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Abstract  

Nowadays, with the rapid development of science and technology, human 

healthcare has become a hot topic and attracts more and more attention. A lot of 

researchers work on different technologies to contribute to our healthcare no matter 

disease diagnosis and prognosis or disease treatment. In this thesis, we first introduce 

two different automated diseases diagnosis approaches and then design a novel gene 

delivery system that can help treat genetic diseases. 

Artificial intelligence (AI) is a popular research topic now and a lot of researchers 

are working on it. AI has various successful applications in computer vision, automatic 

speech recognition, natural language processing, audio recognition, bioinformatics and 

has been proven to be used in disease diagnosis. Two automated diseases diagnosis 

approaches are designed for depression and tuberculosis using different machine 

learning (ML) algorithms, respectively. Depression is one of the most common mental 

disorders, and rates of depression in individuals continuously increase each year. 

Traditional diagnosis methods are mostly based on the professional judgment of mental 

health, which is prone to individual bias. Therefore, it is crucial to design an effective 

and robust model for automated depression detection. I proposed a multimodal fusion 

model comprised of text, audio, and video for both depression detection and assessment 

tasks. For the text modality, a pre-trained sentence embedding algorithm was utilized 

to extract semantic representation along with bidirectional Long Short-Term Memory 
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(BiLSTM) to predict depression. We also used principal component analysis (PCA) to 

reduce the dimensionality of the input feature space and fed it into a support vector 

machine (SVM) to predict depression based on audio modality. For the video modality, 

XGBoost was employed to conduct both feature selection and depression detection. 

The final predictions were given by outputs of different modalities with an ensemble 

voting algorithm. Experiments on the Distress Analysis Interview Corpus Wizard-of-

Oz (DAIC-WOZ) dataset showed our proposed model outperforms the baseline in both 

depression detection and assessment tasks and has comparable performance with other 

existing state-of-the-art depression detection methods. 

Tuberculosis (TB) is a major public health burden affecting about a quarter of the 

world’s population annually according to the World Health Organization(WHO). 

Among many control steps, early diagnosis and treatment of TB are critical. Commonly 

used diagnostic techniques, such as X-ray, TB culture test, TB skin test, and Sputum 

acid-fast bacillus, have their major limitations. Therefore, new cost-effective diagnostic 

methods are urgently needed. In this thesis, we used high-resolution liquid 

chromatography-mass spectrometry (LC-MS) to screen 191 blood samples and 

discovered kynurenine (Kyn), tryptophan (Trp) and their ratio, Indoleamine 2, 3-

dioxygenase (IDO) are excellent TB biomarkers. We employed the logistic regression 

algorithm to detect pulmonary TB and got excellent performance for classifying health 

control (HC) vs active tuberculosis (ATB) and latent tuberculosis infection (LTBI) vs 

ATB. When we used IDO and t-spot to distinguish between nontuberculous lung disease 
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(NTB) and ATB, the results are always satisfying both on the validation set and external 

independent cohort.  

For the gene delivery system, we synergistically combine non-viral chemical 

materials, magnetic nanoparticles (MNPs), and physical technique, low-intensity 

pulsed ultrasound (LIPUS), to achieve efficiently and targeted gene delivery. The MNPs 

are iron oxide super-paramagnetic nanoparticles, coated with polyethyleneimine (PEI) 

giving a highly positively charged surface, which is favorable for the binding of genetic 

materials. Driven by the paramagnetic properties of the MNPs, the application of an 

external magnetic field increases transfection efficiency while LIPUS stimulation 

enhances cell viability and permeability. By combining the effect of the external 

magnetic field and LIPUS, the genetic material (GFP or Cherry Red plasmid) can enter 

the cells. The flow cytometry results showed that by using just a magnetic field to direct 

the genetic material, the transfection efficiency on HEK 293 cells that were treated by 

our MNPs coupled with LIPUS stimulation, increased a lot and was much higher than 

the positive control (Lipofectamine 2000) and showed less toxicity. Cell viability after 

transfection was greatly promoted compared to the standard transfection technique. 

  



 

v 

 

Preface 

This dissertation is submitted for the degree of Doctor of Philosophy at the 

University of Alberta. This Ph.D. thesis is based on the research performed at the 

Department of Electrical and Computer Engineering, University of Alberta, under the 

supervision of Professor Jie Chen between September 2016 and December 2021. Some 

chapters contain published articles authored or coauthored. All the authors’ 

contributions on the related published articles are listed as follows: 

Chapter 2 of this thesis has not yet been published, but we have submitted it as 

Wei Zhang, Kaining Mao, Jie Chen. “A Multimodal Approach for Detection and 

Assessment of Depression Using Text, Audio and Video.” to Scientific Reports for 

review. I was responsible for experiments design, conduct, data analysis, and 

manuscript composition. Dr. Jie. Chen supervised the work, provided valuable guidance, 

and revised the manuscript. 

Chapter 3 of this thesis has not yet been published, but we have prepared as Wei 

Zhang, Zhenyan Chen, Jie Chen. “Metabolomic Biomarker Selection for Pulmonary 

Tuberculosis Diagnosis and Prognosis.” I was responsible for data collection design, 

experiments design, data analysis, and manuscript composition. Zhenyan Chen finished 

the data collection. Dr. Jie. Chen supervised the work, provided valuable guidance, and 

revised the manuscript. 

Chapter 4 of this thesis contains the research published as Wei Zhang, Gaser N. 



 

vi 

 

Abdelrasoul, Oleksandra Savchenko, Abdalla Abdrabou, Zhixiang Wang, Jie Chen. 

“Ultrasound-assisted magnetic nanoparticle-based gene delivery.” PloS one 15, no. 9 

(2020): e0239633. I was responsible for the experiments design, measurement, data 

analysis, and manuscript composition. Dr. Jie. Chen supervised the work, provided 

valuable guidance, and revised the manuscript. 

  



 

vii 

 

Acknowledgments 

First and foremost, I would like to express my appreciation to my supervisor Dr. 

Jie Chen for providing me the valuable opportunity to pursue the Doctor of Philosophy 

degree at the University of Alberta and perform these projects in his research group. 

His guidance, patience, critical evaluation of my progress, yet ever-present support are 

greatly appreciated, without them I would not have completed this thesis.  

I would like to express my appreciation to the members of my thesis committee: 

Dr. Zhixiang Wang and Dr. Gregory Kish for the thorough reading of my thesis and the 

valuable suggestions to further improve the thesis. I would also like to acknowledge the 

professors who teach me, including Dr. Bruce Cockburn, Dr. Jie Han, Dr. Venkata 

Dinavahi, Dr. Scott Dick, Dr. Majid Khabbazian, and Dr. Di Niu. Thank you for helping 

me build solid background knowledge for my research. I also would like to thank 

Shiang Qi, Kaining Mao, Xiaoxue Jiang, Yufeng Li, Dr. Gaser N. Abdelrasoul, Dr. 

Oleksandra Savchenko, and the other group members for their support and help. I also 

would like to thank Shanghai Public Health Clinical Center for helping collect the data. 

Finally, I would like to thank my parents and friends for their unswerving support 

and continuous encouragement throughout my years of study and throughout my life. 

  



 

viii 

 

Table of Contents 

Abstract .................................................................................................................. ii 

Preface.................................................................................................................... v 

Acknowledgments................................................................................................ vii 

Table of Contents ............................................................................................... viii 

List of Tables ........................................................................................................ xii 

List of Figures ..................................................................................................... xiv 

List of Abbreviations........................................................................................... xix 

1 Introduction ...................................................................................................... 1 

1.1 Artificial Intelligence ............................................................................ 1 

1.2 Artificial Intelligence Application on Disease Diagnosis and Prognosis

 ………………………………………………………………………... 4 

1.3 Gene Therapy and Gene Delivery ......................................................... 8 

1.4 Ultrasound ........................................................................................... 10 

1.5 Contribution and Novelty of This Thesis ............................................ 12 

1.6 Thesis Outline ...................................................................................... 14 

2 A Multimodal Approach for Detection and Assessment of Depression Using 

Text, Audio and Video ................................................................................................. 16 

2.1 Introduction ......................................................................................... 16 

2.2 Related Work ....................................................................................... 19 



 

ix 

 

2.2.1 Text ............................................................................................. 19 

2.2.2 Audio .......................................................................................... 21 

2.2.3 Video .......................................................................................... 22 

2.2.4 Multimodality ............................................................................. 23 

2.3 Data ..................................................................................................... 24 

2.3.1 Dataset ........................................................................................ 24 

2.3.2 Data Augmentation ..................................................................... 25 

2.4 Methodology ....................................................................................... 26 

2.4.1 Text Model.................................................................................. 26 

2.4.2 Audio Model ............................................................................... 30 

2.4.3 Video Model ............................................................................... 33 

2.4.4 Fusion Model .............................................................................. 35 

2.4.5 Evaluation Metric ....................................................................... 36 

2.5 Result and Discussion ......................................................................... 37 

2.6 Conclusion ........................................................................................... 43 

3 Metabolomic Biomarker Selection for Pulmonary Tuberculosis Diagnosis and 

Prognosis ...................................................................................................................... 45 

3.1 Introduction ......................................................................................... 45 

3.2 Material and Methods .......................................................................... 48 

3.2.1 Materials ..................................................................................... 48 

3.2.2 Ethics Approvals ......................................................................... 49 



 

x 

 

3.2.3 Study Design .............................................................................. 50 

3.2.4 Recruitment Criteria ................................................................... 51 

3.2.5 Sample Preparation ..................................................................... 52 

3.2.6 Metabolomic Analysis and Data Preprocessing ......................... 52 

3.2.7 Statistical Analysis ..................................................................... 53 

3.3 Results ................................................................................................. 54 

3.3.1 Subject Characteristics ............................................................... 54 

3.3.2 Univariate Analysis .................................................................... 55 

3.3.3 Multivariate Analysis ................................................................. 60 

3.4 Discussion ........................................................................................... 68 

3.5 Conclusions ......................................................................................... 73 

4 Ultrasound-assisted magnetic nanoparticle-based gene delivery .................. 75 

4.1 Introduction ......................................................................................... 75 

4.2 Materials and Methods ........................................................................ 80 

4.2.1 Chemicals and Materials ............................................................ 80 

4.2.2 Cell Culture ................................................................................ 81 

4.2.3 Synthesis and Functionalization of MNPs ................................. 81 

4.2.4 Ultrasound Stimulation Device .................................................. 84 

4.2.5 Cell Counting ............................................................................. 85 

4.2.6 Cell Transfection ........................................................................ 86 

4.2.7 Transfection Evaluation/Characterization .................................. 86 



 

xi 

 

4.2.8 Flow Cytometry .......................................................................... 87 

4.2.9 Statistical Analysis ..................................................................... 88 

4.3 Results and Discussions ...................................................................... 88 

4.3.1 Selecting Optimal Ultrasound Condition ................................... 89 

4.3.2 Fluorescent Microscope Results ................................................. 91 

4.3.3 Transfection Efficiency using Flow Cytometry ......................... 92 

4.3.4 Cell Toxicity Results .................................................................. 94 

4.3.5 Confocal Microscope Results ..................................................... 96 

4.4 Conclusions ......................................................................................... 98 

5 Conclusions and Future Work ...................................................................... 100 

5.1 Conclusions ....................................................................................... 100 

5.2 Future Work ....................................................................................... 102 

Reference ........................................................................................................... 104 

Appendix ............................................................................................................ 139 

 

  



 

xii 

 

List of Tables 

Table 2. 1 An Example of a Random Participant’s Interview Transcript. ............ 30 

Table 2. 2 Embedding Dimensions Utilized. ....................................................... 30 

Table 2. 3 Statistical Descriptors Calculated from Two Sets of Audio Features. 32 

Table 2. 4 Statistical Descriptors Calculated from Video Feature Sets. .............. 34 

Table 2. 5 Comparison of F1 score for the Single Modality’s Classification. ..... 37 

Table 2. 6 Comparison Between the Proposed Model and other Depression 

Detection Methods on the DAIC-WOZ Development Set. ......................... 39 

Table 3. 1 Summary of the grouping of samples. ................................................ 49 

Table 3. 2 Performance of logistic regression models with various biomarkers for 

discriminating different groups along with the hypothesis test results. ....... 57 

Table 3. 3 Performance of logistic regression models for discriminating different 

binary groups. .............................................................................................. 62 

Table 3. 4 Performance of logistic regression model for discriminating NTB vs 

ATB. ............................................................................................................. 65 

Table 3. 5 Performance of logistic regression model for discriminating control, 

ATB, and NTB using Kyn, Trp, and IDO and hypothesis tests. .................. 67 

Table 4. 1 The transfection rate and cell viability of different delivery methods 

with HEK 293 cells. ..................................................................................... 80 

 



 

xiii 

 

Table A. 1 Comparison Between Different Classifiers with Different 

Dimensionality Reduction methods on the DAIC-WOZ Development Set 

(The unimodal models shown in bold achieved the best performance). .... 139 

Table A. 2 Correlation between different metabolites and age in different groups.

.................................................................................................................... 140 

Table A. 3 Performance of logistic regression models with various biomarkers for 

discriminating different groups along with the hypothesis test results. ..... 140 

Table A. 4 Performance of logistic regression models for discriminating different 

binary groups. ............................................................................................ 141 

Table A. 5 Performance of logistic regression model for discriminating ATB vs 

NTB............................................................................................................ 142 

 

  



 

xiv 

 

List of Figures 

Figure 2. 1 Block diagram of proposed network on multi-modality input features.

...................................................................................................................... 19 

Figure 2. 2 Depression and severity level distributions of the participants within 

the DAIC-WOZ corpus. (a) The number of individuals in Depressed and 

Healthy groups. (b) The histogram of Depression Severity across the twenty-

four depression severity levels given by the PHQ-8 test. ............................ 25 

Figure 2. 3 68 2D Facial Landmarks and 10 Geometrical Features. ................... 36 

Figure 3. 1 Box and whisker plots for different biomarkers on HC, ATB, NTB, and 

LTBI patients; (a) Kyn; (b) Trp; (c) IDO. In the box plot, there is a six-number 

summary of the data, the minimum, first quartile, median, third quartile, 

maximum, and the outliers. The solid line inside the box represents the 

median and the whiskers represent the maximum and minimum values, 

excluding any outliers. The black diamonds outside the whiskers represent 

the outliers. ................................................................................................... 57 

Figure 3. 2 ROC curves of the logistic regression model: (a) using Kyn for 

discriminating HC and ATB patients; (b) using Trp for discriminating HC and 

ATB patients; (c) using IDO for discriminating HC and ATB patients; (d) 

using Kyn for discriminating LTBI and ATB patients; (e) using Trp for 

discriminating LTBI and ATB patients; (f) using IDO for discriminating LTBI 



 

xv 

 

and ATB patients; (g) using Kyn for discriminating NTB and ATB patients; 

(h) using Trp for discriminating NTB and ATB patients; (i) using IDO for 

discriminating NTB and ATB patients; (j) using Kyn for discriminating 

control and ATB patients; (k) using Trp for discriminating control and ATB 

patients; (l) using IDO for discriminating control and ATB patients. .......... 60 

Figure 3. 3 PCA plot shows the ability to discriminate different groups: (a) 

discriminating HC and ATB patients; (c) discriminating LTBI and ATB 

patients; (e) discriminating NTB and ATB patients; (g) discriminating control 

group and ATB patients. ROC curves of the logistic regression model using 

Kyn, and IDO: (b) discriminating HC and ATB patients; (d) discriminating 

LTBI and ATB patients; (f) discriminating NTB and ATB patients; (h) 

discriminating control and ATB patients. ..................................................... 63 

Figure 3. 4 ROC curves of the logistic regression model for discriminating NTB 

and ATB patients: (a) using Kyn, Trp, IDO, and t-spot; (b) using IDO and t-

spot. .............................................................................................................. 65 

Figure 3. 5 (a) PCA plot shows the ability to discriminate among control, ATB, 

and NTB patients using Kyn, Trp, and IDO. (b) ROC curves of the logistic 

regression model for discriminating control, ATB, and NTB patients using 

Kyn, Trp, and IDO. ...................................................................................... 68 

Figure 4. 1 A schematic for LIPUS device and ultrasound power meter calibration. 

The display shows the ultrasound intensity. The button can be employed to 



 

xvi 

 

control the duty cycle and ultrasound stimulation duration. The ultrasound 

boxes include a motherboard, a control board, an ultrasound board, two driver 

boards, and a power board. We also include the circuit diagram. ................ 78 

Figure 4. 2 Characterization and functionalization of MNPs (a) MNPs size 

distribution under TEM. (b) Hydrodynamic size and ζ potential for particles. 

Here FN stands for MNPs, FN-Glu stands for MNPs after glutaraldehyde 

treatment, and FN-Glu-PEI25K stands for MNPs after glutaraldehyde 

treatment coated with PEI. ........................................................................... 83 

Figure 4. 3 Cell proliferation after stimulation with LIPUS under different 

intensity and duration parameters. (*:p<0.05, **: p<0.01). ......................... 90 

Figure 4. 4 Fluorescence microscope images: (a) negative control (just cells), (b) 

(c) cells transfected with GFP with MNPs and treated with LIPUS. Scale 

bars=100 μm. ............................................................................................... 91 

Figure 4. 5 Quantification of transfection: (a) Overall transfection efficiency and 

cell viability results. (**:p<0.01, ***: p<0.001). Subfigures (b)-(i) show the 

flow cytometry histogram plots of transfection rates using GFP with different 

methods. (b) lipofectamine 2000, (c) our MNPs and magnet, p<0.001 (d) our 

suggested method: MNPs, magnet, in combination with LIPUS treatment, 

p<0.001. (e) MNPs only, (f) treated only with LIPUS. Cell viability results in 

the presence of Zombie Aqua viability dye when transfected with (g) 

lipofectamine 2000. (h) MNPs and magnet, p<0.01, (i) MNPs, magnet, and 



 

xvii 

 

LIPUS, p<0.001. .......................................................................................... 96 

Figure 4. 6 Fluorescent images of cells transfected different plasmids using both 

MNPs and LIPUS stained with DAPI, (a) The control group (just cells), (b) 

GFP. (c) Cherry-red. Scale bars=20 μm. ...................................................... 97 

Figure A. 1 Receiver-operating characteristic (ROC) curves of the logistic 

regression model; (a) using Kyn for discriminating HC and NTB patients ; (b) 

using Trp for discriminating HC and NTB patients; (c) using IDO for 

discriminating HC and NTB patients; (d) using Kyn for discriminating HC 

and LTBI patients; (e) using Trp for discriminating HC and LTBI patients; (f) 

using IDO for discriminating HC and LTBI patients; (g) using Kyn for 

discriminating NTB and LTBI patients; (h) using Trp for discriminating NTB 

and LTBI patients; (i) using IDO for discriminating NTB and LTBI patients; 

(j) using Kyn for discriminating control and NTB patients; (j) using Trp for 

discriminating control and NTB patients; (l) using IDO for discriminating 

control and NTB patients. The ROC curve is plotted by the true positive rate 

(TPR) against the false positive rate (FPR) at different thresholds. ROC 

curves with 95% confidence interval of these logistic regression models are 

shown for distinguishing among HC, LTBI, and NTB utilizing Kyn, Trp, and 

IDO separately. The blue curve is the mean ROC, and the red regions show 

the 95% confidence intervals in the discovery set over five folds. The green 

curve indicates the ROC curve on the validation set. The best classification 



 

xviii 

 

will create a point at coordinates (0,1), representing 100% sensitivity and 100% 

specificity. .................................................................................................. 143 

Figure A. 2 ROC curves of the logistic regression model using Kyn, Trp, and IDO: 

