Opportunity cost and social values in health care resource allocation

by

Michael Paulden

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Medicine University of Alberta

© Michael Paulden, 2016

# Abstract

#### Background

Health care budgets are limited and under pressure. Funding new health technologies has an opportunity cost – while some patients benefit, others lose out as resources are reallocated away from existing health care services.

This has implications for social value considerations in the assessment of new technologies. Maintaining horizontal equity requires giving similar consideration to individuals with similar characteristics of ethical relevance. Vertical equity allows for differential consideration to be given to individuals with different characteristics of ethical relevance. For example, this might involve applying a greater value to health gains for individuals with more severe illness. Horizontal equity nevertheless requires that equal value be assigned to health gains for individuals with equally severe illnesses, regardless of whether they benefit from the new technology or bear the opportunity cost.

Economic evaluations of health technologies conventionally assume a vertical equity position in which identical value is assigned to all health benefits. This has raised concerns that some patients may be denied access to effective but expensive treatments. In response, some decision makers have modified their methods to assign greater value to health benefits for some patients, implying an alternative vertical equity position.

### Objectives

The purpose of this thesis is to consider how social value considerations can be incorporated within the methods used for the economic evaluation of health technologies in a way that accounts for opportunity cost and respects the principles of horizontal and vertical equity.

# Methods

The thesis comprises four chapters. In Chapter 1, a conventional vertical equity position is adopted. Using a model of a hypothetical health care system, we derive 'optimal' costeffectiveness thresholds that respect the principle of horizontal equity under a variety of alternative assumptions regarding the size of the health budget, the divisibility and marginal returns to scale of initial technologies, budget impact, and whether the new technology constitutes a net investment or net disinvestment. In Chapter 2, we build upon this work by modelling interactions between multiple decision makers with imperfect information and potentially conflicting objectives, deriving optimal thresholds under various scenarios regarding each decision maker's information and authority.

In Chapter 3, we consider the possibility that an alternative vertical equity position might be adopted, using orphan drugs as an exemplar. We scope the literature for social value arguments relating to the reimbursement of orphan drugs and develop a decision making framework that takes these into account while respecting the principles of horizontal and vertical equity. In Chapter 4, we critique some amendments that NICE has made to its methods for economic evaluation in order to reflect an alternative vertical equity position.

### Results

In Chapter 1, we find that optimal threshold curves are piecewise linear functions under divisibility and constant returns, concave functions under divisibility and diminishing returns, or step functions under non-divisibility. In Chapter 2, we find that optimal threshold curves may pass through all four quadrants of the cost-effectiveness (CE) plane, and there may be a 'kink' at the origin of the CE plane, implying different optimal thresholds for marginal net investments and net disinvestments.

In Chapter 3, we identify 19 candidate decision factors in the orphan drugs literature, most of which can be characterized as "value-bearing" or "opportunity cost-determining", and also a number of value propositions and pertinent sources of preference information. We synthesize these into a decision making framework that respects horizontal and vertical equity. In Chapter 4, we identify a number of inconsistencies in NICE's methodology for the incorporation of social values into resource allocation decision making and offer suggestions for how these may be resolved.

# Conclusion

The standard exposition of the threshold is a special case that holds only under specific conditions. Under other conditions, optimal threshold curves may take a variety of different functional forms, with implications for which technologies ought to be considered cost-effective. Maintaining horizontal equity generally requires consideration of an alternative theoretical model to that underlying the conventional exposition. If an alternative vertical equity position is adopted, our proposed decision making framework allows social value considerations to be consistently applied to all affected individuals, respecting horizontal equity. Naïve modifications to methods for economic evaluation – without considering opportunity cost – can violate horizontal equity and result in an inconsistent realization of the decision maker's vertical equity position.

# Preface

The research in chapters 1, 2 and 4 of this thesis was conducted as part of the PACEOMICS research collaboration at the University of Alberta, supported by Genome Canada, Canadian Institutes for Health Research, Alberta Innovates Health Solutions, the University of Alberta Capital Health Research Chair in Emergency Medicine Research Endowment, the Faculty of Medicine and Dentistry and the UK National Institutes for Health Research.

The research in chapter 3 of this thesis was conducted as part of the PRISM research collaboration at the University of Alberta, supported by the Canadian Institutes for Health Research.

#### **Publications**

Chapter 3 was published as an Original Research Article in Pharmcoeconomics in March 2015: *Paulden M, Stafinski T, Menon D, McCabe C. Value-based reimbursement decisions for orphan drugs: a scoping review and decision framework. Pharmacoeconomics.* 2015;33(3):255–69.<sup>1</sup> The final publication is available at Springer via <u>http://dx.doi.org/10.1007/s40273-014-0235-x</u>.

Chapter 4 was published as a Leading Article in Pharmcoeconomics in November 2014: Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Some inconsistencies in NICE's consideration of social values. Pharmacoeconomics. 2014;32(11):1043–53.<sup>2</sup> The final publication is available at Springer via <u>http://dx.doi.org/10.1007/s40273-014-0204-4</u>.

This article was accompanied by a commentary written by Suzanne Hill and Leslie Olson.<sup>3</sup> In December 2014, we published a short letter in response to this commentary, clarifying some of the arguments made in our paper. This letter has been reproduced in Appendix 4.1, and was published as: *Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Objectivity and equity: clarity required. A response to Hill and Olson. Pharmacoeconomics.* 2014;32(12):1249–50.<sup>4</sup> The final publication is available at Springer via http://dx.doi.org/10.1007/s40273-014-0239-6.

This thesis includes the final accepted manuscript for each publication, in accordance with the respective copyright transfer agreements. Changes made to each manuscript after acceptance, including edits made during proof-reading, are not reflected in the manuscripts included in this thesis. The final publications are available from the publisher at the links provided above.

### Presentations

The research in Chapters 1 and 2 has been presented at the following workshops, conferences and seminars:

- Paulden M, McCabe C. Advancing the standard model of the cost-effectiveness threshold: incorporating diminishing returns, non-divisibility and imperfect information. Seminar at the University of Leeds, UK, 17 June 2016.
- Paulden M, McCabe C. *Transforming the cost-effectiveness threshold into a 'value threshold': initial findings from a simulation model*. Poster presented at the 16th Biennial European Meeting of the Society for Medical Decision Making (SMDM) in London, UK, 14 June 2016.
- Paulden M, O'Mahony JF. *Incorporating social values into cost-effectiveness analysis*. Presented as part of a workshop at the International Society For Pharmacoeconomics and Outcomes Research (ISPOR) 20th Annual International Meeting in Philadelphia, Pennsylvania, USA, 19 May 2015.
- 4. Paulden M, McCabe C. Transforming the cost-effectiveness threshold into a 'value threshold': initial findings from a simulation model. Invited presentation given as part of a panel discussion titled "New Methods in HTA to Support Policy and Practice: Can We Better Understand How Canadians Value Health?" at the 2015 Canadian Agency for Drugs and Technologies in Health (CADTH) Symposium in Saskatoon, Saskatchewan, Canada, 13 April 2015.
- Paulden M, McCabe C. Transforming the cost-effectiveness threshold into a 'value threshold': initial findings from a simulation model. Poster presented at the 2015 Canadian Agency for Drugs and Technologies in Health (CADTH) Symposium in Saskatoon, Saskatchewan, Canada, 12 April 2015.
- 6. Paulden M, McCabe C. Transforming the cost-effectiveness threshold into a 'value threshold': initial findings from a simulation model. Invited presentation at a workshop titled "NICE and the cost-effectiveness thresholds: Can good intentions compensate for bad practice?" at University College London (UCL), London, UK, 15 December 2014.
- Paulden M, McCabe C. *The Lambda Complex: Knowing Your Place In The Threshold Matrix*. Poster presented at the 36th Annual Meeting of the Society for Medical Decision Making (SMDM) in Miami, Florida, USA, 20 October 2014.

The research in Chapter 3 has been presented at the following workshops and conferences:

- Paulden M, Stafinski T, Menon D, McCabe C. *Do Social Values Transform the Value-Based Translational Calculus for Regenerative Medicine?* Presented at the "Driving Regenerative Medicine to the Market and Clinic" workshop in Toronto, Ontario, Canada, 6 November 2014.
- Paulden M, Stafinski T, Menon D, McCabe C. Towards Planning for Optimal Access to Effective Therapies for Rare and Ultra-Rare Conditions: A Scoping Study. Presented at the 2014 Canadian Agency for Drugs and Technologies in Health (CADTH) Symposium in Gatineau, Quebec, Canada, 6 April 2014.

# Contributions

I made the following contributions towards the collaborative research presented in this thesis:

- Chapters 1 and 2: I was primarily responsible for all aspects of the research, including study design, methodology, conducting analyses, reporting and interpreting results, drawing conclusions, and authoring each chapter.
- Chapter 3: I was jointly responsible for reviewing the papers identified in the scoping review and reporting and interpreting the results of the scoping review, and I was primarily responsible for designing the proposed decision framework, drawing conclusions, and authoring the manuscript prior to publication.
- Chapter 4: I was primarily responsible for constructing the arguments presented, drawing conclusions, and authoring the manuscript prior to publication.

# Acknowledgements

I am grateful for the financial support provided by the University of Alberta, Genome Canada, Alberta Innovates Health Solutions, and the Canadian Institutes for Health Research.

I wish to thank my supervisor, Christopher McCabe, my co-supervisor, Jeremy Beach, and the members of my supervisory committee: Anthony J Culyer, Tania Bubela and Fiona Miller.

I also wish to thank my co-authors on Chapters 3 and 4: Tania Stafinski, Devidas Menon and James O'Mahony.

# Table of Contents

| Abstractii                                   |
|----------------------------------------------|
| Prefacevi                                    |
| Publicationsvi                               |
| Presentations                                |
| Contributionsviii                            |
| Acknowledgementsix                           |
| Table of Contentsx                           |
| List of Tables xiv                           |
| List of Figures xvi                          |
| Glossary of Terms                            |
| Introduction1                                |
| Economic evaluations of health technologies1 |
| The cost-effectiveness 'threshold'           |
| Social value considerations                  |
| Economics and equity                         |
| Theoretical perspective                      |
| Welfarism                                    |
| Extra-welfarism                              |
| Social decision making                       |
| "Health maximization"7                       |
| Perspective adopted in this thesis           |
| Outline of the thesis                        |
| Chapter 1                                    |
| Chapter 211                                  |
| Chapter 3                                    |
| Chapter 413                                  |
| Bibliography for Preface and Introduction14  |

| Chapter 1: An exploration of the impact of non-divisibility, diminishing marginal returns to scal<br>and non-marginal budget impact on the cost-effectiveness threshold using a simulation | le |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| modelling approach                                                                                                                                                                         | 20 |
| Acknowledgements                                                                                                                                                                           | 20 |
| Abstract2                                                                                                                                                                                  | 21 |
| Introduction                                                                                                                                                                               | 23 |
| The 'standard model'                                                                                                                                                                       | 23 |
| Criticisms of the standard model                                                                                                                                                           | 25 |
| Purpose of our work                                                                                                                                                                        | 27 |
| Methods2                                                                                                                                                                                   | 28 |
| Model structure                                                                                                                                                                            | 28 |
| Divisibility of technologies                                                                                                                                                               | 32 |
| Marginal returns to scale                                                                                                                                                                  | 33 |
| Analyses conducted                                                                                                                                                                         | 38 |
| Analytical assumptions                                                                                                                                                                     | 39 |
| Results                                                                                                                                                                                    | 14 |
| Initial allocation                                                                                                                                                                         | 14 |
| Reallocation                                                                                                                                                                               | 49 |
| Optimal cost-effectiveness thresholds                                                                                                                                                      | 50 |
| Discussion                                                                                                                                                                                 | 58 |
| Contributions to knowledge                                                                                                                                                                 | 59 |
| Strengths and limitations                                                                                                                                                                  | 70 |
| Bibliography for Chapter 1                                                                                                                                                                 | 72 |
| Chapter 2: An exploration of the impact of imperfect information and multiple decision makers                                                                                              |    |
| on the agent's cost-effectiveness threshold using a simulation modelling approach                                                                                                          | 75 |
| Acknowledgements                                                                                                                                                                           | 75 |
| Abstract                                                                                                                                                                                   | 76 |
| Introduction                                                                                                                                                                               | 78 |
| Methods                                                                                                                                                                                    | 30 |
| Model structure                                                                                                                                                                            | 30 |
| Multiple decision makers                                                                                                                                                                   | 31 |
| Imperfect information                                                                                                                                                                      | 32 |

| Objective of each decision maker                                                                                           |                         |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Authority of the agent                                                                                                     |                         |
| Authority of the reallocator                                                                                               |                         |
| Analysis                                                                                                                   |                         |
| Results                                                                                                                    |                         |
| Initial allocation                                                                                                         |                         |
| Reallocation                                                                                                               |                         |
| Optimal cost-effectiveness thresholds                                                                                      |                         |
| Discussion                                                                                                                 |                         |
| An alternative specification of the threshold?                                                                             |                         |
| Strengths and limitations                                                                                                  |                         |
| Implications for theory                                                                                                    |                         |
| Implications for policy                                                                                                    |                         |
| Bibliography for Chapter 2                                                                                                 |                         |
| Chapter 3: Value-Based Reimbursement Decisions for Orphan Drugs: A Scoping                                                 | Review and              |
| Decision Framework                                                                                                         |                         |
| Acknowledgements                                                                                                           |                         |
| Author contributions                                                                                                       |                         |
| Abstract                                                                                                                   |                         |
| Key points for decision makers                                                                                             |                         |
| Introduction                                                                                                               |                         |
| Methods                                                                                                                    |                         |
| Scoping review                                                                                                             |                         |
| Incorporating social values within coverage decisions for orphan drugs                                                     |                         |
| Results                                                                                                                    |                         |
| Scoping review                                                                                                             |                         |
| Integrating the identified candidate decision factors, preferences and value practice a coherent decision making framework | ropositions into<br>182 |
| Discussion                                                                                                                 |                         |
| Bibliography for Chapter 3                                                                                                 |                         |

| Chapter 4: Some inconsistencies in NICE's consideration of social values | 200 |
|--------------------------------------------------------------------------|-----|
| Acknowledgements                                                         | 200 |
| Abstract                                                                 | 201 |
| Key points for decision makers                                           | 202 |
| Introduction                                                             | 203 |
| Previous amendments to NICE's guidance                                   | 205 |
| "End of life" amendment (2009)                                           | 206 |
| "Selective discounting" amendment (2011)                                 | 213 |
| The proposed amendment to NICE's guidance                                | 215 |
| Discussion                                                               |     |
| Bibliography for Chapter 4                                               | 222 |
| Conclusion                                                               | 224 |
| Contributions to knowledge                                               | 224 |
| Chapter 1                                                                | 225 |
| Chapter 2                                                                | 227 |
| Chapter 3                                                                | 229 |
| Chapter 4                                                                |     |
| Implications for health care resource allocation in Canada               |     |
| Appropriate decision making frameworks                                   |     |
| Equity in the allocation of health care resources across Canada          |     |
| Final remarks                                                            |     |
| Bibliography for Conclusion                                              |     |
| Bibliography                                                             |     |
| Appendices                                                               |     |
| Appendix 1 (Chapter 1)                                                   |     |
| Appendix 2 (Chapter 2)                                                   |     |
| Appendix 3 (Chapter 3)                                                   | 416 |
| Appendix 4 (Chapter 4)                                                   | 452 |

# List of Tables

| Table 1.1: Marginal ICER, average ICER, and ICER in exhaustion                                |
|-----------------------------------------------------------------------------------------------|
| Table 1.2: Incremental cost, incremental benefit, and ICER in exhaustion                      |
| Table 1.3: Initial allocation (divisibility and constant returns)                             |
| Table 1.4: Initial allocation (divisibility and diminishing returns)                          |
| Table 1.5: Initial allocation (non-divisibility)                                              |
| Table 1.6: Reallocation following net investment (divisibility and constant returns)          |
| Table 1.7: Reallocation following net disinvestment (divisibility and constant returns)       |
| Table 1.8: Reallocation following net investment (divisibility and diminishing returns)       |
| Table 1.9: Reallocation following net disinvestment (divisibility and diminishing returns) 55 |
| Table 1.10: Reallocation following net investment (non-divisibility)                          |
| Table 1.11: Reallocation following net disinvestment (non-divisibility)       59              |
|                                                                                               |
| Table 2.1: Incremental cost and <i>estimated</i> incremental benefit of initial technologies  |
| Table 2.2: Initial allocation    93                                                           |
| Table 2.3: Reallocation following net investment (allocator has good information)       98    |
| Table 2.4: Reallocation following net disinvestment (allocator has good information)          |
| Table 2.5: Reallocation following net investment (allocator has poor information)             |
| Table 2.6: Reallocation following net disinvestment (allocator has poor information)          |
| Table 2.7: Optimal threshold set corresponding to each combination of assumptions 111         |
| Table 2.8: Optimal numerical thresholds (threshold set $\lambda 1$ )                          |
| Table 2.9: Optimal numerical thresholds (threshold set $\lambda 2$ )                          |
| Table 2.10: Optimal numerical thresholds (threshold set $\lambda$ 3)                          |
| Table 2.11: Optimal numerical thresholds (threshold set $\lambda 4$ )                         |
| Table 2.12: Optimal numerical thresholds (threshold set $\lambda 5$ )                         |
| Table 2.13: Optimal numerical thresholds (threshold set $\lambda 6$ )                         |
| Table 2.14: Optimal numerical thresholds (threshold set $\lambda$ 7)                          |
| Table 2.15: Optimal numerical thresholds (threshold set $\lambda 8$ )                         |
|                                                                                               |

| Table 3.1: The 19 identified candidate decision factors 1 | 17 | 14 | 1 |
|-----------------------------------------------------------|----|----|---|
|-----------------------------------------------------------|----|----|---|

| Table A1.1.1: Reallocation following net investment (divisibility and constant returns)           |
|---------------------------------------------------------------------------------------------------|
| Table A1.1.2: Reallocation following net disinvestment (divisibility and constant returns) 271    |
| Table A1.1.3: Reallocation following net investment (divisibility and diminishing returns) 281    |
| Table A1.1.4: Reallocation following net disinvestment (divisibility and diminishing returns) 291 |
| Table A1.1.5: Reallocation following net investment (non-divisibility)                            |
| Table A1.1.6: Reallocation following net disinvestment (non-divisibility)       311               |
| Table A2.2.1: Reallocation following net investment (allocator has good information)              |
| Table A2.2.2: Reallocation following net disinvestment (allocator has good information) 341       |
| Table A2.2.3: Reallocation following net investment (allocator has poor information)              |
| Table A2.2.4: Reallocation following net disinvestment (allocator has poor information) 361       |
| Table A2.3.1: Optimal numerical thresholds (threshold sets $\lambda 1$ and $\lambda 2$ )          |
| Table A2.3.2: Optimal numerical thresholds (threshold sets $\lambda 3$ and $\lambda 4$ )          |
| Table A2.3.3: Optimal numerical thresholds (threshold sets $\lambda 5$ and $\lambda 6$ )          |
| Table A2.3.4: Optimal numerical thresholds (threshold sets $\lambda 7$ and $\lambda 8$ )          |
| Table A3.2.1: Data extracted during scoping review (1 of 6)    426                                |
| Table A3.2.2: Data extracted during scoping review (2 of 6)    431                                |
| Table A3.2.3: Data extracted during scoping review (3 of 6)    436                                |
| Table A3.2.4: Data extracted during scoping review (4 of 6)    441                                |
| Table A3.2.5: Data extracted during scoping review (5 of 6)    445                                |
| Table A3.2.6: Data extracted during scoping review (6 of 6)    449                                |

# List of Figures

| Figure 1.1: A conventional exposition of the cost-effectiveness threshold                      |
|------------------------------------------------------------------------------------------------|
| Figure 1.2: Model schematic                                                                    |
| Figure 1.3: Incremental cost and incremental benefit of initial technologies in exhaustion 29  |
| Figure 1.4: Alternative health production function 'shapes' for a hypothetical technology 35   |
| Figure 1.5: Marginal ICER, average ICER, and ICER in exhaustion                                |
| Figure 1.6: Optimal threshold curves (divisibility and constant returns)                       |
| Figure 1.7: Optimal threshold curves (divisibility and diminishing returns)                    |
| Figure 1.8: Optimal threshold curves (non-divisibility)                                        |
|                                                                                                |
| Figure 2.1: Model schematic                                                                    |
| Figure 2.2: Flow diagram to determine the set of optimal cost-effectiveness thresholds 111     |
| Figure 2.3: Optimal threshold curves (threshold set $\lambda 1$ )                              |
| Figure 2.4: Optimal threshold curves (threshold set $\lambda 2$ )                              |
| Figure 2.5: Optimal threshold curves (threshold set $\lambda$ 3)                               |
| Figure 2.6: Optimal threshold curves (threshold set $\lambda 4$ )                              |
| Figure 2.7: Optimal threshold curves (threshold set $\lambda$ 5)                               |
| Figure 2.8: Optimal threshold curves (threshold set $\lambda 6$ )                              |
| Figure 2.9: Optimal threshold curves (threshold set $\lambda$ 7)                               |
| Figure 2.10: Optimal threshold curves (threshold set $\lambda 8$ )                             |
| Figure 3.1: PRISMA flow diagram for the scoping review                                         |
| Figure 3.2: Proposed framework for aiding coverage decisions for orphan therapies 187          |
| Figure 4.1: Potential impact of applying QALY weights to strategies in the NW and SE quadrants |
| Figure 4.2: Potential impact of applying QALY weights to a dominated strategy in the NE        |

# Glossary of Terms

| Agent                                    | Decision maker with responsibility for recommending, or not<br>recommending, new technologies for adoption into the health care<br>system.                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allocator                                | Decision maker with responsibility for allocating the initial budget<br>among the initial technologies in the pool.                                                                                                                                                                                                                                                                                                                                         |
| CADTH                                    | Canadian Agency for Drugs and Technologies in Health, an HTA agency in Canada.                                                                                                                                                                                                                                                                                                                                                                              |
| Constant<br>marginal returns<br>to scale | Commonly referred to as simply "constant returns". The ratio of a technology's incremental expenditure to its incremental benefit remains constant with increases in incremental expenditure, such that progressive marginal expansions of a technology result in constant marginal incremental benefit. Not relevant if technologies are non-divisible.                                                                                                    |
| Constant returns                         | See "constant marginal returns to scale".                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cost-effectiveness<br>(CE) plane         | A figure which allows for consideration of a technology's incremental<br>benefit (horizontal axis) and incremental cost (vertical axis). Incremental<br>benefit is positive in the eastern half of the plane and negative in the<br>western half, while incremental cost is positive in the northern half of<br>the plane and negative in the southern half. The quadrants are referred to<br>as "north-east", "north-west", "south-east" and "south-west". |
| Cost-effectiveness<br>threshold (λ)      | Commonly referred to as simply the "threshold". A technology's ICER is<br>compared to the threshold to determine if the technology is cost-<br>effective. For different approaches to determining the threshold, see<br>"demand-side threshold" and "supply-side threshold".                                                                                                                                                                                |

| Current<br>ICER                             | The incremental expenditure on a technology divided by the incremental benefit, at a given level of expenditure.                                                                                                                                                                                                                           |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Demand-side<br>threshold                    | An estimate of the aggregated value that individuals in society assign to a<br>unit of benefit (e.g., a QALY). Often described as society's "willingness-<br>to-pay" for the benefit in question.                                                                                                                                          |
| Diminishing<br>marginal returns<br>to scale | Commonly referred to as simply "diminishing returns". The ratio of a technology's incremental expenditure to its incremental benefit increases with incremental expenditure, such that progressive marginal expansions of a technology result in diminishing marginal incremental benefit. Not relevant if technologies are non-divisible. |
| Diminishing<br>returns                      | See "diminishing marginal returns to scale".                                                                                                                                                                                                                                                                                               |
| Divisibility<br>(of technologies)           | Assumes that technologies may be partially adopted, resulting in a smaller incremental cost and smaller incremental benefit than if technologies are exhausted.                                                                                                                                                                            |
| Equity                                      | See "horizontal equity" and "vertical equity".                                                                                                                                                                                                                                                                                             |
| Exhaustion<br>(of a technology)             | Incremental expenditure and incremental benefit are at their highest possible (absolute) values, such that the technology cannot be expanded.                                                                                                                                                                                              |
| Extra-welfarism                             | Permits non-utility information such as the 'quality' of individuals'<br>utilities, equity weights, and individuals' characteristics and 'capabilities'<br>to be considered alongside individual utilities.                                                                                                                                |
| Horizontal equity                           | Requires similar treatment of individuals with similar characteristics of ethical relevance.                                                                                                                                                                                                                                               |

| HTA               | Health technology assessment. Methods and processes for assessing the<br>value of new health technologies, including consideration of their<br>opportunity cost. HTA allows decision makers to better understand the<br>implications for population health of alternative allocations of health care<br>resources.<br>Incremental cost-effectiveness ratio. The incremental cost of a |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | technology divided by its incremental benefit. If this benefit is measured                                                                                                                                                                                                                                                                                                            |
|                   | in terms of QALYs, the ICER is expressed in terms of "dollars per                                                                                                                                                                                                                                                                                                                     |
|                   | QALY" (or the appropriate local currency).                                                                                                                                                                                                                                                                                                                                            |
| ICER in           | The incremental cost on a technology (in exhaustion) divided by the                                                                                                                                                                                                                                                                                                                   |
| exhaustion        | incremental benefit (in exhaustion).                                                                                                                                                                                                                                                                                                                                                  |
| Incremental       | Direct benefit from a technology minus the reduction in benefit from                                                                                                                                                                                                                                                                                                                  |
| benefit           | basic health care services as a result of adopting the technology.                                                                                                                                                                                                                                                                                                                    |
| (of a technology) |                                                                                                                                                                                                                                                                                                                                                                                       |
| Incremental cost  | Incremental expenditure required to exhaust a technology.                                                                                                                                                                                                                                                                                                                             |
| (of a technology) |                                                                                                                                                                                                                                                                                                                                                                                       |
| Incremental       | Direct expenditure on a technology minus the reduction in expenditure                                                                                                                                                                                                                                                                                                                 |
| expenditure       | on basic health care services as a result of adopting the technology.                                                                                                                                                                                                                                                                                                                 |
| (on a technology) |                                                                                                                                                                                                                                                                                                                                                                                       |
| Knapsack          | A common problem in combinatorial optimization, in which a decision                                                                                                                                                                                                                                                                                                                   |
| problem           | maker must pack items of different 'size' and 'value' into a knapsack of                                                                                                                                                                                                                                                                                                              |
|                   | limited 'capacity', such that the total value of the items in the knapsack is                                                                                                                                                                                                                                                                                                         |
|                   | maximized. Analogous to adopting non-divisible technologies within a                                                                                                                                                                                                                                                                                                                  |
|                   | budget-constrained health care system, where each technology has a                                                                                                                                                                                                                                                                                                                    |
|                   | different incremental cost and incremental benefit.                                                                                                                                                                                                                                                                                                                                   |

| Marginal ICER                         | The marginal change in incremental expenditure on a technology divided<br>by the resulting marginal change in incremental benefit.                                                                                                                                           |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Net disinvestment                     | A new technology with negative incremental costs, which therefore lies<br>in the southern half of the cost-effectiveness plane. Adopting such a<br>technology releases resources, allowing for increased incremental<br>expenditure on initial technologies.                 |
| Net investment                        | A new technology with positive incremental costs, which therefore lies in<br>the northern half of the cost-effectiveness plane. Adopting such a<br>technology requires an additional investment of resources by reducing<br>incremental expenditure on initial technologies. |
| NHS                                   | National Health Service, the public health care system in the UK.                                                                                                                                                                                                            |
| NICE                                  | National Institute for Health and Care Excellence, an HTA agency in the UK.                                                                                                                                                                                                  |
| Non-adoption<br>(of a technology)     | Incremental expenditure and incremental benefit are both zero. The technology is not adopted, even partially, such that the technology cannot be contracted.                                                                                                                 |
| Non-divisibility<br>(of technologies) | Assumes that technologies cannot be partially adopted, so must be<br>adopted either until exhaustion or not at all.                                                                                                                                                          |
| Numerical<br>threshold                | A representation of the cost-effectiveness threshold in terms of 'dollars<br>per [unit of benefit]' (or the appropriate local currency).                                                                                                                                     |
| Partial adoption<br>(of a technology) | A technology is adopted but not exhausted, such that it can be either<br>expanded or contracted. Cannot arise under non-divisibility.                                                                                                                                        |
| QALY                                  | Quality-adjusted life year. A composite of length and quality of life,<br>commonly used as a "utility" measure in economic evaluations of health<br>technologies.                                                                                                            |

| Reallocator                                | Decision maker with responsibility for reallocating incremental<br>expenditure among initial technologies following adoption of a new<br>technology.                                                                                                                                                                                                                                         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Social decision<br>making<br>(perspective) | Assumes that decision makers are 'agents' of a socially and politically<br>legitimate 'higher authority' that grants each agent the responsibility to<br>pursue a specific and explicit objective, subject to a budget constraint.<br>The budgets it allocates and the objectives it delegates represent a partial<br>expression of some unknown, latent social welfare function.            |
| Supply-side<br>threshold                   | An estimate of the impact upon an aggregate measure of benefit (e.g.,<br>population QALYs) associated with a marginal change in health care<br>expenditure. Often described as the 'shadow price' of the health budget.                                                                                                                                                                      |
| Threshold                                  | See "cost-effectiveness threshold".                                                                                                                                                                                                                                                                                                                                                          |
| Threshold curve                            | A graphical representation of the cost-effectiveness threshold on the cost-effectiveness plane.                                                                                                                                                                                                                                                                                              |
| Vertical equity                            | Permits differential treatment of individuals with different characteristics<br>of ethical relevance. There are many possible vertical equity positions<br>that a decision maker might adopt.                                                                                                                                                                                                |
| Welfarism                                  | Assumes that individuals rationally maximize their 'utility' by ordering<br>the options available to them and acting according to their preferences.<br>Individuals are regarded as the only judges of what contributes to their<br>utility. Social welfare is judged to be nothing more than an aggregation<br>of individual utilities, as defined by a specific 'social welfare function'. |

# Introduction

Health care budgets within Canada's public health system are limited and under pressure.<sup>5,6</sup> Demand for health care is increasing, resulting in waiting lists for routine treatments.<sup>7,8</sup> In this context, funding health technologies has an opportunity cost.<sup>9</sup> Resources devoted to technologies cannot be used to provide other health care services of value to Canadians. While some patients benefit, other patients lose out as resources are reallocated away from the health care services they need.

This opportunity cost has important implications for ethical considerations in the assessment of health technologies. The Canada Health Act specifies the primary objectives of Canadian health policy, including a concern for improving population health and ensuring equity in the allocation of health care resources.<sup>10</sup> Since the opportunity cost of funding technologies has implications for both of these objectives, it ought to be considered as part of the reimbursement decision making process.

Over recent decades, academics and policy makers have developed methods and processes for assessing the value of health technologies, including consideration of their opportunity cost. The use of these methods and processes is referred to as health technology assessment (HTA).<sup>11</sup> HTA allows decision makers to better understand the implications for population health of alternative allocations of health care resources. An important component of HTA is the economic evaluation of health technologies, which provides decision makers with necessary information for considering their opportunity cost.<sup>12</sup>

# Economic evaluations of health technologies

As of 2015, public agencies in a number of countries conduct economic evaluations of health technologies, or review submissions of economic evaluations conducted on their behalf.<sup>13</sup> Perhaps the most well-known example is the UK's National Institute for Health and Care Excellence (NICE), which evaluates new health technologies for potential adoption into the National Health Service (NHS). NICE periodically revises its guidelines for conducting economic evaluations in order to reflect theoretical or empirical advances in the literature, with the most recent published in 2013.<sup>14</sup> In Canada, guidelines for conducting economic evaluations have been published by the Canadian Agency for Drugs and Technologies in Health (CADTH),

although these have not been updated since 2006.<sup>15</sup> Agencies in other countries have published similar guidelines.<sup>16,17</sup>

These guidelines typically include a "reference case", which is a set of basic requirements that all economic evaluations must meet. In the guidelines issued by NICE and CADTH, the reference case requires that analysts conduct a "cost-utility analysis", in which the incremental cost of funding a new health technology is compared to the incremental "utility" for patients who will benefit.<sup>14</sup> In this context, "utility" is measured in terms of the "quality-adjusted life years" (QALYs) gained by patients, which represents a composite of each patient's length and quality of life.<sup>18</sup> It should be noted this this concept of "utility" is quite distinct from that used in much of mainstream economics since the 1930s, since the QALY is a cardinal measure of health that permits interpersonal comparisons through aggregation across the relevant population.<sup>19,20</sup>

To estimate the incremental "utility" of funding a technology, a comparison is made between the cumulative QALYs associated with the health states that patients are expected to experience over the time horizon of the analysis (typically each patient's lifetime) with and without funding for the technology. The costs associated with time in each health state, with and without funding for the technology, are also compared in order to estimate the "incremental cost" of the technology. To determine if the technology is "cost-effective", the estimated incremental cost is divided by the estimated incremental "utility" in order to derive an "incremental cost-effectiveness ratio" (ICER) for the technology (expressed in terms of "dollars per QALY", or the appropriate local currency), which is then compared to a "cost-effectiveness threshold".<sup>21</sup> Deciding upon the appropriate threshold to use is a crucial but controversial step in determining whether a new technology is cost-effective.

# The cost-effectiveness 'threshold'

In determining the threshold, it is important to distinguish between "demand-side" and "supply-side" approaches.<sup>22</sup> Most studies have adopted a demand-side approach, estimating the value individuals assign to health as a means for estimating society's "willingness-to-pay" for a QALY.<sup>23,24</sup> Supply-side approaches instead consider the impact upon aggregate utility (i.e., population QALYs) associated with marginal changes in health care expenditure, in order to estimate the 'shadow price' of the health budget.<sup>25</sup>

Which approach to determining the threshold is appropriate depends upon whether the health budget is constrained.<sup>26</sup> If the health budget is constrained then a supply-side approach should be used.<sup>27</sup> Since the focus of this work is upon health care resource allocation within health care systems subject to constrained budgets, we will adopt a supply-side approach for the remainder of this thesis.

Under the supply-side approach, the threshold is conventionally assumed to represent the ICER of the health care services or technologies displaced if the technology is funded, given the constrained budget.<sup>28</sup> This is very difficult to estimate in practice. The most notable example of a supply-side approach to threshold estimation is the recent UK work by Claxton and colleagues.<sup>27</sup> Appleby and colleagues and Schaffer and colleagues have also conducted empirical research in the UK.<sup>29,30</sup> No comparable empirical research has yet been conducted in any other country. In Canada, an arbitrary threshold of \$50,000 per QALY is often cited in the literature, although some have argued for a range between \$20,000 and \$100,000 per QALY.<sup>31</sup> However, neither this range, nor the often cited \$50,000 per QALY, is based upon an empirical estimate of the supply-side threshold.<sup>32</sup>

#### Social value considerations

Alongside this ongoing research into the cost-effectiveness threshold, there has been growing interest from both policy makers and academics regarding the appropriate role of social values and ethics in the methods and processes of HTA.<sup>33</sup>

DeJean and colleagues note that many of the considerations taking into account in HTA, such as "efficacy, effectiveness, safety and efficiency", are "inherently ethical".<sup>33</sup> Nevertheless, after reviewing the Canadian literature, they argue that most HTAs currently conducted are lacking in "genuine ethical inquiry".

In 2002, NICE established a "Citizens Council", whose purpose is to provide NICE with "a public perspective on overarching moral and ethical issues that NICE has to take account of when producing guidance".<sup>34</sup> The council has produced a number of reports, considering a range of topics including the merit of paying premium prices for orphan drugs, whether preference should be given to saving the lives of people in imminent danger of dying, and the extent to which a patient's age, or the severity of their disease, should be taken into account in NICE's guidance regarding the funding of new technologies.<sup>35–38</sup>

#### Economics and equity

An important social value consideration identified by NICE's Citizens Council is ensuring "equity" in the allocation of health care resources.<sup>39</sup> Equity is also a key social value in other health care systems, including the provincial and territorial health care systems in Canada.<sup>10,40</sup>

Economists consider equity in two dimensions: horizontal and vertical.<sup>41</sup> Horizontal equity requires similar treatment of individuals with similar characteristics of ethical relevance. Vertical equity permits differential treatment of individuals with different characteristics of ethical relevance. Horizontal and vertical equity were originally considered by Musgrave in his pioneering research on optimal taxation.<sup>42</sup> In this context, horizontal equity requires that individuals with similar incomes be taxed at a similar rate, while vertical equity allows for different tax rates for individuals with different incomes. A particular vertical equity position would be to impose higher tax rates on individuals with higher incomes, resulting in a 'progressive' taxation system, although this is not the only vertical equity position that may be adopted. While vertical equity permits an individual with a high income to be taxed at a different rate than a second individual with a low income, horizontal equity requires that the first individual be taxed at the same rate as a third individual with an equally high income.

Culyer has applied the concepts of horizontal and vertical equity to the allocation of health care resources.<sup>43,44</sup> When considering a reallocation of resources within a budget constrained health care system, maintaining horizontal equity requires that similar consideration be given to all affected individuals with similar characteristics. This requires giving similar consideration to those individuals who stand to benefit (e.g., patients who will use a new health technology if it is adopted) as is given to individuals with similar characteristics who will lose out (e.g., other patients whose health care will be affected by funding the new technology). Vertical equity allows for differential consideration to be given to individuals with different characteristics of ethical relevance. This might involve applying a greater value to health gains for individuals who are more socio-economically marginalized, or who are in a more severe initial state of health, to give just two examples.

# Theoretical perspective

An important consideration when discussing the role of social values in the economic evaluation of health technologies – or in the evaluation of other reallocations of health care resources – is the theoretical perspective taken.<sup>45,46</sup> Three alternative perspectives have been debated within the health economics literature: these may be summarized as 'welfarism', 'extra-welfarism', and 'social decision making'.

#### Welfarism

A welfarist perspective assumes that individuals rationally maximize their 'utility' by ordering the options available to them and acting according to their preferences.<sup>47,48</sup> Individuals are regarded as the *only* judges of what contributes to their utility. The desirability of alternative allocations of health care resources is determined by their impact upon 'social welfare', and the purpose of policy making is assumed to be to improve social welfare. Social welfare is judged to be nothing more than an aggregation of these individual utilities, as defined by a specific 'social welfare function'. This notion of social welfare is restrictive: it cannot take account of outcomes other than 'utilities', and it does not permit the use of sources of valuation other than the individuals affected by the policy decision.

#### Extra-welfarism

Over recent decades, these limitations with the welfarist perspective have resulted in the rise of the 'extra-welfarist' perspective, in which non-utility information such as the 'quality' of individuals' utilities, equity weights, and individuals' characteristics and 'capabilities' are considered alongside individual utilities.<sup>26,46,47,49–51</sup> The extra-welfarist perspective otherwise retains many features of the welfarist perspective, with the purpose of policy making still assumed to be to improve social welfare, as defined by a social welfare function. The key difference is that this social welfare function is not restricted to the consideration of individual utilities only.

#### Social decision making

Under a welfarist or extra-welfarist perspective, the desirability of alternative allocations of health care resources requires expression of an explicit and complete social welfare function: a ranking over all conceivable social states. This allows judgements to be made about whether a reallocation of resources (such as the adoption of a new technology) improves 'social welfare'.

Under either perspective, some individual or other entity must take responsibility for specifying the social welfare function.

In a comparison of the welfarist and extra-welfarist perspectives, Birch and Donaldson raised concerns about how the social welfare function is specified under an extra-welfarist perspective, arguing that "the extent to which non-health consequences or opportunity costs are 'considered' in an [extra-welfarist] approach would seem to be determined by the extent to which the [extra-welfarist] analyst, not the individuals, consider them to be important".<sup>50</sup> Nevertheless, as Arrow and Sen have noted, it may not be possible to aggregate individual preferences in a way that satisfies basic democratic values, including non-dictatorship and a respect for 'minimal liberty'.<sup>52,53</sup> It follows that it may not be possible to specify a socially and politically legitimate social welfare function under *either* the welfarist or extra-welfarist perspectives. In both cases the social welfare function may need to be *imposed*, whether by the 'extra-welfarist analyst' or by another individual, and the social and political legitimacy of this is not apparent in either case.

The 'social decision making' perspective reflects a response to these difficulties.<sup>54</sup> Under this perspective, decision makers are seen as 'agents' of a socially and politically legitimate 'higher authority', such as a democratically elected parliament. This 'higher authority' does *not* specify an explicit social welfare function, but nevertheless allocates resources among different sectors (health, education, transport, etc.) and grants each 'agent' the responsibility to pursue a specific and explicit objective, subject to a budget constraint. The objective delegated to a health care decision maker might be to maximize the present value of population health, measured using QALYs, subject to the budget for health allocated by parliament. Alternatively, the higher authority might delegate a different objective to the agent, such as an objective in which QALYs are weighted or which accounts for considerations other than QALYs. In any case, the social and political legitimacy of the preferred objective rests upon the presumed legitimacy of the higher authority. The budgets it allocates and the objectives it delegates to its agents are assumed to represent a partial expression of some unknown, latent social welfare function.<sup>25,26,45</sup>

Since the higher authority is assumed to be legitimate, the shadow prices of the budgets it allocates are judged to have not only positive meaning (reflecting the opportunity cost of marginal activities falling within that budget) but also normative meaning.<sup>55</sup> For example, the shadow price of the health care budget is assumed to represent a legitimate expression of

society's marginal willingness-to-pay for improvements in population health through the activities of the public health care system, while the allocation of health budgets over time is assumed to reflect society's rate of time preference for health.<sup>25,26</sup>

#### "Health maximization"

A commonly assumed objective under an 'extra-welfarist' or 'social decision making' perspective is maximization of the present value of the time stream of QALYs across the population of interest.<sup>26,56</sup> This objective has been described as "health maximization" and criticized by authors such as Coast.<sup>57</sup>

It is worth noting that QALYs are not a direct measure of health, *per se*, and so "QALY maximization" is not the same as "health maximization". QALYs reflect the preferences of the individuals sampled in the relevant scoring algorithm (typically a representative sample of the public) regarding the relative value of alternative 'health states'. If QALYs are calculated using an EQ-5D algorithm with an N3 term, which provides a weight for the added disutility of severe ill health on one or more dimensions, then the use of QALYs may give greater priority to *health* improvements for patients in more severe health states.<sup>58</sup> This is because an improvement in their health, maintained over a given length of time, may result in a greater increase in QALYs than would be provided by a similar improvement in health, maintained over a similar length of time, for someone in a less severe initial health state. Furthermore, the commonly assumed objective is not "QALY maximization", but rather maximization of the *present value* of the time stream of QALYs, where future QALYs are discounted to reflect society's time preferences.<sup>59</sup>

This commonly assumed objective therefore reflects a number of potentially relevant social values, including a preference for health improvement, for prioritizing health gains among patients in more severe initial health states, and for prioritizing QALY gains among the current generation of patients. It is therefore not correct to describe this approach as "health maximization". Nevertheless, decision makers may wish to reflect these social values to a greater or lesser extent, and may wish to take into account additional social value considerations that are not incorporated when estimating the present value of QALYs. An alternative objective may therefore be considered more appropriate.

#### Perspective adopted in this thesis

Although there is no consensus in the academic literature on the appropriate theoretical perspective to adopt, economic evaluations conducted for decision makers typically adopt a 'social decision making' perspective, since they follow reference case guidelines published by the decision maker that prescribe the objective that is adopted, with no explicit consideration of a social welfare function.

Given its widespread use in current practice, and the difficulties in specifying a social welfare function that carries social and political legitimacy, we adopt a 'social decision making' perspective for the work presented in this thesis. Since this perspective allows for *any* objective to be delegated from the higher authority to the agent, we will *not* assume that this objective is necessarily to maximize the present value of the time stream of QALYs. Our findings will be generalizable to other objectives that might be delegated to the agent by the higher authority.

#### Outline of the thesis

Given the context outlined above, economic evaluations of health technologies currently face a number of complex, and interrelated, challenges.

There is no consensus on the objective that health care decision makers ought to seek to satisfy. This objective, once determined, implies the decision maker's vertical equity position. For example, if the objective is to "maximize population health", then this implies a vertical equity position in which individuals who are socio-economically marginalized should *not* be treated differently than individuals of different socio-economic status who are similar in all other ethically relevant respects. Alternatively, if the objective is to "maximize the *value* of population health", where this value incorporates consideration of the socio-economic status of individuals, then the implied vertical equity position is that socio-economically marginalized individuals *should* be treated differently to otherwise similar individuals. In the absence of a consensus on the objective, it follows that there is no consensus on the vertical equity position that should be adopted in economic evaluations of health technologies.

Regardless of the objective adopted, horizontal equity requires similar treatment of individuals with similar characteristics of ethical relevance. Nevertheless, the considerations necessary to maintain horizontal equity depend upon the decision maker's objective, and hence the implied

vertical equity position. This raises a further challenge: ensuring that every recommendation to adopt new technologies respects the principles of horizontal and vertical equity.

If the decision maker seeks to maximize some measure of 'benefit' across the population (e.g. discounted QALYs), where differential weights are *not* applied to benefits experienced by individuals with different characteristics, then all that is required to maintain horizontal and vertical equity is estimation of the incremental benefit gained by the beneficiaries and the incremental benefit forgone by the bearers of opportunity cost, with equal consideration then given to each. The incremental benefit gained by the beneficiaries is accounted for in the denominator of the ICER of the new technology. In order to give equal consideration to the incremental benefit forgone by the bearers of opportunity cost, this ICER is compared to a threshold that is conventionally assumed to reflect the ICER of the marginal health technology displaced in order to fund the new technology.<sup>46,55,60</sup> Where this threshold is set appropriately, the new technology is considered cost-effective only if the incremental benefit gained by the beneficiaries exceeds the incremental benefit forgone by the bearers of opportunity cost. This is the only decision rule that satisfies this particular objective. Given this objective, it is also the only decision rule that respects horizontal equity and vertical equity – if the incremental benefit forgone by the bearers of the opportunity cost exceeds that gained by the beneficiaries, then the new technology can only be considered cost-effective if differential weights are applied to some benefits but not to others, which violates the decision maker's vertical equity position. Under this objective, it follows that estimation of a threshold that reflects the incremental benefit forgone by the bearers of the opportunity cost is a necessary requirement if the decision maker wishes to respect the principles of horizontal and vertical equity.

In Chapter 1, we consider the determinants of the optimal threshold for the decision maker to adopt when the objective described above is adopted (i.e., the decision maker seeks to maximize some measure of benefit across the population).

The standard theoretical model of the threshold under this objective makes a number of assumptions, including that health technologies are divisible and exhibit constant returns to scale, and that the budget impact of new technologies is marginal.<sup>21</sup> The most common representation of the threshold is as a single value, represented by linear function cutting through the origin of the cost-effectiveness (CE) plane.<sup>12,61,62</sup> It follows that the same threshold is used to assess new technologies that are 'net investments' (imposing costs upon the health system) and those that are 'net disinvestments' (releasing resources within the health system).

Using a simulation model of a hypothetical health care system, we reconsider whether this conventional representation of the threshold is appropriate. We then consider how the characteristics of the threshold may be expected to change when these assumptions are relaxed.

- 1. Is the conventional exposition of the cost-effectiveness threshold consistent with the assumptions underlying the standard theoretical model?
- 2. What are the implications for the specification of the optimal cost-effectiveness threshold of relaxing the assumptions of divisibility of technologies and constant returns to scale in the standard model?
- 3. Should the same cost-effectiveness threshold be used to consider 'net investments' and 'net disinvestments'? If not, under what conditions might these differ?

In Chapter 2, we build upon our work in Chapter 1 by relaxing two further assumptions of the standard model of the threshold: that there is a single decision maker, and that this decision maker has perfect information. Our revised model allows for consideration of the specification of the optimal threshold when there are multiple decision makers operating within a single health care system, each with potentially different levels of imperfect information.

Following the recent work by Eckermann and Perkarsky, we also consider the specification of the optimal threshold under various alternative assumptions regarding the authority of the decision making 'agent' to propose a net investment or net disinvestment of resources among initial technologies as an *alternative* to adopting a new technology, and/or to mandate reallocation following adoption of the new technology and/or implementation of the proposed alternative.<sup>63–65</sup>

- 4. What are the implications for the specification of the optimal cost-effectiveness threshold of considering multiple decision makers with imperfect information?
- 5. Does the optimal threshold depend upon the authority of the decision making 'agent'?

In Chapter 3, we consider the possibility that the decision maker may adopt an alternative objective to that considered in Chapters 1 and 2. Specifically, we assume that the decision maker may wish to apply *differential* weights to benefits experienced by individuals with different characteristics.

