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Abstract  

Alzheimer’s disease (AD) is the most common cause of dementia and is an emerging public 

health crisis with 150 million cases projected globally by 2050. Biomarkers are playing an 

emerging role in AD research - however, existing biomarkers have substantial limitations. 

Magnetic Resonance Imaging (MRI) holds advantages over existing biomarkers as it is non-

invasive and does not involve exposure to ionizing radiation. This project aims to utilize MR 

images to measure subfield thickness throughout the hippocampal long axis using HippUnfold, a 

recently released open-source automated hippocampal segmentation software, and to correlate 

these measurements with Positron Emission Tomography (PET) phosphorylated tau (pTau), an 

extensively validated imaging biomarker for AD.  

High resolution (0.39x0.39x2mm) Hippocampal MR Images acquired by the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) were used in the analysis.  The right hemisphere cohort 

included control, n= 281, mild cognitive impairment (MCI, n =219), and AD, (n = 44) and the 

left hemisphere cohort included control, n= 278, mild cognitive impairment (MCI, n =205), and 

AD, (n = 41).   HippUnfold provided automated segmentation and computed thickness 

measurements for 5 hippocampal subfields: subiculum and cornu ammonis (CA) 1-4 throughout 

the entire hippocampal long axis. Previously acquired PET measurements for phosphorylated tau 

were downloaded from the ADNI database and correlated with thickness measurements along 

the hippocampal long axis using linear regression models.  

In our analyses - thickness measurements were strongly correlated with the degree of tau 

deposition quantified with tau PET. Specifically, we found significant cluster correlation (p < 

0.05) throughout the long axis when comparing reduced hippocampal subfield thickness to PET 

phosphorylated tau Standard Uptake Volume Ratios (SUVRs). Furthermore, we identified 
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regional specificity of maximal thickness abnormalities in our cohort in the body of the 

subiculum and CA1 in both hemispheres and the head region of CA2-4 in the right hemisphere.  

Our data add to the previous scientific literature demonstrating subfield-specific hippocampal 

volume loss throughout the hippocampus in patients with AD.  
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Chapter 1. Introduction 

1.1 Alzheimer’s Disease 

Dementia is a common, disabling, disease that places a huge burden on careers, families, 

and medical services. Alzheimer’s disease (AD) is the most common cause of dementia, and the 

prevalence of dementia is predicted to increase over time associated with the aging of the 

population 1,2. AD also has a substantial annual economic burden, costing an estimated 1313.4 

billion worldwide which is predicted to climb as the population continues to age 3. AD is a 

devastating neurodegenerative disorder that affects millions of individuals around the world with 

the estimated global number of patients surpassing 50 million, which will impact not only many 

patients but also the millions of family members, friends, and health care professionals who help 

in caring for them 4.                                                                                                                                      

The symptoms of the disease can vary for each individual, but the first clinical and most 

prominent manifestation of AD is selective memory impairment 5. This includes impairment of 

declarative episodic memory, which are memories of previous life events (especially memory of 

recent events) 6. This type of memory is served by structures of the medial temporal lobe (MTL) 

such as the hippocampus, entorhinal cortex, perirhinal cortex, and parahippocampal cortex which 

are essential for normal memory function 7. Semantic memory, which includes our knowledge 

about facts, concepts, and ideas is impaired later in the disease course 8. Diagnosis of memory 

impairment is done through recall tests where objects are learned and are recalled later. 

Additional symptoms experienced by patients with AD include impairment in executive 

functioning, impairment in judgment/problem-solving, compromised multitasking, confusion 

with respect to place and time, difficulties completing familiar tasks, loss of insight into deficits, 

and language impairment 9,10.  Symptoms such as apraxia, seizures, sleep disturbances, and 

motor signs are less common 11. A minority of patients with AD do not present in the classic 

fashion of progressive amnestic dementia. Atypical presentations of AD can occur and involve 

non-amnestic and early-onset forms of the disease such as posterior cortical atrophy (PCA), 

which is characterized by visual impairments, and logopenic variant primary progressive aphasia 

(lvPPA), in which patients have difficulties finding words causing hesitant speech 11. LvPPA is a 

clinical subtype of primary progressive aphasia (PPA) which is typically related to AD 
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neuropathology, whereas other variants of PPA such as nonfluent progressive aphasia are usually 

due to non-AD tauopathies 12,13. 

The average life expectancy after diagnosis can range from 4.2 years to 10 years 

depending on the severity of the condition and the age of the individual at onset 14,15. Validated 

cognitive tests such as the Mini-Mental State Examination (MMSE) and the Montreal Cognitive 

Assessment (MoCA) are used to measure cognitive deficits and the progress of the disease over 

time16. AD is diagnosed clinically based on the history of symptom onset, progressive course of 

cognitive decline, documentation of cognitive impairments along with testing for other cognitive 

domains including visual-spatial skills, attention, concentration abilities, and executive 

functioning 17. The diagnostic criteria for probable and possible AD dementia are established by 

both the National Institute on Aging and the Alzheimer's Association (NIA-AA) and the 

Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria for AD 18. The degree of 

functional impairment associated with cognitive decline is used to differentiate between mild 

cognitive impairment (MCI) and AD. MCI is defined as objective cognitive dysfunction 

(typically with early involvement of recent memory) with preserved adaptive functioning with 

respect to activities of daily living – and is considered an early stage of AD 19. The conversion 

rate from MCI to AD is approximately 10-15% per year and approximately 80% of patients with 

MCI have progressed to AD at 6-year follow-up 20,21. Patients with MCI are therefore at the 

earliest stages of the disease continuum when therapeutic intervention is most likely to be 

beneficial – and are thus important in any investigation related to diagnosis, prognosis, and 

treatment of AD.   

Definitive diagnosis of AD is based on compatible clinical presentation with 

characteristic neuropathological findings found post-mortem.  Gross autopsy typically 

demonstrates cerebral cortical atrophy with prominent atrophy of the hippocampus 22, whereas 

histological examination is required to demonstrate the two characteristic neuropathological 

changes associated with AD.  The first major neuropathological change consists of senile 

plaques, which are associated with the accumulation of the beta-amyloid (Aβ) peptide in the 

brain 23. The Aβ (4 kDa) peptide is derived from a larger amyloid precursor protein (APP), which 

is a highly conserved transmembrane glycoprotein 24.  Aβ peptides, which are formed via the 

action of secretases, are released from the plasma membrane and may accumulate in the brain 
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24,25. Proteolytic cleavage of APP by β-secretase and γ-secretases generates insoluble Aβ, 

whereas cleavage by α-secretase results in the release of non-amyloidogenic, soluble, APPα 

24,25,26.  The APP gene is located on chromosome 21 and encodes the protein APP. Mutations in 

this gene are associated with 10-15% of early-onset AD cases. Mutations in this gene result in 

increased production of Aβ42, and an increased ratio of Aβ42 to Aβ40 25. Aβ42 is longer and 

more prone to fibril formation (with associated neurotoxicity) in comparison to Aβ40 and is 

therefore postulated to play an important role in the pathogenesis of AD 27. Aβ oligomers interact 

with neurons and cause the activation of inflammatory cascades and oxidative stress, which leads 

to neuronal death 27. Additional genes involved in AD pathogenesis are presenilin-1 (PSEN1) 

and presenilin-2 (PSEN2), which are located on chromosome 14 and 1 respectively.  In 

particular, PSEN 1 mutations can be identified in up to 50% of patients with early-onset AD 28. 

PSEN 1 plays a role in calcium signaling and membrane trafficking and is one component of the 

complex responsible for γ-secretase cleavage of APP to release Aβ peptides of varying lengths 

29. Mutations in PSEN 1 increase the generation of the highly fibrillogenic Aβ42 species and 

enhance the accumulation of Aβ in the brain. Mutations in PSEN 2 may also alter the cleavage 

activity of γ-secretase and increase the ratio of Aβ42 to Aβ40 with resultant accumulation of Aβ 

due to reduced Aβ clearance in the brain 29.  

The second neuropathological hallmark of AD is neurofibrillary tangles (NFT) which are 

abnormal fibrous inclusions throughout the brain 30. The primary constituent of these tangles is 

abnormally phosphorylated tau protein, as hyper-phosphorylation of tau causes the formation of 

tau aggregates as neurofibrillary tangles 31. Fluorescent dyes and immunohistochemical 

approaches use antibodies that are directed against abnormally phosphorylated Tau. Tau 

pathology spreads in a stereotyped manner with initial involvement of the entorhinal cortex and 

hippocampus, with subsequent spread to adjacent neocortical mesial temporal structures 

including the inferior temporal region 32,33. Critically, the extent of neurofibrillary tangle 

depositions in AD correlates with the degree of neuronal loss and severity of dementia symptoms 

34.  
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1.2 Biomarkers in Alzheimer’s Disease  

1.2.1 Clinical Assessment Limitations  

AD is diagnosed clinically based on a characteristic history with associated cognitive deficits 

measured with cognitive tests such as the MMSE or MoCA 35. However, previous studies have 

demonstrated that clinical diagnostic accuracy for the diagnosis of AD is 77% 36. There are 

several potential reasons for this finding.  Firstly, during clinical assessments a patient can 

present clinically as cognitively unimpaired yet at autopsy may demonstrate neuropathological 

changes consistent with AD. For example, one previous study found that 60% of cognitively 

unimpaired patients over the age of 80 years had AD neuropathological changes at autopsy 37.  A 

second reason why clinical diagnoses are insufficient for definitive diagnosis of AD is that the 

cogntive symptoms assessed by these scales may be caused by a wide range of neuropathological 

entities such as frontotemporal dementias 38,39, dementia with Lewy bodies (DLB), Parkinson’s 

disease dementia (PDD), and cerebrovascular disease 39.  