(a) discriminating HC and NTB patients; (c) discriminating HC and LTBI 

patients; (e) discriminating NTB and LTBI patients; (g) discriminating 

control and NTB patients. PCA plot shows the ability to discriminate different 

groups: (b) discriminating HC and NTB patients; (d) discriminating HC and 

LTBI patients; (f) discriminating NTB and LTBI patients; (h) discriminating 

control and NTB patients. ROC curves with 95% confidence interval of these 

logistic regression models using the biomarkers together were performed to 

visualize the performance of the classification model. Principal Component 

Analysis with the data from different combined groups was performed and 

visualized the first two components, which can show the ability to distinguish 

different groups. ......................................................................................... 145 

Figure A. 3 ROC curves of the logistic regression model for discriminating NTB 

and ATB patients just using t-spot. ROC curves with a 95% confidence 

interval were employed to evaluate the predictive value of the t-spot in 

classifying NTB and ATB. The t-spot cannot predict ATB accurately. ...... 146 

 

 



 

xix 

 

List of Abbreviations 

AI Artificial Intelligence 

ANOVA Analysis of Variance 

ATB Active Tuberculosis 

AUC Area Under Curve 

AVEC Audio/Visual Emotion Challenge and Workshops 

BCE Binary Cross-Entropy 

CNN Convolutional Neural Network 

DAIC-WOZ Distress Analysis Interview Corpus Wizard-of-Oz 

DBN Deep Belief Network 

DL Deep Learning 

DNN Deep Neural Network 

ECG Electrocardiograph 

F0 Fundamental Frequency 

FCS Fetal Calf Serum 

H1 First Harmonics of the Differentiated Glottal Source Spectrum 

H2 Second Harmonics of the Differentiated Glottal Source Spectrum 

HAM-D Hamilton Depression Rating Scale 

HC Healthy Control 

HEK Human Embryonic Kidney 



 

xx 

 

HMPDD Harmonic Model and Phase Distortion Deviations 

HMPDM Harmonic Model and Phase Distortion Mean 

IDO Indoleamine 2, 3-dioxygenase 

KNN K-Nearest Neighbors 

Kyn Kynurenine 

LIPUS Low-Intensity Pulsed Ultrasound 

LSTM Long Short-Term Memory 

LTBI Latent Tuberculosis Infection 

MAE Mean Absolute Error 

MCEP Mel Cepstral Coefficient 

MDQ Maxima Dispersion Quotient 

MEM Minimum Essential Medium 

MFCC Mel-Frequency Cepstral Coefficients 

MHI Motion History Image 

ML Machine Learning 

MNP Magnetic Nanoparticle 

MSE Mean Squared Error 

MTB Mycobacterium Tuberculosis 

NAQ Normalized Amplitude Quotient 

NTB Nontuberculous Lung Disease 

PBS Phosphate Buffered Saline 



 

xxi 

 

PCA Principal Component Analysis 

PEI Polyethyleneimine 

PFA Paraformaldehyde 

PSP Parabolic Spectral Parameter 

QOQ Quasi-Open Quotient  

RMSE Root Mean Squared Error 

RNN Recurrent Neural Network 

ROC Receiver-Operating Characteristic 

SVM Support Vector Machine 

TB Tuberculosis 

Trp Tryptophan 

VUV Voiced/Unvoiced 

WHO World Health Organization   



 

1 

 

1 Introduction 

1.1 Artificial Intelligence 

AI is a branch of computer science concerned with building intelligent machines 

capable of performing tasks that typically require human intelligence[1]. Humans, 

animals, and many machines have different types and degrees of ability to finish the 

computational part to achieve goals, that is called intelligence[1]. Cause AI is dealing 

with all aspects of simulating cognitive functions to solve real-world problems and 

build systems that learn and think like humans[2], it is often referred to as machine 

intelligence[3] to compare it with human intelligence[4]. Alan Turing (1950) is one of 

the founders of modern computers and AI. The ‘Turing Test’ is based on the fact that 

the intelligent behavior of a computer is the ability to achieve human-level performance 

in cognitive-related tasks[5]. Since then, this field revolving around the intersection of 

cognitive science and computer science began to develop rapidly[6]. Five years later, 

the proof of the concept of AI was first initialized through Logic Theorist, which was a 

program designed to imitate the problem-solving ability of humans and is considered 

by many to be the first AI program[7]. The importance of this event cannot be 

underestimated because it greatly catalyzes future AI research. AI flourished, and 

computers can now store more information and become faster, cheaper, and more 

accessible. Many landmark goals of AI have been achieved, such as the success of 
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AlphaGo. We are now living in the ‘big data’ era, where we can collect a large amount 

of cumbersome and unable to process information. The application of AI in this area 

has achieved fruitful results in many industries around us such as technology, banking, 

marketing, and entertainment. 

AI has now aroused great interest of many researchers and flourished largely 

because of the success of the practical application of ML. ML is a very practical field 

of AI, aiming to build software that can automatically learn from existing data to acquire 

knowledge from experience and gradually improve itself to make predictions on new 

data[8]. It is one of the most rapidly growing research fields and is also the core of AI 

and data science, at the intersection of computer science and statistics[9]. Over the past 

20 years, ML has made tremendous progress, from laboratory curiosity to practical 

technology for a wide range of commercial uses. Many researchers find that, for most 

applications, it is much easier to train the system by showing the system examples of 

the desired input and output behavior than by manually programming be predict the 

desired response for all possible inputs[9]. The impact of ML is also widely used in 

computer science and a range of industries[9]. In ML, we usually get a training set and 

a test set. The training set means the union of the labeled set and the unlabeled set of 

observations available to the machine learners. In contrast, the test set consists of 

examples that have never been seen before[10]. According to the nature of the training 

data, we can divide ML into follows, supervised learning, unsupervised learning, semi-

supervised learning, reinforcement learning, and transfer learning[11]. Supervised 
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learning algorithms are trained using the labeled dataset, these datasets are designed to 

train or ‘supervise’ the algorithms to predict more accurate labels on the test set[11]. 

Using labeled inputs and outputs, the model can measure its accuracy and learn over 

time. Supervised learning can be further divided into classification (predicting 

categorical labels) and regression (predicting continuous labels). Unsupervised learning 

algorithms are used on data without labels[11]. These algorithms have no ‘right answer’ 

and the goal is to explore the data and find some structure within. They are mainly used 

for three tasks, clustering, association, and dimensionality reduction. Semi-supervised 

learning uses both labeled and unlabeled data for training and has the same applications 

as supervised learning[11]. It is exactly useful when the cost associated with labeling is 

too high for a fully labeled training process. Reinforcement learning algorithms use 

three primary components, the agent, the environment, and the actions to discover 

which actions produce the greatest rewards through trial and error[11]. The goal of 

reinforcement learning is to learn the best strategy. It is widely used in robotics, games, 

and navigation. 

DL is a family of ML models based on deep neural networks having a long history. 

DL is to learn the inherent laws and representation levels of examples based on a large 

amount of data. The different levels of information obtained in the learning process are 

very helpful for the interpretation of the text, images, voice, and other kinds of data. DL 

is a complex ML algorithm based on a large scale of training data. It is very popular 

today because it has achieved better results than previous related technologies in many 
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fields especially in speech and image recognition, sometimes even better than human-

level performance[2], [10]. Research in this DL attempts to make better representations 

and learn these representations from a large amount of unlabeled data. Various DL 

architectures such as DNN, CNN, DBN, and RNN have been applied in computer 

vision, automatic speech recognition, natural language processing, audio recognition, 

and bioinformatics where they have achieved the most advanced results. Although DL 

has been characterized as a buzzword[12], [13], it has shown superior capabilities to 

other ML algorithms in various tasks[14]. 

AI is a technology that is rapidly adopted by various industries, mainly focused on 

improving performance, accuracy, time efficiency, reducing costs, and liberating 

manpower. 

1.2 Artificial Intelligence Application on Disease Diagnosis 

and Prognosis 

AI also has wide applications in medicine with a long history[15]. Since the last 

century, researchers have been exploring the potential applications of AI technologies 

in various fields of medicine[15], [16]. The application of AI technology in the field of 

medicine was first investigated by Gunn in 1976 when he conducted the diagnosis of 

acute abdominal pain with computer analysis[17]. In the past two decades, there is a 

great surge in the interest in medical AI, and the potential of AI to leverage meaningful 

relationships in datasets has been successfully used in many clinical scenarios such as 
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diagnosis, treatment, prognosis, and predicting[18]. The great challenge that modern 

medicine faced is how to acquire and apply the experience and knowledge to solve 

complex clinical problems. The more experience and knowledge we have, the better 

knowledge-based decisions we can make. These experiences and knowledge are 

derived from data, the data comes from evidence-based medicine, while the experience 

comes from the actual results of patients[5].  

ML technology has been well studied and applied in the analysis of the medical 

field, especially in the medical diagnosis of specialized diagnosis problems[19]. The 

correct diagnosis mostly relies on the clinical data, provided in the form of medical 

records in specialized hospitals or departments. All that needs to be done is to feed the 

patients’ records with correct label diagnoses into a computer program to run the ML 

algorithm. In principle, knowledge of medical diagnosis can be derived automatically 

from the information of the past solved cases[19]. Then the derived ML model can be 

used to help the physician when facing new patients to improve the speed, accuracy, 

and reliability of the diagnosis[19].  

There are many successful applications for the medical diagnosis of various 

diseases. The most widespread application of AI in medical diagnosis is in the field of 

radiology, due to the significant advancement of image recognition tasks[20]–[22]. 

Many research teams have developed image processing and computer vision algorithms 

to achieve better diagnosis[23]–[25], enhanced visualization of pathology[26]–[30], 

alert on emergencies[26]–[28]. Zhang et. al. designed an AI system that can diagnose 
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COVID-19 pneumonia according to the CT scans and can improve the performance of 

junior radiologists to the senior level[31]. Becker et.al. and Chougrad et.al. conducted 

DL methods to screen for breast cancer to help the radiologist classify mammography 

mass lesions, and they have proven to be accurate in identifying signs indicative of 

breast cancer and predicting whether the lesions are benign or malignant[32], [33]. 

Ogino et. al. conducted DL-based medical image analysis on the pathological tumor 

classification of prostate cancer and found that it achieved a high classification accuracy 

given only radiological images as input, which can significantly help improve the 

diagnostic prediction performance of radiological images[34]. Besides the radiology, 

AI also has been applied in the field of oncology[35]–[37], cardiology[38]–[40], 

gastroenterology[41], [42], and ophthalmology[43]–[45]. Firstly, for oncology, 

McKinney proposed an AI system that can surpass human experts in breast cancer 

prediction and found that the AI system maintained a good performance across different 

datasets from the United Kingdom and the United States[46]. This robust evaluation of 

the AI system paves the way for clinical trials to improve the efficiency of breast cancer 

screens [46]. Wang et. al. proposed an AI tool that is consistent and even often better 

than most of the experienced expert pathologists in diagnosing colorectal cancer using 

weakly labeled pathological whole-slide image patches[47]. As for cardiology, Attia et. 

al. developed an AI-enabled ECG using CNN to detect atrial fibrillation during normal 

sinus rhythm using standard 10-second, 12-lead ECGs[48]. Wu et. al. employed an 

ANN approach to predict myocardial infarction efficiently, which can provide valuable 
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insights for reducing misdiagnosis in clinical trials[49]. Tan et. al. applied heart sound 

signal processing and CNN for analysis and classification of congenital heart disease 

heart sounds, which can effectively improve the robustness and accuracy of heart sound 

classification and can be further applied to machine-assisted auscultation[50]. AI also 

has successful application in the field of gastroenterology, such as detecting 

inflammatory bowel disease[51], [52], ulcerative colitis[53], gastrointestinal 

bleeding[54], [55], atrophic corpus gastritis[56], and gastroesophageal reflux 

disease[57]. Then, for the diagnosis of eye diseases, a lot of studies of AI application in 

diagnosing ophthalmological diseases have been reported. Most of the works are on 

diabetic retinopathy[58], [59], glaucoma[60], [61], age-related macular 

degeneration[62]–[64] and cataract[65]–[67], which are the four top leading cause of 

adult blindness. In addition to disease diagnosis, AI is also applied in surgery[68], [69]. 

Lots of studies have proved that AI can be used to process large amounts of surgical 

data to identify or predict adverse events in real-time and further support intraoperative 

clinical decision-making[70]–[73].  

AI also has successful applications in the field of mental health to detect mental 

disorders, such as depression. A lot of researchers used data from social media to 

identify users who are at risk of depression[74]–[76]. The AVEC, which aims to detect 

depression using affective computing, has been successfully held several times[77]–

[80]. Using machine learning to diagnose depression is getting more and more attention. 

Many participants actively shared and published their latest research results in these 
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competitions[81]–[83], greatly promoting the development of the automated depression 

detection system. In addition, many researchers collected their dataset and tried to find 

more representative depressive symptoms and built automated depression detection 

systems based on that[84]–[86]. 

AI also can be used for TB diagnosis. Some researchers used TB chest radiographs 

with the help of CNN to diagnose TB[85]–[87]. Metabolomics analysis can be 

excavated to find biomarkers that are useful for initial screening and diagnosing, which 

can be an alternative method for TB diagnosis. Metabolomics analysis can be divided 

into targeted metabolomics and non-targeted metabolomics. Targeted metabolism is the 

detection of specific metabolites, which can achieve absolute quantification of target 

metabolites. Non-targeted metabolomics detects all detectable metabolite molecules in 

a sample unbiasedly. Many metabolomics studies have found sputum[88], [89], 

blood[90], [91], breath[92], [93], and urine[94] can be used for identifying new 

biomarkers for TB infection or treatment response.  

In medicine, AI can improve patient healthcare through earlier detection and 

diagnosis, and improve workflows, thereby reducing medical errors, lowering medical 

costs, and finally lowering morbidity and mortality. 

1.3 Gene Therapy and Gene Delivery 

After the disease diagnosis or prognosis, the next step is disease treatment. Gene 

therapy is a technology that transfers genetic material into specific cells of a patient to 
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treat or cure the disease[87]. It can work by several mechanisms: replacing the disease-

causing gene with a healthy copy of the gene; inactivating dysfunctional disease-

causing genes; introducing a new or modified gene into the patient’s body to help treat 

diseases[88]. Gene therapy has been applied in several kinds of genetic diseases, 

including hemophilia[89], muscular dystrophy[90], and cystic fibrosis[91]. By 

transferring genes to increase naturally occurring proteins, to change the expression of 

existing genes, gene therapy can also be used in cardiovascular diseases[92], 

neurological diseases[93]–[95], infectious diseases[96], and cancers[97]–[99]. Gene 

therapy requires the identification of therapeutic genes and efficient transfer of the 

genes to targeted cells. Although short-term gene expression is sufficient for some 

applications (such as cancer treatment), long-term gene expression is required in most 

cases[100]. Moreover, it is essential to strictly regulate gene expression levels. Finally, 

the toxicity and pathogenicity of the delivery vector and the immune response must be 

considered[100]. The main limitation of the development of human gene therapy is still 

a lack of safe, effective, and controllable methods for gene delivery[101]. 

Gene delivery systems are essentially necessary for the gene therapy of genetic 

diseases[102]. It is now a popular research field with significant demand and can be 

used in both clinical and scientific biomedical research[103], [104]. There are many 

successful applications for helping gene therapy. As we know, the selectively permeable 

plasma membrane can protect the mammalian cells from external environments. 

Therefore, it is important to find an effective method to transfect cells for gene delivery. 
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In terms of the mechanism of delivering genetic material through the cell membrane o 

the nucleus, two methods can achieve the gene delivery: increasing the cell membrane 

permeability and thus promoting the penetration of the target gene, or developing an 

ideal carrier which gets low cost, high loading capacity, stability, no or low toxicity and 

easy operating to carry the target gene to pass through the cell membrane and release it 

to the nucleus[105]. There are many available gene delivery methods, viral-vector 

system approach is the most widely used method now[108], which can achieve high 

transfection efficiency with the safety issues related to immunogenicity as its main 

weakness[107]. So, there is a lot of work on the non-viral approaches, including 

liposome-based methods[109], calcium phosphate precipitation[110], cationic 

polymers[111]–[113], and nanoparticle-based hybrids[114]. In addition to these 

chemical approaches, physical delivery methods are attracting more and more attention 

of researchers, including the electric field[119], the acoustic method[120], and physical 

injection[121], to disrupt the cell membrane to increase the permeability and enhance 

the gene delivery. Poor transfection efficiency and human used concerns are always the 

problems, so the search for a new or combined method that could improve the gene 

delivery significantly remains a big challenge for researchers. 

1.4 Ultrasound 

The ultrasound method is one of the widely used acoustic transfection methods 

mentioned above and has been proved to be an effective method of delivering genes 
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into cells and tissues[123]–[127]. Ultrasound is an acoustic wave characterized by 

frequencies greater than 20 kHz, which is beyond the limit of the human hearing 

range[128]. Ultrasound has been used for military and industrial applications for a long 

time in the early decades. Besides these applications, ultrasound now is widely used for 

diagnosis, surgery, and therapy[128], [129]. Sonography is the most common 

diagnostic application of ultrasound, and it can visualize and monitor the internal tissue 

of our body by using an external detector pressing on our skin[130]. At its early 

therapeutic applications, researchers focused on the treatment produced by using the 

thermal effects of ultrasound, the ultrasound is absorbed by the tissues and converts to 

heat energy to increase the temperature in target tissues and kill the disease cells. While 

nowadays more researchers are paying attention to the non-thermal characteristic, 

including acoustic cavitation and mass transfer enhancement[131]. When ultrasound 

waves pass through target tissues, they can induce acoustic streaming and cavitation, 

which can change the concentration gradient, thus enhancing cell permeability. For 

ultrasound medical applications, the intensity is one of the most important parameters, 

and the safe intensity range is between 0.05 W/cm2 and 100 W/cm2 [132], [133]. 

Compared to low-frequency ultrasound, higher frequency (1-3 MHz) has been used for 

widely used as therapeutic ultrasound and has several advantages to penetrate through 

membranes and minimize the damage to cells at the same time[127]. LIPUS, as a 

particular type of ultrasounds, is widely used in many aspects of medical applications, 

such as bone healing[134], inflammation inhibiting[135], soft-tissue regeneration[136], 
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and the induction of cell-membrane porosity. It generates at a frequency of 1-3 MHz 

and repeats at 1 kHz with a duty cycle of 20% to outcome a low-intensity pulsed-wave 

[137]. LIPUS has also been proven to help many types of cells divide and proliferate 

under the safe operational intensity range of LIPUS (between 0.02 and 1 W/cm2) and 

treatment durations of 5 - 20 minutes per day, such as algal cell[138], [139], 

stem/progenitor cell[140] and mammalian cell[141] and can also promote CHO cells 

growing and antibody production[142], increase cell permeability[138] and enhance 

gene delivery through the use of microbubble[143]. LIPUS has almost no thermal 

effects due to its low intensity[144]. Therefore, there is great potential for using LIPUS 

in gene delivery. 

1.5 Contribution and Novelty of This Thesis 

Diseases can affect people not only physically, but also mentally. Therefore, 

disease diagnosis, prognosis, and treatment are crucial for improving human life quality. 

In this thesis, we proposed biomedical engineering applications that can contribute to 

both disease diagnosis and treatment. Firstly, two different automated diseases 

diagnosis approaches are presented and implemented. These two automated diseases 

diagnosis approaches are based on different ML algorithms and both lead to satisfying 

results. For the automated depression detection and assessment, 1) Compared to 

previous studies, few of them employed all of these modalities, text, audio, and video. 