Our focus in this chapter is on the assessment of orphan drugs for potential reimbursement by health care systems. Orphan drugs frequently fail to appear cost-effective when compared to a conventional cost-effectiveness threshold.<sup>66</sup> In response, some authors have pointed to characteristics shared by patients with rare diseases, or other value-arguments, that they argue provide justification for their funding.<sup>67,68</sup> The assessment of orphan drugs therefore provides an ideal opportunity to consider some general principles that underlie health care resource allocation if the decision maker adopts an alternative objective to that considered in Chapters 1 and 2.

Our work comprises four parts: first, we scope the social value arguments that have been made relating to the reimbursement of orphan drugs; second, we identify a number of candidate decision factors, stakeholder preferences, value propositions and institutional structures that a decision maker *may* wish to consider when making assessments of orphan drugs; next, we categorize the identified candidate decision factors in a way that is meaningful for decision makers; finally, we develop a framework to aid decision makers in taking these social value arguments into account whilst also considering the opportunity cost of funding orphan drugs, helping to ensure that decisions to fund orphan drugs respect the principles of horizontal and vertical equity.

- 6. What are the social value arguments that have been advanced in the literature relating to the reimbursement of orphan drugs?
- 7. Can these social value arguments be categorized and synthesized into a coherent decision making framework?

In Chapter 4, we critique a series of amendments that NICE has recently made, or has proposed to make, to its methods for the economic evaluation of health technologies. This includes NICE's 'end-of-life' and 'selective discounting' guidance, and its proposals for 'value-based pricing'. Each of these amendments and proposals has the effect of modifying the objective, and hence the vertical equity position, adopted in economic evaluations conducted for NICE.

In common with Chapter 3 – where we focus on orphan drugs as a means for exploring some *general* principles that might underlie health care resource allocation – in this chapter we focus upon NICE because it provides for an ideal exemplar of the *general* issues faced by comparable decision makers in their attempts to reflect alternative vertical equity positions in their methods for economic evaluation of health technologies. We consider NICE to be an ideal exemplar because it is relatively transparent in its processes, and it has attempted to incorporate an alternative objective through *explicit* modifications to its methods for the economic evaluation of health technologies.

Consistent with a social decision making perspective, we do not critique this modified objective, and the implied vertical equity position, *per se*. Rather, we demonstrate how NICE's failure to consider opportunity cost in each amendment it has implemented or proposed raises the potential for NICE's objective not to be satisfied, and for the implied vertical equity position not to be realized. We conclude by offering suggestions for how NICE – and comparable decision makers facing similar issues – may resolve these problems in future.

- 8. Are there any inconsistencies in the consideration of social values within NICE's existing methods for the economic evaluation of health technologies?
- 9. Are there any inconsistencies in the consideration of social values within NICE's proposals for 'value-based pricing', made available for public consultation in 2014?
- 10. What steps can NICE, as an exemplar decision maker, take to resolve any identified inconsistencies in its consideration of social values?

## Bibliography for Preface and Introduction

 Paulden M, Stafinski T, Menon D, McCabe C. Value-based reimbursement decisions for orphan drugs: a scoping review and decision framework. *Pharmacoeconomics*. 2015;33(3):255– 69. doi:10.1007/s40273-014-0235-x.

2. Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Some inconsistencies in NICE's consideration of social values. *Pharmacoeconomics*. 2014;32(11):1043–53. doi:10.1007/s40273-014-0204-4.

3. Hill S, Olson L. NICE, Social Values, and Balancing Objectivity and Equity. *PharmacoEconomics*. 2014;32(11):1039–1041. doi:10.1007/s40273-014-0220-4.

4. Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Objectivity and equity: clarity required. A response to Hill and Olson. *PharmacoEconomics*. 2014;32(12):1249–50. doi:10.1007/s40273-014-0239-6.

5. Boyle T. Budget will see tough decisions in health care. *Toronto Star*. April 4, 2015.

6. Galloway G. Health spending won't meet needs of aging Canadians, report warns. *The Globe and Mail.* July 2, 2015.

Wilton S. Long Canadian wait times send patients south for surgery. *Calgary Herald*.
 April 4, 2014.

8. Health Council of Canada. *Where you live matters: Canadian views on health care quality*. Health Council of Canada; 2014.

9. Palmer S, Raftery J. Economic Notes: opportunity cost. *BMJ*. 1999;318(7197):1551–2.

10. Parliament of Canada. *Canada Health Act.*; 1985.

 O'Donnell J, Pham S, Pashos C, Miller D, Smith M. Health Technology Assessment: Lessons Learned from Around the World—An Overview. *Value Health*. 2009;12(s2):S1–S5. doi:10.1111/j.1524-4733.2009.00550.x.

12. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. *Methods for the economic evaluation of health care programmes*. 4th ed. Oxford University Press; 2015.

13. World Health Organization. 2015 Global Survey on Health Technology Assessment by National Authorities. Geneva: World Health Organization; 2015.

14. National Institute for Health and Care Excellence. *Guide to the methods of technology appraisal 2013.*; 2013.

15. Canadian Agency for Drugs and Technologies in Health. *Guidelines for the Economic Evaluation of Health Technologies: Canada.*; 2006.

16. Stephens JM, H B, D JA. International survey of methods used in health technology assessment (HTA): does practice meet the principles proposed for good research? *Comparative Effectiveness Research*. 2012;(2):29–44.

Mathes T, Jacobs E, Morfeld J-C, Pieper D. Methods of international health technology assessment agencies for economic evaluations- a comparative analysis. *Bmc Health Serv Res.* 2013;13(1):1–10. doi:10.1186/1472-6963-13-371.

18. Pliskin J, Shepard D, Weinstein M. Utility Functions for Life Years and Health Status. *Oper Res.* 1980;28(1):206–224. doi:10.1287/opre.28.1.206.

19. Black RC. "utility". The New Palgrave Dictionary of Economics. 2008.

20. Hicks JR, Allen RG. A Reconsideration of the Theory of Value. Part I. *Economica*. 1934;1(1):52–76.

21. Weinstein M, Zeckhauser R. Critical ratios and efficient allocation. *J Public Econ*. 1973;2(2):147–157. doi:10.1016/0047-2727(73)90002-9.

22. Centre for Health Economics. *iDSI Workshop on Cost-Effectiveness Thresholds: Conceptualisation and Estimation*. University of York; 2015.

23. Gyrd-Hansen D. Willingness to pay for a QALY: theoretical and methodological issues. *Pharmacoeconomics*. 2005;23(5):423–32.

24. Dolan P, Shaw R, Tsuchiya A, Williams A. QALY maximisation and people's preferences: a methodological review of the literature. *Health Econ*. 2005;14(2):197–208. doi:10.1002/hec.924.

25. Paulden M, Claxton K. Budget allocation and the revealed social rate of time preference for health. *Health Econ.* 2012;21(5):612–8. doi:10.1002/hec.1730.

26. Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in the economic evaluation of health-care technologies. *Health Economics*.

2011;20(1):2-15. doi:10.1002/hec.1612.

27. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. *Health Technology Assessment*.
2015;19(14):1–503, v–vi. doi:10.3310/hta19140.
28. Gafni A, Birch S. Incremental cost-effectiveness ratios (ICERs): The silence of the lambda. *Soc Sci Med.* 2006;62(9):2091–2100. doi:10.1016/j.socscimed.2005.10.023.

29. Appleby J, Devlin N, Parkin D, Buxton M, Chalkidou K. Searching for cost effectiveness thresholds in the NHS. *Health Policy*. 2009;91(3):239–45. doi:10.1016/j.healthpol.2008.12.010.

30. Schaffer S, Sussex J, Devlin N, Walker A. Local health care expenditure plans and their opportunity costs. *Health Policy*. 2015;119(9):1237–1244. doi:10.1016/j.healthpol.2015.07.007.

31. Laupacis A, Feeny D, Detsky AS, Tugwell PX. How attractive does a new technology have to be to warrant adoption and utilization? Tentative guidelines for using clinical and economic evaluations. *CMAJ*. 1992;146(4):473–81. Available at:

http://europepmc.org/abstract/MED/1306034.

32. Neumann P, Cohen J, Weinstein M. Updating Cost-Effectiveness — The Curious Resilience of the \$50,000-per-QALY Threshold. *New Engl J Medicine*. 2014;371(9):796–797. doi:10.1056/NEJMp1405158.

33. DeJean D, Giacomini M, Schwartz L, Miller FA. Ethics in Canadian health technology assessment: a descriptive review. *Int J Technol Assess Health Care*. 2009;25(4):463–9. doi:10.1017/S0266462309990390.

34. National Institute for Health and Care Excellence. Citizens Council. 2016.

35. Citizens Council. *Should NICE and its advisory bodies take into account the severity of a disease when making decisions?* National Institute for Health and Care Excellence; 2008.

36. Citizens Council. *Are there circumstances in which the age of a person should be taken into account when NICE is making a decision about how treatments should be used in the NHS?* National Institute for Health and Care Excellence; 2002.

37. Citizens Council. *NICE's Citizens Council were asked to advise on whether or not the NHS should be prepared to pay premium prices for drugs to treat patients with very rare diseases.* . National Institute for Health and Care Excellence; 2004.

38. Citizens Council. *Is there a preference to save the life of people in imminent danger of dying?* National Institute for Health and Care Excellence; 2006.

39. Citizens Council. *What are the societal values that need to be considered when making decisions about trade-offs between equity and efficiency?* National Institute for Health and Care Excellence; 2014.

40. Miller F, Krahn M, Brooker A. Improving the Appraisal of Non-Drug Technologies: Revising the Ontario Decision Framework. Presentation at the 2015 CADTH Symposium. 2015.

41. Duclos. Horizontal and Vertical Equity. The New Palgrave Dictionary of Economics. In:2nd Edition, 2012 Version. Palgrave Macmillan; 2016.

42. Musgrave A, Musgrave PB. *Public Finance in Theory and Practice*. New York: McGraw-Hill; 1976.

43. Culyer AJ. Need: The idea won't do—But we still need it. *Soc Sci Med.* 1995;40(6):727–730. doi:10.1016/0277-9536(94)00307-F.

44. Culyer A. Equity - some theory and its policy implications. *J Med Ethics*.2001;27(4):275–283. doi:10.1136/jme.27.4.275.

45. Claxton K, Walker S, Palmer S, Sculpher M. *Appropriate Perspectives for Health Care Decisions*. York, UK: University of York

46. Sculpher M, Claxton K. Real economics needs to reflect real decisions: a response to Johnson. *PharmacoEconomics*. 2012;30(2):133–6. doi:10.2165/11596660-00000000-00000.

47. Brouwer W, Culyer A, Exel J van, Rutten F. Welfarism vs. extra-welfarism. *J Health Econ.* 2008;27(2):325–338. doi:10.1016/j.jhealeco.2007.07.003.

48. Brouwer WB, Koopmanschap MA. On the economic foundations of CEA. Ladies and gentlemen, take your positions! *J Health Econ*. 2000;19(4):439–59.

49. Coast J, Smith R, Lorgelly P. Welfarism, extra-welfarism and capability: The spread of ideas in health economics. *Soc Sci Med*. 2008;67(7):1190–1198.

doi:10.1016/j.socscimed.2008.06.027.

50. Birch S, Donaldson C. Valuing the benefits and costs of health care programmes: where's the "extra" in extra-welfarism? *Soc Sci Med.* 2003;56(5):1121–1133. doi:10.1016/S0277-9536(02)00101-6.

51. Buchanan J, Wordsworth S. Welfarism Versus Extra-Welfarism: Can the Choice of
Economic Evaluation Approach Impact on the Adoption Decisions Recommended by Economic
Evaluation Studies? *Pharmacoeconomics*. 2015;33(6):571–579. doi:10.1007/s40273-015-02613.

52. Arrow KJ. A Difficulty in the Concept of Social Welfare. *Journal of Political Economy*.
1950;58(4):328–346. doi:10.1086/256963.

53. Sen A. The Impossibility of a Paretian Liberal. *J Polit Econ*. 1970;78(1):152–157. doi:10.1086/259614.

54. Sugden R, Williams A. *The Principles of Practical Cost-Benefit Analysis*. Oxford University Press; 1978.

55. Culyer A, McCabe C, Briggs A, et al. Searching for a threshold, not setting one: the role of the National Institute for Health and Clinical Excellence. *Journal of health services research* & *policy*. 2007;12(1):56–8. doi:10.1258/135581907779497567.

56. Shah, Praet, Devlin, Sussex, Appleby, Parkin. Is the aim of the English health care system to maximize QALYs? *Journal of Health Services Research & Policy*. 2012;17(3):157–163. doi:10.1258/jhsrp.2012.011098.

57. Coast J. Maximisation in extra-welfarism: A critique of the current position in health economics. *Soc Sci Med.* 2009;69(5):786–792. doi:10.1016/j.socscimed.2009.06.026.

58. Dolan P. Modeling valuations for EuroQol health states. *Med Care*. 1997;35(11):1095–108.

59. Paulden M. Time Preference and Discounting. Encyclopedia of Health Economics. In: Elsevier; 2014:395–403. doi:10.1016/B978-0-12-375678-7.00506-X.

60. McCabe C, Claxton K, Culyer A. The NICE Cost-Effectiveness Threshold: What it is and What that Means. *PharmacoEconomics*. 2008;26(9):733–744. doi:10.2165/00019053-200826090-00004.

61. Gold MR, Siegel JE, Russell LB, Weinstein MC. *Cost-effectiveness in health and medicine*. New York: Oxford University Press; 1996.

62. Edlin R, McCabe C, Hulme C, Hall P, Wright J. Cost E\_ffectiveness Modelling for Health Technology Assessment: A Practical Course. Springer; 2015.

63. Eckermann S, Pekarsky B. Can the Real Opportunity Cost Stand Up: Displaced Services, the Straw Man Outside the Room. *PharmacoEconomics*. 2014. doi:10.1007/s40273-014-0140-3.

64. Paulden M, McCabe C, Karnon J. Achieving allocative efficiency in healthcare: nice in theory, not so NICE in Practice? *Pharmacoeconomics*. 2014;32(4):315–8. doi:10.1007/s40273-014-0146-x.

65. Eckermann S. Kinky Thresholds Revisited: Opportunity Costs Differ in the NE and SW Quadrants. *Appl Heal Econ Heal Policy*. 2015;13(1):7–13. doi:10.1007/s40258-014-0136-3.

66. McCabe C, Claxton K, Tsuchiya A. Orphan drugs and the NHS: should we value rarity. *BMJ*. 2005;331(7523):1016–9.

67. Pinxten W, Denier Y, Dooms M, Cassiman J-JJ, Dierickx K. A fair share for the orphans: ethical guidelines for a fair distribution of resources within the bounds of the 10-year-old European Orphan Drug Regulation. *J Med Ethics*. 2012;38(3):148–53. doi:10.1136/medethics-2011-100094.

68. Clarke J. Is the current approach to reviewing new drugs condemning the victims of rare diseases to death? A call for a national orphan drug review policy. *Can Med Assoc J.* 2006;174(2):189–190. doi:10.1503/cmaj.050706.

Chapter 1: An exploration of the impact of non-divisibility, diminishing marginal returns to scale and non-marginal budget impact on the cost-effectiveness threshold using a simulation modelling approach

# Mike Paulden<sup>1</sup> and Christopher McCabe<sup>1</sup>

<sup>1</sup> Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada

# Acknowledgements

Financial support for this study was provided by grants from the Canadian Institutes of Health Research (CIHR), Genome Canada and Alberta Innovates Health Solutions and the University of Alberta. Christopher McCabe's research programme is funded by the Capital Health Research Chair in Emergency Medicine Research Endowment at the University of Alberta. The funding agreement ensured the authors' independence in designing the study, interpreting the data, writing, and publishing the report.

# Abstract

#### Background

The optimal cost-effectiveness threshold to use when considering new health technologies for adoption into a budget-constrained health care system has been subject to much debate. In the standard model, technologies are assumed to be divisible and exhibit constant returns to scale. The threshold is plotted as a linear function through the origin of the cost-effectiveness (CE) plane, implying that the same threshold should be used for both net investments and net disinvestments, regardless of their budget impact.

#### Objectives

We consider the implications of departures from the assumptions underlying the standard model. In this chapter, we focus upon the possibility of *diminishing* marginal returns to scale or *non-divisibility* of technologies. We also consider if the optimal threshold is dependent upon a new technology's *budget impact* and whether the new technology constitutes a *net investment* or *net disinvestment*.

#### Methods

We conducted simulations using a *de novo* model of a hypothetical health care system to assess the impact of different combinations of assumptions upon the optimal threshold. The model comprises three stages: allocation of an initial budget among a pool of initial technologies, consideration of a new technology, and reallocation of resources among initial technologies if the new technology is adopted. The optimal threshold ensures that new technologies are adopted only if the net incremental benefit of adoption and reallocation is positive. Three scenarios were considered: divisible technologies exhibiting constant returns; divisible technologies exhibiting diminishing returns; and non-divisible technologies. For each scenario we estimated the optimal thresholds for net investments and net disinvestments at a range of possible budget impacts. We repeated each scenario using three different initial budgets.

#### Results

The standard exposition of the threshold holds under the following conditions: (a) initial technologies are divisible and exhibit constant returns to scale; (b) a single initial technology remains partially adopted following initial allocation; and (c) the budget impact of each new technology is sufficiently small that reallocation involves expanding or contracting only the partially adopted initial technology. In all other cases, the numerical threshold depends upon

whether the new technology is a net investment or net disinvestment and the magnitude of the budget impact, such that the threshold curves are non-linear. These threshold curves are piecewise linear functions under divisibility and constant returns, concave functions under divisibility and diminishing returns, or step functions under non-divisibility.

# Conclusion

The standard exposition of the threshold, as a single value represented by a linear function that passes through the origin of the CE plane, is a special case that holds only under specific conditions. Under other conditions, threshold curves take a different functional form that reduces the scope for new technologies to appear cost-effective.

# Introduction

The optimal cost-effectiveness threshold to use when considering new health technologies for adoption into a budget-constrained health care system has been subject to much debate. <sup>55,69–72</sup>

A recent systematic review and workshop identified two alternative conceptual approaches to determining this threshold, with the appropriateness of each dependent upon the context.<sup>22,27</sup> According to this literature, a 'demand-side' estimate of society's willingness-to-pay for health is appropriate if the health system budget is unconstrained.<sup>26</sup> If the budget is constrained, adopting a new technology has implications for the funding of other health technologies, so a 'supply-side' estimate of the threshold is more appropriate.<sup>72</sup>

A conventional exposition of the supply-side approach assumes that adopting a new technology will displace some other technology or health care service.<sup>21</sup> The threshold is assumed to represent the incremental cost-effectiveness ratio (ICER) of this displaced technology – that is, the incremental costs that the displaced technology previously imposed upon the health system, divided by the incremental benefits that were provided by the displaced technology.<sup>28</sup>

#### The 'standard model'

We refer to this conventional exposition of the supply-side threshold as the 'standard model'. The standard model incorporates some important assumptions:

- There is a single decision maker, assumed to have a single objective. This objective is typically assumed to be the maximization of some unit of 'benefit', such as the present value of the quality-adjusted life years (QALYs) aggregated over the population of interest.<sup>26,73</sup> It is this unit of benefit that is considered in the denominator of both the threshold and the ICER of each new technology considered for adoption. For example, if QALYs are the preferred unit of benefit, then both the ICER for the technology and the threshold will be expressed in terms of "dollars per QALY" (or the corresponding local currency). If the objective is instead to maximize an alternative unit of benefit, then both the ICER and the threshold will be expressed in terms of "dollars per [unit of benefit]". For the remainder of this chapter, it will be assumed that QALYs are the preferred unit of benefit, although this has no substantive implications for our findings.
- 2. Technologies are assumed to have constant returns to scale, such that the ICER of each technology is independent of its budget impact.<sup>21</sup> For example, a technology with an

ICER of \$50,000 per QALY is assumed to provide an additional incremental QALY for every additional \$50,000 of incremental expenditure, regardless of the existing level of incremental expenditure on the technology – that is, the first \$50,000 spent on the technology provides the same incremental benefit as the last \$50,000.

3. Technologies are assumed to be divisible.<sup>21</sup> This means that technologies might be funded only 'partially', providing a smaller incremental benefit at a smaller incremental cost than if the technology is funded for all relevant patients. This is critical to the concept of 'extended dominance', by which a technology is considered to be dominated by a combination of two partially-funded technologies. New technologies may therefore be funded through the partial, rather than complete, displacement of another technology.

The conventional assumption that the threshold represents the ICER of the displaced technology implies that new technologies generally impose *positive* incremental costs upon the health system – that is, they lie in the northern half of the cost-effectiveness (CE) plane. We will hereafter refer to such technologies as "net investments".

Nevertheless, graphical representations of the standard model typically plot the threshold as a linear function cutting through the origin of the CE plane and passing through both the north-east (NE) and south-west (SW) quadrants (Figure 1.1).<sup>12,61,62</sup> This raises the issue of what threshold should be used when new technologies impose *negative* incremental costs, and hence lie in the southern half of the CE plane. We will refer to such technologies as "net disinvestments".

Adopting a net disinvestment requires no 'displacement' – rather, it *releases* resources, allowing incremental expenditure on other technologies to be increased. Within the standard model, the threshold for technologies in the southern half of the CE plane therefore reflects the ICER of the technology provided with *additional* funding, rather than the ICER of the technology displaced.

Since the standard model plots the threshold as a linear function through the origin of the CE plane, there is an implicit assumption that the ICER of the technology displaced when funding a net investment (in the northern half of the CE plane) is equivalent to the ICER of the technology provided with additional funding when adopting a net disinvestment (in the southern half of the CE plane), implying that the *same* threshold should be used in all circumstances.



Figure 1.1: A conventional exposition of the cost-effectiveness threshold

Incremental benefit of new technology (QALYs)

# Criticisms of the standard model

The standard model has been subjected to criticism. Birch and Gafni have made numerous criticisms of the threshold implied by the standard model, including highlighting inefficiencies that arise when technologies are non-divisible or do not exhibit constant marginal returns to scale.<sup>28,50,69,74–76</sup> However, their proposed solution – to use a mathematical programming approach as an alternative to comparing ICERs to a threshold – may be difficult to implement in practice due to the substantial information required.<sup>77,78</sup> Nevertheless, many of their criticisms of the standard model remain valid, and their implications will be considered in this chapter.

Pekarsky and Eckermann have argued that, when the health system is technically inefficient, the threshold ought to be determined by considering not only the ICER of the technology displaced in practice, but also the ICER of the least efficient technology current adopted (i.e., the technology that *ought* to be displaced) and the ICER of the most efficient technology not yet fully adopted (i.e., the technology that *ought* to be invested in as an alternative to investing in the

new technology).<sup>63,79</sup> Building upon the same theoretical foundations, Eckermann recently argued that different thresholds ought to be used in the northern and southern halves of the CE plane, implying a 'kink' in the threshold at the origin of the CE plane.<sup>65</sup> Although other authors had previously argued that the threshold ought to be 'kinked' at the origin of the CE plane, these authors did not adopt a 'supply-side' approach to the threshold, and so their findings are not applicable if the health system budget is constrained.<sup>80,81</sup> However, in a commentary on Pekarsky and Eckermann's findings, Paulden and colleagues noted that their theoretical model makes particular assumptions about the authority of the decision maker that might not hold in practice.<sup>64</sup> Specifically, it is implicitly assumed that the decision maker has the authority to implement a net investment or net disinvestment of resources among existing technologies as an *alternative* to adopting a new technology, and to implement an efficient reallocation following implementation of this alternative but *not* following adoption of a new technology. In this chapter, it will be assumed that these specific assumptions do not apply, and so Pekarsky and Eckermann's findings are not relevant – the implications for the threshold when these assumptions apply will be explored in the following chapter.

There have been various efforts, most notably by the UK's National Institute for Health and Care Excellence (NICE), to give additional weight to 'value' arguments that are considered to be inadequately reflected in the specification of QALYs.<sup>57,82–85</sup> However, rather than explicitly modifying its objective – which would require reconsideration of the unit of benefit used in both the technology's ICER and the threshold – NICE has instead attempted to apply 'naïve' weights to the threshold that applies under QALY maximization: since 2009, a weight has been applied to the threshold when assessing technologies that benefit patients at the 'end of life', and NICE recently considered applying additional weights, intended to reflect 'severity of illness' and 'capacity to benefit', as part of a proposed move towards 'value based pricing'.<sup>82,84</sup> Chapter 4 describes some issues with these attempts by NICE to amend its methods in this way.

Finally, Claxton and colleagues have proposed that different thresholds ought to be used when assessing new technologies with non-marginal budget impact.<sup>45</sup> This implies that the threshold should be plotted as a non-linear function on the CE plane. The use of a linear function in the standard exposition implies that the threshold is independent of the budget impact.

# Purpose of our work

The purpose of our work is to rethink the assumptions underlying the standard model of the threshold and to consider the implications of departures from these assumptions.

In this chapter, we focus upon the implications for the optimal threshold of incorporating *diminishing* marginal returns to scale or *non-divisibility* of technologies into the standard model. We also consider if the optimal threshold is dependent upon a new technology's *budget impact* and whether the new technology constitutes a *net investment* or *net disinvestment*.

To support our findings, we present results from a model of a small hypothetical health care system in which we simulate the impact of various combinations of assumptions. The results of this simulation work allows us to better understand the logical connections between changes in assumptions and any resulting changes in the optimal threshold.

# Methods

We constructed a model of a hypothetical health care system using the R programming language and conducted simulations using different combinations of assumptions to assess the impact upon the optimal cost-effectiveness threshold.<sup>86</sup>

#### Model structure

The model has three stages. A schematic is provided in Figure 1.2.



# Figure 1.2: Model schematic

# Stage 1: Initial allocation of technologies

A health care system is considered with a fixed budget. Some of this budget is committed to funding *basic health care services*, with the *remainder* available for funding discretionary health technologies; this remainder is hereafter referred to as the 'initial budget' for technologies. A 'pool' of initial technologies is available for adoption, but the initial budget is insufficient to fully fund all available technologies from this pool. In the first stage of the model, a decision maker is responsible for deciding which initial technologies to adopt into the health care system.

Each initial technology is assumed to supplement, or displace, some of the basic health care services already provided, and all technologies are assumed to be independent. The direct cost of

most initial technologies in the pool is assumed to exceed the cost of any basic health care services displaced, and hence their 'incremental cost' is positive. The direct cost of the remaining technologies is less than the cost of the basic health care services displaced, so their incremental cost is negative. Most technologies are assumed to provide more benefit than the basic health care services they displace, so their 'incremental benefit' is positive. The remaining technologies provide less benefit than the basic health care services they displace, and so their incremental benefit is negative.

To generate a sample of initial technologies for our analysis, we assigned an 'incremental cost' and 'incremental benefit' to each of 25 initial technologies (labeled A to Y). These are plotted on the CE plane in Figure 1.3.



Figure 1.3: Incremental cost and incremental benefit of initial technologies in exhaustion

#### Incremental benefit of initial technology (QALYs)

Note that initial technologies A and Y have similar incremental cost and incremental benefit, such that their markers partially overlap

The assigned incremental costs and incremental benefits apply when each initial technology is fully funded for all patients who can benefit (hereafter referred to as 'exhaustion'), and represent the *total* incremental costs and incremental benefit across all patients provided the technology. Incremental costs were randomly drawn from a normal distribution (mean \$10m, SD \$20m), subsequently rounded to the nearest \$0.1m and constrained to the range -\$50m to \$50m. Incremental benefits were also randomly drawn from a normal distribution (mean 500 QALYs, SD 1000 QALYs), with no subsequent rounding. These standard deviations resulted in a pool of technologies distributed across all four quadrants of the CE plane in Figure 1.3.

The decision maker is assumed to adopt initial technologies from the pool until the initial budget is exhausted. In making this initial allocation, it is assumed that the decision maker attempts to maximize the total incremental benefit provided by all adopted technologies.

# Stage 2: Consideration of a new technology

In the second stage of the model, the decision maker considers a new technology for potential adoption into the health care system. In common with each initial technology, is it assumed that the new technology supplements or displaces some of the *basic health care services* already provided. It follows that the incremental cost and incremental benefit of the new technology may be positive or negative, and hence the new technology may lie in any quadrant of the CE plane.

In line with the standard model, it is assumed that the decision maker decides whether to adopt the new technology by comparing its ICER to a cost-effectiveness threshold. The purpose of our work is to determine the 'optimal' threshold for the decision maker to adopt under various assumptions. The resulting 'sets' of optimal thresholds are the primary output of our analyses.

# Stage 3: Reallocation of resources

If the decision maker recommends that a new technology be adopted (in 'stage 2'), this requires a reallocation of resources elsewhere within the health care system. The nature of this reallocation depends upon the region of the CE plane in which the new technology lies.

As noted earlier, we refer to a new technology with positive incremental costs (which therefore lies in the northern half of the CE plane) as a "net investment". This is because adopting such a technology requires an additional investment of resources, even after taking into account any savings that may result from the displacement of basic health care services already provided. Since the budget is constrained, adopting a new technology that constitutes a net investment requires an overall reduction in incremental expenditure on initial technologies. This may be achieved by 'contracting' one or more of the initial technologies *adopted* during the initial allocation of the budget ('stage 1') that lies in the northern half of the CE plane, and/or by 'expanding' one or more initial technologies *not exhausted* during the initial allocation that lies in the southern half of the CE plane – since initial technologies in the southern half of the CE plane have *negative* incremental costs, *expanding* the use of these technologies *releases* resources that may be used for investment in the new technology.

Conversely, we refer to a new technology with negative incremental costs (which lies in the southern half of the CE plane) as a "net disinvestment". This is because adopting such a technology releases more resources than are required to provide the technology. Note that even a technology that requires a direct up-front investment – and so would not conventionally be referred to as a "disinvestment" – may nevertheless be considered a *net disinvestment* if it results in a greater release of resources (whether downstream or from the displacement of basic health care services already provided) than are required for its adoption. Adopting a new technology that constitutes a net disinvestment allows for an *increase* in incremental expenditure on initial technologies. This may be done by expanding one or more initial technologies that lie in the northern half of the CE plane that were *not exhausted* during the initial allocation ('stage 1'), and/or by contracting one or more initial technologies that were *adopted* during the initial allocation and which lie in the southern half of the CE plane *reduces* the savings they provide, resulting in an *increase* in incremental expenditure on initial technologies.

# The cost-effectiveness threshold

We assume that the objective of the decision maker is to maximize the incremental benefit of all adopted technologies. We also assume that the decision maker has limited authority: it may choose to adopt a new technology, which necessitates a reallocation of resources elsewhere within the health care system, or it may choose to reject a new technology, in which case no reallocation takes place. In this context, the optimal cost-effectiveness threshold ensures that a new technology is recommended *only* if its adoption, and the subsequent reallocation of resources, results in an overall increase in incremental benefit. Note that these assumptions differ from those adopted by Pekarsky and Eckermann – the implications of relaxing these assumptions are explored in the following chapter.<sup>63-65</sup>

Determining the optimal cost-effectiveness threshold to use when considering a new technology for potential adoption ('stage 2') therefore requires consideration of any resulting reallocation of resources ('stage 3'), which in turn depends upon the initial allocation of resources ('stage 1'). This is because only those initial technologies that were adopted during the initial allocation ('stage 1') may be displaced or contracted during reallocation ('stage 3'), and only those initial technologies that were not exhausted during the initial allocation ('stage 1') may be adopted or expanded during reallocation ('stage 3'). Determining the optimal cost-effectiveness threshold therefore requires looking back at allocation decisions previously made and also looking forward to reallocation decisions yet to be made. To account for this in our model, the optimal threshold is calculated after considering both the initial allocation of resources ('stage 1') and the reallocation of resources that would follow adoption of the new technology ('stage 3').

#### Divisibility of technologies

The standard model assumes that technologies are divisible. This means that the decision maker may *partially* adopt one or more initial technologies during the initial allocation ('stage 1'), and may *partially* expand or contract one or more technologies during reallocation ('stage 3').

By contrast, if technologies are non-divisible, then the decision maker may only expand technologies until exhaustion, and may only contract technologies in their entirety.

In our model, we consider divisibility by assuming that each technology may be funded in discrete \$0.1m increments. For example, during the initial allocation ('stage 1'), an initial

technology with an incremental cost in exhaustion of \$10.0m may be funded, subject to the available initial budget, at any level between \$0.0m (where the technology is not adopted) and \$10.0m (where the technology is exhausted), in \$0.1m increments. We refer to technologies that are adopted, but not exhausted, as 'partially adopted'. During reallocation ('stage 3'), the decision maker may choose to contract any partially adopted or exhausted technology by any amount (in \$0.1m increments) until it is no longer adopted, or expand any partially adopted or not adopted technology by any amount (in \$0.1m increments) until it is exhausted. Exhausted technologies that are not adopted cannot be contracted.

# Marginal returns to scale

In the standard model, technologies are assumed to have constant marginal returns to scale (hereafter referred to as 'constant returns'). In practice, technologies may exhibit increasing or diminishing marginal returns to scale (hereafter referred to as 'increasing returns' and 'diminishing returns', respectively). In this chapter we consider the implications of constant or diminishing returns only. The possible implications of considering increasing returns, and the challenges of modelling this, are returned to in the Discussion.

If a technology exhibits diminishing returns, the ratio of its incremental expenditure to its incremental benefit increases with incremental expenditure. This means that every additional \$0.1m in incremental expenditure on the technology results in less additional incremental benefit than the previous \$0.1m increase in incremental expenditure. Note that this is only a relevant consideration if the technology is also divisible. If the technology is indivisible then it may only be funded until exhaustion – since it is not possible to incrementally increase expenditure on the technology, it is irrelevant whether the technology exhibits constant or diminishing returns.

#### The 'shape' of a technology's production function

It is not informative to refer to the cost-effectiveness of a technology that exhibits diminishing returns using only its ICER. This is because the ICER increases with incremental expenditure on the technology. It is also important to know the 'shape' of the technology's production function – the relationship between incremental expenditure and the resulting incremental benefit. Under constant returns, this relationship is constant so the production function for each technology is linear. Under diminishing returns, this production function is concave; however, there are many

possible concave production functions, each of which results in a different incremental benefit (and hence a different ICER) for any given incremental expenditure on the technology.

Since many possible 'ICERs' exist for technologies exhibiting diminishing returns, we will define a technology's 'current ICER' as the ratio of the incremental expenditure to incremental benefit at the *current* level of incremental expenditure, and its 'ICER in exhaustion' as this ratio when the technology is funded to exhaustion. For example, a technology that has an incremental cost of \$10m and incremental benefit of 200 QALYs in exhaustion has an 'ICER in exhaustion' of \$50,000 per QALY; it follows that if the technology exhibits diminishing returns and is only *partially* funded then its 'current ICER' will be lower than \$50,000 per QALY, with the current ICER dependent upon the shape of the technology's production function.

We consider diminishing returns by assigning each initial technology a specific production function 'shape' ( $\rho$ ). The incremental benefit ( $\Delta E$ ) of a technology at any given level of incremental expenditure ( $\Delta C$ ) is given by

$$\Delta E = \Delta E_{\chi} \cdot \left(\frac{\Delta C}{\Delta C_{\chi}}\right)^{\frac{1}{\rho}}$$

where  $\Delta C_x$  and  $\Delta E_x$  represent the incremental expenditure and incremental benefit of the technology in exhaustion, respectively.

In our model, each initial technology is randomly assigned one of three shapes:  $\rho = 1.25$ ,  $\rho = 1.50$ , and  $\rho = 2.00$ . The greater the value of  $\rho$ , the greater the concavity in the technology's production function and the greater the degree to which the incremental benefit ( $\Delta E$ ) diminishes with increases in incremental expenditure ( $\Delta C$ ).

This is demonstrated in Figure 1.4 for a hypothetical technology (not in the initial pool in our model) with an incremental cost of \$10m and an incremental benefit of 200 QALYs in exhaustion. Note that constant returns implies  $\rho = 1$ , such that

$$\frac{\Delta C}{\Delta E} = \frac{\Delta C_x}{\Delta E_x},$$

and hence the current ICER is always equal to the ICER in exhaustion, regardless of the level of incremental expenditure.

Where technologies are non-divisible, the only possible levels of incremental expenditure are  $\Delta C = 0$  and  $\Delta C = \Delta C_x$ . In either case the value of  $\rho$  is irrelevant to the determination of  $\Delta E$ , so there is no need to consider whether returns are constant or diminishing. Since non-divisible technologies can only be adopted until exhaustion, the current ICER and ICER in exhaustion are equivalent.





#### The 'marginal ICER'

In addition to distinguishing between the current ICER and ICER in exhaustion, it is necessary to define a third measure: the ratio of the *marginal change* in incremental expenditure to the *marginal change* in incremental benefit that arises following a *marginal* change in incremental expenditure. We refer to this as the 'marginal ICER'.

The distinction between the current ICER, marginal ICER, and ICER in exhaustion is most easily understood through an example (Figure 1.5). Consider a hypothetical technology (not in the initial pool in our model) that, in exhaustion, has an incremental expenditure of \$10.0m and incremental benefit of 200 QALYs, and so has an ICER in exhaustion of \$50,000 per QALY. Suppose the technology is partially adopted, such that incremental expenditure is \$5.0m, half of that in exhaustion. If the technology exhibits diminishing returns, it follows that its incremental benefit will be *more than* half of that in exhaustion.





For example, if the technology's production function shape is  $\rho = 1.5$ , its incremental benefit is approximately 126 QALYs, so the current ICER is  $\frac{5m}{126}$  QALYs =  $\frac{39,685}{126}$  per QALY. Now suppose the decision maker is considering whether to marginally increase incremental expenditure by 0.1m (to 5.1m). This would increase incremental benefit by approximately 1.67 QALYs, so the marginal ICER is approximately 0.1m/1.67 = 59,725 per QALY.

If technologies are divisible and exhibit diminishing returns, it is important for decision makers to consider the marginal ICER, rather than the current ICER or ICER in exhaustion, when allocating health care resources. Suppose that the decision maker must decide whether to allocate a \$0.1m increase in incremental expenditure to the technology described above ('Technology 1') or to another technology ('Technology 2', also not in the initial pool). Technology 2 has an incremental expenditure and incremental benefit in exhaustion of \$8.0m and 200 QALYs, respectively, its production function has the shape  $\rho = 2$ , and its current incremental expenditure is \$6.0m, corresponding to an incremental benefit of approximately 173 QALYs.

Given the decision maker's objective, it ought to provide the \$0.1m increase in incremental expenditure to Technology 1, since this will increase its incremental benefit by 1.67 QALYs, compared to just 1.44 QALYs for Technology 2. Yet, if the decision maker considers only the current ICER or ICER in exhaustion for each technology, it will prefer Technology 2 (Table 1.1). Only when the marginal ICER is considered will the decision maker allocate resources in accordance with its objective.

| y         |     | IC           | ER in exhaus                        | stion                              |              | Current ICE          | ER                                       | Marginal ICER |                      |                                    |  |  |
|-----------|-----|--------------|-------------------------------------|------------------------------------|--------------|----------------------|------------------------------------------|---------------|----------------------|------------------------------------|--|--|
| Technolog | ρ   | $\Delta C_x$ | $\frac{\Delta E_x}{(\text{QALYs})}$ | ICER <sub>x</sub><br>(per<br>QALY) | $\Delta C_c$ | $\Delta E_c$ (QALYs) | <i>ICER<sub>c</sub></i><br>(per<br>QALY) | $\Delta C_m$  | $\Delta E_m$ (QALYs) | ICER <sub>m</sub><br>(per<br>QALY) |  |  |
| 1         | 1.5 | \$10.0m      | 200.00                              | \$50,000                           | \$5.0m       | 125.99               | \$39,685                                 | \$0.1m        | 1.67                 | \$59,725                           |  |  |
| 2         | 2.0 | \$8.0m       | 200.00                              | \$40,000                           | \$6.0m       | 173.21               | \$34,641                                 | \$0.1m        | 1.44                 | \$69,570                           |  |  |

| Table 1.1: Marginal ICER, a | average ICER, | and ICER in exhaustion | for two hypothetical | technologies |
|-----------------------------|---------------|------------------------|----------------------|--------------|
|-----------------------------|---------------|------------------------|----------------------|--------------|

The intuition for making decisions on the basis of the marginal ICER is straightforward. For the purpose of allocating the additional \$0.1m of incremental expenditure, the focus for the decision maker should be the *additional* incremental benefit that will arise from the *additional* \$0.1m. The incremental benefit provided by *existing* incremental expenditures on each technology, or that

would *hypothetically* be provided if incremental expenditure on each technology were to be increased until exhaustion, are both irrelevant. Yet these irrelevant considerations determine the ICER in exhaustion and current ICER. The marginal ICER excludes this irrelevant information and provides an appropriate summary of the additional incremental benefit associated with the additional \$0.1m, as required.

Finally, a distinction must be made between marginal ICERs in 'expansion' and 'contraction'. The example above considered a \$0.1m *increase* in incremental expenditure, and hence the 'marginal ICER' considered in Table 1.1 and Figure 1.5 was that in *expansion*. But if the decision maker instead had to choose between a \$0.1m *reduction* in incremental expenditure on Technology 1 or Technology 2, the relevant marginal ICERs would be those in *contraction*. In this example these are \$59,328 for Technology 1 and \$68,992 per QALY for Technology 2.

In general, if a technology is *not adopted* then its marginal ICER in *contraction* is undefined, if a technology is *exhausted* then its marginal ICER in *expansion* is undefined, while if a technology is *partially adopted* then both marginal ICERs are defined and the difference between them increases or decreases with the magnitude of the change in incremental expenditure considered (approaching equivalence as the change in incremental expenditure approaches zero).

#### Analyses conducted

Our model was used to conduct analyses under the following scenarios:

- 1. Divisible technologies exhibiting constant returns (assumptions of the standard model);
- 2. Divisible technologies exhibiting diminishing returns;
- 3. Non-divisible technologies.

To explore the possibility that the threshold is dependent upon the budget impact of the new technology, as well as the region on the CE plane in which the new technology lies, for each scenario we derived a 'set' of optimal thresholds. Each set of thresholds includes 'subsets' for net investments and net disinvestments, and within each of these subsets we report the optimal threshold for each possible budget impact between \$0.1m and \$50.0m, in \$0.1m increments.

To explore whether the threshold is conditional upon the size of the initial budget, we repeated our analyses using three different initial budgets: a "primary" budget of \$50m, a "lower" budget

of \$0m, and a "higher" budget of \$100m. In the analysis with a \$0m budget, initial technologies in the northern half of the CE plane can be adopted during allocation ('stage 1') *only* if sufficient resources are released by adopting initial technologies in the southern half of the CE plane.

For each scenario, the set of optimal thresholds is plotted on the CE plane. For clarity, we refer to this graphical representation as the "threshold curve", and the numerical representation (in 'dollars per QALY') as the "numerical threshold".

New technologies are cost-effective only if they lie to the *right* of the threshold curve on the CE plane. Equivalently, new technologies in the NE quadrant are cost-effective if their ICERs are *lower* than the numerical threshold for *net investments* corresponding to the budget impact of the new technology, while new technologies in the SW quadrant are cost-effective if their ICERs are *higher* than the corresponding numerical threshold for *net disinvestments*.

# Analytical assumptions *Divisibility*

Where technologies are divisible, our model assumes that the decision maker allocates the initial budget among the initial technologies ('stage 1') in discrete \$0.1m increments. Prior to allocating each subsequent increment, the decision maker reconsiders the marginal ICER in expansion of each initial technology, given the expenditure already allocated, then allocates the next \$0.1m to the technology with the lowest marginal ICER in expansion. Similarly, during reallocation ('stage 3'), the decision maker is assumed to make reallocations in discrete \$0.1m increments, continuously re-evaluating the marginal ICER of each technology in expansion or contraction (as appropriate) to ensure an optimal reallocation of resources.

### Non-divisibility

Where technologies are non-divisible, the decision maker is unable to *incrementally* increase expenditure on each initial technology during the initial allocation ('stage 1'). Rather, the decision maker must decide which initial technologies will be funded until exhaustion, and which will not be adopted at all. In this context, the marginal ICER of each initial technology is undefined and the current ICER for each adopted technology is equivalent to its ICER in

exhaustion. A single 'ICER', equivalent to the ICER in exhaustion, may therefore be considered for each technology.

In this context, it is not necessarily optimal to allocate the initial budget by ranking technologies in ascending order of ICERs and then adopting technologies until the budget is exhausted. Under this approach, some budget may remain unspent due to the non-divisibility of technologies, so total incremental benefits may be increased further by instead adopting an alternative subset of technologies that makes better use of the available budget.<sup>74</sup>

For example, consider a hypothetical health system (different to that considered in our model) with a pool of four non-divisible technologies (labelled 1-4, respectively). The incremental cost, incremental benefit, and ICER of each technology are provided in Table 1.2.

| Technology | $\Delta C_x$ | $\frac{\Delta E_x}{(\text{QALYs})}$ | <i>ICER<sub>x</sub></i><br>(per QALY) |
|------------|--------------|-------------------------------------|---------------------------------------|
| 1          | \$3.0m       | 120                                 | \$25,000                              |
| 2          | \$7.0m       | 260                                 | \$26,923                              |
| 3          | \$6.0m       | 200                                 | \$30,000                              |
| 4          | \$3.9m       | 130                                 | \$30,000                              |

Table 1.2: Incremental cost, incremental benefit, and ICER in exhaustion for four hypothetical technologies

If the initial budget is less than \$3.0m, no technologies can be adopted. If the initial budget is between \$3.0m and \$3.8m, technology 1 will be adopted. However, if the initial budget lies between \$3.9m and \$5.9m then the decision maker will adopt technology 4, despite this having the *highest* ICER of all the technologies available. This is because technology 4 provides greater incremental benefit than technology 1 (despite its higher ICER), and so adopting technology 4 satisfies the decision maker's objective of maximizing total incremental benefit, given the available budget.

To identify the optimal subset of initial technologies, our model incorporates the 'knapsack' algorithm that is included with the 'adagio' add-on package for the R statistical software.<sup>86,87</sup> The 'knapsack problem' is a common problem in combinatorial optimization, in which a decision maker must pack items of different 'size' and 'value' into a knapsack of limited 'capacity', such that the total value of the items in the knapsack is maximized while remaining within the capacity.<sup>88</sup> In our model, the capacity of the knapsack is analogous to the initial budget, while the size and value of each available item is analogous to the incremental cost and incremental benefit in exhaustion of each initial technology in the pool, respectively. Note that initial technologies in the SE and SW quadrants of the CE plane are considered to have negative size (creating additional space in the knapsack for other items), while those in the NW and SW quadrants are considered to have negative value (diminishing the total value of all items in the knapsack). It is assumed that the subset of technologies adopted by the decision maker during allocation ('stage 1') is the 'optimal' subset identified in the solution to the knapsack problem.

# Authority of the decision maker

Under the assumption of non-divisibility, the decision maker is unable to make incremental expansions or contractions of initial technologies during reallocation ('stage 3'). Rather, the decision maker may only displace or adopt technologies in their entirety. The optimal way to do this depends upon whether or not the decision maker has the *authority* to make a wholesale reorganization of the health care system in response to each adoption of a new technology.

If the decision maker has this authority, then the optimal approach is for the decision maker to consider the adoption of the new technology as modifying the budget available for initial technologies, use the knapsack algorithm to identify a new optimal subset of technologies corresponding to this modified budget, then adopt and/or displace initial technologies during reallocation in order to achieve this new optimal subset. The difficulty with this approach is that even marginal changes in the budget can result in very different solutions to a knapsack problem, implying a potential wholesale reorganization of the health care system in response to every decision to adopt a new technology.

In the example considered above, if the budget available for spending on initial technologies is \$6.9m, the optimal allocation is to adopt technologies 1 and 4 (Table 1.2). Following adoption of

a *net investment* with a budget impact of \$0.1m (which necessitates a marginal reduction in incremental expenditure on initial technologies to \$6.8m), the optimal reallocation is to displace technologies 1 and 4 and adopt technology 3. Following adoption of a *net disinvestment* with a budget impact of \$0.1m (which allows for a marginal increase in incremental expenditure on initial technologies to \$7.0m), the optimal reallocation is to displace technologies 1 and 4 and adopt technology 2. It follows that the optimal response to the adoption of a new technology might be to make a wholesale reorganization of the health care system, even if the budget impact of the new technology is marginal.

If the decision maker does *not* have the authority to make wholesale reorganizations of the health care system following every adoption of a new technology, then it may instead be assumed that the decision maker can *either* reduce incremental expenditure on one or more initial technologies to release resources for a net investment, *or* increase incremental expenditure on one or more initial technologies following a net disinvestment, but *not both*. This assumption was adopted in our analysis, since this was considered to be more representative of the real world – allowing for wholesale reorganizations following every adoption of a new technology would, in practice, result in instability in the health care system. To determine the optimal reallocation under this assumption, the knapsack algorithm was used with a constrained set of initial technologies to determine the optimal means for *either* increasing *or* decreasing incremental expenditure on initial technologies, *given* the set of technologies adopted during the initial allocation ('stage 1').

