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Abstract

Efficient operation of multizone fan-coil cooling systems with chilled-water stor-
age is studied in this thesis. First the system is considered as consisting of two
environmental zones plus storage, the model of the systemn is bilinear, which is lin-
carized through the use of state feedback. For this case, when electrical energy is
priced at a discount. during off-peak hours, the controller algorithms which provide
close regulation of the zone temperatures at minimum energy cost are obtained
through the method of state increment dynamic programming, augmented with
a label-tracing procedure to identify the periodic bu!, unknown initial/terminal
state. The results lead to several observations concerning economical operating
strategies, and the effect on electrical energy purchase or consumptior: is signifi-
cant. But treating the system as {wo environmental zones is not always realistic,
because a large office building has many rooms which have their own environ-
mental conditions and have different temperatur= demands. The two zone cooling
system should be augmented to multizone. Since the augmentation is limited by
the high-speed memory of the computer, a disaggregation/aggregation method
is developed and the soiution by this method, which is suboptimal, is evaluated
by comparing with truly optimai one. Another method is to compute optimal
control only in a region in which the optimal trajectories of interest are expected
to lie, then compulations are performed only in those blocks contained in it and
hence a considerable reduction in both computing time and memory requirement

can be obtained. Softwares are designed in C on Unix for both these methods.
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Chapter 1

Introduction

Although many methods of heating and cooling have been used for thousands of
vears (hand fanning, living in caves, wood and oil fires), Leonardo da Vinei was
probably the first inventor of an automatic cooling system. In 1500 A.D., he huilt
a water-driven fan to ventilate a suite of rooms for the wife of a patron. lHowever,
keeping cool was not easy for ordinary people until recently. The first cooling-
fan installation was made in a theater in 1922. Since that time, virtually every
type of building has been air conditioned, from giant skyscrapers to small homes.
Air conditioning (cooling) becomes an important part of people’s daily life. The
problem of improving or optimizing the control of heating and/or cooling systemn
has received some attention in recent years, since the practical solutions ol this

problem have economic significance.
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Figure * *: Schematic diagram of a multizone cooling system.

1.1 Cooling System with Chilled-Water Stor-
age
The cooling system with chilled-water storage mainly consists of three parts. The

cempression-cycle refrigeration unit (chiller); storage tank; and cooling zones. A

schematic diagram of the system is shown in Figure 1.1{2].

Tl : . . . : - .
Fhe prime function of the compression-cycle refrigeration unit is moving heat

o



from chilied storage[10].

Each zone of the system has its own fan-coll unit which consists of a cooling
coil. a circulating fan and supply and return pipes. The low temperature water
of the storage tank is pumped to supply pipes and carried to the coil. and then
comes back to the storage tank at a higher temperature through the return pipes.

Electric energy is consumed by the circulation pump.

This system sounds simple but its optimal control is challenging, analyticaliy,
since the simplest reasonable models for the system dyvnamics are nonlinear. The
cost function, moreover, is nonquadratic and the state and control variables are
bounded. Serveral related optimization problems, in the context of HVAC sys-
tems for zone heating/cooling , have been studied[1-6]. and several successful
suboptimal[5-6], and optimal[1-4] control synthesis procedures have heen found.
In {1} it was shown that an optimization method , state increment dynamic pro-
gramming , simplified through the use of the state feedback linearization and
decoupling. and augmented with a lable-tracing procedure to identify the peri-
:
odic but unknown initial/terminal state, nrovides a reliable way of solving such

problems.

1.2 Research Objectives

The problem under consideration is that of finding the minimum-cost strategy for
operating a multizone cooling system thai might be typical of an office building
divided into a number of zones. Of particular ints rest is the case where the storage
capacity is substantial, for then the chiller can be mainly operated at times when
zone cooling loads are low, e.g. to take advantage of off-pcak eclectrical energy

that may be offered at a discounted price by the utility company.



Under the assumption that the zone cooling-load profiles are going to be peri-
odic. with 24-hour neriod, the method of state increment dynamic programming.
augmented with a label-tracing procedure[l], caxi be used to project the optimal
periodic temperature trajectories for the chilled storage and zones such that the

cost of energy consumption is minimumn.

While reliable, this method was found to be practical only for systems with a
small number of zones, e.g. four or fewer, since the “curse of dimensionality”,
common to all applications of dynamic programming, makes the computational
workload excessive when the number of state variables (zone temperatures plus
storage temperature) exceeds five or so. In this respect, the main objective of
the rescarch undertaken for this thesis was to extent the application of dynamic
programming methods to cooling systems with many zones. This involved the

study of:

e Dynamic programming, comparing the conventional dynamic programming

method with the state increment dynamic programming method.

e Idlicient operation of two-zone systems with chilled-water storage, via using

the state increment dynamic programming method directly.

o Aggregation/disaggregation sequential approach, developed for extending
the dynamic programming method to multizone systems of much larger
size. The suboptimal solution obtained by this technique is evaluated by

comparing with the optimal one.

e lor the same purpose as above, a block by block method is designed, which

provides optimal soluiions.

Both new approaches are practical and reliable. As examples, the results of



aggregaiion/disaggregation sequential approach as applied to eight zones and

block by block method to four zones are provided and discussed.

1.3 Thesis Organization

This thesis consists of five chapters. Chapter 1 provides a brief introduction
to multizone cooling system with chilled-water storage. The principles of dy-
namic programming, conventional dynamic programming procedure, and state
increment dynamic programiming procedure are explained in detail in Chapter 2.
Efficient operation of a bilinear two- zone cooling system is studied and the resalt
for a system with two environmental zones is presented in Chapter 3. In chap-
ter 4, first the aggregation/disaggregation sequential approach is introduced. the
application to eight zone cooling system is shown, then a block by block method
is developed for muitizone cooling system with larger size and the result of this
technique as applied to four zones is discussed. Conclusions are drawn in Chapter

J.



Chapter 2

The Principles of Dynamic

Programming

2.1 Introduction

Optimal control is one of the most active research areas of modern technology,
but it has been applied in cooling systems only in recent decades, after numer-
ous techniques for solving this type of problem have been developed. Dynamic
programming|7], originally developed by Richard Bellman. has long been recog-
nized as an extremely powerful approach to solving optimization problems. The
basic approach of dynamic prograinming is ideally suited for implementation on
a digital computer. The standard computational algorithm based on dynamic
programming is very desirable from a number of points of view, including the
generality of problems to which it can be applied, the nature of the solution that

is obtained, and the ease with which it can be programmed.

Despite the attractive features of the standard algorithm, its applicability thus

far has been limited to relatively simple cases. This is due to the large computa-



tional requirements of this algorithm. The most severe restriction is generally the
amount of high-speed memory required to implement the basic calculations. An-
other difficulty is the amount of computing time required to obtain the complete
solution. Thus, while dynamic programming is frequently used as an analytical
and conceptual tool, the computational difficulties associated with the standard
algorithm have severely limited its application to large-scale optimization prob-

lems.

As a result of this situation, a number of researchers, including Bellman and
his colleagues, have been motivated to develop new computational procedures
which retain the desirable properties of the standard algorithm but reduce com-
putational requirement [8]. State increment dynamic programming [9] is one of
the procedurcs that greatly reduces the high-speed memory and computing time
requirement. State-increment dynamic programming has been a powerful yet

practical method applied in many optimal control fields.

2.2 Dynamic Programming Fundamentals

2.2.1 Problem Formulation

The optimization problems to which dynamic programming applics are variously
called dynamic optimization problem. The essential elements of the problem are
system equations, which describe the process being controlled; the performance
criterion, which evaluates a particular control policy; and the constraints, which

place restrictions on the system operation.

The system equations are a set of relations between three types of variables. The

first type is the state variable, these variables provide a complete description



of the dynamic behavior of the system. The second type is the control variable.
These variables are the decisions that are to be made in an optimum fashion. The
third type is the stage variable, which determines the order in which controls are

applied, it is generally taken to be time. The equations are taken to be a set of

nonlinear time-varying differential equation:

@ = f(r,u,t) (2.1)

where x = n-dimensional state vector
u = ¢-dimensional control vector
[ = stage variable, assumed to be time

In order to represent these equations on a digital computer, some finite integration
formula must be used to approximate the differential equation. The simplest

approximation is

o
o
'

a(t +61) = z(t) + fla(t) u(t), t]ét (

where 81 = time increment over which control u(t) is applied.

The performance criterion, which determines the effectiveness of a given control
function, is taken to be a cost function that is to be minimized. This cost function

has the general; variational form, which is

J = [ la(o),u(z), 0160 + Vlalts) 1] (2.3)

where {p = initial time

{y = final time

oL



o = dummy variable for time
[ = loss function; cost function per unit time
¢* = scalar functional for final-value cost

Again. il this equation is to be represented on a digital computer, the integration

must be approximated by finite formula. The simplest formula is

/HM llae(o) u(o).o)da >~ 1o (1) u(l). t]ét (=

[
—
—_

The constraints in the problem are expressed as

r e X(1) (2.5)
u e Ult) (2.6)

where X, the set of admissible states, can vary with time {, and where U] the set

of admissible controls can vary with x and t.

The optimization problem can then be stated as follows:

Given:

—

. A system described by Eq.( 2.1)

o

. constraints that = € X (1), v € U(!)

3. An initial state x(0)

Find:



II

Figure 2.1: Illustration of the principle of optimality.

The controi function u(t), to < ¢ < iy, such that the performance criterion in

I5.( 2.3) is mi..;mized and all the constraints are satisfied.

2.2.2 Bellman’s Principle Of Optimality

The heart of dynamic programming is Bellmzan’s principle of optimality. This
principle makes it possible to construci a computational procedure that retains
the desirable properties of the enumeration procedure. The principle of optimality
can be stated as follows: given an optimal trajectory from point A to point C,
the portion of the trajectory from any intermediate point B to point C must be

the optimal trajectory from B to C.

In Figure 2.1, if the path I-II is the optimal trajectory from A to C passing
through B at time 14, to < 1, < ty, then according the principle of optimality,
path 11 is the optimal path from B to C over time interval(t, t;). The proof by
contradiction for this case is immediate: assume that some other path, such as
II'. is the optimal path from B to C. Then, path I-II’ has less cost than Path I-II.

However. this contradicts the fact that I-II is the optimal path from A to C, and

10



hence Il must be the optimal path from B to C.

2.2.3 Derivation Of The Iterative Functional Equation

In order to write the iterative equation, the minimum cost function I(x.t), must
first be defined. This function determines the minimum cost that is incurred in
going to the final time if the present time is t and if the present state is x. It is
defined for ail admissible states + € X and for all time ty <t < 1. The defining

equation is

e
-1
~

I(x,t)= min / ! Ha(a),u(o),aldo + pla(ly). ). (2.
&ast, ™!

where (1) = x.

The iterative equation can be deduced from the principle of optimality. If the
approximations of Equations( 2.2) and ( 2.4) arc used, this equation is obtained

as

I(z,1) = n]ei(l}l(x’ u,t)6t + Ia + [(a,u,b)ot, L+ 61). (2.8)

The interpretation of this equation is that the minimum cost at a given state x
and the present time t is found by minimizing, through the choice of the present
control u, the sum of ![z,u,1]ét, the cost over the next time interval 4L, plus
Iz + f(x,u,t)ét,t + 6], the minimum cost of going to ty from the resulting next
state, z + flz, u, 1]ét.

This iterative equation is solved backwards in time because [(x,t) depends on

values of the minimum cost function at future times. Consequently the iterations

11



begin by specification of the minimum cost function at the final time, t;. Using

Baq.( 2.7),

I(z,15) = ¢(z,1y) (2.9)

The minimum cost function for all x at t can be evaluated by iteratively solving
Eq.( 2.8) with Eq.( 2.9) as a boundary condition. The optimal control at every
x and t, denoted as w(z,t), is obtained at the value of u(t) which minimizes

Iiq.( 2.8) for the given x and t.

2.3 Conventional Dynamic Programming Com-

putational Procedure

2.3.1 Computational Procedure

During conventional dynamic programming computational procedure, the stage
variable can either be continuous or discrete. If it is continuous, it is denoted
as t, defined over interval tq <t < ¢;; while if it is discrete, it is defined as the
sequence k = 0,1,2,..., K. In order to implement the procedure of this section,
when the stage variable is continuous, it is quantized into increments, denoted
as At. The quantized values of t that lie in the range over which t is defined,
to £t < ty, can then be indexed by the discrete sequence k = 0,1, ..., K, where

the value of t corresponding to k is given by

t=to+ kAt (2.10)

and where



KAt =15 -ty (2.11)

The optimization problem can then be stated as follows:

1. A system described by x(k+1) = g[x(k), u(k), k], where gis an n-dimensional

vector functional
2. Constraints that @ € X(k), v € U(z,k)

3. An initial state x(0)

Find:

The control sequence u(0),u(1),...u(K) that minimize

while satisfying tl.: constraints.

The iterative relation, Eq.( 2.7) can be rewritten as

I(rc,k)=meilrjll[z',u,k]+I[g(z,u,k),k+ 1] (2.12)

The boundary condition is then

I(z,K) = $(z, 1) (2.i3)

The range of the state variables can be restricted by relation such as

BT <z <Br (i=1,2,..,n) (2.14)

13



In order to apply the dynamic pregramming computational procedure, there must
be a finite number of admissible states. This requirement is usually met by
quantizing these variables. Within the range determined by Eq.( 2.14) each state
variables x; is quantized with uniform increment Az;, these increments could be
nonuniform, but necedless notational complications would arise. The quantized

values of x; are thus

T; = ﬂl— +jA.Ti (2.15)
where 7=0,1,...,N;
N Az = /3;*' - /3;

The set of all X, where each component z; is quantized according to Eq.( 2.15)

will from now on be referred to as X, the set of quaniized admissible states.

The control variables can also be restricted as

a; Su; < a;-* (1=1,2,...,q). (2.16)

Tlie control variables can also be quantized according to relations similar to

T

{2q.( 2.15). However, in this section it is sufficient to assume that there are a
finite number of admissible controls. The set of admissible controls U, can thus

be denoted as

U=u" o3 . oM (2.17)

where M is the total number of admissible controls.

Once all these have been determined, it is possible to compute optimal control by

iterative application of the functional equation, Eq.( 2.12). Consider a quantized

14



state * € X at stage (A'—1). At this state each of the admissible control «t™ ¢ U
is applied. For each of these controls the cost of control over the next stage can

be determined as

Lgm) — [[1.,11(711)’ KN —1] (m=1,2,.., Al (2.18)

Next, for each of these controls the next state at stage K is determined from the

system equation,

™K = glz,u™ K —=1] (m=1,2,..,M) (2.19)

The next step is to compute the minimum cost at stage K for each of the state
a(m). However, in general a particular state z{™ will not lie on one of the quan:
tized states * € X at which the optimai rost /{2, /') is defined. In fact, it may lic
outside of the range of admissible states determined by Eq.( 2.14). In the latter
case the control is rejected as a candidate for the optimal control for this state

and stage.

If a next state 2(™ does fall within the range of allowable states, but not on
a quantized value, then it is »: ¢z .sary to use some type of interpolation pro-
cedure to compute the minim. - . cost function at these points. In general, the
interpolation procedure consists of using a low-order polynomial in the n state
variables to approximate the minimum cost function at quantized states, = € X.
The determination of the coefficients is made according to some criterion, such
as least-squares fit. Computation procedures for calculating the coefficients arc

relatively simple and well-known.

Assume, then, that the values of the minimum cost at the state 2™ can bhe

expressed as a function of the values of the optimal cost at quantized state z € X.

15



™), 5] = Ple™) K, I(z,K)] (z€X) (2.20)

where P is minimum cost at the next state, which is found by interpolation using

th - values of 1(x,k) at quantized states.

The total cost of applying control u{™ at state x, stage (A — 1), can then be

written as

S =l u™ K = 1]+ 1™, K] (2.21)

The minimization can be achieved by simply comparing the M quantities. Ac-
cording to the functional equation, the minimum value will be the minimum cost

at state x, stage (A — 1).

Iz, K = 1] = um)igul[x,u(mh K — 1]+ Ijz™, K] (2.22)

The optimal control at this state and stage, 4z, K — 1], is the control «(™) for

which the minimum in Eq.( 2.22) is actually taken on.

This procedure is repeated at each quantized z € X at stage ' — 1. When this
has been done, I(a, N — 1) and 4(z, K — 1) are known for all * € X. It is now
possible to compute I(x, A —2) and 4(x, K —2) for all € X based on knowledge

of I(a, K —1).

The general iterative procedure continues this process. Suppose that I(z,k + 1)
is known for all @ € X. Then I(z,k) and 4(x, k) are computed for all z € X

from

I(x. k) = min [z, ™), k] + I[z™), k + 1] (2.23)

U('")GU

16



where 7"} is determined from

J,(m) — g[;l.’,u("‘)‘]\-] (221)

and where I[zt™), k+1] is computed by interpolation on the known values I{e, k +

1] forx e X

™) k1) = Pet™ k+ 1,12, k4 1)) (2.25)

The optimal control @(x, k) is the control for which Eq.( 2.23) takes on the mini-
mum. The iterative procedure begins by computing @(x, N — 1) and [(«, N — 1)
from the given boundary conditions, I(x, k') and it continues until &(e,0) and

[(2,0) have been computed.

2.3.2 Computational Requirements

Before using dynamic programming to solve an actual problem on a digital com-
puter, 1t is necessary to determine how much computational eflort is required to
solve the problem. The requirement are given in terms of the amount of mems-
ory needed to store both program and data and the amount of time required to
perform the computations. If for a given computer, either there is not sufficient
memory available or if the cost of computing time exceeds the economic value of
the results, then the problem could not be run on that computer. If this is true
for all available computers, then the problem, while solvable in principle , must

be regarded as unsolvable in a practical sense.

The most commonly encountered barrier to the use of dvnamic programming is

the high-speed memory requirement. This requirement refers to the number of
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locations in the high-speed access memory which must be available during the
computations to store intermediate result, in addition to the locations needed for
the program, the compiler and other special functior . The dynamic program-
ming procedure requires that sufficient data be stored to specify I(x,k) for all
r € X at a single value of k. In gen.eral, this is done by storing one value of
I(ir, k). Since data type double is used for this value (one double is 8 bytes), the

high speed memeory required is then
I 3 }

N, = H N; * 8 bytes (2.26)

=1
where N is the number of quantized values of ith variable and n is the total

number of state variables.

A scecond storage problem arises in retaining the results of the computation.
there are N stages, then the number of values of 4(x, k) and of I(z. k) which are

computed is N. where

n
N, = H Nix K * 8 hytes (2.27)

=1
Although this number can be extremely large, currently available low-speed mem-
ory devices are capable of storing this much information reliably and at a rea-

sonable cost.

The computing time requirement is also related to the vast number of results
that arc obtained. If N, values of 4(x, k) and I(z, k) are obtained and if it takes
Al seconds for each computation, then the total amount of computing time is

1.
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n
T. = H Nix K * /\l. secs (2.2%)

=1
For example, if there are 3 state variable (n = 3), and if there are 100 quantization
levels in each variable(N; = 100, 2 = 1,2,3), 50 stages and the time {or each

computation is 50 * 107° secs then the high-speed memory approximately:

Ny, = (100)% x § = 8 * 10%byles (2.29)

The low-speed memory requirement is

Ne = (100)* 50 % 8 = 4 » 10%ylcs (2.30)

The computing time requirement. is

T. = (100)° * 50 * 50 * 107¢ = 2500sc¢cs = 41.6Tminulcs (2.31)

Although N, and T, are reasonable number, N, is quite large for high speed

meinory.

Despite the great advantage over enumeration, the preceding results of the con-
ventional dynamic programming computational procedure indicate that compu-
tational requirement can be extremely large for even moderately sized problems
and in most case, the high-speed memory requirement becomes excessive before

the other requirements do.
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2.4 State Increment Dynamic Programming

2.4.1 Basic Concepts of State Increment Dynamic Pro-

gramming

State increment dynamic programming[15},{16],{17],[18] is an optimization pro-
cedure that has all the desirable properties of the conventional dynamic pro-
gramming computational procedure and yet has much smaller computational re-
quirements. In particular, the high-speed memory requirement is always reduced
significantly. Similar savings in computing time and low-speed memory can also

be achieved in certain cases.

The optimization problem to which the state increment dynamic programming
computational procedure is applied is most conveniently formulated in the continuous-
time case. The stage variable t, thus varies continuously over the interval {; <

{ < 1y. The problem is stated as:

1. A system equation as = = f(x,u,t)

[o]

. Constraints on state and control variables as @ € X(t), u € U(z,1)

3. An initial state, x(to)

FFind:

A control function u(t), t¢ < ¢t < ty, such that the performance in Eq.( 2.3) is
minimized and all the constraints are satisfied. The iterative functional equation

becomes

I(z,1) = nleill}(l[af, u,t)6t + Iz + f(x,u,t)dt, 1+ 6t]) (2.32)
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and the boundary condition is

I(x.ty) = ¥(x,1y) (2.33)

The state variables and control variables are restricted and quantized in the
similar manner of conventional dynamic programming. The state variable t is

also quantized with an increment size At.

The fundamental difference between state increment dynamic programming and
conventionzal dynamic programming is in the method for determining 61, the time
interval over which a given control is applied. In conventional dynamic program-
ming the total time interval over which optimization is performed. o <t < 1y,
is quantized into uniform increment At, and optimal control is computed only at
these quantized values of t. In computation of optimal control according to the
iterative functional equation, the next state is always taken to occur Al seconds
after the present state. Consequently, every admissible control is considered to
be applied for At seconds. Therefore, in conventional dynamic programming,
8t = At i.e. the time over which a given control is applied is fixed at Al time
interval between successive computations of optimal control. In state increment
dynamic programming, on the other hand, the determination of these two time
intervals is made independently. The time interval between successive computa-
tions of optimal control may or may not be fixed. However, é¢ varies with cach
control which is applied. The interval é¢ is determined as the minimum time
interval required for any one of the n state variables to change by one increment.
This is the source of the name “state increment dynamic programming”. If Az;
is the increment in the ith state variable and if control u is being applied at state

x and time t, then 6t can be expressed as
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§1= mi D

=t | ol u, 1) (2.34)

As a result, the next state, z + f(z,u,1)6t, is always close to the present state.
Specifically, it lies on the surface of an n-dimensional hypercube centered at x,
with length 2AAz; along the z;-axis. In the general case of conventional dynamic
programming, on the other hand, because control is always applied for the fixed
increment A, the next state can occur anywhere in the space of admissible states.
This difference enables state increment dynamic programming to reduce the com-
putational requirements from those of conventional dynamic programming. If the
next state is close to the present state, as in state increment dynamic program-
ming, in order to perform the interpolation of the minimum cost function, as
required in the iterative functional Eq.( 2.7), it is necessary to store values of
the minimum cost function at only those quantized state near the present state.
However, if the next state can occur anywhere in the space of admissible states,
as in conventional dynamic programming, then, it is necessary to store values of

the minimum cost function for every quantized state r € X.

A significant overall saving in high-speed memory requirement can also be achieved
by only processing the data in units called blocks. Blocks are defined by parti-
tioning the (n+1)-dimensional space containing the n state variable and time into
rectangular sub-units. Each block covers w; increment along the r;-axis and AT
seconds along the t-axis. A particular block is denoted by the largest values of
the coordinates that are contained within the block. The block B(j1, j2, 735 --+s Jn)

contains values of x and t such that

(i = DwiAz; < z; - 7 < jywlDa; (i =1,2,...,n) (2.35)

[SV)
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(jo — NAT <t =ty < joAT (2.36)

where j; = 1,2.....J;

J,'ll.‘,'A.’l‘,‘ = ,B;*- - ,B,—

JoAT=tf—io

As indicated by the above equations, the boundaries between blocks are consid-
ered to be in both blocks. The number w; are taken to be small integers, usunally
between 2 and 5. The value of AT, on the other hand, is taken to be consid-
erably larger than the average value of 6t as determined by Iq.( 2.34). For a
one-dimensional example the blocks are two-dimensional rectangles. A typical
set of blocks is illustrated in Figure 2.2 where w, = 3, #f = 120w, ] = 0,
t; = 4AT and {op = 0. Note that each block contains w;, + 1 = 4 ¢rantized values

of qIy.

In state increment dynamic programming, computations are done for one block
at a time on the assumption that optimal trajectories never leave the block.
Since each block contains only (w; + 1) increments along state z;, there are
a relatively small number of quantized states contained within a single block.
Furthermore, the method of choosing é¢ implies that, unless the present state is
on the boundary of the block, the quantized states needed for interpolation of
the minimum cost function at the next state are witlin the block. Therefore,
the number of high-speed memory storage locations required for computation of
optimal control in one block is quite small. Also since AT is relatively large,

a large number of computations of optimal control take place within the block
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Figure 2.2: Blocks for one-dimensional example.

using a small number of high-speed memory storage locations.

2.4.2 Computation Procedure Within a Block in the Gen-

eral Case

In the general case, the time interval AT is further divided into small increments

Al a set of quantized times is determined

where
s=0,1,2,...,8
SAt = AT

Typical values of S range from 5 to 15. Optimal control is computed at each
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quantized = € X for each quantized t of the form above. The operations at a

given < and t take place as follows:

Each admissible control «(™ € U is applied. For each control, the time over
which the control is applied is determined as Eq.( 2.31). the corresponding next

state is computed as

2™ =z + fla,ut™), )6t (2.38)

Interpolation formulas such as (2.25), but restricted to the current block of quan-

tized states, are used to obtain

Iz + f(a,u'™ )61™) ¢ 4 61 (2.39)

Then the iterative functional equatiun becomes

I{r,t)= ltéilgl(a:,:l""’),t)ét + I+ f(x,ul™, 1)6L,t + 61) (2.40)

The optimal control at state x, time t, denoted as (wx, ) can be evaluated directly

as that control for which I(x,t) takes on its minimum value.

2.4.3 Procedure for Processing Blocks

In the procedure describe so far, it has been assumed that the next state is always
in the same block as the present state. In order to allow optimal trajectories to
pass from block to block, the computations near the boundaries of the block must,
be slightly modified. For two adjacent blocks, one of which has been processed

and the other has not, a sequence of optimal points has been computed along



the boundary between these blocks. In the computation of the latter block. the
optimal points are stored in the high-speed memory, and no new optimal points
are computed along the boundary. Values of the optimal cost function for these
points are used in evaluating the cost of those controls applied at states within
onc increment of the boundary for which the next state lies on this boundary. It
is then true that an optimal trajectory can pass from a state in the interior of the
block being computed to the boundary with a previously computed block. From
this boundary the optimal trajectory can then travel further into the previously
computed block. In this manner, transitions from a given block to an adjacent
block that has been previously processed can take place without constraint, pro-

vided that optimal points on the boundary are available.

In some problems of physical significance, it is possible to obtain enough insight
about the system so that it is possible to determine the direction which optimal
trajectories are most likely to take. This direction is called the “preferred” direc-
tion of motion. When a preferred direction of motion can be specified, adjacent
blocks in a given time interval are processed in order such that the preferred direc-
tion is from the block processed later to the one processed first. In this manner,

interblock transitions in the preferred direction take place without constraint.

Since the preferred direction of motion cannot always be determined exactly
before the computations begin, it is necessary to have available techniques for
allowing interblock transitions into a block that has not been previously com-
puted. These techniques can be either very complex, if the preferred direction is
not well-defined, or else quite simple, if it is known accurately. Since this case is
notl used during this research, further discussion (see chapter 6 of State Increment

Dynamic Programming|9]) is not provided here.



2.4.4 CUspmputational Requirement

Smece o the state increment dynamic programming procedure the next state is
arwar- v lie same block as the present state, the high-speed mi mory require-
meni '+ consooably less than that of the conventional procedure. In the general
case fa il covers w;Az; units along the ith axis, so that there are (w; + 1)

quant:zation leve! - in each block, then the high-speed memory requirement is

n
Ny = JJ(w; +1) % 8 bytes (2.41)
i=1
For a system with three state variable and 100 quantization levels in cach state

variable, block size is (w; +1) =5, §+1 =11, ¢ = 1,2,3 the high speed memory

requirement is

Ny =5%5*5%8 =125 8; bylcs

which is far less than 10 * 8 bytes corresponding to requirement for conventional
dyvnamic requirement. For the low-speed memory, a tetal of Ny computations

per block is

n

Nyy=258 H w; * 8 byles (2.42)

1=1

If the number of blocks processed is N, then the low-speed memory requireinent,

is given by

N, = NS [ wi * 8 bytes (2.43)

=1

if At. seconds are required for each computation, the total computing time is
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T. = NbSAtCH w; SeCs (2.44)

=1



Chapter 3

Efficient Operation of a Bilinear
Two-zone Cooling System with

Chilled-Water Storage

3.1 Introduction

The cooling system under study has two environmental zones. Figure 3.1 shows
cach zone has its own fan-coil unit which counsists of a cooling coil, a circulating
fan and supply and return pipes. Pipes carry water to the coil and back to the
storage tank. A compression-cycle refrigeration unit (chiller) removes heat from

the storage tank.

Of particular interest is the case where the storage capacity is substantial, for
then the chiller can be mainly operated at times when the zone cooling loads are
low, e.g. to take advantage of off-peak electrical energy that may be offered at
a discount price by the utility company. Under the assumption that the zone

cooling-load profiles are going to be periodic, with 24-hour period, the principle
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Zone-1
T
zl
Chilled Water
Storage (Tc)
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T
Pump 2
—  Evaporator
u3
Compressor }%{
Condenser
Figure 3.1: ¢l matic diagram of a two-zone cooling system.
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goal of the research is development of controller algorithms that can be expected
to maintain the zone temperatures within comfort limits, despite diurnal and
stochastic fluctuations in ambient conditions and cooling loads, at the same time
controlling the chiller in such a way as to minimize the cost of purchased energy.
This solution is not obvious, since lower temperature chilled water allows for
lower mass flow rates, but implies low coefficient of performance (COP) of the
chiller and hence higher energy consumption for the chiller. On the other hand,
higher temperature chilled water can still allow for zone cooling loads to be met,
but only at the cost of high mass flow rates through the coils with high pumping

power and, indirectly, high capital cost.

In [1] it was shown that an optimization method, state increment dynamic pro-
gramming, simplified through the use of state feedback linearization and decou-
pling, and augmented with a label-tracing procedure to identify the periodic but
unknown initial/terminal state, provides a reliable way of solving this problem.
After the optimal periodic temperature trajectories for the storage tank and zones
have been found, simple feedback controllers can then use them as reference tra-

jectories, tracked by the actual temperatures.

3.2 Problem Formulation

For the particular problem shown in Figure 3.1, the stage variable is time t. The
state variables are T}, (i=1,2) the temperatures of each zone, and 7, temperature
of storage tank. There are three control variables, u;, mass flow rate of zonel,
Uy, mass flow rate of zone2, and us, input power of the chiller. The equations
of state for the system can be written as heat balance equations for the three

lumped capacities, as shown below:
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(':11'~1 = - ((Ts = T.) + aqa(Te — Tz) + g (i) (3.1)

CaoTo = —wa((To = T.) + ax(T = Tia) + g:2(1) (3.2)

('T. = —113(;7()13 + UIC(T:I - Tn) + u2C(T:2 - Tc) + ac(Te - Tc) ('33)

a.: zonel heat loss coelficient
a.,: zone2 heat loss coefficient
heat loss coeflicient of storage tank
('-):  heat capacity of zonel
(".,: heat capacity of zone2
(".: heat capacity of storage tank
q-y:  cooling load of zonel
g-2:  cooling load of zone?2
1.: terperature of environment
¢: heat exchanger coefficient

('OP:  coeflicient of performance of the chiller

The first terms on right side of Eq.( 3.1) and ( 3.2) are heat transfer rates from
zone i to circulating chilled water with pumping rate u;, the second terms are
heat transfer rates from the environment to each zone, and the third terms are
cooling loads generated by occupants and equipinent within each zone. The third
equation represents the heat balance for the chilled-water storage tank, where
the first term on the right side is rate of heat removal by the chilling unit, with

coeflicient of performance for refrigeration modeled as



C‘Opma.r -l - ’IV - Tt 71mu.r * f -T - 1:' < Tmru'
COP = ( ) (1o )/ Jo il Ty (3.0)

O. lf 7‘() - 7: > Tnuu‘

C'OP,,,» 1s the maximum achievable heat pump coeflicient of performance. 1
is the temperature of the water or air used for cooling the condenser, and 15,4,
is the maximum temperature difference achievable between condenser and evap-
orator. The notable fact is that the state equations are bilincar, linear in the
state variables and in the control variables, but not jointly linear in both kinds

of variables. If new state variables are defined by scaling the temperatures as

r = \,/: T, Iy = ‘\/(.":2 Ty Iy = \/(—(’

the corresponding state dynamic equations can be written as

= Ar 4+ By + uy Bor + uy By + Chu 4 d(1) (:3.5)

where A is the diagonal mnatrix

A=diag(—a,/C. —asn)Co.—a /() (3.6)

the B matrices are the symmetric matrices

10 —ym 0 0 0 000
By =b 0o 0 0 i Ba=by |0 1~ [iBs=bs{ 0 00
-/ 0 0 -2 T 0 0 I

(3.7)

Whel‘(’ bl = —C/C'zle b? = —C/C"Z'Z-, bG = _(C'Ol)mar - l)/(/'r.'l'mu.r: = ("zx/(-"r
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The control vector u is

u = [uy, ug, uaf’

and C and d(t) are given by

00 0 (alee + q:1 (t))/v C‘z.'l
C=100 0 |; d{t)=| (a2T: + ¢:2(t))/vC 2 (3.8)
0 0 ca3 a.Te(t)/VC:

where
€33 = _(COPmaa' - 1)(1 - TO/Tma.r)/\/Z":

It is clear that system Eq.( 3.5) will be stable with any fixed choice of control

vector, since the system matrix

A4 u By 4+ u By + uzBs

is symmetric with real eigenvalues, orthogonal real eigenvectors, and adding
I2q.( 3.1) through ( 3.3) yields that the rate of change of system stored energy

cannot grow without bound.

d 2
'('I—['[C:l T:l + C:2T:2 + CcTc] = Z[azi(Te - Tzi) + (Izi] + ac(Te - Tc) - U3COP

i=1

The optimal control problem to be solved is minimization of the performance

criterion

24 ‘
J = A [P(6)(Rivd + Roul + us) + a) (21 — 215)2/Ca1 + ag(x2 — 245)?/Ciadt (3.9)
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where p(t) is the energy price factor which can be changed periodically. The first
and second terms in the integrand are the cost of electric power consumption by
circulation pumps {assuming incompressible laminar flow), the third term is the
cost of electric power input to the compressor drive motor, and the last two terms
are weighted index of discomfort from zone actual temperature deviations away

from setpoint or desired temperature.

