
University of Alberta

H i g h -P e r f o r m a n c e a n d C o m p a c t G a u s s i a n N o is e G e n e r a t o r s , Fa d i n g
C h a n n e l S i m u l a t o r s , a n d L a y e r e d S p a c e -T im e D e c o d e r s

by

Amirhossein A limohamm ad

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 W ellington S treet
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-29645-5
Our file Notre reference
ISBN: 978-0-494-29645-5

Direction du
Patrimoine de I'edition

395, rue W ellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother, Homa Sattari,

and

the memory o f my father, Abolghasem Alimohammad

fo r all their love and support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The quest for higher data rates has led to significantly more complex physical layer signal

processing algorithms. This complexity impacts the design and implementation of wireless

communication systems in two different ways. First, the great computational demands can

exceed the performance available from even high-end processors. Hence, it is important

to investigate architectural techniques that facilitate the implementation of the necessary

real-time signal processing instead of using a faster, but increasingly expensive and more

power-hungry, conventional processors. Second, significant design effort must be dedi­

cated to simulating and verifying alternative signal processing algorithms. For example,

the Monte Carlo (MC) simulation technique is commonly used to evaluate the bit error-

rate (BER) performance of these systems. While software simulations are widely used in

the design and verification of communication systems, the required MC simulation times

are now becoming prohibitively long. Fortunately, hardware-based techniques can speed

up simulation by several orders of magnitude. Hardware-based simulation can also help

to identify implementation bottlenecks and calculate design metrics for different candidate

algorithms at early stages in the design.

Since the bit error rate of wireless communication systems strongly depends on radio

channel characteristics, it is important that the chosen channel model reproduce the statisti­

cal properties of the real world channel as faithfully as possible. Moreover, since attenuation

at the receiver is commonly modeled as a sequence of variates with a Gaussian probability

distribution function (PDF), random variates near the center of the distribution do not con­

tribute significantly to the probability of error in low bit error rate systems. Hence, to obtain

accurate BER results in simulation, the PDF of generated noise must be especially close to

the true Gaussian PDF at the tails of the PDF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis reports significant progress in several key building blocks used in the design

and evaluation of wireless communication systems as follows:

• The design and implementation of the fastest and most compact disclosed hardware

Gaussian variate generator with accurate statistical properties.

• An improved hardware fading channel model based on the sum-of-sinusoids (SOS)

approach and its implementation.

• An accurate and compact implementation of a parameterized hardware fading channel

simulator using digital filters.

• Mapping and implementation of the layered space-time decoding algorithm onto a

moderately-parallel and scalable single-instruction multiple-data (SIMD) processor archi­

tecture that was developed at the University of Alberta.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

The road to my Ph.D. has been a long journey spanning three continents and more years than
I would like to count. I started this journey at Sharif University of Technology in Tehran,
Iran. I took a detour to Germany and finally ended up in Edmonton at the University of
Alberta. Now that I am at the very end of my Ph.D. and about to start new adventures, I
would like to think back on the many people who helped to make the road so exciting and
memorable.

Prof. Bruce F. Cockbum has been enthusiastic, supportive, insightful, and a superb
mentor. I feel very lucky to have had the opportunity to work under his supervision.

Prof. Christian Schlegel has given me many opportunities to expand my horizons and
helped me enter new research domains.

My committee members Prof. Jose Nelson Amaral and Prof. Vincent Gaudet provided
valuable input on my dissertation. I really enjoyed discussing my work with Prof. Steven J.
Wilton, who was an excellent external examiner.

I would like to thank many friends in the VLSI and HCDC labs for making the years
so enjoyable. I have had fun doing many activities from paintball to Carcassonne to dis­
cussing the newest trends in digital design. I have spent countless days and hours in deep
discussion with Saeed Fouladi Fard designing and optimizing many projects that cross be­
tween wireless communication and digital design. I am very grateful for all his help and
collaboration. Tyler L. Brandon helped in ASIC design flow, Steven J. Dillen and Daniel A.
Leder provided constructive discussions on DSP-RAM architecture, Leendert van den Berg
edited many emails and letters, and John C. Koob showed me how fun Latex can be. I have
enjoyed getting to know Sheryl, Sheehan, Behnam, Ram, Maz, and many other friends in
the department.

As my specific knowledge in digital communications was growing, Terra and her family
encouraged me to try new activities such as cross-country skiing, white-water canoeing, and
sleeping in snow caves.

My family has always believed in me and inspired me to do my best. Elham has made
the many kilometers between Edmonton and Tehran much less by emailing me every day.
My mom has always been there to help and support all my endeavours. Her love has inspired
and helped me to reach my goals. When I began school, my dad helped me with math
and science and showed me that when I learned something, I was not at the end of my
knowledge, but on the doorstep getting a small glimpse of all that I do not know. I still feel
this today.

Many thanks to all the people who have helped to make the journey of my Ph.D. ex­
traordinary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Motivation 1
1.1 Thesis Contributions ... 3
1.2 Thesis O utline... 5

2 Introduction 7
2.1 B ackground .. 8

2.1.1 Frequency Domain Representations of Signals 8
2.1.2 Random P ro c e sse s .. 9
2.1.3 Linear Systems Response to Random S ig n a ls 15
2.1.4 Baseband P rocessing ... 18
2.1.5 Geometric View of Signals and Transformations 24

2.2 Noise Models at the R eceiver.. 26
2.3 Wireless Channel E f fe c ts ... 30
2.4 High-Throughput Wireless Communication Systems 34
2.5 Algorithm E ffic ien cy ... 36
2.6 Base-Band Signal Processing P la tfo rm s ... 38
2.7 Rapid Prototyping in Digital D e s ig n ... 42

3 Gaussian Variate Generators 46
3.1 Gaussian Distribution, Algorithms, and Related W o rk 49
3.2 A Closer Look at P N G s.. 53
3.3 Implementation of Trigonometric F u n c tio n s .. 61
3.4 Gaussian Variate Generator Im plem entation.. 64

3.4.1 Implementation of a GVG Using Iterative A lgorithm s........................ 65
3.4.2 A GVG Using Non-Uniform Quantization and Table Lookup 68
3.4.3 Implementation of a GVG Using Piecewise Polynomial Curve Fitting 71

3.5 The GVG Statistical T ests... 78
3.6 C onclusions.. 82

4 SOS-based Fading Channel Simulators 85
4.1 Parameters of Fading C hannels... 88
4.2 Channel M odels ... 90
4.3 Stochastic Models for Fading Channels ... 95
4.4 Analysis of SOS-Based Fading Channel M o d e ls ... 98
4.5 Implementation of an SOS Fading Channel S im ulato r.......................................106
4.6 An Improved SOS-based Fading Channel E m u la to r ..116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Conclusions 123

5 Filter-Based Fading Channel Simulators 125
5.1 Digital Filter Structures and Quantization Error E f fe c ts128
5.2 Generation of Correlated Random S e q u e n c e s .. 132
5.3 Constraints on Filter Design ... 134
5.4 Filter Design for Fading Channel Sim ulators... 141
5.5 Implementation and Statistical Verification...143
5.6 A Flexible Filter Processor for Fading Channel Emulation 149
5.7 C onclusions...155

6 An Efficient Parallel Architecture for LST Decoding in MIMO Systems 156
6.1 Mathematical Model of MIMO S y s te m s ..159
6.2 Algorithms for Systems of Linear E quations... 162
6.3 MIMO Decoding Techniques... 164
6.4 A Parallel Architecture for Digital Signal P ro c e s s in g172
6.5 Mapping LST Decoding onto DSP-RAM .. 177
6.6 Implementation of a MIMO Receiver ...180
6.7 C onclusions...185

7 Conclusions and Future Work 188
7.1 Future W o rk ...191

7.1.1 An Alternative Gaussian Variate G e n e ra to r ...191
7.1.2 On the Ergodicity of the SOS-based Fading Channel Models 194
7.1.3 Architecture of a Wireless Channel ..195
7.1.4 Joint Channel Estimation and Symbol Decoding for LST Decoders 198

Bibliography 202

A List of Publications Arising From Thesis 218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Parameters of different Xilinx FPGAs.. 43
2.2 Parameters of Altera Stratix EP1S80F1508C6 FPGA................................... 44

3.1 Maximum absolute value of a GV for various precisions of u \ 53
3.2 Published FPGA Implementations of a GVG... 53
3.3 Performance of three CTGs implemented on the Xilinx Virtex-II XC2V400Q-

6... 60
3.4 PNGs used in published GVG designs... 60
3.5 Typical realizations of the new GVG.. 77

4.1 Implementation of the fading channel simulator on different FPGAs I l l
4.2 Implementation of the fading channel simulator on different FPGAs 116
4.3 Maximum step size 80... 120
4.4 Implementation of the fading channel simulator on three different FPGAs. . 122

5.1 Some commercially available fading simulators.. 126
5.2 Out-of-order execution scheme for the cascade structure................................148
5.3 Out-of-order scheduling and register renaming for the cascade structure. . . 148

6.1 Comparison of PIM architectures... 172
6.2 Processor specifications..180
6.3 DSP-RAM PE implementation characteristics..181
6.4 Cycle counts to decode received ST signals and calculate nulling vectors of

a 4 x 4 channel matrix...184
6.5 Decoding throughput of the LST decoder implementations for a (4,4) MIMO

system utilizing 16-QAM modulation, with the block-fading channel model
assumption, and T\j, = 100 ms.. 186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 (a) BPSK modulator, (b) QAM m odulator.. 22
2.2 Two different constellations... 22
2.3 (a) PSD of white noise, (b) ACF of white noise... 27
2.4 (a) PSD of bandlimited white noise, (b) ACF of bandlimited white noise. . 28
2.5 Normalized Gaussian P D F .. 29
2.6 Typical simulated Rayleigh fading at the rec e iv e r ... 31
2.7 Block diagram of wireless communication systems.. 34
2.8 Ergodic capacities of uncorrelated multiple antenna systems for SNR=18 dB. 36

3.1 P lo to fQ (a;)... 50
3.2 The two-dimensional distribution of 107 PNs pairs (uj, ttj+i) generated

with MLCG recursion with xo = 314519, a — 16807, and m = 231 — 1,
when a small portion of Uj-axis is magnified... 55

3.3 Fibonacci implementation of a 4-bit LFSR... 57
3.4 Rule 90 for cellular automata.. 58
3.5 The cosine approximation error: (a) Ideal cosine function; (b) Squared error

for the table look-up approximation; (c) Squared error for the first order
approximation... 64

3.6 52-bit LFSR design... 67
3.7 Gaussian PDF compared with PDF generated noise samples.......................... 68
3.8 Plot o f / (u i) = \ J —21n(ui). ... 69
3.9 Non-uniform quantization of (0 ,1).. 69
3.10 GVG datapath using non-uniform quantization and table lookup................... 70
3.11 Ideal Gaussian and generated PDFs plotted on a logarithmic scale................ 71
3.12 Segmentation of u \ € (0 ,1).. 73
3.13 The datapath for calculating /(•) function.. 75
3.14 The tree structure of leading zeros counting... 76
3.15 Logic diagram for leading one detector. .. 77
3.16 The 0.126 m m 2 GVG chip layout in 90-nm CMOS technology.................... 78
3.17 Gaussian PDF compared with the PDF 10n generated GVs........................... 79
3.18 Inverse CDF o f the generated GVs... 80
3.19 Plot of n \ versus ... 80
3.20 Statistical dependency of and n j+ i for 107 generated GVs......................... 83
3.21 Autocorrelation among m and n j± 2 0 4 8 for 107 generated GVs....................... 83

4.1 Architecture of a frequency-selective fading simulator. 93
4.2 The PSD for a Rayleigh fading channel with different Doppler frequencies. 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 The zero-order Bessel function of the first kind.. 99
4.4 Symmetry of receiving sinusoids in Jake’s design... 101
4.5 The ACF and CCF are calculated by averaging over 10 frames of 105 fading

samples each with f o T s = 0.01... 103
4.6 The normalized LCR calculated using 105 fading samples with fc>Ta = 0.01.104
4.7 Envelope PDF for Zheng and Xiao’s SOS fading channel model........................105
4.8 Envelope CDF for Zheng and Xiao’s SOS fading channel model....................... 105
4.9 ACF and CCF for one block containing 107 fading samples using the Jakes

SOS model from equation (4.10), f o T s = 0.02, N = 8...................................... 106
4.10 (a) Circuit for summing N = 2 complex oscillators, (b) Tree-structured

adder for summing N = 8 oscillators.. 108
4.11 The PDF of the simulated fading envelope and their references with nor­

malized Doppler rate / d Ts = 0.01.. 109
4.12 ACF and CCF of the quadrature component...109
4.13 The normalized LCR of the generated fading samples..110
4.14 The CDF of the simulated fading envelope and their references..........................110
4.15 Layout of the 500 MHz semicustom fading channel variate generator. . . . 111
4.16 Datapath for generating one low-frequency oscillator. 112
4.17 The ACF calculated by averaging over 10 frames of 105 fading samples

with / p T s = 0.01... 113
4.18 The CCF calculated by averaging over 10 frames of 105 fading samples

with fc>Ts = 0.01... 113
4.19 Envelope pdf of 107 generated fading variates with f o T s — 0.01 for three

different precisions.. 114
4.20 The cdf of 107 generated fading variates with two different precisions. . . . 114
4.21 The normalized LCR of 107 generated fading envelopes with two different

precisions..115
4.22 Pipelined datapath for generating one low-frequency oscilla tor........................ 116
4.23 (a) Circuit for summing two complex oscillators, (b) Tree-structured adder

for summing N = 8 oscillators...116
4.24 ACF and CCF of 107 fading variates generated by Model II. 120
4.25 LCR of 107 fading variates generated by Model I I . ..121
4.26 PDF of 107 fading variates generated by Model I I . ..121
4.27 CDF of 107 fading variates generated by Model I I . ..121
4.28 Layout of the 500 MHz semicustom fading channel variate generator. . . . 123

5.1 Direct-Form network structures.. 129
5.2 (a) Direct-Form II. (b) Direct-Form 1... 130
5.3 Cascade realization of the spectral shaping filter.. 131
5.4 Architecture of a filter-based fading channel s im u la to r 136
5.5 The magnitude responses of elliptic filters composed of K = 2 ,3 ,4 ,5 cas­

caded biquads with f o T s — 0.2..137
5.6 Ideal low-pass filter specification...138
5.7 Magnitude response of the elliptic shaping filter... 139
5.8 Zero/pole plot of the 32-bit quantized shaping f ilte r ...139
5.9 Magnitude response of the first stage HR low-pass interpolation filter. . . . 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.10 Phase response of the HR low-pass filters for interpolation.................................141
5.11 Magnitude response of the elliptic shaping filter................... 142
5.12 Magnitude response of the first stage HR low-pass interpolation filter. . . . 143
5.13 (a) The structure of cascading Gaussian variate generator and N = K + P

second-order sections, (b) Biquad datapath.. 144
5.14 (a) Control data flow graph and (b) the datapath of the shaping filter and the

first-stage low-pass interpolation f il te r ...145
5.15 (a) The structure of cascading Gaussian variate generator and the shaping

elliptic HR filter, (b) The IIR Chebyshev low-pass filter structure designed
using cascading biquads...146

5.16 Control data flow graph of shaping filter and first-stage interpolation 146
5.17 ACF and CCF of 2.5 x IQ7 generated fading variates.. 149
5.18 LCR of 2.5 x 107 generated fading variates... 149
5.19 PDF of 2.5 x 107 generated fading variates... 150
5.20 Symbol error rate for simulated 4-PSK and 16-QAM...150
5.21 The architecture of the Python F P 151
5.22 The datapath of biquad..151
5.23 The microinstruction format... 152
5.24 ACF and CCF of 3 x IQ7 generated fading variates...154
5.25 LCR of 3 x 107 generated fading variates... 154
5.26 PDF of 3 x 107 generated fading variates..154

6.1 An (n r , n p) MIMO channel..156
6.2 Sphere around the decoded point p = Q(H* y) ... 166
6.3 LST transmitter architecture... 169
6.4 C«RAM processing element...173
6.5 DSP-RAM architecture... 174
6.6 Architecture of one processing element..175
6.7 Dataflow diagram of the symbol decoding process for one ST symbol. . . . 178
6.8 Dataflow diagram of the symbol decoding process for n p ST symbols. . . . 178
6.9 Chip Plot of a 64-PE DSP-RAM in 0.18-/xm CMOS... 182
6.10 Symbol error rate vs. SNR for ZF, MMSE and three different LST al­

gorithms, for a (4,4) MIMO system utilizing 16-QAM modulation over a
Rayleigh flat-fading channel..182

6.11 SER vs. SNR for floating-point (FP) and four fixed-point number represen­
tations..185

7.1 Logarithmic segmentation of the domain of f (u \) ...192
7.2 Sub-segmentation of so... 192
7.3 MIMO channel sim ulator...197
7.4 SER versus SNR for (4,4) MIMO system with a 4-QAM modulation, (b):

The system is correlated in time, (a) The system is correlated in both time
and space.. 198

7.5 Effect of Training Length on the MSE of the Channel.. 200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Nomenclature

List of Acronyms
ACC Accumulator

ACF Autocorrelation function

ADC Analog-to-digital converter

AES Advanced encryption standard

AOA Angle of arrival

AR Autoregressive

ARMA Autoregressive moving average

ASIC Application-specific integrated circuit

AWGN Additive white Gaussian noise

BER Bit error rate

BM Box-Muller

bps Bits per second

BW Bandwidth

CAG Cellular automata generator

CCF Cross-correlation function

CDF Cumulative distribution function

CDFG Control data flow graph

CLB Configurable logic block

CLT Central Limit Theorem

CSCG Circularly symmetric complex Gaussian

CSI Channel state information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O R A M Computational RAM

dof Degree of freedom

DPSK Differential phase-shift keying

DSP Digital signal processor

DTFT Discrete-time Fourier transform

EICG Explicit-inverse congruential generator

FFT Fast Fourier transform

FIFO First-in first-out

FIR Finite-duration impulse response

FLOPS Floating-point operations

FP Filter processor

FPGA Field-programmable gate array

FT Fourier transform

GE Gaussian elimination

GJ Gauss-Jordan

GPP General-purpose processor

GSM Global system for mobile communications

GV Gaussian variate

GVG Gaussian variate generator

HDL Hardware description language

HiperLAN High performance radio local area network

i.i.d Independent and identically distributed

ICG Inverse congruential generator

IFFT Inverse fast Fourier transform

HR Infinite-duration impulse response

ILP Instruction-level parallelism

ILPF Interpolation low-pass filter

ISA Instruction set architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISI Inter-symbol interference

LCG Linear congruential generator

LCR Level crossing rate

LFG Lagged Fibonacci generator

LFSR Linear feedback shift register

LOD Leading one detector

LOS Line of sight

LST Layered space-time

LTI Linear time-invariant

LTV Linear time-varying

LUD LU decomposition

LUT Look-up table

MA Moving average

MAC Multiply-accumulate

MC Monte Carlo

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

ML Maximum likelihood

MLCG Multiplicative linear congruential generator

MLCG Multiplicative recursive linear congruential generator

MMSE Minimum mean-squared error

MPS-MC Multiple parameter set Monte Carlo

MRC Maximal ratio combining

MSB Most significant bit

MSE Mean squared error

MSI Multistream interference

MU Mobile unit

OLSF Orthogonal least squares fit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PDF Probability density function

PE Processing element

PHY Physical layer

PIM Processor-in-memory

PN Pseudo-random number

PNG Pseudo-random number generator

PSD Power spectral density

QAM Quadrature amplitude modulation

QoS Quality of service

RHS Right hand side

RISC Reduced instruction set computer

rms Root mean square

ROM Read-only memory

RPP Rapid prototyping platform

RTF Rational transfer function

RV Random variable

SD Sphere decoding

SER Symbol error rate

SIMD Single-instruction multiple-data

SIMO Single-input multiple-output

SISO Single-input single-output

SNR Signal-to-noise ratio

SOC System-on-a-chip

SOR Successive over-relaxation

SOS Sum-of-sinusoids

SOS Second-order section

SRL Shift register lookup table

ST Space-time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

STC Space-time coding

STP Space-time processing

SVD Singular value decomposition

TDL Tapped delay line

TG Tausworthe generator

US Uncorrelated scattering

VLIW Very long instruction word

WSS Wide-sense stationary

WSSUS Wide-sense stationary uncorrelated scattering

ZF Zero-forcing

List of Symbols
* Convolution operator

I Identity matrix

f Moore-Penrose pseudo-inverse of a matrix

S(-) Kronecker delta function

${x} Imaginary component of x

A Wavelength

(•) Inner product operator

C(-) Set of complex numbers

Q Signal constellation

R(-) Set of real numbers

Z (•) Set of integer numbers

C N { m x ,o - \) Circularly symmetric complex Gaussian distributed with mean
m x and variance a \

J o (-) Zeroth-order Bessel function of the first kind

J\f{mxi<J2x) Normally distributed with mean m j and variance ax

O(-) Computational complexity

Q(-) Symbol mapping function

Q (,) Quantization format

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s Signal space

Z{-} ^-transform

m Fourier transform

erfc(-) Complementary error function

erf(-) Error function

EH Expected value operator

PrH Probability

Tr{-} Trace of a matrix

Var[-] Variance

0 Kronecker product

Real component of x

fc Carrier frequency

I d Maximum Doppler frequency

No Noise variance

U R Number of receiver antennas

n x Number of transmitter antennas

<?(■) Q function

X* Conjugate transpose of X

X H Hermitian of matrix X

X T Transpose of X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Motivation

Wireless communication systems have evolved rapidly to meet user demands for higher

spectral efficiency, better quality of service (QoS), and higher energy efficiency. Since

the bandwidth and power are scarce resources, the capacity limitations of single antenna

systems make these systems unsuitable for many high data rate applications. Smart (i.e.,

adaptive) antenna systems have increased efficiency by using multiple antennas at one side

of the communication link (typically the less power-constrained base-station side) with a

single antenna on the client device [1]. Such systems utilize diversity schemes to miti­

gate multipath fading, use multiple channels to increase capacity, and use beamforming for

interference reduction.

As the requirements to increase the data rate and QoS have continued to rise, and while

limited bandwidth and power continue to pose severe limitations, multiple-input multiple-

output (MIMO) systems have emerged as a new paradigm for wireless communications.

MIMO systems use multiple transmitter and receiver antennas to improve the reliability

and robustness of wireless communication links and to increase the data throughput in the

presence of rich multi-path fading, without increasing the transmitted power or signal band­

width [2], While traditional wireless communication systems mitigate multipath propaga­

tion effects, MIMO is the first communication technique that exploits multipath propagation

to increase link capacity. It has been shown that in a richly-scattered channel, such as in

indoor wireless communications, for high enough signal-to-noise ratio (SNR) values, the

spectral efficiency grows linearly with the smaller of the number of transmitter or receiver

antennas [2]. This capacity increase can greatly exceed that of systems with a single antenna

at one or both ends of the communication link.

The significant theoretical advantages of MIMO technology introduce several chal-

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lenges to communication system designers. In addition to the size, cost, and complexity

of the radio front end that scales with the number of antennas, the signal processing re­

quired to recover the transmitted symbols from the jumble of received signals at the MIMO

receiver is computationally demanding [3]. For example, signal decoding using optimal al­

gorithms increases the computational complexity exponentially in the number of antennas,

which is prohibitive even for moderate number of antennas [4]. The high computational de­

mands of MIMO signal decoding at the receiver can exceed the performance available from

even high-end DSPs. Therefore, an important challenge is to investigate architecture and

circuit techniques that facilitate implementation of the required computationally-intensive

signal processing algorithms in a power-efficient and cost-effective manner.

Another important design challenge is the rapid evaluation of alternative signal process­

ing algorithms in order to reduce design time and, hence, allow faster time to market. Many

physical layer (PHY) algorithms have been proposed in the literature to meet key goals

such as high data rate and low probability of error. Thus, hardware system designers face

a large variety of alternative PHY algorithms, possibly with very different computational

complexities, that must be evaluated in the early stages of the design cycle. Decisions made

at the algorithm design phase are quite important because they have dramatic impact on

the rest of the product development process. Hence, a significant part of the design effort

must be dedicated to the simulation and verification of PHY signal processing algorithms.

Moreover, the process of candidate algorithm selection and evaluation may require several

time-consuming iterations.

While software simulations are widely used in the design and verification of wireless

communication systems, the main drawback of conventional software-based Monte Carlo

(MC) simulation is the increasingly long required simulation times. The simulation time

is mainly related to the error rate performance [5] (the lower the error rate, the longer the

simulation) and also to the channel conditions. For example, the slower the fading, the

longer the fade duration, thus requiring longer simulation times to get meaningful results.

Serial instruction execution and the lack of specialized hardware for MC simulation will

also lengthen the simulation time. Hence, the simulation time can become unacceptably

long especially when evaluating the performance of candidate algorithms that operate at

very low error rates, over slow-fading wireless channels on a general-purpose processor

(GPP).

When the MC simulation technique is used to evaluate the error rate performance of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Thesis Contributions

communication systems, the statistical properties of the inputs and also the accuracy of the

approximated models impact the simulation results. All wireless communication systems

operate over a wireless channel with adverse propagation conditions such as time-varying

multipath fading. Since the resulting error rate strongly depends on radio channel char­

acteristics, it is important to use a real radio channel when designing and testing mobile

communication systems. However, field testing to obtain empirical measurements is costly

and inflexible, preventing the more thorough exploration of alternatives. Also, propagation

conditions are almost impossible to repeat for the purpose of comparative analysis. More­

over, field testing is hard to generalize because different locations have different geometry

structures. Another option is to use commercially available but costly and bulky fading

channel emulators [6,7]. Therefore, another challenge is to accurately model propagation

characteristics for the simulation/prototyping platform. While there are various published

models for wireless fading channels, a thorough analysis of these models is required to make

sure that the chosen model reproduces the statistical properties of the real world channel as

faithfully as possible [8].

Another challenge addressed in this thesis is the accurate modeling of noise at the re­

ceiver, which is commonly modeled as a sequence of variates with a Gaussian probability

distribution function (PDF). Since small values of noise variates are readily tolerated by

systems that operate at a very low error rate, random variates near the center of the dis­

tribution do not contribute significantly to the probability of error. For a MC simulation,

the PDF of generated random numbers must be especially close to the true Gaussian PDF

at the high a regions (the tails of the PDF), where a denotes the standard deviation of the

Gaussian distribution. Since the tail of the Gaussian PDF decays exponentially, another

important challenge in the rapid performance evaluation of communication systems is the

fast generation of Gaussian variates (GVs) with accurate PDF, especially at the tails of

distribution.

1.1 Thesis Contributions

This thesis makes contributions in four areas:

• We describe the design and implementation of the fastest and most compact disclosed

digital Gaussian variate generator (GVG) with accurate statistical properties. The GVG

occupies only 1% of a single Xilinx Virtex-II XC2V4000-6 Field programmable gate array

(FPGA) and operates at 253 MHz [9], generating 506 million GVs per second within a

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1 Thesis Contributions

range of ±9.41(7. The design can be easily configured to achieve higher tail accuracy at a

small cost in extra hardware and with only slightly decreased operating rate.

• Two compact implementations of a fading channel simulator based on the sum-of-

sinusoids (SOS) approach are described. The implemented SOS-based fading simulator

uses only 1% of the Xilinx Virtex2P XC2VP100-6 FPGA and operates at 221 MHz, gener­

ating 221 million complex fading coefficients per second.

• An improved SOS-based fading channel model is presented. The proposed model

improves the statistical properties of generated fading variates compared to previously pro­

posed models. A fixed-point implementation of the fading channel simulator on a Xilinx

Virtex-II XC2Y4000-6 FPGA utilizes only 5% of the configurable resources and generates

over 200 million 16-bit fading variates per second.

• A much more compact and yet accurate implementation of a parameterized fading

channel simulator using digital infinite-duration impulse response (HR) filters is described.

A novel filter design scheme is proposed to implement both the shaping filter and the in­

terpolation low-pass filters together on a single FPGA. Conventional implementations are

commonly realized on heterogeneous architectures (usually consisting of GPPs, DSPs, FP­

GAs, etc.) to implement the required computationally-intensive multi-rate signal processing

algorithms of filter-based techniques. The new design is the first digital baseband fading

channel simulator that is realizable on a fraction of a single FPGA. The fixed-point imple­

mentation of Rayleigh fading channel simulator on a Xilinx Virtex-II XC2V4000-6 FPGA

utilizes only 4% of the configurable slices, 20% of the dedicated multipliers, and 2% of the

available memories on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million

fading variates per second. The parameterized mobile channel simulator can be reconfig­

ured to accurately simulate a wide variety of different channel characteristics.

• A flexible and compact filter processor architecture, called “Python”, is designed

to efficiently implement a multipath fading channel simulator on FPGAs. Python uses

a simple and short instruction set to generate multiple sequences of fading variates for

simulating wideband and MIMO channels. The Python filter processor uses only 2% of the

configurable slices, 9% of dedicated multipliers and 14 on-chip BlockRAMs on a Xilinx

Virtex-II XC2V4000-6 FPGA.

• An existing moderately-parallel and scalable architecture, called DSP-RAM, that

combines the single-instruction multiple-data (SIMD) and processor-in-memory (PIM) ap­

proaches to increase the performance of moderately data-parallel signal processing applica-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Thesis Outline

tions is applied efficiently to the MIMO signal decoding problem. Integrating simple fixed-

point datapaths, also called processing elements (PEs), with the local memories exposes

the enormous data bandwidth between the two, and eliminates the bottleneck that other­

wise occurs on an external bus between the memory chips and processor(s) in conventional

architectures. The DSP-RAM can be readily mapped to standard FPGAs. By efficiently

mapping the layered space-time (LST) MIMO algorithm onto the DSP-RAM architecture,

it is shown that for a typical indoor wireless environment, a 100-MHz DSP-RAM can po­

tentially provide more than 10 times greater decoding throughput at the receiver of a (4,4)

MIMO system compared to a conventional 720-MHz DSP. The degree of parallelism (i.e.,

the number of PEs) can be easily scaled up to increase the throughput of a parallel algorithm.

Also, one has the option of using increased parallelism to run at a slower clock frequency

to simplify the implementation and still meet the required processing performance.

1.2 Thesis Outline

The thesis is organized as follows: Chapter 2 starts with a review of background material

on random processes, linear systems and different transformations, and base-band signal

processing. It briefly presents two fundamental components that are used to characterize

wireless systems, multipath fading channels and noise models. Array antenna wireless sys­

tems and tradeoffs in the published transmission strategies are discussed next. The tradeoffs

in algorithm efficiency and architecture for such components are explored. The feasibility

of prototyping on FPGAs for rapidly evolving wireless standards is further discussed.

Chapter 3 presents the design and implementation of a fast, compact and accurate GVG.

In this chapter, various candidate algorithms for generating GVs are compared. The statis­

tical properties of different digital pseudo-random number generators are evaluated and

their impact on the accuracy of generated GVs is discussed. Efficient implementations of

trigonometric functions are considered. Various standard statistical tests are applied to the

implemented GVG and the test results are presented.

Chapter 4 considers modeling and implementation of SOS-based Rayleigh fading chan­

nel simulators. In this chapter, various SOS-based fading channel models are presented and

their statistical properties are compared. Two compact implementations of the most accu­

rate SOS-based fading simulator are presented. Also, a novel fading channel model based

on the SOS approach is presented. This model accurately reproduces the desired statis­

tical properties of the standard Rayleigh fading envelope. Implementation results of the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2 Thesis Outline

proposed fading simulator on several widely available FPGAs are given.

Chapter 5 presents a novel design and implementation scheme to realize a parame­

terized fading channel simulator on a single FPGA. A new HR filter design is presented

to implement the required shaping filter and interpolation low-pass filters together to effi­

ciently implement a compact fading channel simulator. Also, a flexible and compact filter

processor architecture is presented that can simultaneously generate multiple independent

sequences of fading variates for simulating wideband and MIMO channels.

Chapter 6 presents an efficient parallel algorithm and architecture for implementing

LST decoding for MIMO systems. The computational complexity of different detection

schemes, such as maximum likelihood, lattice decoders, and LST decoders, are compared.

Efficient mappings of common MIMO detection algorithms are implemented and evaluated.

Conclusions and promising directions for future work are discussed in Chapter 7.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Introduction

Typically, digital communication system designers have a set of goals to meet including

minimizing the required system bandwidth, maximizing the transmission bit rate, minimiz­

ing the probability of bit error, minimizing the required power (transmit and computational),

maximizing system utilization (i.e., to provide reliable QoS for a maximum number of users

with minimum delay and maximum resistance to interference), and minimizing the system

complexity and computational load. Other important practical and economic objectives in­

clude minimizing the time to market, the physical size, and the overall cost. In the available

design space trade-offs, decisions must be carefully made as they might strongly impact

other objectives. In this chapter, we will review architectural tradeoffs, efficiency mea­

sures for signal processing algorithms, and the significant role of hardware prototyping and

hardware-accelerated characterization when developing wireless communication systems.

This chapter is organized as follows. Section 2.1 briefly reviews the required back­

ground information that is referenced throughout this thesis. Specifically, different fre­

quency domain representations of signals, random processes and statistical properties, lin­

ear systems, multirate signal processing, baseband processing, digital modulation, and the

geometric view of signals are presented. A standard noise model for the receiver in com­

munication systems is discussed in Section 2.2. The impact of the wireless channel on the

transmitted signals is briefly presented in Section 2.3. Section 2.4 reviews the throughput of

different transmission strategies. Different measures of algorithm efficiency are discussed

in Section 2.5. The architectural design space for wireless applications is presented in Sec­

tion 2.6. Finally, the feasibility of rapid prototyping and its significance in the design cycle

of wireless algorithms is discussed in Section 2.7.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

2.1 Background

2.1.1 Frequency Domain Representations of Signals

Fourier analysis defines the frequency-domain representation of a given signal x(t) in that it

specifies the complex amplitude of the various frequency components (or spectral content)

of the signal [10,11]. A Fourier series allows a periodic signal to be decomposed into

a sum of real-valued sine and cosine waveforms (or, more generally, a sum of complex

exponentials). However, most signals are aperiodic. The Fourier transform (FT) is used

to analyze the frequency content of an aperiodic signal. The FT of the signal x (t) can be

obtained using the analysis equation

/OO

x{t) exp(-y '27r/f)d t
-OO

where x(t) can be written using the synthesis equation

/OO

X (/)e x p (j2 7 r /t)d / .

-OO

In general, the FT X (f) is a complex function of frequency / that may be expressed in the

form

X (f) = \ X (f) \ ^

where the amplitude function |X (/) | is called the continuous magnitude spectrum of x(t)

and 9(f) is the continuous phase spectrum of x{t). The result of computing a Fourier

transform is sometimes referred to as the Fourier spectrum or simply the spectrum. The FT

analysis and synthesis equation can also be written in terms of angular frequency u as

/OO

x(t) exp(—ju t) d t , and
-OO

1 f ° °
x (t) = — J X(u j) e xp (j u t) du ,

respectively.

Assume a signal x(t) is sampled at intervals Ts = 1/ FS, where the &>th sample corre­

sponds to x(t = kTs), and the last sample is at k — K — 1. If the signal is causal (i.e.,

the first sample is at k = 0), giving a total K samples, the discrete-time Fourier transform

(DTFT) of x(t) can be written as

x u) = £ z[fc]exP (i 2™ k y (2-1)
k=0

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

By assuming a finite number of data points, we implicitly assume that x (t) is periodic with

a period of K samples (or K T S seconds). Hence we need to evaluate the above equation

at zero frequency and at harmonics of the fundamental frequency f 0 = l / (K T s) = Fs/ K

(i.e., K discrete frequencies 0, /„ , • • • , (K — 1) / 0). We can write the DTFT of x(t) by

simplifying equation (2.1) using the time index k and the frequency index n as

The reason that n = 0 ,1 ,, • • • , K j 2 is that since the discrete signal x[k\ is sampled at

Fs, then the signal has image components above Fs/ 2. In other words, the DTFT of a

signal x(t) is periodic in the frequency domain. When evaluating equation (2.1), it is only

necessary to evaluate it up to Fs/ 2 (i.e., first K / 2 — 1 discrete frequency samples). Thus

we need only one period of X(e>w) (i.e., u> G [0, 27t] or [—tt, ir], etc) for analysis and not

the whole infinite domain. The inverse DFT can be written as

A fast technique to calculate the DTFT of a signal is the fa st Fourier transform (FFT)

algorithm that takes advantage of the fact that the calculation of the coefficients of the DTFT

can be carried out in an iterative manner [11]. It is shown that to compute the DTFT of a

sequence of K samples using the FFT algorithm, in general K log2 K complex additions

and K log2 K complex multiplications are required (compared to direct implementation

that requires K (K — 1) complex additions, K 2 complex multiplications) [12]. Hence, by

using the FFT algorithm, the number of arithmetic operations is reduced by a factor of

K / log2 K which is considerable savings for relatively large K values.

2.1.2 Random Processes

Many random phenomena are functions of time. Consider a random experiment specified

by the outcome (fc from some sample space f2 = {Ci, C'2 , ■ • • } with a probability Pr(Cfc).

A function of time can be assigned to every outcome ^ that generates a sequence X (t , £).

Hence, X (t . C) can be viewed as a function of two variables. When £ has a fixed value

Oc and n is treated as independent (non-random) index variable, the X[n, Oc] is called a

realization or a sample sequence of the random process. We can think of X [n, £fc] as a

vector of (possibly) infinite duration where the entire sequence is generated from a single

K - 1

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

outcome of the underlying experiment. When £ is treated as a variable and n = is

fixed, X[nfc,C] is a random variable (RV). When both £ and n are fixed, then X[rik,Ck]

is a number x. X [n, £] with both £ and n treated as variables is called a random process

(RP) or stochastic process [11]. A RP X[n, £] is thus a set of indexed RVs, one RV for

each index variable n. If f is a continuous time variable then X (t , £) is a continuous-time

random process, and if t is a discrete time index then X [n, £] is a discrete-time random

process or a random sequence. The set of all possible sequences, {A[n, £]}, constitutes

an ensemble of sample sequences. The number of possible sample functions in such as

ensemble is usually assumed to be extremely large; often it is infinite [11]. We sometimes

suppress the £ to simplify the notation and use X[n\ to denote both random sequences and

single realizations.

2.1.2.1 Specifying Random Variables

We are typically interested in specifying the joint behaviour of random variables within a

family (i.e., the stochastic process at various time instants). Here we will start with random

variables and then we will present important statistical properties of random processes.

A random variable X (£) represents the functional relationship between a random event £

and a real number x . For notational convenience we denote X (£) by X . The distribution

function F x (x) = P r(X < x) represents the probability that the value of random variable

X is less than or equal to a real number x, and is called the cumulative distribution function

(CDF). The probability density function (PDF) is defined as f x (x) = &Fx{x)/&x. Thus

the probability of an event X over the domain interval [xi, x 2] equals

P r(* i < X < x 2) = P v (X < x2) - P r(X < x x) = Fx (x2) - Fx (x 1) = / f x (x) dx.

In other words, the probability of the events {xi < X < x 2} is the area under the PDF over

the domain x i < X < x 2. The probability that X has a value x can be written as

In the limit as A x approaches zero, P r(X = x) = f x (x) . The mean m x or expected value

E[AT] of a random variable X is defined as

P r(x < X < x + A x) « f x (x) Ax.

or
X

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

for a continuous-valued and a discrete-valued random variable X , respectively, where E[-]

is the expected value operator. The variance of X is defined as

/OO

(x - m x)2f x (x) d x = E [(X - m x) 2] = E [X 2] - m 2x
-OO

where E [X 2] is called the mean-square value of X . Similarly, for complex-valued random

variables, the variance is defined as

a \ = E [|X |2] - |E [X]|2 = E [XX *] - E[X](E[X])*

where X* denotes the complex conjugate of X .

Consider a pair of random variables X \ and X 2. The joint moment Ej.X1 .X2] is defined

as their correlation. The correlation of centered random variables X i — E[Xi] and X 2 —

E[X 2] is

E [(X i - m x i) (X 2 - m x 2)] = E [X iX 2] - m x 1m x 2

and is called the covariance of X i and X 2. Two random variables are uncorrelated if their

covariance is zero, which is equivalent to E [X iX 2] = E[X i]E[X 2] = m x 1m x 2. Statistical

independence can be applied to random variables defined on a sample space generated by

combined experiments or by repeated trials of a single experiment. If the experiments result

in mutually exclusive outcomes, then the probability of an outcome in one experiment is

independent of an outcome in any other experiment. Multidimensional random variables

X i , • • • , X n are said to be statistically independent if and only if

f (x i,X 2, - ” ,Xn) = f x 1(x i) f x 2(X2) ■ ■ ' f x n(xn)

or equivalently

F (x ,®n) = FX l { x\)Fx2{X2) ■ ■ ■ FXn{xn).

If X i and X 2 are statistically independent, then they are also uncorrelated; however, if

they are uncorrelated, they are not necessarily statistically independent. X i and X 2 are

orthogonal when X \ and X 2 are uncorrelated and either one or both of the random variables

has zero mean (i.e., E [X iX 2] = 0).

2.1.2.2 Specifying Random Processes

Similar to statistical averages for random variables, statistical averages can also be de­

fined for stochastic processes. Such averages are called ensemble averages. A RP can be

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

specified by its joint probability on X (t \) , ■ • • , X (t m) over all finite sets of time indexes.

Commonly, a RP is described by its mean and autocorrelation functions. The mean m x (t k)

of stochastic process X (£) is a function of time and defined as

/OO

x f x (t k) (x)dx
■OO

where X(tf~) is a random variable obtained by observing the random process at time £&

and f x (t k)(x) is the PDF of X(t k) (the density over the ensemble of outcomes at time

ffc). The autocorrelation R x (h , h) is a function of £ 1 and £ 2 and is defined as the joint

moment of X (£i) and X(£2) (random variables obtained by observing X (t) at times £ 1 and

£2 , respectively)

R x (t i ,£ 2) = E [X (£ i)X (t2)]

where if X (£) is a complex-valued random process

R x (t 1, h) = E{ X(t l) X* (t 2)}.

The auto-covariance K x(£ i, £2) is defined as the covariance of X { t \) and X(£2) as

Kx (£i ,£2) = e [(X(£!) - m x (h)) { X (t 2) - m x (t2))'

If the process is zero mean (i.e., E[X(£)] = 0 for each £) then K x (£1 , i 2) = E [JC (£2)] -

The variance of X{ t) can be obtained from K ^(£ i, £2)

Var [*(£)] = K x (t , t) = e [(X (£) - m x (£i))2' .

The cross-covariance K x y (£ i,£ 2) of X{ t) and Y (£) is defined by

K x y (£ i,£ 2) = e [(X (£ i) - m x (£ i)) (F (£ 2) - m y (t2))

= R x y (£ i,£ 2) - m x (t i) mY (t2)

where R x y (£ i, £2) = E [X (£ i)Y (£2)] is the cross-correlation. Similarly, the covariance of

two real-valued random vectors X and Y can be defined using a covariance matrix as

Kx y = E [(X - E[X]) (Y - E [Y])] .

To specify the covariance matrix of two complex random vectors, four real-valued matrices

are required
K XiYi K XiYq
K X qYi K XqYq j

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

Two stochastic processes X (t) and Y (t) are orthogonal if R x y (t i , h) = 0 for all fi and

t 2 - The processes X (t) and Y (t) are said to be uncorrelated if K x y i t i t h) = 0 for all t \

and t% (i.e., R x y (h , t 2) = E [X (ti)]E [Y (f 2)])-

A random process X (t) is a Gaussian RP if the random variables X \ = X (t i) , ■ • • ,

X k = X (t k) are jointly Gaussian random variables for all k and all choices of t \ , • • • , t^. If

X[n] is a sequence of independent Gaussian random variables with mean m x and variance

o 2x , then (1) the sum process has mean n m x and variance n a \ , and (2) the covariance

matrix for i i , • ■ ■ , ffc is K x (U , t j) = ax I. A zero mean Gaussian process X (t) is a zero

mean RP for which, for any integer m > 0 the RVs X (t i) , • • • , X (t m) are jointly Gaussian

(and, of course, zero mean). For a RP X = (X i , X 2 , • • • , X m), the covariance between

each pair of RVs can be represented by the covariance matrix K x = R [X X T]. For a vector

of normalized independent and identically distributed (i.i.d) Gaussian RVs, R \X iX j \ = 0

for i ^ j and one for i — j . Thus K x = I m.

A complex-valued random process can be written as Z{t) = X (t) + j Y (t) where

X (t) and Y (t) are random processes for the real and imaginary components, respectively.

The complex-valued random process is commonly used in the representation of narrow­

band band-pass signals and noise in terms of equivalent low-pass components. Important

properties of Z(t) can be expressed by its autocorrelation function (ACF) defined as

Rzz(<i,*2) = lElZfaJ.Z'tfe)] = lE [[(X (tO + jY(t,)] [(X(t2) - }Y{ t2)\]

= + 1 ^ 2) + j [R .Yx(t i , t2) - R x y (t i , t 2)] j ,

where R z z (h , t 2) sometimes denoted by R z (h , h)-

2.1.2.3 Stationary Random Processes

Many random processes have the property that the nature of the randomness in the process

does not change with time. In fact, an observation of the process within the time interval

(t \ , <2) exhibits the same statistical properties as an observation in some other time interval

(to + r, t \ + r) . In this case, the random process is called a stationary RP. A RP is stationary

in the strict sense if none of its statistics are affected by a shift in time. The mean (and

variance) of a stationary RP is constant and independent of time as

m x (t) = m x - (2.2)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

Also, the auto-correlation and the auto-covariance of X (t) can depend only on the time

difference £ 2 — h where

R x (t u t 2) = R x (i 2 - t i) = R x (r) = E [X (t)X (t + r)] = E [* (t + r) X (f)] ; V ii,t2

K x (ti)f2) = K x i h — ti)', V fi,t2. (2.3)

The conditions in Equation (2.2) and (2.3) are not sufficient to guarantee that X (t) is strictly

stationary. However, if these conditions hold, then X (t) is wide-sense stationary (WSS) or

stationary in the wide sense [11]. Typically, in communication systems random processes

are considered complex WSS. Also, for practical applications, it is not necessary that a RP

be stationary for all time, but only over some observation interval of interest. A complex RP

is WSS if its real and imaginary parts are jointly WSS. For a complex-valued WSS random

process,

R x (r) = E [X (t + r)X * (t)]

where R x(0) = E |X (i) |2 is the second moment of the samples. If the WSS RP is

discrete then

R x[m \ = E [X[k + m\X*{k}]

where m = k — % and Rx[0] = E[|X[fc]|2] can be interpreted as the power of the random

process.

Consider two random processes X \ (t) and X 2(t) with A C F R x ^ t i , f 2) and R x 2

respectively. The two cross-correlation functions (CCFs) of X \ (f) and X 2 (t) may be de­

fined as

R'A’i,X2(<l)f2) = E [X i(f)X 2(f)]

R x 2,X i (t i , t 2) = E[2f2(f)X ! (t)].

The correlation properties of the two RPs can be expressed as a correlation matrix as fol­

lows:
Rxi(h,t2) R-XiX2(^1) 2̂)

R x 2X i (t l , t 2) R-X2(t l , t 2)R (t u t 2) =

2.1.2.4 Power Spectral Density

A stationary RP is an infinite energy signal and thus its FT does not exist. The power spec­

trum of a random signal is obtained by computing the FT of the ACF, that is the distribution

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

of power with frequency. If X (t) is a WSS RP with mean m x and ACF R x (r) , then the

power spectral density of X (t) is given as

/OO

R x (r) e - ^ TdT

-OO

where #[•] denotes the Fourier transform operation. Similarly, for a discrete-time WSS

random process with mean m x and ACF R x [k], the PSD can be written as

OO

G x [/]= f f{ R x [fc]} = £ R x [k] e ~ ^ k .
k = —oo

G x [/] is periodic in / with period one and hence we need only consider frequencies in the

range of —1/2 < / < 1/2. In other words, G x [/] = G x [/ + k] for k = ±1 , ± 2 , • • •. This

is a characteristic of the Fourier transform of any discrete-time sequence such as R x [n\

[11].

2.1.3 Linear Systems Response to Random Signals

Signal processing typically involves transformations from a time function into one or more

other functions. If x(t) is the input to a linear system and y(t) is the system output,

/OO

h{T' ,t)x{r) d r
-OO

where the operator * denotes the convolution (which has commutative, associative, and

distributive properties) and h(r; t) is the system’s impulse response. The system is real if its

impulse response is real-valued and complex if its impulse response is complex-valued. The

response of a linear time-invariant (LTI) system (i.e., holds additive and scaling properties)

to an arbitrary input x(t) is

/oo ro c
h(r) x (t — t) d r = / h(t — t) x (t) d r (2.4)

-OO J — OO

where h(t) is the impulse response of the LTI system, r is the excitation time and t is the

response time. h(t — r) can be thought of as being h(r) folded in time and delayed by

t. The relation (2.4) is called the convolutional integral and it shows that an LTI system is

completely specified by its impulse response. A system is called stable if every bounded

(finite) input produces a finite output. For LTI systems, a necessary and sufficient condition

for stability is that the impulse response must be absolutely integrable J2%L-<x> IMn ll < 00

[10]. A system is called causal if the output for n = no depends only on the values of the

input for n < no. For LTI systems, this implies that the impulse response sequence is zero

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

for n < 0. Thus the lower limit of integration in (2.4) can be changed to zero if the system

is causal.

If x \n] is a discrete-time signal that results from sampling a continuous-time signal,

then x[n] can be written as
OO

x[n] = ^ 2 *[&] &{n ~ k]
k = —oo

where (5[n] denotes the Kronecker delta function in discrete time. Output y[n] can thus be

expressed as
OO OO

y[n] = ^ 2 *[^1 h[n — k } — ^ x[n — k]h[k\.
k = —oo fc=—oo

If we assume that the input is a sequence x[n\ = eJwn of complex exponentials, then
OO OO

y[n] = J 2 /j[fc]eiw M) = e3’“n (J 2 h \ k \ ^ jujk) = e junH { e ^) .
k = —oo k = —oo

Thus, the complex exponential sequence is an eigenfunction of LTI systems where

the output response to sinusoidal input is sinusoidal with the same frequency as the input

and with an amplitude and phase determined by the system (i.e., H { e ^)) . The eigenvalue

H (e ^) is called the frequency response or the transfer function of the system. We can

see that frequency response of an LTI system is simply the FT of the impulse response as

follows

h[n] = ^ ~ T H{e>u) e ^ ndw.2tt J _7r

Since iJ (e JW) is a periodic function of the frequency with period 27r, we need only specify

H (e iu) over an interval of length 2n. In general i f (e JW) is complex and can be represented

in polar form (i.e., in terms of magnitude and phase) as

H(e>u) = \H(eju,)\ej ^ H(-ej^ .

Since the convolution of a pair of time functions is transformed into the multiplication

of their Fourier transforms, we can write

Y (e ^) = H (e juJ)X{e jul) (2.5)

where the magnitude and phase of the FTs of the system input and output are related by

|Y (e ^) | = \ H { e n \ . \ X { e n \ (2.6)

Z Y (e ^) = ZH{e>“) + / . X (e j u). (2.7)

nonum ber (2.8)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

Here \H{ePu)\ is the magnitude response or amplitude response and / . H (e ^) is the phase

response or the phase shift of the LTI system. As given in Equation (2.6), if |7f(eJW)| is

small for a particular range of frequencies, then the frequency components of the input are

suppressed in the output for those frequencies.

An alternative representation of a discrete-time linear system can be expressed using

the z-transform of h[n] as

OO
H[z] = Z[h\n]\ = ^ 2 h[n\z~~n

n = —oo

where z = \ z \e ^ is a complex variable, \z\ is the attenuation and cu is the real angular

frequency. Multiplication of h[n] by z ~ n corresponds to delaying the input sequence by

n samples. The function \z\ = 1 (or z = = ej2?r^ = e70, if the unit of frequency

is in radians/sec, hertz, or radians/samples, respectively) denotes a circle of unit radius in

the complex z-plane and is called the unit circle. The complex function H[z] is called the

system function or transfer function. The values of H[z] when evaluated on the unit circle in

the z-plane give the frequency response. Similarly, it can be shown that [10] the z-transform

of the output of an LTI system is related to the z-transform of the input and the z-transform

of the system impulse response as

y W = H (z)x (z)

where any LTI system is completely characterized by its system function H{z) .

An important class of LTI systems are the ideal frequency-selective filters (systems)

where the frequency response is unity over a certain frequency ranges (i.e., \H{e?“)\ = 1)

and zero elsewhere. This implies that the filter passes complex exponentials at one set

of frequencies and completely rejects the complex exponential at other frequencies. Filters

usually are described in the time domain by their impulse response h{t), or in the frequency

domain by their magnitude frequency response |.H"(u>)|. h(t) is usually derived from the

filter’s frequency domain description rather than directly in the time domain and is usually

expressed in complex low-pass equivalent form (explained below).

Among four common types of filters (i.e., low-pass, high-pass, band-pass and band-

stop), the low-pass filter (LPF) has been used the most since the transfer function of other

filters can be computed from the normalized low-pass filter through a standard transforma­

tion of variables [13]. The LPF selects the low-frequency components of the signal and

rejects the high-frequency components. An ideal LPF with cut-off frequency uic can be

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

defined as a discrete-time LTI system with the frequency response

= !or[0 for (jjc < |w| < 7r

that is periodic with period 2n. Note that since the frequency response of discrete-time

sequence is periodic, it is completely specified by its behaviour over the domain — tt < u> <

—7r. The corresponding impulse response is given by

u l 1 r c i u n A sin u cnh\n\ = —— / eJ auj = -----------, —oo < n < oo
2tt J _ Wc n n

which implies that the ideal LPF is non-causal (h[n] ^ 0 for n < 0) and also is not abso­

lutely summable. The sequence h[n] approaches zero as n approaches infinity (implying

that H(e>ul) has discontinuity at u = u>c). Moreover, the phase response is zero.