In summary, since its initial description AD has been diagnosed based on typical clinical 

symptoms.  However, given that the clinical diagnosis of AD has an imperfect correlation with 

pathology – new methods of differentiating the pathological causes of dementia in vivo have 

recently been developed, such as analyzing biomarkers 40.  These methods are intended to 

overcome the limited sensitivity and specificity of AD clinical diagnosis – by assisting in 

differentiating different neuropathological diseases from one another 41.  These efforts are 

relevant to the evaluation of disease-modifying agents for AD, by enabling subject enrichment in 

clinical trials.  

1.2.2 What are Biomarkers. 

Biomarkers are characteristics that can be measured objectively and are analyzed as indicators of 

normal biological processes and/or pathogenic processes. The world health organization (WHO) 

defines biomarkers as a substance or process that is measured in the body, or its products which 

can aid in predicting the outcome of the disease 42. Biomarkers are chosen if they show strong 

associations with specific clinical conditions and outcomes of the disease they are trying to 

assess43. Biomarkers can improve our understanding of disease pathogenesis which can translate 

into new approaches for certain diagnoses and treatments. In support of the relevance of 

biomarkers to drug development, previous studies have shown that up to three-quarters of the 
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drugs in clinical use have used biomarkers in their clinical trials 44. Clinical endpoints are defined 

as variables that defines an individual’s well-being and health 42. It is important to note that some 

biomarkers may not correlate with clinical symptoms, or the patient’s well-being, highlighting 

the importance of establishing a relationship between candidate biomarkers and clinical 

outcomes 43. This is important when selecting biomarkers for clinical trials - as clinical endpoints 

are the primary goal of clinical research to demonstrate efficacy and result in the approval of any 

therapeutic intervention in clinical practice.  

The need for biomarkers is particularly relevant to AD research because clinical 

endpoints are problematic in clinical trials of disease-modifying agents for AD. For example, the 

clinical endpoints of worsening memory, declining adaptive function, and death occur over a 

protracted time course in AD and therefore are suboptimal outcome measures for AD clinical 

trials 42. Biomarkers can therefore play a critical role as surrogate endpoints to substitute for 

clinical endpoints. However, biomarkers must be accompanied by scientific evidence suggesting 

there is a relationship between the biomarker and its ability to predict clinical outcomes (e,g. 

cognitive function) 44.  Since beta-amyloid plaques , neurofibrillary tau deposits, and neuronal 

loss are the key neuropathological features of AD, existing biomarkers for AD target these 

aspects of the disease pathophysiology 37. 

1.2.3 Positron Emission Tomography Biomarkers  

Positron Emission Tomography (PET) imaging uses tracers that contain positron-emitting 

radioisotopes, which are injected intravenously 45. The distribution and magnitude of radio-

isotope accumulation are then measured, providing insight into the location and distribution of 

the molecule of interest in the brain 45. Aβ- and tau-specific PET ligands have been developed 

and validated in patients with AD 46.   The detection of amyloid pathology has been described 

using multiple tracers including [18F]F-Florbetapir, 18F-flutemetamol, and 18F-florbetaben 47.  

Most recently - [18F]Flortaucipir (also known as tau PET) has been extensively studied to 

measure phosphorylated tau (pTau) deposits and monitors the characteristic pattern of NFT 

accumulation in AD patients48. 
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1.2.4 Comparing Different Biomarkers Specific to Alzheimer’s Disease  

Recent studies have proposed the ATN system for AD diagnosis - where both Aβ (A) and tau 

deposits (T) are required to fulfill the criteria for AD, whereas measures of neuronal injury (N) 

are used to determine the disease severity. An example of the ATN profiling system is that 

patients without neuronal injury (A+T+N-) and with neuronal injury (A+T+N+) are both 

classified as AD, whereas those with neuronal injury are at the more severe end of the 

Alzheimer’s continuum 49. A key future direction in research is to increase the widespread use of 

amyloid, tau, and neuronal injury biomarkers in patients with AD by exploring biomarkers that 

are more widely available, less invasive, and less expensive. 37,50.  Previous studies have 

compared imaging biomarkers with fluid biomarkers to determine which have better predictive 

values for clinical manifestations such as cognitive decline. In addition, a key aspect of 

neuroimaging biomarker development is comparison to established and validated AD biomarkers 

for amyloid, tau, and neuronal injury.   

Initial work by Ossenkoppele et al. in 2018 suggested that PET Tau positivity was a 

better predictor of short-term cognitive decline than PET Aβ or cerebral spinal fluid (CSF) pTau 

in AD patients 51. These authors found that the presence of pathological levels of abnormally 

phosphorylated tau in the brain when measured with PET tau imaging predicted a steeper decline 

in cognition longitudinally, irrespective of the CSF measurements. In addition, this study found 

that control patients had higher rates of CSF amyloid and tau positivity in comparison to tau PET 

positivity, suggesting that tau PET biomarkers have more specificity 51.  

Bucci et al.52 have subsequently performed a comprehensive evaluation of the 

performance of various AD biomarkers.  These authors measured standard uptake volume ratios 

(SUVRs) for a tau PET biomarker, Flortaupir AV- 1451 comparing target (predicted to 

demonstrate abnormal deposition) and reference (control) regions 53,54 in order to quantify 

abnormal phosphorylated tau accumulation in patients with AD 55. Specifically, SUVRs were 

measured from the inferior temporal cortex, entorhinal cortex, and a combined Meta Temporal 

Region (METAROI) which is comprised of the bilateral entorhinal, amygdala, fusiform, inferior 

and middle temporal cortices 51,56,57 whereas the inferior cerebellar region was used as the 

reference (control) region.  They found that only the profiles that were PET tau positive, 
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irrespective of CSF tau status, (i.e either CSF+/PET+, CSF-/PET+) showed a significant decline 

in cognition and overall episodic memory (relative to CSF-/PET-).  In this study, patients with 

amyloid and tau PET positivity (A+T+) had a significant decline in cognition while PET Aβ 

positivity alone (A+T-) did not predict the severity of cognitive decline 52. Furthermore, CSF tau 

levels were less predictive of cognitive decline in comparison to tau PET 52.  These results 

demonstrate that tau PET positivity is a better predictor of cognitive decline in patients with AD, 

in comparison to PET Aβ or CSF pTau positivity 52, suggesting that tau PET is a powerful 

biomarker for AD 58.   

1.2.6 Limitations  

As discussed above, previous research has suggested that tau PET imaging can document 

pathological tau accumulation which is associated with longitudinal worsening of cognitive 

function 59. However, while PET tau imaging has emerged as a powerful biomarker for AD it 

also has important limitations 60.  First, PET scanning involves exposure to ionizing radiation 

which is dependent on the level of radioactivity of the tracer injected, the half-life, and the 

number of injections 61.  This somewhat limits its use for monitoring disease progression over 

time where frequent scans over many years may be required.  Second, tau PET radiotracers must 

be injected intravenously in patients, which can be uncomfortable for some patients and many 

are reluctant to have these procedures done 40.   Another key limitation of tau PET imaging 

relates to limited availability as the required radiotracers to perform tau PET are not widely 

available.  Therefore, an active area of current AD research is to develop novel biomarkers 

which can overcome the key limitations of tau PET listed above.  

1.3 MRI  

1.3.1 MRI as a Biomarker  

MRI is a non-invasive imaging modality that can detect changes in patients with AD and 

can also be used to monitor disease progression62. One of the brain regions that is most severely 

affected in AD is the hippocampus - as this is one of the first regions affected by AD pathology 

63. The hippocampus is a structure that is part of the limbic system, a system that plays a role in 

memory, emotional response, and behavior 64. In particular, the hippocampus is integral to 

consolidating and retrieving declarative memory, which are memories for facts and events 64. 
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The hippocampus also participates in the transfer of memories from short-term memory into 

long-term memory, so damage to the hippocampus from any cause typically results in memory 

impairment and the inability to form new memories 65. The earliest changes detected using 

structural MRI in patients with AD are in the medial temporal lobe structures, such as the 

entorhinal cortex, perirhinal cortex, and the hippocampus. Reduced hippocampal volume as well 

as atrophy of these adjacent mesial temporal cortices are associated with the severity of memory 

deficits in patients with AD 66,67.  