One day is considerea as a period, related temperature of outside environment
(T.) and cooling loads, approximated as hourly constant, are forecasted at time
t=0. Typical daily cooling loads acting on the zones are shown in Figure 3.2. The
price of purchased energy was allowed to vary periodically as well. Constraints are
specified on temperature of both zones and storage wank as: 23°C' < T%; < 31°C
1 =1,2; 8°C < T. < 15°C for all t, value assumed for T, = 15°C’, initial state

x(0) unknown, but subject to periodic boundary conditions

z(0) = z(24) (3.10)

The constraints of control variables are u;(t) > 0 for all t, 7 = 1,2,3. No max-
imum constraints on control inputs are assumed here, since very large values
are penalized due to their presence in Eq.( 3.9). Despite the fact that uy ap-
pears only linearly, optimal solutions will always be hounded because excessive
uz values cause the coefficient of performance COP to decrease rapidly, effectively
penalizing us at a faster-than-linear rate. In fact, one can draw certain intuitive

conclusions about what an optimal strategy should accomplish. It should

1. Avoid excessive exchanger sizes and pumping rates, by keeping (1% — T,)

high.
2. Use the chilling unit with COP values as high as possible, by keeping (7, -
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T.) low.

Obviously these goals are conflicting, minimization of Eq.( 3.9) with suitable

weights provides for optimal compromise.

3.3 Linearization by State Feedback

In order to find control variables conveniently, state feedback linearization is
used. Treating the three state variables as observable outputs, the method of
exact lincarization by state feedback [11] can be easily applied. The result is
obtained by writing the equation of state in the form

= Az + E(z)u + d(t) (3.11)

where

E(.’l) = [Bx.’L’-*-Cl |Bg.’l‘+Cg|Bg.’L‘+Ca] (312)

and where C = [¢]ez]cs).

This matrix can be simplified for the class of problems considered here, by noting
that the B matrices given in Eq.( 3.7) are symmetric and of rank one, hence can

be written as

B,‘ = b;[w,—][w;]t (313)

where the vectors w; are
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1 0 0
w = 0 3 wy = 1 ) w3y =1 () ('31”

L -V -7 |

Therefore

E(x) = [biwig1(2) [bowaga(2)] €3 + bsrwsgs ()] (3.15)
with g;(v) = wlz, and for any state x of interest E(x) is nonsingular, i.c.

det E(x) = bybygi(2)ga(a)[cas + bags(a)] # 0 (3.16)

since if E(x) is singular g; or g, or ¢az + bsgy should be zero. This implies that
T. = T. or COP = 0. which will never occur during typical operations for the

system under study.

Therefore let

u=—E"2)[Ar - ol (3.17)

which implies that the feedback system with new input vector v satisfies the

linear, decoupled state equation

& =v+d(l) (3.18)

This representation simplifies the dynamic programming solution of the opti-
mization problem. With the method of state increment dynamic programming
used here, to find an optimal trajectory segment from a node (quantized state),
all transitions to reachable nearest-hypercube nodes are examined and their as-

sociated costs compared to find the minimum. This can easily be done if the
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svstemn is transformed to the form of Eq.( 3.18). For then a set of v vectors can
be easily found that achieve each of the transitions being considered. under the
condition that d(t) is given as a forecast. The corresponding u vectors can be
found according to Eq.( 3.17). Substituting u vectors in Eq.( 3.9) the costs of

these transition can be obtained and compared.

3.3.1 Optimization by State Increment Dynamic Pro-

gramming

At the operating point where during occupied hours the setpoint of zone's tem-
perature is 24°C and during unoccupied time is 30°C’, the maximum boundary
of zone temperature is specified as 31°C and the minimum boundary of zone
temperature is 23°C. The temperature range of the storage is constrained be-
tween 8°C to 15°C. As a result, the constrained volume of state space is just
the volume bounded by these limits. Quantizing state variables, there are eight
increments(1.0°C) for each zone, and fourteen increments(0.5°C') for storage tank
to cover corresponding temperature range. Totally there are 9*9*15 = 1215 nodes
for this three dimensional problem. With the initial condition 2(0) = x(24), there

must be one or more closed optimal trajectories lying in this restricted state space.

The state increment dynamic programming method used here considers only node
to node transitions, no interpolations in the state variables are allowed. If current

node is x,, it is allowed to transit to nearby node z;, which belongs to the set

ap =2+ KMAx K =1k ko k3] ki €(—1,0,1)

Ar = [A:l‘l, A:l‘g, A.’l.‘3]t 7 (319)
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The stage variable time t (0 < 7 < 21) does not need to be quantized. Since
the technique of label-tracing procedure in combination with state increment
dynamic programming is used the optimal trajectory can been found directly. &t
(transition time). the time interval over which a given control is applied, may be

freely specified . If the maximum is Al the ét considered belong to the set

Almﬂl‘/l [ = 13 27 ---Imu.r (320)

The input vector v for achieving a particular transition in the set ( 3.19) with

transition time in the set ( 3.20) is given by

v, = l-‘,‘AH',‘/Al - (l,‘ = “\‘,'A.T,'/Af,,,m. - (],‘ i

1)
—_
:
(S
!
-

(3.21)

The associated u vector which should satisfy the constraints w; > 0 is then
computed from Eq.( 3.17). If the last update-time of the next nodeis t (0 <1 <

21). the optimal control 4(x,, 2.t — 1) can be found by comparing the trial costs

Jriat[Tas t = 8l u(aa b — 68)] = Ua g, u(ag, )00 + iy, 1] (3.22)

where {[x,, u(2,, 2p)] is approximation of the change in the performance criterion
Eq.( 3.9) over the time interval form (1 — 8t) to t and Iz, ] is the minimuny cost
of the next node z; (in forward sense of time). These trial costs cannot simply
be compared directly. however, since different transitions may involve different
transition time 6t and in this case the trial cost pertain to different update times
t — 6t. A fair comparison requires the trial costs computed for different update
times to he extrapolated in time, to a common time that is the earliest update
time for the transitions considered. If a particular transition involves elapsed

time 8¢ and update time ¢ — 6¢, the extrapolation formula is
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Jeriat[Fas bnins U] = Jiriat[€as 1—=88, U]+ (Jirial| Tay =81, 0] = J [0, 1)) (E =81 —110i0) [ (61)
(3.23)

where 1,,;, is the earliest update time considered. Once these extrapolated costs
have been computed, the least cost transition is selected as the optimal trajectory

segment.

I'or each node x (r € X}, the minimum-cost trajectory segment, terminating on x
and originating from a nearest-hypercube node, will be found, subsequently these
candidate minimum-cost trajectories will be extended backwards in time node by
node. If an optimal orbit lies in the state space, it will have the property that
its initial node x(0) is the same as its terminal node x(24). In order to recognize
this event, it is useful to maintain a “label table” for all nodes, an array of labels
that is initialized at time t = 24 with the coordinates of each candidate terminal
node. As each candidate minimum cost trajectory is extended backwards in
time by finding a further segment, the label of the segment-terminating node is
carried back to the segment originating node. Thus the initial node of an optimal
orbit will be recognized as one which receives back its own original label after 24
haes of reversed time. Moreover, once this optimal initial node is known, the
entire ensuing optimal trajectory can also be exhibited if the label table contains
not just terminal-node coordinates, but complete strings of node-coordinates and
update-times, for all the nodes encountered along a candidate trajectory. In this
case, as cach candidate trajectory is extended backwards in time by finding a
further segment, the entire string of previously-encountered labels is carried back
to the segment-originating node, and the coordinates of that node are affixed as

the next element of the string.

In cases where there are not too many nodes in the state space, so the computa-
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tional requirements refered to in Section 2.3.2 are not too great, this particular
problem is simplified by treating the entire constrained state space as a sin-
gle block so that block processing does not need to be considered. Then, with
unknown initial condition but x(0)=x(24), every node in state space must be
considered as a potential terminal state for an optimal orbit, with terminal cost

J[x,24] = 0 assigned. So at the terminal time I(x,24) = 0 for all » € X.

Once 1(x,24) has been determined for x (z € X), the next node to be updated
is selected as the node in the state space which has the latest last update-time
in label table (the process is moving in the reverse time direction. so the node
selected can be thought of as being most in need of updating). The trial costs
for the various admissible transitions are found as in Eq.( 3.22), in general the
associated update times are found by subtracting the transition times from the
last update time of the target node. The trial costs must be extrapolated in time
to a common earliest update time before the costs can be compared, according
to Eq.( 3.23). The minimum is selected as the optimal transition and the cor-
responding coordinates of the x (x€ X), the update time of the node and the
control value of the optimal transition are saved in the label table. The procedure
continues until all nodes x (x€ X) have been updated all the way back to t=0,

and one or more of them is found to have been assigned its original label again.

3.3.2 Computation Requirement

For this particular problem, there are 1215 nodes in constrained state space.
The procedure of state increment dynamic programming used here requires that
sufficient data be stored to specify Jiiq for every node at update time. In general,
this is done by storing I(x,t) and its update time for each node in the state space.

The number of locations of high-speed memory required here is then
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Ni = 21215 * 8 = 19640bytes (3.24)

The maximum number of stages is approximately 120 so the number of values
that should be retained is 120%*2*1215 for finding the closed optimal trajectory.

The totally low-speed memory is

Ne =120 %1215 % 2 x § = 2332800bytes. (3.25)

The results show that the computation requirement of this procedure is reason-
able for storage capacity of the computer available in our department. A C
program has been written for this procedure (Appendix A.1). The optimal result

can be obtained by running the program about ten minutes on the work station.

3.3.3 Results and Conclusions

It is assumed that buildings are operated according to a schedule wherein the
zone temperature are allowed to increase during unoccupied hours, e.g. setpoint
or desired zone temperature at 24°C' during occupied hours (8:00-18:00) and at
30°C" during unoccupied hours (0:00-8:00) and (18:00-24:00). The energy price
factor p(t) in the Eq.( 3.9) is taken to be 1.0 for peak hours (8:00-24:00), and
smaller value 0.5 for off-peak hours (0:00-8:00), which means that the price of
the purchased energy at the off-peak hours is low and at the peak hours is high.
Other parameters were specified in Table 3.1, for the typical cooling loads shown
is Figure 3.2, with performance index weights specified as Ry = Ry = 3 % 10~°
and cost parameter of zones temperature derivation a; = a; = 1000, the 24-hour
optimal trajectory was computed by executing the C nrogram. The results are

shown in Figure 3.3. It appears that all states satisfy the periodic boundary
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Figure 3.2: Typical daily cooling loads acting in the zones: (a) zone 1 load profile;

(b) zone 2 load profile.

condition z(0) = x(24) and also Figure 3.3 (b) shows that the temperature of
the storage (T¢) is reduced to its minimum value just before 0800 hrs, while xone
cooling loads are still low and energy price is low. This corresponds to charging
the storage in anticipation of loads later in the day, and it is optimal to do so
despite the reduction in coefficient of performance of the chiller when working
against larger temperature differences. Note also that the zone temperatures
(Figure 3.3 (a)) remain on the high side of setpoints during unoccupied hours
(0:00-8:00) and (18:00-24:00), another indication of the minimization of purchased

energy while respecting the comicrt objectives.
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Parameter  Magnitude and unit

. A10K J/heC
2 330K J/h°C
a. 17.6KJ/heC
¢ 5K JJkg°C
T 374N J[°C
C:s 300K J/°C
C. 900004 J/°C:
COPras 4.0
Tz 20°C

Table 3.1: Parameters for two-zone cooling system

Another interesting application is showing the effect of the parameters of zones
temperature derivation a; and a;. The cooling loads of the first zone are kept
unchanged and those of the second zone are made five times of previous value,
which means that the cooling loads of the second zone are much heavier than
first one, other parameters are same as above example except the capacity of the
chiller changed to be 300000 J/°C'. The program is executed a few times with
the value of a; = ¢ ranging from being small to large. In the Figure 3.4(h) it
appears that the smaller the parameters a; and a; are the bigger the average
temperature derivation and also the zone with heavier cooling loads has targer
temperature derivation when the parameters a; and a, are not big enough io
regulate the zones’ temperature to setpoint. The Figure 3.4(a) shows that the

larger parameters a; and a; are the more energy is consumed.

According to the results, we can concluue that parameters of the temperature
derivation a; and a; affect significantly the optimal solutions for the multizone

cooling system. The value of a; and a2 should be chosen carefully, since too
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small values cause large zone temperature deviations and too big values canse
more energy to be consumed. Also, the parameter of cach zone cau be differ-
ent according to their cooling loads. Example results show that state increment
dynamic programming. simplified through the use of feedback linearization and
augmented with a label-tracing procedure, can provide an ecffective means for
computing periodic optimal trajectory for controlling two-zone cooling systems.
After solving two-zone cooling systems successfully, multizone cooling systems
with many zones. hence many state variables, should be considered. Because of
limited by high-speed memory of a computer, state increment dynamic programs-
ming can not be used directly. The methods of aggregation/disaggregation and

block by block approach will be discussed in the following chapter.
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Chapter 4

Aggregation and Disaggregation
Method and Block by Block

Approach

4.1 Multizone Cooling Systems With Many Zones

In this thesis, of particular interesting is the problem of finding the minimum-cost
strategy for operating a multizone cooling system that might be typical of an office
building divided into a number of zones, each with independent chilled-water
supply from a common storage tank which in turn is chilled by a compression-
cycle refrigeration unit. The components of multizone cooling systems with many
zones are the same as those of two-zone cooling systems, the main differsnce is
the number of zones. The multizone cooling systems considered here involved a
maximum of eight zones. The diagram of the N-zone cooling systems is shown in

Figure 2.1. The state equation of this system can also be written as
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CoiTei = ~wiC(Tei = T) + asi(Te — T2) + g=i(1) (1.1)

where 1 = 1,2, ... V.
. N
CT. = —uyCOF + a(T. = T) + Y _wil(Tsi = 7) (1.2)
=1
and the new state variables are defined by scaling the tempc v 5 as
r; =\ Colyy ANy = VET“ for 1=1.2,....N.

4.2 Computational Requirement

Before solving the problem of the multizone cooling systems, it is necessary to
determine how much computational effort is required. Computational require-
ment includes the amount of memory needed to storc both program and data,

and the amount of the time required to perform the computations.

The most commonly encountered barrier to use of dynamic programming is the
high-speed memory requirement. This requirement refers to the number of stor-
ages in the high-speed access memory (core memory) which must he available
during computations. For the nine-dimension system with 8 quantization levels
for each zone and 14 quantization for storage tank, directly using the state in-
crement dynamic programming, according to previous analysis, the high-speed

memory requirement is
N = 8+ 9%« 15bytcs

Adding the memory reserved for program, compiler, and functions, the high speed
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memory of existing computier will be saturated. The second storage problem
arises in retaining the results of the computation. If ihere are 100 stages during

24 hours, for this 9® x 15 nodes, the low-speed memory requirement is
N. =100 * 8 * 9® x 15bytes

This is also large and unfeasible number.

The computing time requirement is related to the number of the result obtained.
If it takes 50 * 107 seconds for each result, then the total amount of computing

time s
T. = 50107 % 100 * 9% * 15secs

This number is more than one month.

From this analysis, directly nsing state increment dynamic programming to solve
multizone cooling systems is not practical. The new approaches which fit this

problem should be used.

4.3 Aggregation and Disaggregation Method

4.3.1 Principles of the Aggregation and Disaggregation
Method

As the first step, the zones are initially aggregated into two macrozones, accord-
ing to the 21 hour periodic is zone cooling load profiles, such that within each
macrozone the differences are as small as possible. This is commonly possible in
multizone cooling problems, where, e.g., a glass-wall office building can be consid-

ered to contain one group of sun-facing zones with high daytime cooling loads and
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another group of shaded zones with much lower and ditferent cooling load profiles.
Each of these group can reasonably be aggregated into one macrozone. After this
aggregation has been done, this problem can be treated as a two-zone problem.
The optimal solution can be found by application of the procedure deseribed in
the previous chapter. Once this problem has been solved, cach macrozone car
be disaggregated successively in binary fashion. At each stage a macrozone is
divided into two smaller macrozones and the heat-removal rate previously com-
puted for the larger macrozone is optimally distributed to the smaller two, again
by an application of state increment dynamic g+ .gramming. This disaggregation
process continues until all the original zones are retrieved with projected heat-
removal rates and zone temperature profiles. The overall result is suboptimal,
since the initial optimization does not take into account the variations hetween
the zones that are aggregated in a single macrozone. Nevertheless, we can show
that the results are close to optimal if the groups of zones selected for aggregation

are such that within group variations are as small as possible.

Aggregation ¢f a group of zones is achieved by simply adding together their heat
capacities (';;, heat transfer -oecflicients a; and cooling loads. lor cach group,

there are N; zones then

N, N, N,
Cog, = Z C., Qo = Ea,- Gag,(t) = Z q-.(1). (4.3)
i=1 =1 1=1
where
2
N=SN,
i=1

The state equation for the two macrozones and storage tank can be written as

Cag, Tag, = —ttag,((Tag, = Te) + ag, (T = Tug, ) + Gag, (1) (4.4)



2
T = —sCOP +Y gy {(Tag, = T2) + ao(T, — Te) (4.5)

J=1

where
=1

1,,, is temperature of macrozene j, the first term on the right-hand side of
Eq.( 14.4) is rate of heat transfer from macrozone j to circulating chilled water
with pump rate u,, , the second term is heat transfer rates from the environment
to macrozone j, and the third term is the cooling loads generated by occupants
and equipment within the macrozone j. Eq.( 4.5) represents the heat balance for
the chilled-water storage tank. The new state variables are defined by scaling the

temperatures as

Tr; = \/Ca_q,Tag, Iz = \/Z-‘—CTC

The pumping power for the aggregated zone is approximated as
5

ﬂgj ag Z R; [qruag,/th t) (4.6)
and hence

Reg, = ZR [g:/ qu (4.7)

Under the same assumption of the Chapter 3, the optimal solution can be ob-
tained with the procedure of state increment dynamic programming simplified
through the use of state feedback linearization and decoupling, and augmented
with a label-tracing method to identify period but unknow initial/terminal state

by minimizing of
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24 2
J = /0 [P uct) + 3 [p(1) * Ragyudy, + ATy, = 1))t (1.8)

i=1

Once “he optimum pumping rate U,y (1) and temperature T, (1) of the resulting

macrozone have been computed, its time integrated heat removal rate

t
gy = [ tagy (T[T (7) = TP (19)
is also computed.

The binary disaggregation of this macrozone is next accomplished by parating
it into two groups of zones, cach group aggregated into a smaller macrozone with

integrated heat-removal rate

{
ey, =/ Uag, (T)[ Ty, (7) = Te(7)dr (1.10)
0
where 1=1,2.

The heat balance equation for these two smaller macrozones will be:

Cﬂyj-’j'fwn = '—“uy,.(:(Tuy,. - Tc) + auy,.(y": - 'i'ay,.) + Gay,, (4.11)

In this equation, the 24 hour periodic value &f 7. is already known from the
previous aggregation procedure, but the equativx o) whate are still bilinear, lincar
in the state variables and in control variables, buit not jointly linear in both kinds
of variables. In order to sisnplify the state increment dynamic programming
solution of this two dimension problem, the method of exact linecarization by
state feedback will also be used here. If e state variables are defined by scaling

the temperatures as



I = (,A'agﬂTagJ']; Iy = C'agﬂ]agjg (412)

the corresponding state dynamic equation can be written as

T = AT + g, B1T + tag,, Box + Cu + d(1) (4.13)

where the control vector u is [tag,,Uag),)'s A is diagonal matrix

A= diag(—day, [Cag,,s =g,y [ Cag,y) (4.14)

the BB matrices are the symmetric matrices

1 0 00
131 = b] ,32 = 1)2 (4.15)

00 0 1

where by = —(/Coy,,, ba = =(/C,y,, and C and d(1) are given by

1/1/Cag., 0
C=T [{/Cos, (4.16)

a 1T€ agil C'a 1
d(t): (a 9 +qg1 )/V 9, (417)

(aag,gTe + (10912)/\/ Cag;'z

Treating the two state variables as observable outputs, the method of exact lin-
carization by state feedback can be easily applied. The result is obtained by

writing the equation of state in the form

= Ax + E(x)u + d(1) (4.18)
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where

E(J) = [B].T + C]lB-z.l' + (‘2]

for any state x where E(x) is nonsingular, i. e. where

det E(x) = [by +TeC/\[Cagyllb2 + 10 /[ Cag) # 0

Shen u can be expressed as

u=—E"2)[Az — v] (1.19)

which implies that the feedback system with new input vector v satisfies the

linear, decoupled state equation

F=v+d(t) (4.20)

Again this representation simplifies the dynamic programming solution of the two
dimension optimization problem. Assuming that dq,, is given as a forecast, a set
of v vectors can casily be achieved for any node transition, the corresponding u

vectors found from Eq.( 4.19) are substituted into the performance index

/024 S [P(1) Rag,, (t)uly (1) + A(Tuy,, — Tu(1))*)dl (1.21)

i=1

while the constraint

Iag” + 1“9]2 S Iag, (4'22)

is required to be satisfied. The two terms on the left side of this equation are the

time-integrated heat removal rates for the two disaggregated zones, the terin of
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the right side of the equation is the time-integrated heat removal rate for aggre-
gated the macrozone. The equation means the cooling effect actually consumed
by the two disaggregated zones can not exceed the value specified for the aggre-
gated macrozone. The costs are compared with each other. The optimal solution
Uag,,, Uagjzs lag,s Lug,, can be obtained. The binary disaggregation is contin-
ued, at each stage each macrozone disaggregated into two smaller ones, until the

pumping rate u; and temperature T; for each original zone have been found.

4.3.2 Optimization by State Increment Dynamic Pro-

gramming

The procedure of state increment dynamic programming is used in both aggre-
gation part and disaggregation part. The version of state increment dynamic
programming used in the first part is same as the one used for the three dimen-
sion problem in Chapter 3, which will not be repeated here. The focus of this
section deals with the method of state increment dynamic programming used to

solve the disaggregation problem.

During disaggregation, for the two smaller macrozones, the operating point and
the range of the temperature has already been specified. Quantizing state vari-
ables, there are eight increments for each macrozone to cover corresponding tem-
perature range. Totally there are & nodes for this two dimensional problem.
With the initial condition z(0) - z(24), there should be one or more closed

optimal trajectores in this restricted state space.

Again, the state increment dynamic programming used here cousiders only node
to node transitions. If current node is z,, it is allowed to transii nearby node z;

which belongs to the set



ry=w,+ KA kK =[khk] ke(=101) Ac=[Axr, Axy)  (4.23)

The stage variable time t (0 < ¢ < 24) «.0es not need to be quantized. Since
the technique of label-tracing procedure in combinatien with state increment
dynamic programming is used, the optimal trajectory can been found directly. &t
(transition time), the time interval over which a given control is applied, may be

freely specified . If the maximum is At,,.,, the 6t ¢ ‘ed belong to the set

Atmﬂl‘/l l= 1723 [AE} lngu:v (‘121)

The input vector v for achieving a particular transition in the set( 4.23) with

transition time in the set( 4.24) is given by

v = k,‘AiL‘,‘/At - d,‘ = lk,’A.’L‘,‘/Almar - (l,’ 1= .l, 2 (42’3)

The associated u vector which should satisfy the constraints u; > 0 is then

computed from Eq.( 4.19). If the constraint

Tagyy + 1ug,, < 1o, (4.26)

is satisfied, this means that this transition is allowed. If the last update-time of

the next node is t (0 <t < 24), the trial ccst is

Jiriat|Tay t — 88, u(Tay o, t — 6)] = 24, u(Ta, xb)]6L + [V 5y, ¢] (4.27)

where [[x,, u(xq, Tb)] is approximation of the change in the performance criterion

Eq.( 4.21) over the time interval form (¢ — 6t) to t ar« [[zy,t] is the minimum
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cost of the next node z;, (in forward sense of time). These trial costs cannot
simply be compared directly, as mentioned in the previous Chapter, since different
transitions may involve different transition time 8¢ and in this case the trial cost
pertain te different update times ¢ — 6t. A fair comparison requires the trial costs
computed for different update times to be extrapolated in time, to a common time
that is the earliest update time for the transitions considered. If a particular
transition involves clapsed time 8t and update time ¢ — 6¢, the extrapolation

formula is

Jtrial[-'l"u, t'mina u] = Jtrialh’aa t—6t7 u]"“(Jtrial[za’ t—"‘St) U]—J[Ilfa, t])(i_‘St_tmm)/(&t)
(4.28)

where {,,;, is the earliest update time considered. Once these extrapolated costs
have been computed, the least cost transition is selected as the optimal trajectory
segment. For finding the minimum-cost trajectory, the procedure is same as the

one mentioned in 3.3.1, which will not be repeated here.

4.3.3 Appilication of Aggregation and Disaggregation Method

In order to give a clear exposition of principal of the aggregation and di- :ggre-
gation method, a three-zone cooling systems is treated as an examph:. ar i the
cnergy cost of the near optimal solution obtained by the method of aggregation
and disaggregation will be compared with that of the optimal solution. a second
application will demonstrate the use of aggregation and disaggregation method

to solve a eight-zone problem.

Three-zone Cooling System
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Figure 4.1. Schematic diagram of a three-zone cooling system.

Z1 CZ1=374 AZ1=410 Load Profile (a) (Figure 3.2 (a))
72 CZ2=300 AZ2=330 Constant Load: 8.101 KJ/h
23 CZ3=100 AZ3=100 Constant Load: 4.223 KJ/h

Table 4.1: Parameters and Co:.'ing Loads {CC=95000) for a three-zone system
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For the three-zone problem. its schematic diagram is shown in Figure 4.1. The
first zone, named zonel, is assumed to be a sun-facing zones with high daytime
cooling loads and the other of two shaded zones, named zone2 and zone3, are
assumed to have constant cooling load profiles. The paramenters and cooling
loads of cach zone are shown in Table 4.1. The three-zone cooling system is
assumed to be operated according to the schedule wherein the zone temperatures
are allowed to increase during unoccupied hours, e.g. with setpoint or desired
zone temperature at 24°C" during occupied hours(8:00-18:00) and at 30°C during
nnoccupied hours (0:00-8:00) and (18:00-24:00). The energy price factor p(i)
is taken to be 1.0 for peak hours (8:00-24:00), and smaller value 0.5 for off-peak
hours (0:00-8:00). In order to find the 24 hour suboptimal temperature trajectory,
the aggregation and disaggregation method is used. According to their cooling-
load profiles, the more similar two zones can be aggregated into one zone. In
this case, the two shaded zones are aggregated into one macro zone named zag23
Considering zonel and zag23 as two-zone cooling systems, the state equation can

he written as

Caloy = =uaC(Ta = T) + aa(Te = Tey) + g (1) (4.29)

(":ng'zliri‘:ug‘lil = —'“:ug23C(Tzag'23 - Tc) + l:lza_q‘ZS(T‘e - Tzag23) + q:ag23(t) (430)

Cd= —usCOP + uay ((Tey — T2) + Uzag23C(Tragaz — Te) + ae(Te — Tc) (4.31)
where

(W:ag23 = sz + C:3
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Uzqg23 = Uzy + U3

q:ag23(i) = q:2(’) + q:li(i)

Using the C program for the two-zone cooling systems, the temperatures of the
storage tank, zonel, and zag23 are obtained, the pumping rate for zonel and
zag23 are also obtained for this 24 hour period. Once these are obtained, the
aggregated macrozone zag23 can be disaggregated. The problem to disaggregate

the zag23 zone can be solved by minimizing the cost of energy consumed

24
J = [[)(f)([{glng + 1{3“33) -+ AQ(T;Q b 7'25)2 + .‘13(,'1':3 - ’Ij-g_.,)z](“ (1-;2)
o]

where the first two terms involving u.; in the integrand represent power consump-
tion by the circulation pumps, weighted by the price of energy p(t). The last
two terms involving 7%; are weighted index of discomfort from zone temperature
derivations away from setpoint. The steady-state solution of this problem will be
developed by two-dimensional state increment dynamic programming where the
associated control variable should satisfy (4.25), which can be written explicitiy

as

4 !
/0uzagzs(i)C(Tzagza—Tc)dt 2 /0[uzz(l)C(Tzz—Tc)+uz:,(l)C('l'::x—'/'n)]dl (4.33)

u; 20 for 1=2,3.

The term on the left side ot the equation is the time-integrated heat removal rate
for the zag23, the right side terms are the time-integrated heat removal rate for

zone2 and zone3. The equation means the cooling effect actually consnmed by z1
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energy cost  off-peak hour peak-hour total

AggZ1.2 436476 313076 749552
ApggZl,3 439360 299981 739341
AggZ22 1977 303531 738508
optimal 348146 340697 728843

Table 4.2: Energy cost for three zone system

and z2 can not exceed the value specified for the zag23. A C program has been
written for this two-dimension state increment dynamic programming. Executing
this program, after the aggregation step, the 24-hour sub-optimal temperature
and control sequences for the zone2 and zone3 are computed and the energy

consumed by the whole system can also be obtained.

It is interesting to compare the results when the other two possible ways of
forming the aggregated zone arc considered, for this application. First, zonel and
zone2 are aggregated into one macrozone and zone3d is treated as an independent
zone, then zonel and zoned are aggregated into one macrozone and zone2 is a
single zone. The suboptimal temperature trajectores and total energy cost, for
these two problem, are obtained by using the procedure mentioned above. The

cnergy cost for these three different aggregations is shown in Table 4.2.

Using the procedure of Chapter 3 instead of this aggregation and disaggregation
method to solve this three-zone problem, the optimal solution can be obtained
and the optimal energy solution is also shown in Table 4.2. Comparing these
results, we find that the method of Chapter 3 results in less energy consumption
while aggregation, especially zonel and zone2, procedure costs more energy. A
conclusion can be drawn that the overall solution of the aggregation and disag-

gregation is suboptimal since the initial solution does not take into account the



71 CZ1=374 AZI=410  Load Profile (a) (Figure 3.2 (a))
72 CZ2=370 AZ2=400  Load Profile (a) (Figure 3.2 (a))
73 (Z3=300 AZ3=330  Load Profile (b) (Figure 3.2 (b))
74 CZA=187 AZ4=205 0.5 x Load Profile (a) (Figure 3.2 (a))

Z5 CZ5=374 AZ5=410 Constant Load: 8.101 KJ/h
26 CZ6=300 AZ6=330 Constant Load: 8.101 KJ/h
27 CZ7=187 AZ7=205 Constant Load: 5.223 KJ/h
28 CZ8=100 AZ8=110 Constant Load: 3.223 KJ/h

Table 4.3: Parameters and Nominal Cooling Loads (CC=250000) for eight-zone

cooling system

within-group variations in zone loads and criteria, but may be close to optimal if

these variations are small.

Eight-zone Cooling System

Directly using state increment dynamic programming is not feasible for the eight-
zone cooling system shown in Figure 4.2 because of the large computation require-
ment. Results of the previous section show that the aggregation and disaggrega-
tion method can provide an effective means for computing periodic suboptimal
trajectories for controlling multizone cooling systems. This method is used to
solve this eight-zone problem. The eight-zone cooling system consists of four
sun-facing zones with high daytime cooling load and four shaded zones with
much lower and constant cooling loads. The parameters and cooling loads pro-
files of each zone are shown in Table 4.3. The system is assumed to be operated
according to the schedule mentioned in previous section. To solve this problem,

first the aggregation procedure should be done. According to their cooling-load
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Iigure 4.2: Schematic diagram of a eight-zone cooling system.
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profiles there are two grours: one is sun-facing, another is shaded. Each group is
aggregated into one macrozone, where the sun-facing macrozone is named Zag!l
and shaded one is Zag2. Considering these two macrozones as a two-zone cooling
system, the pumping rate for each macrozone and the temperature for the stor-
age tank and macrozone are obtained for the 24-hour period. after the two-zone
optimal procedure described in Chapter 3 has been applied. The integrated heat-
removal rate I,41, Iag2 is also calculated. After this has been done each macrozone
will be successively disaggregated in binary fashion. For the macrozone Zagl, the
four sun-facing zones are separated into two group zones according to the crite
rion that more similar zones are classified into the same group. In this case zonel
and zone2 are a group and zoned and zoned are another, cach group forming a
smaller macrozone with integrated heat-removal rate o4, and lg,,. Again us-
ing two-dimension state increment procedure the temperature and pumping rate

are found by minimizing the cost

24 . . ,
S = 0 [])(I)(Rluzwn+R2urz,glu)‘*‘Al(Tayl]g—-rl‘ls)z+A2(,[‘ugl:n_,[",!s)z]‘“ (‘1‘1)

while subject to the constraint

Iugllz(t) + Iaglru(t) S ]ug](i) (43'))

After this has been done, we again use the two-dimension state increment pro-
cedure to disaggregate these two groups. The same procedure are applied to the
shaded group, and finally the temperature trajectory for each zone is found. The
result of the first zone and storage tank is shown in Figure 4.3. A C program has
been written for this eight-zone aggregation/disaggregation method (Appendix

A.2).
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Table 4.4:

case cnergy cost
(1) Suboptimal control, eight zones, 1904966
nominal cooling loads

(2) Conventional PI control, constant reference temperature 3144267

°C’) for chilled storage, nominal cooling loads

(8
(3) Temperature-tracking control, optimal for nominai

cooling loads, with nominal cooling loads

(4) Temperature-tracking control, optimal for nominal cooling 1424454
loads, with zone 1-4 cooling loads one-half of nominal

(5) Suboptimal control, eight zones for 1351436
zone 1-4 cooling loads one-half of nominal

(6) Temperature-tracking control, optimal for nominal 2744084
cooling loads, zone 1-4 cooling loads twice nominal

(7) Suboptimal control, eight zones 2707513

for zone 1-4 cocling loads twice nominal

Table 4.4 summarizes results for an eight-zone study, parameters as shown "la-

ble 4.3, with energy costs for seven different cases. These cases were devised

in order to examine how the performance (cnergy cost) changes when the con-

trols and/or cooling loads depart from the ideal ones assumed in the aggrega-

tion/disaggregation computations.