For example, if a *decrease* in incremental expenditure on initial technologies was required (following adoption of a net investment), then the knapsack algorithm was used to identify the optimal set of previously-adopted NE technologies to displace, and/or not-yet-adopted SW technologies to adopt, in order to meet (or exceed) the required reduction in incremental expenditure while minimizing the loss in incremental benefit. Conversely, if an *increase* in incremental expenditure on initial technologies is possible (following adoption of a net disinvestment), then the knapsack algorithm was used to identify the optimal set of not-yet-adopted NE technologies to adopt, and/or previously-adopted SW technologies to displace, in order to maximize the gain in incremental benefit while not exceeding the maximum possible increase in incremental expenditure.

Note that, if technologies are *divisible*, then, under the assumptions adopted in this chapter, the decision maker has no reason to increase or decrease incremental expenditure on initial technologies by any more than is needed to adopt the technology. The decision maker will therefore *not* implement wholesale reorganizations of the health care system, even if it has the authority to do so.

# Results

### Initial allocation

The initial allocation of the budget among initial technologies is summarized in Tables 1.3 - 1.5. Exhausted technologies are identified by a 100% ratio of their incremental expenditure following allocation to their incremental expenditure in exhaustion; for technologies not adopted this ratio is 0%, while for partially adopted technologies this ratio lies between 0% and 100%.

Regardless of whether technologies are divisible or non-divisible, or whether they exhibit constant or diminishing returns, the decision maker does not adopt any initial technologies in the north-west (NW) quadrant of the CE plane, since these technologies require positive incremental expenditure yet provide negative incremental benefits. Conversely, the decision maker always exhausts all initial technologies in the south-east (SE) quadrant. These technologies provide positive incremental benefits, while releasing a total of \$51.1m for expenditure on other technologies. The available budget for adopting technologies in the other quadrants therefore constitutes both the initial budget and the \$51.1m released by adopting SE technologies.

The remaining characteristics of the initial allocation depend upon whether initial technologies are divisible with constant returns, divisible with diminishing returns, or non-divisible.

# Divisibility and constant returns

The decision maker adopts NE technologies, until exhaustion, in ascending order of marginal ICER in expansion until the available budget is spent, at which point the last technology generally remains only partially adopted. With the primary initial budget of \$50m, this partially adopted NE technology is technology C (marginal ICER in expansion \$39,802 per QALY); with the lower initial budget this is technology O (\$27,938 per QALY), and with the higher initial budget this is technology R (\$40,758 per QALY).

At this point, the SW technology with the highest marginal ICER in expansion is technology L (\$200,521 per QALY). Since this marginal ICER is higher than that of the partially adopted NE technology (regardless of the initial budget), the decision maker expands this SW technology in order to *release* resources, allowing for increased incremental expenditure on the NE technology.

|           | Exhau                                                                                | istion           |                                      | Primar             | y budget (                      | (\$50m)                         |                     |                                      | Lowe             | er budget                       | (\$0m)                          |                                | Higher budget (\$100m)               |                  |                                 |                                 |                                |
|-----------|--------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------|---------------------------------|---------------------------------|---------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|
| Tech      | $\Delta C_x^{a}$                                                                     | $\Delta E_x^{b}$ | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{\ d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> ° | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> |
|           |                                                                                      |                  |                                      |                    | Initial                         | technolog                       | ies in the sou      | th-east quaa                         | lrant (cost      | saving an                       | d more ej                       | ffective)                      |                                      |                  |                                 |                                 |                                |
| Α         | -\$2.5m                                                                              | 443.9            | -\$2.5m                              | 443.9              | 100%                            | 100%                            | -\$5,632            | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$5,632                       | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$5,632                       |
| J         | -\$20.8m                                                                             | 264.3            | -\$20.8m                             | 264.3              | 100%                            | 100%                            | -\$78,700           | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$78,700                      | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$78,700                      |
| K         | -\$6.4m                                                                              | 1858.7           | -\$6.4m                              | 1858.7             | 100%                            | 100%                            | -\$3,443            | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$3,443                       | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$3,443                       |
| V         | -\$6.m                                                                               | 1492.2           | -\$6.0m                              | 1492.2             | 100%                            | 100%                            | -\$4,021            | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$4,021                       | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$4,021                       |
| Х         | -\$13.m                                                                              | 70.5             | -\$13.0m                             | 70.5               | 100%                            | 100%                            | -\$184,431          | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$184,431                     | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$184,431                     |
| Y         | -\$2.4m                                                                              | 440.7            | -\$2.4m                              | 440.7              | 100%                            | 100%                            | -\$5,446            | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$5,446                       | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$5,446                       |
| Sub-total | -\$51.1m                                                                             | 4570.2           | -\$51.1m                             | 4570.2             | 100%                            | 100%                            |                     | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                |
|           |                                                                                      |                  |                                      |                    | Initial                         | technolo                        | gies in the sou     | ıth-west qua                         | drant (cosi      | t saving a                      | nd less e <u>f</u>              | fective)                       |                                      |                  |                                 |                                 |                                |
| E         | -\$6.7m                                                                              | -970.8           | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$6,902             | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$6,902                        | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$6,902                        |
| L         | -\$8.6m                                                                              | -42.9            | -\$8.6m                              | -42.9              | 100%                            | 100%                            | \$200,521           | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$200,521                      | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$200,521                      |
| Sub-total | -\$15.3m                                                                             | -1013.6          | -\$8.6m                              | -42.9              | 56%                             | 4%                              |                     | -\$8.6m                              | -42.9            | 56%                             | 4%                              |                                | -\$8.6m                              | -42.9            | 56%                             | 4%                              |                                |
|           | Initial technologies in the north-east quadrant (cost increasing and more effective) |                  |                                      |                    |                                 |                                 |                     |                                      |                  |                                 |                                 |                                |                                      |                  |                                 |                                 |                                |
| В         | \$3.5m                                                                               | 1585.8           | \$3.5m                               | 1585.8             | 100%                            | 100%                            | \$2,207             | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,207                        | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,207                        |
| С         | \$13.7m                                                                              | 344.2            | \$13.7m                              | 344.2              | 100%                            | 100%                            | \$39,802            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$39,802                       | \$13.7m                              | 344.2            | 100%                            | 100%                            | \$39,802                       |
| G         | \$41.9m                                                                              | 21.8             | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$1.9m              | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$1.9m                         | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$1.9m                         |
| Н         | \$18.3m                                                                              | 546.7            | \$18.3m                              | 546.7              | 100%                            | 100%                            | \$33,472            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$33,472                       | \$18.3m                              | 546.7            | 100%                            | 100%                            | \$33,472                       |
| I         | \$16.6m                                                                              | 917.9            | \$16.6m                              | 917.9              | 100%                            | 100%                            | \$18,084            | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$18,084                       | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$18,084                       |
| М         | \$19.7m                                                                              | 397.2            | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$49,596            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$49,596                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$49,596                       |
| N         | \$4.1m                                                                               | 66.7             | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$61,479            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$61,479                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$61,479                       |
| 0         | \$24.8m                                                                              | 887.7            | \$24.8m                              | 887.7              | 100%                            | 100%                            | \$27,938            | \$14.3m                              | 511.8            | 58%                             | 58%                             | \$27,938                       | \$24.8m                              | 887.7            | 100%                            | 100%                            | \$27,938                       |
| Q         | \$21.5m                                                                              | 446.2            | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$48,185            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$48,185                       | \$7.5m                               | 155.6            | 35%                             | 35%                             | \$48,185                       |
| R         | \$50.m                                                                               | 1226.8           | \$7.5m                               | 184.0              | 15%                             | 15%                             | \$40,758            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$40,758                       | \$50.0m                              | 1226.8           | 100%                            | 100%                            | \$40,758                       |
| Т         | \$25.3m                                                                              | 1651.9           | \$25.3m                              | 1651.9             | 100%                            | 100%                            | \$15,316            | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$15,316                       | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$15,316                       |
| U         | \$40.2m                                                                              | 85.0             | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$472,911           | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$472,911                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$472,911                      |
| W         | \$17.8m                                                                              | 105.7            | \$0.0m                               | 0.0                | 0%                              | 0%                              | \$168,385           | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$168,385                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$168,385                      |
| Sub-total | \$297.4m                                                                             | 8283.6           | \$109.7m                             | 6118.2             | 37%                             | 74%                             |                     | \$59.7m                              | 4667.5           | 20%                             | 56%                             |                                | \$159.7m                             | 7316.6           | 54%                             | 88%                             |                                |
|           | 1                                                                                    |                  |                                      |                    | Initial te                      | chnologi                        | es in the north     | i-west quadi                         | ant (cost i      | ncreasing                       | and less                        | effective)                     | -                                    |                  |                                 |                                 |                                |
| D         | \$36.6m                                                                              | -191.0           | \$0.0m                               | 0.0                | 0%                              | 0%                              | -\$191,669          | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$191,669                     | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$191,669                     |
| F         | \$35.4m                                                                              | -784.6           | \$0.0m                               | 0.0                | 0%                              | 0%                              | -\$45,119           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$45,119                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$45,119                      |
| Р         | \$9.9m                                                                               | -149.5           | \$0.0m                               | 0.0                | 0%                              | 0%                              | -\$66,233           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$66,233                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$66,233                      |
| S         | \$3.9m                                                                               | -877.1           | \$0.0m                               | 0.0                | 0%                              | 0%                              | -\$4,447            | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$4,447                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$4,447                       |
| Sub-total | \$85.8m                                                                              | -2002.1          | \$0.0m                               | 0.0                | 0%                              | 0%                              |                     | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                |
| Total     | \$316.8m                                                                             | 9838.1           | \$50.0m                              | 10645.5            |                                 |                                 |                     | \$0.0m                               | 9194.8           |                                 |                                 |                                | \$100.0m                             | 11843.9          |                                 |                                 |                                |

# Table 1.3: Initial allocation (divisibility and constant returns)

<sup>a</sup> Incremental cost in exhaustion; <sup>b</sup> Incremental benefit (QALYs) in exhaustion; <sup>c</sup> Incremental expenditure following allocation of budget in 'stage 1'; <sup>d</sup> Incremental benefit (QALYs) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; (for exhausted technologies, the last marginal ICER in expansion prior to exhaustion is reported).

Under the primary initial budget, NE technology C becomes exhausted after an additional \$1.1m of incremental expenditure, at which point the NE technology with the lowest marginal ICER in expansion becomes technology R (\$40,758 per QALY). Since the marginal ICER of technology R is lower than that of technology L, the decision maker continues to expand technology L to fund additional incremental expenditure on technology R until technology L is exhausted.

The SW technology with the *next* highest marginal ICER in expansion is technology E (\$6,902 per QALY). Since this marginal ICER is *lower* than that of technology R, the decision maker does *not* adopt technology E, so the initial allocation is complete with technology R remaining partially (15%) adopted (marginal ICER in expansion \$40,758 per QALY) (Table 1.3).

Under the lower or higher initial budget, the initial allocation is also complete when technology L is exhausted. At this point, technology O remains partially (58%) adopted under a lower budget (\$27,938 per QALY), while technology Q remains partially (35%) adopted under a higher budget (\$48,185 per QALY).

If technologies are divisible and have constant returns, the initial allocation has the following general characteristics:

- 1. The initial budget is always fully spent.
- 2. All SE technologies are adopted to exhaustion and no NW technologies are adopted.
- 3. Once allocation is complete, one technology in *either* the NE or SW quadrant will *generally* remain partially adopted all remaining technologies are either adopted to exhaustion or not adopted at all. An exception arises if the initial budget is *just sufficient* to exhaust the last technology to be adopted, but not sufficient to begin expansion of another technology (this did not arise in our analyses). In this case, *all* technologies are either adopted at all (none is partially adopted).
- 4. Since marginal returns are constant, the ratio of the partially adopted technology's incremental expenditure following allocation to its incremental expenditure in exhaustion is *identical* to the ratio of its incremental benefit following allocation to its incremental benefit in exhaustion. In the primary analysis, both are 15% for technology R.
- 5. If the partially adopted technology is in the NE quadrant, it has a higher marginal ICER in expansion than all NE technologies adopted to exhaustion, and a lower marginal ICER in expansion than all NE technologies that are not adopted. Conversely, if the partially

adopted technology is in the SW quadrant, it has a *lower* marginal ICER in expansion than all SW technologies adopted to exhaustion, and a *higher* marginal ICER in expansion than all SW technologies that are not adopted.

6. The higher the initial budget, the larger the marginal ICER in expansion of the partially adopted technology and the greater the number of exhausted technologies.

# Divisibility and diminishing returns

The marginal ICER of each technology in expansion increases after an increase in incremental expenditure (Table 1.4). Therefore, unlike under constant returns, the decision maker does not adopt NE technologies one-by-one until exhaustion, but instead allocates the budget in \$0.1m increments, constantly switching between technologies following each incremental allocation. When the available budget is spent, the decision maker then considers marginal expansions of pairs of SW and NE technologies, repeatedly switching between these pairs until no further pairs exist which result in a positive net incremental benefit.

If technologies are divisible and have diminishing returns, the initial allocation has the following general characteristics:

- 1. The initial budget is always fully spent.
- 2. All SE technologies are adopted to exhaustion and no NW technologies are adopted.
- 3. Once allocation is complete, multiple technologies in the NE and SW quadrants generally remain partially adopted, with similar marginal ICERs in expansion.
- 4. The ratio of each partially adopted technology's incremental expenditure following allocation to its incremental expenditure in exhaustion is less than the ratio of its incremental benefit following allocation to its incremental benefit in exhaustion.
- 5. The higher the initial budget, the larger the marginal ICERs in expansion of the partially adopted technologies and the greater the number of exhausted technologies.

|                                   | Exhaus                                                                               | stion            |                                      | Primar           | y budget (                      | (\$50m)                         |                                |                           | Lowe               | er budget                       | (\$0m)                          |                                | Higher budget (\$100m)               |                  |                                 |                                 |                                |
|-----------------------------------|--------------------------------------------------------------------------------------|------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------|--------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|
| Tech                              | $\Delta C_x^{a}$                                                                     | $\Delta E_x^{b}$ | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> | ۵ <i>C</i> <sub>a</sub> ° | $\Delta E_a^{\ d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> |
| Initial technologies in the south |                                                                                      |                  |                                      |                  |                                 |                                 |                                | h-east quadr              | ant (cost s        | aving and                       | l more eff                      | ective)                        |                                      |                  |                                 |                                 |                                |
| Α                                 | -\$2.5m                                                                              | 443.9            | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$8,391                       | -\$2.5m                   | 443.9              | 100%                            | 100%                            | -\$8,391                       | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$8,391                       |
| J                                 | -\$20.8m                                                                             | 264.3            | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$157,211                     | -\$20.8m                  | 264.3              | 100%                            | 100%                            | -\$157,211                     | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$157,211                     |
| K                                 | -\$6.4m                                                                              | 1858.7           | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$6,860                       | -\$6.4m                   | 1858.7             | 100%                            | 100%                            | -\$6,860                       | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$6,860                       |
| V                                 | -\$6.0m                                                                              | 1492.2           | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$5,018                       | -\$6.0m                   | 1492.2             | 100%                            | 100%                            | -\$5,018                       | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$5,018                       |
| Х                                 | -\$13.0m                                                                             | 70.5             | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$368,152                     | -\$13.0m                  | 70.5               | 100%                            | 100%                            | -\$368,152                     | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$368,152                     |
| Y                                 | -\$2.4m                                                                              | 440.7            | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$10,777                      | -\$2.4m                   | 440.7              | 100%                            | 100%                            | -\$10,777                      | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$10,777                      |
| Sub-total                         | -\$51.1m                                                                             | 4570.2           | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                | -\$51.1m                  | 4570.2             | 100%                            | 100%                            |                                | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                |
|                                   |                                                                                      |                  |                                      |                  | Initial t                       | echnolog                        | ies in the sout                | h-west quad               | rant (cost :       | saving an                       | d less effe                     | ective)                        |                                      |                  |                                 |                                 |                                |
| Ε                                 | -\$6.7m                                                                              | -970.8           | -\$0.1m                              | -1.8             | 1%                              | 0%                              | \$30,898                       | -\$0.2m                   | -5.0               | 3%                              | 1%                              | \$23,860                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$56,494                       |
| L                                 | -\$8.6m                                                                              | -42.9            | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$100,847                      | -\$8.6m                   | -42.9              | 100%                            | 100%                            | \$100,847                      | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$100,847                      |
| Sub-total                         | -\$15.3m                                                                             | -1013.6          | -\$8.7m                              | -44.7            | 57%                             | 4%                              |                                | -\$8.8m                   | -47.9              | 58%                             | 5%                              |                                | -\$8.6m                              | -42.9            | 56%                             | 4%                              |                                |
|                                   | Initial technologies in the north-east quadrant (cost increasing and more effective) |                  |                                      |                  |                                 |                                 |                                |                           |                    |                                 |                                 |                                |                                      |                  |                                 |                                 |                                |
| В                                 | \$3.5m                                                                               | 1585.8           | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,751                        | \$3.5m                    | 1585.8             | 100%                            | 100%                            | \$2,751                        | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,751                        |
| С                                 | \$13.7m                                                                              | 344.2            | \$5.2m                               | 180.4            | 38%                             | 52%                             | \$43,365                       | \$1.0m                    | 60.1               | 7%                              | 17%                             | \$25,356                       | \$13.7m                              | 344.2            | 100%                            | 100%                            | \$59,630                       |
| G                                 | \$41.9m                                                                              | 21.8             | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$0.3m                         | \$0.0m                    | 0.0                | 0%                              | 0%                              | \$0.3m                         | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$0.3m                         |
| Н                                 | \$18.3m                                                                              | 546.7            | \$11.7m                              | 405.8            | 64%                             | 74%                             | \$43,315                       | \$2.2m                    | 133.2              | 12%                             | 24%                             | \$24,965                       | \$18.3m                              | 546.7            | 100%                            | 100%                            | \$50,162                       |
| I                                 | \$16.6m                                                                              | 917.9            | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$22,591                       | \$16.6m                   | 917.9              | 100%                            | 100%                            | \$22,591                       | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$22,591                       |
| М                                 | \$19.7m                                                                              | 397.2            | \$3.3m                               | 95.1             | 17%                             | 24%                             | \$43,498                       | \$0.2m                    | 10.1               | 1%                              | 3%                              | \$25,843                       | \$16.7m                              | 348.0            | 85%                             | 88%                             | \$60,015                       |
| N                                 | \$4.1m                                                                               | 66.7             | \$0.5m                               | 23.3             | 12%                             | 35%                             | \$44,988                       | \$0.2m                    | 14.7               | 5%                              | 22%                             | \$30,208                       | \$1.0m                               | 32.9             | 24%                             | 49%                             | \$62,206                       |
| 0                                 | \$24.8m                                                                              | 887.7            | \$24.8m                              | 887.7            | 100%                            | 100%                            | \$41,879                       | \$5.2m                    | 313.3              | 21%                             | 35%                             | \$24,976                       | \$24.8m                              | 887.7            | 100%                            | 100%                            | \$41,879                       |
| Q                                 | \$21.5m                                                                              | 446.2            | \$4.6m                               | 159.6            | 21%                             | 36%                             | \$43,385                       | \$0.9m                    | 53.8               | 4%                              | 12%                             | \$25,547                       | \$12.3m                              | 307.5            | 57%                             | 69%                             | \$60,082                       |
| R                                 | \$50.0m                                                                              | 1226.8           | \$14.1m                              | 651.4            | 28%                             | 53%                             | \$43,365                       | \$4.7m                    | 376.1              | 9%                              | 31%                             | \$25,125                       | \$27.1m                              | 903.1            | 54%                             | 74%                             | \$60,068                       |
| Т                                 | \$25.3m                                                                              | 1651.9           | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$22,958                       | \$25.3m                   | 1651.9             | 100%                            | 100%                            | \$22,958                       | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$22,958                       |
| U                                 | \$40.2m                                                                              | 85.0             | \$0.1m                               | 4.2              | 0%                              | 5%                              | \$56,943                       | \$0.1m                    | 4.2                | 0%                              | 5%                              | \$56,943                       | \$0.2m                               | 6.0              | 0%                              | 7%                              | \$74,210                       |
| W                                 | \$17.8m                                                                              | 105.7            | \$0.1m                               | 3.3              | 1%                              | 3%                              | \$50,960                       | \$0.0m                    | 0.0                | 0%                              | 0%                              | \$29,934                       | \$0.2m                               | 5.3              | 1%                              | 5%                              | \$60,757                       |
| Sub-total                         | \$297.4m                                                                             | 8283.6           | \$109.8m                             | 6566.5           | 37%                             | 79%                             |                                | \$59.9m                   | 5121.2             | 20%                             | 62%                             |                                | \$159.7m                             | 7537.1           | 54%                             | 91%                             |                                |
|                                   |                                                                                      |                  |                                      |                  | Initial tec                     | hnologies                       | s in the north-                | west quadra               | nt (cost in        | creasing o                      | and less e                      | ffective)                      |                                      |                  |                                 |                                 |                                |
| D                                 | \$36.6m                                                                              | -191.0           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$70.2m                       | \$0.0m                    | 0.0                | 0%                              | 0%                              | -\$70.2m                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$70.2m                       |
| F                                 | \$35.4m                                                                              | -784.6           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$848,901                     | \$0.0m                    | 0.0                | 0%                              | 0%                              | -\$848,901                     | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$848,901                     |
| Р                                 | \$9.9m                                                                               | -149.5           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$6.6m                        | \$0.0m                    | 0.0                | 0%                              | 0%                              | -\$6.6m                        | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$6.6m                        |
| S                                 | \$3.9m                                                                               | -877.1           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$27,769                      | \$0.0m                    | 0.0                | 0%                              | 0%                              | -\$27,769                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$27,769                      |
| Sub-total                         | \$85.8m                                                                              | -2002.1          | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                | \$0.0m                    | 0.0                | 0%                              | 0%                              |                                | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                |
| Total                             | \$316.8m                                                                             | 9838.1           | \$50.0m                              | 11092.1          |                                 |                                 |                                | \$0.0m                    | 9643.5             |                                 |                                 |                                | \$100.0m                             | 12064.4          |                                 |                                 |                                |

# Table 1.4: Initial allocation (divisibility and diminishing returns)

<sup>a</sup> Incremental cost in exhaustion; <sup>b</sup> Incremental benefit (QALYs) in exhaustion; <sup>c</sup> Incremental expenditure following allocation of budget in 'stage 1'; <sup>d</sup> Incremental benefit (QALYs) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>f</sup> Incremental ICER in 'expansion' (per QALY) following allocation of 'expansion' (per QALY) following allocation (per QALY) following allocation (per QALY) following allocation (per QALY) following all

# Non-divisibility

The decision maker uses a knapsack algorithm to determine the optimal subset of NE and SW technologies, given the available budget (Table 1.5). Each technology in the optimal subset is adopted until exhaustion; all remaining technologies are not adopted at all.

If technologies are non-divisible, the initial allocation has the following general characteristics:

- 1. The initial budget is generally *not* fully spent.
- 2. All SE technologies are adopted to exhaustion and no NW technologies are adopted.
- 3. All NE or SW technologies are either adopted to exhaustion or not adopted at all no technologies are partially adopted.
- 4. The ICERs of adopted technologies are *typically* lower than the ICERs of technologies not adopted, but exceptions may exist. For example, with the primary budget, technology N (\$61,479 per QALY) is adopted but technology M (\$49,596 per QALY), technology Q (\$48,185 per QALY) and technology R (\$40,758 per QALY) are not adopted.
- 5. The higher the initial budget, the larger the maximum ICER among the adopted technologies and the greater the number of exhausted technologies.

# Reallocation

The reallocation following adoption of the new technology is summarized in Tables 1.6 - 1.11Complete tables are provided in Appendix 1.1, Tables A1.1.1 – A1.1.6.

# Divisibility and constant returns

If the new technology is a net investment, the decision maker reduces incremental expenditure on initial technologies by contracting adopted NE technologies in descending order of their marginal ICERs in contraction, and/or by expanding non-exhausted SW technologies in ascending order of their marginal ICERs in expansion, depending upon which provides the smallest loss in incremental benefit for the associated reduction in incremental expenditure.

If the new technology is a net disinvestment, the decision maker increases incremental expenditure on initial technologies by expanding non-exhausted NE technologies in ascending order of their marginal ICERs in expansion, and/or by contracting adopted SW technologies in

|                                 | Exhau                                                                                | stion            | Primary budget (\$50m) Lower budget (\$0m) Higher budget |                  |                                 |                                 |                     |                                      |                  | budget (\$                      | 5100m)                          |                                |                                      |                  |                                 |                                 |                                |
|---------------------------------|--------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|------------------|---------------------------------|---------------------------------|---------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------------|------------------|---------------------------------|---------------------------------|--------------------------------|
| Tech                            | $\Delta C_x^{a}$                                                                     | $\Delta E_x^{b}$ | ۵ <i>C</i> <sub>a</sub> °                                | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> ° | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> | ۵ <i>C</i> <sub>a</sub> <sup>с</sup> | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $\frac{\Delta E_a}{\Delta E_x}$ | ICER <sub>m</sub> <sup>e</sup> |
| Initial technologies in the sou |                                                                                      |                  |                                                          |                  |                                 |                                 |                     |                                      | rant (cost       | saving an                       | d more ej                       | fective)                       |                                      |                  |                                 |                                 |                                |
| Α                               | -\$2.5m                                                                              | 443.9            | -\$2.5m                                                  | 443.9            | 100%                            | 100%                            | -\$5,632            | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$5,632                       | -\$2.5m                              | 443.9            | 100%                            | 100%                            | -\$5,632                       |
| J                               | -\$20.8m                                                                             | 264.3            | -\$20.8m                                                 | 264.3            | 100%                            | 100%                            | -\$78,700           | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$78,700                      | -\$20.8m                             | 264.3            | 100%                            | 100%                            | -\$78,700                      |
| K                               | -\$6.4m                                                                              | 1858.7           | -\$6.4m                                                  | 1858.7           | 100%                            | 100%                            | -\$3,443            | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$3,443                       | -\$6.4m                              | 1858.7           | 100%                            | 100%                            | -\$3,443                       |
| V                               | -\$6.0m                                                                              | 1492.2           | -\$6.0m                                                  | 1492.2           | 100%                            | 100%                            | -\$4,021            | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$4,021                       | -\$6.0m                              | 1492.2           | 100%                            | 100%                            | -\$4,021                       |
| Х                               | -\$13.0m                                                                             | 70.5             | -\$13.0m                                                 | 70.5             | 100%                            | 100%                            | -\$184,431          | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$184,431                     | -\$13.0m                             | 70.5             | 100%                            | 100%                            | -\$184,431                     |
| Y                               | -\$2.4m                                                                              | 440.7            | -\$2.4m                                                  | 440.7            | 100%                            | 100%                            | -\$5,446            | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$5,446                       | -\$2.4m                              | 440.7            | 100%                            | 100%                            | -\$5,446                       |
| Sub-total                       | -\$51.1m                                                                             | 4570.2           | -\$51.1m                                                 | 4570.2           | 100%                            | 100%                            |                     | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                | -\$51.1m                             | 4570.2           | 100%                            | 100%                            |                                |
|                                 |                                                                                      |                  |                                                          |                  | Initial                         | technolog                       | gies in the sou     | ıth-west qua                         | drant (cosi      | t saving a                      | nd less ef                      | fective)                       |                                      |                  |                                 |                                 |                                |
| E                               | -\$6.7m                                                                              | -970.8           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$6,902             | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$6,902                        | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$6,902                        |
| L                               | -\$8.6m                                                                              | -42.9            | -\$8.6m                                                  | -42.9            | 100%                            | 100%                            | \$200,521           | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$200,521                      | -\$8.6m                              | -42.9            | 100%                            | 100%                            | \$200,521                      |
| Sub-total                       | -\$15.3m                                                                             | -1013.6          | -\$8.6m                                                  | -42.9            | 56%                             | 4%                              |                     | -\$8.6m                              | -42.9            | 56%                             | 4%                              |                                | -\$8.6m                              | -42.9            | 56%                             | 4%                              |                                |
|                                 | Initial technologies in the north-east quadrant (cost increasing and more effective) |                  |                                                          |                  |                                 |                                 |                     |                                      |                  |                                 |                                 |                                |                                      |                  |                                 |                                 |                                |
| В                               | \$3.5m                                                                               | 1585.8           | \$3.5m                                                   | 1585.8           | 100%                            | 100%                            | \$2,207             | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,207                        | \$3.5m                               | 1585.8           | 100%                            | 100%                            | \$2,207                        |
| С                               | \$13.7m                                                                              | 344.2            | \$13.7m                                                  | 344.2            | 100%                            | 100%                            | \$39,802            | \$13.7m                              | 344.2            | 100%                            | 100%                            | \$39,802                       | \$13.7m                              | 344.2            | 100%                            | 100%                            | \$39,802                       |
| G                               | \$41.9m                                                                              | 21.8             | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$1.9m              | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$1.9m                         | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$1.9m                         |
| Н                               | \$18.3m                                                                              | 546.7            | \$18.3m                                                  | 546.7            | 100%                            | 100%                            | \$33,472            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$33,472                       | \$18.3m                              | 546.7            | 100%                            | 100%                            | \$33,472                       |
| I                               | \$16.6m                                                                              | 917.9            | \$16.6m                                                  | 917.9            | 100%                            | 100%                            | \$18,084            | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$18,084                       | \$16.6m                              | 917.9            | 100%                            | 100%                            | \$18,084                       |
| М                               | \$19.7m                                                                              | 397.2            | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$49,596            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$49,596                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$49,596                       |
| N                               | \$4.1m                                                                               | 66.7             | \$4.1m                                                   | 66.7             | 100%                            | 100%                            | \$61,479            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$61,479                       | \$4.1m                               | 66.7             | 100%                            | 100%                            | \$61,479                       |
| 0                               | \$24.8m                                                                              | 887.7            | \$24.8m                                                  | 887.7            | 100%                            | 100%                            | \$27,938            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$27,938                       | \$24.8m                              | 887.7            | 100%                            | 100%                            | \$27,938                       |
| Q                               | \$21.5m                                                                              | 446.2            | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$48,185            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$48,185                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$48,185                       |
| R                               | \$50.0m                                                                              | 1226.8           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$40,758            | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$40,758                       | \$50.0m                              | 1226.8           | 100%                            | 100%                            | \$40,758                       |
| Т                               | \$25.3m                                                                              | 1651.9           | \$25.3m                                                  | 1651.9           | 100%                            | 100%                            | \$15,316            | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$15,316                       | \$25.3m                              | 1651.9           | 100%                            | 100%                            | \$15,316                       |
| U                               | \$40.2m                                                                              | 85.0             | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$472,911           | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$472,911                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$472,911                      |
| W                               | \$17.8m                                                                              | 105.7            | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | \$168,385           | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$168,385                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | \$168,385                      |
| Sub-total                       | \$297.4m                                                                             | 8283.6           | \$106.3m                                                 | 6000.9           | 36%                             | 72%                             |                     | \$59.1m                              | 4499.8           | 20%                             | 54%                             |                                | \$156.3m                             | 7227.7           | 53%                             | 87%                             |                                |
|                                 |                                                                                      |                  |                                                          |                  | Initial te                      | chnologie                       | es in the north     | n-west quadr                         | ant (cost i      | ncreasing                       | and less                        | effective)                     |                                      |                  |                                 |                                 |                                |
| D                               | \$36.6m                                                                              | -191.0           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | -\$191,669          | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$191,669                     | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$191,669                     |
| F                               | \$35.4m                                                                              | -784.6           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | -\$45,119           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$45,119                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$45,119                      |
| Р                               | \$9.9m                                                                               | -149.5           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | -\$66,233           | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$66,233                      | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$66,233                      |
| S                               | \$3.9m                                                                               | -877.1           | \$0.0m                                                   | 0.0              | 0%                              | 0%                              | -\$4,447            | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$4,447                       | \$0.0m                               | 0.0              | 0%                              | 0%                              | -\$4,447                       |
| Sub-total                       | \$85.8m                                                                              | -2002.1          | \$0.0m                                                   | 0.0              | 0%                              | 0%                              |                     | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                | \$0.0m                               | 0.0              | 0%                              | 0%                              |                                |
| Total                           | \$316.8m                                                                             | 9838.1           | \$46.6m                                                  | 10528.2          |                                 |                                 |                     | -\$0.6m                              | 9027.1           |                                 |                                 |                                | \$96.6m                              | 11755.0          |                                 |                                 |                                |

Table 1.5: Initial allocation (non-divisibility)

<sup>a</sup> Incremental cost in exhaustion; <sup>b</sup> Incremental benefit (QALYs) in exhaustion; <sup>c</sup> Incremental expenditure following allocation of budget in 'stage 1'; <sup>d</sup> Incremental benefit (QALYs) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion' (per QALY) following allocation of budget in 'stage 1'; <sup>e</sup> Marginal ICER in 'expansion'

descending order of their marginal ICERs in contraction, depending upon which provides the greatest gain in incremental benefit for the associated increase in incremental expenditure.

If a technology was partially adopted during the initial allocation, this is the first technology to be contracted or expanded. In the primary analysis this is technology R; with a lower or higher budget this is technology O or technology Q, respectively (Tables 1.6 and 1.7).

Contraction of a technology continues until the budget impact of the new technology is reached (in which case the technology generally remains partially adopted), or the technology is fully contracted (i.e., its incremental expenditure is zero), at which point reallocation switches to another technology. In the primary analysis, following a net investment, technology R is contracted until the budget impact reaches \$7.5m, at which point technology R is fully contracted and reallocation switches to technology C (Table 1.6).

Expansion of a technology continues until the budget impact of the new technology is reached, in which case the technology remains partially adopted, or the technology is exhausted, at which point reallocation switches to another technology. In the primary analysis, following a net disinvestment, technology R is expended until the budget impact reaches \$42.5m, at which point technology R is exhausted and reallocation switches to technology Q (Table 1.7).

If technologies are divisible and have constant returns, reallocation has the following general characteristics:

- 1. The required reduction or increase in incremental expenditure on initial technologies is always achieved exactly (i.e., no initial budget is left unspent).
- 2. The marginal ICER of each technology does not change with changes in incremental expenditure. Therefore, the marginal ICER of the *marginal* technology in expansion increases *only* when reallocation switches to a different technology this switch only occurs when a technology is exhausted. Similarly, the marginal ICER of the *marginal* technology in contraction decreases *only* when reallocation switches to a different technology this switch only occurs when a technology is exhausted. Similarly, the marginal ICER of the *marginal* technology in contraction decreases *only* when reallocation switches to a different technology this switch only occurs when a technology is fully contracted.
- 3. Once reallocation is complete, the new allocation has the same general characteristics as the initial allocation, as noted earlier.
| Dudaut  |                   | Prin             | nary budget                    | (\$50m)        |                |                   | Lo               | wer budget                     | (\$0m)         |                | Higher budget (\$100m) |                  |                                |                |                |  |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|------------------------|------------------|--------------------------------|----------------|----------------|--|
| immeet  |                   | Margina          | ıl                             | Cumi           | ulative        |                   | Margina          | d l                            | Cumi           | ulative        |                        | Margina          | d                              | Cum            | ulative        |  |
| mpact   | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>      | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |
| \$0.1m  | R                 | -2.5             | \$40,758                       | -2.5           | \$40,758       | 0                 | -3.6             | \$27,938                       | -3.6           | \$27,938       | Q                      | -2.1             | \$48,185                       | -2.1           | \$48,185       |  |
| \$0.2m  | R                 | -2.5             | \$40,758                       | -4.9           | \$40,758       | 0                 | -3.6             | \$27,938                       | -7.2           | \$27,938       | Q                      | -2.1             | \$48,185                       | -4.2           | \$48,185       |  |
| \$0.3m  | R                 | -2.5             | \$40,758                       | -7.4           | \$40,758       | 0                 | -3.6             | \$27,938                       | -10.7          | \$27,938       | Q                      | -2.1             | \$48,185                       | -6.2           | \$48,185       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$7.5m  | R                 | -2.5             | \$40,758                       | -184.0         | \$40,758       | 0                 | -3.6             | \$27,938                       | -268.4         | \$27,938       | Q                      | -2.1             | \$48,186                       | -155.6         | \$48,185       |  |
| \$7.6m  | С                 | -2.5             | \$39,802                       | -186.5         | \$40,745       | 0                 | -3.6             | \$27,938                       | -272.0         | \$27,938       | R                      | -2.5             | \$40,758                       | -158.1         | \$48,070       |  |
| \$7.7m  | С                 | -2.5             | \$39,802                       | -189.0         | \$40,733       | 0                 | -3.6             | \$27,938                       | -275.6         | \$27,938       | R                      | -2.5             | \$40,758                       | -160.6         | \$47,958       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$14.3m | С                 | -2.5             | \$39,803                       | -354.9         | \$40,298       | 0                 | -3.6             | \$27,938                       | -511.8         | \$27,938       | R                      | -2.5             | \$40,758                       | -322.5         | \$44,343       |  |
| \$14.4m | С                 | -2.5             | \$39,801                       | -357.4         | \$40,294       | Ι                 | -5.5             | \$18,084                       | -517.4         | \$27,833       | R                      | -2.5             | \$40,758                       | -324.9         | \$44,316       |  |
| \$14.5m | С                 | -2.5             | \$39,803                       | -359.9         | \$40,291       | Ι                 | -5.5             | \$18,084                       | -522.9         | \$27,730       | R                      | -2.5             | \$40,758                       | -327.4         | \$44,289       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$21.2m | С                 | -2.5             | \$39,803                       | -528.2         | \$40,135       | Ι                 | -5.5             | \$18,084                       | -893.4         | \$23,730       | R                      | -2.5             | \$40,758                       | -491.8         | \$43,109       |  |
| \$21.3m | Н                 | -3.0             | \$33,472                       | -531.2         | \$40,098       | Ι                 | -5.5             | \$18,084                       | -898.9         | \$23,695       | R                      | -2.5             | \$40,758                       | -494.2         | \$43,097       |  |
| \$21.4m | Н                 | -3.0             | \$33,472                       | -534.2         | \$40,060       | Ι                 | -5.5             | \$18,084                       | -904.5         | \$23,661       | R                      | -2.5             | \$40,758                       | -496.7         | \$43,086       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$30.9m | Н                 | -3.0             | \$33,473                       | -818.0         | \$37,775       | Ι                 | -5.5             | \$18,084                       | -1429.8        | \$21,612       | R                      | -2.5             | \$40,756                       | -729.8         | \$42,342       |  |
| \$31.0m | Н                 | -3.0             | \$33,472                       | -821.0         | \$37,759       | Т                 | -6.5             | \$15,316                       | -1436.3        | \$21,583       | R                      | -2.5             | \$40,758                       | -732.2         | \$42,337       |  |
| \$31.1m | Н                 | -3.0             | \$33,472                       | -824.0         | \$37,743       | Т                 | -6.5             | \$15,316                       | -1442.8        | \$21,555       | R                      | -2.5             | \$40,758                       | -734.7         | \$42,332       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$39.5m | Н                 | -3.0             | \$33,472                       | -1074.9        | \$36,746       | Т                 | -6.5             | \$15,316                       | -1991.3        | \$19,836       | R                      | -2.5             | \$40,758                       | -940.8         | \$41,987       |  |
| \$39.6m | 0                 | -3.6             | \$27,938                       | -1078.5        | \$36,717       | Т                 | -6.5             | \$15,316                       | -1997.8        | \$19,821       | R                      | -2.5             | \$40,758                       | -943.2         | \$41,984       |  |
| \$39.7m | 0                 | -3.6             | \$27,938                       | -1082.1        | \$36,688       | Т                 | -6.5             | \$15,316                       | -2004.4        | \$19,807       | R                      | -2.5             | \$40,758                       | -945.7         | \$41,981       |  |
|         |                   |                  |                                |                |                |                   |                  |                                |                |                |                        |                  |                                |                |                |  |
| \$49.8m | 0                 | -3.6             | \$27,938                       | -1443.6        | \$34,497       | Т                 | -6.5             | \$15,316                       | -2663.8        | \$18,695       | R                      | -2.5             | \$40,766                       | -1193.5        | \$41,727       |  |
| \$49.9m | 0                 | -3.6             | \$27,938                       | -1447.2        | \$34,481       | Т                 | -6.5             | \$15,316                       | -2670.4        | \$18,687       | R                      | -2.5             | \$40,750                       | -1195.9        | \$41,725       |  |
| \$50.0m | 0                 | -3.6             | \$27,938                       | -1450.8        | \$34,464       | Т                 | -6.5             | \$15,316                       | -2676.9        | \$18,678       | R                      | -2.5             | \$40,766                       | -1198.4        | \$41,723       |  |

Table 1.6: Reallocation following net investment (divisibility and constant returns) Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.1

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$0.1m reduction in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m reduction in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in contraction for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

| Denderst |                   | Prim             | ary budget                     | (\$50m)        |                 |                   | Lo               | wer budget (                   | (\$0m)         |                 |                   | High             | er budget (\$                  | 100m)          |                 |
|----------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget   |                   | Margina          | d                              | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative         |                   | Margina          | ıl                             | Cum            | ulative         |
| impact   | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> |
| \$0.1m   | R                 | 2.5              | \$40,758                       | 2.5            | \$40,758        | 0                 | 3.6              | \$27,938                       | 3.6            | \$27,938        | Q                 | 2.1              | \$48,185                       | 2.1            | \$48,185        |
| \$0.2m   | R                 | 2.5              | \$40,758                       | 4.9            | \$40,758        | 0                 | 3.6              | \$27,938                       | 7.2            | \$27,938        | Q                 | 2.1              | \$48,185                       | 4.2            | \$48,185        |
| \$0.3m   | R                 | 2.5              | \$40,758                       | 7.4            | \$40,758        | 0                 | 3.6              | \$27,938                       | 10.7           | \$27,938        | Q                 | 2.1              | \$48,185                       | 6.2            | \$48,185        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$10.5m  | R                 | 2.5              | \$40,758                       | 257.6          | \$40,758        | 0                 | 3.6              | \$27,938                       | 375.8          | \$27,938        | Q                 | 2.1              | \$48,183                       | 217.9          | \$48,185        |
| \$10.6m  | R                 | 2.5              | \$40,758                       | 260.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 378.8          | \$27,982        | Q                 | 2.1              | \$48,186                       | 220.0          | \$48,185        |
| \$10.7m  | R                 | 2.5              | \$40,758                       | 262.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 381.8          | \$28,025        | Q                 | 2.1              | \$48,186                       | 222.1          | \$48,185        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$14.0m  | R                 | 2.5              | \$40,758                       | 343.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 480.4          | \$29,143        | Q                 | 2.1              | \$48,183                       | 290.5          | \$48,185        |
| \$14.1m  | R                 | 2.5              | \$40,758                       | 345.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 483.4          | \$29,170        | М                 | 2.0              | \$49,596                       | 292.6          | \$48,195        |
| \$14.2m  | R                 | 2.5              | \$40,758                       | 348.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 486.4          | \$29,196        | М                 | 2.0              | \$49,596                       | 294.6          | \$48,205        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$28.8m  | R                 | 2.5              | \$40,758                       | 706.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 922.6          | \$31,218        | М                 | 2.0              | \$49,596                       | 589.0          | \$48,900        |
| \$28.9m  | R                 | 2.5              | \$40,758                       | 709.1          | \$40,758        | С                 | 2.5              | \$39,802                       | 925.1          | \$31,241        | М                 | 2.0              | \$49,596                       | 591.0          | \$48,902        |
| \$29.0m  | R                 | 2.5              | \$40,758                       | 711.5          | \$40,758        | С                 | 2.5              | \$39,802                       | 927.6          | \$31,264        | М                 | 2.0              | \$49,596                       | 593.0          | \$48,905        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$33.7m  | R                 | 2.5              | \$40,758                       | 826.8          | \$40,758        | С                 | 2.5              | \$39,803                       | 1045.7         | \$32,228        | М                 | 2.0              | \$49,596                       | 687.8          | \$49,000        |
| \$33.8m  | R                 | 2.5              | \$40,758                       | 829.3          | \$40,758        | С                 | 2.5              | \$39,801                       | 1048.2         | \$32,246        | Ν                 | 1.6              | \$61,479                       | 689.4          | \$49,029        |
| \$33.9m  | R                 | 2.5              | \$40,758                       | 831.7          | \$40,758        | С                 | 2.5              | \$39,803                       | 1050.7         | \$32,265        | N                 | 1.6              | \$61,479                       | 691.0          | \$49,059        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$37.8m  | R                 | 2.5              | \$40,758                       | 927.4          | \$40,758        | С                 | 2.5              | \$39,803                       | 1148.7         | \$32,907        | N                 | 1.6              | \$61,479                       | 754.4          | \$50,103        |
| \$37.9m  | R                 | 2.5              | \$40,758                       | 929.9          | \$40,758        | С                 | 2.5              | \$39,801                       | 1151.2         | \$32,923        | W                 | 0.6              | \$168,385                      | 755.0          | \$50,196        |
| \$38.0m  | R                 | 2.5              | \$40,758                       | 932.3          | \$40,758        | С                 | 2.5              | \$39,803                       | 1153.7         | \$32,938        | W                 | 0.6              | \$168,385                      | 755.6          | \$50,289        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$42.5m  | R                 | 2.5              | \$40,766                       | 1042.7         | \$40,758        | С                 | 2.5              | \$39,803                       | 1266.8         | \$33,550        | W                 | 0.6              | \$168,387                      | 782.4          | \$54,323        |
| \$42.6m  | Q                 | 2.1              | \$48,185                       | 1044.8         | \$40,773        | R                 | 2.5              | \$40,758                       | 1269.2         | \$33,564        | W                 | 0.6              | \$168,384                      | 783.0          | \$54,409        |
| \$42.7m  | Q                 | 2.1              | \$48,185                       | 1046.9         | \$40,788        | R                 | 2.5              | \$40,758                       | 1271.7         | \$33,578        | W                 | 0.6              | \$168,384                      | 783.5          | \$54,496        |
|          |                   |                  |                                |                |                 |                   |                  |                                |                |                 |                   |                  |                                |                |                 |
| \$49.8m  | Q                 | 2.1              | \$48,183                       | 1194.2         | \$41,700        | R                 | 2.5              | \$40,758                       | 1445.9         | \$34,443        | W                 | 0.6              | \$168,384                      | 825.7          | \$60,312        |
| \$49.9m  | Q                 | 2.1              | \$48,186                       | 1196.3         | \$41,712        | R                 | 2.5              | \$40,758                       | 1448.3         | \$34,454        | W                 | 0.6              | \$168,384                      | 826.3          | \$60,389        |
| \$50.0m  | Q                 | 2.1              | \$48,186                       | 1198.4         | \$41,723        | R                 | 2.5              | \$40,758                       | 1450.8         | \$34,464        | W                 | 0.6              | \$168,387                      | 826.9          | \$60,467        |

Table 1.7: Reallocation following net disinvestment (divisibility and constant returns) Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.2

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$0.1m increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m increase in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in expansion for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

## Divisibility and diminishing returns

In common with the 'constant returns' scenario, if the new technology is a net investment then the decision maker reduces incremental expenditure on initial technologies by contracting adopted NE technologies in descending order of their marginal ICERs in contraction, and/or by expanding non-exhausted SW technologies in ascending order of their marginal ICERs in expansion, depending upon which provides the smallest loss in incremental benefit for the associated reduction in incremental expenditure. Conversely, if the new technology is a net disinvestment then the decision maker increases incremental expenditure on initial technologies by expanding non-exhausted NE technologies in ascending order of their marginal ICERs in expansion, and/or by contracting adopted SW technologies in descending order of their marginal ICERs in contraction, depending upon which provides the greatest gain in incremental benefit for the associated increase in incremental expenditure.

However, under 'diminishing returns', the marginal ICER of each technology in expansion rises with increases in incremental expenditure, while the marginal ICER of each technology in contraction falls with decreases in incremental expenditure.

The marginal ICER of the *marginal* technology in expansion therefore increases *continuously* throughout reallocation, while the marginal ICER of the marginal technology in contraction decreases continuously throughout reallocation, such that reallocation frequently switches between different technologies. The technologies that remained partially adopted following the initial allocation – with similar marginal ICERs in expansion – are among the first to be expanded or contracted during reallocation.