I propose multimodality features that can capture depression behavior cues from all 
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these three modalities in a fusion framework. 2) Currently, most of the work for text 

analysis is based on word embedding. However, this approach gives out poor 

performance on the long interview sequence. In this case, sentence embedding is used 

in the depression detection task for the text modality and leads to a great improvement 

compared to the common word embedding methods. 3) Instead of feeding the low-level 

descriptors directly to the ML algorithms, we first conducted dimensionality reduction 

approaches and then used the features along with ML algorithms to predict depression 

from audio and video, leading to better results. 4) By fusing unimodality predictions, 

the final fusion model outperformed the baseline no matter on the binary classification 

task or the regression task. The baseline model was provided in AVEC 2016 using the 

linear SVM to classify depression and estimate the depression severity from audio and 

video modalities[78]. For the automated pulmonary TB diagnosis, 1) Compared to the 

previous reports that just used IDO as a novel TB biomarker or conducted non-target 

metabolism study, I proposed Kyn, Trp, IDO, and T-spot can all contribute to the TB 

detection and lead to satisfying performance. 2) Most of the previous work just got their 

results on the test set and didn’t collect independent cohort data to verify their results. 

In this thesis, independent cohort data is collected to conduct the double-blind 

experiments to further verify the performance. 3) Currently, the automated TB detection 

methods are just focused on diagnosing TB from healthy people, few of them also 

included LTBI and none of them included NTB patients. However, LTBI and NTB 

patients also play an important role in the clinical TB detection application. In this thesis, 
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we also collected LTBI and NTB samples and conducted experiments to diagnose ATB 

from them. 

For the gene delivery system, 1) LIPUS gets wide applications in the medical field, 

however, no one has used it on enhancing gene delivery. I proposed that LIPUS can 

promote cell growth and enhance cell membrane permeability, therefore improving 

gene delivery. 2) MNPs, guided by a magnetic field, can further improve targeted gene 

delivery with minimal side effects on other tissues compared to other conventional 

approaches; 3) Instead of just using chemical or physical gene delivery methods like 

most studies conducted, I synergistically combine LIPUS and magnetic fields for gene 

delivery, which can leverage each method’s advantages, therefore achieve a high 

transfection efficiency with low cytotoxicity and outperform the standard transfection 

technique on the market. 

1.6 Thesis Outline 

This thesis is organized into five chapters to present the two automated diseases 

diagnosis approaches and a gene delivery system. Chapter 1 explains the reason why 

automated diseases diagnosis approaches and gene delivery systems are indispensable 

and reviews the research progress from the state-of-the-art. It also presents the 

contributions and novelty of this thesis. Chapter 2 focuses on depression detection and 

assessment. It first introduces the current research on automated depression detection 

and then describes the proposed multimodal fusion model comprised of text, audio, and 
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video for both depression detection and assessment tasks. Chapter 3 is the automated 

TB diagnosis using logistic regression models based on the metabolomics results from 

high-resolution LC-MS. Chapter 4 covers the gene delivery system, that combined the 

LIPUS stimulation and MNPs, with the help of an external magnetic field. Finally, 

Chapter 5 summarizes the above research work and presents possible future work. 
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2 A Multimodal Approach for Detection and 

Assessment of Depression Using Text, Audio and 

Video  

2.1 Introduction 

Depression, also known as major depressive disorder, is presently one of the most 

common mental disorders and can last for a lifetime. Today, more people than ever are 

suffering from depression, which may be caused by psychological and social 

stress[145]. Depression is characterized by impairing patients’ ability to cope with 

stressful life events and usually leads to constant sadness and loss of interest[145]. It 

can affect people’s feelings, thoughts, and behaviors and cause various emotional and 

physical problems, such as weight loss, insomnia, fatigue, and, in the worst-case, lead 

to suicide[146]. According to the WHO report on depression in 2017, over 300 million 

people are estimated to suffer from depression globally[147]. There are psychological 

and pharmacological treatments for moderating and controlling depression. However, 

in low- and middle-income countries, treatment and support services for mental health 

are underdeveloped and an estimated 76-85% of people cannot receive the necessary 

treatment in these countries[145]. One study shows that the lifetime risk of depression 

is over 12% for men and 20% for women in the United States[148]. More than 0.7 

million people die by suicide each year and the total number of suicide attempts is 

estimated to be about 10 million per year[149]. Patients tend to self-harm or even 
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commit suicide in severe cases of depression, and it is estimated that up to 50% of 

suicides have been clinically diagnosed with depression[150]–[152]. However, 

statistics show that less than 70% of all patients afflicted by conservative depression in 

the world would take the initiative to consult a medical practitioner and receive 

effective treatment to relieve depression[153]. Due to the suffering inflicted on patients 

and the untimely diagnosis and treatment for depression, the screening test of 

depression in the early stage is extremely important. 

The current mainstream diagnostic methods mainly rely on scales, questionnaires, 

etc. PHQ-8, HAM-D, and BDI are commonly used questionnaires in the clinical 

diagnosis of depression. This diagnosis is based on a practitioner's judgment of patients' 

responses to the questionnaire. Human bias in subjective judgment may lead to 

misdiagnosis[154]. These methods have limitations on strong subjectivity and low 

flexibility, resulting in a low accuracy in the diagnosis of depression. Therefore, there 

is a strong need for an accurate and simple method to detect depression. Recently, with 

the rapid advancement of artificial intelligence, researchers have found that behavioral 

cues such as semantics, prosodic features from speech, and facial expressions are 

feasible candidates for detecting depression[75], [85], [155].  

Although researchers hope that AI can contribute to the diagnosis and treatment of 

depression, the traditional centralized ML requires the aggregation of patient data. 

However, the data privacy of mentally ill patients requires strict confidentiality, which 

hinders the clinical application of machine learning algorithms. For data privacy, all the 
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participants have signed the informed consent and know that the data will be used for 

research work. Besides, current data collections remove the personal information and 

just reserve the data correlated to depression, which greatly protects the privacy of 

patients. 

In this thesis, we present a novel and effective multimodal framework that extracts 

important features to achieve two tasks on different modalities. The first task is to 

diagnose depression (binary classification task) and the second is to predict the degree 

of depression (regression task), which is measured by PHQ-8. The primary contribution 

and novelty lie in proposing multimodal features that can capture depression behavior 

cues in a fusion framework. A sentence embedding that was originally proposed for 

calculating the similarity of pairs of sentences is used in the depression detection task 

for the text modality and leads to a great improvement compared to the common word 

embedding methods. Low-level descriptors and SVM along with PCA are proposed to 

predict depression from audio. On the other hand, we investigate the impact of different 

feature sets on video modality and show that the XGBoost gives us the importance of 

each feature and conducts the feature selection based on the cross-validation, leading 

to better results. We implement a late decision fusion layer to integrate different 

modalities which help identify depressed subjects with appreciable accuracy as evident 

in results obtained. Meanwhile, we introduce an over-sampling strategy to train our 

model, which greatly alleviates the bias caused by the imbalance in the data distribution. 

The network shown in Fig 2.1 utilizes several features from the text, audio, and video 
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modalities and employs various machine learning models. We performed several 

experiments to obtain and combine the best machine learning models for each modality. 

Our final fusion model achieved a high weighted F1 score and low RMSE, MAE, which 

outperformed the baseline on both the binary classification task and the regression 

task[78]. 

 

Figure 2. 1 Block diagram of proposed network on multi-modality input features. 

2.2 Related Work 

This section presents an overview of the current state-of-the-art related to the 

automated depression detection method proposed in this thesis. 

2.2.1 Text 

Text, more specifically the verbal content of the words a person speaks is an 

important feature for detecting depression[156], [157]. With the surge in the use of 
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social media, a large amount of text data is produced and shared on social media, which 

provides researchers the opportunity to analyze depression from the text. This data can 

help with sentiment analysis and provide insights into the relationship between their 

social media content and mental states[76], [158] due to the anonymous and open nature 

of social media, individuals share real emotions that represent their real mental 

states[74]. Ansari et al. proposed a Markovian model to detect depression using content 

rating provided by human subjects[159]. Tong et al. employed a novel classifier inverse 

boosting pruning tree to detect depression from online social behaviors[160]. Orabi et 

al. implemented word-embedding and deep learning methods to detect depression for 

Twitter users[161]. Islam et al. used decision tree techniques and identified high-quality 

solutions to mental health problems among Facebook users[162]. However, the social 

media data has some common limitations, the noise behind the original post, such as 

acronyms, buzzwords, etc., makes data preprocessing very difficult. In addition, people 

are more likely to generate negative content on social media because they are 

anonymous, although they are healthy. Besides the social network data, there are also 

lots of articles on existed depression corpus. Yin et al. applied semantic embedding and 

emotional embedding along with the hierarchical RNN to predict depression[163]. Niu 

et al. matched questions and answers to QA-pair and further employed a pre-trained 

GloVe word embedding and graph attention model for depression detection[164]. Hanai 

et al. used Doc2Vec to generate word embeddings and fed them into a BiLSTM neural 

network to diagnose depression[165]. For most social media data, text analysis was 
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based on short texts and these classifiers do not perform well in long conversation text 

data. 

2.2.2 Audio 

Although the relationship between verbal content and depression severity level is 

more prominent, speech audio features, known as prosodic and acoustic features, also 

play a pivotal role in diagnosing depression[166]. Clinicians treat audio features, such 

as reduced rhythm, less or monotonous speech activity, and energy in speech as 

important signs of diagnosing depression, and audio is a kind of easy recording feature. 

These two main reasons make speech audio critically popular in the automatic 

depression detection topic[166]. Commonly used audio features are spectrograms, 

power, MFCCs, and deep spectrum representations[167]. Recently, deep neural 

networks have been used to extract discriminative features from speech. Due to their 

data generalization capabilities, they can learn more robust data representations[168], 

[169]. Some researchers used deep spectrogram images as input and employed CNNs 

to extract important features to further predict depression[163], [167], [170]–[172]. 

Mel-spectrogram is a spectrogram converted from frequency to Mel scale, which is 

more suitable for applications because it is a perception scale of pitches judged by the 

listener to be equal to each other and has shown strength in depression detection topics. 

Many approaches employed Mel-spectrogram and CNNs to predict depression[171], 

[173]–[175]. Pampouchidou et al. used statistical descriptors of several pre-extracted 
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audio features and the decision tree to assess depression[176]. Nasir et al. generated a 

new vector (i-vector) representing the speaker acoustic model on MFCCs for depression 

detection based on the Gaussian mixture model-universal background model[146]. 

Similar to the MFCCs sequences, reports have shown that the raw features sequences 

extracted from COVAREP[78] are potentially effective at predicting depression[154], 

[163]–[165]. However, the spectrogram-based deep learning methods have their 

limitation. The spectrogram with x-axis as time and y-axis as frequency is a position-

sensitive plot, while CNNs do not take into account the position information from the 

spectrogram. As for long sequence deep learning methods, the sequence can be 

extremely long, so the deep learning models may face challenges like slow inference, 

vanishing gradients, and difficulty capturing long-term dependencies. Due to the 

limited training sample size, applying deep learning methods tends to lead to overfitting, 

hence we avoided deep learning methods on audio features. 

2.2.3 Video 

In addition to text and audio, video features play a key role in modeling the deep 

correlation between depression and facial emotions. It has been observed that patients 

with depression often display distorted facial expressions, such as twitching eyebrows, 

sluggish smiles, frowning faces, aggressive expressions, restricted lip movement, and 

reduced blinking times[154]. MHI is an algorithm widely used in the field of human 

action recognition[177]. Meng et al. proposed using MHIs along with extracting LBP 
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and Edge of Oriented Histograms for depression recognition in the AVEC 2013 

Challenge[77], [178]. Niu et al. utilized the raw video segments with 3D CNN and 

LSTM to predict the BDI score of patients[82]. The authors presented OpenFace an 

open-source interactive tool to estimate facial behavior[179]. OpenFace is a widely- 

used tool, which provides features for face landmark regions, head pose estimation, eye 

gaze estimation, and facial action unit. Many approaches related to facial expression 

are based on this tool. Pampouchidou et al. also first extracted 68 two-dimensional 

landmarks from the raw video and selected facial landmarks affected by smiling to feed 

into the nearest-neighbor model[180]. Wang et al. fed 68 two-dimensional landmarks 

to the LSTM network for depression diagnosing[181]. The main concern for these 

methods is that using features of every frame would be very tedious and would be 

limited by the information we can extract from the long interviews. In this thesis, we 

used the low-level video features extracted from OpenFace. 

2.2.4 Multimodality 

Multi-modal methods integrated text, audio, or video features to detect depression. 

Kächele et al. integrated visual and audio features to explore the depression state 

through a hierarchical classifier system[182]. Chao et al. extracted visual and audio 

features and used them to train an LSTM to learn long-term temporal dynamic features 

and applied multi-task learning to optimize the prediction of depression severity[183]. 

Ringeval et al. designed a hybrid depression estimation framework using audio, video, 
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and text descriptors to predict depression[79]. Gong et al. utilized audio, video, and 

semantic features to propose a novel topic-based modeling method for context-aware 

analysis of depression[83]. Most of them just utilized one or two modalities. In this 

thesis, we also performed a multimodality model using text, audio, and video features 

and outperformed our unimodal models. 

2.3 Data 

2.3.1 Dataset 

In this thesis, we adopted the DAIC-WOZ dataset[184] for training and testing. 

This dataset is publicly available and also used for the depression sub-challenge task in 

the AVEC 2016, 2017, and 2019, requiring participants to use audio, video, and text 

analysis to predict depression[78]–[80]. All the user have singed the agreement form to 

protect the patient privacy. All the The dataset includes data from 189 subjects. For each 

subject, the dataset includes the raw audio and transcript of an interview ranging 

between 7-33 minutes. During the interview, an animated virtual interviewer, called 

Ellie, controlled by a human interviewer in another room takes the initiative to ask 

questions designed to support the diagnosis of depression. Besides the raw audio of the 

interviews, the dataset also contained some baseline features both for audio and video. 

The dataset comprises two target labels: PHQ-8 binary labels (PHQ-8 scores  10) and 

PHQ-8 scores for each participant. The data distribution is shown in Fig 2.2. There is a 
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total of 189 subjects in the DAIC-WOZ dataset, out of which 107 subjects are used for 

training, 47 for testing, and 35 for development. Since the test labels are not available 

in the challenge, most of the literature reported their performance on the development 

set. To better compare the performance with others, the results shown in this thesis are 

evaluated on the development set. 

 

 

(a)                                     (b) 

Figure 2. 2 Depression and severity level distributions of the participants within 

the DAIC-WOZ corpus. (a) The number of individuals in Depressed and Healthy 

groups. (b) The histogram of Depression Severity across the twenty-four depression 

severity levels given by the PHQ-8 test. 

2.3.2 Data Augmentation 

An imbalanced dataset is a dataset with a severely skewed class distribution. This 

imbalance could affect the performance of many machine learning algorithms, leading 
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to ignoring the minority class entirely which may result in overfitting. This is always a 

big issue because it is typically the predictions on the minority class that are most 

important. As we see in Fig 2.2, the DAIC-WOZ dataset presents an unbalanced number 

of samples in different groups. The number of healthy participants is almost three times 

higher than that of depressed patients. To increase the number of depressed subjects and 

improve the performance and robustness of the models, we utilized the re-sampling 

method on the dataset to obtain balanced data. In our case, we over-sampled the subjects 

from the minority class (depressed class) to make a balanced distribution of classes on 

the training set. For the development set, we kept its original distribution. 

2.4 Methodology 

This section presents the models implemented for depression detection. A block 

diagram of the overall proposed multimodality with a late decision fusion network is 

shown in Fig 2.1. Sections 2.4.1 to 2.4.3 explore each single modality representation 

for feature extraction and the depression detection task. Section 2.4.4 presents a model 

for the decision fusion layer by combining the single modalities for both classifying 

depression and predicting severity. 

2.4.1 Text Model 

For the text modality, we used the speech-to-text transcripts provided in the 

dataset[184]. An example of a participant’s transcript data is shown in Table 2.1. 
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Because we aim to detect depression for participants and the questions from Ellie are 

similar among different interviews, we removed Ellie’s parts and processed the 

participants’ responses in succession. The raw text was initially preprocessed. Since 

some participants used colloquial English words, we manually modified the utterance 

by replacing these words with the original complete words. Otherwise, these words 

become all out of vocabulary words while training the neural network during the 

training and affect the model performance. Meta information such as <laughter> or 

<sigh> can be helpful for model training, so it was retained by removing the angle 

brackets. Moreover, we removed the stop-words and tokenized the remaining 

transcripts. 

Context-free word embeddings are commonly used in text classification tasks, 

either trained from scratch with Word2Vec[185] or a simple pre-trained word 

embedding GloVe[186]. However, these word embedding methods aim to capture the 

context of a specific sentence by only considering surrounding words. Therefore, it does 

not capture the meaning of the sentence. Modern word embeddings like BERT 

(Bidirectional Encoder Representations from Transformers), built with self-attention 

mechanisms and LSTMs are context-sensitivity, which means they will produce 

sentence-level representations. Since depression data is difficult to obtain, using a pre-

trained model on a large text body can help alleviate the problem of data sparseness. 

The BERT model is pre-trained on a large corpus, making them effective advanced 

feature extractors[187]. The BERT model generates embeddings for words based on the 
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context in which they appear, thereby producing slight changes for each word 

appearance. This requires the entire sentence to generate word embeddings. Therefore, 

they are fundamentally different from traditional Word2Vec embeddings, which create 

sentence embeddings as the average of all word embeddings. In our case, the maximum 

length of our transcript is 2543 words. Each word contains little information about the 

entire context. Using word embedding methods can result in lots of important 

information loss during training. Instead of using word embedding, we utilized sentence 

embedding in extracting text features. Sentence embedding can be extracted at multiple 

levels such as characters, sub-words, words, sentences, and paragraphs. It can represent 

the entire sentence and its semantic information as a vector, which helps understand the 

context, intention, and other nuances in the entire text. At the same time, the input time 

step is greatly reduced, which is very helpful for training. Traditional word embedding 

represents each word by a D dimensional vector. For the sentence embedding, the 

general representation for a sentence j is extracted from the average of their word-level 

representations 𝑤𝑡 as: 

𝑥𝑗 =
1

𝑁𝑗
∑𝑤𝑡

𝑁𝑗

𝑛=1

 

where 𝑁𝑗 is the number of words in that sentence. In our work, we employed a 

pre-trained model. Five different embedding methods are tested: GloVe word 

Embedding[186], FastText word embedding[188], BERT sentence embedding[189], 

InferSent sentence embedding[190], and Universal sentence encoder (USE)[191].  
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After embedding words/sentences, we padded the inputs with zeros for a constant 

input tensor size. All utilized embedding methods with their dimension D are shown in 

Table 2.2. We used two layers of stacked BiLSTM network architecture with the input 

of embeddings. LSTM is a type of recurrent neural network capable of modeling 

sequence-dependent data in sequence prediction problems. The BiLSTM can learn both 

forward and backward directions effectively increasing the amount of information 

available to the network, improving the context available to the algorithm. Each 

BiLSTM layer has 512 hidden units, where the output of each hidden unit of the first 

BiLSTM layer is the input of each hidden unit in the second layer. Then we 

concatenated the last states of both forward and backward directions and fed them to a 

fully connected layer with one output node. The overall text modality network is shown 

in Fig 2.1. For the binary classification task to diagnose depression, we employed an 

activation layer with sigmoid function and used BCE loss function for training:  

𝐵𝐶𝐸𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑦𝑖 ∙ log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1
 

where y is the label (1 for depressed and 0 for healthy in our case) and 𝑝(𝑦) is the 

predicted probability of the subject suffering from depression.  

While for the regression task to predict PHQ-8 scores, we removed the sigmoid 

activation layer and applied the MSE loss function for model training: 

𝑀𝑆𝐸𝐿𝑜𝑠𝑠 =
1

𝑁
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2
𝑁

𝑖=1
 

where 𝑦𝑡𝑟𝑢𝑒 is the actual PHQ-8 score and 𝑦𝑝𝑟𝑒𝑑 is the predicted PHQ-8 score 

for this subject. 
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Table 2. 1 An Example of a Random Participant’s Interview Transcript. 