Case (1) is the base case, where zone cooling loads arc exactly as projected (the

nominal cooling loads) and the storage and zone temperatures are exactly as com-

puted, with chiller and circulation pumping rates determined by the precomputed

solution. These assumptions are, of course, unrealistic in that
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a) actual cooling loads experienced throughout the day will differ from the as-

sumed nominal ones,

b) the state equations used for the dynamic programming solutions only approx-

imate the thermal dynamics of the actual system, and

¢) the assumption of periodicity for the optimization problem is not appropriate
when the projected nominal cooling loads and/or environmental tempera-

tures change from one day to the next.

For these reasons it would be necessary, in practice, to use a real-time, feed-
back control scheme to make actual temperatures track, in approximate fashion,
temperature profiles that are precomputed in an “optimal” solution or that are

simply specified as constant setpoints.

Clase (2) represents a conventional way of controlling the system, wherein opti-
miza’ ‘an is not used, but rather single-variable PI controllers are used to operate
circulation pumps to cause the zone temperatures to track the setpoint temper-
ature profile (Figure 4.4 (b)) and to operate the chiller in such a way as to cause
storage temperature to track a constant (8°C) setpoint temperature (Fig. 4.4
(a)). The energy cost for this case is much larger than for case (1) because of the
COP penalty in maintaining constant (low) chilled-storage temperature through-
out the entire 24-hr. period. This energy cost dominates the energy savings
implied by imperfect regulation of zone temperature by the PI controller during
the period of high and rapidly changing cooling load, evident in (Figure 4.4 (a)).
(Tighter regulation of zone temperature could be achieved with higher gains on
the P and/or 1 controller terms, but with attendant loss of stability margin for

the transient responses at the times of setpoint jumps.)

Case (3) represents the use of the same PI controller, but now used to cause
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Figure 4.4: Tracking performance for storage temperature (a) and zone 1 temper-

ature (b), PI controllers, piecewise-constant setpoints (reference temperatures).

Parameters of table 4.3, case (2).

zone and storage temperatures to track the optimal profiles, precomputed for the
nominal cooling loads. Here the energy cost is actually slightly lower than for

case (1), due to the imperfect regulation of zone temperature (Figure 4.5 (b)).

Case (4) and (5) show the extent to which the operating efficiency of the system
is degraded when some “actual” cooling loads are much lower than the forecasted
loads upon which the suboptimal temperature trajectories are based. Case (5)
shows the energy cost for the correct suboptimal solution, when half of the zones

have forecasted loads one-half of nominal (e.g. zones with solar exposure, cloudy-
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day forecast). Case (1) shows the energ: cost incurred when the nominal (incor-
rect) suboptimal solution is tracked by tiie PI controllers throughout such a day.
The latter cost is approximately 5% higher than the former, because the storage
is pre-cooled to a lower temperature than it would optimally be for a day with
lower cooling loads, hence lower-than-necessary COP values are experienced with
res ling excess energy consumption. This amount of degradation is relatively

sm: |. considering the very large forecasting error involved.

Ca  .6) and (7) are similar to (4) and (5), except that the “actual™ cooling loads
for zones 1-4 are twice nominal, i.e. a major forecasting crror in the opposite
direction. Case (6) shows that the performance degradation is less than 2% in
this event. Here energy cost is increased because the storage is insufficiently
charged. during the period of discounted energy price, for the cooling loads to
come, and the chiller must be operated later in the day, while energy price is

high. Again, the amount of efficiency degradation is relatively small.

The aggregation/disaggregation method has been shown to be an effective way
of obtaining near-optimal solutions for the control of multi-zone HVAC systems
with substantial energy storage, where a period of discounted energy price occurs
daily. These solutions minimize erergy cost by optimizing the pre-charging of the
storage, according to the forecasted loads for the 24-hour period. Such solutions
can be precomputed, off line, and stored in a high-capacity memory, from where
the most appropriate one can be retrieved for the particular forecast cach day.
Real-time control would be impiemented by conventional PI controllers, causing

actual temperatures to track the precomputed optimal profiles.
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4.4 Block by Block Method

4.4.1 Principles of The Block by Block Method

Another technique used to extending the dynamic programming method to mul-
tizone systems of much larger size is block by block method. The procedure
described in the previous chapter computes optimal control at every admissible
(quantized) state for all values of t. The larger the number of zones, the more
high-speed memory and low speed memory will be required. These requirements
grow exponential with the number of zones. For these optimization problems,
when the number of zone is larger than four the procedure is unfeasible. The
hasic idea of the block by block approach as mentioned in chapter 2, is that it is
not necessary to compute optimal control at all possible value of x and t. As a

result, great savings in memory and computing time can be greatly achieved.

The block structure of state increment dynamic programming is ideally suited
for restricting the computations so as to obtain only the results needed for the
problem under consideration. The basic idea is to compute optimal control only
in a region in which the optimal trajectory of interest is expected to lie. If such a
region can be defined, then computations are performed only in those blocks con-
tained in it. Clearly. if much information is available about this trajectory, then
the region can be small, and hence a considerable reduction in both computing

time and memory requirement can be obtained.

One method of determining the region in which computation take place is to
use the aggregation approach mentioned in the previous section to calculate an
approximation to the optimal trajectory, in a reduced-dimension state space.
This could be done by aggregating all zones into two macrozones such that one is

sun-facing and another is shaded. The state equation for these two macrozones

-1
|8



can be written as:

Cag, Tog, = ~1ag,C(Tag, = To) + g, (T = Tug,) + dag, (1) (-1.36)
. 2
CTog = —usCOP + > ttgy, {(Tuyg, — 1) + a (T, = T)) (1.37)
Jj=1
where
j=1.2

These equations are the same as in the previous section. The optimal temperature
trajectory for the storage tank and macrozones can be oblained by using state
increment dynamic programming directly. In order to achieve a more acceunrate
optimal trajectory, the state variables should be quantized as small as possible

during this procedure.

After the approximation t. -+ ¢;i nal trajectory has been found the control
variable are calculated only ... .uc region of full-dimensional state space where the
optimal trajectory is expected to lie in. This region can be defined by blocks which
are (n+1)- dimensional rectangular sub-units repiesenting the n state variable and
time. Block size is four increment along cach state dimension and the increment
of time could be one or more, which depends on the temperature trajectories of
the two microzones and storage. The initial time ¢ is the previous blocks’s end
time and the end time {4, is time when any temperature of the two microzones
or storage on the trajectory begins to change one increment. For example there

is block B(1,2,3,...,M) contains values of 7 ¢, T'z; and t, such that

Tcay - 2 * Aq‘c \: ’]‘c S ,]‘(:a!/ + 2 * A,]‘r (4“8)
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[”.'IJ

=~ 24 ATz < Tz < Ty, + 25 ATz, (-1.39)

e S i (4.40)

where

i should be 1 or 2 depends on which aggregation group 7%, belongs to. As indicated
by the above equations. the boundary between hlocks is considered to be in hoth
blocks. For a one dimensional example the blocks are two-dimensional rectangular
unit shown in Figure 4.0 where cacl block contains 4 quantized values of T and

time devends on the trajectory.

For obtaining the optimal control, ithe computations can take place block by
block backwards in time. The state increment dynamic programming meihod.
avzmented with a label-tracing procedure to identify the periodic trajectory, as
mentioned in previous chapter, is used for one block at a time on the assumption
that optimal trajectories never leave the block. If the nodes on a boundary,
which belongs to both blocks, already have been processed it is not necessary
to recompute optimal control and minimum cost along this houndary. For the
otiier nodes, the optimai control and minimum cost can be calculated node by
uede. 1 optimal trajectory lies in the set of blocks so treated, it will have the
property that its initial node x(0) is the same as its terminal node x(24), after

the blocks all have been processed. If there is no optimal trajectory the region



AT

20AT | | | l |

5 10 15 20 24

Time (hr)

Figure 4.6: Determination of region from knowledge of an approximation to the

optimal trajectory.

is too small. The region should be made larger and the blocks should be defined

and calculated again.

4.5 Application of Block by Block Method

For the four-zone problem, with schematic diagram is shown in Figure 4.7, the
first zone, named zonel, and the third zone, named zoned, are a sun-facing zones
with high daytime cooling loads and the two shaded zones, named zone2 and
zoned, have constant cooling load profiles. The paramenters and cooling loads of
each zone are shown in Table 4.5. The four-zone cooling system is assuned to
be operated according to the schedule wherein the zone ter neratures are allowed
to increase during unoccupied hours, e.g. with zone setpoint temperature at

24°C' during occupied hours(8:00-18:00) and at 30°C during unoccupied houss
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Z1 C7Z1=371 AZ1=1{10 Load Profile (a) (Figure 3.2 (a))
22 CZ2=300 AZI=33 Constant Load: 8.101 KJ/h
73 CZ3=187 AZ2=205 MHall of Load Profile (a) (Figure 3.2 (a))

7 CZ4=187T AZ1=205 Constant Load: 5.223 KJ/h

Table 4.5: Parameters and Clooling Loads (CC=85000) for four-zone cooling sys
tem

(0:00-5:00) and (18:00-21:00). The energy price factor p(f) is taken to be 1.0 for
peak hours (8:00-24:00). and smaller value 0.5 for off-peak hours (0:00-8:00). In
order to find 24-hour approximate temperature trajectory, the aggregation and
disaggregation method is used. According to their cooling-load profiles. the more
similar two zones can be aggregated into one macrozone. the two sun-laced zones
arc aggregated into one macrozone denoted zagll, and the two shaded zones are
aggregated into one macro zone denoted zag21. Considering zagl3 and zap2i as

a two-zone cooling system. the state equation can be written a:

(j'zrl_q]f,fj‘:u_{/].’j = "“::ugll&C(’[':uyl.'i - ,IL) + ”:uyl.’i(’['r - rl‘:nyl.'i) + (/:uylii(l) (‘ll ! )

C":ug'MYT:ag?‘l = _uzug'MC('I‘:ug’Z-'i - Tr) + (L:uy’ld(,['l - ,Iy:uy‘z'l) + ‘/ﬁuy'z‘l“) (}]/12)

(«'rfji“ = _113(111('01)’*'“:11_(;13C(,[‘:u_ul.'i_’Ivc)+”zu3;24<(,l'::uq’2"l _’,l“{‘)“*"”'« (,I', —',I'(') (’1 ]3,'
where

(/'zuyl.'i = (/zl + -(-’:.'5
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Uzgyrs = Uzp + (23
Gzag13(l) = g1 (1) + ¢za(t)
Caagaa = Czp + Cy
Urggaq = Q2 + Uz

Gzag24(1) = qz2(1) + ¢:4(1)

Using the € program for the two-zone cooling systems, the temperatures of the

storage tank, zagl3 and zag2! arc shown in Figure 4.8.

Figure 1.8 (b) shows that the storage temperature goes down just before begin-
ning of the peak hour (8:04), this is optimal to store low priced energy to meet
the rest of day’s heavier ioads. The interesting tiiing is that the temperature of
the storage goes slightly down and then rises just before 18:00. It seems that the
storage does not have quite enough capacity to store enough energy to meet the
whole day’s needs: the chiller must operate before 18:00 while energy cost is still
higher and cooling must be maintained. Change the capacity of the storage to
90000 and then to 95000, Executing the program, the rvesults shixws that when
the storage is CC = 90000 (see Figure 4.9), the temperature of the storage still
goes down around 18:00, but not as low as CC' = 85000 ; when CC = 95000 {sec
Figure 1.10). the temperature of storage goes down to lowest just before 8:00.
then goes up smoothly, around 20:00 arrives at highest temperature and then
keeps it during the rest of the day. From this application, it shows that not only

the method but also parameters of the system affect the optimal solution.

Alter the approximation to the optimal trajectory has been found, the blocks can
be defined according equations 4.37, 4.38, 4.39. A C program has been written
for this block by block method (Appendix A.3). The result (CC = 35000) is

shown in Figure J1L11.
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Figure 4.8: Optimal temperature profiles for two macrozones when CC
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Although the solution of the block by block approach is optimal, the number
of zones in a cooling system should not be too large. When the number is too
large, the amount of high speend memory requirement can still saturate the
now available computer. For example, if four increments for cach state variable
comprise one block, for the four-zone cooling systemn. the high speed requirement
is 5*¥5*5*5%5%8 = 25000 bytes, this is reasonable value, but for a eight-zone cooling
system, the requirement is 5*5*5*5*5*5*5*5*5*8 = 15625000 bytes, which is not
feasible. The difficulty arises because, even though the blocks contain smaller
volume than the original constrained region of state space, the number of nodes

in each block is still very large when dimensionality is high.

Both the aggregation/disaggregation method and block by block approach have
advantage and disadvantage. The aggregation method gives us sub-optimal solu-
tion. but it can be applied to cooling system with many zones, on the other hand,
block by block approach gives us optimal solution, but the number of zones in a

cooling system should not be unreasonable large.
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Chapter 5

Conclusions

The purpose of this study is that of finding the minimum-cost strategy for operat-
ing a multizone cooling system that might be typical of an office building divided
into a number of zones, each with independent chilled-water supply from a com-
mon storage tank which in turn is chilled by a compression-cycle refrigeration

unit.

Of particular interest is the case where the storage capacity is substantial, a
period of discount price occurs daily and a 24-hour projection of zone cooling
loads are forecast. The operating optimal strategy is charging the storage during
the period when the price of energy is low and retrieving energy for cooling when

r

the price is high later in the Jay. The guestion under study is how much energy
needs to be stored in order to minimize the cost and at the same time maintain

zone temperatures within the comfort limits.

FFor the case which the nuraber of zcites .5 not larger than four it has been shown
that state increment dynamic programming, simplified through the use of feed-
back lincarization and decoupling and augmented with a label-tracing procedure,

can be used directly to computing periadic optinal trajectories.

(2]
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A practical ana reliable technique for extending the siate increment dynamic pro-
gramming method to multizone systems of much larger size is called aggregation
and disaggregation method, wherein the most similar zones ave initially aggre-
gated into two macrozones. Tuc thi~e-dimensional periodic optimization prob-
lem is solved, then each macrozone is divided into two smaller macrozone and
the heat-removal rate previously computed for the larger macrozone is optimally
distributed to the smaller two, again by application of dynamic programming.
This disaggregation process continues until all of the original zones are retrieved.
now with projected heat-removal rates and zone temperature profiles. The over-
all result 1s suboptimal, since the initial optimization does not take into accourt
the variations between the zones that are aggregated in a single macrozone. Tl
example shows that nevertheless. the results are close to optimal if the gronps
of the zones selected for aggregation are such that within-group variations are as

small as possible.

Another way for extending the state increment dynamic programming method to
multizone systems of much larger size is block by block method. The basic idea
is to compute optimal control only for a region in which the optimal trajectory
of interest are ~xpected to lie. If such a region can be defined, then computations
are performed only in those blocks contained in it. Clearly, a considerable re-
duction in both computing time and memory requirement can be obtained. One
method of determining the region in which computation take place is to use the
aggregation approach to calculate an approximation to the optimal trajectory.
The result of this method is optimal, but the number of the zones should not
be unreasonably large since the large amount of high speed memory requirement,

can still saturate the computer.
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A.1 Source Code for Two Zone Cooling System

/******ti**r*iit*******t&**ti&***ﬁ**tﬁ*tt*itiiittﬁi*iifit*i*ﬁ**ti**ﬁt*i*tﬁitti‘Q‘tﬁtl
o dkokodkodododw
e

* This is three dimensional state space optimization program. It supports

tvo_zone
* cooling system. The coptimal temperture trajectory of the zones and storaqge

tank

* can be found after this program is executed.

*

R R 222222 R R R R AR S R R A A A S S A R A R R e R R A R A A R A A S A A R RS R A R AL R A A R A AN
**********/

finclude <stdio.h>
#include <math.h>

fidefine LENGTH {int)100 /* max length of trajectorics */
f#define LM1 (int) (LENGTH-1)

fidefine LARGE (double)1000000000.0

fidefine LP {double) 0.5 /* off peak-hour cnergy price
ratio */

fidefineHpP (double)l1.0 /* peak-hour energy price ratio */
#defineT21SLO (double)24.0 /* setpoint temp. for occupied
zone */

#defineTZ1SHI (double)30.0 /* setpoint temp. for unoccupied
zone */

fidefincTZ2SLO {double}24.0
#defineTZ2SHI (double}30.0

fidefineTZ1MIN (double) (T21SLO-1.0) /* min zone temperature constraint
*/

fdefineIX1SPAN(int)3 /* number of discrete points per
dim. */

#defineIX1MAX (int)} (IX1SPAN-1)

#defineTZ1MAX (double) (TZ1SHI+1.0) /* max zone temperature constraint
*/ -

#defineTZ2MIN (double} (TZ2SLO-1.0)
fidefineIX2SPAN (int)9
fdefineIX2MAX (int) (IX2SPAN-1)
fdefineTZ2MAX (double) (TZ2SH1+1.0)

fidefineTCMIN (double)8.0 /* min tank temperature constraint
*

/
fdefineIX3SPAN{int}15

fidefineIX3MAX (i:.t) {IX3SPAN-1)

fdefineTCMAX (double)15.0 /* max tank temperature constraint
*/

fidefineTO (double)15.0 /* coolant temperature for
condenser */

fidefineAl {double)1000.0 /* cost. parameter, zonc temp.
deviation */

#defineA2 (double)1000.0

#defineRl (double)0.00003 /* cost. parameter,
circulation pump op. */

#defineR2 {(double)0.00003

#defineR3 (double)l.0

#defineC21 (double)}374. /* zone heat capacity, kw hours/deg
C */

#defineCz2 {double) 300.

fidefineCC {double)90000. /* tank heat capacity, kw hours/deg
Cc */

fidefineG2 (double)Cz2/CC

fdefineGl double)Czl/CC
fidefineAZl {double)}410.0 /* heat transfer coef. for zone */
#definehZ2 (double)330.0

fidefineAC (double)17.6 /* heat transter coef. for tank */
f#define ACZ {double}0.75 /* heat exchanger coef. */
#defineBl {(double) (~-ACZ/CZ1)
fidefineB2 {double) {-ACZ/C22)

#defineTMAX {double)20.0 /* max temp diff. refrig unit +/
fdefineCOPMAX (double)4.0 /* coef. of performance, refrig
unit */

#defineCOPM1 (double) (COPMAX-1.0)
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fdefineBiTA
fdefineCis
#defineB3
fdef i DTMAX
is net
fdefiLMAX
tested v/
fidet 2 X1MIN
varf:! .e v/
fidefi..eXIMAX
variaple */
fdefineDX1
state var */
fdefineX?MIN
fiefineX2MAX
lefineDX2
defineX3MIN
fdefineX3MAX
¥defineDX3
#defineX1s
var */
fdefineXx2s
fdefinexly

smaller

(double) {COPM1/ (CC*TMAX ) )

(double) (-COPM1*{1.0 - TO/TMAX)/RCC)

{double} (-BETA)
{double)1.0
than -z3.0 */
(int)b

(double) (RCZ1*TZ1MIN])
(double) (RCAI*TZIMAX)
(double) { (XIMAX~-X1IMIN)/IX1IMPX)

{double) (RCZ2*TZ2MIN)

{double) (RCZ2*TZ2MAX

(double) { (X2MAX-X2MIN)} /IX2MAX)
(double) (RCC*TCMIN}

{double) {RCC*TCMAX)

{double) { {X3MAX~-X3MIN)/IX3MAX)
{double} (RCZ21*tzls)

(double) (RCZ2*tz2s5)
(double) (XIMIN + ixlu*DX1?

/* max time-step allowed when time

/* number of control amplitudes
/* min value, normalized state
/* max value, normalized state

/* stepsize, i,ormalized

/* desired value, normalized state

/* discrete level, node being

updated */
fdefinexZu
fdefinex3u
#detinegl
#defincg2

(double) {X2MIN 4+ ix2u*DX2)
(double) (¥X3MIN + 1ix3u*DX3)
(double) (x1u-RGl1*x3u)
(double) {x2u-RG2*x3u)

#defincg3 {double)x3u

f#definedl (double) ((gz1+AZ1*35.0),RC21) /* normalized zone cooling
load */

#defined? {double) ({qz2+P22+35.0)/RCZ22)

fdetined3 {(double)} (AC*35.0/RCC}

#define CLAMP(vv,11,hh) {({vv)}<(11l) 2 (11} :{vv)>(hh) ? (hh) :{vv))
fdefine x1in {CLAMP (ix1lu+dixl, O, IX1IMAX))
fidefine ix2n {CLAMP(ix2u+dix2, 0, IX2MAX))}
fidefine ix3n (CLAMP (ix3u+dix3, 0, IX3MAX))
fdefinexln (double)} (XIMIN + ix1ln*DX1)

examined */
¥definex2n
#definex3n

/* discrete level, next node

(double) (X2MIN + ix2n*DX2)
(double) (X3MIN + ix3n*DX3)

/*
- function declarations

>/

void main(void);
void test(void);
void testl int});
void plota(int);
vo*d plotb(void);
void plotul {void);
void plotu2({void);
void plotu3(void};

/%
o global variables

*/

double cotab, [ITX1SPAN] [IX2SPAN] [IX3SPAN]; /* table of running costs */
double ectab|IX1SPAN] [IX2SPAN] {IX3SPAN]}(2]; /* table of energy
costs v/

double tltab{IX1SPAN)[IX2SPAN)]{IX3SPAN] [LENGTH]; /* table of update times */
“ouble ultab[IX1SPAN] (IX2SPAN] {IX3SPAN] [LENGTH]; /* table of ul ¥/

double u2tab|[IX1SPAN] {1X2SPAN) [IX3SPAN] [LENGTH]; /* table of u2 */

double u3tab|IX1SPAN] {IX2SPAN) [IX3SPAN] [LENGTH]; /* table of u3 */

double T[4][LENGTH]; /* table of
temperature */

double COP[LM1]; /* table of COP */
int labtab[IX1SPAN] (1X2SPAN) [IX3SPAN]} (LENGTH] [3]; /¥ table of lable-

strings */
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int ixlu,ix2u,ix3u,ixl,ix2,ix3,m;

int dixl,dix2,dix3,ixlnext,ix2next, ix3next;

double ul,u2,u3,"1,v2,v3,RG1,RG2,RCZ1,RCE2,RCC,qz1,q22,tz2ls,t22s,dt_max;

double tn,tm,dt,tl,uul,vu2,uvu3,tlu,nco,ct,tc,ctc,ctemin,rl,r2,r3,al,az,nec,price;

/*
* lists of hourly zone cooling loads for zone 1.
*/
double gzltab[25] = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.559,5.792,5.088,4.385,3.682,3.682} ;
/*
* lists of hourly zone cooling loads for zone 2.
*/
double qz2tab(25) = {2.987,2.275,1.572,0.517,0.517,0.517,2.275,3.330,4.034,
5.792,6.847,7.550,8.254,9.309,11.067,10.364,9.661,
8.957,8.254,7.550,5.792,5.088,4.385,3.682,2.987};

/%

* lists of hourly enviroment temperture.

*/

double tetab[25] = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,3%.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};

/>
* main program

*/

void main{()

{

double tlmax=0.9; /* start at midnight, go beckwards (neqg
time) */

double tmn,time;

int tnhour, tnhiourl;

int 1, n, first!, first2, first3, lastl, last2, last3;

/*
* initialize the arrays
*/
RGl = sqrt{Gl);
RG2 = sqrt(G2);
RCZ1 = sqrti{CzZl});
RCZ2 = sqrt(Caz});

RCC = sqrt({CCj:

forin=0; n<4; nt+t)
{ for (m=0; m<LENGTH; ~++!
{
Ti{n]l (m}=0.0;
CoOP[m)= 0.0;
1
}

for{ix1=0; ixl1<=IX1MAX; ixl++)
{
for(ix2=0; ix2«<=IX2MAX; ixcvi}
{
fortin3=0; ix3<=IX43MAX; ix3++t)
{
cotablixl}ix2]1fir3] = 0.0;
ectab{ix1)}ix2){ix31[0) = 0.0;
ectab[ix1){ix2)[ix31({1] 0.0;
for(m=0; mM<LENGTH:; m++)
{

(rand()/32768.0)/1000000.0+0.0;

tltabf{ix1)(ix2][ix3](m]

ultab(ix1){ix2)(ix3](m]) = 0.0;
uZ2tab[ix1]) (ix2][ix3][m] = 0.0;
u3dtab{ix1)[ix2] (ix3])(m] = 0.0;

labtab{ix1){ix2](ix3){m][0} = ix}l; /* give ecach
node its own lable */
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labtab[ix1}}§ix2]){ix3)1[m}{1])] = ix2Z;
labtab(ix1}[ix2}[ix3][m}[2) = ix3;

}

i
while( timax > -24.0 ) {

/*
* find the next node to update
v/

timax = -24.0;
for(ix1=0; ix1<=IXIMAX; ixlt+)
{
for(ix2=0; ixZ<=IX2MAX; ix2++)
{
for(ix3=0; ix3<=IX3MAX; ix3++)

{
if(tltablix1][ix2]{ix3}{0}>tlmax)
{
ixlu=ix1; /*node to be updated has
latest last update¥/
iX2u=ix2;
ix3u=ix3;
tilmax=tltabl[ix1l] [ix2]){ix3}1({0};
tlu = tlmax:
}
}
}
}
/«
* find the ecarliest of the admissible update times
v/
tm = 0.0;
for(dix3=-1; dix3<=1; dix3+t+)
{
for(dix2=~1; dix2<=1; dix2++.
{
for{dixl=-1; dixl<=1; dixlt+)
{
tn=tltablixin] [ix2n}{ix3n) [0);
tmn = tn-DTMAX;
if(tmn<=tin) tm=tmn;
i
}
}
/i
- find the least-cost transition
v/

tl = tltablixlu)({ix2u]}(ix3u]{0]}:
ctemin = LARGE;

1E{(t1<=-23.0) §' ({t1<=-15.0) && (t1>-16.0)) |I((tl<=-5.0) && (t1>-6.0)))
{

tn=tl;

dixl=0;

dix2=0;

dix3=0;

price=LP;

tnhour = tn+24;

time = tn+24.0;
tz1s=TZ1SHI;

tz2s=TZ2SHI;

rl=R1;

r2=R2;

r3=R3;

al=Al;

a2=A2;

qzl = gzltab{tnhour]*3600;
qz2 = gz2tab[tnhour])*3600;
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dt _max=24.0+tn;

if
{

tz1s=T21SLO;
tz2s=T22SLO;

{(tl<=-15.0)

price=HP;
dt max=16.0+t1;

}

if
{

{(t1<=-5.0)

&&

Lrice=HP;
dt max=6.0+tl;

}

dt=dt_max;
testl(1);

else

for(dix3=-1;

{

for{dix2=-1;

{

dt))/dt+q. - (tnhour]

dt))/di+qgz2tab{tnhour]

}

}
}/* end of else */
if{(tlu >= tlmax)
{

dix3<=1;

for{dixl=-1;

{

&&

(t1>-16.0))

(t1>-6.0))

dix2<=1;

dix3t+)
dix2++)

dix1<=1; dixl++)
tn =
tnhour = tnt24;

time = tn+24.0;

qzl gzltab|[tnhour]*3600;
gz2 qz2tab{tnhour]*3600;
tzls=TZ1SHI;
tz2s=T228HT;
r1=R1;

r2=R2;

r3=R3;

al=A1;

a2=A2;
if{{time>8.0)
{

*21s=TZ1SLO;
1.225=TZ42SL0O;
}
if(time<=8.0}
price=LP;
else
price=HP;
dt_max=DTMAX;

for (1=LMAX;
{

1>=1; 1--)
dt=dt_max/1;
if{(time>=tnhour)

{

&&

tltabf{ixin) (ix2n]} [ix3n]) (0]

&§& (time<=18.0))

{tnhour>(time-dt)))

tnhourl=24+tn-dt;
qzl={qzltab{tnhourl]* {tnhour-(time-

*(time-tnhour)/dt)*3600;

qz2=(qz2tab[ tnhourlj* {tnhour-{time-

*(time-tnhour)/dt)*3600;

}
testl(l;;
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}

printf{"\failed update™);
break;

fo5r (n=LENGTH-2; n>=0; n--)

f

uyltab[ixlu} [ix2u) [ix3u] [n+l1l} =
witablixlnext] [ix2next] [ix3next][n];
g2tablixlu)l [ix2u][ix3u] [n+l] =
u2tablixlnext) [ix2next] [ix3next]{n]:
uldtab{ixlu] (ix2u) (ix3u)l [ntl] =
u3tablixlnext][ix2next] [ix3next]}[n];
tltab(ixlu) [ix2u]l{ix3u]in+l] =
tltap{ixlnext] [ix2next] {ix3next][n];
labtak[ix1lu) [ix2u) [ix3u] [n+1][0] =

labtab{ixlnext] [ix2next) [ix3next] [n])[0];

labtab[ixlu) {ix2u] [ix3u] {n+1] (1] =

labtab[ixlnext] [ix2next]) (ix3next}[n][1];

labtablixlu) [ix2u]} [ix3u} [n+1) (2] =

labtab(ixlnext]) [ix2next] [ix3next]) [n](2];

}/* end of for */
cotablixlu] [ix2u] [ix3u] = nco;
if {(tlu<-16.0)

{

ectab(ixlu] [ix2ul {ix3u] (0]
ectablixlu] [ix2u) [ix3u]) [1]

ectablixlu} {ix2u] {ix3u] (1]
ectab{ixlu]) [ix2u]) [ix3u] (0]

non

neciectabl[ixlnext] [ix2next] [ix3next}[0];
ectab{ixlnextj[ix2next]) {ix3next]{1];

nec+ectablixlnext) [ix2next] [ix3next] [1];

ectab{ixlnext] [ix2next] [ix3next] [0];

if(tlu==-6.0]|tlu==-15.0)
tltab{ixlu) [ix2u] [ix3u]) {0] = tlu-(rand()/32768.0)/1060000.0;

else

tltablixlu) [ix2u) [ix3u][0] = tlu;

ultablixlu} [ix2u] [ix3u] [0] = uul;
u2tab|ixlu) [ix2u} [1ix3u][0] = uu2;
udtablixlu] [ix2u] [ix3u] (0] = uu3;

labtab[ixlu) [ix2u])1ix3u] {0} {0]

labtab{ixlu) [ix2u]l [ix3u]l0]}[1] = ix2u;

labtab[ixlu)}{ix2u}{ix3u]l[0])(2]

} /* closes the "while" loop in main{) */

printf("\nLABLE TRACES"};

for(ix3=IX3MAX;

{

ix3>=0;

for(ixn2=IX2MAX;

{

first3==]ast3)

for(ix1=0;

{

ix3--)

ix2>=0; ix2~-)

ix1<=IXIMAX; ix1l++)

for{n=0; n<LENGTH; n++)

{

if(tltab{ix1}[ix2][ix3]}([n] <= -24.0)
{

f-rstl = labtab[ix1][ix2)[ix3][0])[0]
lastl = labtab(ix1l][ix2]}([ix3][LM1][0O
first2 = labtab[ix1]}[ix2][ix3]{0][1])
last2 = labtab[ix1}{[ix2}[ix3]{1LM1] (1
first3 = labtab(ix1]{ix2]{ix3)({0]1[2]);

last3 = labtab[ixi][ix2])[ix3][LM1][2];
if(firstl==lastl && first2==last2 &&

1;
1;

{

printf("\n");

for(m=0; mM<LENGTH; m++)
{

T{1]) {m}=(X1MIN+labtabf{ix1] [ix2])[ix3])[m][0]*DX1)/RC21;

T{2) [m)=(X2MIN+labtab[ix1] [1x2)[ix3)[m] [1]1*DX2)/RCZ2;

T(3] [m}=(X3MIN+labtab[ix1}[ix2] (ix3][m] [2]*DX3)/RCC;

95



m,

COP[m]=(COPMAX-1)* (1-{TO-T[3][m])/TMAX);

print:("\nlabeltrace|[82d} = %2d,82d,%2d",

labtab(ix1){ix2![ix3]1[m] 0],
labtab{ix1]){ix2){ix3)[m] (1]},
labtabix1] [1x2]) {ix3]1[m]}2]);
printf("\ttltrace{%2d} = %6f{", m,
tltab[ix1)}[ix2)(1x3}{m});
}/* end of lor */
printf("\npeak-hour energy cost = 812f"%,
ectab|[firstl)(first2){first3][11,;
printf{"\noff peak-hour energy cost = %12t",
ectab[firstl] [first2] {first3]10});
printf("\n"};
for({n=1; n<4; n++)
{
plota‘n);
printf("\n");
for{m=0; m<LENGTH; mtt)
{

printf("\ntemtrace[%$2d) (%2d]=%6f",n,m,T[n){m]);

}

}/* end of the main function */

/*
> proce

*/

void testl(i
{
vl
v2
v3
ul
u2
u3 =
if{(u
{

LI}

(N I

)
} /* end of

/*

*

}

dure to call trial

nt 1)

(ixln-ixlu)*DX1l/dt
(ix2n-ix2u)*DX2/dt
(ix3n-ix3u) *DX3/dt
vl/(Bl*gi);
v2/(B2*g2);

printf("\ttltracef%2d] - %6¢{",
tltabiixl){ix2){ix3)im)):
} /* end of the for */
}
plotb(};
plotul();
plotu2(};
plotul({);
printf("\n");
for{m=0; m<LENGTH; mi+)}

{
printf("\nCOPtrace(8%2d] =%61{",m,COP|m});
printf("\ttltrace[%2d]=%6({",m,
tltablix1][ix2}{ix3)Im});
}

} /* end of if ¥/
} /* end of the first if */

cost computation

- dl + xlu*AZl/C21;
- d2 + x2u*AZ22/CZ2;
- d3 + x3u*AC/CC;