Since the impulse response of an ideal LPF extends from — oo to oo, the output of

an ideal LPF cannot be completed with finite computation. A class of practical LTI sys­

tems that can be implemented as an approximation to ideal frequency-selective filters cor­

responds to the constant-coefficient difference equation. This class is further explained and

utilized in Chapter 5.

2.1.4 Baseband Processing

Two particular sequences are extremely important in analyzing digital communication sys­

tems: sinusoidal sequences and complex exponential sequences. A sinusoidal sequence has

the general form of

cc[n] = Acos(a;on + </>), n e Z

where uiq is the frequency of the sinusoid and <j) is the phase. For a periodic sequence with

period IV G Z

A cos(u>on + <f>) = A cos(a>on + uiqN + (p)

which is true for uiqN = 2nk. A complex exponential sequence can be written as

x[n] = |A |e^w°n+^ = \A\ cos(uJon + 4>) + j \ A \ sin(won + <j>)

where the real and imaginary parts of exp [j(uon + <j>)] vary sinusoidally with n. For any

complex exponential sequence of period N

eju0(n+N) __ ejw0n

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

is true for loqN = 2irk. Two important points regarding these signals are: (1) Depending

on the value of too, the complex exponential or sinusoid sequence may not be periodic at all

(e.g., if wo = 1 there are no integer values for N or k that satisfy the periodicity). (2) For

a discrete-time sinusoid signal as uoq increases from 0 to 7r, x\n\ oscillates more and more

rapidly, and as too increases further from 7r to 27t, the oscillations becomes slower. Thus,

for complex exponential and sinusoid signals, values of too in the vicinity of uiq = 2nk for

k € Z are referred to as low frequencies (relatively slow oscillations), while values of u>o in

the vicinity of too — (tr + 2irk) are referred to as high frequencies.

2.1.4.1 Base-band Signals Representation

Consider a real-valued signal s(t). The signal s(t) is a band-pass signal if its FT S (f)

is non-negligible only in a band of frequencies over total bandwidth 2W centered about

some carrier frequency f c. In the majority of communication systems the bandwidth 2W

is much smaller compared to / c, and thus such a signal is referred to as a narrow-band

signal. A band-pass waveform is also called a digital waveform (although the waveform

is sinusoidal and is analog) because it is encoded with digital information. The band-pass

signal (sometimes is called the carrier) s (t) can be expressed as

s(t) = a(t) cos 9{t) = a(t) cos [27r/ct + cf>(t)\

where a(t) is the time-varying amplitude called the (natural) envelope of the band-pass

signal s (t) and 9(t) is the time-varying angle. 9(t) is typically denoted as 9(t) = 2rrfct +

<j>{t) where toc = 2ir / c is the radian frequency of the carrier and 4>{t) is the time-varying

phase of the signal.

The band-pass signal sit) also can be written as

s{t) = $l{st(t) exp(j27r/ct)} (2.9)

where s f t) is the complex envelope of the signal (i.e., base-band message or data in com­

plex form) and e-?27r̂ ot is the carrier in complex form. The process of multiplying these two

signals is called modulation and s{t) (i.e., the real part of the product) is the transmitted

signal. The spectrum of the complex envelope si(t) is limited to the band —W < f < W

(typically less than a few MHz) and centered at the origin [12], Thus si(t) is a low-pass sig­

nal. During modulation the base-band waveform s; (t) is frequency translated by a carrier

wave to a frequency that is much larger than the spectral content of si(t).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

In general, si(t) is a complex-valued signal that can be expressed as

Si(t) = sH(t) + j s lq(t) = \si(t)\ejeW (2 .10)

where \si(t)\ = ^ s 2u (t) + sfq(t) and 9{t) = ta n 1 siq(t) / sn (t) are both real-valued low-

pass functions. Note that both su(t) and su(t) are limited to the band —W < f < W . A

band-pass signal s(t) in (2.9) can be produced by a quadrature type modulator as [11]

s(t) = su(t) c o s (2 t t f ct) - Siq(t) sin(27r/cf).

Whether we represent the band-pass signal s(t) in terms of its in-phase and quadrature

components, or in terms of its envelope and phase as in (2.10), the information content of

s(t) is completely represented by the complex envelope si(t).

Let the signal s(t) be applied to an LTI band-pass system with impulse response h(t)

and transfer function H(f) . The output also is a band-pass signal y(t) = h(t) * s(t) [11].

The analysis of a band-pass system, which is complicated by the presence of the multiplica­

tive factor exp(j27r/cf), can be replaced by an equivalent (but simpler) low-pass analysis.

According to the equivalence theorem [12], performing band-pass linear signal processing

followed by frequency translation down to the base-band yields the same results as first

converting the band-pass signal to base-band, then performing linear signal processing to

the base-band signal. The complex envelope yi(t) of the output signal of a band-pass sys­

tem can be obtained by convolving the complex impulse response hi (t) of the system with

the complex envelope si(t) of the input band-pass signal and can be written as

Vl(t) = Vi(t) + 3Vq{t) = [hu(t) + j h iq(t)] * [sK(i) + j s lq(t)) (2.11)

Using the distributive property of convolution in Equation (2.11), the in-phase and quadra­

ture components of the complex envelope yi(t) can be written as

yi (t) = hu (t) * SU (t) - hiq (t) * Siq it)

Vq{t) = hiq(t) * SU(t) + h u (t) * Slq(t).

Thus evaluating the response of a band-pass system to an input band-pass signal requires

four convolution operations and two addition in the low-pass equivalent model. The final

output y(t) can be written as y(t) = 5R[j/j(f) exp(,7'27r/cf)] .

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

2.1.4.2 Modulation

A (message) symbol rrn is a group of q bits drawn from a finite symbol set or constellation

Q where the size M of alphabet is 2q. Each signal in an M -ary constellation (alphabet) can

be related to a unique sequence of q bits. For a base-band transmission, each m* will be

represented by one of the base-band pulse waveforms g i (t) , where i — 1, • ■ • , M . Thus we

will use the terms symbol and waveform interchangeably. For typical band-pass transmis­

sion, each g i (t) pulse will be represented by one of the band-pass waveforms S i (t) . Hence,

first the incoming binary data is mapped into complex symbols, then the sequence of com­

plex symbols are mapped into base-band waveforms, and finally, base-band waveforms are

modulated to pass-band signals.

Band-pass modulation is the process by which an information signal (digital symbol

with duration Ts) is converted to a sinusoidal waveform. Translation (or shifting) of the

spectmm of a low-pass or base-band signal si(t) to a higher frequency involves multiplying

the base-band signal with a carrier waveform cos(2ir f ct). This operation can be explained

by the following two important properties of the Fourier transform

Thus if a signal s (t) is time-shifted by to , the amplitude of S (f) is unaffected but its phase

is changed by —2 n f cto. Conversely, multiplication of s(t) by a complex sinusoidal factor

e x p (j2 7 r /fo) is equivalent to frequency-shifting its FT in the positive direction by / c.

Since each modulated sinusoid s(t) = a(t) cos[uct + can be distinguished from

other sinusoids with three available parameters (i.e., amplitude, frequency, and phase), dif­

ferent modulation techniques have been introduced [11]. For example, phase shift keying

(PSK) modulation scheme uses

where Ts = log2 M.T& is the symbol duration, is the time duration of each data bit, E s is

the symbol energy and the phase term has M discrete values f i = 2 m / M . Clearly, binary

PSK (BPSK) uses M = 2 and shifts the phase of waveform s*(f) to one of two states zero or

7i\ In PSK modulation scheme, the signal constellation is chosen such that the amplitude is

the same for all signal points, by placing the signal points on a circle in the complex signal

space. In this scenario the transmitted information is carried by the phase of the carrier. In

s(t - t 0) S (f) e x p (- ;2 7 r / t0)

s(f) exp(j27r/f0) ^ S (f - /„)• (2 .12)

S

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

(a)
Binary
data

Message
signal ■
a,U)

Encoder
b{t) Product

Modulator

cos(2 7tfct)

Product

(b)

Message
signal
b,(t)

cos(2^ f c t)

[-90° phase-shift |

s in (2 ^ /cr)

Product
Modulator

BPSK
signal

QAM
signal
sAO

Figure 2.1: (a) BPSK modulator, (b) QAM modulator.

QQ

1110 1111

1100 1101

-3d
-4 I

̂ _
010 0''

t
110 [

on
"\001

\

• 000 1

\
?

/

111 P 100
' I y-—' '101

(a) 1 6 - Q A M c o n s t e l l a t i o n (b) 8 - P S K c o n s t e l l a t i o n

Figure 2.2: Two different constellations.

the more general case such as quadrature amplitude modulation (QAM), both amplitude

and phase are allowed to change between signal alternatives [11]. A QAM signal can be

expressed as

Si(t) = cij(f) cos(woi) + bi(t) sin(u>oi)

where [a j(f), 6;(i)] denotes the i-th signal point in the QAM constellation. The block dia­

gram of BPSK and QAM modulation are shown in Figure 2.1.

One common constellation is to place the signal points on a regular rectangular grid

in the signal space. For example, in a 16-QAM modulation scheme, the signal points

are spaced with the distance 2d along the axes, as shown in Figure 2.2(a). Assume

each complex signal point s*. is represented as = s; + j s q. When M is an even

square (e.g., 16), there will be \ [M possible amplitudes for both S{ and sq. In fact, s* e

{± d , ±3d, • • • , ± (V M — l)d} and sq € {±d, ± 3 d, • • ■ , ± (\ /M — 1)d}. While the signal

power is proportional to the distance from signal point in the constellation to the origin,

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

the probability of error is related to the distance between the signal points in the constel­

lation [12], The energy of the signal Sk(t) is Ek = ||s’/c(i)||2 = ||sfc||2 and the distance

between Sk(t) and sm (t) is ||Sk(t) — sm(f)|| = ||sfe - sm ||. Clearly, as M increases, the

energy must be increased to allow the minimum distance between points to remain at the

same value (i.e., to maintain a fixed error rate).

To transmit the symbol m u the digital waveform Sj(£) will be transmitted over Ts sec­

onds. The data (bit) rate can be written as R — log2 M / T s bits per second (bps). Similarly,

the symbol rate can be written as R s = R / log2 M . Thus the modulator yields an output

symbol rate R s that is a factor of log2 M smaller than the input data bit rate R. The band­

width efficiency of a digital communication system that transmits log2 M bits in Ts second

using a bandwidth of W Hz can be expressed as

Note that in practice the occupied bandwidth is W = R s(l + a) where a is excess band­

width factor [10]. The a factor is due to the fact that the shaping filter uses a raised cosine

filter where its sharpness is described by the a. If the filter has a perfect (“brick wall”)

characteristic with sharp transitions (i.e., a = 0), the occupied bandwidth would be equal

to symbol rate.

2.1.4.3 Multirate Signal Processing

A real signal x(t) is band-limited if there exists a finite frequency / such that X (j '27t /) is

zero for f > W where W is called the signal bandwidth. A band-limited signal a;(t) with

bandwidth W can be reconstructed from its samples values x[n] = x[nTs] if the sampling

frequency Fs = 1 /T S is greater than twice the bandwidth W of x(t), i.e., Fs > 2W (or

Ts < 1 /2WO [10]. The sampling rate 2 W for a band-limited signal is called the Nyquist

rate. It is shown in [10] that the signal x(t) can be reconstructed from its discrete-time

samples as follows

For a pass-band signal, the bandwidth W is defined as the bandwidth of the positive

frequency part only (i.e., —W j 2 + f c < / < W^/2 + f c) and negative frequencies are not

counted. The frequency of the equivalent base-band signal is — W / 2 < f < W /2 , which

implies that the bandwidth is W^/2. Thus the complex base-band signal has half of the

bandwidth of the corresponding pass-band signal. If W is the double sided bandwidth of

(t) = x[nTs} s in c (- ynT s) (2.14)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

the base-band signal si(t) (i.e., the spectrum is non-zero only fo r - W n < W < W p, where

W = W n -f W p), then the sampling frequency of the quadrature branches of base-band

signal each should be at least Fs > W . This should not be confusing as some interpretations

use the highest frequency component as W (so if the lowest signal component is —W , then

double sided bandwidth is 2W) and the sampling frequency must be Fs > 2W .

According to (2.5), if x(t) is bandlimited to W \ and h(t) is bandlimited to W 2 , then y(t)

can be reconstructed without error if Fs > 2W where W = max(Vt/i, W 2). If a system

has several signals (or processes) with different bandwidths W\, • • • , W n, then sampling at

a single rate Fs = 2W , where W = max(H/i, • • • , W n), may entail unnecessary compu­

tation when the W f s are relatively different. In addition to being inefficient, using a single

sampling rate may introduce additional round-off errors due to the redundant computations.

A more efficient processing scheme is for each random process (signal) to be sampled at a

rate just sufficiently fast to satisfy the sampling theorem for that signal.

One feature of multi-rate digital signal processing systems is that the sampling rate of

individual signals may have to be increased or decreased, leading to the two fundamental

operations of interpolation (or up-sampling) and decimation (or down-sampling), respec­

tively. If the original sampling rate is Fs (i.e., the input signal is bandlimited to half sam­

pling rate), then to increase the sampling rate by an integer factor I , the output sequence

should first be up-sampled by inserting I zero samples between each input sample. As a

consequence, all the spectral images within [—I F s/2, I F S/ 2} of the input spectrum appear

at the output signal at the multiples of the input sample rate Fs. Then an interpolation low-

pass filter (ILPF) is typically used to retain only the desired spectral components. The ILPF

operates at a higher sampling rate than Fs, thus a flexible and yet computationally efficient

scheme is desired. A polyphase structure is an efficient scheme that uses I parallel branches

operating at the lower sampling rate [10]. For a sampling rate conversion by any rational

factor I / D , the signal is first interpolated by I and then decimated by an integer factor D.

2.1.5 Geometric View of Signals and Transformations

A geometric (vector) view of signals is useful for representing base-band signals. A signal

space S is a vector space that consists of a set of vectors that represent waveforms. Each

waveform is represented by a finite-energy complex function s(t). The function s(t) can be

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1 Background

represented as a vector s where

lls ll2 = / \s(t)\2dt
J —OO

is the energy in s. A set of vectors, s i, ■ • • , sn in a vector space <S is linearly dependent if

Y a =i aiSi = 0 for some set of scalars a* that are not all equal to 0. Equivalently, the sets

is linearly dependent if any one of those vectors is a linear combination of others. A set of

vectors is linearly independent if Y^i= i a isi ~ 0 only if each on = 0. The dimension of a

vector space is the number of vectors in the largest linearly independent set in that vector

space. The inner product of two vectors x and y is defined as

Two vectors x and y are orthogonal if and only if (x, x) = 0. Clearly, (x, x) = Y a - \ \x i I2 =

| |x | | 2 where ||x || is the norm of the vector x (i.e., the distance from 0 to x or the length of

x). Since the length or norm of a signal is the square-root of the signal energy, the energy

of the difference of two signals can be interpreted as the square of the distance between the

two signal vectors. When the receiver is aware of the set of possible signal waveforms, it

uses the minimum distance criterion to choose the signal from the set of known symbols

that is closest to the received signal as

where y is the received signal (vector), sm is the m-th signal chosen from a set of known

signals {sm, 1 < m < M }.

Consider the linear transformation H s = y. For every linear transformation, there

is one and only one corresponding matrix. This transformation can be represented by the

matrix-vector notation H s or by a system of equations. The transpose of H , denoted as H r ,

is the matrix obtained from H when the rows and columns are exchanged. One important

property of the transpose operator is that (A B)r = B TA r . A square matrix H e R nXn

is orthogonal if H H r = I, where I is an identity matrix. Thus an orthogonal matrix is

always invertible. If H is orthogonal, then its columns h i , ■ ■ • , h n (or its rows) form an

orthonormal basis for Rn (i.e., |h ;| = 1 and (hf, h j) = 0 for all i ^ j) . If there is a vector

vR n ^ 0 such that H v = crv for some scalar a, then a is called the eigenvalue of H with

corresponding (right) eigenvector v . The minor of an n x n matrix H is the determinant of

k x k matrix M obtained from H by deleting n — k rows and n — k columns of H where

N

(2.15)

m in { ||y — sm ||2} = min { ||y ||2 + ||sm ||2 - 23?{(y, sm)}} (2.16)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Noise Models at the Receiver

k < n. The cofactor C y is defined as C y — (—1)®+J-M y and is used to compute the

determinant o f a matrix as |H | = /iy C y .

The conjugate of H G Cnxn, denoted by H*, is obtained from H when each elements

of H is replaced with its complex conjugate. The complex conjugate operator is distributive

under complex addition and complex multiplication. The conjugate transpose matrix (also

called the adjoint matrix) is defined as = (H *)T where (A B)H = A H. A square

matrix H G C n x n is a hermitian matrix if H = H ^ . A square matrix H G C nxn is unitary

if H ^ H = H H W = I or H 77 = H -1 . Also, if H is unitary, then (a) H is non-singular

(i.e., its determinant is nonzero and thus it has a matrix inverse) and H h = H -1 , (b) H H

is unitary too, (c) the columns (the rows) of H form an orthonormal basis for C n. If the

columns of H form an orthonormal set, then applying H to a vector does not change its

length (i.e., |H s | = |s|).

2.2 Noise Models at the Receiver

In digital wireless communication systems there are various sources of error-performance

degradation such as noise, fading, and interference due to the filtering at the transmitter

and receiver and also bandwidth-limited channel [12]. Noise is defined as unwanted and

usually uncontrollable signal components that distort the intended signal. For example,

noise signals can arise from harmonics of the natural frequency, atmospheric disturbances,

and crosstalk from other communication systems.

Two common noises at the receiver are thermal noise and quantization noise [12]. Ther­

mal noise in a circuit is primarily due to the random fluctuations of electrons. Quantization

noise in a digital system is due to distortions caused by conforming to the finite word length

that is available to represent a signal. It is commonly assumed that a noise source at the

receiver emanates an equal amount of power per unit bandwidth at all frequencies. This

implies that the noise, on the average, has just as much power per hertz in low-frequency

fluctuations as in high-frequencies, which can go up to about 1012 Hz [12]. A correspond­

ing random process X (t) for representing noise has a flat PSD over all frequencies of in­

terest (positive and negative) with fixed amplitude G x { f) = N 0/2 W/Hz. The factor 1/2

has been included to indicate that half the power is associated with positive frequency and

half with negative frequency. Noise that has such a uniform spectral density, is also called

white noise, where “white” refers to the analogous case of white light which contains equal

amounts of all frequencies within the visible band of electromagnetic radiation. Thermal

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Noise Models at the Receiver

NJ2

x()
m NJ2

f T
0 0

Figure 2.3: (a) PSD of white noise, (b) ACF of white noise.

noise and other sources of noise introduced by the amplifiers, mixers, and analog-to-digital

converters are also ordinarily modeled as white noise [12]. Interestingly, quantization error

has approximately a white power spectrum mainly due to the randomness of the signal [12].

Therefore, the total noise at the receiver is typically modeled as white noise.

It is generally assumed that there is no correlation between samples of the equivalent

time-domain noise process X (t) , i.e., R x (r) = 0 for r 0. For areal white noise process

X (t) , the autocorrelation function is

which is the delta function weighted by the factor N 0/2 and occurring at r = 0, as shown

in Figure 2.3(b). As shown in Figure 2.3(a), white noise has a two-sided PSD of a constant

amplitude N 0/2 over all frequencies — oo < / < oo. Hence the noise variance (that is, the

average noise power, since the mean is zero) is

Although the variance for white noise is infinite, practical systems have finite bandwidth

and hence the noise is typically band-limited to some 2W Hertz (i.e., —W < / < W). For

example, the received signals (and noise) at the very front end of a receiver in communica­

tion systems involves processing by band-limited (typically narrow-band) filters. The PSD

of a WSS white noise process whose frequency components are limited to —W < f < W

is shown in Figure 2.4(a). The average power in such an ideal case can be written as

R x (r) = S{G X (/)} = E [X (t) X (t + r)] = ^ d (r)

a 2 = E [X 2(i)] = £ ^ d / = oo.

The ACF can be written as

N 0 e- ^ Wr - e ^ Wr _ iV0sin(27rPEr)
2 —j 2 n r 2 ttt2 ttt

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Noise Models at the Receiver

it At)

(a) (b)

Figure 2.4: (a) PSD of bandlimited white noise, (b) ACF of bandlimited white noise.

As shown in Figure 2.4(b), X (t) and X (t + r) are uncorrelated at the zero-crossing r =

± k / (2W) where k = 1,2, • • •. This implies that samples in the time domain are uncorre­

lated (independent in the Gaussian case). If Fs = 2W , then the variance of the samples is

White noise is commonly described as a Gaussian random process X (t) , and hence

called white Gaussian noise (WGN), whose value (noise amplitude) at any arbitrary time t

is statistically characterized by the Gaussian PDF

where is the variance of X . The normalized or standardized Gaussian density function

of a zero-mean process is obtained by setting the standard deviation a x — 1. The normal­

ized PDF is shown in Figure 2.5. Figure 2.5 shows that most probable noise amplitudes are

those with small (positive or negative) small values.

The main reason that the Gaussian distribution is often chosen as the system noise

model is due to the Central Limit Theorem (CLT) [14]. The CLT can be explained as

follows. Assume that {2Q}, 1 < i < N , is a set of N i.i.d, zero mean random variables,

with finite variance a \ . For convenience we use the normalized random variable

with zero mean and unit variance. The normalized (by l / \ / N) random variable Y is defined

as the sum

N 0Fs/2.

(2.17)

(2.18)

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Noise Models at the Receiver

0.399

0.242

2a0.054

oooo 321

Figure 2.5: Normalized Gaussian PDF.

also has zero mean and unit variance. In the limit as N —► oo, the CLT implies that the CDF

of Y approaches the Gaussian distribution. Although it is assumed that random variables in

the sum are identically distributed, the assumption can be relaxed by summing independent

random variables each with PDF f x i (x) and finite variance a \ . [13].

The WGN noise model has been widely used in the modeling and verification of many

communication systems [12]. For example, the narrow-band noise appearing at the out­

put of digital filters at the receiver is commonly modeled as a Gaussian random process

[15]. Narrow-band noise X (t) is usually represented in terms of its in-phase and quadra­

ture components, similar to narrow-band signals of the form X(t) — X i (t) cos(2nfct) —

X q(t) s in (2n fct). Since X(t) is Gaussian, then the complex-valued Gaussian RP X(t)

consists of two jointly Gaussian real-valued processes. By jointly Gaussian we mean that

any arbitrary set of samples of the real and imaginary parts is a Gaussian set of random

variables [11].

In addition to modeling white noise at the receiver using a Gaussian process, memo-

ryless channels are also modeled using a Gaussian process. Under a memoryless channel

assumption, a scaled or attenuated amplitude version of the original signal is received at the

receiver. The widely used communication channel model is the additive white Gaussian

noise (AWGN) channel in which there is assumed to be a noise signal superimposed on the

desired signal. Note that since samples of AWGN are independent, the noise effects each

transmitted symbol independently.

One of the standard dimensionless parameters used in the error rate performance eval-

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Wireless Channel Effects

uation of digital communication systems is the signal-to-noise ratio (SNR), defined as the

ratio of the average signal power to the average noise power. Being able to accurately es­

timate the receiver noise and SNR at the receiver improves the receiver’s ability to make

correct symbol decisions (probability of error), and hence increase the rate of reliable data

transmission. A related figure of merit, Eb/N0, is sometimes used where Eb is the bit en­

ergy (i.e., binary signal power S times bit time T&) and N0 is the one-sided noise density

(i.e., noise power N divided by the bandwidth W). Thus

Thus Eb/N0 is just signal-to-noise ratio normalized by the bandwidth and bit rate. The

smaller the required Eb/N0, the more efficient is the detection procedure for a given prob­

ability of error [12]. If Pr is the average transmitted power, the average energy per symbol

can be written as Es = P tT s = q Eb, where q = log2 M and M is the size of the constel­

lation. The received power P r to noise PSD and the received bit-energy Eb to noise PSD

are related as

In a typical urban area or indoor environment, the height of a transmitter antenna is often

lower than many of the surrounding structures. Thus, a direct path or a line o f sight (LOS)

path between the transmitter and the receiver is often absent. Due to the processes of reflec­

tion (which occurs when a waveform meets an object that is much larger than the signal’s

wavelength), diffraction (which occurs when the surface encountered by the signal has ir­

regularities such as sharp edges), and scattering (which occurs when the medium contains

a large number of objects near the same size as the signal’s wavelength) from objects in the

path [16], multiple copies of the transmitted signal, called multipath signal components or

rays, arrive at the receiver via several paths with different angle o f arrivals (AQAs), time

delays, and amplitude. More importantly, changes in the path length by A d over a short

time interval A t causes a phase shift

E b _ S T b _ S /R _ S W Joule _ W att.s
N0 N /W N /W N ' R W att per Hz W att.s

Pr _ Eb Ft Es r?
N0 N0 N0 s '

Thus

2.3 Wireless Channel Effects

27rAd
A

2 n v A t cos a
A

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Wireless Channel Effects

where v is the velocity of the mobile unit (MU) and a is the AOA. Clearly, as the path length

changes by a wavelength A (30 cm at 1 GHz), the signal phase changes by 27r. Due to the

significant phase changes, scattered components may add constructively at one location but

add destructively at a location just a short distance away, according to their relative arrival

times, amplitudes, and phases. The received signal envelope (level), not averaged over an

area, fluctuates rapidly and randomly about the local mean over a short period of time or

travel distance (typically over distances of about half a wavelength). When the signal power

drops significantly, the channel is said to be in a fade and this phenomenon is called small-

scale fading [17] as shown in Figure 2.6. The occasional deep amplitude fades coincide

with rapid phase variations. For example, small-scale fading can attenuate the signal by 40

dB when the mobile moves as little as half a wavelength.

DC
3
i
%c

s

-10

-15

E -20

-25

-30 400
Elapsed Time (ms)

600 800 1000200

Figure 2.6: Typical simulated Rayleigh fading at the receiver.

If the transmission medium changes or if there is a relative motion of the antennas, the

path length and/or geometry changes by A d and each multipath signal component expe­

riences an apparent shift in frequency, called a Doppler shift. The Doppler frequency is

defined as
j. _ 1 A<p _ i/cos a _ f cv c o s a
*d = 2n~At = A- “ c

where f c is the carrier frequency, c « 3 x 108 m/s is the free-space velocity of the electro­

magnetic wave, and a is the direction of motion of the mobile with respect to the direction

of multipath signal arrival. The motion of the MU will introduce changes in the channel at

the rate of fd Hz. For a constant mobile velocity, as f c increases, the Doppler shift becomes

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Wireless Channel Effects

larger. If a sinusoidal signal at the carrier frequency f c is transmitted, the received signal

spectrum, called the Doppler spectrum, will have components lying in the range of f c — fd

to f c + fd- If the receiver is moving toward the transmitter, i.e., —7r/2 < 9 < n /2 , the

Doppler shift is positive (i.e., the apparent received frequency f = f c + fd is increased);

otherwise, if the receiver’s movement reverses direction then the Doppler shift is negative.

Relative to the carrier frequency, the Doppler shift is typically quite small, but relative to

baseband frequencies it can be relatively large.

Fluctuations in the received power are not the only effects of fading. Fading may also

affect the shape of the pulse as it is being transmitted through the channel [18,19]. If the

received multipath components are resolvable [20], then multipath effects can result in the

broadening of the transmitted pulse, leading to inter-symbol interference (ISI), where the

pulses of adjacent symbols interfere at the symbol sampling times. It should be noted that

the small-scale fading is caused by changes in phase rather than by path attenuation since the

path lengths change by only a small amount over small distances. However, if the mobile

moves over larger distances (3> A), due to the changes in terrain features, the received

signal strength can attenuate significantly. Fading over a large distance, called large-scale

fading, may be mitigated by the use of power control, for example, while small-scale fading

will introduce the need of an equalizer that is capable of removing the time-varying ISI

introduced by the multipath propagation.

To evaluate the performance of wireless communication systems in laboratories, a chan­

nel simulator must faithfully model both the large-scale and small-scale effects of time-

varying propagation environments. Mainly, two approaches are utilized for modeling mul­

tipath fading channels: ray-theoretical modeling [21] and impulse-response modeling [22].

The ray-theoretical model illuminates essential characteristics of the channel based on ge­

ometric propagation theory and physical rays caused by reflections and diffractions. How­

ever, the high computation and lack of detailed terrain and building databases make these

models difficult to use [23]. By far the most popular channel simulation models are stochas­

tic parametric models. In this approach, the channel impulse response is characterized by a

set of deterministic and random parameters. The values of the parameters and the probabil­

ity distributions governing their behavior are selected according to empirical measurements.

A multipath fading channel is commonly modeled as a linear time-varying (LTV) system

and can be fully described by its impulse response [22,24-26]. The complex impulse re-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Wireless Channel Effects

sponse c(t, r) is a low-pass equivalent model of the actual real band-pass impulse response

m -1

C(*’T) = (2-19)
e=o

defined as the response observed at time t to an impulse applied at time t — r , where

t is the delay parameter, t is the time, and L(t) is the number of resolvable multipath

components [20]. The t?-th signal component experiences a different path environment

which will determine the amplitude ae, carrier phase shift 4>g, time delay rt, AOA a t, and

Doppler shift /<*. In general each of these parameters are time-varying. The amplitude ag(t)

is usually modeled as a Rayleigh-distributed random variable as

f x (x) = ~ r e ' x2/2ct2, x > 0
a x

while the phase shift <f>t(t) is uniformly distributed. Note that the channel model in Equation

(2.19) does not consider the AOA of each multipath component. It is usually assumed that

the scatterers surrounding the mobile station are about the same height as or are higher

than the mobile. This implies that the received signal at the mobile antenna arrives from

all directions after bouncing from the surrounding scatterers. Under these conditions, the

Gans assumption that the AOA is uniformly distributed over [0, 2w] is valid [25]. The

classical Rayleigh fading envelope with deep fades approximately A/2 apart arises from

this model [26].

The effects of multipath channel and noise on transmitted signals in a wireless com­

munication system are shown in Figure 2.7. The transmitted baseband signal s (t) will

convolve with an L-ray multipath fading channel and then AWGN will be added to produce

the output samples z(t). The signal observed at the receiver can be written as

z (t) = s(t) * c(t , t) + n(f)

where c(r, t) is the time-varying channel’s impulse response to represent the impact of the

channel on the transmitted signal s(t), and n(t) is AWGN. The equivalent lowpass received

signal is given by
L - 1

z (t) = ^ 2 ae(t)e~j<l>ê s (t - £TC) + n(t)
1=0

where L resolvable paths are spaced at Tc time intervals. Wireless channel modeling will

be discussed in detail in Chapter 4 and Chapter 5. Decoding, which is the process of map­

ping the received signal z(t) into one of the possible transmitted symbols, will be further

discussed in Chapter 6.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 High-Throughput Wireless Communication Systems

y (t) = z(t) = z / m z j ®

A W G N
Receiver

Data
sink

Data
source

Transmitter

M u l t i p a t h c h a n n e l

Figure 2.7: Block diagram of wireless communication systems.

2.4 High-Throughput Wireless Communication Systems
It is dangerous to p u t lim its on w ireless

(G. Marconi, 1932).

Consider a band-limited channel of bandwidth W Hz in which the signal is corrupted only

by AWGN having a single-sided power spectral density of N0 watts/Hz. Claude Shannon

defined the channel capacity to be the maximum error-free average data rate that a channel

can support [27]. Shannon showed that for AWGN channels, the channel capacity is given

by

C = W \ o g 2 (l + f) = W \ o g 2 [l + 1 ^] (2.20)

where C is the channel capacity in bps. Clearly the requirement for higher data rates di­

rectly translates into a wider bandwidth requirement and/or higher transmitted power which

may exceed the design constraints. Since the radio spectrum is a limited (and regulated)

resource, more efficient spectral utilization is attractive. Spectral efficiency is usually de­

fined as the number of bits per second that can be transmitted per Hz of bandwidth. Let

Eb = S /C denote the energy per information bit at the receiver. Using Equation (2.20) the

SNR E b/N 0 can be expressed as:

Eb = K (2C/ W - 1)
N0 C K 1

(2.21)

where C /W is the maximum achievable spectral efficiency. The simplest way to increase

the spectral efficiency is by increasing Eb/N0, which in turn implies increasing the trans­

mitted signal power, or increasing the transmitter and receiver antenna gain, or decreasing

the receiving system noise, or some combination of these measures [12]. It seems that data

transmission at rates beyond the Shannon limit is only possible by increasing the capacity

of the transmission channel itself.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 High-Throughput Wireless Communication Systems

In wireless communications, transmitted signals that are attenuated and undergo fading

can have a severe impact on system performance. One effective approach to combat fading

and increase the channel capacity is to deploy multiple antennas at the transmitter and/or

receiver. Multiple antenna communications is popularly known as space-time (ST) wireless

or wireless using smart antennas. Such multiple antenna systems can theoretically increase

capacity by up to a factor equal to the minimum of the numbers of transmit and receive

antennas [2]. The key idea in multiple antenna systems is that if several paths have channel

coefficients that are statistically independent, it is unlikely that they will all fade together, so

the probability of unreliable detection is greatly lessened. Diversity refers to the existence

of two or more signal paths that fade independently. Various spatial diversity (or antenna

diversity) schemes have been utilized in single-input multiple-output (SIMO) deployments

[2]. Multiple-input single-output (MISO) systems have used transmit diversity schemes [2].

Utilizing diversity techniques in SIMO and MISO communication structures provides SNR

gain, increases spectral efficiency on multipath channels, mitigates the effects of fading,

and increases the channel capacity, especially when multiple antennas are also available at

the receiver. However, the capacity increase may not be sufficient for future requirements

of wireless communication systems.

MIMO communication systems with n r transmit antennas and h r receive antennas

were introduced to provide diversity gain, array gain, interference reduction, and multi­

plexing gain [2]. The resulting diversity order increases by n r x t i r in which the depth

of fades reduces considerably and the mean signal level increases, i.e., the signal suffers

less from deep fades. In addition, in richly-scattered multipath wireless channel, deploying

multiple antennas at both the transmitter and receiver can achieve high data rates with­

out increasing the total transmission power or bandwidth. The capacity of MIMO systems

over richly scattered channel has been shown to grow linearly up to m in (n r, u r) fold [2].

This maximum data rate increase is limited by the richness of the multipath environment

(i.e., correlated fading across receive antennas). To assure independent fading, the receive

and transmit antennas must be sufficiently separated in space and/or polarization to create

independent propagation paths. The asymptotic behaviour of the ergodic capacity of multi­

antenna systems is shown in Figure 2.8. MIMO is a key element in 802.1 In , which is an

emerging standard for next-generation of 802.11 that could boost throughput to 100 Mbit/s

while maintaining backward compatibility with existing 802.11a/6/g devices.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Algorithm Efficiency

70

— — Increase both n f and /j(

- - . n ^ 1 and increase nR
A ' - n =1 and increase nSO

1 40

§ 30

20

4 - A -A-',I.

Number of antennas

Figure 2.8: Ergodic capacities of uncorrelated multiple antenna systems for SNR=18 dB.

2.5 Algorithm Efficiency

In the evolutionary domain of wireless signal processing, careful analysis of proposed al­

ternative algorithms is essential. For example, numerous models have been proposed for

time-varying wireless channel models during the past three decades [28-39]. However,

some of the well-known models do not generate correct statistical properties of free-space

propagation [34,37]. Unfortunately, they have been used in many channel simulators and

thus likely have led to inaccurate performance evaluations.

Another important decision that a designer must make is that given several alternative

algorithms for a given task, which one should be considered for implementation. Specif­

ically, for signal decoding at the receiver, numerous algorithms with various bit error rate

(BER) versus SNR performance characteristics have been proposed. In addition to reliabil­

ity of the algorithm, which is usually measured in the average BER versus SNR, other char­

acteristics of an algorithms such as numerical stability and computational complexity are

important. For example, heuristic MIMO decoding algorithms have at least cubic computa­

tional complexity in the number of antennas while some other techniques have exponential

complexity [2]. Hence, some of the published decoding algorithms may not be practical

for real time implementation even for a moderate number of antennas and low-order digital

modulation schemes.

One important challenge is, therefore, to minimize the computational complexity and

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Algorithm Efficiency

increase the efficiency of the decoding algorithm at the receiver. An important question that

arises is how to assess the efficiency of a signal processing algorithm? The efficiency of a

decoding algorithm relates to the amount of computation (i.e. the complexity) required to

decode the received signals to achieve an acceptable BER. Most of the proposed decoding

approaches for MIMO systems consider only the average number of elementary operations,

such as complex additions and multiplications per decoded symbol or bit, as a measure of

the complexity of the algorithm [40]. The execution time of an algorithm on a sequential

machine is usefully expressed as [41]

execution tim e = I C x C P I x C T (2.22)

where IC , C P I and C T represent the instruction count, the average number of clock cycles

per instruction and the clock period, respectively. Equation (2.22) shows that the execution

time depends directly on the clock period (technology-dependent), the instruction count

(depends on the instruction set architecture (ISA), operating system, programming style,

programming language and compiler, etc.), and the average number of clock cycles per in­

struction (depends on the implementation of the ISA). Consequently, the performance of

the algorithm can be expressed as I P C x clock frequency / IC , where I P C is the av­

erage number of instructions per clock cycle (I P C = 1 /C P I) . Reducing the instruction

count in the implementation tends to increase the rate at which the algorithm can be com­

pleted. However, it is not sufficient to only consider the number of basic operations when

comparing the efficiency of algorithms: there are other important factors. A more useful

efficiency measure should also consider such characteristics as the degree of randomness or

determinism in the execution behaviour, the maximum amount of limited resources (such as

memory) required to execute the algorithm, the numerical robustness against quantization

and round-off errors, the degree of concurrency, and the energy required by the hardware.

The randomness of an algorithm can be defined as the dependence of the algorithm’s execu­

tion behaviour on the input data set. For instance, sphere decoding (SD) is a data-dependent

symbol decoding algorithm where, depending on the channel conditions and noise variance,

one can obtain very different run times [42].

The degree of concurrency generally depends on the method that the overall computa­

tion is broken down into finer subtasks and divided among computational units for parallel

execution. If an algorithm is parallelizable, then the efficiency of it can be defined using

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Base-Band Signal Processing Platforms

Amdahl’s law [43] as

V

where T\ is the sequential execution time of the algorithm, Tp is the time spent by a parallel

algorithm that uses np PEs [44], and the ratio T \ / T p is called the speed-up. This law states

that the efficiency of the parallel machine (algorithm) is measured by the overall utilization

of the np functional units or fraction of time the np processing units are busy. In other

words, the performance gain is limited by the fraction of time that algorithm uses np PEs.

More efficient algorithms achieve higher utilization of the processor’s resources (such as

memories and functional units) at any given point of time.

Typically, physical layer signal processing algorithms of wireless communication net­

works contain abundant data parallelism as identical operations are performed repeatedly

on incoming streams of input data. The data and instruction level parallelism can be ex­

ploited to increase the IPC rate. Thus, another efficiency measure is the degree to which an

algorithm can effectively exploit the available parallelism. If the target microarchitecture is

known a priori, designers/compiler may exploit parallelism from an existing algorithm to

increase the computation speed. For example, most high-performance digital signal proces­

sors (DSPs) provide parallelism in their ISA [41]. Typically they exploit instruction-level

parallelism and subword parallelism within a processing unit and data-level parallelism

across a limited number of processing modules. If the target platform is an application-

specific integrated circuit (ASIC), in contrast to fixed-ISA architectures, the number of

processing units can be scaled to meet real-time constraints of the algorithm. Also, design­

ers may modify the algorithm in such a way that can be efficiently mapped on a simple

parallel architecture. For example, if a parallel algorithm requires the transmission of a data

among PEs for every few numerical operations it performs, then the communication time is

likely to dominate its execution time. Ideally, the structure of the algorithm should match

the communication structure between the PEs of a parallel architecture. If the target plat­

form is ASIC or FPGAs, then it is reasonable to modify the algorithm to reduce hardware

complexity at the expense of an acceptable performance penalty.

2.6 Base-Band Signal Processing Platforms

The demand for multimedia mobile communications with better QoS has been steadily

increasing. Correspondingly, wireless standards are evolving to support more users with

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Base-Band Signal Processing Platforms

higher data rate communications than before. Some communication systems, such as

MIMO, rely on computationally-intensive signal processing algorithms at the receiver to

support high data rate transmissions. The demanding high performance requirements of

these systems have forced manufacturers to modify their signal processor architectures

to meet the necessary processing throughput. DSP architectures have been evolving to­

wards higher clock frequencies, more instruction-level parallelism (ILP), and the inclusion

of domain-specific functional units. For example, the Texas Instruments TI C6x proces­

sors [45] use a very long instruction word (VLIW) architecture while the TI C5x [46] in­

cludes a dedicated hardware unit to accelerate the add-compare-select (i.e., butterfly) oper­

ation required by the Viterbi decoder in global system for mobile communications (GSM)

cellular networks. Similarly, FPGAs have evolved to enable computationally intensive base­

band signal processing.

The dynamic environment of wireless communications also favors programmable, or in

some way reconfigurable, solutions. For example, it is highly desirable that the processing

platform be flexible enough to execute different algorithms. A link adaptation algorithm,

which usually resides in the media-access controller layer, provides the switching between

the diversity and spatial multiplexing modes of operation, depending on the channel con­

ditions. Another example is a base station that can seamlessly switch between different

wireless standards (e.g., GSM and IS-95). Of course, each of those standards requires dif­

ferent physical layer algorithms where algorithmic parameters, such as the coding rate and

modulation order, need to be configured based on the propagation environment. Another

advantage of programmable solutions is that they can be updated in the field with only

software changes [47]. Moreover, flexible architectures facilitate the tracking of evolving

standards, protocols, and services with the same basic hardware components. Decoupling

the evolutionary flow of upgrading wireless standards for better services from hardware

design also extends the time-in-the-market.

Considering the strict performance requirements and the advantages of flexibility, com­

munication system designers have a vast range of semiconductor technologies to choose

from when developing such a system. Three main processing platforms have been com­

monly used: (a) software-programmable VLSI circuits such as DSPs and micro-controllers;

(b) hardware-programmable circuits such as FPGAs, and (c) ASICs. High-performance

DSPs have become an integral component in base-stations to perform part of the required

processing. Even though they provide flexibility through software programmability, how-

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Base-Band Signal Processing Platforms

ever, their use in portable terminals is not widespread due to their relatively high power

consumption. In high data rate wireless applications, where the required processing ex­

ceeds the processing power of DSPs, the ASIC is an efficient solution to off-load part of the

processing. A dedicated co-processor can be utilized to accelerate the execution of time-

critical kernels. ASICs are more power-efficient and support the often tremendous amount

of processing needed to implement baseband signal processing. Even though ASICs can

provide some level of flexibility, they still need to be co-ordinated by a micro-controller.

This leads to the notion of embedded DSP and micro-controller cores integrated along with

the ASIC engine to provide a better solution.

DSPs and ASICs are by far the most popular processing modules in wireless commu­

nications systems. FPGAs are reconfigurable due to their programmable fabric that trades

additional silicon area for its flexibility “in the field”. They succeed in bridging the per­

formance and flexibility gaps between DSPs and the custom design approach by provid­

ing post-fabrication programmability. Fixed-point arithmetic computational units with pa­

rameterized precisions, variable-length registers, and numerous dedicated signal processing

cores on-chip provide a flexible target platform for the efficient realization of digital signal

processing algorithms that were formerly implemented on digital signal processors. FPGAs

also increasingly provide distributed arithmetic, parallel processing, and high data band­

width between processing fabric and on-chip memory blocks, making them ideal for the

realization of computationally-intensive physical layer algorithms. The more recent FPGAs

include programmable processors to execute complex algorithms and control functions. For

example, embedded Nios soft processors are available in Altera’s Stratix devices [48] and

Power PC processors are available in Xilinx Virtex II Pro devices [49].

Each processing platform has its advantages, and the optimum implementation strategy

will vary depending upon application requirements and the cost. DSPs are well suited to

arithmetic-intensive tasks, with conditional processing. For example, a DSP can simply

execute a standard floating-point C program that has various if-then-else clauses such as

the protocol stacks of communications systems. The complexity will affect the program

length and hence the execution time. The performance of a DSP is mainly restricted by

the clock rate and the number of independent operations that can be performed by the

limited number of functional units. In contrast, FPGA designers are not constrained by

fixed datapaths or the relatively small number of processing elements that are available in

DSPs. They can add variable length registers, several specialized execution units to handle

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Base-Band Signal Processing Platforms

more threads simultaneously, and wide data buses to reach the required data bandwidth for

specific algorithms. When mapping an algorithm with high degree of concurrency onto

the array of processing elements on FPGAs, the number of computing resources and the

flexibility in their possible connection allow the designer to provide an optimized mix of

task-level parallelism and instruction-level parallelism for the particular algorithm.

Similar to DSP program libraries, FPGAs include various hard IP cores and usually

come with a set of predefined soft IP cores that can be synthesized and implemented effi­

ciently on FPGAs. Thus, FPGAs offer the flexibility to implement exactly what is required

for a given application using highly parameterized building blocks. For example, Xilinx

FPGAs can provide an opportunity for greater computational capacity than programmable

DSPs by executing above 600 billion multiply-accumulate (MAC) per second compared

to the 4.8 billion MAC/sec on the Analog Devices TigerSHARC DSP [50]. Also, several

digital clock manager cores are embedded in FPGAs that provide clock frequency synthe­

sis (flexible clock multiplication and division). This core allows adjusting the sample rate

at various nodes in the system which may not be possible in DSPs. Thus, FPGAs can

be utilized as co-processors to implement compute-intensive multi-rate signal processing

algorithms.

We can conclude that the wireless infrastructure poses a set of stringent implementation

requirements that are often contradictory. The evolutionary and adaptive nature of wireless

standards requires flexible solutions, which are usually most easily solved using software-

programmable architectures. Yet these solutions do not offer the required performance and

energy-efficiency for high data rate communication systems. The latter can be offered by

custom/semi-custom designs, but these tend to lack the required flexibility. Hence, dedi­

cated ASICs can be utilized to perform some of the highly repetitive tasks required by such

systems.

Even though reusing a common hardware across different functions will reduce the

overall costs, running various tasks of communication systems on a single hardware plat­

form can easily result in an inefficient implementation. Due to the different structure of

algorithms, some algorithms may be poorly matched to a particular hardware architec­

ture. For example, communication protocol stacks are complex control-dominated software

code, more suitable to be implemented on micro-controllers or DSPs. Also, depending on

the life time of a processing block, if it is short it is more suitable to be implemented on

DSPs, since to be executed by FPGAs, it must be implemented in the core of the FPGA,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Rapid Prototyping in Digital Design

which takes resources.

As a result, the implementation platform for wireless systems must balance the con­

tradictory requirements of high-performance, flexibility, low energy consumption, and low

cost [51]. Hence, the architectural platform for wireless applications will typically include

heterogenous collections of computational modules, each of which targets a particular func­

tion. Given the wide range in the architectural options, it is important to elaborate trade-offs

in the flexibility-efficiency-performance-cost space when selecting the components for this

heterogenous fabric. It seems that system-on-a-chip (SOC) technology, which combines a

wide range of processors such as DSPs, ASICs, and configurable logic on a single die, is an

efficient processing platform for the next generation of wireless systems.

2.7 Rapid Prototyping in Digital Design

In a highly innovative market, wireless systems have very short production cycles. In ad­

dition, evolving standards, such as the third and fourth generations, continuously add new

features and modes to improve one of the fundamental goals such as maximizing the trans­

mission rate and minimizing the error rate. Achieving these goals requires continuous re­

designs and simulations of baseband algorithms and changing design parameters during

the design flow. Since the time to market is directly influenced by the time of design and

verification, the design productivity can be increased by speeding up the design cycle.

Verification of alternative signal processing algorithms typically starts in their floating­

point representations. At this stage algorithms assume few architectural or implementation

details and are not realizable in their original double-precision form. In addition, to limit

the required hardware resource requirements (and hence limit the cost and power consump­

tion), most signal processing algorithms are implemented with fixed word-length precision.

Relying entirely on floating-point simulation results during algorithm development can lead

to failure in hardware implementation, as in the case of high performance radio local area

network (HiperLAN) standard [52]. Hence, a transformation from the floating-point to

a fixed-point system is required. Using finite-precision simulation, sufficiently large dy­

namic range (to avoid overflow) and sufficiently wide precision (to bound the accumulated

round-off errors) of each operand can be obtained. Also, the impact of finite-word-length

arithmetic and quantization on the performance and the complexity of computation must be

verified against that of the original floating-point implementations. However, the bit-true

simulation of low error rate communication systems would be significantly slow. To imple-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Rapid Prototyping in Digital Design

Table 2 .1 : Parameters of di: 'ferent Xilinx FPGAs.
Device
Family

Slices Multiplier
Blocks

XtremeDSP
Slices

Block
Memories

User I/O
Pads

PowerPC
Blocks

Xilinx Virtex2P XC2VP100-6 44,096 444 NA 444 1,164 2
Xilinx Virtex4 XC4VFX14Q-11 63,168 NA 192 552 896 2
Xilinx Virtex4 XC4VSX55-11 24,576 NA 512 320 640 NA

ment a fixed-point simulator, one may write/invoke C++ libraries for fixed point operands

(objects) and may overload required operators. Typically, the fixed-point constructs cannot

be efficiently mapped to the general-purpose architecture of the host machine [53]. More­

over, the complexity of signal processing algorithms and large number of samples required

for a faithful verification slows down software-based simulations.

A hardware-based rapid prototyping platform (RPP) can not only speed up the bit-

true simulation, it can also integrate algorithm development and implementation as early

as possible [54]. Results from hardware simulation can be immediately fed back to the

design process thereby avoiding the significant delay often experienced in the traditional

design verification process. A RPP can be used to cope with rapidly evolving and increas­

ingly complex communication standards, to assess alternative candidate algorithm and im­

plementation strategies, to evaluate the design complexity and feasibility, to identify the

real-time bottlenecks of the proposed algorithms, and to determine the required hardware

resources.

In this thesis we used FPGAs from two well-known producers of programmable logic

devices: Xilinx Inc. and Altera Corp. They build families of programmable devices ranging

from low-cost FPGAs (such as Cyclone and Spartan), to high and medium density FPGAs

(such as Stratix II and Virtex II Pro), and embedded processors (such as the Nios and Pow­

erPC processors). While they sometimes have different terminologies for different features

(for example logical elements in Altera devices versus slices in Xilinx FPGAs), the devices

from both vendors have many common features such as local and global interconnect, hier­

archical clocking, register chains, memory blocks, and various dedicated processing units.

Some of the major features of Xilinx FPGAs are summarized in Table 2.1. Each pro­

grammable slice contains two function generators, two storage elements, arithmetic logic

gates, large multiplexers, and fast carry look-ahead chain. A configurable logic block (CLB)

is made up of four slices. While Virtex family parts have dedicated multipliers, Virtex 4

parts contain XtremeDSP slices that each include one 18 x 18-bit 2’s complement signed

multiplier, adder logic, and a 48-bit accumulator, operating at up to 500 MHz. Each mul-

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Rapid Prototyping in Digital Design

Table 2.2: Parameters of A tera Stratix EP1S80F1508C6 FPGA.
Logic

Elements
M-RAM
Blocks

M4K
Blocks

M512
Blocks

DSP
Blocks

User
I/O Pins

Embedded
Multipliers

79,040 9 364 767 22 1,238 176

tiplier and accumulator can be used independently. These blocks are designed to support

efficient and high-speed DSP applications. Each BlockRAM is an 18-Kbit true dual-port

RAM, programmable from 16K x 1 to 512 x 36, in various depth and word width con­

figurations. Each port is totally synchronous and independent. The BlockRAMs are cas-

cadable to implement large embedded memories. Additionally, a built-in first-in, first-out

(FIFO) memory is supported in the Virtex-4 FPGAs. Each PowerPC 405 core is a 32-bit

Harvard-architecture microprocessor with a five-stage execution pipeline, a 16-KB Level 1

instruction cache, a 16 KB Level 1 data cache, and operates at up to 450 MHz.

Altera Stratix devices provide three different RAM block sizes to implement true dual­

port memory and FIFO buffers: 512 Kbits M-RAM blocks, 4K bits M4K Blocks, and

512-bit M512 blocks. High-speed DSP blocks provide dedicated implementation of fast

multipliers (faster than 300 MHz), and MAC functions. Nios is a 32-bit pipelined and

configurable embedded reduced instruction set computer (RISC) processor. It operates at up

to 125 MHz, with 16-bit instructions, and 32-bit or 16-bit configurable data path. Important

specifications of Altera Stratix EP1S80F1508C6 device are given in Table 2.2.

While each FPGA has resources that can be configured in device-specific ways, our de­

signs were implemented using synthesizable HDL and independent of these features. This

allows us to target other hardware platforms and ASICs. However, to obtain best resource

utilization and performance, we have also implemented our designs using specific features

of FPGAs. For example, a four-input lookup table in Xilinx Virtex FPGAs were configured

as a 16-bit shift register for compact implementations of pseudo-random number gener­

ators. These registers were also used to implement delay lines with various lengths for

multipath fading channel simulators. LUTs were also configured as distributed memories

and act to provide compact implementations of registers, instead of using limited number

of flip-flops in each slice. Even though implementing pipelined parallel multipliers using

configurable slices requires a relatively large number of slices, dedicated 18 x 18-bit mul­

tipliers are extremely useful for implementing MAC operations. Moreover, 48-bit DSP

blocks are useful when implementing PEs of DSP-RAM parallel processor where each PE

performs a 16 x 16 multiplication and a 48-bit accumulation operation. Various configu-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7 Rapid Prototyping in Digital Design

rations of dual-port block memories allow compact and efficient storage of constant values

such as sine and cosine values along with the coefficients of polynomials and digital filters.