1.3.2 Advantages and Limitations of MRI  

MRI is a very promising modality for AD biomarker development as it is widely available, non-

invasive, and does not involve exposure to ionizing radiation.  However, MRI is currently 

considered a late biomarker for AD in comparison to tau and amyloid measurements.  Jack et al. 

have found that beta-amyloid and phosphorylated tau PET biomarkers are “upstream” 

biomarkers meaning abnormalities on these measures occur earlier in patients with AD, whereas  

neurodegenerative biomarkers (such as structural MRI) are considered “downstream” or late 

biomarkers,  highlighting the current limitation of conventional structural MRI as a biomarker 

for AD 68.  These limitations of current methods highlight the need for more sensitive MRI-based 

biomarkers which are correlated with existing (invasive) AD biomarkers.  

1.3.3 Hippocampal Subfields and Anatomy  

The hippocampus can be divided into three sections (head, body, and tail) ranging from most 

anterior to most posterior based on the macrostructural features of the hippocampus 69.  In 

addition, the hippocampus is made of several distinct subfields which are continuous throughout 

the longitudinal axis of the structure. As seen in Figure 1, the hippocampus can be divided into at 

least 6 subfields: Subiculum, Cornu Ammonis 1-4 (CA1-4), and the dentate gyrus (DG) 69. The 

hippocampal body demonstrates a characteristic C-shaped configuration with the DG being in 

the most inward part of the folding, followed by CA4 all the way to CA1 – with the subiculum 

being located on the outermost aspect of the folding where it is adjacent to the medial temporal 

lobe neocortex (entorhinal cortex) 70.  The subiculum is involved in verbal delayed recall 

performance, while the dentate gyrus, CA1, and the CA4 regions are most strongly associated 

with delayed memory recall performance 71. CA2, CA3, and the subiculum are involved during 
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learning, and the CA1 and posterior parts of the subiculum are involved during the retrieval of 

novel associations71.  

Figure 1. 

 

 

 

 

 

Figure 1. In Vivo Hippocampal Subfield volumetry with HippUnfold 

A) Coronal T2 Weighted MR Image (resolution - 0.39 mm x 0.39 mm x 2.0 mm) of the 

hippocampal body 

B) HippUnfold-based delineation of hippocampal subfields: Sub= Subiculum, CA = Cornu 

Ammonis, DG = Dentate gyrus, and SRLM=stratum radiatum, Lacunosum, and 

moleculare.    

 

1.3.4 Whole Hippocampus and Subfield Volumes  

MRI studies have been performed on the hippocampus to detect atrophy patterns in patients with 

AD. Studies have achieved this by using the volume from segmentations, voxel-based 

morphometry approaches, and surface mesh modeling approaches. Studies have found that 

compared to CN and MCI individuals, AD individuals have significantly reduced subiculum and 

CA1 volumes 72,73. These studies have also found reduced subiculum volumes in MCI 

individuals who convert from MCI to AD when compared to MCI individuals who did not 

convert, suggesting that hippocampal subfield atrophy can be a predictor of conversion from 

MCI to AD 73. In addition, previous studies have demonstrated that the CA2 region is relatively 

spared in volumetric analysis of the hippocampus when comparing between CN, MCI, and AD 

74.  
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In the literature, it is known that the pattern of atrophy is consistent with the pattern of 

neurofibrillary tangles progression in the course of AD. Different regions of the hippocampus are 

known to be affected differentially by NFT with the greatest involvement of the CA1 and 

subiculum regions 75. Previous subfield volumetric studies have documented the greatest severity 

of atrophy in the CA1 region 73, deformation of the hippocampal head, 74 and sparing of the 

posterior hippocampus 76. 

1.4 Hippocampal Segmentation 

1.4.1 Manual Segmentation  

Hippocampal subfield volumetry has been extensively studied in patients with MCI and AD. In 

histology, hippocampal subfields are defined based on neuroanatomical features (i.e. transitions 

in cytoarchitecture) 70.  Manual segmentation of MR images can identify atrophy of specific 

hippocampal subfields due to neurodegenerative disorders such as AD 77. Manual segmentation 

entails manual tracing of hippocampal subfield boundaries of the hippocampus on MR images 78. 

However, manual hippocampal subfield volumetry has several important limitations. The first 

limitation is that manual segmentation is labor and time intensive 78,79.  The second limitation is 

that there are a large number of different manual segmentation protocols previously described in 

the literature, the vast majority of which are not histologically validated 80. This makes the 

comparison of results across different laboratories problematic.   

1.4.2 Automated Segmentation Software 

Many automated segmentation programs have previously been developed to overcome the 

limitations of manual segmentation protocols described above. These tools provide automated 

segmentation of MRI images to segment the hippocampus into its constituent subfields. A 

variety of methods have been described, including machine learning approaches based on 

‘ground truth’ manual segmentation of hippocampal subfields 81. In contrast, other previous 

methods in the literature have utilized a multi-atlas approach to describe probabilistic 

segmentation of MRI images 81.  

Some notable software currently widely used in the previous literature include Freesurfer and 

Automatic Segmentation of Hippocampus subfield (ASHS). Freesurfer is an open-source 
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automated segmentation program that is used to analyze and visualize brain anatomy. Freesurfer 

uses a single probabilistic atlas for its segmentations and it assigns labels depending on 

alignment with the atlas probability along with image intensity 82.   

 ASHS is another well-known automated segmentation program that uses a slightly 

different approach than Freesurfer. ASHS uses a multi-atlas segmentation technique which 

consists of a training pipeline and then later a segmentation pipeline. In this method, the training 

pipeline is based on one set of subjects to create a segmentation multi-atlas package, and this 

package is later used for the segmentation of new subjects 83.   

1.4.3 Limitations  

Freesurfer, ASHS, and other automated segmentation have limitations to them that prevent 

research to localize atrophy patterns beyond that of whole hippocampus volumes and whole 

subfield volumes. First, current automated segmentation programs do not fully segment  

subfields throughout the entire anterior-posterior axis of the hippocampus (head, body, and tail) 

84. The tail and head of the hippocampus have very curved anatomy making it difficult for certain 

automated segmentation programs to segment along the entire long axis, which leads to subfield 

discontinuity 85. Furthermore, existing methods (ASHS and FreeSurfer) do not allow for 

hippocampi to be aligned in a common space, which makes a comparison of atrophy patterns 

across patients and correlation with existing biomarkers technically difficult.  

1.4.4 HippUnfold  

HippUnfold is an automated segmentation program that uses U-net learning (described below) to 

take into account the variable folding patterns of the hippocampus, including the head and the 

tail of the hippocampus, and segments the subfields through the long axis of the hippocampus 86. 

By unfolding the hippocampus into flat maps in a common space - this software can give us 

localized insights into the atrophy patterns of the hippocampus. This includes thickness and 

volumetric profiles of the subfields of the hippocampus with regional specificity. This is 

achieved by using continuous subfield labeling throughout the head, body, and tail which can be 

correlated with existing biomarkers using a recently developed tool called BrainStat 87. 

HippUnfold has the ability to not only calculate subfield volumes, but it has the ability to 
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measure the thickness of the hippocampus throughout the entire anterior-posterior axis of the 

hippocampus, something not seen with conventional automated software.  

1.5 Research Hypothesis 

Here we aimed to use two recently developed tools (HippUnfold and BrainStat) to correlate 

hippocampal thickness measurements on a vertex-wise basis with tau PET values. We 

hypothesized that a decrease of hippocampal thickness values, especially in the subiculum and 

CA1 would be correlated with increase in tau PET in a cohort of healthy elderly, patients with 

MCI, and patients with AD.   

 

Chapter 2. Methods 

2.1 Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

2.1.1 Background and Cohorts 

Data used for this study was obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) database (adni.loni.usc.edu), led by Principal Investigator Michael W. Weiner, MD.  

ADNI was launched in 2004 as a longitudinal multicenter study that encompasses 

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of the 

progression of AD and to assess the brain structure and function over the course of the disease 88. 

ADNI is an open-source database that enables the sharing of data between researchers around the 

world. From the time of its launch, ADNI has gone through multiple phases consisting of 

different goals, acquisition criteria, patients, and objectives. ADNI enrolls patients between the 

ages of 55 and 90 across the United States and Canada 88. ADNI is a large database acquired 

from healthy elderly patients, subjects with MCI, and AD and includes a wide range of patient 

data including cognitive scores (MMSE and MoCA), medication data, vital signs, neurological 

exam scores, demographic information, genetic data, cerebral spinal fluid biomarkers, and 

imaging biomarkers such as MRI and PET.  

As part of our inclusion criteria, all patients had at least one Highreshippocampus (high 

resolution T2 weighted) image taken at any visit during the study. All patients also had full 
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cognitive score profiles that include MMSE and MoCA. Finally, all patients had full PET 

phosphorylated tau profiles. This includes SUVRs for the METAROI, the Inferior Temporal 

region, and the Entorhinal region. Patients who had these criteria listing were included in this 

study. 