Start Time Stop Time Speaker Value 

49.672 50.132 Ellie How are you doing today? 

53.440 57.160 Participant 
Today is a wonderful day I am doing just 

absolutely marvelous. 

57.892 59.252 Ellie That's so good to hear. 

60.088 61.408 Ellie Where are you from originally? 

61.490 67.980 Participant 

I was born in Cleveland; I was raised in 

Tucson Arizona and came to Los Angeles 

when I was sixteen years old. 

 

Table 2. 2 Embedding Dimensions Utilized. 

Level Embedding Dimension 

Word 
GloVe 100 

FastText 100 

Sentence 

BERT 1024 

InferSent 4096 

USE 512 

 

2.4.2 Audio Model 

For the audio modality, we created models using different audio features. The 

dataset provided pre-extracted features using the COVAREP toolbox[192]. Audio 

features are sampled at 100 Hz (every 10 ms) over the entire recording. The features 

contain prosodic features, voice quality features, and spectral features, including F0, 

VUV, NAQ, QOQ, H1, H2, PSP, MDQ, peak/slope, Rd, Rd conf, MCEP 0-24, HMPDM 

0-24, and HMPDD 0-12. VUV is an important feature that provides a label for the 
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current segment as voiced or unvoiced. In the unvoiced segment (VUV=0), there is no 

vocal sound detected, so all the features measured for this segment (i.e., F0, NAQ, QOQ, 

and H1H2) are meaningless and cannot be further utilized. First, similar to the text 

feature, we removed all the frames of Ellie and isolated the participants’ voices 

according to the timestamps in the transcripts. Next, frames with unvoiced segments 

(VUV=0) were removed from the final concatenated time series. The MFCC is the 

cepstrum parameter extracted in the frequency domain of the Mel scale, which 

describes the non-linear characteristics of human ear frequency. It is widely used in 

speech recognition due to its robustness and is comparable to the auditory 

characteristics of the human ear. In addition to COVAREP features, we extracted 13-

dimensional MFCCs every 10ms, and first () and second-order differentials () of 

the MFCCs as features. Using the two sets of audio features: COVAREP and MFCCs, 

we calculated the statistical features for these low-level descriptors shown in Table 2.3. 

We did not utilize the raw sequence of these audio features because the average and 

maximum of the participants-only frame length are 24556 and 69182, respectively. 

Similar to the text feature, such long frames can lead to a significant increase in training 

time. In addition, trying to perform backpropagation in a long sequence may cause the 

gradient to disappear, which in turn will weaken the reliability of the model. Moreover, 

because the overall sample size is only 189, using a deep learning model easily leads to 

over-fitting. Therefore, we extracted representative statistical features and fed them into 

machine learning models. 
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Table 2. 3 Statistical Descriptors Calculated from Two Sets of Audio Features. 

Low-level Descriptors Statistical Descriptors Dimensions 

F0, NAQ, QOQ, H1H2, PSP, 

MDQ, peak slope, Rd, Rd conf, 

creak, MCEP 0-24, HMPDM 0-

24, HMPDD 0-12 

mean, max, min, skewness, kurtosis, 

standard deviation, median, root mean 

square level, peak-magnitude to root-

mean-square ratio, interquartile range. 

73*10 

MFCC, ,  39*10 

 

Because the dimensions of the audio features, 730 and 390, are both larger than 

the sample size, 189, we need to reduce the input dimension, otherwise, it will result in 

a dimensional disaster. There are two ways for dimensionality reduction, feature 

extraction, and feature selection. Feature extraction aims to reduce the number of 

features in the dataset by creating new features from existing features, while feature 

selection is to select input variables that have the strongest relationship with the target. 

In this work, we first applied PCA to reduce the dimension of the input features. PCA 

is commonly used to reduce the dimensionality of a large data set, by converting a large 

group of variables into a smaller set of variables and can minimize the loss of original 

information. We used 95% of the variance for PCA projection in the audio modality for 

dimension reduction. After this, we achieved 84 and 72 dimensions for COVAREP and 

MFCCs feature sets, respectively. We then fed these features into an SVM to get an 

early prediction. SVM is a supervised machine learning algorithm that can be used for 

classification or regression problems, which uses a technique called kernel tricks to 
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transform data and find the best boundary between possible outputs based on these 

transformations. We then used an AND/Average gate to fuse the early prediction from 

two feature sets to get the final prediction of audio modality for the classification and 

regression tasks. 

2.4.3 Video Model 

Since no raw video is publicly available in the DAIC-WOZ dataset, we can only 

utilize the video features provided by the dataset. It contains the 2D and 3D coordinates 

of the 68 facial landmarks, 20 FAUs, the gaze direction and position of eyes, and the 

position and orientation of the head, for each video frame, along with the timestamp, 

confidence weight, and detection-success. These features are computed from the raw 

video using OpenFace[179]. The 68 facial landmarks are points on a human face shown 

in Fig 2.3 that localize the regions around the eyes, eyebrows, nose, mouth, chin, and 

jaw. Since the 3D coordinates of the 68 facial landmarks contain all the information 

contained in 2D coordinates, we just discarded the 2D coordinate feature. The FAUs 

are related to several emotions, happiness, sadness, surprise, fear, anger, disgust, and 

contempt. The gaze feature gives out the gaze direction of both eyes and the gaze in 

head coordinate space. The last feature, head pose, is the head position and rotation 

coordinates. In addition to these feature sets provided by the dataset, we extracted 

certain distances between facial landmark pairs as geometric feature sets, which are 

affected by smiling because reduced smiling is very significant in individuals with 
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depression[193]. The distances we used are shown in Fig 2.3 as red lines. To eliminate 

the difference between different faces, all distances were normalized based on the 

cheekbone width (landmarks 1 and 17) represented by the green line shown in Fig 2.3. 

We removed all the frames with detection_success of 0, meaning that these frames have 

not been successfully extracted facial features. We then calculated the changing speed 

() and acceleration () of the 3D landmarks' positions and the geometric features. 

Similar to the audio features, we extracted some representative statistical descriptors of 

these feature sets and fed them into machine learning models. An overview of the video 

feature set is shown in Table 2.4. 

 

Table 2. 4 Statistical Descriptors Calculated from Video Feature Sets. 

Features Statistical Descriptors Dimension 

Dimension After 

Feature 

Selection 

FAUs 
mean, max, min, 

skewness, kurtosis, 

standard deviation, 

median, root mean square 

level, peak-magnitude to 

root-mean-square ratio, 

interquartile range. 

 

20*10 75 

3D Landmarks 204*10 48 

3D Landmarks  204*10 123 

3D Landmarks  204*10 28 

Head Pose 6*10 10 

Eye Gaze 12*10 25 

Geometric Distance 10*10 27 

Geometric Distance  10*10 19 

Geometric Distance  10*10 49 

 

Due to the high dimensionality of the video feature set and the attendant risk of 

overfitting, we performed feature selection before further prediction to select a reduced 
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feature subset. We used XGBoost to achieve feature selection and the depression 

prediction together. XGBoost is an ensemble machine learning algorithm based on 

decision trees, utilizing a gradient boosting framework. One advantage of using 

gradient boosting is that after building the boosted tree, it retrieves the importance score 

for each feature. Generally, importance provides a score that indicates the usefulness or 

weight of each feature in building a boosted decision tree within the model. The more 

attributes that use decision trees to make key decisions, the higher their relative 

importance. We first applied 5-fold cross-validation on the training set to select an 

optimal importance threshold and used the attributes with higher importance as a new 

feature set. Then we employed the same feature subset on the development set and 

further fed it into the XGBoost to evaluate the performance on diagnosing depression 

state and severity. 

2.4.4 Fusion Model 

We first obtained classification/regression depression prediction for text, audio, 

and video modalities respectively. After we got the prediction for each modality, we 

performed late-fusion of decisions from multiple modalities to investigate its 

effectiveness at predicting depression. We utilized a voting ensemble to fuse the 

predicted results from various modalities for both classification and regression tasks. In 

classification, the voting ensemble involves summing the votes for crisp class labels 

from all modalities and predicting the final class with the most votes. For regression, a 
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voting ensemble is involved in predicting by taking the average of the predicted PHQ-

8 scores of the multiple modalities' models. 

 

 

Figure 2. 3 68 2D Facial Landmarks and 10 Geometrical Features. 

2.4.5 Evaluation Metric 

There are two tasks in this work, classification for diagnosing depression and 

regression for predicting the degree of depression. For this, we applied two different 

evaluation metrics. For classification, we utilized the F1-score for healthy and 

depressed classes to measure the performance. Since the dataset has a skewed 

distribution of classes, we also provided the weighted F1 score. The weighted F1 score 

is calculated by averaging the class-specific F1 scores scaled by the relative number of 
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samples from that class. The regression performance was evaluated using MAE, 

1

𝑛
∑ |𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑

|𝑛
𝑖=1    and RMSE, √

1

𝑛
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1  . For both tasks, we 

reported the performance of single modality and multi-modal fusion methods. 

2.5 Result and Discussion 

We evaluated the proposed multimodality framework on the development set of 

DAIC-WOZ. F1 scores for healthy and depressed classes and the weighted F1 scores 

were calculated for unimodal and multimodal models on the development set. We 

employed “T”, “A”, and “V” to represent text, audio, and video modality, respectively. 

Table 2.5 illustrates the unimodal classification results and the reference state-of-the-

art models for each modality in bold font. The same random seed was set for all the 

experiments to exclude the random influence as the result of dataset split and different 

initialization. We applied these results to select our unimodal features and further used 

these features to fuse predictions. 

 

Table 2. 5 Comparison of F1 score for the Single Modality’s Classification. 

Modality Feature 
F1 score 

(Healthy)  

F1 score 

(Depressed) 

F1 score 

(Weighted) 

T 

GloVe 0.680 0.200 0.515 

FastText 0.793 0.000 0.521 

BERT 0.870 0.750 0.829 

InferSent 0.793 0.583 0.714 

USE 0.723 0.435 0.624 

A 
MFCCs 0.840 0.600 0.758 

COVAREP 0.755 0.235 0.577 
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MFCCs+COVAREP 0.826 0.667 0.771 

MFCCs+COVAREP (raw) 0.783 0.583 0.714 

V 

FAUs 0.833 0.636 0.766 

FAUs (raw) 0.792 0.545 0.707 

3D Landmarks 0.760 0.400 0.637 

3D Landmarks  0.750 0.455 0.649 

3D Landmarks  0.784 0.421 0.660 

Head Pose 0.679 0.000 0.446 

Eye Gaze 0.667 0.273 0.532 

Geometric Distance 0.681 0.348 0.567 

Geometric Distance  0.692 0.111 0.493 

Geometric Distance  0.731 0.222 0.556 

 

From Table 2.5, as we expected, the sentence embedding methods (BERT, 

InferSent, USE) all have better performance than the word embedding methods (GloVe, 

FastText). This means that compared to word embedding, sentence embedding is more 

effective and can retain more information for training on long sequence interviews. Our 

experimental results comparing word-level and sentence-level embeddings are also 

shown in Table 2.5. For both front-end features, considerable improvements were 

observed when using sentence-level features instead of word-level features. The text 

modality model’s performance regarding weighted F1 score (0.52 to 0.83) significantly 

benefited from sentence-level features. We continued to compare sentence embedding 

methods towards their usage in depression detection. The BERT sentence embedding 

method significantly outperforms other sentence embedding methods and achieved a 

weighted F1 score of 0.829 for the text modality. This is because the BERT embedding 

is pre-trained on large text body datasets and can be effectively used as a high-level 
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semantic feature extractor. Moreover, it employed an attention mechanism on the 

LSTM network, which can provide better sentence representations. 

For the audio modality, when we just utilized a single feature set, the performance 

is poor, especially for the COVAREP feature set. We then fused the prediction from 

MFCCs and COVAREP using a logical AND gate. The model provided improvement 

to both the healthy and depressed classes, thereby asserting the robustness of the system. 

The results indicate that the AND gate is effective to fuse predictions from different 

feature sets for the classification task and can achieve a good result. The best 

performing audio system achieves F1 scores of 0.826 and 0.667 for healthy and 

depressed classes, respectively. We also include the results of using raw features 

without dimensionality reduction. The weighted F1 score decreased 7% compared to 

the model utilizing PCA to reduce the dimension of the input features. The results 

illustrate that dimensionality reduction is important for high-dimensional inputs. More 

specifically, PCA is an effective way for dimensionality reduction in our task and can 

significantly improve the model performance. The other two common classifiers, 

XGBoost and KNN were employed with different dimensionality reduction methods. 

The results shown in Table A.1 illustrate that the proposed framework, SVM with PCA, 

got the best performance for audio modality.  

 

Table 2. 6 Comparison Between the Proposed Model and other Depression 

Detection Methods on the DAIC-WOZ Development Set. 
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Method Modality 
F1 score 

(Healthy) 

F1 score 

(Depressed) 

F1 score 

(Weighted) 
RMSE MAE 

Proposed 

Model 

T 0.87 0.75 0.83 5.61 4.25 

A 0.83 0.67 0.77 6.64 5.60 

V 0.83 0.64 0.77 6.45 4.97 

T+A+V 0.90 0.76 0.85 5.57 4.48 

Baseline[78] 

A 0.68 0.46 0.61 6.74 5.36 

V 0.90 0.50 0.76 7.13 5.88 

A+V 0.90 0.50 0.76 6.62 5.52 

Alhanai et 

al.[176] 

T - - 0.67 6.38 5.18 

A - - 0.63 6.5 5.13 

T+A - - 0.77 6.37 5.1 

Nasir   et 

al.[146] 

A 0.89 0.57 0.78 6.73 5.82 

V 0.89 0.63 0.80 7.86 6.48 

A+V 0.89 0.63 0.80 - - 

Rohanian et 

al.[81] 

T - - 0.69 6.05 4.98 

T+A - - 0.80 5.14 3.66 

T+A+V - - 0.81 4.99 3.61 

 

A comparison of the performances of different video feature sets is presented in 

Table 2.5. As we see, most of the feature sets got poor performance with an F1 score 

for the depressed class below 0.50. The best performance is obtained with the FAUs 

features, with F1 scores of 0.833 and 0.636 for healthy and depressed classes, 

respectively. The FAUs are related to several emotions: happiness, sadness, fear, and 

disgust, which have a strong correlation with depression. While the rest of the feature 

sets are not as good as FAUs at providing direct and useful information, it is impossible 

to capture useful depression-related information only from the statistical descriptors of 

coordinates and orientations along with the changing speed and acceleration. The 

results of using raw statistical descriptors of FAUs without dimensionality reduction 
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are also presented in Table 2.6. Using a model with a selected subset of features with 

the strongest correlation with depression achieves 8% greater performance compared 

to a model using raw statistical descriptors. Therefore, XGBoost feature selection can 

retain important features and eliminate irrelevant features effectively in our task and 

further improve the model performance. The results of SVM and KNN with different 

dimensionality reduction methods are shown in Table A.1, showing that the proposed 

framework, XGBoost with XGBoost feature selection, achieved the best performance 

for video modality. 

From Table 2.5, the proposed best unimodal models shown in bold achieved good 

performance with an average F1 score of 0.79 on different modalities separately for the 

classification task. After acquiring the best models for each modality, we utilized the 

major voting layer to fuse the predictions from each modality by using the selected 

unimodality models directly for predicting the degree of depression. In Table 2.5, the 

text unimodality model outperforms the audio and video models, so we assigned more 

weight to the text model when we performed the weighted average of multiple 

modalities regression models. The weights for text, audio, and video are 2:1:1 

respectively. The results along with other depression detection methods on the DAIC 

development set are reported in Table 2.6. Dashes indicate the corresponding metric as 

not reported. From Table 2.6, except for the unimodal text model (not included in the 

baseline), the audio and video unimodal models outperformed the baseline model 

provided in the AVEC 2016 challenge[78] when evaluated over the development set. 
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The proposed multimodal model achieves state-of-the-art performance in both 

classification metric weighted F1-Score and regression metrics of RMSE and MAE. 

More specifically, our model achieved a 12% improvement in F1 score compared to the 

AVEC 2016 challenge baseline[78]. For the regression task to predict the degree of 

depression, our best models also achieved 16% and 19% improvement in RMSE and 

MAE, respectively, when compared to the best results in the baseline model. It proves 

that our model successfully captures the information involved with depression from 

various modalities automatically. Our model also achieved 10%, 13%, and 12% 

improvement in weighted F1 score, RMSE, and MAE, respectively, when compared 

with previous methods[176] which used speech rate, word-level semantic content on 

text features, and the raw statistical descriptors as input features for audio and video. 

Our model outperforms 6%, 17%, and 23% in three metrics, weighted F1-Score, RMSE, 

and MAE when compared to Nasir et al.’s methods[146] which utilized the i-vector on 

the audio system and random forest on video. Compared to Rohanian et al.’s result 

using text, audio, and video[81], our regression result is not as good as their best result, 

because we used the classification task to select features for our two tasks, and our 

model achieves 5% of improvement on weighted F1 score. The main task in this thesis 

is to diagnose depression, so depression detection is more important than the PHQ-8 

score prediction. The proposed model gives out better performance on the depression 

detection task. In this case, our model gives out an overall better performance than 

Rohanian et al.’s results[81]. The above analysis proves that the proposed framework 
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achieves state-of-the-art performance in both classification metric F1 score or 

regression metric MAE and RMSE. Our method is also shown to be more robust and 

effective than others on both classification and regression tasks. 

2.6 Conclusion 

In summary, I propose a multimodal framework model based on a late decision 

fusion for depression detection and PHQ-8 score prediction. Firstly, unimodal models 

that individually consider text, audio, and video features were developed and evaluated 

independently. The results show that these unimodal models can be effectively used for 

depression detection separately. For text modality, instead of word embedding, I 

proposed a novel sentence embedding method to extract semantic representation and 

greatly improved model performance. For audio and video modalities, we utilized two 

different methods of dimensionality reduction, PCA and XGBoost, both of which 

significantly improved the models’ performance. These models are then used as highly 

representative feature extractors and the resulting predictions are combined in a voting 

ensemble fusion layer. The best results reported in this thesis, weighted F1 score = 0.85, 

RMSE = 5.57 on the development set, are achieved with a multimodal model that fuses 

text, audio, and video features. Results indicate that the proposed framework 

outperforms the baseline models on all five evaluation metrics. The empirical results 

show that compared with the unimodal model, the employment of the multimodal 

model provides a better representation, which improves the automatic depression 
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severity assessment system. This study will contribute to developing automatic 

depression detection that combines various modalities and can be easily transferred into 

a high-performance, low-cost, and rapid depression diagnosis and prognosis device. 
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3 Metabolomic Biomarker Selection for Pulmonary 

Tuberculosis Diagnosis and Prognosis 

3.1 Introduction 

TB, derived from the MTB bacterial, is a public health problem in both developing 

and developed countries and is one of the top 10 major causes of death worldwide[194]. 

TB results in approximately 10 million new cases of active TB and 1.25 million death 

in 2018[195]. According to the Global Tuberculosis Report of the WHO in 2019, there 

are about 1.7 billion people with latent TB infection in the world about a quarter of the 

population worldwide[196]. The risk of progression from exposure to the tuberculosis 

bacilli to the development of the active disease is a two-stage process governed by both 

exogenous and endogenous risk factors[197]–[199]. Socioeconomic and behavioral 

factors are also shown to increase the susceptibility to infection. Specific groups, such 

as health care workers and the indigenous population, are also at an increased risk of 

TB infection and disease[200]. Furthermore, non-adherent behavior with treatment may 

make this population more contagious[199].  

