number of instructions per clock cycle ( I P C  = 1 /C P I ) .  Reducing the instruction 

count in the implementation tends to increase the rate at which the algorithm can be com

pleted. However, it is not sufficient to only consider the number of basic operations when 

comparing the efficiency of algorithms: there are other important factors. A more useful 

efficiency measure should also consider such characteristics as the degree of randomness or 

determinism in the execution behaviour, the maximum amount of limited resources (such as 

memory) required to execute the algorithm, the numerical robustness against quantization 

and round-off errors, the degree of concurrency, and the energy required by the hardware. 

The randomness of an algorithm can be defined as the dependence of the algorithm’s execu

tion behaviour on the input data set. For instance, sphere decoding (SD) is a data-dependent 

symbol decoding algorithm where, depending on the channel conditions and noise variance, 

one can obtain very different run times [42].

The degree of concurrency generally depends on the method that the overall computa

tion is broken down into finer subtasks and divided among computational units for parallel 

execution. If an algorithm is parallelizable, then the efficiency of it can be defined using

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6 Base-Band Signal Processing Platforms

Amdahl’s law [43] as

V

where T\  is the sequential execution time of the algorithm, Tp is the time spent by a parallel 

algorithm that uses np PEs [44], and the ratio T \ / T p is called the speed-up. This law states 

that the efficiency of the parallel machine (algorithm) is measured by the overall utilization 

of the np functional units or fraction of time the np processing units are busy. In other 

words, the performance gain is limited by the fraction of time that algorithm uses np PEs. 

More efficient algorithms achieve higher utilization of the processor’s resources (such as 

memories and functional units) at any given point of time.

Typically, physical layer signal processing algorithms of wireless communication net

works contain abundant data parallelism as identical operations are performed repeatedly 

on incoming streams of input data. The data and instruction level parallelism can be ex

ploited to increase the IPC rate. Thus, another efficiency measure is the degree to which an 

algorithm can effectively exploit the available parallelism. If the target microarchitecture is 

known a priori, designers/compiler may exploit parallelism from an existing algorithm to 

increase the computation speed. For example, most high-performance digital signal proces

sors (DSPs) provide parallelism in their ISA [41]. Typically they exploit instruction-level 

parallelism and subword parallelism within a processing unit and data-level parallelism 

across a limited number of processing modules. If the target platform is an application- 

specific integrated circuit (ASIC), in contrast to fixed-ISA architectures, the number of 

processing units can be scaled to meet real-time constraints of the algorithm. Also, design

ers may modify the algorithm in such a way that can be efficiently mapped on a simple 

parallel architecture. For example, if a parallel algorithm requires the transmission of a data 

among PEs for every few numerical operations it performs, then the communication time is 

likely to dominate its execution time. Ideally, the structure of the algorithm should match 

the communication structure between the PEs of a parallel architecture. If the target plat

form is ASIC or FPGAs, then it is reasonable to modify the algorithm to reduce hardware 

complexity at the expense of an acceptable performance penalty.

2.6 Base-Band Signal Processing Platforms

The demand for multimedia mobile communications with better QoS has been steadily 

increasing. Correspondingly, wireless standards are evolving to support more users with
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higher data rate communications than before. Some communication systems, such as 

MIMO, rely on computationally-intensive signal processing algorithms at the receiver to 

support high data rate transmissions. The demanding high performance requirements of 

these systems have forced manufacturers to modify their signal processor architectures 

to meet the necessary processing throughput. DSP architectures have been evolving to

wards higher clock frequencies, more instruction-level parallelism (ILP), and the inclusion 

of domain-specific functional units. For example, the Texas Instruments TI C6x proces

sors [45] use a very long instruction word (VLIW) architecture while the TI C5x [46] in

cludes a dedicated hardware unit to accelerate the add-compare-select (i.e., butterfly) oper

ation required by the Viterbi decoder in global system for mobile communications (GSM) 

cellular networks. Similarly, FPGAs have evolved to enable computationally intensive base

band signal processing.

The dynamic environment of wireless communications also favors programmable, or in 

some way reconfigurable, solutions. For example, it is highly desirable that the processing 

platform be flexible enough to execute different algorithms. A link adaptation algorithm, 

which usually resides in the media-access controller layer, provides the switching between 

the diversity and spatial multiplexing modes of operation, depending on the channel con

ditions. Another example is a base station that can seamlessly switch between different 

wireless standards (e.g., GSM and IS-95). Of course, each of those standards requires dif

ferent physical layer algorithms where algorithmic parameters, such as the coding rate and 

modulation order, need to be configured based on the propagation environment. Another 

advantage of programmable solutions is that they can be updated in the field with only 

software changes [47]. Moreover, flexible architectures facilitate the tracking of evolving 

standards, protocols, and services with the same basic hardware components. Decoupling 

the evolutionary flow of upgrading wireless standards for better services from hardware 

design also extends the time-in-the-market.

Considering the strict performance requirements and the advantages of flexibility, com

munication system designers have a vast range of semiconductor technologies to choose 

from when developing such a system. Three main processing platforms have been com

monly used: (a) software-programmable VLSI circuits such as DSPs and micro-controllers;

(b) hardware-programmable circuits such as FPGAs, and (c) ASICs. High-performance 

DSPs have become an integral component in base-stations to perform part of the required 

processing. Even though they provide flexibility through software programmability, how-
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ever, their use in portable terminals is not widespread due to their relatively high power 

consumption. In high data rate wireless applications, where the required processing ex

ceeds the processing power of DSPs, the ASIC is an efficient solution to off-load part of the 

processing. A dedicated co-processor can be utilized to accelerate the execution of time- 

critical kernels. ASICs are more power-efficient and support the often tremendous amount 

of processing needed to implement baseband signal processing. Even though ASICs can 

provide some level of flexibility, they still need to be co-ordinated by a micro-controller. 

This leads to the notion of embedded DSP and micro-controller cores integrated along with 

the ASIC engine to provide a better solution.

DSPs and ASICs are by far the most popular processing modules in wireless commu

nications systems. FPGAs are reconfigurable due to their programmable fabric that trades 

additional silicon area for its flexibility “in the field”. They succeed in bridging the per

formance and flexibility gaps between DSPs and the custom design approach by provid

ing post-fabrication programmability. Fixed-point arithmetic computational units with pa

rameterized precisions, variable-length registers, and numerous dedicated signal processing 

cores on-chip provide a flexible target platform for the efficient realization of digital signal 

processing algorithms that were formerly implemented on digital signal processors. FPGAs 

also increasingly provide distributed arithmetic, parallel processing, and high data band

width between processing fabric and on-chip memory blocks, making them ideal for the 

realization of computationally-intensive physical layer algorithms. The more recent FPGAs 

include programmable processors to execute complex algorithms and control functions. For 

example, embedded Nios soft processors are available in Altera’s Stratix devices [48] and 

Power PC processors are available in Xilinx Virtex II Pro devices [49].

Each processing platform has its advantages, and the optimum implementation strategy 

will vary depending upon application requirements and the cost. DSPs are well suited to 

arithmetic-intensive tasks, with conditional processing. For example, a DSP can simply 

execute a standard floating-point C program that has various if-then-else clauses such as 

the protocol stacks of communications systems. The complexity will affect the program 

length and hence the execution time. The performance of a DSP is mainly restricted by 

the clock rate and the number of independent operations that can be performed by the 

limited number of functional units. In contrast, FPGA designers are not constrained by 

fixed datapaths or the relatively small number of processing elements that are available in 

DSPs. They can add variable length registers, several specialized execution units to handle
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more threads simultaneously, and wide data buses to reach the required data bandwidth for 

specific algorithms. When mapping an algorithm with high degree of concurrency onto 

the array of processing elements on FPGAs, the number of computing resources and the 

flexibility in their possible connection allow the designer to provide an optimized mix of 

task-level parallelism and instruction-level parallelism for the particular algorithm.

Similar to DSP program libraries, FPGAs include various hard IP cores and usually 

come with a set of predefined soft IP cores that can be synthesized and implemented effi

ciently on FPGAs. Thus, FPGAs offer the flexibility to implement exactly what is required 

for a given application using highly parameterized building blocks. For example, Xilinx 

FPGAs can provide an opportunity for greater computational capacity than programmable 

DSPs by executing above 600 billion multiply-accumulate (MAC) per second compared 

to the 4.8 billion MAC/sec on the Analog Devices TigerSHARC DSP [50]. Also, several 

digital clock manager cores are embedded in FPGAs that provide clock frequency synthe

sis (flexible clock multiplication and division). This core allows adjusting the sample rate 

at various nodes in the system which may not be possible in DSPs. Thus, FPGAs can 

be utilized as co-processors to implement compute-intensive multi-rate signal processing 

algorithms.

We can conclude that the wireless infrastructure poses a set of stringent implementation 

requirements that are often contradictory. The evolutionary and adaptive nature of wireless 

standards requires flexible solutions, which are usually most easily solved using software- 

programmable architectures. Yet these solutions do not offer the required performance and 

energy-efficiency for high data rate communication systems. The latter can be offered by 

custom/semi-custom designs, but these tend to lack the required flexibility. Hence, dedi

cated ASICs can be utilized to perform some of the highly repetitive tasks required by such 

systems.

Even though reusing a common hardware across different functions will reduce the 

overall costs, running various tasks of communication systems on a single hardware plat

form can easily result in an inefficient implementation. Due to the different structure of 

algorithms, some algorithms may be poorly matched to a particular hardware architec

ture. For example, communication protocol stacks are complex control-dominated software 

code, more suitable to be implemented on micro-controllers or DSPs. Also, depending on 

the life time of a processing block, if it is short it is more suitable to be implemented on 

DSPs, since to be executed by FPGAs, it must be implemented in the core of the FPGA,
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which takes resources.

As a result, the implementation platform for wireless systems must balance the con

tradictory requirements of high-performance, flexibility, low energy consumption, and low 

cost [51]. Hence, the architectural platform for wireless applications will typically include 

heterogenous collections of computational modules, each of which targets a particular func

tion. Given the wide range in the architectural options, it is important to elaborate trade-offs 

in the flexibility-efficiency-performance-cost space when selecting the components for this 

heterogenous fabric. It seems that system-on-a-chip (SOC) technology, which combines a 

wide range of processors such as DSPs, ASICs, and configurable logic on a single die, is an 

efficient processing platform for the next generation of wireless systems.

2.7 Rapid Prototyping in Digital Design

In a highly innovative market, wireless systems have very short production cycles. In ad

dition, evolving standards, such as the third and fourth generations, continuously add new 

features and modes to improve one of the fundamental goals such as maximizing the trans

mission rate and minimizing the error rate. Achieving these goals requires continuous re

designs and simulations of baseband algorithms and changing design parameters during 

the design flow. Since the time to market is directly influenced by the time of design and 

verification, the design productivity can be increased by speeding up the design cycle.

Verification of alternative signal processing algorithms typically starts in their floating

point representations. At this stage algorithms assume few architectural or implementation 

details and are not realizable in their original double-precision form. In addition, to limit 

the required hardware resource requirements (and hence limit the cost and power consump

tion), most signal processing algorithms are implemented with fixed word-length precision. 

Relying entirely on floating-point simulation results during algorithm development can lead 

to failure in hardware implementation, as in the case of high performance radio local area 

network (HiperLAN) standard [52]. Hence, a transformation from the floating-point to 

a fixed-point system is required. Using finite-precision simulation, sufficiently large dy

namic range (to avoid overflow) and sufficiently wide precision (to bound the accumulated 

round-off errors) of each operand can be obtained. Also, the impact of finite-word-length 

arithmetic and quantization on the performance and the complexity of computation must be 

verified against that of the original floating-point implementations. However, the bit-true 

simulation of low error rate communication systems would be significantly slow. To imple-
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Table 2 .1 : Parameters of di: 'ferent Xilinx FPGAs.
Device
Family

Slices Multiplier
Blocks

XtremeDSP
Slices

Block
Memories

User I/O 
Pads

PowerPC
Blocks

Xilinx Virtex2P XC2VP100-6 44,096 444 NA 444 1,164 2
Xilinx Virtex4 XC4VFX14Q-11 63,168 NA 192 552 896 2
Xilinx Virtex4 XC4VSX55-11 24,576 NA 512 320 640 NA

ment a fixed-point simulator, one may write/invoke C++ libraries for fixed point operands 

(objects) and may overload required operators. Typically, the fixed-point constructs cannot 

be efficiently mapped to the general-purpose architecture of the host machine [53]. More

over, the complexity of signal processing algorithms and large number of samples required 

for a faithful verification slows down software-based simulations.

A hardware-based rapid prototyping platform (RPP) can not only speed up the bit- 

true simulation, it can also integrate algorithm development and implementation as early 

as possible [54]. Results from hardware simulation can be immediately fed back to the 

design process thereby avoiding the significant delay often experienced in the traditional 

design verification process. A RPP can be used to cope with rapidly evolving and increas

ingly complex communication standards, to assess alternative candidate algorithm and im

plementation strategies, to evaluate the design complexity and feasibility, to identify the 

real-time bottlenecks of the proposed algorithms, and to determine the required hardware 

resources.

In this thesis we used FPGAs from two well-known producers of programmable logic 

devices: Xilinx Inc. and Altera Corp. They build families of programmable devices ranging 

from low-cost FPGAs (such as Cyclone and Spartan), to high and medium density FPGAs 

(such as Stratix II and Virtex II Pro), and embedded processors (such as the Nios and Pow

erPC processors). While they sometimes have different terminologies for different features 

(for example logical elements in Altera devices versus slices in Xilinx FPGAs), the devices 

from both vendors have many common features such as local and global interconnect, hier

archical clocking, register chains, memory blocks, and various dedicated processing units.

Some of the major features of Xilinx FPGAs are summarized in Table 2.1. Each pro

grammable slice contains two function generators, two storage elements, arithmetic logic 

gates, large multiplexers, and fast carry look-ahead chain. A configurable logic block (CLB) 

is made up of four slices. While Virtex family parts have dedicated multipliers, Virtex 4 

parts contain XtremeDSP slices that each include one 18 x 18-bit 2’s complement signed 

multiplier, adder logic, and a 48-bit accumulator, operating at up to 500 MHz. Each mul-
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Table 2.2: Parameters of A tera Stratix EP1S80F1508C6 FPGA.
Logic

Elements
M-RAM
Blocks

M4K
Blocks

M512
Blocks

DSP
Blocks

User 
I/O Pins

Embedded
Multipliers

79,040 9 364 767 22 1,238 176

tiplier and accumulator can be used independently. These blocks are designed to support 

efficient and high-speed DSP applications. Each BlockRAM is an 18-Kbit true dual-port 

RAM, programmable from 16K x 1 to 512 x 36, in various depth and word width con

figurations. Each port is totally synchronous and independent. The BlockRAMs are cas- 

cadable to implement large embedded memories. Additionally, a built-in first-in, first-out 

(FIFO) memory is supported in the Virtex-4 FPGAs. Each PowerPC 405 core is a 32-bit 

Harvard-architecture microprocessor with a five-stage execution pipeline, a 16-KB Level 1 

instruction cache, a 16 KB Level 1 data cache, and operates at up to 450 MHz.

Altera Stratix devices provide three different RAM block sizes to implement true dual

port memory and FIFO buffers: 512 Kbits M-RAM blocks, 4K bits M4K Blocks, and 

512-bit M512 blocks. High-speed DSP blocks provide dedicated implementation of fast 

multipliers (faster than 300 MHz), and MAC functions. Nios is a 32-bit pipelined and 

configurable embedded reduced instruction set computer (RISC) processor. It operates at up 

to 125 MHz, with 16-bit instructions, and 32-bit or 16-bit configurable data path. Important 

specifications of Altera Stratix EP1S80F1508C6 device are given in Table 2.2.

While each FPGA has resources that can be configured in device-specific ways, our de

signs were implemented using synthesizable HDL and independent of these features. This 

allows us to target other hardware platforms and ASICs. However, to obtain best resource 

utilization and performance, we have also implemented our designs using specific features 

of FPGAs. For example, a four-input lookup table in Xilinx Virtex FPGAs were configured 

as a 16-bit shift register for compact implementations of pseudo-random number gener

ators. These registers were also used to implement delay lines with various lengths for 

multipath fading channel simulators. LUTs were also configured as distributed memories 

and act to provide compact implementations of registers, instead of using limited number 

of flip-flops in each slice. Even though implementing pipelined parallel multipliers using 

configurable slices requires a relatively large number of slices, dedicated 18 x 18-bit mul

tipliers are extremely useful for implementing MAC operations. Moreover, 48-bit DSP 

blocks are useful when implementing PEs of DSP-RAM parallel processor where each PE 

performs a 16 x 16 multiplication and a 48-bit accumulation operation. Various configu-
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rations of dual-port block memories allow compact and efficient storage of constant values 

such as sine and cosine values along with the coefficients of polynomials and digital filters. 

Block memories are also efficient resources for implementing delay lines with longer delays 

compared to implementations using LUTs configured in SRL mode. Furthermore, an array 

of block memories and dedicated DSP blocks are useful for implementing PIM processor 

architectures. The remaining chapters will discuss device-specific features in more detail.
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Chapter 3

Gaussian Variate Generators

One of the many applications of random variates with a Gaussian PDF is to model noisy 

natural phenomena. For example, a sequence of GVs is commonly used to model additive 

noise or variations in signal attenuation in the propagation channel. Also, multipath fading 

channel simulators use independent Gaussian samples to generate Rayleigh fading variates 

(i.e., signal attenuation coefficients). Another important application of GVs is to evaluate 

the performance of communication systems in the presence of additive noise at the receiver. 

The error rate performance of the system will depend on the channel model and noise val

ues introduced by different sources such as the non-linearity of the filters and quantization 

errors. While the distribution of distortion values may be difficult to characterize analyti

cally, it could be verified by MC simulation. In such a case, the overall effect of distortion 

from all functional blocks can be modeled together and there is no need to model them 

separately.

While a communication system can be characterized through the symbol error rate 

(SER) versus SNR relationship, for high SNR regions (corresponding to very low BERs) 

such a characterization requires very long-running MC simulations. For example, consider 

a digital communication system that is designed to achieve a BER of no more than 10“ 14. 

This means that on average, IQ1 4  symbols must be processed for each erroneous symbol in 

a MC simulation of the system. One usually requires at least 100 such error events if the 

BER is to be estimated with reasonable statistical significance. In addition, approximately 

1 0  samples per symbol interval are typically required to successfully represent waveforms 

in the simulation. Thus roughly 101 7  samples must be processed. The generation of 109  

GVs, using an optimized software simulator written in C, takes about 2.5 hours on a dual 

Pentium processor running at 3.0 GHz with a 1-MB L2 cache. By extrapolation, the gener-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ation of 101 7  GVs at this rate would take about 27,000 years. Note that some recent stan

dards give maximum allowable BERs of 10- 1 2  for specified SNRs (e.g., IEEE 802.1 lae 

10 Gbit/sec Ethernet). Thus maximizing the achievable GV generation rate is crucial for 

validating the BER performance of upcoming communication systems, and software-based 

GV generation is no longer adequate.

The low-BER characterization problem imposes additional challenges on PDF accu

racy. Evaluating a communication system at a BER of 10~ 1 5  implies that approximately 

one in every 101 5  received bits should be errored. The Q(-) error function, that is commonly 

used for determining the probability of error of uncoded systems, for 10~ 1 5  [14] is a value 

that approaches 8.0. This means that random variates near the center of the distribution do 

not contribute significantly to the probability of error since their small values are readily tol

erated by any system with that low a BER. Rather it is the GVs with a value of 8 a  or larger, 

where a  is the standard deviation of the Gaussian distribution, that will be the dominant 

source of errors. Therefore, for a MC simulation, the PDF of generated random numbers 

must be accurately close to the Gaussian PDF at the high a  regions (the tails of the PDF). 

Since the tail of Gaussian PDF decays exponentially, generating accurately-distributed GVs 

with large a  values is quite challenging.

Hardware-based GVGs using analog devices [55-57] and digital components [58-63] 

have shown significant speedups compared to software implementations. However, dig

ital implementations tend to be more desirable than analog implementations due to their 

predictable and controllable behavior, and because they can reproduce exactly the same 

pseudorandom sequence of variates in successive runs.

In this chapter we present different approaches to efficiently implementing GVGs based 

on the Box-Muller algorithm [64], When implementing a compact and accurate GVG on 

FPGAs, the following objectives need to be considered:

•  Tail accuracy: The normal distribution is an open-ended distribution in which ex

treme values occur with increasingly small probabilities. A GVG for low BER char

acterization must be able to generate accurately distributed GVs, especially at the 

high a  values.

•  Statistical correctness: The generated variates must pass standard tests for statistical 

properties, such as independence and accurate Gaussian distribution. The quality of 

the proposed design must be supported by standard goodness-of-fit statistical tests.
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•  Hardware efficiency: Ideally, a hardware realization should minimize the number of 

required FPGA resources while achieving an acceptably fast variate generation rate. 

Compactness is a more important factor when the available hardware resources are 

especially limited, such as in a relatively low-density FPGA.

•  Flexibility: The design should be parameterized and easy to modify to satisfy differ

ent design constraints, such as maximum resource utilization and minimum sampling 

rate.

The rest of this chapter is organized as follows. Section 3.1 reviews Gaussian distri

bution properties, describes several algorithms for generating GVs, and also compares re

lated work on digital GVG implementations. Section 3.2 evaluates different pseudo-random 

number generators (PNGs) and compares their statistical properties. Section 3.3 discusses 

different techniques for the implementation of trigonometric functions. Sections 3.4 de

scribes trade-offs involved in implementations of the Box-Muller algorithm. Specifically, 

three different realizations for implementing the BM algorithm are proposed and imple

mentation results are discussed. A compact and accurate hardware GVG that is described 

occupies only 1% of the Xilinx Virtex-II XC2V4000-6 FPGA and operates at 253 MHz, 

generating 506 million Gaussian variates per second within a range of ±9.41cr. The design 

can be easily configured to achieve higher tail accuracy at a small cost in extra hardware but 

with slightly decreased operating rate. Various standard statistical tests are applied to this 

GVG to verify its statistical characteristics. Implementation results verify that the PDF of 

the generated variate samples accurately matches the Gaussian PDF, even at the tails of the 

distribution. Also, the generated variates pass numerous standard goodness-of-fit statistical 

tests. Section 3.5 is dedicated to the analysis of goodness-of-fit tests and simulation results. 

Concluding remarks appear in Section 3.6.
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3.1 Gaussian Distribution, Algorithms, and Related Work

A standard Gaussian random variable Z e l ,  with a mean of zero and a variance of one, 

has the probability density function f z ( z )  =  e - * 2 / 2  [14]. More generally, a Gaussian

random variable X  = a x Z + m x  is completely characterized by its mean m x  and variance 

a \  and this property is denoted as X  ~  M (m x - ,o 2x ). The PDF of X  can be expressed as

/ * ( * ) =  * exp r > - m * )2^  ~ F v ■ K

where 1/yJ2-no2x  is the normalization constant that is chosen so that the area under f x ( x )  

is unity. The CDF is defined as the probability that a variable X  has a value less than or 

equal to x , and it is expressed in terms of the PDF as

for which there is no closed-form expression. Note that d F x (x ) /d x  =  f x ( x )  > 0 and 

F x (x )  grows monotonically from 0 to 1  such that the F x (x )  values are uniformly dis

tributed. Two important properties of the Gaussian variables are: (1) If X  N ( m x ,<Tx ) 

and if a and b are real numbers, then a X  +  b ~  J \f(a m x  +  b, (a o x )2)', and (2) if X  ~  

J\f (m x , ox ) and Y  ~  M (m y , cry) are independent normal random variables, then their 

sum is also normally distributed with W  =  X  +  Y  ~  M ( m x  + m y , ax  +  °y )-

When evaluating the performance of communication systems, it is often necessary to 

determine the area under the tail of the Gaussian PDF, the so-called tail probability [12]. 

The probability under the tail of the standard Gaussian PDF (m x  =  0 and o \  =  1) can be 

written as
i r ° °

Q (x)  -  P r(X  >  x) = 1 -  Fx (x) «  - =  /  e~y I2 dy
V  2 7 T J x

where Q (x) is the integral of the tail of the Gaussian PDF and is shown in Figure 3.1. 

Since Q (x) cannot be evaluated in closed form (i.e., cannot be summed and expressed as a 

mathematical formula), a tabular format is typically used. An approximation for x  >  3 can 

be written as [1 2 ]

Q (x ) *  ~ x r e~x2/2-xs/zir
The Q (x)  is related to the error function erf (a:) and the complementary error function 

erfc(a;) is related by

Q (x) =  I e r fc( - | )  =  i [ l - e r f ( ^ | )
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10 5
X

Figure 3.1: Plot of Q (x).

where
2  f x 2 

erf(x) - —-= /  e y dy
V *  Jo

and
2  9

erfc(a:) =  1  — erf(x) =  —j=. /  e~y dy.
V 71" J x

This probability is commonly used for determining the probability of error in the presence 

of Gaussian noise. For example, when detecting orthogonal signals at the receiver, the 

probability of error is reported to be [1 2 ]

which shows that the P g  decreases with increasing energy per bit Eb and/or decreasing 

noise power.

The fundamental importance of the normal distribution is due to the CLT. According 

to the CLT, the sum of a relatively large number of i.i.d random variables with a finite 

variance will be asymptotically normally distributed [14]. If u  is uniformly distributed over 

the interval [a, b] with m u  =  (a +  b )/2 and ofj = (b — a)2/ 1 2 , then one can show that if 

U{ e  [0 , 1 ] then

where m x  =  k /2  and a x  — \ /k /1 2 ,  is approximately Gaussian distributed with A/'(0,1).

(—oo, oo). Thus X  is distributed as A /(0 ,1) only asymptotically as k  goes to infinity. The

(3.1)

The drawback of this method is that X  & [— y/3k, V3k] instead of being unbounded within
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CLT-based technique may be acceptable in many applications because 99.7% of the obser

vations fall within ± 3 a x  of the mean. However, accurately generating Gaussian samples 

beyond three standard deviations from the mean requires summing up a much larger num

ber of samples implying much more hardware or computation time. Therefore, a purely 

CLT-based approach is impractical for the accurate implementation of GVGs.

The standard approach for generating nonuniform random variates such as Gaussian 

random numbers is to produce uniform random numbers first and then to transform them 

to obtain the desired PDF [65]. For example, the inversion method [6 6 ] transforms uniform 

random variables U €  [0,1] into a Gaussian variable X  by approximating the nondecreas

ing inverse of the Gaussian CDF as X  = (U ). Even though F x {x )  cannot be inverted

analytically, the inverse CDF, also called the quantile function, can be expressed in terms 

of the inverse error function s/2  e rf - 1  (2u — 1). The GVG in [67] uses a look-up table to 

store the CDF inverse. However, it is reported in [6 8 ] that this approach cannot produce 

Gaussian variates with accurate high-cr values.

Other popular approaches are the rejection-acceptance schemes such as the polar method 

and the Ziggurat algorithm [69,70]. The polar algorithm generates two independent GVs 

at a time. It involves finding a random point within the unit circle by generating uniformly 

distributed points within the [—1 , 1 ] x [—1 , 1 ] square and then rejecting any points out

side of the circle. The polar algorithm is given in Algorithm 1 where “randQ" generates a 

pseudo-random number (PN) between [0,1], and x i  and X2 are two independent normally 

distributed elements. The Ziggurat method is a special case of the rejection method. The

Algorithm 1 The polar algorithm.
1: while n > 1 do
2: ui = rand()\ U2 = randQ-,
3: v\ = 2u\ — 1; V2 = 2u2 — 1 ;
4: n = v i +  ul;
5: end while
6: x\ — v\ y /—2 In n /n ; X2 = V2 s /—2 \n n /n ;

main advantage of this algorithm comes from the fact that for a high percentage of the 

generated numbers, no relatively slow ln(-) operation is necessary. The rejection-based 

approaches have been generally used in software implementations (for example, the polar 

algorithm is used in older versions of Matlab - before MATLAB 5; - the Ziggurat algorithm 

is used in Matlab 5; and a modified Ziggurat algorithm is used in MATLAB 6 ), however, due 

to their conditional if-then-else assignment instructions and also the required ln( ) compu-
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tation, the Ziggurat algorithm has received less attention as the basis for efficient hardware 

implementation [71].

Another method was proposed by Box and Muller and is now well-known as the Box- 

Muller (BM) [64] algorithm. This algorithm transforms pairs of uniformly distributed num

bers into samples from a two-dimensional bivariate normal distribution. The inputs to the 

BM algorithm are two independent uniformly-distributed PNs, m ,  [0,1]. The outputs 

are two independent samples, x \  and X2 , from J\T(Q, 1). The transformation involves mul

tiplying f ( u \ )  =  y / -2 1 n (« i)  by g i(u 2) =  sin(27rti2) and 9 2 (^ 2 ) =  cos(27ru2) to yield 

x \  and X2 , respectively. This can be justified by solving for u \ and u 2 where

which shows that X i  and X 2 are independent variates from W (0 , 1).

The normality of the resulting distributions in the BM algorithm depends on the statis

tical properties of the PNG and the accuracy of the /(■) and g(-) computations. The max

imum representable value of the generalized GVs depends on the precision of the uniform 

variables u i and u 2. Thus the effects of the finite precision representation of variables on the 

accuracy of fixed-point arithmetic must be considered carefully. Assume that u i e  (0,1) is 

represented in the unsigned fixed-point format, which we will denote by Q < W L > , where 

W L  is the word length. Because of the similarity of the sine and cosine functions, gi(-) 

and <7 2 ( 0  can share the same hardware, thus we will use <?(•) to denote the implemented 

function, either gi(-) or <72(-)- Since | <?(•)) <  1, the maximum absolute value of a GV 

beyond 1.0 is determined by the function /(■). Thus, in practice 112 is less critical to the 

final accuracy and so g(-) can use a lower bitwidth. The closer that the value of u \  is to 0, 

the greater is the value of /(• )  and, therefore, the greater is the magnitude of the generated 

GV. One way to ensure that \x\ <  go, for some desired value g, is to choose the precision 

W L  of u \  to be large enough so that i/2W X ln(2) >  go. One can readily verify that for 

32-bit precision in u \, a variable range |x| <  6 .6 6 0 - can be obtained. Table 3.1 presents 

the maximum representable value of f ( u i ) ,  namely y/2W L\n{2), for various precisions of 

u \. The precision of the PNG can always be adjusted to obtain a Gaussian PDF with any 

desired accuracy in the tails.

The joint PDF of X i  and X 2 can be written as [64]
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Table 3.1: Maximum absolute value of a GV for various precisions of u i.
W L 8 16 24 32 48 64

Maximum |/ (u i) | 3.33 4.70 5.76 6.66 8.15 9.41

Table 3.2: Published 'PGA Implementations of a GVG.
Design [61]“ [75] [62] [77] [79]

Maximum deviation 4.0a 4.8a 6.0a 5.0a 6.0a
Output rate (MGVs/sec) 24.5 245 133 165 155

Clock freq. (MHz) 98 245 133 165 155
Number o f slices 437 480 2514 702 770

Resource utilization 8% 2% 10% 3% 3%
On-chip memory blocks 0.5 5 2 5 6

“Reference [61] used the Altera Flex 10KE FPGA; the four other designs used a Xilinx Virtex-II XC2V4000- 
6 FPGA.

Digital implementations of high-quality PNGs and accurate realizations of the loga

rithm, square root and trigonometric functions have been investigated extensively over the 

last three decades [72]. On the other hand, the BM algorithm is a reliable technique to gen

erate GVs with large values (accurately in the tail of PDF). Consequently, the BM transfor

mation has been used in many FPGA [61,62,73-77] and parallel processor realizations [78]. 

Table 3.2 summarizes the major characteristics of various published GVG implementations.

3.2 A Closer Look at PNGs

Anyone who considers arithmetical methods 
of producing random digits is, o f course, 

in a State of sin (Von Neumann, 1951).

The Monte Carlo (MC) technique is the basis for simulating systems that are driven by at 

least one input signal that is modeled as a stochastic process [13] - as opposed to deter

ministic algorithms. Other inputs can be modeled using analytical techniques or based on 

empirical measurements. Consequently, the key to a MC simulation, is the generation of 

sequences of random numbers which represent the sampled values of the input signal (i.e., 

a random process). The accuracy of MC simulation results depends on different parame

ters such as the size and statistical distribution of input samples and also system modeling 

assumptions and approximations.

PNGs have been used in MC simulators as either random sample generators or utilized 

to be transformed to other random sequences with a different (e.g., Gaussian) distribution.
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Consequently, MC simulations rely on the quality of PNGs (how closely they resemble 

truly random sequences). It is unfortunate that PNGs with actually rather poor statistical 

properties are frequently recommended in many texts and are used in many applications. 

Even many widely used PNGs that perform well in standard statistical tests for randomness 

are known to be inadequate for MC simulations [80,81].

A PNG uses a deterministic algorithm that has a state that evolves in a finite state space 

<S according to a recurrence of the form Si =  > 1. The initial state so G S  is

called the seed, and /  : <S —> <S is the transition function. At step i > 0, the generator 

outputs Ui = g(si), where g : S  —> [0,1] is the output function. The null hypothesis for a 

PNG can be explained as follows: the {u i}  are i.i.d random variables that are uniformly dis

tributed over the [0 , 1 ] interval if for each i and d, the vector u* =  {m , Ui+\ , • • ■ , Uj+d-i} 

is uniformly distributed over the d-dimensional unit hypercube [0, l ) d. The independence 

property implies that subsequences of the generated PNs u q , u i ,  - should be statistically 

independent. For a correlation test between consecutive PNs u o ,u i, • • • in the interval 

[0 , 1 ), either overlapping d-tuples u , =  {m ,U i+ i, ■ ■ ■ , Ui+d-i} or non-overlapping d- 

tuples Ui =  {uid, Uid+h ■ • • , Uid+d-i} can be constructed, and then the distribution of 

finite sequences Uj for each i in d-dimensional unit hypercube [0 , l ) d for small values of d 

(e.g., d <  6 ) can be assessed. The task is to measure how well Ui is uniformly distributed. 

For example, the generator should produce non-overlapping pairs (u2i, v,2i+i), i =  0 ,1 , • • • 

(i.e., members of the even subsequence uq,U2 , • ■ ■ should be independent of odd neigh

bors u \, u%, • ■ •). Undesirable correlations between consecutive random numbers will lead 

to deviations of the empirical distribution function of u* from the uniform distribution, in 

some dimension d. Regularities in generators and subtle correlations between PNs can 

compromise MC results [82].

An ideal random number generator would provide numbers that are uncorrelated (of 

central importance for many stochastic simulations), would satisfy relevant statistical tests 

of randomness, would have a large repetition period (this period limits the number of sam

ples that we can use safely), would generate a deterministic sequence that could be changed 

by adjusting an initial “seed” value, and would rapidly generate numbers using minimal 

hardware resources.

There are two main types of random number generators for producing sequences of 

PNs: linear PNGs and nonlinear PNGs [65]. A common example of linear PNGs are the 

linear congruential generators (LCGs) [83]. LCGs are widely used in many applications
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Figure 3.2: The two-dimensional distribution of 107  PNs pairs (u*, ui+\)  generated with 
MLCG recursion with xq = 314519, a =  16807, and rn — 23 1  — 1, when a small portion 
of it*-axis is magnified.

such as ANSI-C RAND (32-bit precision) function. They are based on the integer recursion

Xi = (a x i - i  +  b) m od m

where the multiplier a, increment b, and modulus m  are constants. If a  is a primitive root 

modulo m  and m  is prime, then the period of the generator is p = m  — 1 [84]. These gen

erators can be further classified into mixed (b >  0 ) and multiplicative (b =  0 ) types, usually 

denoted by LCG(a, b, m )  and MLCG(a, m). An LCG generates a sequence of pseudo ran

dom integers x \ ,  X2 , ■ • • between 0 and m  — 1; for MLCG the lower bound is 1. Each X{ 

can be scaled down into the U{ €  [0,1) interval. For a fast and convenient implementation 

of LCGs on computers, a modulus that is a power of 2 is commonly used. An intrinsic 

property of LCGs is that the distribution of d-tuples m  =  {ui,Ui+1 , • • • ,u i+(i - i }  over all 

possible points in [0, l ) d lies on a relatively small number of parallel hyperplanes [65]. The 

intuitive reason is that there are 2dWL points in the unit d-cube with coordinates that are 

exactly representable as W L-bit binary fractions, where W L  denotes the word length in 

bits. These points lie on 2WL hyperplanes at a separation of 2~WL.

Figure 3.2 plots the two-dimensional distribution of 107  PNs pairs (uj, Ui+i) generated 

using MLCG recursion with seed xo =  314519 when a small portion of i^-axis is magni

fied. A lattice structure is clearly visible in the smallest case d =  2. In addition to regular 

lattice structures, the other known defect of this generator is that it produces correlated low- 

order bits as well as long-range correlations for intervals that are a power of 2. To avoid the 

problem of nonrandomness in the low order bits, the modulus m  sometimes is chosen to be
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a prime number. For example, IBM computers use a MLCG with a =  75  and m  =  23 1  -  1 

where the period 23 1  — 1 2.15 x 109  is relatively short [85].