Since expenditure is considered in discrete \$0.1m increments, the marginal ICERs in expansion and contraction for each technology are similar but not identical. Since, at any given point during reallocation, several technologies have similar marginal ICERs, it follows that one technology may have the lowest marginal ICER in *expansion* while another technology has the lowest marginal ICER in *contraction*. This is why, in the primary analysis, the first technology to be contracted following a net investment (technology M) differs from the first technology to be expanded following a net disinvestment (technology H) (Tables 1.8 and 1.9).

| Dudget  | Primary budget (\$50m) |                  |                                |                |                 |                   | Lower budget (\$0m) |                                |                |                |                   |                  | Higher budget (\$100m)         |                |                |  |  |
|---------|------------------------|------------------|--------------------------------|----------------|-----------------|-------------------|---------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|--|--|
| impost  |                        | Margina          | ıl                             | Cumulative     |                 |                   | Margina             | ıl                             | Cumi           | ulative        |                   | Margina          | ıl                             | Cum            | ulative        |  |  |
| mpact   | Tech <sup>a</sup>      | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>+e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$    | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$0.1m  | М                      | -2.3             | \$43,235                       | -2.3           | \$43,235        | R                 | -4.0                | \$24,859                       | -4.0           | \$24,859       | R                 | -1.7             | \$59,957                       | -1.7           | \$59,957       |  |  |
| \$0.2m  | R                      | -2.3             | \$43,211                       | -4.6           | \$43,223        | 0                 | -4.0                | \$24,816                       | -8.1           | \$24,838       | М                 | -1.7             | \$59,944                       | -3.3           | \$59,950       |  |  |
| \$0.3m  | Н                      | -2.3             | \$43,191                       | -6.9           | \$43,212        | 0                 | -4.1                | \$24,655                       | -12.1          | \$24,776       | Q                 | -1.7             | \$59,920                       | -5.0           | \$59,940       |  |  |
|         |                        |                  |                                |                |                 |                   |                     |                                |                |                |                   |                  |                                |                |                |  |  |
| \$25.0m | 0                      | -2.8             | \$35,869                       | -634.2         | \$39,421        | 0                 | -5.1                | \$19,632                       | -1158.5        | \$21,580       | Q                 | -1.9             | \$51,877                       | -446.0         | \$56,053       |  |  |
| \$25.1m | N                      | -2.8             | \$35,833                       | -637.0         | \$39,406        | Т                 | -5.1                | \$19,616                       | -1163.6        | \$21,571       | R                 | -1.9             | \$51,875                       | -447.9         | \$56,035       |  |  |
| \$25.2m | Н                      | -2.8             | \$35,828                       | -639.8         | \$39,390        | Ι                 | -5.1                | \$19,607                       | -1168.7        | \$21,562       | М                 | -1.9             | \$51,832                       | -449.9         | \$56,017       |  |  |
|         |                        |                  |                                |                |                 |                   |                     |                                |                |                |                   |                  |                                |                |                |  |  |
| \$49.8m | R                      | -4.0             | \$25,125                       | -1440.6        | \$34,569        | Т                 | -8.0                | \$12,475                       | -2670.6        | \$18,647       | С                 | -2.3             | \$43,365                       | -967.7         | \$51,460       |  |  |
| \$49.9m | 0                      | -4.0             | \$24,976                       | -1444.6        | \$34,543        | 0                 | -8.0                | \$12,443                       | -2678.7        | \$18,629       | R                 | -2.3             | \$43,363                       | -970.1         | \$51,440       |  |  |
| \$50.0m | Н                      | -4.0             | \$24,965                       | -1448.6        | \$34,516        | Т                 | -8.1                | \$12,370                       | -2686.8        | \$18,610       | Н                 | -2.3             | \$43,314                       | -972.4         | \$51,421       |  |  |

| Table 1.8: Reallocation following net investment (divisibility and diminishing returns) |
|-----------------------------------------------------------------------------------------|
| Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.3     |

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$0.1m reduction in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m reduction in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in contraction for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

| Devileert | Primary budget (\$50m) |                  |                                |                |                 |                   | Lo               | wer budget (                   | (\$0m)         |                 | Higher budget (\$100m) |                  |                                |                |                 |
|-----------|------------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|------------------------|------------------|--------------------------------|----------------|-----------------|
| Budget    |                        | Margina          | ıl                             | Cumulative     |                 |                   | Margina          | ıl                             | Cum            | ulative         |                        | Margina          | ıl                             | Cum            | ulative         |
| impact    | Tech <sup>a</sup>      | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup>      | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> |
| \$0.1m    | Н                      | 2.3              | \$43,315                       | 2.3            | \$43,315        | Н                 | 4.0              | \$24,965                       | 4.0            | \$24,965        | М                      | 1.7              | \$60,015                       | 1.7            | \$60,015        |
| \$0.2m    | R                      | 2.3              | \$43,365                       | 4.6            | \$43,340        | 0                 | 4.0              | \$24,976                       | 8.0            | \$24,971        | R                      | 1.7              | \$60,068                       | 3.3            | \$60,042        |
| \$0.3m    | С                      | 2.3              | \$43,365                       | 6.9            | \$43,348        | R                 | 4.0              | \$25,125                       | 12.0           | \$25,022        | Q                      | 1.7              | \$60,082                       | 5.0            | \$60,055        |
|           |                        |                  |                                |                |                 |                   |                  |                                |                |                 |                        |                  |                                |                |                 |
| \$25.0m   | R                      | 1.9              | \$51,878                       | 526.4          | \$47,497        | Ν                 | 2.8              | \$35,833                       | 814.4          | \$30,697        | R                      | 1.4              | \$72,228                       | 381.5          | \$65,534        |
| \$25.1m   | Q                      | 1.9              | \$51,877                       | 528.3          | \$47,513        | 0                 | 2.8              | \$35,869                       | 817.2          | \$30,714        | R                      | 1.4              | \$72,312                       | 382.9          | \$65,558        |
| \$25.2m   | М                      | 1.9              | \$51,962                       | 530.2          | \$47,529        | 0                 | 2.8              | \$35,945                       | 820.0          | \$30,732        | R                      | 1.4              | \$72,411                       | 384.2          | \$65,583        |
|           |                        |                  |                                |                |                 |                   |                  |                                |                |                 |                        |                  |                                |                |                 |
| \$49.8m   | Q                      | 1.7              | \$59,920                       | 969.0          | \$51,392        | Н                 | 2.3              | \$43,191                       | 1444.0         | \$34,488        | L                      | 0.6              | \$181,524                      | 635.0          | \$78,425        |
| \$49.9m   | М                      | 1.7              | \$59,941                       | 970.7          | \$51,407        | R                 | 2.3              | \$43,211                       | 1446.3         | \$34,502        | W                      | 0.5              | \$181,914                      | 635.6          | \$78,515        |
| \$50.0m   | R                      | 1.7              | \$59,956                       | 972.4          | \$51,421        | М                 | 2.3              | \$43,235                       | 1448.6         | \$34,516        | W                      | 0.5              | \$182,819                      | 636.1          | \$78,604        |

#### Table 1.9: Reallocation following net disinvestment (divisibility and diminishing returns) Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.4

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$0.1m increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m increase in incremental expenditure on marginal technology;
 <sup>c</sup> Marginal ICER in expansion for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

If technologies are divisible and have diminishing returns, reallocation has the following general characteristics:

- 1. The required reduction or increase in incremental expenditure on initial technologies is always achieved exactly (i.e., no initial budget is left unspent).
- The marginal ICER of the marginal technology in expansion increases *continuously* throughout reallocation, while the marginal ICER of the marginal technology in contraction falls continuously throughout reallocation, such that reallocation frequently switches between different marginal technologies.
- 3. The technology with the lowest marginal ICER in *expansion* is not necessarily the technology with the lowest marginal ICER in *contraction*.
- 4. Once reallocation is complete, the new allocation has the same general characteristics as the initial allocation, as noted earlier.

# Non-divisibility

Following a net investment, the decision maker displaces NE technologies adopted during the initial allocation, and/or adopts SW technologies *not* adopted during the initial allocation, so as to minimize the total loss in incremental benefit while releasing at least enough resources to adopt the new technology (Table 1.10).

Following a net disinvestment, the decision maker adopts NE technologies not adopted during the initial allocation, and/or displaces SW technologies adopted during the initial allocation, so as maximize the total gain in incremental benefit while keeping the increase in incremental expenditure on initial technologies within the amount released by adopting the new technology (Table 1.11).

Since technologies must be displaced or adopted in their entirety, the reduction (increase) in incremental expenditure during reallocation following a net investment (net disinvestment) is generally greater (less) than the budget impact of the new technology. An alternative net investment (net disinvestment) with similar budget impact may therefore result in exactly the same reallocation.

Net investments with small budget impact require displacement of at least one NE technology, or adoption of at least one SW technology, which may result in a greater reduction in incremental expenditure than required for the net investment. It follows that all other net investments with a budget impact less than or equal to this reduction in incremental expenditure are subject to the same reallocation. For example, under the primary budget, a net investment with a budget impact of \$0.1m results in the displacement of technology N, which reduces incremental expenditure by \$4.1m. It follows that all net investments with a budget impact up to and including \$4.1m also result in the displacement of technology N.

Net disinvestments with small budget impact may release too few resources to fund the adoption of a NE technology, or displacement of a SW technology, such that no reallocation is possible. For example, under the primary budget, the smallest incremental expenditure necessary to either adopt a NE technology or displace a SW technology is \$8.6m (to displace SW technology L); therefore, all net disinvestments with a budget impact less than \$8.6m result in no reallocation.

If technologies are non-divisible, reallocation has the following general characteristics:

- 1. The required reduction or increase in incremental expenditure on initial technologies is not generally achieved exactly (i.e., some initial budget is generally left unspent).
- 2. Any NE technologies adopted will *typically* be among those with the lowest ICERs, while NE technologies displaced will *typically* be among those with the highest ICERs. Conversely, any SW technologies adopted will *typically* be among those with the highest ICERs, while SW technologies displaced will *typically* be among those with the lowest ICERs. Exceptions may exist in all cases due to the non-divisibility of technologies.
- 3. Once reallocation is complete, the new allocation has the same general characteristics as the initial allocation, as noted earlier.

| Budget  |                   | Primary bu              | dget (\$50m             | )              |                   | Lower bu                | dget (\$0m)  |                | Higher budget (\$100m) |                         |                         |                |  |
|---------|-------------------|-------------------------|-------------------------|----------------|-------------------|-------------------------|--------------|----------------|------------------------|-------------------------|-------------------------|----------------|--|
| impact  | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <b>Ε</b> <sup>c</sup> | $\lambda^{+d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <b>Ε</b> ° | $\lambda^{+d}$ | Tech <sup>a</sup>      | ∆ <i>C</i> <sup>b</sup> | Δ <b>Ε</b> <sup>c</sup> | $\lambda^{+d}$ |  |
| \$0.1m  | Ν                 | -\$4.1m                 | -66.7                   | \$1,499        | С                 | -\$13.7m                | -344.2       | \$291          | Ν                      | -\$4.1m                 | -66.7                   | \$1,499        |  |
| \$0.2m  | Ν                 | -\$4.1m                 | -66.7                   | \$2,999        | С                 | -\$13.7m                | -344.2       | \$581          | Ν                      | -\$4.1m                 | -66.7                   | \$2,999        |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$4.1m  | Ν                 | -\$4.1m                 | -66.7                   | \$61,479       | С                 | -\$13.7m                | -344.2       | \$11,912       | Ν                      | -\$4.1m                 | -66.7                   | \$61,479       |  |
| \$4.2m  | С                 | -\$13.7m                | -344.2                  | \$12,202       | С                 | -\$13.7m                | -344.2       | \$12,202       | С                      | -\$13.7m                | -344.2                  | \$12,202       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$13.7m | С                 | -\$13.7m                | -344.2                  | \$39,802       | С                 | -\$13.7m                | -344.2       | \$39,802       | С                      | -\$13.7m                | -344.2                  | \$39,802       |  |
| \$13.8m | C N               | -\$17.8m                | -410.9                  | \$33,585       | Ι                 | -\$16.6m                | -917.9       | \$15,034       | C N                    | -\$17.8m                | -410.9                  | \$33,585       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$16.6m | C N               | -\$17.8m                | -410.9                  | \$40,400       | Ι                 | -\$16.6m                | -917.9       | \$18,084       | C N                    | -\$17.8m                | -410.9                  | \$40,400       |  |
| \$16.7m | C N               | -\$17.8m                | -410.9                  | \$40,643       | CI                | -\$30.3m                | -1262.1      | \$13,231       | C N                    | -\$17.8m                | -410.9                  | \$40,643       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$17.8m | C N               | -\$17.8m                | -410.9                  | \$43,320       | CI                | -\$30.3m                | -1262.1      | \$14,103       | C N                    | -\$17.8m                | -410.9                  | \$43,320       |  |
| \$17.9m | Н                 | -\$18.3m                | -546.7                  | \$32,740       | CI                | -\$30.3m                | -1262.1      | \$14,182       | Н                      | -\$18.3m                | -546.7                  | \$32,740       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$18.3m | Н                 | -\$18.3m                | -546.7                  | \$33,472       | CI                | -\$30.3m                | -1262.1      | \$14,499       | Η                      | -\$18.3m                | -546.7                  | \$33,472       |  |
| \$18.4m | ΗN                | -\$22.4m                | -613.4                  | \$29,996       | CI                | -\$30.3m                | -1262.1      | \$14,578       | ΗN                     | -\$22.4m                | -613.4                  | \$29,996       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$22.4m | ΗN                | -\$22.4m                | -613.4                  | \$36,517       | CI                | -\$30.3m                | -1262.1      | \$17,748       | ΗN                     | -\$22.4m                | -613.4                  | \$36,517       |  |
| \$22.5m | 0                 | -\$24.8m                | -887.7                  | \$25,347       | CI                | -\$30.3m                | -1262.1      | \$17,827       | 0                      | -\$24.8m                | -887.7                  | \$25,347       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$24.8m | 0                 | -\$24.8m                | -887.7                  | \$27,938       | CI                | -\$30.3m                | -1262.1      | \$19,649       | 0                      | -\$24.8m                | -887.7                  | \$27,938       |  |
| \$24.9m | СН                | -\$32.0m                | -890.9                  | \$27,948       | CI                | -\$30.3m                | -1262.1      | \$19,728       | СH                     | -\$32.0m                | -890.9                  | \$27,948       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$30.3m | СН                | -\$32.0m                | -890.9                  | \$34,009       | CI                | -\$30.3m                | -1262.1      | \$24,007       | СН                     | -\$32.0m                | -890.9                  | \$34,009       |  |
| \$30.4m | СН                | -\$32.0m                | -890.9                  | \$34,122       | C T               | -\$39.0m                | -1996.1      | \$15,230       | СН                     | -\$32.0m                | -890.9                  | \$34,122       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$32.0m | СН                | -\$32.0m                | -890.9                  | \$35,917       | C T               | -\$39.0m                | -1996.1      | \$16,031       | СН                     | -\$32.0m                | -890.9                  | \$35,917       |  |
| \$32.1m | CHN               | -\$36.1m                | -957.6                  | \$33,521       | C T               | -\$39.0m                | -1996.1      | \$16,081       | CHN                    | -\$36.1m                | -957.6                  | \$33,521       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$36.1m | CHN               | -\$36.1m                | -957.6                  | \$37,698       | C T               | -\$39.0m                | -1996.1      | \$18,085       | CHN                    | -\$36.1m                | -957.6                  | \$37,698       |  |
| \$36.2m | СО                | -\$38.5m                | -1231.9                 | \$29,386       | C T               | -\$39.0m                | -1996.1      | \$18,135       | R                      | -\$50.0m                | -1226.8                 | \$29,509       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$38.5m | CO                | -\$38.5m                | -1231.9                 | \$31,253       | CT                | -\$39.0m                | -1996.1      | \$19,287       | R                      | -\$50.0m                | -1226.8                 | \$31,384       |  |
| \$38.6m | C N O             | -\$42.6m                | -1298.6                 | \$29,725       | C T               | -\$39.0m                | -1996.1      | \$19,338       | R                      | -\$50.0m                | -1226.8                 | \$31,465       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$39.0m | C N O             | -\$42.6m                | -1298.6                 | \$30,033       | C T               | -\$39.0m                | -1996.1      | \$19,538       | R                      | -\$50.0m                | -1226.8                 | \$31,791       |  |
| \$39.1m | C N O             | -\$42.6m                | -1298.6                 | \$30,110       | ΙT                | -\$41.9m                | -2569.9      | \$15,215       | R                      | -\$50.0m                | -1226.8                 | \$31,873       |  |
|         |                   |                         |                         |                | -                 |                         |              |                | -                      |                         |                         |                |  |
| \$41.9m | CNO               | -\$42.6m                | -1298.6                 | \$32,266       | ΙT                | -\$41.9m                | -2569.9      | \$16,304       | R                      | -\$50.0m                | -1226.8                 | \$34,155       |  |
| \$42.0m | C N O             | -\$42.6m                | -1298.6                 | \$32,343       | CIT               | -\$55.6m                | -2914.1      | \$14,413       | R                      | -\$50.0m                | -1226.8                 | \$34,237       |  |
|         |                   |                         |                         |                | -                 |                         |              |                |                        |                         |                         |                |  |
| \$42.6m | CNO               | -\$42.6m                | -1298.6                 | \$32,805       | CIT               | -\$55.6m                | -2914.1      | \$14,619       | R                      | -\$50.0m                | -1226.8                 | \$34,726       |  |
| \$42.7m | НО                | -\$43.1m                | -1434.4                 | \$29,769       | CIT               | -\$55.6m                | -2914.1      | \$14,653       | R                      | -\$50.0m                | -1226.8                 | \$34,807       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$43.1m | HO                | -\$43.1m                | -1434.4                 | \$30,047       | CIT               | -\$55.6m                | -2914.1      | \$14,790       | R                      | -\$50.0m                | -1226.8                 | \$35,133       |  |
| \$43.2m | ΗNΟ               | -\$47.2m                | -1501.1                 | \$28,779       | CIT               | -\$55.6m                | -2914.1      | \$14,825       | R                      | -\$50.0m                | -1226.8                 | \$35,215       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$47.2m | HNO               | -\$47.2m                | -1501.1                 | \$31,444       | CIT               | -\$55.6m                | -2914.1      | \$16,197       | R                      | -\$50.0m                | -1226.8                 | \$38,476       |  |
| \$47.3m | СНО               | -\$56.8m                | -1778.6                 | \$26,594       | CIT               | -\$55.6m                | -2914.1      | \$16,232       | R                      | -\$50.0m                | -1226.8                 | \$38,557       |  |
|         |                   |                         |                         |                |                   |                         |              |                |                        |                         |                         |                |  |
| \$49.9m | СНО               | -\$56.8m                | -1778.6                 | \$28,056       | CIT               | -\$55.6m                | -2914.1      | \$17,124       | R                      | -\$50.0m                | -1226.8                 | \$40,677       |  |
| \$50.0m | СНО               | -\$56.8m                | -1778.6                 | \$28,112       | CIT               | -\$55.6m                | -2914.1      | \$17,158       | R                      | -\$50.0m                | -1226.8                 | \$40,758       |  |

Table 1.10: Reallocation following net investment (non-divisibility) Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.5

<sup>a</sup> Technologies displaced; <sup>b</sup> Total change in incremental expenditure across all displaced technologies; <sup>c</sup> Total change in incremental benefit (QALYs) resulting from displacement of technologies; <sup>d</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

| Budget    |                   | Primary bu              | udget (\$50) | n)             |                   | Lower bu                | dget (\$0m) | )              | Higher budget (\$100m) |                         |                |                |  |
|-----------|-------------------|-------------------------|--------------|----------------|-------------------|-------------------------|-------------|----------------|------------------------|-------------------------|----------------|----------------|--|
| impact    | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°          | $\lambda^{-d}$ | Tech <sup>a</sup> | ∆ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup>      | Δ <b>C</b> <sup>b</sup> | Δ <b>E</b> °   | $\lambda^{-d}$ |  |
| \$0.1m    | N/A               | \$0.0m                  | 0.0          | N/A            | N/A               | \$0.0m                  | 0.0         | N/A            | N/A                    | \$0.0m                  | 0.0            | N/A            |  |
| \$0.2m    | N/A               | \$0.0m                  | 0.0          | N/A            | N/A               | \$0.0m                  | 0.0         | N/A            | N/A                    | \$0.0m                  | 0.0            | N/A            |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$4.0m    | N/A               | \$0.0m                  | 0.0          | N/A            | N/A               | \$0.0m                  | 0.0         | N/A            | N/A                    | \$0.0m                  | 0.0            | N/A            |  |
| \$4.1m    | N/A               | \$0.0m                  | 0.0          | N/A            | Ν                 | \$4.1m                  | 66.7        | \$61,479       | N/A                    | \$0.0m                  | 0.0            | N/A            |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$8.5m    | N/A               | \$0.0m                  | 0.0          | N/A            | Ν                 | \$4.1m                  | 66.7        | \$127,456      | N/A                    | \$0.0m                  | 0.0            | N/A            |  |
| \$8.6m    | L                 | \$8.6m                  | 42.9         | \$200,521      | Ν                 | \$4.1m                  | 66.7        | \$128,955      | L                      | \$8.6m                  | 42.9           | \$200,521      |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$17.7m   | L                 | \$8.6m                  | 42.9         | \$412,700      | Ν                 | \$4.1m                  | 66.7        | \$265,408      | L                      | \$8.6m                  | 42.9           | \$412,700      |  |
| \$17.8m   | W                 | \$17.8m                 | 105.7        | \$168,385      | W                 | \$17.8m                 | 105.7       | \$168,385      | W                      | \$17.8m                 | 105.7          | \$168,385      |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$18.2m   | W                 | \$17.8m                 | 105.7        | \$172,169      | W                 | \$17.8m                 | 105.7       | \$172,169      | W                      | \$17.8m                 | 105.7          | \$172,169      |  |
| \$18.3m   | W                 | \$17.8m                 | 105.7        | \$173,115      | Н                 | \$18.3m                 | 546.7       | \$33,472       | W                      | \$17.8m                 | 105.7          | \$173,115      |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$19.6m   | W                 | \$17.8m                 | 105.7        | \$185,413      | Н                 | \$18.3m                 | 546.7       | \$35,850       | W                      | \$17.8m                 | 105.7          | \$185,413      |  |
| \$19.7m   | M                 | \$19.7m                 | 397.2        | \$49,596       | Н                 | \$18.3m                 | 546.7       | \$36,033       | M                      | \$19.7m                 | 397.2          | \$49,596       |  |
|           | 1                 |                         |              |                | 1                 |                         |             |                | 1                      |                         |                |                |  |
| \$21.4m   | М                 | \$19.7m                 | 397.2        | \$53,875       | Н                 | \$18.3m                 | 546.7       | \$39,142       | М                      | \$19.7m                 | 397.2          | \$53,875       |  |
| \$21.5m   | Q                 | \$21.5m                 | 446.2        | \$48,185       | Н                 | \$18.3m                 | 546.7       | \$39,325       | Q                      | \$21.5m                 | 446.2          | \$48,185       |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$22.3m   | Q                 | \$21.5m                 | 446.2        | \$49,978       | H                 | \$18.3m                 | 546.7       | \$40,788       | Q                      | \$21.5m                 | 446.2          | \$49,978       |  |
| \$22.4m   | Q                 | \$21.5m                 | 446.2        | \$50,202       | ΗN                | \$22.4m                 | 613.4       | \$36,517       | Q                      | \$21.5m                 | 446.2          | \$50,202       |  |
| 6345      |                   | 001.5                   | 446.0        | 055.257        | TIN               | 000.4                   | (12.4       | 040.200        | 0                      | 001.5                   | 446.2          | 055.257        |  |
| \$24.7m   | Q                 | \$21.5m                 | 446.2        | \$55,357       | HN                | \$22.4m                 | 613.4       | \$40,266       | Q                      | \$21.5m                 | 446.2          | \$55,357       |  |
| \$24.8m   | Q                 | \$21.5m                 | 446.2        | \$55,581       | 0                 | \$24.8m                 | 887.7       | \$27,938       | Q                      | \$21.5m                 | 446.2          | \$55,581       |  |
| \$28.8m   | 0                 | \$21.5m                 | 116 2        | \$64.546       | 0                 | \$24.8m                 | 9977        | \$22.444       | 0                      | \$21.5m                 | 116.2          | \$64.546       |  |
| \$28.0m   | Q<br>0            | \$21.5m                 | 446.2        | \$64 770       | NO                | \$28.0m                 | 954.4       | \$30,282       | Q<br>0                 | \$21.5m                 | 446.2          | \$64,540       |  |
| \$20.7III | ۲. V              | φ21.9III                | 440.2        | \$04,770       | NO                | \$20.7III               | 754.4       | \$50,202       | ۲. V                   | φ21.9III                | 440.2          | \$04,770       |  |
| \$37.4m   | 0                 | \$21.5m                 | 446.2        | \$83,820       | NO                | \$28.9m                 | 954.4       | \$39,189       | 0                      | \$21.5m                 | 446.2          | \$83.820       |  |
| \$37.5m   | MW                | \$37.5m                 | 502.9        | \$74,564       | NO                | \$28.9m                 | 954.4       | \$39,293       | MW                     | \$37.5m                 | 502.9          | \$74.564       |  |
|           |                   |                         |              |                |                   | · ·                     |             |                |                        |                         |                |                |  |
| \$39.2m   | M W               | \$37.5m                 | 502.9        | \$77,944       | N O               | \$28.9m                 | 954.4       | \$41,075       | M W                    | \$37.5m                 | 502.9          | \$77,944       |  |
| \$39.3m   | QW                | \$39.3m                 | 551.9        | \$71,208       | N O               | \$28.9m                 | 954.4       | \$41,179       | QW                     | \$39.3m                 | 551.9          | \$71,208       |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$39.7m   | QW                | \$39.3m                 | 551.9        | \$71,933       | N O               | \$28.9m                 | 954.4       | \$41,599       | QW                     | \$39.3m                 | 551.9          | \$71,933       |  |
| \$39.8m   | QW                | \$39.3m                 | 551.9        | \$72,114       | НQ                | \$39.8m                 | 992.9       | \$40,084       | QW                     | \$39.3m                 | 551.9          | \$72,114       |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$41.1m   | QW                | \$39.3m                 | 551.9        | \$74,469       | ΗQ                | \$39.8m                 | 992.9       | \$41,393       | QW                     | \$39.3m                 | 551.9          | \$74,469       |  |
| \$41.2m   | M Q               | \$41.2m                 | 843.4        | \$48,849       | НQ                | \$39.8m                 | 992.9       | \$41,494       | M Q                    | \$41.2m                 | 843.4          | \$48,849       |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$42.0m   | M Q               | \$41.2m                 | 843.4        | \$49,798       | НQ                | \$39.8m                 | 992.9       | \$42,299       | M Q                    | \$41.2m                 | 843.4          | \$49,798       |  |
| \$42.1m   | M Q               | \$41.2m                 | 843.4        | \$49,917       | HMN               | \$42.1m                 | 1010.6      | \$41,657       | M Q                    | \$41.2m                 | 843.4          | \$49,917       |  |
|           |                   |                         |              |                |                   |                         |             |                |                        |                         |                |                |  |
| \$43.0m   | MQ                | \$41.2m                 | 843.4        | \$50,984       | HMN               | \$42.1m                 | 1010.6      | \$42,548       | MQ                     | \$41.2m                 | 843.4          | \$50,984       |  |
| \$43.1m   | M Q               | \$41.2m                 | 843.4        | \$51,102       | HO                | \$43.1m                 | 1434.4      | \$30,047       | M Q                    | \$41.2m                 | 843.4          | \$51,102       |  |
|           | 14.2              | ¢ 41 °                  | 0.42         |                |                   | ¢ 42 ±                  | 1.42.5.5    | 000.000        | 14.5                   | 0.41.2                  | 0.42           | 0.5.5.0.1.5    |  |
| \$47.1m   | MQ                | \$41.2m                 | 843.4        | \$55,845       | HO                | \$43.1m                 | 1434.4      | \$32,836       | MQ                     | \$41.2m                 | 843.4          | \$55,845       |  |
| \$47.2m   | мQ                | \$41.2m                 | 843.4        | \$55,963       | HNO               | \$47.2m                 | 1501.1      | \$31,444       | мQ                     | \$41.2m                 | 843.4          | \$55,963       |  |
| £40.0     | MO                | \$41.2                  | Q12 1        | \$50 165       | UNO               | \$47.2                  | 1501.1      | \$22.242       | MO                     | \$41.2                  | 842 4          | \$50.165       |  |
| \$49.9m   | D D               | \$50.0m                 | 1226.9       | \$39,103       | HNO               | \$47.2m                 | 1501.1      | \$22,200       | MO                     | \$41.2111               | 043.4<br>942.4 | \$59,103       |  |
| 350.0m    | к                 | \$30.0m                 | 1220.8       | 540,/38        | пNU               | ⊅47.2m                  | 1301.1      | ass,309        | IVI Q                  | \$41.∠m                 | 043.4          | as9,285        |  |

Table 1.11: Reallocation following net disinvestment (non-divisibility) Note: This table is abridged. Complete table provided in Appendix 1.1, Table A1.1.6

<sup>a</sup> Technologies adopted; <sup>b</sup> Total change in incremental expenditure across all adopted technologies.; <sup>c</sup> Total change in incremental benefit (QALYs) resulting from adoption of technologies; <sup>d</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

#### Optimal cost-effectiveness thresholds

The optimal sets of cost-effectiveness thresholds to use under each scenario are summarized in Tables 1.6 - 1.11. Complete tables are provided in Appendix 1.1, Tables A1.1.1 – A1.1.6.

The corresponding threshold curves are plotted in Figures 1.6 - 1.8. The threshold curve to use for net investments is plotted in the northern half of each CE plane, while the threshold curve for disinvestments is plotted in the southern half of each CE plane.

#### Divisibility and constant returns

For net investments, the optimal threshold *decreases* with the budget impact of the technology and *increases* with the size of the initial budget. For example, with the primary budget, the optimal threshold falls from \$40,758 per QALY (at a budget impact of \$0.1m) to \$34,464 per QALY (at a budget impact of \$50.0m); with the lower budget the threshold also falls but from a lower starting point (\$27,938 per QALY), and with the higher budget the threshold falls from a higher starting point (\$48,185 per QALY) (Table 1.6).

For net disinvestments, the optimal threshold *increases* with the budget impact of the net technology. In common with net investments, the threshold *increases* with the size of the initial budget. For example, with the primary budget, the optimal threshold increases from \$40,758 per QALY (at a budget impact of \$0.1m) to \$41,723 per QALY (at a budget impact of \$50.0m); with the lower budget the threshold increases from a lower starting point (\$27,938 per QALY), and with the higher budget the threshold increases from a higher starting point (\$48,185 per QALY) (Table 1.7).

For both net investments and net disinvestments, the optimal threshold remains constant until reallocation switches from the first marginal technology to the second; the threshold then *continuously* changes thereafter (falling for net investments, and increasing for net disinvestments). This is because the marginal ICER of the marginal technology remains constant until reallocation switches between technologies. Until this first switch, the threshold is determined by *only* the marginal ICER of the first technology to be reallocated, and so remains constant as the budget impact increases. After this first switch, the threshold represents a weighted average of the marginal ICER of the first technology to be reallocated and the (different) marginal ICERs of any subsequent technologies to be reallocated, with these weights

changing with the budget impact. The threshold therefore changes continuously with the budget impact *only* after the first switch between technologies during reallocation.

The optimal thresholds for net investments and net disinvestments of *marginal* budget impact (\$0.1m) are generally identical. This finding logically follows from four previous findings:

- Net investments or disinvestments of very small budget impact require expansion or contraction of only one initial technology;
- (ii) For both net investments and net disinvestments, the threshold remains constant until reallocation switches to the next marginal technology;
- (iii) The first technology to be contracted following a net investment is generally the first to be expanded following a net disinvestment (in both cases this is the technology only partially adopted in the initial allocation); and
- (iv) Under constant returns, the marginal ICERs of each technology in expansion and contraction are identical.

The corresponding threshold curves are plotted in Figure 1.6. In common with the standard textbook exposition, these are linear as they pass through the origin of the CE plane. However, there are 'kinks' at multiple points along each threshold curve where reallocation switches between technologies. Between these kinks each threshold curve is linear. The threshold curves are therefore *piecewise linear functions*.

The intuition behind these kinks is that the slope of each threshold curve at any given point is determined by the marginal technology's marginal ICER in contraction (for net investments) or expansion (for net disinvestments). This remains constant as the marginal technology is expanded or contracted, but changes when reallocation switches to a different technology. Thus each threshold curve may be considered as comprising a series of linear curves of different slopes, with a 'kink' at each point where these curves connect.





With a lower initial budget, the threshold curve has a shallower slope as it passes through the origin of the CE plane, and is plotted below the primary threshold in the NE quadrant and above the primary threshold in the SW quadrant. Conversely, with a higher initial budget, the threshold curve has a steeper slope as it passes through the origin of the CE plane, and is plotted above the primary threshold in the NE quadrant and below the primary threshold in the SW quadrant.

It follows that net investments in the NE quadrant have greater scope to appear cost-effective with a higher initial budget, but net disinvestments in the SW quadrant have greater scope to appear cost-effective with a lower initial budget.

## Divisibility and diminishing returns

For net investments, the optimal threshold *decreases* with the budget impact of the technology and *increases* with the size of the initial budget. For example, with the primary budget, the optimal threshold falls from \$43,235 per QALY (at a budget impact of \$0.1m) to \$24,965 per QALY (at a budget impact of \$50.0m); with the lower budget the threshold also falls but from a lower starting point (\$24,859 per QALY), and with the higher budget the threshold falls from a higher starting point (\$59,957 per QALY) (Table 1.8).

By contrast, the optimal threshold for net disinvestments *increases* with the budget impact of the technology. However, in common with net investments, the threshold *increases* with the size of the initial budget. For example, with the primary budget, the optimal threshold increases from \$43,315 per QALY (at a budget impact of \$0.1m) to \$59,956 per QALY (at a budget impact of \$0.0m). With the lower budget the threshold increases but from a lower starting point of \$27,938 per QALY, and with the higher budget the threshold increases from a higher starting point of \$48,185 per QALY (Table 1.9).

Unlike under constant returns, the optimal thresholds for net investments and net disinvestments change *continuously* as the budget impact increases. This is because reallocation is frequently switching following each incremental reallocation, from one technology to another technology with a similar (but different) marginal ICER. As a result, the threshold curves appear *concave*, such that neither curve exhibits visible 'kinks' (Figure 1.7). It follows that the numerical thresholds for net investments and net disinvestments of marginal budget impact are similar but *not identical*, since the threshold curves are *non-linear* as they pass through the origin.

As under 'constant' returns, a lower (higher) initial budget results in a shallower (steeper) threshold curve which is plotted below (above) the primary threshold in the NE quadrant and above (below) the primary threshold in the SW quadrant.

It follows that, with a higher budget, net investments in the NE quadrant have greater scope to appear cost-effective but net disinvestments in the SW quadrant have less scope to appear cost-effective, with the opposite being true with a lower budget.



Figure 1.7: Optimal threshold curves (divisibility and diminishing returns)

Note: Dotted line represents the optimal threshold under standard assumptions (divisibility and constant returns)

#### Non-divisibility

For net investments, the threshold increases with the budget impact until the set of initial technologies subject to reallocation changes, at which point the threshold immediately falls and then begins increasing again. This pattern repeats until the maximum budget impact is reached (Table 1.10).

For example, with the primary initial budget, a net investment of \$0.1m requires displacement of technology N, resulting in a \$4.1m reduction in incremental expenditure and a 66.7 QALYs reduction in incremental benefit. For the net investment to be cost-effective, it must provide an incremental benefit greater than 66.7 QALYs – since the incremental cost is \$0.1m, this implies a threshold of \$1,499 per QALY. A net investment of \$0.2m would result in the same

displacement of technology N – since the incremental cost is now \$0.2m, the threshold increases to \$2,999 per QALY. The threshold continues to increase until the budget impact of the net investment reaches \$4.1m (the incremental cost of technology N), at which point the threshold is \$61,479 per QALY. A larger net investment of \$4.2m requires displacement of a different technology, technology C, resulting in a loss in incremental benefit of 344.2 QALYs. For the \$4.2m net investment to be cost-effective, it must therefore provide an incremental benefit of at least 344.2 QALYs, implying a much lower threshold of \$12,202 per QALY. The threshold then increases up to a budget impact of \$13.8m, beyond which an alternative reallocation is required and the threshold falls once again. This pattern repeats until the maximum budget impact is reached.

For net disinvestments, a similar pattern arises as with net investments: the threshold increases with the budget impact until a different reallocation is required, at which point the threshold suddenly falls and then starts to increase again. This pattern repeats until the maximum budget impact is reached (Table 1.11).

For net disinvestments with small budget impact, *no reallocation is possible* since insufficient resources are released to adopt a NE technology or displace a SW technology. The threshold curve therefore lies on the vertical axis of the CE plane. For such a net disinvestment to be cost-effective, it must provide positive incremental benefits, and hence must lie in the SE quadrant of the CE plane. Since the incremental benefit associated with reallocation – the denominator of the threshold – is zero, the numerical threshold is mathematically undefined.

The threshold curves are plotted in Figure 1.8. The threshold curves for net investments and net disinvestments each resemble a *step function*. Note that, in this analysis, the threshold curves from the analysis with a higher budget largely overlap those from the primary analysis, since the reallocations are identical for many of the possible budget impacts considered.





Note: Dotted line represents the optimal threshold under standard assumptions (divisibility and constant returns)

The threshold for net investments cuts right from the origin of the CE plane to the point on the horizontal axis marking the smallest amount of incremental benefit that may be lost through reallocation (for the primary analysis this is 66.7 QALYs, from displacing technology N). The threshold then cuts up the plane to the point representing the reduction in incremental expenditure associated with this reallocation (displacing technology N reduces incremental expenditure by \$4.1m). If the incremental cost of the net technology is greater than this then an alternative reallocation is required (in the primary analysis, a budget impact slightly greater than \$4.1m requires displacement of technology C), so the threshold then cuts right to the point representing the reduction in incremental expenditure from the *previous* reallocation (\$4.1m, from displacing technology N) and the reduction in incremental benefit from the *current* 

reallocation (344.2 QALYs, from displacing technology C). The threshold then cuts up to the point representing the reduction in incremental benefit and incremental expenditure from the *current* reallocation (344.2 QALYs and \$13.7m, from displacing technology C). This pattern repeats itself until the maximum budget impact is reached.

The threshold for net disinvestments cuts down from the origin to the point on the vertical axis marking the incremental cost of the new technology at which reallocation with positive incremental benefit becomes possible (in the primary analysis, technology L can be contracted once the incremental cost falls to -\$8.6m). Then the threshold cuts left to the point representing the incremental benefit provided by the technology subject to the current reallocation (technology L provides an incremental benefit of -42.9 QALYs). The threshold then repeatedly cuts down and then left until the maximum budget impact is reached.

For both net investments and net disinvestments, the optimal threshold *tends* to increase with the size of the initial budget, although this relationship may not be observed if the budget impact is small because the number of alternative reallocations is limited. For example, for net investments up to \$36.1m, and for net disinvestments up to \$49.9m, the same reallocations – and hence the same thresholds – arise with the higher budget than with the primary budget. However, at a budget impact of \$50.0m, different reallocations arise with each initial budget and the optimal threshold is greater with a higher initial budget, and smaller with a lower initial budget, for both net investments.

#### Discussion

We have considered the characteristics of the optimal cost-effectiveness threshold under a variety of assumptions concerning the divisibility of technologies, marginal returns to scale, the size of the initial budget, and the budget impact of the new technology.

The conventional exposition of the threshold, as a single value represented by a linear function that passes through the origin of the CE plane, is a special case that arises under the following conditions:

- a) Initial technologies are *divisible* and exhibit *constant* returns to scale;
- b) A single initial technology remains *partially* adopted following initial allocation; and
- c) The budget impact of each new technology is sufficiently small that reallocation involves expanding or contracting *only* the partially adopted initial technology.

Under all other conditions, the numerical threshold depends upon whether the new technology is a net investment or net disinvestment and the magnitude of the budget impact, such that the threshold curves are non-linear. These threshold curves are piecewise linear functions under divisibility and constant returns, concave functions under divisibility and diminishing returns, or step functions under non-divisibility. The area to the right of each of these threshold curves is less than it would be if the threshold curves were linear, with this deviation tending to increase with the budget impact. Since new technologies are cost-effective only if they lie to the right of the threshold curve, this reduces the scope for new technologies with substantial budget impact to appear cost-effective compared to that under the standard exposition of the threshold.

This is for good reason: as we have demonstrated, marginal reallocations become progressively less efficient throughout the reallocation process, such that new technologies with substantial budget impact ought to be assessed with a less favourable threshold than those with smaller budget impact. For net investments, the numerical threshold generally falls as the budget impact increases, while for net disinvestments the numerical threshold generally increases. Since technologies in the SW quadrant of the CE plane are considered cost-effective only if their ICER is *greater* than the numerical threshold, this serves to *reduce* the scope for new technologies with substantial budget impact in either quadrant to appear cost-effective.

For new technologies with marginal budget impact, the assumptions regarding the divisibility of technologies and their marginal returns to scale are particularly important for determining the threshold. If technologies are non-divisible, then a marginal net investment requires complete contraction of an initial technology in the NE quadrant or full expansion of an initial technology in the SW quadrant, while a marginal net disinvestment may not release sufficient resources for reinvestment in other technologies (such that it only appears cost-effective if it lies in the SE quadrant). By contrast, if technologies are divisible, then only a marginal change in incremental expenditure on initial technologies is required – compared to non-divisibility, this results in a higher threshold for net investments and a lower threshold for net disinvestments, increasing the scope for a new technology to appear cost-effective in both cases.

## Contributions to knowledge

We are unaware of any previous literature which has argued that threshold curves resemble a piecewise linear function if technologies are divisible and exhibit constant returns, or resemble a step function if technologies are non-divisible. In both cases the threshold curves exhibit 'kinks', corresponding to the points where reallocation switches between technologies – in the former case these kinks reflect a switch in the marginal technology during reallocation, while in the latter case they reflect a switch in the subset of technologies subject to expansion or contraction.

With the exception of Eckermann, who made strong assumptions regarding the authority of the decision maker, we also not aware of any authors who have argued that a supply-side estimate of the threshold may differ for *marginal* net investment and net disinvestments.<sup>65</sup> We have demonstrated, under much more general assumptions regarding the decision maker's authority, that these thresholds *generally differ* if technologies are non-divisible, and are generally similar but *not identical* if technologies are divisible and exhibit diminishing returns.

If technologies are divisible and exhibit constant returns, then the optimal thresholds for net investments and net disinvestments of *marginal* budget impact are *generally* the same – however, a special case arises if the initial budget is *just sufficient* to exhaust the last initial technology to be expanded during the initial allocation (this was not observed in our analyses). In such a case, adoption of a marginal net investment will result in contraction of the last initial technology to be adopted, while adoption of a marginal net disinvestment will result in contraction.

expansion of *another* initial technology. Since the marginal ICERs of these initial technologies will generally differ, this results in *different optimal thresholds* for marginal net investments and net disinvestments. In this special case, the threshold curves continue to resemble a piecewise linear function – however, rather than the threshold curves passing straight through the origin of the CE plane, there is a kink between the threshold curves at the origin.

Our finding that the threshold is conditional upon the budget impact of the new technology conflicts with the standard threshold model but is consistent with recent literature.<sup>25,45</sup>

#### Strengths and limitations

The simulation results we have presented here represent a first attempt to formalize various assumptions regarding divisibility and marginal returns to scale in a model of the cost-effectiveness threshold. Our model has a number of limitations, many of which can be addressed in future work.

The model assumes perfect information on behalf of the decision maker, and hence efficient allocation and reallocation. Imperfect information would allow for inefficiencies to be considered in allocation and reallocation. This is explored in the following chapter.

The model is deterministic, not probabilistic, and hence all parameters are modelled as fixed, known variables. Probabilistic analysis would allow for *uncertainty* to be considered in the estimate of each model parameter.

Divisibility is approximated by allowing incremental expenditure on technologies to be divided into discrete 'chunks' of \$0.1m. Perfect divisibility requires that incremental expenditure be considered as continuous.

Our analysis does not consider the possibility of *increasing* returns (i.e., "economies of scale"). This is more challenging to model than diminishing returns, since progressive incremental expansions or contractions of a technology become more, rather than less, desirable. For example, suppose that \$0.1m must be allocated, and that the greatest marginal benefit arises from increasing incremental expenditure on technology A by \$0.1m. After this \$0.1m is allocated to technology A, suppose that *another* \$0.1m must be allocate. The greatest marginal benefit will again arise from allocating this \$0.1m to technology A, since the marginal benefit of this will be

*greater* than for the first allocation while the marginal benefit of allocating \$0.1m to all other technologies remains unchanged. However, if it was known from the outset that the *total* increase in incremental expenditure would be \$0.2m, then it may have been more desirable to allocate the full \$0.2m to *another* technology. This is because the marginal incremental benefit arising from the second \$0.1m may have increased by an *even greater* amount if the first \$0.1m was allocated to this other technology, such that the *cumulative* incremental benefit from both marginal allocations would have been greater if the full \$0.2m had been allocated to the other technology A. Unlike under constant or diminishing returns, it follows that it is not possible to consider expansion or contraction in progressive \$0.1m increments if marginal returns are increasing. This increases the computational complexity associated with estimating the optimal allocation and reallocation. Addressing this limitation should be the focus of future work.

# Bibliography for Chapter 1

12. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. *Methods for the economic evaluation of health care programmes*. 4th ed. Oxford University Press; 2015.

Weinstein M, Zeckhauser R. Critical ratios and efficient allocation. *J Public Econ*. 1973;2(2):147–157. doi:10.1016/0047-2727(73)90002-9.

22. Centre for Health Economics. *iDSI Workshop on Cost-Effectiveness Thresholds: Conceptualisation and Estimation*. University of York; 2015.

25. Paulden M, Claxton K. Budget allocation and the revealed social rate of time preference for health. *Health Econ.* 2012;21(5):612–8. doi:10.1002/hec.1730.

Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in the economic evaluation of health-care technologies. *Health Economics*. 2011;20(1):2–15. doi:10.1002/hec.1612.

27. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. *Health Technology Assessment*.
2015;19(14):1–503, v–vi. doi:10.3310/hta19140.

28. Gafni A, Birch S. Incremental cost-effectiveness ratios (ICERs): The silence of the lambda. *Soc Sci Med.* 2006;62(9):2091–2100. doi:10.1016/j.socscimed.2005.10.023.

45. Claxton K, Walker S, Palmer S, Sculpher M. *Appropriate Perspectives for Health Care Decisions*. York, UK: University of York

50. Birch S, Donaldson C. Valuing the benefits and costs of health care programmes: where's the "extra" in extra-welfarism? *Soc Sci Med*. 2003;56(5):1121–1133. doi:10.1016/S0277-9536(02)00101-6.

55. Culyer A, McCabe C, Briggs A, et al. Searching for a threshold, not setting one: the role of the National Institute for Health and Clinical Excellence. *Journal of health services research* & *policy*. 2007;12(1):56–8. doi:10.1258/135581907779497567.

57. Coast J. Maximisation in extra-welfarism: A critique of the current position in health economics. *Soc Sci Med.* 2009;69(5):786–792. doi:10.1016/j.socscimed.2009.06.026.

61. Gold MR, Siegel JE, Russell LB, Weinstein MC. *Cost-effectiveness in health and medicine*. New York: Oxford University Press; 1996.

72

62. Edlin R, McCabe C, Hulme C, Hall P, Wright J. Cost E\_ffectiveness Modelling for Health Technology Assessment: A Practical Course. Springer; 2015.

63. Eckermann S, Pekarsky B. Can the Real Opportunity Cost Stand Up: Displaced Services, the Straw Man Outside the Room. *PharmacoEconomics*. 2014. doi:10.1007/s40273-014-0140-3.

64. Paulden M, McCabe C, Karnon J. Achieving allocative efficiency in healthcare: nice in theory, not so NICE in Practice? *Pharmacoeconomics*. 2014;32(4):315–8. doi:10.1007/s40273-014-0146-x.

65. Eckermann S. Kinky Thresholds Revisited: Opportunity Costs Differ in the NE and SW Quadrants. *Appl Heal Econ Heal Policy*. 2015;13(1):7–13. doi:10.1007/s40258-014-0136-3.

69. Birch S, Gafni A. Changing the problem to fit the solution: Johannesson and Weinstein's (mis) application of economics to real world problems. *J Health Econ*. 1993;12(4):469–76.

70. Johannesson M, Weinstein MC. On the decision rules of cost-effectiveness analysis. *J Health Econ.* 1993;12(4):459–67.

71. Garber AM, Phelps CE. Economic foundations of cost-effectiveness analysis. *J Health Econ.* 1997;16(1):1–31.

72. McCabe C, Claxton K, Culyer AJ. The NICE cost-effectiveness threshold: what it is and what that means. *Pharmacoeconomics*. 2008;26(9):733–44.

73. Claxton K, Sculpher M, Drummond M. A rational framework for decision making by the National Institute For Clinical Excellence (NICE). *The Lancet*. 2002;360(9334):711–5. doi:10.1016/s0140-6736(02)09832-x.

74. Birch S, Gafni A. Cost effectiveness/utility analyses. *Journal of Health Economics*. 1992;11(3):279–296. doi:10.1016/0167-6296(92)90004-K.

75. Birch S, Gafni A. Economics and the evaluation of health care programmes:
generalisability of methods and implications for generalisability of results. *Health policy*.
2003;64(2):207–219. Available at:

http://www.sciencedirect.com/science/article/pii/S0168851002001823.