Block memories are also efficient resources for implementing delay lines with longer delays

compared to implementations using LUTs configured in SRL mode. Furthermore, an array

of block memories and dedicated DSP blocks are useful for implementing PIM processor

architectures. The remaining chapters will discuss device-specific features in more detail.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Gaussian Variate Generators

One of the many applications of random variates with a Gaussian PDF is to model noisy

natural phenomena. For example, a sequence of GVs is commonly used to model additive

noise or variations in signal attenuation in the propagation channel. Also, multipath fading

channel simulators use independent Gaussian samples to generate Rayleigh fading variates

(i.e., signal attenuation coefficients). Another important application of GVs is to evaluate

the performance of communication systems in the presence of additive noise at the receiver.

The error rate performance of the system will depend on the channel model and noise val­

ues introduced by different sources such as the non-linearity of the filters and quantization

errors. While the distribution of distortion values may be difficult to characterize analyti­

cally, it could be verified by MC simulation. In such a case, the overall effect of distortion

from all functional blocks can be modeled together and there is no need to model them

separately.

While a communication system can be characterized through the symbol error rate

(SER) versus SNR relationship, for high SNR regions (corresponding to very low BERs)

such a characterization requires very long-running MC simulations. For example, consider

a digital communication system that is designed to achieve a BER of no more than 10“ 14.

This means that on average, IQ1 4 symbols must be processed for each erroneous symbol in

a MC simulation of the system. One usually requires at least 100 such error events if the

BER is to be estimated with reasonable statistical significance. In addition, approximately

1 0 samples per symbol interval are typically required to successfully represent waveforms

in the simulation. Thus roughly 101 7 samples must be processed. The generation of 109

GVs, using an optimized software simulator written in C, takes about 2.5 hours on a dual

Pentium processor running at 3.0 GHz with a 1-MB L2 cache. By extrapolation, the gener-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ation of 101 7 GVs at this rate would take about 27,000 years. Note that some recent stan­

dards give maximum allowable BERs of 10- 1 2 for specified SNRs (e.g., IEEE 802.1 lae

10 Gbit/sec Ethernet). Thus maximizing the achievable GV generation rate is crucial for

validating the BER performance of upcoming communication systems, and software-based

GV generation is no longer adequate.

The low-BER characterization problem imposes additional challenges on PDF accu­

racy. Evaluating a communication system at a BER of 10~ 1 5 implies that approximately

one in every 101 5 received bits should be errored. The Q(-) error function, that is commonly

used for determining the probability of error of uncoded systems, for 10~ 1 5 [14] is a value

that approaches 8.0. This means that random variates near the center of the distribution do

not contribute significantly to the probability of error since their small values are readily tol­

erated by any system with that low a BER. Rather it is the GVs with a value of 8 a or larger,

where a is the standard deviation of the Gaussian distribution, that will be the dominant

source of errors. Therefore, for a MC simulation, the PDF of generated random numbers

must be accurately close to the Gaussian PDF at the high a regions (the tails of the PDF).

Since the tail of Gaussian PDF decays exponentially, generating accurately-distributed GVs

with large a values is quite challenging.

Hardware-based GVGs using analog devices [55-57] and digital components [58-63]

have shown significant speedups compared to software implementations. However, dig­

ital implementations tend to be more desirable than analog implementations due to their

predictable and controllable behavior, and because they can reproduce exactly the same

pseudorandom sequence of variates in successive runs.

In this chapter we present different approaches to efficiently implementing GVGs based

on the Box-Muller algorithm [64], When implementing a compact and accurate GVG on

FPGAs, the following objectives need to be considered:

• Tail accuracy: The normal distribution is an open-ended distribution in which ex­

treme values occur with increasingly small probabilities. A GVG for low BER char­

acterization must be able to generate accurately distributed GVs, especially at the

high a values.

• Statistical correctness: The generated variates must pass standard tests for statistical

properties, such as independence and accurate Gaussian distribution. The quality of

the proposed design must be supported by standard goodness-of-fit statistical tests.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Hardware efficiency: Ideally, a hardware realization should minimize the number of

required FPGA resources while achieving an acceptably fast variate generation rate.

Compactness is a more important factor when the available hardware resources are

especially limited, such as in a relatively low-density FPGA.

• Flexibility: The design should be parameterized and easy to modify to satisfy differ­

ent design constraints, such as maximum resource utilization and minimum sampling

rate.

The rest of this chapter is organized as follows. Section 3.1 reviews Gaussian distri­

bution properties, describes several algorithms for generating GVs, and also compares re­

lated work on digital GVG implementations. Section 3.2 evaluates different pseudo-random

number generators (PNGs) and compares their statistical properties. Section 3.3 discusses

different techniques for the implementation of trigonometric functions. Sections 3.4 de­

scribes trade-offs involved in implementations of the Box-Muller algorithm. Specifically,

three different realizations for implementing the BM algorithm are proposed and imple­

mentation results are discussed. A compact and accurate hardware GVG that is described

occupies only 1% of the Xilinx Virtex-II XC2V4000-6 FPGA and operates at 253 MHz,

generating 506 million Gaussian variates per second within a range of ±9.41cr. The design

can be easily configured to achieve higher tail accuracy at a small cost in extra hardware but

with slightly decreased operating rate. Various standard statistical tests are applied to this

GVG to verify its statistical characteristics. Implementation results verify that the PDF of

the generated variate samples accurately matches the Gaussian PDF, even at the tails of the

distribution. Also, the generated variates pass numerous standard goodness-of-fit statistical

tests. Section 3.5 is dedicated to the analysis of goodness-of-fit tests and simulation results.

Concluding remarks appear in Section 3.6.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Gaussian Distribution, Algorithms, and Related Work

3.1 Gaussian Distribution, Algorithms, and Related Work

A standard Gaussian random variable Z e l , with a mean of zero and a variance of one,

has the probability density function f z (z) = e - * 2 / 2 [14]. More generally, a Gaussian

random variable X = a x Z + m x is completely characterized by its mean m x and variance

a \ and this property is denoted as X ~ M (m x - ,o 2x). The PDF of X can be expressed as

/ * (*) = * exp r > - m *)2^ ~ F v ■ K

where 1/yJ2-no2x is the normalization constant that is chosen so that the area under f x (x)

is unity. The CDF is defined as the probability that a variable X has a value less than or

equal to x , and it is expressed in terms of the PDF as

for which there is no closed-form expression. Note that d F x (x) /d x = f x (x) > 0 and

F x (x) grows monotonically from 0 to 1 such that the F x (x) values are uniformly dis­

tributed. Two important properties of the Gaussian variables are: (1) If X N (m x ,<Tx)

and if a and b are real numbers, then a X + b ~ J \f(a m x + b, (a o x)2)', and (2) if X ~

J\f (m x , ox) and Y ~ M (m y , cry) are independent normal random variables, then their

sum is also normally distributed with W = X + Y ~ M (m x + m y , ax + °y)-

When evaluating the performance of communication systems, it is often necessary to

determine the area under the tail of the Gaussian PDF, the so-called tail probability [12].

The probability under the tail of the standard Gaussian PDF (m x = 0 and o \ = 1) can be

written as
i r ° °

Q (x) - P r(X > x) = 1 - Fx (x) « - = / e~y I2 dy
V 2 7 T J x

where Q (x) is the integral of the tail of the Gaussian PDF and is shown in Figure 3.1.

Since Q (x) cannot be evaluated in closed form (i.e., cannot be summed and expressed as a

mathematical formula), a tabular format is typically used. An approximation for x > 3 can

be written as [1 2]

Q (x) * ~ x r e~x2/2-xs/zir
The Q (x) is related to the error function erf (a:) and the complementary error function

erfc(a;) is related by

Q (x) = I e r fc(- |) = i [l - e r f (^ |)

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Gaussian Distribution, Algorithms, and Related Work

10 5
X

Figure 3.1: Plot of Q (x).

where
2 f x 2

erf(x) - —-= / e y dy
V * Jo

and
2 9

erfc(a:) = 1 — erf(x) = —j=. / e~y dy.
V 71" J x

This probability is commonly used for determining the probability of error in the presence

of Gaussian noise. For example, when detecting orthogonal signals at the receiver, the

probability of error is reported to be [1 2]

which shows that the P g decreases with increasing energy per bit Eb and/or decreasing

noise power.

The fundamental importance of the normal distribution is due to the CLT. According

to the CLT, the sum of a relatively large number of i.i.d random variables with a finite

variance will be asymptotically normally distributed [14]. If u is uniformly distributed over

the interval [a, b] with m u = (a + b)/2 and ofj = (b — a)2/ 1 2 , then one can show that if

U{ e [0 , 1] then

where m x = k /2 and a x — \ /k /1 2 , is approximately Gaussian distributed with A/'(0,1).

(—oo, oo). Thus X is distributed as A /(0 ,1) only asymptotically as k goes to infinity. The

(3.1)

The drawback of this method is that X & [— y/3k, V3k] instead of being unbounded within

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Gaussian Distribution, Algorithms, and Related Work

CLT-based technique may be acceptable in many applications because 99.7% of the obser­

vations fall within ± 3 a x of the mean. However, accurately generating Gaussian samples

beyond three standard deviations from the mean requires summing up a much larger num­

ber of samples implying much more hardware or computation time. Therefore, a purely

CLT-based approach is impractical for the accurate implementation of GVGs.

The standard approach for generating nonuniform random variates such as Gaussian

random numbers is to produce uniform random numbers first and then to transform them

to obtain the desired PDF [65]. For example, the inversion method [6 6] transforms uniform

random variables U € [0,1] into a Gaussian variable X by approximating the nondecreas­

ing inverse of the Gaussian CDF as X = (U). Even though F x {x) cannot be inverted

analytically, the inverse CDF, also called the quantile function, can be expressed in terms

of the inverse error function s/2 e rf - 1 (2u — 1). The GVG in [67] uses a look-up table to

store the CDF inverse. However, it is reported in [6 8] that this approach cannot produce

Gaussian variates with accurate high-cr values.

Other popular approaches are the rejection-acceptance schemes such as the polar method

and the Ziggurat algorithm [69,70]. The polar algorithm generates two independent GVs

at a time. It involves finding a random point within the unit circle by generating uniformly

distributed points within the [—1 , 1] x [—1 , 1] square and then rejecting any points out­

side of the circle. The polar algorithm is given in Algorithm 1 where “randQ" generates a

pseudo-random number (PN) between [0,1], and x i and X2 are two independent normally

distributed elements. The Ziggurat method is a special case of the rejection method. The

Algorithm 1 The polar algorithm.
1: while n > 1 do
2: ui = rand()\ U2 = randQ-,
3: v\ = 2u\ — 1; V2 = 2u2 — 1 ;
4: n = v i + ul;
5: end while
6: x\ — v\ y /—2 In n /n ; X2 = V2 s /—2 \n n /n ;

main advantage of this algorithm comes from the fact that for a high percentage of the

generated numbers, no relatively slow ln(-) operation is necessary. The rejection-based

approaches have been generally used in software implementations (for example, the polar

algorithm is used in older versions of Matlab - before MATLAB 5; - the Ziggurat algorithm

is used in Matlab 5; and a modified Ziggurat algorithm is used in MATLAB 6), however, due

to their conditional if-then-else assignment instructions and also the required ln() compu-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Gaussian Distribution, Algorithms, and Related Work

tation, the Ziggurat algorithm has received less attention as the basis for efficient hardware

implementation [71].

Another method was proposed by Box and Muller and is now well-known as the Box-

Muller (BM) [64] algorithm. This algorithm transforms pairs of uniformly distributed num­

bers into samples from a two-dimensional bivariate normal distribution. The inputs to the

BM algorithm are two independent uniformly-distributed PNs, m , [0,1]. The outputs

are two independent samples, x \ and X2 , from J\T(Q, 1). The transformation involves mul­

tiplying f (u \) = y / -2 1 n (« i) by g i(u 2) = sin(27rti2) and 9 2 (^ 2) = cos(27ru2) to yield

x \ and X2 , respectively. This can be justified by solving for u \ and u 2 where

which shows that X i and X 2 are independent variates from W (0 , 1).

The normality of the resulting distributions in the BM algorithm depends on the statis­

tical properties of the PNG and the accuracy of the /(■) and g(-) computations. The max­

imum representable value of the generalized GVs depends on the precision of the uniform

variables u i and u 2. Thus the effects of the finite precision representation of variables on the

accuracy of fixed-point arithmetic must be considered carefully. Assume that u i e (0,1) is

represented in the unsigned fixed-point format, which we will denote by Q < W L > , where

W L is the word length. Because of the similarity of the sine and cosine functions, gi(-)

and <7 2 (0 can share the same hardware, thus we will use <?(•) to denote the implemented

function, either gi(-) or <72(-)- Since | <?(•)) < 1, the maximum absolute value of a GV

beyond 1.0 is determined by the function /(■). Thus, in practice 112 is less critical to the

final accuracy and so g(-) can use a lower bitwidth. The closer that the value of u \ is to 0,

the greater is the value of /(•) and, therefore, the greater is the magnitude of the generated

GV. One way to ensure that \x\ < go, for some desired value g, is to choose the precision

W L of u \ to be large enough so that i/2W X ln(2) > go. One can readily verify that for

32-bit precision in u \, a variable range |x| < 6 .6 6 0 - can be obtained. Table 3.1 presents

the maximum representable value of f (u i) , namely y/2W L\n{2), for various precisions of

u \. The precision of the PNG can always be adjusted to obtain a Gaussian PDF with any

desired accuracy in the tails.

The joint PDF of X i and X 2 can be written as [64]

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

Table 3.1: Maximum absolute value of a GV for various precisions of u i.
W L 8 16 24 32 48 64

Maximum |/ (u i) | 3.33 4.70 5.76 6.66 8.15 9.41

Table 3.2: Published 'PGA Implementations of a GVG.
Design [61]“ [75] [62] [77] [79]

Maximum deviation 4.0a 4.8a 6.0a 5.0a 6.0a
Output rate (MGVs/sec) 24.5 245 133 165 155

Clock freq. (MHz) 98 245 133 165 155
Number o f slices 437 480 2514 702 770

Resource utilization 8% 2% 10% 3% 3%
On-chip memory blocks 0.5 5 2 5 6

“Reference [61] used the Altera Flex 10KE FPGA; the four other designs used a Xilinx Virtex-II XC2V4000-
6 FPGA.

Digital implementations of high-quality PNGs and accurate realizations of the loga­

rithm, square root and trigonometric functions have been investigated extensively over the

last three decades [72]. On the other hand, the BM algorithm is a reliable technique to gen­

erate GVs with large values (accurately in the tail of PDF). Consequently, the BM transfor­

mation has been used in many FPGA [61,62,73-77] and parallel processor realizations [78].

Table 3.2 summarizes the major characteristics of various published GVG implementations.

3.2 A Closer Look at PNGs

Anyone who considers arithmetical methods
of producing random digits is, o f course,

in a State of sin (Von Neumann, 1951).

The Monte Carlo (MC) technique is the basis for simulating systems that are driven by at

least one input signal that is modeled as a stochastic process [13] - as opposed to deter­

ministic algorithms. Other inputs can be modeled using analytical techniques or based on

empirical measurements. Consequently, the key to a MC simulation, is the generation of

sequences of random numbers which represent the sampled values of the input signal (i.e.,

a random process). The accuracy of MC simulation results depends on different parame­

ters such as the size and statistical distribution of input samples and also system modeling

assumptions and approximations.

PNGs have been used in MC simulators as either random sample generators or utilized

to be transformed to other random sequences with a different (e.g., Gaussian) distribution.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

Consequently, MC simulations rely on the quality of PNGs (how closely they resemble

truly random sequences). It is unfortunate that PNGs with actually rather poor statistical

properties are frequently recommended in many texts and are used in many applications.

Even many widely used PNGs that perform well in standard statistical tests for randomness

are known to be inadequate for MC simulations [80,81].

A PNG uses a deterministic algorithm that has a state that evolves in a finite state space

<S according to a recurrence of the form Si = > 1. The initial state so G S is

called the seed, and / : <S —> <S is the transition function. At step i > 0, the generator

outputs Ui = g(si), where g : S —> [0,1] is the output function. The null hypothesis for a

PNG can be explained as follows: the {u i} are i.i.d random variables that are uniformly dis­

tributed over the [0 , 1] interval if for each i and d, the vector u* = {m , Ui+\ , • • ■ , Uj+d-i}

is uniformly distributed over the d-dimensional unit hypercube [0, l) d. The independence

property implies that subsequences of the generated PNs u q , u i , - should be statistically

independent. For a correlation test between consecutive PNs u o ,u i, • • • in the interval

[0 , 1), either overlapping d-tuples u , = {m ,U i+ i, ■ ■ ■ , Ui+d-i} or non-overlapping d-

tuples Ui = {uid, Uid+h ■ • • , Uid+d-i} can be constructed, and then the distribution of

finite sequences Uj for each i in d-dimensional unit hypercube [0 , l) d for small values of d

(e.g., d < 6) can be assessed. The task is to measure how well Ui is uniformly distributed.

For example, the generator should produce non-overlapping pairs (u2i, v,2i+i), i = 0 ,1 , • • •

(i.e., members of the even subsequence uq,U2 , • ■ ■ should be independent of odd neigh­

bors u \, u%, • ■ •). Undesirable correlations between consecutive random numbers will lead

to deviations of the empirical distribution function of u* from the uniform distribution, in

some dimension d. Regularities in generators and subtle correlations between PNs can

compromise MC results [82].

An ideal random number generator would provide numbers that are uncorrelated (of

central importance for many stochastic simulations), would satisfy relevant statistical tests

of randomness, would have a large repetition period (this period limits the number of sam­

ples that we can use safely), would generate a deterministic sequence that could be changed

by adjusting an initial “seed” value, and would rapidly generate numbers using minimal

hardware resources.

There are two main types of random number generators for producing sequences of

PNs: linear PNGs and nonlinear PNGs [65]. A common example of linear PNGs are the

linear congruential generators (LCGs) [83]. LCGs are widely used in many applications

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

0.9

0.8

0.7

0.6

,3 0.5

0.4

0.2

0.1

0.2 0.4 0.6

Figure 3.2: The two-dimensional distribution of 107 PNs pairs (u*, ui+\) generated with
MLCG recursion with xq = 314519, a = 16807, and rn — 23 1 — 1, when a small portion
of it*-axis is magnified.

such as ANSI-C RAND (32-bit precision) function. They are based on the integer recursion

Xi = (a x i - i + b) m od m

where the multiplier a, increment b, and modulus m are constants. If a is a primitive root

modulo m and m is prime, then the period of the generator is p = m — 1 [84]. These gen­

erators can be further classified into mixed (b > 0) and multiplicative (b = 0) types, usually

denoted by LCG(a, b, m) and MLCG(a, m). An LCG generates a sequence of pseudo ran­

dom integers x \ , X2 , ■ • • between 0 and m — 1; for MLCG the lower bound is 1. Each X{

can be scaled down into the U{ € [0,1) interval. For a fast and convenient implementation

of LCGs on computers, a modulus that is a power of 2 is commonly used. An intrinsic

property of LCGs is that the distribution of d-tuples m = {ui,Ui+1 , • • • ,u i+(i - i } over all

possible points in [0, l) d lies on a relatively small number of parallel hyperplanes [65]. The

intuitive reason is that there are 2dWL points in the unit d-cube with coordinates that are

exactly representable as W L-bit binary fractions, where W L denotes the word length in

bits. These points lie on 2WL hyperplanes at a separation of 2~WL.

Figure 3.2 plots the two-dimensional distribution of 107 PNs pairs (uj, Ui+i) generated

using MLCG recursion with seed xo = 314519 when a small portion of i^-axis is magni­

fied. A lattice structure is clearly visible in the smallest case d = 2. In addition to regular

lattice structures, the other known defect of this generator is that it produces correlated low-

order bits as well as long-range correlations for intervals that are a power of 2. To avoid the

problem of nonrandomness in the low order bits, the modulus m sometimes is chosen to be

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

a prime number. For example, IBM computers use a MLCG with a = 75 and m = 23 1 - 1

where the period 23 1 — 1 2.15 x 109 is relatively short [85].

To increase the rather short period of LCGs, the order of the linear recursion can be

increased as

Xi = (ai Xi- 1 ------ 1-a k X i-k) m od m,

that is called the multiplicative recursive congruential generators (MRGs) [83] with order

fc > 1, a* G Zm = {0,1, • • • , } and Ui = Xj/m . For prime m and appropriately chosen

a fs , the sequence has a (maximal) period length p = m k - 1. This can be achieved with

only two non-zero ai coefficients, i.e., Xi = (ar X i-r + Xi-k) m od m , which makes

implementation faster. The special case k = 2, a i = a% = 1 leads to the Fibonacci

generator x^ = (x { - 2 + S i- i) m od m , whose statistical properties are rather poor. The

Lagged Fibonacci generators (LFGs), denoted by LFG(r, k, m , ©) [83], are initialized with

r integers x \ , • • • , x r and use the recursion

X{ = (Xi-r © X i-k) m od m

where indexes r and k denote the lags, r > k, and © denotes one of the binary operations

+ , —, x or the exclusive-or operation ©. For the common cases of addition or subtraction

modulo 2w l , the maximal period with suitable choices of r and k is p « (2 r — l)2 WL~l &

2r+WL~ 1. The standard Unix generator RANDOM and also the PNG in the Numerical

Recipes implementation [8 6], which uses LFG (55,2 4 ,109, —), are two examples of this

kind of PNG. However, it is shown in [81] that LFGs using the operations of (+ , —, ©) can

give poor performance unless the lag is very large (of order hundreds). One could choose

multiplicative LFGs that scramble the regularity and increase the apparent randomness even

for small lags. However, the resource utilization can be relatively large and the sampling

rate is limited by the efficiency of the multiplier.

Linear feedback shift register (LFSR) generators, also called Tausworthe generators

(TGs), are another important class of PNGs that are based on the theory of primitive tri­

nomials of the form p(x) — x r + x k + 1 [83]. The sequence LFSR(r, k, ©) is defined

by

X{ — Xi—j. © Xi—k

The maximal possible period of p = 2r — 1 is achieved when the primitive polynomial p(x)

divides x p — I but for no smaller value of p. This condition can be met by choosing r to be

a Mersenne prime, that is a prime number r for which 2r — 1 is also a prime. XOR-based

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

Output

Figure 3.3: Fibonacci implementation of a 4-bit LFSR.

LFSRs have enjoyed success in many hardware applications because of their compactness,

but have been criticized as being among the worst PNGs and that they produce sequences

that are inadequate as pseudorandom sequences in MC simulations [87]. The PNGs with

power of two moduli are also worse than those with prime moduli. Lindholm [8 8] also

showed that the recurrences based on polynomials with too few nonzero coefficients will

have inferior statistics.

Nevertheless, LFSRs have been widely used in hardware implementations because they

tend to be faster than generators that use multiplication and because the period increases

exponentially with the width of the register. Consider the 4-bit LFSR defined by the char­

acteristic polynomial p (x) = x 4 + x + 1, as shown in Figure 3.3. This LFSR generates a

single bit every clock cycle as an output. If one obtains a multiple-bit PN from the outputs

of the flipflops, the PNs would be highly correlated. When an m > 1-bit PN is required,

one way is to accumulate a m-bit PN using a LFSR which is rather slow [76]. Another

approach is to use several LFSRs operating in parallel with uncorrelated initial seeds. This

may lead to poor utilization of FPGA resources since LFSRs require little combinational

circuitry and thus the slices would not be fully utilized. The more recent FPGAs (e.g.,

Xilinx Virtex family) provide special configurations (such as the shift register look-up ta­

bles [89]) to configure LUTs as a shift register and hence use the resources more efficiently

when implementing LFSRs. This feature is used in GVGs in [62,76,77]. However, to

maximize design portability, one would rather not use such device-specific optimizations.

A more efficient approach is to use a multiple-bit leap-forward LFSR (LF-LFSR) [90] as

used in GVGs in [61,77]. This method is based on the observation that the LFSR is a linear

system and a LF-LFSR can leap k steps in one clock cycle. The LFSR state transition can

be written as

Q \+1 = Q i ® Q l Q S2+1 = Q l Q t+1 = Q l Q \+l = Q l

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

w e so i g g g p a m ~ m ^ n n n g p i n p i ~ i c o s n n n
j(+ = jwejwT] fU nd Si Ea □ M LJ

0 1 0 1 1 0 1 0 =90

Figure 3.4: Rule 90 for cellular automata,

which in vector format can be expressed as:

r Q i 1 s + l
' 0 0 1 1 ' Qi s

r Qi 1
Q2 1 0 0 0 Q2 — T* Q2
Q3 0 1 0 0 Qz

— X
Qz

. Q a . 0 0 1 0 . Q i . Q i .

where T is the transition matrix. It can be readily shown that the state of the LFSR after k

steps (clock cycles) can be expressed as Q s+fc = T fcQ s. The new circuit thus leaps k steps

in one clock cycle. For example, a four-bit LF-LFSR can be obtained using the following

equations:
' Q 1 1

4 ' 1 0 1 1 ' Q 1
Q2 1 1 0 0 Q2
Qz 0 1 1 0 Qz

. Q i 0 0 1 1 . Q i .

Q i — Q i © Qz © Q ii Q \ — Q \ © Q i, Q i — Q 2 © Qz-, Q i = Qz © Qa

Cellular automata generators (CAGs) [91] evolve in discrete steps, where the next

value of registers determined by its previous value and that of the neighbors. Depending

on the extent of neighborhood, different register-based state machines are constructed using

so-called the cellular automata rules. For example, the rules s f = Sj_ 1 © s;+ i and s f =

1 © Sj © 6’i+i define the so-called “Rule 90” (as shown in Figure 3.4) and “Rule 150”

cell types, respectively, where s* denotes the current value of i-th cell. CAGs rely on the

bit-level computation and interconnection and are of particular importance for fine-grained

parallel processing and is commonly used in built-in self-test applications. It is shown

in [92] that the same linear dependencies that exist in the output sequence of LFSRs are

still encountered in sequences generated by CAGs. In many applications, such as stochastic

modeling and MC simulations, the quality of statistical randomness is far more important

than long period and maximum generation rate [65], In MC applications it is better to be

slow than sorry.

Marsaglia and L’Ecuyer [93,94] proposed CTGs [95] which have randomness proper­

ties that has strong theoretical and empirical support. The CTG is constructed by taking an

exclusive-OR of several TGs which yield sequences that have much less regular structure

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

than the corresponding sequences of their individual component generators. If the compo­

nent generators are chosen properly, then the period of the combined generator will be the

product of the periods of the components [65]. The uniformity and independence of the

output sequence is typically assessed by equidistribution measures [96]. The pseudo-code

of a 32-bit CTG with three components and p ph 28 8 is given in the following [97]. A

restriction applies when assigning initial seeds to Zj, j = 1 , 2 , 3 where z \ > 2 , z i > 8 ,

and z$ > 16. It is recommended that the initial seeds, Zj, should be chosen to be large

independent values [98].

u n s ig n e d lo n g z i ,z 2,z 3,b;
d o u b le CTG88 () {
b = (((zi < 13) © z i) » 19); zi = (((zi & 4294967294) « 12) © b);
b = (((z2 « 2) © z2) » 25); z2 = (((z2 & 4294967288) « 4) © b);
b = (((z3 < 3) © z 3) » 11); z3 = (((z3 & 4294967280) < 17) © b);
r e tu r n ((z i © z2 © z3) X 2.328306436Se — 10);

A 32-bit CTG with four components and p ph 21 1 3 can be designed as given in the CTG113

pseudo code [97].

u n s ig n e d l o n g z i , z 2,z 3,Z4 ,b;
double CTG113 () {
b = (((zi < 6) © z i) » 13); zj = (((zi & 4294967294) < 18) © b);
b = (((z2 < 2) © z2) » 27); z2 = (((z2 & 4294967288) < 2) © b);
b = (((z3 < 13) © z 3) » 21); z3 = (((z3 & 4294967280) « 7) ® b);
b = (((z4 < 3) © z4) » 12); z4 = (((z4 & 4294967168) « 13) © b);
r e tu r n ((z i © z2 © z3 © Z4) x 2.3283064365387e — 10);

Unfortunately, the CTGs still have a lattice correlation structure and will fail tests that

are sensitive to linear interdependencies [85]. Coddington proposed in [81] to improve

the statistics of linear PNGs by using a very long period (e.g. p px 22 0 0 or more). This

recommendation is based on empirical experiences and no theoretical analysis has been

provided yet. A 64-bit CTG with five components and p & 22 5 8 is given in the following

where z j , j = 1, • ■ • , 5 are 64-bit variables. Table 3.3 compares the performance of three

CTGs.

u n s ig n e d lo n g l o n g z i , z 2,z 3,Z4,Z5;
d o u b le CTG258 () {
u n s ig n e d lo n g lo n g b ;
b = (((zi « 1) © Zl) » 53); zi = (((zi & 18446744073709551614) « 10) © b);
b = (((z2 « 24) © z 2) » 50); z2 = (((z2 & 18446744073709551104) « 5) © b);
b = (((z3 « 3) ffiz3) » 23); z3 = (((z3 & 18446744073709547520) « 29) © b);
b = (((Z4 < 5) © z 4) » 24); z4 = (((z4 & 18446744073709420544) « 23) © b);
b = (((zB < 3) © z6) » 33); zB = (((z6 & 18446744073701163008) « 8) © b);
r e tu r n ((z l © z2 © z3 © Z4 © z5) X 5.4210108624275221e — 20);___________________

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 A Closer Look at PNGs

Table 3.3: Performance of three CTGs implemented on the Xilinx Virtex-II XC2V4000-6.
Output bitwidth Apprx. period Slices Clock frequency (MHz)

32 2 88 72 425
32 2133 124 422

64 22B8 205 419

Table 3.4: PNGs used in published GVG designs.
Design Type Period

[61] LFSR 20U
[75] LF-LFSR 2 190

[62] LFSR 2 bU

[77] LFSR 2 ai!

[79] CTG 2 SS

In contrast to linear PNGs, nonlinear generators with a prime modulus overcome the

regular structure of d-tuples of consecutive numbers [99]. The importance of inversive

PNGs stems from the fact that their intrinsic structure and correlation behaviour are strongly

different from linear generators. Also, there is no sample size restriction as for linear gener­

ators [96], There are several variants of nonlinear generators such as inversive congruential

generators (ICGs), explicit-inverse congruential generators (EICGs), and combinations of

them. The congruence Xi+ 1 = axi + b m od m with i > 0 and seed xo defines an ICG

that generates a sequence of PNs in {0, • • • , m — 1 }. A prominent feature of the ICG with

prime modulus is the absence of any lattice structure. The EICG follows the recurrence

Xi = a(i + xo) + b m od m and defines a sequence of PNs in {0, • • • , m — 1}. Com­

pared to linear PNGs of the same size, nonlinear PNGs tend to be slower but their structure

and correlation behaviour are quite different from that of linear PNGs. An efficient way of

obtaining a nonlinear PNG with a long period is to combine several small nonlinear PNGs

with relatively prime moduli [96]. Fast implementations of sufficiently small nonlinear gen­

erators can be obtained simply by precomputing and storing their output sequences. Other

nonlinear generators have been proposed in the field of cryptography [100]. For example,

the advanced encryption standard (AES) is a cryptographic algorithm that has been used as

an encryption function of communication systems such as in optical links. AES includes

a nonlinear PNG that could be used for stochastic simulation [100]. The implementation

results in [101] show that although AES in is indeed a good candidate for PNG, the resource

need can be unacceptable for many applications.

Table 3.4 gives the PNGs used in different recently published GVGs. One important

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Implementation o f Trigonometric Functions

point worth mentioning is that the period of a generator limits the usable sample size. For

linear PNGs, the square root of the period length has been reported to be a prudent upper

bound for the usable sample size [65]. Consequently, the maximum usable sample size

of the generators given in Table 3.4 is actually too small for MC simulations of digital

communication systems that operate at a very low error rates. Nonetheless, the test results

in [81, 96] verify that for comparable periods, the mixed combined generator remained

useful for longer sequences than the linear PNGs. Also, among numerous tested PNGs

[81], the LCG with at least 48-bit precision, the LFGs using multiplication, the CTG with

long period, and non-linear PNGs seemed to be among the best PNGs that provide better

randomness properties and the extremely large periods necessary for MC simulations. So

they are prime candidates for PNG realizations. To reduce the regularity, we can additively

combine a large linear CTG with the period length of p & 22 5 8 [94] that passes all known

statistical tests and various MC tests [81] with a very small non-linear PNG.

3.3 Implementation of Trigonometric Functions

There are various standard approaches for approximating trigonometric functions. The

choice of a method and a particular implementation depends on such requirements as

throughput, latency, and area as well as the required accuracy. The accuracy is determined

by the error of the approximation and by the roundoff errors that occur during the evaluation

of the approximation.

A polynomial approximation based on the Taylor series expression is a well-known

technique that can be used for infinitely differentiable functions. If /* denotes the i-th

derivative of /(•) , then the Taylor series of f (x) about xq can be expressed as

OO

f (x) = f { x 0) -I- - x 0y .. „ 11
1 = 0

The special case for xq — 0 is called the Maclaurin series. The sin(-) and cos(-) functions

can be approximated as

(- 0 " -2 „ -H V 2' (- 1) 'sin a; = y , r and cos x = V for all x ,
(2 n + 1) 1 (2 n)l

respectively [102]. Clearly, the greater the number of partial sums that are included in the

series, the more accurate the approximation. Factoring terms can lead to a simpler hardware

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Implementation o f Trigonometric Functions

implementation, as shown in the following approximation:
/v*3 /v.5 „7, , , it/ U/ vt>

smOr) « x — | —

« cc(l — (x2) (l — (x2) (l — (® 2) / (6 x 7))/(4 x 5))/(2 x 3)).

Thus, we only need to calculate x 2 at any one step, as opposed to x 7, and we do not have

to calculate all of the factorial terms. In general, implementation of trigonometric (and

other functions such as ln(-)) using only a few terms of the Taylor expansion provides

unacceptable accuracies [1 0 2].

Storing and later retrieving quantized values of the trigonometric function in an on-chip

memory, so-called table lookup, is relatively fast, but the function accuracy is limited by

the size of the on-chip memory. In fact the size of memory grows exponentially with the

size of the input word, which confines this solution to relatively small input precisions (say

< 1 2 bits arguments). The table size can be reduced by exploiting the symmetry properties

of the sin(-) and cos(-) functions. Instead of storing the quantized values of gi{u2) and

92 iu 2) over the full period [0 , 1), the domain of g\ (u2) within only the initial quarter period

[0,0.25] can be segmented uniformly into 292 segments and the corresponding function

values can be stored in a 292 x WT-2 -bit BlockRAM. Algorithm 2 shows the calculation of

the sin(27TU2) value using the quarter-size look-up table. Algorithm 3 calls the sin(27rif2)

algorithm to calculate cos(27ru2).

Algorithm 2 Computation of sin(27TU2), u 2 € [0,1)
if u2 > 0.5 then

sign = l ;u 2 = i»2 — 0.5;
else

sign = 0 ;
end if
if u2 > 0.25 then

u2 = 0.5 — u2\
end if
index = [4 u 2 (2 ® — 1 .0)J;
return {sign, BlockRAM [index]};

Another well-known technique for reducing the table size, while maintaining or in­

creasing accuracy, is to use an interpolation technique. In this method, a readily evalu­

ated polynomial of degree v, p{x) = Y^j=o aj x ^ is obtained by making its value coin­

cide with the function at v + 1 points (breakpoints). To obtain the coefficients aj, the set

of v + 1 linear equations yi — J2j=oaj x i> 0 < i < v can be solved, where x% and

yi are the v + 1 breakpoints. An alternative to fitting a polynomial of degree v through

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Implementation o f Trigonometric Functions

Algorithm 3 Computation of cos(27ru2), U2 € [0,1)
if U2 > 0.75 then

U2 — U2 - 0.75;
else

U2 = U2 + 0.25;
end if
return sin(27rit2);

v + 1 breakpoints is to have different polynomials (of lower degree) through subsets of

the breakpoints. This approach is called piecewise approximation. If the breakpoints are

sufficiently close, then one may choose linear interpolation. If the values of sin(27rx) for

two successive known points, xo and x i , are f (x o) and / (x i) , respectively, then a linear

interpolation can be used to approximate the value x between breakpoints xo and x i as

flxi)^JXxo) ~ xi~-x0• Since x is known, the linear interpolation polynomial p(x) can be

defined as p (x) = / (x 0) + (x - so) where and typi'

cally stored in a table for every segment. The error of the linear interpolation is defined

as £ — 11/(0 — p(-)ll- Figure 3.5 plots the squared error of the direct lookup table tech­

nique along with the squared error of the linear interpolation method. The mean square

error (MSE) of direct table lookup with 1024 segments for the full cycle is about 10- 5 ; for

the first order approximation approach with 64 segments for the quarter cycle, the MSE is

about 10- 9 . The above techniques provide different trade-offs between the computation

speed, memory size, and computation accuracy. One commercial implementation, the

Synopsys trigonometric IP core, approximates the sine function by segmenting one quarter

period into 64 segments, and then uses linear interpolation and symmetry to approximate

the cosine value over the full domain (0 ,27r) [103].

Another technique is the multipartite table method in which only table lookup and

adders are utilized [104] for a piecewise linear approximation of the functions with up

to 20-bit inputs. The idea behind the bipartite approach is to group 2° input intervals into

2^ larger intervals, where j3 < a , such that the slope of the segment is considered constant

in every larger interval.

Another well-publicized technique for approximating trigonometric functions is the

CORDIC algorithm [72,105]. CORDIC stands for COrdinate Rotation Digital Computer

[106] is a bit-serial set of algorithms that was further expanded to compute other elemen­

tary functions such as logarithmic, exponential and square-root. The CORDIC computation

algorithms use additive normalization (i.e., each iteration uses a table lookup, bit shifts, and

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

(a)

2xRadiansx 10'

CV
§ 0.5

2x
Radiansx 10'9

% 4

Radians

Figure 3.5: The cosine approximation error: (a) Ideal cosine function; (b) Squared error for
the table look-up approximation; (c) Squared error for the first order approximation.

an addition operation to converge) which results in one bit convergence per iteration and

hence a linear complexity 0 (n) . It is particularly well-suited for low-cost applications.

Xilinx provides a CORDIC IP core for implementing trigonometric equations [107]. A

fully parallel 16-bit fixed-point configuration with single-cycle data throughput can be run

at 200 MHz and requires 646 slices on a Xilinx Virtex2P XC2VP100-6 FPGA. Xilinx’s

word-serial architecture, configured with the maximum degree of pipelining, uses only 285

slices, but operates at the significantly lower frequency of 136 MHz. Redundant or high-

radix CORDIC algorithms require more hardware but reduce the required number of iter­

ations. Trade-offs thus exist between the complexity of each iteration and the number of

iterations.

3.4 Gaussian Variate Generator Implementation

Accurate and efficient implementation of the f (u i) in the BM function is more challeng­

ing than realizing periodic sine and cosine functions. In this section, we propose three

approaches for realizing f (u \) and hence producing three alternative GVGs. The first ap­

proach uses iterative convergent algorithms to calculate the ln(-) and square-root operations.

The second approach is based on non-uniform quantization and table lookup schemes. The

third proposed method utilizes polynomial curve fitting, an efficient hierarchical domain

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

segmentation, and a novel scaling scheme to maintain the accuracy of the computation.

The third technique provides an optimized datapath with respect to the noise generation

rate and overall resource utilization on the FPGA, while achieving accurately Gaussian

statistics right into the distribution tails.

3.4.1 Implementation of a GVG Using Iterative Algorithms

As discussed in Section 3.3, one solution for calculating the logarithm and square root

operations is based on series expansion. It is known that this approach may result in un­

acceptable PDF accuracy if an insufficient number of leading terms of the Taylor series is

utilized [58]. Another well-known approach for calculating differentiable functions, such

as division, reciprocal, and square root, are the digit recurrence methods. These techniques

produce linear convergence where each iteration produces one new digit of the result. As a

consequence, the number of iterations for a desired accuracy depends linearly on the preci­

sion of til.

To compute f (u i) , first ln (u i) is calculated using the multiplicative algorithm for re­

ciprocal [72] and then the square root of —2 ln (u i) is approximated with a digit recurrence

algorithm [105]. Let tti 6 [0.5,1) be a PN that has the fixed-point representation denoted

by Q (W L \,W F i), where W L \ = 32 and W F\ = 31. Since l / u \ can be approximated

as 1 /u i ~ n ^ H l + where Sj e [-1 ,0 ,1] [72], then ln (u i) can be written as

ln (u i) « — L j where L j = ln (l + Sj2~i) [72]. Algorithm 4 shows an iterative

procedure for calculating y = ln (u i). The values for Sj are obtained from the multi­

plicative normalization and the values of L j can be obtained from a table. The recurrence

y\j + 1] = y\j} — L j updates the value of y in every iteration j , where 0 < j < W L \, and

the final result y\W L{\ m ln (u i) is ready after W L \ + 1 iterations. The absolute error of the

ln (u i) approximation, produced by this convergent algorithm, is bounded by 2~WLl [72].

However, in a finite-precision representation, the truncation (or rounding) error must also

be considered. As shown in Algorithm 4, If u \ is less than 0.5, u\ should be scaled up

and, consequently, the result of the algorithm would need to be rescaled. Note that if u\ is

equal to 0 , the corresponding numerical value is set to the smallest representable number,

2” 31. Scaling up can be performed by a simple shift-left operation. A variable T stores the

number of such shift-left operations. For W F\ = 31, the value of T lies between 0 to 30

and, therefore, a 5-bit counter can be used. The greatest magnitude of | — T ln (2) | is 20.79,

which implies that the result of the algorithm can be expressed in Q{32,26) format. The

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

Algorithm 4 Calculating ln(tti), u \ € [0.5,1)_____
while (ui[WF\ — 1] ^ 1) do

Mi ^ 1; T + +;
end while
y = 0; w = 1 - u r ,
for (j = 0; j < WL f , j + +) do

if (w > 0) then
s = 1 ;

else if (w > —0.75) then
s = 0 ;

else
s = -1 ;

end if
if (j > WLi /2) then

I = s 2 _J ;
else

L = l n (l + s2~j); / / T h e r i g h t h a n d s i d e i s r e a d f r o m a t a b l e
end if
y = y - L ;
w = 2(w — s + s w 2 j);

end for
return y - T in 2; f / T In 2 a r e r e a d f r o m a t a b l e

precisions of the w and y variables can be set to use Q (32,28) and Q (32 ,30), respectively.

Since the ln(tii) result is a negative number in Q (32 ,26) format, the value of —21n(ui)

can be in Q{32,25) format. However, since —21n(ui) is always a positive number less

than 49, the input to the square root operation can be taken to be an unsigned number in the

Q (32,26) format. The ln (u i) implementation utilizes 246 slices in an XC2V4000-6 FPGA

and operates at up to 132 MHz.

To speed up the ln (u i) calculation, one BlockRAM can be utilized to store some pre­

defined values required by Algorithm 4. Here 30 values of —T ln(2) are precomputed and

stored in a memory. Thirty-four different values of —L = — ln (l + s2~ i), for 0 < j < 16

and s — {—1,1}, are stored in the same BlockRAM. Also, to calculate L = s2~J , for

16 < j < 32, 32 values of —L are stored in the memory for s = { -1 ,1 } . Altogether, 96

words of BlockRAM are used with the BlockRAM configured into a 512 x 36 aspect ratio.

Since rescaling of the final result — and therefore the look-up of the value of —T ln(2)
f

— takes place in the last clock cycle, there is no need to configure the BlockRAM into

dual-port mode.

Since the calculation of ln (u i) takes W L \ + 1 clock cycles and the input to the square

root module comes in sequence from the ln (u i) module, the square root can be performed

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

Output

r S f

Address = 15 1 1 1 1

D Q D Q D Q
SRL SRL SRL

> !; [> >

1 1 1 1 1 1 1 1

Slice 2 Slice 1

Figure 3.6: 52-bit LFSR design.

in a second pipeline stage while the ln(iii) module calculates the next logarithm. There­

fore, rather than using a multiplicative approach, a digit recurrence is utilized to reduce the

area and to balance the pipeline delay between the two stages of the computation. The im­

plemented square root circuit utilizes 173 slices in an XC2V4000-6 and runs at up to 148

MHz.

It is important to note that only one single-bit output LFSR is required to implement

the PNG. This is due to the fact that the calculation of f { u \) takes W L \ + 1 clock cycles,

which is greater than the W F\ clock cycles required to generate u \. Therefore, using a

LF-LFSR for PNG would not increase the overall noise generation rate. Similarly, to gen­

erate U2 , another 52-bit LFSR with single-bit output is required to be able to generate u^.

Conventionally, flip-flops would be used as storage elements to implement an LFSR. This

is also the case when implementing a LF-LFSR since the output of flip-flops are required

to be accessed. With two flip-flops in each slices, an n-bit LFSR will take up at least Tn/ 2 1

slices. However, a four-input lookup table (LUT) in recent FPGAs can also function as a

16-bit shift register lookup table (SRL), with a single output accessed by the LUT’s address

lines [89]. This output allows the cascading of any number of 16-bit SRLs to create shift

registers of arbitrary size. The SRL-based implementation can significantly decrease the

area of the GVG. Figure 3.6 shows how a 52-bit LFSR, defined by the characteristic poly­

nomial p (x) = x 5 2 + x 3 + 1, can be implemented efficiently using four 4-input LUTs and

four flip-flops to generate a single-bit PN per clock cycle. The input addresses of the three

16-bit SRLs in Figure 3.6 are all set to 15 in order to cascade them. A length of 52 bits

was chosen to avoid pattern repetition for a large number of PNs. The implemented LFSR

utilizes only two slices (in the same CLB) and its maximum operating clock frequency is

290 MHz.

The implemented GVG on the Xilinx Virtex-II XC2V4000-6 FPGA uses 3% of the con-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

Generated noise
Gaussian noise

—

x

Figure 3.7: Gaussian PDF compared with PDF generated noise samples.

figurable slices, two BlockRAMs, and operates at 132 MHz, and hence generates 264/WXi

million noise samples per second. Figure 3.7 shows the PDF of 101 3 generated noise sam­

ples. Even though Figure 3.7 shows that the PDF of the generated noise lies accurately

over the normal distribution PDF within a ±6.55cr interval about the zero mean, the main

drawback of this technique is the relatively slow GV generation rate. The execution times of

the iterative logarithm and square root algorithms are linearly proportional to the precision

of u \ [12]. Consequently, for the high precision PNs that are required to generate samples

well into the tails of the Gaussian distribution, the noise generation rate will be relatively

slow [76], One effective solution would be to utilize high radix computation; however, the

resulting hardware complexity would increase substantially [72,105].

3.4.2 A GVG Using Non-Uniform Quantization and Table Lookup

A straightforward scheme for obtaining discrete values of /(•) is to store precomputed

quantized values of / (u i) , where u \ e [0,1) and f { u \) € [0, oo). As shown in Figure 3.8,

f (u \) increases exponentially as u \ approaches zero. Thus, a simple uniform quantization

of f (u i) consumes a prohibitively large amount of memory. Alternatively, a nonuniform

quantization version of f { u \) over the interval (0 , 1) can be stored in a smaller memory.

An L-stage nonuniform quantization of f (u \) can be calculated by a recursive partition of

the (0,1) interval. As shown in Figure 3.9, first the interval (0,1) is divided into 2qi seg­

ments and the function values within (1 /2 9 1 ,1) are stored in a 2qi x WXi-bit BlockRAM.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

o u
1

Figure 3.8: Plot of f { u \) = y / -2 1 n (u i) .

8*M210 <J=1/2 21 i i
1.......... 1.... I

1
- i Stage 1

5I—r— 2f— Stage 2

—■K

0 / 2 /
1 1 1
1----------------- 1------------1—

L-1
-I Stage L

Figure 3.9: Non-uniform quantization of (0,1).

Then the interval (0 ,1 /291] is subdivided into 2qi segments and the corresponding function

values are stored in another BlockRAM. This procedure of nonuniform quantization is re­

peated recursively. The quantized values of /(•) are thus stored in 1 < L < \W L i/q { \

dedicated BlockRAMs. Clearly the smaller the quantization step, the greater the memory

requirements for storing the quantized values. The number of stages, L, can be chosen so

as to give the most accurate noise samples given the available precision of u \, the memory

aspect ratio and the available number of BlockRAMs.

The datapath of the GVG is shown in Figure 3.10. The PNG block uses a 52-bit

LF-LFSR defined by the characteristic polynomial p(x) = x 52 + x 3 + 1 to generate one

(L x qi) + q2 -bit PN, every clock cycle. According to the nonuniform quantization of

/(•) , to obtain the /(•) value, the PNG block generates L pseudo-random numbers, each

qi bits, to address the L BlockRAMs. If the first set of q\ bits are not all zero, then the

first /(•) BlockRAM is addressed. Otherwise, the second set of q\ bits are checked. This

addressing scheme is repeated until either q\ is nonzero or the £-\h iteration is reached,

where £ = 1 , . . . ,L . Note that if L x 5 1 -bit zeros are generated in a row, then since ln(0)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

92

— T

MUL MUL

ADD ADD,

nReset nReset

MAC MAC

Ku,)
Block

RAM L

flW
Block

RAM 2

Ku,)
Block

RAM 1

9(u)
Block

RAM L

PNO

GV1 GV2

Figure 3.10: GVG datapath using non-uniform quantization and table lookup.

tends to infinity, the last memory location of the L-th /(■) BlockRAM is addressed.

The computational core of the GVG is two pipelined MACs, which are enclosed in

dashed boxes in Figure 3.10. According to the CLT, if Xi ~ A f(0,1) then X i/s /K , as i

approaches infinity, tends to be normally distributed. An accumulator can then be used to

reduce the quantization error and smooth out the fluctuations of the obtained distribution.

The accumulator is reset with “nReset" after summing K noise samples. The number K is

selected to allow 1 f y / K to be performed using only shift-right operations (e.g., K = 4,16,

etc.). Note that by choosing K = 2, we cancel out with y/2 factor in the /(•) equation. To

calculate <?(■), a uniform quantization version of gi(-) over the interval [0,0.25] is stored in

a BlockRAM. The 9 2 -bit PN U2 is used to address the g\(-) BlockRAM. Then the sin(27rit2)

and cos(27TU2) blocks calculate gi(-) and g^O) over the interval [0 , 1], respectively.

The parameters of the GVG design include the number of quantization stages L, the

bit precisions of m and u 2 , the aspect ratios of the BlockRAMs and the number of accu­

mulations. The noise generation rate depends on the number K of accumulations. The

GVG quality depends strongly on the precision of u i and the number L of quantization

stages. These parameters can be selected based on the desired GVG objectives. The effects

of different parameter values were simulated using a compiled C model for a large num­

ber of samples and then optimized according to the resource configuration on the FPGA to

achieve an efficient GVG with respect to the resource utilization, noise generation rate and

PDF quality.

The GVG uses 5 BlockRAMs, only 1% of the slices in a Xilinx Virtex-II XC2V4000-6

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

%

5.8
X

Figure 3.11: Ideal Gaussian and generated PDFs plotted on a logarithmic scale.

FPGA and operates at 165 MHz to generate 330/ K million GVs per second. The sin(-)

and cos(-) modules in Figure 3.10 require only 36 slices. Figure 3.11 plots the PDF of

the theoretical Gaussian distribution together with the PDF of IQ9 generated GVs. The

simulation parameters are q\ = 9, W L \ = 32, and L = 4. The four /(■) BlockRAMs

are configured with a 29 x 32 aspect ratio. Other parameter settings include q2 = 10,

W L 2 = 16; consequently, the gi(-) BlockRAM is configured with a I K x 16 aspect ratio.

Figure 3.11 shows that the PDF of the generated noise samples fits closely over the ideal

PDF within only up to ± 5 . Oct. The primary reason is that the proposed simple nonuniform

quantization is only applied to the domain of u j close to zero. The nonlinear region close

to u \ = 1 is not segmented as efficiently by the binary subdivision scheme as the domain

gets close to u \ = 0. For a higher quality GVG, the number of quantization stages must

also be relatively larger which implies that a larger on-chip memory would be required.

3.4.3 Implementation of a GVG Using Piecewise Polynomial Curve Fitting

The non-uniform quantization and table lookup scheme suffers from low PDF accuracy

especially at the tails of the distribution. The iterative approach can provide arbitrarily im­

proved GVG quality; however, due to the iterative procedure of the convergent algorithms

for the ln(-) and square root operations, the GV generation rate is relatively slow when

accuracy into the Gaussian tails is important. To avoid these limitations, a polynomial

curve fitting approach can be applied to approximate f (u 1) between (0 , 1) with high accu­

racy and relatively modest hardware requirements, while achieving a high GV generation

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

rate. In this application, a polynomial approximation involves representing the continuous

function f (u \) with a polynomial p (u i) = Y ^= o aiu 1 ° f finite degree v over an interval

[a, b). Various common curve fitting algorithms, such as linear or cubic interpolations or

rational polynomial interpolations, differ from each other with respect to the amount of

computational requirements and the residual error, which is given by £ = | |/ (u i) — p(ui)\\

where || ■ || denotes a suitable norm. For example, the least-squares polynomial regression

£ 2 = ^2 [f (u 1) ~ p (u i)] 2 can be calculated based on the vertical offset between the / (t t i)

and p (u i) curves or based on the perpendicular offset. A maximum likelihood estimate of

the polynomial coefficients can be obtained using the orthogonal least squares fit (OLSF)

method [108], which minimizes the summed square of the residuals where dj de­

notes the maximum perpendicular distance from the point on the polynomial approximation

to the point on f (u i) . Note that in addition to the error due to the approximation of f { u \) ,

there is another source of error called round-off error or quantization error due to the fi­

nite wordlength. Truncation errors and rounding errors can be considered as subsets of

quantization errors.

Due to the nonlinear shape of /(•) , a relatively high-degree single polynomial is re­

quired to approximate /(•) accurately over the interval (0,1). The polynomial degree has

a direct effect on the residual approximation error, hardware complexity, latency and re­

source utilization. In general, the common weighted sum of powers form of p(-) requires

v (v + l) /2 multiplications and v additions to evaluate p(-). The “factored” representation

p (u i) = cio + (a i -t (an_ i + anu \)u \)u \ ■ ■ -)u \ reduces the number of multiplications

down to v and still requires v additions. A more compact implementation could be ob­

tained using time-shared hardware, but the resulting calculation time would be increased.