2.1.2 Imaging Biomarkers  

The high resolution T2-weighted images were acquired with an oblique orientation - with 2mm 

thick slices perpendicular to the long axis of the hippocampus, with a spatial resolution of: 0.39 x 

0.39 x 2 mm 89. These images were acquired from ADNI 3 and from roll over patients from 

ADNI 2 who were reassessed in ADNI 3. All images were acquired through a 3T scanner. The 

timing parameters include repetition time (TR) of 8020 ms and a time of echo 50 ms. T2 

weighted images were used due to its ability to detect diseases and neuropathological processes 

90.  

These images were used in our segmentation software to calculate the volume and thickness of 

subfields throughout the long axis of the hippocampus. T2 weighted images were assessed to 

ensure adequate visualization of the hippocampus prior to inclusion in our study.  

2.1.3 Positron Emission Tomography Biomarkers 

PET biomarkers were also analyzed for this project. AV1451, also known as Flortaucipir, was 

used to detect abnormally phosphorylated tau (tau PET). Here we look at three different regions 

of interest while keeping the reference region as the inferior cerebellar region the same when 

calculating the SUVRs for all the regions. The first region of interest is the METAROI which is 

comprised of the bilateral entorhinal cortex, amygdala, fusiform gyrus, and inferior and middle 

temporal cortices.  The second region of interest is the inferior temporal cortex region. Finally, 

the last region of interest is the entorhinal region of interest. The entorhinal cortex indicates early 

tau deposits, while the inferior temporal region is affected later in AD, and METAROI 

encompasses a broader area of tau deposits. By analyzing these three regions we endeavoured to 

encompass the spectrum of potential tau burden seen in patients with AD. In this study, we used 

continuous tau PET data instead of discrete cut-off thresholds to define tau positivity. In 
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summary, we compared tau PET as a continuous variable to hippocampal thickness (also a 

continuous variable) in order to characterize the relationship between these two measures.    

2.1.4 MRIcroGL and Brain Imaging Data Structure (BIDS) Formatting 

MRIcroGL software is used to convert the DICOM files of each downloaded folder into a NIFTI 

file. Next, individuals were organized under Brain Imaging Data Structure (BIDS) formatting, an 

organizing scheme used by neuroscientists. Due to there being an increase in neuroimaging 

analysis, BIDS formatting was created as a universal organization of neuroimaging data used by 

data scientists and researchers in the field of image analysis as a universal and organized way to 

interpret data 91. HippUnfold is a BIDS app, that uses and understands BIDS datasets. BIDS apps 

require the input files to be formatted in a particular way for the program to read the input data 

appropriately and compute the desired output measurements.  

2.2 HippuUnfold 

2.2.1 Background: 

HippUnfold is a recently released automated segmentation software that works with T1-

weighted or T2-weighted MR images to segment the subfields along the long axis of the 

hippocampus and renders the volume, thickness values, and other parameters of hippocampal 

subfields 86. As discussed above, HippUnfold was created to overcome some of the limitations of 

current automated hippocampal segmentation programs, specifically to consider and 

accommodate the variability of size, shape, and folding patterns seen across hippocampi. 

HippUnfold employs a “U-net” deep convolution neural network and enforces topological 

constraints on the hippocampus. U-net is a deep learning architecture that was trained and tested 

on 738 hippocampal MR images from 369 subjects in the human connectome project 86. The 

neural network segments the grey matter along with the stratum radiatum, lacunosum, and 

moleculare (SRLM), and structures surrounding the hippocampus. It does so accurately due to 

the high number of subjects used in the training phase of the program and has also been 

generalized to other datasets. HippUnfold training was repeated using T1-weighted, T2-

weighted, and diffusion weighted images. Once U-net segments the hippocampus appropriately, 

it defines consistent and specific boundaries of the hippocampus.  From these boundaries, 

Laplacian equation is applied and solved to create a geodesical coordinate gradient so that each 
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hippocampus in this study has the same intrinsic surface alignment. Each coordinate number 

created from the Laplacian equation is defined as a vertex and these vertices can be used for 

statistical comparisons.  Hippocampi are subsequently ‘unfolded’ and co-registered into common 

space using the same boundaries segmented from the U-net program.   

2.2.2 Laplacian Equation  

The Laplacian equation is initially a mechanical engineering term used in the past to describe 

heat transfer. The concept can be described with the example of utilizing two points, one being 

very hot and one being very cold 92. Laplacian equation is used to create a gradient between the 

very hot point to the very cold point. An example of this can be seen in Figure 2a) The very hot 

point is labeled as +9.0 while the very cold point is labeled as -9.0. 2b) then applies the 

Laplacian equation to create a gradient between the very hot point and the very cold point to fill 

in the rest of the grid. This is what HippUnfold employs after the U-net segments the 

hippocampus and uses surrounding structures to create the unfolded flat map space boundaries.  

The example given by DeKraker et al. in HippUnfold is that if you imagine a wire 

attached to something very hot (100 degrees) and then something very cold (0 degrees) and wait 

for the wire to reach equilibrium. You then have another wire that can be of different lengths 

(mimicking the variability of the hippocampus) and let that second wire reach equilibrium. To 

allow comparison of these two wires, one would find a homologous point between the two wires 

which are at the same temperature after equilibrium - and compare these two points (e.g. where 

both of the wires are at ‘10 degrees’). This is the same concept used to the segment the 

hippocampus with HippUnfold. First U-net defines boundaries, and then the Laplacian equation 

creates a gradient between the two boundary points. To find two homologous points between two 

different hippocampi, we would look for a value created by the Laplacian equation we are 

interested in. For example, if a certain gradient number to another certain gradient number 

encompasses the subiculum of the hippocampus, any gradient number between those points that 

we choose would be homologous between all hippocampi and would be located in the 

subiculum. This principle underlies how HippUnfold places hippocampi of varying shape and 

size into spatial correspondence via Laplacian coordinate systems 86.  

After U-net segmentation, there are 3 axis boundaries the HippUnfold uses. The first one 

is the anterior-posterior axis. The Laplacian field in HippUnfold is created by marking the 
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anterior boundary of the hippocampus as 0 and the posterior part of the hippocampus as 1. The 

Laplacian equation then creates a geodesic coordinate gradient between these two boundary 

points. The next boundary point is the proximal (proximal to the adjacent temporal lobe, i.e. the 

subiculum) -distal (distal to the adjacent temporal lobe, i.e. the DG) axis with one of the 

boundaries labeled as 0 and the other labeled as 1 with the Laplacian equation creating a gradient 

between these two boundaries. Now this creates a rectangle that has a full coordinate gradient 

plane spanning the 2D dimensions of the entire hippocampus flat rectangle. A third coordinate 

gradient is then added encompassing the interior to outer axis (IE laminar), and this axis 

generates the thickness axis of the hippocampus. From these three axes, the Laplacian equation 

creates a gradient coordinate grid throughout the entire hippocampus in three dimensions. The 

gradient numbers now can be described as vertices on the hippocampal surface. This creates an 

intrinsic alignment between all the hippocampi in this study, as the vertices in the unfolded flat 

map for each hippocampus will match the corresponding vertices on all other hippocampi. This 

makes it possible to perform statistical analysis on all the hippocampi in the study due to this 

intrinsic alignment of vertices created by the Laplacian equation. In conclusion, from the Laplace 

coordinates spanning over the entire hippocampus, these surfaces have corresponding vertices 

which allows for registration between individuals.  

Figure 2.  

 

 

Figure 2. Diagrammatic explanation of Laplacian equation.  

A) A hypothetical grid is displayed, the extremes of which have values of -9.0 (cold, purple) and 

+9.0 (hot, red), and are shown in the corners of the grid.  

A) B) 
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B) Laplacian equation is applied to create a coordinate grid between these two points of known 

value. From this, we get known values between the two initial points of interest. 

2.2.3 BigBrain labels and Flatmaps   

Once the flat maps are constructed by HippUnfold and the entire Laplacian coordinate gradient is 

created, there is an intrinsic alignment between all of the hippocampi which allows for 

comparison between any two points of interest (as described in the ‘10 degrees’ analogy above). 

The last step HippUnfold does is topologically constrain the hippocampus. The program employs 

a surface based-subfield boundary segmentation, which is based on MR-identifiable features and 

validated against manual segmentation of BigBrain 3D histology, to produce unfolded flap maps 

of the hippocampus 86. By utilizing this method, all hippocampi in our study also have 

corresponding subfield labeling spanning the entire anterior-posterior axis of the hippocampus 

(i.e subfields are placed into spatial correspondence). HippUnfold thus uses a topologically 

constrained framework which helps overcome the limitations of the current segmentation 

programs used in current hippocampal subfield research 86. This method uses the Laplacian 

coordinate framework, HippUnfold flatmaps, along with topologically constrained subfields in 

order to enable comparison across large number of hippocampi of different size and shape.  