76. Birch S, Gafni A. Cost effectiveness/utility analyses: Do current decision rules lead us to where we want to be? *Journal of health economics*. 1992. Available at: http://www.sciencedirect.com/science/article/pii/016762969290004K.

77. Birch S, Gafni A. Information created to evade reality (ICER): things we should not look to for answers. *PharmacoEconomics*. 2006;24(11):1121–31.

Epstein DM, Chalabi Z, Claxton K, Sculpher M. Efficiency, equity, and budgetary policies: informing decisions using mathematical programming. *Med Decis Making*. 2007;27(2):128–37. doi:10.1177/0272989X06297396.

79. Pekarsky B. Trust, constraints and the counterfactual: Reframing the political economy of new drugs. doi:10.1007/978-3-319-08903-4 3.

80. O'Brien BJ, Gertsen K, Willan AR, Faulkner LA. Is there a kink in consumers' threshold value for cost-effectiveness in health care? *Health Econ*. 2002;11(2):175–80.

81. Willan AR, O'Brien BJ, Leyva RA. Cost-effectiveness analysis when the WTA is greater than the WTP. *Stat Med.* 2001;20(21):3251–9.

82. National Institute for Health and Care Excellence. *Consultation Paper: Value Based Assessment of Health Technologies.*; 2014.

83. National Institute for Health and Care Excellence. *Discounting of health benefits in special circumstances*.; 2011.

84. National Institute for Health and Care Excellence. *Appraising life-extending, end of life treatments*.; 2009.

85. Harris J. NICE and not so nice. *Journal of Medical Ethics*. 2005;31(12):685–688. doi:10.1136/jme.2005.014134.

86. R Core Team. R: A language and environment for statistical computing. 2016.

87. Borchers H. adagio: Discrete and Global Optimization Routines. 2015.

88. Kellerer, Ulrich. *Knapsack Problems*. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg; 2004:548.

Chapter 2: An exploration of the impact of imperfect information and multiple decision makers on the agent's cost-effectiveness threshold using a simulation modelling approach

# Mike Paulden<sup>1</sup> and Christopher McCabe<sup>1</sup>

<sup>1</sup> Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada

# Acknowledgements

Financial support for this study was provided by grants from the Canadian Institutes of Health Research (CIHR), Genome Canada, Alberta Innovates Health Solutions and the University of Alberta. Christopher McCabe's research programme is funded by the Capital Health Research Chair in Emergency Medicine Research Endowment at the University of Alberta. The funding agreement ensured the authors' independence in designing the study, interpreting the data, writing, and publishing the report.

## Abstract

#### Background

The previous chapter considered several departures from the standard threshold model. The optimal threshold was found to depend upon a number of factors, including the size of the initial budget, the divisibility of initial technologies, whether initial technologies exhibit constant or diminishing marginal returns to scale, the budget impact of the new technology, and whether the new technology constitutes a net investment or a net disinvestment.

#### Objectives

The purpose of this chapter is to consider several further departures from the standard model. This includes the explicit consideration of imperfect information and interactions between multiple decision makers with different responsibilities and potentially conflicting objectives. Among these is an 'agent' with responsibility for recommending new technologies for adoption. In this chapter, the optimal threshold is considered from the perspective of this agent.

#### Methods

We adapted the model developed in the previous chapter to integrate three different decision makers: an 'allocator', with responsibility for allocating the initial budget among the initial technologies in the pool; an 'agent', with responsibility for recommending new technologies for adoption; and a 'reallocator', with responsibility for reallocating resources among initial technologies following adoption of a new technology. Each decision maker has one of two levels of imperfect information regarding the incremental benefit of initial technologies, and acts so as to maximize its own estimate of the aggregate incremental benefit from all adopted technologies. We considered the optimal threshold under 24 alternative scenarios regarding the information held by each decision maker and also the authority of the agent to mandate reallocation and/or implement an alternative to the new technology.

## Results

The 24 scenarios resulted in eight unique sets of optimal thresholds. The relevant set of optimal thresholds depends upon the information available to each decision maker and the authority of the agent. In some scenarios, threshold curves pass through the north-west and/or south-east quadrants of the agent's cost-effectiveness (CE) plane. There may also be a 'kink' at the origin of the CE plane, implying different optimal thresholds for marginal net investments and net disinvestments. Under specific conditions, the threshold is not dependent upon the reallocation

76

that follows adoption of a new technology, but rather the expected incremental benefit of the agent's preferred alternative to the new technology.

# Conclusion

Our findings provide novel additions to the literature around the appropriate cost-effectiveness threshold. Our work demonstrates, for the first time, the potential for threshold curves to pass through all four quadrants of the CE plane, requiring a novel interpretation of numerical ICERs. Given the difficulty of empirically estimating the change in incremental benefit associated with reallocation in real world practice, the opportunity to adopt a conceptually different threshold may be worthy of further consideration.

## Introduction

The previous chapter considered several departures from the 'standard model' of the costeffectiveness threshold. This work demonstrated that the optimal threshold to use when considering a new technology for potential adoption into a budget constrained health care system depends upon a number of factors, including the size of the health system budget, the divisibility of initial technologies, whether initial technologies exhibit constant or diminishing marginal returns to scale, the budget impact of the new technology, and whether the new technology constitutes a 'net investment' (imposing positive incremental costs upon the health care system) or a 'net disinvestment' (imposing negative incremental costs).

The purpose of this chapter is to build upon this recent work by considering the implications for the optimal cost-effectiveness threshold of several further departures from the standard model. This includes the explicit consideration of *imperfect information*, as well as modelling the interactions between *multiple decision makers* with different responsibilities and potentially conflicting objectives. Among these multiple decision makers is an 'agent' with responsibility for recommending new technologies for adoption into the health care system. In this chapter, the optimal threshold is therefore considered from the perspective of this agent.

In response to recent theoretical developments by Eckermann & Pekarsky, this chapter will also consider the implications of extending the *authority* of the decision maker responsible for assessing a new technology beyond that assumed in the standard model.<sup>63,64</sup> This includes granting this decision maker the authority to implement a net investment or net disinvestment of resources in other technologies as an *alternative* to adopting the new technology, as well as the authority to *mandate* the reallocation that follows adoption of a new technology and/or implementation of an alternative to the new technology.

We consider the extent to which the optimal threshold – from the perspective of the agent – is dependent upon the agent's authority and the information available to each decision maker. We identify circumstances in which threshold curves may enter the north-west (NW) and/or south-east (SE) quadrants of the cost-effectiveness (CE) plane. This requires a novel interpretation of the ICERs of new technologies in these quadrants. We also find that threshold curves may be 'kinked' at the origin of the CE plane, implying different optimal thresholds for net investments and net disinvestments. Furthermore, we identify specific circumstances in

which the optimal threshold is *not* dependent upon the reallocation that follows adoption of the new technology or implementation of an alternative.

Our findings have implications for the estimation and use of thresholds in real world practice, raising the potential for different empirical approaches to estimating thresholds than those used to date. We finish by considering some of the limitations of this work and potential directions for future research in this space.

## Methods

### Model structure

We adapted the existing model of a hypothetical health care system developed in the previous chapter. A modified schematic is provided in Figure 2.1.

As before, the model comprises three stages: allocation of resources among a 'pool' of initial technologies, consideration of a new technology for potential adoption into the health care system, and reallocation of resources if the technology is adopted.

Many aspects of the model, including the characteristics of the pool of initial technologies, remain unchanged from those reported in the previous chapter. In this section we report *only* the methodological changes made from the previous chapter.



## Figure 2.1: Model schematic

#### Multiple decision makers

In the previous chapter, a single decision maker was assumed to be responsible for the initial allocation, the decision to adopt a new technology, and any subsequent reallocation.

In practice, different decision makers are responsible for each of these tasks. For example, in the UK, the National Institute for Health and Care Excellence (NICE) provides recommendations on which new technologies should be adopted within the National Health Service (NHS). However, NICE does *not* have authority to mandate which reallocations must be made to accommodate new technologies, nor does NICE bear responsibility for the *existing* allocation of resources within the NHS (save for a narrow range of technologies adopted as a result of previous NICE guidance).<sup>89</sup> Instead, reallocations to accommodate new technologies recommended by NICE are made by local decision makers, while the existing allocation of resources reflects many thousands of historical decisions made by local, regional and national decision makers over previous decades.<sup>90</sup> The authority of comparable agencies is subject to similar constraints. For example, the Canadian Agency for Drugs and Technology in Health (CADTH) issues recommendations on whether new technologies should be adopted within Canada's provincial and territorial health care systems, but CADTH is *not* responsible for any reallocations made by decision makers to accommodate such technologies, nor is CADTH responsible for the prevailing allocation of health care resources in each province or territory.<sup>91</sup>

To reflect this separation of responsibilities, we adapted the model to integrate three different decision makers:

- 1. An 'allocator', with responsibility for allocating the initial budget among the initial technologies in the pool;
- 2. An 'agent', with responsibility for recommending, or not recommending, new technologies for adoption into the health care system;
- 3. A 'reallocator', with responsibility for reallocating incremental expenditure among initial technologies following adoption of a new technology.

While the 'agent' in our model typically represents a single real world decision maker within any particular jurisdiction (e.g., NICE within the UK), the 'allocator' and 'reallocator' in our model may each act as a proxy for *multiple* real world decision makers. These include the many local and national decision makers who have influenced the prevailing allocation of resources, or who

determine reallocation following adoption of a new technology. For the purposes of this model, it is assumed that these multiple real world 'allocators' or 'reallocators' are homogeneous, and so can be represented by a single 'allocator' or 'reallocator'.

## Imperfect information

In the previous chapter, each initial technology in the 'pool' was randomly assigned an incremental cost and incremental benefit in exhaustion and a specific production function 'shape' that applied if marginal returns were diminishing. Each of these was assumed to be deterministic and the decision maker was assumed to know each with certainty, such that the decision maker could 'optimize' allocation and reallocation by maximizing the aggregate incremental benefit of all adopted technologies.

In practice, information is imperfect. As a result, a decision maker may not know the true value of each decision parameter with certainty. Specifically, imperfect information may result in an inaccurate *expectation* of the true value, *uncertainty* around the expected value, or both. This results in a number of possibilities:

- a) A decision maker has an *accurate* and *certain* expectation of the true value (e.g., it correctly estimates the incremental cost of technology B to be \$3.5m, and is certain about this estimate). We refer to this as 'perfect information';
- b) A decision maker has an *accurate* but *uncertain* expectation of the true value (e.g., it correctly estimates the incremental cost of technology B to be \$3.5m, but is *uncertain* so considers this to be a stochastic parameter with a probability distribution);
- c) A decision maker has an *inaccurate* but *certain* expectation of the true value (e.g., it *incorrectly* estimates the incremental cost of technology B to be \$5.0m, and does not consider the possibility that this estimate may be inaccurate); or
- d) A decision maker has an *inaccurate* and *uncertain* expectation of the true value (e.g., it incorrectly estimates the incremental cost of technology B to be \$5.0m, but acknowledges this may be inaccurate and so considers this to be a stochastic parameter with a probability distribution).

The previous chapter assumed that possibility (a) applied with respect to all parameters in the model. In this chapter, we assume that (a) applies with respect to all model parameters *except* the incremental benefit of each initial technology, for which (c) applies.

This means that all decision makers have perfect information regarding all model parameters *except* the incremental benefit of each initial technology, for which each decision maker has an *incorrect* estimate that they *believe* to be true. We further assume that these incorrect estimates may *differ* across the three decision makers (allocator, agent and reallocator).

These incorrect estimates are assigned as follows. In the previous chapter, the true incremental benefit of each initial technology was randomly drawn from a normal distribution (mean 500 QALYs, SD 1000 QALYs). In this chapter, we assume that each decision maker *knows* that this is the distribution of incremental benefits across the pool of initial technologies, but does *not* know the specific incremental benefit for each initial technology. We assume that information regarding the incremental benefit for each initial technology can take one of four possible levels: 'perfect', 'good', 'poor', or 'none' (no information). With no information, the decision maker estimates the incremental benefits. With poor information, we assume that the estimated incremental benefit for each technology takes the midpoint of the true value and the estimate with no information. With good information, this estimate is assumed to take the midpoint of the true value and the estimate with poor information. With perfect information, the decision maker is assumed to know the true incremental benefit for each technology.

For example, suppose an initial technology has a true incremental benefit of 150 QALYs, and that, with no information, the decision maker estimates this to be -250 QALYs (by drawing from the same distribution used to assign the true value). With poor information, the decision maker estimates the incremental benefit to be -50 QALYs (the midpoint of -250 and 150 QALYs), and with good information it estimates this to be 50 QALYs (the midpoint of -50 and 150 QALYs).

This has two important implications. First, the 'better' the information, the closer the estimated incremental benefit is to the true incremental benefit. Second, with imperfect information, a decision maker may assign a technology to the wrong quadrant of the CE plane. In this example, a decision maker with no information or poor information would assign the technology to the

wrong quadrant, while a decision maker with good information would assign the technology to the correct quadrant, despite making an inaccurate estimate of its incremental benefit.

Finally, we assume that all decision makers with the same level of information make the same estimate of the incremental benefit of each initial technology. This allows us to consider scenarios where two or more decision makers have identical information. To implement this, we draw a single 'random' estimate of the incremental benefit for each technology, which is used to derive the estimated incremental benefit under good, poor and no information for all three decision makers (Table 2.1). We assume that each decision maker knows what information each of the other decision makers has, and hence knows what estimate each of the other decision makers has of the incremental benefit of each initial technology.

## Objective of each decision maker

The previous chapter considered a single decision maker with perfect information, whose objective was to maximize the aggregate incremental benefit from all adopted technologies. In this chapter, there are multiple decision makers, each of which may have imperfect information. Under imperfect information, decision makers do not know the *true* incremental benefit of each technology. It is therefore assumed that the objective of each decision maker is to maximize *its own estimate* of the aggregate incremental benefit from all adopted technologies.

Although each decision maker shares this common 'meta-objective', if decision makers have *different information* then this results in *different objectives* in operation. The allocator will allocate the initial budget so as to maximize *its* estimate of the aggregate incremental benefit. Following adoption of a new technology, the reallocator will reallocate incremental expenditure among initial technologies so as to maximize *its* estimate of the aggregate incremental benefit. The agent, aware of this process and with knowledge of the information held by the reallocator, will only recommend adoption of a new technology if doing so will maximize *its* estimate of the *net* incremental benefit associated with the new technology and the subsequent reallocation.

| ch | $\Lambda C^{a}$   | Perfect            | information           | Good in           | formation             | Poor in           | formation             | No information    |                       |  |
|----|-------------------|--------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|--|
| Te | $\Delta c_{\chi}$ | $\Delta E_x^{\ b}$ | Quadrant <sup>c</sup> | $E(\Delta E_x)^d$ | Quadrant <sup>e</sup> | $E(\Delta E_x)^d$ | Quadrant <sup>e</sup> | $E(\Delta E_x)^d$ | Quadrant <sup>e</sup> |  |
| Α  | -\$2.5m           | 443.9              | SE                    | 767.5             | SE                    | 1091.1            | SE                    | 1738.3            | SE                    |  |
| В  | \$3.5m            | 1585.8             | NE                    | 1589.3            | NE                    | 1592.9            | NE                    | 1600.0            | NE                    |  |
| С  | \$13.7m           | 344.2              | NE                    | 313.3             | NE                    | 282.4             | NE                    | 220.7             | NE                    |  |
| D  | \$36.6m           | -191.0             | NW                    | 172.6             | NE                    | 536.1             | NE                    | 1263.2            | NE                    |  |
| Е  | -\$6.7m           | -970.8             | SW                    | -163.6            | SW                    | 643.6             | SE                    | 2257.9            | SE                    |  |
| F  | \$35.4m           | -784.6             | NW                    | -504.6            | NW                    | -224.6            | NW                    | 335.5             | NE                    |  |
| G  | \$41.9m           | 21.8               | NE                    | 281.6             | NE                    | 541.3             | NE                    | 1060.7            | NE                    |  |
| Н  | \$18.3m           | 546.7              | NE                    | 471.7             | NE                    | 396.7             | NE                    | 246.6             | NE                    |  |
| Ι  | \$16.6m           | 917.9              | NE                    | 700.3             | NE                    | 482.6             | NE                    | 47.2              | NE                    |  |
| J  | -\$20.8m          | 264.3              | SE                    | 497.5             | SE                    | 730.6             | SE                    | 1197.0            | SE                    |  |
| K  | -\$6.4m           | 1858.7             | SE                    | 1311.0            | SE                    | 763.3             | SE                    | -332.0            | SW                    |  |
| L  | -\$8.6m           | -42.9              | SW                    | 232.0             | SE                    | 506.9             | SE                    | 1056.7            | SE                    |  |
| Μ  | \$19.7m           | 397.2              | NE                    | 131.3             | NE                    | -134.7            | NW                    | -666.6            | NW                    |  |
| Ν  | \$4.1m            | 66.7               | NE                    | 2.8               | NE                    | -61.0             | NW                    | -188.8            | NW                    |  |
| 0  | \$24.8m           | 887.7              | NE                    | 524.4             | NE                    | 161.0             | NE                    | -565.6            | NW                    |  |
| Р  | \$9.9m            | -149.5             | NW                    | -164.0            | NW                    | -178.5            | NW                    | -207.5            | NW                    |  |
| Q  | \$21.5m           | 446.2              | NE                    | 68.7              | NE                    | -308.8            | NW                    | -1063.8           | NW                    |  |
| R  | \$50.m            | 1226.8             | NE                    | 1136.2            | NE                    | 1045.7            | NE                    | 864.6             | NE                    |  |
| S  | \$3.9m            | -877.1             | NW                    | -243.7            | NW                    | 389.7             | NE                    | 1656.5            | NE                    |  |
| Т  | \$25.3m           | 1651.9             | NE                    | 1556.1            | NE                    | 1460.2            | NE                    | 1268.5            | NE                    |  |
| U  | \$40.2m           | 85.0               | NE                    | 396.8             | NE                    | 708.5             | NE                    | 1332.0            | NE                    |  |
| V  | -\$6.m            | 1492.2             | SE                    | 1216.0            | SE                    | 939.9             | SE                    | 387.7             | SE                    |  |
| W  | \$17.8m           | 105.7              | NE                    | 147.5             | NE                    | 189.2             | NE                    | 272.7             | NE                    |  |
| Χ  | -\$13.m           | 70.5               | SE                    | 398.1             | SE                    | 725.8             | SE                    | 1381.1            | SE                    |  |
| Y  | -\$2.4m           | 440.7              | SE                    | 522.0             | SE                    | 603.4             | SE                    | 766.1             | SE                    |  |

Table 2.1: Incremental cost and estimated incremental benefit of initial technologies in exhaustion

<sup>a</sup> Actual incremental cost in exhaustion; <sup>b</sup> Actual incremental benefit in exhaustion; <sup>c</sup> Quadrant of the cost-effectiveness (CE) plane in which the initial technology actually lies. <sup>d</sup> Estimated incremental benefit in exhaustion (given imperfect information); <sup>c</sup> Quadrant of the CE plane in which the initial technology is estimated to lie (given imperfect information).

#### Authority of the agent

Recent work by Eckermann and Pekarsky has raised important questions about the *authority* of the agent.<sup>63,65,79</sup> The authors assumed that the initial allocation of resources is inefficient, that reallocation following adoption of a new technology is inefficient, that the agent is aware of an *alternative* net investment or net disinvestment of resources among initial technologies that is more efficient than adopting the new technology, and that the agent is also aware of a more efficient reallocation of resources following implementation of this alternative.

Paulden and colleagues questioned the validity of these assumptions in real world practice.<sup>64</sup> For Eckermann and Pekarsky's specification of the threshold to be appropriate, a key assumption is that the agent is not only *aware* of an alternative net investment or net disinvestment opportunity and a more efficient subsequent reallocation of resources, but also has the *authority* to act upon this information in practice.

We can use our model to explore the implications of different assumptions regarding the authority of the agent. If the agent is assumed to have different information to the allocator and reallocator, the agent will *perceive* both the initial allocation of resources and the reallocator's preferred reallocation of resources to be inefficient. To ensure an efficient reallocation of resources from the perspective of the agent, the agent must have the authority to *mandate* reallocation (i.e., overrule the reallocator). In order to recommend a net investment or net disinvestment of resources among initial technologies as an *alternative* to recommending adoption of the new technology, the agent must also have the authority to *implement* such an alternative.

For the purpose of our analysis, there are three specific questions to consider:

- 1) Can the agent *mandate* reallocation following adoption of a *new technology*?
- 2) Can the agent *implement* a net investment or net disinvestment of resources among initial technologies as an *alternative* to adopting the new technology?
- 3) Can the agent *mandate* reallocation following implementation of this *alternative*?

The final question is only applicable if the agent has authority to implement such an alternative.

#### Authority of the reallocator

In the previous chapter, an assumption was made that the single decision maker could not make a wholesale reorganization of the health care system following each decision to adopt a new technology. Rather, the decision maker could only increase *or* decrease incremental expenditure on initial technologies to the extent necessary to release resources required to adopt a net investment or to use up resources released following adoption of a net disinvestment. This assumption was only necessary if technologies were assumed to be non-divisible, since the optimal solution to the knapsack problem (and hence the optimal subset of initial technologies to adopt) could change substantially in response to the adoption of a new technology with even marginal budget impact. The assumption was not necessary if technologies were assumed to be divisible, because a single decision maker was held responsible for both allocation and reallocation – since the 'reallocator' always regarded the initial allocation as *efficient*, there was no reason to consider a more substantial reallocation of resources than that needed to adopt the new technology.

In this chapter, the allocator and reallocator may have different information, such that the reallocator regards the initial allocation as inefficient. If given the opportunity, the reallocator will therefore conduct a wholesale reallocation of the health care system in response to the adoption of a new technology or implementation of an alternative, regardless of whether technologies are divisible or non-divisible. Given the inherent instability of permitting wholesale reallocation of the health care system in response to the adoption of a single health technology, we again adopt the assumption that the reallocator's authority is limited to making *only* an increase *or* decrease in incremental expenditure on initial technologies to the extent necessary to balance the health system budget following adoption of the new technology or implementation of an alternative to the new technology.
#### Analysis

The purpose of the analyses conducted in this chapter is to estimate the 'optimal' threshold for the *agent* to adopt in order for the agent to satisfy its objective. This requires that the agent only recommends a new technology for adoption if doing so maximizes the *agent's estimate* of the aggregate incremental benefit associated with all technologies funded by the health care system.

### Capabilities of the updated model

Building upon the modelling reported in the previous chapter, the updated model allows for estimation of the optimal threshold under any combination of the following assumptions:

- 1. The size of the initial budget ('primary' = \$50m, 'lower' = \$0m or 'higher' = \$100m);
- 2. The characteristics of the pool of initial technologies ('divisible' with 'constant' returns to scale, 'divisible' with 'diminishing' returns to scale, or 'non-divisible');
- The allocator's information on the incremental benefit of initial technologies ('perfect', 'good', 'poor' or 'none');
- 4. The budget impact of the new technology (\$0.1m to \$50.0m, in \$0.1m increments);
- 5. Whether the new technology is a 'net investment' or a 'net disinvestment';
- The reallocator's information on the incremental benefit of initial technologies ('perfect', 'good', 'poor' or 'none');
- The agent's information on the incremental benefit of initial technologies ('perfect', 'good', 'poor' or 'none');
- 8. Whether the agent has authority, or does not have authority, to mandate reallocation following adoption of a new technology;
- 9. Whether the agent has authority, or does not have authority, to implement an alternative to adopting the new technology;
- 10. Whether the agent has authority, or does not have authority, to mandate reallocation following implementation of an alternative to the new technology (if applicable).

This corresponds to 864 possible 'sets' of optimal cost-effectiveness thresholds, where each set includes 'subsets' corresponding to each of the four levels of the agent's information, each of which includes subsets for 'net investments' and 'net disinvestments', each of which reports the optimal threshold corresponding to every possible budget impact of the new technology.

### Analyses conducted

The previous chapter considered the implications of alternative assumptions regarding the size of the initial budget and whether initial technologies are divisible and exhibit constant or diminishing marginal returns to scale. Since the purpose of this chapter is to consider the implications of modelling multiple decision makers with imperfect information, under various assumptions regarding the authority of the agent, we place the following restrictions on the analyses conducted in this chapter:

- 1) We consider only the 'primary' initial budget of \$50m.
- 2) We assume that technologies are 'divisible' and exhibit 'diminishing' returns. This is the most general of the scenarios explored in the previous chapter, since it allows for the consideration of partially adopted technologies with a variety of production function shapes. The former is not considered if technologies are assumed to be 'non-divisible', while the latter cannot be considered if technologies exhibit 'constant' returns.
- We assume that each decision maker's information is either 'good' or 'poor', since 'perfect' or 'no' information is unlikely to be representative of real world practice.

These restrictions reduce the number of possible threshold sets to 24, each of which includes subsets for two levels of the agent's information ('good' or 'poor') and further subsets for 'net investments' and 'net disinvestments', each of which reports the optimal threshold corresponding to every possible budget impact of the new technology.

### *Results reported*

We consider the initial allocation that arises when the *allocator* has either good or poor information. In both cases, we explain the reasoning behind this allocation and report, for each initial technology, the incremental expenditure following allocation, the incremental benefit corresponding to this incremental expenditure, and the ratio of the incremental expenditure following allocation to the incremental expenditure in exhaustion.

Next, we consider the reallocation that arises when the allocator has good or poor information and the *reallocator* has good or poor information. The marginal technology at each budget impact is reported, along with estimates of the marginal change in incremental benefit, the marginal ICER, and the cumulative change in incremental benefit resulting from the entire reallocation. Since the optimal threshold is determined by the *agent's* estimates of each of these, which may differ from the reallocator's estimates, separate estimates are reported with good or poor information. The reasoning behind this reallocation is then given under each combination of the allocator's information and the reallocator's information, with separate consideration given to net investments and net disinvestments.

Finally, we consider the optimal set of thresholds corresponding to each of the 24 combinations of assumptions described earlier. If two or more threshold sets are found to be identical, we report only one of these sets and provide an explanation for this finding. For each unique threshold set, we plot each threshold subset on the agent's CE plane and report the estimated threshold corresponding to every budget impact within each threshold subset. We then report the general characteristics of the threshold set and explain the reasoning behind these characteristics, with reference to the observed behaviour of the agent and reallocator. This reasoning is reported separately for net investments and net disinvestments, and for when the agent has good or poor information regarding the incremental benefit of initial technologies. We also provide an algebraic specification for each threshold subset (Appendix 2.2).

In common with the previous chapter, we refer to the graphical depictions of the threshold on the CE plane as 'threshold curves' and their numerical representation (in terms of 'dollars per QALY') as 'numerical thresholds'. Each threshold curve reports the minimum incremental benefit required for a new technology to be considered cost-effective by the agent, given its incremental cost. The numerical threshold is calculated by dividing the new technology's incremental cost by this minimum incremental benefit. Note that the numerical threshold is equivalent to the slope of a chord joining the origin of the CE plane to the point on the threshold curve corresponding to the incremental cost of the new technology, while the ICER of a new technology is equivalent to the slope of a chord joining the origin of the CE plane to the point where the new technology is plotted on the CE plane.

# Interpreting threshold curves and numerical thresholds

For a new technology to be considered cost-effective, it must lie to the *right* of the threshold curve on the CE plane. This is analogous to considering whether the technology has positive 'incremental net benefit' when calculated using the numerical threshold.<sup>26</sup>

Alternatively, if the agent makes recommendations by comparing the ICER of the new technology to the numerical threshold, then the relevant decision rules are as follows:

- If the new technology lies in the north-east (NE) quadrant, then:
  - If the numerical threshold is positive (i.e., the point on the threshold curve corresponding to the incremental cost of the new technology is also in the NE quadrant), then the new technology is cost-effective only if its ICER is *less* than the numerical threshold.
  - If the numerical threshold is negative (i.e., the respective point on the threshold curve is in the NW quadrant) then the new technology is cost-effective.
- If the new technology lies in the south-west (SW) quadrant, then:
  - If the numerical threshold is positive (i.e., the point on the threshold curve corresponding to the incremental cost of the new technology is also in the SW quadrant), then the new technology is cost-effective only if its ICER is *greater* than the numerical threshold.
  - If the numerical threshold is negative (i.e., the respective point on the threshold curve is in the SE quadrant) then the new technology is *not* cost-effective.
- If the new technology lies in the SE quadrant, then:
  - If the numerical threshold is negative (i.e., the point on the threshold curve corresponding to the incremental cost of the new technology is also in the SE quadrant), then the new technology is cost-effective only if its ICER is *less negative* than the numerical threshold.
  - If the numerical threshold is positive (i.e., the respective point on the threshold curve is in the SW quadrant) then the new technology is cost-effective.
- If the new technology lies in the NW quadrant, then:
  - If the numerical threshold is negative (i.e., the point on the threshold curve corresponding to the incremental cost of the new technology is also in the NW quadrant), then the new technology is cost-effective only if its ICER is *more negative* than the numerical threshold.
  - If the numerical threshold is positive (i.e., the respective point on the threshold curve is in the NE quadrant) then the new technology is *not* cost-effective.

# Results

# Initial allocation

The allocation of the budget among the initial technologies is summarized in Table 2.1. This allocation depended upon the information available to the allocator (good or poor). The optimal allocation – that which would arise if the allocator had perfect information, as assumed in the previous chapter – is also provided for comparative purposes. In common with the previous chapter, exhausted technologies are identified by a 100% ratio of their incremental expenditure following allocation to their incremental expenditure in exhaustion; for technologies not adopted this ratio is 0%, while for partially adopted technologies this ratio lies between 0% and 100%.

Under imperfect information, the initial allocation has some general characteristics that are similar, but not identical, to those noted in the previous chapter under conditions of perfect information:

- 1. All technologies *believed to lie* in the SE quadrant of the CE plane were adopted until exhaustion, while all technologies believed to lie in the NW quadrant were not adopted.
- The decision maker then allocated the budget among technologies believed to lie in the NE quadrant in \$0.1m increments, regularly switching between technologies following each incremental allocation (since the marginal ICER of each technology in expansion changes with incremental expenditure).
- 3. When the available budget was spent, the decision maker considered marginal expansions of pairs of technologies one believed to lie in the SW quadrant, the other believed to lie in the NE quadrant repeatedly switching between pairs after each marginal expansion until no further pairs existed with a positive *net* incremental benefit.
- Following allocation, the initial budget is fully spent; in general, multiple technologies believed to lie in the NE and SW quadrants remain partially adopted with similar marginal ICERs in expansion.

If the allocator has poor information, then the *actual* total incremental benefit across all adopted initial technologies is 8593.8 QALYs. This is less than that if the allocator has good information (10,794.4 QALYs), which is less than that with perfect information (11,092.1 QALYs). Nevertheless, since the allocator maximizes its own *expectation* of the total incremental benefit, given its imperfect information, the allocator *perceives* its allocation to be efficient.

|       |                  |                  | Optimal allocation Allocation with good information |                  |                                 |                     |                  |                              |                  | Allocation w                    | ith poor info            | rmation        |                              |                  |                                 |
|-------|------------------|------------------|-----------------------------------------------------|------------------|---------------------------------|---------------------|------------------|------------------------------|------------------|---------------------------------|--------------------------|----------------|------------------------------|------------------|---------------------------------|
| Tech  | $\Delta C_x^{a}$ | $\Delta E_x^{b}$ | ۵ <i>C</i> <sub>a</sub> °                           | $\Delta E_a^{d}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $E(\Delta E_x)^{e}$ | $\Delta C_a^{f}$ | $E(\Delta E_a)^{\mathrm{g}}$ | $\Delta E_a^{h}$ | $\frac{\Delta C_a}{\Delta C_x}$ | $E(\Delta E_{\chi})^{e}$ | $\Delta C_a$ f | $E(\Delta E_a)^{\mathrm{g}}$ | $\Delta E_a^{h}$ | $\frac{\Delta C_a}{\Delta C_x}$ |
|       |                  |                  |                                                     |                  |                                 | Initial techno      | ologies in the   | e south-east (               | SE) quadra       | nt                              |                          |                |                              |                  |                                 |
| Α     | -\$2.5m          | 443.9            | -\$2.5m                                             | 443.9            | 100%                            | 767.5               | -\$2.5m          | 767.5                        | 443.9            | 100%                            | 1091.1                   | -\$2.5m        | 1091.1                       | 443.9            | 100%                            |
| J     | -\$20.8m         | 264.3            | -\$20.8m                                            | 264.3            | 100%                            | 497.5               | -\$20.8m         | 497.5                        | 264.3            | 100%                            | 730.6                    | -\$20.8m       | 730.6                        | 264.3            | 100%                            |
| K     | -\$6.4m          | 1858.7           | -\$6.4m                                             | 1858.7           | 100%                            | 1311.0              | -\$6.4m          | 1311.0                       | 1858.7           | 100%                            | 763.3                    | -\$6.4m        | 763.3                        | 1858.7           | 100%                            |
| V     | -\$6.0m          | 1492.2           | -\$6.0m                                             | 1492.2           | 100%                            | 1216.0              | -\$6.0m          | 1216.0                       | 1492.2           | 100%                            | 939.9                    | -\$6.0m        | 939.9                        | 1492.2           | 100%                            |
| X     | -\$13.0m         | 70.5             | -\$13.0m                                            | 70.5             | 100%                            | 398.1               | -\$13.0m         | 398.1                        | 70.5             | 100%                            | 725.8                    | -\$13.0m       | 725.8                        | 70.5             | 100%                            |
| Y     | -\$2.4m          | 440.7            | -\$2.4m                                             | 440.7            | 100%                            | 522.0               | -\$2.4m          | 522.0                        | 440.7            | 100%                            | 603.4                    | -\$2.4m        | 603.4                        | 440.7            | 100%                            |
| Total | -\$51.1m         | 4570.2           | -\$51.1m                                            | 4570.2           | 100%                            | 4712.2              | -\$51.1m         | 4712.2                       | 4570.2           | 100%                            | 4854.2                   | -\$51.1m       | 4854.2                       | 4570.2           | 100%                            |
|       |                  |                  |                                                     |                  |                                 | Initial techno      | logies in the    | south-west (                 | SW) quadra       | int                             |                          |                |                              |                  |                                 |
| E     | -\$6.7m          | -970.8           | -\$0.1m                                             | -1.8             | 1%                              | -163.6              | -\$1.5m          | -17.3                        | -102.8           | 22%                             | 643.6                    | -\$6.7m        | 643.6                        | -970.8           | 100%                            |
| L     | -\$8.6m          | -42.9            | -\$8.6m                                             | -42.9            | 100%                            | 232.0               | -\$8.6m          | 232.0                        | -42.9            | 100%                            | 506.9                    | -\$8.6m        | 506.9                        | -42.9            | 100%                            |
| Total | -\$15.3m         | -1013.6          | -\$8.7m                                             | -44.7            | 57%                             | 68.4                | -\$10.1m         | 214.7                        | -145.7           | 66%                             | 1150.5                   | -\$15.3m       | 1150.5                       | -1013.6          | 100%                            |
|       |                  |                  |                                                     |                  |                                 | Initial techno      | ologies in the   | e north-east (.              | NE) quadra       | nt                              |                          |                |                              |                  |                                 |
| В     | \$3.5m           | 1585.8           | \$3.5m                                              | 1585.8           | 100%                            | 1589.3              | \$3.5m           | 1589.3                       | 1585.8           | 100%                            | 1592.9                   | \$3.5m         | 1592.9                       | 1585.8           | 100%                            |
| С     | \$13.7m          | 344.2            | \$5.2m                                              | 180.4            | 38%                             | 313.3               | \$9.1m           | 238.5                        | 262.0            | 66%                             | 282.4                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| G     | \$41.9m          | 21.8             | \$0.0m                                              | 0.0              | 0%                              | 281.6               | \$0.7m           | 18.4                         | 1.4              | 2%                              | 541.3                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| Н     | \$18.3m          | 546.7            | \$11.7m                                             | 405.8            | 64%                             | 471.7               | \$17.3m          | 454.4                        | 526.6            | 95%                             | 396.7                    | \$18.3m        | 396.7                        | 546.7            | 100%                            |
| I     | \$16.6m          | 917.9            | \$16.6m                                             | 917.9            | 100%                            | 700.3               | \$16.6m          | 700.3                        | 917.9            | 100%                            | 482.6                    | \$16.6m        | 482.6                        | 917.9            | 100%                            |
| М     | \$19.7m          | 397.2            | \$3.3m                                              | 95.1             | 17%                             | 131.3               | \$0.1m           | 1.9                          | 5.8              | 1%                              | -134.7                   | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| Ν     | \$4.1m           | 66.7             | \$0.5m                                              | 23.3             | 12%                             | 2.8                 | \$0.0m           | 0.0                          | 0.0              | 0%                              | -61.0                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| 0     | \$24.8m          | 887.7            | \$24.8m                                             | 887.7            | 100%                            | 524.4               | \$12.9m          | 339.1                        | 574.1            | 52%                             | 161.0                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| Q     | \$21.5m          | 446.2            | \$4.6m                                              | 159.6            | 21%                             | 68.7                | \$0.1m           | 1.9                          | 12.4             | 0%                              | -308.8                   | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| R     | \$50.0m          | 1226.8           | \$14.1m                                             | 651.4            | 28%                             | 1136.2              | \$21.1m          | 738.1                        | 796.9            | 42%                             | 1045.7                   | \$48.8m        | 1020.6                       | 1211.9           | 98%                             |
| Т     | \$25.3m          | 1651.9           | \$25.3m                                             | 1651.9           | 100%                            | 1556.1              | \$25.3m          | 1556.1                       | 1651.9           | 100%                            | 1460.2                   | \$25.3m        | 1460.2                       | 1651.9           | 100%                            |
| U     | \$40.2m          | 85.0             | \$0.1m                                              | 4.2              | 0%                              | 396.8               | \$3.2m           | 111.9                        | 24.0             | 8%                              | 708.5                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| W     | \$17.8m          | 105.7            | \$0.1m                                              | 3.3              | 1%                              | 147.5               | \$0.6m           | 15.4                         | 11.0             | 3%                              | 189.2                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| Total | \$297.4m         | 8283.6           | \$109.8m                                            | 6566.5           | 37%                             | 7319.8              | \$110.5m         | 5765.3                       | 6370.0           | 37%                             | 6356.0                   | \$112.5m       | 4953.0                       | 5914.3           | 38%                             |
|       |                  |                  |                                                     |                  | i                               | Initial techno      | logies in the    | north-west (                 | NW) quadro       | ant                             |                          |                |                              |                  |                                 |
| D     | \$36.6m          | -191.0           | \$0.0m                                              | 0.0              | 0%                              | 172.6               | \$0.7m           | 23.9                         | -0.1             | 2%                              | 536.1                    | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| F     | \$35.4m          | -784.6           | \$0.0m                                              | 0.0              | 0%                              | -504.6              | \$0.0m           | 0.0                          | 0.0              | 0%                              | -224.6                   | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| Р     | \$9.9m           | -149.5           | \$0.0m                                              | 0.0              | 0%                              | -164.0              | \$0.0m           | 0.0                          | 0.0              | 0%                              | -178.5                   | \$0.0m         | 0.0                          | 0.0              | 0%                              |
| S     | \$3.9m           | -877.1           | \$0.0m                                              | 0.0              | 0%                              | -243.7              | \$0.0m           | 0.0                          | 0.0              | 0%                              | 389.7                    | \$3.9m         | 389.7                        | -877.1           | 100%                            |
| Total | \$85.8m          | -2002.1          | \$0.0m                                              | 0.0              | 0%                              | -739.6              | \$0.7m           | 23.9                         | -0.1             | 1%                              | 522.8                    | \$3.9m         | 389.7                        | -877.1           | 5%                              |
| Total | \$316.8m         | 9838.1           | \$50.0m                                             | 11092.1          |                                 | 11360.8             | \$50.0m          | 10716.0                      | 10794.4          |                                 | 12883.4                  | \$50.0m        | 11347.3                      | 8593.8           |                                 |

# Table 2.2: Initial allocation

<sup>a</sup> Actual incremental cost in exhaustion; <sup>b</sup> Actual incremental benefit (QALYs) in exhaustion; <sup>c</sup> Incremental expenditure following allocation of budget under perfect information; <sup>d</sup> Actual/expected incremental benefit (QALYs) following allocation of budget under perfect information; <sup>e</sup> Expected incremental benefit (QALYs) in exhaustion under imperfect information; <sup>f</sup> Incremental expenditure following allocation of budget under imperfect information; <sup>g</sup> Expected incremental benefit (QALYs) following allocation of budget under imperfect information; <sup>h</sup> Actual incremental benefit (QALYs) following allocation of budget under imperfect information;

# Allocator has poor information

With poor information, the allocator wrongly assigned technologies E and L to the SE (rather than SW) quadrant of the CE plane, technologies M, N and Q to the NW (rather than NE) quadrant, and technologies D and S to the NE (rather than NW) quadrant (Table 2.1).

This resulted in the initial allocator exhausting technology E (incremental expenditure -\$6.7m) under the mistaken belief that this cost-saving technology also has positive incremental benefit. The allocator's *expected* incremental benefit from exhausting E was 643.6 QALYs, but the *actual* incremental benefit was -970.8 QALYs. Under the optimal allocation (with perfect information), incremental expenditure on E would have been just -\$0.1m, resulting in an actual incremental benefit of -1.8 QALYs. *Partially* expanding technology E would have been optimal because the reduction in incremental expenditure (\$0.1m) could have been used to increase incremental expenditure on another technology, resulting in a greater increase in incremental benefit than was lost through the partial expansion of technology E. However, expanding E until exhaustion was *not* optimal because the reduction in incremental expenditor in incremental expenditure (\$6.7m) was insufficient to compensate for the relatively large 970.9 QALYs loss in incremental benefit.

The other technology wrongly assigned to the SE quadrant was L, which the allocator also exhausted (incremental expenditure -\$8.6m). Fortunately, although L actually lies in the SW quadrant, the actual loss in incremental benefit from its exhaustion (42.9 QALYs) was small relative to the reduction in incremental expenditure (\$8.6m), such that L would also have been exhausted under the optimal allocation. Therefore, although the allocator's imperfect information led to a false belief about technology L's incremental benefit and its quadrant on the CE plane, in this specific instance it did *not* contribute towards an inefficient allocation of the initial budget.

Wrongly allocating technologies M, N and Q to the NW quadrant resulted in the allocator choosing not to adopt any of these technologies – even partially – under the mistaken belief that these cost-increasing technologies have negative incremental benefit. Under the optimal allocation, all three would have been partially adopted, resulting in an incremental benefit for technologies M, N and Q of 95.1 QALYs, 23.3 QALYs and 159.6 QALYs, at an incremental expenditure of \$3.3m, \$0.5m and \$4.6m, respectively.

By allocating technologies D and S to the NE quadrant, the allocator considered the possibility that each might be sufficiently cost-effective to expand at least partially, when in fact both lie in

the NW quadrant and so would not have been adopted under the optimal allocation. Although the allocator did not choose to adopt technology D, the allocator did decide to exhaust technology S (incremental expenditure \$3.9m). While the allocator believed this would result in an incremental benefit of 389.7 QALYs, it actually resulted in a loss of 877.1 QALYs.

Among the initial technologies *not* assigned to the wrong quadrant of the CE plane, differences between their actual and expected incremental benefits nevertheless resulted in deviations from the optimal allocation and a resulting reduction in allocative efficiency. In the optimal allocation, technology O would have been exhausted, with an incremental expenditure of \$24.8m (the largest of any initial technology) and an incremental benefit of 887.7 QALYs; however, with poor information, the allocator estimated this incremental benefit in exhaustion to be just 161.0 QALYs, so chose not to adopt the technology at all. Similarly, the allocator underestimated the incremental effectiveness of technology C, which would have been partially adopted in the optimal allocation, and so did not adopt it at all. Elsewhere, incremental expenditure was less than optimal for technology W, and more than optimal for technologies H and R.

Nevertheless, despite imperfect information, the allocator matched the optimal allocation in its incremental expenditure on technologies B, I, T, and U. Furthermore, since none of the initial technologies in the SE quadrant was wrongly assigned to a different quadrant, the allocator exhausted all of these technologies, in line with the optimal allocation.

#### Allocator has good information

With good information, the allocator assigned fewer initial technologies to the incorrect quadrant of the CE plane than under poor information, with technologies E, M, N, Q and S assigned correctly. Nevertheless, the allocator assigned technology L to the SE (rather than SW) quadrant and technology D to the NE (rather than NW) quadrant (Table 2.1).

Since technology L was assigned to the SE quadrant, the allocator chose to exhaust this costsaving technology, under the misplaced belief that it also had positive incremental benefit. Fortunately, technology L would also have been exhausted under the optimal allocation, so the allocator's imperfect information regarding its incremental benefit did not contribute towards an inefficient allocation of the budget. The allocator also considered technology D for adoption, since it was wrongly assigned to the NE quadrant; since it actually lies in the NW quadrant, it would not have been adopted under the optimal allocation. The allocator decided to partially adopt D (incremental expenditure \$0.7m), resulting in an expected incremental benefit of 23.9 QALYs but an actual incremental benefit of -0.1 QALYs.

The remaining inefficiencies in the allocation under good information were caused by differences between the actual and expected incremental benefits of initial technologies assigned (correctly) to the NE quadrant. This resulted in an incremental expenditure greater than optimal for technologies C, G, H, R, U and W, and less than optimal for technologies M, N, O and Q.

As under poor information, technologies B, I and T, and all technologies in the SE quadrant, were exhausted, in line with the optimal allocation.

#### Reallocation

The reallocation that occurs following adoption of a new technology is reported in abridged form in Tables 2.3 to 2.6. Complete tables are provided in Appendix Tables A2.2.1 to A2.2.4.

If the agent does not have the authority to mandate reallocation, the reallocation that follows adoption of a new technology depends upon the following:

- 1. The size of the initial budget;
- 2. The characteristics of the pool of initial technologies;
- 3. The allocator's information on the incremental benefit of initial technologies;
- 4. The budget impact of the new technology;
- 5. Whether the new technology is a 'net investment' or a 'net disinvestment';
- 6. The reallocator's information on the incremental benefit of initial technologies.

The incremental expenditure on each technology during the initial allocation depended upon the size of the *initial budget*, the *characteristics* of each initial technology in the pool, specifically each technology's incremental cost and incremental benefit in exhaustion and the shape of its production function, and the *information* available to the *allocator*. This, in turn, restricted the set of *reallocation* possibilities: exhausted technologies cannot be expanded during reallocation, while technologies not adopted (even partially) cannot be contracted during reallocation.