Instead, to increase the speed of the computation, the (0,1) interval can be divided into k

smaller segments separated by a set of points called joints. The fewer the segments, the

higher the degree of the polynomial that is required to approximate /(•) within each seg­

ment. Over each interval, a (different) polynomial of lower degree can provide a similarly

accurate approximation to /(•) . Even though a piecewise function /(•) can be approxi­

mated with a lower degree polynomial in each segments, discontinuities can arise at the

ends of the intervals used for separate definitions. On the other hand, although any choice

of segment boundaries can easily be implemented in a software simulation, some choices

imply overly complex decoding circuitry and are thus undesirable for high-speed GVG re­

alization. Therefore, appropriate segmentation is crucial to the accuracy and the speed of

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I'*'"'"

0 r0j --------------

...f ,

t
-3

2\
S 0,1•: 0

2 -(WL-2)

'■-.S 0,WL-4

i —
-(WL-1)..

2>-. '*>

3.4 Gaussian Variate Generator Implementation

~-1

"S.
1-2- 2 "

i,o

t-2.-3

f-2
: s

(WL-2)

1-2
-(WL-1)

S 1 ,WL-3 S iWL-2■*0,WL-2 O.WL-3

Figure 3.12: Segmentation of u \ € (0,1).

the resulting GVG.

As shown in Figure 3.8, the function f (u \) has two high-slope regions: in the vicinity

of u \ = 0 and close to u \ = 1. Since a small input change may lead to a (very) large

output change, the input domains near 0 and 1 need smaller segments than the relatively

linear regions in the middle of the domain. Different nonuniform segmentation schemes

were already proposed in [61] and [62]. The segmentation scheme in [61] utilizes on-chip

memory to store nonuniformly quantized values of /(■)• In [61], only the nonlinear region

close to 0 is segmented nonuniformly. In this region the precomputed values of /(•) are

stored in memory. The method in [62] uses nonuniform segmentation in both the regions

close to wi = 0 and u \ — 1. It also uses a piecewise linear approximation for more

accurately computing /(•) within each segment. The CLT [14] was exploited in both [61]

and [62] to improve the statistics of the resulting distribution by averaging multiple GVs.

We use a hierarchical segmentation method: the domain (0,1) of u \ is divided into

two subintervals, ro € (0,0.5) and r \ G [0.5,1). Let u \ € [0,1) be represented as an

unsigned fixed-point number with W L \ bits of precision. The value of u \ is Y^i=i 2“ *uit

and its bit structure can be denoted as u iWLl_1 ■ ■ • u i0- The value, 0 or 1, of the MSB bit

of m indicates whether a particular u i resides in subinterval ro or r \, respectively. The

subinterval ro is segmented logarithmically into W L \ — 1 segments from u \ = 0.5 down

to 0, as shown in Figure 3.12. Subinterval r\ is segmented similarly from u\ — 0.5 up

to 1. Each segment is denoted by Sh>w, where binary subscript h specifies the half range

(ro or r i) , and w denotes the segment number w = 0, • ■ • , W L\ — 2. Each segment is

then subdivided uniformly into M — 2m segments. One can verify that the total number of

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

segments is 2m+1(W Li — 1). The value of /(•) within each segment is then approximated

using a polynomial p(-). A piecewise continuous (differentiable) scheme is utilized where

the ends of intervals are smooth. Therefore, the polynomial pieces combine smoothly. Any

such smooth piecewise polynomial function is called a spline. We have used the MATLAB

function “polyfit(x,y,n)” to find the coefficients of a polynomial p(-) of degree n that fits

the polynomial p(-) to /(•) , in a least squares sense. The gradient weights (coefficients) of

the polynomials for approximating f (u 1) within each segment are then optimized based on

the OLSF method to minimize the residual error.

As u \ approaches 2~VVXl from above (for the nonlinear region just above u \ = 0) or

when u \ approaches 1—2~WLl from below (for the nonlinear region just below u i = 1), the

slope d f (u i) / d u i of f (u \) tends toward infinity and, therefore, the coefficients of p{u\)

become large. However, the value of p (u \) lies within (0, \[2W L\ In 2). For example,

for a W L i = 32-bit representation of u \, the value of p{u \) lies in (0,6.66) and can be

represented accurately in 16-bit fixed-point format. Storing the large coefficient values

of p (u \) on-chip requires large memories, increases the hardware complexity and slows

down the variate generation rate. To overcome this problem, [62] proposed to store scaling

factors (multiples of two) along with the coefficients into an on-chip memory to reduce the

magnitude of the slope, trading off precision for range. Instead we use a scaling scheme

that stores only adjusted coefficients of p{u\) in an on-chip memory. This scheme reduces

the memory requirements, decreases the hardware complexity, maintains the accuracy of

the computation, and does not sacrifice precision for range as in [62]. However, a simple

circuit is required to scale and thus accurately represent the input value u \.

For clarity, we explain the scaling method assuming that each segment is approximated

using a (piecewise) linear polynomial p{u{) — au\ + b. The scaling scheme is independent

of the number of segments (precision of u i) and the order of polynomial. Assume that the

PNG generates an unsigned uniformly distributed number u \. When iti lies within ro, u\

is shifted left until the most significant bit (MSB) bit is 1. Thus if u \ lies in segment so)W,

a new scaled variable u i tW is defined as u \)W = 2wu \. To compensate for the scaling of u \,

the aoiU, slope of segment «o,u> is shifted to the right w bit positions as do,w = 2~wao<w.

Thus the largest slope values are scaled down by a factor of Ad = 2” VVXl+2 and stored in

memory. Hence we compute

p{u \) = o i l + b = 2waui + b. (3.4)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

When u \ lies within s\,w, to scale the slopes and intercepts of p(-) accurately, the variable

u i is transformed to a new variable u i = 1 — u \. Thus as u\ —» 1” , u \ —► 0_ . Similarly,

when u \ resides in segment s \ iW, with u \ — 2wu \,p { u \) can be written as

p{u\) — —2~waui + (a + b) (3.5)

The scaled slope and intercept of the polynomials of each segment can in this way be

accurately stored in an on-chip memory. According to the value of u \ , a small scaling circuit

provides the subinterval rj, the segment number w = 1, • • ■ , W L \ — 1, the subsegment

number m = 1, • • • ,M , and the scaled value of u \. Then the scaled coefficients of p{u\)

can be addressed and read directly from memory to compute (3.4) or (3.5) as an accurate

approximation to f (u \) .

Figure 3.13 shows a dataflow diagram illustrating the evaluation of p { u \) in its fac­

tored form and the corresponding hardware datapath. The approximated coefficients can

be stored in an on-chip memory. One important hardware constraint that should be con­

sidered is the amount of on-chip memory in the FPGA. If the FPGA has $ bits of memory

and each coefficient is represented using c bits, then [$/cJ is the maximum number of co­

efficients that can be stored on-chip. One can thus trade off the order of the polynomial

with the number of segments (limited by the on-chip memory). To generate one Gaussian

sample, f { u \) = p (u) is multiplied by <71(112) = s in (27TU2). The core of the GVG contains

pipelined fixed-point multipliers, adders, registers and routing resources. The operations

are pipelined and scheduled to maximize the output rate. As discussed in Section 3.2, we

used combined generators with different periods of p « 288, p « 2113, and p & 2258 to

produce 32-bit and 64-bit PNs every clock cycle.

The addressing unit (AU) calculates the scaled values of u \, namely u \, identifies the

half range h (the MSB bit of u \), the segment number w, and the subsegment number

m . To determine the segment number w of a given PN input u \, the AU uses a small

leading one detector (LOD) circuit [109]. Since the AU is in the critical path of the GVG,

its operating rate limits the output rate of the GVG. The tree structure of the LOD for an

8-bit u \ is shown in Figure 3.14. The string of W L \ bits generated by the PNG is first

partitioned into W L i/2 pairs of adjacent bits. For each pair, a 2-bit leading zero count is

generated. The high order bit also indicates if a 1 is detected in the string. At the next

level, the results for adjacent pairs are combined, a multiplexer selects the count from one

of the pairs, and new low order bits are appended to the count. This scheme is repeated

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

PNG A ddressing
Unit (AU)

Dual-Port
Coefficient

M emory
V-1

f = 2 \(+F u.

t = 3 M / i V-2 Dual-Port
Coefficient

Memory

v-2

Dual-Port
C oefficient

M emory

P&)

Figure 3.13: The datapath for calculating /(•) function.

L ZC2| ILZC2 LZC2 LZC2

LZC4 LZC4

Figure 3.14: The tree structure of leading zeros counting.

for all \og2{W L\) levels. Some speed-up can be obtained by using 4-bit or 8-bit groups

and by using larger multiplexors. In our implementation the AU is pipelined with three

stages to achieve a high GV generation rate. Another approach to detect the leading one

index is proposed in [110]. As shown in Figure 3.15, the 2-bit LOD generates a valid bit

v and a position bit p that can be extended for a 4-bit LOD. Two 4-bit LODs are utilized

to generate an 8-bit LOD. The generated triple (r, w, m) from the AU is then used to

address the coefficient memory. For W L \ = 32 and M = 8 (W L\ — 1 segments in each

interval, and M subsegments for each segment), only one BlockRAM is required to store

the 2 x 2 x 31 x 23 = 992 coefficients of 62 polynomials. Since the polynomial coefficients

are accessed simultaneously, the BlockRAM must be configured in dual-port mode.

Before realizing the GVG on an FPGA, the parametric model of the datapath was sim­

ulated and verified. Table 3.5 summarizes the implementation results for the new GVG on

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Gaussian Variate Generator Implementation

2-bit LOD

2-bit LOD 2-bit LOD

f 0 4 J 4 1 U

i i i i i i i i

Pm P, V
4-bit LOD

4-bit LOD 4-bit LOD

8-bit LOD

Figure 3.15: Logic diagram for leading one detector.

Table 3.5: Typical realizations of the new GVG.
Device | 1“ II III IV

Bitwidth o f u i \ 32 64 32 32
Period o f PNG « 2SS ps 2SS « 2lai*
Max. deviation \ 6.66<t 9.41(7 6.66(7 6.66(7

Clock freq. (MHz) 253.52 253.16 107.74 221.68
Output rate (MGVs/sec) | 506 506 214 442

Number o f slices \ 344 441 343 705
Resource utilization \ 1.4% 1.9% 11% 1%

On-chip memory blocks \ 2 2 2 2

“Designs I and II were synthesized for a Xilinx Virtex-II XC2V4000-6 FPGA. Design III was implemented
for a Xilinx Spartan-IIE XC2S300E-7 FPGA. Design IV was synthesized for an Altera Stratix EP1S80F1508C6
FPGA. The latency of all four GVGs is 10 clock cycles.

four different FPGAs, utilizing linear curve fitting. One important feature of the proposed

design is that, due to the efficiency of the scaling scheme, the datapath of the GVG can

be implemented in 16-bit fixed-point format, independent of the precision of u \. In fact,

u \ can be scaled successfully to generate GVs with various tail accuracies using the same

16-bit datapath. To do this, only the PNG and AU must be modified slightly. Extensive test

analysis verified that the proposed 16-bit design preserves the computation accuracy. For­

tunately, the 16-bit GV format tends to be a common precision for many DSP applications.

The Xilinx AWGN core [75] also uses the 16-bit fixed-point format. One important point is

that the datapath of the new GVG is conveniently scalable to permit faster GV generation.

If there are sufficient resources available on the FPGA beyond those required by a single

GVG datapath, then multiple instances of the same GVG datapath, with different initial

seeds for the PNGs, could be readily instantiated to speed up the total GV generation rate.

Figure 3.16 shows the layout of the 0.126 m m 2 GVG chip designed in a 90-nm CMOS

technology using a dual-threshold standard cell library. The core area is dominated by the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 The GVG Statistical Tests

Figure 3.16: The 0.126 m m 2 GVG chip layout in 90 -nm CMOS technology.

dual-port coefficient ROM and the single-port sine ROM. Without access to a commercial

read-only memory (ROM) core generator, we implemented the ROM array using standard

cells. Custom ROM blocks would significantly reduce the area. The unlabeled area in the

core layout is occupied by two-stage pipelined multipliers, adders, registers and routing

resources. The core operates at 537 MHz, generating more than one billion GVs per second

while dissipating 12.3 mW of dynamic power. The static power dissipation is estimated to

be 9.91 mW.

3.5 The GVG Statistical Tests

Normality tests are well-known statistical measures used to determine if generated GVs fit

a standard normal distribution [111]. They are based on various key characteristics of the

normal distribution. In this section we evaluate the normality of the variates produced by

the GVG realizations specified in Table 3.5.

The power of statistical tests differs depending on the nature of any deviations from

ideal normality, such as skewness or an otherwise inaccurate distribution. Normality tests

are performed either graphically or numerically. Figure 3.17 superimposes the PDF of 10u

generated GVs on top of a PDF plot of the theoretical normal distribution. The two plots are

indistinguishable over ± 6 .0 a from visual inspection. To generate the GVs at the tails of

the distribution, where |n| > 6.0cr, at least 1013 samples are required to produce the PDF,

which takes a prohibitively long time. Instead, the PDF of the Gaussian variable n, /A r(n),

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 The GVG Statistical Tests

PDF of generated GVs
Theoretical Gaussian PDF

n

Figure 3.17: Gaussian PDF compared with the PDF 1QU generated GVs.

can be expressed in terms of its CDF, F/v(n). Note that the PDF can be written as

= ~(LF n ^ = in Pr^ < n '̂ 3̂'6^

The “importance sampling” expression can be written using Bayes’ law [14] as

Fjv(n) = Fjv(n|f7i < u T)P r(f7 i < u T) + Fjv(n|f7i > u r)Pv(U i > u T). (3.7)

To measure the PDF in the tails of the distribution, GVs such that U\ < uT 1 are first

generated. The PDF of the generated GVs can then be given as

/a t(u) = ~ F/v(n|f7i < ur)P r((7 i < uT), V \n\ > \ / - 2 1 n (u r). (3.8)

In this method, we do not generate PNs close to 1 and, therefore, the second term of Equa­

tion (3.7) approaches 0. Using this method, instead of generating 1013 GVs, the PDF at the

very ends of the distribution tails can be assessed using only 109 GVs. From a resulting

PDF plot one might reject the claim of normality if the distribution deviates significantly

from a bell-shaped normal distribution. Similarly, the CDF plot can also be used to judge

the symmetry and skewness of the generated distribution. However, it is usually difficult to

assess the accuracy visually, particularly at the tails of the distribution.

It is usually more convenient to compare two linear functions. The Quantile-Quantile

(Q-Q) plot of the generated GVs is shown in Figure 3.18. If the points in the plot of

G - 1 (F (n)) versus n lie roughly on a straight line with intercept fx — 0 and slope a — 1,

then one might conclude that n is normally distributed [111]. A departure from the expected

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 The GVG Statistical Tests

g
u.

n

Figure 3.18: Inverse CDF of the generated GVs.

3.5

2.5

S*c

1.5

0.5

-3.5 ■2.5 •0.5
n,'1

Figure 3.19: Plot of n \ versus n 2.

line indicates departure from normality. Specifically, an 5 shaped-curve indicates lighter

than normal tails. The generated variates do indeed pass this test.

Deviations from normality can also be judged using a scatter diagram [111], such as the

one shown in Figure 3.19. The scatter diagram plots the upper half of the ordered generated

GVs against the lower half. A negative unit slope indicates symmetry, a negative slope

exceeding unity in absolute value indicates positive skewness, and a negative slope less

than unity in absolute value indicates negative skewness [111]. Analytically, the standard

third moment (\fj3i) and fourth moment (/32) of the generated distribution can be evaluated

as
fa - E(iV - H f

^ { E (1V - p) 2}3/2 (3 ' 9)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 The GVG Statistical Tests

and
- E(iV - /x)4

(3.10){ E (i V - /,)2}2

to characterize the skewness and kurtosis of the generated PDF, respectively [111]. For a

the left, and V7?i > 0 means it is skewed to the right. If \J]3\ — 0 and V^ 2 < 3 then the

distribution is symmetric but the tails are thinner than normal, while \[Wi > 3 indicates that

tails are thicker than normal.

Relying solely on graphical goodness-of-fit techniques can lead to false conclusions

[111]. A detailed graphical analysis should always be supported by formal hypothesis test­

ing. The composite null hypothesis H 0 : n ~ jV(0, 1) asserts that the generated variates

follow the standard normal distribution. The Pearson Chi Square Xa test can be utilized to

determine the validity of H 0 with a desired significance level a — 0.05 [111]. The xL test

involves quantizing the horizontal axis of the PDF into 7 equiprobable cells. We have cho­

sen the number of cells to ensure that at least five variates reside in each cell. The Xa 7 - 1

statistic can be calculated based on the actual and expected number of samples appearing

in each cell and serves as an overall quality metric as follows,

where K is the number of observations. For each cell i, mi and Pi are the number of variates

and the probability that each variate falls into cell i, respectively. A normal distribution is

completely specified by two measures, the mean and the standard deviation. Since these

measures can be computed from the data, the number of degrees of freedom (dof) is reduced

by two (the number of parameters computed). So the number of dof is reduced from 7 — 1

to 7 - 3 [18]. Since the measured Xa,y- 3 f°r our GVG was less than the threshold value,

we accept H 0.

In general, the PDF based Xa test not an especially powerful test for normality [111].

A weakness of Xa test *s the arbitrariness of the choice of cells. The Anderson-Darling

statistic A 2 measures the integrated quadratic deviation between the empirical distribution

function F (n) and the theoretical function Fjv(n), multiplied by a weighting function ip(n)

as follows,

where ip(n) = 1 /F (n) (l — F (n)) . The weighting function '<p(n) is used to enhance the

normal distribution 1 / ^ 1 = 0 and /? 2 = 3. If \fW\ < 0 then the distribution is skewed to

(3.11)

A 2 = [F^v(n) — F (n)]2ip(n)dn (3.12)
J — OO

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Conclusions

sensitivity of the statistic in the distribution tails. The A 2 test statistic for a normal distri­

bution can be calculated numerically as [111]

K

A 2 = - K - l / t f £ (2 i - l)p n (* M *) + ln (l - Fz (zK+i-i)] (3.13)
i = 1

where F z(-) is the standard normal CDF and {zi} are the ordered generated GVs. Since

the measured parameter of A 2{I + 0.75/ K + 2 .25 /K 2) was less than the critical value of

0.752, we can again accept H 0 for our GVG.

The most important test is the correlation test when GVG is used in a MC simulation.

Small correlations in the random number generator can easily lead to spurious effects and

invalidate simulation results. It is important to note that the quality of the randomness of

the GVG is dominated by the behaviour of the PNG. If the generated PNs are not truly

independent, then “random” pairs (rij, rn+1) will lie on a spiral [112]. We considered sev­

eral different PNG designs with different autocorrelation properties. It was concluded in

Section 3.2 that the combined linear and nonlinear generators tended to have superior ran­

domness properties. To further reduce regularities, one can additively combine a nonlinear

PNG [96,99] with one of the linear CTGs with large period such as the one with p sa 2258

proposed by L’Ecuyer [94] that passes most of the major statistical tests and various MC

tests [81]. A nonlinear PNG can be implemented by combining several small nonlinear

PNGs [99] and storing the samples in an on-chip memory. To verify the correlation among

generated GVs, a sequence containing 107 variates generated by our GVG was subjected to

the linear Pearson’s correlation test [111] to estimate the correlation between random vari­

ates. No regular lattice structure can be observed visually, as shown in Figure 3.20. Figure

3.21 plots the autocorrelation values over the range of lags ±2048 for 107 generated GVs.

3.6 Conclusions

This chapter presents three different approaches to implementing a GVG based on the Box-

Muller algorithm. A fast and compact GVG was described that has a higher Gaussian sam­

ple generation with lower hardware cost than published designs. The functions required by

the Box-Muller method were approximated using hierarchical segmentation and a novel re­

cursive scaling scheme to maintain the approximation accuracy. Specifically, the proposed

GVG design uses two levels of segmentations, a non-linear segmentation along with a uni­

form segmentation. The new scaling scheme avoids sacrificing precision for the range, as is

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Conclusions

n.i

Figure 3.20: Statistical dependency of m and n»+i for 107 generated GVs.

io° P '-------'-------'-------'-------'-------'-------■-------

Iff* u---------L_»-----------Lj— I--------1----- J — i— I--------1------- 1 U i_J d
-2000 -1500 -1000 -500 0 500 1000 1500 2000

n

Figure 3.21: Autocorrelation among n* and ^±2048 for 107 generated GYs.

the case in other published methods. Moreover, the same 16-bit GVG datapath can generate

Gaussian variates with larger a values, with a slight increase in delay and resource usage,

as shown in Table 3.5. The statistical characteristics of the GVG were evaluated and con­

firmed using multiple standard statistical goodness-of-fit tests. The implementation costs

and performance were illustrated by typical realizations for FPGAs and a 90-nm CMOS

ASIC. Our proposed GVG uses only 1.4% of the Xilinx Virtex-II XC2V4000-6 FPGA and

operates at 253 MHz, generating 506 million Gaussian variates per second within up to

±6.66cr. To accurately achieve a range of 9.41cr, without performance loss, only 1.9% of

the same FPGA is required. This GVG should therefore be of significant assistance in the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Conclusions

characterization of low-BER systems.

The proposed designs are all parameterizable and, depending on the desired values of

the GVG objectives, the parameters of the designs can be configured. Before realizing the

proposed designs on an FPGA, the parametric models of the datapaths were all simulated

and verified in Matlab and C. The datapaths are also conveniently scalable. If there are suf­

ficient resources available on the FPGA beyond those required by the implemented design

under test, the Gaussian sample generation can always be sped up by instantiating multiple

instances of the GVG datapaths with different initial seeds for the PNGs.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

SOS-based Fading Channel
Simulators

Wireless communication systems are being designed to operate over radio channels for a

variety of environment and weather conditions. While it is possible to build prototypes of

a proposed system and then field test them in different locations, such an approach will be

quite expensive and will not provide useful feedback in the early stage of the system design

when a number of candidate designs must be explored. Moreover, propagation conditions

are almost impossible to repeat for the comparative analysis of simulation results. A more

practical approach is to create appropriate models for the channel and then base the initial

design on these models. Numerous wireless channel models have been proposed to char­

acterize time and/or space-variant propagation environments [16,23,24,113-115], These

channel models have led to different simulator designs that can be efficiently used in the

development and accurate error-rate performance evaluation of wireless systems. A chan­

nel simulator should mimic the propagation characteristic faithfully since the accuracy of

the performance estimation under real world conditions can make the difference between

success and failure.

One of the widely used approaches to simulate fading channels are the SOS-based meth­

ods [116]. The basic idea behind SOS-based fading channel simulators is that when a si­

nusoidal carrier is transmitted and subjected to multipath fading, the received signal can

be modeled as a superposition of waveforms received from different propagation paths.

Since the nature and orientation of obstacles in the wireless channel are not known in ad­

vance, the received waveforms can be considered to be stochastic processes. In the SOS

approach, the flat-fading process is modeled by superimposing sinusoidal waveforms with

amplitudes, frequencies and phases that are selected appropriately to generate the desired

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

statistical properties.

Different software-based fading channel simulators based on the SOS approach have

been proposed [117-121]. Programmers endeavor to map the parallel operations onto the

very long instruction word (VLIW) architecture of high-performance DSPs and/or use the

SIMD instructions of general-purpose processors to speed-up the simulation. Even us­

ing optimized software simulators running on high-performance processors, the speed is

limited by the inherently sequential instruction execution and the lack of specialized func­

tional units for MC simulation. In addition, the demanding performance requirements of

wireless applications, along with the increasing computational complexity of baseband al­

gorithms, have greatly increased software-based simulation loads. Therefore, the required

run times for the accurate performance evaluation of the most recent low-BER baseband

algorithms are becoming prohibitively long, which makes software-based simulation an

inefficient technique.

New simulation techniques, such as importance sampling, have been proposed to in­

crease the frequency of error events by introducing a bias into the statistical distribution of

the random variables (such as noise) [122]. The main drawback of these techniques is that

the statistical distribution of the channel effects should be known, and in most instances the

channel has to be “reasonably linear”. Moreover, these techniques may only be applicable

for the simulation of some parts of the system while other parts still require conventional

MC simulation.

Although it is much easier to design and implement a fading channel emulator in

software than in hardware, hardware-based simulators have been shown to provide sev­

eral orders of magnitude speed up in performance evaluation over software-based simu­

lators [123,124], significantly reducing the design time. Hardware-based fading channel

simulators use digital hardware [119,125-130] or employ analog techniques [117,120,125]

for at least part of the baseband signal processing. Regardless of the selected interface (RF,

analog baseband, or digital baseband), a digital fading channel simulator [128] is usually

preferred to achieve the best possible accuracy, flexibility, and repeatability [123]. The

majority of digital implementations use a general-purpose processor or DSPs [117-121].

Recent increases in the performance of FPGAs offer opportunities to reduce the cost and

complexity required when implementing a channel simulator [131]. Some other imple­

mentations [123] use an FPGA combined with a DSP platform to implement the required

computationally-intensive procedures of a channel model. Realizing the PL algorithm along

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with the fading channel simulator on the same FPGA can simplify the required hardware

and significantly speed up the evaluation process. Hence, digital implementations of multi-

path propagation models on rapid prototyping platforms (RPPs) are of great interest.

In order to implement a Rayleigh fading channel simulator on an FPGA, it is crucial

to find a statistically-accurate SOS model that (1) can be efficiently mapped onto the reg­

ular architecture of the FPGA, and (2) provides the desired statistical properties of the

fading channel. Despite the extensive acceptance and application of the SOS-based fading

channel model, this model has limitations that should be studied and determined before

software/hardware implementation. Among the different available algorithms for the gen­

eration of correlated Rayleigh random variates, as we show later, some do not produce

statistically accurate fading variates and some are infeasible for hardware implementation.

The rest of the chapter is organized as follows. Section 4.1 reviews important fading

channel parameters. These parameters are referenced in this chapter and also in Chapters 5

and 6. Two fundamental models for wireless channels are presented in Section 4.2. Section

4.3 gives an overview of important stochastic properties of radio channels. The literature on

the modeling and analysis of multipath fading radio channels is vast. While a complete re­

view of the literature is outside the scope of this chapter, a short but important review of the

SOS-based modeling techniques is presented in Section 4.4. In Section 4.5, two compact

implementations of the SOS-based fading simulator are described. The fading simulator

uses only 1% of the widely-available Xilinx Virtex-II XC2V4000-6 FPGA device while

generating over 200 million complex Rayleigh fading variates per second. The statistical

properties of the generated fading variates are also evaluated. Section 4.6 presents a novel

fading channel model based on the SOS approach. Using numerical simulation it is shown

that the proposed model accurately reproduces the desired statistical properties of the fading

envelope. The fixed-point fading channel simulator is designed and the accuracy, efficiency,

and flexibility of the design are discussed. The discrete-time fading channel simulator is im­

plemented on different FPGAs and the statistical properties of the generated fading variates

are verified against the analytical channel model. A fixed-point implementation of the fad­

ing channel simulator on a FPGA utilizes 5% of the configurable resources and generates

over 200 million 16-bit fading variates per second. The proposed digital channel simula­

tor is compact enough to be integrated along with many communication circuits of likely

interest. Finally, Section 4.7 makes some concluding remarks.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Parameters o f Fading Channels

4.1 Parameters of Fading Channels

Generally, a multipath fading channel can be characterized statistically as a LTV system

(filter) that models the superposition of multipath attenuated and delayed component signals

at any instant of time [132]. We denote the low-pass impulse response of LTV channel as

c(t; r) and the corresponding time-varying frequency response as C (t \ /) . While multipath

propagation results in the spreading the transmitted signal in time, the time variations in

the channel impulse response (or frequency response) result in the frequency spreading

of the transmitted signal, generally called Doppler spreading as described in Chapter 2.

Consequently, a multipath fading channel can be characterized as a doubly-spread channel

in time (due to the reflected and scattered propagation paths) and frequency (due to the

Doppler shift). The following channel parameters and fading conditions should be studied

before discussing the modeling and simulation of multipath fading channels [15,18,19,115]:

• Delay spread: Maximum excess delay or maximum delay spread Tm is the delay

between the first and the last component of the signal during which the received power

falls below some threshold level, e.g., X dB below the strongest component. The power

delay profile represents the average power associated with a given multipath delay, and is

measured empirically. Since some channels with the same value of Tm can have different

power delay profiles [19], a more useful parameter is the root mean square (rms) delay

spread ay defined as oy = \J (r 2) — (r) 2 where

M =
E / = i Pe

pe denotes the power coming along the £-th propagation path, t? is the time taken by the

£-th component, and (r 2) is the mean square delay given by

1 2 \ _ E i i pit i
2 Z e = i P e

The value of ay is directly related to the minimum symbol period that can be used in order

to avoid excessive ISI. The maximum delay spread is usually characterized by the rms delay

spread, i.e. aT — Tm . If ay is large, we expect to see considerable pulse broadening.

• Channel coherence bandwidth: Similar to the delay spread parameters in the time

domain, the coherence bandwidth, B c, is used to characterize a channel in the frequency

domain [115]. The coherence bandwidth can be defined as a statistical measure of the

range of frequencies over which the channel can be considered flat (i.e., the channel passes

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 Parameters o f Fading Channels

all spectral components with approximately equal gain and linear phase). Thus, B c is the

range of frequencies over which all frequency component amplitudes are correlated. Con­

sequently, the spectral components in that range fade together and two waveforms with

frequency separation greater than B c are affected quite differently by the channel. The

coherence bandwidth is usually defined as the bandwidth (BW) over which the channel’s

transfer function has a correlation of at least 0.5 [115] as

_ 0.276 1
B c = -------- « - — .

O’j-

Note that aT and B c are inversely proportional to one another, although their exact relation­

ship is a function of the propagation environments. Thus it is possible to quantify the pulse

broadening by the rms delay spread and/or the low-pass BW of the channel.

Delay spread and coherence BW are parameters that describe the time dispersive nature

of the channel in the local area caused by multipath propagation. They do not offer infor­

mation about the frequency dispersive nature of the channel caused by the relative motion

between the receiver and transmitter. In small-scale region, the time varying nature can be

described by the Doppler spread and coherence time parameters.

• Doppler spread: Provides a measure of how rapidly the channel impulse response

varies in time. The larger the value of the Doppler spread Ba, the more rapidly the channel

impulse response is changing with time. Doppler spread is also the range of frequencies

over which the received Doppler spectrum is non-zero. If the BW of the baseband signal is

much greater than Bd, then the effect of Doppler spread is negligible at the receiver. How­

ever, increasing the Doppler spread relative to the signal BW increases the signal distortion.

• Channel coherence time: The coherence time Tq of the channel is a statistical mea­

sure of the time duration over which the channel impulse response is essentially invariant.

Thus any two signals received at different times within Tc time duration have a strong am­

plitude correlation. The coherence time is commonly defined as the time over which the

time correlation function is above 0.5 as

where f o is the maximum Doppler frequency. Note that Tc and Doppler spread are in­

versely related. If T$ > T c , then the channel conditions may change significantly during

the transmission of the signal, thus the transmitted signal is likely affected differently by

the channel causing distortion at the receiver. As long as the symbol rate is greater than

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Channel Models

1 /T c , the channel will not cause distortion due to the relative motion of the transmitter and

receiver. Distortion could also result from multipath time delay spread, depending on the

channel impulse response.

• Fast and slow fading: The time-varying behaviour classifies a channel into fast fading

or slow fading. When an RF pulse is transmitted while the mobile unit (MU) is moving,

the motion of the MU increases or decreases all frequency component by up to f p Hz. If

W > Jd , the channel characteristics will change very slowly. In this case the Doppler

spread of the channel is much less than the bandwidth of the baseband signal, and the

signal undergoes slow fading. On the other hand, for transmission at a very slow data rate

(i.e., the pulse duration is large), a MU observe fast fading if the signal bandwidth is less

than the maximum Doppler frequency shift. Thus, the velocity of the mobile together with

the baseband signaling determines whether a signal undergoes fast fading or slow fading.

Similarly, if Tc ~> Ts, the time duration over which the channel remains correlated is long

compared to the symbol period, and the channel is said to produce slow fading. In this

case, the channel can be regarded as quasistatic over T c since the channel impulse response

changes at a rate much slower than the rate of change of the transmitted signal. If Tc < T S,

the channel is called fa st fading causing severe distortion.

4.2 Channel Models

Let s(t) be the equivalent low-pass signal transmitted over the channel and let S (f) denote

its frequency content. Then the equivalent low-pass received signal, exclusive of additive

noise, is

/ o o poo
c (t;r)s (t — r) d r = / C(t-, f) S (f) e]2nftd f . (4.1)

- o o J — OO

If the bandwidth W of S (f) is much smaller than the coherence bandwidth of the chan­

nel (i.e., W <C B c), since B c oc 1/Tm then W <C 1/Tm (or equivalently Ts » Tm).

Hence, the delay associated with the t-\h multipath component T£ < Tm and the multi-

path components of the channel are not resolvable. Thus all the frequency components of

transmitted signal S (f) are affected by the channel in approximately the same way (i.e., un­

dergo the same attenuation and phase shift in transmission through the channel) and there

is little time spreading in the received signal (i.e., s(t — rt) ~ s(t)). This implies that,

within the bandwidth W occupied by S (J) , the time-variant transfer function C (t; /) of

the channel is constant in the frequency variable. Thus the frequency independent channel

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Channel Models

response can be written as C (t\ f) = C (t). Such a channel that has a constant gain and a

linear phase response over a bandwidth larger than the bandwidth of the transmitted signal

is called frequency-nonselective or flat fading. Flat-fading channels are also called narrow­

band channels because the signal BW is narrower than the (coherence) channel BW. In this

case the spectral characteristics of the transmitted signal remain intact at the receiver. For

the frequency-nonselective channel y (t) can be written as

/OO

S { f) e ^ H f = C (t)s (t) = a (t) e ^ h (t) (4.2)
-OO

where a (t) represents the complex envelope and 0(f) represents the phase of the equivalent

low-pass channel response. Equation (4.2) shows that the received signal is simply the

transmitted signal multiplied by an appropriate stochastic process, which represents the

time-variant characteristics of the channel. Thus a frequency-nonselective fading channel

has a time-varying multiplicative effect on the transmitted signal.

When the transmitted signal bandwidth approaches or surpasses the coherence band­

width of the mobile channel (i.e., W > B c), then the frequency components of S (f) with

frequency separation exceeding B c are subjected to different gains and phase shifts. The

received signal includes multiple versions of the transmitted waveforms, attenuated (de­

pending on the phases of the received overlapping signals, the signal copies may amplify

or attenuate each other) and delayed in time (resulting in pulse broadening), and hence the

received signal is distorted (i.e., the signal interferes with itself). Also, as each transmit­

ted symbol is received several times, each received symbol will be distorted by adjacent

symbols in the sequence causing ISI. Equivalently, when the channel impulse response has

a delay spread greater than the symbol period of the transmitted signal (i.e., Tm ^ Ts),

the multipath components extend beyond the symbol duration. In this case, the transmit­

ted signal reaches the receiver via L > 1 directions where the relative arrival delay of at

least two multipath components is greater than the period of the transmitted signal and thus

two rays are resolvable (time-differentiable). This leads to the time dispersion of the trans­

mitted symbols within the channel and, hence, the channel amplitude varies widely across

the signal bandwidth, resulting in ISI. In fact, the channel amplitude values at frequencies

separated by more than the coherence bandwidth are roughly independent. Thus, certain

frequency components in the received signal spectrum have greater gains than others. The

channels exhibit frequency-selective fading, which is also called wideband channels since

the signal BW is wider than the BW of the channel. The dividing line between frequency-

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Channel Models

selective and flat fading is not perfectly sharp. For example, at very low data rates, the

pulse duration is high and the channel primarily slow and flat. If the data rate is very high

and the MU is moving slowly, the channel will be slow but frequency-selective. If the

data rate is high and the MU is moving at very high speed, the channel will be fast and

frequency-selective.

The time-varying channel impulse response and the corresponding time-variant transfer

function can be written as

L

c(t ; r) = ^ Q (t) < 5 (r - £ / W)
i= 1

C(t; f) = Y , c^) ^ ft/W (4-3)
t=i

where cg(t) is the complex-valued channel gain of the i-th multipath component and L is

the number of resolvable multipath components. Note that in order for two paths to be

time-differentiable (resolvable), their relative arrival delay must be greater than the inverse

of the bandwidth of the transmitted signal. Since the transmitted signal has a bandwidth

of W , the delay resolution of the measurement is approximately 1 /W . Hence, only the

multipath components in the channel response that are separated in delay by at least 1 / W

are resolvable. The complex signals that combine at the receiver within less than 1 /W time

period are not individually resolvable because the receiver cannot resolve delay differences

smaller than 1 /W . The unresolved multipath components may be considered as clusters on

the delay axis.

To model the effects of L multipath fading components on a transmitted signal x (t) over

short propagation distances (delays), the signal needs to be convolved with L (uncorrelated)

complex-valued channel gain (attenuation) coefficients {ce(t)}, I = 1, • • • , L [115]. Each

multipath component signal ce(t) can be considered to be composed of many unresolvable

paths. Each individual unresolvable signal in a given resolvable path has a random asso­

ciated phase (due to the different propagation distances) and Q (t) is usually modeled as

complex Gaussian random process by the virtue of the Central Limit Theorem. The ran­

domly time-varying tap gains {cg(t)} (also called fa ding signals) may also be represented

by {ce(t)} = a t (t) e ^ e^ where (o^(t)} represent the amplitudes and {(/e(t)} represent

the corresponding phases. A frequency-selective channel with the complex baseband im­

pulse response given in (4.3) can be modeled statistically by a linear finite-duration impulse

response (FIR) filter with memory length L that models the summation of multiple atten-

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Channel Models

uated and delayed component signals at any instant of time. In this model, the channel

has a constant gain and linear phase response over a bandwidth smaller than that of the

transmitted signal. Each path delay corresponds to the delay spread of the channel and

its value can be chosen in accordance to the delay power profile of the desired channel

environment. Since the delay spread of the channel is Tm and the time resolution of the

multipath is 1 fW , the maximum number of taps required by the transversal filter model

is given by L = [Tm W \ + 1. Even though the path delays can be considered as random

processes, the arrival times of rays are actually not random since obstacles and buildings

tend to be grouped together. The tapped delay line (TDL) model shown in Figure 4.1 is typ­

ically used to model a multipath time-varying channel in which the L -ray multipath fading

channel model receives baseband signal s(t) and produces convolved samples y (t) at the

output. The transmitted signal is modulated in amplitude and phase by a baseband tap-gain

function cg(t) and L delayed and modulated signals are summed to form the output signal.

Input
signal S (t)

Channel

1/W1/W 1/W

V C, (0 s (t — —)
t f ' W

Figure 4.1: Architecture of a frequency-selective fading simulator.

In a multipath channel with L resolvable path, the channel output (the input signal to

the mobile receiver) is
L

y (f) = '^ 2 ce(t) s [t - M t)]
e= i

where c g (t) and T g(t) represent the time-varying attenuation and the propagation delay as­

sociated with the (,-lh multipath component, respectively. In order to determine the complex

envelope of the received signal, assume that the channel input (the transmitted signal) is a

modulated signal of the form

s(t) = x (t) cos [uct + 4>{t)] = 3£{sj(i) eJWct}

where si(t) = x (t) is the equivalent baseband representation of s(t). Then y(t) can

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Channel Models

be written as

L

vtt) = X Cê x i* ~ Te^] cos {wc[i - re(t)\ +<j>[t- Te(t)]}
e- 1

= X) ce{t)x[t - Tg(t)] S { j .
£=1 ̂ J

Assuming the complex envelope of the transmitted signal is denoted by x i{ t) = x(t) e ^ \

then

%i [t ~ n{ t)] = x [t - T£(t)]e^Ct_r<W]

so that

y{t) = » j x ce(i)x, [i - r ,(f)] e - ™ W e ^ j .

The complex path attenuation is defined as d((t) = q(£) exp [— j 2 n f cTg(t)] so that

y(t) = 3? | ^ c £ (f) xi [t — T£(f)]eJ‘i'c< | .

Thus, the complex envelope of the receiver input is

I

yitf) = X Xl ~ n<̂ \ ■ (4-4)
e = i

The channel input-output relationship is generally characterized as a LTV having a par­

ticular complex baseband impulse response c (t; r) measured at time t assuming that the

impulse is applied at time t — r (i.e., the path delay is r):

L

5(r »*) =
t = i

In a frequency-flat channel, it is assumed that over small-scale distances and in absence

of a LOS path, the scattered components arriving at the receiver will experience similar

attenuations, phase shifts, and delays. Thus the cg(t)’s are thus approximately equal and

have a complex amplitude a e (t)e ^ e^ . The resulting combined envelope A and phase 4> at

a single point in space is thus given by

L

3(0 = E ae(t)e j(f>̂ = A e j *.
e = i

The time-varying nature of the channel arises from either the transmitter, or the receiver,

or changes in the propagation environment. In the absence of movement or other changes

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Stochastic Models fo r Fading Channels

in the transmission medium, the input-output relationship is time-invariant even though

multipath may be present. A time-invariant multipath channel can be represented in the

time domain by an impulse response of the form

4.3 Stochastic Models for Fading Channels

When the propagation path involves two-dimensional (2-D) isotropic scattering with an

omnidirectional receiving antenna at the receiver, the path phases can be assumed to be

uniformly distributed over (0, 27t) (i.e., the phases are randomized because of the vary­

ing path lengths) [113]. In order to obtain the distribution of the envelope sum of a large

number of sinusoids with constant amplitude and uniformly-distributed random phases, a

resolvable path can be considered to be composed of many unresolvable signal components.

According to the CLT [8,14], the sum of a large number of signals with constant amplitudes

and uniformly-distributed random phases produces a signal that has a Gaussian distribution

with a zero mean. Thus, c(£) can be represented as a complex Gaussian process in t where

91{c(£)} and 3{c(£)} (the real and imaginary parts, respectively) are independent zero-

mean Gaussian [133] with equal variance a 2. Thus the envelope |c(£)| = ^/c,(£)2 + c9(£)2

follows the Rayleigh distribution f\c \ (c) = exp [— c2/(2<72)] with a mean and variance

of a y /7t/2 and a 2(2 — 7r/2), respectively, where a 2 is the time-averaged power of the re­

ceived signal and <p(t) = ta n - 1 (^ j | |) is the phase of the received waveform. Since the

processes c / t) and cq(t) are Gaussian, it can be shown that 4>{t) has a uniform distribution,

While the pdf of |c(£) | describes the distribution of the instantaneous values of the com­

plex impulse response, other temporal and spatial variations of multipath components must

be characterized for accurate fading channel modeling. Since the orientation and material

properties of the obstacles between the transmitter and receiver are not in general known in

advance, or may be time-varying, it is common to model the tap gains {ce(t)} as a stochas­

tic process to characterize the real channels. Specifically, the tap gains are usually modeled

as wide-sense stationary (WSS) in the f-variable and mutually uncorrelated random pro­

cesses [16,24,25,113], Therefore, their statistical properties can be completely described

by first-order and second-order statistics [14]. When the channel is defined as a WSS ran­

dom process in t, the channel correlation function is Rc(r; £i, £2) = R c(t; A£) [113,132],

L

(t> € (-7T,7t) [25].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Stochastic Models fo r Fading Channels

Thus, the channel ACF can be written as

R c , c (t i , T2 , A t) = E [C*(Ti,t)c(T2,t + At)] .

When the attenuation and phase shift associated with different delays (i.e., resolvable paths)

can be assumed to be uncorrelated, the channel is said to exhibit uncorrelated scattering

(US) in the delay r if the channel correlation function for any two paths with delays t \ and

r 2 is zero when t \ r 2:

where E[-] denotes expectation. The wide-sense stationary and uncorrelated scattering

(WSSUS) assumptions leads to

The WSSUS model was originally proposed by Bello [113] and has been reasonably used

for modeling of wireless fading channels over bandwidths up to 10 MHz [21].

A doubly-spread WSSUS channel may be characterized completely by two sets of pa­

rameters: the Doppler power spectrum (DPS) and the delay power spectrum (dPS). The

DPS provides statistical information on the variation of the frequency of a pulse received

by a MU. A dPS identifies the average power level of each multipath and the time delays be­

tween successive multipath components. Both parameter sets can be described by a single

function, called the delay-Doppler power spectrum or scattering function S (t , /) , which is

a measure of the power spectrum of the channel at delay r and frequency offset / (relative

to the carrier frequency). The dPS and the DPS are defined by averaging of «S(r, /) over /

and r , respectively, as follows:

The delay spread of the channel can also be defined as the range of values over which the

dPS(r) is nonzero (the width of the dPS). As a MU moves through a dispersive environ­

ment, the width and shape of the dPS can change significantly. Similarly, the Doppler spread

Bd of the channel can be defined as the range of values over which D P S (/) is nonzero (the

width of the DPS). The Doppler spread provides a measurement of the fading rate of the

^ E [c (r i;f i)c * (r2; t 2)] = R c (r r , t i , t2)5(T2 - n) .

R c,c(n , T2, A t) = R c,c(ri, A t) 5(rx - r 2).

/OO

S (r , f) d f
■00

roo
DPS(/) = S c(f) = S (t , f) dr.

Jo
(4.5)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Stochastic Models fo r Fading Channels

channel. As shown in Figure 4.1, the delay spread of the mobile channel is implemented by

delaying each multipath component by a programmable value that may be selected based

on the delay power profile of the simulated channel.

The spectrum of the received signal depends on the assumptions made about the AOA

statistics and the radiation pattern of the receiving antenna. M. J. Gans introduced a DPS

in 1972 [25] assuming that the propagation path involves 2-D isotropic scattering with an

omnidirectional antenna at the mobile receiver that signals came from all directions with

uniformly distributed phases over (0, 27t). Based on the flat fading channel model developed

by R. H. Clarke in 1968 [24], the spectral density of the complex envelope of the received

signal that depends on the antenna pattern is given by

and is known as Jakes power spectral density or Jakes power spectrum. As shown in Figure

4.2, the PSD associated with the in-phase (or quadrature) portion of the received fading

signal has the well-known U-shaped bandlimited form. The PSD is centered on the carrier

frequency, is zero outside the limits of / = f c ± f p , and is infinite at / . A U-shaped

power spectrum shows that most of the energy is concentrated around the f p , however, the

probability of components arriving at exactly 0° or 180° is zero due to the uniform scattering

model approximation. Thus infinite PSD values are approached but never reached.

A frequency-flat channel is usually modeled as a time-correlated Gaussian WSSUS pro­

cess with the complex envelope c(t) = Ci(t) + j c q(t) [113]. The temporal variation of the

channel can be characterized by the ACF of c(t) in the t variable. Specifically, the impor­

tant properties of fading channel models are manifested in the autocorrelations, RCi)Ci(r)

and R c„c9(7'), and the cross-correlation R CijC9(r) of the a{t) and cq(t) components of c(t),

the autocorrelation Rc>c(r) of the complex envelope of c(f), and the autocorrelation of the

squared envelope Rjc |2 |c |2 (t) [23,24,37]. The ACF can be obtained by taking inverse

Fourier transform of the PSD given in Equation (5.10) for 2-D isotropic scattering with an

omnidirectional antenna at the mobile receiver with uniformly distributed phases as follows:

2 i r fo y / l - U / f n) * I/I < fo

I/I > f D
(4.6)

R CilCi(r) = Rc„c, (t) = E[cq(t)cq(t + t)] = J o (2 n f DT)

R Ci,Cq(j) — Rcq.CiC^) = 0

Rc,c(r) = E [c(t)c*(t + r)] = 2Jo(2-7vfDT)

R|c|2,|c|2 (t) = E[|c(t) I2 |c(t + r) I2] = 4 + 4 J $(2 i r f Dr) (4.7)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

0.04

0.035

0.03

1025

V 0.02

0.015

0.01

0.005

-100 -60 -40 -20
Frequency (Hz)

4020 100

Figure 4.2: The PSD for a Rayleigh fading channel with different Doppler frequencies,

where f o is the maximum Doppler frequency, r is the time lag, and

J Q(x) = - [* e~ ixcos9de
ft Jo

is the zero-order Bessel function of the first kind [14]. The ACF depends on such factors

as the maximum Doppler frequency normalized by the sampling rate, the antenna charac­

teristics and the propagation path [134]. According to the J o(27t/ d t) plot shown in Figure

4.3, the autocorrelation is zero for f o r = 0.4 or, equivalently, for v r « 0.4A where v is the

velocity of MU and A is the signal wavelength. Thus, the signal decorrelates over a distance

of approximately one half of a wavelength, under the uniform path phases assumption. This

approximation is commonly used as a rule of thumb to determine many system parameters

of interest.

4.4 Analysis of SOS-Based Fading Channel Models

The goal of any channel simulator should be to reproduce the desired properties in (4.7).

Thus to simulate multiple fading processes that are correlated in time, but uncorrelated

between processes, the Rayleigh processes should fulfill the following conditions: (1) the

in-phase and quadrature components of each underlying complex Gaussian random process

are zero-mean independent Gaussian processes with identical variances and identical ACFs;

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

o 0.5 1.5 2 2.5 3 3.5 4

Figure 4.3: The zero-order Bessel function of the first kind.

(2) the ACFs between the q (f) and cq(t) components are not functions of t, (i.e., the fading

signal is WSS); and (3) the CCF of any pair of fading processes must be zero.

One of the approaches to approximate the fading process with the desired statistical

properties in (4.7) is based on the incoherent superposition of independent complex-valued

signals. This model is known as the sum-of-sinusoids approach and is based on Rice theo­

rem [116], which implies that a Gaussian process can be modeled by the superposition of

an infinite number of weighted harmonic functions with equidistant frequencies and ran­

dom phases. The main idea of a SOS channel model is to simulate the fading channel as

a WSSUS [113,135] complex Gaussian random process, formed by the sum of multiple

sinusoidal waveforms having amplitudes, frequencies, and phases that are appropriately

selected to accurately reproduce the desired statistical properties in (4.7).

Clarke proposed a useful mathematical model for the complex channel gain, under the

narrow-band flat fading assumption (r„ = 0 Vn) [24]. Clarke showed that the complex

channel gain c(t) at a time t can be expressed as

where f o is the maximum Doppler frequency, a n and 4>n are the angle of arrival and the

initial phase, respectively, associated with the n-th sinusoid, N is the total number of si­

nusoids [24], and each sinusoid has equal average amplitude (the same received power).

N

C (t) = E exp \j(2 irfDt cos(an) + </>n)] (4.8)

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

The phase angles <fn and a n are assumed to be mutually independent and uniformly dis­

tributed over (—7r, 7r) for all n. For sufficiently large N , according to CLT the real part

Ci(t) = 3i{c(i)} and the imaginary part cq(t) = ${c(£)} of the complex envelope are

zero-mean Gaussian and independent (thus the envelope |c(t)| is Rayleigh distributed). The

squared envelope correlation of c(t) in (4.8) can be written as [8]

R|cp|c|a(r) = E [|c(f)|2 Ic(t + r) |2] = 4 + 4 ^ j ^ J o (2 n f DT) (4.9)

where when N approaches infinity, the squared envelope correlation asymptotically reaches

the desired value 4 + 4 J 02(27t / d t) . Due to the accurate statistical properties of Clarke’s

model, it has been widely used for Rayleigh fading channels and is sometimes referred to

as the mathematical reference model.

Numerous sum-of-sinusoids models have been proposed [16,28,29,31-39] based on

Clarke’s model. These models can be broadly categorized as either deterministic or statis­

tical [8]. In deterministic SOS simulators [16,31-34], all the waveform parameters (i.e.,

amplitude, Doppler frequency and phase) are known and established only once before the

simulation starts and are held constant for all subsequent simulation trials. Hence, the prop­

erties of the generated signal are deterministic. On the other hand, in the statistical models

(also called Monte Carlo SOS models) at least one of the waveform parameters is taken to

be a random variable that changes for every simulation trial, and so the statistical properties

of the generated signal change for each simulation trial, but converge statistically to the

desired properties over a large number of simulation trials [28]. Since these SoS methods

converge statistically to the desired properties, it is important to determine the number of

simulation trials needed to achieve a desired convergence level. This is directly related to

the variation in the time-average properties of a single simulation trial from the desired

ensemble average properties.

Jakes proposed his deterministic SOS-based model based on Clarke’s model [16] to

generate time-correlated Rayleigh fading variates. The Jakes model is more computation­

ally efficient than Clarke’s model in which the in-phase a (t) and quadrature cq(t) compo­

nents of a stationary complex Gaussian process c(t) are formed by a finite superposition of

sinusoids having frequencies and phases that are appropriately chosen to accurately produce

a sequence of correlated fading variates with the desired statistical properties. The model

assumes that N waveforms with equal power arrive at the moving receiver with uniformly

distributed arrival angles a n — 2 irn /N , such that waveform n experiences a Doppler shift

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

/d „ . Note that each Doppler frequency shift /# „ has four phase shifts associated with it

except for the maximum Doppler shift, which has only two phase shifts. For example, as

shown in Figure 4.4, sinusoids 1, 4, 6, and 9 experience the same Doppler shift, rays 1 and

9 a positive Doppler shift, and rays 4 and 9 a negative Doppler shift. Similar conditions

hold for the sinusoids 2, 3, 7, and 8. Sinusoid 5 has the maximum positive Doppler shift

and ray 5 has the minimum negative Doppler shift. Thus, there is a four-fold symmetry in

the magnitude of the Doppler shift, except for a = 0 and a = ir.

y

MU

Figure 4.4: Symmetry of receiving sinusoids in Jake’s design.