2.2.4 HippUnfold vs Other Automated Segmentation Software 

As described above, our rationale for using HippUnfold over other existing automated 

segmentation software relates to the limitations that it overcomes, specifically the inability of 

existing programs to account for the variability of the different size, shape, and folding patterns 

between individual hippocampi. This is because current automated segmentation software such 

as Freesurfer and ASHS employ single atlas or multiple atlas fusion templates when segmenting 

MR images. A limitation of this approach is that it does not fully capture the variability 

displayed in the hippocampus between different individuals and the different folding patterns 

between individuals. Relatedly, one of the biggest limitations of current software is the inability 

to fully segment all subfields throughout the entire anterior-posterior axis of the hippocampus 

(head to the tail). Illustrative examples include that these software programs can result in 

oversimplifications such as the anterior part (head) of the hippocampus being labelled 

exclusively as CA1, or omissions such as the posterior region (tail) can remain unlabelled 86.  In 
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addition, current approaches can result in discontinuity of hippocampal subfields throughout the 

long axis.  

Finally, HippUnfold is able to generate quantitative metrics of hippocampal structure – 

which cannot be easily analyzed with existing tools.  Hippocampal thickness is a parameter 

related to hippocampal volume, but which could provide greater insights to long axis 

hippocampal atrophy in comparison to volumes. As HippUnfold produces flatmaps, it allows 

analysis of the hippocampus as a ribbon (in its unfolded form) such that the thickness can be 

readily calculated, measuring from the inner to the outer surfaces.  

 2.2.5 Key Outputs 

Figure 3 below shows the output of HippUnfold - with hippocampal subfields segmented in the 

coronal, sagittal, and axial planes. From these segmented subfields, important parameters are 

extracted including: thickness (mm), gyrification, and curvature. 

Figure 3. 

 

Figure 3 - Subfield volumetry throughout the entire hippocampal long axis with HippUnfold 

Coronal High resolution (2mm slice thickness – 0.39x2x0.39mm) T2-weighted MR Image is 

shown at the level of the hippocampal body.  HippUnfold-based subfield delineations are shown 

for the left hippocampus in the a) coronal, b) sagittal, and c) axial planes yielding subfield 
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volumes for Sub= Subiculum, CA = Cornu Ammonis, DG = Dentate gyrus and SRLM=stratum 

radiatum, Lacunosum, and moleculare.  

From HippUnfold we are able to obtain volume outputs of the subfields in mm3 of the left 

and right hippocampi and we are also able to acquire thickness measurements.  As discussed 

above, HippUnfold produces a Laplacian coordinate grid with 14,000 vertices per subject, the 

first 7000 being from the left hippocampus and the other 7000 being from the right hippocampus. 

Finally, the surface labels of the unfolded surface are obtained. The images and segmentation 

were quality checked to make sure that HippUnfold did a proper and thorough scan of the MRI 

images and an anatomically reasonable segmentation of hippocampal subfields. Quality check 

was done via the quality check output file where you are able to visualize the segmentations and 

labels along with the 3D rendering of the hippocampus. 

2.3 BrainStat 

 2.3.1 Background 

Python is a universal coding language that is an open-sourced program that allows data scientists 

to use pre-made and built-in user packages in their analysis. Jupyter notebook was used as the 

integrated development Environment (IDE) used for the analysis of the project. Important 

Python packages that were downloaded included BrainStat, HippUnfold_toolbox, Brainspace, 

Nilabel, Pandas, Numpy, Matplotlib.pyplot and Glob. The code used for this project can be 

found at https://github.com/MujtabaSiddique/ADNI, which outlines the multiple packages we 

used to run the statistical models. BrainStat was used for the statistical analysis of linear 

regression models and Hippunfold_toolbox was used for the plotting of the images. 

Thickness files were smoothened to 2mm as smoothening is required as an assumption 

for the statistical analysis performed in our study (random field theory). Smoothened thickness 

data for all the individuals in the study were merged and averaged out for both the left and right 

hippocampi separately. BrainStat SLM (general linear model) package was then used to apply 

linear regression models on a vertex-wise basis to test for significant correlation between our two 

variables of interest: 1) tau PET SUVRs and 2) hippocampal thickness 87 and to evaluate for 

statistically significant peaks and clusters.  Finally, the significant clusters and peaks between 

https://github.com/MujtabaSiddique/ADNI
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these two variables were plotted in common space on the flatmaps generated in the Hippunfold 

toolbox. 

2.3.2 Linear regression model 

The linear regression model used in BrainStat is modeling a relationship between two or more 

variables by fitting a linear equation to the observed data. This is used to model the relationship 

between a dependant variable, whether it be brain activity or brain thickness to other predictors 

or independent variables. General linear models follow the equation 𝑌 = 𝑋𝐵 + 𝑍𝛾 + 𝑒, where Y is 

the n-m matrix (n is the number of subjects and m is the number of vertices), B and 𝛾 are model 

coefficients. X and Z are the fixed or random effect predictors and e is the error 87.  

In our study, the predictors used such as age, sex, diagnostic group, and tau PET levels, 

were classified as fixed effects in the linear model 93. This was decided based on the fact that in 

this study, we were primarily interested in examining only the relationship between tau PET and 

hippocampal thickness values, and random effects were not expected to contribute significantly 

to the variability in either of these two measurements94.  Tau PET was the contrast vector when 

correlating it with the decrease in hippocampal thickness and the linear model was performed as 

a one-tailed t-test when conducting our regressions.  

2.3.3 Statistical Analysis  

This study uses ordinary least squares (OLS) to estimate the model coefficients. Since our model 

only contains fixed effects, BrainStat solves the ordinary least square (OLS) problem for each 

brain location 87. OLS is a method that is commonly used for fitting linear regression models to a 

set of data points to understand a relationship between a dependent variable (in this case 

hippocampal thickness) and independent variables (in this case tau PET SUVR) 95. The goal of 

the ordinary least square problem is to best fit the data by minimizing the sum of square 

differences, to reduce the errors between the actual values and the predicted values of the 

dependent variable at each vertex. 

In this study, the test to compute the t-statistics is a student t-test. A t-test is used to test 

for the significance of the estimated coefficients of the independent variables to determine if 

there is a relationship between the dependant and independent varible. The t-statistics are then 
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used to derive the p-values to determine if a significant relationship is developed 96. Due to the 

high number of multiple statistical tests being conducted on our data, multiple comparison tests 

are also performed in BrainStat to reduce the number of false positives errors in our results, 

because as one performs multiple statistical tests, the probability of obtaining a statistically 

significant result increase, so the aim of this is to control for that so no erroneous conclusions are 

made from the statistical tests. The two multiple comparisons tests used in this study are the false 

discovery rate and random field theory. Random field theory corrects for the probability of ever 

reporting a false positive 97. The basis behind random field theory is that it is a statistical test that 

tests whether the observed data deviates significantly from what would be expected if the data 

was completely random. As discussed, smoothening is one of the assumptions required for 

random field theory. False discovery rate is another multiple comparison test employed in our 

study to mitigate the likelihood of false positives in the data.  

2.3.4 Significant Clusters and Significant Peaks  

It is important to define a significant cluster and a significant peak and what they mean from a 

statistical analysis point of view. Significant clusters in a certain area indicates that a cluster 

group of adjacent vertices meet and exceed a provided threshold of magnitude and size. 

Significant clusters in other terms are defined by a group of adjacent vertices that show a 

statistically significant difference in mean thickness. Significant clusters provide us with 

information about the spatial extent and distribution of brain regions affected. If there are only 

significant clusters available that suggests that increase tau PET effects cover a large region 

rather than local foci. Significant clusters show broader regions of interest. Signficant clusters 

are calculated by setting a cluster defining threshold, p = 0.01. Significant peaks in a certain 

cluster indicates that the statistical significance of individual vertices peaks within a cluster has 

the highest magnitude of correlation between reduced thickness and increase abnormal tau 

deposits. It is a measure of significance of individual peaks within clusters that contribute most 

strongly to the observed results. Significant peaks provide information about specific focal 

regions within the clusters where the effects and correlation are strongest. Peaks are calculated 

individually via t-test in regression models. 
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Figure 4.  

 

Figure 4 – Methodology of hippocampal subfield thickness correlations 

High resolution MR images (0.39x2x0.39mm) were obtained for subjects (CN, cognitively 

normal; MCI, mild cognitive impairment; AD, Alzheimer’s Disease) from the ADNI database 
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and processed using Brain Imaging Data Structure (BIDS) formatting, a universal way for 

organizing neuroimaging data.   HippUnfold was then used to provide automated segmentation 

of individual hippocampal subfields – yielding subfield volume and thickness measurements. 

Tau PET values were then correlated with thickness data using the BrainStat general linear 

model package to identify significant clusters and peaks on the hippocampus – which are then 

plotted on hippocampal flatmaps using the HippUnfold toolbox.   