Pulmonary TB occurred when MTB attacked the lung[201]. The lungs are the 

primary host for MTB infection and TB disease. The traditional symptoms and signs of 

pulmonary TB include various combinations of cough, sputum, hemoptysis, dyspnea, 

weight loss, fever, and anorexia[202]. However, these symptoms are not unique to 

pulmonary TB. Although diagnosis and treatment techniques have been developed for 
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decades, insufficient case detection and cure rates have been identified as reasons for 

the increase in the global tuberculosis burden[203]. The diagnosis of TB can now be 

determined on sputum smear detection, GeneXpert, targeted tuberculin skin test, and 

the X-ray test[204]. These current tests are not sensitive enough to identify those people 

who may be infected with TB[205], [206]. Smear detection is the gold standard and 

gets most-widely used in TB diagnosis but can only be used to diagnose TB when the 

sputum has enough bacterial load and the accuracy is not stable which can range from 

20% to 80% with poor sensitivity and takes four to eight weeks to obtain the 

results[207]. GeneXpert is more sensitive than smear detection, but it has major 

limitations of cost and availability, costs far more, requires a continuous power supply, 

human resources, and expensive operating machine[207]. For the targeted tuberculin 

skin test, there are also many limitations such as the need for patients to return for the 

test results and the low specificity because the antigen used for this test is not specific 

for TB but also present in other cases[208]. X-ray tests require large & expensive 

equipment. Therefore, finding a low-cost, accurate and rapid method to diagnose TB is 

a global public health priority.  

Metabolism is an unconscious chemical reaction to maintain normal cells and 

organism function[209]. Metabolites are small molecular intermediate or final products 

during metabolic processes[210], and thus they are the most abundant representatives 

of the biochemical activities of organisms. Recently, metabolomics has become a 

potential tool and has made significant progress in novel biomarker research. It is a 
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significant challenge to identify sensitive and specific metabolomic biomarkers for 

accurately diagnosing TB. The analysis of metabolomics methods can be divided into 

targeted metabolomics and non-targeted metabolomics[211]. The characteristic of 

targeted metabolomics research is to measure predefined metabolite groups with high 

precision and accuracy and requires a priori knowledge of the targeted metabolites[212]. 

Conversely, non-targeted metabolomics research can simultaneously measure a large 

number of metabolites in each sample, providing more information on relatively 

quantitative measurement[211]. Chen et al. investigated targeted lipid metabolism, 

indicating that the selected lipid metabolites could be used as potential biomarkers for 

TB[204]. Adu-Gyamfi et al. and Suzuki et al. studied Trp and Kyn metabolism to use 

their ratio IDO to diagnose or predict active tuberculosis disease[213], [214]. Cho et al. 

performed a targeted metabolomics approach demonstrating that levels of serum 

metabolites and their ratios could be important indicators for active pulmonary TB[215]. 

Frediani et al. adopted non-targeted metabolomic analysis, which can differentiate 

patients with active TB disease[216]. 

Although many metabolomics studies have found sputum[217], [218], blood[219], 

[220], breath[221], [222], and urine[223] can be used for identifying new biomarkers 

for TB infection or treatment response, most studies use multivariate statistical analysis 

to analyze targeted metabolites and focused on the detection between ATB and HC 

without an external independent cohort to verify their conclusion. In this work, we first 

performed targeted metabolomics separately to identify the biomarkers that can be used 
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to predict patient prognosis. We employed both univariate and multivariate statistical 

analyses along with machine learning classifiers using Kyn, Trp, and IDO according to 

the study of Adu-Gyamfi et al. and Suzuki et al. [213], [214] to distinguish between HC, 

ATB, NTB, and LTBI. To our best knowledge, there are no such studies before trying 

to distinguish ATB from NTB, and few studies have included LTBI samples. We 

included the t-spot data and greatly enhanced the ATB vs NTB classification, which is 

novel and has great clinical medical significance. Finally, we collected an external 

independent cohort to further verify our results. The results of this study not only 

confirmed and validated the findings of previous TB metabolomics studies but also 

proposed novel traditional biomarker candidates for TB based on sufficient data, and 

got verified on an independent cohort, proved to be further served as a novel method 

for TB diagnosis and prognosis. 

3.2 Material and Methods 

3.2.1 Materials 

Methanol, acetonitrile, and isopropanol (Optima® LC-MS grade) from Fisher 

Scientific (Fair Lawn, NJ, USA). Milli-Q® water purification system from Merck 

Millipore (M.A., USA). Formic acid (M.S. grade) from Fluka, Germany. Ammonium 

formate (CNW® HPLC grade) and ammonium hydroxide solution (25% NH3, CNW® 

HPLC grade), and nonadecanoic-d37 acid (C/D/N isotopes®) were obtained from 
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ANPEL (Shanghai, China). L-2-chlorophenyl alanine was purchased from Intechem 

Tech. (Shanghai, China). Hexanoyl-L-carnitine-(N-methyl-d3) was acquired from 

Supelo, Germany. Lysophosphatidylcholine (12:0) was acquired from Avanti Polar 

Lipids (Birmingham, AL, USA). VACUETTE blood collection tube (Greiner) and 

frozen pipe (KIRGEN) were used in sample collection and storage. 

3.2.2 Ethics Approvals 

This study was approved by the Ethical Committee of Shanghai Public Health 

Clinical Center, and informed consent was obtained from all subjects. 

 

Table 3. 1 Summary of the grouping of samples. 

Discovery Set 

Group 

Number of 

Samples 

Age Gender 

Range Median Male Female 

HC 37 19-40 28 33 4 

ATB 34 1-85 47 24 10 

NTB 35 3-84 60 21 14 

LTBI 37 18-18 18 19 18 

Total 143 1-85 28 96 47 

Validation Set 
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Group 

Number of 

Samples 

Age Gender 

Range Median Male Female 

HC 13 18-39 22 11 2 

ATB 12 10-71 31.5 10 2 

NTB 11 4-80 55 9 2 

LTBI 12 18-18 18 7 5 

Total 48 4-80 27 38 10 

 

3.2.3 Study Design 

In this study, we used high-resolution LC-MS for the metabolomic analysis of 

plasma samples. I first designed the data collection experiments about the age, gender, 

and group of the participants to make the data distribution more balanced and 

diversified. Blood samples of 50 healthy controls, 46 patients with ATB, 46 patients 

with NTB, and 49 patients with LTBI were acquired. The sex of these groups did not 

have a statistical difference. The p-value of χ2 for gender is 0.21. Cause the ages of the 

patients in our dataset has a large range (1-85), we performed correlation analysis 

between the concentration of different metabolites and the age of patients. The results 

shown in Table A.2 indicates that the concentration of different metabolite has a weak 

correlation with the ages of the patients. We stratified and divided three-fourths of the 

samples as the discovery set used for training, and the rest of the samples as the 
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validation set used for verifying. In addition, we further collected 18 samples of ATB 

and 10 samples of NTB from an independent cohort and used them as external 

validation to fully prove the effectiveness of our classification model. 

3.2.4 Recruitment Criteria 

Pulmonary tuberculosis plasma samples were obtained from patients who were 

pathologically diagnosed with tuberculosis in the Tuberculosis Department of Shanghai 

Public Health Clinical Center, LTBI were medical staff or family members of confirmed 

patients, and HC samples were obtained from the Health Examination Center of 

Shanghai Public Health Clinical Center. All samples were collected between 2018 and 

2020. ATB was identified based on sputum or effusion smear or polymerase chain 

reaction amplification positivity, confirmed by radiological findings and clinical 

syndromes, alongside a final clinical diagnosis of ATB. LTBI was defined as IGRA 

positive without clinical syndromes of active TB infection. HC was healthy, no disease 

at present, no history of tuberculosis, no contact history of tuberculosis, negative 

laboratory examination and chest X-ray, positive t-spot. The NTB was excluded from 

the diagnosis of active tuberculosis, including bronchitis, pneumonia, lung cancer, and 

other respiratory diseases. HIV-negative subjects between 18 and 80 years of age with 

LTBI or with pulmonary ATB disease were recruited. Those who had 1) immune 

deficiency disease; 2) glucocorticoid treatment  1 week; 3) serious heart, liver, kidney, 

and spleen and other organ diseases; 4) serious allergies; were excluded from the study 
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analysis. 

3.2.5 Sample Preparation 

Plasma samples were prepared using the following protocol. 400 μL solvent of 

methanol/acetonitrile (1: 1, v/v, containing internal standard 2-chloro-L-phenylalanine, 

prechilled to -20 oC) was inserted into 100 μL plasma. The sample was then vortexed 

for 30 s followed by incubating at −20 oC. After 2 hours, the mixture was vortexed 

again and centrifuged at 12,000 r/min at 4 oC for 15 min. For the hydrophilic interaction 

liquid chromatography (HILIC) analyses, one aliquot of each sample was prepared in 

100 μL acetonitrile/water (1:1, v/v). For the reversed-phase liquid chromatography 

(RPLC) analyses, the other aliquot was made using 100 μL methanol/water (4:1, v/v). 

The quality control (Q.C.) samples were prepared by mixing equal volumes (10 μL) of 

each plasma sample to be a pooled plasma sample. The QC samples were prepared 

following the same protocol and periodically added for every 10 test samples 

throughout the analytical run. 

3.2.6 Metabolomic Analysis and Data Preprocessing 

We follow similar methods by Zhu et. al in conducting LC-MS and LC-MS/MS as 

well as data pre-processing. A detailed description of the parameters is included in the 

supplementary material section. 
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3.2.7 Statistical Analysis 

We followed the computational and statistical analysis routine[224] in this study. 

A total of 191 participants from 4 different groups were included in both univariate and 

multivariate analysis. 143 of them were set as discovery set and the remaining 48 were 

validation set. The subject characteristics are shown in Table 3.1. The logistic regression 

models were used to classify whether the individual is an HC, ATB, NTB, or LTBI 

using Kyn, Trp, and IDO. The logistic regression classification model uses a logistic 

function to get the probability of being a certain class between 0 and 1 and predict the 

binary class and can be further extended to multi-class classification. We chose the 

logistic regression model because it is very efficient to train and gets good interpretation, 

which can interpret model coefficients as an indicator of biomarker importance. We 

first performed univariate analysis to estimate the biomarkers separately and then used 

them together to diagnose active TB. logistic regression classification models with 

internal 5-fold cross-validation were first performed on the discovery set. Once the 

models were trained well on the discovery set, then we validated our classification 

model on the validation set to evaluate their performance. Finally, we collected an 

external independent cohort to verify our results. The performance of our models was 

estimated using accuracy, specificity, sensitivity, the AUC, and the ROC curve with the 

error bars of 95% confidence intervals (calculated on the discovery set using 5-fold 

cross-validation). We used the error bars to verify the robustness of our models. All the 
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model fitting methods presented in this thesis used custom scripts in Python. 

3.3 Results 

3.3.1 Subject Characteristics 

A total of 143 subjects participated was recruited in this study for the discovery 

set (refer to Table 3.1). There were 37 HC (age, 28 [range 19-40] years; males, n = 33 

[89%]), 34 subjects with ATB (age, 47, [range 1-85] years; males, n=24 [71%]), 35 

subjects with NTB (age, 60 [range 3-84] years; males, n = 21 [60%]), and 37 subjects 

with LTBI (age, 18 [range 18-18] years; males, n = 19 [51%]). For the validation set, 

there were 13 HC (age, 22 [range 18-39] years; males, n = 11 [85%]), 12 subjects with 

ATB (age, 31.5 [range 10-71] years; males, n=10 [83%]), 11 subjects with NTB (age, 

55 [range 4-80] years; males, n = 9 [82%]), and 12 subjects with LTBI (age, 18 [range 

18-18] years; males, n = 7 [58%]). 

A total of 9822 peaks were detected using the HILIC mode, whereas 7200 peaks 

were obtained using the RPLC-ESI+ mode and 5501 peaks obtained using the RPLC-

ESI- mode. The peaks detected out of the retention time range were removed. The peaks 

generated by the internal standard were also removed. There were 9811 peaks left for 

the HILIC mode (expressed as the HLIC data set), whereas 7039 peaks were left for the 

RPLC-ESI+ mode (expressed as the RP-ESI+ data set) and 5485 peaks left for the 

RPLC-ESI- mode (expressed as the RP-ESI- data set). These data sets were normalized 
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and then used for further statistical analysis and machine learning studies. In this study, 

we used z-score standardization by removing the mean and scaling to unit variance. 

3.3.2 Univariate Analysis 

We first employed univariate analysis to check the influence of each metabolic 

separately. Binary classification models using Kyn, Trp, or IDO, separately were built 

to distinguish between different groups, HC vs ATB, LTBI vs ATB, and NTB vs ATB. 

LTBI refers to the presence of Mycobacterium TB in the body, but there are no clinical 

syndromes of active TB infection. Cause these groups can be infected by 

Mycobacterium TB for a lifetime without getting sick, we can treat them as a healthy 

group. So, we combined LTBI and HC into one group as the control group and 

continually built classification models between the control group vs ATB. We 

performed two different statistical hypothesis tests (t-test and Mann-Whitney U test) on 

the distribution of these variables in the two populations. Because the t-test requires the 

data to follow a normal distribution, but the Mann-Whitney U test doesn’t,[225] we 

used the Mann-Whitney U test as a non-parametric alternative to the t-test in this study. 

The hypothesis test results are summarized in Table 3.2. It shows that except for Trp, 

Kyn and IDO are statistically significant between all binary combined groups with a p-

value smaller than 0.05. We also generated the box plots with whiskers of these three 

variables to explore their distributions in different classifications shown in Figure 3.1, 

indicating that the concentration of Kyn and activity of IDO are significantly higher in 
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the ATB group than in other groups. The results are in line with our hypothesis tests. 

We used accuracy, specificity, sensitivity, and AUC score to evaluate the 

performance of the binary classification using a single biomarker. 5-fold cross-

validation was performed to verify the performance results. The results are shown in 

Table 3.2 and Figure 3.2. In Figure 3.2, the blue curve indicates the mean ROC curve 

in the discovery set among five-folds and the green curve is the ROC curve in the 

validation set. The red regions show the 95% confidence intervals of the ROC curve. 

Hypothesis test results and box plots are consistent, indicating that except for Trp in 

HC vs ATB and ATB vs NTB cases, the others are directly and significantly different 

between the two groups in classification. Therefore, Kyn and IDO can be useful 

biomarkers used separately to classify HC vs ATB, LTBI vs ATB, and control vs ATB 

efficiently with AUC above 0.90 on the validation set, while the results on NTB vs ATB 

are not as good as the other classifications, just with AUC of 0.80 and 0.86 respectively. 

The classifications using Trp are not good, which is consistent with the hypothesis test, 

but it can still contribute to our classifications in some cases as the concentration of Trp 

is significantly different between ATB and LTBI. The results of these independent 

verification experiments fully proved that the classifier that only uses a single variable 

can perform well in some cases, and we believe that these results can be greatly 

promoted when more variables are included. The binary classifications, and hypothesis 

test results among other groups without ATB were summarized in Figure A.1 and Table 

A.3 which indicated that these three biomarkers are not excellent indicators for 
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distinguishing among HC, LTBI, and NTB. 

 

 

(a)                                (b)                               (c)   

Figure 3. 1 Box and whisker plots for different biomarkers on HC, ATB, NTB, and 

LTBI patients; (a) Kyn; (b) Trp; (c) IDO. In the box plot, there is a six-number summary 

of the data, the minimum, first quartile, median, third quartile, maximum, and the 

outliers. The solid line inside the box represents the median and the whiskers represent 

the maximum and minimum values, excluding any outliers. The black diamonds outside 

the whiskers represent the outliers. 

 

Table 3. 2 Performance of logistic regression models with various biomarkers for 

discriminating different groups along with the hypothesis test results. 

HC vs ATB 

 Kyn Trp IDO 

Discovery Validation Discovery Validation Discovery Validation 

AUC 0.95 (+/- 

0.05) 

0.90 0.61 (+/- 

0.15) 

0.52 0.93 (+/- 

0.05) 

0.96 

Accuracy 0.89 (+/- 

0.07) 

0.92 0.61 (+/- 

0.10) 

0.58 0.79 (+/- 

0.04) 

0.79 

Specificity 0.97 (+/- 

0.05) 

1.00 0.76 (+/- 

0.08) 

0.69 1.00 (+/- 

0.00) 

1.00 

Sensitivity 0.80 (+/- 

0.13) 

0.82 0.46 (+/- 

0.23) 

0.46 0.57 (+/- 

0.08) 

0.55 
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 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 4.75E-14 1.25E-12 0.088 0.27 2.72E-14 0.0013 

LTBI vs ATB 

 Kyn Trp IDO 

Discovery Validation Discovery Validation Discovery Validation 

AUC 0.96 (+/- 

0.05) 

0.92 0.73 (+/- 

0.11) 

0.72 0.85 (+/- 

0.08) 

0.94 

Accuracy 0.90 (+/- 

0.03) 

0.92 0.73 (+/- 

0.10) 

0.79 0.73 (+/- 

0.08) 

0.79 

Specificity 0.98 (+/- 

0.04) 

1.00 0.81 (+/- 

0.10) 

0.92 0.95 (+/- 

0.06) 

1.00 

Sensitivity 0.82 (+/- 

0.05) 

0.83 0.64 (+/- 

0.17) 

0.67 0.50 (+/- 

0.13) 

0.58 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 3.70E-14 1.33E-13 7.19E-5 0.00037 6.06E-11 0.0024 

NTB vs ATB 

 Kyn Trp IDO 

 Discovery Validation Discovery Validation Discovery Validation 

AUC 0.88 (+/- 

0.07) 

0.80 0.49 (+/- 

0.15) 

0.47 0.84 (+/- 

0.11) 

0.86 

Accuracy 0.81 (+/- 

0.06) 

0.70 0.48 (+/- 

0.13) 

0.44 0.72 (+/- 

0.12) 

0.74 

Specificity 0.89 (+/- 

0.05) 

0.92 0.34 (+/- 

0.25) 

0.25 0.91 (+/- 

0.15) 

0.92 

Sensitivity 0.74 (+/- 

0.09) 

0.46 0.63 (+/- 

0.26) 

0.64 0.54 (+/- 

0.15) 

0.55 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 9.34E-10 1.89E-8 0.43 0.94 1.10E-8 0.0036 

Control vs ATB 

 Kyn Trp IDO 

 Discovery Validation Discovery Validation Discovery Validation 

AUC 0.93 (+/- 

0.08) 

1.00 0.66 (+/- 

0.11) 

0.70 0.90 (+/- 

0.05) 

0.95 

Accuracy 0.90 (+/- 

0.09) 

0.97 0.71 (+/- 

0.03) 

0.73 0.77 (+/- 

0.05) 

0.78 
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Specificity 0.99 (+/- 

0.02) 

0.96 0.99 (+/- 

0.03) 

1.00 0.99 (+/- 

0.02) 

1.00 

Sensitivity 0.71 (+/- 

0.22) 

1.00 0.12 (+/- 

0.05) 

0.17 0.30 (+/- 

0.15) 

0.33 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 4.59E-18 4.57E-13 0.0016 0.016 4.82E-16 0.0018 

 

 

(a)                          (b)                           (c)   

 

(d)                      (e)                         (f) 

 

(g)                      (h)                         (i) 



 

60 

 

 

(j)                      (k)                         (l) 

Figure 3. 2 ROC curves of the logistic regression model: (a) using Kyn for 

discriminating HC and ATB patients; (b) using Trp for discriminating HC and ATB 

patients; (c) using IDO for discriminating HC and ATB patients; (d) using Kyn for 

discriminating LTBI and ATB patients; (e) using Trp for discriminating LTBI and ATB 

patients; (f) using IDO for discriminating LTBI and ATB patients; (g) using Kyn for 

discriminating NTB and ATB patients; (h) using Trp for discriminating NTB and ATB 

patients; (i) using IDO for discriminating NTB and ATB patients; (j) using Kyn for 

discriminating control and ATB patients; (k) using Trp for discriminating control and 

ATB patients; (l) using IDO for discriminating control and ATB patients. 