To increase the rather short period of LCGs, the order of the linear recursion can be 

increased as

Xi =  (ai Xi- 1  ------ 1-a k  X i-k) m od m,

that is called the multiplicative recursive congruential generators (MRGs) [83] with order 

fc >  1, a* G Zm =  {0,1, • • • , } and Ui =  Xj/m . For prime m  and appropriately chosen 

a fs ,  the sequence has a (maximal) period length p =  m k -  1. This can be achieved with 

only two non-zero ai coefficients, i.e., Xi = (ar X i-r + Xi-k) m od m , which makes 

implementation faster. The special case k =  2, a i =  a% = 1 leads to the Fibonacci 

generator x^ =  (x { - 2  +  S i- i )  m od m , whose statistical properties are rather poor. The 

Lagged Fibonacci generators (LFGs), denoted by LFG(r, k, m , ©) [83], are initialized with 

r  integers x \ , • • • , x r and use the recursion

X{ =  (Xi-r  © X i-k)  m od m

where indexes r  and k  denote the lags, r > k, and © denotes one of the binary operations 

+ , —, x or the exclusive-or operation ©. For the common cases of addition or subtraction 

modulo 2w l , the maximal period with suitable choices of r  and k  is p «  (2 r — l)2 WL~l & 

2r+WL~ 1. The standard Unix generator RANDOM and also the PNG in the Numerical 

Recipes implementation [8 6 ], which uses LFG (55,2 4 ,109, —), are two examples of this 

kind of PNG. However, it is shown in [81] that LFGs using the operations of (+ , —, ©) can 

give poor performance unless the lag is very large (of order hundreds). One could choose 

multiplicative LFGs that scramble the regularity and increase the apparent randomness even 

for small lags. However, the resource utilization can be relatively large and the sampling 

rate is limited by the efficiency of the multiplier.

Linear feedback shift register (LFSR) generators, also called Tausworthe generators 

(TGs), are another important class of PNGs that are based on the theory of primitive tri

nomials of the form p(x) — x r + x k +  1 [83]. The sequence LFSR(r, k, ©) is defined 

by

X{ — Xi—j. © Xi—k

The maximal possible period of p =  2r — 1 is achieved when the primitive polynomial p(x)  

divides x p — I but for no smaller value of p. This condition can be met by choosing r to be 

a Mersenne prime, that is a prime number r  for which 2r — 1 is also a prime. XOR-based
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Output

Figure 3.3: Fibonacci implementation of a 4-bit LFSR.

LFSRs have enjoyed success in many hardware applications because of their compactness, 

but have been criticized as being among the worst PNGs and that they produce sequences 

that are inadequate as pseudorandom sequences in MC simulations [87]. The PNGs with 

power of two moduli are also worse than those with prime moduli. Lindholm [8 8 ] also 

showed that the recurrences based on polynomials with too few nonzero coefficients will 

have inferior statistics.

Nevertheless, LFSRs have been widely used in hardware implementations because they 

tend to be faster than generators that use multiplication and because the period increases 

exponentially with the width of the register. Consider the 4-bit LFSR defined by the char

acteristic polynomial p (x ) =  x 4  +  x  +  1, as shown in Figure 3.3. This LFSR generates a 

single bit every clock cycle as an output. If one obtains a multiple-bit PN from the outputs 

of the flipflops, the PNs would be highly correlated. When an m  >  1-bit PN is required, 

one way is to accumulate a m-bit PN using a LFSR which is rather slow [76]. Another 

approach is to use several LFSRs operating in parallel with uncorrelated initial seeds. This 

may lead to poor utilization of FPGA resources since LFSRs require little combinational 

circuitry and thus the slices would not be fully utilized. The more recent FPGAs (e.g., 

Xilinx Virtex family) provide special configurations (such as the shift register look-up ta

bles [89]) to configure LUTs as a shift register and hence use the resources more efficiently 

when implementing LFSRs. This feature is used in GVGs in [62,76,77]. However, to 

maximize design portability, one would rather not use such device-specific optimizations. 

A more efficient approach is to use a multiple-bit leap-forward LFSR (LF-LFSR) [90] as 

used in GVGs in [61,77]. This method is based on the observation that the LFSR is a linear 

system and a LF-LFSR can leap k  steps in one clock cycle. The LFSR state transition can 

be written as

Q \+1 = Q i ® Q l  Q S2+1 = Q l  Q t+1 = Q l  Q \+l = Q l
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w e  so i g g g p a  m ~ m  ^ n n  n g p i  n p i ~ i  c o s  n n n  
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Figure 3.4: Rule 90 for cellular automata, 

which in vector format can be expressed as:

r Q i 1 s + l
' 0 0 1 1 ' Qi s

r Qi  1
Q2 1 0 0 0 Q2 — T* Q2
Q3 0 1 0 0 Qz

— X
Qz

. Q a . 0 0 1 0 . Q i  . Q i .

where T  is the transition matrix. It can be readily shown that the state of the LFSR after k 

steps (clock cycles) can be expressed as Q s+fc =  T fcQ s. The new circuit thus leaps k  steps 

in one clock cycle. For example, a four-bit LF-LFSR can be obtained using the following 

equations:
'  Q 1 1

4 ' 1 0  1 1 ' Q 1
Q2 1 1 0 0 Q2
Qz 0 1 1 0 Qz

. Q i 0 0 1 1 . Q i .

Q i — Q i © Qz © Q ii Q \  — Q \ © Q i, Q i — Q 2 © Qz-, Q i  =  Qz © Qa

Cellular automata generators (CAGs) [91] evolve in discrete steps, where the next 

value of registers determined by its previous value and that of the neighbors. Depending 

on the extent of neighborhood, different register-based state machines are constructed using 

so-called the cellular automata rules. For example, the rules s f  =  Sj_ 1 © s;+ i and s f  =

1 © Sj © 6’i+i define the so-called “Rule 90” (as shown in Figure 3.4) and “Rule 150” 

cell types, respectively, where s* denotes the current value of i-th cell. CAGs rely on the 

bit-level computation and interconnection and are of particular importance for fine-grained 

parallel processing and is commonly used in built-in self-test applications. It is shown 

in [92] that the same linear dependencies that exist in the output sequence of LFSRs are 

still encountered in sequences generated by CAGs. In many applications, such as stochastic 

modeling and MC simulations, the quality of statistical randomness is far more important 

than long period and maximum generation rate [65], In MC applications it is better to be 

slow than sorry.

Marsaglia and L’Ecuyer [93,94] proposed CTGs [95] which have randomness proper

ties that has strong theoretical and empirical support. The CTG is constructed by taking an 

exclusive-OR of several TGs which yield sequences that have much less regular structure
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than the corresponding sequences of their individual component generators. If the compo

nent generators are chosen properly, then the period of the combined generator will be the 

product of the periods of the components [65]. The uniformity and independence of the 

output sequence is typically assessed by equidistribution measures [96]. The pseudo-code 

of a 32-bit CTG with three components and p  ph 28 8  is given in the following [97]. A 

restriction applies when assigning initial seeds to Zj, j  =  1 , 2 , 3  where z \  >  2 , z i  > 8 , 

and z$ >  16. It is recommended that the initial seeds, Zj, should be chosen to be large 

independent values [98].

u n s ig n e d  lo n g  z i ,z 2,z 3,b; 
d o u b le  CTG88 () {
b =  (((zi <  13) © z i)  »  19); zi =  (((zi & 4294967294) «  12) © b);
b =  (((z2 «  2) © z2) »  25); z2 =  (((z2 & 4294967288) «  4) © b);
b =  (((z3 <  3) © z 3) »  11); z3 =  (((z3 & 4294967280) <  17) © b);
r e tu r n ((z i © z2 © z3) X 2.328306436Se — 10);

A 32-bit CTG with four components and p  ph 21 1 3  can be designed as given in the CTG113 

pseudo code [97].

u n s ig n e d  l o n g z i , z 2,z 3,Z4 ,b; 
double CTG113 () {
b =  (((zi <  6) © z i)  »  13); zj =  (((zi & 4294967294) <  18) © b);
b =  (((z2 <  2) © z2) »  27); z2 =  (((z2 & 4294967288) <  2) © b);
b =  (((z3 <  13) © z 3) »  21); z3 =  (((z3 & 4294967280) « 7 ) ®  b);
b =  (((z4 <  3) © z4) »  12); z4 =  (((z4 & 4294967168) «  13) © b);
r e tu r n ((z i © z2 © z3 © Z4 ) x 2.3283064365387e — 10);

Unfortunately, the CTGs still have a lattice correlation structure and will fail tests that 

are sensitive to linear interdependencies [85]. Coddington proposed in [81] to improve 

the statistics of linear PNGs by using a very long period (e.g. p  px 22 0 0  or more). This 

recommendation is based on empirical experiences and no theoretical analysis has been 

provided yet. A 64-bit CTG with five components and p  & 22 5 8  is given in the following 

where z j , j  =  1, • ■ • , 5 are 64-bit variables. Table 3.3 compares the performance of three 

CTGs.

u n s ig n e d  lo n g  l o n g z i , z 2,z 3,Z4,Z5; 
d o u b le  CTG258 () { 
u n s ig n e d  lo n g  lo n g b ;
b =  (((zi «  1) © Zl) »  53); zi =  (((zi & 18446744073709551614) «  10) © b);
b =  (((z2 «  24) © z 2) »  50); z2 =  (((z2 & 18446744073709551104) «  5) © b);
b =  (((z3 «  3) ffiz3) »  23); z3 =  (((z3 & 18446744073709547520) «  29) © b);
b =  (((Z4 <  5) © z 4) »  24); z4 =  (((z4 & 18446744073709420544) «  23) © b);
b =  (((zB <  3) © z6) »  33); zB =  (((z6 & 18446744073701163008) «  8 ) © b);
r e tu r n  ( (z l © z2 © z3 © Z4 © z5) X 5.4210108624275221e — 20);___________________
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Table 3.3: Performance of three CTGs implemented on the Xilinx Virtex-II XC2V4000-6.
Output bitwidth Apprx. period Slices Clock frequency (MHz)

32 2 88 72 425
32 2133 124 422

64 22B8 205 419

Table 3.4: PNGs used in published GVG designs.
Design Type Period

[61] LFSR 20U
[75] LF-LFSR 2 190

[62] LFSR 2 bU

[77] LFSR 2 ai!

[79] CTG 2 SS

In contrast to linear PNGs, nonlinear generators with a prime modulus overcome the 

regular structure of d-tuples of consecutive numbers [99]. The importance of inversive 

PNGs stems from the fact that their intrinsic structure and correlation behaviour are strongly 

different from linear generators. Also, there is no sample size restriction as for linear gener

ators [96], There are several variants of nonlinear generators such as inversive congruential 

generators (ICGs), explicit-inverse congruential generators (EICGs), and combinations of 

them. The congruence Xi+ 1 = axi + b m od m  with i > 0 and seed xo defines an ICG 

that generates a sequence of PNs in {0, • • • , m  — 1 }. A prominent feature of the ICG with 

prime modulus is the absence of any lattice structure. The EICG follows the recurrence 

Xi =  a(i + xo) +  b m od m  and defines a sequence of PNs in {0, • • • , m  — 1}. Com

pared to linear PNGs of the same size, nonlinear PNGs tend to be slower but their structure 

and correlation behaviour are quite different from that of linear PNGs. An efficient way of 

obtaining a nonlinear PNG with a long period is to combine several small nonlinear PNGs 

with relatively prime moduli [96]. Fast implementations of sufficiently small nonlinear gen

erators can be obtained simply by precomputing and storing their output sequences. Other 

nonlinear generators have been proposed in the field of cryptography [100]. For example, 

the advanced encryption standard (AES) is a cryptographic algorithm that has been used as 

an encryption function of communication systems such as in optical links. AES includes 

a nonlinear PNG that could be used for stochastic simulation [100]. The implementation 

results in [101] show that although AES in is indeed a good candidate for PNG, the resource 

need can be unacceptable for many applications.

Table 3.4 gives the PNGs used in different recently published GVGs. One important

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 Implementation o f Trigonometric Functions

point worth mentioning is that the period of a generator limits the usable sample size. For 

linear PNGs, the square root of the period length has been reported to be a prudent upper 

bound for the usable sample size [65]. Consequently, the maximum usable sample size 

of the generators given in Table 3.4 is actually too small for MC simulations of digital 

communication systems that operate at a very low error rates. Nonetheless, the test results 

in [81, 96] verify that for comparable periods, the mixed combined generator remained 

useful for longer sequences than the linear PNGs. Also, among numerous tested PNGs 

[81], the LCG with at least 48-bit precision, the LFGs using multiplication, the CTG with 

long period, and non-linear PNGs seemed to be among the best PNGs that provide better 

randomness properties and the extremely large periods necessary for MC simulations. So 

they are prime candidates for PNG realizations. To reduce the regularity, we can additively 

combine a large linear CTG with the period length of p & 22 5 8  [94] that passes all known 

statistical tests and various MC tests [81] with a very small non-linear PNG.

3.3 Implementation of Trigonometric Functions

There are various standard approaches for approximating trigonometric functions. The 

choice of a method and a particular implementation depends on such requirements as 

throughput, latency, and area as well as the required accuracy. The accuracy is determined 

by the error of the approximation and by the roundoff errors that occur during the evaluation 

of the approximation.

A polynomial approximation based on the Taylor series expression is a well-known 

technique that can be used for infinitely differentiable functions. If /* denotes the i-th 

derivative of /(• ) , then the Taylor series of f ( x )  about xq can be expressed as

OO

f ( x )  = f { x 0) -I- -  x 0y .. „ 11 
1 = 0

The special case for xq — 0 is called the Maclaurin series. The sin(-) and cos(-) functions 

can be approximated as

( - 0 "  -2 „ -H   V 2'  ( - 1 ) 'sin a; =  y , r  and cos x  =  V  for all x ,
(2 n  +  1 ) 1  (2 n)l

respectively [102]. Clearly, the greater the number of partial sums that are included in the 

series, the more accurate the approximation. Factoring terms can lead to a simpler hardware
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implementation, as shown in the following approximation:
/v*3 /v.5 „7, ,  , it/ U/ vt>

smOr) «  x  — | —

«  cc(l — (x2) ( l  — (x2) ( l  — ( ® 2 ) / ( 6  x 7 ))/(4  x 5 ))/(2  x 3)).

Thus, we only need to calculate x 2 at any one step, as opposed to x 7, and we do not have 

to calculate all of the factorial terms. In general, implementation of trigonometric (and 

other functions such as ln(-)) using only a few terms of the Taylor expansion provides 

unacceptable accuracies [1 0 2 ].

Storing and later retrieving quantized values of the trigonometric function in an on-chip 

memory, so-called table lookup, is relatively fast, but the function accuracy is limited by 

the size of the on-chip memory. In fact the size of memory grows exponentially with the 

size of the input word, which confines this solution to relatively small input precisions (say 

< 1 2  bits arguments). The table size can be reduced by exploiting the symmetry properties 

of the sin(-) and cos(-) functions. Instead of storing the quantized values of gi{u2) and 

92  iu 2 ) over the full period [0 , 1 ), the domain of g\ (u2) within only the initial quarter period 

[0,0.25] can be segmented uniformly into 292 segments and the corresponding function 

values can be stored in a 292 x WT-2 -bit BlockRAM. Algorithm 2 shows the calculation of 

the sin(27TU2) value using the quarter-size look-up table. Algorithm 3 calls the sin(27rif2) 

algorithm to calculate cos(27ru2).

Algorithm 2 Computation of sin(27TU2), u 2 €  [0,1) 
if u2 > 0.5 then 

sign =  l ;u 2 =  i»2 — 0.5; 
else

sign  =  0 ; 
end if
if u2 > 0.25 then

u2 = 0.5 — u2\ 
end if
index =  [4 u 2 (2 ® — 1 .0 )J; 
return {sign, BlockRAM [index]};

Another well-known technique for reducing the table size, while maintaining or in

creasing accuracy, is to use an interpolation technique. In this method, a readily evalu

ated polynomial of degree v, p{x) =  Y^j=o aj x ^  is obtained by making its value coin

cide with the function at v  +  1 points (breakpoints). To obtain the coefficients aj, the set 

of v  +  1  linear equations yi — J2j=oaj x i> 0  <  i < v  can be solved, where x% and 

yi are the v  +  1 breakpoints. An alternative to fitting a polynomial of degree v  through
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Algorithm 3 Computation of cos(27ru2), U2  €  [0,1) 
if U2 > 0.75 then 

U2 — U2 -  0.75; 
else

U2 =  U2 +  0.25; 
end if
return sin(27rit2);

v  +  1  breakpoints is to have different polynomials (of lower degree) through subsets of 

the breakpoints. This approach is called piecewise approximation. If the breakpoints are 

sufficiently close, then one may choose linear interpolation. If the values of sin(27rx) for 

two successive known points, xo and x i ,  are f ( x o) and / ( x i ) ,  respectively, then a linear 

interpolation can be used to approximate the value x between breakpoints xo and x i  as 

flxi)^JXxo) ~  xi~-x0• Since x is known, the linear interpolation polynomial p(x)  can be 

defined as p (x)  =  / ( x 0) +  (x -  so) where and typi'

cally stored in a table for every segment. The error of the linear interpolation is defined 

as £ — 11/(0 — p(-)ll- Figure 3.5 plots the squared error of the direct lookup table tech

nique along with the squared error of the linear interpolation method. The mean square 

error (MSE) of direct table lookup with 1024 segments for the full cycle is about 10- 5 ; for 

the first order approximation approach with 64 segments for the quarter cycle, the MSE is 

about 10- 9 . The above techniques provide different trade-offs between the computation 

speed, memory size, and computation accuracy. One commercial implementation, the 

Synopsys trigonometric IP core, approximates the sine function by segmenting one quarter 

period into 64 segments, and then uses linear interpolation and symmetry to approximate 

the cosine value over the full domain (0 ,27r) [103].

Another technique is the multipartite table method in which only table lookup and 

adders are utilized [104] for a piecewise linear approximation of the functions with up 

to 20-bit inputs. The idea behind the bipartite approach is to group 2° input intervals into 

2^ larger intervals, where j3 < a , such that the slope of the segment is considered constant 

in every larger interval.

Another well-publicized technique for approximating trigonometric functions is the 

CORDIC algorithm [72,105]. CORDIC stands for COrdinate Rotation Digital Computer 

[106] is a bit-serial set of algorithms that was further expanded to compute other elemen

tary functions such as logarithmic, exponential and square-root. The CORDIC computation 

algorithms use additive normalization (i.e., each iteration uses a table lookup, bit shifts, and
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Figure 3.5: The cosine approximation error: (a) Ideal cosine function; (b) Squared error for 
the table look-up approximation; (c) Squared error for the first order approximation.

an addition operation to converge) which results in one bit convergence per iteration and 

hence a linear complexity 0 (n ) .  It is particularly well-suited for low-cost applications. 

Xilinx provides a CORDIC IP core for implementing trigonometric equations [107]. A 

fully parallel 16-bit fixed-point configuration with single-cycle data throughput can be run 

at 200 MHz and requires 646 slices on a Xilinx Virtex2P XC2VP100-6 FPGA. Xilinx’s 

word-serial architecture, configured with the maximum degree of pipelining, uses only 285 

slices, but operates at the significantly lower frequency of 136 MHz. Redundant or high- 

radix CORDIC algorithms require more hardware but reduce the required number of iter

ations. Trade-offs thus exist between the complexity of each iteration and the number of 

iterations.

3.4 Gaussian Variate Generator Implementation

Accurate and efficient implementation of the f ( u i )  in the BM function is more challeng

ing than realizing periodic sine and cosine functions. In this section, we propose three 

approaches for realizing f ( u \ )  and hence producing three alternative GVGs. The first ap

proach uses iterative convergent algorithms to calculate the ln(-) and square-root operations. 

The second approach is based on non-uniform quantization and table lookup schemes. The 

third proposed method utilizes polynomial curve fitting, an efficient hierarchical domain
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segmentation, and a novel scaling scheme to maintain the accuracy of the computation. 

The third technique provides an optimized datapath with respect to the noise generation 

rate and overall resource utilization on the FPGA, while achieving accurately Gaussian 

statistics right into the distribution tails.

3.4.1 Implementation of a GVG Using Iterative Algorithms

As discussed in Section 3.3, one solution for calculating the logarithm and square root 

operations is based on series expansion. It is known that this approach may result in un

acceptable PDF accuracy if an insufficient number of leading terms of the Taylor series is 

utilized [58]. Another well-known approach for calculating differentiable functions, such 

as division, reciprocal, and square root, are the digit recurrence methods. These techniques 

produce linear convergence where each iteration produces one new digit of the result. As a 

consequence, the number of iterations for a desired accuracy depends linearly on the preci

sion of til.

To compute f ( u i ) ,  first ln (u i) is calculated using the multiplicative algorithm for re

ciprocal [72] and then the square root of —2 ln (u i) is approximated with a digit recurrence 

algorithm [105]. Let tti 6  [0.5,1) be a PN that has the fixed-point representation denoted 

by Q (W L \,W F i),  where W L \ =  32 and W F\ =  31. Since l / u \  can be approximated 

as 1 /u i ~  n ^ H l  +  where Sj e  [ -1 ,0 ,1 ]  [72], then ln (u i) can be written as

ln (u i) «  — L j  where L j =  ln (l  +  Sj2~i) [72]. Algorithm 4 shows an iterative 

procedure for calculating y = ln (u i). The values for Sj are obtained from the multi

plicative normalization and the values of L j  can be obtained from a table. The recurrence 

y\j  +  1] =  y\j} — L j  updates the value of y  in every iteration j , where 0 <  j  < W L \, and 

the final result y\W L{\ m ln (u i) is ready after W L \ + 1  iterations. The absolute error of the 

ln (u i) approximation, produced by this convergent algorithm, is bounded by 2~WLl [72]. 

However, in a finite-precision representation, the truncation (or rounding) error must also 

be considered. As shown in Algorithm 4, If u \  is less than 0.5, u\ should be scaled up 

and, consequently, the result of the algorithm would need to be rescaled. Note that if u\ is 

equal to 0 , the corresponding numerical value is set to the smallest representable number, 

2” 31. Scaling up can be performed by a simple shift-left operation. A variable T  stores the 

number of such shift-left operations. For W F\ =  31, the value of T  lies between 0 to 30 

and, therefore, a 5-bit counter can be used. The greatest magnitude of | — T ln (2 ) | is 20.79, 

which implies that the result of the algorithm can be expressed in Q{32,26) format. The
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Algorithm  4 Calculating ln(tti), u \ €  [0.5,1)_____
while (ui[WF\ — 1] ^  1 )  do 

Mi ^  1; T  + +; 
end while
y =  0; w =  1 - u r ,  
for (j  =  0; j  < WL f , j  +  +) do 

if (w > 0) then 
s  =  1 ;

else if (w > —0.75) then 
s =  0 ; 

else 
s = -1 ;  

end if
if (j  > WLi /2)  then 

I  =  s 2 _J ; 
else

L =  l n ( l  +  s2~j ); / /  T h e  r i g h t  h a n d  s i d e  i s  r e a d  f r o m  a  t a b l e  
end if
y = y - L ;
w = 2(w — s + s w 2  j); 

end for
return y -  T in  2; f / T In 2 a r e  r e a d  f r o m  a  t a b l e

precisions of the w  and y  variables can be set to use Q (32,28) and Q (32 ,30), respectively. 

Since the ln(tii) result is a negative number in Q (32 ,26) format, the value of —21n(ui) 

can be in Q{32,25) format. However, since —21n(ui) is always a positive number less 

than 49, the input to the square root operation can be taken to be an unsigned number in the 

Q (32,26) format. The ln (u i) implementation utilizes 246 slices in an XC2V4000-6 FPGA 

and operates at up to 132 MHz.

To speed up the ln (u i) calculation, one BlockRAM can be utilized to store some pre

defined values required by Algorithm 4. Here 30 values of —T ln(2 ) are precomputed and 

stored in a memory. Thirty-four different values of —L  =  — ln (l +  s2~ i), for 0 <  j  < 16 

and s — {—1,1}, are stored in the same BlockRAM. Also, to calculate L  =  s2~J , for 

16 <  j  < 32, 32 values of —L  are stored in the memory for s = { -1 ,1 } . Altogether, 96 

words of BlockRAM are used with the BlockRAM configured into a 512 x 36 aspect ratio. 

Since rescaling of the final result — and therefore the look-up of the value of —T ln(2 )
f

—  takes place in the last clock cycle, there is no need to configure the BlockRAM into 

dual-port mode.

Since the calculation of ln (u i) takes W L \ +  1 clock cycles and the input to the square 

root module comes in sequence from the ln (u i) module, the square root can be performed
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Figure 3.6: 52-bit LFSR design.

in a second pipeline stage while the ln(iii) module calculates the next logarithm. There

fore, rather than using a multiplicative approach, a digit recurrence is utilized to reduce the 

area and to balance the pipeline delay between the two stages of the computation. The im

plemented square root circuit utilizes 173 slices in an XC2V4000-6 and runs at up to 148 

MHz.

It is important to note that only one single-bit output LFSR is required to implement 

the PNG. This is due to the fact that the calculation of f { u \)  takes W L \ +  1 clock cycles, 

which is greater than the W F\ clock cycles required to generate u \. Therefore, using a 

LF-LFSR for PNG would not increase the overall noise generation rate. Similarly, to gen

erate U2 , another 52-bit LFSR with single-bit output is required to be able to generate u^. 

Conventionally, flip-flops would be used as storage elements to implement an LFSR. This 

is also the case when implementing a LF-LFSR since the output of flip-flops are required 

to be accessed. With two flip-flops in each slices, an n-bit LFSR will take up at least Tn/ 2 1  

slices. However, a four-input lookup table (LUT) in recent FPGAs can also function as a 

16-bit shift register lookup table (SRL), with a single output accessed by the LUT’s address 

lines [89]. This output allows the cascading of any number of 16-bit SRLs to create shift 

registers of arbitrary size. The SRL-based implementation can significantly decrease the 

area of the GVG. Figure 3.6 shows how a 52-bit LFSR, defined by the characteristic poly

nomial p (x ) =  x 5 2  +  x 3 +  1, can be implemented efficiently using four 4-input LUTs and 

four flip-flops to generate a single-bit PN per clock cycle. The input addresses of the three 

16-bit SRLs in Figure 3.6 are all set to 15 in order to cascade them. A length of 52 bits 

was chosen to avoid pattern repetition for a large number of PNs. The implemented LFSR 

utilizes only two slices (in the same CLB) and its maximum operating clock frequency is 

290 MHz.

The implemented GVG on the Xilinx Virtex-II XC2V4000-6 FPGA uses 3% of the con-
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Figure 3.7: Gaussian PDF compared with PDF generated noise samples.

figurable slices, two BlockRAMs, and operates at 132 MHz, and hence generates 264/WXi 

million noise samples per second. Figure 3.7 shows the PDF of 101 3  generated noise sam

ples. Even though Figure 3.7 shows that the PDF of the generated noise lies accurately 

over the normal distribution PDF within a ±6.55cr interval about the zero mean, the main 

drawback of this technique is the relatively slow GV generation rate. The execution times of 

the iterative logarithm and square root algorithms are linearly proportional to the precision 

of u \ [12]. Consequently, for the high precision PNs that are required to generate samples 

well into the tails of the Gaussian distribution, the noise generation rate will be relatively 

slow [76], One effective solution would be to utilize high radix computation; however, the 

resulting hardware complexity would increase substantially [72,105].

3.4.2 A GVG Using Non-Uniform Quantization and Table Lookup

A straightforward scheme for obtaining discrete values of /(• )  is to store precomputed 

quantized values of / ( u i ) ,  where u \ e  [0,1) and f { u \ )  €  [0, oo). As shown in Figure 3.8, 

f ( u \ ) increases exponentially as u \ approaches zero. Thus, a simple uniform quantization 

of f ( u i) consumes a prohibitively large amount of memory. Alternatively, a nonuniform 

quantization version of f { u \)  over the interval (0 , 1 ) can be stored in a smaller memory. 

An L-stage nonuniform quantization of f ( u \ )  can be calculated by a recursive partition of 

the (0,1) interval. As shown in Figure 3.9, first the interval (0,1) is divided into 2qi seg

ments and the function values within (1 /2 9 1 ,1) are stored in a 2qi x WXi-bit BlockRAM.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Gaussian Variate Generator Implementation

o u
1

Figure 3.8: Plot of f { u \ )  =  y / -2 1 n (u i) .

8*M210  <J=1/2 21 i i
1.......... 1....   I

1
- i Stage 1

5I—r— 2f— Stage 2

—■K

0 /  2 /
1 1 1
1----------------- 1------------1—

L-1
-I Stage L

Figure 3.9: Non-uniform quantization of (0,1).

Then the interval (0 ,1 /291] is subdivided into 2qi segments and the corresponding function 

values are stored in another BlockRAM. This procedure of nonuniform quantization is re

peated recursively. The quantized values of /(• )  are thus stored in 1 <  L  < \W L i/q { \  

dedicated BlockRAMs. Clearly the smaller the quantization step, the greater the memory 

requirements for storing the quantized values. The number of stages, L, can be chosen so 

as to give the most accurate noise samples given the available precision of u \, the memory 

aspect ratio and the available number of BlockRAMs.

The datapath of the GVG is shown in Figure 3.10. The PNG block uses a 52-bit 

LF-LFSR defined by the characteristic polynomial p(x) = x 52 +  x 3 +  1 to generate one 

(L  x  qi) +  q2 -bit PN, every clock cycle. According to the nonuniform quantization of 

/(• ) , to obtain the /(• )  value, the PNG block generates L  pseudo-random numbers, each 

qi bits, to address the L  BlockRAMs. If the first set of q\ bits are not all zero, then the 

first /(•)  BlockRAM is addressed. Otherwise, the second set of q\ bits are checked. This 

addressing scheme is repeated until either q\ is nonzero or the £-\h iteration is reached, 

where £ = 1 , . . .  ,L . Note that if L  x 5 1 -bit zeros are generated in a row, then since ln(0)
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Figure 3.10: GVG datapath using non-uniform quantization and table lookup.

tends to infinity, the last memory location of the L-th /(■) BlockRAM is addressed.

The computational core of the GVG is two pipelined MACs, which are enclosed in 

dashed boxes in Figure 3.10. According to the CLT, if Xi ~  A f(0,1) then X i/s /K ,  as i 

approaches infinity, tends to be normally distributed. An accumulator can then be used to 

reduce the quantization error and smooth out the fluctuations of the obtained distribution. 

The accumulator is reset with “nReset" after summing K  noise samples. The number K  is 

selected to allow 1 f y / K  to be performed using only shift-right operations (e.g., K  =  4,16, 

etc.). Note that by choosing K  =  2, we cancel out with y/2 factor in the /( • )  equation. To 

calculate <?(■), a uniform quantization version of gi(-) over the interval [0,0.25] is stored in 

a BlockRAM. The 9 2 -bit PN U2  is used to address the g\(-) BlockRAM. Then the sin(27rit2) 

and cos(27TU2) blocks calculate gi(-) and g^O) over the interval [0 , 1 ], respectively.

The parameters of the GVG design include the number of quantization stages L, the 

bit precisions of m  and u 2 , the aspect ratios of the BlockRAMs and the number of accu

mulations. The noise generation rate depends on the number K  of accumulations. The 

GVG quality depends strongly on the precision of u i and the number L  of quantization 

stages. These parameters can be selected based on the desired GVG objectives. The effects 

of different parameter values were simulated using a compiled C model for a large num

ber of samples and then optimized according to the resource configuration on the FPGA to 

achieve an efficient GVG with respect to the resource utilization, noise generation rate and 

PDF quality.

The GVG uses 5 BlockRAMs, only 1% of the slices in a Xilinx Virtex-II XC2V4000-6
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FPGA and operates at 165 MHz to generate 330/ K  million GVs per second. The sin(-) 

and cos(-) modules in Figure 3.10 require only 36 slices. Figure 3.11 plots the PDF of 

the theoretical Gaussian distribution together with the PDF of IQ9  generated GVs. The 

simulation parameters are q\ =  9, W L \  =  32, and L  =  4. The four /(■) BlockRAMs 

are configured with a 29  x 32 aspect ratio. Other parameter settings include q2  =  10, 

W L 2 =  16; consequently, the gi(-) BlockRAM is configured with a I K  x 16 aspect ratio. 

Figure 3.11 shows that the PDF of the generated noise samples fits closely over the ideal 

PDF within only up to ± 5 . Oct. The primary reason is that the proposed simple nonuniform 

quantization is only applied to the domain of u j  close to zero. The nonlinear region close 

to u \ =  1  is not segmented as efficiently by the binary subdivision scheme as the domain 

gets close to u \  =  0. For a higher quality GVG, the number of quantization stages must 

also be relatively larger which implies that a larger on-chip memory would be required.

3.4.3 Implementation of a GVG Using Piecewise Polynomial Curve Fitting

The non-uniform quantization and table lookup scheme suffers from low PDF accuracy 

especially at the tails of the distribution. The iterative approach can provide arbitrarily im

proved GVG quality; however, due to the iterative procedure of the convergent algorithms 

for the ln(-) and square root operations, the GV generation rate is relatively slow when 

accuracy into the Gaussian tails is important. To avoid these limitations, a polynomial 

curve fitting approach can be applied to approximate f ( u  1 ) between (0 , 1 ) with high accu

racy and relatively modest hardware requirements, while achieving a high GV generation
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rate. In this application, a polynomial approximation involves representing the continuous 

function f ( u \ )  with a polynomial p (u i) =  Y ^= o aiu  1 ° f  finite degree v  over an interval 

[a, b). Various common curve fitting algorithms, such as linear or cubic interpolations or 

rational polynomial interpolations, differ from each other with respect to the amount of 

computational requirements and the residual error, which is given by £ =  | |/ ( u i )  — p(ui)\\ 

where || ■ || denotes a suitable norm. For example, the least-squares polynomial regression 

£ 2  =  ^2 [ f ( u  1 ) ~ p ( u i ) ] 2  can be calculated based on the vertical offset between the / ( t t i )  

and p (u i)  curves or based on the perpendicular offset. A maximum likelihood estimate of 

the polynomial coefficients can be obtained using the orthogonal least squares fit (OLSF) 

method [108], which minimizes the summed square of the residuals where dj de

notes the maximum perpendicular distance from the point on the polynomial approximation 

to the point on f ( u i ) .  Note that in addition to the error due to the approximation of f { u \) ,  

there is another source of error called round-off error or quantization error due to the fi

nite wordlength. Truncation errors and rounding errors can be considered as subsets of 

quantization errors.

Due to the nonlinear shape of /(• ) , a relatively high-degree single polynomial is re

quired to approximate /(• )  accurately over the interval (0,1). The polynomial degree has 

a direct effect on the residual approximation error, hardware complexity, latency and re

source utilization. In general, the common weighted sum of powers form of p(-) requires 

v (v  + l ) /2  multiplications and v  additions to evaluate p(-). The “factored” representation

p (u i) =  cio +  (a i -t (an_ i +  anu \)u \)u \  ■ ■ - )u \  reduces the number of multiplications

down to v  and still requires v additions. A more compact implementation could be ob

tained using time-shared hardware, but the resulting calculation time would be increased. 

Instead, to increase the speed of the computation, the (0,1) interval can be divided into k 

smaller segments separated by a set of points called joints. The fewer the segments, the 

higher the degree of the polynomial that is required to approximate /(• )  within each seg

ment. Over each interval, a (different) polynomial of lower degree can provide a similarly 

accurate approximation to /(•) . Even though a piecewise function /(• )  can be approxi

mated with a lower degree polynomial in each segments, discontinuities can arise at the 

ends of the intervals used for separate definitions. On the other hand, although any choice 

of segment boundaries can easily be implemented in a software simulation, some choices 

imply overly complex decoding circuitry and are thus undesirable for high-speed GVG re

alization. Therefore, appropriate segmentation is crucial to the accuracy and the speed of
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Figure 3.12: Segmentation of u \ €  (0,1).

the resulting GVG.

As shown in Figure 3.8, the function f ( u \ )  has two high-slope regions: in the vicinity 

of u \ =  0 and close to u \  =  1. Since a small input change may lead to a (very) large 

output change, the input domains near 0 and 1 need smaller segments than the relatively 

linear regions in the middle of the domain. Different nonuniform segmentation schemes 

were already proposed in [61] and [62]. The segmentation scheme in [61] utilizes on-chip 

memory to store nonuniformly quantized values of /(■)• In [61], only the nonlinear region 

close to 0 is segmented nonuniformly. In this region the precomputed values of /(• )  are 

stored in memory. The method in [62] uses nonuniform segmentation in both the regions 

close to wi =  0 and u \  — 1. It also uses a piecewise linear approximation for more 

accurately computing /(•)  within each segment. The CLT [14] was exploited in both [61] 

and [62] to improve the statistics of the resulting distribution by averaging multiple GVs.

We use a hierarchical segmentation method: the domain (0,1) of u \  is divided into 

two subintervals, ro €  (0,0.5) and r \ G [0.5,1). Let u \  €  [0,1) be represented as an 

unsigned fixed-point number with W L \ bits of precision. The value of u \  is Y^i=i 2“ *uit 

and its bit structure can be denoted as u iWLl_1 ■ ■ • u i0- The value, 0 or 1, of the MSB bit 

of m  indicates whether a particular u i  resides in subinterval ro or r \,  respectively. The 

subinterval ro is segmented logarithmically into W L \ — 1 segments from u \  =  0.5 down 

to 0, as shown in Figure 3.12. Subinterval r\  is segmented similarly from u\ — 0.5 up 

to 1. Each segment is denoted by Sh>w, where binary subscript h specifies the half range 

(ro or r i) , and w  denotes the segment number w  =  0, • ■ • , W L\ — 2. Each segment is 

then subdivided uniformly into M  — 2m segments. One can verify that the total number of
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segments is 2m+1(W Li — 1). The value of /( • )  within each segment is then approximated 

using a polynomial p(-). A piecewise continuous (differentiable) scheme is utilized where 

the ends of intervals are smooth. Therefore, the polynomial pieces combine smoothly. Any 

such smooth piecewise polynomial function is called a spline. We have used the MATLAB 

function “polyfit(x,y,n)” to find the coefficients of a polynomial p(-) of degree n  that fits 

the polynomial p(-) to /(• ) , in a least squares sense. The gradient weights (coefficients) of 

the polynomials for approximating f ( u  1 ) within each segment are then optimized based on 

the OLSF method to minimize the residual error.