(RG1*vl + RG2*v2 + v3)/(C33 + B3*g3);
1>=0.0) && (u2>=0.0) && (u3>»=0.0))

test();
return;

return;

testl function */

procedure to compute trial cost
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void test ()
{
double titry;
tltry=tr«t;
Pf((tJtry<-6.0)6&(t1>-5.0))return;
1f((tltry<-16.0)&&(t1>-15.0))return;
if{(tltry<-24.0)&&(t1>-23.9))return;
te = ({r1*ul*ul + r2*u2*u2 + r3*u3)*price+ al*pow(xlu-X1S8,2.0)/Cz1 +
aZ*pow (x2u-X2S,2.0)/C22)*dt
+ cotablixln) {ix2n]) [ix3n];
ct = (te - cotablixlul{ix2u][ix3u]) * (tn-dt-tm)/(tl-(tn-dt}):
cte = te + ct;
if{ctc< ctemin)
{
ctemin=ctc;
nco=tc;
tlu=tn-dt;
uul=ul;
uu2=u2;
uu3=u3;
nec=(rl*ul*ul + r2*u2*u2 + r3*u3)+*d*
ixlnext ixln;
ixZ2next ix2n,
ixlinext ix3n;

}
return;
} /* end of the test functicn */

/*
* output time and temperature in plot files
v/
vold plota{int n)
{
FILE *fp, *fopen{);
if{n==1)
fp=fopen("TZl.dat","w");
else if (n==2)
fp=fopen("TZ2.dat","w");
else
fp=fopen("TC.dat","w"};
for{m=0; m<LENGTH; mt+)
{
fprintf({fp,"\nt6f",TIn) (m});
fprintf{fp," %6f", (tltab[ix1][ix2){ix3]1[m]}+24.0)};
if (tltab[ix1][ix2][ix3])[m]}>=0.0)
break;
}
fclose(fp);
return;
} /* end of plota function */

/ﬁ
* output time and COP in plotCOP file
*/
vold plotb{)
{

FILE *fp, *fopen();

fp=fopen{"COP.dat","w");

for(m=0; m<LENGTH; mt+)

{

fprintf(fp,"\n86£f",COP[m]);

fpriiv-tifp,”™ 86f", (tltab[ix1]) [ix2]) [ix3]1([m]1+24.C));
Pf(tltaa{ix1) [1x2]}{ix3)(m)>=0.0)
break;

}
fclose(fp):
return;
} /* end of plotb function */

/%
* output time and ul in plotUl file
v/
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void plotul()

{
FILE *fp, *fopen{);
fp=fopen "Ul.dat","w");
for(m=0; m<LENGTH; mt++)
!

fprintf (fp,"\n%¥6f",ultab[ix1}[ix2][ix3){m});

fprintf (fp," R6f", (tltablix1][ix2] [ix3)(m1+24.0));
if(tltabix1l](ix2)[{ix3])[m])>=0 J)
break;

}
fclose(fp);
return;
} /* end of the plotul */

/*
* output time and u2 in plotUl file
*/

void plotu2(}

{

FILE *fp, *fopen{);
fp=fopen{™U2.dat","w");
for(m=0; m<LENGTi{; m++t)
{
fprintf{fp,"\n8vf",u2tab(ix1}{ix2][{ix3)[m]);

fprintf {fp," $6f", (tltab[ix1] (ix2] [ix3]) (m}+24.0));
if(tltablix1}{ix2])[ix3){m]>=0.0)
break:

}
fclose{fp):
return;
} /* end of the plotu2 */

/*
* output time and u3 in plotUl file
*/
void plotu3()
{
FILE *fp, *fopenl{):
fp=fopen("U3.dat","w"};
for(m=0; m<LENGTH; m++)
{
fprintf(fp,"\n%6f",u3tab[ix1) [ix2}[ix3}[m]);
fprintf(fp,* 86f", (tltab[ix1l] [ix2)[ix3][m)+24.0));
if(tltab{ix1}[ix2)[ix3]}([(m)>=0.0)
break;
}
fclose(fp);
return;
} /* end of function plotu3 */
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A.2 Source Code for Eight-Zone Cocling System

§ This is script file for exacute the program for eight-zone cooling system

gee -ansi -0 -c¢ aqgg8.c
gec agy8.o  -o agg8 -lm

cp daggll.h dagg.h
gce -ansi -0 -c dagg4.c
gee -ansi -0 -c dinpll.c

gcc dagqgd.o dinpll.o -o daggll -1lm

daggll

cp dagql2.h dagg.h
gce -ansi -0 -c daggd.c
gce -ansi -0 -c dinpl2.c

gcc daggB8.o dinpl2.0 -o daggl?2

dagqgl4

cp dagg2l.h dagg.h
gcc -ansi -0 -c dagg2.c
gcc -ansi -0 -c dinp2l.c

gce dagg?2.o dinp2l.o -o dagg2l

dagg2l

cp dagg22.h dagg.h
gcc -arsi -0 -c¢ dagg2.c
gue -ansi -0 -c dinp22.c

gce dagg2.o dinp?22.0 -o dagq22

dagg22

cp dagg23.h dagg.h
gcec -ansi -0 -c dagg2.c
gce ~ansi -0 ~-c dinp23.c

gcc dagg2.o0 dinp23.0 -o dagg23

dagg23

cp dagqg24.h dagg.h
gee ~ansi -0 -c dagg2.c
gee -ansi -0 -c dinp24.c

gcc dagg2.o0 dinp24.0 -o dagg24

-dagg24

/*iiiti*‘-****i*i***i*t**ii*****************i—*******ﬁ*********************************

bk W Wk

*

* Fiie Name: agg8.h

- Purpose: This header file for eight-zone aggregation. It declares the
* variables and functions required by the file agg8.c

Wk ke kb ek ek ke bbbk bk de bbb bbb hbkhbd bbb bddbdbhdbbhdhddd

tttit*/

#include <stdio.h>
finclude <math.h>

fdefine LENGTH (int)100

fdefinelMl (int) (LENGTH-1)
fdefine LARGE (double)1000000000.0
fdefineLP {double) 0.5

ratio%*/

fcefinelip {double)1.0

#def{ineTZ21SLO (double)24.0

zone%/
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/*off peak-hour energy price

/* peak-hour energy price ratio*/
/*setpoint temp for occupied



ffidefineTZ21SHI (double)30.0

zone*/

fidefineT22SLO (double}24.0
#defineT22SHI (double)30.0
#defineTZIMIN (double) {TZ1SLO-1.0)
constraint*/

#defineIX1SPAN(int) 9

dim.*/

fdefineIX1MAX (int) (IX1SPAN-1)
#defineTZ1IMAX (double) (TZ1SHI+1.0)
constraint*/

fidefineTZ2MIN (double) (T22SLO-1.0})
fidefineIX2SPAN(int)9
#defineIX2MAX (int) (IX2SPAN-1)
fdefineTZ2MAX (double) (TZ22SHI+1.0)
fidefineTCMIN (double)8.0
#defineIX3SPAN(int)15
fdefineIX3MAX (int) (IX3SPAN-1)
fdefineTCMAX (double)l15.0
constraint*/

#defineTO (double)} (35.0-20.0)
condenser*/

fidefineAl (double)12000.0
deviation*/

#defineA2 {double)12000.0
#defineR1 (double)0.00003
circulation pump op.*/
§defineR2 (double)0.00003
#defineR3 {(double)l.0
fdefineCzZR1 {double) (374.0)
hours/deg C*/

f#defineCzZR2 (double) {370.0)
#defineCZR3 (double) (300.0)
fidefineCZR4 (double) (187.0)

#defineCZR5 (double) (374.0)
#defineCZR6 {double) (300.0)
fdefineCiR7 {double) (187.0)

#defineCZR8 {(double) (100.0)

fidefineCzl1 (double) (CZR1+CZR2+CZR3+CZR4)
fidefineCz2 {double) (CZR5+CZR6+CZR7+CZR8)
fidefineCC (double)250000.

hours/deg C*%*/

fdefineG2 {double)Cz22/CC

#defineGl (double)Czl/CC

f#defineAZR1l {(double) (410.0)

#defineAZR2 {(double) (400.0)

f#defineAZR3 (double) (330.0)
fidefineAZR4 {double) (205.0})

fdefineAZRS (double) (410.0)

#defineAZR6 (double) (330.0)

#defineAZR7 {double) {205.0)

fidefineAZR8 (double) (110.0)

fdefineAZl1 (double) {ARZR1+AZR2+AZR3+AZRA4)
aggregated macrozone*/

fdefineAZ?2 {double) (AZR5+AZR6+AZRT7+AZRE)
f#idefineAC {double)17.6

#define ACZ (double)0.75

#defineBl {double) (-ACZ/C2Z1)

fdefineB2 (double) (~ACZ2/CZ2)

fidefine TMAX {double)20.0
fdefineCOPMAX (double)4.0

/*setpoint temp for unoccupied

/*min zone temperature

/*number of discrete points per

/*max zone temperature

/*min tank temperature constraint*/

/*max tank temperature
/*coolant temperature for

/*cost parameter zone toemp
’

/*cost paramcter,

/*zone hcat capacity, kw

/*aggregated capacity%/

/*tank heat capacity, kw

/*heat transfer coef f{or

/*heat transfer coef, tank*/
/*heat exchanger coef*/

/*max temp diff, refrig unit*/

unit*/
f#defineCOPM1
#defineBETA
#defineC33
fdefineB3

fdefine DTMAX1

(double) (COPMAX~1 .0}

(double) {COPM1/ (CC* M. [))

/*coef of performance, refrig

(double) {-COPM1* (1.0 -~ TO/TMAX)/RCC)

{double) (-BETA)
{double}l.0

is not smaller than -23.0*/

#defineLMAX
tested*/
#defineX1MIN
variable*/
fdefineX1MAX
variable¥/

(int)5
{double) (RCZ1*TZ1MIN)

(double) (RCZ1*TZ1MAX)

/*max time-step allowed when time
/*number of control amplitudes
/*min value, normalized statc

/*max value, normalized state
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fdefineDX] (double} ( (XIMAX~XIMIN)/IX1IMAX) /*stepsize, normalized
state var*/

fdefineX2MIN {double) {RCZ2*TZ2MIN)

fdefineX2MAX (doubile) (RCZ2*TZ2MAX)

fdefineDX2 (double) [ {(X2MAX-X2MIN)} /IX2MAX)

fdefineX3MIN (double) (RCC*TCMIN)

fdefineX3MAX {double) (RCC*TCMAX)

fdefineDX3 {double) ( (X3MAX--X3MIN)/IX3MAX)

fdefineXls (double) (RCZ1*tzls) /vdesired value, normalized state
var*/

fdefineX2s {double) (RCZ2*t2z2s)

fdefinexlu (double) (X1IMIN + ixlu*DX1) /*discrete level, node being
updated*/

fdefinex2u (double) (X2MIN + ix2u*DX2)

fdefinex3u (double) {X3MIN + ix3u*DX3)

fdefineqgl (double) (x1u-RG1*x3u)

fdefineq2 (double) (x2u~-RG2*x3u)

fdefineq3 {double}x3u

#definedl (double) { (qz1+AZ1*35.0)/RCZ1) /*normalized zone cooling
load*/

f#defincd? {double) ({gz2+AZ2*35.0})}/RCZ2)

#defined3 {double) (AC*35.0/RCC)

fdefine ixln (int)fixln{(} /*index of next node examined*/
fdefineix2n {int)fix2n ()

fdefineix3n {int)fix3n{}

fdefinexlin (double) (X1MIN + ixln*DX1) /*discrete level, next node
examined*/

fdefinex2n {double) (X2MIN + ix2n*DX2)

fdefinex3n (double) (X3MIN + ix3n*DX3)

/i*ttt**tﬁi* [Unction declarationsif'***********/
void main( void};
int fixln(void):
int fix2n(void);
int fix3n({void);
void test{void);
void testl(int);
void plot(void};

/tﬁt**ti*ttti— g]obal variables ****************/

double cotab[IX1SPAN] [IX2SPAN] [IX3SPAN]; /*table of running costs*/
double chtab[IX1SPAN] [IX2SPAN] [IX3SPAN]; /*table of running costs*/
double ectab|[IX1SPAN] [1IX2SPAN][IX3SPAN] [2]; /*table of energy
costs*/

double tltab[IX1SPAN] [IX2SPAN][IX3SPAN] {LENGTH}; /*table of update times*/
double ultab[IX18PAN} {IX2SPAN] [IX3SPAN] [LENGTH]; /*table of ul*/

double u2tab[IX1SPAN] [IX2SPAN] [IX3SPAN] [LENGTH]; /*table of u2+*/

double u3tab[IX1SPAN] [IX2SPAN] [IX3SPAN] [LENGTH]; /*table of u3*/

double T(4)([LENGTH]; /*table of
temperature*/

double COP{LM1]; /*table of COP*/
int labtab{IX1SPAN] {IX2SPAN] {IX3SPAN] [LENGTH} [3]; /*table of lable-
strings+/

int i1xlu,ix2u,ix3u,ixl,ix2,ix3,m, count;

int dixl,dix2,dix3,ixlnext,ix2next,ix3next;

double ul,u2,u3,vl,v2,v3,RG1,RG2,RCZ1,RCZ22,RCC,qzl,q22,t2zls,tz2s, DTMAX;
double pul,pu2,pu3,pud,pus,pué,pul,pus, pqzl,pqz2,pqz3,pqz4,pqz5, pPqz6, pgz7,pqz8;
double tn,tm,dt,tl,uul,uu2,uu3,tlu,nco,ctcmin, rl,r2,r3,al,a2,nchill, nec,price, TE;
/*lists of hourly zone cooling loads¥/
double qzltabl25]) = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
double qz2tab{?51 - {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.509,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
double qz3tab(25) = {2.987,2.275,1.572,0.517,0.517,0.517,2.275,3.330,4.034,
5.792,6.847,7.550,8.254,9.309,11.067,10.364,9.661,
8.957,8.254,7.550,5.792,5.088,4.385,3.682,2.987) ;
double qzd4tab{25] = {1.841,1.489,1.127,0.758,0.208,0.208,1.237,2.017,2.846,
3.770,4.604,05.535,06.413,07.294,08.171,09.050,08.171,
07.292,05.533,3.770,2.891,2.544,2.192,1.841,1.841});
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double

double

double

double

qgz5tab{25] = {8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,€.101,8.101,8.102,8.101,8.101,8.101,8.101} ;
gz6tab[25}) = {8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.102,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,9.101,6.101,8.101} ;
gz7tab(25) = {5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223};
gz8tab(25) = {3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223};

/*lists of hourly envioment temperture*/

double

/*********************************i************i*******i***t*‘tt*ii‘***i*i*itt****ﬁti'

tetabf{25) = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,325%.0,
35.0,35.0}:

dekdedokokoh ke

*

ok ok o+ %k o # ® F

*

LR A R R 2222222222222 222 2 22 2 R 2 X 2 2 222 R X2 2222222222 R X222 AR R ARl Rl

File Name: aggé.c

Purpose: This program computes the optimal trajectory for two macrozones

and storage. The main function calls module:
fixln(}
fix2n()
fix3n()
test ()
testl{int)
plot{)

*******/

¥ de g ok ke de ke e ok 3 dhkhkhkdhhdbhhbtddhddkrk
main program

#include<stdio.h>
finclude "agg8.h"

void main{)
'

time)*/

double tlmax=0.0; /*start at midnight, go backwards
double tmn,time;

int tnhour, tnhour .,

int 1, n, firstl, first2, first3, lastl, last2, last3;

/***¥* jpnitialize the arrays ¥¥*k*+/

RG1 = sqrt(Gl);
RG2 = sqrt(G2);
RCZ1 = sqrt{Cz1l);
RCZ2 = &qrt(CZ2);
RCC = sqrt(CC);
for(n=0; n<4; n+t+)

{ for{m=0; m<LENGTH; m++)
{
T{n}[m]=0.0
COP{m]= 0.0
}

;
;

}
for(ix1=0; ix1<=IXIMAX; ixl++)
{ for(ix2=0; ix2<=IX2MAX; ix2++)
{
for(ix3=0; ix3<=IX3MAX; ix3++)
{
cotab{ix1]) [ix2]){ix3] =
chtab[ixl] [{ix2}{ix3} = 0.0;
ecteb[ix1] [ix2)[ix3]) (0] = 0.0;
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ectab[ix1])[ix2]){ix3]1({1]) = 0.0;
for(m=0; m<LENGTH; m++)
{

tltab[ix1] [ix2]) [ix3] [m]
0.04(rand(}/32768.0)/1000000;

ultab(ix1]{ix2] (ix3] [m]

uZtab(ix1] (ix2] [ix3] [m}

u3dtab[ix1l]) (ix2}[ix3] [m}

labtab[ix1]) [ix2]) [ix3]}{m] ][O

DYEETIR Y

nan
— 000
hooo

ixl; /*give each
node its own lable*/

labtab[ix1]) [ix2}{ix3])([(m] [1) = ix2;
labtabf(ix1)[ix2) [ix3)[(m][2] = ix3;
}
}
}
}
while{ tlmax > -24.0 )}
{
/**** find the next node to update ***%/
tlmax = -24.0;
for(ix1=0; ix1<=IXIMAX; ixl++)
{
for(ix2=0; ix2<=IX2MAX; ix2++)
{
for(ix3=0; ix3<=IX3MAX; ix3++)
{
if(tltab[ixl]) [ix2][ix3)[0]>tlmax)
{ ixlu=ix1; /*node to be updated has

latest last update*/
ix2u=ix2;
ix3u~=ix3;
tlmax=tltab[ix1l] [ix2][ix3][0];
tlu = tlmax;

}

/¥**%* find the earliest of the admissible update timeg***¥%/

tm = 0.0;
for{dix3=-1; dix3<=1; dix3++)
{
for(dix2=-1; dixn2<=1; dix2++)
{
for(dixl=-1; dixl<=1; dixl++)

{tn=tltab[ixln] (ix2n] [ix3n}[0]};
tmn = tn-DTMAX1;
if(tmn<=tm) tm=tmn;

}
/*** find the least-cost transition ¥*%¥/

tl = tltab[ixlu)[ix2u) {ix3u}(0]);
ctemin = LARGE;
if{(t1<-23.0) |} ((tl<=-15.0)&&(t1>-16.0)) |l ((t1<=-5.8) && (t1>-6.0)))
{

tn=tl;

dix1=0;

dix2=0;

dix3=0;

price=LP;

tnhour = tn+24;

time = tn+24.0;

tz1s=TZ1SHI;

t2z2s=T2Z2SHI;

rl=R1;

r2=R2;

r3=R3;

al=Al;
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a2=A2;
gzl
=(gzltab([tnhourj+gz2tab[tnhour]+gz3tab[tnhour}+qz4tab[tnhour))*3600;
qz2
=(qgz5tab{tnhour]+qgzétab(tnhour]+gz7tab{tnhour]+qz8tabi{tnhour]))*3600;
pgzl=qzltab{tnhour])*3600;
pgz2=qgz2tab[tnhour] *3600;
pgz3=qz3tab(tnhour]*3600;
pqzé=gz4tab(tnhour)*3600;
pqz5=qz5tab[tnhour])*3600;
pgz6=gz6tab[tnhour]*3600;
pgz7=gz7tab[tnhour) *3600;
pgz8=gzB8tab|tnhour]*3600;
TE = tetab|tnhour];
DTMAX=24.0+tn;
if((tl<=-15.0)&&(t1>-16.0))

{

tzls~TZ1SLO;

tz2s=TZ2SLO;
price=HP;
DTMAX=16.0+t1;
)
if((tl<=-5.8)&&(L1>-6.0))
{
price=HP;
DTMAX=6.0+t1;
}

dt=DTMAX:;

testl(1):

}
else
{
for({dix3=-1; dix3<=1l; dix3++)
{
for(dix2=~1; dix2<=1; dix2++)
{
for({dixl=-1; dixl<=1; dixl++)
{
tn = tltablixln}[ix2n}[ix3n](0];
tnhour = tn+24;
time = tn+24.0;
qzl
=(qzltab[tnhour]+gz2tab[tnhour}+gz3tab{tnhour]+gzd4tabl[tnhour])*3600;
qQz2
={gz5tab[tnhour]+gz6tab{tnhour]}+gz7tab[tnhour]+qz8tab{tnhour])*3600;
pqzl=qzltab[tnhour) *3600;
paz2=qz2tab[tnhour]*3600;
pqgz3=qz3tab(tnhour}*3600;
pqz4=gzd4tab(tnhour)*3600;
pqz5=qz5tab{tnhour]*3600;
pqz6=qz6tab|[tnhour]) *3600;
pqz7=qz7tab(tnhour] *3600;
pqz8=qz8tab([tnhour]*3600;
TE = tetab[tnhour]:
tzls=TZ1SHI;
tz28=TZ2SHI;
rl=R1;
r2=R2;
r3=R3;
al=Al;
a2=A2;
if{(time>8.0) && (time<=18.0))
{
tzls=TZ1SLO;
tz25=TZ2SLO;

}

if(time<=8.0)

price=LP;

else

price=HP;
if((tl<=-5.0)&6(t1>-6.0))

DTMAX=0.2;
for(l=1; 1>=1; 1--)
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dt=DTMAX/1;
if{({time>=tnhour) && {tnhour>{time-dt}))
{

tnhourl=24+tn~dt;

qz]=((qz]tabltnhourl14quLab(tnhour1]+qz3tab[tnhouzl]+qzdtab[tnhourl])*(tnhour—(time-
dt))/de(qzlLab[tnhour]+q22tab[tnhour]+q23tab[tnhour]+qzdtab[tnhour])
*(time-tnhour)/dt)*3600;

qu;((qz5Lab{tnhour1]+qz6tab[tnhourl]+qz7tab[tnhour1]+qutab[tnhour1])*(tnhour—(time-
dt))/dt+ {gzStabltnhourj+qz6tabltnhourl+gz7tab[tnhour]+gz8tab(tnhour])
*(time-tnhour)/dt)*3600;

pgzl=(gzltab{tnhourl]* (tnhour
-{ti1me=dt) ) /dt+gzltab[tnhour]

*(time-tnhour)/dt)*3600;

pgz2=(qz2tab[tnhourl]* (tnhour
~(time-dt))/dttqz2tabftnhour]

* (time-tnhour)/dt)*3600;

pqz3={gz3tab[tnhourl] * (tnhour
~-(time-dt))/dt+gz3tab[tnhour)

*(time-tnhour)/dt)*3600;

pgzd4={(gz4tabltnhourl]}* (tnhour
-(time-dt))/dt+gz4tabltnhour]

* (time-tnhour)/dt)*3600;

pqz5:==(gz5tab[tnhourl]* {tnhour
-{time-dt}))/dt+gzbtabtnhour]

*(time-tnhour)/dt)*3600;

pgzé6=(gzé6tab(tnhourl)* (tnhour

~-{time-dt))/dt+gz6tabltnhour)
* (time-tnhour)/d*+)*3600;
pgzi=(gz7tabltnhourl}* (tnhour
~(time-dt))/dt+gzltabltnhour]
* (time—-tnhour)/dt)*3600;
pqz8={qz8tab([tnhourl]* (tnhour
-{time-dt))/dt+qzB8tab(tnhour]
* (time-tnhour)/dt)*3600;

TE=(tetab[tnhourl]* (tnhour-{time-
dt))/dt+tetab[tnhour]* (time-tnhour)/dt);

}
testl(l});
}
}

else
{
DTMAX=DTMAX1;

for(1=LMAX; 1>=1; 1--)
{
dt=DTMAX/1;
if((time>=tnhour) && (tnhour>{time-dt)))
{
tnhourl=24+tn-dt;

qgzl={{gzltab[tnhourl]+gz2tab[tnhourl)+gz3tabl{tnhourl]+gzd4tabltnhourl])}* (tnhour-(time-
dt))/dt+(gzltabltnhour)+qz2tabltnhour])+qz3tab{tnhour]+gzdtab(tnhour]))
* (time-tnhour)/dt)*3600;

qz2={{gzbtabltnhourl])+gz6tab|tnhourl}+gz7tab{tnhourl]+qz8tab{tnhourl]}*(tnhour-(time-
dt}))/dt+({qgzS5tab{tnhour]+qz6tab|[tnhour]+gz7tab{tnhour]+qz8tab(tnhour])

* (time-tnhour)/dt)*3600;

pgzli=(qzltab[tnhourl]* (tnhour
~-(time-dt))/dt+qzltabl{tnhour]

*{time-tnhour)/dt)*3600;

pgz2=(qgz2tab[tnhourl]* (tnhour
~({time-dt))/dt+qz2tab[tnhour]

* (time-tnhour)/dt)*3600;

paz3=(gz3tab(tnhourl]*(tnhour
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-{time-dt))/dt+qz3tab|tnhour]

-{time-dt))/dt+gz4tab(tnhour]

~(time-dt))/dt+qgz5tab[tnhour]

-(time-dt))/dt+gz6tab[tnhour)

~{time~dt))/dt+gz7tab{tnhour])

~{time-dt)})/dt+gz8tab[tnhour]

*{time-tnhour)/dt)*3600;
pgzd4={(qzdtabltnhourl]* {tnhour

*{time~tnhour)/dt)*3600;
pqz5=(qzStab[tnhourlj* (tnhour

*(time~tnhour)/dt}*3600;
pqz6=(gz6tab[tnhourl]* (tnhour

*(time-tnhour)/dt)*3600;
pqz7=(qz7tab{tnhourl]* (tnhour

*(time-tnhour)/dt)*3600;
pqz8=(gz8tab[tnhourl]* (tnhour

*(time-tnhour)/dt)*3600;

TE={tetab[tnhourl]* (tnhour-{time-

dt))/dt+tetab[tnhour]* (time-tnhour)/dt);

}
testl1(1);

}

}

if{tlu >= tlmax)

{
printf("\failed update");
break;

}

for (n=LENGTH-2; n>=0; n--)

{
ultab{ixlu) [ix2u] {ix3u][n+l} =

ultablixlnext] {ix2next] {ix3next]n];

u2tab(ixlu] [ix2u) [ix3u) [n+1] =

u2tablixlnext] {ix2next]) [ix3next] [n];

u3dtab{ixlu] [ix2u]) [ix3u]}[n+l1] =

u3tab{ixlnext] [ix2next] [ix3next}in];

tltablixlu] [ix2u]l [ix3u]l{n+l] =

tltab[ixlnext) [ix2next] [ix3next]([n];

labtab[ixlu] [iX2u] [ix3u]l[n+1] (0]

labtablixlnext] {ix2next] {ix3next])([n][0]);

labtab{ixlu] [ix2u) [ix3u} [n+1] (1)

labtab[ixlnext] [ix2next] [ix3next}{nj[1]);

labtab[ixlu} [ix2u] {ix3u] {n+1] (2]

labtab(ixlnext] [ix2next] {ix3next)(n}(2]:

}

cotablixlu) [ix2u]} [ix3u] = nco;
if (tlu<~16.0)

{

1

ectab[ixlu] [ix2u] [ix3u] [0]
nectectablixlnext] [ix2next] [ix3next]} (0];
ectab[ixlu] [ix2u] [1x3u]l[1}
ectablixlnext]) {ix2next]} [ix3next][1]);
}
else

{

W

ectab(ixlu] (ix2u] [ix3ul (1]
nectectab[ixlnext]} {ix2next]} [ix3next](1};
ectab{ixlu] [ix2u]) [ix3u] [0]
ectab{ixlnext]} [ix2next] {ix3next] [0},
}

U

chtab(ixlu) [ix2u] {ix3u] =
nchill+chtab{ixlnext] [ix2next]) [ix3next];

if{tlu==-6.011tlu==-16.0)
{

tltab[ixlu) {ix2u) [ix3u] [0] = tlu-{rand()/32768.0)/1000000;

}

else

{
tltablixlu} [ix2u] [{ix3u] {0}

]

tlu;
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}

ultab{ixlu] [ix2u}[ix3u] [0}
u2tablixlu] [ix2u]) [ix3u]{0]) uu2;
u3tabl{ixlu] [ix2u]} [ix3u] (0] uu3;
labtab[ixlu) [ix2u} {ix3u) [0} {0) = ixlu;
labtablixlu) [ix2u] [1x3u] [0]) (1] ix2u;
labtablixlu) [ix2u]} [ix3u}{0])(2] ix3u:;

} /* end of while loop */

uul;

oo

printf ("\nLABLE TRACES"};
for{ix3=1X3MAX; ix3>=0; ix3--)
{
forlix2=IX2MRX; ix2>=0; ix2--)
{
for{ix1=0; ix1<=IXIMAX; ixl+t)
{
for(n=0; n<LENGTH; n++)
{
if(tltab{ix1][ix2?[ix3]In] <= -24.0)
{firstl=labtab[ix1]) (ix2][ix3])[n][0]);
lastl=labtab[ix1]}[ix2][ix3]}[LM1][0];
first2=labtab{ix1] [ix2][ix3][n] (1]
last2=labtab[ix1) {ix2] [ix3] [IM1]){1]};
first3=labtab[ix1] {ix2])[ix3])[n} (2]
last3=labtab[ix1][ix2][ix3])(LM1][2];
if(firstl==lastl && first2==last?2 &&
first3==last3)
{
printf("\n");
for (m=0; m<LENGTH; m++)
§

T{1][m]=(XIMIN+labtab[ix1](ix2)[ix3][m] [01*DX1)/RCZ1;
T[2]{m]={X2MIN+labtab{ix1] [ix2][ix3] [m] [1]*DX2)/RC22;

T3]} [m)={(X3MIN+labtab[ix1][ix2]} [ix3]{m] [2]}*DX3)/RCC;

COP(m])=(COPMAX-1}*(1-(TO-

T{3}[m])/TMAX);
printf{"\nlabeltrace{%2d] =

82d, %24, %82d", m,
labtab[ixl) [ix2]) [ix3) [m] [O],
labtab[ix1) [ix2] [ix3]) [m] [1],
labtab[ix1] [ix2]} [ix3][m][2]));
printf("\ttltrace(%2d] = %6f", m,
tltab[ix1] [ix2])[ix3)([m]);

if(tltabf{ix1]1{ix2){ix3]([m]>=0.0)
break;
}
count=m;
printf("\npeak-hour energy cost = $12f",
ectab[firstl) [first2) [first3)[1));
printf("\noff peak-hour energy cost =
R12f",
ectab(firstl] [first2)(first3)(0]);
printf("\nchiller energy cost = $12f",
chtab(firstl) [first2] (first3));
printf ("\n");
plot(};
}/* end of if tltab <= -24.0 */
}/* end of uf firstl== lastl etc.*/

}

/¥svxrs ond of main() w¥vxw/

[rewensketfynctions to compute new-node index***tkkdkkddrin /

int fixin{()
{

107



extern int ixlu, dixl:;

int i;

if{{ixlu==0 && dix1<0}! (| {ixlu==IX1IMAX && dix1>0)) i=0:
else i=dixl;

return{ixlu+i);

}

int fix2n{)
{
extern int ix2u, dix2;
int j:
if((iX2u==0 &§&§ dix2<0){ | {ix2u==IX2MAX && dix2>0)) j=0;
else j=dix2;
return{ix2u+j);

}

int fix3n{)
{
extern int ix3u, dix3;
int k;
if((ix3u==0 && dix3<0) || (ix3u==IX3MAX && dix3>0)) k=0;
else k=dix3;
return{ix3u+k);

[***wkxkkkkx¥+ procedure to call trial cost computation *++¥i/

void testl(int 1)
{

vl = {ixln-ixia)¥*DX1l/dt - dl1 + x1u*AZ1/CZ}1;
v2 = (ix2n-ix2u)*DX2/dt - d2 + xX2u*AZ2/CZ2;
v3 = (ix3n-ix3u)}*DX3/dt - d3 + x3u*AC/CC;
ul = v1/(Bl*gl);

u2 = v2/(B2%g2);

u3 = (RGl*vl + RG2*v2 + v3)/(C33 + B3*g3);

if({ul>=0.0) && (u2>=0.0) && (u3>=0.0}))
{

}

return;

test();

/***+% procedure to compute trial cost *¥¥¥¥/

void test()
{
double tc, ct, ctc,tltry;
tltry=tn-dt;
if((tltry<-6.0)&&(t1>-5.0))return;
if((tltry<~16.0)&&(t1>-15.0))return;
if((tltry<-24.0)&&(t1>-23.0))return;
pul=ul*pqzl/qzl, pu2=ul*pgz2/qzl;
pu3=ul*pqz3/qzl, pud=ul*pqgzd/qzl;
pub=u2+*pqgz5/qz2; pué=u2*pqz6/qz2;
pu7l=u2+*pqgz7/qz2; puB=u2*pqz8/qz2;
te = ({ rl*pul*pul + rl*pu2*pu2 + rl*pu3*pul +rl*pud*pud +
r2%*pub*pub + r2*pub*pu6 + r2*pu7*pul +r2*puB*puB +
r3*u3 )*price+ al*pow(xlu-X1S,2.0)/CZ1 +
a2*pow(x2u-¥28,2.0)/Cz2)*dt
+ cotab{ixln][ix2n]} {ix3n);
ct = (tc - cotab[ixlu][ix2u](ix3u]) * (tn~dt-tm)/(tl-(tn-dt));
ctc = tec + ct;
if(ctc<=ctcmin)
{
ctcmin=ctc;
nco=tc;
tlu=tn-dt;
uul=ul;
uu2=u2;
uu3=u3;
nec = { ri*pul*pul + rl¥*pu2*pu2 + rl*pu3*pu3 +rl*pud*pud +
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}

return;

r2*pub*pub + r2*pubé*pué + r2*pul*pu’l +r2*puB*pu +
r3*u3 )*dt;
nchill=r3*u3d*dt;

ixlnext = ixln;
ix2next = ix2n;
ix3next = ix3n;

/*""*“’“***"**"output tlme and Ul in plOtUl filei***t****tttt****/
void plot{)

{

int n;
FILE *

fp, *fopen{};

fp=fopen{"inputl™, "w"};

fprint

f(f{p,"%2d",count);

for{n=0; n<=count; n++)

{

fclose{
return;

m=count-n;
fprintf({fp,"\n¥6£f",T(1])[m]);

fprintf (fp," $6f",T(2)[m]);

fprintf(fp,” $6f",T{3]1[m});
fprintf(fp,"\n%6f",ultab(ix1]) [ix2][ix3])(m]);
fprintf(fp,” $6f",u2tab[ix1) [ix2)[ix3]([m]);
fprintf(fp,"” $6f", (tltab(ix1]) [ix2]) [ix3][m]j+24.0));
fp);

/ii**i*tii‘ii*i*i**i*&***tk***************i********t********************i******i******
ol e bk b ok

*
w
*
*
*

*

File Name: dagg8.h

Purpose

: This is header file for eight-zone disaggregation. It declares
variables and functions required by the file dagg8.c, dinpll.c,
dinpl2.c, dinp2l.c dinp22.c dinp23.c dinp24.c.