3.3.3 Multivariate Analysis 

3.3.3.1 Binary Classification Modelling 

From the last section, we know that Kyn, Trp, and IDO all can contribute to the 

classification and perform well separately in some binary groups. To further improve 

the performance of the classifiers, we included the metabolites together and performed 

multivariate analysis. PCA with the data from different combined groups were first 
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performed and visualized the first two components in Figure 3.3 (a, c, e, g). PCA is an 

unsupervised multivariate analysis method. In metabolomics, it can reflect the overall 

difference between samples in different groups. The result is clear and easy to read, and 

it is widely used in metabolomic studies to explore the differences between different 

groups. Within the two-dimensional score plot, we found that the patient with ATB 

could be easily distinguished from other groups, except for the NTB vs ATB, there are 

small intersections between them. Four binary classification models were employed 

using Kyn, Trp, and IDO together to classify HC vs ATB, LTBI vs ATB, NTB vs ATB, 

and control vs ATB. The evaluation metrics including AUC score, accuracy, specificity, 

and sensitivity are summarized in Table 3.3 and the ROC curves are shown in Figure 

3.3 (b, d, f, h). The results indicate that the AUC score on the validation set of these 

four classifiers used to distinguish between binary groups all increased to varying 

degrees. Except for the NTB vs ATB classification, we can see that these three 

biomarkers give out excellent results on the other three classifications and have an 

accuracy of around 96% and the AUC score can reach 1.00, while the results on the 

NTB vs ATB classification case are not so good. The accuracy and sensitivity are below 

0.80. As we expected, when more variables are included, all the performance metrics 

indicate higher accuracy, specificity, sensitivity, and AUC score. The binary 

classification results that distinguish between other groups were summarized in Figure 

A.2 and Table A.4. 
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Table 3. 3 Performance of logistic regression models for discriminating different 

binary groups. 

 HC vs ATB LTBI vs ATB 

Discovery Validation Discovery Validation 

AUC 0.98 (+/- 0.03) 0.99 0.96 (+/- 0.04) 1.00 

Accuracy 0.89 (+/- 0.07) 0.96 0.86 (+/- 0.08) 0.96 

Specificity 0.97 (+/- 0.05) 1.00 0.92 (+/- 0.06) 1.00 

Sensitivity 0.80 (+/- 0.13) 0.91 0.79 (+/- 0.11) 0.92 

 NTB vs ATB Control vs ATB 

 Discovery Validation Discovery Validation 

AUC 0.88 (+/- 0.08) 0.89 0.97 (+/- 0.05) 1.00 

Accuracy 0.80 (+/- 0.07) 0.74 0.93 (+/- 0.07) 0.97 

Specificity 0.89 (+/- 0.05) 0.92 0.99 (+/- 0.02) 0.96 

Sensitivity 0.71 (+/- 0.11) 0.55 0.80 (+/- 0.17) 1.00 

 

 

(a)                                      (b) 
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(c)                                       (d) 

 

(e)                                       (f) 

 

(g)                                      (h) 

Figure 3. 3 PCA plot shows the ability to discriminate different groups: (a) 

discriminating HC and ATB patients; (c) discriminating LTBI and ATB patients; (e) 

discriminating NTB and ATB patients; (g) discriminating control group and ATB 

patients. ROC curves of the logistic regression model using Kyn, and IDO: (b) 

discriminating HC and ATB patients; (d) discriminating LTBI and ATB patients; (f) 

discriminating NTB and ATB patients; (h) discriminating control and ATB patients. 
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3.3.3.2 Enhanced Binary Classification and External Validation 

For now, we have built four binary classifications for multivariate analysis. Three 

of them got excellent performance with the AUC score of around 1.00 on the validation 

set, while the NTB vs ATB case cannot give out satisfying results with low accuracy 

and sensitivity. Here, I proposed a method to enhance the performance of the 

classifications. To further validate our results, we collected 28 samples from an 

independent validation cohort as an external validation set to do the double-blind 

experiments. We were blinded to the clinical diagnoses while performing the statistical 

analyses. 

We included the t-spot result to promote the NTB vs ATB classification. The t-spot 

test detects and counts the number of effector T cells activated by TB antigen, which 

can reveal the presence of TB infection. If the t-spot number is equal to or greater than 

6, the t-spot result is positive (represented with 1), otherwise, it is negative (represented 

with 0). Therefore, we got another indicator via the positive/negative t-spot results. First, 

we removed the samples in NTB and ATB groups for that couldn’t collect the t-spot 

information. The classification results just using t-spot data were summarized in Table 

A.5 and Figure A.3, showing that the t-spot data itself can help for distinguishing ATB 

from NTB but cannot yield a satisfying performance. Then we used Kyn, Trp, and IDO 

along with the t-spot results to distinguish ATB from NTB. After including the t-spot 

result, although the AUC score on the validation set increased from 0.89 to 1.00, the 
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performance on the external validation set is still not good, only with 68% accuracy 

(Figure 3.4, Table 3.4). Therefore, we just used IDO and t-spot to predict NTB and ATB. 

The accuracy increased from 74% to 80% and got an AUC score of 0.96, which 

indicates that after including the t-spot result this classification model can be effective 

to classify ATB and NTB. The accuracy on the external validation set is 82%, which is 

consistent with our previous results and further proved this classification method is 

effective and has the potential to be used in real applications. 

 

 

(a)                               (b)         

   

Figure 3. 4 ROC curves of the logistic regression model for discriminating NTB 

and ATB patients: (a) using Kyn, Trp, IDO, and t-spot; (b) using IDO and t-spot. 

 

Table 3. 4 Performance of logistic regression model for discriminating NTB vs 

ATB. 

 Using Kyn, Trp, IDO, and t-spot Using IDO, and t-spot 
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 Discovery Validation 
External 

Validation 
Discovery Validation 

External 

Validation 

AUC 

0.96 

(+/- 

0.03) 

1.00 0.82 

0.89 

(+/- 

0.09) 

0.96 0.85 

Accuracy 

0.88 

(+/- 

0.04) 

0.90 0.68 

0.82 

(+/- 

0.09) 

0.80 0.82 

Specificity 

0.91 

(+/- 

0.07) 

1.00 0.90 

0.75 

(+/- 

0.20) 

0.64 0.70 

Sensitivity 

0.84 

(+/- 

0.13) 

0.78 0.56 

0.92 

(+/- 

0.09) 

1.00 0.89 

 

3.3.3.3 Multi-class Classification Modelling 

We showed that the Kyn, and IDO can be good indicators to separate the binary 

categories with high accuracy and AUC score. However, sometimes there are cases 

where the binary classification cannot meet our requirements, and a multi-class 

classification model is in need. Here we present the three-class classification model 

classifying control, ATB, and NTB. We also built the PCA model for three-class 

classification. Within the two-dimensional PCA score plot (Figure 3.5 a), we found that 

the cluster of the ATB group can be separated from other samples clearly, while there 

are small intersections and overlapping among all other groups. The PCA model can 

effectively identify the ATB but cannot decide whether a participant is a control or NTB. 

Similar to the binary classification, we performed two different statistical hypothesis 

tests, one-way ANOVA and the Kruskal-Wallis H test. One-way ANOVA test assumes 
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that the variables follow a normal distribution, while the Kruskal Wallis test does 

not[225]. Therefore, we chose the Kruskal Wallis test as a non-parametric instead of the 

ANOVA test. All Kyn, Trp, and IDO are directly and significantly different in these 

three populations. The logistic regression model performance is summarized in Table 

3.4 and Figure 3.5 b. We can see all the AUC score is above 0.80 and the average AUC 

score on the validation set is 0.92 and the accuracy is 73% using Kyn, Trp, and IDO. 

The overall performance is not as good as binary classification. But this three-class 

logistic regression model has good performance on class ATB, which is consistent with 

the PCA results. We believe if more variables are included, the multi-class classification 

model can be gratifying. 

 

Table 3. 5 Performance of logistic regression model for discriminating control, 

ATB, and NTB using Kyn, Trp, and IDO and hypothesis tests. 

Set Accuracy Precision Recall 
AUC 

Control ATB NTB 

Discovery 
0.73 (+/- 

0.06) 

0.76 (+/- 

0.06) 

0.73 (+/- 

0.06) 

0.90 (+/- 

0.05) 

0.96 

(+/- 

0.01) 

0.74 

(+/- 

0.11) 

Validation 0.73 0.74 0.73 0.96 0.97 0.83 

P-value (ANOVA test) P-value (Kruskal-Wallis test) 

Kyn Trp IDO Kyn Trp IDO 

6.27E-27 2.48E-4 4.47E-23 2.30E-07 3.13E-5 3.40E-16 
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(a)                                        (b) 

Figure 3. 5 (a) PCA plot shows the ability to discriminate among control, ATB, 

and NTB patients using Kyn, Trp, and IDO. (b) ROC curves of the logistic regression 

model for discriminating control, ATB, and NTB patients using Kyn, Trp, and IDO. 

3.4 Discussion 

We reported that together with Kyn, Trp, IDO, and t-spot results can be an efficient 

way to distinguish ATB from HC, LTBI, and NTB. Accordingly, metabolomics 

technology has been widely used in various diseases to screen new biomarkers[211]. 

Published studies have found that IDO, is an immunoregulatory enzyme that regulates 

the pathogenesis of a variety of pathological conditions, including cancer[226] and 

infectious diseases[227], [228]. The biochemical role is IDO catalyzes the degradation 

of Trp to Kyn to inhibit T cell proliferation and function, leading to immunosuppression 

and tolerance[229]. Therefore, it can be a good indicator for the diagnosis and prognosis 

of TB[213], [214], [229], [230]. Normally, the activity of IDO, measured by the ratio 
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of Kyn degraded to Trp concentrations, increases significantly in ATB patients. Adu-

Gyamfi et al. reported that the IDO activity in patients with TB was higher than those 

in healthy control[213]. Suzuki et al. found pulmonary TB patients had a higher 

concentration of Kyn and significantly lower Trp concentration, resulting in 

significantly higher IDO activity. However, most of these previous studies focused on 

distinguishing between ATB and the healthy control, few of them have applied its 

diagnostic significance in LTBI patients and none of them has conducted experiments 

on NTB patients. LTBI represented to those individuals infected with MTB remain 

asymptomatic, despite the ongoing immune response[231]. One-third of the world’s 

population has been affected by the LTBI, and 5%-10% of them will progress to active 

TB disease in the future according to the WHO TB reports[196]. So, the differential 

diagnosis between LTBI and ATB is also the key point to control or prevent TB 

infections. The NTB patients, usually have similar symptoms with ATB patients and 

are confused sometimes by clinical diagnosis, however, the treatments are different 

between them. Therefore, it is important in the clinical application to differentiate the 

ATB from NTB patients. We assessed the diagnostic potential of the concentration of 

Kyn and Trp, and the activity of IDO, along with the t-spot positive/negative result in 

a cohort with 4 different groups, and further got verified on an independent cohort.  

In this study, we first performed targeted metabolomics on Kyn and Trp and 

calculated the activity of IDO using their ratio, Kyn/Trp according to the previous 

studies[213], [214]. Since our study was conducted in a targeted manner, we can 
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measure these metabolites and their ratio more accurately and reliably than those in an 

untargeted manner. Machine learning has been widely used and is becoming a key 

method in both targeted and non-targeted metabolomics[232]. Compared to only using 

statical analysis, we also integrated machine learning algorithms, logistic regression to 

establish several effective classification models. The standard logistic regression model 

predicts the probabilities of an individual being one of the two classes based on a group 

of metabolites intensities and has been widely used in metabolomics studies. In the 

univariate analysis, we can see that compared to the patients with LTBI, NTB, and 

healthy control, the concentration of Kyn and the activity of IDO are much higher in 

the ATB group. The Mann-Whitney U test gives us consistent results that the 

concentration of Kyn and the activity of IDO have a statistically significant difference 

between ATB and other groups. The increase of IDO activity is attributed to the increase 

in product Kyn and the decrease of substrate Trp concentrations, however, Trp 

concentration level alone does not have high diagnostic potential. Our findings are in 

line with the available literature[213], [214], [230] that the IDO activity can distinguish 

between ATB patients and the HC with the AUC score of 0.96. IDO can also determine 

an individual with LTBI or ATB with a high AUC score, however, it cannot perform 

well on distinguishing ATB from NTB alone and it shows no difference among HC, 

LTBI, and NTB groups, nor diagnostic potential. In addition, the concentration of Kyn 

alone can also differentiate patients with ATB from HC and LTBI with an AUC score 

above 0.90. 
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Univariate analysis results indicated that both the concentration of Kyn and the 

activity of IDO classification models can reach an AUC score of 0.90 for classifying 

HC vs ATB and LTBI vs ATB, however, the sensitivities are only 55% and 58%, 

respectively. Compared to utilizing these biomarker candidates separately, the overall 

performance increased a lot after we combined the biomarker candidates and performed 

the classification experiments. We determined diagnostic AUC score, accuracy, 

sensitivity, and specificity. The classification models have a specificity and sensitivity 

of 100%, 91%, 100%, and 92%, respectively on distinguishing ATB from HC, and ATB 

from LTBI. It performed excellently for classifying ATB from both HC and LTBI. After 

we merged the healthy control and the patients with LTBI, and just distinguished 

between the control group and ATB, the accuracy, specificity, and sensitivity can reach 

97%, 96%, and 100%, respectively. At present, we have obtained three excellent 

classifiers with satisfying specificity and sensitivity distinguishing ATB from HC, LTBI, 

and the merged control group. While, as the Kyn, Trp, and IDO cannot satisfy our 

requirements on distinguishing between NTB and ATB with an accuracy of 74% and a 

sensitivity of 55%, I proposed an enhanced classification model with the help of the t-

spot. T-spot test is a simplified enzyme-linked immunospot assay, designed to detect 

effector T cells that respond to the specific antigen stimulation of MTB and can get a 

high specificity theoretically[233]. The t-spot data alone can only achieve a specificity 

of 64% and a sensitivity of 100%. After including t-spot data, our classification model 

yielded a good result with the accuracy, specificity, and sensitivity of 90%, 100%, and 
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78%, respectively. Our results suggest that the concentration of Kyn and Trp, IDO 

activity, and the t-spot data can be efficient for indicating the presence or absence of 

ATB disease.  

We further validated the ability of these biomarkers to accurately distinguish ATB 

from HC, LTBI, and NTB in an independent cohort. Even the dataset is obtained from 

other periods, our external validation experiment (double-blind experiment) can 

achieve high accuracy of 82% and sensitivity of 89% to classify NTB and ATB. These 

experiments can sufficiently indicate that our model can distinguish ATB from NTB 

efficiently with better robustness and stability and has the potential to be developed into 

an accurate ATB diagnosis device. Last but not least, I proposed a multi-class 

classification model using Kyn, Trp, and IDO and got an accuracy of 73% on the 

validation set. The overall performance for the multi-class model is not good, but this 

classification model can perform well especially on the ATB class with an AUC score 

of 0.97, which means it can diagnose ATB from control and NTB efficiently. If more 

biomarkers are included, the results of this multi-class can be proved.  

The current study has its particular advantages. We got sufficient data and our 

samples came from four different groups, HC, LTBI, NTB, and ATB. The classification 

models I proposed can not only efficiently distinguish ATB from HC and LTBI but also 

classify NTB and ATB with satisfying performance. Further, our classification results 

have been validated on an independent cohort, where the researchers were blinded to 

the clinical diagnosis until all data analysis was completed. Thus, our study has 
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identified three biomarkers along with t-spot data that provide discriminatory capacity 

for ATB disease. The limitation in this study is that we only measured three metabolic 

biomarkers according to the previous studies, and we believe that if more biomarkers 

are included, the performance of the multi-class classification and the classifications 

among HC, LTBI, and NTB can also be satisfied. 

Overall, our models utilizing these indicators such as Kyn, Trp, IDO, and t-spot 

have excellent validity in diagnosing ATB from NTB, HC, and LTBI efficiently. A 

diagnosis with higher accuracy can be expected through these processes, which 

facilitates us to provide more targeted and timely treatment for tuberculosis. Validated 

biomarkers of MTB can be used to diagnose and prognose the progress of active 

tuberculosis and potentially monitor anti-tuberculosis treatment and can make 

significant progress in the fight against TB. 

3.5 Conclusions 

Current research shows that the IDO activity in TB patients was predominantly 

higher than that of other subjects. In conclusion, we found that Kyn, Trp, and IDO are 

significantly different among these groups. We built several high-performance logistic 

regression classification models for the diagnosis of ATB. The binary classifications 

can achieve AUC scores over 0.96 on validation sets. The AUC performance of multi-

class classifications is generally greater than 0.83. For the ATB class, these classifiers 

can always keep the AUC scores above 0.95. In a real-life application, the classifier that 
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distinguishes ATB from HC and LTBI cannot meet the requirements, we also want to 

figure out whether the patients get NTB. Our study shows that the classifiers using IDO, 

along with the t-spot are effective in discriminating ATB, and NTB and have been 

verified in double-blind experiments. We conducted this study to propose and test Kyn, 

Trp, and IDO activity as novel biomarker indicators for the detection of ATB with the 

help of the t-spot. This study is only a pilot study, and non-targeted metabolomic is 

needed to be performed to add more significant biomarkers to enhance the multi-class 

classification. This study can contribute to developing diagnostic procedures in 

combination with other biomarkers and can be easily transferred into a high-

performance, low-cost, noninvasive, and rapid pulmonary TB diagnosis and prognosis 

device. 
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4 Ultrasound-assisted magnetic nanoparticle-based 

gene delivery 

4.1 Introduction 

Gene delivery is now a popular research area with high demand on the market, and 

applications in both clinical and scientific biomedical research[103], [104]. The 

applications include but are not limited to, treating cancers, immune-deficient diseases, 

and genetic diseases[108]. Mammalian cells have a selectively permeable plasma 

membrane that protects them from the external environment. Effective methods to 

transfect cells are needed. For the delivery of genetic material into the nucleus of the 

cell, two approaches can be suggested: increasing the cell membrane permeability and 

thus facilitating the penetration of the target gene or developing a carrier that can go 

through the cell membrane, carry the gene, and deliver it to the nucleus. Based on these 

two different pathways, gene delivery utilizes either chemical or physical methods[106], 

[107]. The chemical approaches can be further divided into viral and non-viral 

approaches[106]. The ideal carrier should be low cost, with high loading capacity, high 

stability, no or low toxicity, and easy to use[105]. The viral-vector system approach is 

the most common and widely used method[108], which can achieve very high 

transfection efficiency. However, the safety concerns related to immunogenicity and 

the high cost remain the main limitations[107]. Non-viral methods include liposome-

based methods[109], calcium phosphate precipitation[110], cationic polymers[111], 
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[112] (such as polyamidoamine dendrimers and PEI[113]), and nanoparticle-based 

hybrids[114]. The cationic liposomes are the most commonly used non-viral delivery 

system for gene delivery. They can reach most of the requirements of the ideal 

characteristics with the significant drawbacks of high toxicity and inflammatory 

responses[109]. Calcium phosphate precipitation and PEI get low transfection 

efficiency and high cytotoxicity[110]. Nanoparticles are submicron-sized polymeric 

particles, due to the sub-cellular and sub-micron size range, they can penetrate tissues 

more efficiently[115]. MNP is one of the traditional nanoparticles and is also a popular 

carrier for gene delivery[116]. MNP can overcome the weaknesses of other traditional 

carriers, like high toxicity limiting the traditional carriers that can only be used in 

vitro[117]. The external magnetic fields applied on the target site not only can enhance 

the transfection, but also target the gene to a specific site without the side effects on 

other tissues. Due to this, MNPs can be tunable and focus on the target area, yet they 

still have some drawbacks like low transfection efficiency and toxicity[118]. 