As u \ approaches 2~VVXl from above (for the nonlinear region just above u \ = 0) or 

when u \  approaches 1—2~WLl from below (for the nonlinear region just below u i =  1), the 

slope d f ( u i ) / d u i  of f ( u \ )  tends toward infinity and, therefore, the coefficients of p{u\) 

become large. However, the value of p (u \)  lies within (0, \[2W L\ In 2). For example, 

for a W L i =  32-bit representation of u \, the value of p{u \) lies in (0,6.66) and can be 

represented accurately in 16-bit fixed-point format. Storing the large coefficient values 

of p (u \)  on-chip requires large memories, increases the hardware complexity and slows 

down the variate generation rate. To overcome this problem, [62] proposed to store scaling 

factors (multiples of two) along with the coefficients into an on-chip memory to reduce the 

magnitude of the slope, trading off precision for range. Instead we use a scaling scheme 

that stores only adjusted coefficients of p{u\) in an on-chip memory. This scheme reduces 

the memory requirements, decreases the hardware complexity, maintains the accuracy of 

the computation, and does not sacrifice precision for range as in [62]. However, a simple 

circuit is required to scale and thus accurately represent the input value u \.

For clarity, we explain the scaling method assuming that each segment is approximated 

using a (piecewise) linear polynomial p{u{) — au\ +  b. The scaling scheme is independent 

of the number of segments (precision of u i)  and the order of polynomial. Assume that the 

PNG generates an unsigned uniformly distributed number u \. When iti lies within ro, u\ 

is shifted left until the most significant bit (MSB) bit is 1. Thus if u \ lies in segment so)W, 

a new scaled variable u i tW is defined as u \ )W = 2wu \. To compensate for the scaling of u \, 

the aoiU, slope of segment «o,u> is shifted to the right w  bit positions as do,w = 2~wao<w. 

Thus the largest slope values are scaled down by a factor of Ad =  2” VVXl+2 and stored in 

memory. Hence we compute

p{u \) =  o i l  +  b =  2waui +  b. (3.4)
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When u \  lies within s\,w, to scale the slopes and intercepts of p(-) accurately, the variable 

u i  is transformed to a new variable u i = 1 — u \. Thus as u\ —» 1” , u \ —► 0_ . Similarly, 

when u \  resides in segment s \ iW, with u \ — 2wu \,p { u \)  can be written as

p{u\) — —2~waui + (a + b) (3.5)

The scaled slope and intercept of the polynomials of each segment can in this way be 

accurately stored in an on-chip memory. According to the value of u \ , a small scaling circuit 

provides the subinterval rj, the segment number w =  1, • • ■ , W L \ — 1, the subsegment 

number m  =  1, • • • ,M ,  and the scaled value of u \. Then the scaled coefficients of p{u\) 

can be addressed and read directly from memory to compute (3.4) or (3.5) as an accurate 

approximation to f ( u \ ) .

Figure 3.13 shows a dataflow diagram illustrating the evaluation of p { u \ )  in its fac

tored form and the corresponding hardware datapath. The approximated coefficients can 

be stored in an on-chip memory. One important hardware constraint that should be con

sidered is the amount of on-chip memory in the FPGA. If the FPGA has $ bits of memory 

and each coefficient is represented using c bits, then [$/cJ is the maximum number of co

efficients that can be stored on-chip. One can thus trade off the order of the polynomial 

with the number of segments (limited by the on-chip memory). To generate one Gaussian 

sample, f { u \ )  =  p ( u )  is multiplied by <71(112) =  s in ( 27TU2). The core of the GVG contains 

pipelined fixed-point multipliers, adders, registers and routing resources. The operations 

are pipelined and scheduled to maximize the output rate. As discussed in Section 3.2, we 

used combined generators with different periods of p «  288, p  «  2113, and p & 2258 to 

produce 32-bit and 64-bit PNs every clock cycle.

The addressing unit (AU) calculates the scaled values of u \, namely u \, identifies the 

half range h  (the MSB bit of u \), the segment number w, and the subsegment number 

m . To determine the segment number w  of a given PN input u \, the AU uses a small 

leading one detector (LOD) circuit [109]. Since the AU is in the critical path of the GVG, 

its operating rate limits the output rate of the GVG. The tree structure of the LOD for an 

8-bit u \  is shown in Figure 3.14. The string of W L \  bits generated by the PNG is first 

partitioned into W L i/2  pairs of adjacent bits. For each pair, a 2-bit leading zero count is 

generated. The high order bit also indicates if a 1 is detected in the string. At the next 

level, the results for adjacent pairs are combined, a multiplexer selects the count from one 

of the pairs, and new low order bits are appended to the count. This scheme is repeated
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Figure 3.13: The datapath for calculating /(• )  function.
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Figure 3.14: The tree structure of leading zeros counting.

for all \og2{W L\)  levels. Some speed-up can be obtained by using 4-bit or 8-bit groups 

and by using larger multiplexors. In our implementation the AU is pipelined with three 

stages to achieve a high GV generation rate. Another approach to detect the leading one 

index is proposed in [110]. As shown in Figure 3.15, the 2-bit LOD generates a valid bit 

v  and a position bit p  that can be extended for a 4-bit LOD. Two 4-bit LODs are utilized 

to generate an 8-bit LOD. The generated triple (r, w, m ) from the AU is then used to 

address the coefficient memory. For W L \ =  32 and M  =  8 (W L\ — 1 segments in each 

interval, and M  subsegments for each segment), only one BlockRAM is required to store 

the 2 x 2 x 31 x 23 =  992 coefficients of 62 polynomials. Since the polynomial coefficients 

are accessed simultaneously, the BlockRAM must be configured in dual-port mode.

Before realizing the GVG on an FPGA, the parametric model of the datapath was sim

ulated and verified. Table 3.5 summarizes the implementation results for the new GVG on
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Figure 3.15: Logic diagram for leading one detector. 

Table 3.5: Typical realizations of the new GVG.
Device | 1“ II III IV

Bitwidth o f  u i \ 32 64 32 32
Period o f  PNG «  2SS ps 2SS «  2lai*
Max. deviation \ 6.66<t 9.41(7 6.66(7 6.66(7

Clock freq. (MHz) 253.52 253.16 107.74 221.68
Output rate (MGVs/sec) | 506 506 214 442

Number o f  slices \ 344 441 343 705
Resource utilization \ 1.4% 1.9% 11% 1%

On-chip memory blocks \ 2 2 2 2

“Designs I and II were synthesized for a Xilinx Virtex-II XC2V4000-6 FPGA. Design III was implemented 
for a Xilinx Spartan-IIE XC2S300E-7 FPGA. Design IV was synthesized for an Altera Stratix EP1S80F1508C6 
FPGA. The latency of all four GVGs is 10 clock cycles.

four different FPGAs, utilizing linear curve fitting. One important feature of the proposed 

design is that, due to the efficiency of the scaling scheme, the datapath of the GVG can 

be implemented in 16-bit fixed-point format, independent of the precision of u \. In fact, 

u \  can be scaled successfully to generate GVs with various tail accuracies using the same 

16-bit datapath. To do this, only the PNG and AU must be modified slightly. Extensive test 

analysis verified that the proposed 16-bit design preserves the computation accuracy. For

tunately, the 16-bit GV format tends to be a common precision for many DSP applications. 

The Xilinx AWGN core [75] also uses the 16-bit fixed-point format. One important point is 

that the datapath of the new GVG is conveniently scalable to permit faster GV generation. 

If there are sufficient resources available on the FPGA beyond those required by a single 

GVG datapath, then multiple instances of the same GVG datapath, with different initial 

seeds for the PNGs, could be readily instantiated to speed up the total GV generation rate.

Figure 3.16 shows the layout of the 0.126 m m 2 GVG chip designed in a 90-nm CMOS 

technology using a dual-threshold standard cell library. The core area is dominated by the
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Figure 3.16: The 0.126 m m 2 GVG chip layout in 90 -nm  CMOS technology.

dual-port coefficient ROM and the single-port sine ROM. Without access to a commercial 

read-only memory (ROM) core generator, we implemented the ROM array using standard 

cells. Custom ROM blocks would significantly reduce the area. The unlabeled area in the 

core layout is occupied by two-stage pipelined multipliers, adders, registers and routing 

resources. The core operates at 537 MHz, generating more than one billion GVs per second 

while dissipating 12.3 mW of dynamic power. The static power dissipation is estimated to 

be 9.91 mW.

3.5 The GVG Statistical Tests

Normality tests are well-known statistical measures used to determine if generated GVs fit 

a standard normal distribution [111]. They are based on various key characteristics of the 

normal distribution. In this section we evaluate the normality of the variates produced by 

the GVG realizations specified in Table 3.5.

The power of statistical tests differs depending on the nature of any deviations from 

ideal normality, such as skewness or an otherwise inaccurate distribution. Normality tests 

are performed either graphically or numerically. Figure 3.17 superimposes the PDF of 10u  

generated GVs on top of a PDF plot of the theoretical normal distribution. The two plots are 

indistinguishable over ± 6 .0 a  from visual inspection. To generate the GVs at the tails of 

the distribution, where |n| >  6.0cr, at least 1013 samples are required to produce the PDF, 

which takes a prohibitively long time. Instead, the PDF of the Gaussian variable n, /A r(n ),
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PDF of generated GVs 
Theoretical Gaussian PDF

n

Figure 3.17: Gaussian PDF compared with the PDF 1QU generated GVs. 

can be expressed in terms of its CDF, F/v(n). Note that the PDF can be written as

= ~(LF n ^  = in  Pr^  < n '̂ 3̂'6^

The “importance sampling” expression can be written using Bayes’ law [14] as

Fjv(n) =  Fjv(n|f7i <  u T)P r(f7 i < u T) +  Fjv(n|f7i >  u r )Pv(U i > u T). (3.7)

To measure the PDF in the tails of the distribution, GVs such that U\ < uT 1 are first 

generated. The PDF of the generated GVs can then be given as

/a t(u ) =  ~ F/v(n|f7i <  ur )P r((7 i <  uT), V \n\ >  \ / - 2 1 n ( u r ). (3.8)

In this method, we do not generate PNs close to 1 and, therefore, the second term of Equa

tion (3.7) approaches 0. Using this method, instead of generating 1013 GVs, the PDF at the 

very ends of the distribution tails can be assessed using only 109 GVs. From a resulting 

PDF plot one might reject the claim of normality if the distribution deviates significantly 

from a bell-shaped normal distribution. Similarly, the CDF plot can also be used to judge 

the symmetry and skewness of the generated distribution. However, it is usually difficult to 

assess the accuracy visually, particularly at the tails of the distribution.

It is usually more convenient to compare two linear functions. The Quantile-Quantile 

(Q-Q) plot of the generated GVs is shown in Figure 3.18. If the points in the plot of 

G - 1 (F (n )) versus n  lie roughly on a straight line with intercept fx — 0 and slope a — 1, 

then one might conclude that n  is normally distributed [111]. A departure from the expected
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Figure 3.18: Inverse CDF of the generated GVs.
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Figure 3.19: Plot of n \  versus n 2.

line indicates departure from normality. Specifically, an 5  shaped-curve indicates lighter 

than normal tails. The generated variates do indeed pass this test.

Deviations from normality can also be judged using a scatter diagram [111], such as the 

one shown in Figure 3.19. The scatter diagram plots the upper half of the ordered generated 

GVs against the lower half. A negative unit slope indicates symmetry, a negative slope 

exceeding unity in absolute value indicates positive skewness, and a negative slope less 

than unity in absolute value indicates negative skewness [111]. Analytically, the standard 

third moment (\fj3i) and fourth moment (/32) of the generated distribution can be evaluated 

as
fa -  E(iV -  H f  

^  { E ( 1V -  p ) 2}3/2 ( 3 ' 9 )
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and
-  E(iV -  /x)4

(3.10){ E ( i V - /,)2}2

to characterize the skewness and kurtosis of the generated PDF, respectively [111]. For a

the left, and V7?i >  0 means it is skewed to the right. If \J]3\ — 0 and V^ 2  <  3 then the 

distribution is symmetric but the tails are thinner than normal, while \[Wi >  3  indicates that 

tails are thicker than normal.

Relying solely on graphical goodness-of-fit techniques can lead to false conclusions 

[111]. A detailed graphical analysis should always be supported by formal hypothesis test

ing. The composite null hypothesis H 0 : n  ~  jV(0, 1 ) asserts that the generated variates 

follow the standard normal distribution. The Pearson Chi Square Xa test can be utilized to 

determine the validity of H 0 with a desired significance level a  — 0.05 [111]. The xL  test 

involves quantizing the horizontal axis of the PDF into 7  equiprobable cells. We have cho

sen the number of cells to ensure that at least five variates reside in each cell. The Xa 7 - 1  

statistic can be calculated based on the actual and expected number of samples appearing 

in each cell and serves as an overall quality metric as follows,

where K  is the number of observations. For each cell i, mi and Pi are the number of variates 

and the probability that each variate falls into cell i, respectively. A normal distribution is 

completely specified by two measures, the mean and the standard deviation. Since these 

measures can be computed from the data, the number of degrees of freedom (dof) is reduced 

by two (the number of parameters computed). So the number of dof is reduced from 7  — 1 

to 7  -  3 [18]. Since the measured Xa,y- 3  f°r our GVG was less than the threshold value, 

we accept H 0.

In general, the PDF based Xa test not an especially powerful test for normality [111]. 

A weakness of Xa test *s the arbitrariness of the choice of cells. The Anderson-Darling 

statistic A 2 measures the integrated quadratic deviation between the empirical distribution 

function F (n )  and the theoretical function Fjv(n), multiplied by a weighting function ip(n) 

as follows,

where ip(n) = 1 /F (n ) ( l  — F (n )) . The weighting function '<p(n) is used to enhance the

normal distribution 1 / ^ 1  =  0 and /? 2  =  3. If \fW\ < 0 then the distribution is skewed to

(3.11)

A 2 = [F^v(n) — F (n)]2ip(n)dn (3.12)
J — OO
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sensitivity of the statistic in the distribution tails. The A 2 test statistic for a normal distri

bution can be calculated numerically as [111]

K

A 2 = - K -  l / t f £ ( 2 i  -  l)p n (* M * )  +  ln (l -  Fz (zK+i-i)]  (3.13)
i = 1

where F z(-) is the standard normal CDF and {zi}  are the ordered generated GVs. Since 

the measured parameter of A 2{I +  0.75/ K  +  2 .25 /K 2) was less than the critical value of

0.752, we can again accept H 0 for our GVG.

The most important test is the correlation test when GVG is used in a MC simulation. 

Small correlations in the random number generator can easily lead to spurious effects and 

invalidate simulation results. It is important to note that the quality of the randomness of 

the GVG is dominated by the behaviour of the PNG. If the generated PNs are not truly 

independent, then “random” pairs (rij, rn+1 ) will lie on a spiral [112]. We considered sev

eral different PNG designs with different autocorrelation properties. It was concluded in 

Section 3.2 that the combined linear and nonlinear generators tended to have superior ran

domness properties. To further reduce regularities, one can additively combine a nonlinear 

PNG [96,99] with one of the linear CTGs with large period such as the one with p sa 2258 

proposed by L’Ecuyer [94] that passes most of the major statistical tests and various MC 

tests [81]. A nonlinear PNG can be implemented by combining several small nonlinear 

PNGs [99] and storing the samples in an on-chip memory. To verify the correlation among 

generated GVs, a sequence containing 107 variates generated by our GVG was subjected to 

the linear Pearson’s correlation test [111] to estimate the correlation between random vari

ates. No regular lattice structure can be observed visually, as shown in Figure 3.20. Figure 

3.21 plots the autocorrelation values over the range of lags ±2048 for 107 generated GVs.

3.6 Conclusions

This chapter presents three different approaches to implementing a GVG based on the Box- 

Muller algorithm. A fast and compact GVG was described that has a higher Gaussian sam

ple generation with lower hardware cost than published designs. The functions required by 

the Box-Muller method were approximated using hierarchical segmentation and a novel re

cursive scaling scheme to maintain the approximation accuracy. Specifically, the proposed 

GVG design uses two levels of segmentations, a non-linear segmentation along with a uni

form segmentation. The new scaling scheme avoids sacrificing precision for the range, as is
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n.i

Figure 3.20: Statistical dependency of m  and n»+i for 107 generated GVs.
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Figure 3.21: Autocorrelation among n* and ^±2048 for 107 generated GYs.

the case in other published methods. Moreover, the same 16-bit GVG datapath can generate 

Gaussian variates with larger a  values, with a slight increase in delay and resource usage, 

as shown in Table 3.5. The statistical characteristics of the GVG were evaluated and con

firmed using multiple standard statistical goodness-of-fit tests. The implementation costs 

and performance were illustrated by typical realizations for FPGAs and a 90-nm CMOS 

ASIC. Our proposed GVG uses only 1.4% of the Xilinx Virtex-II XC2V4000-6 FPGA and 

operates at 253 MHz, generating 506 million Gaussian variates per second within up to 

±6.66cr. To accurately achieve a range of 9.41cr, without performance loss, only 1.9% of 

the same FPGA is required. This GVG should therefore be of significant assistance in the
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characterization of low-BER systems.

The proposed designs are all parameterizable and, depending on the desired values of 

the GVG objectives, the parameters of the designs can be configured. Before realizing the 

proposed designs on an FPGA, the parametric models of the datapaths were all simulated 

and verified in Matlab and C. The datapaths are also conveniently scalable. If there are suf

ficient resources available on the FPGA beyond those required by the implemented design 

under test, the Gaussian sample generation can always be sped up by instantiating multiple 

instances of the GVG datapaths with different initial seeds for the PNGs.
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Chapter 4

SOS-based Fading Channel 
Simulators

Wireless communication systems are being designed to operate over radio channels for a 

variety of environment and weather conditions. While it is possible to build prototypes of 

a proposed system and then field test them in different locations, such an approach will be 

quite expensive and will not provide useful feedback in the early stage of the system design 

when a number of candidate designs must be explored. Moreover, propagation conditions 

are almost impossible to repeat for the comparative analysis of simulation results. A more 

practical approach is to create appropriate models for the channel and then base the initial 

design on these models. Numerous wireless channel models have been proposed to char

acterize time and/or space-variant propagation environments [16,23,24,113-115], These 

channel models have led to different simulator designs that can be efficiently used in the 

development and accurate error-rate performance evaluation of wireless systems. A chan

nel simulator should mimic the propagation characteristic faithfully since the accuracy of 

the performance estimation under real world conditions can make the difference between 

success and failure.

One of the widely used approaches to simulate fading channels are the SOS-based meth

ods [116]. The basic idea behind SOS-based fading channel simulators is that when a si

nusoidal carrier is transmitted and subjected to multipath fading, the received signal can 

be modeled as a superposition of waveforms received from different propagation paths. 

Since the nature and orientation of obstacles in the wireless channel are not known in ad

vance, the received waveforms can be considered to be stochastic processes. In the SOS 

approach, the flat-fading process is modeled by superimposing sinusoidal waveforms with 

amplitudes, frequencies and phases that are selected appropriately to generate the desired
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statistical properties.

Different software-based fading channel simulators based on the SOS approach have 

been proposed [117-121]. Programmers endeavor to map the parallel operations onto the 

very long instruction word (VLIW) architecture of high-performance DSPs and/or use the 

SIMD instructions of general-purpose processors to speed-up the simulation. Even us

ing optimized software simulators running on high-performance processors, the speed is 

limited by the inherently sequential instruction execution and the lack of specialized func

tional units for MC simulation. In addition, the demanding performance requirements of 

wireless applications, along with the increasing computational complexity of baseband al

gorithms, have greatly increased software-based simulation loads. Therefore, the required 

run times for the accurate performance evaluation of the most recent low-BER baseband 

algorithms are becoming prohibitively long, which makes software-based simulation an 

inefficient technique.

New simulation techniques, such as importance sampling, have been proposed to in

crease the frequency of error events by introducing a bias into the statistical distribution of 

the random variables (such as noise) [122]. The main drawback of these techniques is that 

the statistical distribution of the channel effects should be known, and in most instances the 

channel has to be “reasonably linear”. Moreover, these techniques may only be applicable 

for the simulation of some parts of the system while other parts still require conventional 

MC simulation.

Although it is much easier to design and implement a fading channel emulator in 

software than in hardware, hardware-based simulators have been shown to provide sev

eral orders of magnitude speed up in performance evaluation over software-based simu

lators [123,124], significantly reducing the design time. Hardware-based fading channel 

simulators use digital hardware [119,125-130] or employ analog techniques [117,120,125] 

for at least part of the baseband signal processing. Regardless of the selected interface (RF, 

analog baseband, or digital baseband), a digital fading channel simulator [128] is usually 

preferred to achieve the best possible accuracy, flexibility, and repeatability [123]. The 

majority of digital implementations use a general-purpose processor or DSPs [117-121]. 

Recent increases in the performance of FPGAs offer opportunities to reduce the cost and 

complexity required when implementing a channel simulator [131]. Some other imple

mentations [123] use an FPGA combined with a DSP platform to implement the required 

computationally-intensive procedures of a channel model. Realizing the PL algorithm along
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with the fading channel simulator on the same FPGA can simplify the required hardware 

and significantly speed up the evaluation process. Hence, digital implementations of multi- 

path propagation models on rapid prototyping platforms (RPPs) are of great interest.

In order to implement a Rayleigh fading channel simulator on an FPGA, it is crucial 

to find a statistically-accurate SOS model that (1) can be efficiently mapped onto the reg

ular architecture of the FPGA, and (2) provides the desired statistical properties of the 

fading channel. Despite the extensive acceptance and application of the SOS-based fading 

channel model, this model has limitations that should be studied and determined before 

software/hardware implementation. Among the different available algorithms for the gen

eration of correlated Rayleigh random variates, as we show later, some do not produce 

statistically accurate fading variates and some are infeasible for hardware implementation.

The rest of the chapter is organized as follows. Section 4.1 reviews important fading 

channel parameters. These parameters are referenced in this chapter and also in Chapters 5 

and 6. Two fundamental models for wireless channels are presented in Section 4.2. Section 

4.3 gives an overview of important stochastic properties of radio channels. The literature on 

the modeling and analysis of multipath fading radio channels is vast. While a complete re

view of the literature is outside the scope of this chapter, a short but important review of the 

SOS-based modeling techniques is presented in Section 4.4. In Section 4.5, two compact 

implementations of the SOS-based fading simulator are described. The fading simulator 

uses only 1% of the widely-available Xilinx Virtex-II XC2V4000-6 FPGA device while 

generating over 200 million complex Rayleigh fading variates per second. The statistical 

properties of the generated fading variates are also evaluated. Section 4.6 presents a novel 

fading channel model based on the SOS approach. Using numerical simulation it is shown 

that the proposed model accurately reproduces the desired statistical properties of the fading 

envelope. The fixed-point fading channel simulator is designed and the accuracy, efficiency, 

and flexibility of the design are discussed. The discrete-time fading channel simulator is im

plemented on different FPGAs and the statistical properties of the generated fading variates 

are verified against the analytical channel model. A fixed-point implementation of the fad

ing channel simulator on a FPGA utilizes 5% of the configurable resources and generates 

over 200 million 16-bit fading variates per second. The proposed digital channel simula

tor is compact enough to be integrated along with many communication circuits of likely 

interest. Finally, Section 4.7 makes some concluding remarks.
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4.1 Parameters of Fading Channels

Generally, a multipath fading channel can be characterized statistically as a LTV system 

(filter) that models the superposition of multipath attenuated and delayed component signals 

at any instant of time [132]. We denote the low-pass impulse response of LTV channel as 

c(t; r )  and the corresponding time-varying frequency response as C ( t \ / ) .  While multipath 

propagation results in the spreading the transmitted signal in time, the time variations in 

the channel impulse response (or frequency response) result in the frequency spreading 

of the transmitted signal, generally called Doppler spreading as described in Chapter 2. 

Consequently, a multipath fading channel can be characterized as a doubly-spread channel 

in time (due to the reflected and scattered propagation paths) and frequency (due to the 

Doppler shift). The following channel parameters and fading conditions should be studied 

before discussing the modeling and simulation of multipath fading channels [15,18,19,115]:

•  Delay spread: Maximum excess delay or maximum delay spread Tm is the delay 

between the first and the last component of the signal during which the received power 

falls below some threshold level, e.g., X  dB below the strongest component. The power 

delay profile represents the average power associated with a given multipath delay, and is 

measured empirically. Since some channels with the same value of Tm can have different 

power delay profiles [19], a more useful parameter is the root mean square (rms) delay 

spread ay defined as oy = \J ( r 2) — ( r ) 2 where

M  =
E / = i  Pe

pe denotes the power coming along the £-th propagation path, t? is the time taken by the 

£-th component, and ( r 2) is the mean square delay given by

1 2 \  _  E i i  pit i 
2 Z e = i P e

The value of ay is directly related to the minimum symbol period that can be used in order 

to avoid excessive ISI. The maximum delay spread is usually characterized by the rms delay 

spread, i.e. aT — Tm . If ay is large, we expect to see considerable pulse broadening.

•  Channel coherence bandwidth: Similar to the delay spread parameters in the time 

domain, the coherence bandwidth, B c, is used to characterize a channel in the frequency 

domain [115]. The coherence bandwidth can be defined as a statistical measure of the 

range of frequencies over which the channel can be considered flat (i.e., the channel passes
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all spectral components with approximately equal gain and linear phase). Thus, B c is the 

range of frequencies over which all frequency component amplitudes are correlated. Con

sequently, the spectral components in that range fade together and two waveforms with 

frequency separation greater than B c are affected quite differently by the channel. The 

coherence bandwidth is usually defined as the bandwidth (BW) over which the channel’s 

transfer function has a correlation of at least 0.5 [115] as

_ 0.276 1
B c = -------- «  - — .

O’j-

Note that aT and B c are inversely proportional to one another, although their exact relation

ship is a function of the propagation environments. Thus it is possible to quantify the pulse 

broadening by the rms delay spread and/or the low-pass BW of the channel.

Delay spread and coherence BW are parameters that describe the time dispersive nature 

of the channel in the local area caused by multipath propagation. They do not offer infor

mation about the frequency dispersive nature of the channel caused by the relative motion 

between the receiver and transmitter. In small-scale region, the time varying nature can be 

described by the Doppler spread and coherence time parameters.

•  Doppler spread: Provides a measure of how rapidly the channel impulse response 

varies in time. The larger the value of the Doppler spread Ba, the more rapidly the channel 

impulse response is changing with time. Doppler spread is also the range of frequencies 

over which the received Doppler spectrum is non-zero. If the BW of the baseband signal is 

much greater than Bd, then the effect of Doppler spread is negligible at the receiver. How

ever, increasing the Doppler spread relative to the signal BW increases the signal distortion.

•  Channel coherence time: The coherence time Tq of the channel is a statistical mea

sure of the time duration over which the channel impulse response is essentially invariant. 

Thus any two signals received at different times within Tc time duration have a strong am

plitude correlation. The coherence time is commonly defined as the time over which the 

time correlation function is above 0.5 as

where f o  is the maximum Doppler frequency. Note that Tc and Doppler spread are in

versely related. If T$ > T c , then the channel conditions may change significantly during 

the transmission of the signal, thus the transmitted signal is likely affected differently by 

the channel causing distortion at the receiver. As long as the symbol rate is greater than
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1 /T c ,  the channel will not cause distortion due to the relative motion of the transmitter and 

receiver. Distortion could also result from multipath time delay spread, depending on the 

channel impulse response.

• Fast and slow fading: The time-varying behaviour classifies a channel into fast fading 

or slow fading. When an RF pulse is transmitted while the mobile unit (MU) is moving, 

the motion of the MU increases or decreases all frequency component by up to f p  Hz. If 

W  >  Jd , the channel characteristics will change very slowly. In this case the Doppler 

spread of the channel is much less than the bandwidth of the baseband signal, and the 

signal undergoes slow fading. On the other hand, for transmission at a very slow data rate 

(i.e., the pulse duration is large), a MU observe fast fading if the signal bandwidth is less 

than the maximum Doppler frequency shift. Thus, the velocity of the mobile together with 

the baseband signaling determines whether a signal undergoes fast fading or slow fading. 

Similarly, if Tc ~> Ts, the time duration over which the channel remains correlated is long 

compared to the symbol period, and the channel is said to produce slow fading. In this 

case, the channel can be regarded as quasistatic over T c  since the channel impulse response 

changes at a rate much slower than the rate of change of the transmitted signal. If Tc < T S, 

the channel is called fa st fading causing severe distortion.

4.2 Channel Models

Let s(t)  be the equivalent low-pass signal transmitted over the channel and let S ( f ) denote 

its frequency content. Then the equivalent low-pass received signal, exclusive of additive 

noise, is

/ o o  poo
c ( t;r )s ( t  — r ) d r  =  /  C(t-, f ) S ( f )  e]2nftd f .  (4.1)

- o o  J — OO

If the bandwidth W  of S ( f )  is much smaller than the coherence bandwidth of the chan

nel (i.e., W  <C B c), since B c oc 1/Tm then W  <C 1/Tm (or equivalently Ts »  Tm). 

Hence, the delay associated with the t-\h  multipath component T£ < Tm and the multi- 

path components of the channel are not resolvable. Thus all the frequency components of 

transmitted signal S ( f )  are affected by the channel in approximately the same way (i.e., un

dergo the same attenuation and phase shift in transmission through the channel) and there 

is little time spreading in the received signal (i.e., s(t  — rt) ~  s(t)). This implies that, 

within the bandwidth W  occupied by S (J ) ,  the time-variant transfer function C (t; / )  of 

the channel is constant in the frequency variable. Thus the frequency independent channel
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4.2 Channel Models

response can be written as C (t\ f )  =  C (t). Such a channel that has a constant gain and a 

linear phase response over a bandwidth larger than the bandwidth of the transmitted signal 

is called frequency-nonselective or flat fading. Flat-fading channels are also called narrow

band channels because the signal BW is narrower than the (coherence) channel BW. In this 

case the spectral characteristics of the transmitted signal remain intact at the receiver. For 

the frequency-nonselective channel y ( t) can be written as

/OO

S { f ) e ^ H f  = C (t)s (t)  = a ( t ) e ^ h ( t )  (4.2)
-OO

where a (t) represents the complex envelope and 0(f) represents the phase of the equivalent 

low-pass channel response. Equation (4.2) shows that the received signal is simply the 

transmitted signal multiplied by an appropriate stochastic process, which represents the 

time-variant characteristics of the channel. Thus a frequency-nonselective fading channel 

has a time-varying multiplicative effect on the transmitted signal.

When the transmitted signal bandwidth approaches or surpasses the coherence band

width of the mobile channel (i.e., W  > B c), then the frequency components of S ( f  ) with 

frequency separation exceeding B c are subjected to different gains and phase shifts. The 

received signal includes multiple versions of the transmitted waveforms, attenuated (de

pending on the phases of the received overlapping signals, the signal copies may amplify 

or attenuate each other) and delayed in time (resulting in pulse broadening), and hence the 

received signal is distorted (i.e., the signal interferes with itself). Also, as each transmit

ted symbol is received several times, each received symbol will be distorted by adjacent 

symbols in the sequence causing ISI. Equivalently, when the channel impulse response has 

a delay spread greater than the symbol period of the transmitted signal (i.e., Tm ^  Ts), 

the multipath components extend beyond the symbol duration. In this case, the transmit

ted signal reaches the receiver via L  >  1 directions where the relative arrival delay of at 

least two multipath components is greater than the period of the transmitted signal and thus 

two rays are resolvable (time-differentiable). This leads to the time dispersion of the trans

mitted symbols within the channel and, hence, the channel amplitude varies widely across 

the signal bandwidth, resulting in ISI. In fact, the channel amplitude values at frequencies 

separated by more than the coherence bandwidth are roughly independent. Thus, certain 

frequency components in the received signal spectrum have greater gains than others. The 

channels exhibit frequency-selective fading, which is also called wideband channels since 

the signal BW is wider than the BW of the channel. The dividing line between frequency-
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selective and flat fading is not perfectly sharp. For example, at very low data rates, the 

pulse duration is high and the channel primarily slow and flat. If the data rate is very high 

and the MU is moving slowly, the channel will be slow but frequency-selective. If the 

data rate is high and the MU is moving at very high speed, the channel will be fast and 

frequency-selective.

The time-varying channel impulse response and the corresponding time-variant transfer 

function can be written as

L

c(t ; r ) =  ^ Q ( t ) < 5 ( r - £ / W )
i= 1

C(t; f )  = Y , c^ ) ^ ft/W  (4-3)
t=i

where cg(t) is the complex-valued channel gain of the i-th  multipath component and L  is 

the number of resolvable multipath components. Note that in order for two paths to be

time-differentiable (resolvable), their relative arrival delay must be greater than the inverse

of the bandwidth of the transmitted signal. Since the transmitted signal has a bandwidth 

of W , the delay resolution of the measurement is approximately 1 /W . Hence, only the 

multipath components in the channel response that are separated in delay by at least 1 / W  

are resolvable. The complex signals that combine at the receiver within less than 1 /W  time 

period are not individually resolvable because the receiver cannot resolve delay differences 

smaller than 1 /W . The unresolved multipath components may be considered as clusters on 

the delay axis.

To model the effects of L  multipath fading components on a transmitted signal x (t)  over 

short propagation distances (delays), the signal needs to be convolved with L  (uncorrelated) 

complex-valued channel gain (attenuation) coefficients {ce(t)}, I  =  1, • • • , L  [115]. Each 

multipath component signal ce(t) can be considered to be composed of many unresolvable 

paths. Each individual unresolvable signal in a given resolvable path has a random asso

ciated phase (due to the different propagation distances) and Q (t) is usually modeled as 

complex Gaussian random process by the virtue of the Central Limit Theorem. The ran

domly time-varying tap gains {cg(t)} (also called fa  ding signals) may also be represented 

by {ce(t)} = a t ( t ) e ^ e^  where (o^(t)} represent the amplitudes and {(/e(t)} represent 

the corresponding phases. A frequency-selective channel with the complex baseband im

pulse response given in (4.3) can be modeled statistically by a linear finite-duration impulse 

response (FIR) filter with memory length L  that models the summation of multiple atten-
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uated and delayed component signals at any instant of time. In this model, the channel 

has a constant gain and linear phase response over a bandwidth smaller than that of the 

transmitted signal. Each path delay corresponds to the delay spread of the channel and 

its value can be chosen in accordance to the delay power profile of the desired channel 

environment. Since the delay spread of the channel is Tm and the time resolution of the 

multipath is 1 fW ,  the maximum number of taps required by the transversal filter model 

is given by L = [Tm W \  +  1. Even though the path delays can be considered as random 

processes, the arrival times of rays are actually not random since obstacles and buildings 

tend to be grouped together. The tapped delay line (TDL) model shown in Figure 4.1 is typ

ically used to model a multipath time-varying channel in which the L -ray multipath fading 

channel model receives baseband signal s(t) and produces convolved samples y (t)  at the 

output. The transmitted signal is modulated in amplitude and phase by a baseband tap-gain 

function cg(t) and L  delayed and modulated signals are summed to form the output signal.

Input 
signal S ( t )

Channel

1/W1/W 1/W

V  C, (0 s ( t  — —)
t f  ' W

Figure 4.1: Architecture of a frequency-selective fading simulator.

In a multipath channel with L  resolvable path, the channel output (the input signal to 

the mobile receiver) is
L

y ( f ) =  '^ 2 ce(t ) s [t -  M t ) ]
e= i

where c g ( t )  and T g( t )  represent the time-varying attenuation and the propagation delay as

sociated with the (,-lh multipath component, respectively. In order to determine the complex 

envelope of the received signal, assume that the channel input (the transmitted signal) is a 

modulated signal of the form

s(t) = x (t)  cos [uct  +  4>{t)] =  3£{sj(i) eJWct}

where si(t) =  x (t)  is the equivalent baseband representation of s(t). Then y(t)  can
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be written as

L

vtt)  =  X  Cê x i* ~ Te^ ]  cos {wc[i -  re(t)\ +<j>[t- Te(t)]}
e- 1

=  X )  ce{t)x[t -  Tg(t)] S  { j  .
£=1  ̂ J

Assuming the complex envelope of the transmitted signal is denoted by x i{ t) =  x(t )  e ^ \  

then

%i [t ~  n{ t)]  =  x [ t -  T£(t)]e^Ct_r<W]

so that

y{t)  =  »  j x  ce(i)x, [i -  r ,( f ) ] e - ™ W  e ^ j  .

The complex path attenuation is defined as d((t) =  q(£) exp [ — j 2 n f cTg(t)] so that

y(t)  =  3? | ^ c £ ( f )  xi [t — T£(f)]eJ‘i'c< | .