(2 2 X2 E X Z R R A R AR R R 2 22 2 R R R R A X R R R A R R R R R R R S E 222222222222t

i*ti**/

#include <stdio.h>
#include <math.h>

fdefine LENGTH (int)100 /*max length of
trajectories*/

§defina LM1 {int) (LENGTH-1}

f#define LARGE {double)1000000000.0

#define LP (double) .5

fdefine HP {double)1.0

#define TZ1SLO (double)24.0 /*setpoint temp for
occupied zone*/

fidefine TZ1SHI (double)30.0 /*setpoint temp for
unoccupied zone*/

fdefine T22SLO (double)24.0

fdefine TZ2SHI (double)30.0

fdefine TZ3SLO (double)24.0

#define TZ3SHI {double)30.0

#define TZ4SLO (double)Z4.0

f#define TZ4SHI (double)30.0

#define IX1SPAN (int)9

idefine 1X1MAX {int) (IX1SPAN-1)}

fdefine T21M™N {double) (T21SL0-1.0) /*max zone temperature

constraint+/
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#idefine TZ1MAX
constraint*/
fdefine IX2SPAN
fidefine IX2MAX
fdefine TZ2MIN
#define TZ2MAX
fidefine Al
#define A2
#define R1
#define R2
f#define CC
#define G2
fdefine G1
fdefine ACZ
fdefine Bl
#define B2
#define DTMAX1
#define LMAX
tested*/
fdefine X1IMIN
state variable*/
fdefine X1MAX
state variable*/
fidefine DX1
state var*/

fic ‘ine X2MIN
fo. fine X2MAX
#define DX2
f#define X18
state var*/
f#define X28
fdefine x1lu
being updated*/
#define x2u
fidefine gl
fldefine g2
fdefine dl
load*/

fdefine d2
fdefine ixln
examined*/
fidefine ix2n
fidefir-- x1ln
examinai'y/
#detl tne x2n

{double) (TZ1SHI+1.0)

(int)9

{int) (IX2SPAN-1)
{double) (TZ2SL0~-1.0)
{double) (TZ2SHI+1.0)
(double)12000.0
(double)12000.0
{double)0.00003
(double)0.00003
{double)250000.
(double)C22/CC
{(double)Czl/CC
{double)0.75
(double) {-ACZ/C21)
{double) (-ACZ2/CZ22)
(double)l.0

{(int)5

(double) (RCZ1*TZ1MIN)

(double) (RCZ1*TZ1MAX)
(double) { (X1MAX~X1MIN)/IX1MAX)
(double) (RC42*TZ2MIN})

tdouble) (RCZ2*T22MAX)

{double) ( (X2MAX-X2MIN)/IX2MAX)
(double) {RCZ1*tzls)

{double) {(RCZ22*t225)
{double) (XIMIN + ix1lu*DX1)

(double) (X2MIN + ix2u¥*DX2)
{double)} {x1u-RG1*CT*RCC)
{double) (x2u-RG2*CT*RCC)
(double) ({qz14+A21%35.0)/RCZ1)

(double) ( (qz2+AZ2*35.0) /RCZ2)
(int)£ix1n{()

{int)fix2n{)
(double) (XIMIN + ixln*DX1l)

{double) (X2MIN + ix2n*DX2)

/**i******** function declarations ***********i/

void main(void);

int fixln(void):;
int fix2n(void):

void test(void);
void testl{int);
void plot(void):;
void ice(void);

void dgata(void);

/i‘********** global Variables *****i*iiﬁ****t**/

double
double
double
double

cotab{IX1SPAN] {IX2SPAN];
lgatab[IX1SPAN] [IX2SPAN] [LENGTH);
tltab[IX1SPAN]) [IX2SPAN] [LENGTH);
ectab[IX1SPAN) [IX2SFAN] [2];

double TCtab{IX1SPAN])[IX2SPAN] [LENGTH];

/*max zone temperaturce

/*heat exchanger coef*/
/*max time-step allowed*/
/*number of control amplitudes
/*min value, normaliz.d
/*max value, normalized

/*stepsize, normalized

/*desired value, normalized

/*discrete level, node

/*normalized zone cooling

/*index of next node

/*discrete level, next nodo

/*table of update times*/
/*table of update times*/
/*table of ul+/

double ultab[IX1SPAN] [IX2SPAN][LENGTH]; /*table of ul*/

double u2tab{IX1SPAN] [IX2SPAN} [LENGTH]; /*table of u2+/

int labtab[IX1SPAN] [IXZSPAN]) [LENGTH] [2]; /*table of lable-strings*/
int ixlu,ix2u,ixl, ix2,m,count, tnhour, numb;

int dixl,dix2,ixlnext, ix2next;

double sqzl,sqz2,spqzl,spqz2,spqz3,spqgz4,sprice,sqa,stzls,stz2s,s8la;

double wul,u2,v1,v2,RG1,RG52,RCZ1,RC22,92z1,RCC,qz2,923,q9z4,t218,tz23, DTMAX;

double

tn, tm,dt,tl,uul,uu2,tlu,nco,ctemin, al, a2, nec,Crt,CCT, TE, tme,q,qa,nlq,price, la, tqa;

double

TC[200},TZagl(200),TZ2ag2({200]),T%{200}),VUagl(200),VUag2(200],U(200},T{200],1gal200];
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/tttti'iﬁi*i*tii*iiﬁi“tiii‘ﬁ*i’**ﬁfiii***tﬁt********i*****‘r*********i‘****t**i**********
LA S AR S22
*

* File Name: daggll.h

* Purpose: This is header file for eight-zone disaggregation. It
declares

* variables used to disaggregate the first microzone.

*
kbbb bbbk bbb bbb bbb bbb bbb bbb bbb bbb kbbb bbbk bbb hbh bbb kb bbbk bbbk dkhd

iﬁt**t/

#include <stdio.h>
finclude <math.h>

fdefineCzZR1 (double) (374.0) /*zone heat capacity, kw
houra/deg C*/

#defineCZR2 {double) (370.0)
#defineCzZR3 {double) (300.0)
f#defineCZR4 (double) (187.0)
fdefinecCz1 (double) {(CZR1+CZR2)
fdefineCz2 {double) (CZR3+CZR4)
fdefineAZR1 {double) (410.0)
fidefineAZR2 {double) (400.0)
fidefineAZR3 {double) (330.0)
#defineAZR4 {double) (205.0)

fdefineAnzl (double) (AZR1+AZR2) /*heat transfer coef for
zone*/ .
fdefineARz2 (double) (RZR3+AZR4"

double qzltab{25] ={3.682+3.682,2.987+2.978,2.275+2.275,1.517+1.517,0.517+
0.517,0.517+0.517,2.275+2.275,4.034+4.034,5.792+5.792,
7.550+7.550,9.309+9.309,11.067+11.067,12.826+12.826,14.584+
14.584,16.343+16.343,18.101+18.101,16.343+16.343,
14.584+14.584,11.067+11.067,7.550+7.550,5.792+5.792,5.088+
5.088,4.385+4.385,3.682+3.682,3.682+3.682};
/*lists of hourly zone cooling loads*/
double gz2tab{25) = {2.987+1.814,2.275+1.489,1.572+1.127,0.517+0.758,0.517+
0.208,0.517+0.208,2.275+1.237,3.330+2.017,4.034+2.846,
5.79243.770,6.847+4.604,7.550+5.533,8.254+6.413,9.309+7.294,
11.067+8.171,10.36449.050,9.661+8.171,
8.957+7.292,8.254+5.533,7.5504+3.770,5.792+2.891,5.088+2.544,
4.385+42.192,3.682+1.841,2.987+1.841});
double tetab{25] = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};
/*lists of hourly envioment temperture*/
double pqzltab[25] = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
double pqgz2tab({25] = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
double pqz3tab[25] = {2.987,2.275,1.572,0.517,0.517,0.517,2.275,3.330,4.034,
5.792,6.847,7.550,8.254,9.309,11.067,10.364,9.661,
8.957,8.254,7.550,5.792,5.088,4.385,3.682,2.987} ;
double pqgz4tab(25] = {1.841,1.489,1.127,0.758,0.208,0.208,1.237,2.017,2.846,
3.770,4.604,05.533,06.413,07.294,08.171,09.050,08.171,
07.292,05.533,3.770,2.891,2.544,2.192,1.841,1.8411};

double pul, pu2, pu3, pud, pqzl, pqz2, pqz3, pqz4:

double pp = 0;
char outfilel]) = "input21l";
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/**i***i'**i*********i*i’***t*******i**tti*tttﬁi#*ﬁi*t**ﬁtii*iif*iﬁtﬁitt*i*ttittittttti
de de de de b de ke W
*

* File Name: daggl2.h
* Purpose: This is header file for eight-zone disaggregation. It
declares

¥
*

variables used to disaggregate the second microzone.

I X2 2222222222222 2 22 R R 2 R R 2 2 2 R a2 2 22 2 2 22 2 22 2 22 A AR 2R XA XX RS2 2R 22l RS
i*****/

finclude <stdio.h>
finclude <math.h>

#defineCZRS (double) (374.0)
fdefineCZR6 {double) (300.0)

#defineCzZR7 {double) (187.0)
fildefineCZR8 {double) (100.0)
fidefinecCzl {double) (CZR5+CZR6)
fdefineCz2 {double) (C” /+CZR8)
fidefineAZRS {double) (4..,.0)

fdefineAZR6 (double) (330.0)
fdefineAZR7 (double) (205.0)
fdefineAZR8 (double) {110.0)

#defineAZl (double) (RZR5+AZR6) /*heat transfer coef for
zone*/
#defineRZ2 {double) (RZR7+AZR8B)

double gzltab[{25) = {8.101+8.101,8.101+6.101,8.101+8.101,8.101+8.101,8.101+
8.101,8.101+8.101,8.101+8.101,8.101+48.101,8.101+48.101%,
8.101+8.10.,8.101+8.101,8.101+48.101,8.101+8.101,8.101+8.101,
8.i01+8.101,86.101+8.101,8.101+8.101,
8.101+8.101,98.101+8.101,8.101+8.101,8.101+8.101,6.101:86.101,
8.101+8.101,8.:71+8.101,8.101+8.101} ;
double qgz2tab[25) = {5.223+..223,5.223+3.223,5.223+3.223,5.223+3.223,5.223+
3.223,5.223+43.223,5.223+3.223,5.223+3.223,5.223+3.223,
5.223+3.223,5.223+43.223,5.223+3.223,5.223+3.223,5.223+3.223,
5.223+3.223,5.223+3.223,5.223+3.223,
5.223+3.223,5.223+3.223,5.223+3.223,5.223+3.223,5.223+3.223,
3.223+3.223,5.223+43.223,5.22343.223}:
double tetab([25! = {35.0,35.0,35.0,3%.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};
double pgzltab{25] = {8.101,8.101,8.201,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,6.101,8.101,8.101} ;
double pcz2tabi25) = {8.10?,8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8..07,9. 101 8.101,8.101,8.101,8.101,8.101,8.101,
8.16.. S is1,¥.101,8.101,8.101,8.101,8.101,8.101} ;

double pqgz3tab{25; = ..223 5.223,5.223,5.223,5.223,5.223,5.223, 5 223,5.223,
b.oLo 4,223, 5 223,5.223,5.223,5.223,5.223,5.223,
5.2a- .223 .223,5.223,5.223,5.223,5.223,5.223};

double pgzd4tab[25] = {3. 223 3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.2?3,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223};

double pul, pu2, pu3, pud, pqzl, pqgz2, pgz3, pqz4;
double pp=0.0;
char outfile[] = "input22";

/*********************t*****"**itl’ﬁi**ﬁﬂ*itﬁﬁi**ﬁ***iiii'ﬂtiﬁ*f**ﬁitttﬁti*ﬂ‘lt‘lt't"iﬁit
e de e e ke de de ko
4

File Name: daggd.c
This program computes the optimal trajectories of the
twi smaller microzonez.
The main function calls module:

* * ¢ %
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fixln{()
fix2n()
test ()
testl(int) -
plot ()
ied{)
gdata{)

* &+ ¢ * ® W

*
A R 2 2 222 22222222 R X2 R R 2 A R R R 2 2 R 2 R S R AR R 22222222222 X2 2222222 2 AR AR sl ARt sl
E R 24 't't/

finclude <math.h>
finclude "dagqg.h"
#include "dagg8.h"

void main()
{

double tlmax=0.0; /*start at midnight, go backwards
{neg time}*/

double tmn;

int tnhourl;

int 1, n, firstl, first2, lastl, last2 ;

/¥*** jinjtialize the arrays *x**+/

It

RG1 sqrt(Gl);

RG2 = sqrt{G2);

RCZ1 sqrt (Cz21);

RCZ2 sqrt (C22);

RCC = sqrt(CC):

for(ixl=0; ix1<=IXIMAX; ixl++)

{ for(ix2=0; ix2<=IX2MAX; ix"++4)
{

o

cotab[ix1l]) [ix2}=0.0;

ectab{ix1)[ix2]{0]=0.0;

ectab[ix1)[ix2]{1)}=0.0;

for{m=0; m<LENGTH; mt+)

{

tltab[ix1]) [ix2][m) = 0.0+(rand()/32768.0)/1000000;
lgatab[ix1l) [ix2] [m]=0.1;
TCtabl[ix1l]) [ix21[m} = 0.0;
ultab[ix1l]) [ix2]) [m] = 0.0;
u2tab(ix1]){ix2] [m] = 0.0;
labtab{ix1]}[ix2])[m) {0] = ix1; /*give each node
its own lable*/

labtab{ix1}[ix2][m]){l] = ix2;

}
/**%*+ read data for data file **x+*/

gdata();
while{( tlmax > -24.0 )
{

/***+* find the next node to update ¥****/

tlmax = -24.0;
for{ix1l=0; ix1<=IX1IMAX; ix1l++)
{
for{(ix2=0; ix2<=IX2MAX; 1x2++)
{
if(tltab(ix1] [ix2} {U]>tlmax)
{

izxlu=ix1; /*node to be updated has latest last
updatev/
ix2u=ix7;
tlmax=tirab{ix1])[ix2])[0]:
tlu = tinax;
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/¥*+*+* find the earliest of the admissible update times***e¥/

tm = 0.0;
for(dix2=-1; dix2<=1; dix2++)
{
for{dixl=-1; dixl<=1l; dixi++)
{
tn=tltab(ixln) [ix2n] {0},
tmn = tn-DTMAX1;
if{tmn<=tm) tm=tmn;

}
/*** find the least-cost transition *%+/

tl = tltablixlu][ix2u] [0];
ctcmin = LARGE;
if((t1<-23.0)11(({t1<==-15.0)6&(t1>-16.0)) 11 {(Ll<==5.8)&a&(LLI>-6
{
tn=tl;
dix1=0;
dix2=0;
price=LP;
tnhour = tn+24;
tme = (tnt24.0);
tz1s=TZ1SHI;
t22s=TZ2SHI;
gzl = qgzltab[tnhour]*3600;
gqz2 = gz2tabltnhour]*3600;
pgzl=pgzltab[tnhour}*3600;
pgz2=pqgz2tab|tnhour)*3600;
pgz3=pgz3tab[tnhour]*3600;
pqz4=pgzdtabtnhour] *3600;
TE = tetab|[tnhour];
MAX=24.0+tn;
i ({tl<==15.0)6&(t1>-16.0})

' ~=TZ1SLO;
L :.8=TZ228SLO;
price=HP;
DTMAX=16.0+t1;

}
1f((tl<=-5.8)&&(t.1>-6.0))
{
price=HP;
DTMAX=6.0+t1;
}
dt=DTMAX;
icel);
testl(1l);

else

for{dix2=-1; dix2<=1; dix2++)
{
for(dixl=-1; dixl<=1; dix1l++)
{
th = tltab{ixIn)[ix2n]}[0]);
tnhour = tn+24;
tme =tn+24.0;
gzl = gzltab{tnhour}*3600;
qz2 = gz2tab[tnhour]*3600;
pazl=pgzltabftnhour])*3600;
pgz2=pqgz2tab(tnhour] *3600;
pgz3=pgz3tab{tnhour]*3600;
pgzd=pgz4tabftnhour]*3600;
TE = tetabk(tnhour];
tz1s5=TZ1SHI;
t225=TZ2SHI;
if(({tme>8.0) && (tme<=18.0))
{
tzls=TZ21SLO;
t225=TZ2SLO;
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if(tme<=8.0)
price=LP;
else
price=HP;
if((L1<=-5.0) &&{t1>-6.0))
{
DTMAX=0.2;
for .=1; 1>=1; 1--)
{
dt=DTMAX/1;
if{({tme>=tnhour) && (tnhour>(tme-
dt}i)
{
tnhourl=24+tn-dt;
qzl=(qzltab|[tnhourl]* (tnhour-
{tme-dt))/dt+gzitabjtnhour]
* (tme-tnhour)/dt)*3600;
qz2=(gz2tab{tnhourl]* (tnhour-
{tme-dt})/dtigz2tabltnhour]
* (tme-tnhour}/dt)*3600;
pgzl=(pgzltab{tnhourl])*(tnhour
-{tme-dt))/dt+pgzltab{tnhour)
*+ (tme—-tnhour) /dt)*3600;
pgz2=(pgz2tab{tnhourl)* (tnhour
-{tme-dt))/dt+pgz2tabltnhour]
* (tme-tnhour)/dt)*3600;
pgz3=(pgz3tab[tnhourl}*(tnhour
~{tme-dt))/dtipgz3tab]tnhour]
* (tme~tnhour)/dt)*3600;
pqz4=(pgzdtab[tnhourl]}*(tnhour
~{tme-dt))/dt+pgzdtabltnhour]
* (tme-tnhour) /dt)*3600;
TE=(tetab[tnhourl}*{tnhour-
{tme-dt))/dtitetabltnhour]* {tme-tnhour)/dt);

}

ice():
if((dix1==0) &£ (dix2==0) &&(dt==DTMAX/1))
{

sqa=qa;
sqzl=qzl;
sqz2=qz2;
spqzl = pgzl;
spgqz2 = pQz2;
spqz3 = pqz3;
spgzd4 = pqgz4;

stzls=tzls;
stz2s=tz22s;
sla=1la;
sprice=price;

}
}

testl(1l);

}
else
{
DTMAY.=DTMAX1;

for(1=LMAX; 1>=1; 1--)
{
dt=DTMAX/1;
if((tme>=tnhour) && (tnhour>(tme-
dt)})
{
tnhourl=24+tn-dt;
qgzl={gzltab[tnhourl]* (tnhour-
(tme-dt))/dt+qzltab{tnhour]
* (tme-tnhour)/dt)*3600;
qz2={gz2tab{tnhourl] * (tnhour-
{tme-dt))/dt+qz2tab[tnhour]
*(tme-tnhour)/dt)*3600;
pqzl=(pgzltab(tnhourl]* {tnhour
-(tme-dt))/dttpgzltab|[tnhour]
* (tme~tnhour)/dt)*3600;
pqz2=(pgz2tab(tnhourl)* {tnhour
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-{tme-dt))/dt+pgz2tabltnhour]

* (tme-tnhour)/dt)*3600;
pqz3=(pqz3tab{tnhourl}* (tnhour
-(tme-dt))/dt+pgz3tab|tnhour]
*{tme-tnhour)/dt)*3600;
pqzd=(pgz4tab{tnhourl]* (tnhour
-({tme-dt))/dt+pgzd4tab[tnhour]

* (tme~-tnhour)/dt)¥3600;

TE=(tetab[tnhourl]* (tnhour-
(tme-dt))/dt+tetab[tnhour]* (tme-tnhour)/dt);

}
ice();
if{(dixl==0) && (dix2==0)
&& (dt==DTMAX/5)) {

sqa=qa;
sqzl=qzl;
sqz22=qz2;
spqzl = pqzl;
spgz2 = pqz2;
spqz3 = pqz3;
spgzd4 = pqzd;

stzls=tzls;

stz2s=tz2s;

sla=1la;

sprice=price;

}

testl(1);
}/* end of for */
}/* end of else */

}

if{tlu >= tlmax)
{
printf{"\failed update");
break:;
}
for (n=LENGTH-2; n>=0; n--)
{
TCrablixlu]l (ix2u] {n+l) =
TCtabiixlnext] [ix2next]([n];
ultab[ixlu} [ix2u) [n+l1l] =
ultab{ixlnext](ix2next] {n]};
u2tablizliu] [ix2u] [n+1] =
u2tablixlnext] [ix2next] [n];
tltab[ixlu] (ix2u] [(n+1]) =
tltablixlnext]} [ix2next])[n);
lgatablixlu] [ix2u] [n+l] =
lgatabl{ixlnext] {ix2next] [n];
labtabl{ixlu) [ix2u)(n+1} (0} =
labtab[ixlnext] {ix2next) (n][0]);
labtab(ixlu] [ix2u]} [n+1]1{1} =
labtab(ixlnext) [ixznext}{n](1]};
}
cotab[ixlul [ix2u] = nco;
if (tlu<-16.0)
{
ectab[ix1i.] [ix2u]l [0l=nect+ectab[ixlnext][ix2next] [0];
ectab(ixlu] [ix2u]} [1l])=ectab[ixlnext) {1x2next][1];
}
else
{
ectabl[ixilu){ix2u)[l]=nec+ectablixlnext]} [ix2next][1]:
ectablixlu) (ix2u] [O)=ectablixlnext] ix2next])[0];
}
lgatab{ixlu] {ix2u) [{0] = nlq;
if(tlu==-6.01|tlu==-16.0)
{
tltab{ixlu) [ix2u)[0) = tlu~-(rand{)/32768.0)/1000000;
}
else

{
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tltab(ixlu) [ix2u){0] = tlu;
}

ultab([ixlu] [ix2u]) [0} = uul;
u2tab(ixin) [ix2u] {0] = uu2;
TCtab[ixlu) [ix2u] {D]) = CCT;

labtab{ixlu]) {ix2u] [0]{0]) = ix1lu;
labtablixiu) {ix2u] {0]){1] = ix2u;
} /*** cioses the "while" loop in main() ***/
printf("\nlabel trace®);

for (ix2=IX2MAY.; 1ix2>=0; ix2--)
{
for(ix1=0; ix1<=IX1IMAX; ixl++}
{
for{n=0; n<LENGTH; n++)
{
if(tltab{ixl)[ix2]}in] <= -24.0)
{firsti=labtab[ix1l][ix2])[n] [0]:
lastl=labtab{ix1l}[ix2] [LM1]{0O]:
first2=labtabiixl] [ix2]{n][1];
last2=1labtab{ix1]} [ix2] [IM1]({1];
if(firstl==lastl &&first2==last2 )

printf(*\n");
for{m=0; mM<LENGTH; m++)
{
printf{"\nlabeltrace{%2d} =
%2d,%2d", m,
labtab[ix1}({ix2}(m} {0},
labtab{ixl] [ix2][m] [1]);

printf("” tltrace(%2d]) =
R6f", m
Y tltab[ix1][ix2]) [mj+24.0);
printf("\nultracef$2d}
861", m,
' ultab[ix1] [ix2][m]);
printf (" u2trace(%2d] =
861", m,

u2tab{ix1}[ix2]} [m]);

printf{"\nlgatab=%12f",1gatabfixl]) (ix2][m]);
if(tltab[ix1])[ix2]) [m]}>=0.0) break;
}

numb=m;

print{("\npeak=%812f",ectab[firstl])[first2]) (1)}
printf("\noff
peak=812{",ectab[firstl][first2]{0]});
plot();
}/* end of if */
}/* end of if */
}/* end of for */
}/* end of for ¥/
}/* end of for*/
}

/¥x¥tev ond of main() LA S A AN

Je*xkwrwkrfyunct jons to compute new-node incextikkkkkdkikid/

int fixln()
{
extern int ixlu, dixi;
int i;
Ff{(ixlu<=1 && dixl==-2)]]({ixlu==0 && dixl==-1}{| (ix1lu==IX1MAX &&
dixl==1}|](ix1lu>={IXIMAX-1) && dixl==2)) i=0;
else i=dixl;
return{ixlu+i);
}

int £ix2n{()
{

extern int ix2u, dix2;
int j;
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1f{(ix2u==0 && dix2==-1)1] (1x2u<=1 §& dix2==-2) || {ix2u==IX2MAX && dix2==1)
| 1 (ix2u>=(IX2MAX~-1) && dix2==2)) ij=0;

else j=dix2;

return(ix2u+j);
}

/¥*x*kkrkktkir+ procedure to call trial cost computation *¥#wi/

void testi(int 1)
{

vl = (ixln-ixlu)*DX1l/dt - d1 + xlu*Az21/CZ1;
v2 = ,ix2n-ix2u)*DX2/dt - d2 1 x2u*Az2/CZ2;
ul = vl1/(Bl*gl);
u2 = v2/(B2*g2);

q = {ul*gl/RCZ1 + u2*g2/RCZ2)*ACZ*dt;
tgqa = qa+lgatablixln] [ix2n] [0O]l+la*pp;
if((ul>=0.0) && (u2>=0.0) &&(g<=tga) ){

test();
}
if (((t1<=23.0)&&(tl==tlu)) |} ((tl<=—-15.)66&(t1>~16)&a{tl==t1lu))il((t1<=~
5.8)&&(t1>-6.0)&&(tl==tlu)}){
test();
return;
}
if (({(DTMAX==0.2)&&{(dt==0.2))1|((DTMAX==1.0)4&(dt==1.0))} && (tlu==tl) &&
(dixl==1) && (dix2==1}) {
dix1=0;
dix2=0;
dt=0.2;
tn=tltab[ix1ln] {:x2n]{0]);
gzl=sqzl;
qz2=s¢z2;

pqzl=spqzl;

pqz2=spqz2;

pqz3=spqz3;

paz4=spqz4;

tzls=stzls;

tz2s=stz2s;

price=sprice;

la=sla;

ga=sqa;

vl = {ixln-ix1lu)*DX1/dt - dl + x1u*AZ1/CZ1;

v2 = (ix2n-ix2u)*DX2/dt - d2 + x2u*A22/CZ2;
ul = vl1/(Bl*gl);
u2 = v2/(B2*g2);

g = (ul*gl/RCZ1 + u2%*g2/RCZ2)*ACZ*dt;
tga=qgatlgatab[ix1ln] [ix2n] [0]+la*pp;
test():
dixl=1;
dix2=1;
return;
)
return;

}

/***** procedure to compute trial cost *¥¥*+/

void test ()

{
double tc, ct, ctc,tltry;
tltry=tn-dt;
if((tltry<~6.0)&&(t1>-5.8))return;
if({tltry<-16.0)&&{t1>-15.0)})return;
if((tltry<-24.0)&&(t1>-23.0))return;
if{{tn>-6.0)&&{tn<-1.0)6& (((ix1lu-ix1In)>0) || ((ix2u-ix2n)>0)))return;

pul = ul¥*pgzl/qzl; pu2 = ul*pgz2/qzl;
pu3 = u2*pgz3/qz2; pud = ul*pgzd/qz2;
tc = ((Rl*pul¥*pul + Rl*pu2*pu2 + R2*pu3*pu3 + R2*pud*pud )*price+ Al*pow(xlu-

X1s8,2.0)/C21 +
A2*pow{x2u-X25,2.0)/C22)*dt
+ cotab(ixln) [ix2n];
ct = (tc - cotab{ixlu]([ix2u)} * (tn-dt-tm)}/{tl-(tn-dt)):;
ctc = tc + ct;

if (ctc<=ctcmin)

{
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ctemin=ctc;
nco=tc;
nlg=tqa-q;
tlu=tn-dt;
uul=ul;
uu2=u2;
CCT=CT;
nec=(Rl1*pul*pul + Rl*pu2*pu2 + RZ2*pu3*pu3 + R2*pud*pud)*dt:
ixlnext = ixln:;
ix2next = ix2n;
)

return;

/***** compute possible gqa and CT at the time period of dt *¥%*ixes/

void
{

tcel()

int i;
for(i=0; i<count; i++)
{
T(0)=1.0+T[O};
if(T[i)>=tme && tme>T[i+l) && (tme-dt)>=T[i+1])
{
qa=U[i+1]*ACZ* (TZ2[1i+1]-TC[i+1])*dt;
CT=TC[i+1l};
la={lqgali+l)-1qafi])*dt/(T[i)-T[i+1])};
break;
}
if(T[i)>=tme && tme>T[i+l] && (tme-dt)>=T[i+2])
{
qa=U[i+1)*ACZ* (TZ[i+1])~TCli+1l])*(tme-T{i+1])
+U[i4+42)*ACZ* (TZ[i+2)-TC[i+2])*(T[i+1])~tme+dt);
CT=TCli+l)* (tme~T[i+1])/dt+TC[i+2)*(T{i+1]-tme+dt}/dt;
la=(lgal[i+l)-lqa{i] }*{tme~T([i+1})}/(T{i1~-T[i+1])+
{lgali+2]-1qa{i+1])*(T[i+1]~tme+dt)/{T{i+1]1-T[i+2});
break;
}
if(T{i)>=tme && tmed>T[i+l]) &§& {tme~-dt)>=T[i+3])
{
qa=U{i+1]*ACZ* (TZ2[i+1]-TC[i+1])}*(tme-~-T[i+1])
tU{i+2)*ACZ* (T2 [i42)-TC[i+2])*(T[i+1]}-T{i+2]))
+U[i43]*ACZ* (T2 [i+3]-TC[i+3])*{T[i+2]~tme+dt);
CT=TC{i+1]* {tme-T[i+1])/dt+TCli+Z|*(T[i+1]~-

W[142))/dE4TCi43)} ¥ (T{i+2]-tme+dt)/dt;

la=(lqali+l]-1lqa(i))*(tme~-T[i+1})/(TIi}~T[i+1))+

{lgali+2)-1lqali+1l])+

{lgal{i+3]-1qa{i+2]))*(T[i+2)~tme+dt)/ (T[i+2]-T[i+3]);
break;

if(Tli}>=tme && tme>T[i+l) && (tme-dt)>=T{[i+4])
{
qa=U[i+1)*ACZ* (TZ[i+1]}-TC[i+1])* (tme-T[i+1])
+ULi+2])*ACZ* (TZ(i+2])-TC{i+2))*(T[i+1)-T[i+2]}
HU[i+43)*ACZ* (TZ[i+3)-TC[i+3))*(T[i+2]-T[i+3])
tU[i+4]*ACZ* (TZ[i+4)-TC[i44))*(T[i+3]-tme+dt);
CT=TC(i+1l]*(tme-T[i+1])/dt+TC[i+2}*(T{i+1]-T{i+2]})/dt
+TC{i+3]1*(T[i+2)-T[i+3])/dt
+TC(i+4)1*(T{i+3)-tme+dt}/dt;
la={lqga{i+l]l-lqa(i]}*{(tme-T[i4+1]))/(T[i)-T[i+1]))+
{lqa[i+2])~1lqal(i+1))+
{lgqali+3]-1qa(i+2}}+
(1qz(i+d4]~1qa[i+3])*(T[i+3]-tme+dt)/ (T[i+3])-T[i+4}):
break;
}
if(T[i]>=tme && tme>T[i+1l] && (tme-dt)>=T[i+5])
{
qa=U{i+1]}*ACZ*{TZ[i+1)-TC{i+1])*(tme-T[i+1]})
+U[i+2)*ACZ* (TZ[i+2)-TC[i+2]))*(T(i+1]-T{i+2])
+U[i+3]1*ACZ* (TZ[i+3)-TC[i+3}}*(T[i+2)}-T[i+3]))
+U[i+4)*ACZ* (TZ([1i+4]-TC[i+4))* (T[i+3]-T[i+4])})
+U[i+5)*ACZ* (TZ{i+5]-TC[i+5])*(T{i+4])-tme+dt);
CT=TC[i+1)*(tme~T{i+1])/dt+TC[i+2]* (T[i+1)~-T[i+2]))/dt
+TC{i+3]*(T(i+2)-T[1+3]})/dt
+TC{i+4] ¥ (T{i+3)-T[i+4]})/dt
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+TC{i+5)*(T[i+4]-tmetdt)/dt;
la={lqga{i+l]~-1lqgali)l)*(tme-T{i+1} )}/ (T{i)-T(i¢+1])+
{lgali+2)-1lqgali+l])+
{lgalit+3]-lqali+2})+
{lgalitd4]-1qgali+3])+
{lga[i+5)-1ga[i+4]1)*(T(i+4}-tmetdt)/ (T[i+4]}~-T[i+5]);
break;
}
if(T{i]>=tme && tme>T[i+l] && (tme-dt)>=T[it+6])
{
qa=U[i+1} *ACZ* (T2 (i+1)~TC[i+1})*(tme-T{i+1])
HU[i42)*ACZ* (T2 [i42)-TCli+2])*(T[i+411-T[i+2])
+U[i43]*ACZ* (T2 [i+3]-TCIi+3])*{T{i+2])-T[i+3}])
+tU[i+4] *ACZ* (T2 (144} -TC[i+4})*(T{i+3]1-T[i+4])
FU[145)*ACZ* (TZ[i+5)-TC[i+5))*(T[i+4])-T[i+b}])
+U{i+6]*ACZ* (TZ[i+6]~-TC[i+6])*(T[i+5])-tme+dt);
CT=TC{i+1])* tme-T{i+1]})/dt+TC[i+2)*(T[i+1]-T[i+2))/dt
+TC[i+3])*(T{i+2])-T[i+3])/dt
+TCli+4)*(T[i+3])~-T{i+4))}/dt
+TC[i45)*(T[i+4])-T[i+5])/dt
+TC[i+6]* (T[i+5)-tme+dt)/dt;
la=(lga{i+l)-1lqa(i])*(tme-T[i+1))/{T[i}~-T[i41})+
(lgali+2)-1qali+l])+
(lgali+3]-lqafi+2])+
{lga{i+4}-1ga{i+3])+
{lgali+5)-1lqgali+d]))+
{lgaf{i+6)-1qal(i+S))}*(T[i+5]~-tme+dt)/(T[i4L]-T(it6]);

break;
}
}
}
void plot{)
{
int n;
FILE *fp, *fopen();
fp=fopen(outfile,"w");
fprintf(fp,"%2d",humb):
for(n=0; n<=numb; n+t++)
{
m=numb-n;
fprintf(f{p, "\n¥6f", (XIMIN+labtab[ix1] (ix2]){m] {0]*DX1)/RCZ1);
fprintf(fp,"” $6f", (X2MIN+labtab[ix1] {ix2}{m] [1]*DX2)/RC22);
fprintf(fp,"” $6f",TCtab{ix1]) [ix2])[m]);
fprintf(fp,"\n%6f",ultab(ix1][ix2}[m]);
fprintf{fp," $6f",u2tab{ix11(ix2] {m]);
fprintf (fp," $6f", (tltab[ix1][ix2](m]+24.0));
fprintf(fp,"\n%6f",lgatab(ix1]}[ix2])(m])}:
}
fclosel(fp):
return;
}

/****&*******************************i****iit******t*iti*ﬁ**ﬁ'iiiﬁﬁ't&**ﬁttitt*t.tttt
de g de g de ok ok kb
*

* File Name: dinpll.c
* Purpose: This program reads temperature and control values for two
microzone,

* temperature for storage, and time form inputl file. Thia
module
w

is called by main function to disaggregate the first microzonec.
*

2 22222222 2 2 X222 2 R 2222 2R R R R ZRER SRS R RS RSS2SR R RS2 22222 222 R A 2R R Al Al AR Al ld
*kkokkkk [

#include <stdio.h>
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#include "daggB.h"
/****+ get data from data~file ***vsekrdwirw/

void gdata()

{
int i;
char putfile[] = "inputl™;
FILE *fp;
fp=fopen{putfile,”r");
fscanf (fp, "%d", &count);
for{i=0;i<=count;i++){
1qa[i]=0.0;
fscanf (fp, "81f",4TZ21{i} )},
fscanf (fp, " %1{",6T2ag2{i]);
fscanf (fp, "$1£f",&TC[i});
fscant (fp,"81€f",6U[i]);
fscanf (fp, "%1£",&Uag2(i});
fscanf (fp, "81f",&T[i]):
}
fclose({fp);
return;

/t*iﬁ**titit*ttt**********i******"*ﬁ***********t********ﬁi******i***l'****************
*ddodkodo b bk
*

* File Name: dinpl2.c

* Purpose: This program reads temperature and control values for two
microzone,

hd temperature for storage, and time form inputl file. This
module

bl is called by main function to disaggregate the second

microzone.
*

LA AAARA RS AR RS AR A2 A2 R e e s 2 a2 e s e e 2 e R I R T R Y RN R
iﬂii**t/

#include "dagg8.h"
/¥¥*¥%* get data from data-file **+*tdwkwhwik/

void gdatal()

{
int i;
char putfile[] = "inputl®;
FILE *fp;
fp=fopen(putfile,"c");
fscanf (fp, "%d", &count);
for(i=0;i<=count;i++){
lqalil=0.0;
fscanf (fp,™81f",&T2agl{i]);
fscanf (fp, "81£f",&TZ2{i}]);
fscanf (fp, "81f",6TC[i])):
fscanf(fp,"81£f",&Uaqglli]);
fscanf (fp, "%1£f",&U[i])};
fscanf (fp, "81£f",6T(i]);
}
fclose(fpl;
return;

/t**t**ﬁiﬁt**ii****t**tt'ﬁ*"**i*t*‘t***&t*********i***tii*i**ti*****i*******i**********
Whhddddk
*
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* File Name: dagg2l.h

* Purpose: This is header file for eight-zone disaggregation. 1t
declares
*

*

variables used to disaggregate zonel and zone2.