Chapter 3. Results  

3.1 Demographics 

In this study, patients were separated into both left-hemisphere hippocampus and right- 

hemisphere hippocampus cohorts. This was done so that the appropriate thickness values for 

each hemisphere were plotted on their appropriate left or right flatmap for statistical analysis 

purposes. We also have left and right cohorts because certain patients in ADNI had properly 

segmented left hippocampus but very atrophic right hippocampus, while others had properly 

segmented right hippocampus and atrophic left hippocampus that could not be appropriately 

segmented. In order to use all of the properly segmented hippocampi, the patient cohort was split 

into left and right hemispheres with the majority of the patients being in both cohorts.   

The baseline demographic details for the left hemisphere cohort are seen in Table 1. A 

total of 524 patients had HippUnfold segmented left hippocampi that were acquired from the 

ADNI 3 database. For the cognitively normal cohort, the mean age was 71.6 ± 7.4 years while 

the mean age for the MCI and AD group were 73.0 ± 7.6 years and 73.6 ± (8.7) years 

respectively. The number and percentages of females in all three groups from CN, MCI to AD 

groups were 169(60.8%), 95(46.3%), and 17(41.5%). The average MMSE scores for the CN, 

MCI, and AD groups are 29.0 ± 1.3, 27.9 ± 2.0, and 23.4 ± 3.2. The average MoCA scores for 

the CN, MCI, and AD groups are 26.1 ± 2.6, 23.4 ± 3.4, and 17.6 ± 4.7. The mean standard 

uptake volume ratio for the METAROI region increases from 1.20 ± 0.11 in the CN group to 

1.30 ± 0.28 in the MCI group and finally 1.61 ±0.37 in the AD group. This increase in the SUVR 

is also seen in the Entorhinal cortex with 1.15 ± 0.12 in the CN group to 1.27 ± 0.27 in the MCI 

group and finally 1.51 ± 0.25 in the AD group and the Inferior temporal cortex with 1.23 ± 0.15 

in the CN group to 1.33 ± 0.33 in the MCI group and finally 1.70 ± 0.47 in the AD group.  
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The demographics for the right hemisphere cohort were comparable as seen in Table 2. A total of 

544 patients had fully segmented right hippocampi that were acquired from the ADNI database. 

For the cognitively normal cohort, the mean age was 71.6 ± 7.3 years while the mean age for the 

MCI and AD group were 73.7 ± 7.8 years and 74.0 ± 8.9 years respectively. The number and 

percentages of females in all three groups from CN, MCI to AD groups were 172(61.2%), 

103(47.0%), and 20(45.5%). The average MMSE scores for the CN, MCI, and AD groups are 

29.0 ± 1.3, 27.7 ± 2.2, and 22.8 ± 3.6. The average MoCA scores for the CN, MCI, and AD 

groups are 26.1 ± 2.6, 23.2 ± 3.5, and 17.3 ± 4.9. The mean standard uptake volume ratio for the 

METAROI region increases from 1.20 ± 0.11 in the CN group to 1.30 ± 0.28 in the MCI group 

and finally 1.63 ± 0.38 in the AD group. This increase in the SUVR’s is also seen in the 

Entorhinal cortex with 1.15 ± 0.12 in the CN group to 1.28 ± 0.27 in the MCI group and finally 

1.53 ± 0.24 in the AD group and the Inferior temporal cortex with 1.21 ± 0.12 in the CN group to 

1.33 ± 0.31 in the MCI group and finally 1.68 ± 0.44 in the AD group.  
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Table 1. Patient Demographics 
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Table 1. – Patient Demographics 

A) Left hemisphere B) Right hemisphere 

The study population comprised three cohorts - Cognitively normal (CN), Mild Cognitive 

Impairment (MCI), and Alzheimer's Disease (AD).   The proportion of females versus males in 

each cohort, age, MMSE, MoCA scores are displayed.  Positron Emission Tomography (PET) 

phosphorylated tau SUVRs data are displayed from the regions of interest analyzed in our study.  

3.2 Hippocampal Thickness Correlated to tau PET. 

3.2.1 Meta-Temporal Region (METAROI). 

The METAROI SUVR was correlated to the hippocampal thickness along the entire 

hippocampus. As mentioned briefly before, the METAROI consists of the bilateral entorhinal, 

amygdala, fusiform, inferior, and middle temporal cortices, all of which are areas affected by the 

abnormally phosphorylated tau tangles according to the proposed stages of tau pathology in AD.  

Linear regression models were run through BrainStat. In this linear regression model, the fixed 

effects included age, sex, age*sex interaction, diagnostic groups, and METAROI SUVR values. 

The contrast vector was METAROI which was fitted into the smoothened thickness values. 

There were significant clusters and significant peaks in the clusters throughout the hippocampus 

for both the right and left hemispheres. It can be seen that there are two significant clusters in the 

left hemisphere when decreased hippocampal thickness is correlated with tau PET SUVRs. 

Cluster 1 contained a total of 1920 vertices p = 0.000003 and is located in the body and the tail 

region of the subiculum and CA1 subfields of the hippocampus as seen in Figure 5. Cluster 2 in 

the left hemisphere contained 232 vertices, p = 0.005791, and is located in the body and tail 

regions of the CA4 and CA3 subfields. There are three significant clusters in the right 

hemisphere when correlating reduced hippocampal thickness to increase SUVR in the meta-Roi 

region. Cluster 1 in the right hemisphere contains 1383 vertices, p = 0.000083, and is located in 

the body and tail region of the subiculum and CA1 subfields as seen in Figure 5. Cluster 2 in the 

right hemisphere contains 317 vertices, p = 0.004211, is located in the head region of the CA1, 
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CA2, and CA3 subfields. Cluster 3 contains 145 vertices, p =0.025376, and is located in the body 

region of the CA3 and CA4 subfields.  

As shown in Figure 6 - there are many significant peaks within the significant clusters 

that were seen in Figure 5. Looking at the 5 most significant peaks throughout the hippocampus, 

the peak with the strongest t-statistic and lowest p-value is located in cluster one p = 0.000003. 

The second and third most strongly correlated peaks were also located in cluster 1 with the p 

values of p = 0.000120 and p= 0.000821 respectively. Peak four and five had very high t-

statistics as well and are located within cluster two with the p-values of p= 0.001275 and p = 

0.008027 respectively. Significant peaks were also seen in the clusters of the right hemisphere. 

The strongest right hemisphere peak was found in cluster one with p = 1.4957 x 10-9. The next 

two significant peaks are located in cluster 2 with the p values of p = 2.192 x 10-3 and 2.967 x 10-

3.  

 

Figure 5 
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Figure 5. – Significant clusters when correlating METAROI PET tau to the reduced thickness  

Significant clusters are produced by the linear regression model when comparing reduced 

hippocampal volume along the entire anterior-posterior axis to the SUVR values in the 

METAROI. Subfields were generated using the HippUnfold software from DeKraker et al. 2022 

86. These BigBrain labeled subfields were then manually overlayed on top of the output flatmaps 

from BrainStat. The BigBrain labels are as follows, the blue is the subiculum, the aqua is the 

CA1, the green is the CA2, the orange is the CA3, and the red is the CA4 subfield.  Cluster 1 in 

the left hemisphere is located in the body and the tail region of the subiculum and CA1. Cluster 2 

in the left hemisphere is located in the body and tail regions of the CA4 and CA3 subfields.  

Cluster 1 in the right hemisphere is located in the body and tail region of the subiculum and CA1 

subfields. Cluster 2 in the right hemisphere is located in the head region of the CA1, CA2, and 

CA3 subfields. Cluster 3 in the right hemisphere is located in the body region of the CA3 and 

CA4 subfields.  

 

Figure 6 
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Figure 6 – Significant peaks when correlating METAROI tau PET to reduced thickness.  

This figure shows significant peaks produced by the linear regression model when comparing 

reduced hippocampal volume along the entire anterior-posterior axis to the SUVR values in the 

METAROI. Significant peaks are plotted onto the hippocampal flatmap in both the right and left 

hemispheres and then it is folded back into its 3D conformation which can be seen by the images 

on either side of the flatmaps. Subfields were generated using the HippUnfold software from 

DeKraker et al. 2022 86. These BigBrain labeled subfields were then manually overlayed on top 

of the output flatmaps from BrainStat. The significant peaks are shown to be within significant 

clusters from Figure 5. Peaks are shown to be located in body of the subiculum, CA1, and CA3 

subfields in the left hippocampus. The majority of the peaks are located in the body of the 

subiculum, CA1, and CA3 subfields as well as the head of the CA1-2 subfields in the right 

hemisphere.  