Thus, the complex envelope of the receiver input is

I

yitf) = X  Xl ~ n<̂ \ ■ (4-4)
e = i

The channel input-output relationship is generally characterized as a LTV having a par

ticular complex baseband impulse response c (t; r )  measured at time t  assuming that the 

impulse is applied at time t  — r  (i.e., the path delay is r):

L

5(r »*) =
t = i

In a frequency-flat channel, it is assumed that over small-scale distances and in absence 

of a LOS path, the scattered components arriving at the receiver will experience similar 

attenuations, phase shifts, and delays. Thus the cg(t)’s are thus approximately equal and 

have a complex amplitude a e (t)e ^ e^ .  The resulting combined envelope A  and phase 4> at 

a single point in space is thus given by

L

3(0 = E  ae(t)e j(f>̂  = A e j *. 
e = i

The time-varying nature of the channel arises from either the transmitter, or the receiver, 

or changes in the propagation environment. In the absence of movement or other changes
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in the transmission medium, the input-output relationship is time-invariant even though 

multipath may be present. A time-invariant multipath channel can be represented in the 

time domain by an impulse response of the form

4.3 Stochastic Models for Fading Channels

When the propagation path involves two-dimensional (2-D) isotropic scattering with an 

omnidirectional receiving antenna at the receiver, the path phases can be assumed to be 

uniformly distributed over (0, 27t) (i.e., the phases are randomized because of the vary

ing path lengths) [113]. In order to obtain the distribution of the envelope sum of a large 

number of sinusoids with constant amplitude and uniformly-distributed random phases, a 

resolvable path can be considered to be composed of many unresolvable signal components. 

According to the CLT [8,14], the sum of a large number of signals with constant amplitudes 

and uniformly-distributed random phases produces a signal that has a Gaussian distribution 

with a zero mean. Thus, c(£) can be represented as a complex Gaussian process in t  where 

91{c(£)} and 3{c(£)} (the real and imaginary parts, respectively) are independent zero- 

mean Gaussian [133] with equal variance a 2. Thus the envelope |c(£)| =  ^/c,(£)2 +  c9(£)2 

follows the Rayleigh distribution f\c \ (c) =  exp [ — c2/(2<72)] with a mean and variance 

of a y /7t/2 and a 2(2 — 7r/2), respectively, where a 2 is the time-averaged power of the re

ceived signal and <p(t) =  ta n - 1 ( ^ j | | )  is the phase of the received waveform. Since the 

processes c / t )  and cq(t) are Gaussian, it can be shown that 4>{t) has a uniform distribution,

While the pdf of |c(£) | describes the distribution of the instantaneous values of the com

plex impulse response, other temporal and spatial variations of multipath components must 

be characterized for accurate fading channel modeling. Since the orientation and material 

properties of the obstacles between the transmitter and receiver are not in general known in 

advance, or may be time-varying, it is common to model the tap gains {ce(t)} as a stochas

tic process to characterize the real channels. Specifically, the tap gains are usually modeled 

as wide-sense stationary (WSS) in the f-variable and mutually uncorrelated random pro

cesses [16,24,25,113], Therefore, their statistical properties can be completely described 

by first-order and second-order statistics [14]. When the channel is defined as a WSS ran

dom process in t, the channel correlation function is Rc(r; £i, £2 ) =  R c( t;  A£) [113,132],

L

(t> €  (-7T,7t) [25].
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Thus, the channel ACF can be written as

R c , c ( t i ,  T2 , A t) =  E  [C*(Ti,t)c(T2,t +  At)] .

When the attenuation and phase shift associated with different delays (i.e., resolvable paths) 

can be assumed to be uncorrelated, the channel is said to exhibit uncorrelated scattering 

(US) in the delay r  if the channel correlation function for any two paths with delays t \ and 

r 2 is zero when t \ r 2:

where E[-] denotes expectation. The wide-sense stationary and uncorrelated scattering 

(WSSUS) assumptions leads to

The WSSUS model was originally proposed by Bello [113] and has been reasonably used 

for modeling of wireless fading channels over bandwidths up to 10 MHz [21].

A doubly-spread WSSUS channel may be characterized completely by two sets of pa

rameters: the Doppler power spectrum (DPS) and the delay power spectrum (dPS). The 

DPS provides statistical information on the variation of the frequency of a pulse received 

by a MU. A dPS identifies the average power level of each multipath and the time delays be

tween successive multipath components. Both parameter sets can be described by a single 

function, called the delay-Doppler power spectrum or scattering function S ( t ,  / ) ,  which is 

a measure of the power spectrum of the channel at delay r  and frequency offset /  (relative 

to the carrier frequency). The dPS and the DPS are defined by averaging of «S(r, / )  over /  

and r ,  respectively, as follows:

The delay spread of the channel can also be defined as the range of values over which the 

dPS(r) is nonzero (the width of the dPS). As a MU moves through a dispersive environ

ment, the width and shape of the dPS can change significantly. Similarly, the Doppler spread 

Bd  of the channel can be defined as the range of values over which D P S (/) is nonzero (the 

width of the DPS). The Doppler spread provides a measurement of the fading rate of the

^ E [c (r i;f i)c * (r2; t 2)] =  R c ( r r , t i , t2)5(T2 -  n ) .

R c,c(n , T2, A t)  =  R c,c(ri, A t) 5(rx -  r 2).

/OO

S ( r , f ) d f
■00

roo
DPS( / )  =  S c( f ) =  S ( t , f )  dr. 

Jo
(4.5)
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channel. As shown in Figure 4.1, the delay spread of the mobile channel is implemented by 

delaying each multipath component by a programmable value that may be selected based 

on the delay power profile of the simulated channel.

The spectrum of the received signal depends on the assumptions made about the AOA 

statistics and the radiation pattern of the receiving antenna. M. J. Gans introduced a DPS 

in 1972 [25] assuming that the propagation path involves 2-D isotropic scattering with an 

omnidirectional antenna at the mobile receiver that signals came from all directions with 

uniformly distributed phases over (0, 27t). Based on the flat fading channel model developed 

by R. H. Clarke in 1968 [24], the spectral density of the complex envelope of the received 

signal that depends on the antenna pattern is given by

and is known as Jakes power spectral density or Jakes power spectrum. As shown in Figure

4.2, the PSD associated with the in-phase (or quadrature) portion of the received fading 

signal has the well-known U-shaped bandlimited form. The PSD is centered on the carrier 

frequency, is zero outside the limits of /  =  f c ±  f p ,  and is infinite at / .  A U-shaped 

power spectrum shows that most of the energy is concentrated around the f p ,  however, the 

probability of components arriving at exactly 0° or 180° is zero due to the uniform scattering 

model approximation. Thus infinite PSD values are approached but never reached.

A frequency-flat channel is usually modeled as a time-correlated Gaussian WSSUS pro

cess with the complex envelope c(t) = Ci(t) +  j c q(t) [113]. The temporal variation of the 

channel can be characterized by the ACF of c(t) in the t  variable. Specifically, the impor

tant properties of fading channel models are manifested in the autocorrelations, RCi)Ci(r)  

and R c„c9(7'), and the cross-correlation R CijC9(r)  of the a{t )  and cq(t) components of c(t), 

the autocorrelation Rc>c(r)  of the complex envelope of c(f), and the autocorrelation of the 

squared envelope Rjc |2 |c |2 (t ) [23,24,37]. The ACF can be obtained by taking inverse 

Fourier transform of the PSD given in Equation (5.10) for 2-D isotropic scattering with an 

omnidirectional antenna at the mobile receiver with uniformly distributed phases as follows:

2 i r fo  y / l - U / f n ) * I/I <  fo  

I/I > f D
(4.6)

R CilCi(r)  =  Rc„c, ( t )  =  E[cq(t)cq(t + t) ]  =  J o ( 2 n f DT)

R Ci,Cq( j)  — Rcq.CiC^) =  0 

Rc,c(r) =  E  [c(t)c*(t +  r)] =  2Jo(2-7vfDT)

R|c|2,|c|2 ( t )  =  E[|c(t) I2 |c(t +  r )  I2] =  4 +  4 J $(2 i r f Dr) (4.7)
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Figure 4.2: The PSD for a Rayleigh fading channel with different Doppler frequencies, 

where f o  is the maximum Doppler frequency, r  is the time lag, and

J Q(x) = -  [ *  e~ ixcos9de 
ft Jo

is the zero-order Bessel function of the first kind [14]. The ACF depends on such factors 

as the maximum Doppler frequency normalized by the sampling rate, the antenna charac

teristics and the propagation path [134]. According to the J o(27t/ d t ) plot shown in Figure

4.3, the autocorrelation is zero for f o r  =  0.4 or, equivalently, for v r  «  0.4A where v  is the 

velocity of MU and A is the signal wavelength. Thus, the signal decorrelates over a distance 

of approximately one half of a wavelength, under the uniform path phases assumption. This 

approximation is commonly used as a rule of thumb to determine many system parameters 

of interest.

4.4 Analysis of SOS-Based Fading Channel Models

The goal of any channel simulator should be to reproduce the desired properties in (4.7). 

Thus to simulate multiple fading processes that are correlated in time, but uncorrelated 

between processes, the Rayleigh processes should fulfill the following conditions: (1) the 

in-phase and quadrature components of each underlying complex Gaussian random process 

are zero-mean independent Gaussian processes with identical variances and identical ACFs;
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Figure 4.3: The zero-order Bessel function of the first kind.

(2) the ACFs between the q ( f ) and cq(t) components are not functions of t, (i.e., the fading 

signal is WSS); and (3) the CCF of any pair of fading processes must be zero.

One of the approaches to approximate the fading process with the desired statistical 

properties in (4.7) is based on the incoherent superposition of independent complex-valued 

signals. This model is known as the sum-of-sinusoids approach and is based on Rice theo

rem [116], which implies that a Gaussian process can be modeled by the superposition of 

an infinite number of weighted harmonic functions with equidistant frequencies and ran

dom phases. The main idea of a SOS channel model is to simulate the fading channel as 

a WSSUS [113,135] complex Gaussian random process, formed by the sum of multiple 

sinusoidal waveforms having amplitudes, frequencies, and phases that are appropriately 

selected to accurately reproduce the desired statistical properties in (4.7).

Clarke proposed a useful mathematical model for the complex channel gain, under the 

narrow-band flat fading assumption (r„ =  0 Vn) [24]. Clarke showed that the complex 

channel gain c(t) at a time t  can be expressed as

where f o  is the maximum Doppler frequency, a n and 4>n are the angle of arrival and the 

initial phase, respectively, associated with the n-th sinusoid, N  is the total number of si

nusoids [24], and each sinusoid has equal average amplitude (the same received power).

N

C ( t ) = E exp \j(2 irfDt  cos(an) +  </>n )] (4.8)
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The phase angles <fn and a n are assumed to be mutually independent and uniformly dis

tributed over (—7r, 7r) for all n. For sufficiently large N ,  according to CLT the real part 

Ci(t) =  3i{c(i)} and the imaginary part cq(t) = ${c(£)} of the complex envelope are 

zero-mean Gaussian and independent (thus the envelope |c(t)| is Rayleigh distributed). The 

squared envelope correlation of c(t) in (4.8) can be written as [8]

R|cp|c|a(r ) =  E [|c(f)|2 Ic(t +  r ) |2] =  4 +  4 ^ j ^ J o ( 2 n f DT) (4.9)

where when N  approaches infinity, the squared envelope correlation asymptotically reaches 

the desired value 4  +  4 J 02(27t / d t ) .  Due to the accurate statistical properties of Clarke’s 

model, it has been widely used for Rayleigh fading channels and is sometimes referred to 

as the mathematical reference model.

Numerous sum-of-sinusoids models have been proposed [16,28,29,31-39] based on 

Clarke’s model. These models can be broadly categorized as either deterministic or statis

tical [8]. In deterministic SOS simulators [16,31-34], all the waveform parameters (i.e., 

amplitude, Doppler frequency and phase) are known and established only once before the 

simulation starts and are held constant for all subsequent simulation trials. Hence, the prop

erties of the generated signal are deterministic. On the other hand, in the statistical models 

(also called Monte Carlo SOS models) at least one of the waveform parameters is taken to 

be a random variable that changes for every simulation trial, and so the statistical properties 

of the generated signal change for each simulation trial, but converge statistically to the 

desired properties over a large number of simulation trials [28]. Since these SoS methods 

converge statistically to the desired properties, it is important to determine the number of 

simulation trials needed to achieve a desired convergence level. This is directly related to 

the variation in the time-average properties of a single simulation trial from the desired 

ensemble average properties.

Jakes proposed his deterministic SOS-based model based on Clarke’s model [16] to 

generate time-correlated Rayleigh fading variates. The Jakes model is more computation

ally efficient than Clarke’s model in which the in-phase a ( t )  and quadrature cq(t) compo

nents of a stationary complex Gaussian process c(t) are formed by a finite superposition of 

sinusoids having frequencies and phases that are appropriately chosen to accurately produce 

a sequence of correlated fading variates with the desired statistical properties. The model 

assumes that N  waveforms with equal power arrive at the moving receiver with uniformly 

distributed arrival angles a n — 2 irn /N , such that waveform n  experiences a Doppler shift
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/d „ .  Note that each Doppler frequency shift /# „  has four phase shifts associated with it 

except for the maximum Doppler shift, which has only two phase shifts. For example, as 

shown in Figure 4.4, sinusoids 1, 4, 6, and 9 experience the same Doppler shift, rays 1 and 

9 a positive Doppler shift, and rays 4 and 9 a negative Doppler shift. Similar conditions 

hold for the sinusoids 2, 3, 7, and 8. Sinusoid 5 has the maximum positive Doppler shift 

and ray 5 has the minimum negative Doppler shift. Thus, there is a four-fold symmetry in 

the magnitude of the Doppler shift, except for a  =  0 and a  = ir.

y

MU

Figure 4.4: Symmetry of receiving sinusoids in Jake’s design.

Despite the extensive acceptance and application of Jakes simulator, for simulation re

sults to be meaningful, they must reproduce the important statistics of the real world. It 

was recently shown that the assumptions and simplifications made by Jakes adversely af

fect the statistics of the SOS-based fading channel simulator [29,32, 34]. One problem 

with Jakes’ method is that the cross-correlation between the in-phase and quadrature com

ponents are significantly different from zero [34]. Also, when the number of sinusoids is 

finite, the ACF is accurate only up to [0, N/ ( 2 f o ) } .  Another important problem with the 

Jakes model is that its output sequence averaged across the ensemble of fading channels is 

not WSS [34]. In [34] the Jakes model was improved by introducing random phase shifts 

in the low frequency oscillators. An intuitive justification for using this method is the fact 

that for small values of time t, the values produced by the low-frequency oscillators are 

highly correlated (they are equal at t  =  0). By adding the random phases, this source of 

correlation is eliminated. The WSS Jakes model proposed in [34] has the desired complex 

envelope autocorrelation as the number of sinusoids approaches infinity. However, consis

tent with Pop and Beaulieu’s caution about some other second-order statistical properties 

of their proposed model [34], it was proved in [136] that the autocorrelations and cross

correlations of the quadrature components and the autocorrelation of the squared envelope
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do not approach the desired statistics, even as N  —> oo. Patzold also proposed several de

terministic SOS-based modeling schemes that can be applied to simulate multiple Rayleigh 

fading processes that are correlated in time, but uncorrelated between processes [137]. For 

example, the method of exact Doppler spread [33] uses a finite number of sinusoids and 

deterministic discrete Doppler frequencies f p n s. In order to ensure that the different pro

cesses are uncorrelated, this model defines / p ns in such a way that they are disjoint (i.e., 

mutually exclusive) for different processes.

Careful studies of the theoretical models are important as some models cannot be an 

accurate candidate for simulating the fading channels. Recently, Patel et al. [8] showed dif

ferent inaccuracies with the well-known SOS-based models. For example, the model in [38] 

has non-stationary and non-Gaussian properties. Also, the squared envelope autocorrelation 

in [38] and [37] is derived incorrectly.

Zheng and Xiao [36] introduced randomness to the Doppler frequency, the initial phase 

of the sinusoids, and the angles of arrival to have MC simulators with desired statistical 

properties. The resulting complex-valued Rayleigh fading process c(t) is given by

where 9 is a random variable uniformly distributed over [—7r, 7r), and cf>n and ipn are statis

tically independent and uniformly distributed over [—7r, 7r) for 1 <  n  < N . Model I  has 

several advantages over previous simulation models such as [8]:

1. It avoids the stationarity problem while maintaining the accuracy of the correlation 

statistics. The ACFs of the in-phase and quadrature components and the ACFs of 

the complex envelope match those of Clarke’s reference model very closely, even 

for small N . Also, the ACF of the squared envelope of the fading signal c(t) is 

R |c|2 |c|2 ( t)  =  4 +  v/ d t ) + [36], It asymptotically approaches

the desired autocorrelation as N  —> oo, while good approximation has been observed 

when N  is not less than eight. The model always produces uncorrelated in-phase and 

quadrature components, as required for a Rayleigh-distributed envelope.

2. The autocorrelation and cross-correlation functions do not depend on N.  This high-

Model I:

(4.10)
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lights the advantages of the new simulation model over all other existing simulation 

models.

3. When N  is as small as eight, the envelope ]c) is Rayleigh-distributed and the phase 

4>(i) =  arctan[cj,c9] is uniformly distributed on [—7r, 7r).

4. Due to the proper selection of the simulation parameters in the model in [36], the

variance of correlation functions Var[R(-)] =  E[|R(-) — lim R (-)|2] of this mode
N —>oo

are lower than the variances for most other models for finite N  [37].

Since the improved SOS-based channel models require that a relatively small number 

of sinusoids (8 <  N  < 12) converge statistically to the desired properties, they are good 

candidates for an efficient and compact hardware implementation. For example, the channel 

simulator in [119] uses N  — 8, the design in [117] uses N  =  9, and the design in [131] 

uses N  = 16. The commercially available Ascom SIMSTAR fading channel simulator uses 

N  =  22 [138]. Figure 4.5 shows the ACF of the in-phase component of the model in [36] 

for three different small numbers of sinusoids. The figure also shows the cross-correlation 

of Ci and cq for IV =  8. It can be verified that the discrete-time approximate ACF using 

a larger number of sinusoids matches more closely to the ideal autocorrelation sequence 

R[m] — Jo(27r/£>T’s|m |) while the CCF is almost zero.

—  Reference ACF
Approximate ACF, N-6

 Approximate ACF, W-7
Approximate ACF, N-8  

 Approximate CCF, A/»fl

0.8

0.4

0.2

■0.2

■0.4

400200 600 800 1000 1200 1400 1600
Lag

Figure 4.5: The ACF and CCF are calculated by averaging over 10 frames of 105 fading 
samples each with fr ,T s =  0.01.

One of the important consequences of Doppler shift is that the signal will experience 

deep fades. While Rayleigh statistics only provide information on the overall percentage 

of time that the signal goes below a certain level, it does not show how often deep fades
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will actually occur. The rate at which deep fades occur is important for communication 

system designers as they can relate the signal level to rate of change of the received signal 

and velocity of the MU and choose an appropriate scheme for required data rates, designing 

the error control codes and diversity schemes to mitigate deep fading effects. Peep fades 

can be quantitatively expressed using the level crossing rate (LCR). The LCR is defined 

as the expected rate at which the magnitude (envelope) of the fading waveform crosses a 

threshold signal level Rth in the positive (or negative) going direction [115]. For the Jakes 

PSD, the LCR is defined as N r  = \/2tx f D \ e ~ x2  [115], where A =  Rth/Rrm s  is the value 

of the specified threshold level Rth, normalized to the rms value of the fading envelope. 

N r  depends on f o  and thus the speed of the MU. By virtue of the factor Ae- *2, there 

will be fewer crossing at low values of the signal level as well as at high values of the 

signal levels. Figure 4.6 plots the LCR of the generated fading variates for three different 

numbers of sinusoids. As shown in Figure 4.6, the deviation of LCR for very high Doppler 

rates and low crossing levels is due to the sparse sampling of the implied continuous fading 

waveform [139], The envelope PDF and the CDF of 107 generated fading samples using

 Reference LCR
v  Approximate LCR, W-6 
+ Approximate LCR, N -7  
o  Approximate LCR, N-8

5
¥a

Figure 4.6: The normalized LCR calculated using 105 fading samples with f o T s =  0.01.

the model in (4.10) with N  =  8 and f o T a =  0.01 is plotted in Figure 4.7.

Even though the statistical SOS-based fading simulator proposed in [36] is efficient 

for hardware implementations, the model is not ergodic and so the statistical properties of 

a single simulation, no matter how many samples are generated, do not converge to the 

reference properties. In fact, its statistical properties converge to the desired properties only 

when they are averaged over a large number of simulation trials and thus the channel model
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Figure 4.7: Envelope PDF for Zheng and Xiao’s SOS fading channel model.
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Figure 4.8: Envelope CDF for Zheng and Xiao’s SOS fading channel model.

is not ergodic. If the channel model is ergodic, then the statistics of the output may converge 

to the reference ones in a single simulation trial. Figure 4.9 plots the ACF of the channel 

generated using one simulation trial with the model in (4.10) for one block containing 107 

samples. Clearly, the ACF deviates from the reference ACF of the Rayleigh fading channel, 

especially at the larger lags, while the CCF stays close to zero. Therefore, Model I  may not 

be suitable for simulating an ergodic Rayleigh fading channel. In Section 4.6, we propose 

modifications to Model I  to overcome this limitation.

Even though model in (4.10) may not be suitable for emulating an ergodic Rayleigh 

fading channel, it can still be used for simulating block-based transmission systems. As 

shown in Figures 4.5-4.7, the statistics of the generated fading variates closely match the
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Figure 4.9: ACF and CCF for one block containing 107 fading samples using the Jakes SOS 
model from equation (4.10), Jd T s =  0.02, N  — 8.

reference curves for block-oriented fading channel models. Moreover, in some applications 

it is sufficient to match the ACF in a certain range only. For example, for a differential 

phase-shift keying (DPSK) signal transmitted over a flat-fading channel and detected by a 

conventional demodulator, the tail of the ACF is not relevant and the ACF must only be 

accurate up to Ts [140].

4.5 Implementation of an SOS Fading Channel Simulator

All of the SOS-based approaches approximate a coloured Gaussian process by a sum of 

low frequency oscillators. However, these models differ from one another in terms of the 

model parameters, which leads to differing statistical properties. Recently, Patel, Stiiber, 

and Pratt [8] have shown that the variance in the autocorrelation of the in-phase (or quadra

ture) component of the complex envelope c(t) produced by the SOS model in [36] is lower 

than the variance for most other models. The detailed comparison study in [8] concluded 

that the model in [36] has superior properties among all models for finite N . This fact 

was discussed and verified in Section 4.4. In this section a compact implementation of an 

SOS-based channel model is proposed that fits on a small fraction of a commonly used 

FPGA.

The continuous-time equations in Model I  [36] can be written in discrete-time as follows
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to simplify the computation for hardware implementation:

c[m] = ••• , M

N

C iM  =  cos(27r(0jnm  +  <f>n))
n = 1 

N

cq[m] — E  cos(2n(ipqnm  + <pn))

V*in — I d ^ s  cOS ttjij V’gn — f p T a STD. Otn  

27rn — 7r +  0
(4.11)

where m  is the discrete time index and M  is the block length. Random variables and 

for n  =  1,2, • • • ,1V, lie within (-0.5,0.5) and can be generated at the beginning of 

each fading block using two on-chip PNGs or read from an external source. {ipin } and

beginning of each fading block. Their value depend on a uniformly generated random 

variate 0 e  ( — i t , i t )  and the discrete maximum Doppler frequency fu -  Note that the quality 

of the uniform random number generator becomes crucial specially when the number of 

sinusoids is small. If the randomly generated parameter set are not uniformly distributed, 

then the statistics become poor and characterization measurement will be incorrect.

From Equations (4.11) it is clear that an efficient and accurate implementation of the 

cosine function will directly improve the performance and overall accuracy of the simula

tor. The channel simulator in [119] uses linear interpolation to implement the sine function, 

while the design in [131] uses a quarter period, partitioned into 256 segments, to approxi

mate the trigonometric functions. Fixed-point analysis provides insight into the optimiza

tion of the dataflow, and, correspondingly, the architecture of the hardware. For example, 

as shown in Figure 4.10 (a), since the value of cos(27x(3) =  cos(27r0./?/), where /3 is a 

floating-point number in /3j./2/ format, the values of 'ipinm  (and ' f qnm )  can be obtained us

ing an adder instead of a multiplier. The adders accumulate successive values of 0 .(3f for the 

real and imaginary components. Even for the relatively small value of N ,  this provides sig

nificant resource reduction in the implementation of the channel simulator. To quickly add 

the N  quadrature components, we took advantage of the fast adder blocks now widely avail

able in FPGAs and organized them into a pipelined tree-structured. The datapath shown in 

Figure 4.10(a) adds two in-phase components of Cj[m] given in (4.11). This datapath also 

requires one dual-port ROM to simultaneously produce two values for cos(27r( ip in m  +  <j>n )

{ipqn} are arrays of constant values within a fading block that can be re-initialized at the
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and cos(27r(^i(n+ i)m  +  <fi(n+i))- Figure 4.10(b) shows the tree-structured datapath for 

summing N  =  8 in-phase components of Cj[m]. The blocks labeled “Add two oscs" denote 

instances of the circuit in Figure 4.10(a).

Dual-port 
COS Memory

$ 3  $14 ^ 5  ^ '6  ^/5 $6

Add two oscs Add two oscsAdd two oscs Add two oscs

c/m)

Figure 4.10: (a) Circuit for summing N  =  2 complex oscillators, (b) Tree-structured adder 
for summing N  =  8 oscillators.

To ensure computation accuracy, the fixed-point format of various signals was chosen 

based on experiments with different precisions that determined their impact on the statistical 

properties of generated fading variates. Then the HDL model of the proposed datapath was 

simulated to verify the accuracy of the results against the fixed-point software simulation 

results. For example, Figure 4.11 shows that the envelope PDF of 107 generated fading 

variates using the SOS-based model in (4.11) with 16-bit precision closely matches the 

theoretical curve.

To evaluate the accuracy of the fading channel simulator, the envelope statistics of the 

resulting sequence of complex gains were compared with those of the theoretical Rayleigh 

fading process. We assumed a normalized Doppler rate f o T s =  0.01, but the parameteriz- 

able model can use any arbitrary Doppler rate with 16-bit precision. Figure 4.12 plots the 

reference and calculated ACF and also the CCF of the generated faded envelopes for differ

ent precisions of the channel simulator datapath. The ACF and CCF plots were constructed 

by averaging over 10 blocks containing 105 sampled fading variates. The autocorrelation 

of the fading process generated with the 10-bit datapath shows close agreement with the
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Figure 4.11: The PDF of the simulated fading envelope and their references with normalized 
Doppler rate f o T s =  0.01.

double-precision theoretical Bessel function, as required by Equations (4.7). Also, cross

correlation of the generated quadrature components of the complex channel gains confirms 

that they are relatively uncorrelated as required. Figure 4.13 plots the LCR of the fading 

signal generated using the fading simulator, for different precisions, against the theoretical 

reference. This plot verifies that the 10-bit precision is sufficient to obtain an LCR that 

closely matches that of the reference model. Figure 4.14 plots the CDF of the simulated 

fading envelope with different precisions.

o.a ——-  Approximate ACF, W L-10 bits
 Approximate ACF, WL- 12 bits
 Approximate ACF, WL- 16 bits
— -  Reference ACF 
— —  Approximate CCF, WL-16 bits

0.4

0.2

■0.2

■0.4

0 200 600 . 
Autocorrelation

400 800
Autocorrelation in lag (In sam ples)

12001000 1400 1600

Figure 4.12: ACF and CCF of the quadrature component.

Table 4.1 summarizes the implementation characteristics for the new SOS-based fading 

channel simulator, with N  =  8, on four different FPGAs. The synthesis results verify that
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Figure 4.13: The normalized LCR of the generated fading samples.
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Figure 4.14: The CDF of the simulated fading envelope and their references.

the optimized datapath on the FPGA can be used to generate over 200 million complex 

Rayleigh fading variates per second, which is over 500 times faster than a software-based 

simulator written in C running on a 3.4-GHz Pentium 4 processor. Figure 4.15 shows the 

layout of a 356,409 p m 2 semicustom integrated circuit implementation of fading channel 

model designed in a 90-nm CMOS technology using a dual-threshold standard cell library. 

The core was targeted to operate at 500 MHz, generating 500 million complex fading vari

ables per second while dissipating 36.9 mW of dynamic power. Static power dissipation is 

estimated to be 19.94 mW.

As shown in Figure 4.15, the core area is dominated by the dual port cosine ROMs. As 

an alternative to the table look-up method of approximating the cosine function, we propose
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Table 4.1: Implementation of the ading channel simulator on different FPGAs.
Device I" II III IV

Clock freq. (MHz) 221.92 201.69 179.211 145.33
Output rate (MSamps/sec) 221 201 179 145

Number o f  slices 542 ' 542 542 1,160
Resource utilization 0.86% 1% 2% 1%

On-chip memory blocks 8 8 8 8

"Design I was synthesized for a Xilinx Virtex4 XC4VFX140-11 FPGA. Design II was synthesized for a 
Xilinx Virtex2P XC2VP100-6 FPGA. Design III was synthesized for a Xilinx Virtex-II XC2V4000-6 FPGA. 
Design IV was synthesized for an Altera Stratix EP1S80F1508C6 FPGA. The latency of the fading simulator 
is four clock cycles in all cases.

Figure 4.15: Layout of the 500 MHz semicustom fading channel variate generator.

an iterative method to calculate the in-phase and quadrature components of c(t) in (4.10). 

The continuous-time equations in (4.10) can be written in discrete-time as follows:

l Y r  N N \
c[m] =  y  — 'y '  Im,,n +  j  y  '  Qm,nJ > tn  =  1, • • • , M  (4.12)

n=l n—\

where Imin =  cos(27rm }DTS cos(a„) +  <j>n) and Qm,n =  cos(27rm f o T s s in (an) +  p n)- 

The n-th in-phase sinusoid can be expanded as follows:

Im,n =  cos(27rm f DTs cos(an ) +  f n))

=  cos(m p n + (f>n) where pn =  2ttf o T s cos(an )

=  c o s ( ( m  -  1 ) Pn +  (f>n + Pn)

- C O s ((m  -  1) Pn +  4>n) cosipn) ~  

sin((m  -  l )p „  +  <̂n ) sin(p„)

=  Im —l,n COs(pn) Cm—l,n Sm(pn) (4.13)
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where Cm,n =  sin(27rm f DTs cos(an ) +  <£n )

=  C m - 1 ,„ cos(pn) +  Im—i,n sin(pn) (4.14)

The n-th quadrature component can be expanded similarly and expressed as:

Qm,n = Qm—1 cOS{Pn) D m—i sin(pn) (4.15)

where D mtU =  cos(pn) + Qm~i,n sin(pn ). As given by Equations (4.13) and

(4.15), the iterative calculation of I m,n and Qm,n requires the previous values and

Qm—i,n> respectively. A datapath for generating the n-th in-phase oscillator, I min, is shown 

in Figure 4.16. Note that N  instances of this datapath can be used in parallel to gener

ate the N  oscillators for the in-phase component of c[m]. It is important to note that for 

n  =  1 • • • , N ,  the values of f i,n , C i>n, Q i,n and D it„ must be initialized; as well, as the 

maximum Doppler frequency of every low-frequency oscillator must be initialized.

c o s  (p „ ) .-s in  (p„)

c o s  (p „ )SIN (p„)

Figure 4.16: Datapath for generating one low-frequency oscillator.

Figures 4.17 and 4.18 show the ACF and CCF of the in-phase component of the iterative 

model for different precisions when computing 7m+i,n and Qm+i,n- It is evident that 10- 

bit precision is not acceptable while 16-bit precision provides much improved accuracy. 

Figure 4.19 plots the envelope PDF of 107 generated fading variates with three different 

word length precisions used to compute I m>n and Qm,n- It is evident that choosing W L > 

28 bits provides a close match to the reference statistics. Compared to the 16-bit precision 

required in the previous implementation scheme, the higher precision is required in this 

model to offset the accumulation of quantization error when evaluating iterative Equations

(4.13) and (4.15).

Due to the iterative structure of the Im,n computation, the right hand side of Equation

(4.13) must be computed before the next iteration. For correct operation, the multiplica

tion and addition should be performed in one clock cycle. The shortest clock period for 

this datapath is limited by tm +  t a, where tm is the delay of the critical path through the
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Figure 4.17: The ACF calculated by averaging over 10 frames of 105 fading samples with 
f DTs =  0.01.
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Figure 4.18: The CCF calculated by averaging over 10 frames of 105 fading samples with 
f DT s =  0.01.

multiplier and t a is the delay of critical path through the adder. If the implementation on 

the Xilinx Virtex2P XC2VP100-6 FPGA uses a 28-bit datapath, then t m +  t a is about 11.4 

ns and thus the channel simulators is capable of generating 87 million fading variates per 

second. To speed up the computation, we could use a /c-stage pipelined datapath. Even 

though a A;-stage pipelined datapath would operate at a higher clock frequency than a non

pipelined circuit, due to the iterative behaviour of the computation, the delay introduced by 

k  pipeline registers reduces the fading variate generation rate by a factor k. For example, 

a four-stage pipelined version of the datapath in Figure 4.16 operates at 227 MHz, and the 

throughput is 227/4= 56 million fading variates per second. To avoid throughput reduction
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Figure 4.19: Envelope pdf of IQ7 generated fading variates with f o T s =  0.01 for three 
different precisions.
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Figure 4.20: The cdf of 107 generated fading variates with two different precisions.

with the pipelined datapath, we can combine more than one iteration into a single stage. 

Using Equations (4.13) and (4.14), I i tH and C \>n can be re-written as:

I\,n  = Io,nCOs(pn) -  C0)nsm (pn)

C\,n = Co,nCOs{pn) + I 0,nSm ipn) (4.16)

Similarly, / 2 ,n and C ^ n can be written as:

I 2 ,n =  - l̂,n COs(pjj) C 'j^sin(pn)

C 2 ,n =  C i,„cos(pn) +  i i , r i S i n ( p n ) (4.17)
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Figure 4.21: The normalized LCR of 107 generated fading envelopes with two different 
precisions.

Equations (4.16) can be substituted into Equations (4.17) to give:

h ,n  = h ,n  cos(2pn ) -  C0,n sin(2pn )

C2,n =  C0,n cos(2pn) +  7o,n Sin(2pn) (4.18)

In general, Ik>n and Ck,n can be calculated as:

h ,n  =  Io,nCOs(kpn) -  Co,nSin(kpn)

Ck,n = Co,n cos(kpn ) + I 0tnsm (kpn) (4.19)

Equations (4.19) simplify the implementation of a fc-stage pipelined datapath. To avoid

unused “bubble” cycles in the pipeline, the cos(pn ) and sin(pn) constant values should be

replaced with cos(kpn) and sin (kpn), respectively; also, the first k initial values of 7m>n and 

C7m,n, for m =  1, • • • , k, should be loaded into the “7m” and “Cm” registers in k  successive

clock cycles, using two multiplexers and external inputs In it i  and I n i t c, respectively, as

shown in Figure 4.22. The datapath shown in Figure 4.23(a) adds two of the oscillator 

in-phase components of a [m ] given in Equation (4.12). Figure 4.23(b) shows the tree- 

structured datapath for summing N  — 8  in-phase components of Cj[m]. The blocks labeled 

“Ca/c/o” denote separate instances of the circuit in Figure 4.22.

The complex sinusoid generator circuit was implemented in a 28-bit fixed-point format 

and the adder tree was implemented using 16-bit adders. Table 4.2 summarizes the im

plementation characteristics for the SOS-based fading channel simulator, with N  =  8, on
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Figure 4.22: Pipelined datapath for generating one low-frequency oscillator.
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Figure 4.23: (a) Circuit for summing two complex oscillators, (b) Tree-structured adder for 
summing N  =  8 oscillators.

four different FPGAs. The synthesized layout of this fading channel simulator in a 90-nm 

CMOS technology is 967 p m 2, when the core was targeted to operate at 500 MHz, gener

ating 500 million complex fading variables per second. The core dissipates 185.26 mW of 

dynamic power and 114.4 mW of static power.

4.6 An Improved SOS-based Fading Channel Emulator

The statistical properties of a RP can be obtained through measurements. Repeating the 

random experiment gives rise to the random process and taking the arithmetic average of 

the quantities of interest. For example, to estimate the mean m x ( t)  of a RP X ( t ,  ( ) ,  we

Table 4.2: Implementation of the fading channe
Device 1“ II III

Clock freq. (MHz) 240.67 209.68 84.37
Output rate (MSamps/sec) 240 209 84

Number o f  slices 12078 12078 4,984
Resource utilization 49% 27% 30%

simulator on different FPGAs.

“Design I was synthesized for a Xilinx Virtex4 XC4VSX55-11 FPGA. Design II was synthesized for a 
Xilinx Virtex2P XC2VP100-6 FPGA. Finally, Design III was synthesized for an Altera Stratix EP1S80F1508C6 
FPGA.
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may repeat the random experiments N  times and take the following average

1

where X ( t ,  (k) is the realization observed in the k -th iteration. On the other hand, the time 

average of a single realization can be written as

As the observation interval becomes large, the ergodic theorem states when the time aver

ages converge to the ensemble average (expected value) [14]. The law of large numbers 

states that if X \n \  is an i.i.d discrete-time RP with finite mean E[X[n]] =  m , then the time 

average of the samples converges to the ensemble average. Thus the mean can be estimated 

by taking the time average of a single realization of the process. In this case X  (t ) is ergodic 

in mean. Similarly, X  (t) is ergodic in ACF  if

Similarly, for a discrete-time RP X[n], the time-average estimate for the mean and ACF of 

X [n ] can be expressed as

As discussed in Section 4.4, the channel simulator in Model I  is a MC simulator that is 

WSS but not ergodic. If a model is ergodic, the statistical properties may converge to the 

desired ones in a single simulation trial also. If a signal is WSS and ergodic, the first and 

second-order time averages may be substituted for stochastic ones. However, the statistical 

properties of a single simulation (i.e., averaging over time) of Model I  do not converge to the 

reference properties. The statistical properties of the MC simulator in Model I  converge to 

the desired properties only over several simulation trials. The required number of simulation 

trials to achieve a desired convergence level is directly related to the variation in the time 

average properties of a single simulation trial from the desired ensemble average properties. 