X R R A R R S AR 2 R 2 s sl Rl AR A a2 R R R0 R R R R R TR R R R R R g R R R R R R R R Y
**i***/

finclude <stdio.h>
finclude <math.h>

#defineCzl {double) (374.0) /*zone heat capacity, kw
hours/deg C*/

fdefinecCcz2 (double) (370.0})

fdefinenzl (double) {410.0}

fdefineAz2 {double) (400.0)

double gzltab(25) = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.369,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
/*lists of hourly zone cooling loads¥/
double gz2tak[25] = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;
double tetab[25) = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};
/*lists of hourly envioment temperture*/
char outfile([] = "input3127;
double pp=0.2;

/***i*********************i*********'ﬁi**'4!1’******Q**i**"****ﬁﬁ**tiﬁﬁt*ﬁi***iﬁitiﬁ*ﬁ*tt
dodk b bk k kok
*

* File Name: dagg22.h

* Purpose: This is header file for eight-zone disaggregatlon. 1t
declares

*

variables used to disaggregate the zone3 and zoned.
*

hdhededekkd bbb hhdbhhd khdkhhhdbohkbbdhbhdkdhbbdbbhdbbdbrbbhbbbbhb bbb bbb bbb bbb bbb bbb bbb b e bbb
******/

#include <stdio.h>
finclude <math.h>

fdefineCz1 (double) (300.0)
#defineCz2 (double) (187.0)
fdefineRZl {double) (330.0)
fdefinenrz2 (double) (205.0)

double qgzltab(25) = {2.987,2.275,1.572,0.517,0.517,0.517,2.275,3.330,4.034,

5.792,6.847,7.550,8.254,9.309,11.067,10.364,9.661,
8.957,8.254,7.550,5.792,5.088,4.385,3.682,2.987} ;

double qgz2tab[25) = {1.841,1.489,1.127,0.758,0.208,0.208,1.237,2.017,2.846,
3.770,4.604,05.533,06.413,07.294,08.171.09.050,08.171,
07.292,05.533,3.770,2.891,2.544,2.192,1.841,1.841};

double tetab[25) = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};

/*lists of hourly envioment temperture*/

char outfile{] = "input334";

double pp=0.8;
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/Oﬁttititﬁtttﬁtﬁtiiitt****ttt"*’*it*&t*iiﬁt*tt***ttl’t***t*******i****it********i***i*
(AR 2 28 224
*

* File Name: dagg23.h

i Purpose: This is header file for eight-zone disaggregation. It
declares

* variaples used to disaggregate the zone5 and =zone6.

-
(22222222 XX 22 R X220 222 2222222222222l is st s 222222 222222222222 228 R X2 YRR X
ttﬁtﬁt/

finclude <stdic.h>
#include <math.h>

fdefineCz1 (double) (374.0)
fdefineCz2 (double)} {300.0)
#definenzl {double) {410.0)
fdefinenz2 {double) {330.0)

double gzltab(25) = {8.101,8.101,8.101,8.101,8.101,8.101,6.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101} ;
double qz2tab(25]) = {8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101} ;
double tetab{25] = {35.0,35.0,35%.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0});
/*lists of hourly envioment temperture*/
char outfilel] = "input356%;
double pp=0.0;

/ti*itiﬁiﬁ*****t**t**it!‘*t*******t*******************************t*******************
LA AR RN
w*

hd File Name: dagg24.h
> Purpose: This is header file for eight-zone disaggregation. It
declares

hd variables used to disaggregate the zone7 and zone8.

*

Thbhwdh bbbk b bbb bbbk bbbk kb h kb k b b db bbb bbbk bbb dhhbddhdddbbhdbdhdbdhddkddhddiddk
*i*itﬂr/

#include <stdio.h>
#include <math.h>

#defineCz1 (double) (187.0)
fdefineCz22 {double) {100.0)
fdefineAzl (double) {205.0)
fidefineAZ2 (double) {(110.0)

double qzltab{25} = (5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223};

double qz2tab(25) = (3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223);

double tetab{25) = {35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};

/*1lists of hourly envioment temperture*/

char outfile(] = "input378";

double pp=1.0;
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/4 R A A AR AR R R XA A A A SRR SlRE iR R R R R AR R R R R TR R R R R R R R R R R SRR G i G ey
dedrdr de ke kok W
*

-

File Name: dagg2.c
This program computes the orginal zones optimal
trajectores.
The main function calls modu. -
fixln()
fix2n()
test ()
testl(int)
plot ()
icd()
gdata{)

* % # * * *

&

(A X R R SN LA RS I 2 22 AR A S RS2l A2 Al sl i s 2SS A2 2R AR R AR R R LR EE R RETRE X ERFREFRRRRRETREY
de g de de dede b -

finclud= ath.h>
#include “div 3.h"
finclude "do 5.h"

voirt pain()
{

dnuble tlmax=0.0; /*start at midnight, go backwards
{neg time)*/

doukxle tmn;

int tnkourl:

int 1, n, firstl, first2, lastl, last2 :

/**** jnjtialize the arrays *¥**i+/

RGl = sqrt(Gl);

RG2 = sgrt(G2h;

RCZ1 = sqrt(Czl);

RC22 = sqrt(C22);

RCC = sqrt{CC);

for{ix1=0; ix1<=IX1IMAX; ixl++)

{ for(ix2=0; ix2<=IX2MAX; ix2++)

{
cotab[ix1)[ix2]}=0.0;
ectab[ix1]([ix2}[0]=0.0;
ectab(ix1){ix2}{1)=0.0;
for(m=0; m<LENGTH:; m++)
{
tltab{ix1I1[ix2])(m) = 0.0+(rand()/32768.0)/1000000;

lgatab{ix1}){ix2]}[m]}=0.1;
TCtab{ix1l][ix2][m] = 0.0;
ultabfix1}{ix2]([m] = 0.0;
u2tab(ixi){ix2}(m] = 0.0;
labtab{ixl}[ix2}{m) 0] = ixl; /*give each node
its own lable*/
labtab[ix1]){ix2]) [m]}[1] = ix2;
}
}

}

/**** read data for data file ¥#*x%/

gdata():

while( tlmax > -24.0 )

{

/**** find the next node to update ****/

tlmax = -24.0; .

for(ix1=0; ix1<=IXIMAX; ixl++)

{

for(ix2=0; ix2<=IX2MAX; ix2++)
{
if(tltab[ix1){ix2)[0]>t1lmax)
{ ixlu=ix1; /*node to be updated has latest

last update*/
ix2u=ix2;
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tlmax=tltab{ix1}{ix2}[0};
tlu = tlmax;

}
/**++ find the earliect of the admissible update times*v¥***/

tm = 0.0;
for(dix2=-1; dix2<=1; dix2++)
{
for({dixl=-1; dixl<=1; dixl++)
{
tn=tltablixln}(ix2n}[0];
tmn = tn-DTMAX1;
if(tmn<=tm) tm=tmn;

}

/*** find the least-cost transition ***/

tl = tltab[ixlu) {ix2u] [0];
ctcmin = LARGE;
1F((t1<=23.0)1}((t1<=-15.0)66&(t1>~16.0)) |1{(t1l<=-5.8)&&(t1>-6.0)))
{
tn=tl;
dix1=0;
dix2=0;
price=LP;
tnhour = tn+24;
tme = (tn+24.0});
tz1ls=TZ1SHI;
t.z2s=TZ28HI;
gzl =2.* gzltab[tnhour]*3600;
qz2 =2.* gz2tab{tnhour)*3600;
TE = tetabltnhour]:;
DTMAX=24.0+tn;
if{{tl<=-15.0)&&(t1>-16.0)}
{
tzls=TZ1SLO;
t22s=T22SL0O;
price=HP;
DTMAX=16.0+t1;
}
if(({tl<=-5.8B)&&(t1>-6.0})
{
price=HP;
DTMAX=6.0+t1;
}
dt=DTMAX;
icel};
testl(l);

else

for(dix2=-1; dix2<=1; dix2++)
{
for{dixl=-1; dixi<=1l; dixl++)
{
tn = tltab{ixlin](ix2n][0]:
tnhour = tn+24;
tme =tn+24.0;
qzl = qzltab[tnhour]*3600;
gz2 = gz2tab[tnhour}*3600;
TE = tetab[tnhour]);
tzls=TZ1SHI:;
t228=T2Z2SHI;
if((tme>8.0) && (tme<=18.0))
{
tz1s=TZ1SLO;
tz2s=TZ22SLO;
}
if (tme<=8.0)
price=LP;
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else
price=HP;
1f((tl<=-5.0) &&({t1>-6.0))
{
DTMAX=0.2;

for(l=1; 1>=1; 1--)

{

dt=DTMRX/1;

dt)))

{
tnhourl=24+tn-dt;

(tme-dt))/dt+gzltabltnhour]
* (tme-tnhour)/dt)*3600;

(tme-dt))/dt+qgz2tab[tnhour]
* (tme-tnhour)/dt)*3600;

(tme-dt))/dt+tetab[tnhour]* (tme-tnphour)/dt);

}
ice();
if{(dix1==0) && (dix2==0) &&

{

sqa=qga;
sqzl=qzl;
sqz2=qz2;
stzls=tzls;
stz2s=tz2s;
sla=la;
sprice=price;

}

{dt==DTMAX/1))

testl{l);

DTMAX=NTMAX1;

for(l=LMAX; 1>=1; 1--)
{
dt=DTMAX/1;

dt)))

{
tnhourl=24+tn~dt;

{(tme-dt))/dt+qgzltab{tnhour])
* (tme-tnhour}/dt)*3600;

(tme-dt))/dt+gz2tabltnhour]
* (tme-tnhour)/dt)*3600;

(tme-dt))/dt+tetab[tnhour]* (tme-tnhour)/dt);

}
ice():
1f(({dix1l==0) && (dix2==0)
&6 (dt==DTMAX/5) } {

sga=qa;
sqzl=qzl;
s5q22=qz2;
stzls=tzls;
stz2s=tz2s;
sla=la;
sprice=price;

testl(l});

}/* end of for */
}/* end of else */
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if((tme>=tnhour) && {(tnhour>({tme-

gzl=(gzltab{tnhourl]* (tnhour-
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TE=(tetab{tnhourl]* {tnhour~
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22d, 824", m,

vef",

m,

if(tlu >= tlmax)
{

printf("”\failed update");

break;

}
for (n=LENGTH-2; n>=0;

{

="'

TCtab(ixlu] [ix2u) {n+l]) =
TCtab[ixlnext]) [ix2next][n];
ultab(ixlu] [ix2u] [n+1l] =
ultablixlnext] [ix2next}([n];
u2tabixlu} [ix2u] (n+1] =
u2tabiixlnext] [ix2next] [n];
tltab{ixliv] [ix2uj[n+1l] =
tltab([ixlnext]{ix2next] [n};
lgatab(ixlu] [ix2u]} [n+l] =
lqatablixlnext] [ix2next]) {n];
labtab[ixlu] [ix2u] (n+1]{0) =
labtablixlnext] [ix2next]) [n)[0];
labtablixlul} [ix2u] [n+1])[1] =
labtab[ixlnext]} [ix2next] [(n][1];

}

cotablistwl{ix2u}l = nco;

if (tlu<-%6..0C)
{

ectabfixlu] {ix2u) [0)=nectectab|ixlnext][ix2next] [0];
ectablixlu] {ix2u]){1l]=ectablixlnext]) [ix2next]{1];

}

else

{

ectabfixlu] [ix2u])[l]=nect+ectablixlnext](ix2next][1]);
ectab[ixlu] [ix2u] [O]J=ectab[ixlnext] [ix2next] [0];

}
lgatab[ixlu]) [ix2u] [0])

= nlq;

if(tlu==-6.0|}{tlu==~-16.0)

{

tltab[ixlul]l [ix2u] [0]
}

else

{
tltablixlu} {ix2u} [0}
}
ultab[ixlu] [ix2u] [0]
u2tablixlu] [ix2u] [0])
TCtab([ixlu] [ix2u] [0]

fl

oo

tlu-(rand()/32768.0)/1000000;

tlu;

uul;
uuz2;
CCT;

labtab([ix1lu] [ix2u] [0]{0] = ix1lu;
labtablix1u] [ix2u]{0]){1) = ix2u:;
} /*** closes the "while" loop in main{) *¥**/
printf("\nlabel trace");

for(ix2=IX2MAX; ix2>=0; ix2--)

{

for(ixl1=0; ix1<=IX1MAX; ixl++)

{

for(n=0; n<LENGTH; n++)

{

if{tltab(ix1])[ix2] [n] <= -24.0)
{firstl=labtablix1l) [ix2])[n]{0C];
lastl=labtab(ix1] [ix2] [LM1][{O]};
first2=labtab{ix1l]{ix2}[n]{1]);
last2=labtab(ix1]} [ix2] [LM1}{1};
if(firstl==lastl &&first2==1ast2 )

{
printf("\n");
for(m=0; mM<LENGTH; m++)

{
printf("\nlabeltrace{%2d]

labtab{ix1)[3ix2] {m} (O],
labtablix1) [ix2] {m)([1]));
printf (" tltrace[$2d)

tltab{ix1){ix2]{m)+24.0);
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printf("\nultrace{%2d] =
$6f", m,
ultablixl]) {ix2][m]);

printf (" u2trace{%2d} =
$6f", m,

u2tabl{ixl] [1ix2]}[m]);

printf({"\nlqatab=%12f",1qgatablix1){ix2](m}));
if{tltab{ix1] {ix2][m]>=0.0) break;

numb=m;

printf ("\npeak=%12f",ectab[firstl) {first2](1]};
printf("\noff
peak=%12f",ectab|firstl) (first2](0]);
plot();
}/* end of if */
}/* end of if */
}1/* end of for */
}/* end of for */
}/* end of for*/
}

/**t*** end of main() *****/

[*Ek*rxvikfunctions to compute new-node index*¥*xvk+trkwkwi/

int fixin{()
{
extern int ixlu, dixi;
int i;
if((ixlu<=1 && dixl===2)||{ixlu==0 && dixl==-1)|](ix1lu==1X1MAX &&
dixl==1)}1(ixlud>=(IX1IMAX~1) && dixl==2)) i=0;
else i=dixl;
return{ixlu+i);

}

int fix2n{()
{

extern int ix2u, dix2;

int j;

1f((ix2u==0 && dix2==-1)|](ix2u<=1 && dix2==-2) || {ix2u==IX2MAX && dix2==1)
|1 {ix2u>=(IX2MAX~-1) && Jdix2==2)) §=0;

else j=dix2;

return{ix2u+j);

}

[rEkI Ak F Rk R E Hrocedure to call trial cost computation *+%ww/

void testl({int 1}
{

vl = (ix1ln-ixlu)*DX1l/dt - dl + x1u*AZ1/C2Z1;
v2 = {ix2n-ix2u)*DX2/dt - d2 + x2u*AZ2/CZ2;
ul = v1/(Bl*qgl);
uz = v2/(B2*g2);

q = (ul*gl/RCZ1 + u2%*g2/RCZ2)*ACZ*dt;
tga = qat+lgatab[ixln] [ix2n] [O]J+la*pp;
if((ul>=0.0) && (u2>=0.0) &&(g<=tqga) ){

test();
if (((t1l<-23.0)&&(tl==tlu)) || {(t1<==15.)6&(t1>~16)&5({tl==t1u})|{{{t2<=~
5.8)8&(t1>-6.0)&6& (tl==tlu))}{
test();
return;

if ((((DTMAX==0.2)&&(dt==0.2))i| ({DTMAX==1.0)6&&(dt==1.0))) && (tluw==tl) &&
(dixl==1) && (dix2==1)) {

dix1=0;

dix2=0;

dt=0.2;

tn=tltab[ix1in])[ix2n]{0)};

qzl=sqzl;

qz2=s8qz2;

tzls=stzls;

tz2s=stz2s;
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price=gprice;

la=gla;
qa=5qa;
vl = !ixln-ixlu)*DX1/dt - dl + x1u*AZl1/C21;

vZ2 = (ix2n-ix2u)*DX2/dt - d2 + x2u*RZ2/CZ2:
ul = v1/(Bl*gl);
u?2 = v2/(B2*q2);
g = {ul*gl/RCZ1 + u2*g2/RCZ2)*ACZ*dt;
tga=qatlqgatab{ixln] [ix2n] [0}+la*pp;
test():
dixl=1;
dix2=1;
cseturn;
}
return;
)

/****+ procedure to compute trial cost *++v¥w,

void test ()
{
double tc, ct, ctc,tltry;
tltry=tn-dt;
if{{tltry<-6.0)466(t1>~-5.8))return;
if({tltry<-16.0)56(t1>-15.0))return;
1f((tltry<~24.0)66(t1>-23.0))return;
It ({tn>-6.0) 65 {tn<-1.0)&&(({ix1lu-ix1In}>0} 1| {({ix2u-ix2n}>0)})return;
te = ((Rl*ul*ul + R2*u2+u2 }*price+ Al*pow(xlu-X1S,2.0}/C21 +
A2¥pow(x2u-%X2S8,2.0)/C22)*dt
+ cotablixln])[ix2n];
ct. = (tec - cotablixlu)[ix2u]) * (tn-dt-tm)/(tl-(tn-dt));
cte = tc + ct;

if(cte<=ctcemin)
{
ctcmin=ctc;
nco=tc;
nlg=tqga-q;
tlu=tn-dt;
uul=ul;
uu2=u2;
CCT=CT;
if(dt==1.0/1)nec=5*(Ri*ul*ul + R2*u2*u2)*.2;
else if(dt==1.0/2)nec=2.5%(R1*ul*ul + R2*u2*%u2)*.2;
else if(dt==1.0/3)nec=1.0/3/.2*(R1*ul*ul + R2*u2*u2)*.2;
clse if(dt==1.0/4)nec=1.0/4/.2*(R1*ul*ul + R2*u2*u2)*.2;
else nec=(R1*ul*ul + R2*u2*u2)*dt;
ixlnext = ixln;
ix2next = ix2n;
}
return;

}
/***++ compute possible ga and CT at the time period of dt ***¥ws+iy

void ice(}
{
int i;
for(i=0; i<count; i++)
{
T[0)=1.0+T{0]}:
if(Tli]l>=tme && tme>T[i+1l]) && (tme~dt)>=T[i+1])
{
qa=U[i+1)*ACZ* (T2 [i+1])~TC[i+1])*dt;
CT=TC[i+1}:
la=(lqa[i+l])-lqa(i})*dt/(T[i}-TIi+1]);
break;
}
if{T[i)>=tme && tme>T({i+l) && {tme-dt)}>=T(i+2}])

qa=U[i+1])*ACZ*(TZ[i+1]~TC{i+1])* (tme-T{i+1])
tU[i42)*ACZ* (T2[i+2])-TC[i+2]))* (T[i+1]-tme+dt);
CT=TC[i+1)*{tme-T[i+1]))/dt+TC[i+2]J*(T({i+1]-tme+dt)/dt;
la=({lga{i+l)-lqali])*(tme-T[i+1])/(T[i])-T{i+1})+
(lqa(i+2)~1qa[i+1]))*(T(i+1)-tme+dt)/(T[i+1}-T{i+2)):
break:; .
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if(T(i)>=tme && tme>T[i+l] && {tme-dt)>=T[i+3])
{
qa=U[i+1J*ACZ* (TZ{i+1]~-TC[i+l))})*(tme-T[i+1}])
tU{i+2)*ACZ*¥ (TZ[i+2)-TC[i+2))*(T[i+1]1-T[i+2}])
+U{i43J*ACZ* (T2[i+3)-TCli431)* (Tli+2]~-tmetdt});
CT=TC[i+1)*(tme-T{i+1])/dt+TC[i+2)*(T[i+1]-
T[i42))/dt+TC[i+3]*(T{i+2)-tmetdt)/dt;
la=(lqga{i+l}l-1lqalil)*(tme-T[i+1])/(T{i])-T[i+1])¢
(lgali+2)-1qaf{i+l])+
{lga{i+3}-lqgali+2})*(T[i+2]~tme+dt)/(T{i+2]-T[i+3});
break;
1
if(T{i)>=tme && tme>T(i+l] && (tme-dt)}>=T[i+4])
{
qa=U{i+1]*ACZ* (TZ[i+1]-TC[i+1])*(tme-T[i+1])
+U[i+2]1*ACZ* (T2[1i+2)-TC{i+2]})*(T[i+1]-T(it2])
+U[i+3]*ACZ* (TZ(i43])-TCIi+3))*(T{i42]1-T[i+3))
+U[i4+4)*ACZ¥ (TZ[i+4])-TC(i+4])*!T{1+3]-tme+dt);
CT=TC[i+1)*{tme=T[i+1))/dt+TCi+2)*(T[i+1])-T[i+2])/dL
+PCLi+3)*(T[1i+2)-T(i+3]))/dt
+TCli+41*(T[i+3]-tme+dt)/dt;
la={lqali+l)-lgalil)*{tme=T{i+1))/(T{i}-T[i41})+4
(lgafit+2]-lqafi+l])+
{lgaf{i+3]~1qgali+2])+
{lga[i+4)-1qali+3]1)*{T[i+3)-tme+dt)/(TIi+3)-T[i+4));
break;
}
if(T{il>=tme && tme>T(i+l) && (tme-dt)>=T[i+5])
{
qa=U[i+1)*ACZ* (TZ[i+1]-TC{i+l])*{tme-T{i+1])
+U[i+2}*ACZ* (TZ[i+2)~TC[i+42))*(T[(i+1]1-T(i+2])
+U[1+43]*ACZ¥(TZ[i+3]-TC[i+3))*(T[i+2}-T[i+3])
+U[i+4]*ACZ*(TZ[i+4]-TC[i+4]))*(T[i43]-T{i+4])
HU{i45)*ACZ* (TZ1i+5]-TCIi+5))*{T[i+4]-tme+tdt};
CT=TC[i+1]* (tme-T[i+1])/dt+TC[i42)*(T[i+1]-Tlit«z])/dt
+TC{i43}*(T[i+42]-T[i+3])/dt
+TC[i441*(T[1i+3)-T[i+4])/dt
+TC[1+S)* (T[i+4]-tme+dt)/dt;
la=(lgaf{i+l)-lqgalil])*(tme-T[i+1}}/(T{i)-T[i+1])+4
(lgaf{i+2)-1qgafi+l])+
{lgali+3]-1lgali+2])+
(lgali+4}-1gali+3))+
{lgali+5]-1lqga{i+4])*(T[i+d4]-tme+dt)/(T[i+t4]-TLit5H]);
break;
}
Pf{(T{i)>=tme && tme>T[i+l] && (tme-dt)>=T[i46])

qa=Uf{i+1]*ACZ*(TZ{i41]-TCli+1])* (tme-T(i+1])
+U[L42)*ACZ* (TZ[1+2]-TCli+2]))*(T(i+41}~T[i+2])
+U[i43]*ACZ* (T2[i+3]~TC{i+3))*(T[i42]-T[i+3])
+U[i+4)*ACZ* (TZ[i+4}-TCli+4))*(T(143]-T[i+4})
HU[1+D]*ACZ* (TZ[1i+5]~-TClLi+S])*(T(i44]}~T[i+5]}
tU[i+6]*ACZ* (TZ[i+6]-TC[i+6])}*(T[i+5]-tmetdt);
CT=TC[i+1]*{tme-T[i+1}}/dt+TC{i+42}*(T{i+1]~-T[i+2])}/dt
+TC{i431* (T[i42])-T[i+3))/dt
+TC{i+4)* (T[i+3])-T[i+4])/dt
+TC[i45]*(T[i+4]~T[i+5])/dt
+TC[i+6}*(T[i+5])~tme+dt)/dt;
la={lqafi+l)i-~1qali))*(tme-T[i+1))/(T{1)-T{i+1})¢
(lgali+2)-lqali+1])+
{lga(i+3)-1lqga(i+2]1}+
(1ge{i+d]l-lga{i+3]}+
(lga[i+5)-1ga([i+4])+
(lgali+6)-1qali+5)1)*(T{i+5])~tme+dt)/ (T[L1+5])-T[i+6]});
break;

}

void plot()

{
int n;
FILE *fp, *fopen{):
fp=fopen{outfile, "w");
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tprint{({fp,"%2d",numb);

for{n=0; n<-numb; n++)

{
m=npumb~n;
!print!(fp,"\n%Gf",(X1M1N+labtab(ix1]lix2][m][0]*DX1)/RCZ1):

fprintf(fp,"” $6f", (X2MIN+labtab[ix1 ) [ix2])[m] [1}1*DX2)/RCZ22);
fprintf(fp,"” $6{",TCtab(ix1) [ix2)[m]};

fprintf (fp,"\n%6f",ultabl{ixl] [ix2}(m]);

tprintf{(fp,” $6f",u2tab{ix1]} [ix2)[m}});

fprintf(fp,” 361", (tltab[ix1] [ix2]([m]+24.0});

fprintf(f{p,"\n8%6f",lqgatablixl) {ix2])[m]);
}
fclose(fp);
return;

/it*ﬁ*itwiti.i*i*tttii*ii*****i********i************i******ﬁ*************************
Wk kb tkd ok d
*

M File Name: dinp2l.c

. Purpose: This program reads temperature and control values for two
microrone,

> temperature for storage, and time form input2l file. This
modul e

* is called by main function to disaggregate the microzone to
zonc)

* and zone2.

+*
R 2 R R R 2 R R R R e R Z E R R R R AR A R R 2 A 222222222 2 2222222822 SRRl Rl sld
t&twttt/

#include "dagyB8.h"
/**%++ get data from data-file ***3¥wssvwsvw/

void gdatal()

{
int i;
char putfile[} = "ipput21l";
FILE *(p;
tp=fopen(putfile,”r");
fscanf (fp,"%d", &count};
for{i=0;i<=count;i++){
fscan{ (fp,"81f",&TZ[i));
fscani ({p,"%1{",&T2Zag2(il):
fscanf {({p,"81{",8sTC[i]);
{scanf{{fp,"81f",8Ufi]};
fscanf(fp,"%1f", &Uag2(i));
{scanf (fp,"81f",&T[i]);
tscanf (fp,"%1£f{",&lqali)};
}
fclose(fp):
return;

/ititti**itti**tii**t*i*iﬁ***i*i****t*************i**ti******************************
A2 SRR AR A
*

* File Name: dinp22.c

- Purpose: This program reads temperature and control values for two
microzone,

* temperature for storage, and time form input2l file. This
modul ¢

*

is called by main function to disaggregate the microzone to
zoned
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* and zoned.

*

2 R 2 X R X R R X A R R AR AR A R R AR AL A RS AR RS 2 A e A R R N R R R R R A R Y R R R R )
*******/

#include "dagg8.h"
/**¥+** get data from data-file **¥*txdwdtiss/

void gdata()

{
int i;
char putfile[] = "input2l”;
FILE *fp;
fp=fopen(putfile,"r™};
fscanf(fp,"%d", &count);
for{i=0;i<=count;i++){
fscanf (fp,"%1f",&TZaqgl[i]);
fscanf (fp,"%1£f",&T2[i)}));
fscanf (ip,"81f",&TCli]);
fscant (fp,"%1f",sUagl[i]);
fscanf(fp,"%81£f",&U[1]}});
fscanf (fp, "%if",&T{i]);
fscanf(fp,"%1f",&1qga{il);
}
fclose(fp):
return;

/******ti*************************ﬁ***I***ir*ir*i*i**ii‘****iit*iﬁ**i***i*'il‘t‘tt"*l'iitt
d d ok ok kb b
*

* File Name: dinp23.c

* Purpose: This program reads temperature and cortrol values for two
microzone,

* temperature for storage, and time form input22 file. This
module

* is called by main function to disaggregate the microzone to
zoneb

* and zoneé6.

*

2 2 2 22222 2222 R 222 2 2 A R 2 2 2 2R R 2 22 2 R R 2 2 R 222 222 2R 22 2222 XSRS 2SS ARl d sl AR Al dl sl s
**'ﬁ****/

#include "dagg8.h"
/**¥** get data from data-file ¥¥¥ikswdsuihsy

void gdata()

{
int i;
char putfilef] = "input22";
FILE *fp;
fp=fopen({putfile,™r");
fscanf(fp,"%d", &count):
for(i=0;i<=count;i++){
fscanf(fp,"81f",&T2(i]));
fscanf (fp,"%1f",&T2ag2[i]);
fscanf({fp,"81£f",&TC[i)});
fscanf(fp,"%1f",&U{i));
fscanf{fp,"%1f",&Uag2(i));
fscanf{fp,"%1£f",&T[i}):
fscanf(fp,"%1f",&lqalil}:
)
fclose(fp):
return;
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/lrﬁit“t‘ﬁtttttttttft'tffi'tttl‘*fﬁ*i*l’l‘ff*iiiiﬁI'ii“'fi‘if**i***itﬁw*t**ii*****ﬁtit*t*i
LR AR X R R RS

*
* File Name: dagg24.h

* Purpose: This is header file for eight-zone disaggregation. It
declares
w

variables used to disaggregate the zone7 and zoneS8.
*

R Y R R R 2222222222222 22 22 R R 2 R 2 2 2R R 22 R 22 22 X222 A2 X X222 2222222222 d sl st
tiﬁ*it/

finclude <stdio.h>
#include <math.h>

fdefinaCzl (double) {187.0)
fdefinecz2 (double) (100.0)
fdefineAZl {double) {205.0)
fdefinenz?2 (double) (110.0)
double gzltab[25]) = {5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,

5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223};

double qz2tabl2%) = {3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223,
3.223,3.223,3.223,3.223,3.223,3.223,3.223,3.223};

double tetab[25] = {35.0,35.90,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,

35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.01};

/*1ists of hourly envioment temperture*/
char outfile(} = "input3787;
double pp=1.0;
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A.3 Source Code for Four-Zone Cooling System

CC = gcc
FLAGS = -ansi
LIBFLAGS = -1m

-0

all: agg4 blockd

aggd: aggd.o
s{ce)

blockd4: blockd.o

agg4.o -o agg4 $(LIBFLAGS)

-9

$(CC) block4.o -o blockd4 $(LIBFLAGS)

agg4.o: aggd.c
$(CC) S(FLAGS) -g -c aggd.c

blockd4.0: blockd.c
${CC) $({FLAGS) -c -g blockd.c

-9

/*************************t********i*****tt*ﬁ*******ii*t*i*it***iﬁiit*ititit&ttittiﬁt

ddkkhkk ok hkk
*

This program computes the optimal trajectory for two

The main function calls module:

* File Name: aggd.c

* Purpose:

macrozones

* and storage.