The greater the *budget impact* of the new technology, the greater the aggregate change in incremental expenditure required during reallocation through expansion and/or contraction of initial technologies. Whether this required change in incremental expenditure is positive or negative depends upon whether the new technology is a *net investment* or *net disinvestment*. A net investment requires a reduction in incremental expenditure on initial technologies in order to release resources for the new technology – this may be done by contracting initial technologies in the northern half of the CE plane that were adopted during allocation, and/or by expanding technologies in the southern half of the CE plane that were not exhausted during allocation. Conversely, a net disinvestment releases resources that may be used to increase incremental expenditure on initial technologies – this requires expanding initial technologies in the northern half of the CE plane that were adopted during allocation, and/or contracting technologies in the northern half of the CE plane that were adopted during allocation.

|         |                   |                     | Reallocation     | with good in    | nformation          |                  | Reallocation with poor information |                   |                     |                  |                 |                   |                  |                 |
|---------|-------------------|---------------------|------------------|-----------------|---------------------|------------------|------------------------------------|-------------------|---------------------|------------------|-----------------|-------------------|------------------|-----------------|
| Budget  | Marginal          | Estimate            | s with good info | ormation        | Estimates           | s with poor info | rmation                            | Marginal          | Estimate            | s with good info | rmation         | Estimate.         | s with poor info | rmation         |
| impact  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$                  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ |
| \$0.1m  | С                 | -1.75               | \$57,122         | -1.75           | -1.58               | \$63,369         | -1.58                              | Е                 | -1.76               | \$56,770         | -1.76           | 10.43             | -\$9,586         | 10.43           |
| \$0.2m  | R                 | -1.75               | \$57,106         | -3.50           | -1.61               | \$62,051         | -3.19                              | Е                 | -1.82               | \$55,023         | -3.58           | 10.22             | -\$9,788         | 20.65           |
| \$0.3m  | Н                 | -1.75               | \$57,058         | -5.25           | -1.47               | \$67,849         | -4.66                              | Е                 | -1.87               | \$53,427         | -5.45           | 10.02             | -\$9,981         | 30.67           |
|         |                   |                     |                  |                 |                     |                  |                                    |                   |                     |                  |                 |                   |                  |                 |
| \$5.1m  | Н                 | -1.80               | \$55,471         | -90.55          | -1.52               | \$65,962         | -67.40                             | E                 | -3.62               | \$27,615         | -142.61         | 6.45              | -\$15,498        | 399.87          |
| \$5.2m  | 0                 | -1.80               | \$55,463         | -92.36          | -0.55               | \$180,591        | -67.95                             | E                 | -3.65               | \$27,406         | -146.26         | 6.42              | -\$15,577        | 406.29          |
| \$5.3m  | R                 | -1.80               | \$55,455         | -94.16          | -1.66               | \$60,256         | -69.61                             | М                 | -1.92               | \$52,170         | -148.18         | 0.18              | -\$548,002       | 406.47          |
| \$5.4m  | С                 | -1.81               | \$55,387         | -95.96          | -1.63               | \$61,444         | -71.24                             | Q                 | -1.91               | \$52,239         | -150.09         | 0.10              | -\$1.02m         | 406.57          |
| \$5.5m  | Н                 | -1.81               | \$55,354         | -97.77          | -1.52               | \$65,823         | -72.76                             | 0                 | -1.75               | \$56,981         | -151.85         | -0.54             | \$185,534        | 406.03          |
|         |                   |                     |                  |                 |                     |                  |                                    |                   |                     |                  |                 |                   |                  |                 |
| \$36.4m | С                 | -2.35               | \$42,584         | -726.98         | -2.12               | \$47,243         | -456.29                            | С                 | -2.09               | \$47,941         | -815.17         | -1.88             | \$53,184         | 0.83            |
| \$36.5m | 0                 | -2.35               | \$42,550         | -729.33         | -0.72               | \$138,539        | -457.02                            | R                 | -2.04               | \$48,924         | -817.21         | -1.88             | \$53,160         | -1.05           |
| \$36.6m | Н                 | -2.35               | \$42,542         | -731.68         | -1.98               | \$50,587         | -458.99                            | Н                 | -2.24               | \$44,621         | -819.45         | -1.88             | \$53,059         | -2.94           |
|         |                   |                     |                  |                 |                     |                  |                                    |                   |                     |                  |                 |                   |                  |                 |
| \$49.8m | 0                 | -2.87               | \$34,889         | -1072.66        | -0.88               | \$113,603        | -613.98                            | Н                 | -2.80               | \$35,769         | -1142.92        | -2.35             | \$42,535         | -281.17         |
| \$49.9m | D                 | -2.87               | \$34,878         | -1075.53        | -8.91               | \$11,227         | -622.89                            | Ι                 | -3.41               | \$29,285         | -1146.34        | -2.35             | \$42,494         | -283.52         |
| \$50.0m | R                 | -2.87               | \$34,874         | -1078.39        | -2.64               | \$37,893         | -625.53                            | R                 | -2.56               | \$39,063         | -1148.90        | -2.36             | \$42,447         | -285.88         |

# Table 2.3: Reallocation following net investment (allocator has good information) Note: This table is abridged. Complete table provided in Appendix 2.2, Table A2.2.1

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$100,000 reduction in incremental expenditure compared to the previous (smaller) level of budget impact;
<sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 reduction in incremental expenditure on marginal technology;
<sup>c</sup> Estimate (given imperfect information) of the marginal ICER in contraction for the marginal technology;
<sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies.

|         |                   |                     | Reallocation     | with good i       | nformation          |                  | Reallocation with poor information |                   |                     |                  |                   |                                 |               |                   |
|---------|-------------------|---------------------|------------------|-------------------|---------------------|------------------|------------------------------------|-------------------|---------------------|------------------|-------------------|---------------------------------|---------------|-------------------|
| Budget  | Marginal          | Estimates           | s with good info | rmation           | Estimates           | s with poor info | rmation                            | Marginal          | Estimates           | s with good info | rmation           | Estimates with poor information |               |                   |
| impact  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$                  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$               | $E(ICER_m)^c$ | $E(\Delta E)^{d}$ |
| \$0.1m  | 0                 | 1.75                | \$57,129         | 1.75              | 0.54                | \$186,014        | 0.54                               | S                 | -1.00               | -\$99,957        | -1.00             | 33.89                           | \$2,951       | 33.89             |
| \$0.2m  | Н                 | 1.75                | \$57,168         | 3.50              | 1.47                | \$67,980         | 2.01                               | S                 | -1.83               | -\$54,668        | -2.83             | 19.91                           | \$5,023       | 53.80             |
| \$0.3m  | R                 | 1.75                | \$57,242         | 5.25              | 1.61                | \$62,198         | 3.62                               | S                 | -2.37               | -\$42,216        | -5.20             | 16.70                           | \$5,989       | 70.49             |
|         |                   |                     |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                                 |               |                   |
| \$3.8m  | R                 | 1.71                | \$58,447         | 65.76             | 1.57                | \$63,508         | 51.55                              | S                 | -9.19               | -\$10,882        | -234.35           | 6.75                            | \$14,815      | 383.05            |
| \$3.9m  | U                 | 1.71                | \$58,495         | 67.47             | 3.05                | \$32,756         | 54.61                              | S                 | -9.31               | -\$10,740        | -243.66           | 6.69                            | \$14,945      | 389.74            |
| \$4.0m  | С                 | 1.71                | \$58,558         | 69.18             | 1.54                | \$64,962         | 56.15                              | D                 | 1.65                | \$60,684         | -242.01           | 5.12                            | \$19,535      | 394.86            |
|         |                   |                     |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                                 |               |                   |
| \$26.8m | D                 | 1.46                | \$68,312         | 429.61            | 4.55                | \$21,990         | 292.24                             | D                 | 0.52                | \$193,915        | -2.40             | 1.60                            | \$62,426      | 892.66            |
| \$26.9m | 0                 | 1.46                | \$68,320         | 431.08            | 0.45                | \$222,460        | 292.69                             | R                 | 1.74                | \$57,512         | -0.66             | 1.60                            | \$62,491      | 894.26            |
| \$27.0m | R                 | 1.46                | \$68,348         | 432.54            | 1.35                | \$74,261         | 294.04                             | G                 | 0.83                | \$120,241        | 0.17              | 1.60                            | \$62,551      | 895.86            |
|         |                   |                     |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                                 |               |                   |
| \$49.8m | М                 | 1.19                | \$83,712         | 735.27            | -0.31               | -\$320,726       | 544.64                             | U                 | 0.78                | \$128,436        | 278.00            | 1.39                            | \$71,922      | 1233.89           |
| \$49.9m | R                 | 1.19                | \$83,724         | 736.46            | 1.10                | \$90,975         | 545.74                             | С                 | 1.54                | \$64,862         | 279.54            | 1.39                            | \$71,956      | 1235.28           |
| \$50.0m | R                 | 1.19                | \$83,822         | 737.65            | 1.10                | \$91,083         | 546.83                             | R                 | 1.51                | \$66,269         | 281.05            | 1.39                            | \$72,010      | 1236.67           |

# Table 2.4: Reallocation following net disinvestment (allocator has good information) Note: This table is abridged. Complete table provided in Appendix 2.2, Table A2.2.2

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$100,000 increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 increase in incremental expenditure on marginal technology; <sup>c</sup> Estimate (given imperfect information) of the marginal ICER in expansion for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in

incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies.

|         |                   |                     | Reallocation     | with good         | information       |                   |                 |                   | Reallocation      | n with poor i    | nformation        |                   |                   |                   |
|---------|-------------------|---------------------|------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|
| Budget  | Marginal          | Estimates           | s with good info | rmation           | Estimate          | es with poor info | ormation        | Marginal          | Estimate          | s with good info | ormation          | Estimate          | es with poor info | ormation          |
| impact  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^{c}$   | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^{c}$  | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$     | $E(\Delta E)^{d}$ |
| \$0.1m  | S                 | 9.31                | -\$10,740        | 9.31              | -6.69             | \$14,945          | -6.69           | Н                 | -1.96             | \$51,044         | -1.96             | -1.65             | \$60,698          | -1.65             |
| \$0.2m  | S                 | 9.19                | -\$10,882        | 18.50             | -6.75             | \$14,815          | -13.44          | С                 | -1.83             | \$54,707         | -3.79             | -1.65             | \$60,690          | -3.30             |
| \$0.3m  | S                 | 9.07                | -\$11,030        | 27.57             | -6.81             | \$14,682          | -20.25          | 0                 | -5.37             | \$18,625         | -9.16             | -1.65             | \$60,645          | -4.94             |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   |                   |
| \$3.8m  | S                 | 1.83                | -\$54,669        | 242.66            | -19.91            | \$5,023           | -355.85         | R                 | -1.83             | \$54,610         | -61.64            | -1.69             | \$59,339          | -63.32            |
| \$3.9m  | S                 | 1.00                | -\$99,960        | 243.66            | -33.89            | \$2,951           | -389.74         | U                 | -0.95             | \$105,758        | -62.59            | -1.69             | \$59,223          | -65.01            |
| \$4.0m  | D                 | -0.53               | \$187,471        | 243.13            | -1.66             | \$60,348          | -391.40         | G                 | -0.88             | \$113,781        | -63.47            | -1.69             | \$59,187          | -66.70            |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   |                   |
| \$8.3m  | D                 | -0.84               | \$118,356        | 214.85            | -2.62             | \$38,100          | -479.24         | С                 | -1.93             | \$51,803         | -130.50           | -1.74             | \$57,468          | -140.39           |
| \$8.4m  | G                 | -0.86               | \$116,451        | 213.99            | -1.65             | \$60,576          | -480.89         | R                 | -1.89             | \$52,880         | -132.39           | -1.74             | \$57,459          | -142.13           |
| \$8.5m  | D                 | -0.86               | \$116,260        | 213.13            | -2.67             | \$37,425          | -483.56         | Н                 | -2.07             | \$48,279         | -134.46           | -1.74             | \$57,410          | -143.88           |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   |                   |
| \$9.9m  | G                 | -0.92               | \$108,781        | 200.66            | -1.77             | \$56,586          | -510.72         | Н                 | -2.09             | \$47,813         | -155.22           | -1.76             | \$56,855          | -168.39           |
| \$10.0m | U                 | -0.92               | \$108,146        | 199.73            | -1.65             | \$60,560          | -512.37         | R                 | -1.91             | \$52,291         | -157.13           | -1.76             | \$56,819          | -170.15           |
| \$10.1m | G                 | -0.93               | \$108,028        | 198.81            | -1.78             | \$56,194          | -514.15         | U                 | -0.99             | \$101,318        | -158.12           | -1.76             | \$56,737          | -171.91           |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   | -                 |
| \$19.9m | U                 | -1.29               | \$77,301         | 93.04             | -2.31             | \$43,286          | -724.52         | R                 | -2.07             | \$48,287         | -323.33           | -1.91             | \$52,468          | -351.34           |
| \$20.0m | W                 | -1.30               | \$76,641         | 91.73             | -1.67             | \$59,732          | -726.20         | Н                 | -2.27             | \$44,073         | -325.60           | -1.91             | \$52,409          | -353.25           |
| \$20.1m | U                 | -1.30               | \$76,637         | 90.43             | -2.33             | \$42,917          | -728.53         | G                 | -0.99             | \$100,721        | -326.59           | -1.91             | \$52,394          | -355.16           |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   | -                 |
| \$25.2m | U                 | -1.79               | \$55,816         | 13.28             | -3.20             | \$31,256          | -874.32         | Н                 | -2.38             | \$41,939         | -415.68           | -2.01             | \$49,871          | -454.93           |
| \$25.3m | R                 | -1.79               | \$55,733         | 11.48             | -1.65             | \$60,559          | -875.97         | U                 | -1.12             | \$88,973         | -416.81           | -2.01             | \$49,824          | -456.94           |
| \$25.4m | G                 | -1.80               | \$55,644         | 9.69              | -3.45             | \$28,945          | -879.42         | R                 | -2.18             | \$45,817         | -418.99           | -2.01             | \$49,783          | -458.95           |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   |                   |                   |                   |
| \$25.9m | R                 | -1.82               | \$55,034         | 0.65              | -1.67             | \$59,799          | -887.74         | R                 | -2.19             | \$45,648         | -433.00           | -2.02             | \$49,601          | -469.02           |
| \$26.0m | R                 | -1.82               | \$54,893         | -1.17             | -1.68             | \$59,646          | -889.42         | G                 | -1.05             | \$95,191         | -434.06           | -2.02             | \$49,517          | -471.04           |
| \$26.1m | U                 | -1.82               | \$54,891         | -3.00             | -3.25             | \$30,738          | -892.67         | U                 | -1.13             | \$88,397         | -435.19           | -2.02             | \$49,501          | -473.06           |
|         |                   |                     |                  |                   |                   |                   |                 |                   |                   |                  |                   | 1                 |                   |                   |
| \$49.8m | С                 | -2.54               | \$39,311         | -511.16           | -2.29             | \$43,611          | -1397.37        | R                 | -2.78             | \$35,966         | -1010.48          | -2.56             | \$39,081          | -1018.65          |
| \$49.9m | R                 | -2.55               | \$39,260         | -513.71           | -2.34             | \$42,660          | -1399.72        | I                 | -3.72             | \$26,908         | -1014.19          | -2.56             | \$39,046          | -1021.22          |
| \$50.0m | Н                 | -2.56               | \$39,098         | -516.26           | -2.15             | \$46,492          | -1401.87        | U                 | -1.44             | \$69,654         | -1015.63          | -2.56             | \$39,006          | -1023.78          |

Table 2.5: Reallocation following net investment (allocator has poor information) *Note: This table is abridged. Complete table provided in Appendix 2.2, Table A2.2.3* 

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$100,000 reduction in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 reduction in incremental expenditure on marginal technology; <sup>c</sup> Estimate (given imperfect information) of the marginal ICER in contraction for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies.

|         |                   |                   | Reallocation     | with good i       | nformation          |                  | Reallocation with poor information |                   |                     |                  |                   |                   |                  |                   |
|---------|-------------------|-------------------|------------------|-------------------|---------------------|------------------|------------------------------------|-------------------|---------------------|------------------|-------------------|-------------------|------------------|-------------------|
| Budget  | Marginal          | Estimates         | s with good info | rmation           | Estimate            | s with poor info | rmation                            | Marginal          | Estimates           | s with good info | rmation           | Estimate          | s with poor info | rmation           |
| impact  | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$                  | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$0.1m  | 0                 | 5.02              | \$19,920         | 5.02              | 1.54                | \$64,860         | 1.54                               | R                 | 1.79                | \$55,872         | 1.79              | 1.65              | \$60,710         | 1.65              |
| \$0.2m  | 0                 | 4.75              | \$21,064         | 9.77              | 1.46                | \$68,586         | 3.00                               | D                 | 0.53                | \$188,777        | 2.32              | 1.65              | \$60,769         | 3.29              |
| \$0.3m  | 0                 | 4.53              | \$22,096         | 14.29             | 1.39                | \$71,945         | 4.39                               | U                 | 0.92                | \$108,617        | 3.24              | 1.64              | \$60,824         | 4.94              |
|         |                   |                   |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                   |                  |                   |
| \$8.8m  | 0                 | 1.96              | \$51,067         | 233.83            | 0.60                | \$166,279        | 71.82                              | W                 | 1.22                | \$81,945         | 126.68            | 1.57              | \$63,866         | 141.23            |
| \$8.9m  | Н                 | 1.95              | \$51,181         | 235.79            | 1.64                | \$60,861         | 73.46                              | U                 | 0.88                | \$114,121        | 127.56            | 1.56              | \$63,906         | 142.80            |
| \$9.0m  | 0                 | 1.95              | \$51,251         | 237.74            | 0.60                | \$166,875        | 74.06                              | R                 | 1.70                | \$58,843         | 129.26            | 1.56              | \$63,938         | 144.36            |
|         |                   |                   |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                   |                  |                   |
| \$10.2m | 0                 | 1.92              | \$52,149         | 260.93            | 0.59                | \$169,799        | 88.40                              | Н                 | 1.85                | \$54,157         | 147.39            | 1.55              | \$64,399         | 163.06            |
| \$10.3m | М                 | 1.92              | \$52,170         | 262.84            | -0.18               | -\$548,002       | 88.22                              | G                 | 0.81                | \$123,806        | 148.20            | 1.55              | \$64,402         | 164.62            |
| \$10.4m | Q                 | 1.91              | \$52,239         | 264.76            | -0.10               | -\$1.02m         | 88.12                              | U                 | 0.87                | \$115,013        | 149.06            | 1.55              | \$64,405         | 166.17            |
|         |                   |                   |                  |                   |                     |                  |                                    |                   |                     |                  |                   |                   |                  |                   |
| \$49.8m | R                 | 1.38              | \$72,202         | 905.40            | 1.27                | \$78,456         | 519.83                             | R                 | 1.36                | \$73,373         | 618.92            | 1.25              | \$79,726         | 719.00            |
| \$49.9m | R                 | 1.38              | \$72,307         | 906.78            | 1.27                | \$78,567         | 521.10                             | U                 | 0.70                | \$142,391        | 619.62            | 1.25              | \$79,738         | 720.25            |
| \$50.0m | R                 | 1.38              | \$72,417         | 908.16            | 1.27                | \$78,691         | 522.37                             | R                 | 1.36                | \$73,481         | 620.98            | 1.25              | \$79,840         | 721.51            |

# Table 2.6: Reallocation following net disinvestment (allocator has poor information) Note: This table is abridged. Complete table provided in Appendix 2.2, Table A2.2.4

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$100,000 increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 increase in incremental expenditure on marginal technology; <sup>c</sup> Estimate (given imperfect information) of the marginal ICER in expansion for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in

incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies.

The *information* available to the *reallocator* determines the reallocator's estimate of the incremental benefit associated with expanding or contracting each initial technology in the pool during reallocation, given the prevailing level of incremental expenditure on each technology. This, in turn, determines the order in which the reallocator makes marginal expansions and/or contractions of initial technologies during reallocation. Since the set of marginal expansions and/or contractions that results in a reduction in incremental expenditure on initial technologies differs from the set that results in an increase in incremental expenditure, a different order exists for net investments than for net disinvestments. The order in which marginal expansions and/or contractions of initial technologies are made during reallocation, and hence the *cumulative* change in incremental benefit across all initial technologies affected during reallocation.

# Reallocator has the same information as the allocator

If the reallocator has identical information to the allocator, then the reallocator *perceives* the initial allocation of resources to be efficient, even if it is actually not. This is true regardless of whether both decision makers have good or poor information.

### Net investments

Following a net investment, the reallocator will contract technologies believed to lie in the NE quadrant, and/or expand technologies believed to lie in the SW quadrant, in *reverse* order to that used by the allocator when originally expanding or contracting these technologies.

### Reallocator has good information on the incremental benefit of initial technologies

If both the allocator and reallocator have good information, the *last* marginal allocation of the initial budget by the allocator (from \$49.9m to \$50.0m) was to expand technology C by increasing its incremental expenditure from \$9.0m to \$9.1m, resulting in an *expected* marginal increase in incremental benefit of 1.75 QALYs. Conversely, the *first* marginal reallocation by the reallocator following adoption of a net investment is to *contract* technology C by *reducing* its incremental expenditure from \$9.0m, resulting in an expected marginal decrease in incremental benefit of 1.75 QALYs.

#### Reallocator has poor information on the incremental benefit of initial technologies

If both the allocator and reallocator have poor information, the last marginal allocation of the initial budget was to expand technology H, resulting in an expected marginal increase in incremental benefit of 1.65 QALYs. Conversely, the first marginal reallocation by the reallocator following adoption of a net investment is to contract technology H, resulting in an expected marginal decrease in incremental benefit of 1.65 QALYs (Table 2.5).

# Net disinvestments

Following a net disinvestment, the reallocator *continues* the allocator's expansion of technologies believed to lie in the NE quadrant, and/or contraction of technologies believed to lie in the SW quadrant, in the *same order* as that used by the allocator.

### Reallocator has good information on the incremental benefit of initial technologies

If both the allocator and reallocator have good information, the *first* marginal reallocation is to expand technology O, resulting in an expected marginal increase in incremental benefit of 1.75 QALYs (Table 2.4). If, hypothetically, the initial budget had been \$50.1m instead of \$50.0m, then the *last* marginal allocation made by the allocator (immediately after expanding technology C) would have been this same marginal expansion of technology O.

#### Reallocator has poor information on the incremental benefit of initial technologies

If both the allocator and reallocator have poor information, the first marginal reallocation is to expand technology R, resulting in an expected marginal increase in incremental benefit of 1.65 QALYs (Table 2.6). If the initial budget had been \$50.1m instead of \$50.0m, then the last marginal allocation would have been this same marginal expansion of technology R.

# Reallocator has different information to the allocator

If the reallocator has different information to the allocator (e.g., the allocator has poor information and the reallocator has good information, or *vice versa*), then reallocation is an opportunity for the reallocator to 'correct' what it *perceives* to be an inefficient initial allocation. This *perception* of inefficiency arises even if the reallocator has poor information and the allocator has good information – provided the allocator has different information to the reallocator, the initial allocation appears inefficient from the perspective of the reallocator.

The specific inefficiencies perceived by the reallocator, and the means by which the reallocator will attempt to address these, depend upon whether the new technology is a net investment or a net disinvestment.

### Net investments

If the allocator and reallocator have different information, then the allocator *may* have adopted one or more initial technologies that the *allocator* believed to lie in the NE quadrant, but which the *reallocator* believes to lie in the NW quadrant. If the allocator has good information and the reallocator has poor information then this includes technologies M, N and Q, of which only M and Q were partially adopted in this analysis; if the allocator has poor information and the reallocator has good information then this includes technology S, which the allocator adopted to exhaustion.

Similarly, the allocator *may not* have exhausted one or more initial technologies that the *allocator* believed to lie in the SW quadrant, but which the *reallocator* believes to lie in the SE quadrant. If the allocator has good information and the reallocator has poor information then this includes technology E, which was only partially adopted by the allocator; if the allocator has poor information and the reallocator has good information then there are no such technologies in this analysis.

Following a net investment, the reallocator will release resources for the new technology by expanding technologies it believes to lie in the SE quadrant until exhaustion, and entirely contracting the technologies it believes to lie in the NW quadrant, *before* considering any expansions or contractions of technologies it believes to lie in the NE or SW quadrants. This is because the reallocator believes that such reallocations result in *positive* marginal incremental

benefit, and so will prioritize these over all other reallocations (which it believes result in *negative* marginal incremental benefit).

If the budget impact of the net investment is small, reallocation consists (where possible) of *only* expansions or contractions of technologies the reallocator believes to lie in the SE or NW quadrants, such that the reallocator's estimate of the *cumulative* change in incremental benefit associated with the reallocation is *positive*. If the budget impact is larger, reallocation will then move on to contractions of technologies believed to lie in the NE quadrant, and/or expansions of technologies believed to lie in the SW quadrant, each of which results in *negative* expected marginal incremental benefit associated with these reallocations in the NE or SW quadrants may be sufficient to outweigh the positive expected incremental benefit associated with the reallocator's estimate of the expected *cumulative* incremental benefit associated with the reallocator's estimate of the set of the total reallocator's estimate of the expected impact increases.

# Reallocator has poor information on the incremental benefit of initial technologies

If the reallocator has poor information, then the first marginal reallocation following a net investment will be to expand technology E, in the belief that this will provide a positive incremental benefit of 10.43 QALYs (Table 2.3 and Appendix 2.2, Table A2.2.1).

Subsequent marginal reallocation will also expand technology E, with positive but diminishing expected marginal incremental benefit, and positive and increasing expected *cumulative* incremental benefit. After exhausting technology E (at a budget impact of \$5.2m), the next marginal reallocation is to fully contract technology M (by reducing its incremental expenditure from \$0.1m to zero), which the reallocator believes is associated with a positive incremental benefit of 0.18 QALYs; following this, the reallocator fully contracts technology Q (by reducing its incremental expenditure from \$0.1m to zero), which has a positive expected incremental benefit of 0.10 QALYs.

At a budget impact of \$5.4m, and an expected cumulative incremental benefit from reallocation of 406.57 QALYs, the reallocator has expended all possible expansions of technologies it believes to lie in the SE quadrant and all possible contractions of technologies it believes to lie in

the NW quadrant. Beyond this point, the reallocator conducts marginal expansions or contractions of technologies it believes to lie in the NE or SW quadrants, each of which is associated with negative expected incremental benefit. This causes the expected cumulative incremental benefit to fall at an increasing rate as the budget impact increases, eventually becoming negative above a budget impact of \$36.4m.

#### Reallocator has good information on the incremental benefit of initial technologies

If the reallocator has good information, then the first marginal reallocation following a net investment will be to contract technology S, in the expectation that this will provide a positive incremental benefit of 9.31 QALYs (Table 2.5 and Appendix 2.2, Table A2.2.3). Subsequent marginal reallocation will continue to contract technology S until it is fully contracted at a budget impact of \$3.9m, at which point the expected *cumulative* incremental benefit from reallocation is 243.66 QALYs.

Reallocation then switches to marginal contractions of technology D, resulting in *negative* expected marginal incremental benefit; at this point the expected cumulative incremental benefit begins to fall, at an increasing rate. Before technology D is fully contracted, reallocation begins to alternate between technologies D and G at a budget impact of \$8.4m. As the budget impact increases further, marginal reallocations begin to alternative between additional technologies, with the first marginal contraction of technology U at a budget impact of \$10.0m, the first marginal contraction of technology W at a budget impact of \$20.0m, and the first marginal contraction of technology W at a budget impact of \$25.3m. The expected cumulative incremental benefit from reallocation becomes *negative* at a budget impact of \$26.0m.

Before the maximum budget impact is reached, marginal contractions are also observed in technologies C (at a budget impact of \$26.3m and above) and H (at a budget impact of \$30.9m and above) (Appendix 2.2, Table A2.2.3).

### Net disinvestments

If the allocator and reallocator have different information, then the allocator will *not* have adopted any initial technologies that the *allocator* believed to lie in the NW quadrant, but which the *reallocator* believes to lie in the NE quadrant (if the allocator has good information and the reallocator has poor information then this includes technology S; if the allocator has poor information and the reallocator has good information then this includes technologies M, N and Q). Similarly, the allocator *will* have exhausted any initial technologies that the *allocator* believed to lie in the SE quadrant, but which the *reallocator* believes to lie in the SW quadrant (if the allocator has good information and the reallocator has good information and the reallocator believes to lie in the SE quadrant, but which the *reallocator* believes to lie in the SW quadrant (if the allocator has good information and the reallocator has poor information then there are no such technologies in this analysis; if the allocator has poor information and the reallocator has good information then this includes technology E).

Following a net disinvestment, the reallocator will use the resources released by the new technology to expand non-exhausted technologies it believes to lie in the NE quadrant, and/or to contract adopted technologies it believes to lie in the SW quadrant. However, the reallocator will not *necessarily* prioritize reallocation opportunities resulting from disagreements between the allocator and reallocator regarding a technology's quadrant. This is because (unlike following a net investment) other reallocation opportunities exist that also have *positive* (and possibly *greater*) expected marginal incremental benefit. One implication of this is that (unlike following a net investment) the reallocator's estimate of the *cumulative* incremental benefit from reallocation is generally positive, regardless of the budget impact, since these other reallocation opportunities increase the estimated cumulative incremental benefit rather than diminishing it.

# Reallocator has poor information on the incremental benefit of initial technologies

If the reallocator has poor information, then the first marginal reallocation following a net disinvestment will be to expand technology S (Table 2.4 and Appendix 2.2, Table A2.2.2). Subsequent marginal reallocation will also expand technology S, with diminishing marginal incremental benefit, until it is exhausted at a budget impact of \$3.9m.

As the budget impact increases beyond \$3.9m, marginal reallocations among other technologies provide positive but diminishing expected marginal incremental benefit, resulting in positive and increasing expected cumulative incremental benefit.

In this instance, the first marginal reallocation opportunity taken by the reallocator (expanding technology S) did indeed result from a disagreement with the allocator regarding the technology's quadrant on the CE plane.

# Reallocator has good information on the incremental benefit of initial technologies

If the reallocator has good information, then the first marginal reallocation following a net disinvestment will be to expand technology O (Table 2.6 and Appendix 2.2, Table A2.2.4). Further marginal reallocations will continue to expand technology O, but before technology O is exhausted reallocation will switch to technology H (at a budget impact of \$8.9m) since the expected marginal incremental benefit is greater.

As the budget impact increases further, marginal reallocations alternate between technologies O and H and then among other initial technologies. This provides positive but diminishing expected marginal incremental benefit, resulting in positive and increasing expected cumulative incremental benefit.

Notably, among the reallocation opportunities resulting from disagreements between the allocator and reallocator regarding a technology's quadrant, the first of these (expanding technology M) is not taken until the budget impact reaches \$10.3m.

### Optimal cost-effectiveness thresholds

The optimal threshold for the agent to adopt depends upon all of the factors that determined reallocation. It also depends upon the following additional factors:

- 7. The agent's information on the incremental benefit of initial technologies;
- Whether the agent has authority, or does not have authority, to mandate reallocation following adoption of a new technology;
- Whether the agent has authority, or does not have authority, to implement an alternative to adopting the new technology;
- 10. Whether the agent has authority, or does not have authority, to mandate reallocation following implementation of an alternative to the new technology (if applicable).

The agent first considers the *budget impact* of the new technology and whether it constitutes a *net investment* or a *net disinvestment*. Given the initial allocation, the agent then considers what reallocation the *reallocator* will prefer if the new technology is adopted; the former depends upon the *allocator's information*, while the latter depends upon the *reallocator's information*. The agent estimates the *cumulative* incremental benefit associated with this reallocation, given the *agent's information*. The cumulative incremental benefit represents the *sum* of the *marginal* incremental benefits associated with all *marginal* reallocations made throughout reallocation.

If the agent has authority to *mandate* reallocation following adoption of a new technology, the agent then estimates the cumulative incremental benefit associated with the *agent's* preferred reallocation. This will generally exceed the *agent's* estimate of the incremental benefit associated with the *reallocator's* preferred reallocation if, and *only* if, the agent and reallocator have *different* information. The agent will mandate reallocation if doing so increases the *agent's* estimate of the cumulative incremental benefit associated with reallocation.

If the agent has authority to implement an *alternative* to adopting the new technology, the agent then estimates the cumulative incremental benefit associated with *either* the *agent*'s preferred net investment of resources among initial technologies (if the new technology is a net investment) or the *agent*'s preferred net disinvestment of resources among initial technologies (if the new technology is a net disinvestment). This alternative net investment or net disinvestment of resources in initial technologies has the same budget impact as the new technology, such that reallocation is required following its implementation. If the agent has authority to mandate this

109

reallocation then it will do so if this increases the *agent's* estimate of the cumulative incremental benefit associated with reallocation. The agent will implement an alternative to the new technology *only* if the agent's estimate of the *net* incremental benefit associated with implementing this alternative (given the subsequent reallocation) *exceeds* the *net* incremental benefit of adopting the new technology (given the subsequent reallocation). The reallocation following adoption of the new technology may differ from that following implementation of the alternative, depending upon the agent's *authority* to mandate reallocation in each instance.

The optimal threshold is that which ensures that a new technology is adopted *only* if its incremental benefit exceeds the *agent's* estimate of the cumulative incremental benefit forgone through reallocation following its adoption, *and* if the *net* incremental benefit associated with adopting the new technology (given the subsequent reallocation) *exceeds* the *net* incremental benefit associated with implementing this alternative (given the subsequent reallocation).

# Unique thresholds sets

There are eight unique sets of optimal cost-effectiveness thresholds among the 24 sets of thresholds considered in this analysis. These are labeled ' $\lambda$ 1' to ' $\lambda$ 8' and are summarized in Figures 2.3 – 2.10, Tables 2.8 – 2.15 and Appendix 2.3, Tables A2.3.1 – A2.3.4.

The flow diagram in Figure 2.2 provides a logical pathway for determining which of the eight unique threshold sets is applicable under each combination of assumptions. The assumptions corresponding to each threshold set are also summarized in Table 2.7. The reasoning behind the duplication of some threshold sets is as follows.

If all three decision makers hold the *same* information (six of the 24 threshold sets considered), then the optimal set of thresholds does *not* depend upon the agent's authority to implement an alternative to the new technology *or* to mandate reallocation. This is because the agent regards the current allocation of resources as efficient, so has no incentive to implement a net investment or net disinvestment of resources among initial technologies as an alternative to adopting the new technology, and also because the agent regards the reallocator's behaviour as efficient, so the authority to overrule the reallocator would make no difference to the resulting reallocation. All six of these threshold sets are therefore identical, and so are reported together as threshold set  $\lambda 1$ .



Figure 2.2: Flow diagram to determine the set of optimal cost-effectiveness thresholds

Table 2.7: Optimal threshold set corresponding to each combination of assumptions

| Does the agent have<br>the same information<br>as the allocator? | Does the agent have<br>the same information<br>as the reallocator? | Can the agent mandate<br>reallocation following<br>adoption of the<br>new technology? | Can the agent<br>implement an<br>alternative to adopting<br>the new technology? | Can the agent mandate<br>reallocation following<br>implementation of<br>an alternative? | Optimal<br>threshold<br>set |  |
|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------|--|
|                                                                  |                                                                    | Yes                                                                                   | Yes                                                                             | Yes<br>No                                                                               |                             |  |
|                                                                  | Var                                                                |                                                                                       | No                                                                              | N/A                                                                                     |                             |  |
| Yes                                                              | 105                                                                | No                                                                                    | Yes                                                                             | Yes<br>No                                                                               | λ1                          |  |
|                                                                  |                                                                    |                                                                                       | No                                                                              | N/A                                                                                     |                             |  |
|                                                                  | No                                                                 | Yes                                                                                   | Yes                                                                             | Yes                                                                                     |                             |  |
|                                                                  | 110                                                                | 100                                                                                   | No                                                                              | N/A                                                                                     |                             |  |
|                                                                  |                                                                    |                                                                                       |                                                                                 |                                                                                         |                             |  |
| Yes                                                              | No                                                                 | No                                                                                    | Yes                                                                             | Yes                                                                                     | λ2                          |  |
|                                                                  |                                                                    |                                                                                       | No                                                                              | N/A                                                                                     |                             |  |
| -                                                                |                                                                    |                                                                                       |                                                                                 |                                                                                         |                             |  |
|                                                                  |                                                                    | Yes                                                                                   | Yes                                                                             | Yes                                                                                     | λ3                          |  |
| No                                                               | Yes                                                                | No                                                                                    | Yes                                                                             | Yes<br>No                                                                               |                             |  |
|                                                                  | No                                                                 | Yes                                                                                   | Yes                                                                             | Yes                                                                                     |                             |  |
|                                                                  |                                                                    |                                                                                       |                                                                                 |                                                                                         |                             |  |
|                                                                  | Vec                                                                | Yes                                                                                   | No                                                                              | N/A                                                                                     |                             |  |
| No                                                               | 103                                                                | No                                                                                    | No                                                                              | N/A                                                                                     | λ4                          |  |
|                                                                  | No                                                                 | Yes                                                                                   | No                                                                              | N/A                                                                                     |                             |  |
| -                                                                |                                                                    | 1                                                                                     | r                                                                               |                                                                                         | -                           |  |
| No                                                               | No                                                                 | Yes                                                                                   | Yes                                                                             | No                                                                                      | λ5                          |  |
|                                                                  |                                                                    | 1                                                                                     |                                                                                 |                                                                                         |                             |  |
| No                                                               | No                                                                 | No                                                                                    | Yes                                                                             | Yes                                                                                     | λ6                          |  |
| NY.                                                              | N                                                                  | N.                                                                                    | NY.                                                                             |                                                                                         |                             |  |
| No                                                               | No                                                                 | No                                                                                    | Yes                                                                             | No                                                                                      | ۸7                          |  |
| No                                                               | No                                                                 | No                                                                                    | No                                                                              | N/A                                                                                     | λ8                          |  |

If the agent and allocator hold the same information, but the reallocator holds different information (six of the 24 threshold sets considered), then the optimal set of thresholds depends upon the authority of the agent to mandate reallocation. This is because the agent generally regards the reallocator's preferred reallocation as inefficient, so will favour a different reallocation. In this case, if the agent has the authority to mandate reallocation (three of the 24 threshold sets considered), then the subsequent reallocation will be informed by the agent's information rather than the reallocator's information; since the initial allocation and reallocation will then be informed by the same information as that held by the agent, all three of these threshold sets are identical to threshold set  $\lambda 1$ . Alternatively, if the agent does *not* have the authority to mandate reallocation (three of the 24 threshold sets considered), then the optimal threshold set will differ from threshold set  $\lambda 1$ ; these three identical threshold sets are reported as threshold set  $\lambda 2$ .

If the agent and reallocator hold the same information, but the allocator holds different information (six of the 24 threshold sets considered), then the optimal threshold depends upon whether the agent can implement a net investment or net disinvestment of resources in initial technologies as an *alternative* to adopting the new technology. This is because the agent holds different information to the allocator, so will generally regard the current allocation of resources among initial technologies as inefficient. It follows that the agent may estimate that greater expected incremental benefit will arise by expanding and/or contracting initial technologies than through adoption of the new technology (where both constitute a net investment or disinvestment with the same budget impact). If the agent has the authority to implement such an alternative to adopting the new technology (four of the 24 threshold sets considered), then the optimal threshold set will generally differ from threshold sets  $\lambda 1$  and  $\lambda 2$ ; these four identical threshold sets are reported as threshold set  $\lambda 3$ . If the agent does *not* have this authority (two of the 24 threshold sets considered), then the optimal threshold set will generally differ from threshold set  $\lambda 1$  to  $\lambda 3$ ; these two identical threshold sets are reported as threshold sets  $\lambda 1$  to  $\lambda 3$ ; these two identical threshold sets are reported as threshold sets  $\lambda 4$ 

If the agent has different information to both the allocator and reallocator (six of the 24 threshold sets considered), then the optimal set of thresholds depends upon: (a) the agent's authority to mandate reallocation following adoption of the new technology; (b) the agent's authority to implement an alternative to the new technology; and (c) the agent's authority to mandate

112

reallocation following implementation of an alternative (if applicable). This is because the agent will generally regard the current allocation of resources as inefficient, so may estimate that an expansion and/or contraction of one or more initial technologies will provide greater expected incremental benefit than adopting the new technology, and also because the agent will generally regard the reallocation favoured by the reallocator as inefficient, so will mandate reallocation if authorized to do so.

Since the agent's authority to mandate reallocation following implementation of an alternative to the new technology is only relevant if the agent also has authority to implement this alternative, there are six possible scenarios resulting from different combinations of (a), (b) and (c), each of which generally results in a different set of optimal thresholds:

- 1. If the agent has authority to mandate reallocation following adoption of the new technology, authority to implement an alternative to the new technology, and authority to mandate reallocation following implementation of this alternative, then the set of optimal set of thresholds is identical to threshold set  $\lambda 3$ . This is because reallocation is always informed by the agent's information (regardless of whether this follows adoption of the new technology or implementation of an alternative), so the set of optimal thresholds is equivalent to that which arises when the agent and reallocator have the *same* information and the agent has authority to implement an alternative to adopting the new technology.
- 2. If the agent has authority to mandate reallocation following adoption of the new technology and authority to implement an alternative to the new technology, but does *not* have authority to mandate reallocation following implementation of this alternative, then the set of optimal thresholds differs from those considered so far and is reported as set  $\lambda 5$ .
- 3. If the agent has authority to mandate reallocation following adoption of the new technology, but does *not* have authority to implement an alternative to the new technology, then the set of optimal thresholds is identical to threshold set  $\lambda 4$ . This is because reallocation is always informed by the agent's information, so the set of optimal thresholds is equivalent to that which arises when the agent and reallocator have the *same* information and the agent does *not* have authority to implement an alternative to adopting the new technology.

- 4. If the agent does *not* have authority to mandate reallocation following adoption of the new technology, but has authority to implement an alternative to the new technology and to mandate reallocation following implementation of this alternative, then the set of optimal thresholds differs from those considered so far and is reported as set  $\lambda 6$ .
- 5. If the agent does *not* have authority to mandate reallocation following adoption of the new technology, *has* authority to implement an alternative to the new technology, but does *not* have authority to mandate reallocation following implementation of this alternative, then the set of optimal thresholds generally differs from those considered so far; this is reported as threshold set  $\lambda$ 7.
- 6. If the agent does *not* have authority to mandate reallocation following adoption of the new technology, *nor* to implement an alternative to the new technology, then the set of optimal thresholds differs from those considered so far and is reported as set  $\lambda 8$ .

# *Threshold set* $\lambda 1$

Threshold set  $\lambda 1$  is summarized in Figure 2.3, Table 2.8 and Appendix 2.3, Table A2.3.1.

It is applicable under the following assumptions (nine of the 24 threshold sets considered):

- 1) All decision makers have the same information; or
- 2) a) The agent has the same information as the allocator only; and
  - b) The agent *can* mandate reallocation following adoption of the new technology.



Figure 2.3: Optimal threshold curves (threshold set  $\lambda 1$ )

|         |                   |                               |                   | Thresho                       | old set λ1        |                               |                   |                               |  |  |  |
|---------|-------------------|-------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|--|--|--|
|         | Age               | ent has goo                   | d informa         | tion                          | Age               | ent has poo                   | or informat       | tion                          |  |  |  |
| Budget  | Net Inv           | estment                       | Net Disin         | ivestment                     | Net Inv           | estment                       | Net Disinvestment |                               |  |  |  |
| impact  | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^{\mathrm{d}}$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |  |
| \$0.1m  | 1.75              | \$57,122                      | -1.75             | \$57,129                      | 1.65              | \$60,698                      | -1.65             | \$60,710                      |  |  |  |
| \$0.2m  | 3.50              | \$57,114                      | -3.50             | \$57,149                      | 3.30              | \$60,694                      | -3.29             | \$60,739                      |  |  |  |
| \$0.3m  | 5.25              | \$57,095                      | -5.25             | \$57,180                      | 4.94              | \$60,678                      | -4.94             | \$60,768                      |  |  |  |
|         |                   |                               |                   |                               |                   |                               |                   |                               |  |  |  |
| \$25.0m | 475.15            | \$52,615                      | -403.11           | \$62,017                      | 450.93            | \$55,441                      | -384.70           | \$64,985                      |  |  |  |
| \$25.1m | 477.24            | \$52,594                      | -404.60           | \$62,037                      | 452.93            | \$55,417                      | -386.15           | \$65,001                      |  |  |  |
| \$25.2m | 479.32            | \$52,574                      | -406.08           | \$62,057                      | 454.93            | \$55,393                      | -387.59           | \$65,017                      |  |  |  |
|         |                   |                               |                   |                               |                   |                               |                   |                               |  |  |  |
| \$49.8m | 1072.66           | \$46,427                      | -735.27           | \$67,731                      | 1018.65           | \$48,888                      | -719.00           | \$69,263                      |  |  |  |
| \$49.9m | 1075.53           | \$46,396                      | -736.46           | \$67,757                      | 1021.22           | \$48,863                      | -720.25           | \$69,281                      |  |  |  |
| \$50.0m | 1078.39           | \$46,365                      | -737.65           | \$67,783                      | 1023.78           | \$48,839                      | -721.51           | \$69,299                      |  |  |  |

Table 2.8: Optimal numerical thresholds (threshold set  $\lambda$ 1) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.1

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

# General characteristics of threshold set $\lambda 1$

- 1) The numerical threshold falls with the budget impact for net investments, but increases with the budget impact for net disinvestments.
- 2) The threshold curves for net investments and net disinvestments are concave.
- 3) There is no 'kink' between the threshold curves at the origin of the CE plane.
- Threshold curves pass through only the NE and SW quadrants. New technologies in the SE quadrant are always cost-effective; those in the NW quadrant are never cost-effective.
- 5) For new technologies with marginal budget impact, the numerical threshold is similar for net investments and net disinvestments.

#### Net investments

The reallocator will respond to a net investment by *partially reversing* the initial allocation. Each marginal reallocation will result in a marginal fall in the agent's estimate of the incremental benefit, with the magnitude of this marginal reduction increasing with the budget impact, such the agent's estimate of the *cumulative* incremental benefit falls at an increasing rate with the budget impact. For the new technology to be considered cost-effective by the agent, its incremental benefit must exceed the agent's estimate of the cumulative incremental benefit forgone through reallocation. The minimum incremental benefit that a net investment must provide therefore increases at an increasing rate with the budget impact.

This is reflected by the portion of the threshold curves in the northern half of Figure 2.3, which pass through the NE quadrant, with a shallower slope as the budget impact increases. This corresponds to a *fall* in the numerical threshold for net investments as the budget impact increases.

### Agent has good information on the incremental benefit of initial technologies

If the agent has good information, the numerical threshold falls as the budget impact increases, from \$57,122 per QALY at a budget impact of \$0.1m to \$46,365 per QALY at a budget impact of \$50.0m (Table 2.8).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, the numerical threshold falls as the budget impact increases, from \$60,698 per QALY at a budget impact of \$0.1m to \$48,839 per QALY at a budget impact of \$50.0m (Table 2.8).

# Net disinvestments

The reallocator will respond to a net disinvestment by *continuing* the initial allocation, with the agent's estimate of the cumulative incremental benefit gained through reallocation increasing but at a diminishing rate with the budget impact. For the new technology to be considered cost-effective by the agent, it must *displace less* incremental benefit than the agent's estimate of the cumulative incremental benefit *gained* through reallocation. The minimum incremental benefit that a net disinvestment must provide is therefore *negative*, decreasing at a diminishing rate with the budget impact.

This is reflected by the portion of the threshold curves in the southern half of Figure 2.3, which pass through the SW quadrant, with a steeper slope as the budget impact increases. This corresponds to an *increase* in the numerical threshold for net disinvestments as the budget impact increases.

# Agent has good information on the incremental benefit of initial technologies

If the agent has good information, the numerical threshold increases with the budget impact, from \$57,129 per QALY at a budget impact of \$0.1m to \$67,783 per QALY at a budget impact of \$50.0m (Table 2.8).

Agent has poor information on the incremental benefit of initial technologies If the agent has poor information, the numerical threshold increases with the budget impact, from

\$60,710 per QALY at a budget impact of \$0.1m to \$69,299 per QALY at a budget impact of \$50.0m (Table 2.8).

# *Threshold set* $\lambda 2$

Threshold set  $\lambda 2$  is summarized in Figure 2.4, Table 2.9, and Appendix 2.3, Table A2.3.1.

It is applicable under the following assumptions (three of the 24 threshold sets considered):

- 1) a) The agent has the same information as the allocator only; and
  - b) The agent *cannot* mandate reallocation following adoption of the new technology.



Figure 2.4: Optimal threshold curves (threshold set  $\lambda 2$ )

|         |                                                          |            |                   | Thresho                       | ld set λ2                  |                               |                   |                               |  |
|---------|----------------------------------------------------------|------------|-------------------|-------------------------------|----------------------------|-------------------------------|-------------------|-------------------------------|--|
|         | Ag                                                       | ent has go | od inform         | ation                         | Ag                         | ent has po                    | or informa        | ition                         |  |
| Budget  | Net Inv                                                  | estment    | Net Dist          | investment                    | Net Inv                    | estment                       | Net Disinvestment |                               |  |
| impact  | $E(\Delta E)^{\mathbf{a}} = E(\lambda_G^+)^{\mathbf{b}}$ |            | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^{\mathrm{d}}$ | $E(\Delta E)^{\mathrm{a}}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |
| \$0.1m  | 1.76                                                     | \$56,770   | 1.00              | -\$99,957                     | 6.69                       | \$14,945                      | -1.54             | \$64,860                      |  |
| \$0.2m  | 3.58                                                     | \$55,883   | 2.83              | -\$70,680                     | 13.44                      | \$14,880                      | -3.00             | \$66,671                      |  |
| \$0.3m  | 5.45                                                     | \$55,040   | 5.20              | -\$57,710                     | 20.25                      | \$14,813                      | -4.39             | \$68,341                      |  |
|         |                                                          |            |                   |                               |                            |                               |                   |                               |  |
| \$3.8m  | 97.77                                                    | \$38,869   | 234.35            | -\$16,215                     | 355.85                     | \$10,679                      | -38.14            | \$99,620                      |  |
| \$3.9m  | 101.04                                                   | \$38,599   | 243.66            | -\$16,006                     | 389.74                     | \$10,007                      | -38.92            | \$100,210                     |  |
| \$4.0m  | 104.34                                                   | \$38,336   | 242.01            | -\$16,528                     | 391.40                     | \$10,220                      | -39.69            | \$100,792                     |  |
|         |                                                          |            |                   |                               |                            |                               |                   |                               |  |
| \$25.0m | 581.97                                                   | \$42,957   | 18.91             | -\$1.32m                      | 865.62                     | \$28,881                      | -268.87           | \$92,983                      |  |
| \$25.1m | 587.34                                                   | \$42,735   | 18.06             | -\$1.39m                      | 871.12                     | \$28,814                      | -269.38           | \$93,175                      |  |
| \$25.2m | 589.14                                                   | \$42,775   | 17.14             | -\$1.47m                      | 874.32                     | \$28,823                      | -270.93           | \$93,012                      |  |
|         |                                                          |            |                   |                               |                            |                               |                   |                               |  |
| \$26.8m | 619.26                                                   | \$43,278   | 2.40              | -\$11.17m                     | 904.38                     | \$29,633                      | -289.25           | \$92,654                      |  |
| \$26.9m | 621.25                                                   | \$43,300   | 0.66              | -\$40.73m                     | 906.08                     | \$29,688                      | -290.74           | \$92,522                      |  |
| \$27.0m | 623.08                                                   | \$43,333   | -0.17             | \$157.74m                     | 907.79                     | \$29,743                      | -291.25           | \$92,704                      |  |
|         |                                                          |            |                   |                               |                            |                               |                   |                               |  |
| \$49.8m | 1142.92                                                  | \$43,573   | -278.00           | \$179,136                     | 1397.37                    | \$35,638                      | -519.83           | \$95,801                      |  |
| \$49.9m | 1146.34                                                  | \$43,530   | -279.54           | \$178,505                     | 1399.72                    | \$35,650                      | -521.10           | \$95,758                      |  |
| \$50.0m | 1148.90                                                  | \$43,520   | -281.05           | \$177,903                     | 1401.87                    | \$35,667                      | -522.37           | \$95,717                      |  |

Table 2.9: Optimal numerical thresholds (threshold set  $\lambda$ 2) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.1

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

# General characteristics of threshold set $\lambda 2$

- Since the agent regards the reallocation as inefficient, the numerical threshold varies over the budget impact, such that the threshold curves are not smooth.
- 2) For new technologies with marginal budget impact, different numerical thresholds apply for net investments and net disinvestments.
- 3) It follows that there is a 'kink' between the threshold curves for net investments and net disinvestments at the origin of the CE plane.
- The threshold curve for net investments passes through the NE quadrant only. New technologies in the NW quadrant are therefore never cost-effective.