Despite the extensive acceptance and application of Jakes simulator, for simulation re­

sults to be meaningful, they must reproduce the important statistics of the real world. It

was recently shown that the assumptions and simplifications made by Jakes adversely af­

fect the statistics of the SOS-based fading channel simulator [29,32, 34]. One problem

with Jakes’ method is that the cross-correlation between the in-phase and quadrature com­

ponents are significantly different from zero [34]. Also, when the number of sinusoids is

finite, the ACF is accurate only up to [0, N/ (2 f o) } . Another important problem with the

Jakes model is that its output sequence averaged across the ensemble of fading channels is

not WSS [34]. In [34] the Jakes model was improved by introducing random phase shifts

in the low frequency oscillators. An intuitive justification for using this method is the fact

that for small values of time t, the values produced by the low-frequency oscillators are

highly correlated (they are equal at t = 0). By adding the random phases, this source of

correlation is eliminated. The WSS Jakes model proposed in [34] has the desired complex

envelope autocorrelation as the number of sinusoids approaches infinity. However, consis­

tent with Pop and Beaulieu’s caution about some other second-order statistical properties

of their proposed model [34], it was proved in [136] that the autocorrelations and cross­

correlations of the quadrature components and the autocorrelation of the squared envelope

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

do not approach the desired statistics, even as N —> oo. Patzold also proposed several de­

terministic SOS-based modeling schemes that can be applied to simulate multiple Rayleigh

fading processes that are correlated in time, but uncorrelated between processes [137]. For

example, the method of exact Doppler spread [33] uses a finite number of sinusoids and

deterministic discrete Doppler frequencies f p n s. In order to ensure that the different pro­

cesses are uncorrelated, this model defines / p ns in such a way that they are disjoint (i.e.,

mutually exclusive) for different processes.

Careful studies of the theoretical models are important as some models cannot be an

accurate candidate for simulating the fading channels. Recently, Patel et al. [8] showed dif­

ferent inaccuracies with the well-known SOS-based models. For example, the model in [38]

has non-stationary and non-Gaussian properties. Also, the squared envelope autocorrelation

in [38] and [37] is derived incorrectly.

Zheng and Xiao [36] introduced randomness to the Doppler frequency, the initial phase

of the sinusoids, and the angles of arrival to have MC simulators with desired statistical

properties. The resulting complex-valued Rayleigh fading process c(t) is given by

where 9 is a random variable uniformly distributed over [—7r, 7r), and cf>n and ipn are statis­

tically independent and uniformly distributed over [—7r, 7r) for 1 < n < N . Model I has

several advantages over previous simulation models such as [8]:

1. It avoids the stationarity problem while maintaining the accuracy of the correlation

statistics. The ACFs of the in-phase and quadrature components and the ACFs of

the complex envelope match those of Clarke’s reference model very closely, even

for small N . Also, the ACF of the squared envelope of the fading signal c(t) is

R |c|2 |c|2 (t) = 4 + v/ d t) + [36], It asymptotically approaches

the desired autocorrelation as N —> oo, while good approximation has been observed

when N is not less than eight. The model always produces uncorrelated in-phase and

quadrature components, as required for a Rayleigh-distributed envelope.

2. The autocorrelation and cross-correlation functions do not depend on N. This high-

Model I:

(4.10)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

lights the advantages of the new simulation model over all other existing simulation

models.

3. When N is as small as eight, the envelope]c) is Rayleigh-distributed and the phase

4>(i) = arctan[cj,c9] is uniformly distributed on [—7r, 7r).

4. Due to the proper selection of the simulation parameters in the model in [36], the

variance of correlation functions Var[R(-)] = E[|R(-) — lim R (-)|2] of this mode
N —>oo

are lower than the variances for most other models for finite N [37].

Since the improved SOS-based channel models require that a relatively small number

of sinusoids (8 < N < 12) converge statistically to the desired properties, they are good

candidates for an efficient and compact hardware implementation. For example, the channel

simulator in [119] uses N — 8, the design in [117] uses N = 9, and the design in [131]

uses N = 16. The commercially available Ascom SIMSTAR fading channel simulator uses

N = 22 [138]. Figure 4.5 shows the ACF of the in-phase component of the model in [36]

for three different small numbers of sinusoids. The figure also shows the cross-correlation

of Ci and cq for IV = 8. It can be verified that the discrete-time approximate ACF using

a larger number of sinusoids matches more closely to the ideal autocorrelation sequence

R[m] — Jo(27r/£>T’s|m |) while the CCF is almost zero.

— Reference ACF
Approximate ACF, N-6

 Approximate ACF, W-7
Approximate ACF, N-8

 Approximate CCF, A/»fl

0.8

0.4

0.2

■0.2

■0.4

400200 600 800 1000 1200 1400 1600
Lag

Figure 4.5: The ACF and CCF are calculated by averaging over 10 frames of 105 fading
samples each with fr ,T s = 0.01.

One of the important consequences of Doppler shift is that the signal will experience

deep fades. While Rayleigh statistics only provide information on the overall percentage

of time that the signal goes below a certain level, it does not show how often deep fades

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

will actually occur. The rate at which deep fades occur is important for communication

system designers as they can relate the signal level to rate of change of the received signal

and velocity of the MU and choose an appropriate scheme for required data rates, designing

the error control codes and diversity schemes to mitigate deep fading effects. Peep fades

can be quantitatively expressed using the level crossing rate (LCR). The LCR is defined

as the expected rate at which the magnitude (envelope) of the fading waveform crosses a

threshold signal level Rth in the positive (or negative) going direction [115]. For the Jakes

PSD, the LCR is defined as N r = \/2tx f D \ e ~ x2 [115], where A = Rth/Rrm s is the value

of the specified threshold level Rth, normalized to the rms value of the fading envelope.

N r depends on f o and thus the speed of the MU. By virtue of the factor Ae- *2, there

will be fewer crossing at low values of the signal level as well as at high values of the

signal levels. Figure 4.6 plots the LCR of the generated fading variates for three different

numbers of sinusoids. As shown in Figure 4.6, the deviation of LCR for very high Doppler

rates and low crossing levels is due to the sparse sampling of the implied continuous fading

waveform [139], The envelope PDF and the CDF of 107 generated fading samples using

 Reference LCR
v Approximate LCR, W-6
+ Approximate LCR, N -7
o Approximate LCR, N-8

5
¥a

Figure 4.6: The normalized LCR calculated using 105 fading samples with f o T s = 0.01.

the model in (4.10) with N = 8 and f o T a = 0.01 is plotted in Figure 4.7.

Even though the statistical SOS-based fading simulator proposed in [36] is efficient

for hardware implementations, the model is not ergodic and so the statistical properties of

a single simulation, no matter how many samples are generated, do not converge to the

reference properties. In fact, its statistical properties converge to the desired properties only

when they are averaged over a large number of simulation trials and thus the channel model

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Analysis o f SOS-Based Fading Channel Models

0.7

Simulated, A/-6
Simulated, N -7
Simulated, N S
Reference

0.6

0.S

0.4
5*

0.3

0.2

0.1

0.5 1.5 2.5 3.5
c

Figure 4.7: Envelope PDF for Zheng and Xiao’s SOS fading channel model.

0.9

——- Simulated, N-6
........ simulated, N*7
— Simulated, N*8
—— Reference

0.8

0.7

0.6

0.3

0.2

0.1

0.5 1.5 2.5 3.5
C

Figure 4.8: Envelope CDF for Zheng and Xiao’s SOS fading channel model.

is not ergodic. If the channel model is ergodic, then the statistics of the output may converge

to the reference ones in a single simulation trial. Figure 4.9 plots the ACF of the channel

generated using one simulation trial with the model in (4.10) for one block containing 107

samples. Clearly, the ACF deviates from the reference ACF of the Rayleigh fading channel,

especially at the larger lags, while the CCF stays close to zero. Therefore, Model I may not

be suitable for simulating an ergodic Rayleigh fading channel. In Section 4.6, we propose

modifications to Model I to overcome this limitation.

Even though model in (4.10) may not be suitable for emulating an ergodic Rayleigh

fading channel, it can still be used for simulating block-based transmission systems. As

shown in Figures 4.5-4.7, the statistics of the generated fading variates closely match the

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

— Reference ACF
 Simulated ACF
 Cross Correlation

0.6

0.6

0.4

0.2

■0.2

too0 200 300 400 500 600 700 600
Lag

Figure 4.9: ACF and CCF for one block containing 107 fading samples using the Jakes SOS
model from equation (4.10), Jd T s = 0.02, N — 8.

reference curves for block-oriented fading channel models. Moreover, in some applications

it is sufficient to match the ACF in a certain range only. For example, for a differential

phase-shift keying (DPSK) signal transmitted over a flat-fading channel and detected by a

conventional demodulator, the tail of the ACF is not relevant and the ACF must only be

accurate up to Ts [140].

4.5 Implementation of an SOS Fading Channel Simulator

All of the SOS-based approaches approximate a coloured Gaussian process by a sum of

low frequency oscillators. However, these models differ from one another in terms of the

model parameters, which leads to differing statistical properties. Recently, Patel, Stiiber,

and Pratt [8] have shown that the variance in the autocorrelation of the in-phase (or quadra­

ture) component of the complex envelope c(t) produced by the SOS model in [36] is lower

than the variance for most other models. The detailed comparison study in [8] concluded

that the model in [36] has superior properties among all models for finite N . This fact

was discussed and verified in Section 4.4. In this section a compact implementation of an

SOS-based channel model is proposed that fits on a small fraction of a commonly used

FPGA.

The continuous-time equations in Model I [36] can be written in discrete-time as follows

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

to simplify the computation for hardware implementation:

c[m] = ••• , M

N

C iM = cos(27r(0jnm + <f>n))
n = 1

N

cq[m] — E cos(2n(ipqnm + <pn))

V*in — I d ^ s cOS ttjij V’gn — f p T a STD. Otn

27rn — 7r + 0
(4.11)

where m is the discrete time index and M is the block length. Random variables and

for n = 1,2, • • • ,1V, lie within (-0.5,0.5) and can be generated at the beginning of

each fading block using two on-chip PNGs or read from an external source. {ipin } and

beginning of each fading block. Their value depend on a uniformly generated random

variate 0 e (— i t , i t) and the discrete maximum Doppler frequency fu - Note that the quality

of the uniform random number generator becomes crucial specially when the number of

sinusoids is small. If the randomly generated parameter set are not uniformly distributed,

then the statistics become poor and characterization measurement will be incorrect.

From Equations (4.11) it is clear that an efficient and accurate implementation of the

cosine function will directly improve the performance and overall accuracy of the simula­

tor. The channel simulator in [119] uses linear interpolation to implement the sine function,

while the design in [131] uses a quarter period, partitioned into 256 segments, to approxi­

mate the trigonometric functions. Fixed-point analysis provides insight into the optimiza­

tion of the dataflow, and, correspondingly, the architecture of the hardware. For example,

as shown in Figure 4.10 (a), since the value of cos(27x(3) = cos(27r0./?/), where /3 is a

floating-point number in /3j./2/ format, the values of 'ipinm (and ' f qnm) can be obtained us­

ing an adder instead of a multiplier. The adders accumulate successive values of 0 .(3f for the

real and imaginary components. Even for the relatively small value of N , this provides sig­

nificant resource reduction in the implementation of the channel simulator. To quickly add

the N quadrature components, we took advantage of the fast adder blocks now widely avail­

able in FPGAs and organized them into a pipelined tree-structured. The datapath shown in

Figure 4.10(a) adds two in-phase components of Cj[m] given in (4.11). This datapath also

requires one dual-port ROM to simultaneously produce two values for cos(27r(ip in m + <j>n)

{ipqn} are arrays of constant values within a fading block that can be re-initialized at the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

and cos(27r(^i(n+ i)m + <fi(n+i))- Figure 4.10(b) shows the tree-structured datapath for

summing N = 8 in-phase components of Cj[m]. The blocks labeled “Add two oscs" denote

instances of the circuit in Figure 4.10(a).

Dual-port
COS Memory

$ 3 $14 ^ 5 ^ '6 ^/5 $6

Add two oscs Add two oscsAdd two oscs Add two oscs

c/m)

Figure 4.10: (a) Circuit for summing N = 2 complex oscillators, (b) Tree-structured adder
for summing N = 8 oscillators.

To ensure computation accuracy, the fixed-point format of various signals was chosen

based on experiments with different precisions that determined their impact on the statistical

properties of generated fading variates. Then the HDL model of the proposed datapath was

simulated to verify the accuracy of the results against the fixed-point software simulation

results. For example, Figure 4.11 shows that the envelope PDF of 107 generated fading

variates using the SOS-based model in (4.11) with 16-bit precision closely matches the

theoretical curve.

To evaluate the accuracy of the fading channel simulator, the envelope statistics of the

resulting sequence of complex gains were compared with those of the theoretical Rayleigh

fading process. We assumed a normalized Doppler rate f o T s = 0.01, but the parameteriz-

able model can use any arbitrary Doppler rate with 16-bit precision. Figure 4.12 plots the

reference and calculated ACF and also the CCF of the generated faded envelopes for differ­

ent precisions of the channel simulator datapath. The ACF and CCF plots were constructed

by averaging over 10 blocks containing 105 sampled fading variates. The autocorrelation

of the fading process generated with the 10-bit datapath shows close agreement with the

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

0.7

Simulated, WL- 10 bits
Simulated, W L-12 bits
Simulated, WL* 16 bits
Reference

0.6

0.5

0.4
3?
o

0.3

0.2

0.1

0.5 1.5 2.5 3.5
C

Figure 4.11: The PDF of the simulated fading envelope and their references with normalized
Doppler rate f o T s = 0.01.

double-precision theoretical Bessel function, as required by Equations (4.7). Also, cross­

correlation of the generated quadrature components of the complex channel gains confirms

that they are relatively uncorrelated as required. Figure 4.13 plots the LCR of the fading

signal generated using the fading simulator, for different precisions, against the theoretical

reference. This plot verifies that the 10-bit precision is sufficient to obtain an LCR that

closely matches that of the reference model. Figure 4.14 plots the CDF of the simulated

fading envelope with different precisions.

o.a ——- Approximate ACF, W L-10 bits
 Approximate ACF, WL- 12 bits
 Approximate ACF, WL- 16 bits
— - Reference ACF
— — Approximate CCF, WL-16 bits

0.4

0.2

■0.2

■0.4

0 200 600 .
Autocorrelation

400 800
Autocorrelation in lag (In sam ples)

12001000 1400 1600

Figure 4.12: ACF and CCF of the quadrature component.

Table 4.1 summarizes the implementation characteristics for the new SOS-based fading

channel simulator, with N = 8, on four different FPGAs. The synthesis results verify that

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

Simulated, WL-10 bits
Simulated, W L-izblts
Simulated, WL-16blts
Reference_______

10'
-40 -35 -30 -25 -20 -15 -10

^20log10(R/RrJ

Figure 4.13: The normalized LCR of the generated fading samples.

0.9

0.8

——- Simulated, WL-10 bits
 Simulated, W L-t2bits

— Simulated, WL-16btts
' Reference

0.7

0.4

0.3

0.2

0.1

0.5 1.5 2.5 3.5
C

Figure 4.14: The CDF of the simulated fading envelope and their references.

the optimized datapath on the FPGA can be used to generate over 200 million complex

Rayleigh fading variates per second, which is over 500 times faster than a software-based

simulator written in C running on a 3.4-GHz Pentium 4 processor. Figure 4.15 shows the

layout of a 356,409 p m 2 semicustom integrated circuit implementation of fading channel

model designed in a 90-nm CMOS technology using a dual-threshold standard cell library.

The core was targeted to operate at 500 MHz, generating 500 million complex fading vari­

ables per second while dissipating 36.9 mW of dynamic power. Static power dissipation is

estimated to be 19.94 mW.

As shown in Figure 4.15, the core area is dominated by the dual port cosine ROMs. As

an alternative to the table look-up method of approximating the cosine function, we propose

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

Table 4.1: Implementation of the ading channel simulator on different FPGAs.
Device I" II III IV

Clock freq. (MHz) 221.92 201.69 179.211 145.33
Output rate (MSamps/sec) 221 201 179 145

Number o f slices 542 ' 542 542 1,160
Resource utilization 0.86% 1% 2% 1%

On-chip memory blocks 8 8 8 8

"Design I was synthesized for a Xilinx Virtex4 XC4VFX140-11 FPGA. Design II was synthesized for a
Xilinx Virtex2P XC2VP100-6 FPGA. Design III was synthesized for a Xilinx Virtex-II XC2V4000-6 FPGA.
Design IV was synthesized for an Altera Stratix EP1S80F1508C6 FPGA. The latency of the fading simulator
is four clock cycles in all cases.

Figure 4.15: Layout of the 500 MHz semicustom fading channel variate generator.

an iterative method to calculate the in-phase and quadrature components of c(t) in (4.10).

The continuous-time equations in (4.10) can be written in discrete-time as follows:

l Y r N N \
c[m] = y — 'y ' Im,,n + j y ' Qm,nJ > tn = 1, • • • , M (4.12)

n=l n—\

where Imin = cos(27rm }DTS cos(a„) + <j>n) and Qm,n = cos(27rm f o T s s in (an) + p n)-

The n-th in-phase sinusoid can be expanded as follows:

Im,n = cos(27rm f DTs cos(an) + f n))

= cos(m p n + (f>n) where pn = 2ttf o T s cos(an)

= c o s ((m - 1) Pn + (f>n + Pn)

- C O s ((m - 1) Pn + 4>n) cosipn) ~

sin((m - l)p „ + <̂n) sin(p„)

= Im —l,n COs(pn) Cm—l,n Sm(pn) (4.13)

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

where Cm,n = sin(27rm f DTs cos(an) + <£n)

= C m - 1 ,„ cos(pn) + Im—i,n sin(pn) (4.14)

The n-th quadrature component can be expanded similarly and expressed as:

Qm,n = Qm—1 cOS{Pn) D m—i sin(pn) (4.15)

where D mtU = cos(pn) + Qm~i,n sin(pn). As given by Equations (4.13) and

(4.15), the iterative calculation of I m,n and Qm,n requires the previous values and

Qm—i,n> respectively. A datapath for generating the n-th in-phase oscillator, I min, is shown

in Figure 4.16. Note that N instances of this datapath can be used in parallel to gener­

ate the N oscillators for the in-phase component of c[m]. It is important to note that for

n = 1 • • • , N , the values of f i,n , C i>n, Q i,n and D it„ must be initialized; as well, as the

maximum Doppler frequency of every low-frequency oscillator must be initialized.

c o s (p „) .-s in (p„)

c o s (p „)SIN (p„)

Figure 4.16: Datapath for generating one low-frequency oscillator.

Figures 4.17 and 4.18 show the ACF and CCF of the in-phase component of the iterative

model for different precisions when computing 7m+i,n and Qm+i,n- It is evident that 10-

bit precision is not acceptable while 16-bit precision provides much improved accuracy.

Figure 4.19 plots the envelope PDF of 107 generated fading variates with three different

word length precisions used to compute I m>n and Qm,n- It is evident that choosing W L >

28 bits provides a close match to the reference statistics. Compared to the 16-bit precision

required in the previous implementation scheme, the higher precision is required in this

model to offset the accumulation of quantization error when evaluating iterative Equations

(4.13) and (4.15).

Due to the iterative structure of the Im,n computation, the right hand side of Equation

(4.13) must be computed before the next iteration. For correct operation, the multiplica­

tion and addition should be performed in one clock cycle. The shortest clock period for

this datapath is limited by tm + t a, where tm is the delay of the critical path through the

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

1 ■ Reference ACF
. Approx/mat© ACF - WL-tO bits
 Approximate ACF - W L-12 bits
— Approximate ACF - WL-16 bits

0.8

0.6

0.4

0.2

■0.2

-0.4

200 400 600 800 1000 1200
Autocorrelation in lag (in samples)

1400 1600

Figure 4.17: The ACF calculated by averaging over 10 frames of 105 fading samples with
f DTs = 0.01.

Approximate CCF- WLmiOblts
Approximate CCF - WL* 12 bits
Approximate CCF - WL-16 bits

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

2000 400 600 800 1000
Cross-correlation in lag (In samples)

1200 1400 1600

Figure 4.18: The CCF calculated by averaging over 10 frames of 105 fading samples with
f DT s = 0.01.

multiplier and t a is the delay of critical path through the adder. If the implementation on

the Xilinx Virtex2P XC2VP100-6 FPGA uses a 28-bit datapath, then t m + t a is about 11.4

ns and thus the channel simulators is capable of generating 87 million fading variates per

second. To speed up the computation, we could use a /c-stage pipelined datapath. Even

though a A;-stage pipelined datapath would operate at a higher clock frequency than a non­

pipelined circuit, due to the iterative behaviour of the computation, the delay introduced by

k pipeline registers reduces the fading variate generation rate by a factor k. For example,

a four-stage pipelined version of the datapath in Figure 4.16 operates at 227 MHz, and the

throughput is 227/4= 56 million fading variates per second. To avoid throughput reduction

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

0.8
Simulated, WL-24
Simulated, WL-28
Simulated, WL-32
Reference_______

0.7

0.6

0.5

0.3

0.2

0.1

0.5 1.5 2.5 3.5
C

Figure 4.19: Envelope pdf of IQ7 generated fading variates with f o T s = 0.01 for three
different precisions.

0.9

0.8
—— Simulated, WL-24
 Simulated, WL-28
 Simulated, WL-32
—— Reference

0.7

0.3

0.2

0.5 1.5 2.5 3.5
c

Figure 4.20: The cdf of 107 generated fading variates with two different precisions.

with the pipelined datapath, we can combine more than one iteration into a single stage.

Using Equations (4.13) and (4.14), I i tH and C \>n can be re-written as:

I\,n = Io,nCOs(pn) - C0)nsm (pn)

C\,n = Co,nCOs{pn) + I 0,nSm ipn) (4.16)

Similarly, / 2 ,n and C ^ n can be written as:

I 2 ,n = - l̂,n COs(pjj) C 'j^sin(pn)

C 2 ,n = C i,„cos(pn) + i i , r i S i n (p n) (4.17)

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Implementation o f an SOS Fading Channel Simulator

Simulated, WL-24
Simulated, WL-28
Simulated, WL-32
Reference

^ 10'

■40 -35 ■30 -25 -20 -15 -10
X.ZOIogJR/R'J

Figure 4.21: The normalized LCR of 107 generated fading envelopes with two different
precisions.

Equations (4.16) can be substituted into Equations (4.17) to give:

h ,n = h ,n cos(2pn) - C0,n sin(2pn)

C2,n = C0,n cos(2pn) + 7o,n Sin(2pn) (4.18)

In general, Ik>n and Ck,n can be calculated as:

h ,n = Io,nCOs(kpn) - Co,nSin(kpn)

Ck,n = Co,n cos(kpn) + I 0tnsm (kpn) (4.19)

Equations (4.19) simplify the implementation of a fc-stage pipelined datapath. To avoid

unused “bubble” cycles in the pipeline, the cos(pn) and sin(pn) constant values should be

replaced with cos(kpn) and sin (kpn), respectively; also, the first k initial values of 7m>n and

C7m,n, for m = 1, • • • , k, should be loaded into the “7m” and “Cm” registers in k successive

clock cycles, using two multiplexers and external inputs In it i and I n i t c, respectively, as

shown in Figure 4.22. The datapath shown in Figure 4.23(a) adds two of the oscillator

in-phase components of a [m] given in Equation (4.12). Figure 4.23(b) shows the tree-

structured datapath for summing N — 8 in-phase components of Cj[m]. The blocks labeled

“Ca/c/o” denote separate instances of the circuit in Figure 4.22.

The complex sinusoid generator circuit was implemented in a 28-bit fixed-point format

and the adder tree was implemented using 16-bit adders. Table 4.2 summarizes the im­

plementation characteristics for the SOS-based fading channel simulator, with N = 8, on

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

R ese t R ese t

Figure 4.22: Pipelined datapath for generating one low-frequency oscillator.

!0+l1 12*13 16*^7

(3)

COS(kpJ SIN(kpJ

X j Xz A z z L
Calc. I Calc. L

!nitm IniLXAbp/lniLlnit„

(b)

Figure 4.23: (a) Circuit for summing two complex oscillators, (b) Tree-structured adder for
summing N = 8 oscillators.

four different FPGAs. The synthesized layout of this fading channel simulator in a 90-nm

CMOS technology is 967 p m 2, when the core was targeted to operate at 500 MHz, gener­

ating 500 million complex fading variables per second. The core dissipates 185.26 mW of

dynamic power and 114.4 mW of static power.

4.6 An Improved SOS-based Fading Channel Emulator

The statistical properties of a RP can be obtained through measurements. Repeating the

random experiment gives rise to the random process and taking the arithmetic average of

the quantities of interest. For example, to estimate the mean m x (t) of a RP X (t , () , we

Table 4.2: Implementation of the fading channe
Device 1“ II III

Clock freq. (MHz) 240.67 209.68 84.37
Output rate (MSamps/sec) 240 209 84

Number o f slices 12078 12078 4,984
Resource utilization 49% 27% 30%

simulator on different FPGAs.

“Design I was synthesized for a Xilinx Virtex4 XC4VSX55-11 FPGA. Design II was synthesized for a
Xilinx Virtex2P XC2VP100-6 FPGA. Finally, Design III was synthesized for an Altera Stratix EP1S80F1508C6
FPGA.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

may repeat the random experiments N times and take the following average

1

where X (t , (k) is the realization observed in the k -th iteration. On the other hand, the time

average of a single realization can be written as

As the observation interval becomes large, the ergodic theorem states when the time aver­

ages converge to the ensemble average (expected value) [14]. The law of large numbers

states that if X \n \ is an i.i.d discrete-time RP with finite mean E[X[n]] = m , then the time

average of the samples converges to the ensemble average. Thus the mean can be estimated

by taking the time average of a single realization of the process. In this case X (t) is ergodic

in mean. Similarly, X (t) is ergodic in ACF if

Similarly, for a discrete-time RP X[n], the time-average estimate for the mean and ACF of

X [n] can be expressed as

As discussed in Section 4.4, the channel simulator in Model I is a MC simulator that is

WSS but not ergodic. If a model is ergodic, the statistical properties may converge to the

desired ones in a single simulation trial also. If a signal is WSS and ergodic, the first and

second-order time averages may be substituted for stochastic ones. However, the statistical

properties of a single simulation (i.e., averaging over time) of Model I do not converge to the

reference properties. The statistical properties of the MC simulator in Model I converge to

the desired properties only over several simulation trials. The required number of simulation

trials to achieve a desired convergence level is directly related to the variation in the time

average properties of a single simulation trial from the desired ensemble average properties.

The time average correlations R(-) are random and depend on a specific realization of the

J X (t) X (t + r)d f.

T

T

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

random parameters in a given simulation trial. The time average correlations of complex

fading signal c(t) can be written as

RcilCi(r) = \ J a (t)c i(t + r)d t

R Ci,o ,(T) = = 0

Rc,c(r) = J c*(t)c(t + r)d t (4.20)

MC SOS-based simulators are in general complex since they require a relatively large

number of simulation trials for convergence. To overcome the complexity problem, a mul­

tiple parameter set MC (MPS-MC) simulation method has been proposed [140]. This

technique divides a simulation trial into several frames and generates random Doppler fre­

quencies and phases for each frame. For example, to generate 107 inphase and quadra­

ture components, we can divide them into 103 frames of length 104 samples each to get

time-averaged autocorrelation results. It should be noted that the autocorrelation with the

MPS-MC model is zero if the time delay exceeds the frame length. Hence, the frame length

should be sufficiently long to cover the time delays of interest to get meaningful results.

With this method, the performance of MC models is considerably improved [8]. Unfortu­

nately, the MPS-MC model creates discontinuities in the temporal correlation. As a con­

sequence, the testing of a communication system should be interrupted and re-initialized

every time with a new set of random parameters for each trial to ensure accurate modeling

of the channel. At the receiver, the channel estimation or carrier recovery at the receiver

must be re-acquired after each draw of random parameters. However stopping and restart­

ing the communication system and channel simulator in this way might not be convenient

in many practical cases.

To improve the existing MPS-MC models, Zajic and Stiiber [141] proposed a determin­

istic model that is ergodic. However, the autocorrelations of the in-phase and quadrature

components do not accurately match the theoretical properties. They also proposed a sta­

tistical model to overcome this shortcoming of their deterministic model. However, the

resulting modified model is no longer ergodic.

We modified the SOS simulator proposed by Zheng, Xiao, and Beaulieu [36-38] to

achieve an improved SOS Rayleigh fading channel simulator. In the new model, we replace

the random angle of arrival by a random walk stochastic process [14]. Analytical analysis

of our new model appears to be intractable, however, through numerical simulation we

will show that the statistical properties of the new model accurately match the reference

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

functions. To generate fading variates with accurate statistical properties, we propose to

use the following discrete Model II, which is a modified version of Model I.

where f o r = I d Ts is the normalized maximum Doppler frequency (and Ts is the symbol

period), and a n [m] = (2nn — 7r + 9[m])/(4N) where 6 is a stationary stochastic process.

Compared to Model I, in Model II, 0 (and the corresponding angle of arrival) is a stochastic

process rather than a random variable produced by a white process. However, great care

should be taken to choose 0[m] so that the statistical properties of Model II match those of

the reference model. In particular, through numerical experiments we found that 9 must be

ergodic, highly-correlated, and uniformly distributed over [—7r, 7t). Specifically, we propose

to use the stochastic random walk process given by Algorithm 5. The random walk process

Algorithm 5 The proposed random walk process 9
1 Initialize 50 = e < 1, 0[O] = U(—n, 7r);
2 for m > 0 do
3 9\m\ = 9[m — 1] + 50 x u[m];
4 if 6[m\ > +7r then
5 9[m] = +7r; 50 = - S0;
6 end if
7 if Q[m\ < —7r then
8 6\m\ = -n ; 8a — - 8 0\
9 end if

10 end for

9 in this algorithm is generated using a white process, u, which is uniformly distributed over

[0,1). The step size 50 is chosen to be small enough to ensure that the resulting process 9

is highly correlated. The step size is a function of the normalized Doppler frequency and

the precision of the variables used in simulation. Numerous numerical simulations were

performed to evaluate the statistical properties of Model II. We found different acceptable

values of Sa for various normalized Doppler frequencies as given in Table 4.3. For n-th

sinusoid at time index m we can write

Model II.

71=1

(4.21)

cos(27r/D rm s in (a n [m]) + ipn) (4.22)

. . _ 27rn — 7r 4- 9[m] _ 27rn — 7r + 9[m — 1]
+ S' — a n [m — 1] + 5'

AN

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

Table 4.3: Maximum step size 60 .
Normalized Doppler frequency /d t Max. step size 50

}d t < 0.0001 0.0000005
for < 0.0005 0.000001
for < 0.001 0.000005
fDr < 0.005 0.00001
fDr < 0.01 0.0001

Theoretical ACF
Simulated ACF
Cross Correlatbn0.8

0.6

0.4

0.2

■0.2

■0.4
0 500 1000 1500 2000 2500

Autocorrelation lag (In sam ples)
35003000 4000

Figure 4.24: ACF and CCF of 107 fading variates generated by Model II.

and thus cos(an [m]) and sin(cnn [m]) can be approximated as,

cos(an [m]) ~ cos(an [m — 1]) — 6' s in (an [m — 1]),

s in (an [m]) cz s in (an [m — 1]) + 81 cos(an [m — 1]).

A block of 107 fading samples using N = 8 sinusoids with /jr>Ts = 0.002 was gen­

erated (in one simulation trial) and the statistical properties of Model II were measured.

Figure 4.24 plots the ideal ACF along with the ACF and CCF of the samples generated with

the new model. As Figure 4.24 shows, the generated ACF accurately matches the ideal

ACF and the generated CCF is very small. The LCR [23] of the envelope of the generated

fading variates and the theoretical LCR are plotted in Figure 4.25. Here again a close match

between the generated LCR and the desired LCR can be observed. Also, Figures 4.26 and

4.27 plot the PDF and the CDF of the generated fading variates against the reference func­

tions. These plots show that Model II can faithfully reproduce the properties of Clarke’s

model. In the next section we focus on the hardware implementation of the fading channel

emulator.

The proposed fading channel emulator was implemented as a Verilog hardware descrip-

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

 Reference
 Simulated

■5 0 5 10

Figure 4.25: LCR of 107 fading variates generated by Model II.

0.7

0.6
Simulated
Reference

0.5

0.4
X

0.3

0.2

0.1

0.5 2.51.5 3.5
X

Figure 4.26: PDF of 107 fading variates generated by Model II.

0.9

0.8

0.7

0.6

>o.s
0.4

0.3

0.2

0.1

0.5 2.51.5 3.5
X

Figure 4.27: CDF of 107 fading variates generated by Model II.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 An Improved SOS-based Fading Channel Emulator

Table 4.4: Implementation of the fading channel simulator on three different FPGAs.
Device family 1“ II III

Max. clock freq. (MHz) 195.61 204.75 103.01
Output rate (MSamps/sec) 195 204 103

Slice utilization 2447 (9%) 2444 (5%) 1292 (1%)
Dedicated resource utilization 48 (9%) 48 (10%) 128 (72%)

Number ofBRAMs 12(3%) 12(2%) 2%

“Design I was synthesized for a Xilinx Virtex4 XC4VSX55-11 FPGA. Design II was synthesized for a
Xilinx Virtex2P XC2VP100-6 FPGA. Finally, Design III was synthesized for an Altera Stratix EP1S80F1508C6
FPGA.

tion language model and synthesized for the three typical FPGA devices given in Table 4.4.

We used the PNG described in [97]. This PNG generates uniformly distributed 32-bit un­

signed values between (0,1). The sine and cosine values used to calculate s in (an [m]) and

cos (a n [m])(respectively, were stored in four dual-port memories TBLROM12, TBLROM34,

TBLROM56, and TBLROM78, each configured in 512 x 32 format. Eight dual-port cosine

ROMs store cosine values used to calculate the in-phase and quadrature components a [m]

and cq[m]. The hardware-based fading channel emulator design was adjusted carefully to

achieve accurate fixed-point representations of the variables and also to minimize the com­

putational resources. Specifically, the stochastic process 6 was represented in 32-bit format,

while <fi[n] and tp[n\ used 10-bit precision. The values of s in (an [m]) and cos(o:ri[m]) were

represented in 12-bit format and the cosine values to calculate Cj[m] and cq[m] were rep­

resented in 16-bit fixed-point format. The implementation of the fading channel emulator

on a Xilinx Virtex2P XC2VP100-6 FPGA uses only 5% of the configurable slices, requires

48 dedicated 18 x 18 multipliers, and 12 Block RAMs. As shown in Table 4.4, the max­

imum sampling rate of the fading channel emulator on a Altera Stratix EP1S80F1508C6

FPGA is slower while utilizing only 1% of the configurable logic elements and uses 128

dedicated DSP blocks. We extracted the statistical properties of the generated fading vari­

ates and compared them against the software simulation results to successfully verify the

accuracy of our hardware-based fading channel emulator. Figure 4.28 shows the layout of a

472,430 pm.2 semicustom integrated circuit implementation of the Rayleigh fading channel

emulator designed in a 90-nm CMOS technology using a dual-threshold standard cell li­

brary. The core was targeted to operate at 500 MHz, generating 500 million 16-bit complex

fading variables per second.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Conclusions

Figure 4.28: Layout of the 500 MHz semicustom fading channel variate generator.

4.7 Conclusions

To accurately generate Rayleigh faded envelopes that are correlated in time, but uncorre­

lated between processes, the quadrature components of fading variates must be uncorre­

lated, with each component having an autocorrelation given by a zeroth-order Bessel func­

tion of the first kind. Numerous algorithms with different computational complexities have

been proposed in the literature to simulate a Rayleigh fading channel; however, most do not

accurately reproduce the reference statistical properties of wireless propagation channels.

Thus, the accuracy of the proposed models must be verified before using these models in a

MC simulation scheme. While the SOS-based fading channel model is an efficient approach

for hardware implementation, some of the proposed algorithms provide a close match with

the theoretical statistical properties only when the statistics are averaged over an ensemble

of fading channels. Hardware-based simulators permit several orders of magnitude faster

performance evaluation over software-based simulators, significantly reducing the design

time. The implemented SOS-based fading simulator uses only 1% of the Xilinx Virtex2P

XC2VP100-6 FPGA and operates at 221 MHz, generating 211 million complex fading co­

efficients per second. The hardware-based fading channel simulator is 506 times faster than

a software-based simulator written in C language running on a 3.4-GHz Pentium 4 (Xeon)

with 2 GB memory.

Also, a novel technique for simulating Rayleigh fading channels with improved statis­

tics was proposed. The proposed simulator was designed based on the sum-of-sinusoid

Rayleigh fading models. A compact fixed-point implementation of the new emulator on

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.7 Conclusions

a single FPGA produces over 200 milion 16-bit Rayleigh fading variates per second. The

ability to implement an entire fading channel simulator on a fraction of a single FPGA

should be a significant improvement for the prototyping and verification of wireless sys­

tems.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Filter-Based Fading Channel
Simulators

Numerous real-time test cases must be applied to a new communication system design be­

fore shipping the products to market. Field tests in a mobile environment are expensive

and may require permission from regulatory authorities. A further complication is that,

due to the changeable nature of the mobile propagation environment, it is difficult to gen­

erate repeatable field test results. Instead, a multipath fading channel simulator allows the

performance evaluation of mobile communication systems under controlled and repeatable

conditions that would not normally be possible in actual field testing. When a fading chan­

nel simulator is used in the design and verification of wireless communication systems, it is

important that the channel model represent all of the relevant behaviour and properties of a

propagation environment as accurately as possible.

A complex Gaussian WSS process with the complex envelope c (t) = C j(f) + jc q(t) has

been commonly used to model the behaviour of multipath fading channels [113]. Under

the common assumption of a two-dimensional isotropic scattering environment with an

omnidirectional receiving antenna at the receiver [30], the PSD functions of Cj(f) and cq(t)

have the band-limited U-shaped form, the so-called Jakes PSD. Chapter 4 presented a well-

known model for generating fading processes that approximate the Jakes power spectrum

using Rice’s sum of sinusoids (SOS) model, where a Gaussian process is modeled by the

superposition of a finite number of weighted harmonic functions with random phases. This

chapter considers an alternative technique, called the filter-based approach henceforth, for

shaping the flat spectrum of uncorrelated Gaussian variates using a low-pass filter [114,134,

139,142]. This filter is often referred to as the shaping filter for it determines the power

spectrum shape and the temporal correlation function of the fading process. The filter-

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Some commercially available fading simulators.
M odela A B c D E

Number o f channels 2 2 2 2 6
Number o f paths 12 24 48 6 6

Max. Doppler (Hz) 800 2000 2400 - 340
Fading resolution (Hz) 0.1 0.01 0.05 - 1

Max. delay (ms) 200 2000 10 - 40
Time resolution (ns) 5 0.1 1 1 40

“(A) Japan Radio Co. NJZ-160QB [144], (B) Spirent Communications SR5500 [143], (C) Agilent Tech­
nologies Inc. N5115A [6], (D) Rohde & Schwarz ABFS [7], (E) Ascom Ltd. SIMSTAR [138],

based approach can be customized to accurately provide the statistical properties required

for simulating fading channels [23].

Due to the accuracy of this model for generating fading variates with reference statisti­

cal properties, many commercially available fading channel simulators [6,7,138,143,144]

employ the filter-based technique. Typically they require complex hardware consisting of

several circuit cards with multiple processors. For example, the NoiseCom MP-2500 Mul­

tipath Fading Emulator [145] consists of 11 circuit boards, not including the RF circuitry,

cooling fans, or external computer interface for setting various parameters of a frequency-

selective fading channel with up to 12 paths. Unfortunately these systems are rather bulky

and costly. Some of the available fading channel emulators in the market are listed in Table

5.1 and are available at prices of between $24,000 to $500,000.

A software implementation of multipath fading channels using GPPs and DSPs is a

more flexible and cost-effective scheme than such hardware-based commercial products.

However, the implementation effects of nonlinear filters and nonlinear amplifiers are diffi­

cult to characterize analytically. Moreover, hardware-based simulators can verify the de­

sign at-speed, significantly reducing the simulation time compared to software-based testing

schemes, and hence they reduce the time-to-market. The published fading channel simu­

lators are commonly realized on heterogeneous architectures (usually consisting of GPPs,

DSPs, FPGAs, etc.) to implement the computationally-intensive multi-rate signal process­

ing algorithms of filter-based techniques [121,123]. In these simulators, those portions of

the simulator that are inefficiently simulated on a GPP can be off-loaded to a dedicated de­

vice, such as a FPGA or a DSP. For example, the fading simulator in [123] uses a floating

point DSP combined with a FPGA to realize a frequency-selective channel simulator. The

design in [121] uses two 32-bit floating-point DSP processors to implement a multipath fad­

ing simulator. Implementing a parameterizable fading channel simulator on a single FPGA

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is a challenging task due to the relatively large computational complexity of the filter-based

signal processing algorithms [123].

This chapter presents a novel design and implementation scheme for realizing a pa­

rameterized fading channel simulator on a homogenous architecture. Specifically, the new

design is an accurate filter-based fading channel simulator on a single FPGA that is compact

enough to be integrated along with many communication circuits of interest. To generate

complex Gaussian variates with a U-shaped power spectral density function, the design

utilizes an HR spectrum shaping filter followed by multistage interpolators and low-pass

HR filters. In order to produce samples with accurate statistics and minimum hardware

requirements, the required filters are designed in co-ordinated fashion. The new technique

significantly alleviates the challenges of real-world testing of communication systems by

introducing a fast and area-efficient FPGA implementation of the fading channel. Our fixed-

point implementation of a Rayleigh fading channel simulator on an FPGA utilizes only 4%

of the configurable slices, 20% of the dedicated multipliers and, 2% of the available memo­

ries on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million fading variates

per second. The parameterized mobile channel simulator can be reconfigured to accurately

simulate a wide variety of different channel characteristics. We have also designed a flexible

and compact filter processor (FP), called “Python”, for efficiently implementing the shaping

filter and interpolation low-pass filters (ILPFs) on the FPGAs. Python uses a simple and a

very short instruction set to generate multiple sequences of fading variates for simulating

wideband and MIMO channels.

The rest of this chapter is organized as follows. The digital filters structures and a

precision analysis are discussed in section 5.1. An efficient method to generate correlated

random sequences is presented in Section 5.2. Section 5.3 discusses the design constraints

of the shaping and interpolator filters. Section 5.4 studies the major challenges in the de­

sign and hardware implementation of any filter-based Rayleigh fading channel simulator.

Our proposed datapath for implementing a discrete-time fading channel simulator and im­

plementation results are presented in section 5.5. The statistical properties of the generated

fading variates are also verified. Section 5.6 presents the Python FP architecture and the im­

plementation and statistical results of fading channel simulator. Finally, Section 5.7 makes

some concluding remarks.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Digital Filter Structures and Quantization Error Effects

5.1 Digital Filter Structures and Quantization Error Effects

In digital signal processing, difference equations have been used extensively to model LTI

systems. A difference equation has the general from [10]
N M

'Ŝ a [k] y \ n — k] — ^ b[m]x[n — m]\ V n (5.1)
fc=0 m—0

where a[k] and b[m\ are constant coefficients (also called gain factors). If we scale the

coefficients so that ao = 1 we obtain
M N

y\n \ = x \n - m] - ~ ^ (5-2)
m =0 k = 1

which clearly shows that the present output value y[n] can be computed from the present

input x[n], M > 0 past input values and N > Q past output values. In digital signal

processing, Equation (5.2) is solved forward (i.e., for n > 0). Thus initial conditions on

x[n] and y[n] must be determined for — M < n < — 1 and — N < n < —1.

If the unit impulse response h[m) LTI system (digital filter) is of finite duration (i.e.,

h[n] = 0 for n 2 < n < n{), then the systems is called a finite-duration impulse response

(FIR) filter [10]. A causal FIR filter can be expressed as
M

y[n] = b[m\ x[n — m]; n > 0 (5.3)
m=0

where b[m] = h[m] for m = 0, • • • , M , while all other h[m \’s are zero. An FIR filter is

also sometimes called non-recursive or moving average (MA) filter. If the impulse response

of an LTI system is of infinite duration, the system is called an infinite-duration impulse

response (IIR) filter. The difference Equation (5.1) describes an IIR filter that has two parts

where the following part
N

^ a [f c]y [n — k] — x[n\; V n (5.4)
fc=o

describes a recursive IIR filter with infinite duration in which the output y[n\ is recursively

computed from its previously computed values and present input. Such a filter is called an

autoregressive (AR) filter. The IIR filter in Equation (5.1) sometimes called an autoregres­

sive moving average (ARMA) filter since it has both an AR part and an MA part.

An important subclass of causal LTI systems satisfy an iV-th order linear constant-

coefficient difference equation (CCDE) of the form
N M

u[fc] y[n — fc] = ^ 2 Mk] x[n — kj.
k = 0 fc=0

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Digital Filter Structures and Quantization Error Effects

x[n]

^ 4 4
b[k]

(a) D insct-Form

b[0]
* y[n]

-a [l] b [l]

b[2]-a[2]

-a (k] b[k]

y[n]

(b) D irect-Form II

Figure 5.1: Direct-Form network structures.

It can be shown that the system function H (z) can be represented as the rational function

r (») A [o] ' i n f . i (i - c W ^ - 1)

where z is the z-transform variable, Y[z] and X[z] we feed-forward and feedback polyno­

mials, respectively, in 2 , and H (z) = h[n\z~n is called the one-sided z-transform of

the rational transfer function (RTF) of the LTI system. Each of the (1 — c[k]z~l) factors

contributes a zero (i.e., a root of the numerator) at z = c[k] and a pole (i.e., a root of the

denominator) at z = 0; similarly, each (1 — d \k \z~ l) contributes a pole at z — d[k] and

zero at z = 0. Thus the b[k]’s are the filter’s feedforward coefficients corresponding to the

zeros of the filter, and the a[fc]’s are the filter’s feedback coefficients corresponding to the

poles of the filter.

It is shown in [10] that any sequence that can be represented as a sum of exponentials,

and can also be represented by a rational z transform. H(z) is sometimes represented as

H (z) =
i + H L “ I*]*-*

by taking the z-transform of the both sides of the difference equation (5.2). For convenience

in the notation we assume equal feed-forward and feedback orders, i.e., M = N . A block

diagram of the corresponding filter implementation (called the Direct-Form) is shown in

Figure 5.1(a). This flowgraph clearly separates the structure into a section for the zeros on

the left and a section for the poles on the right. If you split the Direct-Form shown in Figure

5.1 at the summation point and swap the two halves, so that the feedback half (the poles)

comes first, then the two pairs can be merged, yielding a more compact configuration than

the Direct-Form called the Direct-Form II, as shown in Figure 5.1(b). For a second-order

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x[n] — <+>

(a)
X

5 .i Digital Filter Structures and Quantization Error Effects

 ►(+)—► Yin]

(+M x>

U (x) - 1 —<x)-J

-<xX+)

x[n] Yin]

Figure 5.2: (a) Direct-Form II. (b) Direct-Form I.

(i.e., two poles and two zeros) IIR filter, the flowgraph, shown in Figure 5.2(a), is called a

canonic section or a biquad. Note that in a Direct-Form II, the states (delayed samples) are

neither the input nor the output samples but are instead derived intermediate values. It is

shown that a K - th order IIR filter can be designed as a cascade of L — [(K + 1)/2J such

biquads [10]. Then, the discrete transfer function can be written as

1 + a\k]z 1 + b[k\z - 2

fe=1 - + + d[k]z~2
(5.5)

where when K is odd, and b[L] and d[L\ are zero. Biquads come in different forms. A

transposed network (the directions of all branches in the flowgraph are reversed, with all

branch nodes in the original network becoming summation nodes in the transposed network

and vice versa), shown in Figure 5.2(b), is called transposed Direct-Form II or Direct-Form

I. It provides the same system function using two adders and a summation node (with three

inputs), while in a biquad, four two input adders are utilized.

Both the throughput and latency of a digital implementation are affected substantially by

the choice of the network structure. One practical drawback of the recursive filter structures

in the IIR filter structures is that they set an upper bound on the sample rate. For example,

consider the cascade Direct-Form II structure shown in Figure 5.3. The direct mapping of

a cascade structure onto hardware has a relatively long combinational propagation delay to

the output. This path, as shown with a thick arrow in Figure 5.3, contains 2L + 1 adders,

one multiplier and one register. In order to achieve higher performance (and hence a shorter

clock cycle), a pipelined cascade architecture can be created by adding one register at the

output of each biquad stage. Then, the critical path delay is reduced to the delay of a register,

one multiplier and three two-input adders. However even this delay can be significant when

realizing a digital filter on a FPGA.

One important decision is to determine the number of bits required to represent the

constant coefficients and internal signals in the filter. It is well-known that as the order of

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Digital Filter Structures and Quantization Error Effects

a[i]
_dJ-> • • • l_pj—

9[n]
I -c[TT
+ M x) -

>

all] I
h | h ±)
'

-dll]
M g H h s h

■c[L]
(+MH>

I «+h : y[n]

£

a[L]

< S K +)

-d[L] I b[L]
L- ® - L - (x > - l

Figure 5.3: Cascade realization of the spectral shaping filter.

the polynomial increases, so too does the sensitivity of the obtained roots of a polynomial to

the accuracy of its coefficients [10]. Also, for a narrowband filter with a high sampling rate,

the zeros and poles tend to be crowded near the unit circle. If the poles reside on the unit

circle or outside of it, the filter becomes unstable [10]. As the coefficients are quantized for

a fixed-point platform, due to the rounding or truncation of values, the quantization error

can be fed back in the filter, successively magnifying the total error and causing instability.

Even if the filter stays stable, the poles can be displaced significantly from their design

locations by the quantization of the coefficients, and thus the target specification will not

be achieved. Therefore, a careful analysis is required to ensure adequate precision in the

coefficients. Since FPGAs, unlike fixed register size DSPs, allow custom bit widths, the

coefficient representation can be different than the internal signal representation, providing

a greater flexibility. The internal signal bit widths then can be determined by calculating

theoretical bounds on the dynamic ranges of the signals, and on the maximum output errors

introduced by truncation in the fixed-point representation. The lower and upper bound

values of each signal state how many bits are required at any point in the computation in

order to minimize the probability of overflow/underflow while guaranteeing a prescribed

degree of accuracy at the filter output.

The fixed-point implementation of digital filters is discussed in many textbooks and in

the published literature. For example, it is shown that when the denominator coefficients of

the second-order filter are perturbed by Ac and A d (i.e., perturbation from its ideal infinite

precision value), respectively, the poles of the transfer function, p\ and p 2 , will also be

perturbed by
r>i A r: 4- A d nr,A.r.-\-Ad

(5.6)
. p i Ac + A d P2 AC + Ad

A pi = -----------------and A p2 =
P2 - Pi Pi - P2

respectively [146]. A similar relation holds for perturbations affecting the zeros of the

transfer function. According to the given maximum allowable percent change in the pole

I3 l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Generation o f Correlated Random Sequences

location relative to the unit circle £p, one can obtain the number of fraction bits for c and d

in (5.5) W F as W F = [- log2(£p|l - |p»||.|p2 - P i |) l + 1 for * = 1,2 [146]. While the

error analysis of fixed-point implementations of digital filters has also been addressed in a

large number of papers and textbooks [10,147], the software package Matlab Filter Design

Toolbox [148] offers numerous libraries for the analysis of finite wordlength impact on the

numerical stability of the designed filters.

Choosing the computational structure depends on the order and specification of the

filter, the desired sampling rate, the susceptibility to quantization error, and the available

configurable resources on the FPGA. While other network structures, such as the coupled

form [10,147], have also been proposed to reduce the sensitivity to inaccuracies in the

coefficients and to signal quantization, it is shown that the cascade form is a robust structure

under quantization when compared with many other schemes.

5.2 Generation of Correlated Random Sequences

If the input to an LTI system is a random process X(t) , then the output Y (t) is a random

process [14] given by

/ oo poo
h (r) X { t — r) d r = / h(t — r)X (r)d r .

-oo J —OO

Similarly, for a discrete-time RP X[n],

OO OO
Y[n] = h[n] * X[n] = ^ h[j]X[n - j] = ^ h[n - j]X\ j]

j=~oo j=-oo

and OO

m = E
i= — OQ

If X (t) is a WSS process, then Y(t) is also WSS and the corresponding PSD is

Gy (f) = G x (f) \ H (f) \ 2. (5.7)

Equation (5.7) states that the output PSD equals the input PSD multiplied by the squared

magnitude of the transfer function of the filter. In many applications, such as frequency-flat

fading simulators, we need to generate one (or more) random sequences with a particular

correlation function. For example, for the representation of phase noise in a communication

system, a Gaussian process with an arbitrary PSD (which might be defined based on empir­

ical measurements) is often required [11]. When R (r) ^ 0 for r = kTs , k — ± 1 , ± 2 , • ■ •,

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Generation o f Correlated Random Sequences

the RP is correlated at multiples of the sampling intervals. We note that if X { t) is a white

noise process with the flat PSD Gx { f) = N 0 /2, then the transfer function completely

determines the shape of the PSD of the output process as

Equation (5.8) shows that an uncorrelated Gaussian sequence can be transformed into a

correlated Gaussian sequence through a linear filter that preserves the Gaussian distribution

but alters the correlation properties. This technique can be efficiently used for generating

WSS processes with arbitrary output PSD (corresponding to a desired output correlation).

Hence, a filter with the transfer function

can be designed in the frequency domain to transform a white noise process into a coloured

random sequence if H (f) can be represented as a RTF, i.e., the ratio of two polynomials as

discussed in Section 5.1. An ARMA filter can be utilized to implement H { f) in (5.9) as

a RTF for generating random sequences with arbitrary PSD [13]. A very important point

to note is that the phase response of the filter is not important since it does not affect the

output PSD [13].

In practical applications, such as frequency-selective fading channel simulators and

MIMO channel simulators, we need to generate more than one correlated random sequence.