* fixln{)

* fix2n{)

* fix3n()

* test ()

* testl{int)
*

*

plot ()

dkdehkbhddrhdekdbhddhdrhbdkddbdbhddbbbdbbbb bk dkdrr v bbb bbb bbbkt d bbbk bbb bbb bbb b d

*******/

finclude <stdio.h>
finclude <math.h>

#define LENGTH (int)160

#definelLMl {int) (LENGTH-1)
fidefine LARGE (double)1000000000.0
#defineLP {double}0.5
ratio*/

fdefineHP (double)l.0
fdefineTZ21SLO (double}24.0

zone*/

#defineTZ1SHI (double)}30.0

zone*/

fdefineTZ2SLO (double)24.0
fdefineTZ2SHI (double)30.0
fidefineTZ1MIN (double) (TZ1SL0O-1.0)
constraint*/

fdefineIX1SPAN (int )9

dim.*/

#definelIX1MAX (int) (IX1SPAN-1}
fdefineTZ1MAX (double) (TZ1SHI+1.0)
constraint*/

fdefineTZ2MIN (double) (T22SLO-1.0)

#idefineIX2SPAN (int)9

fidefineIX2MAX

(int) (IX2S5PAN-1)}

/*max length of trajectories®/
/*off peak~hour energy price

/* peak-hour energy price ratio*/
/*sevrpoint temp for occupied

/*setpoint temp for unoccupied

/*mmin zone temperature

/*number of discrete points per

/*max zone temperature
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fdefineTZ2ZMAX
fdetineTCMIN

(double) {TZ22SH1+41.0)
(double)8.0

fdefinelX3SPAN(int)1b

fdefineIX3MAX
fdefineTCMAX
constraint*/
fdefineTO
condenser*/
fdefineAl
deviation+/
fdefineA2
#defineRl

(int) (IX3SPAN-1)
(double)15.0

(double) (35.0-20.0)
(double)1000.0

(double)1000.0
{double) 0.00003

circulation pump op.*/

fdefineR2
fdefineR3
fdefineC21
hours/deg C*/
fdefineC22
fdefineCC
c‘l’l
fidefineG2
fidefineGl
fidefineAz]
microzone*/
fidefinenZ2
fdefineAC
fidefine ACZ
fdefineBl
#defineB2
fidefineTMAX
#defineCOPMAX
unit*/
fidefineCOPM]
fdefineBETA
fdefineC33
fdefineB3
#defineDTMAX1
is not smaller
§#defineLMAX
tested*/
fdefineXiIMIN
variable*/
¥defineX1MAX
variable¥/
fdefineDX1
state var‘/
fdefineX2MIN
#defineX2MAX
fdefineDX2
fdefineX3MIN
#defineX3MAX
fdetinebX3
fdefineX1s
var*/
#defineXx2s
fdefinexlu
updated*/
fdefinex2u
fdefinex3u
fdefinegl
#defineg2
fdefineg3
#definedl
load*/
fdefined?2
fdefined3
fidefine ixln
fdefineix2n
fdefineix3n
#definexln
examined*/
fidefinex2n
fidefinex3n

{double) 0.00003
{double)1.0
(double} (374.+187.)

(double) (300.04187.)
{double) 90000.

(double)Cz2/CC
(double)CZl/CC
(double) (410.04+205.0)

{double) {330.0+205.0)
(double)17.6
{double)0.75

(double) (~ACZ/C21)
{double) (~ACZ/C22)
(double)20.0
(double)4.0

{(double) {COPMAX~1.0)
{double) (COPM1/ (CC*TMAX) )

{double) (-COPM1* (1.0 ~ TO/TMAX)/RCC)

(double) (~BETA)
(double)l.0
than -23.0%/
{int)5

(double) (RCZ1*TZ1MIN)
{double) (RCZ1*TZ1MAX)
(double) { (XIMAX-XIMIN}/IX1IMAX)

{(double} (RCZ2*TZ2MIN)

{double) (RCZ2*TZ2MAX)

(double) ( (X2MAX-X2MIN}/IX2MAX)
(double) (RCC*TCMIN)

(double) {RCC*TCMAX)

(double) ( (X3MAX~X3MIN)/IX3MAX)
{double) {RCZ1*tzls)

{double) (RCZ2*tz2s)
{(double) (XIMIN + ixlu*DX1)

(double) (X2MIN + ix2u*DX2)
(double) {X3MIN + ix3u*DX3)
(double) {x1u-RG1*x3u)
{double) (x2u-RG2*x3u)
{(double)x3u
{double) ( (qz1+A21%35.0)/RCZ1)

(double) { (qz2+AZ2*35.0)/RCZ2)
(double) (AC*35.0/RCC)
(int)fixin()

{int)fix2n()

{(int)fix3n{()

{double) (X1MIN + ixln*DX1)

{double) (X2MIN + ix2n*DX2)
(double) (X3MIN + ix3n*DX3)
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/*min tank temperature constraint*/

/*max tank temperature
/*coolant temperature for

/*cost parameter, zone temp

/*cost parameter,

/*microzone heat capacity, kw

/*tank heat capacity, kw hours/deg

/*heat transfer coef for

/*heat transfer coef, tank*/
/*heat exchanger coef*/

refrig unit*/
refrig

/*max temp diff,
/*coef of performance,

/*max time-step a.lowed when time

/*number of control amplitudes
/*min value, normalized state
/*max value, normalized state

/*stepsize, normalized

/*desired value, normalized state

/*discrete level, node being

/*normalized zone cooling

/*index of next node examined*/

/*discrete level, next node



#define

labtab(i,j,k,1,m) (*{LABTAB+ (i) *IX2SPAN*IX3SPAN*LENGTH* 3+ (j ) *IX3SPAN*LENGTH* 34 (k) *L0NG
TH*3+ (1) *3+(m)})

#define cotab(i,j,k) (* (COTAB+ (i)*IX2SPAN*IX3SPAN+ (§)*IX3SPAN+(k)}})

#define ectab{i,j,k,1){*(ECTAB+(i)*IX2SPAN*IX3SPAN*2+(j)*IX3SPANY2+(k)*2+{1)})
fidefine

tltab(i,j,k,1) (* (TLTAB+ (i) *IX2SPAN*IX3SPAN*LENGTH+{j)*IX3SPAN*LENGTH+ {k)*LENGTH+ (1}))

/*********** function declarationsfﬁﬁtiittirirtti/

void main{void);
int fixln{void):;
int fix2n{void):;
int fix3n(void);
void test(void);
void testl({int};
void plot(void);

/*it****i**** global Val‘iables l'******i**i**iii/

int T(4] [LENGTH] ; /*table of
temperature*/
double COP[LM1l}; /*table of CcOPY/

double *COTAB, *ECTAB, *TLTAB;
unsigned char *LABTAB;

int ixlu,ix2u,ix3u,ixl,ix2,ix3,m,count;
int dixl,dix2,dix3,ixlnext,ix2next,ix3next;
double

pul,pu?2,pu3,pud4,ul,u2,ul,vl,v2,v3, RGl,RG2,RCZ1,RC22,RCC,qz1,qz2,pqzl,pqz2,pqzl

,pgqzd,tzls,tz2s, DTMAX;

double tn,tm,dt,tl,uul,uu2,uu3,tlu,nco,ctcmin,rl,r2,r3,al, a2, nec,price,TE;

double qzltab[25) = {3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,
7.550,9.309,11.067,12.826,14.5684,16.343,18.101,16.343,

14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;

/*lists of hourly zone cooling loads*/

double gz2tab(25) = (8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,8.101,8.101,8.101};

double gz3tab[25] = {1.841,1.489,1.127,0.758,0.208,0.208,1.237,2.017,2.846,
3.770,4.604,05.533,06.413,07.294,08.171,09.050,08.171,
07.292,05.533,3.770,2.891,2.544,2.192,1.841,1.841};

double qgz4tabl25) = {5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223,
$.223,5.223,5.223,5.223,5.223,5.223,5.223,5.223};

double tetab(25)] = (35.0,35.0,35.0,35.0,35.0,35.0,35.0,35%.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.01};

/*lists of hourly envioment temperture*/

/*i***ti**f* maln program *i************it**/

void main{}

{

double tlmax=0.0; /*start at midnight, go backwards (neg
time)*/

double tmn,time;

int tnhour, tnhourl;

int 1, n, firstl, first2, first3, lastl, last2, last3;

if ((LABTAB=(unsigned char

*)malloc (IX1SPAN*IX2SPAN*IX3SPAN*LENGTH*3*sizeof (unsigned char)))}==NULL){
printf(stderr,"error allocating sufficient memory...aborting\n");
exit(-1);

if ((COTAB=(double *)malloc(IX1SPAN*IX2SPAN*IX3SPAN*sizeof (double)))==NULL}
printf(stderr,"error allocating sufficient memory...aborting\n");
exit(-1);
}
if((ECTAB=(double *)malloc(IX1SPAN*IX2SPAN*IX3SPAN*2*sgizeof (double) ) )==NULL){
printf(stderr,"error allocating sufficient memory...aborting\n®);
exit(-1);
}
if ((TLTAB={(double
*)malloc(IX1SPAN*IX2SPAN*IX3SPAN*LENGTH*sizeof {double)))==NULL) {
printf(stderr,"error allocating sufficient memory...aborting\n");
exit(-1);
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/*+**+* jnitialize the arrays *v+%/

RG1 = sqrt(Gl});

RG2 = sqrt(G2);

RCZ1 = sqrt(Cz21);

RCZ2Z = sqrt(Cz22);

RCC = sqrt(CC};

for{n=0; n<4; nt+t+)

{ for(m=0; m<LENGTH; m++)
{
TI(n) [m]=0.0;
COP[m}= 0.0;
}

}
for(ix1=0; ix1<=IX1IMAX; ixl++)
{ for(ix2=0; 1ix2<=IX2MAX; ix2++)
{
for(ix3=0; ix3<=1IX3MAX; ix3++)
{
cotab(ixl,ix2,ix3) =
ectab(ixl,ix2,ix3,0) =
ectab({ixl,ix2,ix3,1) =
for{m=0; mM<LENGTH; m++)
{

[=NeoNal
P

DYSRTY

tltab(ixl,ix2,ix3,m) =
0.0+(rand()/32768.0)/1000000;

labtab(ix1,ix2,ix3,m,0) = ixl; /*give each
node its own lablet/
labtab(ixl,ix2,ix3,m,1) = ix2;
labtab{ix1l,ix2,ix3,m,2) = ix3;
}
}
}
|
while( tlmax > -24.0 )
{
/***+ {ind the next node to update ****x/
tlmax = -24.0;
for{ix1=0; ix1<=IX1IMAX; ixl++)
{
for(ix2=0; ix2<=IXZMAX; ix2++)
{
for(ix3=0; ix3<=IX3MAX; ix3++)
{
if(tltab(ixl,ix2,ix3,0)>tlmax)
{ ixlu=ix1; /*node to be updated has

latest last update*/
ix2u=ix2;
ix3u=ix3;

tlmax=tltab(ixl,ix2,ix3,0);

tlu = tlmax;

}
/**** find the earliest of the admissible update times¥¥***%/

tm = 0.0;
for(dix3=-1; dix3<=1; dix3++)
{
for{dix2=-1; dix2<=1; dix2++)
{
for{dixl=-1; dixl<=1l; dixl++)
{

tn=tltab{ixln,ix2n,ix3n,0);

tmn = tn-DTMAX1;
if (tmn<=tm) tm=tmn;
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}
/*** find the least-cost transition *+**/

tl = tltab{ixlu,ix2u,ix3u,0);
ctemin = LARGE;
if((tl<-23.0) |1 ({t1<=-15.0)&&{t1>-16.0)) |[1({t1<==5.0) && (t1>-6.0)))
{
tn=t1l;
dix1=0;
dix2=0;
dix3=0;
price=LP;
tnhour = tn+24;
time = tn+24.0;
tzls=TZ1SHI;
tz2s5=TZ2SHI;
ri=R1;
r2=R2;
r3=R3;
al=Al;
a2=Az2;
gzl ={qgzltab{tnhour]+qz3tab(tnhour])*3600;
qz2 ={gz2tab[tnhour]+qgzd4tab{tnhour})*3600;
pgzl=qzltab[tnhour]*3600;
pgz2=gz2tab[tnhour] *3600;
pgz3=gz3tab[tnhour] *3600;
pgz4=gz4tab{trhour}*3600;
TE = tetabltnhour]:;
DTMAX=24.0+tn;
if((tl<=-15.0)&&(t1>-16.0))
{
tzls=TZ1SLO;
t22s=TL28L0O;
price=HP;
DTMAX=16.0+t1;
}
if({tl<=-5.0)&&(t1>-6.0))
{
price=HP;
DTMAX=6.0+tt1;
}
dt=DTMAX;
testl(l);

}
else
{
for{dix3=-1; dix3<=1; dix3++)
{
for(dix2=~1; dix2<=1; dix2++)
{
for{(dixl=-1; dixl<=1; dixl++)
{
tn = titablixln,ix2n,ix3n,0);
tnhour = tn+t24;
time = tn+24.0;
gzl =(qgzltab[tnhour]+qz3tabj{tnhour))*3600;
qz2 ={(qgz2tab[tnhour)+qz4tab([tnhour])*3600;
pgzl=qzltab{tnhour])*3600;
pgz2=qz2tab{tnhour)*3600; .
pqz3=qz3tab|[tnhour]*3600;
pgz4=gz4tab{tnhour}*3600;
TE = tetab{tnhouri};
tz1s8=TZ1SHI;
tz28=TZ2SHI;
ri=R1;
r2=R2;
r3=R3;
al=Al;
a2=A2;
if({time>8.0) && (time<=18.0))
{
tz15=TZ1SLO;
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tz2s=TZ2SLO;
}
if(time<=8.0)
price=LP;
else
price=HP;
DTMAX=DTMAX1;

for(1=LMAX; 1>=1; 1--)
{
dt=DTMAX/1;
if{(time>=tnhour) && (tnhour>{time-dt)))
{
tnhourl=24+tn-dt;

qgzl={(qzltab(tnhourl)+gz3tab[tnhourl])*{tnhour-{time-
dt))/dt+(qzltab[tnhour]+gz3tab[tnhour})
*{time-~tnhour)/dt)*3600;

qz2=({gz2tab[tnhourl]+gz4tab[tnhourl])* (tnhour-{(time-
dt))/dt+(gz2tab([tnhour] +qz4tab|{tnhour]))
*{time-tnhour)/dt)*3600;
pazl=(gzltab{tnhourl])* (tnhour-(time-
dt))/dt+qzltab{tnhour]
*({time-tnhour)/dt)*3600;
pgz2=(gz2tab[tnhourl}*{tnhour-(time~
dt))/dtiqz2tab{tnhour]
*(time~tnhour}/dt)*3600;
paz3=(gz3tab{tnhourl)* (tnhour-{time-
dt))/dt+gz3tab[tnhour)
*{time-tnhour)/dt}*3600;
pgzd=(gzdtab[tnhourl]j* (tnhour-(time-
dt))/dt+qzdtabtnhour}
*{time-tnhour)/dt)*3600;
TE=(tetab|[tnhourl)*(tnhour-(time-
dt))/dt+tetabltnhour]*(time-tnhour)/dt});

}
testl(1l);

- ———

if(tlu >= tlmzx)

—-—

printf(®"\failed update®);
break;
}
for (n=LENGTH-2; n>=0; n--)
{
tltab(ixlu, ix2u,ix3u,n+l) =
tltab{ixlnext, ix2next,ix3next,n);
labtab(ixlu,ix2u,ix3u,n+1,0) =
labtab(ixlnext,ix2next, ix3next,n,0);
labtab(ixlu, ix2u,ix3u,n+1,1) =
labtab(ixlnext,ix2next,ix3next,n,1);
labtab{ixlu,ix2u,ix3u,n+1,2) =
labtab(ixlnext,ix2next,ix3next,n,2);
}
cotab({ixlu,ix2u,ix3u) = nco;
if (tlu<-16.0)

ectab(ixlu,ix2u,ix3u,0) = nectectab{ixlnext, ix2next,ix3next,0);
ectab(ixlu,ix2u,ix3u,1l) = ectab{ixlnext,ixZ2next,ix3next.1);

ectab(ixlu,ix2u,ix3u,1) = nectectab{ixlnext,ix2next,ix3next,1);
ectab{ixlu,ix2u,ix3u,0) = ectab(ixlnext,ix2next,ix3next,0);

if(tlu==-6.0|}tlu==-16.0)

{
tltab(ixlu,ix2u,ix3u,0) = tlu-{rand()/32768.0)/1000000;
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}

else

{

tltab(ixlu, ix2u, ix3u,0) = tlu;
}

labtab(ixlu,ix2u,3x3u,0,0} = ixlu;
labtab{ixlu,ix2u,ix3u,0,1) = ix2u;
labtab(ixlu,ix2u,ix3u,0,2) = ix3u;

} /*** closes the "while" loop in main() **¥/

printf ("\nLABLE TRACES");
for{ix3=IX3MAX; ix3>=0; ix3--)
{
for(ix2=IX2MAX; ix2>=0; ix2--)
{
for{ixl=0; ix1<=IX1MAX; ixl++)
{
for(n=0; n<LENGTH; n++)
{
if{tltab(ixl,ix2,ix3,n) <= -24.0)
{firstl=labtab(ixl,ix2,ix3,n,0});
lastl=labtab(ix1l,ix2,ix3,LM1,0);
first2=labtab(ixl,ix2,ix3,n,1});
last2=labtab(ixl,ix2,ix3,1LM1,1);
first3=labtab(ixl,ix2,1ix3,n,2);
last3=labtab(ixl,ix2,ix3,LM1,2);
if{firstl==lastl && fitrst2==last2 &

{

printf{"\n");
for{m=0; m<LENGTH; mt++)
{

first3==last3)

T{1] [m)=1abtab(ixl,ix2,ix3,m,0};
T{2] [m]=labtab(ixl,ix2,ix3,m,1);
T[(3}[m]l=labtab(ixl,ix2,ix3,m,2);
COP[m])=(COPMAX~1)* (1~-{TO~-
T(3][m])/TMAX):
printf(®"\nlabeltrace($2d] =
%2d,%2d,%2d", m,
labtab(ixl1,ix2,ix3,m, 0},
labtab{ix1,ix2,ix3,m, 1),
labtab(ixl,ix2,ix3,m,2));
printf("\ttltrace(%2d]) = %6f", m,
tltar{ixl,ix2,ix3,m));
if(tltab(ixl,ix2,1ix3,m}>=0.0}
break;
}
count=m;
printf("\npeak-hour energy cost = %12{",
ectab(firstl, first2,first3,1));
printf("\noff peak-hour energy cost =
$12f",
ectab(firstl,irst2,firet3,0));
printf("\n");
plot{}:
}

}
}

/****** end of main() *****/

[¥*wwxrxr¥functions to compute new-node indexi¥¥rwkwwrwrwn/

int fixln()
{
extern int ixlu, dixl;
int i;
FE((ixlu==0 £& $ix1<0)]|(ixlu==IXIMAX && dix1>0j}) i=0;
else i=dixl;
return{ ixlu+i};
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int fix2n{()
{
extern int ix2u, dix2;
int j;
1f((ix2u==0 & dix2<0) || {ix2u==IX2MAX && dix2>0)) j=9;
else 3=dix2;
return{ix2u+j);

int fix3n()
{
extern int ix3u, dix3;
int k;
1f{(ix3u==0 & dix3<0) || (ix3u==IX3MAX && dix3>0)) k=0;
else k=dix3;
return(ix3utk]);

/¥y ¥wwsesikdss procedure to call trial cost computation *¥¥**#/

void testl(int 1)
{

vl = (ixln-ixlu)*DX1l/dt - dl + x1u*AZ1l/CZ1;
vZ2 = (ix2n-ix2u)*DX2/dt - d2 + x2u*AZ2/Cz2;
v3 = (ix3n-ix3u)*DX3/dt - d3 + x3u*AC/CC;
ul = v1/(Bl*gl);

u2 = v2/(B2*qg2);

u3 = (RGl*vl + RG2*v2 + v3)/(C33 + B3%g3);

if{(ul>=0.0) && (u2>=0.0) && (u3>=0.0))
{

}

return;

test();

/***** procedure to ¢ ute  rial cost *¥k¥w/

void test{)
{
double tc, ct, ctc,tltry;
tltry=tn-dt;
if({tltry<~6.0)&6(t1>~-5.0}))return;
if((tltry<-16.0)66&{t1>-15.0))return;
if((tltry<~24.0)6&(t1>-23.0))return;
pul=ul*pgzl/qzl, pu3=ul*pgz3/qzl;
pu2=u2*pqz2/qz2; pud=u2*pqzd/qz2;
te = ((rl*pul*pul+rl*pu3d*pu3 + r2*pu2*pu2 + r2*pud*pud+r3*u3 )*price+
al*pow(xlu-X15,2.0)/Cz21 +
a2*pow (x2u-X28,2.0)/C22)+*4t
+ cotab({ixln,ixZn,ix3n);
ct = (tc - cotab(ixlu,ix2u,ix3u)) * (tn-dt-tm)/(tl-(tn-dt));
cte = te + ct;
if(ctc<=ctcmin)
{
ctcmin=ctc;
nco=tc;
tlu=tn-dt;
uul=ul;
uu2=u2;
uu3=u3;
nec=(rl*pul*pul + rl*pu3*pu3 + r2*pu2*pu? +r2*pud*pud + r3*u3)*dt;
ixlnext ixln;
ix2next ix2n;
ix3next ix3n;

mwon

}

return;

/ﬁiﬁti**t*iﬁ*t*ioutput time and ul 1n plotul file*****************/
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void plot()
{

int n:
FILE *fp,

*fopen()

fp=fopen("input™,"w");
fprintf(fp,"%2d",count);

for{n=0;

{

n<=count;

m=count-n;

fprintf({fp,"
fprintf(fp,"
fprintf{fp,”
fprintf (fp, "

}
fclose (fp):

return;

n++}

\n%2d",T(1](m]);
$24%,T[2]) [m]):
$2d", T3] [m]);
86f", (tltab(ixl,ix2,ix3,m))});

/****************t******i**********i***it*iﬁ"*ﬁiii**ii*'k*****iii**ﬁﬁiiiﬁiit*i#ti*t*ﬁ.

ko dhhk ok kh
*

* % % % % F F * ok ok * o+ % #

*

t'ile Name:
Purpose:

This

trajectories for four-zone cooling system.

blockd.c

function using block by block method to compute temperature
It includes function:
main()

fixln()

fix2n{()

fix3n{()

fixd4n()

fix5n{()

calcu()

testl{)

test(int)

trajy()

[ A Y 2 R R R R X s R R A R e R A R R R S R X e R R S A R A R S 2SS 2RSSR XA R 2R R 2]

****&***/

#include <stdio.h>
#include <math.h>

#define LENGTH (int)120

fidefineLM1
fdefine LARGE
f#idefinelLP
ratio*/
#defineHP
#defineT21SLO
zone¥/
fdefineTZ1SHI
zone*/
fdefineTz2SLO
#defineTZ2SHI
fdefineTZ3SLO
#defineTZ3SHI
fdefineT24SLO
fdefineTZ4SHI
#defineTZ1MIN
constraint*/
#defineTZ1MAX
constraint*/

{int) (LENGTH
(double) 1000
{double)0.5

(double}l.0
(double)24.0

(double)30.0

{double)}24.0
(double}30.0
{double)24.0
(double)}30.0
{double)24.0
(double)30.0
(double) (TZ1

(double) (TZ1

fdefine IX1SPAN (int)7
#define HIX1SPAN (int)9

*/
f#defineTZ22MIN
f#defineTZ2MAX

(double) (TZ2
{double) (TZ2

#define IX2SPAN {int)7
#define HIX2SPAN (int)9
#defineTZ23MIN (double) (TZ22SLO-1.0)

/*max length of trajectories*/

-1)
000000.0
/*off peak-hour energy price
/* peak-hcur energy price ratio*/
/*setpoint temp for occupied
/*setpoint remp for wmnccuplied
SLO-1.0) /*min zone temperature
SHI+1.0) /*max zone temperature
/*numb: . of discrete points per dim
SLO-1.0)
SHI+1.0)
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fdefineTZ3MAX

fdefine IX3SPAN
HIZA35PAN

fdefine
fdefineTZ4MIN
fdetfineTZ4MAX

{double)} (TZ22SHI+1.0)
(int}?

{int)9

{double) (T225L0-1.0)
(double) (TZ2SHI+1.0)

fdefine IX4SPAN (int)7

fdefine HIX45PAN

fdefineTCMIN
fdef ineTCMAX
constraint+/

fdefine TX5SPAN
fdefine HIX5SPAN

fdefineTO
condenser*/
fidefineAl
deviation®*/
fdefineA2
fdefinen3
fdefinend
fdefineR1

(int)9
(double}8.0 /*min tank temperature constraint*/
(double)15.0 /*max tank temperature

(int)7

(int)15

(double) {35.0-20.0) /*coolant temperature for

(double)10000.0 /*cost parameter, zone temp
{double)10000.0
(double)10000.0
(double)10000.0

(double}0.00003 /*cost paramater,

circulation pump op.*/

fdefineR2
fdefineR3
fidefineR4
fidefineCZ1
c*/
fdefineCZ2
fdefineCs3
fdefineCZ4
fidefineCC
ce/
fdefineGa
fdefineG3
#defineG2
fdefineGl
fdefineAZl
zone*/
fidefineAz2
fdefineAZ3
fdefinenzq
fdefineAC
fdefine ACZ
fdefineBl
fdefineB2
fdefineB3
fdefineB4
fdefineTMAX
fidefineCOPMAX
unit+/
#detineCOPMI
fidefineBETA
fidefineCb5
fdefineBS
fdetfineDTMAX1
is not smaller
fdefineLMAX
tested*/
fdefineX1MIN
variable+*/
fdefineX1MAX
variable*/
fdefineDX1

(double)0.00003
(double)0.00003
(double)0.00003
{double} (374.) /*zone heat capacity, kw hours/deg
(double) (187.0)
(double) {300.0)
(double} {187.0)
{double)}85000. /*tank heat capacity. kw hours/deg
{double)CZ4/CC
{double)CZ3/CC
{double)Cz2/CC
{double)C21/CC
(double) (410.0) /*heat transfer coef for
{double) (205.0)
(double) {330.0)
(double) (205.0)
{double)17.6
(double)0.75
(double) (-ACZ/C21)
{double) {-ACZ/C22)
{double) (-ACZ/C23)
(double) (-ACZ/C24)
{double)20.0
(double)4.0

/*heat
/*heat

transfer coef, tank*/
exchanger coef*/

/*max
/*coef

temp diff, refrig unit*/
of performance, refrig

(double) (COPMAX-1.0}

(double) (COPM1/ (CC*TMAX))

{double) (-COPM1* (1.0 -~ TO/TMAX)/RCC)
{double) (-BETA)

{double)0.5

than -23.0%/

(int)}5

/*max time-step allowed when time
/*number of control amplitudes

(double) (RCZ1*TZIMIN) /*min value, normalized state

{double) (RCZ1*TZ1MAX) /*max value, normalized state

(double) ( (XIMAX-XIMIN)/ (HIX1SPAN~-1)} /*stepsize,

normalized state var*/

fdefineX2MIN
fdetineX2MAX
fdefineDX2
fdefineX3MIN
fdefineX3MAX
fdefineDX3
fdefineX4MIN
fdefineX4MAX
fidefineDX4
fdefineXSMIN
fdefineX5MAX
fdefineDX5

{(double) (RCZ2*TZ2MIN)

(double) (RCZ2*TZ2MAX)

(double) { (X2MAX-X2MIN)/ (HIX2SPAN-1))
{double) (RCZ3*TZ3MIN)

(double) (RCZ3*TZ3MAX)

(double) { (X3MAX-X3MIN)}/ (HIX3SPAN~-1})
{double) (RCZ4*TZ4MIN)

{double) (RCZ4*TZ4MAX)

(double) { (X4MAX~-X4MIN)/ (HIX4SPAN-1))
{double) (RCC*TCMIN)

{double) (RCC*TCMAX)

{double) { {(XS5MAX-X5MIN}/ (HIX5SPAN-1)})
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fdefineX1S

(double) (RCZ1*tzls)

/*desired value, normalized state

var*/

§defineX2s {double) {RCZ2*tz2Zs)
#defineX3S {double) (RC43*tz3s)
fdefineX4s {double) (RCZ4*tzds)
fdefinexliu {double) (X1IMIN + ix1lu*DX1) /*discrete level, node being
updated*/

fdefinex2u {double) (X2ZMIN + ix2u*DX2)
fdefinex3u (double) (X3MIN + ix3u*DX3)
fdefinex4u {double) {X4MIN + ix4u*DX4)
fdefinex5u {double) {XSMIN + ix5u*DX5)
fdefinegl {(double) {x1u~RG1*x5u)
#defineg2 (double) {x2u-RG2*x5u)
fc2fineg3 {double) (x3u~-RG3*x5u}
fc:fineqgd {double) {x4u—~-RG4*x5u)
fdefineg$ {double)x5u

fdefinedl (double) ((gz1+AZ2i*35.0)/RC21) /*normalized zone cooling
load*/

fdefined2 {double) ( (qz2+A22*35.0)/RC22)
fdefined3 (double) { (gqz3+AZ23*35.0)/RCZ3)
fdefinedd (double)} ((qz4+AZ4*35.0}/RCZ4)
#defined5s {double) (AC*35,0/RCC)

fdefine ixln

(int) fixln{)

/*index of next node examined*/

fdefineix2n (int)fix2n{()

#defineix3n (int)£fix3n{)

fidefineixd4n (int) fixdn()

fdefineix5n (int)fix5n{()

fdefinexln {double) (XIMIN + ix1n*DX1) /*discrete level, next node
examined*/

fdefinex2n (double) (X2MIN + ix2n*DX2)
fdefinex3n (double) (X3MIN + ix3n*DX3)
fdefinex4n {double) (X4MIN + ix4n*DX4)
#definex5n (double) (XSMIN + ix5n*DX5)
#define

tltab(i,jtk,l,m,n)(*(TLTAB+(i)*IXZSPAN*IX3SPAN*IX4SPAN*IXSSPAN*LENGTH&(j)*IX3SPAN‘IX4
SPAN*IXS5SPAN*LENGTH+ (k) *IX4SPAN*IX5SPAN*LENGTH+ (1) *IX5SPAN*LENGTH+ (m) *LENGTH+{n)))
#define
labtab(i,j,k,l,m,n,o)(*(LABTAB+(i)*IXZSPAN*IXBSPAN*IX4SPAN*IXSSPAN*LENGTH*50(j)'IXBSP
AN*IX4SPAN*IXSSPAN*LENGTH*5+ (k) *IX4SPAN*IX5SPAN* LENGTH*5+ (1) *IX5SPAN* LENGTH* 54 (m) *LEN
GTH*5+(n)*54 {0)))

f#define
cotab(i,j,k,l,m)(*(COTAB+(i)*IXZSPAN*IX3SPAN*IX4SPAN*IXSSPAN*(j)*IXBSPAN*IX4SPAN'beS
PAN+ (k) *IX4SPAN*IX5SPAN+ (1) *IX5SPAN+ (m) })

fidefine
ectab(i,j,k,l,m,n)(*(ECTAB+(i)*IXZSPAN*IX3SPAN*IX4SPAN*IX5SPAN*2+(j)*IXBSPAN'IXdSPAN*
IX5SPAN*24{k)*IX4SPAN*IX5SPAN*2+ (1) *IXSSPAN*2+ (m)*2+(n)))

/iﬁ*&******i fUnction declarations*********ii**/

void main{void);

int fixln(void);
int fix2n{void):
int fix3n{void);
int fix4n{void):
int fixb5n(void);
void calcu{void}:
void test(void};

void testl(int):

void trajy(void};

/*****i**t*** global Variables t*t*iv*itii*t*tt/

double *COTAB, *ECTAB, *TLTAB;

unsigned char *LABTAB;

int ixlu,ix2u,ix3u,ix4u, ix5u,ixl,ix2,ix3,ix4,ix5,n=0,m=0,count;

int dixl,dix2,dix3,dix4,dix5,ixlnext,ix2next,ix3next,ix4next,ix5next,dirli=0,
dir2=0,dir3=0;

int

IX1IMIN, IX1MAX, IX2MIN, IX2MAX, IX3MIN, IX3MAX, IX1f,IX2f,IX3f,IX11,1X21,1X31,T21{120],Tz21
120}, Tc(120};

int firstl, first2, first3, firstd,first5,iastl, last2, last3,last4,lasts;
double ul,u2,u3,ud,ud,v1,v2,v3,v4,v5,RG1,RG2,RG3,RG4,RC21,RCZ2,RCZ3,RCL4,RCC;
double gqzl,q9z2,q9z3,q924,tzls,tz2s,tz3s,t24s5,T[400]);

double tn,tm,dt,tl,tlu,nco,ctemin,nec,price,TE;
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double gzltab{2%) = (3.682,2.978,2.275,1.517,0.517,0.517,2.275,4.034,5.792,

7.550,9.309,11.067,12.826,14.584,16.343,18.101,16.343,
14.584,11.067,7.550,5.792,5.088,4.385,3.682,3.682} ;