- 5) The threshold curve for net disinvestments may pass through the SE quadrant, before entering the SW quadrant. This occurs if the reallocator makes marginal reallocations that the agent regards as having *negative* incremental net benefit, such that the agent's estimate of the *cumulative* incremental net benefit associated with reallocation, at any given budget impact, is *negative*. Where this occurs, new technologies in the SW quadrant are not cost-effective, while those in the SE quadrant are cost-effective only if they lie to the right of the threshold curve (which requires that their ICERs are *less negative* than the numerical threshold).
- 6) If the threshold curve for net disinvestments passes through the SE quadrant before entering the SW quadrant, then the numerical threshold will tend towards negative infinity before discontinuing and then decreasing from positive infinity.

### Net investments

#### Agent has good information on the incremental benefit of initial technologies

If the allocator and agent have good information and the reallocator has poor information, then the first marginal reallocation following a net investment is to expand technology E (Table 2.3). While the reallocator estimates the marginal incremental benefit of this to be 10.43 QALYs, the agent estimates the marginal incremental benefit to be -1.76 QALYs. The minimum incremental benefit that a net investment with a budget impact of \$0.1m must provide to be considered cost-effective by the agent is therefore 1.76 QALYs, in order that the *net* incremental benefit of adopting the new technology and the subsequent reallocation is positive (Table 2.9).

In contrast to threshold set λ1, the numerical threshold does not consistently increase or decrease with changes in the budget impact. This is because the agent's estimate of the marginal incremental benefit associated with each marginal reallocation may be less than or greater than the reallocator's estimate, such that the estimated *cumulative* incremental benefit fluctuates with changes in the budget impact. For example, a marginal increase in the budget impact from \$25.0m to \$25.1m causes the numerical threshold to fall from \$42,957 per QALY to \$42,735 per QALY, while a subsequent marginal increase in the budget impact to \$25.2m causes the numerical threshold to increase to \$42,775 per QALY (Table 2.9). The threshold curves in Figure 2.4 are therefore not 'smooth'. Since the agent regards the initial allocation as efficient,

the minimum incremental benefit that a net investment must provide is unambiguously positive, such that the threshold curves for net investments lie entirely within the NE quadrant.

### Agent has poor information on the incremental benefit of initial technologies

If the allocator and agent have poor information and the reallocator has good information, the first marginal reallocation following a net investment is to contract technology S (Table 2.5). While the reallocator estimates the marginal incremental benefit of this to be 9.31 QALYs, the agent estimates the marginal incremental benefit to be -6.69 QALYs. The minimum incremental benefit that a net investment of \$0.1m must provide to be considered cost-effective by the agent is therefore 6.69 QALYs. This compares to 1.76 QALYs if the agent and allocator have good information and the reallocator has poor information – this greater minimum required incremental benefit causes the threshold curve if the agent has poor information to lie to the right of the threshold curve where the agent has good information in the northern half of Figure 2.4.

As when the agent has good information, the numerical threshold does not consistently increase or decrease with changes in the budget impact, such that the threshold curves reported in Figure 2.4 are not smooth. Again, these threshold curves lie entirely within the NE quadrant.

### Net disinvestments

#### Agent has good information on the incremental benefit of initial technologies

If the allocator and agent have good information and the reallocator has poor information, then the first marginal reallocation following a net disinvestment is to expand technology S (Table 2.4). Although the reallocator estimates the marginal incremental benefit of this to be 33.89 QALYs, the agent estimates the marginal incremental benefit to be -1.00 QALYs. It follows that the minimum incremental benefit that a net disinvestment with a budget impact of \$0.1m must provide to be considered cost-effective by the agent is 1.00 QALYs.

This has important implications for the cost-effectiveness threshold. Conventionally, all new technologies in the SE quadrant are considered cost-effective. However, as observed here, if the reallocator and agent have different information, then a reallocation that the reallocator considers an efficient means of improving incremental benefit might be considered *harmful* by the agent.

In this example, a net disinvestment that releases \$0.1m in resources will result in the reallocator expanding a technology (S) that it believes to lie in the NE quadrant (with positive incremental benefit), but which the agent believes to lie in the NW quadrant (with negative incremental benefit). The agent will therefore consider a net disinvestment of \$0.1m to be cost-effective *only* if its incremental benefit is *sufficiently positive* to compensate for the agent's estimate of the reduction in incremental benefit resulting from reallocation (in this case 1.00 QALYs) – it is not sufficient for the new technology to merely lie in the SE quadrant.

At a budget impact of \$3.9m, the reallocator exhausts technology S (Table 2.4). At this point, the agent estimates the cumulative incremental benefit from reallocation to be -243.66 QALYs, such that a net disinvestment with a budget impact of \$3.9m will only be considered cost-effective if it has an incremental benefit *greater* than 243.66 QALYs (Table 2.9). However, as the budget impact increases further, the reallocator makes marginal expansions or contractions that the agent estimates to have *positive* incremental benefit. This causes the *cumulative* incremental benefit from reallocation to *increase* towards zero, eventually becoming positive above a budget impact of \$26.9m (Table 2.4).

Given the above results, the threshold curve for net disinvestments starts at the origin and immediately cuts down and right into the SE quadrant (Figure 2.4). New technologies in the SE quadrant that lie to the *left* of the threshold curve are not considered cost-effective by the agent: although their adoption would release resources and *directly* provide positive incremental benefit, the agent estimates that the use of those released resources by the reallocator (expanding technology S) will *displace* a *greater* amount of incremental benefit, such that the estimated *net* incremental benefit is negative. At a budget impact of \$3.9m (the point where technology S is exhausted), the threshold curve 'kinks' sharply, since further marginal reallocations have *positive* expected incremental benefit to the agent. The threshold curve then crosses into the SW quadrant at a budget impact of \$26.9m (the point where the cumulative incremental benefit from reallocation becomes positive) and continues to cut in to the SW quadrant until the maximum budget impact is reached.

The numerical threshold also follows an unconventional pattern. At a budget impact of \$0.1m, the threshold for disinvestments is -\$99,957 per QALY (Table 2.9). A net investment in the SE quadrant with this budget impact is cost-effective only if its ICER is *less negative* than this

123
threshold. The threshold then becomes less negative with increases in the budget impact, until technology S is exhausted (at a budget impact of \$3.9m), at which point the threshold is -\$16,006 per QALY. As the budget impact continues to increase, the threshold becomes *more negative* as marginal reallocations are made with positive expected marginal incremental benefit.

Logically, the numerical threshold would be expected to increase towards negative infinity as the threshold curve approaches the vertical axis from inside the SE quadrant, discontinue at the vertical axis, and then decrease from positive infinity as it cuts into the SW quadrant. Since the model evaluates incremental expenditure in discrete \$0.1m increments, infinite or negative infinite numerical thresholds are not observed. Rather, the most negative numerical threshold observed prior to the threshold curve crossing the vertical axis is -\$40.73m per QALY (at a budget impact of \$26.9m), while the most positive numerical threshold observed after crossing the axis is \$157.74m per QALY (at a budget impact of \$27.0m). The numerical threshold then continues to fall with increases in the budget impact, reaching \$177,903 per QALY at a budget impact of \$50.0m.

# Agent has poor information on the incremental benefit of initial technologies

If the allocator and agent have poor information and the reallocator has good information, then the threshold curve for disinvestments does not enter the SE quadrant. This is because the first marginal reallocation is to expand technology O, which both the agent and reallocator estimate has *positive* marginal incremental benefit (Table 2.6).

Subsequent marginal reallocations also have positive expected marginal incremental benefit to the agent, such that the agent's estimate of the cumulative incremental benefit from reallocation is positive across all possible budget impacts. It follows that the threshold curve for net disinvestments remains in the SW quadrant, while the numerical threshold fluctuates over the budget impact, trending upwards from \$64,860 per QALY at a budget impact of \$0.1m to \$95,717 per QALY at a budget impact of \$50.0m.

# *Threshold set* $\lambda 3$

Threshold set  $\lambda 3$  is summarized in Figure 2.5, Table 2.10 and Appendix 2.3, Table A2.3.2.

It is applicable under the following assumptions (five of the 24 threshold sets considered):

- 1) a) The agent has the same information as the reallocator only; and
  - b) The agent *can* implement an alternative to adopting the new technology; *or*
- 2) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent can mandate reallocation following adoption of the new technology; and
  - c) The agent *can* implement an alternative to adopting the new technology; *and*
  - d) The agent *can* mandate reallocation following implementation of the alternative.



Figure 2.5: Optimal threshold curves (threshold set  $\lambda$ 3)

Incremental benefit of new technology (QALYs)

|         | Threshold set λ3  |                               |                   |                               |                            |                               |                   |                               |  |  |  |
|---------|-------------------|-------------------------------|-------------------|-------------------------------|----------------------------|-------------------------------|-------------------|-------------------------------|--|--|--|
|         | Ag                | ent has go                    | od inform         | ation                         | Agent has poor information |                               |                   |                               |  |  |  |
| Budget  | Net Investment    |                               | Net Disinvestment |                               | Net Investment             |                               | Net Disinvestment |                               |  |  |  |
| impact  | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^{\mathrm{d}}$ | $E(\Delta E)^{\mathrm{a}}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |  |
| \$0.1m  | 5.02              | \$19,920                      | 9.31              | -\$10,740                     | 33.89                      | \$2,951                       | 10.43             | -\$9,586                      |  |  |  |
| \$0.2m  | 9.77              | \$20,476                      | 18.50             | -\$10,810                     | 53.80                      | \$3,718                       | 20.65             | -\$9,686                      |  |  |  |
| \$0.3m  | 14.29             | \$20,989                      | 27.57             | -\$10,883                     | 70.49                      | \$4,256                       | 30.67             | -\$9,782                      |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$3.8m  | 124.20            | \$30,595                      | 242.66            | -\$15,660                     | 383.05                     | \$9,920                       | 313.18            | -\$12,134                     |  |  |  |
| \$3.9m  | 126.72            | \$30,777                      | 243.66            | -\$16,006                     | 389.74                     | \$10,007                      | 320.08            | -\$12,184                     |  |  |  |
| \$4.0m  | 129.22            | \$30,955                      | 243.13            | -\$16,452                     | 394.86                     | \$10,130                      | 326.94            | -\$12,235                     |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$25.9m | 539.87            | \$47,974                      | 0.65              | -\$40.03m                     | 878.18                     | \$29,493                      | 186.08            | -\$139,186                    |  |  |  |
| \$26.0m | 541.54            | \$48,011                      | -1.17             | \$22.13m                      | 879.80                     | \$29,552                      | 184.42            | -\$140,984                    |  |  |  |
| \$26.1m | 543.21            | \$48,048                      | -3.00             | \$8.71m                       | 881.41                     | \$29,612                      | 182.75            | -\$142,816                    |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$36.4m | 708.49            | \$51,377                      | -204.74           | \$177,787                     | 1040.84                    | \$34,972                      | 0.83              | -\$43.90m                     |  |  |  |
| \$36.5m | 710.03            | \$51,406                      | -206.82           | \$176,478                     | 1042.33                    | \$35,018                      | -1.05             | \$34.70m                      |  |  |  |
| \$36.6m | 711.58            | \$51,435                      | -208.91           | \$175,196                     | 1043.82                    | \$35,063                      | -2.94             | \$12.46m                      |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$49.8m | 905.40            | \$55,004                      | -511.16           | \$97,426                      | 1233.89                    | \$40,360                      | -281.17           | \$177,117                     |  |  |  |
| \$49.9m | 906.78            | \$55,030                      | -513.71           | \$97,137                      | 1235.28                    | \$40,396                      | -283.52           | \$176,000                     |  |  |  |
| \$50.0m | 908.16            | \$55,056                      | -516.26           | \$96,850                      | 1236.67                    | \$40,431                      | -285.88           | \$174,899                     |  |  |  |

Table 2.10: Optimal numerical thresholds (threshold set  $\lambda$ 3) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.2

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;
<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

## General characteristics of threshold set $\lambda 3$

- 1) This threshold set is a special case, where the threshold may be determined *solely* by the expected cumulative incremental benefit of the alternative to the new technology. In this special case, the characteristics of displacement do not determine the threshold.
- 2) The threshold curves 'kink' at the origin of the CE plane.
- 3) The threshold curves for net disinvestments begin in the SE quadrant, before entering the SW quadrant, such that some new technologies in the SE quadrant are not cost-effective.
- Since the agent determines how incremental expenditure is allocated on the alternative, the threshold curves are 'smooth'.

#### Special note

Under the assumptions applicable *only* to this threshold set and threshold set  $\lambda$ 7, the optimal threshold may be determined *solely* by the agent's preferred alternative to adopting the new technology, rather than by the reallocation that follows adoption of the new technology or implementation the alternative. This special case may arise because an alternative to the new technology can be implemented and the reallocation that follows adoption of the new technology is *identical* to that which follows implementation of this alternative.

In order for this special case to arise, the expected cumulative incremental benefit of the alternative to the new technology must *exceed* the expected cumulative incremental benefit *forgone* through reallocation. Under the assumptions corresponding to this threshold set, the agent regards the change in incremental expenditure on initial technologies through implementation of the alternative to the new technology as efficient, and *also* regards the subsequent change in incremental expenditure on initial technologies through reallocation as efficient, such that this special case holds in all circumstances (i.e., regardless of the agent's information, the budget impact of the new technology, and whether the new technology is a net investment or net disinvestment).

Under this special case, the expected change in incremental benefit associated with reallocation is irrelevant for determining the threshold. This is because, under the assumptions adopted here, an *identical* reallocation occurs following adoption of the new technology as following implementation of an alternative to the new technology. This can occur for different reasons:

- If the agent has the *same* information as the reallocator, the agent has no incentive to mandate reallocation. The reallocator will make an identical reallocation following adoption of the new technology as following implementation of the alternative.
- 2. If the agent has *different* information to the reallocator, then the authority to mandate reallocation is relevant. However, under the assumptions adopted here, this authority is *consistent* across both the new technology and the alternative. That is, the agent either has the authority to mandate reallocation in *both* cases, or does *not* have the authority to mandate reallocation in *either* case. An identical reallocation will therefore be made following adoption of the new technology as following implementation of the alternative.

Since reallocation is *identical* for the new technology and the alternative, it follows that the expected cumulative incremental benefit associated with reallocation 'nets out' of the calculation of the optimal threshold. The minimum incremental benefit that the new technology must provide to be cost-effective, and hence the optimal threshold, is therefore determined *solely* by the expected cumulative incremental benefit of the alternative to the new technology.

#### Net investments

#### Agent has good information on the incremental benefit of initial technologies

If the agent has good information, then its preferred alternative to adopting a net investment is to *increase* incremental expenditure on initial technologies in the same order as its preferred reallocation following adoption of a *net disinvestment*. The first marginal increase in incremental expenditure is expansion of technology O, with an expected gain in marginal incremental benefit of 5.02 QALYs (Table 2.6). As the budget impact increases, the expected marginal incremental benefit associated with further increases in incremental expenditure falls but remains positive. The expected *cumulative* incremental benefit – equivalent to the minimum incremental benefit at which a net investment is considered cost-effective – therefore increases, at a diminishing rate, with the budget impact. This causes the numerical threshold to increase, at a diminishing rate, from \$19,920 per QALY to \$55,056 per QALY (Table 2.10). The threshold curve lies entirely within the NE quadrant, with its slope increasing with the budget impact.

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, then the first marginal increase in incremental expenditure is expansion of technology S, with an expected gain in marginal incremental benefit of 33.89 QALYs (Table 2.4). The expected cumulative incremental benefit increases, at a diminishing rate, with the budget impact, such that the numerical threshold increases, at a diminishing rate, from \$2,951 per QALY to \$40,431 per QALY. The threshold curve lies entirely within the NE quadrant, with its slope increasing with the budget impact (Figure 2.5).

Since the expected cumulative incremental benefit associated with the alternative to the new technology is greater when the agent has poor information, the threshold curve for poor information lies to the right of that for good information on the CE plane in Figure 2.5.

#### Net disinvestments

#### Agent has good information on the incremental benefit of initial technologies

If the agent has good information, its preferred alternative to a net disinvestment is to *decrease* incremental expenditure on initial technologies in the same order as its preferred reallocation following adoption of a *net investment*. The first marginal decrease in incremental expenditure is contraction of technology S, with an expected marginal incremental benefit of 9.31 QALYs (Table 2.5). A net disinvestment with a budget impact of \$0.1m is therefore considered cost-effective only if its incremental benefit is greater than 9.31 QALYs (Table 2.10). It follows that the threshold curve for net disinvestments cuts down and right into the SE quadrant, while the corresponding numerical threshold at a budget impact of \$0.1m is -\$10,740 per QALY (Figure 2.5). New technologies in the SE quadrant are cost-effective only if their ICERs are *less negative* than this numerical threshold.

As the budget impact increases, the expected marginal incremental benefit associated with further decreases in incremental expenditure falls, becoming negative after technology S is fully contracted at a budget impact of \$3.9m (Table 2.5). The expected *cumulative* incremental benefit then begins to fall, becoming negative at a budget impact of \$26.0m. At this point the threshold curve crosses the vertical axis into the SW quadrant (Figure 2.5). The numerical threshold approaches negative infinity, discontinues as the threshold curve crosses the vertical axis, then declines from positive infinity, eventually reaching \$96,850 per QALY at a budget impact of \$50.0m (Table 2.10).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, its preferred alternative to a net disinvestment begins with a marginal decrease in incremental expenditure on technology E, with an expected gain in marginal incremental benefit of 10.43 QALYs (Table 2.3). As the budget impact increases, the expected cumulative incremental benefit follows a similar pattern as under good information, becoming negative at a budget impact of \$36.5m, at which point the threshold curve crosses into the SW quadrant (Figure 2.5). Since the expected cumulative incremental benefit is greater than under good information across all budget impacts, the threshold curve for poor information lies to the right of the threshold curve for good information on the CE plane.

# *Threshold set* $\lambda 4$

Threshold set  $\lambda 4$  is summarized in Figure 2.6, Table 2.11 and Appendix 2.3, Table A2.3.2.

It is applicable under the following assumptions (three of the 24 threshold sets considered):

- 1) a) The agent has the same information as the reallocator only; and
  - b) The agent *cannot* implement an alternative to adopting the new technology; or
- 2) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent can mandate reallocation following adoption of the new technology; and
  - c) The agent *cannot* implement an alternative to adopting the new technology.



# Figure 2.6: Optimal threshold curves (threshold set $\lambda 4$ )

Incremental benefit of new technology (QALYs)

|         | Threshold set $\lambda 4$ |                               |                   |                    |                            |                               |                   |                               |  |  |  |
|---------|---------------------------|-------------------------------|-------------------|--------------------|----------------------------|-------------------------------|-------------------|-------------------------------|--|--|--|
|         | Ag                        | ent has goo                   | d informat        | ion                | Agent has poor information |                               |                   |                               |  |  |  |
| Budget  | Net In                    | vestment                      | Net Disinvestment |                    | Net Investment             |                               | Net Disinvestment |                               |  |  |  |
| impact  | $E(\Delta E)^{a}$         | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$          | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |  |
| \$0.1m  | -9.31                     | -\$10,740                     | -5.02             | \$19,920           | -10.43                     | -\$9,586                      | -33.89            | \$2,951                       |  |  |  |
| \$0.2m  | -18.50                    | -\$10,810                     | -9.77             | \$20,476           | -20.65                     | -\$9,686                      | -53.80            | \$3,718                       |  |  |  |
| \$0.3m  | -27.57                    | -\$10,883                     | -14.29            | \$20,989           | -30.67                     | -\$9,782                      | -70.49            | \$4,256                       |  |  |  |
|         |                           |                               |                   |                    |                            |                               |                   |                               |  |  |  |
| \$3.8m  | -242.66                   | -\$15,660                     | -124.20           | \$30,595           | -313.18                    | -\$12,134                     | -383.05           | \$9,920                       |  |  |  |
| \$3.9m  | -243.66                   | -\$16,006                     | -126.72           | \$30,777           | -320.08                    | -\$12,184                     | -389.74           | \$10,007                      |  |  |  |
| \$4.0m  | -243.13                   | -\$16,452                     | -129.22           | \$30,955           | -326.94                    | -\$12,235                     | -394.86           | \$10,130                      |  |  |  |
|         |                           |                               |                   |                    |                            |                               |                   |                               |  |  |  |
| \$25.9m | -0.65                     | -\$40.03m                     | -539.87           | \$47,974           | -186.08                    | -\$139,186                    | -878.18           | \$29,493                      |  |  |  |
| \$26.0m | 1.17                      | \$22.13m                      | -541.54           | \$48,011           | -184.42                    | -\$140,984                    | -879.80           | \$29,552                      |  |  |  |
| \$26.1m | 3.00                      | \$8.71m                       | -543.21           | \$48,048           | -182.75                    | -\$142,816                    | -881.41           | \$29,612                      |  |  |  |
|         |                           |                               |                   |                    |                            |                               |                   |                               |  |  |  |
| \$36.4m | 204.74                    | \$177,787                     | -708.49           | \$51,377           | -0.83                      | -\$43.90m                     | -1040.84          | \$34,972                      |  |  |  |
| \$36.5m | 206.82                    | \$176,478                     | -710.03           | \$51,406           | 1.05                       | \$34.70m                      | -1042.33          | \$35,018                      |  |  |  |
| \$36.6m | 208.91                    | \$175,196                     | -711.58           | \$51,435           | 2.94                       | \$12.46m                      | -1043.82          | \$35,063                      |  |  |  |
|         |                           |                               |                   |                    |                            |                               |                   |                               |  |  |  |
| \$49.8m | 511.16                    | \$97,426                      | -905.40           | \$55,004           | 281.17                     | \$177,117                     | -1233.89          | \$40,360                      |  |  |  |
| \$49.9m | 513.71                    | \$97,137                      | -906.78           | \$55,030           | 283.52                     | \$176,000                     | -1235.28          | \$40,396                      |  |  |  |
| \$50.0m | 516.26                    | \$96,850                      | -908.16           | \$55,056           | 285.88                     | \$174,899                     | -1236.67          | \$40,431                      |  |  |  |

Table 2.11: Optimal numerical thresholds (threshold set  $\lambda$ 4) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.2

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;
<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

#### General characteristics of threshold set $\lambda 4$

- The assumptions applicable to this threshold set are the most favourable for the adoption of new technologies, since recommending their adoption is the *only* opportunity for the agent to 'correct' what it perceives to be an inefficient initial allocation of resources.
- 2) As a result, the region of the CE plane that the agent regards as cost-effective for new technologies is larger than for any other threshold set considered.
- 3) The minimum incremental benefit required for a net investment to appear cost-effective is sufficiently low that the agent is potentially willing to adopt some new technologies that lie in the NW quadrant.

- The threshold curves for net investments and net disinvestments 'kink' at the origin of the CE plane.
- 5) Since the agent regards the reallocation as efficient, the agent's estimate of the marginal incremental benefit declines consistently throughout reallocation, such that the threshold curves are smooth.

#### Net investments

#### Agent has good information on the incremental benefit of initial technologies

If the agent has good information and the allocator has poor information, then the first marginal reallocation following a net investment (which will be made under good information, whether directly by the reallocator or under mandate from the agent) is to contract technology S (Table 2.5). Since the allocator adopted technology S under the belief that it lies in the NE quadrant, while the agent believes it to lie in the NW quadrant, contracting technology S results in *positive* incremental net benefit to the agent. Once technology S is fully contracted, at a budget impact of \$3.9m, the agent's estimate of the *cumulative* incremental net benefit from reallocation is 243.66 QALYs (Table 2.5).

It follows that a net investment with a budget impact of \$3.9m is considered cost-effective by the agent provided it is not sufficiently *harmful* that it *reduces* incremental benefit by more than 243.66 QALYs (Table 2.11). Even a new technology that lies in the NW quadrant may be considered cost-effective, provided the increase in incremental benefit through the resulting reallocation exceeds the direct reduction in incremental benefit, such that the *net* incremental benefit of its adoption is positive. As a result, the threshold curve for net investments initially cuts up and left with a negative slope into the NW quadrant (Figure 2.6).

Above a budget impact of \$3.9m, reallocation switches to other technologies with a *negative* expected incremental benefit to the agent, such that the *cumulative* expected incremental benefit from reallocation begins to fall, causing the threshold curve to bend backwards and cut up and right towards the NE quadrant. At a budget impact of \$26.0m, the cumulative expected incremental benefit becomes negative, at which point the threshold curve crosses the vertical axis into the NE quadrant.

The numerical threshold is initially negative (-\$10,740 per QALY) as the threshold curve enters the NW quadrant (Table 2.11). At budget impacts for which the threshold curve lies within the NW quadrant, all net investments of the corresponding budget impact in the NE quadrant are cost-effective, while net investments in the NW quadrant are cost-effective only if their ICERs are *more negative* than the numerical threshold. The threshold then becomes more negative as the budget impact increases, tending towards negative infinity as the threshold curve crosses the vertical axis, then discontinuing and restarting from positive infinity as the threshold curve enters the NE quadrant (since incremental expenditure is considered in discrete \$0.1m increments, the most negative observed numerical threshold is -\$40.03m per QALY, at a budget impact of \$25.9m, while the most positive is \$22.13m per QALY, at a budget impact of \$26.0m). The numerical threshold then falls as the threshold curve cuts across the NE quadrant, reaching \$96,850 per QALY at a budget impact of \$50.0m.

## Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information and the allocator has good information, then the first marginal reallocation following a net investment (which will be made under poor information) is to expand technology E (Table 2.3). In common with when the agent has good information, this results in *positive* expected marginal incremental benefit, since the agent believes that technology E lies in the SE quadrant. At a budget impact of \$0.1m, the numerical threshold is therefore negative (-\$9,586 per QALY) and the threshold curve cuts into the NW quadrant (Table 2.11 and Figure 2.6).

After technology E is exhausted and technologies M and Q are fully contracted (at a budget impact of \$5.4m), the expected marginal incremental benefit to the agent of further reallocation becomes *negative* (Table 2.3). The expected *cumulative* incremental benefit to the agent becomes negative at a budget impact of \$36.5m, at which point the threshold curve cuts into the NE quadrant. The numerical threshold then falls from positive infinity as the budget impact increases, reaching \$174,899 per QALY at a budget impact of \$50.0m (Table 2.11).

### Net disinvestments

# Agent has good information on the incremental benefit of initial technologies

If the agent has good information and the allocator has poor information, then the first marginal reallocation following a net disinvestment (made under good information) is to expand technology O (Table 2.6). This and all subsequent marginal reallocations made until the maximum budget impact is reached have positive expected marginal incremental benefit to the agent, so the cumulative expected incremental benefit is also positive across all budget impacts. The threshold curve for net disinvestments therefore lies within the SW quadrant only, while the numerical threshold is positive and increasing across the entire budget impact, ranging from \$19,920 per QALY to \$55,056 per QALY (Table 2.11 and Figure 2.6).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information and the allocator has good information, then the first marginal reallocation following a net disinvestment (made under poor information) is to expand technology S (Table 2.4). In common with when the agent has good information, all marginal reallocations have positive expected marginal incremental benefit to the agent, so the cumulative expected incremental benefit is positive across all budget impacts and the threshold curve lies entirely within the SW quadrant (Figure 2.6). The numerical threshold increases across the budget impact from \$2,951 per QALY to \$40,431 per QALY (Table 2.11).

# Threshold set $\lambda 5$

Threshold set  $\lambda 5$  is summarized in Figure 2.7, Table 2.12, and Appendix 2.3, Table A2.3.3.

It is applicable under the following assumptions (one of the 24 threshold sets considered):

- 1) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent can mandate reallocation following adoption of the new technology; and
  - c) The agent can implement an alternative to adopting the new technology; and
  - d) The agent *cannot* mandate reallocation following implementation of the alternative.



Figure 2.7: Optimal threshold curves (threshold set  $\lambda 5$ )

Incremental benefit of new technology (QALYs)

|         | Threshold set $\lambda 5$ |                               |                   |                    |                            |                      |                   |                               |  |  |
|---------|---------------------------|-------------------------------|-------------------|--------------------|----------------------------|----------------------|-------------------|-------------------------------|--|--|
|         | A                         | gent has goo                  | d informa         | tion               | Agent has poor information |                      |                   |                               |  |  |
| Budget  | Net Investment            |                               | Net Disinvestment |                    | Net Investment             |                      | Net Disinvestment |                               |  |  |
| impact  | $E(\Delta E)^{a}$         | $E(\lambda_G^+)^{\mathrm{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$          | $E(\lambda_P^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |
| \$0.1m  | -6.25                     | -\$15,999                     | 6.08              | -\$16,445          | 21.88                      | \$4,571              | -22.92            | \$4,363                       |  |  |
| \$0.2m  | -12.52                    | -\$15,974                     | 11.05             | -\$18,095          | 29.96                      | \$6,676              | -31.14            | \$6,423                       |  |  |
| \$0.3m  | -22.43                    | -\$13,375                     | 16.51             | -\$18,167          | 35.16                      | \$8,532              | -36.21            | \$8,285                       |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$4.4m  | -171.65                   | -\$25,633                     | 166.30            | -\$26,459          | 3.12                       | \$1.41m              | -10.59            | \$415,353                     |  |  |
| \$4.5m  | -170.53                   | -\$26,389                     | 164.23            | -\$27,401          | -1.09                      | -\$4.13m             | -6.33             | \$711,185                     |  |  |
| \$4.6m  | -169.59                   | -\$27,124                     | 163.05            | -\$28,212          | -7.36                      | -\$625,401           | -1.98             | \$2.32m                       |  |  |
| \$4.7m  | -167.60                   | -\$28,043                     | 160.63            | -\$29,260          | -10.82                     | -\$434,519           | 1.45              | -\$3.24m                      |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$6.3m  | -147.14                   | -\$42,817                     | 137.97            | -\$45,662          | -10.66                     | -\$590,859           | -0.15             | \$41.62m                      |  |  |
| \$6.4m  | -146.18                   | -\$43,781                     | 137.04            | -\$46,702          | 3.03                       | \$2.11m              | -2.08             | \$3.07m                       |  |  |
| \$6.5m  | -144.71                   | -\$44,919                     | 135.95            | -\$47,813          | 4.95                       | \$1.31m              | -5.01             | \$1.30m                       |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$16.1m | -29.02                    | -\$554,862                    | 0.27              | -\$60.54m          | 171.44                     | \$93,910             | -193.21           | \$83,329                      |  |  |
| \$16.2m | -27.08                    | -\$598,286                    | -1.79             | \$9.05m            | 172.64                     | \$93,837             | -194.71           | \$83,200                      |  |  |
| \$16.3m | -25.21                    | -\$646,487                    | -2.90             | \$5.63m            | 173.81                     | \$93,781             | -197.18           | \$82,664                      |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$18.3m | -0.26                     | -\$70.86m                     | -34.53            | \$530,039          | 206.90                     | \$88,450             | -237.75           | \$76,973                      |  |  |
| \$18.4m | 2.11                      | \$8.74m                       | -36.66            | \$501,904          | 208.44                     | \$88,275             | -239.71           | \$76,760                      |  |  |
| \$18.5m | 3.04                      | \$6.09m                       | -37.98            | \$487,041          | 210.14                     | \$88,038             | -238.26           | \$77,646                      |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$42.5m | 338.61                    | \$125,513                     | -589.70           | \$72,070           | 706.12                     | \$60,188             | -790.55           | \$53,760                      |  |  |
| \$42.6m | 338.92                    | \$125,692                     | -592.41           | \$71,909           | 707.34                     | \$60,226             | -792.89           | \$53,727                      |  |  |
| \$42.7m | 341.18                    | \$125,153                     | -595.46           | \$71,709           | 708.51                     | \$60,267             | -794.14           | \$53,769                      |  |  |
|         |                           |                               |                   |                    |                            |                      |                   |                               |  |  |
| \$49.8m | 511.16                    | \$97,426                      | -797.64           | \$62,434           | 901.08                     | \$55,267             | -970.42           | \$51,318                      |  |  |
| \$49.9m | 513.71                    | \$97,137                      | -800.86           | \$62,308           | 895.92                     | \$55,697             | -973.07           | \$51,281                      |  |  |
| \$50.0m | 516.26                    | \$96,85 <del>0</del>          | -803.44           | \$62,232           | 897.02                     | \$55,740             | -975.71           | \$51,245                      |  |  |

Table 2.12: Optimal numerical thresholds (threshold set  $\lambda$ 5) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.3

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;
<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

#### General characteristics of threshold set $\lambda 5$

- The agent has authority to mandate reallocation following adoption of the new technology, but *not* following implementation of an alternative to the new technology. This partial constraint favours adoption of the new technology, since an efficient reallocation is achievable only if the new technology is adopted.
- 2) Compared to threshold set  $\lambda 4$ , the key difference is that the agent has the authority to implement an alternative to the new technology. The agent will only consider an alternative if the estimated net cumulative incremental benefit of implementing the alternative and the resulting reallocation is positive. If this is positive, the minimum incremental benefit required for the new technology to appear cost-effective is greater than in threshold set  $\lambda 4$ ; otherwise, the same thresholds apply as in threshold set  $\lambda 4$ . It follows that the region of the CE plane in which new technologies are considered cost-effective is smaller than in threshold set  $\lambda 4$ .
- 3) There is a 'kink' at the origin of the CE plane.
- 4) This is the only threshold set in which threshold curves are found to leave and then reenter a quadrant of the CE plane. If the agent has poor information, the threshold curve for net investments begins in the NE quadrant, then passes through the NW quadrant before re-entering the NE quadrant, while the threshold curve for net disinvestments begins in the SW quadrant, passes through the SE quadrant, then re-enters the SW quadrant.

#### Net investments

#### Agent has good information on the incremental benefit of initial technologies

If the agent has good information then, following adoption of a new technology that is a net investment, the reallocator will prefer to *partially reverse* the initial allocation, starting with a marginal contraction of technology H (Table 2.5). This is because the allocator and reallocator share the same information, such that the reallocator considers the initial allocation to be efficient. The agent regards this reallocation as inefficient, estimating the marginal incremental benefit of the contraction of technology H to be -1.96 QALYs. Instead, the agent will choose to mandate reallocation and contract technology S, which has an estimated marginal incremental benefit of 9.31 QALYs.

An alternative to recommending adoption of a net investment is for the agent to *increase* incremental expenditure on initial technologies. The initial technologies that receive this increase in incremental expenditure are the same as those under the agent's preferred reallocation following adoption of a net disinvestment, starting with a marginal expansion of technology O that results in an expected marginal incremental benefit of 5.02 QALYs (Table 2.6). Since the agent *cannot* mandate reallocation following implementation of this alternative net investment of resources, the reallocator will then carry out its preferred reallocation, starting with marginal contraction of technology H, which the agent estimates to have a marginal incremental benefit of -1.96 QALYs (Table 2.5).

To determine the threshold for net investments, the agent considers the estimated *net cumulative* incremental benefit associated with adopting the new technology and the subsequent reallocation. The new technology is considered cost-effective only if this is both *positive* and *exceeds* the estimated *net* cumulative incremental benefit of the alternative to the new technology and *its* resulting reallocation. If the budget impact is \$0.1m this is 5.02 - 1.96 = 3.06 QALYs, since the agent *cannot* mandate reallocation. Since the agent *can* mandate reallocation following adoption of the new technology, the expected incremental benefit associated with this reallocation is 9.31 QALYs. At this budget impact, the agent will therefore consider the new technology cost-effective only if its incremental benefit is greater than 3.06 - 9.31 = -6.25 QALYs. It follows that the threshold curve for net investments begins by cutting into the NW quadrant (Figure 2.7). Net investments in the NW quadrant will be considered cost-effective only if their ICERs are *more negative* than this numerical threshold. At a budget impact of \$0.1m, the numerical threshold is -\$15,999 per QALY (Table 2.12).

Above a budget impact of \$3.8m, the expected *marginal* incremental benefit of the alternative to the new technology and its resulting reallocation *exceeds* the expected *marginal* incremental benefit of the reallocation that follows adoption of the new technology, such that the minimum incremental benefit required for the new technology to be considered cost-effective begins to increase, eventually becoming *positive* above a budget impact of \$18.4m (Table 2.12). This causes the threshold curve to cross the vertical axis into the NE quadrant (Figure 2.7). As the threshold curve approaches the vertical axis, the numerical threshold approaches negative infinity; as the threshold curve enters the NE quadrant, the numerical threshold restarts at

positive infinity and falls thereafter. At the point where the threshold curve touches the vertical axis, the estimated *net cumulative* incremental benefit associated with the alternative to the new technology and its subsequent reallocation is equal to the estimated *cumulative* incremental benefit of reallocation following adoption of the new technology, such that the requirement for the new technology to be cost-effective is that it has *positive* incremental benefit.

Above a budget impact of \$42.5m, the estimated net cumulative incremental benefit associated with the alternative to the new technology and its subsequent reallocation becomes *negative*, such that the special case described earlier no longer holds. In this context, the new technology is cost-effective only if its incremental benefit exceeds the estimated net cumulative incremental benefit of the reallocation that follows its adoption (Table 2.5). For net investments with a budget impact above \$42.5m, this threshold subset is therefore equivalent to the corresponding subset in threshold set  $\lambda$ 4 (Appendix 2.3, Table A2.3.3).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information then the reallocator will prefer to *partially reverse* the initial allocation, starting with a marginal contraction of technology C (Table 2.3). The agent regards this reallocation as inefficient, estimating the marginal incremental benefit to be -1.58 QALYs. Instead, the agent will choose to mandate reallocation and expand technology E, which has an estimated marginal incremental benefit to the agent of 10.43 QALYs.

An as alternative to adopting the net investment, the agent's preferred increase in incremental expenditure on initial technologies begins with a marginal expansion of technology S, which results in an expected marginal incremental benefit of 33.89 QALYs (Table 2.4). Since the agent *cannot* mandate reallocation following implementation of this alternative, the reallocator will then carry out its preferred reallocation, starting with a marginal contraction of technology C, which the agent estimates has a marginal incremental benefit of -1.58 QALYs (Table 2.3).

If the budget impact of a net investment is 0.1m, the estimated *net* cumulative incremental benefit of the alternative to the new technology and *its* resulting reallocation is 33.89 - 1.58 =32.31 QALYs. Meanwhile, the expected incremental benefit associated with reallocation following adoption of the new technology is 10.43 QALYs. The agent will therefore consider the new technology cost-effective only if its incremental benefit is greater than 32.31 - 10.43 = 21.88 QALYs. As a result, the threshold curve for net investments begins in the NE quadrant (Figure 2.7), while the numerical threshold at a budget impact of \$0.1m is \$4,571 per QALY (Table 2.12).

As the budget impact increases, the minimum required incremental benefit for the new technology to be considered cost-effective tends to increase up to a budget impact of \$1.2m, but then tends to fall, becoming negative for the first time at a budget impact of \$4.5m (Table 2.12). At this budget impact, the agent's preferred marginal reallocation following adoption of the new technology is to expand technology E (with an expected gain in marginal incremental benefit of 6.66 QALYs) (Table 2.3), the agent's preferred marginal reallocation while implementing an alternative to the new technology is to expand technology D (with an expected gain in marginal incremental benefit of 3.96 QALYs) (Table 2.4), and the reallocator's preferred marginal reallocation following implementation of this alternative is to contract technology H (with an expected *loss* in marginal incremental benefit to the agent of 1.51 QALYs) (Table 2.3). It follows that the minimum required incremental benefit for the new technology to be considered cost-effective falls with marginal increases in the budget impact, such that the threshold curve enters the NW quadrant (Figure 2.7) and the numerical threshold becomes negative (Table 2.12).

Above a budget impact of \$5.2m, this trend reverses and the minimum required incremental benefit *increases*, from a low of -33.20 QALYs, becoming positive above a budget impact of \$6.3m (Table 2.12). The threshold curve enters the NE quadrant at this point, while the numerical threshold begins to fall from positive infinity, reaching \$55,740 per QALY at a budget impact of \$50.0m (Table 2.12 and Figure 2.7).

# Net disinvestments

Agent has good information on the incremental benefit of initial technologies

If the agent has good information, and the allocator and reallocator have poor information, then the reallocator will prefer to respond to a net disinvestment by *continuing* the initial allocation, starting with a marginal expansion of technology R (Table 2.6). The agent regards this as inefficient, estimating the marginal incremental benefit to be 1.79 QALYs. Instead, the agent will mandate reallocation and expand technology O, which has an estimated marginal incremental benefit of 5.02 QALYs.

An *alternative* to adopting a net disinvestment is for the agent to *reduce* incremental expenditure on initial technologies. The first marginal reallocation preferred by the agent is a contraction of technology S, which the agent estimates has an incremental benefit of 9.31 QALYs (Table 2.5). However, following implementation of this alternative, the subsequent reallocation is that that favoured by the reallocator (since the agent cannot mandate reallocation), starting with a marginal expansion of R that the agent estimates has a marginal incremental benefit of 1.79 QALYs (Table 2.6).

A net disinvestment with a budget impact of 0.1m will therefore be considered cost-effective by the agent only if the estimated *net* incremental benefit of the new technology and the subsequent reallocation is both *positive* and *exceeds* the estimated net incremental benefit from implementing the alternative and its subsequent reallocation (9.31 + 1.79 = 11.10 QALYs). Since reallocation following adoption of a net disinvestment with a budget impact of 0.1m has an expected incremental benefit of 5.02 QALYs, such net investments are only cost-effective if they have an incremental benefit of at least 11.10 - 5.02 = 6.1 QALYs. The threshold curve for net disinvestments therefore cuts into the SE quadrant (Figure 2.7), while the numerical threshold is -16,445 per QALY (Table 2.12). Net disinvestments in the SE quadrant of this budget impact are cost-effective only if their ICERs are *less negative* than this.

As the budget impact increases, the estimated *net* cumulative incremental benefit associated with the alternative to the new technology and its subsequent reallocation *decreases* relative to the estimated cumulative incremental benefit of reallocation following adoption of the new technology. As a result, the minimum required incremental benefit for the new technology to be cost-effective decreases, becoming *negative* above a budget impact of \$16.1m. The threshold curve then crosses the vertical axis into the SW quadrant (Figure 2.7). This causes the numerical threshold to approach negative infinity, before declining from positive infinity, eventually reaching \$62,232 per QALY at a budget impact of \$50.0m (Table 2.12).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information then the reallocator will prefer to respond to a net disinvestment by *continuing* the initial allocation, starting with a marginal expansion of technology O, with an estimated marginal incremental benefit to the agent of 0.54 QALYs (Table 2.4). If possible, the agent will mandate reallocation and expand technology S, which has an estimated marginal incremental benefit of 33.89 QALYs.

The agent's preferred alternative to adopting a net disinvestment begins with a marginal expansion of technology E, which the agent estimates has a marginal incremental benefit of 10.43 QALYs (Table 2.3). However, the subsequent reallocation would be the marginal expansion of technology O favoured by the reallocator, with an expected marginal incremental benefit to the agent of 0.54 QALYs (Table 2.4).

In common with when the agent has good information, a net disinvestment with a budget impact of \$0.1m will be considered cost-effective by the agent only if the estimated *net* incremental benefit of the new technology and the subsequent reallocation is both *positive* and *exceeds* the estimated net incremental benefit from implementing the alternative and its subsequent reallocation (10.43 + 0.54 = 10.97 QALYs). Since reallocation following adoption of a net disinvestment with a budget impact of \$0.1m has an expected incremental benefit of 33.89 QALYs, such net investments are only cost-effective if they have an incremental benefit of at least 10.97 - 33.89 = -22.92 QALYs. The threshold curve therefore cuts into the SW quadrant (Figure 2.7), while the numerical threshold is \$4,363 per QALY (Table 2.12).

As the budget impact increases, the minimum incremental benefit for the new technology to be cost-effective initially tends to falls, reaching a low of -48.96 QALYs at a budget impact of \$1.3m (Table 2.12). It then increases, becoming positive at a budget impact of \$4.7m. At this point the threshold curve enters the SE quadrant (Figure 2.7). However, after reaching a high of 23.70 QALYs at a budget impact of \$5.2m, the minimum incremental benefit begins to fall again, becoming negative again at a budget impact of \$6.3m. The threshold curve re-enters the NW quadrant at this point. Thereafter, the numerical threshold tends to fall, reaching \$51,245 per QALY at a budget impact of \$50.0m.

142

# Threshold set $\lambda 6$

Threshold set  $\lambda 6$  is summarized in Figure 2.8, Table 2.13 and Appendix 2.3, Table A2.3.3.

It is applicable under the following assumptions (one of the 24 threshold sets considered):

- 1) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent cannot mandate reallocation following adoption of the new technology; and
  - c) The agent can implement an alternative to adopting the new technology; and
  - d) The agent *can* mandate reallocation following implementation of the alternative.



Figure 2.8: Optimal threshold curves (threshold set  $\lambda 6$ )

Incremental benefit of new technology (QALYs)

|         | Threshold set λ6  |                               |                   |                               |                            |                               |                   |                               |  |  |  |
|---------|-------------------|-------------------------------|-------------------|-------------------------------|----------------------------|-------------------------------|-------------------|-------------------------------|--|--|--|
|         | Ag                | ent has goo                   | od informa        | ition                         | Agent has poor information |                               |                   |                               |  |  |  |
| Budget  | Net Investment    |                               | Net Disinvestment |                               | Net Investment             |                               | Net Disinvestment |                               |  |  |  |
| impact  | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^{\mathrm{d}}$ | $E(\Delta E)^{a}$          | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |  |
| \$0.1m  | 16.29             | \$6,139                       | 12.54             | -\$7,974                      | 45.90                      | \$2,179                       | 43.78             | -\$2,284                      |  |  |  |
| \$0.2m  | 32.06             | \$6,239                       | 25.95             | -\$7,708                      | 77.64                      | \$2,576                       | 72.44             | -\$2,761                      |  |  |  |
| \$0.3m  | 51.02             | \$5,880                       | 38.62             | -\$7,768                      | 105.82                     | \$2,835                       | 97.54             | -\$3,076                      |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$37.6m | 1152.43           | \$32,627                      | 0.45              | -\$83.42m                     | 1516.08                    | \$24,801                      | 635.86            | -\$59,133                     |  |  |  |
| \$37.7m | 1155.22           | \$32,634                      | -0.56             | \$67.19m                      | 1517.84                    | \$24,838                      | 634.19            | -\$59,446                     |  |  |  |
| \$37.8m | 1158.02           | \$32,642                      | -2.60             | \$14.53m                      | 1508.89                    | \$25,052                      | 632.53            | -\$59,760                     |  |  |  |
|         |                   |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$49.8m | 1404.71           | \$35,452                      | -224.68           | \$221,646                     | 1566.70                    | \$31,787                      | 408.08            | -\$122,034                    |  |  |  |
| \$49.9m | 1407.27           | \$35,459                      | -226.55           | \$220,261                     | 1574.64                    | \$31,690                      | 406.02            | -\$122,900                    |  |  |  |
| \$50.0m | 1407.52           | \$35,523                      | -229.09           | \$218,258                     | 1576.32                    | \$31,720                      | 403.96            | -\$123,776                    |  |  |  |

Table 2.13: Optimal numerical thresholds (threshold set  $\lambda$ 6) *Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.3* 

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

# General characteristics of threshold set $\lambda 6$

- The agent has authority to mandate reallocation only following implementation of an alternative to the new technology. This disadvantages the new technology compared to this alternative, since it must provide additional incremental benefit to compensate for the inefficient reallocation following its adoption.
- 2) As a result, the region of the CE plane in which new technologies are considered costeffective is the smallest of any of the threshold sets.
- 3) The threshold curves 'kink' at the origin of the CE plane.
- 4) The threshold curves for net disinvestments pass through the SE quadrant. If the agent has poor information, this threshold curve remains in the SE quadrant until the maximum budget impact is reached.