Multiple random processes can be represented as a vector-valued RP where each vector

component is a RP with a particular ACF (temporal correlation or correlation along time

axis) and the correlation between vector components represents a correlation in a differ­

ent dimension (referred to as spatial correlation) [13]. Assume that we want to gener­

ate sampled values of m zero-mean Gaussian random processes F i(t) , ^ (i)

denoted as a vector-valued discrete-process Y[k] = [Yi[k], ¥ 2 [k], • • • ,Y m [k]]T , with the

same arbitrary temporal correlation R[n] (or equivalently, the same PSD). Further assume

that we want to have some arbitrary correlation between processes such as R y ^ [n] =

E [Yi[k]Y;[k + n)] = <7jjR[n], where &ij is the covariance between the components of

the process at a given instant. To generate a sequence of Gaussian vectors Y[fc] that are

correlated in time and space, we can transform a sequence of uncorrelated (and hence inde­

pendent) Gaussian vectors X[fc] into a time-correlated Gaussian sequence Y[fc], with each

sequence generated using an ARMA filter, and then transform spatially-uncorrelated com-

GY (f) = N 0 / 2 \ H (f) \ 2. (5.8)

(5.9)

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

ponents of Y[A:] into spatially-correlated components using a (memoryless) linear transfor­

mation [13].

5.3 Constraints on Filter Design

As noted earlier, it is common to model the behavior of multipath fading channels as a

complex Gaussian WSS process c(t) = a (t) + j c q(t) [113]. In a two-dimensional isotropic

scattering environment with an omnidirectional receiving antenna at the receiver [30], the

ACF associated with either Cj(f) or cq(t) is given by R Ci)Ci(r) = R c?iC, (t) = Jo(2nfDr) .

The PSD functions of q (f) and cq(t), denoted by GCi(/) and GCq(f) respectively, can be

written as

where <Xj is the variance of Cj.

In order to generate the in-phase and quadrature components of fading variates with

a particular correlation between variates, as discussed in Section 5.2, we begin with two

independent, zero-mean, white Gaussian random variables rii(t) and n q(t) with identical

variance. A linear filtering operation on the complex Gaussian samples with flat PSD, rij(f)

and n q(t), yields samples that also have a Gaussian distribution, with spectrum G o u t (f) =

G m (/) \ H (f) \ 2, where G in (f) is the spectrum of the input samples and \ H (f) \ 2 is the

squared magnitude response of the shaping filter. As described in Chapter 4, the theoretical

spectral density of the complex envelope of the signal received by an omnidirectional an­

tenna in a Rayleigh fading wireless channel is given by the Jakes PSD [13]. A shaping filter

can be designed with a frequency response equal to the square root of the PSD of the de­

sired fading process (i.e., \ /G Ci(/)) . A correlated Rayleigh process can then be generated

by combining the two filtered processes in quadrature.

Similarly, to generate correlated Rayleigh variates, the Gaussian-distributed in-phase

and quadrature components can be spectrally shaped by multiplying the frequency domain

Gaussian components by \ / G Ci(f) . Then an inverse fast Fourier transform (IFFT) can

be applied to the resulting discrete spectrum to obtain time series data [114, 134]. The

resulting series is still Gaussian by virtue of the linearity of the IFFT, and it has the desired

Jakes spectrum. The pseudo-code of this approach is given in Algorithm 6 [114]. The

IFFT has a computational complexity of 0 (K log K) operations, where K is the number of

time-domain sampled Rayleigh channel coefficients. One major disadvantage of the IFFT

Jd I/I < fD

I/I > f D
(5.10)

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

Algorithm 6 Modified Smith’s algorithm to generate discrete-time samples of correlated
Rayleigh fading process.

1: Specify the value of N equally spaced points of x/GCi(/) with the frequency spacing between
adjacent spectral lines as A/ = 2f o / (N — 1). Thus the time duration of waveform is r =
1 /A /.

2: Generate JV/2 complex Gaussian random variates for each of the N/2 positive frequency com­
ponents of \ / G c,(f)-

3: Construct the negative components of the noise source by conjugating positive frequency val­
ues. This will yield a real waveform.

4: Multiply the N noise points of the inphase and quadrature components of the noise sources by
the discrete frequency representation of i /G Ci(/) .

5: Perform IFFT on the resulting frequency domain signal from inphase and quadrature branches
to form complex time samples.

method is its block-oriented nature, which'requires all channel coefficients to be generated

and stored before the data is sent through the channel. This implies significant memory

requirements and precludes unbounded continuous transmission, which is usually preferred

in long running characterization applications.

The reciprocal square root in Equation (5.10) is an irrational function [139], which

cannot be implemented exactly in hardware, so it is common to use a rational approxima­

tion of the Jakes PSD. To provide spectral shaping for a rational implementation, we used

transformation-based filter designs [121,123]. In wireless communication channels, the

Doppler frequency is typically much smaller than the sampling rate. This greatly reduces

the required bandwidth of the spectral shaping filter. For example, consider the digital cel­

lular system DSC1800 (GSM1800), which operates at f c = 1.8 GHz. If the mobile receiver

has a maximum speed of v = 300 kmph, then the maximum Doppler frequency would be

f o = f c x (v/c) = 500 Hz, where c is the speed of light. If the signal is sampled at

R s = Ts_1 = 10 MHz, then the normalized Doppler frequency would be Jd Ts = 0.00005.

However, a symbol-rate design of an extremely narrow-band digital filter may run into nu­

merical problems [147]. Instead, it would be more stable and computationally-efficient to

design the PSD shaping filter for a lower sampling frequency R ch, and then increase the

sampling frequency using interpolation to achieve the target symbol rate. The sampling

rate of the filter must be increased by an interpolation factor I = [\ to be compatible

with the signal sampling rate, where R ch is the channel sampling rate used to design the

shaping filter. After interpolation, a low-pass filter is utilized to eliminate the replicas of

signal introduced in the frequency domain by interpolation. For a practical mobile sys­

tem, factor I can be large and thus the complexity of the real-time interpolation filter can

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

Scaling Factor

CGVG Shaping Filter

P-stage Interpolator

c[m]

Figure 5.4: Architecture of a filter-based fading channel simulator.

be large. To reduce the computational complexity of the low-pass filters, interpolation is

usually accomplished using a multi-stage interpolator design.

The functional structure of the filter-based fading channel is represented in Figure 5.4.

The generated samples from the complex Gaussian variate generator (CGVG) are passed

through a shaping filter and multiplied by a scaling factor to normalize the power of the

final resulting channel variate c[m]. Then the sampling rate of generated fading variates is

increased using a P-stage interpolator.

The fading channel simulators in [114,127,149,150] use FIR filters as the shaping filter

while the designs in [120,123,151,152] used IIR filters. Several important points should

be considered when implementing fading channel simulators using FIR and IIR filters on

hardware platforms:

• The degree of the FIR filter is related to the time span of the truncated signal held in the

filter and inversely proportional to the Doppler frequency. Specifically, implementation of

an extremely narrow-band digital filter with a sharp cutoff and very large attenuation in the

stop-band requires a large-order FIR filter [13,152]. Meeting the same specifications with

an IIR filter typically requires fewer hardware resources than an FIR filter. In fact, utilizing

both feedforward and feedback polynomials in an IIR filter permits steeper frequency roll­

offs to be implemented for a given filter order than an FIR filter [147]. Thus, rather than

designing a high-order FIR filter for an extremely small /z)Ts provided (e.g., 10-5), an IIR

filter can be designed with a smaller order and the resulting filter is less computationally-

expensive for a larger maximum Doppler rate (e.g., f t ,T s = 0.1).

We designed and implemented bandlimited Jakes spectral shaping filters using an IIR

filter to closely approximate GCi (/) in the passband while providing large suppression in

the stopband. An elliptic filter is an efficient candidate that has an especially sharp transition

from the passband to the stopband for a given order [147]. A discrete-time elliptic filter can

be designed using the cascade Direct-Form II second-order sections (biquads) structure that

is more robust under quantization than the Direct-Form structure [147] (e.g., a cascade of

four biquads is used in [28] and a cascade of seven biquads is used in [139]). As shown in

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

■10........

I
Ic
!

■30-

.40 -

-SO
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Normalized Frequency (x x rad/samples)

Figure 5.5: The magnitude responses of elliptic filters composed of K = 2 ,3 ,4 ,5 cascaded
biquads with f o T s = 0.2.

Figure 5.5, for a fixed maximum discrete Doppler rate f o T s = 0.2, the magnitude response

of filters designed with K > 4 cascaded Direct-Form II second-order sections (biquads)

closely matches the ideal response in the passband and has a steep roll-off in the transition

to the stopband. In this case, the PSD of the filter with K = 5 has at least 8 dB of peaking

above GCi (0) and has rolled off at least 35 dB with respect to GCi(0) for R ch > 2 f p .

• An FIR filter has no feedback and is thus inherently stable. However, as the coeffi­

cients are quantized in any fixed-point implementation, the resulting numerical error is fed

back in the IIR filter, possibly causing instability. Moreover, such effects can cause signif­

icant deviations from the expected response. To make sure that the filters are stable under

quantization effects, we have designed the filters in fixed-point format using Filter Design

Toolbox by Matlab [148] that offers bit-true implementations of second-order sections with

section scaling and reordering to obtain maximum accuracy. Word lengths for different

internal signals and coefficients are set to the values verified by fixed-point simulation of

the filters. Dynamic range and round-off noise analysis provided by the toolbox will also

assure that the chosen fixed-point representation will avoid numerical instability.

• For a fixed signal sampling rate of R s, the lower the channel sampling rate, the larger

must be the interpolation factor. For a high R ch, the filter order will increase and the fil­

ter will become more sensitive to quantization. There is therefore a tradeoff between the

computational-complexity and numerical stability of the shaping filter and the computation

requirements of the interpolation filter. There are many possible combinations of shaping

filter designs and interpolator implementations. It is reasonable to design the shaping filter

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

Gain (dB)

Pass-band Ripple

Cutoff
Frequency

 p Stop-band
Attenuation

FrequencyFs/2 Fs

Pass-band Transition Stop-band
Band

Figure 5.6: Ideal low-pass filter specification.

with a small R ch (compared to R s), which provides stable operation for a fixed-point real­

ization with acceptable computational complexity. Then the interpolator can be designed

and implemented efficiently using a variable polyphase filter, to accommodate different

Doppler rates, with a windowed sinc(-) function impulse response [13]. Note that when

the digital filter is designed at a fixed Doppler rate fr>Ts to provide sufficiently accurate

frequency response, then the structure in Figure 5.4 is not flexible enough to produce a

Rayleigh fading waveform with an arbitrary discrete Doppler rate. For an irrational value

of f o T s, if the IIR spectral shaping filter is designed for a fixed discrete maximum Doppler

rate, then the interpolator must re-sample the process so that rational fractions of the de­

sired rate Jd Ts can be approximated. The irrational Doppler rate factor may not be a serious

limitation when simulating a fading channel because in performance verification, obtaining

high accuracy in the Doppler rate is not usually of primary importance [139].

Filters are usually specified using only a few parameters such as passband, stopband,

and the tolerance allowed within these bands [10]. As shown in Figure 5.6, the filter band­

width is the width between two frequencies that define the upper and lower edges of the

pass-band. The transition band is an interval of frequencies where a filter characteristic

changes from one kind of behaviour to another (for example, from a pass-band to stop­

band). The behaviour of a filter’s response that approximates a desired characteristic by

being alternatively greater and less than the desired response is called the ripple. Pass­

band ripple also called in-band ripple and stop-band ripple is also called out-of-band ripple.

There are different standard filters that are analytically described by the type of polynomial

used in H (z) such as the Chebyshev, inverse Chebyshev, and elliptic filters [10]. To design

a discrete-time digital filter, various (iterative) optimization techniques can be utilized to

minimize the mean-square deviation from a desired frequency-domain characteristic.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Constraints on Filter Design

Magnitude response of the designed filter
Ideal magnitude response______________

I
•SO

•60

•80

0.2 0.3 0.4
Normalized Frequency (xx rad/sample)

0.7 0.8 0.9

Figure 5.7: Magnitude response of the elliptic shaping filter.

1.5 O Zero
x Pole

fc<5 0.5 0.
b
g 0
§>

0.5

-2 .5 -2 -1 .5 -1 -0.5 0 0.5 1 1.5 2 2.5
Real Part

Figure 5.8: Zero/pole plot of the 32-bit quantized shaping filter.

In order to implement the Jakes PSD, we used an IIR elliptic filter that has the sharpest

transition from the pass-band to the stop-band for a given order among the different classical

IIR filters [147], We also followed a typical assumption that the Doppler spectrum for

mobile speeds of interest is less than 2 KHz wide [30]. We used 10 samples/period of the

highest frequency of an analog signal [13], so R ch = 10/d = 20 Ksamples/sec. For a

fixed maximum normalized Doppler rate f o T s = 0.1, we used K — 5 cascaded biquads

to realize the Jakes PSD. As shown in Figure 5.7, the magnitude response of the resulting

elliptic shaping filter matches the ideal response in the pass-band and has a sharp cutoff.

Figure 5.8 shows the zero/pole plot of the 32-bit quantized shaping filter.

An important point to note in Figure 5.7 is that if the stop-band attenuation of the

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Filter Design fo r Fading Channel Simulators

shaping filter is not great enough, then the out-of-band noise passed through the filter can

impact the accuracy of the statistics of the generated fading variates. Since designing a

narrow-band filter with a sharp cutoff and large attenuation leads to a high order (and hence

greater computational requirements), to obtain the closest approximation to the desired fre­

quency response with a relatively small filter order, we only minimized the approximation

error in the passband of the spectral shaping filter. The low-pass filters that follow utilized

in the next stages are then designed with extra attenuation over the transition region and the

stop-band.

In order to design a P-stage interpolator, we made the reasonable assumption that the

WSS channel model can be used for the urban mobile radio channel over bandwidths of up

to 10 MHz [21,139]. The interpolation factor of our designed system can therefore be up

to I = \Rs/F Ch] = 500. Typically a multi-stage interpolation scheme using FIR filters is

employed [121,123]. However, when the interpolation factor I is large, we found that this

approach may not be efficient enough to be implemented on resource-limited FPGAs. As an

alternative, we propose to use low-pass IIR filters with smaller degrees that provide almost

linear phase response in the pass-band as ILPFs. A two-stage interpolator can be designed

using two low-pass Chebyshev Type II IIR filters, one for I \ = 5 and one for I 2 — 100. The

designed ILPFs have a maximum of 0.01 dB attenuation in the passband and a minimum

of 100 dB attenuation in the stopband. Figure 5.9 plots the magnitude response of the first

ILPF designed using Pi = 5 cascaded biquads. Figuer 5.9 also compares the response

of this IIR filter with an equiripple FIR filter designed with the same parameters. The

second ILPF was designed using an IIR filter with P2 — 2 biquads where the corresponding

equiripple FIR filter is of order 1067. Clearly, designing the ILPFs using IIR filters leads

to a significantly smaller order, and this is much more computationally efficient. Figure

5.10 plots the phase response of the first ILPF. As shown in Figure 5.10, the designed ILPF

provides almost linear phase in the pass-band (0 to 2 KHZ).

5.4 Filter Design for Fading Channel Simulators

We introduce our new general design method by means of an example. Assuming that the

maximum Doppler frequency is f o = 4 KHz and the target sampling rate is R s = T ” 1 =

10 MHz. To decrease the filter orders, we will design the shaping filter at the sampling

rate R\ = T f l = 20 KHz, which is 2.5 times the Nyquist frequency. Later, the sampling

frequency will be increased to R 2 = T f l = 100 KHz and Rs = 10 MHz with I \ = 5 and

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Filter Design fo r Fading Channel Simulators

IIR fitter (order - 10)
FIR filter (order - 166)

Frequency (kHz)

Figure 5.9: Magnitude response of the first stage IIR low-pass interpolation filter.

FIR filter

I<D
Ia.

■10

•14
0.5 1.5

Frequency (kHz)
2.5

Figure 5.10: Phase response of the IIR low-pass filters for interpolation.

I 2 = 100 times interpolation, respectively.

The cascade of filters is designed in two steps. In the first step, the required filters

are designed to meet the desired characteristics, and then in a second step, the filters are

optimized to reduce their hardware complexity. Since no limitation is imposed on the phase

of the target signal and considering the greater computational efficiency of IIR filters, we

decided to approximate the PSD in (5.10) with a rational filter using the least pth-norm

approximation [153]. This was achieved by utilizing the MATLAB function iirlpnorm [148].

This function allows one to weight the allowable error over different frequency ranges.

Since the signal has a narrow bandwidth, we chose to utilize low-order IIR interpolation

low-pass filters in the interpolation stages. Specifically, we used inverse-Chebychev low-

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 Filter Design fo r Fading Channel Simulators

pass filters for interpolation.

In the next step, the filters are changed to be more efficiently mapped onto the hardware.

Since the shaping and first stage interpolation low-pass filters operate at relatively low sam­

pling rates, as we explain further in the next section, it is advantageous to reuse hardware

to implement both filters. Employing the second-order section (sos) form of the IIR filters

simplifies hardware sharing. In fact a shared biquad can perform the processing of different

sos parts in the shaping and the first-stage ILPF. However, to simplify the control unit, as

will be discussed more in Section 5.5, it is important for the two filters to have the same

number of sos’s.

To minimize the total number of sos’s in the shaping and the first-stage ILPF, they

should be optimized together to meet the design requirements. In a “discrete” design, the

shaping filter should ideally have a frequency response matched to (5.10) in the range | / | <

fD — 4 KHz and a zero response elsewhere. Also, the first ILPF should ideally pass the

signal within the range | / | < 10 KHz (recall that R \ = 20 KHz). However, with finite out-

of-band attenuation, the desired statistics of the target Rayleigh fading samples might not

be met. In particular, the LCR of the envelope of the fading samples is sensitive to the out-

of-band attenuation. We decided to design these two filters together to minimize the error

in the pass-band | / | < 4 KHz while maximizing the attenuation in the stop-band 4 < | / | <50

KHz. Here we used the weights computed by iirlpnorm and the low-pass filter parameters

as the search variables for the filter design algorithm. Figure 5.11 shows the frequency

response of the resulting shaping filter with K — 6 second-order sections. As this figure

shows, the shaping filter provides a frequency response that closely matches the desired

response over the pass-band and up to frequencies just inside the stop-band. However, at

higher frequencies the attenuation is somewhat less. Figure 5.12 shows that the first-stage

ILPF provides at least 65 dB attenuation over frequencies where the shaping filter might

not provide adequate attenuation. Therefore, the ILPF, not only attenuates the out-of-band

signals, it can also help the shaping filter to provide more accurate samples.

The second-stage ILPF is designed using a similar technique. However, there is no

constraint on the length of this filter. This allows us to use this filter to further increase

the attenuation over the stop-band, where the shaping filter and the first-stage ILPF may

not provide enough attenuation. However, since the second-stage ILPF runs at the higher

frequency, minimizing the filter order significantly decreases the required processing time.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Implementation and Statistical Verification

10.....
Designed filter response
Theoretical response

t i i
- 1 0 :................

i I
| -2 0r -

-30-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 0.1 0.2 0.3 0.4 0.5 0.6 0.7 I
Normalized Frequency (xrr rad/sample)

Figure 5.11: Magnitude response of the elliptic shaping filter.

■1 0 "

.2 0 -----

■40 -

£ -SO.........
 : i

■70-

20 25 30
Frequency (kHz)

Figure 5.12: Magnitude response of the first stage IIR low-pass interpolation filter.

5.5 Implementation and Statistical Verification

When implementing the fading channel emulator in fixed-point arithmetic, the stability of

the designed IIR filters after quantization is ensured by keeping all poles within the unit

circle in the 2 -plane. Also, to maintain accuracy, the fixed-point format of the intermediate

signals is chosen based on the numerical studies for different precisions that determine the

impact on the statistical properties of the generated fading variates. A 32-bit fixed-point

format was found to give sufficient accuracy.

The input to the filter chain is generated using GVGs. Realizing the fading channel

simulator on an FPGA requires two GYGs (for the real and imaginary components), K

cascaded biquads and 10K multipliers to implement the shaping filter, and P cascaded

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section

5.5 Implementation and Statistical Verification

9 R 9 IN,

->l
Biq. 1

->!

<+) ►
y.

9q2

Figure 5.13: (a) The structure of cascading Gaussian variate generator and N = K + P
second-order sections, (b) Biquad datapath.

biquads and 10P multipliers to implement the ILPFs, as shown in Figure 5.13(a), where

N = K + P . The biquad datapath is shown in Figure 5.13(b), where four registers are

stored in two on-chip dual-port BlockRAM memories.

As the order of the filters is increased for greater accuracy, it becomes more challeng­

ing to realize the structure in Figure 5.13(a) with high-precision arithmetic components

on resource-constrained FPGAs. For example, for a 32-bit realization, a section in Figure

5.13(a) requires 855 configurable slices and utilizes 9% of the dedicated 18 x 18-bit mul­

tipliers available on a Xilinx Virtex2P XC2YP100-6 FPGA. These results confirm that the

maximum number of sections shown in Figure 5.13(a) that can be implemented on a large

FPGA is only around 11 due to the relatively large number of high-precision arithmetic

units required by each second-order section. Consequently, the direct instantiation of cas­

caded sections might be impractical for higher order filters (i.e., for smaller values of / d Ts)

or might not be efficient and flexible enough to implement variable sampling rates (e.g., for

larger interpolation factors).

One widely-used solution is to utilize a heterogeneous architecture, usually consisting

of general-purpose processors, DSPs, FPGAs, etc. [121,123]. The two main reasons are: (I)

a direct implementation of a parameterizable Rayleigh fading channel simulator may not fit

into one FPGA; and (II) the fading channel process usually varies much more slower than

the signal transmission rate. This implies that the GVGs and the shaping filter can be up-

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Implementation and Statistical Verification

(a) (R s t"r^GVGy+(MShf^^(^^Fy+(Jrftopy->~(^lnpF')

(b)

f . .. +
I gShpK

gShpl

x
3 B iquad

O

Figure 5.14: (a) Control data flow graph and (b) the datapath of the shaping filter and the
first-stage low-pass interpolation filter.

dated at a much lower rate than the sampling rate of the system signal. Thus, it is reasonable

to implement the GVGs and the shaping filter on a DSP, and the interpolator (or at least the

last stage of a multi-stage interpolator) on a FPGA. To obtain the maximum performance

with a minimum of FPGA resources, portions of the spectral shaping filter are time-shared

with the ILPFs. Resource sharing of independent operations of the spectral shaping filter

and ILPFs offers significant resource saving in the implementation of a computationally-

intensive fading channel emulator. The throughput of a fading simulator depends on the

binding of the second-order sections to the shared resources. It was found that the sampling

rate of the hardware-based digital filters is high enough that the throughput reduction of the

time-multiplexed scheme, compared to the direct instantiation approach, does not impact

the maximum target sampling rate.

Due to the slow variation of samples at the shaping filter compared to the fast operating

rate of biquads implemented on an FPGA, we implemented the shaping filter and the first

ILPF using one shared biquad. The second ILPF is mapped to a separate set of configurable

resources to achieve the target sampling rate. Figure 5.14(a) shows the control data flow

graph (CDFG) that generates appropriate control sequence for the datapath (shaping filter

and first ILPF) shown in Figure 5.14(a). The state machine controller starts in the reset state

“Rst", where the “gShpl” to “gShpK" registers are initialized with the K scaling factors of

the spectral shaping filter, and registers “glnpl ” to “glnpP" are initialized with the P i scaling

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) GVG — < E > r Shp.
Biq1

5.5 Implementation and Statistical Verification

» MShp.
Biq2

Shp.
BiqK

Section

(b) Inp. Inp. Inp.
Biq1

■ |K x>(->
Biq2

* “ +
BiqP

Figure 5.15: (a) The structure of cascading Gaussian variate generator and the shaping
elliptic IIR filter, (b) The IIR Chebyshev low-pass filter structure designed using cascading
biquads.

factors of the first ILPF. Intermediate registers, such as “s h p R I ” and “ s h p R Q " , are cleared to

zero. In the next state, “ G V G " , two Gaussian variates are generated. State " M S h p ” denotes

the multiplier state of the shaping filter and state “ M l n p " denotes the multiplier state of the

first-stage interpolator. At the " S h p F ” (“ I n p F ”) state, one of the K (P \) sections of the

shaping filter (first-stage ILPF) is executed. For every execution of the " S h p F " state, states

" M l n p " and " i n p F ” will be executed h times. After K executions of state " S h p F " (and

thus K I \ executions of the “ m l n p ” and “ I n p F ” states), " I n p F ” goes back to state “ M S h p ” to

multiply the previously generated Gaussian variates with one of the shaping filter scaling

factors.

When using an elliptic filter as the shaping filter, only K cascaded biquads and two

multipliers are required, as shown in Figure 5.15(a). In order to implement the ILPFs, P

cascaded biquads and 2P multipliers are required as shown in Figure 5.15(b). In this case

the CDFG of the shaping filter and the first Chebyshev Type II low-pass filter are shown in

Figure 5.16.

To implement the datapath shown in Figure 5.14(b), the GVG block uses the Gaussian

variate generator described in Chapter 3. The registers of the datapath and the K + Px

scaling factors of biquads are implemented using configurable slices while A (K + P\) reg­

isters and 4 (K + P i) coefficients of K + Pi sos’s are implemented using four dual-port

BlockRAMs as shown in Figure 5.13(b). The datapath in Figure 5.14(b) utilizes 3% of

the configurable slices, 1% of the dedicated multipliers and six on-chip BlockRAMs. The

second ILPF was designed using a fourth-order low-pass inverse Chebyshev IIR filter and

was implemented using one shared biquad, which receives its inputs either from the outputs

of the first ILPF (i.e., the “ o u t l " and “ o u t Q " registers) or from “0” values inserted for zero

padding. A complete fading channel simulator utilizes 4% of the configurable slices, 20%

of the dedicated 18 x 18-bit multipliers, and 10 BlockRAMs, and operates at 50 MHz. An

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Implementation and Statistical Verification

GVG gShp

C Rs>)
\ MUX /

(a) /jS siip)
B iquad (b)

Figure 5.16: Control data flow graph of shaping filter and first-stage interpolation.

important property of the proposed scheme is that the complexity of the filter implemen­

tation will only impact the rate of fading variate generation and has almost no effect on

hardware resource utilization. Even though the shaping and the low-pass interpolator fil­

ters are designed to emulate mobile channels sampled at 10 MHz, since the fading channel

simulator runs at a high clock frequency of 50 MHz, for the example system, the simulator

operates 1.25 times faster than the target sample rate. The simulator can then be slowed

down to emulate a wide variety of different channel characteristics over bandwidths of up

to 12.5 MHz.

To further speed up the fading sample generation rate, we utilized the commutative

properties of computing the cascaded sos’s and re-ordered the operations in such a way that

the multiplication state “ M S h p " (“ M l n p ") can be performed simultaneously with the “ S h p F "

(“ I n p F ") state. Assume that Ri is the output register of the i-th multiplier and B R 4 is the

register at the output of the i-th biquad in the cascade structure of Figure 5.13(a). As given

in Table 5.2, we utilized an out-of-order scheduling scheme to reduce the required number

of clock cycles to execute N cascaded second-order sections from 2N in the sequential

scheme down to \ N / 2 \. Since the last stage requires two clock cycles to generate one

sample, a clock frequency of 20 MHz is required to generate 10 Msamples/sec. Since the

designed fading channel simulator operates at 50 MHz, this approach provides 2.5 times

speed up to generate fading variates up to 25 Msamples/sec. Increasing the sample gen­

eration throughput in this way requires N = K + P\ + P2 times the number of registers

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Implementation and Statistical Verification

Table 5.2: Out-of-order execution scheme for the cascade structure.
Clock no. State Operations

6 i + 0 1 R 4 = MUL(fl4, B R 3); B R i = B iq(sosi,R i);
6i + 1 4 = MUL(p3 , B R 2)] B R 4 = Biq(sos4 , Ri)',
6 i + 2 3 Re = MUL(g6 , B R e)] B R 3 — Biq(sos3 , R 3)',
6i + 3 6 Re = MUL(<?5, B R i)] B R e = Biq(sos6, Re)',
6* + 4 5 R 2 = MUL(<?2 , B R i)] B R e = Biq(sos5 , Re)',
6i + 5

Dut-of-ord(

2

jr sche<

R i = MUL(</t, BRo)] B R 2 — Biq(so«2 , R 2)',

iuling and register renaming for the casca
Clock no. State Operation

6i + 0 1 R — MUL(<?4 , B R 3)] B R i = Biq(sosi, R)]
6i + 1 4 R = MUL(<7 3 , B R 2)] B R i = Biq(sos4 , R)\
6i + 2 3 R — MUL(</6,B R e)] B R 3 = Biq(so s3,R)]
6i + 3 6 R = MUL(fl5, B R i)] B R e = Biqfsose,/?);
6i + 4 5 R = MUL((?2 , B R \); B R e = Biq(sos5 , R) ;
6i + 5 2 R = MUL(fli,B R o)] B R 2 = Biq(sos2 , R)]

compared to the sequential approach, as given in Table 5.2. An important point in Table

5.2 to note is that allocating a physical register for every instance can lead to an inefficient

register allocation when a register can be re-used after its lifetime (when its present value is

no longer needed). We consider the fact that Ri can be re-used after Biq^ reads its content,

and B R i can be re-used after multiplication by gt+i, where gi+\ is the scaling factor of

the Biqi+1. The scheduling of operations after re-using the registers is given in Table 5.3,

where only one register is utilized for the output of multiplier operations.

The HDL model of the proposed datapath was simulated to verify the accuracy of the

results against the fixed-point software simulation results. A block of 50,000 complex

Gaussian variate samples was generated and passed through the designed filters, then the

statistical properties of the 2.5 x 107 generated complex fading variates were measured.

Figure 5.17 plots the desired ACF along with the ACF of the samples generated with the

new model. As Figure 5.17 shows, the generated ACF accurately matches the theoretical

ACF. The LCR [23] of the envelope of the generated fading variates and the desired LCR

are plotted in Figure 5.18. Here again a close match is observed. Finally, Figure 5.19

plots the PDF of the generated fading variates against the ideal PDF. These plots show that

the new implemented fading channel simulator faithfully reproduces the properties of the

reference model.

We also simulated a communication system with 4-PSK and 16-QAM modulations

and zero-forcing equalization at the receiver to show the performance of the new fading

simulator with fixed point arithmetic in Figure 5.20. Here, for each SNR, we transmitted

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

0.8
— Simulated ACF
- Id e a l ACF

0.6

0.4

0.2

•0.2

■0.4

0 2000 4000 6000 8000 10000 12000 14000 16000
Autocorrelation lag (in sam ples)

Figure 5.17: ACF and CCF of 2.5 x 107 generated fading variates.

— Ideal
o Simulated

£ 10'

-40 -35 -30 -25 -20 -15 -10
X = 2 0 lo g 10<R/RnJ

Figure 5.18: LCR of 2.5 x 107 generated fading variates.

1010 symbols and measured the average symbol error rate (SER). As Figure 5.20 illustrates,

the SER plot generated by our new fading simulator again matches the expected theoretical

target.

5.6 A Flexible Filter Processor for Fading Channel Emulation

The control structure for the cascaded shaping filter and ILPFs is rather straightforward;

however, when simulating MIMO channels or frequency-selective channels, where there

are multiple paths, each path possibly characterized with different filters with different spec­

ifications, a flexible implementation of control unit becomes more important. Rather than

designing the control unit using random logic circuitry, we designed a flexible and compact

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

0.7

- - - Simulated
— — Ideal0.5

0.4

0.3

0.2

0.1

0.5 1.5 2.5 3.5
C

Figure 5.19: PDF of 2.5 x 107 generated fading variates.

— 16-Q A M (Theory)
& 16-Q A M (Sim ulated)

- - 4 -P S K (Theory)
O 4 -P S K (Sim ulated)

"G

10'1
i
i

yx

1
I

10J
SNR (dB)

Figure 5.20: Symbol error rate for simulated 4-PSK and 16-QAM.

FP, called “Python”, to efficiently implement the shaping filter and ILPFs on the FPGAs.

The computation of V IIR filters (using N cascaded biquads) can be distributed among

m = 1, • • • , M Python FPs.

Figure 5.21 shows the datapath of the Python FP. The core component is a biquad where

its inputs coming from two memories (for the in-phase and quadrature parts), " R A M R I "

and " R A M R Q " , with " A D O " as the read address bus and “ A D 3 ” as the write address bus.

The outputs of the biquad are stored in two other memories " R A M B l " and " R A M B Q ” ,

with " A D 1 " as the read address bus and " A D 3 " as the write address bus. ROM " R O M g "

is initialized with the scaling factors of IIR filters with the “ A D 2 " addressing bus. Two

combinational multipliers are used to perform the scaling operation of intermediate values

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

, A D 3

R A M R I
Biquad

, A D 3
b i q O u t l ---------

R A M B I - i
b i q O u t Q '• ^ "

R A M R Q * R A M B Q

b i q O u t l
b i q O u t Q

A D 2 - * R O M g

Figure 5.21: The architecture of the Python FP.

b i q l n ! — * (+ }

biqlncf&i

b i q O u t l

R A M M 1 Q N-A D 1 - R A M M 1 I

R O M a 1 R O M M

' ^ b i q O u t Q

A D 1 — K ► R A M M 2 ! R A M M 2 Q

- I — — I
R O M a 2
T -------

R O M b 2

A D O '
+--------------------- j

Figure 5.22: The datapath of biquad.

between biquads. The GVG generates two independent Gaussian variates. The zero inputs

to the 4-input multiplexers are used when Python FP performs the zero padding operation

required in interpolators.

The datapath of a biquad in Direct-Form II structure [147] is shown in Figure 5.22 where

four intermediate variables are stored in four on-chip dual-port memories “ R A M M 1 I " , “ R A M

M 1 Q ” , " R A M M 2 I " , and “ R A M M 2 Q ” . Four coefficients are stored in four read-only mem­

ories (ROMs), “ R O M a 1 ” , “ R O M b 1 " , “ R O M a 2 " , and “ R O M b 2 " . The “ A D O " is the read

address and “ A D 1 ” is the write address for the memories.

The Python controller is microprogrammable to ensure flexibility in the control unit.

A code generator, written in C programming language, was developed that receives the

specification of the shaping filter and the ILPFs as inputs and generates a sequence of mi­

croinstructions (microcode) to be executed by Python architecture. This microprogram is

stored in an instruction ROM and is addressed by a program counter (PC). To minimize

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

| F i l t e r # | B i q # M u l # \ M u x S e l s | P C \ O p c o d e \ M o d e
31:27 26:23 22:1918:15 14:6 5:1 0

C o u n t 1 M o d e
31:1 0

Figure 5.23: The microinstruction format.

the resource usage of hardware, we eliminated the random logic of the instruction decoder

by utilizing horizontal microcode in which every control bit in microinstruction drives a

control line in the Python datapath. The 32-bit microinstruction format is given in Figure

5.23. If " M o d e = 1 ” , the FP counts from the value given in the “ C o u n t " field down to zero

(the wait operation); otherwise, it will execute the operation given by the 5-bit “O p c o d e ”

field. Hence, up to 32 different micro-operations (such as B I Q : execute a biquad operation,

M U L : execute a multipler operation, J M P : jump to an address given by the PC, R S T : reset

the intermediate registers, etc.) can be defined. The “ P C " field denotes the 9-bit program

counter value. Four bits are used in the “ M u x S e l s " field as multiplexer select lines. The

“ M u l # " “ B i q # " , and “ F i l t e r # " fields denotes the multiplier number, the biquad number, and

the filter number, respectively. The “ M u l # " essentially is used since we utilized the com­

mutative properties when computing the cascaded second-order sections. The second-order

section operations can be re-ordered in such a way that the multiplication can be performed

simultaneously with the biquad operation. This out-of-order scheduling scheme reduces the

required number of clock cycles to execute N cascaded second-order sections from 2N in

the sequential scheme down to [AT/2].

One important design decision is how to bind operations of structure in Figure 5.13(a)

onto one or more Python FPs. Assuming that the memories in Python architecture are ad­

dressed using AL bits, then up to 2 ^ different biquad operations can be performed using

one time-multiplexed biquad. For example, if W L = 9, then Python can execute 16 IIR fil­

ters each designed with up to 32 cascaded biquads. The maximum number of filters that can

be executed with one FP depends on the size of memory, the number of biquads associated

with each filter, and the minimum required throughput. Based on the given microinstruction

format, 32 IIR filters, each designed with up to 16 biquads can be executed with one Python

FP. But it is straightforward to modify the microinstruction format to support execution of

various number of IIR filters, designed with different number of biquads (for example, 16

filters each designed with up to 32 biquads). Due to the slow variation of the samples in

the shaping filter compared to the high operating rate of biquads implemented on FPGAs,

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

we bind the operation of the shaping filter and the first ILPF to be performed onto one

Python FP. The second ILPF is implemented using a second Python FP to achieve the target

sampling rate.

Assume that the shaping filter and the first stage ILPF is designed using K biquads and

P\ biquads, respectively, and is bound into one Python FP. After execution of every section

of the shaping filter, the P\ biquads of ILPF will be executed I \ times where ILPF receives

its input from the output of shaping filter once and I \ — 1 times from zero input. Similarly,

after K I \ biquad executions of the shaping filter and the first-stage ILPF, the second stage

interpolator will be executed h times where P2 biquads of the second-stage ILPF receives

its input from the output of the first-stage ILPF once and I 2 — 1 times from zero.

The biquad datapath utilizes 1% of the configurable slices, 7% of the dedicated mul­

tipliers and eight on-chip BlockRAMs, and operates at 63.4 MHz. The Python datapath

in Figure 5.21 utilizes 2% of the configurable slices, 9% of dedicated multipliers and 14

on-chip BlockRAMs. The second ILPF was designed using a fourth-order low-pass Cheby­

shev Type II IIR filter and was implemented using one Python processor. A complete fading

channel simulator utilizes 4% of configurable slices, 20% of dedicated 18 x 18-bit multi­

pliers, and 10 BlockRAMs, operates at 50 MHz. Even though the shaping and the low-pass

interpolator filters are designed to emulate mobile channels samples at 10 MHz, since the

fading channel simulator runs at a high clock frequency of 50 MHz, for the system at hand,

the simulator operates 1.25 times faster than the target sample rate. The simulator can be

slowed down to emulate a wide variety of different channel characteristics over bandwidths

of up to 12.5 MHz.

The HDL model of the proposed datapath was simulated to verify the accuracy of the

results against the fixed-point software simulation results. A block of 60,000 complex

Gaussian variate samples was generated and passed through the designed filters. Then the

statistical properties of 3 x 107 generated complex fading variates were measured. Figure

5.24 plots the ideal ACF along with the ACF of the samples generated with the new model.

As Figure 5.24 shows, the generated ACF accurately matches the ideal ACF. The LCR of

the envelope of the generated fading variates and the ideal LCR are plotted in Figure 5.25.

Here again a close match between the generated LCR and the ideal LCR can be observed.

Also, Figures 5.26 plots the PDF of the generated fading variates against the ideal PDF.

These plots show that the new implemented fading channel emulator faithfully reproduces

the properties of the reference model.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 A Flexible Filter Processor fo r Fading Channel Emulation

0.8
 Simulated ACF
 Ideal ACF

0.6

0.4

0.2

■0.2

■0.4

0 2000 4000 6000 8000
Autocorrelation lag (in samples)

10000 12000 14000 16000
lag (in samples)

Figure 5.24: ACF and CCF of 3 x 10T generated fading variates.

— Ideal
o simulated

§ KT

•40 ■35 -30 -25 -20 -15 -10
X - 2 0 lo g 1Q(R/Rm J

Figure 5.25: LCR of 3 x 107 generated fading variates.

0.7

Simulated
Ideal0.6

0.5

0.4
O'

jj
0.3

0.2

0.1

1.50.5 2.5 3.5
C

Figure 5.26: PDF of 3 x 107 generated fading variates.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.7 Conclusions

5.7 Conclusions

Even though the filter-based fading simulator shows better statistical properties over the

Jakes fading simulator, it can be more challenging to implement in hardware. In fact, the

tight resource constraints imposed by contemporary FPGAs makes implementation of the

computationally-intensive fading channel simulator a challenging task for designers. A

novel computationally-efficient design and implementation scheme for fading channel sim­

ulators was presented. The filters required for shaping the power spectrum of the fading

variates were designed to provide accurate fading samples and yet maintain minimum hard­

ware complexity. Our fixed-point implementation of a Rayleigh fading channel simulator

on a FPGA utilizes only 4% of the configurable slices, 20% of dedicated multipliers, and

10 (2%) BlockRAMs, while generating 25 million statistically accurate fading variates per

second. Also, a flexible and compact filter processor architecture, called “Python”, was de­

signed to efficiently implement a multipath fading channel simulator on the FPGAs. Python

uses a simple and short instruction set to generate multiple sequences of fading variates for

simulating wideband and MIMO channels.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

An Efficient Parallel Architecture for
LST Decoding in MIMO Systems

S pa tia l processin g rem ains a s the m ost prom ising, i f n o t the la s t frontier,
in the evolu tion o f m ultiple access system s (A. Viterbi).

MIMO systems have emerged as an attractive new paradigm for spectrum-efficient wireless

communications in rich multipath fading environments [2]. Figure 6.1 illustrates the model

of a MEMO channel between n r > 1 transmitter antennas and h r > 1 receiver antennas,

which collectively will be called an (nr , np) MIMO system. The MEMO architecture can

exploit diversity in both space and time to significantly increase system capacity as well as

improve the quality (i.e., reduce the SER) of the wireless link in the presence of adverse

propagation conditions, such as multipath fading and interference. Due to the high aggre­

gate link capacity, an important first challenge is to minimize the computational complexity

Richly scattering
wireless channel

'nR,nT

Figure 6.1: An {u t i Ur) MIMO channel.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the decoding algorithm at the MIMO receiver. Among the published non-linear decoding

techniques [2], the layered space-time algorithms [154-157] employ a divide-and-conquer

approach where, rather than jointly decoding the received symbols from all transmitter an­

tennas, the receiver sequentially decodes one symbol at a time beginning, preferably, with

the symbol with the highest SNR. The LST decoding algorithms then predicts and then

subtracts away the interference due to the most recently decoded symbol from the simul­

taneously received signals, and then proceeds to decode the next symbol, and so on. The

computational complexity of LST decoding is reported to be 0 (n 4) in the number n of

antennas for the zero-forcing (ZF) and minimum mean-squared error (MMSE) LST algo­

rithms [155], and 0 (n 3) for the square-root [158] and ordered QR-LST algorithms [159].

The great computational demands of MIMO signal decoding can exceed the perfor­

mance available from even high-end DSPs. Therefore a second practical challenge in

MIMO systems is to develop low-power, but sufficiently high-performance, hardware to

implement the receiver. ASICs have been proposed to implement MIMO decoding al­

gorithms [160,161] and contemporary FPGAs have been used successfully to prototype

MIMO testbeds [162-164], The running time of an algorithm depends on the number of

hardware instructions that need to be executed, and this number depends on the architec­

ture of the processor. In the published LST decoding algorithms, there is abundant inherent

parallelism that has yet to be exploited to increase the symbol decoding throughput at the

receiver. Given a scalable parallel processor architecture, in particular, a key factor is the

degree to which the algorithm can be parallelized and mapped efficiently onto the avail­

able processor resources. Therefore an alternative approach to using a faster conventional

processor or an ASIC is to identify and exploit opportunities for parallel processing using

a flexible parallel architecture to maximize the useful work that is accomplished in every

clock cycle.

DSP-RAM is a moderately-parallel, scalable SIMD co-processor architecture for high-

performance signal processing that was developed at the University of Alberta [165,166].

In the processor-in-memory architecture [167] of DSP-RAM, a linearly-interconnected ar­

ray of simple PEs is integrated with associated local memories. Integrating the processors

with the memories exposes the enormous data bandwidth between the two, and eliminates

the bottleneck that otherwise occurs on an external bus between the memory chips and pro­

cessors) in conventional architectures. The degree of parallelism (i.e., the number of PEs)

provides a trade-off between including more transistors on a die to increase the throughput

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a parallel algorithm, and running at a slower clock frequency to simplify the imple­

mentation, reduce the dynamic power consumption and still meet the required processing

performance. In addition, reductions in the core operating voltage might be possible. Since

dynamic power consumption is proportional to the voltage squared [168], the possibility

of reducing the core voltage is especially attractive in power-constrained systems. We will

show how DSP-RAM can be used to implement an LST MIMO receiver that offers high

performance with relatively low power consumption. For a typical indoor wireless environ­

ment, a 100-MHz DSP-RAM can potentially provide more than 10 times greater decoding

throughput at the receiver of a (4,4) MIMO system compared to a conventional 720-MHz

DSP. The DSP-RAM processor has been coded in a HDL and synthesized for both readily

available FPGAs and for a 0.18—/xm CMOS standard cell implementation.

The rest of this chapter is organized as follows. The capacity of MIMO channels and

the mathematical representation of MIMO systems are presented in Section 6.1. Section

6.3 presents different detection schemes for MIMO systems such as maximum likelihood,

lattice decoders, and LST decoders. The related decoding algorithms and the key character­

istics that make them suitable for parallel realization are discussed. The parallel DSP-RAM

architecture is presented in Section 6.4. Section 6.5 discusses the mapping of the LST algo­

rithm onto DSP-RAM. Section 6.6 describes the implementation of a MIMO receiver onto

six different commercially available processors and an efficient realization of LST decod­

ing onto the parallel DSP-RAM architecture. Finally, Section 6.7 makes some concluding

remarks.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Mathematical Model o f MIMO Systems

6.1 Mathematical Model of MIMO Systems

Let h(r, t) be the time-varying channel response at time t to an impulse at time t — r . If

signal s (t) is transmitted, then the received signal y(t) is given by

where h (r, t) is the complex envelope of the bandpass impulse response function, n(t) is

an AWGN signal, and v is the duration of the causal channel impulse response. We assume

that s(t), y(t), and n(f) are modeled as the complex envelope of the underlying passband

channel. Without loss of generality, some simplifying assumptions can be made to represent

the discrete time (or sampled) baseband input/output model of SISO digital communication

systems: (1) The channel bandwidth is 1 Hz and the symbol period Ts is 1 second. Hence,

the average energy at the transmitter per symbol period E s is equal to the total average

transmit power Pp. (2) Since the transmission bandwidth is assumed 1 Hz, the noise power

in the band is the same as power spectral density N 0. Therefore, noise power or noise PSD

can be used interchangeably and can both be denoted by N 0. (3) The noise is assumed to

be temporally-white zero-mean circularly symmetric complex Gaussian (ZMCSCG) with

variance N 0. We denote a real Gaussian random variable with mean m n and variance N 0

as n ~ J\f (mn , N 0), and a ZMCSCG random variable n = nj + j n q as n ~ CJ\f(0, N 0),

where n* and n q are real i.i.d from M(0, N 0/ 2). For the special case where the real and

imaginary part of noise components have N 0 = 1/2, the complex noise has unit power.

We assume that the noise samples n[k] are i.i.d, i.e., E{n[i]n*[j]} = N 0S[i — j], (4) Data

symbols (prior to coding) are i.i.d and are drawn from scalar constellation Q with zero mean

and unit average energy, i.e., unit average power when Ts — 1. (6) The received signal y(t)

is required to be oversampled, so we take multiple samples per symbol period Ts.

Assume that a sequence of complex symbols s[£] (f = 0 ,1 ,2 , • • •) is to be transmitted

over a SISO communication system. The received signal y(t) can be written as [2]

e

where h(r) denotes the continuous time baseband channel impulse response (the t depen­

dence is omitted for clarity). If y(t) is sampled at t = kTs (k = 0 ,1 ,2 , • • ■), then the

y (t) = h(r, t) * s (t) + n(t) = h(r, t)s(t — r) d r + n(t)

y(t) = h{r) * ^ 2 ^ E s s[£] d(t - iT s) + n (t)
e

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Mathematical Model o f MIMO Systems

sampled signal response is

The signal response can also be written as

y\k] = ^ 2 h[k - t\ + n[k]
e

where h[d], i = 0 ,1 ,2 , • • • , L — 1, is the Ts-spaced sampled channel and L is the channel

length measured in sampling periods. For a frequency-flat channel h[i] = 0 for i ^ 0. De-

where the principal impairments are multiplicative fading and additive noise. For the

frequency-selective case, the received signal sampled at time index k is

The mathematical representation of SISO channels can be extended to describe the

MIMO system. Let h i j (T , t) denotes the time-varying channel impulse response (also

called the multiplicative channel gain) between the j-th transmitter and z-th receiver. The

vector hj = t) , / i 2 j (r , t), , hnR>j(T, t)]T is the channel induced by the j-th

transmit antenna across the receive antenna array. In matrix notation the input/output rela­

tion of the channel may be written as y = H (r , t) * s (t) + n (t) or, equivalently,

where y[fc] is the tijj x 1 received signal vector over the k -th symbol period, s[k] =

(si[fc],s#] , . . . , snT[k])T denotes the vector of transmitted symbols (collectively called

a space-time (ST) symbol) drawn from a finite complex signal constellation <Q>, and n[fc]

is the spatio-temporally white ZMCSCG u r x 1 noise vector with variance N 0 in each

dimension.

In the case of frequency-selective fading, the channel matrix can be represented as H[£]

where £ = 0,1, - ■ ■ , L — 1 and L is the maximum channel length of all component u r t it

SISO links. The received signal vector at time instant k may be expressed as

noting /i[-] by the scalar channel gain h, the input/output relation for the channel simplifies

to

y[k] = y fE s h s[fc] + n[k\ (6.1)

y\k] = sfW s — !],••• ,/i[l],/i[Q] s[A; — L + 1], • • • , s[k — 1],s[k] + n[fc]

(6.2)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Mathematical Model o f MIMO Systems

where each entry h ip can be written as = h i j [L — 1], ■ ■ ■ and s j [k] =
1T

S j [k — L + 1], • • • , S j [k — 1], S j [fc] . For the case of flat-fading channels, the tap gains

are assumed to be constant over the time period considered. The output at any instant of

time is independent of the inputs at previous times, thus we can drop the time index k in

(6.2) (and similarly in (6.1)) and express the input/output relation as

H s + n . (6.3)
tlT

A few assumptions are usually made for analyzing MIMO systems: (1) If the mean en­

ergy per transmitted symbol is E Sj = E{sj*Sj}, the total energy per use of the MIMO chan­

nel (i.e., simultaneous transmission of a ST symbol from n r antennas) is E s = Y^j= \ E Sj-

E s equals the total average transmit power P t when the symbol period is unity. For ex­

ample, if the transmitted symbols are drawn from a unit average energy constellation (i.e.,

E { |s j |2} = 1) so that each antenna transmits unity power, then P t = nr- The power

constraint on the transmitted signal (independent of n r) can be expressed as E {sHs} < P t

(or the covariance matrix C ss = E {ssH} < [2]- The symbol energy (i.e.,

the power launched by each transmitter) can be reduced by n r as E s /r iT , so that the total

radiated power is constant and independent of n r for a fixed SNR. (2) The AWGN vector

n has equal variance components n ~ CA/'(0, N 0), where N 0 is the noise power (variance)

on each receiving antenna. For the ZMCSCG noise vector n , the covariance matrix can be

written as E { n n w} = N 0 InR [2], The noise at the receiver is assumed to be independent

of both the data and the channel. (3) The SNR per receiver antenna p can be defined as the

ratio of the total transmitted power per channel used (P t) divided by the per-component

noise variance (N 0)■ Therefore, if the u r noise components of n are assumed to be i.i.d.

CA/'(0,1), then the average transmitted power is equal to the average SNR. (4) For richly

scattered propagation, the hip are usually modeled as i.i.d, ZMCSCG random variables

(i.e., E {hip} - 0 and ^{hiph*m n} — 0 if i ^ m , j ^ n) with equal unit variance (i.e.,

E { |/ iy |2} = 1) [2]. With hip being complex Gaussian and uniformly distributed in phase,

the magnitude \hip\ is Rayleigh-distributed. Also, the column vectors of complex trans­

fer gains from the j-th transmitter antenna to all u r receiver antennas h j are assumed to

be independent, which corresponds to the diversity provided in richly-scattered environ­

ments. Uncorrelated scattering is usually ensured by physically separating the antennas at

the transmitter and receiver by a few carrier wavelengths [169].

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Algorithms fo r Systems o f Linear Equations

6.2 Algorithms for Systems of Linear Equations

As given in Equation (6.3), the signal at each receiver antenna is the superposition of trans­

mitted symbols scaled by the channel gain and corrupted by AWGN. The conventional

signal processing algorithm at the receiver consists of two main steps:

(I) Estimate the channel matrix through a training phase. We make the common as­

sumption that communication is carried out in bursts of data alternating with training sig­

nals. The quasi-stationary viewpoint assumes that the channel conditions are fixed during

a burst. This is a reasonable assumption for a communication system where the burst dura­

tion is much less than the channel coherence time. For each burst of received information,

the “fixed” channel response can be estimated using different estimation schemes [42]. To

account for changing conditions, the channel is often assumed to change randomly between

bursts due to accumulated changes in the channel fading. The receiver will be assumed to

have previously estimated the propagation matrix H using the training signals before com­

mencing the decoding process for the following data. Note that H is assumed to be known

to the receiver but not to the transmitter [170].

(II) The riT components of a transmitted ST symbol s must be recovered from the

received signal vector y and the previously-estimated channel matrix H [170].

Before discussing various decoding techniques for recovering the transmitted symbols

s using the linear complex-valued system Equation (6.3), lets consider the linear system

transformation

H s = y (6.4)

where s is a vector of u t x 1 e RnT unknown values, H is an h r x t i t matrix of real

values, and y is a vector of t i r x 1 e R nT. If n r = u r (i.e., there are as many equations

as unknowns), then there is a chance to obtain a unique solution for s. If one or more of t i r

linear equations is a linear combination of the others, then there is no unique solution and

the system is called singular. If h r < ny , then there are fewer equations than unknowns.