 

3.3.2 Entorhinal Region. 
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The Entorhinal region SUVR was correlated to the hippocampal thickness along the entire 

hippocampus.  The entorhinal cortex is a region in the brain that is one of the first sites of tau 

pathology seen in AD.  Linear regression models were run through BrainStat. In this linear 

regression model, the fixed effects included age, sex, age*sex interaction, diagnostic groups, and 

entorhinal SUVR values. The contrast vector was entorhinal which was fitted onto the 

smoothened thickness values. There were significant clusters and significant peaks in the clusters 

throughout the hippocampus. Looking at the significant cluster values, it can be seen in the left 

hemisphere that there are four significant clusters. Cluster 1 contains a total of 2506 vertices, p = 

8.48 x 10-8, and is located in the body and the tail region of the subiculum and CA1 subfields of 

the hippocampus as seen in Figure 7. Cluster 2 in the left hemisphere contained 203 vertices, p = 

7.15 x 10-3, and is located in body regions of the CA2, CA3, and CA4 subfields. The third 

significant cluster contains 201 vertices, p = 2.2 x 10-2, which is located in the head region of the 

CA3 and CA4 subfields. There are three significant clusters in the right hemisphere when 

correlating reduced hippocampal thickness to increase SUVR in the Entorhinal region. Cluster 1 

in the right hemisphere contains 1610 vertices, p = 0.000023, and is located in the body and tail 

region of the subiculum and CA1 subfields as seen in Figure 7. Cluster 2 in the right hemisphere 

contains 325 vertices, p = 0.006265, and is located in the head region of the CA1, CA2, and CA3 

subfields. Cluster 3 contains 210 vertices, p =0.008943, and is located in the body region of the 

CA3 a d CA4 subfields.  

As shown in Figure 8, many significant peaks are identified within the clusters that were 

significant in Figure 7.  Looking at the 5 most significant peaks throughout the left hippocampus, 

the top three peaks with the strongest t-statistics and lowest p values are located in cluster one of 

p = 0000003, p = 0.00022, and p = 0.00142 respectively. Peaks 4 and 5 had very high t-statics as 

well and are located within cluster two with the p-values of p= 0.000477 and p = 0.000502 

respectively. Significant peaks were also seen in the clusters on the right. The strongest right 

hemisphere peak is located in cluster one of p = 1.0925 x 10-7. The second strongest peak with 

the highest t-value and lowest p-value is located in cluster two of p = 6.846 x 10-4. The third peak 

is located in cluster three of p = 2.29 x 10-3. The fourth peak is also located in cluster one like 

peak 1 with a p = 3.74 x 10-3. Finally, the fifth peak is located in cluster two like peak one with a 

p = 9.82 x 10-3.    
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Figure 7  

Figure 7– Significant clusters when correlating Entorhinal PET tau to reduced thickness.  

This figure shows the significant clusters produced by the linear regression model when 

comparing reduced hippocampal volume along the entire anterior-posterior axis to the SUVR 

values in the Entorhinal. Subfields were generated using the HippUnfold software from 

DeKraker et al. 2022 86. These BigBrain labeled subfields were then manually overlayed on top 

of the output flatmaps from BrainStat. Cluster 1 in the left hippocampus is located in body and 

the tail region of the subiculum and CA1 subfields of the hippocampus. Cluster 2 in the left 

hemisphere is located in the body regions of the CA2, CA3, and CA4 subfields. Cluster 3 in the 

left hippocampus is located in the head region of the CA3 and CA4 subfields. Cluster 1 in the 

right hemisphere is located in the body and tail region of the subiculum and CA1 subfield. 
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Cluster 2 in the right hemisphere is located in the head region of the CA1, CA2, and CA3 

subfields. Cluster 3 in the right hemisphere is located in the body region of the CA3 and CA4 

subfields.  

 

 

 

Figure 8 

 

Figure 8 – Significant peaks when correlating Entorhinal PET tau to reduced thickness.  

This figure shows the significant peaks produced by the linear regression model when comparing 

reduced hippocampal volume along the entire anterior-posterior axis to the SUVR values in the 

Entorhinal. Significant peaks are plotted onto the hippocampal flatmap in both the right and left 

hemispheres and then its is folded back into its 3D conformation which can be seen by the 

images on either side of the flatmaps. Subfields were generated using the HippUnfold software 

from DeKraker et al. 2022 86. These BigBrain labeled subfields were then manually overlayed on 
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top of the output flatmaps from BrainStat. These peaks were located in the clusters from Figure 

7.  Peaks are shown to be located in the body of the subiculum, CA1, and CA3 subfields in the 

left hippocampus. The majority of the peaks are located in the body of the subiculum, CA1, and 

CA3 subfields as well as the head of the CA1-2 subfields in the right hemisphere. 

3.3.3 Inferior Temporal Region. 

The Inferior Temporal region SUVR was correlated to the hippocampal thickness along the 

entire hippocampus.  The inferior temporal region in the brain is one of the first sites of tau 

pathology seen in AD.  Linear regression models were run through BrainStat. In this linear 

regression model, the fixed effects included age, sex, age*sex interaction, diagnostic groups, and 

Inferior temporal SUVR values. The contrast vector was inferior temporal which was fitted onto 

the smoothened thickness values. There are significant clusters and significant peaks in the 

clusters throughout the hippocampus. 

Looking at the significant cluster values, it can be seen in the left hemisphere that there 

are three significant clusters in the left hemisphere when decreased hippocampal thickness is 

correlated with tau PET SUVR in the Inferior Temporal region. Cluster 1 contained a total of 

1715 vertices, p = 0.000012, and is located in the body and the tail region of the subiculum and 

CA1 subfields as seen in Figure 9. Cluster 2 in the left hemisphere contained 178 vertices, p = 

0.0147, and is located in the body and tail regions of the C3 and CA4 subfields. Cluster 3 

contains 182 vertices, p = 0.03813, and is located at the head region of the CA3 and CA4 

subfields. There are three significant clusters in the right hemisphere when correlating reduced 

hippocampal thickness to increase SUVR in the inferior temporal region. Cluster 1 in the right 

hemisphere contains 1181 vertices, p = 0.000342, and is located in the body region of the 

subiculum and CA1 subfields as seen in Figure 9. Cluster 2 in the right hemisphere contains 302 

vertices, p = 0.007984, is located in the head region of the subiculum, CA1, CA2, and CA3 

subfields. Cluster 3 contains 121 vertices, p =0.045744, and is located in the body region of the 

CA4 subfield.  

Figure 10 demonstrates many significant peaks within the clusters that were significant in 

Figure 9.  The three peaks with the strongest t-statistics and lowest p values are located in cluster 

one: p = 0.000573, p = 0.004140, and p = 0.004831 respectively. Peaks 4 and 5 are located 

within cluster two with the p-values of p= 0.006462 and p = 0.020878 respectively. Significant 
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peaks were also seen in the clusters of the right hemisphere. The strongest right hemisphere peak 

was found in cluster one having a p-value of 1.4957 x 10-9. The next two significant peaks are 

located in cluster 2 with the p values of p = 2.192 x 10-3 and 2.967 x 10-3. Despite the cluster 4 

not being significant, peak number 7179 in that cluster was significant showing p = 1.43 x 10-2 

showing us significant in localization and not over a large region but rather a local foci. 

 

 

Figure 9 

Figure 9. – Significant clusters when correlating Inferior Temporal PET tau to reduced 

thickness.  

This figure shows the significant clusters produced by the linear regression model when 

comparing reduced hippocampal volume along the entire anterior-posterior axis to the SUVR 

values in the Inferior Temporal region. Subfields were generated using the HippUnfold software 
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from DeKraker et al. 2022 86. These BigBrain labeled subfields were then manually overlayed on 

top of the output flatmaps from BrainStat. Cluster 1 in the left hippocampus, is located in body 

and the tail region of the subiculum and CA1. Cluster 2 in the left hippocampus is located in the 

body and tail regions of the C3 and CA4 subfields. Cluster 3 in the left hippocampus is located at 

the head region of the CA3 and CA4 subfields. Cluster 1 in the right hippocampus is in the body 

region of the subiculum and CA1 subfields. Cluster 2 in the right hippocampus is located in the 

head region of the subiculum, CA1, CA2, and CA3 subfields. Cluster 3 in the right hippocampus 

is located in the body region of the CA4 subfield.  
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Figure 10. – Significant peaks when correlating Inferior Temporal PET tau to reduced thickness. 

This figure shows the significant peaks produced by the linear regression model when comparing 

reduced hippocampal volume along the entire anterior-posterior axis to the SUVR values in the 

Inferior Temporal region. Subfields were generated using the HippUnfold software from 

DeKraker et al. 2022 86. These BigBrain labeled subfields were then manually overlayed on top 

of the output flatmaps from BrainStat. Peaks are shown to be located in body of the subiculum, 

CA1, and CA3 subfields in the left hippocampus. The majority of the peaks are located in the 

body of the subiculum and CA1 subfields as well as the head of the CA1-2 subfields in the right 

hemisphere.  
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4. Discussion 

4.1 Study Discussion  

Accurate diagnosis of AD to allow for the selection of patients for clinical trials is important to 

test effective disease-modifying treatments for AD. Due to important limitations of clinical 

diagnosis of AD, biomarkers are increasingly used to supplement the clinical diagnosis of the 

disease in clinical trials 98.  Studies have shown tau PET biomarkers are better predictors of 

cognitive decline and episodic memory function in comparison to other biomarkers as 

pathological levels of tau in the brain when measured with PET tau imaging predicted a steeper 

decline in cognition longitudinally 52,51. Despite tau PET biomarkers being able to detect 

abnormalities in the brain early on in the spectrum and being strongly correlated to clincal and 

cognitive symptoms of AD, tau PET has limited availability and involves exposure to ionizing 

radiation, which limits its widespread use as a biomarker for AD 99. MRI holds significant 

potential for AD biomarker development as it is non-invasive and widely available. However, 

current MRI segmentation software renders out volumes for the averaged hippocampal subfields 

instead of providing thickness profiles of the hippocampus, limiting their ability to localize 

atrophy patterns spatially within the hippocampus 100.  