Besides the chemical approach, the physical delivery methods are attracting more 

and more research interest, including the application of the electric field[234], the 

acoustic method[120], and physical injection[121], to disrupt the cell membrane and let 

the DNA pass through it more efficiently. Some physical techniques have shown 

sufficient delivery efficiency and can be applied to most of the cell types and are 

available for commercial use[122]. However, the main limitations are cytotoxicity and 

the inability to be used in humans. Also, operational and equipment requirements are 
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complicated and costly, and sometimes with low efficiency and repeatability. Acoustic 

methods are another physical approach to transfect the cells with the advantage of easy 

repeatability and excellent stability, yet with low transfection efficiency compared with 

other methods[120]. 

The ultrasound method is one of the acoustic transfection methods mentioned 

above, which is characterized by frequencies higher than 20 kHz. Ultrasound has been 

used for various applications, including diagnosis, surgery, and therapy for a long 

time[117], [128]. At its early implementations, researchers focused on the treatment 

produced by using the thermal effects of ultrasound. Nowadays, more researchers are 

paying attention to the non-thermal characteristic, including acoustic cavitation and 

mass transfer enhancement[131]. For ultrasound medical applications, the safe range of 

the intensity is between 0.05 W/cm2 and 100 W/cm2[132], [133]. LIPUS is a particular 

type of ultrasounds shown in Fig 4.1, which generates at a frequency of 1-3 MHz and 

repeats at 1 kHz with a duty cycle of 20% to deliver a low-intensity pulsed-wave [137]. 

It has been proven to be very safe for human use for many aspects of medical 

applications, such as bone healing[134], inflammation inhibiting[135], soft-tissue 

regeneration[136], and the induction of cell-membrane porosity. Using graphene 

aerogel to promote cell proliferation was reported[235], [236]. LIPUS has also been 

proven to help division and proliferation in many types of cells, such as insect cells[138], 

algal cells[139], stem/progenitor cells [140], mesenchymal stromal cells[237]. LIPUS 

can also increase CHO cell growth and antibody production[142], increase cell 
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permeability[138], and enhance gene delivery by using microbubble[143]. The safe 

operational intensity range of LIPUS is between 0.02 and 1 W/cm2 and treatment 

durations of 5 - 20 minutes per day. Because of its low intensity, LIPUS has almost no 

thermal effects[144]. 

 

 

Figure 4. 1 A schematic for LIPUS device and ultrasound power meter calibration. 

The display shows the ultrasound intensity. The button can be employed to control the 

duty cycle and ultrasound stimulation duration. The ultrasound boxes include a 

motherboard, a control board, an ultrasound board, two driver boards, and a power 

board. We also include the circuit diagram. 

 

There are several ways to deliver genetic materials into cells. As mentioned in the 
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introduction, I propose to synergistically combine LIPUS and magnetic fields for gene 

delivery, because the technique can leverage each method’s advantages. LIPUS can 

promote cell growth[141] and enhance cell membrane permeability. At the same time, 

MNPs, guided by a magnetic field, can further improve targeted gene delivery. Best to 

our knowledge, combining the two techniques to deliver genetic material into 

mammalian cells has not been discussed before. We achieved a high transfection 

efficiency with low cytotoxicity by performing the cell transfection with LIPUS and 

MNPs under the external magnetic field. We present a new concept of integrating the 

physical and chemical gene delivery approaches by introducing LIPUS to support gene 

transfection using MNPs under the influence of the magnetic field. The plasmid of 

interest (GFP and Cherry Red plasmid) is firstly bound to the MNPs through PEI before 

introducing them to the cells. Then we investigate the impact of applying the magnetic 

field in combination with the LIPUS on the transfection of the targeted plasmid. We 

also examine the effect of the LIPUS on cell proliferation and viability to identify the 

proper ultrasound intensity and best duration of treatment that cells can tolerate. We 

used the fluorescent microscope for qualitative evaluation, whether this approach 

worked or not, and then, employed flow cytometry to quantitatively evaluate the 

transfection efficiency and compare the results with those obtained from using 

Lipofectamine 2000 as a positive control. Furthermore, we also localized the 

transfected genes in the targeted cells using confocal microscopy. We have compared 

the transfection rates of various gene delivery methods. Please refer to the following 
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Table 4.1. Our approach offers a combination of high efficiency with low toxicity and 

affordability. 

 

Table 4. 1 The transfection rate and cell viability of different delivery methods 

with HEK 293 cells. 

Delivery Method Transfection Rate Cell Viability 

PLGA-PEG/PBAE/pGFP Nanoparticle[238] 45.2% 97% 

Magnetoplexes[239] 28.4% 97% 

Lipoplexes[239] 45.5% 95% 

Lipofectamine 2000 42.6% 44.7% 

Thiolated trimethyl amino benzyl chitosan[240] 40.4% 90.0% 

Magnetic Nanoparticles[118] 56.1% 58.3% 

Our approach (MNPs & LIPUS) 61.5% 63.6% 

4.2 Materials and Methods 

4.2.1 Chemicals and Materials 

Anhydrous Ethylene glycol 99.8%, Ferric chloride hexahydrate (FeCl2.6H2O)  

99 %, and anhydrous Sodium acetate  99% (NaAc), and branched PEI with average 

molecular weight (M.W.) 25 kDa were purchased from Sigma-Aldrich and used without 

further purification. HEK 293T cells were purchased from ATCC (ATCC CRL-11268), 

MEM, FCS, Penicillin/Streptomycin, PBS, Lipofectamine 2000, and DAPI were 

purchased from Thermofisher. Zombie Aqua was purchased from Biolegend. We used 
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Milli-Q water with the resistivity of 18.2 MΩ versus the Millipore Milli-Q Advantage 

A10 purification system in all experiments. 

Magnet: The magnet, made of neodymium (rare earth) with a diameter of 10 cm 

and a thickness of 10 cm, was purchased from Applied Magnets (Plano, TX, USA). 

4.2.2 Cell Culture 

HEK 293T cells were cultured in high glucose MEM medium, supplemented with 

10% FCS and 1% penicillin/streptomycin at 37°C and 5% CO2. Cells were passed to a 

12-well plate before the experiment, and transfection was performed in the 12-well 

plate once the cells reached 60-80%, confluency, which is recommended for the 

transfection. 

4.2.3 Synthesis and Functionalization of MNPs 

MNPs were synthesized using the hydrothermal method, according to our 

previously reported work[117], [118]. In short, a reaction mixture containing 10 g 1,6- 

hexanediamide, 2.0 g FeCl3•6H2O, and 4.0 g sodium acetate trihydrate (NaAc •3H2O) 

in 50 mL of ethylene glycol was vigorously stirred at 85 ⁰C for 2 h until a resulting 

transparent solution was obtained. To complete the reaction, the solution was sealed in 

a 100 mL-Teflon-lined stainless-steel autoclave and put in the oven for 12 h at 200 ⁰C. 

After completion, the MNPs solution was cooled down to room temperature and 

collected with the help of a magnet and further redispersed in milli-Q water by 
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sonication for 15 min. MNPs were washed with water three times, where the MNPs 

were redispersed by sonication and collected each time with the help of the magnet. 

Then we also washed with absolute ethanol following the same method to ensure the 

complete removal of unreacted materials with the abbreviation of FN. Finally, the 

prepared MNPs (or FN-MNPs) were dispersed in 100 mL milli-Q water for 

characterization and further use.  

For functionalization, FN-MNPs were treated with a 5% glutaraldehyde solution 

for 2 hours, then washed three times with Milli-Q water and further coated with 1 

mg/mL solution of PEI (25 KDa) to produce FN-Glu and FN-Glu-PEI25K, respectively. 

PEI is known to assist in cell transfection, yet it is toxic to the cells. We selected PEI as 

a cationic surfactant to coat the MNPs because of its high affinity to bind with 

negatively charged plasmids. The PEI molecules are covalently bound to the MNPs, 

which significantly decreases the potential toxicity associated with using cationic 

surfactants. Furthermore, the complex of the negatively charged plasmid with FN-Glu-

PEI25K MNPs mitigates the positive charge of the FN-Glu-PEI25K MNPs. We 

previously utilized FN-Glu-PEI25K MNPs as gene nano-carriers, and the GFP plasmid/ 

FN-Glu-PEI25K MNPs showed lower toxicity than the positive control (lipofectamine 

2000)[118], [241]. 

The size of nanoparticles was estimated using Hitachi HF-3300 Transmission 

Electronic Microscope (300 kVTEM), where we measured the size of 150 nanoparticles 

using ImageJ software, and the size of the nanoparticles was calculated based on the 
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histogram of the size distribution. The prepared MNPs were ~24 nm in size, as shown 

in Fig 4.2 a. 

The ζ potential and the hydrodynamic size of the MNPs were measured using 

Zetasizer Nano ZS Malvern Panalytical. The hydrodynamic size and zeta potential for 

our nanoparticles were evaluated and shown in Fig 4.2 b. Unlike the FN and FN-Glu, 

we got a high positive surface charge of Zeta potential for FN-Glu-PEI25K. They all 

have different hydrodynamic sizes, but FN-Glu-PEI25K showed a higher density of 

PEI on the MNPs surface for DNA binding. 

 

 

(a)                                 (b) 

Figure 4. 2 Characterization and functionalization of MNPs (a) MNPs size 



 

84 

 

distribution under TEM. (b) Hydrodynamic size and ζ potential for particles. Here FN 

stands for MNPs, FN-Glu stands for MNPs after glutaraldehyde treatment, and FN-

Glu-PEI25K stands for MNPs after glutaraldehyde treatment coated with PEI. 

4.2.4 Ultrasound Stimulation Device 

Cells were exposed to ultrasound stimulation using the LIPUS device developed 

previously in our lab. The LIPUS device outputs a square wave with a frequency of 1.5 

MHz. The repetition rate is 1 kHz, and the duty cycle is 20%. We can adjust the output 

voltage from 1.25V to 12.5V by adjusting the potentiometer. Along with the increase 

of the ultrasound intensity, the output voltage increases too. The PCB board is shown 

in Fig 4.1 and has 6 boards in the box, including a motherboard, a control board, a 

power board, an ultrasound board, and two driver boards. The motherboard is used to 

connect all other boards. The control board is used to control the ultrasound intensity 

and duration. The ultrasound board is used to supply an ultrasound signal with a 

frequency of 1.5 MHz and a repetition rate of 1 kHz, and the driver board is used to 

provide enough voltage and current to drive the transducers. Ultrasound settings can be 

controlled and adjusted. 

Ultrasound transducers: Two ultrasound transducers we used in the LIPUS device 

were purchased from American Piezo Company International, Ltd (Mackey Ville, 

USA). The piezo-crystal 880 inside the transducer has a diameter of 25 mm and a 

thickness of 12.5 mm. Although the diameter of each well in a 12-well cell culture plate 
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is 22 mm, the diameter of the transducer is slightly bigger than the well. However, it 

does not affect the results because we purposely calibrate the transducer with an 

intensity of 30mW/cm2, not the overall power. It has a resonant frequency of 1.5 MHz 

and a piezoelectric charge constant d33 of 215 m/V. The ultrasound power meter we 

used to measure the ultrasound intensity was purchased from Ohmic Instruments Co., 

Maryland, USA, and the model is UPM-DT-1AV. The diameter of the transducer is 25 

mm, and thus its active area is 4.9 cm2. For instance, if we want to have the output 

intensity of 30 mW/cm2, the measured output power should be 4.9×30=147 mW=0.147 

W. The minimum measurement changing the value of this power meter is 0.002 W. 

Therefore, in a real operation, we adjust the resistance of the potentiometer to get the 

readings as 0.146 W, or 0.148 W. Each of the transducers was calibrated before the 

experiment using a degassed water tank, in which transducer was fixed using a holder 

until the reading of the output was stable. 

4.2.5 Cell Counting 

Cells were trypsinized and collected in a clean conical tube. We prepared a trypan 

blue-stained dilution of cells to count. We conducted a 1:2 dilution (50 µL cells + 10 

µL Trypan blue + 40 µL PBS). 10 µL of the diluted cells were loaded onto the 

hemacytometer. We put the micropipette tip into the groove on the slide and touch it 

gently to the coverslip before we eject; the liquid should flow into the counting chamber 

by capillary action. The cells need 30 seconds to settle. Finally, we count four quadrants 
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and calculate the average to get the cell concentration. 

4.2.6 Cell Transfection 

Transfection was performed at 60-80% cell confluency. GFP plasmid or Red 

Cherry plasmid were used as genetic material to transfect. 1ug purified plasmid was 

mixed with 3 µL MNPs both previously diluted in 500 µL serum-free medium to a total 

volume of 1000 µL and then thoroughly mixed and left for 30 min. The serum can 

interfere with the formation of the complex of DNA with MNPs[242]. After 30 minutes, 

the medium was removed from the cell wells and replaced with a mixture of MNPs-

DNA complexes. To direct the MNPs into the cells, we then put the plate on the 

LIPUS/magnet device and treated cells for 10 minutes. After that, we stopped the 

LIPUS and incubated the cells on the magnet for 4 more hours. The medium was then 

replaced with a 10% serum MEM medium, and cells were further grown in the 

incubator for up to 48 hours. Transfection efficiency was checked within 24-48 hours 

after the experiment. 

For the Lipofectamine 2000 transfection, 1 µg purified plasmid was mixed with 3 

µL lipofectamine in serum-free MEM and left for 30 mins. We added the DNA-

lipofectamine complex to the cells after the 30-minute incubation. 

4.2.7 Transfection Evaluation/Characterization 

Cell transfection efficiency was evaluated within 48 hours after the experiment 
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using several methods. Confocal microscopy images were obtained using the Zeiss 

LSM 710 confocal microscope. For the confocal microscope imaging, cells were 

cultured and transfected on the coverslip using the same protocol mentioned above, and 

after 48 hours were fixed in the 4% PFA and stained with DAPI. Fluorescent 

microscope images were obtained by Zeiss, Axiovert 200 fluorescent microscope. For 

the qualitative evaluation of transfection during the method development, fluorescent 

microscopy was used. Cells after transfection were checked within 24-48 hours for the 

fluorescent protein expression. As a negative control, untreated HEK 293T cells were 

used. Both groups of cells were fixed in 4% freshly prepared PFA for 10 minutes. 

4.2.8 Flow Cytometry 

The quantification of the transfection efficiency was performed using Attune X 

Flow Cytometer. Flow cytometry was performed with Zombie Aqua as our cell viability 

dye in dilution of 1:250, which was selected based on the pre-experimental titration and 

gave the clearest separation of the dead and alive cells. In the Flow Cytometry 

experiment, aside from experimental groups of samples, we used compensation 

controls, positive control, and negative control to assure the accuracy of the results. 

(a) For the negative control, untreated cells without any genetic material and 

viability dye were used. 

(b) As there were two main fluorophores, we used two compensation controls to 

prevent the spills: For Zombie Aqua compensation, we used cells, stained with viability 
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dye; For GFP or Cherry Red compensation, we used cells transfected with a plasmid 

(GFP or Cherry respectively) and Lipofectamine as transfection agent.  

(c) For the positive control, the purified plasmid was used for transfection, and 

Lipofectamine as a golden standard for transfection available on the market, and cells 

were stained with Zombie Aqua after 48 hours. 

(d) For the experimental group, two groups were set to evaluate the effect of 

LIPUS on the MNPs transfection and cell viability. First group: cells, plasmid, and 

MNPs were treated with a magnet for 4 hours and stained with viability dye after 48 

hours. The other group was additionally treated with a LIPUS device (10 mins duration 

at 30mW/cm2 intensity) and a magnet for 4 hours and then stained after 48 hours. 

4.2.9 Statistical Analysis 

Each experiment was repeated at least three times. The data was presented by 

including means and standard deviation. The statistical analyses between different 

groups were conducted by one-way ANOVA paired t-test. p < 0.05 were considered as 

statically significant. 

4.3 Results and Discussions 

In this thesis, we combined both physical and chemical approaches to develop a 

high-efficient gene delivery method with low cytotoxicity. From the previous work 

done in our group as well as by other groups and reported in the literature, we knew 
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that LIPUS could transiently increase cell membrane permeability[138] as well as can 

be beneficial for cell viability[141], [142]. Our goal was to evaluate whether ultrasound 

can enhance the entry of genes into the cells when used with MNPs as a transfection 

tool. 

4.3.1 Selecting Optimal Ultrasound Condition 

Different ultrasound parameters, such as wave intensity, treatment duration, and 

frequency of the treatment, can have a significantly different effect on cell growth and 

membrane permeability[138], [142]. Therefore, we needed to select the optimal 

conditions of the LIPUS stimulation for our studies. In our experiments, five different 

ultrasound intensities and durations were selected. These conditions were selected 

based on our previous successful studies; for instance, 30 mW/cm2 showed the optimal 

performance for stimulating mammalian cells[141] and the 5-20 minutes treatment 

duration is in a safe range. These conditions were (1) the control (no LIPUS stimulation); 

(2) LIPUS at 30 mW/cm2 for 5 minutes; (3) LIPUS at 40 mW/cm2 for 5 minutes; (4) 

30 mW/cm2 for 10 minutes; and (5) 40 mW/cm2 for 10 minutes. For the successful 

penetration of ultrasound waves to stimulate the targeted cells, ultrasound gel has to be 

applied on the surface of the ultrasound transducer, because ultrasound does not 

propagate through the air. If we do not use the ultrasound gel, the transmission 

coefficient of sound intensity can be 0.00923%. When we use the ultrasound gel, the 

transmission coefficient of sound intensity can be 31.1%, and thus the ultrasound gel is 
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necessary. 

 

 

Figure 4. 3 Cell proliferation after stimulation with LIPUS under different 

intensity and duration parameters. (*:p<0.05, **: p<0.01). 

 

To select the optimal duration of LIPUS treatment, several stimulation conditions 

were evaluated, and cell counting was also performed. The results are shown in Fig 4.3, 

where the cells treated for 10 minutes under 30mW/cm2 showed the best result with a 

p-value of 0.00128. P-values for the other stimulation conditions are greater than 0.05 

(5 minutes and 30 mW/cm2: p=0.5; 10 minutes and 40 mW/cm2: p=0.204), which 

means there is no statistical difference Consequently, we use the LIPUS device for 10 

minutes under the intensity of 30 mW/cm2 in our transfection experiments. In our tests, 

we used two ultrasound transducers at the same time to treat the cells in 2 wells (our 
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experiment design and setup can allow up to six wells to be treated at the same time). 

4.3.2 Fluorescent Microscope Results 

Fluorescent microscopy allowed for an easy way to qualitatively evaluate the 

efficacy of the combined gene delivery method in the process of method development. 

The negative control, which just contained the GFP plasmid in the cell plates, showed 

no transfected cells (Fig 4.4 a), confirming that the plasmid itself does not cross the cell 

membrane without a delivery carrier. Compared to the negative control, using MNPs 

along with LIPUS treatment introduced the green, fluorescent spots in the images (Fig 

4.4 b and 4.4 c), showing the cells that have been successfully transfected with the GFP 

plasmid and GFP expressed. These fluorescent images were good indicators that our 

method could work well and were very useful for method development as those allowed 

for fast qualitative screening of each experiment. 

 

   

(a)                   (b)                    (c) 

Figure 4. 4 Fluorescence microscope images: (a) negative control (just cells), (b) 

(c) cells transfected with GFP with MNPs and treated with LIPUS. Scale bars=100 μm. 
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4.3.3 Transfection Efficiency using Flow Cytometry 

At the same time, the fluorescent microscope images could only give us the 

qualitative evaluation of whether our new physical and chemical combined approach 

worked for gene delivery. Once we had our method working, we had to quantify its 

efficiency and, whether it could be offered as an alternative to the available transfection 

tools on the market. We were focused on the parameters of transfection efficiency, cell 

viability, and how they can be compared with the results of the standard gene delivery 

approach using Lipofectamine 2000, a well-known and efficient transfection reagent, 

shown in Fig 4.5 b. The average transfection efficiency of the Lipofectamine 2000 in 

our experiments was 42.62%, as shown in Fig 4.5 a, and it was within the range of 

normal performance of Lipofectamine 2000 working on HEK 293T cells. This result 

ensured that our HEK cells were always in good condition before we performed the 

transfection steps, and we got the proper operations during the transfection.  