In this case, either there is no solution or there is more than one solution for s [171]. When

nR > riT, various techniques can be used to solve system of equations in (6.4) [172]. Each

technique has a particular computational complexity and error. By error we mean a norm

J|s — s|| of the difference between the true solution s and an approximation s. While the

precise choice of norm does not affect the cost significantly [173], we can think of || • || as

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Algorithms fo r Systems o f Linear Equations

a matrix norm. The absolute error ||s — s|| can be defined as

||s - s|| = | |H - 1H (s - s)|| = ||H _1(y - H s)|| < W H ^ U y - H s || (6.5)

where y — H s is called the residual. The relative error in s can be defined as

< IITT-1|I IITTII H y ~ H § H
llsll - 11 11,11 l|H|M|S|l (}

where k (H) = ||H —1 ||.||H || is called the condition number of H . Clearly, the error bound

is proportional to ||H - 1 ||. Under the block-fading assumption of wireless channels, we are

interested in computing the inverse of estimated channel H _1 once and then using it for

decoding a relatively long block of received symbols.

Due to the high computation complexity of matrix inversion and the fact that the matrix

inversion has to be calculated for each block of transmitted ST symbols, rapid channel in­

version is challenging to implement in practice. Two major schemes have been proposed to

perform the matrix inversion operation: the direct routines (i.e., routines that execute in a

predictable number of operations, typically of the order of 0 (n3)) and the iterative methods

(i.e., methods that do not obtain an exact solution in finite time, but that attempt to converge

to a solution asymptotically). A numerically stable deterministic technique for computing

the pseudo-inverse is to use singular value decomposition (SVD) [158,174], The complex­

ity of performing the SVD of an u r X u t matrix H , is 2n2Rn r + l l n ^ and the complexity of

finding the pseudo-inverse G = H+ = (H h H)_1H ^ is 2 n a n \ [158]. The Gauss-Jordan

(GJ) and Gauss-Elimination (GE) techniques are two other deterministic approaches that

require the right-hand side of the Equation (6.4) [86]. LU Decomposition (LUD) does not

share the previous deficiency, and also has a small operation count, both for solving (6.4),

and also for matrix inversion. QR factorization decomposition is another deterministic tech­

nique which involves about twice as many operations as LU decomposition. The Cholesky

decomposition of a symmetric and positive definite matrix can be performed up to twice

faster than LU decomposition. But this is rather too specific to be used for general channel

matrices. Iterative methods (such as Jacobi and Gauss-Seidel algorithms) often yield a so­

lution within acceptable precision after a small number of iterations and, therefore, become

preferable for large matrices or when the problem is close to singular (i.e., the system is not

linearly dependent but the round-off error could make the system singular) [86]. Iterative

methods may also have smaller storage requirements than direct methods [44].

If linear transformation in (6.4) is a complex-valued system, then we may re-write it

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

using quadrature components as

(H j + + j s q) = y* + j y q (6.7)

or in vector notation as

H i - H q
H 9 H i (6 .8)

Assume that h r = n x = n. One may solve the n x n complex system in (6.7) using

is inefficient in storage (since H i and H g are stored twice), it is also shown in [175] that

complex matrix inversion can be up to twice as fast as real matrix inversion for n > 3.

Moreover, the rounding error bound of the complex computation is less than that of the real

system.

If the multipath scattering is sufficiently rich, the transmitted signals are scattered slightly

differently since they originate from different transmitter antennas and propagate over dif­

ferent paths. Consequently, if the MIMO system equations in (6.3) are sufficiently inde­

pendent, a decoding algorithm at the receiver can recover the symbols despite the multitude

of interferers. When there is no noise, i.e., N 0 = 0, the exact solution of Equation (6.3)

can be found in 0 (n 3) scalar operations, using a matrix pseudo-inverse operation. When

N 0 approaches infinity, the received vector y becomes increasingly random and the exact

solution has exponential complexity in n [42]. For intermediate noise levels, tractable al­

gorithms (i.e., polynomial time algorithms) are required to achieve an acceptable error rate

with realizable computational-complexity.

6.3 MIMO Decoding Techniques

Several techniques have been proposed for recovering the symbols transmitted by n r an­

tennas [3,42,154-159,176-178]. From estimation theory, the optimal decoding method

with respect to the error rate is maximum likelihood (ML), where the receiver considers all

possible ST symbols that could have been transmitted. For a MIMO system that transmit

the uncoded data stream from n x antennas through a frequency-flat MIMO channel, the

ML receiver chooses symbol s as

complex arithmetic or solve the 2n x 2n real system in (6.8). While the second approach

s = arg min y
seQnr

(6.9)

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

where the minimization is performed over all possible nr-elem ent vectors s e QnT. The

ML detection problem can be posed as an integer least-squares problem that can be solved

via many different algorithms [172]. Because ML decoding requires an exhaustive search

over a typically large set Q nT, its computational complexity can be high, and probably

prohibitive when many antennas and/or high-order modulations are used [179].

To gain some perspective on the relative complexity of ML decoding, consider an

(n r ,n j i) system that transmits m b/s of data using g-QAM over a channel within k Hz

bandwidth. If we assume that the data occupies most of the available time in a burst and

ignore the training signals, channel characteristics and any other in-band control data, then

v = w r"fog7q comPlex symbol vectors are received per second. To calculate Equation (6.9)

over qUT possibly valid constellation points s for each received vector, one can verify that

QnT(nR(riT + 1)) complex multiplications, qnT {n p in p + 1) — l) complex additions and

qnT — 1 comparisons are required. As an example consider a (4,4) system that operates at

19.2 Mb/Sec in a bandwidth of 1.8 MHz, and utilizes uncoded 16-QAM in each transmit­

ter. Assume further that a DSP is present in each receiver that can perform one complex

multiplication, addition or comparison operation in each clock cycle. To decode each re­

ceived vector y using a single purely-sequential processor [41], 2,623,779 clock cycles will

be required. To decode the 1.2 x 106 complex symbol vectors per second, the DSP must

operate at a 3148 GHz clock frequency, which is far beyond current processor technology.

Current degrees of parallelism in contemporary DSPs do not provide enough speed-up to

change this situation. Even though the complexity of ML decoding is often too great, the

algorithm clearly has potentially exploitable parallelism when calculating ||y — H s || over

all possible s € Q nT. If the algorithm could be parallelized and mapped onto a parallel

computer architecture with n p PEs, the throughput could be directly multiplied by n p (in

the optimal case).

To provide computational saving over ML decoding, the universal lattice decoders

[180,181], a class that includes sphere decoders, can be used to decode the received signals

in MIMO systems [182,183]. The main idea behind sphere decoding (SD) is to reduce

computational complexity by searching over only those lattice points (defined as H s) that

lie within a hypersphere of radius d0 around the received signal y , rather than searching

over the entire lattice (See Figure 6.2). The complexity of SD is dominated by the amount

of processing required to search for the points inside the present hypersphere, the number

of points in the initial hypersphere of radius d0, the dimension 2n p of the search space,

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

Q

o o o

o o o o o o

o o o o o o

o iL o o

o o o o o o o o
 ► /
o o o o o o o o

o o o o o o 0 0

o o o o o o o o

0 0 o o o o 0 0

Figure 6.2: Sphere around the decoded point p = Q(H^ y).

and the calculation required to determine the lattice point within the hypersphere closest

to a preliminary decoded point [178]. An important property of the sphere decoding (SD)

algorithm, as claimed in [181], is that its complexity is independent of the lattice constella­

tion size, which makes SD attractive for high data rate transmission. In order to determine

which of the lattice points lie inside the given sphere, Fincke and Pohst proposed a decod­

ing algorithm in [184]. They showed that if b~l is a lower bound on the eigenvalues of the

Gram matrix G = H h H , then the required number of arithmetic operations (additions,

subtractions and multiplications) is

proximated by 0 (n eR). In the presence of deep fades, many points fall inside the search

hypersphere and decoding can be very slow. In fact, the worst-case complexity of SD is

exponential. This is evident from the fact that the Gram matrix may have a very small

eigenvalue, which gives a relatively large exponent b in Equation (6.10) [181]. In [40] the

complexity of SD is defined as the number of multiplications carried out until the closest

point within the hypersphere is found. However, trying to build an exact expression for the

number of arithmetic operations for SD is not useful since the required number of iterations

is variable. In [42] the complexity of SD is considered with respect to the noise variance

and the dimension of the lattice. It is shown that, over a wide range of noise variances and

values of n r , the expected complexity is polynomial, and in fact is often roughly cubic in

n r •

(6 .10)

For a reasonable choice of the initial radius d0 = b \ the above complexity can be ap-

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

Even though the original SD algorithm significantly reduces the computational com­

plexity of decoding compared to ML, many shortcomings and potential inefficiencies exist.

First, in the presence of noise, for each received point a different hypersphere, with differ­

ent bounds that depend on the noise variance (and eventually fading), must be calculated.

Therefore, SD is inherently an irregular algorithm where the size of the hypersphere around

the received point varies unpredictably. In particular, irregularity arises in the number of

iterations required to calculate the hypersphere parameters and, consequently, in the num­

ber of points enclosed in each hypersphere. Hence the complexity of the algorithm will

itself be a random variable [42]. Second, the hypersphere around the received point is con­

structed after first calculating minimum and maximum bounds for each vector component.

To perform this calculation, a relatively complicated control sequence must be executed

and this execution sequence is not deterministic (i.e. predictable) at compile time. Third,

most contemporary high-performance processors support some form of instruction-level

parallelism (superscalar or very long instruction word) [41], data-level parallelism (multi­

ple functional units) and/or subword parallelism using a reconfigurable datapath. Mapping

an algorithm that has an irregular and/or random control sequence, such as SD, onto a data-

parallel processor significantly decreases the efficiency because of the increased number of

pipeline stalls during execution. Stalls are caused by the dependencies between program

instructions that reduce the actual speedup that can be achieved [43].

A more computationally-efficient approach is to use heuristic methods (i.e., may not

always achieve the correct result, but usually produces an acceptable solution) in which a

linear filter is typically used to separate the received signal into its component transmitted

data streams and then decode each stream independently. The matrix filter

separates the received signal into its component transmitted symbols, where the superscript

computational complexity of 0 (n 3) [174], G z f is an ur x u r inverted channel matrix,

commonly called a zero-forcing matrix. The output of ZF receiver is given by z = s +

G z f h , where we assume that u r > u r and H has full column rank. As opposed to ZF

linear receivers for SISO and SIMO channels, which were constructed to cancel ISI, here

they are used to cancel multistream interference (MSI). The ZF receiver decomposes the

MIMO link into n r parallel streams, each with diversity gain proportional to u r — tir + 1

(6 .11)

f denotes the Moore-Penrose pseudo-inverse operator and H* = (H ^ H) l i l H with a

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6-3 MIMO Decoding Techniques

out of a maximum possible h r diversity [2]. Even though the noise is enhanced by G z f

and correlated across the channels, each received symbol is decoded independently ignoring

noise correlation.

The ZF receiver eliminates MSI completely at the expense of noise enhancement. The

MMSE receiver balances MSI mitigation with noise enhancement and minimizes the total

error [15]. The G m m s e can be written as [2]:

At low SNR, the MMSE outperforms the ZF receiver that continues to enhance noise. At

high SNR, the MMSE receiver converges to a ZF receiver as G m m s e — G z f - While the

MMSE receiver is superior to the ZF receiver, it requires an accurate estimate of the value

of SNR at the receiver.

Another heuristic approach is to use the iterative QR decoding scheme. The u r x t i t

channel matrix H is decomposed using Gram-Schmidt orthogonalization into an h r x n r

unitary matrix Q and an n r x n r upper triangular matrix R with non-zero entries on the

diagonal [172]. The columns of Q form an orthonormal basis, q i , . . . , q nT, and accord­

ingly Q ^ H = R . By left multiplying Equation (6.3) with Q H, an estimate y of the actual

received vector y is created:

Note that the element yk depends on the transmitted signal Sk, the interference term fk ,

and the noise component hk- Since R is upper triangular, signals with larger indices avoid

interference from signals with small indices. In other words, the interference nulling pattern

is created directly by the unitary transformation where fk is independent of s i , . . . , Sk-i-

Thus the interference term fk can be cancelled by using previous decisions Sk+i, • • •, §nT

and therefore yk - X rk,jSj = r k,k sk + n-k- Symbol Sfc can be estimated by

G M M S E (6.12)

Q Hy = y = R s + Q ^ n = R s + n

Since Q is unitary, the statistical properties of the noise terms n = Q Hn and n are the

same. Element k of vector yk becomes

f lk — r k ,k $ k T f k "b n k i where f k — ^] r k , j sj ■
j=k+1

j=k+1

\

Tk,k

\ /

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

Bit to Symbol «i . .

J r /V '

Figure 6.3: LST transmitter architecture.

where Q is the quantization function appropriate for the signal constellation Q in use.

The non-linear Bell Labs layered space-time (BLAST) algorithm is a divide-and-conquer

decoding strategy based on successive interference cancellation [3,155,176] for a LST ar­

chitecture [3,179]. The LST MIMO architecture introduces and then exploits temporal and

spatial diversity in the transmitted signals. A block diagram of a conventional single-user

LST system is shown in Figure 6.3. The incoming information bits are denoted by {bk},

where k is a discrete time index. The high-rate data stream is demultiplexed into n r equal-

capacity parallel substreams, called layers. Each layer is then encoded separately using the

same constellation. If a block of information consists of L space-time symbols, then the

output of the n r encoders can be represented by the following (n^xL) ST codeword matrix

S:

S =

Matrix S comprises the symbols that are transmitted by n y transmitter antennas at L dif­

ferent time instants. The resulting ST signals drive identical transmitter pulse filters and the

resulting digital baseband signals are modulated by a carrier and broadcast by ny antennas.

All transmitter antennas are assumed to use the same constellation and to transmit data si­

multaneously using the same carrier frequency and symbol timing in the same frequency

band.

The LST receiver algorithm consists of two phases [155]: First, the channel matrix is

estimated [185]. The channel state information (CSI) is assumed to be known to the receiver

but not to the transmitter [170]. Second, the received data signals from one ST symbol

interval are processed to recover the n r transmitted complex symbols, (s{ , . . . , shT), within

a fixed number of symbol times after time j . The decoding algorithm proceeds iteratively

through the following three steps until all n r symbols are recovered.

Step 1) Interference nulling: Interference nulling tries to reduce the amount of interfer-

169

31L nr

s2S1

71-r

S 1

111'

(6.13)

Information /
bit source

Encoder 1

•»bk+J, bk, |

. aN
Encoder 2 -*■

"o-21 iV i+f" i_-Li l i k . r ’

Encoder nT -*■ . [s&j js^j-

Mapping of
Complex Symbols

to
Space-Time Signals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

ence towards Sk by multiplying the received signal y by a nulling vector g*. [156]. Con­

sequently, the symbol rate processing has a computational complexity of only 0 { n 2). In

ZF-LST, gfc can be calculated using the fc-th row of nulling matrix G = Hj, where the no­

tation H fc denotes the matrix obtained by zeroing column k of H . Since all components of

a transmitted vector s are assumed to utilize the same constellation, the component Sj with

the lowest post-detection SNR will dominate the error performance of the detection process.

It was shown in [154] that starting with the symbol (layer) with the strongest post-detection

SNR, and then proceeding successively to the symbol with the weakest SNR, improves the

performance remarkably [155]. This corresponds to choosing the row g^ of G = h £ with

the minimum norm, k = m in ||g i||2, and selecting the corresponding row as the nulling
i

vector in the interference nulling step. Thus, the A:-th element of s with the highest SNR is

detected by sk = Sk Y-

Step 2) Symbol decoding: Symbol s k from the k-th transmitter antenna is estimated by

mapping to the nearest symbol sk = Q (sk) in the constellation, where Q(-) function calcu­

lates the Euclidean distance between sk and the symbols in the constellation.

Step 3) Symbol cancellation: At this stage, the recovered symbol sk can be used to im­

prove the estimate of the remaining n r — 1 symbols that are yet to be recovered. The

interference on the n r — 1 other signals due to sk can be subtracted out from the received

signal as y ' = y — skh k. Thus, the number of signals remaining to be detected is reduced

by one with each decoding step, while the number of receiver antennas stays the same.

Therefore, the diversity level of the resulting system should increase going from layer to

layer [186].

The above three steps are repeated to recover the n r - 1 remaining symbols that were

transmitted at the same symbol time.

Another way to improve the detection performance, especially for mid-range SNR val­

ues, is to replace the ZF nulling proposed in [3,176] by the more powerful MMSE algo­

rithm. In addition to nulling out the interferers, the noise level on the channel is taken into

account. A disadvantage is, however, that the SNR has to be determined somehow at the

receiver. MMSE nulling utilize the projection matrix G given in (6.12). The MMSE-LST

algorithm is summarized in Algorithm 7 [176], where the inputs are the channel matrix H ,

the projection matrix G , and the received ST symbol s. The output of the algorithm is the

decoded ST symbol.

An improvement over the ZF-LST and MMSE-LST algorithms was proposed in [158,

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 MIMO Decoding Techniques

Algorithm 7 MMSE-LST algorithm
k = min ||g j||2; 9 j is the j-th row of G

for (i — 1; i < n r) do
s*:=gfey;
Sk — Q{ .Sk) ’i
y = y — h/jSfe;
G = H [;
k = min ||gi||2;

%
end for

177] and is called the square root algorithm. In this technique, the nulling process was

performed by the use of unitary transformations to avoid repeatedly evaluating the pseudo­

inverse of the deflated matrices. This approach reduces the complexity from ¥4 for

MMSE nulling to for n = n r = nR, i.e. Q (n3), and increases the numerical stability

compared with the original BLAST algorithm. Even though the square root algorithm offers

an order of magnitude reduction in the computational complexity compared to MMSE-LST

decoding, it is shown in [157,158] that for a typical number of antennas (e.g., between one

to eight) the complexity of the algorithm in floating-point operations (FLOPs) is almost the

same as for other LST decoding algorithms.

The required decoding rate and error rate performance are two important decoding algo­

rithm metrics. However, the microarchitecture of the target processor can greatly influence

the decoding algorithm running times, so one must be careful to choose the most appropriate

decoding algorithms for different processors. For example, depending on the microarchi­

tecture of the processor, the interconnect topology and number of PEs, the complexity of the

parallelized matrix inversion can be varied. For instance, it can be performed in 0 (lo g 2 n)

time using n 4 PEs on a three-dimensional reconfigurable mesh [187].

In either of the above LST decoding algorithms, there is much data-level parallelism

that we propose to exploit using a moderately-parallel architecture. Even though both the

square-root and ordered QR algorithms provide better numerical stability and less computa­

tional complexity than the MMSE-LST algorithm [158,159], they exhibit load imbalance,

and hence a less efficient hardware utilization, when they are mapped to a linear paral­

lel architecture [174]. Therefore, we used MMSE-LST as the default decoding technique.

However, our parallel implementation, described below, could be modified to accommodate

any of the above decoding algorithms.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 A Parallel Architecture fo r Digital Signal Processing

Table 6.1: Comparison of PIM architectures.
Terasys IMAP VIRAM C»RAM

Memory
Technology

SRAM SRAM DRAM DRAM

Word Width 1-bit 8-bit Programmable 1-bit
Operands Memory Registers Registers Memory

Integer Multiply No Partial1 Ves No
Floating Point No No Yes No

Controller External External Internal External

6.4 A Parallel Architecture for Digital Signal Processing

For problems with substantial data-parallelism, the SIMD architecture is often well-suited

to achieving high processing rates. In such cases, the data can be distributed into many

different independent pieces, and multiple PEs can operate on them simultaneously. SIMD

machines come in two major flavors: (1) processor array architecture, which consists of

a relatively large number of simple PEs, and (2) vector processors that have only a small

number, typically between 1 and 32, of deeply-pipelined powerful execution units. The ma­

jority of today’s high-performance microprocessors and DSPs include SIMD instructions

to boost their performance on data-parallel applications [188].

To decrease the processor-memory performance gap, the processor-in-memory organi­

zation combines processing elements into memory. Table 6.1 presents major characteristics

of four examples of PIM-style SIMD processors. Terasys is a massively-parallel SIMD pro­

cessing array comprising 32,768 bit-serial PEs [167]. Since bit-serial processors require

many clock cycles to compute a single value for fixed-point numbers, they achieve great

performance only through massive parallelism. Each PE has access to a 2-Kbit column of

SRAM local memory. IMAP uses an 8-bit processor formed around a carry look-ahead

adder [189]. A shifter and look-up table are used to increase the performance of integer

multiplications. With a bit-parallel PE, IMAP will achieve higher performance for applica­

tions with moderate to high parallelism compared to a bit-serial PE like the one in Terasys.

VIRAM uses complex PEs and contains a 64-bit processor complete with floating-point

operations [190]. The complexity of the PE limits the number of processors in the VIRAM-

1 IC to four. Like the SIMD extensions added to conventional microprocessors, VIRAM

allows each register in the 64-bit processor to be treated as packed data, and operations are

permitted on eight 8-bit numbers, four 16-bit numbers, two 32-bit numbers, or one 64-bit

number. O R A M integrates many bit-serial processors at the memory sense amplifiers of a

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 A Parallel Architecture fo r Digital Signal Processing

Memory Columns

Sense Amplifiers
and Column Decode

X, Y, Memory 3 -'

Shift Left

Shift Right

Wired-AND Broadcast
<4------------------------

Ins traction'
Global 8,
istraction ' “

BUS
Transceiver

Figure 6.4: O R A M processing element.

DRAM [191]. Embedded DRAM on the same IC allows a greater storage density than an

SRAM-based design, at the cost of higher row access time latency. SRAM has the benefits

of fast access time, does not require periodic refresh operations and can easily be imple­

mented in a standard logic process. Figure 6.4 shows a simplified view of the O R A M

PE. The ALU is an 8 x 1 multiplexer, which allows 256 unique binary instructions to be

applied to the eight data inputs. O R A M has a simple linear network for inter-PE com­

munication. Each processor can shift the result of an instruction to the right and store it in

that neighbour’s Y register, or shift it left and store it in that neighbour’s X register. Once

the data reaches the end of the array or the chip, rather than continuing in the left or right

direction, the data can be shifted to a second O R A M array. In the multiple linear array

case, 2-D communication can thus be performed by a sequence of left or right shifts. The

broadcast bus can be used to broadcast a single value to all PEs or can be used to perform

a wired-AND operation with all PEs writing the bus. The wired-AND operation is useful

for finding a global minimum value among the PEs. O R A M uses a write-enable (WE)

flag to conditionally enable individual PEs. Since a SIMD architecture requires each PE

to execute identical instructions in lock-step, control structures that execute conditionally

require a mechanism for disabling individual PEs. Nested control structures, such as the if-

then-else clause, can be implemented using a stack of write-enable bits. O R A M maps well

into DRAM due to the simplicity of the PE and the narrowness of its layout. Since each PE

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 A Parallel Architecture fo r Digital Signal Processing

Left/Right Shift Bus 48

H O ST

DSP-RAM
Controller

Data
path

Data
pathGlobal

Broadcast
Bus

Figure 6.5: DSP-RAM architecture.

is very narrow, it is easier to pitch-match to the narrow DRAM memory columns than with

a larger processing element. As well, many metal layers are not required for routing since

there is less logic to contend with. Even so, DRAM-based O R A M implementations still

require each PE to be pitch-matched to some small number (e.g., 4) of memory columns

rather than only one.

DSP-RAM is a processor-in-memory SIMD coprocessor architecture consisting of a

linear array of n p simple fixed-point PEs, as shown in Figure 6.5. The architecture was

first developed at the University of Alberta and has been applied to a variety of differ­

ent applications [165,166]. Each PE consists of a data path, containing data registers and

functional units, and a local memory. The DSP-RAM controller is a state machine that

broadcasts micro-instructions to the PEs, exchanges data with the PEs (described later),

and interfaces to the host processor. The DSP-RAM controller broadcasts one instruction

stream and all PEs execute the same instructions in lock-step over multiple instances of

data stored in their local memories. The DSP-RAM architecture is readily scalable from

its HDL specification, and more processing elements can always be implemented as re­

quired to achieve any higher symbol decoding rate. The DSP-RAM architecture provides

an efficient processing platform for implementing many algorithms with data-level paral­

lelism [165,166]. If the algorithm scales well on the linear array of the parallel architecture,

the processing throughput will be increased directly by increasing the degree of parallelism

(i.e., the number of PEs). More PEs implies more transistors on the chip. However, the pro­

cessor can often operate at a slower clock frequency and still meet the required processing

throughput. As well as lowering the clock frequency, one might also choose to lower the

power supply voltage. Since power consumption is proportional to the square of the power

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 A Parallel Architecture fo r Digital Signal Processing

Shift Reg 1 ---------- d
To/From Left PE
< -------------

To/From Right PE 4
Shift Bus

Mux

SRAM A

MEMEn Stack I— | Comp |SRAM B

Arbiter

Broadcast Bus

Figure 6.6: Architecture of one processing element.

supply [168], the possibility of reducing the voltage in DSP-RAM would be attractive for

power-constrained processing platforms.

PIM-style architectures like DSP-RAM can offer the following advantages [167]:

• Internal memory accesses are usually much faster than external memory accesses.

• For high data rate applications, the restricted bandwidth to external memory tends in­

creasingly to limit the overall performance. In the PIM-style architecture, the proces­

sor can directly-exploit the very large (e.g. 1024-bit) bus width at the sense-amplifiers

of the internal memory blocks.

• Both the capacity and word width of custom on-chip memories is adjustable to any

convenient value. There is no need to conform with standard memory configurations.

• System power consumption is reduced because fewer external memory accesses are

generated. Such accesses consume significant power when driving the relatively

high-capacitance of off-chip buses.

The architecture of one PE in DSP-RAM is shown in Figure 6.6. Each PE stores data in

its own local memory, which we assumed to be partitioned into two banks, labeled SRAM A

and B. Therefore two operands can be fetched simultaneously from memory. We assumed

a word width of 16 bits but this can be easily adjusted. The core of each PE is a pipelined

MAC. Two 16-bit operands can be multiplied and the 32-bit product can be added to the

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 A Parallel Architecture fo r Digital Signal Processing

content of the 48-bit accumulator (ACC) register through the adder/subtractor. Use of ex­

tended precision (48-bit) inner product accumulation reduces the rounding error and allows

for more accumulation steps without the risk of overflow. Since the MAC is in the critical

path, the number of pipeline stages in the MAC can be adjusted to achieve different through­

puts. The shifter can perform a logical shift, an arithmetic shift or no shift before the MAC

output is loaded into the ACC register. As an example, to execute the MAC A , B instruction

two 16-bit operands are read from the memory banks and then multiplied in the MAC unit.

Since the adder is enabled and the shifter is disabled by the controller, the 32-bit product

is summed into the 48-bit accumulator value and stored. The result can then be kept in the

accumulator, written back into the local memories, or written onto the shift bus to move it

into the neighbor’s PE shift register. To perform the division operation, rapidly-converging

iterative algorithms based on multiplication can be used [105]. To perform division, the

Goldschmidt algorithm takes advantage of the pipelined multiplier to permit division in

[log2 16] = 4 iterations [72].

It is possible to temporarily exclude processors in the DSP-RAM from executing an

instruction depending on certain logical conditions. A comparator and stack are provided

in each PE to support if-then-else conditional control flows. The depth of the hardware

stack is configurable to allow different nesting depths in the program. The MEMEn signal

enables the local memories in each PE. The arbiter module provides a global minimum

compare operation (assuming a wired-AND implementation of the global broadcast bus)

among all the PEs to speed up the merging of local results from the PEs into a single global

result.

A simple communication network includes local left and right shift busses between

adjacent PEs and a global broadcast bus. Data can be transferred into a PE in three ways:

First, data can be transferred over the 16-bit wired-AND global broadcast bus from one data

source (the host processor or one or more PEs) to all PEs. When the same constant needs to

be stored into each PE, the broadcast bus can be used to broadcast the value into each PE’s

broadcast bus register (BBReg). For example, loading the hr x np complex channel gain

coefficients into the PEs local memories requires only 2ur tit + P clock cycles, where p

is the number of pipeline stages between the broadcast bus and the local memory banks of

the PE. Second, data can be sent to the left or right nearest-neighboring PEs over the 48-bit

left/right shift bus, shown in bold arrows in Figure 6.6. The shift bus can be used to shift

three 16-bit operands between PEs. Thus incoming ST symbols can be loaded efficiently

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Mapping LST Decoding onto DSP-RAM

into the corresponding PE memories. Note that the operations of writing data into and

reading data from the DSP-RAM can be interleaved. For example, previously decoded

data may be shifted out to the host processor at the same time that a current block of data

is being decoded. Since the I/O path over the shift bus uses only the 48-bit shift register

and the shift bus, the memory is free during the shifting of incoming data and, therefore,

significant power savings can be realized over a sequential memory load that requires a

memory access for each data value [165]. Consequently, shifting of data can occur in

parallel with the processing of local data in each PE. Finally, data can be loaded by memory

write operations from the DSP-RAM controller or host processor into any locations in the

two local memories. This requires one write instruction for every single data word and

therefore is relatively slow.

6.5 Mapping LST Decoding onto DSP-RAM

One of the key decisions when implementing LST decoding on DSP-RAM is the mapping

of subtasks onto the moderate number of PEs. Decomposing the decoding procedure into

finer subtasks and distributing them among the PEs for parallel execution will affect the

degree of concurrency and, consequently, the overall throughput. Moreover, since inter-PE

communication delay often significantly affects the decoding throughput [44], if we map the

calculation onto the PEs in such a way that inter-PE communication is minimized, we can

generally expect higher performance and lower dynamic power consumption. Therefore the

aim of the mapping is twofold: First, balancing the load among the PEs and increasing the

resource utilization by uniformly distributing the decoding of the received ST symbols onto

the available PEs. Second, according to the interconnection topology of the DSP-RAM,

the decoding algorithm should be mapped onto the PEs to minimize the communication

overhead.

We define a thread to be a recovery process for a ST symbol that was transmitted in

the same symbol time by u t transmitter antennas. As illustrated in Figure 6.7, a thread

involves u t nulling steps, n r decoding steps and n r — 1 cancellation steps. The recovery

process can be completed entirely within a single symbol period or can be pipelined over

a fixed number of symbol periods. For instance, as shown in Figure 6.7, a thread can be

pipelined across several PEs (similar to the mapping used in [192]). Since all PEs execute

the same stream of SIMD instructions, the last redundant cancellation step, shown with

dotted lines in Figure 6.7, must also be performed. In addition, due to the data dependency

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Mapping LST Decoding onto DSP-RAM

Nulling

Residual
vector

Figure 6.7: Dataflow diagram of the symbol decoding process for one ST symbol.

sH h H +)

yj &

0 1 — [E l

S i

(+)^--- 1 h; H-

*12

* IriT

%4

© t — E

& - f

(+K—CEZ

A
' $nP2

*nPnT

P E , P E „ ,

Figure 6.8: Dataflow diagram of the symbol decoding process for n p ST symbols.

in the iterative three-step decoding algorithm, the communication penalty can be high. This

particular mapping involves at most n r PEs, implying that the maximum speed-up would

be only np- Therefore, in this mapping the load cannot be uniformly distributed among

only a moderate number (e.g. 64) of PEs. A more efficient approach, shown in Figure

6.8, takes advantage of the distributed memory architecture of the processor and maps a

decoding thread to a dedicated PE. Thus the recovery of a ST symbol y fe, where k is the k-th

vector in a codeword matrix, can be performed by PEfc in the DSP-RAM. In this mapping

the last additional cancellation step is not required. The mapping minimizes the inter-

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Mapping LST Decoding onto DSP-RAM

PE communication and decouples the number of PEs in DSP-RAM from the number of

transmitter/receiver antennas. Therefore, the number of PEs can be scaled based on the

desired decoding rate. The greater the number of PEs, the greater the degree of parallelism

and the higher the decoding throughput.

The decoding process starts by loading the channel matrix into each PE’s local memory

using the broadcast bus. For a Rayleigh block-fading channel model, the channel charac­

teristics are assumed to be fixed over constant-sized L data blocks. Therefore the channel

gains need to be loaded only once at the beginning of each block. In the next step, the

nulling vector calculation can differ depending on the decoding algorithm. The MMSE

nulling vectors can be efficiently obtained on DSP-RAM. First, the pseudo-inverse of the

deflated channel matrix H , namely H* = (H h H) -1 H h , has to be calculated n p times

at the beginning of each block. Since the dimensions of H are typically small, to obtain

higher accuracy, we have chosen the direct approach [86] instead of the iterative method to

invert the matrix.

There are several published techniques for calculating the matrix pseudo-inverse using

direct routines [44]. In addition to the strong influence of the DSP-RAM microarchitecture

on the complexity of the parallelized pseudo-inverse algorithm, the structure of the channel

matrix H may also influence the choice of algorithm. Since the channel matrix in practice

does not fall into any of the special cases, mapping Cramer’s inverse method over t i r x u t

PEs gives an efficient parallel realization on DSP-RAM. This technique, which is also used

in Intel’s MMX library [193], requires only one division operation. To calculate the pseudo­

inverse of n r deflated channel matrices, H , with the rank ranging from n r down to 1, n r

iterations are required. In iteration k, the k 2 cofactors of H h H can be calculated concur­

rently in complex arithmetic using a single instruction stream over k 2 PEs. Then cofactors

H Hare passed among the PEs and each PE calculates the H* = dpl(̂ n H ̂adj (H ffH)

where det and adj denote the determinant and the adjoint matrix operators, respectively.

Note that assuming a block-fading channel model, the nulling vectors need to be calculated

only once using n r instances of pseudo-inversion of the deflated channel matrix H at the

beginning of each received block.

The process of loading the received ST symbols into the DSP-RAM can be overlapped

with the nulling vector calculation. A block of received information is first divided into sub­

blocks of size n r x n p , where n p <C L, and the ST symbols of each sub-block are loaded

consecutively using the left/right shift bus into the corresponding PE’s memory. Since the

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

Table 6.2: Processor specifications.

Processor

Data

Width

Instr.

Width

Clock

Freq. (MHz)

Core

Volt. (V)

Core

Power (mW)

Proc.

Tech. (pm)

ARM7TDMI 16 16/32 133 1.08 332 0.13
SA-110 32 16 233 2.0 1000 0.35
PXA255 16/32 16/32 400 1.65 2598 0.18

TMSC6416T 8/16 32 720 1.2 2147 0.13

TMSC6713 32 32 225 1.26 1386 0.13

ADSP-TS203 32 32 500 1.05 2700 0.13

size n p of a sub-block is typically much smaller than the block size L for the block-fading

wireless channel model, this approach reduces the initial latency of the decoding process

considerably.

After loading n p ST symbols into the PEs’ local memories and calculating the nulling

vectors, each PE concurrently initializes the iterative three-step decoding process and de­

codes one received ST symbol. Therefore the time to process n p threads is equivalent to

the processing time of one single thread, hence the throughput is directly increased by a

factor of n p . When the parallel decoding is finished, the resulting symbols are shifted out

from each PE into the host processor while the next set of n p signals is shifted into the

PEs’ local memories. Therefore, the write and read operations are also overlapped. This

process of decoding the received ST signals is continued until all of the received symbols

in a block are recovered. Decoding of the next block can begin as soon as the channel gain

coefficients are estimated at the receiver.

6.6 Implementation of a MIMO Receiver

To determine the efficiency and compare the performance of the parallel implementation of

LST decoding on the moderately-parallel DSP-RAM architecture with conventional imple­

mentations on contemporary DSPs, a (4,4) MIMO system with 16-QAM modulation was

modelled for six different processors. The processor specifications are summarized in Table

6.2. The ARM7TDMI is an embedded RISC processor with very low power consumption

on a small die size that does not have any DSP-specific features [194]. The SA-110 uses

architectural enhancements beyond the original ARM processor to execute at rates far ex­

ceeding those of the ARM7TDMI. The PXA255 processor from Intel Corp. is a 32-bit

super-pipelined 16-bit SIMD processor intended to enhance audio/video decoder perfor-

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

Table 6.3: DSP-RAM PE implementation characteristics.
Device Clock

Freq. (MHz)

Core

Volt. (V)

Proc.

Tech. (pm)

Slices BRAMs

Virtex E 98 1.8 0.18 713 2

VirtexII 120 1.5 0.13 684 2

VirtexII Pro 130 1.5 0.13 666 2

mance [195]. The VLIW-based TMS320C6416T-720 from Texas Instruments Inc. is a

high-performance signal processor that contains two identical fixed-point data-paths [196].

The TMS320C6713-225 is a family of 32-bit floating-point DSPs that target applications

such as 3-D graphics, radar and speech recognition. Analog Devices’ ADSP-TS203 is

optimized for demanding multiprocessor DSP applications such as communication infras­

tructure [50], This processor supports both fixed-point and floating-point computations.

The regular architecture of FPGAs is a convenient platform for prototyping the linear

DSP-RAM architecture. Contemporary FPGAs integrate megabytes of memory with mul­

tiple millions of equivalent logic gates arranged in a two-dimensional array of configurable

logic slices [49]. A 64-PE DSP-RAM system was synthesized from a Verilog HDL descrip­

tion to various FPGAs. Each PE contained 512 bytes of local memory for implementations

on the Virtex-E XCV3200E-7-FG1156, Virtex-II XC2V8000-5-FF1517 and Virtex-II Pro

XC2VP125-5-FF1704 FPGAs. Table 6.3 shows the clock frequency and the resource uti­

lization of the implementations of the DSP-RAM PE on the different FPGAs. For the FPGA

implementations, dual-port BRAMs were synthesized and the maximum pipelined multi­

pliers were implemented in LUTs. Since there are typically alternative arithmetic circuit

implementations with different maximum clock rates and areas, one may choose different

cells from the FPGA vendor’s component library to meet the target application require­

ments. The same DSP-RAM design was also synthesized for a OAS-pm TSMC CMOS

technology standard cell implementation [197]. Figure 6.9 shows the layout of the 20.65

m m 2 64-PE DSP-RAM chip. The estimated core power consumption is 621-mW when the

DSP-RAM operates at 100-MHz.

To develop the LST MIMO receiver algorithm, we used the following three-step design

flow:

(1) MATLAB programs that model different LST decoding algorithms for an (n r , t i r)

MIMO system were written and then verified in simulation. The variance of the AWGN

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

Figure 6.9: Chip Plot of a 64-PE DSP-RAM in 0.18-/wi CMOS.

noise vector was normalized by

2 log2 q
(6.14)

which is the noise energy per bit. The average energy per bit was thus normalized to 1. Here

log2 q is the number of transmitted bits per constellation point, pjB is the SNR in dB, and

E s = 2(q — l) / 3 is the mean symbol energy of the g-QAM constellation. Figure 6.10 plots

the SER versus SNR simulation results for five different LST decoding algorithms for a

(4,4) MIMO system that utilizes 16-QAM modulation over a flat Rayleigh fading channel.

The ordered QR method requires one order of magnitude less computational complexity

than the MMSE-LST decoding algorithm, but it has degraded SER performance due to the

sub-optimal ordering employed in the modified Gram Schmidt calculation.

(2) Floating-point and fixed-point versions of the LST decoding algorithm were devel­

oped in C++, and these implementations were optimized and verified for six target pro­

cessors. Considering the time and accuracy objectives, the LST decoding algorithm was

expressed using complex arithmetic. Differences in the computer architecture, available

programming languages, and compiler quality can make large differences in the way one

implements a decoding algorithm. A parallel implementation of the LST decoding algo­

rithm was developed on a DSP-RAM C++ emulator. Our emulator provides a debugging

environment for a fixed-point implementation of the algorithm on the parallel DSP-RAM

architecture and reports the exact clock cycle count required to execute a program, in­

cluding the I/O and inter-PE communication cycles. This count can be used to choose

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

ZF
MMSE
Orderd QR
ZF-LST
MMSE-LST

UJ icr

22

Figure 6.10: Symbol error rate vs. SNR for ZF, MMSE and three different LST algorithms,
for a (4,4) MIMO system utilizing 16-QAM modulation over a Rayleigh flat-fading channel.

an appropriate clock frequency for the DSP-RAM to achieve real-time decoding. During

implementation of the parallel LST decoding algorithm for the emulator, the developer is

entirely responsible for controlling and efficiently utilizing the available functional units

and for avoiding any possible structural hazards. The compiled code produced from a high-

level language program implementation of LST decoding can be less efficient than expertly

optimized assembly language code. Similarly, our optimized micro-coded implementation

of LST decoding on DSP-RAM probably has an efficiency advantage over compiled code

even when, as we did, all optimization features of the compiler enabled. Also, the PIM-style

architecture of DSP-RAM requires many fewer clock cycles to access the on-chip memory

banks than those required by conventional processors for off-chip memory accesses.

Table 6.4 gives the number of clock cycles required to decode received ST signals and

the number of clock cycles required to calculate the nulling vectors for a 4 x 4 channel

matrix. The reason that the number of clock cycles to decode 64 ST signals does not

increase linearly with the number of ST signals is that most of the DSPs utilize some degree

of parallelism in their instruction set architecture. For example, the ADSP-TS203 DSP

provides a parallel core that can execute eight 16-bit MACs with 40-bit accumulation in

one clock cycle. Also, the TMS320C6416T DSP contains two identical fixed-point data­

paths. DSP-RAM can provide a much greater degree of parallelism (e.g., n p = 64) than

these DSPs and, therefore, the data-parallel LST decoding algorithm can scale efficiently

on the linear architecture of DSP-RAM. Thus the number of clock cycles to decode 64

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

Table 6.4: Cycle counts to decode received ST signals and calculate nulling vectors of a
4 x 4 channel matrix. _____________________

Processor Decode

One ST Symbol

Decode

64 ST Symbols

Calc. Nulling

Vectors

ARM7TDMI 4,798 206,396 43,641

SA-110 3,124 146,698 33,701
PXA255 3,732 155,602 22,698

TMSC6416T 1,812 87,714 25,340

TMSC6713 1,814 90,386 17,572

ADSP-TS203 1,555 70,455 13,216

DSP-RAM 1,078 1,174 12,742

ST symbols is not much more than the number required to decode one received signal and

hence the throughput is increased by a factor of 64. To calculate the 4 nulling vectors of

a 4 x 4 channel matrix, one must perform four pseudo-inversions of the reduced channel

matrices, with the rank reducing successively from 4 to 1. For a DSP-RAM implementation,

the pseudo-inverse operation can be performed efficiently in parallel using the mapping

described in Section 6.5 over 16 PEs. However, since the required degree of parallelism is

only tir x n r , the number of clock cycles required to calculate 4 nulling vectors in a DSP-

RAM implementation is close to the number required by the slightly parallel ADSP-TS203

DSP.

(3) Once the design was completed on the emulator, test vectors were designed and

used as the stimulus to the HDL model. After the algorithm was verified in simulation,

it was synthesized for the target FPGA. Figure 6.11 plots the SER versus SNR results of

the ordered QR-LST decoding for the various number representations of the MIMO system

reported in Figure 6.10. The product word length and sum word length were set to 32

and 48, respectively, for all implementations. Note that a 12-bit fraction field, labeled as

F I (16 ,12) in the figure, achieves almost the same SER performance as the floating-point

implementations up to a SNR of 32 dB.

Consider a (4,4) MIMO system that exploits spatial multiplexing using an LST ar­

chitecture and 16-QAM modulation. We will make the common assumption of symbol-

synchronous receiver sampling and ideal timing recovery. Also, for a typical indoor wire­

less environment with a maximum Doppler frequency of f p = 3 Hz, the coherence time of

the channel can be calculated as Tc = 0.423//r> [115]. Assuming a block-fading wireless

channel, where the channel response is almost invariant during the coherence time of the

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Implementation o f a MIMO Receiver

DCUJ
CO

FI (8,5)FI (16,7)
FI (16,9)
FI (16,12) FP______

16 18 20 22 24 26 28 30 32 34 36 36 40
Et,'No<dB)

Figure 6.11: SER vs. SNR for floating-point (FP) and four fixed-point number representa­
tions.

channel, the block duration can be chosen to be T& = 100 ms. Let kn denote the number

of clock cycles required to compute n r nulling vectors. To achieve real-time decoding,

fcn-.+ (^ .x^) should be less than or equal to Tb, where kd is the number of clock cycles re­

quired to decode one received ST signal, Ld is the number of ST data symbols in a block

of length L, and f p is the clock frequency of the receiver signal processor. Assume that

each block is divided into a set of 64 ST symbols frames. Since most conventional pro­

cessors utilize some degree of parallelism in their instruction set architecture, we introduce

kd64 to denote the number of clock cycles required to decode one frame of 64 ST symbols.

Therefore, the number of ST symbols in a block is given by:

Ld = ^ X 64 (6.15)
Kd64

where K = Tb x f p is the total clock cycle budget for Tb periods. Equation 6.15 shows

that in addition to the clock frequency of the signal processor, the efficiency of the processor

when executing the LST decoding algorithm has a great influence on decoding performance.

To maximize the decoding throughput, the denominator of Equation 6.15 should be mini­

mized. An efficient way to achieve this goal is to map the decoding algorithm over an array

of PEs that operate concurrently. The results in Table 6.5 show that a 64-PE DSP-RAM can

decode at more than 10 times the bit rate of a high-performance conventional DSP proces­

sor. The higher throughput is achieved even though DSP-RAM’s assumed 100-MHz clock

frequency is much slower than that of the 720-MHz TMSC6416T DSP.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.7 Conclusions

Table 6.5: Decoding throughput of the LST decoder implementations for a (4,4) MIMO
system utilizing 16-QAM modulation, with the block-fading channel model assumption,
and = 100 ms. ___

Processor Clock

Freq. (MHz)

Max. Decoding

Throughput (Mb/s)

ARM7TDMI 133 0.64

SA-110 233 1.58

PXA255 400 2.56

TMSC6416T 720 8.2

TMSC6713 225 2.48

ADSP-TS203 500 7.09

DSP-RAM 100 85.07

6.7 Conclusions

Multiple antenna communication systems can achieve remarkably high data rates with no

increase in bandwidth or transmitted power; however, symbol decoding in a MIMO receiver

is a computationally-intensive process. Optimal or exact decoding algorithms, such as ML,

require time that is exponential in the number of symbols that must be considered. A less

computationally-intensive method, such as the SD algorithm, attempts to prune the search

space and thereby provide substantial computational saving over ML decoding. However,

the SD algorithm has an irregular control sequence and hence is inefficient for mapping

on a parallel processor architecture. When the channel is perfectly known to the receiver,

the heuristic LST decoding scheme can be used efficiently to decode received signals with

realizable computational complexity. Due to the inherent data parallelism in the LST de­

coding algorithm, as an efficient alternative to using a single, high-performance processor to

achieve real-time decoding, multiple simpler processors can be used to exploit the available

data-level parallelism.

A PIM-style moderately-parallel architecture, called DSP-RAM, has been synthesized

to implement parallel LST MIMO receiver algorithms. DSP-RAM is a lightweight parallel

computing architecture that combines an array of simple fixed-point datapaths with local

SRAMs to provide high-performance signal processing in a power-efficient core. This con­

figuration exposes and exploits the large internal bandwidth that is available collectively at

the SRAMs, allowing DSP-RAM to outperform conventional high-performance micropro­

cessors and DSPs for a variety of important moderately-parallel algorithms. The perfor­

mance results demonstrate that a 64-PE 100-MHz DSP-RAM can potentially provide more

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.7 Conclusions

than 10 times greater decoding throughput in a typical indoor environment compared to a

high-performance 720-MHz DSP processor. The significant speed-up of the parallel DSP-

RAM architecture can be exploited to permit a lower operating clock frequency and/or a

lower operating voltage, which would have the further benefit of lowering the power con­

sumption. Since the structure of LST decoding algorithms scales very well on the linear

array of PEs in DSP-RAM, the data throughput can be readily increased by using more

PEs.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusions and Future Work

Wireless communication systems share one common challenge: they all must operate over

a multipath fading channel. A vast number of mathematical representations of the time-

varying wireless channel have been proposed. Surprisingly, some of the best-known models

have been used extensively over decades for the emulation and performance evaluation of

communication systems do not in fact faithfully reproduce characteristics of real-world

channel conditions. It is therefore essential to carefully evaluate the statistical properties of

any channel model that is being considered as the basis of a fading channel simulator.

In addition to channel impairments, noise at the receiver can impact the performance

of communication systems. Such noise is commonly modeled as variates with a Gaussian

distribution due to the Central Limit Theorem. When evaluating the physical layer algo­

rithms that operate at a very low error rate, the value of the noise samples at the tails of the

Gaussian distribution will be the dominant source of errors. Since the tail of Gaussian dis­

tribution decays near exponentially, generating Gaussian variates (GYs) with large values

is quite challenging.

Monte Carlo (MC) simulation of wireless communications relies on the accuracy of the

additive white Gaussian noise (AWGN) generator and the multipath fading channel model.

Purely software MC simulation of physical layer algorithms of wireless communication sys­

tems that operate at very low error rates is becoming prohibitively long. Fortunately, digital

baseband simulators provide several orders of magnitude speedup over software based sim­

ulators, thereby greatly accelerating the iterative process of product design and evaluation,

and ultimately reducing the time-to-market for communication devices.

We addressed the above challenges first by designing and implementing an accurate

and compact digital Gaussian variate generator on field-programmable gate arrays (FP-

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GAs). The AWGN core can be easily configured to achieve high tail accuracy, much higher

than is available in most commercial hardware-based noise generators. The rate that GVs

can be generated is limited by the rate of a pipelined multiplier on FPGAs. Second, several

hardware-based digital baseband multipath fading channel simulators were designed and

evaluated. An improved fading simulator based on the sum-of-sinusoids (SOS) technique

is proposed that shows better statistical properties to Clarke’s reference model compared to

the published models. Also, a novel design technique was used to alleviate the complex­

ity of fading channel simulators by co-designing the required digital filters. While other

realizations of channel emulators use a heterogeneous architecture (usually consisting of

DSPs, FPGAs, etc.) to implement the required computationally-intensive multi-rate signal

processing algorithms of filter-based techniques, our implementation uses only a small frac­

tion of a single FPGA. The ability to implement an entire digital baseband fading channel

emulator along with AWGN generator on a small fraction of a single FPGA should be a

significant improvement for the rapid prototyping and verification of wireless systems.

Integration of programmable fabrics with a moderate number of memory blocks in an

FPGA provides an efficient platform for realizing parallel processor-in-memory (PIM) style

processor architectures. A scalable moderately-parallel signal processor architecture that

combines the single-instruction multiple-data (SIMD) and PIM approaches, called DSP-

RAM, was designed and implemented on FPGAs. Our implementation results verified that

DSP-RAM can efficiently increase the performance of layered space-time decoding algo­

rithms for the spatial multiplexing scheme of multiple-input multiple-output (MIMO) com­

munication systems compared to currently-available high-performance, but power-hungry

and costly, DSPs. DSP-RAM can be used as a co-processor to a conventional microproces­

sor to increase the throughput of computationally-intensive algorithms that can be mapped

efficiently on the data-parallel architectures.

In summary, this thesis made contributions in four areas:

• Design and implementation of the most compact and fastest disclosed digital Gaussian

variate generator (GYG) with accurate statistical properties. The GVG occupies only 1% of

a single Xilinx Virtex-II XC2V4000-6 FPGA and operates at 253 MHz [9], generating 506

million GVs per second within a range of ±9.41cr. The design can be configured to achieve

higher tail accuracy at a small cost in extra hardware but with slightly decreased operating

rate.

• In addition to two compact implementations of a SOS-based fading channel simulator,

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an improved fading channel model based on the SOS approach is described. The proposed

model improves the statistical properties of generated fading variates compared to previ­

ously proposed models. A fixed-point implementation of the fading channel simulator on a

FPGA utilizes only 5% of the configurable resources and generates over 200 million 16-bit

fading variates per second.

• A much more compact and yet accurate implementation of a parameterized fading

channel simulator using digital infinite-duration impulse response (IIR) filters is described.

A novel filter design scheme is proposed to implement the shaping filter and the interpola­

tion low-pass filters together on a single FPGA. The new design is the first digital baseband

fading channel simulator that is realizable on a fraction of a single FPGA. The fixed-point

implementation of Rayleigh fading channel simulator on an FPGA utilizes only 4% of the

configurable slices, 20% of the dedicated multipliers and, 2% of the available memories

on a Xilinx Virtex2P XC2VP100-6 FPGA, while generating 25 million fading variates per

second. The parameterized mobile channel simulator can be reconfigured to accurately

simulate a wide variety of different channel characteristics. Also, a filter processor with

a very short instruction set is proposed to be controlled by a micro-program. A micro­

programmed controller makes debugging and scaling of the fading channel simulator much

easier compared to modifying the control unit with random logic to support MIMO and

frequency-selective channels.

• An existing moderately-parallel and scalable architecture, called DSP-RAM, that

combines the single-instruction multiple-data (SIMD) and processor-in-memoty (PIM) ap­

proaches to increase the performance of moderately data-parallel signal processing appli­

cations is applied efficiently to the MIMO signal decoding problem. Integrating simple

fixed-point datapaths, also called processing elements (PEs), with the memories exposes

the enormous data bandwidth between the two, and eliminates the bottleneck that other­

wise occurs on an external bus between the memory chips and processor(s) in conventional

architectures. The DSP-RAM architecture can be readily synthesized and mapped to stan­

dard FPGAs. By efficiently mapping the layered space-time (LST) MIMO algorithm onto

the DSP-RAM architecture, it is shown that for a typical indoor wireless environment, a

100-MHz DSP-RAM can potentially provide more than 10 times greater decoding through­

put at the receiver of a (4,4) MIMO system compared to a conventional 720-MHz DSP.

The degree of parallelism (i.e., the number of PEs) can be easily scaled up to increase the

throughput of a parallel algorithm. Also, one has the option of using increased parallelism

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

to run at a slower clock frequency to simplify the implementation and still meet the required

processing performance.

7.1 Future Work

Future work could be pursued in a number of directions as described in the following sec­

tions. An alternative GVG using faster iterative algorithms is proposed in Section 7.1.1.

The proof of the ergodicity of the proposed model in Chapter 4 is also considered as a

future work and is discussed in Section 7.1.2. Section 7.1.3 presents channel simulators

for frequency-selective fading channels and MIMO channels. Section 7.1.4 presents a joint

channel estimation and symbol decoding scheme for an LST architecture.