In summary, our results demonstrated that there is a robust pattern of correlation between 

reduced hippocampal thickness and the reliable early biomarker tau PET. We were able to 

demonstrate specific regions within the hippocampus where tau accumulation is maximally 

correlated with reduced thickness of the hippocampus. We utilized a recently developed 

automated segmentation software, HippUnfold, to generate hippocampal thickness maps in a 

cohort of healthy elderly, patients with MCI, and subjects with AD 86. We then used a second 

recently published open-source tool, BrainStat, in order to map correlations between thickness 

and tau PET values spatially throughout the hippocampus.  

In our analysis we found both significant clusters and significant peaks, which were 

typically colocalized within the same region of the hippocampus.  This finding enhances our 

confidence in the statistical significance validity of our findings.  This observation suggests that 

thickness and tau PET values are not only highly correlated in specific locations (as measured 

with peaks), but that these also spatially distributed and widespread (as measured with clusters). 
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 Interestingly, our analyses of all three areas of tau PET quantification demonstrated 

similar correlation patterns with reduced hippocampal thickness measurements. We found 

specific regions throughout the hippocampus where reduced hippocampal thickness 

measurements were strongly correlated with increased tau PET SUVRs. Specifically, the 

majority of significant clusters and peaks in the left hemisphere when correlated to the SUVRs of 

all three brain regions were in the body and the tail of the subiculum and CA1 regions. In the left 

hemisphere, there were also significant clusters and peaks in the lower end of the body of the 

CA3 and CA4 regions. This suggests that these regions not only have large broad correlations 

but also certain areas within these clusters have a more localized correlation determined by the 

peaks.  

While significant clusters were seen in the head of the CA3 and CA4 regions when 

correlated to the SUVR of the entorhinal region and the inferior temporal lobe regions, there 

were no corresponding significant peaks in these significant clusters when running linear 

regression models. Due to there being only significant clusters in the head of the CA3 and CA4 

subfields in the left hippocampus, this shows us that increased SUVR values in the entorhinal 

and inferior temporal region is correlated to large spatially contiguous regions in these subfields 

rather than being strongly correlated at local foci. Since there are no significant peaks in the 

clusters, this suggests that there is a spatially distributed pattern of correlation in that region 

without any highly localized vertices exhibiting a significantly stronger correlation compared to 

its surrounding.  

Furthermore, significant clusters and peaks in the head of the CA4 and CA3 regions were 

not seen when linear regression was performed with the METAROI as the contrast vector. This 

implies that this correlation of reduced thickness in the head region of the CA3 and CA4 

subfields of the left hippocampus is not seen in all of the regions affected by the tau burden of 

AD. This could also indicate that looking at averaged tau burden (METAROI) does not give as 

sensitive and specific correlations versus looking at tau burden in specific locations (entorhinal 

and inferior temporal).  In the right hemisphere, it can be seen that the majority of significant 

clusters and peaks are in the body of the subiculum and the CA1 subfields as well as the head of 

the subiculum, CA1, CA2, and CA3 regions for all three SUVR regions evaluated. A small 

number of significant peaks and clusters were also seen in a small segment of the body in the 
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CA3 subfield. Using the SUVR value for the right inferior temporal region, we found significant 

clusters in the body of the CA3 similar to when the SUVR values of the METAROI and the 

Entorhinal region were used, but no significant peaks while the other two regions did. This 

shows us that increased tau burden in the right inferior temporal region is correlated to a broader 

area in the CA3 body where the correlation is more evenly spread in this area without specific 

vertices or subregions standing out as having a stronger effect. 

In this study, we demonstrate the regional distribution of hippocampal subfield atrophy as 

correlated with tau pathology in a cohort of healthy elderly, MCI, and AD.  Our data documents 

that reduced hippocampal thickness appears to affect specific hippocampal subfields at discrete 

positions along the hippocampal long axis.  The other useful information is that we see both 

significant clusters and peaks throughout different regions of the hippocampus that are heavily 

involved in tau pathology, again increasing confidence that these certain regions are most 

atrophic with tau pathology. Our results suggest that MRI post-processing methods may hold 

promise to expand the use of MRI as an early biomarker for AD – given the strong correlations 

in our study with tau PET measurements (which are considered a relatively early marker of AD 

disease progression) 37.  

Previous studies have shown that the subiculum and the CA1 subfields are most 

prominently affected in AD in the early stages of the disease and are mostly affected by 

neurofibrillary tangles 101. These subfields also show the most loss of volume and thinning with 

increased tau burden which we were able to show in our study 102,103 . Our results are consistent 

with these previous findings as the majority of significant clusters were located in the subiculum 

and CA1.  In addition, our data demonstrate the spatial and localized distribution of decreased 

thickness measurements throughout the hippocampal long axis. Studies have often found sparing 

of the CA2, CA3, and CA4 subfield regions of the hippocampus with most of the atrophy 

demonstrated in the subiculum region of the hippocampal body. In our analyses, a portion of the 

head, mainly in the CA2-CA4 of the right hemisphere, demonstrated strong correlations between 

reduced hippocampal thickness and AD tau pathology.  

Thus, our study adds to the existing literature on hippocampal subfield segmentation in 

AD.  While hippocampal subfields have been extensively examined in patients with AD, many 

previous studies have been restricted to the hippocampal body due to the difficulty of segmenting 
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the head and tail with in vivo MRI 86,104. While existing automated segmentation software’s have 

been developed which employs an atlas-based segmentation approach, previous methods have 

not been developed that account for the significant variability of size, shape, and folding patterns 

seen across human hippocampi. Finally, the majority of these studies have examined whole 

averaged subfield volumes when assessing atrophy, whereas methods to demonstrate atrophy 

patterns along the hippocampal long axis have not previously been available.  HippUnfold, a 

recently developed open-source software, overcomes some of the limitations of previous 

automated segmentation approaches - as subfield atrophy can be mapped in the same space 

across subjects by measuring hippocampal thickness.  

4.2 Future Directions 

HippUnfold can be used for new emerging biomarkers such as plasma biomarkers that have 

shown promise in AD research, to get a better understanding of how localized atrophy of the 

hippocampus correlates to other existing biomarkers 105,106.  Future studies can use this technique 

to see how localized atrophy patterns are seen in patients who convert from MCI to AD and 

compare them to patients who have MCI and do not convert. This can give us more insight into 

how MCI patients who converted to AD differ from those who do not convert to AD. 

Furthermore, the analyses presented holds potential value for clinical application but require 

further studies demonstrating the predictive value of this method in individual patients, in 

contrast to the group-level analyses presented here.   

4.3 Limitations  

Some limitations of this study include that there were multiple patients from the AD group that 

were excluded from this study due to HippUnfold failing to segment the hippocampus given the 

extent of hippocampal atrophy.  Future studies could potentially utilize T2 and T1 weighted 

images from AD patients for additional U-net training in order to improve applicability of 

HippUnfold in patients with hippocampal pathology. Another limitation is the requirements that 

T2 weighted 3T images require. Furthermore, as discussed above, our analysis does not provide 

predictive results at the individual patient level due to the group-level nature of the study design. 

Finally, this study had a limited scope of analysis as we examined only correlations between tau 
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PET and hippocampal thickness.  Further analyses of HippUnfold metrics with cognitive 

function and existing biomarkers was beyond the scope of this project.   

 Chapter 5. Conclusions  

AD is a growing and prominent concern around the globe. Finding biomarkers that are not only 

non-invasive but are also readily available is an attractive avenue for research. Finding novel 

ways to use MR images as an early biomarker by correlating them to tau PET is very promising. 

This study aims to use a novel way to analyze MR images using HippUnfold. Thickness values 

were acquired for all of the hippocampal subfields throughout the entire anterior-posterior axis of 

the hippocampus. These thickness values were then correlated to tau PET (an early reliable AD 

biomarker) in certain brain regions that are known to be greatly affected by tau pathology in AD. 

From this study, we were able to find significant clusters of reduced thickness throughout the 

hippocampus. This gives insights into how the tau pathology in AD affects the entire 

hippocampus and shows the potential of using these novel techniques as an earlier biomarker for 

AD.  In summary our study provides important insights into the spatial distribution of atrophy in 

AD and can act as the basis for further studies aimed at developing novel MRI biomarkers for 

AD. 
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