The time average correlations R(-) are random and depend on a specific realization of the

J  X ( t ) X ( t  +  r)d f.

T

T
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random parameters in a given simulation trial. The time average correlations of complex 

fading signal c(t) can be written as

RcilCi( r )  =  \ J  a (t)c i( t  + r )d t

R Ci,o ,( T )  =  =  0

Rc,c(r) =  J  c*(t)c(t + r )d t  (4.20)

MC SOS-based simulators are in general complex since they require a relatively large 

number of simulation trials for convergence. To overcome the complexity problem, a mul

tiple parameter set MC (MPS-MC) simulation method has been proposed [140]. This 

technique divides a simulation trial into several frames and generates random Doppler fre

quencies and phases for each frame. For example, to generate 107 inphase and quadra

ture components, we can divide them into 103 frames of length 104 samples each to get 

time-averaged autocorrelation results. It should be noted that the autocorrelation with the 

MPS-MC model is zero if the time delay exceeds the frame length. Hence, the frame length 

should be sufficiently long to cover the time delays of interest to get meaningful results. 

With this method, the performance of MC models is considerably improved [8]. Unfortu

nately, the MPS-MC model creates discontinuities in the temporal correlation. As a con

sequence, the testing of a communication system should be interrupted and re-initialized 

every time with a new set of random parameters for each trial to ensure accurate modeling 

of the channel. At the receiver, the channel estimation or carrier recovery at the receiver 

must be re-acquired after each draw of random parameters. However stopping and restart

ing the communication system and channel simulator in this way might not be convenient 

in many practical cases.

To improve the existing MPS-MC models, Zajic and Stiiber [141] proposed a determin

istic model that is ergodic. However, the autocorrelations of the in-phase and quadrature 

components do not accurately match the theoretical properties. They also proposed a sta

tistical model to overcome this shortcoming of their deterministic model. However, the 

resulting modified model is no longer ergodic.

We modified the SOS simulator proposed by Zheng, Xiao, and Beaulieu [36-38] to 

achieve an improved SOS Rayleigh fading channel simulator. In the new model, we replace 

the random angle of arrival by a random walk stochastic process [14]. Analytical analysis 

of our new model appears to be intractable, however, through numerical simulation we 

will show that the statistical properties of the new model accurately match the reference
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functions. To generate fading variates with accurate statistical properties, we propose to 

use the following discrete Model II, which is a modified version of Model I.

where f o r  =  I d Ts is the normalized maximum Doppler frequency (and Ts is the symbol 

period), and a n [m] =  (2nn  — 7r +  9[m ])/(4N ) where 6 is a stationary stochastic process. 

Compared to Model I, in Model II, 0 (and the corresponding angle of arrival) is a stochastic 

process rather than a random variable produced by a white process. However, great care 

should be taken to choose 0[m] so that the statistical properties of Model II match those of 

the reference model. In particular, through numerical experiments we found that 9 must be 

ergodic, highly-correlated, and uniformly distributed over [—7r, 7t). Specifically, we propose 

to use the stochastic random walk process given by Algorithm 5. The random walk process

Algorithm 5 The proposed random walk process 9
1 Initialize 50 = e <  1, 0[O] =  U(—n, 7r);
2 for m > 0 do
3 9\m\ =  9[m — 1] +  50 x u[m];
4 if 6[m\ > +7r then
5 9[m] =  +7r; 50 =  - S0;
6 end if
7 if Q[m\ < —7r then
8 6\m\ = -n ;  8a — - 8 0\
9 end if

10 end for

9 in this algorithm is generated using a white process, u, which is uniformly distributed over 

[0,1). The step size 50 is chosen to be small enough to ensure that the resulting process 9 

is highly correlated. The step size is a function of the normalized Doppler frequency and 

the precision of the variables used in simulation. Numerous numerical simulations were 

performed to evaluate the statistical properties of Model II. We found different acceptable 

values of Sa for various normalized Doppler frequencies as given in Table 4.3. For n-th 

sinusoid at time index m  we can write

Model II.

71=1

(4.21)

cos(27r/D rm s in (a n [m]) +  ipn ) (4.22)

. . _  27rn — 7r 4- 9[m] _  27rn — 7r +  9[m  — 1]
+  S' — a n [m — 1] +  5'

AN
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Table 4.3: Maximum step size 60 .
Normalized Doppler frequency /d t Max. step size 50

}d t < 0.0001 0.0000005
for  < 0.0005 0.000001
for  < 0.001 0.000005
fDr < 0.005 0.00001
fDr <  0.01 0.0001

Theoretical ACF 
Simulated ACF 
Cross Correlatbn0.8

0.6

0.4

0.2

■0.2

■0.4
0 500 1000 1500 2000 2500

Autocorrelation lag (In sam ples)
35003000 4000

Figure 4.24: ACF and CCF of 107 fading variates generated by Model II.

and thus cos(an [m]) and sin(cnn [m]) can be approximated as,

cos(an [m]) ~  cos(an [m — 1]) — 6' s in (an [m — 1]), 

s in (an [m]) cz s in (an [m — 1]) +  81 cos(an [m — 1]).

A block of 107 fading samples using N  =  8 sinusoids with /jr>Ts =  0.002 was gen

erated (in one simulation trial) and the statistical properties of Model II  were measured. 

Figure 4.24 plots the ideal ACF along with the ACF and CCF of the samples generated with 

the new model. As Figure 4.24 shows, the generated ACF accurately matches the ideal 

ACF and the generated CCF is very small. The LCR [23] of the envelope of the generated 

fading variates and the theoretical LCR are plotted in Figure 4.25. Here again a close match 

between the generated LCR and the desired LCR can be observed. Also, Figures 4.26 and 

4.27 plot the PDF and the CDF of the generated fading variates against the reference func

tions. These plots show that Model II  can faithfully reproduce the properties of Clarke’s 

model. In the next section we focus on the hardware implementation of the fading channel 

emulator.

The proposed fading channel emulator was implemented as a Verilog hardware descrip-
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Figure 4.25: LCR of 107 fading variates generated by Model II.
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Figure 4.26: PDF of 107 fading variates generated by Model II.
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Figure 4.27: CDF of 107 fading variates generated by Model II.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 An Improved SOS-based Fading Channel Emulator 

Table 4.4: Implementation of the fading channel simulator on three different FPGAs.
Device family 1“ II III

Max. clock freq. (MHz) 195.61 204.75 103.01
Output rate (MSamps/sec) 195 204 103

Slice utilization 2447 (9%) 2444 (5%) 1292 (1%)
Dedicated resource utilization 48 (9%) 48 (10%) 128 (72%)

Number ofBRAMs 12(3%) 12(2%) 2%

“Design I was synthesized for a Xilinx Virtex4 XC4VSX55-11 FPGA. Design II was synthesized for a 
Xilinx Virtex2P XC2VP100-6 FPGA. Finally, Design III was synthesized for an Altera Stratix EP1S80F1508C6 
FPGA.

tion language model and synthesized for the three typical FPGA devices given in Table 4.4. 

We used the PNG described in [97]. This PNG generates uniformly distributed 32-bit un

signed values between (0,1). The sine and cosine values used to calculate s in (an [m]) and 

cos (a n [m])( respectively, were stored in four dual-port memories TBLROM12, TBLROM34, 

TBLROM56, and TBLROM78, each configured in 512 x 32 format. Eight dual-port cosine 

ROMs store cosine values used to calculate the in-phase and quadrature components a  [m] 

and cq[m]. The hardware-based fading channel emulator design was adjusted carefully to 

achieve accurate fixed-point representations of the variables and also to minimize the com

putational resources. Specifically, the stochastic process 6 was represented in 32-bit format, 

while <fi[n] and tp[n\ used 10-bit precision. The values of s in (an [m]) and cos(o:ri[m]) were 

represented in 12-bit format and the cosine values to calculate Cj[m] and cq[m] were rep

resented in 16-bit fixed-point format. The implementation of the fading channel emulator 

on a Xilinx Virtex2P XC2VP100-6 FPGA uses only 5% of the configurable slices, requires 

48 dedicated 18 x 18 multipliers, and 12 Block RAMs. As shown in Table 4.4, the max

imum sampling rate of the fading channel emulator on a Altera Stratix EP1S80F1508C6 

FPGA is slower while utilizing only 1% of the configurable logic elements and uses 128 

dedicated DSP blocks. We extracted the statistical properties of the generated fading vari

ates and compared them against the software simulation results to successfully verify the 

accuracy of our hardware-based fading channel emulator. Figure 4.28 shows the layout of a 

472,430 pm.2 semicustom integrated circuit implementation of the Rayleigh fading channel 

emulator designed in a 90-nm CMOS technology using a dual-threshold standard cell li

brary. The core was targeted to operate at 500 MHz, generating 500 million 16-bit complex 

fading variables per second.
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Figure 4.28: Layout of the 500 MHz semicustom fading channel variate generator.

4.7 Conclusions

To accurately generate Rayleigh faded envelopes that are correlated in time, but uncorre

lated between processes, the quadrature components of fading variates must be uncorre

lated, with each component having an autocorrelation given by a zeroth-order Bessel func

tion of the first kind. Numerous algorithms with different computational complexities have 

been proposed in the literature to simulate a Rayleigh fading channel; however, most do not 

accurately reproduce the reference statistical properties of wireless propagation channels. 

Thus, the accuracy of the proposed models must be verified before using these models in a 

MC simulation scheme. While the SOS-based fading channel model is an efficient approach 

for hardware implementation, some of the proposed algorithms provide a close match with 

the theoretical statistical properties only when the statistics are averaged over an ensemble 

of fading channels. Hardware-based simulators permit several orders of magnitude faster 

performance evaluation over software-based simulators, significantly reducing the design 

time. The implemented SOS-based fading simulator uses only 1% of the Xilinx Virtex2P 

XC2VP100-6 FPGA and operates at 221 MHz, generating 211 million complex fading co

efficients per second. The hardware-based fading channel simulator is 506 times faster than 

a software-based simulator written in C language running on a 3.4-GHz Pentium 4 (Xeon) 

with 2 GB memory.

Also, a novel technique for simulating Rayleigh fading channels with improved statis

tics was proposed. The proposed simulator was designed based on the sum-of-sinusoid 

Rayleigh fading models. A compact fixed-point implementation of the new emulator on
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a single FPGA produces over 200 milion 16-bit Rayleigh fading variates per second. The 

ability to implement an entire fading channel simulator on a fraction of a single FPGA 

should be a significant improvement for the prototyping and verification of wireless sys

tems.
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Chapter 5

Filter-Based Fading Channel 
Simulators

Numerous real-time test cases must be applied to a new communication system design be

fore shipping the products to market. Field tests in a mobile environment are expensive 

and may require permission from regulatory authorities. A further complication is that, 

due to the changeable nature of the mobile propagation environment, it is difficult to gen

erate repeatable field test results. Instead, a multipath fading channel simulator allows the 

performance evaluation of mobile communication systems under controlled and repeatable 

conditions that would not normally be possible in actual field testing. When a fading chan

nel simulator is used in the design and verification of wireless communication systems, it is 

important that the channel model represent all of the relevant behaviour and properties of a 

propagation environment as accurately as possible.

A complex Gaussian WSS process with the complex envelope c ( t)  =  C j(f) + jc q(t) has 

been commonly used to model the behaviour of multipath fading channels [113]. Under 

the common assumption of a two-dimensional isotropic scattering environment with an 

omnidirectional receiving antenna at the receiver [30], the PSD functions of Cj(f) and cq(t) 

have the band-limited U-shaped form, the so-called Jakes PSD. Chapter 4 presented a well- 

known model for generating fading processes that approximate the Jakes power spectrum 

using Rice’s sum of sinusoids (SOS) model, where a Gaussian process is modeled by the 

superposition of a finite number of weighted harmonic functions with random phases. This 

chapter considers an alternative technique, called the filter-based approach henceforth, for 

shaping the flat spectrum of uncorrelated Gaussian variates using a low-pass filter [114,134, 

139,142]. This filter is often referred to as the shaping filter for it determines the power 

spectrum shape and the temporal correlation function of the fading process. The filter-
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Table 5.1: Some commercially available fading simulators.
M odela A B c D E

Number o f  channels 2 2 2 2 6
Number o f  paths 12 24 48 6 6

Max. Doppler (Hz) 800 2000 2400 - 340
Fading resolution (Hz) 0.1 0.01 0.05 - 1

Max. delay (ms) 200 2000 10 - 40
Time resolution (ns) 5 0.1 1 1 40

“(A) Japan Radio Co. NJZ-160QB [144], (B) Spirent Communications SR5500 [143], (C) Agilent Tech
nologies Inc. N5115A [6], (D) Rohde & Schwarz ABFS [7], (E) Ascom Ltd. SIMSTAR [138],

based approach can be customized to accurately provide the statistical properties required 

for simulating fading channels [23].

Due to the accuracy of this model for generating fading variates with reference statisti

cal properties, many commercially available fading channel simulators [6,7,138,143,144] 

employ the filter-based technique. Typically they require complex hardware consisting of 

several circuit cards with multiple processors. For example, the NoiseCom MP-2500 Mul

tipath Fading Emulator [145] consists of 11 circuit boards, not including the RF circuitry, 

cooling fans, or external computer interface for setting various parameters of a frequency- 

selective fading channel with up to 12 paths. Unfortunately these systems are rather bulky 

and costly. Some of the available fading channel emulators in the market are listed in Table

5.1 and are available at prices of between $24,000 to $500,000.

A software implementation of multipath fading channels using GPPs and DSPs is a 

more flexible and cost-effective scheme than such hardware-based commercial products. 

However, the implementation effects of nonlinear filters and nonlinear amplifiers are diffi

cult to characterize analytically. Moreover, hardware-based simulators can verify the de

sign at-speed, significantly reducing the simulation time compared to software-based testing 

schemes, and hence they reduce the time-to-market. The published fading channel simu

lators are commonly realized on heterogeneous architectures (usually consisting of GPPs, 

DSPs, FPGAs, etc.) to implement the computationally-intensive multi-rate signal process

ing algorithms of filter-based techniques [121,123]. In these simulators, those portions of 

the simulator that are inefficiently simulated on a GPP can be off-loaded to a dedicated de

vice, such as a FPGA or a DSP. For example, the fading simulator in [123] uses a floating 

point DSP combined with a FPGA to realize a frequency-selective channel simulator. The 

design in [121] uses two 32-bit floating-point DSP processors to implement a multipath fad

ing simulator. Implementing a parameterizable fading channel simulator on a single FPGA
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is a challenging task due to the relatively large computational complexity of the filter-based 

signal processing algorithms [123].

This chapter presents a novel design and implementation scheme for realizing a pa

rameterized fading channel simulator on a homogenous architecture. Specifically, the new 

design is an accurate filter-based fading channel simulator on a single FPGA that is compact 

enough to be integrated along with many communication circuits of interest. To generate 

complex Gaussian variates with a U-shaped power spectral density function, the design 

utilizes an HR spectrum shaping filter followed by multistage interpolators and low-pass 

HR filters. In order to produce samples with accurate statistics and minimum hardware 

requirements, the required filters are designed in co-ordinated fashion. The new technique 

significantly alleviates the challenges of real-world testing of communication systems by 

introducing a fast and area-efficient FPGA implementation of the fading channel. Our fixed- 

point implementation of a Rayleigh fading channel simulator on an FPGA utilizes only 4% 

of the configurable slices, 20% of the dedicated multipliers and, 2% of the available memo

ries on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million fading variates 

per second. The parameterized mobile channel simulator can be reconfigured to accurately 

simulate a wide variety of different channel characteristics. We have also designed a flexible 

and compact filter processor (FP), called “Python”, for efficiently implementing the shaping 

filter and interpolation low-pass filters (ILPFs) on the FPGAs. Python uses a simple and a 

very short instruction set to generate multiple sequences of fading variates for simulating 

wideband and MIMO channels.

The rest of this chapter is organized as follows. The digital filters structures and a 

precision analysis are discussed in section 5.1. An efficient method to generate correlated 

random sequences is presented in Section 5.2. Section 5.3 discusses the design constraints 

of the shaping and interpolator filters. Section 5.4 studies the major challenges in the de

sign and hardware implementation of any filter-based Rayleigh fading channel simulator. 

Our proposed datapath for implementing a discrete-time fading channel simulator and im

plementation results are presented in section 5.5. The statistical properties of the generated 

fading variates are also verified. Section 5.6 presents the Python FP architecture and the im

plementation and statistical results of fading channel simulator. Finally, Section 5.7 makes 

some concluding remarks.
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5.1 Digital Filter Structures and Quantization Error Effects

5.1 Digital Filter Structures and Quantization Error Effects

In digital signal processing, difference equations have been used extensively to model LTI 

systems. A difference equation has the general from [10]
N  M

'Ŝ a [ k ] y \ n  — k] — ^  b[m]x[n — m]\ V n (5.1)
fc=0 m—0

where a[k] and b[m\ are constant coefficients (also called gain factors). If we scale the

coefficients so that ao =  1 we obtain
M  N

y\n \ =  x \n  -  m ] -  ~  ^  (5-2)
m =0 k = 1

which clearly shows that the present output value y[n] can be computed from the present 

input x[n], M  > 0 past input values and N  > Q past output values. In digital signal 

processing, Equation (5.2) is solved forward (i.e., for n  >  0). Thus initial conditions on 

x[n] and y[n] must be determined for — M  < n < — 1 and — N  < n <  —1.

If the unit impulse response h[m) LTI system (digital filter) is of finite duration (i.e., 

h[n] = 0 for n 2 < n  < n{), then the systems is called a finite-duration impulse response

(FIR) filter [10]. A causal FIR filter can be expressed as
M

y[n] =  b[m\ x[n — m]; n  > 0 (5.3)
m=0

where b[m] = h[m] for m  =  0, • • • , M , while all other h[m \’s are zero. An FIR filter is 

also sometimes called non-recursive or moving average (MA) filter. If the impulse response 

of an LTI system is of infinite duration, the system is called an infinite-duration impulse 

response (IIR) filter. The difference Equation (5.1) describes an IIR filter that has two parts 

where the following part
N

^ a [ f c ]y [n  — k] — x[n\; V n (5.4)
fc=o

describes a recursive IIR filter with infinite duration in which the output y[n\ is recursively 

computed from its previously computed values and present input. Such a filter is called an 

autoregressive (AR) filter. The IIR filter in Equation (5.1) sometimes called an autoregres

sive moving average (ARMA) filter since it has both an AR part and an MA part.

An important subclass of causal LTI systems satisfy an iV-th order linear constant- 

coefficient difference equation (CCDE) of the form
N  M

u[fc] y[n — fc] =  ^ 2  Mk] x[n  — kj. 
k = 0 fc=0
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Figure 5.1: Direct-Form network structures.

It can be shown that the system function H  (z ) can be represented as the rational function

r ( » )  A [ o ] ' i n f . i ( i - c W ^ - 1)

where z is the z-transform variable, Y[z] and X[z] we feed-forward and feedback polyno

mials, respectively, in 2 , and H (z) =  h[n\z~n is called the one-sided z-transform of 

the rational transfer function (RTF) of the LTI system. Each of the (1 — c[k]z~l ) factors 

contributes a zero (i.e., a root of the numerator) at z =  c[k] and a pole (i.e., a root of the 

denominator) at z =  0; similarly, each (1 — d \k \z~ l ) contributes a pole at z  — d[k] and 

zero at z  = 0. Thus the b[k]’s are the filter’s feedforward coefficients corresponding to the 

zeros of the filter, and the a[fc]’s are the filter’s feedback coefficients corresponding to the 

poles of the filter.

It is shown in [10] that any sequence that can be represented as a sum of exponentials, 

and can also be represented by a rational z  transform. H( z )  is sometimes represented as

H (z) =
i  +  H L  “ I*]*-*

by taking the z-transform of the both sides of the difference equation (5.2). For convenience 

in the notation we assume equal feed-forward and feedback orders, i.e., M  = N .  A block 

diagram of the corresponding filter implementation (called the Direct-Form) is shown in 

Figure 5.1(a). This flowgraph clearly separates the structure into a section for the zeros on 

the left and a section for the poles on the right. If you split the Direct-Form shown in Figure

5.1 at the summation point and swap the two halves, so that the feedback half (the poles) 

comes first, then the two pairs can be merged, yielding a more compact configuration than 

the Direct-Form called the Direct-Form II, as shown in Figure 5.1(b). For a second-order
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Figure 5.2: (a) Direct-Form II. (b) Direct-Form I.

(i.e., two poles and two zeros) IIR filter, the flowgraph, shown in Figure 5.2(a), is called a 

canonic section or a biquad. Note that in a Direct-Form II, the states (delayed samples) are 

neither the input nor the output samples but are instead derived intermediate values. It is 

shown that a K - th order IIR filter can be designed as a cascade of L  — [(K  +  1)/2J such 

biquads [10]. Then, the discrete transfer function can be written as

1 +  a\k]z 1 +  b[k\z - 2

fe=1 - +  +  d[k]z~2
(5.5)

where when K  is odd, and b[L] and d[L\ are zero. Biquads come in different forms. A 

transposed network (the directions of all branches in the flowgraph are reversed, with all 

branch nodes in the original network becoming summation nodes in the transposed network 

and vice versa), shown in Figure 5.2(b), is called transposed Direct-Form II  or Direct-Form 

I. It provides the same system function using two adders and a summation node (with three 

inputs), while in a biquad, four two input adders are utilized.

Both the throughput and latency of a digital implementation are affected substantially by 

the choice of the network structure. One practical drawback of the recursive filter structures 

in the IIR filter structures is that they set an upper bound on the sample rate. For example, 

consider the cascade Direct-Form II structure shown in Figure 5.3. The direct mapping of 

a cascade structure onto hardware has a relatively long combinational propagation delay to 

the output. This path, as shown with a thick arrow in Figure 5.3, contains 2L  +  1 adders, 

one multiplier and one register. In order to achieve higher performance (and hence a shorter 

clock cycle), a pipelined cascade architecture can be created by adding one register at the 

output of each biquad stage. Then, the critical path delay is reduced to the delay of a register, 

one multiplier and three two-input adders. However even this delay can be significant when 

realizing a digital filter on a FPGA.

One important decision is to determine the number of bits required to represent the 

constant coefficients and internal signals in the filter. It is well-known that as the order of
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Figure 5.3: Cascade realization of the spectral shaping filter.

the polynomial increases, so too does the sensitivity of the obtained roots of a polynomial to 

the accuracy of its coefficients [10]. Also, for a narrowband filter with a high sampling rate, 

the zeros and poles tend to be crowded near the unit circle. If the poles reside on the unit 

circle or outside of it, the filter becomes unstable [10]. As the coefficients are quantized for 

a fixed-point platform, due to the rounding or truncation of values, the quantization error 

can be fed back in the filter, successively magnifying the total error and causing instability. 

Even if the filter stays stable, the poles can be displaced significantly from their design 

locations by the quantization of the coefficients, and thus the target specification will not 

be achieved. Therefore, a careful analysis is required to ensure adequate precision in the 

coefficients. Since FPGAs, unlike fixed register size DSPs, allow custom bit widths, the 

coefficient representation can be different than the internal signal representation, providing 

a greater flexibility. The internal signal bit widths then can be determined by calculating 

theoretical bounds on the dynamic ranges of the signals, and on the maximum output errors 

introduced by truncation in the fixed-point representation. The lower and upper bound 

values of each signal state how many bits are required at any point in the computation in 

order to minimize the probability of overflow/underflow while guaranteeing a prescribed 

degree of accuracy at the filter output.

The fixed-point implementation of digital filters is discussed in many textbooks and in 

the published literature. For example, it is shown that when the denominator coefficients of 

the second-order filter are perturbed by Ac and A d  (i.e., perturbation from its ideal infinite 

precision value), respectively, the poles of the transfer function, p\ and p 2 , will also be 

perturbed by
r>i A r: 4- A d  nr,A.r.-\-Ad

(5.6)
. p i Ac +  A d P2 AC +  Ad

A pi = -----------------and A p2 =
P2 -  Pi Pi -  P2

respectively [146]. A similar relation holds for perturbations affecting the zeros of the 

transfer function. According to the given maximum allowable percent change in the pole
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location relative to the unit circle £p, one can obtain the number of fraction bits for c and d 

in (5.5) W F  as W F  =  [ -  log2(£p|l  -  |p»||.|p2  -  P i |) l  +  1 for * =  1,2 [146]. While the 

error analysis of fixed-point implementations of digital filters has also been addressed in a 

large number of papers and textbooks [10,147], the software package Matlab Filter Design 

Toolbox [148] offers numerous libraries for the analysis of finite wordlength impact on the 

numerical stability of the designed filters.

Choosing the computational structure depends on the order and specification of the 

filter, the desired sampling rate, the susceptibility to quantization error, and the available 

configurable resources on the FPGA. While other network structures, such as the coupled 

form [10,147], have also been proposed to reduce the sensitivity to inaccuracies in the 

coefficients and to signal quantization, it is shown that the cascade form is a robust structure 

under quantization when compared with many other schemes.

5.2 Generation of Correlated Random Sequences

If the input to an LTI system is a random process X( t ) ,  then the output Y  (t) is a random 

process [14] given by

/ oo poo
h ( r ) X { t  — r ) d r  =  /  h(t  — r )X ( r )d r .

-oo J —OO

Similarly, for a discrete-time RP X[n],

OO OO
Y[n] = h[n] * X[n] = ^  h[j]X[n -  j] =  ^  h[n -  j ]X\ j]

j=~oo j=-oo

and OO

m =  E
i=  — OQ

If X  (t ) is a WSS process, then Y( t )  is also WSS and the corresponding PSD is

Gy ( f )  = G x ( f ) \ H ( f ) \ 2. (5.7)

Equation (5.7) states that the output PSD equals the input PSD multiplied by the squared 

magnitude of the transfer function of the filter. In many applications, such as frequency-flat 

fading simulators, we need to generate one (or more) random sequences with a particular 

correlation function. For example, for the representation of phase noise in a communication 

system, a Gaussian process with an arbitrary PSD (which might be defined based on empir

ical measurements) is often required [11]. When R (r)  ^  0 for r  =  kTs , k — ± 1 , ± 2 , • ■ •,
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5.2 Generation o f Correlated Random Sequences

the RP is correlated at multiples of the sampling intervals. We note that if X { t )  is a white 

noise process with the flat PSD Gx { f )  = N 0 /2,  then the transfer function completely 

determines the shape of the PSD of the output process as

Equation (5.8) shows that an uncorrelated Gaussian sequence can be transformed into a 

correlated Gaussian sequence through a linear filter that preserves the Gaussian distribution 

but alters the correlation properties. This technique can be efficiently used for generating 

WSS processes with arbitrary output PSD (corresponding to a desired output correlation). 

Hence, a filter with the transfer function

can be designed in the frequency domain to transform a white noise process into a coloured 

random sequence if H ( f ) can be represented as a RTF, i.e., the ratio of two polynomials as 

discussed in Section 5.1. An ARMA filter can be utilized to implement H { f )  in (5.9) as 

a RTF for generating random sequences with arbitrary PSD [13]. A very important point 

to note is that the phase response of the filter is not important since it does not affect the 

output PSD [13].

In practical applications, such as frequency-selective fading channel simulators and 

MIMO channel simulators, we need to generate more than one correlated random sequence. 

Multiple random processes can be represented as a vector-valued RP where each vector 

component is a RP with a particular ACF (temporal correlation or correlation along time 

axis) and the correlation between vector components represents a correlation in a differ

ent dimension (referred to as spatial correlation) [13]. Assume that we want to gener

ate sampled values of m  zero-mean Gaussian random processes F i(t) , ^ ( i )  

denoted as a vector-valued discrete-process Y[k]  =  [Yi[k], ¥ 2 [k], • • • ,Y m [k]]T , with the 

same arbitrary temporal correlation R[n] (or equivalently, the same PSD). Further assume 

that we want to have some arbitrary correlation between processes such as R y ^  [n] =  

E [Yi[k]Y;[k + n)] =  <7jjR[n], where &ij is the covariance between the components of 

the process at a given instant. To generate a sequence of Gaussian vectors Y[fc] that are 

correlated in time and space, we can transform a sequence of uncorrelated (and hence inde

pendent) Gaussian vectors X[fc] into a time-correlated Gaussian sequence Y[fc], with each 

sequence generated using an ARMA filter, and then transform spatially-uncorrelated com-

GY ( f )  = N 0 / 2 \ H ( f ) \ 2. (5.8)

(5.9)
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ponents of Y[A:] into spatially-correlated components using a (memoryless) linear transfor

mation [13].

5.3 Constraints on Filter Design

As noted earlier, it is common to model the behavior of multipath fading channels as a 

complex Gaussian WSS process c(t) =  a ( t )  + j c q(t) [113]. In a two-dimensional isotropic 

scattering environment with an omnidirectional receiving antenna at the receiver [30], the 

ACF associated with either Cj(f) or cq(t) is given by R Ci)Ci(r)  =  R c?iC, ( t )  =  Jo(2nfDr) .  

The PSD functions of q (f)  and cq(t), denoted by GCi( / )  and GCq( f )  respectively, can be 

written as

where <Xj is the variance of Cj.

In order to generate the in-phase and quadrature components of fading variates with 

a particular correlation between variates, as discussed in Section 5.2, we begin with two 

independent, zero-mean, white Gaussian random variables rii(t) and n q(t) with identical 

variance. A linear filtering operation on the complex Gaussian samples with flat PSD, rij(f) 

and n q(t), yields samples that also have a Gaussian distribution, with spectrum G o u t ( f )  =  

G m (/) \ H ( f ) \ 2, where G in ( f )  is the spectrum of the input samples and \ H ( f ) \ 2 is the 

squared magnitude response of the shaping filter. As described in Chapter 4, the theoretical 

spectral density of the complex envelope of the signal received by an omnidirectional an

tenna in a Rayleigh fading wireless channel is given by the Jakes PSD [13]. A shaping filter 

can be designed with a frequency response equal to the square root of the PSD of the de

sired fading process (i.e., \ /G Ci( /) ) . A correlated Rayleigh process can then be generated 

by combining the two filtered processes in quadrature.

Similarly, to generate correlated Rayleigh variates, the Gaussian-distributed in-phase 

and quadrature components can be spectrally shaped by multiplying the frequency domain 

Gaussian components by \ / G Ci( f ) .  Then an inverse fast Fourier transform (IFFT) can 

be applied to the resulting discrete spectrum to obtain time series data [114, 134]. The 

resulting series is still Gaussian by virtue of the linearity of the IFFT, and it has the desired 

Jakes spectrum. The pseudo-code of this approach is given in Algorithm 6 [114]. The 

IFFT has a computational complexity of 0 ( K  log K )  operations, where K  is the number of 

time-domain sampled Rayleigh channel coefficients. One major disadvantage of the IFFT

Jd I/I <  fD  

I/I >  f D
(5.10)
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Algorithm 6 Modified Smith’s algorithm to generate discrete-time samples of correlated 
Rayleigh fading process.

1: Specify the value of N  equally spaced points of x/GCi( /)  with the frequency spacing between 
adjacent spectral lines as A/  =  2f o / ( N  — 1). Thus the time duration of waveform is r  =  
1 /A /.

2: Generate JV/2 complex Gaussian random variates for each of the N/2  positive frequency com
ponents of \ / G c,(f)-

3: Construct the negative components of the noise source by conjugating positive frequency val
ues. This will yield a real waveform.

4: Multiply the N  noise points of the inphase and quadrature components of the noise sources by 
the discrete frequency representation of i /G Ci(/) .

5: Perform IFFT on the resulting frequency domain signal from inphase and quadrature branches 
to form complex time samples.

method is its block-oriented nature, which'requires all channel coefficients to be generated 

and stored before the data is sent through the channel. This implies significant memory 

requirements and precludes unbounded continuous transmission, which is usually preferred 

in long running characterization applications.

The reciprocal square root in Equation (5.10) is an irrational function [139], which 

cannot be implemented exactly in hardware, so it is common to use a rational approxima

tion of the Jakes PSD. To provide spectral shaping for a rational implementation, we used 

transformation-based filter designs [121,123]. In wireless communication channels, the 

Doppler frequency is typically much smaller than the sampling rate. This greatly reduces 

the required bandwidth of the spectral shaping filter. For example, consider the digital cel

lular system DSC1800 (GSM1800), which operates at f c =  1.8 GHz. If the mobile receiver 

has a maximum speed of v =  300 kmph, then the maximum Doppler frequency would be 

f o  =  f c x (v/c)  =  500 Hz, where c is the speed of light. If the signal is sampled at 

R s =  Ts_1 =  10 MHz, then the normalized Doppler frequency would be Jd Ts =  0.00005. 

However, a symbol-rate design of an extremely narrow-band digital filter may run into nu

merical problems [147]. Instead, it would be more stable and computationally-efficient to 

design the PSD shaping filter for a lower sampling frequency R ch, and then increase the 

sampling frequency using interpolation to achieve the target symbol rate. The sampling 

rate of the filter must be increased by an interpolation factor I  =  [ \ to be compatible

with the signal sampling rate, where R ch is the channel sampling rate used to design the 

shaping filter. After interpolation, a low-pass filter is utilized to eliminate the replicas of 

signal introduced in the frequency domain by interpolation. For a practical mobile sys

tem, factor I  can be large and thus the complexity of the real-time interpolation filter can
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Scaling Factor

CGVG Shaping Filter

P-stage Interpolator

c[m]

Figure 5.4: Architecture of a filter-based fading channel simulator.

be large. To reduce the computational complexity of the low-pass filters, interpolation is 

usually accomplished using a multi-stage interpolator design.

The functional structure of the filter-based fading channel is represented in Figure 5.4. 

The generated samples from the complex Gaussian variate generator (CGVG) are passed 

through a shaping filter and multiplied by a scaling factor to normalize the power of the 

final resulting channel variate c[m]. Then the sampling rate of generated fading variates is 

increased using a P-stage interpolator.

The fading channel simulators in [114,127,149,150] use FIR filters as the shaping filter 

while the designs in [120,123,151,152] used IIR filters. Several important points should 

be considered when implementing fading channel simulators using FIR and IIR filters on 

hardware platforms:

•  The degree of the FIR filter is related to the time span of the truncated signal held in the 

filter and inversely proportional to the Doppler frequency. Specifically, implementation of 

an extremely narrow-band digital filter with a sharp cutoff and very large attenuation in the 

stop-band requires a large-order FIR filter [13,152]. Meeting the same specifications with 

an IIR filter typically requires fewer hardware resources than an FIR filter. In fact, utilizing 

both feedforward and feedback polynomials in an IIR filter permits steeper frequency roll

offs to be implemented for a given filter order than an FIR filter [147]. Thus, rather than 

designing a high-order FIR filter for an extremely small /z)Ts provided (e.g., 10-5 ), an IIR 

filter can be designed with a smaller order and the resulting filter is less computationally- 

expensive for a larger maximum Doppler rate (e.g., f t ,T s =  0.1).

We designed and implemented bandlimited Jakes spectral shaping filters using an IIR 

filter to closely approximate GCi ( / )  in the passband while providing large suppression in 

the stopband. An elliptic filter is an efficient candidate that has an especially sharp transition 

from the passband to the stopband for a given order [147]. A discrete-time elliptic filter can 

be designed using the cascade Direct-Form II second-order sections (biquads) structure that 

is more robust under quantization than the Direct-Form structure [147] (e.g., a cascade of 

four biquads is used in [28] and a cascade of seven biquads is used in [139]). As shown in
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Figure 5.5: The magnitude responses of elliptic filters composed of K  =  2 ,3 ,4 ,5  cascaded 
biquads with f o T s =  0.2.

Figure 5.5, for a fixed maximum discrete Doppler rate f o T s =  0.2, the magnitude response 

of filters designed with K  >  4 cascaded Direct-Form II second-order sections (biquads) 

closely matches the ideal response in the passband and has a steep roll-off in the transition 

to the stopband. In this case, the PSD of the filter with K  =  5 has at least 8 dB of peaking 

above GCi (0) and has rolled off at least 35 dB with respect to GCi(0) for R ch >  2 f p .

•  An FIR filter has no feedback and is thus inherently stable. However, as the coeffi

cients are quantized in any fixed-point implementation, the resulting numerical error is fed 

back in the IIR filter, possibly causing instability. Moreover, such effects can cause signif

icant deviations from the expected response. To make sure that the filters are stable under 

quantization effects, we have designed the filters in fixed-point format using Filter Design 

Toolbox by Matlab [148] that offers bit-true implementations of second-order sections with 

section scaling and reordering to obtain maximum accuracy. Word lengths for different 

internal signals and coefficients are set to the values verified by fixed-point simulation of 

the filters. Dynamic range and round-off noise analysis provided by the toolbox will also 

assure that the chosen fixed-point representation will avoid numerical instability.

•  For a fixed signal sampling rate of R s, the lower the channel sampling rate, the larger 

must be the interpolation factor. For a high R ch, the filter order will increase and the fil

ter will become more sensitive to quantization. There is therefore a tradeoff between the 

computational-complexity and numerical stability of the shaping filter and the computation 

requirements of the interpolation filter. There are many possible combinations of shaping 

filter designs and interpolator implementations. It is reasonable to design the shaping filter
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Figure 5.6: Ideal low-pass filter specification.

with a small R ch (compared to R s), which provides stable operation for a fixed-point real

ization with acceptable computational complexity. Then the interpolator can be designed 

and implemented efficiently using a variable polyphase filter, to accommodate different 

Doppler rates, with a windowed sinc(-) function impulse response [13]. Note that when 

the digital filter is designed at a fixed Doppler rate fr>Ts to provide sufficiently accurate 

frequency response, then the structure in Figure 5.4 is not flexible enough to produce a 

Rayleigh fading waveform with an arbitrary discrete Doppler rate. For an irrational value 

of f o T s, if the IIR spectral shaping filter is designed for a fixed discrete maximum Doppler 

rate, then the interpolator must re-sample the process so that rational fractions of the de

sired rate Jd Ts can be approximated. The irrational Doppler rate factor may not be a serious 

limitation when simulating a fading channel because in performance verification, obtaining 

high accuracy in the Doppler rate is not usually of primary importance [139].