Compared to the standard Lipofectamine 2000 reagent mentioned above, the 

MNPs alone and MNPs coupled with LIPUS stimulation gave us better results (shown 

in Fig 4.5 a). They increased the transfection efficiency 1.3- and 1.45- fold, respectively, 

over the Lipofectamine 2000. Fig 4.5 c is the histogram plot of flow cytometry, showing 

the GFP fluorescence of the experimental group transfected with GFP plasmid, MNPs, 

and external magnetic field. The transfection efficiency was 57.503%, 13% higher than 

the Lipofectamine 2000, which indicated that the MNPs themselves could perform 
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better than the Lipofectamine under the external magnetic field. Fig 4.5 d is the 

histogram plot of cytometry by combining the MNPs and the LIPUS stimulation with 

the transfection rate of 61.52%. By synergistically combining MNPs and LIPUS, we 

can achieve efficiently and targeted gene delivery. We also ran an experiment with 

MNPs, but without the application of the external magnetic field and the transfection 

efficiency was only 14%, as shown in Fig 4.5 e. This is consistent with the idea that 

MNPs, as gene carriers, cannot efficiently deliver the material without the external 

magnet field targeting.  

For the development of the additional LIPUS stimulation step of our method, we 

first selected the ultrasound condition using 10 minutes of treatment with an intensity 

of 30 mW/cm2. We then performed the transfection using our experimental setup with 

the LIPUS device. We got an average transfection result of 61.52%, showing the highest 

transfection efficiency among our samples with the p-value of 0.0001. As a control, 

cells mixed with the genetic material (plasmid of interests) and treated with ultrasound 

were used to evaluate the effect of just LIPUS stimulation on the transfection without 

the MNPs/magnetic field. In that experiment, the transfection rate was only at 1%, as 

shown in Fig 4.5 f, indicating that LIPUS alone could not transfect the cells without the 

carriers. Our results showed that, though LIPUS waves could not function as a tool for 

transfection itself, they could permeabilize cell membranes and, coupled with another 

tool (i.e., MNPs in this case), could enhance gene delivery into the cells. 
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4.3.4 Cell Toxicity Results 

In our experiment, we used viability assay (Zombie Aqua) to evaluate the viability 

of HEK cells in our tests with different gene delivery approaches. Fig 4.5 g, 4.5 h, 4.5 

i show three different groups of cell viability results (Group 1: Lipofectamine 2000, 

Group 2: MNPs/magnetic field without LIPUS stimulation, Group 3: MNPs/magnetic 

field plus LIPUS), and the overall results are showing in Fig 4.5 a. The negative control 

group (just untreated cells) showed viability at 91.524%, which was used as the 

background for all the results. Lipofectamine 2000 gave us 44.68% cell viability. MNPs 

showed 14% higher cell viability than the Lipofectamine 2000, indicating that our 

MNPs had lower cytotoxicity. The addition of the LIPUS device stimulation to the 

MNPs delivery further increased cell viability by up to 63.61% after the transfection 

with the p-value of 0.0002. These results showed that the LIPUS wave could stimulate 

cell growth and enhance cell viability. 
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Figure 4. 5 Quantification of transfection: (a) Overall transfection efficiency and 

cell viability results. (**:p<0.01, ***: p<0.001). Subfigures (b)-(i) show the flow 

cytometry histogram plots of transfection rates using GFP with different methods. (b) 

lipofectamine 2000, (c) our MNPs and magnet, p<0.001 (d) our suggested method: 

MNPs, magnet, in combination with LIPUS treatment, p<0.001. (e) MNPs only, (f) 

treated only with LIPUS. Cell viability results in the presence of Zombie Aqua viability 

dye when transfected with (g) lipofectamine 2000. (h) MNPs and magnet, p<0.01, (i) 

MNPs, magnet, and LIPUS, p<0.001. 

4.3.5 Confocal Microscope Results 

For confocal microscopy, the cells were transfected using the same protocol, but 

they were cultured on slides instead of a 12-well plate. Cells were stained with DAPI 

to evaluate the location of the gene in the transfected cells. Fig 4.6 shows the confocal 

microscopy results of the cells after transfection within 48 hours. In the figure, both 

Cherry Red plasmid and GFP plasmid HEK cells were sufficiently transfected using 

our developed technique. The merged images indicate genes mostly accumulated and 
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expressed in the nucleus, where the Dapi stains, confirming the successful delivery of 

the genetic material to the nucleus. 

 

Dapi                 Plasmid                Merged 

  (a)  

  (b)   

  (c)        

Figure 4. 6 Fluorescent images of cells transfected different plasmids using both 

MNPs and LIPUS stained with DAPI, (a) The control group (just cells), (b) GFP. (c) 

Cherry-red. Scale bars=20 μm. 
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4.4 Conclusions 

In this study, we combined the application of an external magnetic field with 

MNPs and LIPUS stimulation for gene delivery. The uniqueness of our design is that, 

in addition to MNPs, used as a transfection carrier, we used the LIPUS cell stimulation 

to enhance gene delivery through increased cell permeability. In our experiments, we 

did the transfection on the HEK cells using our nanoparticles and got a 14% higher 

transfection rate, compared to the Lipofectamine 2000. The transfection efficiency 

further increases by 5%, when we add the LIPUS cell stimulation to the whole system, 

which was in line with our expectations. As for cell viability, Lipofectamine is known 

for its cytotoxicity and showed only 44.48% cell viability in our transfection 

experiments. A higher percentage of cells were alive after transfection when we used 

the MNPs with viability up to 58.31%. LIPUS stimulation added as an extra step during 

the MNPs transfection yielded even higher cell viability at 63.61%, compared to the 

MNPs only.  

It is worth mentioning that our results and the Lipofectamine 2000 results were 

compared in terms of both the transfection efficiency and cell viability, and our 

technique showed better performance. LIPUS was shown to promote cell permeability 

and let the MNPs-DNA complex pass through and thus increasing the transfection 

efficiency and enhancing the cell viability. Because our assay is 10x cheaper than 

Lipofectamine 2000 and is also a chemical-based physical delivery approach, it can be 
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an attractive gene-delivery method for other hard-to-transfect cells (such as primary 

cells and neuron cells) and in vivo. 
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5 Conclusions and Future Work 

5.1 Conclusions 

In this thesis, two different automated disease diagnosis methods and one LIPUS 

based magnetic nanoparticle gene delivery system were proposed, which opened up a 

promising interdisciplinary research field in biomedical engineering applications. 

Chapter 2 designed the multimodal fusion model comprised of text, audio, and video 

for both depression detection and assessment tasks. Experiments on the DAIC-WOZ 

dataset showed a great improvement in performance, with a weighted F1 score of 0.85, 

an RMSE of 5.57, and an MAE of 4.48. The proposed model outperforms the baseline 

in both depression detection and assessment tasks and has comparable performance 

with other existing state-of-the-art depression detection methods. The empirical results 

show that compared with the unimodal model, the use of the multimodal model 

provides a better representation for depression, thereby improving the automated 

depression detection and assessment system. This research will help develop an 

automated depression detection system that combines various modalities and can be 

easily transferred to high-performance, portable, low-cost, and rapid depression 

diagnosis and prognosis devices.  

Chapter 3 used high-resolution LC-MS to screen 191 blood samples and 

discovered Kyn, Trp and their ratio, IDO are excellent TB biomarkers. There was a 

significant difference in the concentration of these metabolites among different groups. 
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We employed the logistic regression algorithm to detect pulmonary TB and the AUC 

score, accuracy can be as high as 1.00 and 96% for classifying HC vs ATB and LTBI 

vs ATB. When we used IDO and t-spot to distinguish between NTB and ATB, the 

accuracy can always be above 80% both on the validation set and external independent 

cohort. The AUC performance of multi-class classification is generally greater than 

0.83 and is 0.97 for the ATB class, especially. We conducted this study to propose and 

test Kyn, Trp, and IDO activity as novel biomarker indicators for the detection of ATB 

with the help of the t-spot. This study is only a pilot study, and non-targeted 

metabolomic is needed to be performed to add more significant biomarkers to enhance 

the multi-class classification. This study can contribute to developing diagnostic 

procedures in combination with other biomarkers and can be easily transferred into a 

high-performance, low-cost, noninvasive, and rapid pulmonary TB diagnosis and 

prognosis device. 

Chapter 4 proposed a novel gene delivery system that synergistically combines 

non-viral chemical materials, MNPs, and physical technique, LIPUS, to achieve 

efficiently and targeted gene delivery. The uniqueness of our design is that, in addition 

to MNPs, used as a transfection carrier, we used the LIPUS cell stimulation to enhance 

gene delivery through increased cell permeability. In our experiments, we did the 

transfection on the HEK cells using our nanoparticles and got a 14% higher transfection 

rate, compared to the Lipofectamine 2000. The transfection efficiency further increases 

by 5%, when we add the LIPUS cell stimulation to the whole system, which was in line 
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with our expectations. As for cell viability, Lipofectamine is known for its cytotoxicity 

and showed only 44.48% cell viability in our transfection experiments. A higher 

percentage of cells were alive after transfection when we used the MNPs with viability 

up to 58.31%. LIPUS stimulation added as an extra step during the MNPs transfection 

yielded even higher cell viability at 63.61%, compared to the MNPs only. This new 

gene-delivery system is affordable, targeted, low-toxicity, yet high transfection 

efficiency, compared to other conventional approaches.  

5.2 Future Work 

Several directions of future work for these biomedical engineering applications 

should be mentioned. First of all, for the automated depression detection and 

assessment system, we currently used the video features provided by the dataset, instead 

of exploring more significant features from the raw video. However, video features play 

a key role in modeling the deep correlation between depression and facial emotions and 

patients with depression often display distorted facial expressions. So, if the raw video 

can be included in the dataset, the performance can be improved for sure. In addition, 

we need to collect an independent cohort to further validate our results to see whether 

our model can have a good generalization and perform well on unseen patients. For the 

automated TB diagnosis, for now, we just used three biomarkers, Kyn, Trp, and IDO. 

We believe that if more biomarkers are included, the performance of the multi-class 

classification and the classifications among HC, LTBI, and NTB can also be satisfied. 



 

103 

 

For the high transfection rate, low cytotoxicity gene delivery system, we now 

employed the gene delivery on the HEK cell, which is a kind of easy-transfected cell. 

The future work is to test and improve our gene delivery system on other hard-

transfected cells (such as prime cells and neuron cells) and in vivo. 
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Appendix 

Table A. 1 Comparison Between Different Classifiers with Different 

Dimensionality Reduction methods on the DAIC-WOZ Development Set (The 

unimodal models shown in bold achieved the best performance). 

Features Model 
F1 score 

(Healthy) 

F1 score 

(Depressed) 

F1 score 

(Weighted) 

MFCCs+ 

COVAREP 

SVM 0.783 0.583 0.714 

PCA + SVM 0.826 0.667 0.771 

XGBoost + 

SVM 
0.486 0.424 0.465 

XGBoost 0.652 0.333 0.543 

PCA + 

XGBoost 
0.622 0.320 0.514 

XGBoost + 

XGBoost 
0.739 0.500 0.657 

KNN 0.526 0.438 0.486 

PCA + KNN 0.578 0.240 0.457 

XGBoost + 

KNN 
0.682 00462 0.606 

FAUs 

SVM 0.651 0.444 0.580 

PCA + SVM 0.619 0.429 0.554 

XGBoost + 

SVM 
0.711 0.480 0.632 

XGBoost 0.792 0.545 0.707 

PCA + 

XGBoost 
0.694 0.286 0.554 

XGBoost + 

XGBoost 
0.833 0.636 0.766 

KNN 0.622 0.320 0.519 

PCA + KNN 0.652 0.333 0.543 

XGBoost + 

KNN 
0.638 0.261 0.509 
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Table A. 2 Correlation between different metabolites and age in different groups. 

Correlation Kyn Trp IDO 

Age 0.33 0.05 0.26 

 

Table A. 3 Performance of logistic regression models with various biomarkers for 

discriminating different groups along with the hypothesis test results. 

HC vs NTB 

 Kyn Trp IDO 

Discovery Validation Discovery Validation Discovery Validation 

AUC 0.83 (+/- 

0.10) 

0.87 0.62 (+/- 

0.07) 

0.63 0.76 (+/- 

0.08) 

0.68 

Accuracy 0.71 (+/- 

0.10) 

0.75 0.61 (+/- 

0.08) 

0.71 0.67 (+/- 

0.09) 

0.58 

Specificity 0.74 (+/- 

0.09) 

0.69 0.71 (+/- 

0.07) 

0.69 0.76 (+/- 

0.10) 

0.62 

Sensitivity 0.69 (+/- 

0.15) 

0.82 0.51 (+/- 

0.10) 

0.73 0.57 (+/- 

0.11) 

0.55 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 8.68E-8 2.01E-7 0.021 0.060 2.70E-5 0.00012 

HC vs LTBI 

 Kyn Trp IDO 

Discovery Validation Discovery Validation Discovery Validation 

AUC 0.61 (+/- 

0.14) 

0.65 0.72 (+/- 

0.13) 

0.89 0.68 (+/- 

0.12) 

0.72 

Accuracy 0.58 (+/- 

0.07) 

0.64 0.66 (+/- 

0.09) 

0.76 0.59 (+/- 

0.09) 

0.68 

Specificity 0.54 (+/- 

0.11) 

0.54 0.56 (+/- 

0.19) 

0.69 0.64 (+/- 

0.13) 

077 

Sensitivity 0.61 (+/- 

0.16) 

0.75 0.75 (+/- 

0.15) 

0.83 0.54 (+/- 

0.11) 

0.58 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 0.022 0.075 7.27E-6 1.22E-5 0.00096 0.0028 
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NTB vs LTBI 

 Kyn Trp IDO 

Discovery Validation Discovery Validation Discovery Validation 

AUC 0.92 (+/- 

0.06) 

0.79 0.86 (+/- 

0.13) 

0.81 0.58 (+/- 

0.21) 

0.51 

Accuracy 0.80 (+/- 

0.05) 

0.75 0.78 (+/- 

0.11) 

0.67 0.58 (+/- 

0.08) 

0.50 

Specificity 0.77 (+/- 

0.13) 

0.75 0.73 (+/- 

0.06) 

0.50 0.42 (+/- 

0.12) 

0.50 

Sensitivity 0.84 (+/- 

0.09) 

0.75 0.82 (+/- 

0.20) 

0.83 0.73 (+/- 

0.14) 

0.50 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 5.63E-11 4.83E-10 1.48E-8 4.66E-9 0.082 0.18 

Control vs NTB 

 Kyn Trp IDO 

 Discovery Validation Discovery Validation Discovery Validation 

AUC 0.83 (+/- 

0.09) 

0.92 0.69 (+/- 

0.06) 

0.76 0.63 (+/- 

0.11) 

0.77 

Accuracy 0.76 (+/- 

0.12) 

0.81 0.69 (+/- 

0.03) 

0.70 0.68 (+/- 

0.03) 

0.70 

Specificity 0.92 (+/- 

0.09) 

0.92 0.92 (+/- 

0.04) 

0.96 0.96 (+/- 

0.03) 

1.00 

Sensitivity 0.41 (+/- 

0.24) 

0.58 0.21 (+/- 

0.06) 

0.17 0.06 (+/- 

0.06) 

0.08 

 Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test Mann-

Whitney 

U test 

t-test 

P-value 9.86E-12 1.96E-09 7.13E-6 2.42E-5 0.00086 0.0064 

 

Table A. 4 Performance of logistic regression models for discriminating different 

binary groups. 

 HC vs NTB HC vs LTBI 

Discovery Validation Discovery Validation 

AUC 0.83 (+/- 0.10) 0.82 0.71 (+/- 0.10) 0.88 

Accuracy 0.75 (+/- 0.13) 0.75 0.67 (+/- 0.11) 0.76 
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Specificity 0.82 (+/- 0.14) 0.77 0.62 (+/- 0.15) 0.69 

Sensitivity 0.69 (+/- 0.15) 0.73 0.72 (+/- 0.14) 0.83 

 NTB vs LTBI Control vs NTB 

 Discovery Validation Discovery Validation 

AUC 0.89 (+/- 0.08) 0.83 0.82 (+/- 0.09) 0.92 

Accuracy 0.78 (+/- 0.07) 0.79 0.75 (+/- 0.12) 0.78 

Specificity 0.74 (+/- 0.09) 0.83 0.91 (+/- 0.09) 0.92 

Sensitivity 0.82 (+/- 0.17) 0.75 0.41 (+/- 0.24) 0.50 

 

Table A. 5 Performance of logistic regression model for discriminating ATB vs 

NTB. 

 Using t-spot 

Discovery Validation 
External 

Validation 

AUC 0.83 (+/- 0.00) 0.82 0.77 

Accuracy 0.82 (+/- 0.09) 0.80 0.78 

Specificity 0.75 (+/- 0.20) 0.64 0.70 

Sensitivity 0.92 (+/- 0.09) 1.00 0.83 

 

 

(a)                         (b)                          (c)   
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(d)                        (e)                          (f) 

 

(g)                        (h)                         (i) 

 

(j)                          (k)                         (l)   

Figure A. 1 Receiver-operating characteristic (ROC) curves of the logistic 

regression model; (a) using Kyn for discriminating HC and NTB patients ; (b) using 

Trp for discriminating HC and NTB patients; (c) using IDO for discriminating HC and 

NTB patients; (d) using Kyn for discriminating HC and LTBI patients; (e) using Trp for 

discriminating HC and LTBI patients; (f) using IDO for discriminating HC and LTBI 

patients; (g) using Kyn for discriminating NTB and LTBI patients; (h) using Trp for 
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discriminating NTB and LTBI patients; (i) using IDO for discriminating NTB and LTBI 

patients; (j) using Kyn for discriminating control and NTB patients; (j) using Trp for 

discriminating control and NTB patients; (l) using IDO for discriminating control and 

NTB patients. The ROC curve is plotted by the true positive rate (TPR) against the false 

positive rate (FPR) at different thresholds. ROC curves with 95% confidence interval 

of these logistic regression models are shown for distinguishing among HC, LTBI, and 

NTB utilizing Kyn, Trp, and IDO separately. The blue curve is the mean ROC, and the 

red regions show the 95% confidence intervals in the discovery set over five folds. The 

green curve indicates the ROC curve on the validation set. The best classification will 

create a point at coordinates (0,1), representing 100% sensitivity and 100% specificity. 

 

 

(a)                                        (b)   
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(c)                                       (d) 

 

    (e)                                        (f) 

 

(g)                                       (h)   

Figure A. 2 ROC curves of the logistic regression model using Kyn, Trp, and IDO: 
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(a) discriminating HC and NTB patients; (c) discriminating HC and LTBI patients; (e) 

discriminating NTB and LTBI patients; (g) discriminating control and NTB patients. 

PCA plot shows the ability to discriminate different groups: (b) discriminating HC and 

NTB patients; (d) discriminating HC and LTBI patients; (f) discriminating NTB and 

LTBI patients; (h) discriminating control and NTB patients. ROC curves with 95% 

confidence interval of these logistic regression models using the biomarkers together 

were performed to visualize the performance of the classification model. Principal 

Component Analysis with the data from different combined groups was performed and 

visualized the first two components, which can show the ability to distinguish different 

groups. 

 

 

Figure A. 3 ROC curves of the logistic regression model for discriminating NTB 

and ATB patients just using t-spot. ROC curves with a 95% confidence interval were 
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employed to evaluate the predictive value of the t-spot in classifying NTB and ATB. 

The t-spot cannot predict ATB accurately. 
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