/*lists of hourly zone cooling loads*/

double qz2tab({25) = {1.841,1.48%,1.127,0.758§,0.208,0.208,1.237,2.017,2.846,
3.770,4.604,05.533,06.413,H07.294,08.171,09.050,08.171,
07.292,05.533,3.770,2.891,2.544,2.192,1.841,1.841j;

double qz3tab[25) = (8.101,8.101,8.101,8.101,€.101,8.101,8.201,8.101,8.101,
8.101,8.101,8.101,8.101,8.101,%.102,8.101,8.101,
8.101,8.101,8.101,68.101,8.101,6.101,8.101,8.101};

double qz4tab(25) = {5.223,5.223,5.223,5.22%,5.223,5.223,%.223,5.223,5.223,
5.223,5.223,5.223,5.223,5.223,5.225,5.223,5.277,
5.223,5.223,5.223,5.23,5.223,5.223,5..23,5.223});

double tetab{25] = {35.0,35.0,35.0,3%5.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,35.0,
35.0,35.0};

/*liste of hourly envioment temperture*/

/tttttﬁ*tt*i main program *i***h**i***t****i/
void main()

{

int i

if { {TLTAB=(double
*)malloc(IX1SPAN*IX2SPAN*IX3SPAN*IX4SPAN*IX5SPAN*LENGTH*sizeof (double} ) )==NULL){

printf(stderr, "Error allocating sufficient memory...aborting\n");

exit(-1);

)

if((LABTAB=(unsigned char
*)malloc(IX1SPAN*IX2SPAN*IX3SPAN*IX4SPAN*IX5SPAN*LENGTH*5*sizeof (unsigned
char)))==NULL)}{

printf(stderr,"Error allocating sufficient memory...aborting\n");

exit(-1}:

}

£ ((COTAB= (double
*Imalloc(IX1SPAN*IX2SPAN*IX3SPAN*IX4SPAN*IX5SPAN*sizeof (double) ) }==NULL) {

printf(stderr,"Error allocating sufficient memory...aborting\n");

exit(-1);

)

if ((ECTAB={double
*)malloc(IX1SPAN*IXZSPAN*IX3SPAN*IX4SPAN*IX5SPAN*2*sizeof (double) ) }==NULL) {

printf(stderr,"Error allocating sufficient memory...aborting\n");

exit(-1);

)

RGl = sqrt(Gl);
RG2 = sqrt(G2);
RG3 = sqrt(G3);
RG4 = sqrt(G4);
RCZ1 = sqrt(CZ21);
RCZ2 = sqrt(CZ2});
RCZ3 = sqrt(C23):
RCZ4 = sqrt(Cz4);

RCC = sqrt(CC);
for{i=0; i<LENGTH; i++)
{

T{i1=0.0; o
Tcli])=0;
Tz21[{i]=0;
Tz21i}=0;

}

/e*** read read datat of aggregated trajectories ¥ks¥sxswk/

trajy(}):;

/iﬁit initialization *i*iit***t*****i/

for(ixl=0; ix1<IX1SPAN; ixl++)
: for(ix2=0; 1x2<IX2SPAN; ix2++)
l for{ix3=0; ix3<IX3SPAN; ix3++)
{ for(ix4=0; ix4<IX4SPAN; ix4++)
( for(ix5=0; 1X5<IXYSPAN; ix5++)
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cotab(ixl,ix2,ix3,ix4,ix5) =
ectab(ixl,1ix2,ix3,ix4,ix5,0)
ectab(ix1,ix2,ix3,ix4,ix5,1)
for(i=0; i<LENGTH; i++)

{
tltab(ixl,ix2,ix3,ix4,ix5,i) = 0.0;
labtab(ixl,ix2,ix3,ix4,1ix5,1,0) Tzl [m)-3+ix1;
labtab(ixl,ix2,ix3,ix4,ix5,i,1) Tzl[{m])~-3+ix2;
labtab{ixl.i»2,ix3,ix4,ix5,1i,2) Tz2[m}-3+ix3;
labtab{ixl, ix.,ix3,ix4,ix5,1i,3) Tz2(m}-3+ix4;
labtab(ixl,ix2,ix3,ix4,ix5,1,4) Tclm}-3+ix5;

1
)

e

non owonon

}
}
firstl=T21[m]+2, lastl=Tzl[m]-2;
first2=Tz2[m]+2, last2=T22[m]}-2;
first3=Tec{m]+2, last3=Tc(m]-2;

while (n < count)

IX1IMIN = Tzl[m]-2;
IXIMAX = Tzlim]+2;
IX2MIN = Tz2([(m]-2;
IX2MAX = Tz2[m])+2;
IX3MIN = Tc[m]-2;
IX3MAX = Tc(m] +2;
IX1f = Tzl[m]-3;

IX2f = Tz2[m]-3;

IX3f = Tclm)-3;

for(n=m; (Tz1[m]-Tzl(n]l==0 && T22[m)-T22[(n}==0 && Tc[(m])-Tc[n]==
&& n<count); n++)

/***** calculate the least cost at a block *¥¥¥*ekdiiw/
calcu();

if{ tlu == T[m])

{
IX3MIN = Tc[m]-2;
IX3MAX = Tc(m]+2;
IX3f = Tci{m)-3;
calcul();

}

m=n;

}/* end of the while loop */

printf ("\nLABLE TRACES");

for{ixb5=1; ix5<=IX5SPAN-2; ix5++)

{

for{ixd4=1; ix4<=IX4SPAN-2; ix4++)
{
for{ix3=1; ix3<=IX3SPAN-2; ix3++)
{
for{ix2=1; ix2<=IX2SPAN~2; ix2++)
{
for(ixl=1l; ix1<=IX1SPAN-2; ixl++)
{
firstl=labtab({ixl,ix2,ix3,ix4,ix5,0,0);
lastl=labtab(ixl,ix2,ix3,1ix4,ix5,LM1,0);
first2=labtab(ixl,ix2,ix3,ix4,ix5,0,1);
last2=labtab{ix1,ix2,ix3,1ix4,ix5,1LM1,1);
first3=labtab{ixl,ix2,ix3,ix4,ix5,0,2);
last3=labtab(ix1,ix2,ix3,ix4,ix5,LM1,2);
first4=labtab(ixl,ix2,ix3,ix4,1ix5,0,3);
last4=labtab(ixl,ix2,ix3,ix4,ix5,LM1,3);
firstS5=labtab{ixl,ix2,ix3,ix4,1ix5,0,4);
last5=labtab(ixl,ix2,ix3,ix4,ix5,1LM1,4);
if(firstl==lastl && first2==last? && first3==last3 &&
firstd4==lastd4 && firstb5==last$)
{
for(i=0; i<LENGTH; i++)
{
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printf("\nlabeltrace[$%2d] = %2d,%2d,%2d, $2d, 824", i,
labtab(ixl,ix2,ix3,ix4,ix5,i,0),
labtab{ix1,ix2,ix3,ix4,ix5,1i,1},
labtab(ixl,ix2,ix3,ix4,ix5,i,2)},
labtab(ixl,ix2,ix3,:ix4,ix5,i,.3),
labtab(ix,ix2,ix3,1ix4,ix5,i,4)};
printf("\ttltracel82d) = 86f",1i,
tltab(ixl,ix2,ix3,ix4,ix5,1));
if{tltabfix1.ix2,ix3,ix4,ix5,1}>=0.0) break;
}/* end of for %/
printf("\npeak-hour energy cost = 8%6f",
ectab(ixl,ix2,:ix3,ix4,ix5,1));
printf("\noff peak-hour energy cost = %6f",
ectab(ixl,ix2,ix3,ix4,ix5,0});

} /* end of the if */
1

}
}

} /* end of the main function */

void calcu()

{
double tlmax=0.C; /*start at midnight, go backwards (neg

time)*/
double tmn,time, DTMAX;
int tnhour, tnhourl;
int 1, i, nodel, node2, node3;

/¥*** jnitialize the arrays ¥*+%+*+/

for{(ixl=IXIMIN; ix1<=IXIMAX; ixl++)
! for(ix2=IXIMIN; ix2<=IX1MAX; ix2++)
: for(ix3=IX2MIN; ix3<=IX2MAX; ix3++)
‘ for (ix4=IX2MIN; ix4<=IX2MAX, ix4++)
(for(ix5=IX3MIN; ix5<=IX3MAX; ix5++)

}

titab(ix1-IX1f,ix2-IX1f,ix3-1X2f,ix4-IX2f,ix5-1X3f,0) = Tim];

}
while({ tlmax > T{n] }
{

/***+ find the next node to update ¥*%x/

tlmax = ~24.0;
for(ixl=lastlt+dirl; firstl>lastl? ixl<=firstl+dirl:ix1>=firstl+diri;
firstl>lastl? ixl++:ix1--)
{
for{ix2=lastl+dirl; firstl>lastl? ix2<=firstl+dirl:ix2>=firstli+dirl;
firstl>lastl? ix2++:ix2--)
{
for{ix3=last2+dir2; first2>last2? ix3<=first2+dir2:ix3>=firgt2+dir2;
first2>last2? ix3++:ix3--)
{
for{isd=last2+dir2; first2>last2? ix4<=first2+dir2:ix4>=first2+dir2;
first2>last2? ixd++:ix4-~--)
{
for(ix5=last3+dir3; first3>last3? ix5<=first3+dir3:ix5>=first3+dir3;
first3>last3? ix5++:ix5--)
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{
if(tltab{ix1-IX1f,ix2-IX1f,ix3~-IX2f,ix4-IX2f,ix5-IX3f{,0)>t1lmax)
{ ixlu=ix1; /*node to be updated has latest last
update*/
ix2u=ix2;
ix3u=ix3;
ix4u=ix4;
ixbu=ix5;
timax=tltab{ix1-IX1f,ix2-IX1f,ix3-1X2f,ix4-1X2f,ix5-1X31,0);
tlu = tlmax;

}
if{(tlmax==T[n]))break;

/**** find the earliest of t '.: admissible update times****+/

tm = 0.0;
for(dix5=-1; dix5<=1l; dix5+t)
{
fori{dix4=-1; dix4<=1; dix4++)

for{dix3=-1; dix3<=1; dix3++)
{
for{dix2=-1; dix2<=1; dix2++)
{
for{dixl=-1; dixl<=1; dixl++)}

{
tn=tltab{ix1n-IX1f,ix2n-IX1f,ix3n~-IX2f,ix4dn-1X2f,ix5n-1X3f,0);
tmn = tn-DTMAX1;
if{tmn<=tm) tm=tmn;

)

}
/*** find the least-cost transition *++/

tl = tltab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f{,ixqu-I1X2f,ix5u~-1X3f,0};
ctemin = LARGE;
if((tl>T[n]))6&(tl1<=(T[n)+0.5))&&(T{m}~T[n]>0.5))
{
tn=tl;
dix1=0;
dix2=0;
dix3=0;
dix4=0;
dix5=0;
tnhour = tn+24;
time = tn+24.0;
tz1ls=TZ1SHI;
tz2s=TZ2SHI;
tz3s=TZ3SHI;
tz4s=TZ4SHI;
if{(time>8.0) && (time<=18.0))
{
tzls=TZ1SLO;
tz2s=TZ2Z5L0O;
tz3s=TZ3SLO;
tz4s=TZ4SLO:
}
if(time<=8.0)
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price=LP;

else

price=HP:

qzl =1*qgzltub! nhour]*3600;
qz2 =1*qz2tab, 'nhour]*3600;
qz3 =1*gz3tabitnhouc]*3600;
qz4 =l*gz4tab([tnhour]*3€00;
TE = tetab{tnhour];
DTMAX=-T[n}+tn;

dt.=DTMAX;

testl{1l};

else

for(dixb=-1; dix»%<-1; dix5++)
{
tor{dixd4=-1; dix4<=1; dixd4++)
{
for{dix3=-1; dix3<=1; dix3t+)
{
for{dix2=-1; dix2<=1; dix2++)
{
for{dixl=-1; dixl<=1; dixl++)
{
tn = tltab(ixIn-IX1f,ix2n-IX1f,ix3n-IX2f,ix4n-IX2f,ix5n-
1X3£,0);

tnhour = tn+24;
time = tn+24.0;
gzl =1*qzltab|[tnhour)*3600;
qz2 =1*qz2tab[tnhour)*3600;
gz3 =1*qgz3tab|tnhour]*3600;
gz4 =1*qz4tab([tnhour]*3600;
TE = tetab[tnhour];
tzls=TZ1SHI;
tz2s=TZ428HI;
tz3s5=TZ3SHI;
tz4s=TZ4SHI;
if((time>8.0) && (time<=18.0))

{

tz1s=T21SLO;

tz22s5=TZ22SLO;

tz3s=T23SLO;

tz4s=TZ45L0O;

}

if({time<=8.0)

price=LP;

else

price=HP;

if{(n-m==1) | [ {T[m]-T[n]<=0.5)}{

DTMAX=tn-T|n]j;

for(l=1; 1>=1; 1--)

{

dt=DTMAX/1;

if(({time>=tnhour) && {tnhour>(time-dt)))

{

tnhourl=24+tn-dt;

gzl=1*{gzltab[tnhourl})* (tnhour-(time-
dt))/dt+l*qzltab(tnhour}

*(time~tnhour)/dt)*3600;

gz2=1*(gz2tab{tnhourl])¥* {tnhour-{time-
dt)}/dt+l1*qz2tab[tnhour}
* (time-tnhour)/dt)*3600;
qz3=1*(gz3tab{tnhourlj* (tnhour-(time-
dt))/dt+l*gz3tab[tnhour]
*(time-tnhour)/dt)*3600;
qz4=1*(gz4tab[tnhourl}* (tnhour-(time~
dt))/dt+l*qz4tab(tnhour]
*(time~tnhour)/dt)*3600;
TE=(tetab(tnhourl]* (tnhour~(time-
dt))/dt+tetab({tnhour]* {time-tnhour)/dt);

}/* end of if */
testl{l);
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}/* end of for */

else

DTMAX=DTMRAX1;

for{1=LMAX; 1>=1; 1--)

{

dt=DTMAX/1;

if(({time>=tnhour) && {(tnhour>(time-dt)))
{

tnhourl=24+tn-dt;
gzl=1*(gzltab[tnhourl)* (tnhour~{time-

dt))/dt+l*gzltab{tnhour]

*{time~tnhour)/dt)*3600;

gz2=1*(gqz2tab[tnhourl]* {tnhour-{time-

dt))/dt+1*qz2tab|tnhour)

*(time-tnhour)/dt)*3600;
qz3=1*(qz3tab{tnhourl}* (tnhour-{time-

dt))/dt+l*gz3tab[tnhour]

*(time-tnhour)/dt)*3600;
gz4=1*(gzdtabitnhcurl)* (tnhour-{(time-

dt))/dt+l*gzdtab[tnhour]

*(time—-tnhour)/dt)*3600;
TE=({tetab[tnhourl}*{tnhovr-(t <~~~

dt))/dt+tetab{tnhour}* (time-tnhour})/dt);

}/* end of if */

testl(1l);

}/* end of for */
}/* end of else */

}

}
}/* end of the else */
if(tlu >= tlmax)
{
for(ixl=IX1IMIN; ix1<=IX1IMAX; ixl+t)
{
for(ix2=IX1IMIN; ix2<=IX1MAX; 1ix2++)
{
for{ix3=IX2MIN; ix3<=IX2MAX; ix3++)
{
for{ix4=IX2MIN; ix4<=IX2MAX; ix4++)
{

for{ix5=IX3MIN; ix5<=IX3MAX+1; ix5++)

{ .
cotab{ix1-IX1f,ix2-IX1f,ix3-IX2f,ix4-1IX2f,ix5-IX3f4djr3)
= cotab(ix)l-IX1f,ix2-IX1f,ix3-IX2f,ix4-I1X2f,ix5-1X3f);
ectab(ix1-IX1f,ix2~IX1f{,ix3-IX2f,ix4-IX2f,ix5-IX3f+dir3,1)
= ectab(ix1-T1it,:2-IX1f,ix3-IX2f,ix4-I1X2f,ix5-IX3f,1);
eCtab(iX1-IX¢i,i»l*lllf,ix3—IX2f,ix4-IXZf,ixS-IX3£+d1r3,0)
= ectab (ix1-3IN2§. JxE -IX1E,ix3-IX2f,1x4-1X2f,ix5-IX3f,0};

for (i=0; i<neWGUH; s+4)

{

tltab(ix1-IX1f, ix2-IX1f,ix3-IX2f,ix4-IX2f,ix5-1X3f+dir3,1)
= tltak (ix1-IX1f,ix2-IX1f,ix3-IX2f,ix4-IX2f,ix5-IX3f,i});
labtab{ix1-IX1f,ix2-IX1f,ix3-IX2f,ix4-1X2¢f,ix5-1X3{4dir3,4,0)

= labtab({ix1-~IX1f,ix2-IX1f,ix3-IX2f,ix4-I1X2f,ix5-IX3%,1,0);
labtab(ix1-IX1f,ix2~IX1f,ix3-IX2f,ix4~-TX2f,ix5-1X3f+dir3,1,1)

= labtab(ix1-IX1f,ix2-IX1f,ix3-1X2f,1ix4-1X2f,1ix5-1X3¢,1,1);
labtab{iy ~IX1f,ix2-IX1f,ix3-IX2f,ix4~-IX2f,ix5-1X3f'dir3,1,2)

= labtab{.x1-IX1f,ix2-IX1f,ix3-IX2f,ix4-IX2{,ix5-1X31,1,2);
labtab!sux.~IX1f,ix2-IX1f,ix3-1X2f,ix4-IX2€f, ix5-IX3€f+dir3,i,3)

= labta’,; x1-IX1f,ix2-IX1f,ix3-1X2f,1ix4-1IX2f,ix5-IX3f,1,3);
labtab(i>1-IX1f,ix2-IX1f,ix3-IX2f,ix4-1X2f,ix5-1X3f+dir3,1,4)

= labtab{ix1-IX1f,ix2-IX1f,ix3-IX2f,ix4-IX2f,ix5-IX3f,1,4);

}

}
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}
}
}
}
for(i=m+l; Tclm}-Tcli]>=0; i++)
{

}
Tc[(m)=Tc{ml+l;
dir3=0;
return;

}/* end ot the if */

Tcli)=Tcli}+1l;

for {i=LENGTH=-2; i>=0; i--)
{
tltab(ixlu-IX1f,ix2u-IX1f, ix3u~IX2f,ix4u~IX2f,ix5u-IX3f,i+1) =
tltab(ixlnext-IX1f,ix2next-IX1f,ix3next-IX2f,ix4next-IX2f
»ix5next-IX3f,i);
labtab(ixlu-IX1f,ix2u-IX1f, ix3u-IX2f, ix4u-IX2f,ix5u~IX2€,i+1,0)
= labtab(ixlnext-IX1f, ix2next-IX1f,ix3next-IX2f,ix4nex  —-..12f
s ix5next-IX3f£,i,0);
labtab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u-IX3f,i+1,1)
= labtab(ixlnext-IX1f,ix2next~IX1f,ix3next-IX2f, ixdnext-IX2f
,ix5next-1X3f,1,1):
labtab(ixlu~-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u~IX3f,i+1,2)
= labtab(ixlnext-IX1f,ix2next-IX1f,ix3next-IX2f,ixdnext-IX2f
,ix5next~-IX3£,1i,2);
labtab{ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u~IX3f,i+1,3)
= labtabl{ixlnext-IX1f,ix2next-1X1f,ix3next-IX2f, ix4next-IX2f
,ix5next-IX3f,i,3):
labtab(ixlu-IX1f{,ix2u~IX1f, ix3u-IX2f,ix4qu~IX2f,ix5u-IX3f,i+1,4)
= labtab(ixlnext-IX1f,ix2next-IX1f,ix3next-IX2f,ix4next-IX2f
,ix5next-IX3f,i,4);
}
cotab(ixlu-IX1f,ix2u-IX1f, ix3u~IX2f,ix4u-IX2f,ix5u-IX3f) = nco;
if (tlu<~16.0)
{
ectab{ixlu-IX1f,ix2u-IX1f, ix3u-IX2f,ix4qu-IX2f,ix5u-IX3f,0)
nectectab{ixlnext-IX1f, ix2next-IX1f,ix3next-IX2f, ix4next-
IX2f,ix5next-1X3{,0);
ectab{ixlu-IX1f,ix2u-IX1f, ix3u-IX2f,ix4u-IX2f,ix5u-IX3f,1) =
ectab{ixlnext-IX1f,ix2next-IX1f,ix3next-IX2f,ix4next-IX2f,ix5next-

IX3f,1);
}
eisc
{
ectab(ixlu-IX1f, ix2u~-IX1f,ix3u-IX2f,ixqu-IX2f,ix5u-IX3f,1)
nectectab(ixlnext-IX1f,ix2next~IX1f,ix3next-IX2f,ix4next-
IX2f{,ix5next-IX3f,1);
ectab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u~IX2f,ix5u~-IX3f,0) =
ectab(ixlnext-IX1f,ix2next-IX1f,ix3next-IX2f,ix4next-IX2f,ix5next-

IX3f,0);
}
tltab({ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ixqu-IX2f,ix5u~-IX3f,0)= tlu;

labtab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix%u-IX3£,0,0) = ixlu;
labtab(ixlu~IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u-IX3f,0,1) = ix2u;
labtab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u~-IX3f,0,2) = ix3u;
labtab(ixlu-IX1f, ix2u-IX1f, ix3u-IX2f,ix4u~IX2f,ix5u-IX3f,0,3) = ixdu;
labtab(ixlu-IX1f,ix2u-IX1f,ix3u-IX2f,ix4u-IX2f,ix5u-IX3f,0,4) = ix5u;

} /*** closes the "while™ loop in main() **+/
if(({Tz1l{m]~-Tz1l([n))>0)
{

dirl=-1;
IX11=IX1£f-1;
firstl=IX1IMAX;
last1=IX1IMIN;

}
else if{(Tz1lm]-Tz1l[n]}}<0)
{

dirl=l;
IX11=IX1£f+1;
firstl=IXIMIN;
lastl= IX1MAX;
}
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else

{
dirl=0;
IX11=IX1f§;
firstl=1X1MAX;
last1=IX1IMIN;
}

if({(T22{m}-Tz2[n]}]}>0)

{
dir2=-1;
IX21=1IX2f-1;
first2=IX2MAX;
last2=1X2MIN;

}

else if((Tz2(m}-Tz2[n])<0)

{
dir2=1;
IX21=IX2f+1;
first2=IX2MIN;
last2= IX2MAX;
}

uvlse

{
dir2=0;
IX21=1X2f;
first2=IX2MAX;
last2=1X2MIN;
}

if({Tc{m]-Tcin))>0)

{
dir3=-1;
1X31=1IX3f-1;
first3=IX3MAX;
last3=IX3MIN;

}

else if{(Tc[m]-Tc[n])<0)

{
dir3=1;
IX31=IX3f+1;
first3=IX3MIN;
last3= IX3MAX;
1

else

{
dir3=0;
IX31=IX3f;
first3=1IX3MAX;
last3=IX3MIN;
}

for{ixl=firstl; firstl>lastl? ixl>=lastl:ixl<=lastl; firsti>last1? ixl--

tixi+t)
{
for(ix2=firstl; firstl>lastl? ix2>=lastl:ix2<=lastl; firsti>lastl? ix2Z2--
1ix2++4)
{
for(ix3=first2; first2>last2? ix3>=last2:ix3<=last2; first2>last2? [xj-
-:ix3++)

{
for{ixd4=first2; first2>last2? ix4>=last2:ixd<=1last?2; ftirst2>last2?

{
for{ix5=first3; first3>last3? ix5>=last3:ixb<=last3;
first3rlast3? ix5--:ix5++)

{

cotab{ix1-IX11,ix2~IX11,ix3-IX21,ix4-1X21,ix5-1X31) -
cotab(ix1-IX1f,ix2-IX1f,ix3-1X2f,ix4~-1X2f,ix5-1X31);

ectab{ix1-IX11,ix2-IX11,ix3~1IX21,ix4-1X21,ixH-1X31,1) =
ectab(ix1-IX1f,ix2-IX1f,ix3-1X2f,ix4~1X2f,ix5~1%X31,1);

ectab(ix1-YX11,ix2-IX11,ix3-IX21,1ix4~I1X21,ix5-1X31,0} =
ectab(ix1-IX1f,ix2~IX1f,ix3-1X2f,ix4~-IX2f,ix5-1%X31,0);

tltab{ix1-IX11,ix2-IX11,ix3-1X21,1i%x4-1%21,ix5-1X31,0}--
tltab(ix1-IX1f,ix2-IX1f,ix3-IX2{,ix4-1X2f,ix5-1X31,0};

labtab(ix1-IX11,ix2~IX11,ix3-1X21,3ix4-IX21,4ix5%-1X31,0,0}=

labtab(ix1-IX1f,ix2~IX1f,ix3-1X2f,ix4-IX2f,1x5-1%31,0,0);

labtab(ix1-IX11,ix2-IX11,ix3-1X21,1ix4-1X21,1x5-1%31,0,1)=

ixd4--:ix4++)
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labtab{ix1~IX11,ix2-1X1f,ix3-IX2f,ix4-IX2f,ix5-1%X3f,0,1);
labtab{(ix1-IX11,ix2~IX11,ix3-IX21,ix4-1X21,ix5-1IX31,0,2)=
labtab(ix1-IX1f,ix2-1X1f,ix3~IX2f,ix4-IX2f,ix5-I1X3£,0,2);
labtab{ix1-1X11,1ix2-IX11,ix3-IX21,ix4-I1X21,ix5-1X31,0,3)=
labtab{ix1-IX1f,ix2-1X1{,ix3~IXZ2f,ix4~-IX2f,ix5-1X3f,0,3);
labtab(ix1-IX11,ix2-1X11,ix3~1X21,ix4-IX21,ix5-IX31,0,4)=
labtab(ix1-IX1f,ix2-IX1f,ix3~-IX2f,ix4-IX2f,ix5-IX3f,0,4);
for(i=1; i<LENGTH; i++4)
{
tltab(ix1-IX11,ix2-1X11,ix3~1IX21,ix4~-IX21,ix5-IX31l,i)=
titab(ix1-IX1f,ix2-IX1f,ix3-IX2f,ix4-IX2f,ix5-IX3f,i);
labtab{ix1-1X11,ix2-1X11,ix3-IX21,ix4-IX21,ix5-IX31,i,0})=
labtab({ix1-IX1f,ix2-IX1{,ix3-IX2f,ix4-IX2f,ix5-IX3f,i,0);
labtab(ix1-1X11,1ix2-1X11,ix3-IX21,ix4-IX21,ix5-1X31,i,1)=
labtab(ix1-1X1f,ix2-IX1f,ix3-IX2f,ix4-I¥2f,ix5-1IX3f,i,1);
labtab({ix1-IX11,1x2-IX11,1ix3-IX21,ix4-IX21,ix5-IX31,i,2)=
labtab(ix1-IX1f,ix2-IX1f,ix3-IX2f, ix4-IX2f,ix5-1X3f,1i,2);
labtab(ix1-IX11,ix2-IX11,ix3-1X21,ix4-IX21,ix5-1X31,i,3)=
labtab(ix1~IX1f,ix2-IX1f,ix3-IX2f, ix4-IX2f,ix5-IxX3f,i,3);
labtab(ix1-IX11,ix2-I%X11,ix3~-IX21,ix4-IX21,ix5-1X31,i,4)=
labtab(ix1-IX1°F, ix2-IX1f,ix3-IX2f,ix4-1IX2f,ix5-1X3f,i,4);

}/* end of for LENGTH */

}
}

}/* end of the function */

frevxvsidisfunctions to compute new-node index* ¥k kkkkkswk/
p

int

{

}
int
{

tixIn()

extern int ixlu, dixl;
int i;
Pt {tl==T[m] &6 {m!=0) g&dirl==-1)
{
If((ixlu==(IXIMIN+1) && dix1<0) || {ixlu==IXIMAX && dix1>0)) i=0;
else if{ixlu==IXIMIN) i=1;
clse i=dixl;
}
else if(L1==T[m]&&(m!=0)&8&dirl==1})
{
it({ixlu==(IXIMAX-1) && dix1>0) || (ix1u==IXIMIN && dix1<0)) i=0;
clge if(ixlu==1XIMAX) i=-1;
olse i=dixl;
}
clse
{
P {{ix1u==IX1IMIN && dix1<0) || (ix1u==IXIMAX && dix1>0)) i=0;
else i=dixl;
}

return(ixlu+i);
fix2n()
extern int ix2u, dix

int j;
if(tl==T{m]&&{m! J)gadirl==-1}

PE((ix2u=- IXIMIN+1) && dix2<0) |} (ix2u==1x"MAX && dix2>0)) j=0;
else if{iNZu==1XIMIN} j=1;
else j X2;
}
else if(tl T[m]&s{ml=0)&s&dirl==1)
{
1f{(i~n (TX1IMAX-1) && dix2>0) || {ix2u= IXIMIN && dix2<0)) j=0;
else .t (ix2u==1X1IMAX} j=-1;
else | dix2;
}
else
{
Pf((ixin  IXIMIN 8§ dix2<0) ]| (ix2u==IX1M%_ && dix2>0)) j=0;

else j=dixz;



}

}

return(ix2u+ij});

int fix3n{()

{

}

extern int ix3u, dix3;

int k;

it (tl==T[m]&&(m!<0)&s h -1)
{

1 ((ix3u==(IX2MIN+1, && dix3<0)|| (ix3u==IX2MAX && dix3>0))

else if (ix3u==IX2MIN) k=1;
else k=dix3;
}
else if(tl1==T|m]&&(m!=0)&&d1s "==1)
{

k=0;

Pf{(ix3u==(IX2MAX-1) && dix3>0){}iix3u==IX2MIN && dix3<0)) k=0;

else if (ix3u==IX2MAX)} k=-1;
else k=dix3;
}

else
{

Pif((ixIu==IX2MIN && dix3<0)}{|(ix
etse k+=dix3;
J

return(ix3u+k):;

int fix4an{()

{

}

extern int ix4u, dix4;

int 1;
if{tl==T[(m]&&{m!=0)&&dir2==-1)
{

if((ix4u==(IX2MIN+1) && dixd4<0)}| | (ixdu==IX2MAX

else if (ix4u==IX2MIN) 1=1;
else 1=dix4;
}
else if(tl==T[m]&&(m!=0)6&dir2==1)
{

if(({ix4u==(IX2MAX~-1) && dix4>0) || (ix4u==IX2MIN

else if(ixzdu==TX2MAX) 1=-1;
else 1=dix4;
)
else

{

AMX && dix3>0))} k-0;

& dixd>0))

&6 dixa4<0))

Pf((ix4u==1IX2MIN §& dixd4<0} || (ix4u==IX2MAX && dixz4>0}} 1=0;

else 1=dix4;
}

return{ix4utl);

int fixb5n{)

{

extern int ix5u, dix5;

int o;
if(tl==T[{m]&s(m!=0)&&adir3==-1)
{

e

1

0;

~0;

if((ix5u==(IX3MIN+1) && dix5<0) ]| (ixbu==IX3MAX && dixb>0}) o0-0;

else if(ixSu==IX3MIN) o=1;
else o=dix5;
}
else if(tl==T{m]&&(m!=0)5&dir3==1)
{

1f((ix5u==(IX3MAX~1) && dix5>0) )| (ix5u==

else if(ixBu==IX3MAX) o=-1;
else o=dixb;
}

else

{

IX3MIN $& dix5<0))

1f((ixbu==IX3MIN && dix5<0) || {ixS5u==IX3MAX &§& dix5>0)) o=0;

else o=dix5;
}

return(ixbSuio};
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Jerrrresvwitss procedure Lo call trial cost computation ****%/

void testl(int 1)
{
if (dt==0 0} return;

vl - (ix1ln-ix1lu)*DX1/dt - dl + x1u*AZ1l/Cz1;
v? - (ix2n-ix2u)*DX2/dt - d2 + x2u*AZ2/C22;
v3 + (ix3n-ix3u)*DX3/dt - d3 + x3u*AZ3/CZ3;
“v4 = (ix4n-ix4u)*DX4/dt - d4 + x4u*AL4/CZ4;
vh o« {ixbn-ix5u)*DX5/dt - db + xBu*AC/CC;

ul = v1/(Bl*gl};
u?2 = v2/(B2*g?);
uld = vi/{B3*q3);
ud = va/(BA*g4);
ub = (RG1*v1 + RG2*v2 + RG3*v3 + RG4*va + vb)/(C55 + B5¥*g5);
i {(ui>=0.0) && (u2>=0.0) && (u3>=0.0) && (u4>=0.0) && (u5>=0.0))}
{
teco ),
}

return;

/*¥3+**  procedure to compute trial cost veier/

void test ()
{
double te, ct, cte,tltry;
titry=tn-dt;
FL({TIm]-T{n}>0.5)&6(tltry<T[n])&&(t1>{(T[n)+0.5)})))return;
o = ((Rl1*ul*ul + R2%*u2%*uy2 + R3*u3*u3 + R4*ud*ud + ubd )*price+
Al*pow(xlu-X1S,2.0)/C21 +
AZ2*pow(x2u-X25,2.0)/C22 +
A3*pow(x3u-X35,2.0}/C23 +
Ad*pow (x4u-X45,2.0)/CZ24)*dt +
cotab({ix1ln-IX11f,ix2n-IX1f,ix3n-IX%X2f,ix4n-IX2f,ix5n-1IX3f);
et = (te - cotab(ixlu-IX1f, ix2u-IX1f,ix3u-IX2f,ixdu-IX2f,ix5u-IX3f))
* (tn-dt~tm)/(tl-(tn-dt));
cte = te + cty;
if{ctec<=ctemin)
{
ctecmin=ctc;
nco=tc;
tlu=tn-dt;
nec={Rl1*ul*ul + R2*u2*u2 + R3*u3*u3 + R4*ud*ud + ud)*dt ;

ixlnext = ixln;
ix2next = ix2n;
ix3next = ix3n;
ix4next = ixdn;
ixSnext = 1x5n;

}

return;

[Erervirdertenivroad oringnal result from input file¥dssdkakbkidkikrs s/
void trajy()
{
int i;
F1LE *{p;
tp=fopen("input","r"});
{scanf {fp,"%3d", &count};
for(j=0; j<=count; j+i)
{
fscanf {fp,"82d",&Tz1(3]));
tscanf (fp,"%2d",&Tz2(j1);
fscanf (fp,"%2d",&Tclj]));
{scanf (fp,"81£",&TI(3));
)
tclose(tp);
return;
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