Filters are usually specified using only a few parameters such as passband, stopband, 

and the tolerance allowed within these bands [10]. As shown in Figure 5.6, the filter band

width is the width between two frequencies that define the upper and lower edges of the 

pass-band. The transition band is an interval of frequencies where a filter characteristic 

changes from one kind of behaviour to another (for example, from a pass-band to stop

band). The behaviour of a filter’s response that approximates a desired characteristic by 

being alternatively greater and less than the desired response is called the ripple. Pass

band ripple also called in-band ripple and stop-band ripple is also called out-of-band ripple. 

There are different standard filters that are analytically described by the type of polynomial 

used in H ( z )  such as the Chebyshev, inverse Chebyshev, and elliptic filters [10]. To design 

a discrete-time digital filter, various (iterative) optimization techniques can be utilized to 

minimize the mean-square deviation from a desired frequency-domain characteristic.
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Figure 5.7: Magnitude response of the elliptic shaping filter.
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Figure 5.8: Zero/pole plot of the 32-bit quantized shaping filter.

In order to implement the Jakes PSD, we used an IIR elliptic filter that has the sharpest 

transition from the pass-band to the stop-band for a given order among the different classical 

IIR filters [147], We also followed a typical assumption that the Doppler spectrum for 

mobile speeds of interest is less than 2 KHz wide [30]. We used 10 samples/period of the 

highest frequency of an analog signal [13], so R ch =  10/d  =  20 Ksamples/sec. For a 

fixed maximum normalized Doppler rate f o T s =  0.1, we used K  — 5 cascaded biquads 

to realize the Jakes PSD. As shown in Figure 5.7, the magnitude response of the resulting 

elliptic shaping filter matches the ideal response in the pass-band and has a sharp cutoff. 

Figure 5.8 shows the zero/pole plot of the 32-bit quantized shaping filter.

An important point to note in Figure 5.7 is that if the stop-band attenuation of the
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shaping filter is not great enough, then the out-of-band noise passed through the filter can 

impact the accuracy of the statistics of the generated fading variates. Since designing a 

narrow-band filter with a sharp cutoff and large attenuation leads to a high order (and hence 

greater computational requirements), to obtain the closest approximation to the desired fre

quency response with a relatively small filter order, we only minimized the approximation 

error in the passband of the spectral shaping filter. The low-pass filters that follow utilized 

in the next stages are then designed with extra attenuation over the transition region and the 

stop-band.

In order to design a P-stage interpolator, we made the reasonable assumption that the 

WSS channel model can be used for the urban mobile radio channel over bandwidths of up 

to 10 MHz [21,139]. The interpolation factor of our designed system can therefore be up 

to I  = \Rs/F Ch] =  500. Typically a multi-stage interpolation scheme using FIR filters is 

employed [121,123]. However, when the interpolation factor I  is large, we found that this 

approach may not be efficient enough to be implemented on resource-limited FPGAs. As an 

alternative, we propose to use low-pass IIR filters with smaller degrees that provide almost 

linear phase response in the pass-band as ILPFs. A two-stage interpolator can be designed 

using two low-pass Chebyshev Type II IIR filters, one for I \  =  5 and one for I 2 — 100. The 

designed ILPFs have a maximum of 0.01 dB attenuation in the passband and a minimum 

of 100 dB attenuation in the stopband. Figure 5.9 plots the magnitude response of the first 

ILPF designed using Pi =  5 cascaded biquads. Figuer 5.9 also compares the response 

of this IIR filter with an equiripple FIR filter designed with the same parameters. The 

second ILPF was designed using an IIR filter with P2 — 2 biquads where the corresponding 

equiripple FIR filter is of order 1067. Clearly, designing the ILPFs using IIR filters leads 

to a significantly smaller order, and this is much more computationally efficient. Figure 

5.10 plots the phase response of the first ILPF. As shown in Figure 5.10, the designed ILPF 

provides almost linear phase in the pass-band (0 to 2 KHZ).

5.4 Filter Design for Fading Channel Simulators

We introduce our new general design method by means of an example. Assuming that the 

maximum Doppler frequency is f o  =  4 KHz and the target sampling rate is R s =  T ” 1 =  

10 MHz. To decrease the filter orders, we will design the shaping filter at the sampling 

rate R\ =  T f l =  20 KHz, which is 2.5 times the Nyquist frequency. Later, the sampling 

frequency will be increased to R 2 =  T f l =  100 KHz and Rs =  10 MHz with I \  =  5 and
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Figure 5.9: Magnitude response of the first stage IIR low-pass interpolation filter.
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Figure 5.10: Phase response of the IIR low-pass filters for interpolation.

I 2 =  100 times interpolation, respectively.

The cascade of filters is designed in two steps. In the first step, the required filters 

are designed to meet the desired characteristics, and then in a second step, the filters are 

optimized to reduce their hardware complexity. Since no limitation is imposed on the phase 

of the target signal and considering the greater computational efficiency of IIR filters, we 

decided to approximate the PSD in (5.10) with a rational filter using the least pth-norm 

approximation [153]. This was achieved by utilizing the MATLAB function iirlpnorm [148]. 

This function allows one to weight the allowable error over different frequency ranges. 

Since the signal has a narrow bandwidth, we chose to utilize low-order IIR interpolation 

low-pass filters in the interpolation stages. Specifically, we used inverse-Chebychev low-

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Filter Design fo r  Fading Channel Simulators

pass filters for interpolation.

In the next step, the filters are changed to be more efficiently mapped onto the hardware. 

Since the shaping and first stage interpolation low-pass filters operate at relatively low sam

pling rates, as we explain further in the next section, it is advantageous to reuse hardware 

to implement both filters. Employing the second-order section (sos) form of the IIR filters 

simplifies hardware sharing. In fact a shared biquad can perform the processing of different 

sos parts in the shaping and the first-stage ILPF. However, to simplify the control unit, as 

will be discussed more in Section 5.5, it is important for the two filters to have the same 

number of sos’s.

To minimize the total number of sos’s in the shaping and the first-stage ILPF, they 

should be optimized together to meet the design requirements. In a “discrete” design, the 

shaping filter should ideally have a frequency response matched to (5.10) in the range | / |  <  

fD  — 4 KHz and a zero response elsewhere. Also, the first ILPF should ideally pass the 

signal within the range | / |  <  10 KHz (recall that R \  =  20 KHz). However, with finite out- 

of-band attenuation, the desired statistics of the target Rayleigh fading samples might not 

be met. In particular, the LCR of the envelope of the fading samples is sensitive to the out- 

of-band attenuation. We decided to design these two filters together to minimize the error 

in the pass-band | / |  < 4  KHz while maximizing the attenuation in the stop-band 4 <  | / |  <50 

KHz. Here we used the weights computed by iirlpnorm and the low-pass filter parameters 

as the search variables for the filter design algorithm. Figure 5.11 shows the frequency 

response of the resulting shaping filter with K  — 6 second-order sections. As this figure 

shows, the shaping filter provides a frequency response that closely matches the desired 

response over the pass-band and up to frequencies just inside the stop-band. However, at 

higher frequencies the attenuation is somewhat less. Figure 5.12 shows that the first-stage 

ILPF provides at least 65 dB attenuation over frequencies where the shaping filter might 

not provide adequate attenuation. Therefore, the ILPF, not only attenuates the out-of-band 

signals, it can also help the shaping filter to provide more accurate samples.

The second-stage ILPF is designed using a similar technique. However, there is no 

constraint on the length of this filter. This allows us to use this filter to further increase 

the attenuation over the stop-band, where the shaping filter and the first-stage ILPF may 

not provide enough attenuation. However, since the second-stage ILPF runs at the higher 

frequency, minimizing the filter order significantly decreases the required processing time.
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Figure 5.11: Magnitude response of the elliptic shaping filter.
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Figure 5.12: Magnitude response of the first stage IIR low-pass interpolation filter.

5.5 Implementation and Statistical Verification

When implementing the fading channel emulator in fixed-point arithmetic, the stability of 

the designed IIR filters after quantization is ensured by keeping all poles within the unit 

circle in the 2 -plane. Also, to maintain accuracy, the fixed-point format of the intermediate 

signals is chosen based on the numerical studies for different precisions that determine the 

impact on the statistical properties of the generated fading variates. A 32-bit fixed-point 

format was found to give sufficient accuracy.

The input to the filter chain is generated using GVGs. Realizing the fading channel 

simulator on an FPGA requires two GYGs (for the real and imaginary components), K  

cascaded biquads and 10K  multipliers to implement the shaping filter, and P  cascaded
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Figure 5.13: (a) The structure of cascading Gaussian variate generator and N  = K  + P  
second-order sections, (b) Biquad datapath.

biquads and 10P multipliers to implement the ILPFs, as shown in Figure 5.13(a), where 

N  = K  +  P . The biquad datapath is shown in Figure 5.13(b), where four registers are 

stored in two on-chip dual-port BlockRAM memories.

As the order of the filters is increased for greater accuracy, it becomes more challeng

ing to realize the structure in Figure 5.13(a) with high-precision arithmetic components 

on resource-constrained FPGAs. For example, for a 32-bit realization, a section in Figure 

5.13(a) requires 855 configurable slices and utilizes 9% of the dedicated 18 x 18-bit mul

tipliers available on a Xilinx Virtex2P XC2YP100-6 FPGA. These results confirm that the 

maximum number of sections shown in Figure 5.13(a) that can be implemented on a large 

FPGA is only around 11 due to the relatively large number of high-precision arithmetic 

units required by each second-order section. Consequently, the direct instantiation of cas

caded sections might be impractical for higher order filters (i.e., for smaller values of / d Ts) 

or might not be efficient and flexible enough to implement variable sampling rates (e.g., for 

larger interpolation factors).

One widely-used solution is to utilize a heterogeneous architecture, usually consisting 

of general-purpose processors, DSPs, FPGAs, etc. [121,123]. The two main reasons are: (I) 

a direct implementation of a parameterizable Rayleigh fading channel simulator may not fit 

into one FPGA; and (II) the fading channel process usually varies much more slower than 

the signal transmission rate. This implies that the GVGs and the shaping filter can be up-
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Figure 5.14: (a) Control data flow graph and (b) the datapath of the shaping filter and the 
first-stage low-pass interpolation filter.

dated at a much lower rate than the sampling rate of the system signal. Thus, it is reasonable 

to implement the GVGs and the shaping filter on a DSP, and the interpolator (or at least the 

last stage of a multi-stage interpolator) on a FPGA. To obtain the maximum performance 

with a minimum of FPGA resources, portions of the spectral shaping filter are time-shared 

with the ILPFs. Resource sharing of independent operations of the spectral shaping filter 

and ILPFs offers significant resource saving in the implementation of a computationally- 

intensive fading channel emulator. The throughput of a fading simulator depends on the 

binding of the second-order sections to the shared resources. It was found that the sampling 

rate of the hardware-based digital filters is high enough that the throughput reduction of the 

time-multiplexed scheme, compared to the direct instantiation approach, does not impact 

the maximum target sampling rate.

Due to the slow variation of samples at the shaping filter compared to the fast operating 

rate of biquads implemented on an FPGA, we implemented the shaping filter and the first 

ILPF using one shared biquad. The second ILPF is mapped to a separate set of configurable 

resources to achieve the target sampling rate. Figure 5.14(a) shows the control data flow 

graph (CDFG) that generates appropriate control sequence for the datapath (shaping filter 

and first ILPF) shown in Figure 5.14(a). The state machine controller starts in the reset state 

“Rst", where the “gShpl” to “gShpK" registers are initialized with the K  scaling factors of 

the spectral shaping filter, and registers “glnpl ” to “glnpP" are initialized with the P i scaling
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Figure 5.15: (a) The structure of cascading Gaussian variate generator and the shaping 
elliptic IIR filter, (b) The IIR Chebyshev low-pass filter structure designed using cascading 
biquads.

factors of the first ILPF. Intermediate registers, such as “s h p R I ” and “ s h p R Q " ,  are cleared to 

zero. In the next state, “ G V G " ,  two Gaussian variates are generated. State " M S h p ”  denotes 

the multiplier state of the shaping filter and state “ M l n p "  denotes the multiplier state of the 

first-stage interpolator. At the " S h p F ” ( “ I n p F ”) state, one of the K  ( P \ )  sections of the 

shaping filter (first-stage ILPF) is executed. For every execution of the " S h p F "  state, states 

" M l n p "  and " i n p F ”  will be executed h  times. After K  executions of state " S h p F "  (and 

thus K I \  executions of the “ m l n p ”  and “ I n p F ”  states), " I n p F ”  goes back to state “ M S h p ”  to 

multiply the previously generated Gaussian variates with one of the shaping filter scaling 

factors.

When using an elliptic filter as the shaping filter, only K  cascaded biquads and two 

multipliers are required, as shown in Figure 5.15(a). In order to implement the ILPFs, P  

cascaded biquads and 2P  multipliers are required as shown in Figure 5.15(b). In this case 

the CDFG of the shaping filter and the first Chebyshev Type II low-pass filter are shown in 

Figure 5.16.

To implement the datapath shown in Figure 5.14(b), the GVG block uses the Gaussian 

variate generator described in Chapter 3. The registers of the datapath and the K  + Px 

scaling factors of biquads are implemented using configurable slices while A (K  +  P\) reg

isters and 4 (K  + P i)  coefficients of K  +  Pi sos’s are implemented using four dual-port 

BlockRAMs as shown in Figure 5.13(b). The datapath in Figure 5.14(b) utilizes 3% of 

the configurable slices, 1% of the dedicated multipliers and six on-chip BlockRAMs. The 

second ILPF was designed using a fourth-order low-pass inverse Chebyshev IIR filter and 

was implemented using one shared biquad, which receives its inputs either from the outputs 

of the first ILPF (i.e., the “ o u t l "  and “ o u t Q "  registers) or from “0” values inserted for zero 

padding. A complete fading channel simulator utilizes 4% of the configurable slices, 20% 

of the dedicated 18 x 18-bit multipliers, and 10 BlockRAMs, and operates at 50 MHz. An
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Figure 5.16: Control data flow graph of shaping filter and first-stage interpolation.

important property of the proposed scheme is that the complexity of the filter implemen

tation will only impact the rate of fading variate generation and has almost no effect on 

hardware resource utilization. Even though the shaping and the low-pass interpolator fil

ters are designed to emulate mobile channels sampled at 10 MHz, since the fading channel 

simulator runs at a high clock frequency of 50 MHz, for the example system, the simulator 

operates 1.25 times faster than the target sample rate. The simulator can then be slowed 

down to emulate a wide variety of different channel characteristics over bandwidths of up 

to 12.5 MHz.

To further speed up the fading sample generation rate, we utilized the commutative 

properties of computing the cascaded sos’s and re-ordered the operations in such a way that 

the multiplication state “ M S h p "  ( “ M l n p " )  can be performed simultaneously with the “ S h p F "  

( “ I n p F " )  state. Assume that Ri is the output register of the i-th multiplier and B R 4  is the 

register at the output of the i-th biquad in the cascade structure of Figure 5.13(a). As given 

in Table 5.2, we utilized an out-of-order scheduling scheme to reduce the required number 

of clock cycles to execute N  cascaded second-order sections from 2N  in the sequential 

scheme down to \ N / 2 \. Since the last stage requires two clock cycles to generate one 

sample, a clock frequency of 20 MHz is required to generate 10 Msamples/sec. Since the 

designed fading channel simulator operates at 50 MHz, this approach provides 2.5 times 

speed up to generate fading variates up to 25 Msamples/sec. Increasing the sample gen

eration throughput in this way requires N  = K  + P\ + P2 times the number of registers
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Table 5.2: Out-of-order execution scheme for the cascade structure.
Clock no. State Operations

6 i +  0 1 R 4 =  MUL(fl4, B R 3 ); B R i  =  B iq(sosi,R i);
6i +  1 4 =  MUL(p3 , B R 2)] B R 4 =  Biq(sos4 , Ri)',
6 i +  2 3 Re =  MUL(g6 , B R e)] B R 3 — Biq(sos3 , R 3)',
6i +  3 6 Re =  MUL(<?5, B R i)]  B R e  =  Biq(sos6, Re)',
6* +  4 5 R 2 =  MUL(<?2 , B R i)]  B R e  =  Biq(sos5 , Re)',
6i +  5 

Dut-of-ord(

2

jr sche<

R i =  MUL(</t, BRo)] B R 2 — Biq(so«2 , R 2)', 

iuling and register renaming for the casca
Clock no. State Operation

6i +  0 1 R  — MUL(<?4 , B R 3)] B R i =  Biq(sosi, R)]
6i +  1 4 R  =  MUL(<7 3 , B R 2)] B R i  =  Biq(sos4 , R)\
6i +  2 3 R  — MUL(</6,B R e)] B R 3 =  Biq(so s3,R )]
6i +  3 6 R  =  MUL(fl5, B R i)]  B R e =  Biqfsose,/?);
6i +  4 5 R  =  MUL((?2 , B R \ ); B R e =  Biq(sos5 , R ) ;
6i +  5 2 R  =  MUL(fli,B R o)] B R 2 =  Biq(sos2 , R)]

compared to the sequential approach, as given in Table 5.2. An important point in Table

5.2 to note is that allocating a physical register for every instance can lead to an inefficient 

register allocation when a register can be re-used after its lifetime (when its present value is 

no longer needed). We consider the fact that Ri can be re-used after Biq^ reads its content, 

and B R i  can be re-used after multiplication by gt+i, where gi+\ is the scaling factor of 

the Biqi+1. The scheduling of operations after re-using the registers is given in Table 5.3, 

where only one register is utilized for the output of multiplier operations.

The HDL model of the proposed datapath was simulated to verify the accuracy of the 

results against the fixed-point software simulation results. A block of 50,000 complex 

Gaussian variate samples was generated and passed through the designed filters, then the 

statistical properties of the 2.5 x 107 generated complex fading variates were measured. 

Figure 5.17 plots the desired ACF along with the ACF of the samples generated with the 

new model. As Figure 5.17 shows, the generated ACF accurately matches the theoretical 

ACF. The LCR [23] of the envelope of the generated fading variates and the desired LCR 

are plotted in Figure 5.18. Here again a close match is observed. Finally, Figure 5.19 

plots the PDF of the generated fading variates against the ideal PDF. These plots show that 

the new implemented fading channel simulator faithfully reproduces the properties of the 

reference model.

We also simulated a communication system with 4-PSK and 16-QAM modulations 

and zero-forcing equalization at the receiver to show the performance of the new fading 

simulator with fixed point arithmetic in Figure 5.20. Here, for each SNR, we transmitted
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Figure 5.18: LCR of 2.5 x 107 generated fading variates.

1010 symbols and measured the average symbol error rate (SER). As Figure 5.20 illustrates, 

the SER plot generated by our new fading simulator again matches the expected theoretical 

target.

5.6 A Flexible Filter Processor for Fading Channel Emulation

The control structure for the cascaded shaping filter and ILPFs is rather straightforward; 

however, when simulating MIMO channels or frequency-selective channels, where there 

are multiple paths, each path possibly characterized with different filters with different spec

ifications, a flexible implementation of control unit becomes more important. Rather than 

designing the control unit using random logic circuitry, we designed a flexible and compact
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Figure 5.19: PDF of 2.5 x 107 generated fading variates.

—  16-Q A M  (Theory)
&  16-Q A M  (Sim ulated)

-  -  4 -P S K  (Theory)
O  4 -P S K  (Sim ulated)

"G

10'1
i
i

yx

1
I

10J
SNR (dB)

Figure 5.20: Symbol error rate for simulated 4-PSK and 16-QAM.

FP, called “Python”, to efficiently implement the shaping filter and ILPFs on the FPGAs. 

The computation of V  IIR filters (using N  cascaded biquads) can be distributed among 

m  =  1, • • • , M  Python FPs.

Figure 5.21 shows the datapath of the Python FP. The core component is a biquad where 

its inputs coming from two memories (for the in-phase and quadrature parts), " R A M  R I "  

and " R A M  R Q " ,  with " A D O "  as the read address bus and “ A D 3 ”  as the write address bus. 

The outputs of the biquad are stored in two other memories " R A M  B l "  and " R A M  B Q ” , 

with " A D 1 "  as the read address bus and " A D 3 "  as the write address bus. ROM " R O M  g "  

is initialized with the scaling factors of IIR filters with the “ A D 2 "  addressing bus. Two 

combinational multipliers are used to perform the scaling operation of intermediate values
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Figure 5.21: The architecture of the Python FP.

b i q l n  ! — * ( + }

biqlncf&i

b i q O u t l

R A M M 1 Q  N-A D 1 - R A M  M 1 I

R O M  a 1 R O M M

' ^ b i q O u t Q

A D 1 — K ► R A M  M 2 !  R A M  M 2 Q

- I — — I
R O M  a 2  
T -------

R O M  b 2

A D O '
+--------------------- j

Figure 5.22: The datapath of biquad.

between biquads. The GVG generates two independent Gaussian variates. The zero inputs 

to the 4-input multiplexers are used when Python FP performs the zero padding operation 

required in interpolators.

The datapath of a biquad in Direct-Form II structure [147] is shown in Figure 5.22 where 

four intermediate variables are stored in four on-chip dual-port memories “ R A M  M 1 I " ,  “ R A M  

M 1 Q ” ,  " R A M  M 2 I " ,  and “ R A M  M 2 Q ” . Four coefficients are stored in four read-only mem

ories (ROMs), “ R O M  a 1 ” ,  “ R O M  b 1 " ,  “ R O M  a 2 " ,  and “ R O M  b 2 " .  The “ A D O "  is the read 

address and “ A D 1 ”  is the write address for the memories.

The Python controller is microprogrammable to ensure flexibility in the control unit. 

A code generator, written in C  programming language, was developed that receives the 

specification of the shaping filter and the ILPFs as inputs and generates a sequence of mi

croinstructions (microcode) to be executed by Python architecture. This microprogram is 

stored in an instruction ROM and is addressed by a program counter (PC). To minimize
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Figure 5.23: The microinstruction format.

the resource usage of hardware, we eliminated the random logic of the instruction decoder 

by utilizing horizontal microcode in which every control bit in microinstruction drives a 

control line in the Python datapath. The 32-bit microinstruction format is given in Figure 

5.23. If " M o d e = 1 ” , the FP counts from the value given in the “ C o u n t "  field down to zero 

(the wait operation); otherwise, it will execute the operation given by the 5-bit “O p c o d e ”  

field. Hence, up to 32 different micro-operations (such as B I Q :  execute a biquad operation, 

M U L :  execute a multipler operation, J M P :  jump to an address given by the PC, R S T :  reset 

the intermediate registers, etc.) can be defined. The “ P C "  field denotes the 9-bit program 

counter value. Four bits are used in the “ M u x S e l s "  field as multiplexer select lines. The 

“ M u l # "  “ B i q # " ,  and “ F i l t e r # "  fields denotes the multiplier number, the biquad number, and 

the filter number, respectively. The “ M u l # "  essentially is used since we utilized the com

mutative properties when computing the cascaded second-order sections. The second-order 

section operations can be re-ordered in such a way that the multiplication can be performed 

simultaneously with the biquad operation. This out-of-order scheduling scheme reduces the 

required number of clock cycles to execute N  cascaded second-order sections from 2N  in 

the sequential scheme down to [AT/2].

One important design decision is how to bind operations of structure in Figure 5.13(a) 

onto one or more Python FPs. Assuming that the memories in Python architecture are ad

dressed using AL  bits, then up to 2 ^  different biquad operations can be performed using 

one time-multiplexed biquad. For example, if W L =  9, then Python can execute 16 IIR fil

ters each designed with up to 32 cascaded biquads. The maximum number of filters that can 

be executed with one FP depends on the size of memory, the number of biquads associated 

with each filter, and the minimum required throughput. Based on the given microinstruction 

format, 32 IIR filters, each designed with up to 16 biquads can be executed with one Python 

FP. But it is straightforward to modify the microinstruction format to support execution of 

various number of IIR filters, designed with different number of biquads (for example, 16 

filters each designed with up to 32 biquads). Due to the slow variation of the samples in 

the shaping filter compared to the high operating rate of biquads implemented on FPGAs,
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we bind the operation of the shaping filter and the first ILPF to be performed onto one 

Python FP. The second ILPF is implemented using a second Python FP to achieve the target 

sampling rate.

Assume that the shaping filter and the first stage ILPF is designed using K  biquads and 

P\ biquads, respectively, and is bound into one Python FP. After execution of every section 

of the shaping filter, the P\ biquads of ILPF will be executed I \  times where ILPF receives 

its input from the output of shaping filter once and I \  — 1 times from zero input. Similarly, 

after K I \  biquad executions of the shaping filter and the first-stage ILPF, the second stage 

interpolator will be executed h  times where P2 biquads of the second-stage ILPF receives 

its input from the output of the first-stage ILPF once and I 2 — 1 times from zero.

The biquad datapath utilizes 1% of the configurable slices, 7% of the dedicated mul

tipliers and eight on-chip BlockRAMs, and operates at 63.4 MHz. The Python datapath 

in Figure 5.21 utilizes 2% of the configurable slices, 9% of dedicated multipliers and 14 

on-chip BlockRAMs. The second ILPF was designed using a fourth-order low-pass Cheby

shev Type II IIR filter and was implemented using one Python processor. A complete fading 

channel simulator utilizes 4% of configurable slices, 20% of dedicated 18 x 18-bit multi

pliers, and 10 BlockRAMs, operates at 50 MHz. Even though the shaping and the low-pass 

interpolator filters are designed to emulate mobile channels samples at 10 MHz, since the 

fading channel simulator runs at a high clock frequency of 50 MHz, for the system at hand, 

the simulator operates 1.25 times faster than the target sample rate. The simulator can be 

slowed down to emulate a wide variety of different channel characteristics over bandwidths 

of up to 12.5 MHz.

The HDL model of the proposed datapath was simulated to verify the accuracy of the 

results against the fixed-point software simulation results. A block of 60,000 complex 

Gaussian variate samples was generated and passed through the designed filters. Then the 

statistical properties of 3 x 107 generated complex fading variates were measured. Figure 

5.24 plots the ideal ACF along with the ACF of the samples generated with the new model. 

As Figure 5.24 shows, the generated ACF accurately matches the ideal ACF. The LCR of 

the envelope of the generated fading variates and the ideal LCR are plotted in Figure 5.25. 

Here again a close match between the generated LCR and the ideal LCR can be observed. 

Also, Figures 5.26 plots the PDF of the generated fading variates against the ideal PDF. 

These plots show that the new implemented fading channel emulator faithfully reproduces 

the properties of the reference model.
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Figure 5.25: LCR of 3 x 107 generated fading variates.
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Figure 5.26: PDF of 3 x 107 generated fading variates.
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5.7 Conclusions

Even though the filter-based fading simulator shows better statistical properties over the 

Jakes fading simulator, it can be more challenging to implement in hardware. In fact, the 

tight resource constraints imposed by contemporary FPGAs makes implementation of the 

computationally-intensive fading channel simulator a challenging task for designers. A 

novel computationally-efficient design and implementation scheme for fading channel sim

ulators was presented. The filters required for shaping the power spectrum of the fading 

variates were designed to provide accurate fading samples and yet maintain minimum hard

ware complexity. Our fixed-point implementation of a Rayleigh fading channel simulator 

on a FPGA utilizes only 4% of the configurable slices, 20% of dedicated multipliers, and 

10 (2%) BlockRAMs, while generating 25 million statistically accurate fading variates per 

second. Also, a flexible and compact filter processor architecture, called “Python”, was de

signed to efficiently implement a multipath fading channel simulator on the FPGAs. Python 

uses a simple and short instruction set to generate multiple sequences of fading variates for 

simulating wideband and MIMO channels.
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Chapter 6

An Efficient Parallel Architecture for 
LST Decoding in MIMO Systems

S pa tia l processin g  rem ains a s the m ost prom ising, i f  n o t the la s t frontier, 
in the evolu tion  o f  m ultiple access  system s  (A. Viterbi).

MIMO systems have emerged as an attractive new paradigm for spectrum-efficient wireless 

communications in rich multipath fading environments [2]. Figure 6.1 illustrates the model 

of a MEMO channel between n r  > 1 transmitter antennas and h r  >  1 receiver antennas, 

which collectively will be called an (nr ,  np)  MIMO system. The MEMO architecture can 

exploit diversity in both space and time to significantly increase system capacity as well as 

improve the quality (i.e., reduce the SER) of the wireless link in the presence of adverse 

propagation conditions, such as multipath fading and interference. Due to the high aggre

gate link capacity, an important first challenge is to minimize the computational complexity

Richly scattering  
wireless channel

'nR,nT

Figure 6.1: An {u t i Ur ) MIMO channel.
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of the decoding algorithm at the MIMO receiver. Among the published non-linear decoding 

techniques [2], the layered space-time algorithms [154-157] employ a divide-and-conquer 

approach where, rather than jointly decoding the received symbols from all transmitter an

tennas, the receiver sequentially decodes one symbol at a time beginning, preferably, with 

the symbol with the highest SNR. The LST decoding algorithms then predicts and then 

subtracts away the interference due to the most recently decoded symbol from the simul

taneously received signals, and then proceeds to decode the next symbol, and so on. The 

computational complexity of LST decoding is reported to be 0 ( n 4) in the number n  of 

antennas for the zero-forcing (ZF) and minimum mean-squared error (MMSE) LST algo

rithms [155], and 0 ( n 3) for the square-root [158] and ordered QR-LST algorithms [159].

The great computational demands of MIMO signal decoding can exceed the perfor

mance available from even high-end DSPs. Therefore a second practical challenge in 

MIMO systems is to develop low-power, but sufficiently high-performance, hardware to 

implement the receiver. ASICs have been proposed to implement MIMO decoding al

gorithms [160,161] and contemporary FPGAs have been used successfully to prototype 

MIMO testbeds [162-164], The running time of an algorithm depends on the number of 

hardware instructions that need to be executed, and this number depends on the architec

ture of the processor. In the published LST decoding algorithms, there is abundant inherent 

parallelism that has yet to be exploited to increase the symbol decoding throughput at the 

receiver. Given a scalable parallel processor architecture, in particular, a key factor is the 

degree to which the algorithm can be parallelized and mapped efficiently onto the avail

able processor resources. Therefore an alternative approach to using a faster conventional 

processor or an ASIC is to identify and exploit opportunities for parallel processing using 

a flexible parallel architecture to maximize the useful work that is accomplished in every 

clock cycle.

DSP-RAM is a moderately-parallel, scalable SIMD co-processor architecture for high- 

performance signal processing that was developed at the University of Alberta [165,166]. 

In the processor-in-memory architecture [167] of DSP-RAM, a linearly-interconnected ar

ray of simple PEs is integrated with associated local memories. Integrating the processors 

with the memories exposes the enormous data bandwidth between the two, and eliminates 

the bottleneck that otherwise occurs on an external bus between the memory chips and pro

cessors) in conventional architectures. The degree of parallelism (i.e., the number of PEs) 

provides a trade-off between including more transistors on a die to increase the throughput
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of a parallel algorithm, and running at a slower clock frequency to simplify the imple

mentation, reduce the dynamic power consumption and still meet the required processing 

performance. In addition, reductions in the core operating voltage might be possible. Since 

dynamic power consumption is proportional to the voltage squared [168], the possibility 

of reducing the core voltage is especially attractive in power-constrained systems. We will 

show how DSP-RAM can be used to implement an LST MIMO receiver that offers high 

performance with relatively low power consumption. For a typical indoor wireless environ

ment, a 100-MHz DSP-RAM can potentially provide more than 10 times greater decoding 

throughput at the receiver of a (4,4) MIMO system compared to a conventional 720-MHz 

DSP. The DSP-RAM processor has been coded in a HDL and synthesized for both readily 

available FPGAs and for a 0.18—/xm CMOS standard cell implementation.

The rest of this chapter is organized as follows. The capacity of MIMO channels and 

the mathematical representation of MIMO systems are presented in Section 6.1. Section

6.3 presents different detection schemes for MIMO systems such as maximum likelihood, 

lattice decoders, and LST decoders. The related decoding algorithms and the key character

istics that make them suitable for parallel realization are discussed. The parallel DSP-RAM 

architecture is presented in Section 6.4. Section 6.5 discusses the mapping of the LST algo

rithm onto DSP-RAM. Section 6.6 describes the implementation of a MIMO receiver onto 

six different commercially available processors and an efficient realization of LST decod

ing onto the parallel DSP-RAM architecture. Finally, Section 6.7 makes some concluding 

remarks.
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6.1 Mathematical Model of MIMO Systems

Let h(r, t ) be the time-varying channel response at time t  to an impulse at time t  — r .  If 

signal s ( t ) is transmitted, then the received signal y(t)  is given by

where h (r, t ) is the complex envelope of the bandpass impulse response function, n(t)  is 

an AWGN signal, and v  is the duration of the causal channel impulse response. We assume 

that s(t), y(t),  and n(f) are modeled as the complex envelope of the underlying passband 

channel. Without loss of generality, some simplifying assumptions can be made to represent 

the discrete time (or sampled) baseband input/output model of SISO digital communication 

systems: (1) The channel bandwidth is 1 Hz and the symbol period Ts is 1 second. Hence, 

the average energy at the transmitter per symbol period E s is equal to the total average 

transmit power Pp. (2) Since the transmission bandwidth is assumed 1 Hz, the noise power 

in the band is the same as power spectral density N 0. Therefore, noise power or noise PSD 

can be used interchangeably and can both be denoted by N 0. (3) The noise is assumed to 

be temporally-white zero-mean circularly symmetric complex Gaussian (ZMCSCG) with 

variance N 0. We denote a real Gaussian random variable with mean m n and variance N 0 

as n  ~  J\f (mn , N 0), and a ZMCSCG random variable n  =  nj +  j  n q as n  ~  CJ\f(0, N 0), 

where n* and n q are real i.i.d from M(0,  N 0/ 2). For the special case where the real and 

imaginary part of noise components have N 0 =  1/2, the complex noise has unit power. 

We assume that the noise samples n[k] are i.i.d, i.e., E{n[i]n*[j]} =  N 0S[i — j], (4) Data 

symbols (prior to coding) are i.i.d and are drawn from scalar constellation Q  with zero mean 

and unit average energy, i.e., unit average power when Ts — 1. (6) The received signal y(t)  

is required to be oversampled, so we take multiple samples per symbol period Ts.

Assume that a sequence of complex symbols s[£] (f  =  0 ,1 ,2 , • • •) is to be transmitted 

over a SISO communication system. The received signal y(t)  can be written as [2]

e

where h(r)  denotes the continuous time baseband channel impulse response (the t  depen

dence is omitted for clarity). If y(t)  is sampled at t  =  kTs (k  =  0 ,1 ,2 , • • ■), then the

y ( t ) =  h(r, t ) * s ( t ) +  n(t)  =  h(r, t )s( t  — r ) d r  +  n(t)

y(t)  =  h{r) * ^ 2  ^ E s s[£] d(t -  iT s) +  n ( t )
e
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sampled signal response is

The signal response can also be written as

y\k] = ^ 2  h[k -  t\ +  n[k]
e

where h[d], i  =  0 ,1 ,2 , • • • , L  — 1, is the Ts-spaced sampled channel and L  is the channel 

length measured in sampling periods. For a frequency-flat channel h[i] =  0 for i ^  0. De-

where the principal impairments are multiplicative fading and additive noise. For the 

frequency-selective case, the received signal sampled at time index k  is

The mathematical representation of SISO channels can be extended to describe the 

MIMO system. Let h i j ( T , t ) denotes the time-varying channel impulse response (also 

called the multiplicative channel gain) between the j-th  transmitter and z-th receiver. The 

vector hj =  t ) , / i 2 j ( r , t), , hnR>j(T, t )]T is the channel induced by the j-th

transmit antenna across the receive antenna array. In matrix notation the input/output rela

tion of the channel may be written as y  =  H (r , t) * s ( t ) +  n (t)  or, equivalently,

where y[fc] is the tijj x  1 received signal vector over the k -th symbol period, s[k] =  

(si[fc],s# ] , . . . ,  snT[k])T denotes the vector of transmitted symbols (collectively called 

a space-time (ST) symbol) drawn from a finite complex signal constellation <Q>, and n[fc] 

is the spatio-temporally white ZMCSCG u r  x  1 noise vector with variance N 0 in each 

dimension.