7.1.1 An Alternative Gaussian Variate Generator

7.1.1.1 A GYG with Less Residual Error

The proposed GVG in Chapter 3 uses piecewise polynomial curve fitting. While the mag­

nitude of generated GVs are important when modeling additive noise at the receiver, the

machine precision-level fitness of the PDF of generated GV with ideal Gaussian PDF is

not crucial. One may be more interested in the numerical accuracy of the generated GVs

and in minimizing the residual error between the Gaussian PDF and the PDF of generated

noise samples. In this case, two key points that could be considered are (1) increasing the

number of segments for non-uniform segmentation of f (u \) and/or using a higher order

degree polynomial for curve fitting approximation; and (2) similarly, a more accurate ap­

proximation of g(-) could be obtained using a higher-order polynomial and non-uniform

quantization of trigonometric functions.

Some of our initial work on this approach is shown in Figure 7.1. In this case, f { u \) is

segmented uniformly on a logarithmic scale into 11 segments denoted by Si, i — 0 , . . . , 10,

where segment s* represents the interval [2~3\ 2~3(l+1)]. Note that with u \ represented in

fixed-point format <3(32,31), segment sio corresponds to the interval [2-31,2 ~ 30]. When

u i approaches 0, where u \ G [2~3,2~ 31], the very small value of u \ resides in one of the

segments s i , . . . , sxo- When u \ approaches 1, where u \ e (2~3, 1), the gradient of f (u \) ,

d f (u \) / d u \ , tends toward infinity. For greater accuracy, segment so € (2“ 3, 1) is thus

subdivided nonuniformly into six segments, s n , . . . , si6, as shown in Figure 7.2.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

7

6

5

4

3

2

I
©o

0 K>
I.I J. I I

Figure 7.1: Logarithmic segmentation of the domain of f{ u \) .

2.04E + 01

1.77E-01
^ 6.25E-02

S ' 2.21E-02

2 .7 6 E -0 3

_ — Segment — — — —►

Seg * i,
3 15 1

6
i

us
©c

CO

y>
©o

co <0

«1
0©

CO
oo
Co

U I I I I1 W K> W.I A, I i.w >© fO

Figure 7.2: Sub-segmentation of s q .

7.1.1.2 A Faster Iterative Gaussian Variate Generator

While CORDIC method and additive-normalization techniques explained in Chapter 3 can

be used to compute ln(-) and square-root operations, other schemes for evaluating these op­

erations can be utilized to implement the Box-Muller algorithm. These alternative schemes

may have advantageous over other proposed algorithms with certain implementation tech­

niques or availability of specific features in target hardware platform.

One approach to calculate ln (x), where x € [1,2), is based on multiplicative normal­

ization where multiplication is done by shift and add operations:

X i + x = XiCi = X j (l + 2 ~ l d i) , d i E { -1 ,0 ,1 }

V i + i = Vi ~ In Ci — y i - l n (l + 2 ~ l d i)

where ln (l + 2~ldi) is read out from a table [105]. If we start with xq = x , yo = y, and

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

choosing di digits such that x m converges to 1 , after m steps:

Xjfi — x Ci 1 = >̂ ^ | Ci pa 1 /x

Vm = y - in Ci = y - In |~ [a ^ y + In a:.

Starting with y — 0 leads to the computation of In x. In order to calculate In x for any x

outside [1,2), x can be written as x = 2r]s with s e [1,2]. Then In a; = In s + 77 In 2 =

I n s + 0.69314718077.

In the above algorithm, to obtain In x with k bits of precision, k iterations are required,

which is still relatively slow. A faster algorithm is proposed by Lo [198] that requires a

multiplier to compute log2 x where x € [1,2]. Calculating the natural logarithms can be

easily done by scaling base-2 logarithms. Let y — log2 a; be a fractional number in binary

as (.y_ iy_2 • • ■ y~k)2 ‘ Hence, x = 2V and x 2 = 2^y- l -y- 2"'y- k>2. If y_ 1 = 1 then x 2 > 2,

thus computing x 2 and comparing the result with 2 determines the MSB y_i of y. When

y_ 1 = 1, then x 2/2 = 2<̂ y- 2y- 3'”y- k>2 /2 = 2^y- 2y~3’"y- kh . Subsequent bits of y can be

determined in a similar way. Algorithm 8 can be used to calculate log2 x for x e [1,2]:

Algorithm 8 Calculating log2 x , x G [1,2)
for (i — 1 ; i = = l \ i + +) do

x = x 2;
if {x > 2) then

y-i = 1; x = x/2;
else

y -i = 0;
end if

end for

The iterative Newton-Raphson algorithm [105] can be used to approximate the square

root function. This algorithm is based on a general method to obtain the zero of the function

(i.e., the value of x for which f (x) = 0). The recurrence equation can be written x n+i =

x n — where f ' (x n) denotes the derivative of the function f (x) evaluated at x n . To

compute V d using the Newton-Raphson method, f (x) can be chosen as f (x) = x 2 which

has a root at x = \fd . The function f (x) = x 2 — d leads to Xi+ 1 = 0 .5 (a7j + d/x{). In

the case of fractional square rooting, where d € [0.5,1), (1 + d) /2 provides a good starting

value [105]. An alternative approach that avoids the division operation in the previous

recurrence that has found wider application is based on computing the reciprocal y/d then

multiplying the result by d [72,105]. We can use the function f (x) = 1 /x 2 — d that

has a root at x — l /y fd and get the recurrence Xi+i = 0.5xj(3 — d x f) . Each iteration

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

now requires three multiplications and one addition, versus one digit selection, one digit

multiplication, and one addition in the digit recurrence method. However, the quadratic

convergence requires only a few iterations with a suitably accurate initial estimate. For

example if x \ is accurate within half the machine precision, a second iteration to find x 2,

followed by a multiplication by d, completes the process. For subtraction from 3, we can

use a bit inversion since 3 — d x f = 1 + (2 — d x f) where the term 2 — d x f corresponds to a

two’s complement, which can be approximated by a bit inversion.

7.1.2 On the Ergodicity of the SOS-based Fading Channel Models

The proof of the ergodicity of the model proposed in Section 4.6 in Chapter 4, namely

Model II can be considered as a future work. The ACF and CCF of the quadrature compo­

nents of the proposed fading signal can be written as:

fW iC r) = E{ci(t)ci(t + t)}
„ M M

n = l i = l

sm(uidtc o s (a n (t))sin(<fn (t))} x

[cos(u>d(f + r) cos(a i(t + r)) c o s + r)) -

(7.1)

Rc„ c ,(r) = E {cq{t)cq(t + t)}

n = l i = 1

sin(wdfsin(an(f))sin(V>n(f))] x

[cos (oJd(t + r) s in (a j(i + r)) cos (^ (t + r))

sin(u!d(t + r) sin (a i(t + r)) sin + r))] |

n— 1

(7.2)

R c i , c , (r) = 0, R C9)C. (r) = 0

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

When a n (t + r) = a n (t), tpn {t + r) = <pn (t), and ij)n (t + r) = ^ n (t), then the modified

model reduces to the model in (4.10). Let define the time average correlations as

1 f T
R C i , C i (T) = 3 ^ 2 T J _ T Ci(t) Ci (t + T)d t

R C i , c , (r) = R c „ C i (r) = 0

J _ T Z * (t)z (t + r)d t (7.3)

To proof the ergodicity of the proposed Model II, we need to show that

R c i> C j(r) = R C iC i(r) = J * (2 n fDr)

K , c q(r) = 0

R z ,z (t) = R ZtZ(r) = 2 J ^ 2 i x f DT) (7.4)

The variance of the time average, Var{RCiiC.(r)} = E |RCi)Ci(r) - J 02 (2 7 t / d t) | 2 , can

be considered as a statistical measure for closeness of statistics between a single trial with

finite number of sinusoids N and the ideal case with N = oo [37].

7.1.3 Architecture of a Wireless Channel

As discussed in Chapter 4 and Chapter 5, the complex envelope of the fading signal is

modeled as a complex Gaussian process at the receiver of a wireless channel. There are two

common cases that must be considered when simulating a realistic wireless channel:

• A primary effect of wireless channel environment on a transmitted electromagnetic

signal is that it loses its energy density due to interactions with the propagation environment.

The difference between the transmitted signal power and the received power is called the

path loss and denoted by P L . While the local mean of the small-scale fading process

c(r, t) is approximately constant for small distances, it can vary considerably over large

distances. Shadow fading is another effect of wireless channel that can be characterized as

a multiplicative process of multiple reflections in a multipath environment. By virtue of the

CLT, multiplication of various path amplitudes due to multiple reflections per path results

in a lognormal distribution. Thus shadow fading can be described as a random variable

with Gaussian distribution (with values in dB) about the mean of path loss. While shadow

fading varies faster than path loss, both effects vary more slowly than small-scale fading.

This slow variation of the mean received signal strength over large distances or long time

intervals is known as large-scale effects and denoted by 7 (t).

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

When a strong LOS path exists in addition to the scattered paths, then the process has

a non-zero mean (arising from the LOS signal) and the magnitude of the process becomes

Ricean [23]. This strong component may be a LOS path or a path that goes through much

less attenuation compared to the other received components (also called a non-faded or

specular path). The Rician PDF is often characterized by the ratio of the power of the

direct component to the power of the scattered component itT(dB) = 10 log1 0 K where the

ratio K is called the Ricean factor. In the presence of a specular path, the fading signal

g(r, t) can be considered to be the sum of two components: a Rayleigh component c(r, t)

and a deterministic (in amplitude and phase) component d(t) representing the LOS path as

plitude, Doppler shift, and phase of the LOS component are denoted by a, and fa ,

respectively [199]. If the Doppler shift along the LOS path is zero, then the mean value

d{t) is time-invariant.

Signal attenuation in a radio channel is commonly represented as the product of large-

scale and short-scale fading as h(r, t) = g(r, t) x 7 (t), where h(r, t) is the mobile channel

impulse response in its complex-lowpass form. The fading channel model can be scaled

to extend the number of independent channels to simulate n^-input, n#-output MIMO

channels and other diversity schemes. For example, Figure 7.3 shows a MIMO channel

with tit transmit antennas and n p receiver antennas. The parameters of each channel can

be configured separately to be able to simulate the multiple antenna channels. The Python

filter processor described in Chapter 5 can be efficiently configured to simulate a narrow­

band or wide-band MIMO channel.

While the above model assumes that different fading sequences are correlated in time

but uncorrelated in space, in a real world scenario, the fades are usually not independent

and exhibit spatial correlations between sequences. The fading correlation depends on the

physical parameters of the multi-element antenna (e.g., antenna spacing) and on the scatter

characteristics (e.g., lack of independent propagation paths). As discussed in Section 5.2 in

Chapter 5, in order to obtain the space-time correlation characteristics for a given path, a

temporal correlated random process can be followed by a linear transformation to become

also spatially correlated.

Assume and 'P # are the long-term stable transmitter and receiver correlation ma-

(7.5)

where K is the Rician factor and d(t) can be written as d(t) = a e ^ dt+<̂ d where the am-

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

Xu(t)'Xqi (*) — > 4* -
s ' '

s ' /

M ^
v / \ y wv / \ / '

\

/ ' N>- ^

ft w v 7 7 t c>(0 nr
 > & L d(t)~ ^ c

y2(t) c2(0 = c2/(0 +jc2(;(0

M O

U a - K ^ M ^

M(0+jyo(0

I AWGN I(0 =c,,(fl+ic,„(fl !

Figure 7.3: MIMO channel simulator.

trix, respectively. If H w denotes a u r x n r matrix of i.i.d Gaussian variables of unity

variance, then the correlated MIMO channel model can be written as H = A h H wB

[200], where A and B are obtained using Cholesky decomposition of — B B H and

i&R = A A h , respectively. Usually the transmitter is assumed to be elevated and unob­

structed while the receiver is taken to be surrounded by a scattering ring. Thus the receive

correlations are much smaller than the transmit ones.

Figure 7.4 plots our initial simulation results for the SER versus SNR for a (4,4) MIMO

system correlated only in time and correlated in time as well as space using a 4-QAM

modulation and f o T s = 0.02. The element-wise absolute value of transmitter correlation

matrix used in the simulation is:

abs(’J’T’)

(1.000 0.626 0.620 0.601 \
0.626 1.000 0.626 0.620
0.620 0.626 1.000 0.626

\ 0.601 0.620 0.626 1.000 /

As the plot in Figure 7.4 shows, fading correlation weakens the advantage of diversity and

results in a performance loss.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

tc 10

Eh / N „ 0 0

Figure 7.4: SER versus SNR for (4,4) MIMO system with a 4-QAM modulation, (b): The
system is correlated in time, (a) The system is correlated in both time and space.

7.1.4 Joint Channel Estimation and Symbol Decoding for LST Decoders

High-speed data services such as BLAST generally target low mobility users, where the

channels are slow-fading. An optimal channel estimator for continuous fading channels

should account for the structure of the channel variation. When transmitting a block of L

ST symbols, the relation between the input and output signals of a narrow-band MIMO

link is represented in the equivalent discrete time baseband model by the complex vector

notation

where S is the codeword matrix where rows correspond to different transmitter antennas and

columns correspond to different times. It is assumed that the entries of transmitted signal

matrix S have unit mean-square. Thus, the average total transmit power a 2 becomes the

expected SNR at each receiver antenna. H is the h r x u t matrix of fading path gains, and

N is an h r x L matrix of additive noise samples. The matrices H and N both comprise

independent zero mean unit variance complex Gaussian entries. The h r x L received

signals Y are corrupted by additive noise that is statistically independent among the u r

receivers and the L symbol periods. In the training-based CSI estimation, the matrix S

consist of both known and unknown symbols. The known symbols are used for estimating

the unknown channel at the receiver and the unknown symbols represent the transmitted

information symbols. Therefore, the problem can be partitioned into a channel estimation

step, followed by a data detection conditioned on the estimated channel. If the training

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

occupies L t symbols and data transmission occupies Ld symbols, the time L = L T + Ld

is referred to as the channel coherence time. In a time-varying flat-fading channel, the

actual channel will deviate progressively from the initial channel estimate obtained at the

beginning of each received block L. Two successive channel realizations at the beginning of

each block are independent of each other and, therefore, the channel is called memoryless.

Discrete channel estimation comprises of two phases. In the training phase, the base­

band model of system can be written as

where Y T is the u r x L t received signals matrix, o 2 is the SNR during the training phase,

ST is the n r x L r matrix of training signals sent over L r and Tr{Sr S ^ } = n y L r . In data

transmission phase,

Sd is the n r x Ld matrix of data signals and E [T r{SdS^}] = n r Ld [201]. It is shown

in [202] that to estimate the continuous flat-fading MIMO channels, the ML estimator for

block-fading model can be utilized to estimate the channel matrix from the received sig­

nal Y r and known training signals Sr [201]. The ML channel estimate for block-fading

channels can be obtained by post-multiplying Equation (7.7) by as [170]

To obtain a meaningful estimate of H , we need at least as many measurements as unknowns,

which implies that u r L t > t i r u t or L T > n r [201]. Thus H is independent of the

number of u r .

The optimal training sequence which minimize the mean square estimation error (MSE)

of Equation (7.9) are mutually orthogonal with respect to time among the transmitter anten­

nas, i.e., ST = y/T^Y, where S is a matrix with orthonormal columns and Sr S ^ = L r I nT

where I nj, is the n r x n r identity matrix [170] [202]. A good choice of orthogonal training

sequences is the FFT matrix, i.e. Sm,i = where Sm,i is the (m, i)-th

element of the training matrix Sr , 1 < m < n r , 1 < % < L T [202]. Thus Equation (7.9)

can be written as

(7.7)

(7.9)

(7.10)

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1 Future Work

r1.4

LU(0X

,-».5

5 10 15 20 25 30 35 40

Figure 7.5: Effect of Training Length on the MSE of the Channel.

Therefore, if the the training symbols are orthogonal, no matrix inversion is required at the

receiver. While the channel estimate H in (7.10) can be efficiently implemented on FPGAs,

effect of various parameters such as training length on the MSE of the channel estimation

must be considered. Our initial simulation results show that the channel can be improperly

learned if too little training are transmitted and if too much training information is sent then

there is no time left for data transmission before the channel changes. It is shown that n r

is the smallest training interval length that guarantees meaningful estimates of the channel

matrix [170]. Figure 7.5 plots effect of training length on the MSE of the channel. The

MSE due to noise decreases with L T but MSE due to temporal variations increases with L T

and L [202]. In this simulation we used 16-QAM modulation, symbol rate is assumed 1

H s, maximum Doppler frequency is f p = 3 Hz, SNR is 30 dB, and both L r and L increase

at a fixed ratio, L Tj L = 20%.

7.1.4.1 DSP-RAM W ith Complex Arithm etic

As discussed in Chapter 6, using a real arithmetic processor to solve a complex-valued

system leads to an inefficient implementation. For example, it is shown in [175] that com­

plex matrix inversion can be up to twice faster than inversion of a real-valued matrix for

n > 3. As future work, one could consider realizing DSP-RAM with complex arithmetic

support for faster and more efficient realization of baseband signal processing. For exam­

ple, inversion of a complex matrix can be performed using the following scheme [203] more

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7,1 Future Work

efficiently than realizing it in real domain. Let H = A + j B be a complex matrix with an

inverse H 1 = A i + j 'B i, where A , B , A i, and B i are all real. It is shown that H 1 can

be obtained by inverting real matrices. If A is non-singular, then A i and B i can be written

as

A i = (A + B A _1B)_1

B i = - A i B A - 1 .

Similarly, if B has an inverse, then the solution can be written as

B i = — (B 4- A B _1A)_1

A i = - B i A B - 1

This technique can be used for the efficient implementation of a matrix inversion, the key

operation in decoding of received symbols in MIMO systems.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. J. Paulraj, D. Gesbert, and C. Papadias. Smart Antennas fo r Mobile Communica­
tions. Encyclopedia For Electrical Engineering, John Wiley Publishing Co., 2000.

[2] A. Paulraj, R. Nabar, and D. Gore. Introduction to Space-Time Wireless Communi­
cations. Cambridge University Press, 2003.

[3] G. J. Foschini. Layered space-time architecture for wireless communication in a fad­
ing environment when using multi-element antennas. Bell System Technical Journal,
1(2):41—59, Autumn 1996.

[4] A. Alimohammad and B. F. Cockbum. An efficient parallel architecture for imple­
menting LST decoding in MIMO systems. IEEE Transactions on Signal Processing,
54(10):3899-3907, 2006.

[5] M. R. Sturgill, G. Cortez, R. Avinun, and S. M. Alamouti. Design and verifica­

tion of third generation wireless communication systems. Technical Report Article,
CoWare, Inc., December 2003.

[6] Agilent Technologies Inc. Baseband Studio fo r Fading, 2005.

[7] Rohde & Schwarz. Baseband Fading Simulator ABFS, Reduced costs through base­
band simulation, 1999.

[8] C. S. Patel, G. L. Stiiber, and T. G. Pratt. Comparative analysis of statistical mod­
els for the simulation of Rayleigh faded cellular channels. IEEE Transactions on
Communications, 53:1017-1026, 2005.

[9] A. Alimohammad, B. F. Cockbum, and C. Schlegel. A Compact and Accurate Gaus­
sian Variate Generator, submitted to IEEE Transactions on VLSI Systems.

[10] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete Time Signal Processing.
Prentice Hall, 1999.

[11] S. Haykin and M. Moher. Introduction to Analog and Digital Communications. John
Wiley and Sons Canada, Ltd., 2006.

202

with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[12] B. Sklar. Digital Communications: Fundamentals and Applications. Prentice Hall,
2001.

[13] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan. Simulation o f communication

systems : modeling, methodology, and techniques. New York: Kluwer Academic
Publishers, 2000.

[14] A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic Pro­
cesses. McGraw-Hill, 2002.

[15] J. G. Proakis. Digital Communications. McGraw-Hill, 2001.

[16] W. C. Jakes. Microwave Mobile Communications. Piscataway, NJ: Wiley-IEEE
Press, 1974.

[17] G. S. Prabhu and P. M. Shankar. Simulation of flat fading using MATLAB for class­
room instruction. IEEE Transactions on Education, 45(1): 19—25, 2002.

[18] P. M. Shankar. Introduction to Wireless Systems. John Wiley & Sons, Inc., 2001.

[19] W. H. Tranter, K. Sam Shanmugan, T. S. Rappaport, and K. L. Kosbar. Principles o f
Communication Systems Simulation with Wireless Applications. Prentice Hall, 2003.

[20] H. Hashemi. The indoor radio propagation channel. Proceedings o f the IEEE,
81(7):943-968, July 1993.

[21] D. C. Cox. 910 MHz urban mobile radio propagation: multipath characteristics in

New York city. IEEE Transactions on Vehicular Technology, 22(4): 104-109, 1973.

[22] G. L. Turin et al. A statistical model of urban multipath propagation. IEEE Transac­
tions on Vehicular Technology, 21(1): 1-11, 1972.

[23] G. L. Stiiber. Principles o f Mobile Communication. New York: Kluwer Academic
Publishers, 2001.

[24] R. H. Clarke. A statistical theory of mobile-radio reception. Bell System Technical
Journal, 47:957-1000, 1968.

[25] M. J. Gans. A power spectral theory of propagation in the mobile radio environment.
IEEE Transactions on Vehicular Technology, 21(l):27-38, 1972.

[26] W. C. Y. Lee. Mobile Communications Engineering. New York: McGraw Hill, 1982.

[27] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379-423, 1948.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[28] P. Hoeher. A statistical discrete-time model for the WSSUS multipath channel. IEEE
Transactions on Vehicular Technology, 41:461-468, 1992.

[29] P. Dent, G. E. Bottomley, and T. Croft. Jakes fading model revisited. Electronics
Letters, 29(13): 1162-1163, June 1993.

[30] W. C. Jakes. Microwave Mobile Communications. Piscataway, NJ: Wiley-IEEE

Press, 1994.

[31] M. Patzold, U. Killat, F. Laue, and Y. Li. On the statistical properties of determinis­
tic simulation models for mobile fading channels. IEEE Transactions on Vehicular
Technology, 47:254—269, 1998.

[32] M. Patzold and F. Laue. Statistical properties of Jakes’ fading channel simulator. In
Proceedings o f IEEE Vehicular Technology Conference, pages 712-718, 1998.

[33] M. Patzold, R. Garcia, and F. Laue. Design of high-speed simulation models for
mobile fading channels by using table look-up techniques. IEEE Transactions on

Vehicular Technology, 49(4): 1178—1190, July 2000.

[34] M. F. Pop and N. C. Beaulieu. Limitations of sum-of-sinusoids fading channel sim­

ulators. IEEE Transactions on Communications, 49:699-708, 2001.

[35] Y. Li and X. Huang. The simulation of independent Rayleigh faders. IEEE Transac­
tions on Communications, 50(9): 1503-1514, September 2002.

[36] Y. R. Zheng and C. Xiao. Improved models for the generation of multiple uncorre­
lated Rayleigh fading waveforms. IEEE Communications Letters, 6:256-258, 2002.

[37] C. Xiao, Y. R. Zheng, and N. Beaulieu. Statistical simulation models for Rayleigh
and Rician fading. In Proceedings o f IEEE International Communication Confer­
ence, pages 3524-3529, 2003.

[38] Y. R. Zheng and C. Xiao. Simulation models with correct statistical properties for
Rayleigh fading channels. IEEE Transactions on Communications, 51:920-928,

2003.

[39] C. A. G. de Leon, M. C. Bean, and J. S. Garcia. Generation of correlated Rayleigh-
fading envelopes for simulating the variant behavior of indoor radio propagation

channels. In Proceedings o f IEEE Vehicular Technology Conference, pages 4245-

4249, 2004.

[40] G. Rekaya and J. C. Belfiore. On the complexity of ML lattice decoders for decoding
linear full rate space-time codes. In IEEE International Symposium on Information

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Theory, page 206, 2003.

[41] J. Hennessy and D. A. Patterson. Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, 2003.

[42] B. Hassibi and H. Vikalo. On the expected complexity of sphere decoding. In Pro­
ceedings o f Conference on Signals, Systems and Computers, pages 1051-1055, 2001.

[43] J. P. Shen and M. Lipasti. Modern Proccessor Design: Fundamentals o f Superscalar
Processors. McGraw-Hill Companies, 2003.

[44] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation : Numer­
ical Methods. Prentice-Hall, 1997.

[45] Texas Instruments. TMS320C64x Technical Overview, 2001.

[46] Texas Instruments. TMS320C5x DSP Design Workshop Student Guide, 1997.

[47] S. Rajagopal and S. Rixner J. R. Cavallaro. A programmable baseband processor

design for software defined radios. In Midwest Symposium on Circuits and Systems,
pages III—413—III—416, 2002.

[48] Altera. The Stratix IIG X, Device Handbook,, 2006.

[49] Xilinx. Virtex-II Pro™ Platform FPGAs: Functional Description, January 2003.

[50] Analog Devices Inc. TigerSHARC Embedded Processor, 2003.

[51] J. M. Rabaey. Silicon platforms for the next generation wireless systems - What
role does reconfigurable hardware play? In International Conference on Field-
Programmable Logic and Applications, pages 277-285, 2002.

[52] R. Baines. The DSP bottleneck. IEEE Communications Magazine, 33(5):46-54,
May 1995.

[53] H. Keding, M. Coors, O. Luthje, and H. Meyr. Fast bit-true simulation. In IEEE

Design Automation Conference, pages 708 - 713, 2001.

[54] M. Rupp, A. Burg, and E. Beck. Rapid prototyping for wireless designs: the five-
ones approach. International European Association fo r Signal Processing Journal,
83(7): 1427-1444, July 2003.

[55] C. S. Petrie and J. A. Connelly. The sampling of noise for random number generation.
In Proceedings o f IEEE International Symposium on Circuits and Systems, pages 26-
29, 1999.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[56] S. Rocchi and V. Yignoli. A chaotic CMOS true-random analog/digital withe noise
generator. In Proceedings o f IEEE International Symposium on Circuits and Systems,
pages 463-466, 1999.

[57] H. Zhun and H. Chen. A truly random number generator based on thermal noise. In
Proceedings o f IEEE International Conference on ASIC, pages 862-864, 2001.

[58] G. S. Muller and C. K. Pauw. On the generation of a smooth Gaussian random vari­

able to 5 standard deviations. In Proceedings o f IEEE Southern African Conference
on Communications and Signal Processing, pages 62-66, 1988.

[59] F. C. Ionescu. Theory and practice of a fully controllable white noise generator.
In Proceedings o f IEEE International Semiconductor Conference, pages 319-322,
1996.

[60] K. Tae, J. Chung, and D. Kim. Noise generation system using DCT. In Proceedings
o f IEEE International Symposium on Circuits and Systems, pages 29-32, 2002.

[61] E. Boutillon, J. L. Danger, and A. Gazel. Design of high speed AWGN communica­

tion channel emulator. In Analog Integrated Circuits and Signal Processing, pages
133-142, 2003.

[62] D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung. A Gaussian noise generator

for hardware-based simulations. IEEE Transactions on Computers, 53(12): 1523-
1534, December 2004.

[63] P. Kohlbrenner, L. Martin, and K. Gaj. An embedded true random number generator

for FPGAs. In International Symposium on Field Programmable Gate Arrays, pages
71-78, 2004.

[64] G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.
The Annals o f Math. Statistics, 29:610-611, 1958.

[65] P. Hellekalek. Good random number generators are (not so) easy to find. In Second
IMACS Symposium on Mathematical Modelling, pages 485-505, 1998.

[66] W. Hormann and J. Leydold. Continuous random variate generation by fast numeri­
cal inversion. ACM Transactions on Modeling and Computer Simulation, 13(4):347-
362, 2003.

[67] J. Chen, J. Moon, and K. Bazargan. Reconfigurable readback-signal generator based
on a field-programmable gate array. IEEE Transactions on Magnetics, 40(3): 1744-
1750, 2004.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[68] M. E. Muller. A comparison of methods for generating normal deviates on digital
computers. Journal o f the ACM, 6(3):376-383, 1959.

[69] G. Marsaglia and W. W. Tsang. The Ziggurat method for generating random vari­

ables. Journal o f Statistical Software, 5(8): 1-7, 2000.

[70] G. Marsaglia and W. W. Tallahassee. A simple method for generating gamma vari­
ables. ACM Transactions on Mathematical Software, 26(3):363-372, 2000.

[71] Y. Fan, Z. Zilic, and M. W. Chiang. A versatile high speed bit error rate testing

scheme. In Proceedings o f IEEE International Symposium on Quality Electronic

Design, pages 395-400, 2004.

[72] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2004.

[73] L. Dong-U et al. A hardware Gaussian noise generator for channel code evalua­
tion. In 11th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 69-78, 2003.

[74] A. A. Kalatchikov and G. G. Streltsov. FPGA implementation of Gaussian noise

generator. In 5th Annual International Siberian Workshop on Electron Devices and

Materials, 2004.

[75] Xilinx Inc., San Jose, CA. Additive White Gaussian Noise (AWGN) Core vl.0 , 2002.

[76] A. Alimohammad, B. F. Cockbum, and C. Schlegel. An iterative hardware Gaussian
noise generator. In Proceedings o f IEEE Pacific Rim Conference on Communica­
tions, Computers and Signal Processing, pages 649-652, August 2005.

[77] A. Alimohammad, B. F. Cockbum, and C. Schlegel. Area-efficient parallel white

Gaussian noise generator. In Proceedings o f IEEE Canadian Conference on Electri­
cal and Computer Engineering, pages 1855-1858, 2005.

[78] R.P. Brent. Fast normal random number generators for vector processors. Techni­
cal Report Technical Report TR-CS-93-04, The Australian National University, July
1993.

[79] D. Lee et al. A hardware Gaussian noise generator using the Wallace method. IEEE
Transactions on VLSI Systems, 13(8):911—920, 2005.

[80] I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical models as tests of random­
ness. Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdis­
ciplinary Topics), 52(3):3205-3214, 1995.

[81] P. D. Coddington. Tests of random number generators using Ising model simulations.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

In Proceedings o f the US-Japan Bilateral Seminar on New Trends in Computer Sim­
ulations o f Spin Systems, 1996.

[82] A. Compagner. Operational conditions for random-number generation. Phys. Review

E 52, 52(5):5634~5645, 1995.

[83] J. Gentle et al. Handbook o f Computational Statistics. Springer-Verlag, 2004.

[84] P. L’Ecuyer. Random Number Generation, Chapter 3 o f Elsevier Handbooks in Op­
erations Research and Management Science: Simulation. Elsevier Science, 2006.

[85] J. Grodendorst et al. Pseudo random number generation and quality checks. Quan­
tum Simulations o f Complex Many-Body Systems, Lecture Notes, 10:447-458, 2002.

[86] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes

in C Example Book : The Art o f Scientific Computing. Cambridge University Press,
1992.

[87] P. D. Hortensius, R. D. McLeod, and H. C. Card. Parallel random number genera­
tion for VLSI systems using cellular automata. IEEE Transactions on Computers,

38(10): 1466-1473, 1989.

[88] J. Lindholm. An analysis of the pseudo-randomness properties of subsequences of
long m-sequences. IEEE Transactions on Information Theory, 14(4):569-576, 1968.

[89] Xilinx. Using the Virtex Look-Up Tables, The Quarterly Journal fo r Xilinx Pro­
grammable Logic Users, Xcell Journal, 2000.

[90] P. P. Chu and R. E. Jones. Design techniques of FPGA based random number gen­
erator. In Military and Aerospace Applications o f Programmable Devices and Tech­

nologies Conference, 1999.

[91] S. Wolfram. Random sequence generation by cellular automata. Advances in Applied

Mathematics, 7(10): 123-169, 1986.

[92] P. H. Bardell. Analysis of cellular automata used as pseudorandom pattern genera­
tors. In Proceedings o f International Test Conference, pages 762-768, 1990.

[93] G. Marsaglia, A. Zaman, and W. W. Tsang. Towards a universal random number
generator. Stat. Prob. Letters, 8:35-39, 1990.

[94] P. L’Ecuyer and F. Panneton. A new class of linear feedback shift register generators.
In Proceedings o f the 2000 Winter Simulation Conference, pages 690-696, 2000.

[95] R. C. Tausworthe. Random numbers generated by linear recurrence modulo two.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Mathematics and Computation, 19:201-209, 1965.

[96] P. L’Ecuyer and J. Granger-Pich. Combined Generators with Components from Dif­
ferent Families. Mathematics and Computers in Simulation, 62:395-404, 2003.

[97] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators. Math­
ematics o f Computation archive, 68(225):261-269, 1999.

[98] P. L’Ecuyer. Maximally Equidistributed Combined Tausworthe Generators. Mathe­
matics o f Computation, 65(213):203-213, 1996.

[99] P. Hellekalek. Inversive pseudorandom number generators: concepts, results, and
links. In Proceedings o f the Winter Simulation Conference, pages 255-262, 1995.

[100] P. Hellekalek and S. Wegenkittl. Empirical evidence concerning AES. ACM Trans­
actions on Modeling and Computer Simulation, 13(4):322—333, 2003.

[101] A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s Fully Pipelined AES Processor on
FPGA. In Proceedings o f the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 308-309, 2004.

[102] M. Abramowitz and I. A. Stegun. Handbook o f Mathematical Functions with For­
mulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, 1972.

[103] Synopsys. DesignWare IP Family Reference Guide, 2005.

[104] F. de Dinechin and A. Tisserand. Multipartite Table Methods. IEEE Transactions on

Computers, 54(3):319-330, 2005.

[105] B. Parhami. Computer Arithmetic, Algorithms and Hardware Design. Oxford Uni­

versity Press, 2000.

[106] J.E. Voider. The CORDIC Trigonometric Computing Technique. IRE Transactions
on Electronic Computers, EC-8(3):3.4.1, 1959.

[107] Xilinx. Xilinx Cordic LogiCore Product Specification, April, 2005.

[108] N. Chernov, C. Lesort, and N. Simanyi. On the complexity of curve fitting algo­

rithms. Journal o f Complexity, 20(4):484—492, August 2004.

[109] M. Schmookler and K. Nowka. Leading zero anticipation and detection - A compar­
ison of methods. In Proceedings o f IEEE Symposium on Computer Arithmetic, pages
7-12, 2001.

[110] V. G. Oklobdzija. An implementation algorithm and design of a novel leading zero
detector circuit. In in Proceedings Asilomar Conference on Signals, Systems and

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Computers”, pages 391-395, 1992.

[111] R. B. D ’Agostino and M. A. Stephens. Goodness-of-Fit Techniques. Marcel Dekker

Inc., 1986.

[112] H. R. Neave. On using the Box-Muller transformation with multiplicative congruen-
tial pseudorandom number generators. Appl. Stat., 22:92-97, 1973.

[113] R Bello. Characterization of randomly time-variant linear channels. IEEE Transac­
tions on Communications, ll(4):36Q-393, 1963.

[114] J. I. Smith. A computer generated multipath fading simulation for mobile radio.

IEEE Transactions on Vehicular Technology, 24(3):39-40, August 1975.

[115] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall,

2002.

[116] S. O. Rice. Mathematical analysis of random noise. Bell System Technical Journal,
23:282-332, 1944.

[117] E. F. Casas and C. Leung. A simple digital fading simulator for mobile radio. In
IEEE Vehicular Technology Conference, pages 212-217, 1988.

[118] P. J. Cullen, P. C. Fannin, and S. S. Swords. DSP implementation of a wideband
frequency selective fading simulator. In International Conference on Antennas and

Propagation, pages 492 - 495, 1991.

[119] J. F. An, A. M. D. Turkmani, and J. D. Parsons. Implementation of a DSP-based
frequency non-selective fading simulator. In International Conference on Radio Re­

ceivers and Associated Systems, pages 20-24, 1990.

[120] M. Lecours and F. Marceau. Design and implementation of a channel simulator for

wideband mobile radio transmission. In IEEE Vehicular Technology Conference,
pages 652-655, 1989.

[121] A. K. Salkintzis. Implementation of a digital wide-band mobile channel simulator.
IEEE Transactions on Broadcasting, 45(1): 122 - 128, 1999.

[122] W. Zhuang. Adaptive importance sampling for bit error rate estimation inslowly
fading channels. In IEEE International Symposium on Wireless Networks, pages
1330-1334, 1994.

[123] M. A. Wickert and J. Papenfuss. Implementation of a real-time frequency-selective
RF channel simulator using a hybrid DSP-FPGA architecture. IEEE Transactions on
Microwave Theory and Techniques, 49(8): 1390 - 1397, 2001.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[124] D. Derrien and E. Boutillon. Quality Measurement of a Colored Gaussian Noise
Generator Hardware Implementation Based on Statistical Properties. In Proceedings

o f the IEEE International Symposium on Signal Processing and Information Tech­

nology, 2002.

[125] G. Arredondo, W. Chriss, and E. Walker. A multipath fading simulator for mobile

radio. IEEE Transactions on Communications, 21(11): 1325—1328, November 1973.

[126] R. N. Kolte, S. C. Kwatra, and G. H. Stevens. Computer controlled hardware simu­
lation of fading channel models. In Proceedings o f IEEE International Conference
on Communications, pages 1646-1650, 1988.

[127] A. Yerschoor, A. Kegel, and J. C. Ambak. Hardware fading simulator for a number

of narrowband channels with controllable mutual correlation. Electronics Letters,
24(22): 1367-1369, 1988.

[128] E. Casas and C. Leung. A simple digital fading simulator for mobile radio. IEEE
Transactions on Vehicular Technology, 39(3):205-212, August 1990.

[129] Z. Yansheng. A Rayleigh fading simulator for mobile radio. In Proceedings o f IEEE
Conference on Computer, Communication, Control and Power Engineering, pages

143-145, 1993.

[130] P. Cullen, P. Fannin, and A. Garvey. Real-time simulation of randomly time-variant
linear systems: the mobile radio channel. IEEE Transactions on Instrumentation and

Measurement, 43(4):583-591, 1994.

[131] M. Cui, H. Murata, and K. Araki. FPGA implementation of 4x4 MIMO test-bed for

spatial multiplexing systems. In IEEE International Symposium on Personal Indoor
and Mobile Radio Communications, pages 3045-3048, 2004.

[132] E. Biglieri, J. Proakis, and S. Shamai. Fading channels: information-theoretic and

communications aspects. IEEE Transactions on Information Theory, 44(6):2619-

2692, 1998.

[133] R. N. Kolte, S. C. Kwatra, and G. H. Stevens. Computer controlled hardware simu­
lation of fading channel models. In Proceedings o f IEEE International Conference
on Communications, pages 1646—1650, 1998.

[134] D. J. Young and N. C. Beaulieu. The generation of correlated Rayleigh random vari-
ates by inverse Fourier transform. IEEE Transactions on Communications, 48:1114-

1127,2000.

[135] E. N. Gilbert. Energy reception for mobile radio. Bell System Technical Journal,

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

pages 1779 - 1803, Oct. 1965.

[136] C. Xiao, Y. R. Zheng, and N. C. Beaulieu. Second-order statistical properties of
the WSS Jakes’ fading channel simulator. IEEE Transactions on Communications,
50(6):888-891, June 2002.

[137] C-X. Wang and M. Patzold. Methods of generating multiple uncorrelated Rayleigh
fading processes. In Proceedings o f IEEE Semiannual Vehicular Technology Confer­
ence, pages 510-514, 2003.

[138] Ascom. Full Featured Channel Simulator, 2002.

[139] C. Komninakis. A fast and accurate Rayleigh fading simulator. In Proceedings o f
IEEE Global Telecommunications Conference, pages 3306-3310, 2003.

[140] P. Hoeher and A. Steingafi. Modeling and emulation of multipath fading channels us­
ing controlled randomness. In in Proceedings TTG-Eachtagung "Wellenausbreitung
bei Funksystemen undMikrowellensystemen”, pages 209-220, 1998.

[141] A. Zajic and G. L. Sttiber. Efficient simulation of Rayleigh fading with enhanced de-
correlation properties, to appear in IEEE Transactions on Wireless Communications.

[142] K. E. Baddour and N. C. Beaulieu. Autoregressive models for fading channel simula­
tion. In Proceedings o f IEEE Global Telecommunications Conference, pages 1187—
1192, 2001.

[143] Spirent Communications. Wireless Channel Emulator, 2006.

[144] Japan Radio Co. Multipath Fading Simulator, 2005.

[145] NoiseCom, Paramus, NJ. NoiseCom M P-2500 Multipath Fading Emulator, Technical
Manual, 1996.

[146] J. Carletta, R. Veillette, F. Krach, and Z. Fang. Determining appropriate precisions
for signals in fixed-point HR filters. In Proceedings o f IEEE Design Automation

Conference, pages 656-661, 2003.

[147] L. B. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers,
1989.

[148] The Math works. Filter Design Toolbox For Use with Matlab, User’s Guide, 2005.

[149] R. A. Goubran, H. M. Hafez, and A. U. H. Sheikh. Implementation of a real-time
mobile channel simulator using a DSP chip. IEEE Transactions on Instrumentation
and Measurement, 40(4):709-714, 1991.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[150] M. S. Lim and H. K. Park. The implementation of the mobile channel simulator in
the baseband and its application to the quadrature type GMSK modem design. In
IEEE Vehicular Technology Conference, pages 469-500, 1990.

[151] G. J. R. Povey, P. M. Grant, and R. D. Pringle. A decision-directed spread-spectrum
RAKE receiver for fast-fading mobile channels. IEEE Transactions on Vehicular
Technology, 45(3):491-502, November 1996.

[152] A. Stephenne and B. Champagne. Effective multi-path vector channel simulator for
antenna array systems. IEEE Transactions on Vehicular Technology, 49(6):2370 -
2381, 2000.

[153] A. Antoniou. Digital Filters, Analysis, Design, and Applications. McGraw-Hill

Book Co., 1993.

[154] G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading
environment when using multiple antennas. In Proceedings o f Wireless Personal
Communications, pages 311-335, March 1998.

[155] G. Golden et al. Detection algorithm and initial laboratory results using the V-

BLAST space-time communication architecture. Electronics Letters, 35(1): 14-15,
January 1999.

[156] S. Loyka and F. Gagnon. Performance analysis of the V-BLAST algorithm: an ana­
lytical approach. IEEE Transactions on Wireless Communications, 3(4): 1326-1337,

July 2004.

[157] J. Benesty, Y. Huang, and J. Chen. A fast recursive algorithm for optimum sequen­
tial signal detection in a BLAST system. IEEE Transactions on Signal Processing,
51(7):1722-1730, July 2003.

[158] B. Hassibi. An efficient square-root algorithm for BLAST. In Proceedings o f IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 737-

740, 1999.

[159] D. Wubben et al. Efficient algorithm for detecting layered space-time codes. In
4th International ITG Conference on Source and Channel Coding, pages 399-405,
January 2002.

[160] Z. Guo and P. Nilsson. A low-complexity VLSI architecture for square root MIMO
detection. In IASTED Circuits, Signals and Systems, May 2003.

[161] D. Garrett et al. A 28.8 Mb/s 4x4 MIMO 3G high-speed downlink packet access re­
ceiver with normalized least mean square equalization. In IEEE International Solid-

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

State Circuits Conference, pages 420-536, February 2004.

[162] A. Adjoudani et al. Prototype experience for MIMO BLAST over third-generation

wireless system. IEEE Journal on Selected Areas in Communications, 21(3):440-
451, April 2003.

[163] P. Murphy et al. An FPGA based rapid prototyping platform for MIMO systems.
In Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, pages

900-904, November 2003.

[164] A. Burg et al. FPGA implementation of a MIMO receiver front-end for the UMTS
downlink. In International Zurich Seminar on Broadband Communications, pages

8-1-8-6 , February 2002.

[165] S. J. Dillen and B. F. Cockbum. Parallel filtering and thresholding of images on

the SIMD DSP-RAM architecture. In Proceedings o f IEEE Canadian Conference o f
Electrical and Computer Engineering, pages 995-1000, May 2002.

[166] B. S. H. Kwan, B. F. Cockbum, and D. G. Elliott. Implementation of DSP-RAM: An
architecture for parallel digital signal processing. In IEEE Canadian Conference on
Electrical and Computer Engineering, pages 341-346, May 2001.

[167] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: The Terasys massively

parallel PIM array. Computer, 28(4):23-31, April 1995.

[168] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power CMOS Digital Design.
IEEE Journal o f Solid-State Circuits, 27(4):473-484, April 1992.

[169] T. L. Marzetta and B. M. Hochwald. Capacity of a mobile multiple-antenna commu­
nication link in a rayleigh flat-fading environment. IEEE Transactions on Infomation
Theory, 45(1):139—157, 1999.

[170] T. L. Marzetta. BLAST Training: Estimating channel characteristics for high capac­

ity space-time wireless. In Proceedings o f the 37th Annual Allerton Conference on
Communication, Control, and Computing, pages 958-966, 1999.

[171] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Yetterling. Numerical Recipes
in C: The Art o f Scientific Computing. Cambridge University Press, 1992.

[172] G. Strang. Linear Algebra and its Applications. Saunders, 1988.

[173] J. Demmel, B. Diament, and G. Malajovich. On the complexity of computing error
bounds. Foundations o f Computational Mathematics, 1(1):101—125, 2001.

[174] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Press, 1996.

[175] L. W. Ehrlich. Complex matrix inversion versus real. Communications o f the ACM,
13(9):561-562, 1970.

[176] P. W. Wolniansky, G. J. Foschini, Q. D. Golden, and R. A. Valenzuela. V-BLAST:
An architecture for realizing very high data rates over the rich scattering wireless

channel. In Proceedings o f Int. Symposium on Signals, Systems, and Electronics,

pages 295-300, 1998.

[177] M. O. Damen, K. Abed-Meraim, and S. Burykh. Iterative QR detection for BLAST.

Wireless Personal Communications, 19(3): 179-192, December 2001.

[178] M. O. Damen, H. El Gamal, and G. Caire. On maximum likelihood detection and the
search for the closest lattice point. IEEE Transactions Information Theory, Special

issue on space-time coding, 2003.

[179] D. Gesbert and J. Akhtar. Breaking the barriers of Shannon’s capacity: An overview

of MIMO wireless systems. Telektronikk Telenor Journal, January 2002.

[180] E. Viterbo and E. Biglieri. A universal lattice decoder. In in 14 Collog. GRETSI
colloque, pages 611-614, 1993.

[181] E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE
Transactions on Information Theory, 45(5): 1639-1642, July 1999.

[182] M. O. Damen, A. Chkeif, and J.-C. Belfiore. Lattice code decoder for space-time
codes. IEEE Communications Letters, 4(5): 161-163, May 2000.

[183] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore. Generalized sphere de­
coder for asymmetrical space-time communication architecture. Electronics Letters,
36(2): 166-167, January 2000.

[184] U. Fincke and M. Pohst. Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Mathematics o f Computation,
44(170):463-471, 1985.

[185] D. Samardzija and N. Mandayam. Pilot-assisted estimation of MIMO fading chan­
nel response and achievable data rates. IEEE Transactions on Signal Processing,

51(ll):2882-2890, November 2003.

[186] S. Baro, G. Bauch, A. Pavlic, and A. Semmler. Improving BLAST performance
using space-time block codes and turbo decoding. In Proceedings o f Globecom,
2000.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

[187] M. C. Pease. Matrix inversion using parallel processing. Journal o f the ACM,
4(14):757-764, 1967.

[188] K. Diefendoriff. PC Processor Microarchitecture. Microdesign Resources, Micro­
processor Report, pages 1-7, July 1999.

[189] N. Yamashita et al. A 3.84 GIPS Integrated Memory Array Processor with 64
Processing Elements and a 2-Mb SRAM. IEEE Journal o f Solid-State Circuits,
29(11): 1336-1343, November 1994.

[190] Christoforos Kozyrakis. Scalable Vector Media-processors fo r Embedded Systems.
PhD thesis, University of California - Berkeley, 2002.

[191] Z. Wang, B. F. Cockbum, D. G. Elliott, and W. A. Krzymien. DSP-RAM: A Logic-
Enhanced Memory Architecture for Communication Signal Processing. IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing, pages 475-
478, August 1999.

[192] Z. Guo and P. Nilsson. A VLSI implementation of MIMO detection for future wire­

less communications. In IEEE Proceedings on Indoor and Mobile Radio Communi­
cations, pages 2852-2856, 2003.

[193] Intel. Intel AP-928: Streaming SIMD Extensions, 1999.

[194] ARM. ARM7TDMI Technical Reference Manual, 2001.

[195] Intel. Intel PXA255 Processor: Developer’s Manual, 2004.

[196] Texas Instruments. TMS320C6000 CPU and Instruction Set Reference Guide, 2000.

[197] TSMC. TSMC 0.18-pm process technology, 2003.

[198] H.-Y Lo and J.-L. Chen. A hardwired generalized algorithm for generating the log­
arithm base-k by iteration . IEEE Transactions on Computers, 36(11): 1363-1367,
1987.

[199] M. Patzold, U. Killat, F. Laue, and Y. Li. A new and optimal method for the deriva­
tion of deterministic simulation models for mobile radio channels. In IEEE Vehicular
Technology Conference, pages 1423-1427, 1996.

[200] M. Kiessling and J. Speidel. Statistical transmit processing for enhanced MIMO
channel estimation in presence of correlation. In IEEE Global Telecommunications
Conference, pages 2411 - 2415, 2003.

[201] B. Hassibi and B. Hochwald. Optimal training in space-time systems. In Conference

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Record o f the Thirty-Fourth Asilomar Conference on Signals, Systems and Comput­
ers, pages 743-47, 2000.

[202] Q. Sun, D. C. Cox, H. C. Howard, and A. Lozano. Estimation of continuous flat

fading MIMO channels. IEEE Transactions on Wireless Communications, 1(4):549-
553, 2002.

[203] L. Tomheim. Inversion of a complex matrix. Communications o f the ACM, 4(9):398-
398, 1961.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

List of Publications Arising From
Thesis

United States Provisional Patent Application
[1] A. Alimohammad, S. Fouladi Fard, B. F. Cockbum and C. Schlegel, “Signal filtering and filter
design techniques,” January, 2007.

Published and Submitted Journal Articles
[1] A. Alimohammad and B. F. Cockbum, “An efficient parallel architecture for implementing LST
decoding in MIMO systems,” IEEE Transactions on S ignal P rocessing, vol. 54, no. 10, Oct. 2006,
pp. 3899-3907.
[2] A. Alimohammad, B. F. Cockbum and C. Schlegel, “A compact and accurate Gaussian variate
generator,” submitted on September 19,2006 to IEEE Transactions on Very L arge Scale Integration

(VLSI) System s.

[3] A. Alimohammad and B. F. Cockbum, “Modeling and hardware implementation aspects of fad­
ing channel simulators,” submitted on Aug. 9,2006 to IEEE Transactions on Vehicular Technology.

[4] A. Alimohammad, S. Fouladi Fard, B. F. Cockbum and C. Schlegel, “A compact single-FPGA
fading channel simulator,” submitted on Nov. 3, 2006 to IEEE Transactions on C ircuits an d System s

P art II: E xpress Briefs.

Articles in Revision
[1] A. Alimohammad, S. Fouladi Fard, B. F. Cockbum and C. Schlegel, “An accurate SOS-based
fading channel emulator,” to be submitted to IEEE C om m unications Letters.

[2] S. Fouladi Fard, A. Alimohammad, B. F. Cockbum, C. Schlegel,“Theory and practice of rapid
baseband simulation of non-isotropic Rayleigh fading,” to be submitted to IEEE Transactions on

S ignal Processing.

[3] A. Alimohammad, Steven J. Dillen and B. F. Cockbum, DSP-RAM: A SIMD processor-in-
memory for signal processing, in revision.
[4] A. Alimohammad and B. F. Cockbum, A parallelizable displaced sphere decoding method for
MIMO systems, in revision.

Published and Accepted Conference Papers
[1] A. Alimohammad and B. F. Cockbum, “Compact implementation of a sum-of-sinusoids Rayleigh
fading channel simulator,” 6th IEEE In ternational Sym posium on S ignal P rocessing an d Inform ation

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Technology (ISSPIT 2006), Aug. 27-30,2006.
[2] A. Alimohammad and B. F. Cockbum, “A reconfigurable SOS-based Rayleigh fading channel
simulator,” IEEE 2006 International Workshop on Signal Processing Systems (SIPS 2006), Oct. 2-4,
2006.
[3] A. Alimohammad, B. F. Cockbum, C. Schlegel, “An iterative hardware Gaussian noise genera­
tor,” IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, August
24-26, 2005, pp. 649-652.
[4] A. Alimohammad, B. F. Cockbum, C. Schlegel, “Area-efficient parallel white Gaussian noise
generator,” IEEE Canadian Conference on Electrical and Computer Engineering, May 1-4, 2005,
pp. 1855-1858.
[5] A. Alimohammad, S. Fouladi Fard, B. F. Cockbum, C. Schlegel, “Statistical measurements of
random signals on FPGAs,” IEEE Canadian Conference on Electrical and Computer Engineering,
April 22-26,2007.
[6] S. Fouladi Fard, A. Alimohammad, M. Khorasani, B. F. Cockbum, C. Schlegel,“A compact
and accurate FPGA based non-isotropic fading channel simulator,” IEEE Canadian Conference on
Electrical and Computer Engineering, April 22-26, 2007.

Submitted Conference Papers
[1] A. Alimohammad, S. Fouladi Fard, B. F. Cockbum and C. Schlegel, “A flexible filter proces­
sor for fading channel emulation,” submitted to IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2007.
[2] S. Fouladi Fard, A. Alimohammad, C. Schlegel, B. F. Cockbum, “A high-throughput systolic
detector for MIMO systems,” submitted to IEEE Symposium on Field-Programmable Custom Com­
puting Machines (FCCM), 2007.
[3] A. Alimohammad, B. F. Cockbum and C. Schlegel, “A compact fading channel simulator us­
ing timing-driven resource sharing,” submitted to IEEE International Symposium on Circuits and
Systems (ISCAS), 2007.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