In the case of frequency-selective fading, the channel matrix can be represented as H[£] 

where £ = 0,1, - ■ ■ , L  — 1 and L  is the maximum channel length of all component u r  t it  

SISO links. The received signal vector at time instant k  may be expressed as

noting /i[-] by the scalar channel gain h, the input/output relation for the channel simplifies 

to

y[k] = y fE s h  s[fc] +  n[k\ (6.1)

y\k] =  sfW s — !],••• ,/i[l],/i[Q] s[A; — L  +  1], • • • , s[k — 1],s[k] +  n[fc]

(6.2)
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where each entry h ip can be written as =  h i j [L  — 1], ■ ■ ■ and s j [ k ]  =
1T

S j [ k  — L  +  1], • • • , S j [ k  — 1], S j [fc] . For the case of flat-fading channels, the tap gains 

are assumed to be constant over the time period considered. The output at any instant of 

time is independent of the inputs at previous times, thus we can drop the time index k  in 

(6.2) (and similarly in (6.1)) and express the input/output relation as

H s  +  n . (6.3)
tlT

A few assumptions are usually made for analyzing MIMO systems: (1) If the mean en

ergy per transmitted symbol is E Sj  =  E{sj*Sj}, the total energy per use of the MIMO chan

nel (i.e., simultaneous transmission of a ST symbol from n r  antennas) is E s =  Y^j= \ E Sj- 

E s equals the total average transmit power P t  when the symbol period is unity. For ex

ample, if the transmitted symbols are drawn from a unit average energy constellation (i.e., 

E { |s j |2} =  1) so that each antenna transmits unity power, then P t  = nr-  The power 

constraint on the transmitted signal (independent of n r )  can be expressed as E {sHs} <  P t  

(or the covariance matrix C ss =  E {ssH} <  [2]- The symbol energy (i.e.,

the power launched by each transmitter) can be reduced by n r  as E s /r iT ,  so that the total 

radiated power is constant and independent of n r  for a fixed SNR. (2) The AWGN vector 

n  has equal variance components n  ~  CA/'(0, N 0), where N 0 is the noise power (variance) 

on each receiving antenna. For the ZMCSCG noise vector n , the covariance matrix can be 

written as E { n n w} =  N 0 InR [2], The noise at the receiver is assumed to be independent 

of both the data and the channel. (3) The SNR per receiver antenna p can be defined as the 

ratio of the total transmitted power per channel used ( P t )  divided by the per-component 

noise variance (N 0)■ Therefore, if the u r  noise components of n  are assumed to be i.i.d. 

CA/'(0,1), then the average transmitted power is equal to the average SNR. (4) For richly 

scattered propagation, the hip are usually modeled as i.i.d, ZMCSCG random variables 

(i.e., E {hip}  -  0 and ^{hiph*m n} — 0 if i ^  m , j  ^  n) with equal unit variance (i.e., 

E { |/ iy |2} =  1) [2]. With hip being complex Gaussian and uniformly distributed in phase, 

the magnitude \hip\ is Rayleigh-distributed. Also, the column vectors of complex trans

fer gains from the j-th  transmitter antenna to all u r  receiver antennas h j  are assumed to 

be independent, which corresponds to the diversity provided in richly-scattered environ

ments. Uncorrelated scattering is usually ensured by physically separating the antennas at 

the transmitter and receiver by a few carrier wavelengths [169].
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6.2 Algorithms for Systems of Linear Equations

As given in Equation (6.3), the signal at each receiver antenna is the superposition of trans

mitted symbols scaled by the channel gain and corrupted by AWGN. The conventional 

signal processing algorithm at the receiver consists of two main steps:

(I) Estimate the channel matrix through a training phase. We make the common as

sumption that communication is carried out in bursts of data alternating with training sig

nals. The quasi-stationary viewpoint assumes that the channel conditions are fixed during 

a burst. This is a reasonable assumption for a communication system where the burst dura

tion is much less than the channel coherence time. For each burst of received information, 

the “fixed” channel response can be estimated using different estimation schemes [42]. To 

account for changing conditions, the channel is often assumed to change randomly between 

bursts due to accumulated changes in the channel fading. The receiver will be assumed to 

have previously estimated the propagation matrix H  using the training signals before com

mencing the decoding process for the following data. Note that H  is assumed to be known 

to the receiver but not to the transmitter [170].

(II) The riT components of a transmitted ST symbol s must be recovered from the 

received signal vector y  and the previously-estimated channel matrix H  [170].

Before discussing various decoding techniques for recovering the transmitted symbols 

s using the linear complex-valued system Equation (6.3), lets consider the linear system 

transformation

H s =  y  (6.4)

where s is a vector of u t  x 1 e  RnT unknown values, H  is an h r  x t i t  matrix of real 

values, and y  is a vector of t i r  x 1 e  R nT. If n r  =  u r  (i.e., there are as many equations 

as unknowns), then there is a chance to obtain a unique solution for s. If one or more of t i r  

linear equations is a linear combination of the others, then there is no unique solution and 

the system is called singular. If h r  <  ny , then there are fewer equations than unknowns. 

In this case, either there is no solution or there is more than one solution for s [171]. When 

nR > riT, various techniques can be used to solve system of equations in (6.4) [172]. Each 

technique has a particular computational complexity and error. By error we mean a norm 

J|s — s|| of the difference between the true solution s and an approximation s. While the 

precise choice of norm does not affect the cost significantly [173], we can think of || • || as

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 Algorithms fo r  Systems o f Linear Equations

a matrix norm. The absolute error ||s — s|| can be defined as

||s -  s|| =  | |H - 1H (s  -  s)|| =  ||H _1(y -  H s)|| <  W H ^ U y  -  H s || (6.5) 

where y  — H s  is called the residual. The relative error in s can be defined as

<  IITT-1|I IITTII H y  ~ H § H
llsll - 11 11,11 l|H|M|S|l ( }

where k (H ) =  ||H —1 ||.||H || is called the condition number of H . Clearly, the error bound 

is proportional to ||H - 1 ||. Under the block-fading assumption of wireless channels, we are 

interested in computing the inverse of estimated channel H _1 once and then using it for 

decoding a relatively long block of received symbols.

Due to the high computation complexity of matrix inversion and the fact that the matrix 

inversion has to be calculated for each block of transmitted ST symbols, rapid channel in

version is challenging to implement in practice. Two major schemes have been proposed to 

perform the matrix inversion operation: the direct routines (i.e., routines that execute in a 

predictable number of operations, typically of the order of 0 (n3)) and the iterative methods 

(i.e., methods that do not obtain an exact solution in finite time, but that attempt to converge 

to a solution asymptotically). A numerically stable deterministic technique for computing 

the pseudo-inverse is to use singular value decomposition (SVD) [158,174], The complex

ity of performing the SVD of an u r X u t  matrix H , is 2n2Rn r  +  l l n ^  and the complexity of 

finding the pseudo-inverse G  =  H+ =  (H h H )_1H ^  is 2 n a n \  [158]. The Gauss-Jordan 

(GJ) and Gauss-Elimination (GE) techniques are two other deterministic approaches that 

require the right-hand side of the Equation (6.4) [86]. LU Decomposition (LUD) does not 

share the previous deficiency, and also has a small operation count, both for solving (6.4), 

and also for matrix inversion. QR factorization decomposition is another deterministic tech

nique which involves about twice as many operations as LU decomposition. The Cholesky 

decomposition of a symmetric and positive definite matrix can be performed up to twice 

faster than LU decomposition. But this is rather too specific to be used for general channel 

matrices. Iterative methods (such as Jacobi and Gauss-Seidel algorithms) often yield a so

lution within acceptable precision after a small number of iterations and, therefore, become 

preferable for large matrices or when the problem is close to singular (i.e., the system is not 

linearly dependent but the round-off error could make the system singular) [86]. Iterative 

methods may also have smaller storage requirements than direct methods [44].

If linear transformation in (6.4) is a complex-valued system, then we may re-write it
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using quadrature components as

(H j +  +  j s q) =  y* +  j y q (6.7)

or in vector notation as

H i - H  q 
H 9 H i (6 .8)

Assume that h r  =  n x  = n. One may solve the n  x n  complex system in (6.7) using

is inefficient in storage (since H i and H g are stored twice), it is also shown in [175] that 

complex matrix inversion can be up to twice as fast as real matrix inversion for n  >  3. 

Moreover, the rounding error bound of the complex computation is less than that of the real 

system.

If the multipath scattering is sufficiently rich, the transmitted signals are scattered slightly 

differently since they originate from different transmitter antennas and propagate over dif

ferent paths. Consequently, if the MIMO system equations in (6.3) are sufficiently inde

pendent, a decoding algorithm at the receiver can recover the symbols despite the multitude 

of interferers. When there is no noise, i.e., N 0 =  0, the exact solution of Equation (6.3) 

can be found in 0 ( n 3) scalar operations, using a matrix pseudo-inverse operation. When 

N 0 approaches infinity, the received vector y  becomes increasingly random and the exact 

solution has exponential complexity in n  [42]. For intermediate noise levels, tractable al

gorithms (i.e., polynomial time algorithms) are required to achieve an acceptable error rate 

with realizable computational-complexity.

6.3 MIMO Decoding Techniques

Several techniques have been proposed for recovering the symbols transmitted by n r  an

tennas [3,42,154-159,176-178]. From estimation theory, the optimal decoding method 

with respect to the error rate is maximum likelihood (ML), where the receiver considers all 

possible ST symbols that could have been transmitted. For a MIMO system that transmit 

the uncoded data stream from n x  antennas through a frequency-flat MIMO channel, the 

ML receiver chooses symbol s as

complex arithmetic or solve the 2n x 2n  real system in (6.8). While the second approach

s =  arg min y
seQnr

(6.9)
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where the minimization is performed over all possible nr-elem ent vectors s e  QnT. The 

ML detection problem can be posed as an integer least-squares problem that can be solved 

via many different algorithms [172]. Because ML decoding requires an exhaustive search 

over a typically large set Q nT, its computational complexity can be high, and probably 

prohibitive when many antennas and/or high-order modulations are used [179].

To gain some perspective on the relative complexity of ML decoding, consider an 

(n r ,n j i )  system that transmits m  b/s of data using g-QAM over a channel within k  Hz 

bandwidth. If we assume that the data occupies most of the available time in a burst and 

ignore the training signals, channel characteristics and any other in-band control data, then 

v =  w r"fog7q comPlex symbol vectors are received per second. To calculate Equation (6.9) 

over qUT possibly valid constellation points s for each received vector, one can verify that 

QnT(nR(riT +  1)) complex multiplications, qnT {n p in p  +  1) — l)  complex additions and 

qnT — 1 comparisons are required. As an example consider a (4,4) system that operates at 

19.2 Mb/Sec in a bandwidth of 1.8 MHz, and utilizes uncoded 16-QAM in each transmit

ter. Assume further that a DSP is present in each receiver that can perform one complex 

multiplication, addition or comparison operation in each clock cycle. To decode each re

ceived vector y  using a single purely-sequential processor [41], 2,623,779 clock cycles will 

be required. To decode the 1.2 x 106 complex symbol vectors per second, the DSP must 

operate at a 3148 GHz clock frequency, which is far beyond current processor technology. 

Current degrees of parallelism in contemporary DSPs do not provide enough speed-up to 

change this situation. Even though the complexity of ML decoding is often too great, the 

algorithm clearly has potentially exploitable parallelism when calculating ||y  — H s ||  over 

all possible s €  Q nT. If the algorithm could be parallelized and mapped onto a parallel 

computer architecture with n p  PEs, the throughput could be directly multiplied by n p  (in 

the optimal case).

To provide computational saving over ML decoding, the universal lattice decoders 

[180,181], a class that includes sphere decoders, can be used to decode the received signals 

in MIMO systems [182,183]. The main idea behind sphere decoding (SD) is to reduce 

computational complexity by searching over only those lattice points (defined as H s ) that 

lie within a hypersphere of radius d0 around the received signal y , rather than searching 

over the entire lattice (See Figure 6.2). The complexity of SD is dominated by the amount 

of processing required to search for the points inside the present hypersphere, the number 

of points in the initial hypersphere of radius d0, the dimension 2n p  of the search space,
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Figure 6.2: Sphere around the decoded point p  =  Q(H^ y).

and the calculation required to determine the lattice point within the hypersphere closest 

to a preliminary decoded point [178]. An important property of the sphere decoding (SD) 

algorithm, as claimed in [181], is that its complexity is independent of the lattice constella

tion size, which makes SD attractive for high data rate transmission. In order to determine 

which of the lattice points lie inside the given sphere, Fincke and Pohst proposed a decod

ing algorithm in [184]. They showed that if b~l is a lower bound on the eigenvalues of the 

Gram matrix G  =  H h H , then the required number of arithmetic operations (additions, 

subtractions and multiplications) is

proximated by 0 ( n eR). In the presence of deep fades, many points fall inside the search 

hypersphere and decoding can be very slow. In fact, the worst-case complexity of SD is 

exponential. This is evident from the fact that the Gram matrix may have a very small 

eigenvalue, which gives a relatively large exponent b in Equation (6.10) [181]. In [40] the 

complexity of SD is defined as the number of multiplications carried out until the closest 

point within the hypersphere is found. However, trying to build an exact expression for the 

number of arithmetic operations for SD is not useful since the required number of iterations 

is variable. In [42] the complexity of SD is considered with respect to the noise variance 

and the dimension of the lattice. It is shown that, over a wide range of noise variances and 

values of n r ,  the expected complexity is polynomial, and in fact is often roughly cubic in 

n r •

(6 .10)

For a reasonable choice of the initial radius d0 =  b \  the above complexity can be ap-
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Even though the original SD algorithm significantly reduces the computational com

plexity of decoding compared to ML, many shortcomings and potential inefficiencies exist. 

First, in the presence of noise, for each received point a different hypersphere, with differ

ent bounds that depend on the noise variance (and eventually fading), must be calculated. 

Therefore, SD is inherently an irregular algorithm where the size of the hypersphere around 

the received point varies unpredictably. In particular, irregularity arises in the number of 

iterations required to calculate the hypersphere parameters and, consequently, in the num

ber of points enclosed in each hypersphere. Hence the complexity of the algorithm will 

itself be a random variable [42]. Second, the hypersphere around the received point is con

structed after first calculating minimum and maximum bounds for each vector component. 

To perform this calculation, a relatively complicated control sequence must be executed 

and this execution sequence is not deterministic (i.e. predictable) at compile time. Third, 

most contemporary high-performance processors support some form of instruction-level 

parallelism (superscalar or very long instruction word) [41], data-level parallelism (multi

ple functional units) and/or subword parallelism using a reconfigurable datapath. Mapping 

an algorithm that has an irregular and/or random control sequence, such as SD, onto a data- 

parallel processor significantly decreases the efficiency because of the increased number of 

pipeline stalls during execution. Stalls are caused by the dependencies between program 

instructions that reduce the actual speedup that can be achieved [43].

A more computationally-efficient approach is to use heuristic methods (i.e., may not 

always achieve the correct result, but usually produces an acceptable solution) in which a 

linear filter is typically used to separate the received signal into its component transmitted 

data streams and then decode each stream independently. The matrix filter

separates the received signal into its component transmitted symbols, where the superscript

computational complexity of 0 ( n 3) [174], G z f  is an ur  x u r  inverted channel matrix, 

commonly called a zero-forcing matrix. The output of ZF receiver is given by z =  s +  

G z f h ,  where we assume that u r  > u r  and H  has full column rank. As opposed to ZF 

linear receivers for SISO and SIMO channels, which were constructed to cancel ISI, here 

they are used to cancel multistream interference (MSI). The ZF receiver decomposes the 

MIMO link into n r  parallel streams, each with diversity gain proportional to u r  — tir +  1

(6 .11)

f  denotes the Moore-Penrose pseudo-inverse operator and H* =  (H ^ H )  l i l H with a
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out of a maximum possible h r  diversity [2]. Even though the noise is enhanced by G z f  

and correlated across the channels, each received symbol is decoded independently ignoring 

noise correlation.

The ZF receiver eliminates MSI completely at the expense of noise enhancement. The 

MMSE receiver balances MSI mitigation with noise enhancement and minimizes the total 

error [15]. The G m m s e  can be written as [2]:

At low SNR, the MMSE outperforms the ZF receiver that continues to enhance noise. At 

high SNR, the MMSE receiver converges to a ZF receiver as G m m s e  —  G z f - While the 

MMSE receiver is superior to the ZF receiver, it requires an accurate estimate of the value 

of SNR at the receiver.

Another heuristic approach is to use the iterative QR decoding scheme. The u r  x t i t  

channel matrix H  is decomposed using Gram-Schmidt orthogonalization into an h r  x n r  

unitary matrix Q  and an n r  x n r  upper triangular matrix R  with non-zero entries on the 

diagonal [172]. The columns of Q  form an orthonormal basis, q i , . . .  , q nT, and accord

ingly Q ^ H  =  R . By left multiplying Equation (6.3) with Q H, an estimate y  of the actual 

received vector y  is created:

Note that the element yk depends on the transmitted signal Sk, the interference term fk , 

and the noise component hk- Since R  is upper triangular, signals with larger indices avoid 

interference from signals with small indices. In other words, the interference nulling pattern 

is created directly by the unitary transformation where fk  is independent of s i , . . . ,  Sk-i- 

Thus the interference term fk  can be cancelled by using previous decisions Sk+i, • • •, §nT

and therefore yk -  X  rk,jSj =  r k,k sk +  n-k- Symbol Sfc can be estimated by

G M M S E (6.12)

Q Hy  =  y  =  R s  +  Q ^ n  =  R s  +  n

Since Q  is unitary, the statistical properties of the noise terms n  =  Q Hn  and n  are the 

same. Element k  of vector yk becomes

f lk  — r k ,k  $ k  T  f k  "b n k i  where f k  — ^  ] r k , j  sj ■
j=k+1

j=k+1

\

Tk,k

\ /
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Bit to Symbol «i . .

J r /V '

Figure 6.3: LST transmitter architecture.

where Q is the quantization function appropriate for the signal constellation Q  in use.

The non-linear Bell Labs layered space-time (BLAST) algorithm is a divide-and-conquer 

decoding strategy based on successive interference cancellation [3,155,176] for a LST ar

chitecture [3,179]. The LST MIMO architecture introduces and then exploits temporal and 

spatial diversity in the transmitted signals. A block diagram of a conventional single-user 

LST system is shown in Figure 6.3. The incoming information bits are denoted by {bk}, 

where k  is a discrete time index. The high-rate data stream is demultiplexed into n r  equal- 

capacity parallel substreams, called layers. Each layer is then encoded separately using the 

same constellation. If a block of information consists of L  space-time symbols, then the 

output of the n r  encoders can be represented by the following (n^xL ) ST codeword matrix 

S:

S =

Matrix S comprises the symbols that are transmitted by n y  transmitter antennas at L  dif

ferent time instants. The resulting ST signals drive identical transmitter pulse filters and the 

resulting digital baseband signals are modulated by a carrier and broadcast by ny  antennas. 

All transmitter antennas are assumed to use the same constellation and to transmit data si

multaneously using the same carrier frequency and symbol timing in the same frequency 

band.

The LST receiver algorithm consists of two phases [155]: First, the channel matrix is 

estimated [185]. The channel state information (CSI) is assumed to be known to the receiver 

but not to the transmitter [170]. Second, the received data signals from one ST symbol 

interval are processed to recover the n r  transmitted complex symbols, ( s{ , . . . ,  shT), within 

a fixed number of symbol times after time j .  The decoding algorithm proceeds iteratively 

through the following three steps until all n r  symbols are recovered.

Step 1) Interference nulling: Interference nulling tries to reduce the amount of interfer-
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ence towards Sk by multiplying the received signal y  by a nulling vector g*. [156]. Con

sequently, the symbol rate processing has a computational complexity of only 0 { n 2). In 

ZF-LST, gfc can be calculated using the fc-th row of nulling matrix G  =  Hj, where the no

tation H fc denotes the matrix obtained by zeroing column k  of H . Since all components of 

a transmitted vector s are assumed to utilize the same constellation, the component Sj with 

the lowest post-detection SNR will dominate the error performance of the detection process. 

It was shown in [154] that starting with the symbol (layer) with the strongest post-detection 

SNR, and then proceeding successively to the symbol with the weakest SNR, improves the 

performance remarkably [155]. This corresponds to choosing the row g^ of G  =  h £  with 

the minimum norm, k =  m in ||g i||2, and selecting the corresponding row as the nulling
i

vector in the interference nulling step. Thus, the A:-th element of s with the highest SNR is 

detected by sk = Sk Y-

Step 2) Symbol decoding: Symbol s k from the k-th transmitter antenna is estimated by 

mapping to the nearest symbol sk =  Q (sk) in the constellation, where Q(-) function calcu

lates the Euclidean distance between sk and the symbols in the constellation.

Step 3) Symbol cancellation: At this stage, the recovered symbol sk can be used to im

prove the estimate of the remaining n r  — 1 symbols that are yet to be recovered. The 

interference on the n r  — 1 other signals due to sk can be subtracted out from the received 

signal as y ' =  y  — skh k. Thus, the number of signals remaining to be detected is reduced 

by one with each decoding step, while the number of receiver antennas stays the same. 

Therefore, the diversity level of the resulting system should increase going from layer to 

layer [186].

The above three steps are repeated to recover the n r  -  1 remaining symbols that were 

transmitted at the same symbol time.

Another way to improve the detection performance, especially for mid-range SNR val

ues, is to replace the ZF nulling proposed in [3,176] by the more powerful MMSE algo

rithm. In addition to nulling out the interferers, the noise level on the channel is taken into 

account. A disadvantage is, however, that the SNR has to be determined somehow at the 

receiver. MMSE nulling utilize the projection matrix G  given in (6.12). The MMSE-LST 

algorithm is summarized in Algorithm 7 [176], where the inputs are the channel matrix H , 

the projection matrix G , and the received ST symbol s. The output of the algorithm is the 

decoded ST symbol.

An improvement over the ZF-LST and MMSE-LST algorithms was proposed in [158,
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Algorithm 7 MMSE-LST algorithm 
k =  min ||g j||2; 9 j is the j-th row of G

for (i — 1; i < n r)  do 
s*:=gfey;
Sk — Q{ .Sk) ’i
y = y  — h/jSfe;
G = H [ ;
k =  min ||gi||2;

%
end for

177] and is called the square root algorithm. In this technique, the nulling process was 

performed by the use of unitary transformations to avoid repeatedly evaluating the pseudo

inverse of the deflated matrices. This approach reduces the complexity from ¥4 for 

MMSE nulling to for n =  n r  = nR, i.e. Q (n3), and increases the numerical stability 

compared with the original BLAST algorithm. Even though the square root algorithm offers 

an order of magnitude reduction in the computational complexity compared to MMSE-LST 

decoding, it is shown in [157,158] that for a typical number of antennas (e.g., between one 

to eight) the complexity of the algorithm in floating-point operations (FLOPs) is almost the 

same as for other LST decoding algorithms.

The required decoding rate and error rate performance are two important decoding algo

rithm metrics. However, the microarchitecture of the target processor can greatly influence 

the decoding algorithm running times, so one must be careful to choose the most appropriate 

decoding algorithms for different processors. For example, depending on the microarchi

tecture of the processor, the interconnect topology and number of PEs, the complexity of the 

parallelized matrix inversion can be varied. For instance, it can be performed in 0 ( lo g 2 n) 

time using n 4 PEs on a three-dimensional reconfigurable mesh [187].

In either of the above LST decoding algorithms, there is much data-level parallelism 

that we propose to exploit using a moderately-parallel architecture. Even though both the 

square-root and ordered QR algorithms provide better numerical stability and less computa

tional complexity than the MMSE-LST algorithm [158,159], they exhibit load imbalance, 

and hence a less efficient hardware utilization, when they are mapped to a linear paral

lel architecture [174]. Therefore, we used MMSE-LST as the default decoding technique. 

However, our parallel implementation, described below, could be modified to accommodate 

any of the above decoding algorithms.
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Table 6.1: Comparison of PIM architectures.
Terasys IMAP VIRAM C»RAM

Memory
Technology

SRAM SRAM DRAM DRAM

Word Width 1-bit 8-bit Programmable 1-bit
Operands Memory Registers Registers Memory

Integer Multiply No Partial1 Ves No
Floating Point No No Yes No

Controller External External Internal External

6.4 A Parallel Architecture for Digital Signal Processing

For problems with substantial data-parallelism, the SIMD architecture is often well-suited 

to achieving high processing rates. In such cases, the data can be distributed into many 

different independent pieces, and multiple PEs can operate on them simultaneously. SIMD 

machines come in two major flavors: (1) processor array architecture, which consists of 

a relatively large number of simple PEs, and (2) vector processors that have only a small 

number, typically between 1 and 32, of deeply-pipelined powerful execution units. The ma

jority of today’s high-performance microprocessors and DSPs include SIMD instructions 

to boost their performance on data-parallel applications [188].

To decrease the processor-memory performance gap, the processor-in-memory organi

zation combines processing elements into memory. Table 6.1 presents major characteristics 

of four examples of PIM-style SIMD processors. Terasys is a massively-parallel SIMD pro

cessing array comprising 32,768 bit-serial PEs [167]. Since bit-serial processors require 

many clock cycles to compute a single value for fixed-point numbers, they achieve great 

performance only through massive parallelism. Each PE has access to a 2-Kbit column of 

SRAM local memory. IMAP uses an 8-bit processor formed around a carry look-ahead 

adder [189]. A shifter and look-up table are used to increase the performance of integer 

multiplications. With a bit-parallel PE, IMAP will achieve higher performance for applica

tions with moderate to high parallelism compared to a bit-serial PE like the one in Terasys. 

VIRAM uses complex PEs and contains a 64-bit processor complete with floating-point 

operations [190]. The complexity of the PE limits the number of processors in the VIRAM- 

1 IC to four. Like the SIMD extensions added to conventional microprocessors, VIRAM 

allows each register in the 64-bit processor to be treated as packed data, and operations are 

permitted on eight 8-bit numbers, four 16-bit numbers, two 32-bit numbers, or one 64-bit 

number. O R A M  integrates many bit-serial processors at the memory sense amplifiers of a
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Figure 6.4: O R A M  processing element.

DRAM [191]. Embedded DRAM on the same IC allows a greater storage density than an 

SRAM-based design, at the cost of higher row access time latency. SRAM has the benefits 

of fast access time, does not require periodic refresh operations and can easily be imple

mented in a standard logic process. Figure 6.4 shows a simplified view of the O R A M  

PE. The ALU is an 8 x 1 multiplexer, which allows 256 unique binary instructions to be 

applied to the eight data inputs. O R A M  has a simple linear network for inter-PE com

munication. Each processor can shift the result of an instruction to the right and store it in 

that neighbour’s Y register, or shift it left and store it in that neighbour’s X register. Once 

the data reaches the end of the array or the chip, rather than continuing in the left or right 

direction, the data can be shifted to a second O R A M  array. In the multiple linear array 

case, 2-D communication can thus be performed by a sequence of left or right shifts. The 

broadcast bus can be used to broadcast a single value to all PEs or can be used to perform 

a wired-AND operation with all PEs writing the bus. The wired-AND operation is useful 

for finding a global minimum value among the PEs. O R A M  uses a write-enable (WE) 

flag to conditionally enable individual PEs. Since a SIMD architecture requires each PE 

to execute identical instructions in lock-step, control structures that execute conditionally 

require a mechanism for disabling individual PEs. Nested control structures, such as the if- 

then-else clause, can be implemented using a stack of write-enable bits. O R A M  maps well 

into DRAM due to the simplicity of the PE and the narrowness of its layout. Since each PE
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Figure 6.5: DSP-RAM architecture.

is very narrow, it is easier to pitch-match to the narrow DRAM memory columns than with 

a larger processing element. As well, many metal layers are not required for routing since 

there is less logic to contend with. Even so, DRAM-based O R A M  implementations still 

require each PE to be pitch-matched to some small number (e.g., 4) of memory columns 

rather than only one.

DSP-RAM is a processor-in-memory SIMD coprocessor architecture consisting of a 

linear array of n p  simple fixed-point PEs, as shown in Figure 6.5. The architecture was 

first developed at the University of Alberta and has been applied to a variety of differ

ent applications [165,166]. Each PE consists of a data path, containing data registers and 

functional units, and a local memory. The DSP-RAM controller is a state machine that 

broadcasts micro-instructions to the PEs, exchanges data with the PEs (described later), 

and interfaces to the host processor. The DSP-RAM controller broadcasts one instruction 

stream and all PEs execute the same instructions in lock-step over multiple instances of 

data stored in their local memories. The DSP-RAM architecture is readily scalable from 

its HDL specification, and more processing elements can always be implemented as re

quired to achieve any higher symbol decoding rate. The DSP-RAM architecture provides 

an efficient processing platform for implementing many algorithms with data-level paral

lelism [165,166]. If the algorithm scales well on the linear array of the parallel architecture, 

the processing throughput will be increased directly by increasing the degree of parallelism 

(i.e., the number of PEs). More PEs implies more transistors on the chip. However, the pro

cessor can often operate at a slower clock frequency and still meet the required processing 

throughput. As well as lowering the clock frequency, one might also choose to lower the 

power supply voltage. Since power consumption is proportional to the square of the power
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Figure 6.6: Architecture of one processing element.

supply [168], the possibility of reducing the voltage in DSP-RAM would be attractive for 

power-constrained processing platforms.

PIM-style architectures like DSP-RAM can offer the following advantages [167]:

•  Internal memory accesses are usually much faster than external memory accesses.

•  For high data rate applications, the restricted bandwidth to external memory tends in

creasingly to limit the overall performance. In the PIM-style architecture, the proces

sor can directly-exploit the very large (e.g. 1024-bit) bus width at the sense-amplifiers 

of the internal memory blocks.

•  Both the capacity and word width of custom on-chip memories is adjustable to any 

convenient value. There is no need to conform with standard memory configurations.

•  System power consumption is reduced because fewer external memory accesses are 

generated. Such accesses consume significant power when driving the relatively 

high-capacitance of off-chip buses.

The architecture of one PE in DSP-RAM is shown in Figure 6.6. Each PE stores data in 

its own local memory, which we assumed to be partitioned into two banks, labeled SRAM A 

and B. Therefore two operands can be fetched simultaneously from memory. We assumed 

a word width of 16 bits but this can be easily adjusted. The core of each PE is a pipelined 

MAC. Two 16-bit operands can be multiplied and the 32-bit product can be added to the
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content of the 48-bit accumulator (ACC) register through the adder/subtractor. Use of ex

tended precision (48-bit) inner product accumulation reduces the rounding error and allows 

for more accumulation steps without the risk of overflow. Since the MAC is in the critical 

path, the number of pipeline stages in the MAC can be adjusted to achieve different through

puts. The shifter can perform a logical shift, an arithmetic shift or no shift before the MAC 

output is loaded into the ACC register. As an example, to execute the MAC A , B instruction 

two 16-bit operands are read from the memory banks and then multiplied in the MAC unit. 

Since the adder is enabled and the shifter is disabled by the controller, the 32-bit product 

is summed into the 48-bit accumulator value and stored. The result can then be kept in the 

accumulator, written back into the local memories, or written onto the shift bus to move it 

into the neighbor’s PE shift register. To perform the division operation, rapidly-converging 

iterative algorithms based on multiplication can be used [105]. To perform division, the 

Goldschmidt algorithm takes advantage of the pipelined multiplier to permit division in 

[log2 16] =  4 iterations [72].

It is possible to temporarily exclude processors in the DSP-RAM from executing an 

instruction depending on certain logical conditions. A comparator and stack are provided 

in each PE to support if-then-else conditional control flows. The depth of the hardware 

stack is configurable to allow different nesting depths in the program. The MEMEn signal 

enables the local memories in each PE. The arbiter module provides a global minimum 

compare operation (assuming a wired-AND implementation of the global broadcast bus) 

among all the PEs to speed up the merging of local results from the PEs into a single global 

result.

A simple communication network includes local left and right shift busses between 

adjacent PEs and a global broadcast bus. Data can be transferred into a PE in three ways: 

First, data can be transferred over the 16-bit wired-AND global broadcast bus from one data 

source (the host processor or one or more PEs) to all PEs. When the same constant needs to 

be stored into each PE, the broadcast bus can be used to broadcast the value into each PE’s 

broadcast bus register (BBReg). For example, loading the hr  x  np  complex channel gain 

coefficients into the PEs local memories requires only 2ur  tit +  P clock cycles, where p  

is the number of pipeline stages between the broadcast bus and the local memory banks of 

the PE. Second, data can be sent to the left or right nearest-neighboring PEs over the 48-bit 

left/right shift bus, shown in bold arrows in Figure 6.6. The shift bus can be used to shift 

three 16-bit operands between PEs. Thus incoming ST symbols can be loaded efficiently
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into the corresponding PE memories. Note that the operations of writing data into and 

reading data from the DSP-RAM can be interleaved. For example, previously decoded 

data may be shifted out to the host processor at the same time that a current block of data 

is being decoded. Since the I/O path over the shift bus uses only the 48-bit shift register 

and the shift bus, the memory is free during the shifting of incoming data and, therefore, 

significant power savings can be realized over a sequential memory load that requires a 

memory access for each data value [165]. Consequently, shifting of data can occur in 

parallel with the processing of local data in each PE. Finally, data can be loaded by memory 

write operations from the DSP-RAM controller or host processor into any locations in the 

two local memories. This requires one write instruction for every single data word and 

therefore is relatively slow.

6.5 Mapping LST Decoding onto DSP-RAM

One of the key decisions when implementing LST decoding on DSP-RAM is the mapping 

of subtasks onto the moderate number of PEs. Decomposing the decoding procedure into 

finer subtasks and distributing them among the PEs for parallel execution will affect the 

degree of concurrency and, consequently, the overall throughput. Moreover, since inter-PE 

communication delay often significantly affects the decoding throughput [44], if we map the 

calculation onto the PEs in such a way that inter-PE communication is minimized, we can 

generally expect higher performance and lower dynamic power consumption. Therefore the 

aim of the mapping is twofold: First, balancing the load among the PEs and increasing the 

resource utilization by uniformly distributing the decoding of the received ST symbols onto 

the available PEs. Second, according to the interconnection topology of the DSP-RAM, 

the decoding algorithm should be mapped onto the PEs to minimize the communication 

overhead.

We define a thread to be a recovery process for a ST symbol that was transmitted in 

the same symbol time by u t  transmitter antennas. As illustrated in Figure 6.7, a thread 

involves u t  nulling steps, n r  decoding steps and n r  — 1 cancellation steps. The recovery 

process can be completed entirely within a single symbol period or can be pipelined over 

a fixed number of symbol periods. For instance, as shown in Figure 6.7, a thread can be 

pipelined across several PEs (similar to the mapping used in [192]). Since all PEs execute 

the same stream of SIMD instructions, the last redundant cancellation step, shown with 

dotted lines in Figure 6.7, must also be performed. In addition, due to the data dependency
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Figure 6.8: Dataflow diagram of the symbol decoding process for n p  ST symbols.

in the iterative three-step decoding algorithm, the communication penalty can be high. This 

particular mapping involves at most n r  PEs, implying that the maximum speed-up would 

be only np- Therefore, in this mapping the load cannot be uniformly distributed among 

only a moderate number (e.g. 64) of PEs. A more efficient approach, shown in Figure 

6.8, takes advantage of the distributed memory architecture of the processor and maps a 

decoding thread to a dedicated PE. Thus the recovery of a ST symbol y fe, where k  is the k-th 

vector in a codeword matrix, can be performed by PEfc in the DSP-RAM. In this mapping 

the last additional cancellation step is not required. The mapping minimizes the inter-
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PE communication and decouples the number of PEs in DSP-RAM from the number of 

transmitter/receiver antennas. Therefore, the number of PEs can be scaled based on the 

desired decoding rate. The greater the number of PEs, the greater the degree of parallelism 

and the higher the decoding throughput.

The decoding process starts by loading the channel matrix into each PE’s local memory 

using the broadcast bus. For a Rayleigh block-fading channel model, the channel charac

teristics are assumed to be fixed over constant-sized L  data blocks. Therefore the channel 

gains need to be loaded only once at the beginning of each block. In the next step, the 

nulling vector calculation can differ depending on the decoding algorithm. The MMSE 

nulling vectors can be efficiently obtained on DSP-RAM. First, the pseudo-inverse of the 

deflated channel matrix H , namely H* =  (H h H ) -1 H h , has to be calculated n p  times 

at the beginning of each block. Since the dimensions of H  are typically small, to obtain 

higher accuracy, we have chosen the direct approach [86] instead of the iterative method to 

invert the matrix.

There are several published techniques for calculating the matrix pseudo-inverse using 

direct routines [44]. In addition to the strong influence of the DSP-RAM microarchitecture 

on the complexity of the parallelized pseudo-inverse algorithm, the structure of the channel 

matrix H  may also influence the choice of algorithm. Since the channel matrix in practice 

does not fall into any of the special cases, mapping Cramer’s inverse method over t i r  x  u t  

PEs gives an efficient parallel realization on DSP-RAM. This technique, which is also used 

in Intel’s MMX library [193], requires only one division operation. To calculate the pseudo

inverse of n r  deflated channel matrices, H , with the rank ranging from n r  down to 1, n r  

iterations are required. In iteration k, the k 2 cofactors of H h H  can be calculated concur

rently in complex arithmetic using a single instruction stream over k 2 PEs. Then cofactors

H Hare passed among the PEs and each PE calculates the H* =  dpl(̂ n H  ̂adj (H ffH ) 

where det and adj denote the determinant and the adjoint matrix operators, respectively. 

Note that assuming a block-fading channel model, the nulling vectors need to be calculated 

only once using n r  instances of pseudo-inversion of the deflated channel matrix H  at the 

beginning of each received block.

The process of loading the received ST symbols into the DSP-RAM can be overlapped 

with the nulling vector calculation. A block of received information is first divided into sub

blocks of size n r  x  n p , where n p  <C L, and the ST symbols of each sub-block are loaded 

consecutively using the left/right shift bus into the corresponding PE’s memory. Since the
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Table 6.2: Processor specifications.

Processor

Data

Width

Instr.

Width

Clock 

Freq. (MHz)

Core 

Volt. (V)

Core 

Power (mW)

Proc. 

Tech. (pm)

ARM7TDMI 16 16/32 133 1.08 332 0.13
SA-110 32 16 233 2.0 1000 0.35
PXA255 16/32 16/32 400 1.65 2598 0.18

TMSC6416T 8/16 32 720 1.2 2147 0.13

TMSC6713 32 32 225 1.26 1386 0.13

ADSP-TS203 32 32 500 1.05 2700 0.13

size n p  of a sub-block is typically much smaller than the block size L  for the block-fading 

wireless channel model, this approach reduces the initial latency of the decoding process 

considerably.

After loading n p  ST symbols into the PEs’ local memories and calculating the nulling 

vectors, each PE concurrently initializes the iterative three-step decoding process and de

codes one received ST symbol. Therefore the time to process n p  threads is equivalent to 

the processing time of one single thread, hence the throughput is directly increased by a 

factor of n p . When the parallel decoding is finished, the resulting symbols are shifted out 

from each PE into the host processor while the next set of n p  signals is shifted into the 

PEs’ local memories. Therefore, the write and read operations are also overlapped. This 

process of decoding the received ST signals is continued until all of the received symbols 

in a block are recovered. Decoding of the next block can begin as soon as the channel gain 

coefficients are estimated at the receiver.

6.6 Implementation of a MIMO Receiver

To determine the efficiency and compare the performance of the parallel implementation of 

LST decoding on the moderately-parallel DSP-RAM architecture with conventional imple

mentations on contemporary DSPs, a (4,4) MIMO system with 16-QAM modulation was 

modelled for six different processors. The processor specifications are summarized in Table 

6.2. The ARM7TDMI is an embedded RISC processor with very low power consumption 

on a small die size that does not have any DSP-specific features [194]. The SA-110 uses 

architectural enhancements beyond the original ARM processor to execute at rates far ex

ceeding those of the ARM7TDMI. The PXA255 processor from Intel Corp. is a 32-bit 

super-pipelined 16-bit SIMD processor intended to enhance audio/video decoder perfor-
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Table 6.3: DSP-RAM PE implementation characteristics.
Device Clock 

Freq. (MHz)

Core 

Volt. (V)

Proc. 

Tech. (pm)

Slices BRAMs

Virtex E 98 1.8 0.18 713 2

VirtexII 120 1.5 0.13 684 2

VirtexII Pro 130 1.5 0.13 666 2

mance [195]. The VLIW-based TMS320C6416T-720 from Texas Instruments Inc. is a 

high-performance signal processor that contains two identical fixed-point data-paths [196]. 

The TMS320C6713-225 is a family of 32-bit floating-point DSPs that target applications 

such as 3-D graphics, radar and speech recognition. Analog Devices’ ADSP-TS203 is 

optimized for demanding multiprocessor DSP applications such as communication infras

tructure [50], This processor supports both fixed-point and floating-point computations.

The regular architecture of FPGAs is a convenient platform for prototyping the linear 

DSP-RAM architecture. Contemporary FPGAs integrate megabytes of memory with mul

tiple millions of equivalent logic gates arranged in a two-dimensional array of configurable 

logic slices [49]. A 64-PE DSP-RAM system was synthesized from a Verilog HDL descrip

tion to various FPGAs. Each PE contained 512 bytes of local memory for implementations 

on the Virtex-E XCV3200E-7-FG1156, Virtex-II XC2V8000-5-FF1517 and Virtex-II Pro 

XC2VP125-5-FF1704 FPGAs. Table 6.3 shows the clock frequency and the resource uti

lization of the implementations of the DSP-RAM PE on the different FPGAs. For the FPGA 

implementations, dual-port BRAMs were synthesized and the maximum pipelined multi

pliers were implemented in LUTs. Since there are typically alternative arithmetic circuit 

implementations with different maximum clock rates and areas, one may choose different 

cells from the FPGA vendor’s component library to meet the target application require

ments. The same DSP-RAM design was also synthesized for a OAS-pm TSMC CMOS 

technology standard cell implementation [197]. Figure 6.9 shows the layout of the 20.65 

m m 2 64-PE DSP-RAM chip. The estimated core power consumption is 621-mW when the 

DSP-RAM operates at 100-MHz.

To develop the LST MIMO receiver algorithm, we used the following three-step design 

flow:

(1) MATLAB programs that model different LST decoding algorithms for an ( n r ,  t i r )  

MIMO system were written and then verified in simulation. The variance of the AWGN
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Figure 6.9: Chip Plot of a 64-PE DSP-RAM in 0.18-/wi CMOS.

noise vector was normalized by

2 log2 q
(6.14)

which is the noise energy per bit. The average energy per bit was thus normalized to 1. Here 

log2 q is the number of transmitted bits per constellation point, pjB is the SNR in dB, and 

E s =  2(q — l ) / 3  is the mean symbol energy of the g-QAM constellation. Figure 6.10 plots 

the SER versus SNR simulation results for five different LST decoding algorithms for a 

(4,4) MIMO system that utilizes 16-QAM modulation over a flat Rayleigh fading channel. 

The ordered QR method requires one order of magnitude less computational complexity 

than the MMSE-LST decoding algorithm, but it has degraded SER performance due to the 

sub-optimal ordering employed in the modified Gram Schmidt calculation.

(2) Floating-point and fixed-point versions of the LST decoding algorithm were devel

oped in C++, and these implementations were optimized and verified for six target pro

cessors. Considering the time and accuracy objectives, the LST decoding algorithm was 

expressed using complex arithmetic. Differences in the computer architecture, available 

programming languages, and compiler quality can make large differences in the way one 

implements a decoding algorithm. A parallel implementation of the LST decoding algo

rithm was developed on a DSP-RAM C++ emulator. Our emulator provides a debugging 

environment for a fixed-point implementation of the algorithm on the parallel DSP-RAM 

architecture and reports the exact clock cycle count required to execute a program, in

cluding the I/O and inter-PE communication cycles. This count can be used to choose
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Figure 6.10: Symbol error rate vs. SNR for ZF, MMSE and three different LST algorithms, 
for a (4,4) MIMO system utilizing 16-QAM modulation over a Rayleigh flat-fading channel.

an appropriate clock frequency for the DSP-RAM to achieve real-time decoding. During 

implementation of the parallel LST decoding algorithm for the emulator, the developer is 

entirely responsible for controlling and efficiently utilizing the available functional units 

and for avoiding any possible structural hazards. The compiled code produced from a high- 

level language program implementation of LST decoding can be less efficient than expertly 

optimized assembly language code. Similarly, our optimized micro-coded implementation 

of LST decoding on DSP-RAM probably has an efficiency advantage over compiled code 

even when, as we did, all optimization features of the compiler enabled. Also, the PIM-style 

architecture of DSP-RAM requires many fewer clock cycles to access the on-chip memory 

banks than those required by conventional processors for off-chip memory accesses.

Table 6.4 gives the number of clock cycles required to decode received ST signals and 

the number of clock cycles required to calculate the nulling vectors for a 4 x 4 channel 

matrix. The reason that the number of clock cycles to decode 64 ST signals does not 

increase linearly with the number of ST signals is that most of the DSPs utilize some degree 

of parallelism in their instruction set architecture. For example, the ADSP-TS203 DSP 

provides a parallel core that can execute eight 16-bit MACs with 40-bit accumulation in 

one clock cycle. Also, the TMS320C6416T DSP contains two identical fixed-point data

paths. DSP-RAM can provide a much greater degree of parallelism (e.g., n p  =  64) than 

these DSPs and, therefore, the data-parallel LST decoding algorithm can scale efficiently 

on the linear architecture of DSP-RAM. Thus the number of clock cycles to decode 64
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Table 6.4: Cycle counts to decode received ST signals and calculate nulling vectors of a 
4 x 4  channel matrix. _____________________

Processor Decode 

One ST Symbol

Decode 

64 ST Symbols

Calc. Nulling 

Vectors

ARM7TDMI 4,798 206,396 43,641

SA-110 3,124 146,698 33,701
PXA255 3,732 155,602 22,698

TMSC6416T 1,812 87,714 25,340

TMSC6713 1,814 90,386 17,572

ADSP-TS203 1,555 70,455 13,216

DSP-RAM 1,078 1,174 12,742

ST symbols is not much more than the number required to decode one received signal and 

hence the throughput is increased by a factor of 64. To calculate the 4 nulling vectors of 

a 4 x 4 channel matrix, one must perform four pseudo-inversions of the reduced channel 

matrices, with the rank reducing successively from 4 to 1. For a DSP-RAM implementation, 

the pseudo-inverse operation can be performed efficiently in parallel using the mapping 

described in Section 6.5 over 16 PEs. However, since the required degree of parallelism is 

only tir x n r ,  the number of clock cycles required to calculate 4 nulling vectors in a DSP- 

RAM implementation is close to the number required by the slightly parallel ADSP-TS203 

DSP.

(3) Once the design was completed on the emulator, test vectors were designed and 

used as the stimulus to the HDL model. After the algorithm was verified in simulation, 

it was synthesized for the target FPGA. Figure 6.11 plots the SER versus SNR results of 

the ordered QR-LST decoding for the various number representations of the MIMO system 

reported in Figure 6.10. The product word length and sum word length were set to 32 

and 48, respectively, for all implementations. Note that a 12-bit fraction field, labeled as 

F I (16 ,12) in the figure, achieves almost the same SER performance as the floating-point 

implementations up to a SNR of 32 dB.

Consider a (4,4) MIMO system that exploits spatial multiplexing using an LST ar

chitecture and 16-QAM modulation. We will make the common assumption of symbol- 

synchronous receiver sampling and ideal timing recovery. Also, for a typical indoor wire

less environment with a maximum Doppler frequency of f p  =  3 Hz, the coherence time of 

the channel can be calculated as Tc =  0.423//r> [115]. Assuming a block-fading wireless 

channel, where the channel response is almost invariant during the coherence time of the
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Figure 6.11: SER vs. SNR for floating-point (FP) and four fixed-point number representa
tions.

channel, the block duration can be chosen to be T& =  100 ms. Let kn denote the number 

of clock cycles required to compute n r  nulling vectors. To achieve real-time decoding, 

fcn-.+ ( ^ .x^ )  should be less than or equal to Tb, where kd is the number of clock cycles re

quired to decode one received ST signal, Ld is the number of ST data symbols in a block 

of length L, and f p is the clock frequency of the receiver signal processor. Assume that 

each block is divided into a set of 64 ST symbols frames. Since most conventional pro

cessors utilize some degree of parallelism in their instruction set architecture, we introduce 

kd64 to denote the number of clock cycles required to decode one frame of 64 ST symbols. 

Therefore, the number of ST symbols in a block is given by:

Ld = ^  X 64 (6.15)
Kd64

where K  =  Tb x f p is the total clock cycle budget for Tb periods. Equation 6.15 shows 

that in addition to the clock frequency of the signal processor, the efficiency of the processor 

when executing the LST decoding algorithm has a great influence on decoding performance. 

To maximize the decoding throughput, the denominator of Equation 6.15 should be mini

mized. An efficient way to achieve this goal is to map the decoding algorithm over an array 

of PEs that operate concurrently. The results in Table 6.5 show that a 64-PE DSP-RAM can 

decode at more than 10 times the bit rate of a high-performance conventional DSP proces

sor. The higher throughput is achieved even though DSP-RAM’s assumed 100-MHz clock 

frequency is much slower than that of the 720-MHz TMSC6416T DSP.
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Table 6.5: Decoding throughput of the LST decoder implementations for a (4,4) MIMO 
system utilizing 16-QAM modulation, with the block-fading channel model assumption, 
and =  100 ms. _________________________________________

Processor Clock 

Freq. (MHz)

Max. Decoding 

Throughput (Mb/s)

ARM7TDMI 133 0.64

SA-110 233 1.58

PXA255 400 2.56

TMSC6416T 720 8.2

TMSC6713 225 2.48

ADSP-TS203 500 7.09

DSP-RAM 100 85.07

6.7 Conclusions

Multiple antenna communication systems can achieve remarkably high data rates with no 

increase in bandwidth or transmitted power; however, symbol decoding in a MIMO receiver 

is a computationally-intensive process. Optimal or exact decoding algorithms, such as ML, 

require time that is exponential in the number of symbols that must be considered. A less 

computationally-intensive method, such as the SD algorithm, attempts to prune the search 

space and thereby provide substantial computational saving over ML decoding. However, 

the SD algorithm has an irregular control sequence and hence is inefficient for mapping 

on a parallel processor architecture. When the channel is perfectly known to the receiver, 

the heuristic LST decoding scheme can be used efficiently to decode received signals with 

realizable computational complexity. Due to the inherent data parallelism in the LST de

coding algorithm, as an efficient alternative to using a single, high-performance processor to 

achieve real-time decoding, multiple simpler processors can be used to exploit the available 

data-level parallelism.

A PIM-style moderately-parallel architecture, called DSP-RAM, has been synthesized 

to implement parallel LST MIMO receiver algorithms. DSP-RAM is a lightweight parallel 

computing architecture that combines an array of simple fixed-point datapaths with local 

SRAMs to provide high-performance signal processing in a power-efficient core. This con

figuration exposes and exploits the large internal bandwidth that is available collectively at 

the SRAMs, allowing DSP-RAM to outperform conventional high-performance micropro

cessors and DSPs for a variety of important moderately-parallel algorithms. The perfor

mance results demonstrate that a 64-PE 100-MHz DSP-RAM can potentially provide more
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than 10 times greater decoding throughput in a typical indoor environment compared to a 

high-performance 720-MHz DSP processor. The significant speed-up of the parallel DSP- 

RAM architecture can be exploited to permit a lower operating clock frequency and/or a 

lower operating voltage, which would have the further benefit of lowering the power con

sumption. Since the structure of LST decoding algorithms scales very well on the linear 

array of PEs in DSP-RAM, the data throughput can be readily increased by using more 

PEs.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Conclusions and Future Work

Wireless communication systems share one common challenge: they all must operate over 

a multipath fading channel. A vast number of mathematical representations of the time- 

varying wireless channel have been proposed. Surprisingly, some of the best-known models 

have been used extensively over decades for the emulation and performance evaluation of 

communication systems do not in fact faithfully reproduce characteristics of real-world 

channel conditions. It is therefore essential to carefully evaluate the statistical properties of 

any channel model that is being considered as the basis of a fading channel simulator.

In addition to channel impairments, noise at the receiver can impact the performance 

of communication systems. Such noise is commonly modeled as variates with a Gaussian 

distribution due to the Central Limit Theorem. When evaluating the physical layer algo

rithms that operate at a very low error rate, the value of the noise samples at the tails of the 

Gaussian distribution will be the dominant source of errors. Since the tail of Gaussian dis

tribution decays near exponentially, generating Gaussian variates (GYs) with large values 

is quite challenging.

Monte Carlo (MC) simulation of wireless communications relies on the accuracy of the 

additive white Gaussian noise (AWGN) generator and the multipath fading channel model. 

Purely software MC simulation of physical layer algorithms of wireless communication sys

tems that operate at very low error rates is becoming prohibitively long. Fortunately, digital 

baseband simulators provide several orders of magnitude speedup over software based sim

ulators, thereby greatly accelerating the iterative process of product design and evaluation, 

and ultimately reducing the time-to-market for communication devices.

We addressed the above challenges first by designing and implementing an accurate 

and compact digital Gaussian variate generator on field-programmable gate arrays (FP-
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GAs). The AWGN core can be easily configured to achieve high tail accuracy, much higher 

than is available in most commercial hardware-based noise generators. The rate that GVs 

can be generated is limited by the rate of a pipelined multiplier on FPGAs. Second, several 

hardware-based digital baseband multipath fading channel simulators were designed and 

evaluated. An improved fading simulator based on the sum-of-sinusoids (SOS) technique 

is proposed that shows better statistical properties to Clarke’s reference model compared to 

the published models. Also, a novel design technique was used to alleviate the complex

ity of fading channel simulators by co-designing the required digital filters. While other 

realizations of channel emulators use a heterogeneous architecture (usually consisting of 

DSPs, FPGAs, etc.) to implement the required computationally-intensive multi-rate signal 

processing algorithms of filter-based techniques, our implementation uses only a small frac

tion of a single FPGA. The ability to implement an entire digital baseband fading channel 

emulator along with AWGN generator on a small fraction of a single FPGA should be a 

significant improvement for the rapid prototyping and verification of wireless systems.

Integration of programmable fabrics with a moderate number of memory blocks in an 

FPGA provides an efficient platform for realizing parallel processor-in-memory (PIM) style 

processor architectures. A scalable moderately-parallel signal processor architecture that 

combines the single-instruction multiple-data (SIMD) and PIM approaches, called DSP- 

RAM, was designed and implemented on FPGAs. Our implementation results verified that 

DSP-RAM can efficiently increase the performance of layered space-time decoding algo

rithms for the spatial multiplexing scheme of multiple-input multiple-output (MIMO) com

munication systems compared to currently-available high-performance, but power-hungry 

and costly, DSPs. DSP-RAM can be used as a co-processor to a conventional microproces

sor to increase the throughput of computationally-intensive algorithms that can be mapped 

efficiently on the data-parallel architectures.

In summary, this thesis made contributions in four areas:

•  Design and implementation of the most compact and fastest disclosed digital Gaussian 

variate generator (GYG) with accurate statistical properties. The GVG occupies only 1% of 

a single Xilinx Virtex-II XC2V4000-6 FPGA and operates at 253 MHz [9], generating 506 

million GVs per second within a range of ±9.41cr. The design can be configured to achieve 

higher tail accuracy at a small cost in extra hardware but with slightly decreased operating 

rate.

•  In addition to two compact implementations of a SOS-based fading channel simulator,
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an improved fading channel model based on the SOS approach is described. The proposed 

model improves the statistical properties of generated fading variates compared to previ

ously proposed models. A fixed-point implementation of the fading channel simulator on a 

FPGA utilizes only 5% of the configurable resources and generates over 200 million 16-bit 

fading variates per second.

•  A much more compact and yet accurate implementation of a parameterized fading 

channel simulator using digital infinite-duration impulse response (IIR) filters is described. 

A novel filter design scheme is proposed to implement the shaping filter and the interpola

tion low-pass filters together on a single FPGA. The new design is the first digital baseband 

fading channel simulator that is realizable on a fraction of a single FPGA. The fixed-point 

implementation of Rayleigh fading channel simulator on an FPGA utilizes only 4% of the 

configurable slices, 20% of the dedicated multipliers and, 2% of the available memories 

on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million fading variates per 

second. The parameterized mobile channel simulator can be reconfigured to accurately 

simulate a wide variety of different channel characteristics. Also, a filter processor with 

a very short instruction set is proposed to be controlled by a micro-program. A micro

programmed controller makes debugging and scaling of the fading channel simulator much 

easier compared to modifying the control unit with random logic to support MIMO and 

frequency-selective channels.

•  An existing moderately-parallel and scalable architecture, called DSP-RAM, that 

combines the single-instruction multiple-data (SIMD) and processor-in-memoty (PIM) ap

proaches to increase the performance of moderately data-parallel signal processing appli

cations is applied efficiently to the MIMO signal decoding problem. Integrating simple 

fixed-point datapaths, also called processing elements (PEs), with the memories exposes 

the enormous data bandwidth between the two, and eliminates the bottleneck that other

wise occurs on an external bus between the memory chips and processor(s) in conventional 

architectures. The DSP-RAM architecture can be readily synthesized and mapped to stan

dard FPGAs. By efficiently mapping the layered space-time (LST) MIMO algorithm onto 

the DSP-RAM architecture, it is shown that for a typical indoor wireless environment, a 

100-MHz DSP-RAM can potentially provide more than 10 times greater decoding through

put at the receiver of a (4,4) MIMO system compared to a conventional 720-MHz DSP. 

The degree of parallelism (i.e., the number of PEs) can be easily scaled up to increase the 

throughput of a parallel algorithm. Also, one has the option of using increased parallelism
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to run at a slower clock frequency to simplify the implementation and still meet the required 

processing performance.

7.1 Future Work

Future work could be pursued in a number of directions as described in the following sec

tions. An alternative GVG using faster iterative algorithms is proposed in Section 7.1.1. 

The proof of the ergodicity of the proposed model in Chapter 4 is also considered as a 

future work and is discussed in Section 7.1.2. Section 7.1.3 presents channel simulators 

for frequency-selective fading channels and MIMO channels. Section 7.1.4 presents a joint 

channel estimation and symbol decoding scheme for an LST architecture.

7.1.1 An Alternative Gaussian Variate Generator

7.1.1.1 A GYG with Less Residual Error

The proposed GVG in Chapter 3 uses piecewise polynomial curve fitting. While the mag

nitude of generated GVs are important when modeling additive noise at the receiver, the 

machine precision-level fitness of the PDF of generated GV with ideal Gaussian PDF is 

not crucial. One may be more interested in the numerical accuracy of the generated GVs 

and in minimizing the residual error between the Gaussian PDF and the PDF of generated 

noise samples. In this case, two key points that could be considered are (1) increasing the 

number of segments for non-uniform segmentation of f ( u \ )  and/or using a higher order 

degree polynomial for curve fitting approximation; and (2) similarly, a more accurate ap

proximation of g(-) could be obtained using a higher-order polynomial and non-uniform 

quantization of trigonometric functions.

Some of our initial work on this approach is shown in Figure 7.1. In this case, f { u \)  is 

segmented uniformly on a logarithmic scale into 11 segments denoted by Si, i — 0 , . . . ,  10, 

where segment s* represents the interval [2~3\  2~3(l+1)]. Note that with u \ represented in 

fixed-point format <3(32,31), segment sio corresponds to the interval [2-31,2 ~ 30]. When 

u i  approaches 0, where u \  G [2~3,2~ 31], the very small value of u \  resides in one of the 

segments s i , . . . ,  sxo- When u \  approaches 1, where u \ e  (2~3, 1), the gradient of f ( u \ ) ,  

d f ( u \ ) / d u \ ,  tends toward infinity. For greater accuracy, segment so € (2“ 3, 1) is thus 

subdivided nonuniformly into six segments, s n , . . . ,  si6, as shown in Figure 7.2.
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Figure 7.1: Logarithmic segmentation of the domain of f{ u \) .
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Figure 7.2: Sub-segmentation of s q .

7.1.1.2 A Faster Iterative Gaussian Variate Generator

While CORDIC method and additive-normalization techniques explained in Chapter 3 can 

be used to compute ln(-) and square-root operations, other schemes for evaluating these op

erations can be utilized to implement the Box-Muller algorithm. These alternative schemes 

may have advantageous over other proposed algorithms with certain implementation tech

niques or availability of specific features in target hardware platform.

One approach to calculate ln (x), where x  €  [1,2), is based on multiplicative normal

ization where multiplication is done by shift and add operations:

X i + x  =  XiCi  =  X j ( l  +  2 ~ l d i ) ,  d i E  { -1 ,0 ,1 }

V i + i  =  Vi ~  In  Ci — y i  -  l n ( l  +  2 ~ l d i )

where ln (l  +  2~ldi) is read out from a table [105]. If we start with xq = x , yo =  y, and
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choosing di digits such that x m converges to 1 , after m  steps:

Xjfi — x  Ci 1 = >̂ ^  |  Ci pa 1 /x

Vm = y  -  in Ci = y  -  In |~ [ a  ^  y +  In a:.

Starting with y — 0 leads to the computation of In x. In order to calculate In x  for any x  

outside [1,2), x  can be written as x  = 2r]s with s e  [1,2]. Then In a; =  In s  +  77 In 2 =  

I n s +  0.69314718077.

In the above algorithm, to obtain In x  with k  bits of precision, k  iterations are required, 

which is still relatively slow. A faster algorithm is proposed by Lo [198] that requires a 

multiplier to compute log2  x  where x  €  [1,2]. Calculating the natural logarithms can be

easily done by scaling base-2 logarithms. Let y — log2  a; be a fractional number in binary

as (.y_ iy_2 • • ■ y~k)2 ‘ Hence, x  = 2V and x 2 =  2^y- l -y- 2"'y- k>2. If y_ 1 =  1 then x 2 >  2, 

thus computing x 2 and comparing the result with 2 determines the MSB y_i of y. When 

y_ 1 =  1, then x 2/2  = 2<̂ y- 2y- 3'”y- k>2 /2  = 2^y- 2y~3’"y- kh .  Subsequent bits of y can be 

determined in a similar way. Algorithm 8  can be used to calculate log2  x  for x  e  [1,2]:

Algorithm 8  Calculating log2  x , x  G [1,2) 
for (i — 1 ;  i = =  l \ i  +  + )  do 

x  =  x 2; 
if {x > 2 ) then 

y-i = 1; x  = x/2; 
else 

y -i  =  0; 
end if 

end for

The iterative Newton-Raphson algorithm [105] can be used to approximate the square 

root function. This algorithm is based on a general method to obtain the zero of the function 

(i.e., the value of x  for which f ( x )  =  0). The recurrence equation can be written x n+i = 

x n — where f ' ( x n) denotes the derivative of the function f ( x )  evaluated at x n . To

compute V d  using the Newton-Raphson method, f ( x )  can be chosen as f ( x )  =  x 2 which 

has a root at x  = \fd . The function f ( x )  = x 2 — d leads to Xi+ 1 =  0 .5 (a7j +  d/x{). In 

the case of fractional square rooting, where d €  [0.5,1), (1 +  d ) /2 provides a good starting 

value [105]. An alternative approach that avoids the division operation in the previous 

recurrence that has found wider application is based on computing the reciprocal y/d  then 

multiplying the result by d  [72,105]. We can use the function f ( x )  =  1 /x 2 — d that 

has a root at x  — l /y fd  and get the recurrence Xi+i = 0.5xj(3 — d x f) . Each iteration
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now requires three multiplications and one addition, versus one digit selection, one digit 

multiplication, and one addition in the digit recurrence method. However, the quadratic 

convergence requires only a few iterations with a suitably accurate initial estimate. For 

example if x \  is accurate within half the machine precision, a second iteration to find x 2, 

followed by a multiplication by d, completes the process. For subtraction from 3, we can 

use a bit inversion since 3 — d x f  =  1 +  (2 — d x f)  where the term 2 — d x f  corresponds to a 

two’s complement, which can be approximated by a bit inversion.

7.1.2 On the Ergodicity of the SOS-based Fading Channel Models

The proof of the ergodicity of the model proposed in Section 4.6 in Chapter 4, namely 

Model II  can be considered as a future work. The ACF and CCF of the quadrature compo

nents of the proposed fading signal can be written as:

fW iC r)  =  E{ci(t)ci(t +  t )}
„ M  M

n = l  i = l

sm(uidtc o s (a n (t))sin(<fn (t))} x

[cos(u>d(f +  r )  cos(a i(t  +  r ) )  c o s +  r ) )  -

(7.1)

Rc„ c ,( r )  =  E  {cq{t)cq(t + t )}

n = l i = 1

sin(wdfsin(an(f))sin(V>n(f))] x

[cos (oJd(t +  r )  s in (a j(i +  r ) )  cos ( ^ ( t  +  r ) )

sin(u!d(t +  r )  sin (a i(t  +  r ) )  sin +  r ) ) ] |

n— 1

(7.2)

R c i , c , ( r )  =  0, R C9)C. ( r )  =  0
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When a n (t +  r )  =  a n (t), tpn {t +  r )  =  <pn (t), and ij)n (t +  r )  =  ^ n (t), then the modified 

model reduces to the model in (4.10). Let define the time average correlations as

1  f T
R C i , C i ( T )  =  3 ^ 2 T  J _ T Ci( t ) Ci ( t  +  T)d t

R C i , c , ( r )  =  R c „ C i ( r )  =  0

J _ T Z * (t)z (t + r )d t  (7.3)

To proof the ergodicity of the proposed Model II, we need to show that

R c i> C j( r )  =  R C iC i( r )  =  J * ( 2 n fDr)

K , c q(r) = 0

R  z ,z (t ) = R ZtZ(r) = 2 J ^ 2 i x f DT) (7.4)

The variance of the time average, Var{RCiiC.(r)}  =  E |RCi)Ci(r)  -  J 02 (2 7 t / d t ) | 2 , can 

be considered as a statistical measure for closeness of statistics between a single trial with 

finite number of sinusoids N  and the ideal case with N  = oo [37].

7.1.3 Architecture of a Wireless Channel

As discussed in Chapter 4 and Chapter 5, the complex envelope of the fading signal is

modeled as a complex Gaussian process at the receiver of a wireless channel. There are two

common cases that must be considered when simulating a realistic wireless channel:

•  A primary effect of wireless channel environment on a transmitted electromagnetic 

signal is that it loses its energy density due to interactions with the propagation environment. 

The difference between the transmitted signal power and the received power is called the 

path loss and denoted by P L . While the local mean of the small-scale fading process 

c(r, t) is approximately constant for small distances, it can vary considerably over large 

distances. Shadow fading  is another effect of wireless channel that can be characterized as 

a multiplicative process of multiple reflections in a multipath environment. By virtue of the 

CLT, multiplication of various path amplitudes due to multiple reflections per path results 

in a lognormal distribution. Thus shadow fading can be described as a random variable 

with Gaussian distribution (with values in dB) about the mean of path loss. While shadow 

fading varies faster than path loss, both effects vary more slowly than small-scale fading. 

This slow variation of the mean received signal strength over large distances or long time 

intervals is known as large-scale effects and denoted by 7  (t).
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# When a strong LOS path exists in addition to the scattered paths, then the process has 

a non-zero mean (arising from the LOS signal) and the magnitude of the process becomes 

Ricean [23]. This strong component may be a LOS path or a path that goes through much 

less attenuation compared to the other received components (also called a non-faded or 

specular path). The Rician PDF is often characterized by the ratio of the power of the 

direct component to the power of the scattered component itT(dB) =  10 log1 0  K  where the 

ratio K  is called the Ricean factor. In the presence of a specular path, the fading signal 

g(r, t) can be considered to be the sum of two components: a Rayleigh component c(r, t) 

and a deterministic (in amplitude and phase) component d(t) representing the LOS path as

plitude, Doppler shift, and phase of the LOS component are denoted by a, and fa , 

respectively [199]. If the Doppler shift along the LOS path is zero, then the mean value 

d{t) is time-invariant.

Signal attenuation in a radio channel is commonly represented as the product of large- 

scale and short-scale fading as h(r, t ) =  g(r, t ) x 7 (t), where h(r, t) is the mobile channel 

impulse response in its complex-lowpass form. The fading channel model can be scaled 

to extend the number of independent channels to simulate n^-input, n#-output MIMO 

channels and other diversity schemes. For example, Figure 7.3 shows a MIMO channel 

with tit transmit antennas and n p  receiver antennas. The parameters of each channel can 

be configured separately to be able to simulate the multiple antenna channels. The Python 

filter processor described in Chapter 5 can be efficiently configured to simulate a narrow

band or wide-band MIMO channel.

While the above model assumes that different fading sequences are correlated in time 

but uncorrelated in space, in a real world scenario, the fades are usually not independent 

and exhibit spatial correlations between sequences. The fading correlation depends on the 

physical parameters of the multi-element antenna (e.g., antenna spacing) and on the scatter 

characteristics (e.g., lack of independent propagation paths). As discussed in Section 5.2 in 

Chapter 5, in order to obtain the space-time correlation characteristics for a given path, a 

temporal correlated random process can be followed by a linear transformation to become 

also spatially correlated.

Assume and 'P #  are the long-term stable transmitter and receiver correlation ma-

(7.5)

where K  is the Rician factor and d(t) can be written as d(t) =  a e ^ dt+<̂ d where the am-
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Figure 7.3: MIMO channel simulator.

trix, respectively. If H w denotes a u r  x  n r  matrix of i.i.d Gaussian variables of unity 

variance, then the correlated MIMO channel model can be written as H  =  A h H wB

[200], where A  and B  are obtained using Cholesky decomposition of — B B H and 

i&R = A A h , respectively. Usually the transmitter is assumed to be elevated and unob

structed while the receiver is taken to be surrounded by a scattering ring. Thus the receive 

correlations are much smaller than the transmit ones.

Figure 7.4 plots our initial simulation results for the SER versus SNR for a (4,4) MIMO 

system correlated only in time and correlated in time as well as space using a 4-QAM 

modulation and f o T s  =  0.02. The element-wise absolute value of transmitter correlation 

matrix used in the simulation is:

abs(’J’T’)

(  1.000 0.626 0.620 0.601 \
0.626 1.000 0.626 0.620
0.620 0.626 1.000 0.626

\  0.601 0.620 0.626 1.000 /

As the plot in Figure 7.4 shows, fading correlation weakens the advantage of diversity and 

results in a performance loss.
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tc 10

Eh / N „ 0 0

Figure 7.4: SER versus SNR for (4,4) MIMO system with a 4-QAM modulation, (b): The 
system is correlated in time, (a) The system is correlated in both time and space.

7.1.4 Joint Channel Estimation and Symbol Decoding for LST Decoders

High-speed data services such as BLAST generally target low mobility users, where the 

channels are slow-fading. An optimal channel estimator for continuous fading channels 

should account for the structure of the channel variation. When transmitting a block of L  

ST symbols, the relation between the input and output signals of a narrow-band MIMO 

link is represented in the equivalent discrete time baseband model by the complex vector 

notation

where S is the codeword matrix where rows correspond to different transmitter antennas and 

columns correspond to different times. It is assumed that the entries of transmitted signal 

matrix S have unit mean-square. Thus, the average total transmit power a 2 becomes the 

expected SNR at each receiver antenna. H  is the h r  x  u t  matrix of fading path gains, and 

N  is an h r  x  L  matrix of additive noise samples. The matrices H  and N  both comprise 

independent zero mean unit variance complex Gaussian entries. The h r  x  L  received 

signals Y  are corrupted by additive noise that is statistically independent among the u r  

receivers and the L  symbol periods. In the training-based CSI estimation, the matrix S 

consist of both known and unknown symbols. The known symbols are used for estimating 

the unknown channel at the receiver and the unknown symbols represent the transmitted 

information symbols. Therefore, the problem can be partitioned into a channel estimation 

step, followed by a data detection conditioned on the estimated channel. If the training
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occupies L t symbols and data transmission occupies Ld symbols, the time L  =  L T +  Ld 

is referred to as the channel coherence time. In a time-varying flat-fading channel, the 

actual channel will deviate progressively from the initial channel estimate obtained at the 

beginning of each received block L. Two successive channel realizations at the beginning of 

each block are independent of each other and, therefore, the channel is called memoryless.

Discrete channel estimation comprises of two phases. In the training phase, the base

band model of system can be written as

where Y T is the u r  x  L t  received signals matrix, o 2 is the SNR during the training phase, 

ST is the n r  x L r matrix of training signals sent over L r and Tr{Sr S ^ }  =  n y  L r . In data 

transmission phase,

Sd is the n r  x Ld matrix of data signals and E [T r{SdS^}] =  n r  Ld [201]. It is shown 

in [202] that to estimate the continuous flat-fading MIMO channels, the ML estimator for 

block-fading model can be utilized to estimate the channel matrix from the received sig

nal Y r  and known training signals Sr  [201]. The ML channel estimate for block-fading 

channels can be obtained by post-multiplying Equation (7.7) by as [170]

To obtain a meaningful estimate of H , we need at least as many measurements as unknowns, 

which implies that u r L t  > t i r u t  or L T > n r  [201]. Thus H  is independent of the 

number of u r .

The optimal training sequence which minimize the mean square estimation error (MSE) 

of Equation (7.9) are mutually orthogonal with respect to time among the transmitter anten

nas, i.e., ST =  y/T^Y, where S  is a matrix with orthonormal columns and Sr S ^  =  L r I nT 

where I nj, is the n r  x n r  identity matrix [170] [202]. A good choice of orthogonal training 

sequences is the FFT matrix, i.e. Sm,i =  where Sm,i is the (m, i)-th

element of the training matrix Sr , 1 <  m  < n r ,  1 <  % < L T [202]. Thus Equation (7.9) 

can be written as

(7.7)

(7.9)

(7.10)
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Figure 7.5: Effect of Training Length on the MSE of the Channel.

Therefore, if the the training symbols are orthogonal, no matrix inversion is required at the 

receiver. While the channel estimate H  in (7.10) can be efficiently implemented on FPGAs, 

effect of various parameters such as training length on the MSE of the channel estimation 

must be considered. Our initial simulation results show that the channel can be improperly 

learned if too little training are transmitted and if too much training information is sent then 

there is no time left for data transmission before the channel changes. It is shown that n r  

is the smallest training interval length that guarantees meaningful estimates of the channel 

matrix [170]. Figure 7.5 plots effect of training length on the MSE of the channel. The 

MSE due to noise decreases with L T but MSE due to temporal variations increases with L T 

and L  [202]. In this simulation we used 16-QAM modulation, symbol rate is assumed 1 

H s, maximum Doppler frequency is f p  =  3 Hz, SNR is 30 dB, and both L r and L  increase 

at a fixed ratio, L Tj L  =  20%.

7.1.4.1 DSP-RAM  W ith Complex Arithm etic

As discussed in Chapter 6, using a real arithmetic processor to solve a complex-valued 

system leads to an inefficient implementation. For example, it is shown in [175] that com

plex matrix inversion can be up to twice faster than inversion of a real-valued matrix for 

n  >  3. As future work, one could consider realizing DSP-RAM with complex arithmetic 

support for faster and more efficient realization of baseband signal processing. For exam

ple, inversion of a complex matrix can be performed using the following scheme [203] more
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efficiently than realizing it in real domain. Let H  =  A  +  j B  be a complex matrix with an 

inverse H 1 =  A i +  j 'B i, where A , B , A i, and B i are all real. It is shown that H  1 can 

be obtained by inverting real matrices. If A  is non-singular, then A i and B i can be written 

as

A i =  (A  +  B A _1B )_1 

B i =  - A i B A - 1 .

Similarly, if B  has an inverse, then the solution can be written as

B i =  — (B 4- A B _1A )_1 

A i =  - B i A B - 1

This technique can be used for the efficient implementation of a matrix inversion, the key 

operation in decoding of received symbols in MIMO systems.
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