#### Special note

In threshold set  $\lambda 5$ , the agent could mandate what it perceived to be an efficient reallocation only if the new technology is adopted. Here, the agent can mandate reallocation only if an *alternative* to the new technology is implemented. These assumptions correspond to those implied by Eckermann and Pekarsky.<sup>63,65,79</sup>

#### Net investments

## Agent has good information on the incremental benefit of initial technologies

If the agent has good information and recommends adoption of a net investment, then the agent *cannot* mandate the subsequent reallocation. Both the allocator and reallocator have poor information, so the reallocator will *partially reverse* the initial allocation, starting with a marginal contraction of technology H (Table 2.5). The agent estimates the marginal incremental benefit of this to be -1.96 QALYs.

If the agent instead recommends implementation of an *alternative* to the new technology, then this will consist of an increase in incremental expenditure on initial technologies, following the same order as the agent's preferred reallocation following a net disinvestment. The first marginal increase in incremental expenditure will be to expand technology O, resulting in an expected marginal incremental benefit of 5.02 QALYs (Table 2.6). If an alternative to the technology is implemented, the agent can also mandate the subsequent reallocation. The agent's preferred reallocation begins with a marginal contraction of technology S, resulting in an expected marginal incremental benefit of 9.31 QALYs (Table 2.5). The expected *net* marginal incremental benefit of implementing the alternative and the subsequent reallocation is 5.02 + 9.31 = 14.33QALYs.

For a net investment of 0.1m to be cost-effective, it must therefore have an incremental benefit of at least 14.33 + 1.96 = 16.29 QALYs, such that the expected *net* incremental benefit of the new technology and its subsequent reallocation exceeds that of the alternative to the new technology and *its* subsequent reallocation. The corresponding numerical threshold is 6,139 per QALY (Table 2.13).

As the budget impact increases, the expected marginal incremental benefit of the alternative to the new technology and its subsequent reallocation *each* declines, at a diminishing rate, such that

the expected *net marginal* incremental benefit eventually becomes negative. Nevertheless, the expected net *cumulative* incremental benefit remains positive until the maximum budget impact is reached. Meanwhile, the agent's estimate of the marginal incremental benefit of reallocation following adoption of the new technology fluctuates throughout reallocation, since the ordering is that preferred by the reallocator. As a result, the numerical threshold does not consistently change as the budget impact increases, although it tends to increase, reaching \$35,523 per QALY at a budget impact of \$50.0m (Table 2.13). The threshold curve lies entirely in the NE quadrant but is not smooth due to this inconsistent change in the numerical threshold (Figure 2.8).

# Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, the numerical threshold and the threshold curve follow a similar pattern as under good information, although the minimum incremental benefit at which the new technology is cost-effective is greater. This results in a lower numerical threshold at each budget impact, trending upwards from \$2,179 per QALY at \$0.1m to \$31,720 per QALY at \$50.0m, and a threshold curve that lies to the right of that under good information (Table 2.13 and Figure 2.8).

#### Net disinvestments

# Agent has good information on the incremental benefit of initial technologies If the agent has good information and recommends adoptions of a net disinvestment, the reallocator will *continue* the initial allocation, starting with a marginal expansion of technology

R. The agent estimates the marginal incremental benefit of this to be 1.79 QALYs (Table 2.6).

If the agent instead recommends an alternative to the new technology, this will consist of a *decrease* in incremental expenditure on initial technologies, following the same order as the agent's preferred reallocation following a net investment. The first marginal decrease in incremental expenditure will be to contract technology S, resulting in an expected marginal incremental benefit of 9.31 QALYs (Table 2.5). The agent's preferred reallocation then begins with a marginal expansion of technology O, resulting in an expected marginal incremental benefit of 5.02 QALYs (Table 2.6). The expected *net* marginal incremental benefit of

implementing the alternative and the subsequent reallocation is therefore 5.02 + 9.31 = 14.33QALYs (identical to that when considering a net investment).

For a net disinvestment of \$0.1m to be cost-effective, it must therefore have an incremental benefit of at least 14.33 - 1.79 = 12.54 QALYs. The threshold curve therefore begins in the SE quadrant, with a corresponding numerical threshold of -\$7,974 per QALY. New technologies in the SE quadrant with a budget impact of \$0.1m are cost-effective only if their ICERs are *less negative* than this (Table 2.13).

In common with net investments, the expected net marginal incremental benefit of the alternative to the new technology and its subsequent reallocation declines with the budget impact and eventually becomes negative, while the expected net *cumulative* incremental benefit remains positive until the maximum budget impact is reached. At a budget impact of \$37.7m, the agent's estimate of the cumulative incremental benefit of reallocation following adoption of the new technology exceeds the expected net cumulative incremental benefit of the alternative and its subsequent reallocation (Table 2.13). At this point, the threshold curve crosses into the SW quadrant, while the numerical threshold discontinues and begins falling from positive infinity, eventually reaching \$218,258 per QALY at a budget impact of \$50.0m (Figure 2.8).

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, then the numerical threshold and the threshold curve follow a similar pattern as under good information, with two exceptions: the minimum incremental benefit at which the new technology is cost-effective is greater, so the threshold curve lies to the right of that for good information on the CE plane; and the threshold curve does not cross the vertical axis. The numerical threshold falls from -\$2,284 per QALY at a budget impact of \$0.1m, to \$123,776 per QALY at a budget impact of \$50.0m (Table 2.13).

Among all the threshold subsets considered, this is the only instance where the threshold curve for net disinvestments in this analysis remains entirely within the SE quadrant. This reflects the inefficiency perceived by the agent in both the initial allocation and the reallocator's preferred reallocation, and circumstances (unique to this threshold set) in which both of these can be addressed only by proposing an alternative to the new technology.

# Threshold set $\lambda 7$

Threshold set  $\lambda$ 7 is summarized in Figure 2.9, Table 2.14 and Appendix 2.3, Table A2.3.4.

It is applicable under the following assumptions (one of the 24 threshold sets considered):

- 1) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent *cannot* mandate reallocation following adoption of the new technology; and
  - c) The agent can implement an alternative to adopting the new technology; and
  - d) The agent *cannot* mandate reallocation following implementation of the alternative.



#### Figure 2.9: Optimal threshold curves (threshold set $\lambda$ 7)

|         | Threshold set $\lambda 7$ |                               |                   |                               |                            |                               |                   |                               |  |  |  |
|---------|---------------------------|-------------------------------|-------------------|-------------------------------|----------------------------|-------------------------------|-------------------|-------------------------------|--|--|--|
|         | Ag                        | ent has goo                   | od informa        | tion                          | Agent has poor information |                               |                   |                               |  |  |  |
| Budget  | Net Investment            |                               | Net Disinvestment |                               | Net Investment             |                               | Net Disinvestment |                               |  |  |  |
| impact  | $E(\Delta E)^{a}$         | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^{\mathrm{d}}$ | $E(\Delta E)^{a}$          | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^{\mathrm{d}}$ |  |  |  |
| \$0.1m  | 5.02                      | \$19,920                      | 9.31              | -\$10,740                     | 33.89                      | \$2,951                       | 10.43             | -\$9,586                      |  |  |  |
| \$0.2m  | 9.77                      | \$20,476                      | 18.50             | -\$10,810                     | 53.80                      | \$3,718                       | 20.65             | -\$9,686                      |  |  |  |
| \$0.3m  | 14.29                     | \$20,989                      | 27.57             | -\$10,883                     | 70.49                      | \$4,256                       | 30.67             | -\$9,782                      |  |  |  |
|         |                           |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$42.4m | 799.26                    | \$53,049                      | -334.42           | \$126,786                     | 1128.96                    | \$37,557                      | -117.22           | \$361,720                     |  |  |  |
| \$42.5m | 800.73                    | \$53,076                      | -336.67           | \$126,236                     | 1130.40                    | \$37,597                      | -119.28           | \$356,302                     |  |  |  |
| \$42.6m | 802.29                    | \$53,098                      | -338.92           | \$125,692                     | 1131.85                    | \$37,637                      | -121.35           | \$351,056                     |  |  |  |
|         |                           |                               |                   |                               |                            |                               |                   |                               |  |  |  |
| \$49.8m | 1010.48                   | \$49,284                      | -511.16           | \$97,426                      | 1233.89                    | \$40,360                      | -281.17           | \$177,117                     |  |  |  |
| \$49.9m | 1014.19                   | \$49,202                      | -513.71           | \$97,137                      | 1235.28                    | \$40,396                      | -283.52           | \$176,000                     |  |  |  |
| \$50.0m | 1015.63                   | \$49,231                      | -516.26           | \$96,850                      | 1236.67                    | \$40,431                      | -285.88           | \$174,899                     |  |  |  |

Table 2.14: Optimal numerical thresholds (threshold set  $\lambda$ 7) Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.4

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

# General characteristics of threshold set $\lambda 7$

- 1) In common with threshold set  $\lambda 3$ , the threshold may be determined *solely* by the expected cumulative incremental benefit provided by the alternative to the new technology.
- 2) With a single exception, the threshold curves are identical to those in threshold set  $\lambda 3$ . Since the agent determines how incremental expenditure is allocated on the alternative, these threshold curves are smooth.
- 3) The single exception is the part of the threshold curve for net investments above a budget impact of \$42.5m, where the agent has good information, which is identical to the corresponding threshold curve in threshold set λ8. Since the agent does *not* determine reallocation, this part of the threshold curve is *not* smooth.
- 4) The threshold curve for net investments, where the agent has good information, kinks at a budget impact of \$42.5m, corresponding to the point where the 'special case' no longer applies and the specification of the optimal threshold changes.

#### Special note

In common with threshold set  $\lambda 3$ , the optimal threshold may be determined *solely* by the incremental benefit associated with the agent's preferred *alternative* to adopting the new technology, rather than by the reallocation that follows adoption of the new technology or implementation the alternative. The key difference to threshold set  $\lambda 3$  is that here the agent regards this reallocation as inefficient.

This special case only arises if the agent has a *positive* estimate of the *net* cumulative incremental benefit associated with implementing the alternative to the new technology and its subsequent reallocation. Since the agent regards reallocation as inefficient, there is greater scope for this condition to fail than under the conditions applicable to threshold set  $\lambda$ 3, with this scope increasing with the budget impact.

## Net investments

#### Agent has good information on the incremental benefit of initial technologies

As in threshold set  $\lambda 3$ , if the agent has good information, then its preferred alternative to adopting a net investment is to *increase* incremental expenditure on initial technologies, starting with a marginal expansion of technology O (Table 2.6). The expected cumulative incremental benefit of this increases, at a diminishing rate, with the budget impact.

However, the expected cumulative incremental benefit forgone through reallocation also increases with the budget impact, eventually *exceeding* the expected cumulative incremental benefit of implementing the alternative above a budget impact of \$42.5m (Table 2.14). Above this budget impact, the agent will *not* implement an alternative to the new technology, and so the new technology will appear cost-effective only if its incremental benefit exceeds the expected cumulative incremental benefit forgone through reallocation. This switch in the specification of the threshold causes the threshold curve to 'kink' at this point.

It follows that the threshold subset for net investments is identical to that in threshold set  $\lambda$ 3 up to and including a budget impact of \$42.5m (Table 2.10); above this budget impact, this threshold subset is identical to that in threshold set  $\lambda$ 8 (Table 2.15).

# Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, the expected cumulative incremental benefit forgone through reallocation does not exceed the expected cumulative incremental benefit of implementing the alternative at *any* budget impact. The threshold subset for net investments is therefore identical to that in threshold set  $\lambda$ 3 (Table 2.10).

## Net disinvestments

Regardless of the agent's information, the expected cumulative incremental benefit forgone through reallocation does not exceed the expected cumulative incremental benefit of implementing the agent's preferred alternative to a net disinvestment at *any* budget impact. The threshold subsets for net disinvestments are therefore identical to those in threshold set  $\lambda 3$  (Table 2.10).

# *Threshold set* $\lambda 8$

Threshold set  $\lambda 8$  is summarized in Figure 2.10, Table 2.15 and Appendix 2.3, Table A2.3.4.

It is applicable under the following assumptions (one of the 24 threshold sets considered):

- 1) a) The agent has different information to both the allocator and reallocator; and
  - b) The agent *cannot* mandate reallocation following adoption of the new technology; and
  - c) The agent *cannot* implement an alternative to adopting the new technology.



Figure 2.10: Optimal threshold curves (threshold set  $\lambda 8$ )

|         | Threshold set λ8  |                               |                   |                    |                            |                               |                   |                    |  |  |  |
|---------|-------------------|-------------------------------|-------------------|--------------------|----------------------------|-------------------------------|-------------------|--------------------|--|--|--|
|         | Age               | ent has goo                   | d informa         | tion               | Agent has poor information |                               |                   |                    |  |  |  |
| Budget  | Net Investment    |                               | Net Disinvestment |                    | Net Investment             |                               | Net Disinvestment |                    |  |  |  |
| impact  | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$          | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |  |  |  |
| \$0.1m  | 1.96              | \$51,044                      | -1.79             | \$55,872           | 1.58                       | \$63,369                      | -0.54             | \$186,014          |  |  |  |
| \$0.2m  | 3.79              | \$52,812                      | -2.32             | \$86,224           | 3.19                       | \$62,703                      | -2.01             | \$99,571           |  |  |  |
| \$0.3m  | 9.16              | \$32,765                      | -3.24             | \$92,587           | 4.66                       | \$64,329                      | -3.62             | \$82,956           |  |  |  |
|         |                   |                               |                   |                    |                            |                               |                   |                    |  |  |  |
| \$8.8m  | 137.83            | \$63,849                      | -126.68           | \$69,466           | 107.47                     | \$81,884                      | -104.68           | \$84,063           |  |  |  |
| \$8.9m  | 138.80            | \$64,120                      | -127.56           | \$69,773           | 109.02                     | \$81,635                      | -109.80           | \$81,055           |  |  |  |
| \$9.0m  | 140.88            | \$63,884                      | -129.26           | \$69,629           | 110.73                     | \$81,282                      | -110.31           | \$81,589           |  |  |  |
|         |                   |                               |                   |                    |                            |                               |                   |                    |  |  |  |
| \$49.8m | 1010.48           | \$49,284                      | -618.92           | \$80,463           | 613.98                     | \$81,110                      | -544.64           | \$91,437           |  |  |  |
| \$49.9m | 1014.19           | \$49,202                      | -619.62           | \$80,533           | 622.89                     | \$80,111                      | -545.74           | \$91,436           |  |  |  |
| \$50.0m | 1015.63           | \$49,231                      | -620.98           | \$80,518           | 625.53                     | \$79,933                      | -546.83           | \$91,435           |  |  |  |

Table 2.15: Optimal numerical thresholds (threshold set  $\lambda 8$ )Note: This table is abridged. Complete table provided in Appendix 2.3, Table A2.3.4

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment;

<sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

# General characteristics of threshold set $\lambda 8$

- 1) For new technologies with marginal budget impact, the numerical threshold is similar for net investments and net disinvestments.
- It follows that there is no 'kink' between the threshold curves for net investments and net disinvestments at the origin of the CE plane.
- Each threshold curve passes through only the NE and SW quadrants. New technologies in the SE quadrant are always cost-effective, while new technologies in the NW quadrant are never cost-effective.

#### Net investments

Agent has good information on the incremental benefit of initial technologies If the agent has good information, and the allocator and reallocator have poor information, then the reallocator will respond to the adoption of a net investment by *partially reversing* the initial allocation, starting with a marginal contraction of technology H (Table 2.5). The reallocator estimates the marginal incremental benefit of this to be -1.65 QALYs, while the agent estimates it to be -1.96 QALYs.

Subsequent marginal reallocations have diminishing expected marginal incremental benefit to the reallocator, while the expected marginal incremental benefit to the agent fluctuates (increasing to -1.83 QALYs for the second marginal reallocation, decreasing to -5.37 QALYs for the third marginal reallocation, and so on). The expected *cumulative* incremental benefit to the agent tends to become more negative following each marginal reallocation, such that the threshold curve for net investments lies in the NE quadrant. The numerical threshold fluctuates with the budget impact, falling from \$51,044 per QALY at \$0.1m to \$32,765 per QALY at \$0.3m, then increasing to \$64,120 per QALY at \$8.9m, before falling to \$49,231 per QALY at \$50.0m.

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, then the threshold curve for net investments follows a similar pattern as with good information, with the numerical threshold also fluctuating with the budget impact. At each budget impact, the agent's estimate of the *cumulative* incremental benefit associated with reallocation is *less negative* than with good information, such that the threshold curve for net investments lies to the left of that for good information on the CE plane (Figure 2.10) and the numerical threshold is higher at each budget impact (Table 2.15).

#### Net disinvestments

Agent has good information on the incremental benefit of initial technologies If the agent has good information, the reallocator will respond to the adoption of a net disinvestment by *continuing* the initial allocation, starting with a marginal contraction of technology R (Table 2.6). The reallocator estimates the marginal incremental benefit of this to be 1.65 QALYs – similar in absolute magnitude to that of the first marginal reallocation following a net investment – while the agent estimates it to be 1.79 QALYs.

In common with reallocation following a net investment, subsequent marginal reallocations have diminishing expected marginal incremental benefit to the reallocator, and fluctuating expected marginal incremental benefit to the agent. The expected *cumulative* incremental benefit to the agent tends to become more positive, such that the threshold curve for net disinvestments lies in the SW quadrant. The numerical threshold fluctuates but tends to increase with the budget impact, from \$55,872 per QALY at a budget impact of \$0.1m to \$80,518 per QALY at a budget impact of \$50.0m.

#### Agent has poor information on the incremental benefit of initial technologies

If the agent has poor information, then the threshold curve for net disinvestments follows a similar pattern to that with good information. At each budget impact, the agent's estimate of the cumulative incremental benefit associated with reallocation is *less positive* than with good information, such that the threshold curve for net investments lies to the right of that for good information on the CE plane (Figure 2.10) and the numerical threshold is higher at each budget impact (Table 2.15).

# Discussion

Our findings provide novel additions to the literature concerning the appropriate costeffectiveness threshold to use when considering a new technology for potential adoption into a budget constrained health system. This work represents the first attempt to explore the implications for the optimal threshold of considering interactions between multiple decision makers, each with imperfect information, under various scenarios regarding the authority granted to the decision making 'agent'.

We demonstrate that the optimal threshold depends upon the information available to each decision maker and the authority of the decision making agent: specifically, whether the agent has authority to *mandate* reallocation (or must accept what it perceives to be inefficient reallocations carried out by another decision maker), and also whether the agent has authority to implement a net investment or net disinvestment of resources in initial technologies as an *alternative* to recommending adoption of a new technology (in order to 'correct' perceived inefficiencies in the initial allocation of resources).

Our work demonstrates, for the first time, the potential for threshold curves to pass through the north-west (NW) and/or south-east (SE) quadrants of the agent's cost-effectiveness (CE) plane. This requires a novel interpretation of numerical ICERs, and raises the possibility that 'dominated' technologies may be cost-effective while 'dominant' technologies may not be.

The reason why threshold curves might pass through the NW quadrant differs from why they might pass through the SE quadrant. If the agent and reallocator have similar information, which differs from that available to the allocator, then reallocation following a net investment represents an opportunity to 'correct' what the agent and reallocator *perceive* to be an inefficient initial allocation of resources. Reallocation may therefore be associated with *positive*, rather than negative, expected incremental net benefit to the agent. If so, the agent may be willing to recommend some new technologies that lie within the NW quadrant, provided the expected *net* incremental benefit of their adoption and the subsequent reallocation is positive. Alternatively, if the agent and *allocator* have similar information, which differs from that available to the *reallocator*, then the agent may not 'trust' the reallocator to make an efficient reallocation following a net disinvestment will result in *negative* expected incremental benefit, then the agent might *not* 

recommend some technologies that lie in the SE quadrant, since the expected *net* incremental benefit of their adoption and the subsequent reallocation is negative.

Our findings support the arguments of some authors that the threshold may be 'kinked' at the origin of the CE plane, with different optimal thresholds for net investments than for net disinvestments. Although previous authors have argued that this 'kink' results in a consistently steeper or shallower threshold curve in one half of the CE plane, we find that the direction of this 'kink' varies according to the assumptions adopted.

#### An alternative specification of the threshold?

We also find a specific set of assumptions under which the threshold is *not* dependent upon the reallocation that follows adoption of a new technology. This applies only if *all* of the following conditions apply:

- 1. The agent *perceives* the initial allocation of resources to be *inefficient*;
- 2. The agent has the authority to implement an *alternative* net investment or net disinvestment of resources instead of recommending adoption of a new technology;
- 3. The reallocation following adoption of the new technology is *identical* to that which would follow implementation of this alternative to the new technology; and
- 4. The expected *net* incremental benefit of implementing an alternative to the new technology, and its subsequent reallocation, is *positive*.

If these conditions hold, the agent considers a new technology cost-effective if it provides greater expected incremental benefit than the agent's preferred *alternative* to the new technology, *regardless* of the expected incremental benefit gained or forgone through reallocation.

Given the difficulty of empirically estimating the gain or loss in incremental benefit associated with reallocation in real world practice, the opportunity to adopt a conceptually different threshold may be worthy of further consideration, particularly if this alternative specification of the threshold is easier to estimate empirically. In practice, however, this would likely require institutional reform. While the assumption of allocative inefficiency is likely reasonable, reform would be needed to:

- i. Implement processes that allow for the identification of possible net investments or net disinvestments of resources among initial technologies within the health care system;
- ii. Grant agents the authority to implement these net investments or net disinvestments as an *alternative* to recommending new technologies for adoption;
- iii. Ensure *consistent* reallocation following recommendations from the agent, regardless of whether the agent recommends adoption of a new technology or implementation of an alternative to the new technology; and
- iv. Ensure that the identified alternatives to new technologies, and the reallocations that follow their implementation or adoption of a new technology, are sufficiently efficient from the perspective of the agent that implementing at least one of these alternatives to is considered cost-effective.

If these reforms were to be achieved, then the cost-effectiveness of a new technology could be determined by comparing its ICER directly to that of the most cost-effective alternative net investment or net disinvestment opportunity. This would, however, raise further questions. For example, if a set of cost-effective alternative net investment and net disinvestment opportunities has been identified, then why should decision makers wait until a new technology is considered before implementing them?

# Strengths and limitations

Our findings are based on results from a model of a hypothetical health system, using simulated input data. An obvious limitation of this approach is that the specific numerical thresholds and threshold curves outputted from our analysis cannot be directly used for decision making. Thresholds used in practice should be empirically estimated from real world data. The recent empirical work by Claxton and colleagues provides an example of how this empirical work might be conducted.<sup>27</sup>

Nevertheless, empirical work requires a theoretical basis. Using simulated data allows us to inexpensively explore the implications of different combinations of assumptions, and draw logical connections between changes in these assumptions and changes in the characteristics of the set of optimal thresholds. Our findings have substantive implications for theory in this area, which in turn has important implications for future empirical work. For example, the methods

used by Claxton and colleagues – the most extensive empirical work in this area to date – do not allow for the estimation of different thresholds for net investments and net disinvestments, nor do they provide estimates of thresholds that are conditional upon the budget impact of new technologies. By enhancing our understanding of the theoretical basis of the threshold, models using simulated data allow for more sophisticated empirical research in future, leading to the use of more appropriate thresholds in real world practice.

Given this approach, the remaining limitations relate to specific assumptions we adopted. We considered imperfect information for only a single parameter, and we assumed that decision makers had an 'incorrect' estimate of this parameter, rather than an estimate subject to uncertainty. We consider this to be the simplest means for integrating imperfect information into the model in a way that has substantive implications for the determination of the optimal costeffectiveness threshold. This simple approach allowed for a straightforward exposition of some important implications of imperfect information, including the potential for threshold curves to be kinked and to pass through the NW and/or SE quadrants of the CE plane. Nevertheless, incorporating uncertainty would allow for a more nuanced consideration of imperfect information, and would allow the threshold to be considered as a stochastic parameter. Considering imperfect information in model parameters other than the incremental benefit of initial technologies might also lead to novel results. For example, we assumed that the agent knows what information the reallocator has and so can predict, with certainty, the reallocation that will result if a new technology is adopted. In practice the agent does not know with certainty how the reallocator will respond. If the agent's risk aversion were also to be modelled, then we might find that this uncertainty would make the agent more reluctant to adopt new technologies. Future work will provide an opportunity to build upon the foundations established in this chapter and explore these issues in more depth.

We also considered just three decision makers, including a single 'allocator' and 'reallocator'. This is a simplification of reality. For example, when CADTH makes recommendations on the cost-effectiveness of new technologies, it should take into account the different characteristics of each of Canada's provincial and territorial health care systems. Within each of these health care systems are multiple decision makers with responsibility for allocation and reallocation, each of which has differing information and potentially differing objectives. The implications for the
threshold when information differs *between* allocators (or reallocators) within a single health care system is a possible avenue for future research in this area.

### Implications for theory

We found that the standard exposition of the cost-effectiveness threshold given in the previous chapter – a single numerical threshold, represented by a linear threshold curve passing through the origin of the CE plane – does not hold under any of the circumstances considered.

Furthermore, the recent alternative specification of the threshold provided by Eckermann and Pekarsky was found to apply in only one of the eight threshold sets considered (Appendix 2.2).<sup>63</sup> This recent work might therefore be considered to reflect a 'special case', since the findings hold only under a narrow set of assumptions. Specifically, Eckermann and Pekarsky assumed that:

- a. The health system is allocatively *inefficient*;
- b. Reallocation following adoption of the new technology is *inefficient*;
- c. An opportunity exists to *efficiently* increase or decrease incremental expenditure on initial technologies as an *alternative* to adopting the new technology; and
- d. After implementing this alternative, the subsequent reallocation is *efficient*.

However, assumption (c) has questionable current applicability, since authorities such as NICE typically have a narrow remit that does not provide them with the authority to implement reallocations of the health system as an alternative to recommending adoption of the specific health technology under consideration.<sup>64</sup> Furthermore, assumptions (b) and (d) are seemingly incompatible in practice. Even if the decision making agent *has* the authority to implement an alternative to adopting the new technology, it is not clear why, or under what mechanism, it would be possible to implement an efficient reallocation following implementation of an *alternative* to the new technology but *not* following adoption of the new technology itself.

The assumptions adopted by Eckermann and Pekarsky therefore appear to place an unreasonable burden upon new technologies. For a new technology to be considered cost-effective, it is not sufficient for it to provide more incremental benefit than is forgone through reallocation, nor is it sufficient for it to provide greater incremental benefit than the *most cost-effective alternative* to the new technology. Rather, the new technology must be *substantially* more efficient than both,

since reallocation following its adoption is assumed to be subject to an inefficiency that is resolved if, and only if, an alternative to the new technology is implemented instead. Compared to every other set of assumptions considered in this chapter, this results in a smaller area of the CE plane in which new technologies appear cost-effective.

### Implications for policy

It is important for decision makers in the real world to consider 'opportunity cost' when determining whether a new technology is cost-effective. However, our findings suggest that these considerations are more complex than would appear from the standard exposition of the cost-effectiveness threshold.

Decision making agents may need to consider not only the expected incremental benefit associated with reallocation following adoption of a new technology, but also whether greater expected incremental benefit might result from implementing an *alternative* net investment or net disinvestment opportunity, and, if so, whether they have the authority to implement such an alternative in any case. Agents may also need to consider which decision maker within the health care system has the authority to determine reallocations following adoption of a new technology or an alternative to the new technology, and whether the reallocations favoured by this decision maker differ from the agent's own preferred reallocations.

Depending upon the authority of the agent, and the information available to each decision maker, the optimal threshold curves may be expected to lie in any quadrant of the agent's CE plane, and may be expected to exhibit 'kinks' at the origin of the CE plane – implying different optimal thresholds for marginal net investments and net disinvestments – or along each threshold curve. Deriving empirical estimates of optimal thresholds suitable for use in practice may therefore require more complex methods than those used in previous empirical studies, such as the recent work by Claxton and colleagues. In the meantime, in the absence of suitable empirical estimates of optimal thresholds, decision making agents will remain unaware of whether adopting new technologies will satisfy their objectives.

## Bibliography for Chapter 2

27. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. *Health Technology Assessment*.
2015;19(14):1–503, v–vi. doi:10.3310/hta19140.

63. Eckermann S, Pekarsky B. Can the Real Opportunity Cost Stand Up: Displaced Services, the Straw Man Outside the Room. *PharmacoEconomics*. 2014. doi:10.1007/s40273-014-0140-3.

64. Paulden M, McCabe C, Karnon J. Achieving allocative efficiency in healthcare: nice in theory, not so NICE in Practice? *Pharmacoeconomics*. 2014;32(4):315–8. doi:10.1007/s40273-014-0146-x.

65. Eckermann S. Kinky Thresholds Revisited: Opportunity Costs Differ in the NE and SW Quadrants. *Appl Heal Econ Heal Policy*. 2015;13(1):7–13. doi:10.1007/s40258-014-0136-3.

79. Pekarsky B. Trust, constraints and the counterfactual: Reframing the political economy of new drugs. doi:10.1007/978-3-319-08903-4\_3.

89. Garner S, Littlejohns P. Disinvestment from low value clinical interventions: NICEly done? *BMJ (Clinical research ed)*. 2011;343:d4519.

90. Klein R. *The New Politics of the NHS: From Creation to Reinvention*. 6th Revised Edition. Radcliffe Publishing Ltd; 2010.

91. CADTH. Programs and Services. 2016.

# Chapter 3: Value-Based Reimbursement Decisions for Orphan Drugs: A Scoping Review and Decision Framework

## Mike Paulden<sup>1</sup>, Tania Stafinski<sup>2</sup>, Devidas Menon<sup>2</sup> and Christopher McCabe<sup>1</sup>

<sup>1</sup> Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada

<sup>2</sup> School of Public Health, University of Alberta, Edmonton, AB, Canada

## Acknowledgements

This work was supported by an Emerging Team Grant from the Canadian Institutes of Health Research (CIHR) for "Developing Effective Policies for Managing Technologies for Rare Diseases", and from a grant provided through the Genome Canada-CIHR 2012 Large-Scale Applied Research Project Competition in Genomics and Personalized Health for "PACE-'Omics: Personalized, Accessible, Cost-Effective applications of 'Omics technologies". The authors wish to acknowledge the support provided by the Promoting Rare-disease Innovations through Sustainable Mechanisms (PRISM) Collaborators Network. The authors are grateful to Andrea Dunn for her assistance with data extraction, Leigh-Ann Topfer for her guidance and support during the literature search and retrieval phase of this project, and Kerry Nield for her assistance in preparing the manuscript for submission. The authors have no conflicts of interest.

## Author contributions

All authors contributed towards the design of the scoping review, the construction of the decision framework, and the writing of the manuscript. TS and DM conducted article screening for the scoping review. MP and TS were responsible for reviewing each paper, extracting and tabulating data, and identifying the candidate decision factors. MP is the overall guarantor for the paper.

### Abstract

### Background

The rate of development of new orphan drugs continues to grow. As a result, reimbursing orphan drugs on an exceptional basis is increasingly difficult to sustain from a health system perspective. An understanding of the value that societies attach to providing orphan drugs at the expense of other health technologies is now recognized as an important input to policy debates.

### Objectives

To scope the social value arguments that have been advanced relating to the reimbursement of orphan drugs, and to locate these within a coherent decision making framework to aid reimbursement decisions in the presence of limited health care resources.

#### Methods

A scoping review of the peer reviewed and grey literature was undertaken, consisting of seven phases: identifying the research question; searching for relevant studies; selecting studies; charting, extracting and tabulating data; analyzing data; consulting relevant experts; and presenting results. The points within decision processes where the identified value arguments would be incorporated were then located. This mapping was used to construct a framework characterizing the distinct role of each value in informing decision making.

#### Results

The scoping review identified 19 candidate decision factors, most of which can be characterized as "value-bearing" or "opportunity cost-determining", and also a number of value propositions and pertinent sources of preference information. We were able to synthesize these into a coherent decision making framework.

### Conclusion

Our framework may be used to structure policy discussions and to aid transparency about the values underlying reimbursement decisions for orphan drugs. These values ought to be consistently applied to all technologies and populations affected by the decision.

## Key points for decision makers

- Understanding the value that societies attach to reimbursing orphan drugs at the expense of other health technologies is important.
- We have scoped the social value arguments advanced in the literature and located these
  within a coherent framework. This framework may be used to structure policy
  discussions and to aid transparency about the values underlying reimbursement decisions
  for orphan drugs in the presence of limited health care resources.
- Decision makers should seek to identify which value-bearing factors they deem pertinent to their decision, whose preferences they wish to consider, and what value propositions underpin their decisions. These need to be consistently applied to all technologies and populations affected by the decision: the new orphan drug, any existing therapy for the same disease which will be displaced, and any therapies which will be displaced elsewhere in the system to fund any additional costs of a positive coverage decision.

## Introduction

Since the passage of orphan drug legislation in the United States (in 1983) and in Europe (in 1999), the rate of development of new orphan drugs has grown rapidly.<sup>92,93</sup> As a result, there are now a greater number of products available for treating rare diseases than were available two decades ago.<sup>94</sup> For example, more than 400 products have been developed and marketed in the United States since 1983, compared to fewer than 10 in the previous decade.<sup>95</sup> Quite separately, there have also been advances in personalized medicine, resulting in the division of some diseases into sub-categories based on genetic and molecular characteristics. Consequently, diseases once considered "common" have become a collection of individual diseases with smaller prevalence rates, some of which meet the regulatory definitions of rarity. This has significant implications for the licensing and adoption of therapies to treat them.<sup>96,97</sup>

These developments have taken place in an environment in which payers are already facing significant challenges in making coverage decisions for non-orphan disease therapies.<sup>98</sup> Ageing populations, combined with increasingly expensive production costs for many innovative technologies, have led to large and sustained increases in health care expenditure. Health care budgets have generally increased faster than economies have grown, leading to genuine concerns about affordability in many countries. In response, health systems have established formal mechanisms for making coverage decisions on new health technologies, including drugs.<sup>99,100</sup> However, stakeholders in these coverage decision processes have expressed criticisms around both the processes and factors considered when deciding whether technologies represent a good investment.<sup>101,102</sup> These concerns have led policy makers and researchers to attempt to specify the characteristics of good decision processes and to be explicit about the factors considered in arriving at their decisions and their rationale.<sup>103</sup>

The growth in both the number and budgetary impact of orphan drugs has accentuated these challenges.<sup>104,105</sup> Each disease is rare, which hampers the ability to generate high quality evidence of value. It also leads manufacturers to seek much higher prices to ensure that expected profits are comparable to those provided by treatments for common diseases.<sup>106</sup> However, rare disease diagnoses are increasingly common, and reimbursement of orphan drugs on an exceptional basis may no longer be intellectually defensible nor economically sustainable.

166

Further, there is growing recognition of the need to understand the value that societies attach to providing coverage for orphan drugs at the expense of other health technologies as an important input into policy debates in this area.

The objective of this paper is to scope the social value arguments advanced in the academic and policy literature related to the reimbursement of orphan drugs, and then to locate these identified values within a coherent decision making framework applicable for coverage decisions in the context of a limited health care budget.

## Methods

To facilitate a structured and transparent approach to identifying the social value arguments advanced in orphan drug policy debates, we adopted the methods of a scoping review for the discovery component of the study.<sup>107</sup> Since several steps in a scoping review are the same as those in a systematic review, we also followed the PRISMA statement for reporting, where relevant.<sup>108</sup> Drawing upon previous work by the authors on the process of health care decision making and decision criteria for coverage decisions in the presence of a fixed budget, we then attempted to locate the points where social values should be incorporated within the decision process.<sup>60,66,103</sup>

### Scoping review

Our discovery work consisted of seven phases: identifying the research question; searching for relevant studies; selecting studies; charting, extracting and tabulating the data; analyzing the data; consulting relevant experts; and presenting the results.<sup>109</sup>

## Identifying the research question

With input from the team of investigators and collaborators on the Canadian Institutes of Health Research (CIHR) 'Promoting Rare-disease Innovations through Sustainable Mechanisms' (PRISM) grant, the following research question was formulated: *"What is known about societal values for new therapies for rare and ultra-rare diseases and conditions?"* Addressing this question comprised the initial phase of PRISM's research program, which aims to develop policy options that optimize access to effective therapies within a sustainable healthcare system.<sup>110</sup> There is no common definition of a rare or ultra-rare disease, nor a shared understanding of what is meant by 'societal values'. Therefore, to reduce the likelihood of missing relevant studies, a broad approach was adopted. 'Societal values' were, in general terms, any statements regarding how health care resources should be prioritized to reflect public choices or social preferences. Rare or ultra-rare diseases were any conditions that had been described as such by the respective author(s).

## Searching for relevant studies

A comprehensive search strategy for identifying published and unpublished papers that met the inclusion criteria (i.e., any type of paper addressing societal values in the context of therapies for rare diseases) was constructed with support from an experienced research librarian. Because the goal was to capture any information in this area (including think/conceptual pieces, empirical work, reviews, etc.), search parameters were not limited to a particular study design. However, for feasibility reasons, language and date restrictions were applied (papers appearing in English between January of 1990 and October of 2013). This date range was deemed sufficient, since it spanned the points at which the high costs of therapies for treating rare diseases were recognized as imposing a potential burden upon healthcare systems, sparking discussions around values and their place in determining the legitimacy of reimbursement despite limited evidence of effectiveness. The search strategy, which appears in full detail in Appendix 3.1, was applied to the following databases: PubMed (MEDLINE and non-MEDLINE sources), EMBASE, Web of Science, Scopus, ProQuest, Cochrane Library and EconLit. Citation searches were also performed using names of authors and journals of relevant papers, and Google Scholar was searched with combinations of keywords for rare diseases, therapies, and values (Appendix 3.1). For comprehensiveness, reference lists of relevant papers and conference abstracts were manually searched. All of the search results were imported into Reference Manager, and duplicate citations were removed. A detailed breakdown of the number of citations identified through the various information sources in presented in Figure 3.1.

## Selecting studies

Inclusion and exclusion criteria were developed at the outset of the review. These were used to create a screening checklist, which was applied to discrete citations or abstracts (where available) by two researchers (TS and DM) independently. Papers addressing *both* of the following were included: a specific rare or ultra-rare disease, or one or both more broadly; *and* specific values or factors that should be taken into account during funding deliberations and decision making around treatments for them (inclusion criteria). Studies presenting multi-country comparisons of access to, or utilization of, specific therapies or centralized drug review processes were excluded (exclusion criteria). The full papers of potentially relevant citations were retrieved for further consideration. Two researchers (MP and TS) independently reviewed full papers using the same criteria and then met to compare findings. Discrepancies were resolved through discussion.



#### Figure 3.1: PRISMA flow diagram for the scoping review

## Charting, extracting and tabulating the data

Key chunks of information from papers selected for inclusion in the scoping study were charted by both researchers using a data charting form (similar to a data extraction form used in systematic reviews). Charting involved sifting through and sorting information according to key aspects or concepts.<sup>111</sup> These key aspects or concepts, identified *a priori*, included author(s), type of paper, country where the paper originated, purpose of the paper, definition of 'rare' or 'ultrarare' applied, the types of therapies addressed, factors or values-based statements considered, methods or approaches used (including information sources) to arrive at findings or arguments presented, and conclusions. They formed the common analytical framework applied to papers through the data charting form. This component, which is part of the descriptive-analytical method within the narrative review tradition, ensured data were collected in a standard way, enhancing their usefulness.<sup>112</sup> Prior to beginning data extraction, the charting form was pilottested on five randomly selected papers (TS and DM). Information from completed forms was entered into tables, with rows representing individual papers and columns representing components of the analytical framework. This was done to assess the nature and distribution of papers comprising the review.

## Analyzing the data

The data were analyzed qualitatively using a general inductive approach. This method is commonly applied to research aimed at developing models of the underlying structure of arguments, processes or experiences.<sup>113</sup> Extracted data (raw text from the tables) were read in detail by two researchers (MP and TS) to become familiar with the content and potential themes. Initial coding categories which represented 'meaning units' (themes) were then created. Text segments were assigned to one or more of these categories. If a segment was not relevant to the research objectives, no category was assigned. If sub-themes emerged within a category, sub-categories were created. A sub-theme included items such as points of view on how characteristics of a disease or therapy should be valued in decision making. Once all text was coded, sub-themes were reduced to avoid overlap or redundancy. The placement of different text segments relative to one another was then considered in order to identify important links between themes. This information was used to map out the themes and sub-themes, creating a structure that reflects the relationships between them.

## Consulting relevant experts

To optimize the usefulness of the review, a consultation exercise was carried out with relevant key stakeholder communities (patients, providers, industry, and government).<sup>114</sup> The PRISM program includes a network of individuals from across Canada who represent these communities. Each individual was asked to review the draft results and contribute additional references, as well as insights into factors or arguments that had not been captured or appeared to be incomplete. Feedback received was incorporated into the draft results through a similar approach to that applied to the papers. It was first 'charted' using the same analytical framework and then organized by 'theme'. Where a new 'theme' emerged during the consultation, the draft results were re-analyzed through an iterative process to ensure that it or related concepts had not been missed.

171

## Presenting the results

To ensure consistency in the approach to reporting information by theme, a template was created and applied to each theme. It included a description of the theme (e.g., decision making factor, source of preferences, value proposition), arguments supporting or refuting its role in decision making within the context of therapies for rare diseases, empirical work done to inform such arguments (including a comparative analysis of such work, if available, to identify potentially conflicting findings), and a commentary on existing gaps in the evidence base.

## Incorporating social values within coverage decisions for orphan drugs

Building on previous work by the authors on the process of health care decision making and decision criteria for coverage decisions in the presence of a fixed budget, points in the decision process where social values would be incorporated were identified.<sup>66,72,103</sup> These points were subsequently used to locate the value arguments identified in the scoping review within the decision process.

The mapping of values on to the decision process formed the basis for a framework characterizing the distinct role of each value in informing decision making. This included consideration of how each value should be incorporated within the decision problem, how decision makers should engage with issues of value, and how value information can be synthesized with other components of the decision problem to arrive at a coverage decision in a consistent and transparent manner.

## Results

### Scoping review

## Description of studies selected

Using the PRISMA diagram format, Figure 3.1 shows the total number of candidate articles through the four phases of the identification and selection process. 3,723 articles were identified, of which 693 were duplicates. Screening of titles and abstracts excluded 2,629 citations, leaving 401 full text articles for eligibility assessment. After assessment, 43 articles were retained for review and synthesis.<sup>66–68,94,103,104,106,115–150</sup> These articles were either conceptual pieces or empirical studies. Several identified one or more attributes or characteristics around which there may be a social preference, such as the prevalence of disease or the extent to which the disease is life-threatening or chronically debilitating; we labelled these as *identified candidate decision factors*. Others identified potential sources of *preferences* or potential *value propositions* that decision makers might consider when making coverage decisions for treatments for rare diseases. Assessing the strength of opinion or empirical evidence supporting the use of each identified candidate decision factor, preference or value proposition was outside the scope of this paper.

Eight papers included in the review made normative recommendations relating to decision processes for orphan drugs, including institutional considerations, proposals for decision making committee membership, or procedural justice arguments.

## Extraction and tabulation of the data

The data extracted from each study is reported in Appendix 3.2.

## Analysis of the data

A total of 19 identified candidate decision factors were extracted from the 43 studies reviewed. These are summarized in Table 3.1 and described briefly in the following section.

| Prevalence (rarity) of disease                     | Availability of treatment alternatives       |
|----------------------------------------------------|----------------------------------------------|
| Severity (seriousness) of disease                  | Impact of treatment upon the distribution of |
| Identifiability of the beneficiaries of treatment  | health in the population                     |
|                                                    | Socio-economic policy objectives             |
| Extent to which the disease is                     | Cost (price) of treatment                    |
| life-threatening or chronically debilitating       | Budget impact of treatment                   |
| Evidence of treatment efficacy<br>or effectiveness | Cost-effectiveness of treatment              |
|                                                    | Feasibility of diagnosing the disease        |
| Magnitude of treatment benefit                     | Feasibility of providing treatment           |
| Safety profile of treatment                        | Industrial and commercial                    |
| Innovation profile of treatment                    | policy considerations                        |
| Societal impact of treatment                       | Legal considerations                         |
|                                                    |                                              |

#### Table 3.1: The 19 identified candidate decision factors

## Candidate decision factors

#### Prevalence (rarity) of the disease

Fifteen papers discussed the relevance of disease prevalence as a factor to be (or not to be) considered during decision making.<sup>66,116,120,121,124,126–128,130,135,140,141,144,147,150</sup> Several authors questioned whether 'rarity' represents a "rational basis for applying a different value to health gain", and argued that society should place a similar value on a health gain, regardless of whether the beneficiaries have rare or common disorders.<sup>66,126,141</sup> The findings of available empirical studies support this position.<sup>147</sup> Survey evidence from Norway found no preference among physicians or the general population for treating patients with rare disorders at the expense of those with common disorders.<sup>130</sup> A Canadian discrete choice experiment found that the probability that participants would prefer funding for a drug was around 30% higher for common diseases than for rare diseases.<sup>147</sup> The West Midlands Specialist Services Agency in the UK, following lengthy deliberations over its approach to funding orphan drugs, concluded that rarity should not be an overriding factor in any funding decision.<sup>126</sup>

#### Severity (seriousness) of disease

Twelve papers considered the relevance of the seriousness or severity of the disorder to decision making around orphan drugs.<sup>68,94,103,121,128,130,136,138,140,141,144,146</sup> Authors often indicated that it is socially desirable to prioritize conditions with high disease severity or unmet medical need. According to Siddiqui and Rajkumar, "the seriousness of a cancer diagnosis plays a role in how much cost patients and physicians are willing to bear for modest incremental benefits".<sup>121</sup> Clarke questioned whether patients should be "denied access to potentially effective new treatments for formerly untreatable and serious diseases only because it is virtually impossible to evaluate the cost-effectiveness of those treatments using conventional criteria".<sup>68</sup> Proposed frameworks for orphan drugs, as well as actual review bodies, such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC), include gravity of the condition as a consideration during decision making.<sup>103,140,144</sup>

#### Identifiability of the beneficiaries of treatment

In four papers, 'identifiability', or the tendency to give preference to 'visible' individuals, was discussed as central to definitions of the 'rule of rescue'.<sup>66,126,136,142</sup> Authors questioned whether it should be a consideration, raising the notion of opportunity costs to underpin arguments: "it strains credulity to say that the more caring society is the one that sacrifices several anonymous lives in order to save an identifiable one"; and "special status" for orphan drugs "may impose substantial and increasing costs on the healthcare system" and these costs will be borne by "other, unknown patients, with more common diseases who will be unable to access effective and cost effective treatment as a result".<sup>66,136</sup> One of the studies also mentioned the outcomes of deliberations by the West Midlands Specialist Services Agency in the UK, which concluded that identifiability should not be an overriding factor in any decision to fund treatment.<sup>126</sup>

#### Extent to which the disease is life-threatening or chronically debilitating

Three papers explicitly addressed the 'life threatening or chronically debilitating' nature of a condition, which forms part of the European Union's orphan drug legislation.<sup>67,120,136</sup> Authors discussed ethical arguments for favouring the worst-off, "even when only minor gains can be achieved and the cost is very high".<sup>136</sup> Pinxten *et al.* argued that developing and supplying orphan drugs complies with the "core biomedical objectives" of health care because "these patients have urgent, objective medical needs and because their lives are in danger when they do

not receive the necessary care... from a biomedical perspective, there are no valid reasons to exclude rare diseases from publicly funded healthcare".<sup>67</sup>

#### Evidence of treatment efficacy or effectiveness

Eleven papers discussed the role of evidence of clinical efficacy or effectiveness within the context of orphan drugs.<sup>68,94,103,116,117,120,134,137,139,144,150</sup> In general, authors argued that "orphan drugs [should] have to prove effectiveness like any other drug".<sup>117</sup> Three of the studies presented empirical evidence based upon retrospective analyses of regulatory decisions. The findings were similar: orphan drug trials were more likely to assess disease response rather than overall survival.<sup>117,120,139</sup> While some authors have called for more stringent measures of clinical effectiveness to be adopted, others have indicated that it is difficult to evaluate clinical effectiveness "due in part to the nature of rare diseases".<sup>68,139</sup> Four of the studies contained proposed decision making frameworks, all of which included evidence of clinical effectiveness as a criterion.<sup>103,116,120,150</sup>

#### Magnitude of treatment benefit

In ten papers, the importance of considering the amount of individual health gain or magnitude of benefit offered by an orphan drug was discussed.<sup>115,119,121,122,128,136,140,146,147,149</sup> Authors suggested that the impact of treatment on life expectancy and quality of life should be taken into account, as well as whether the therapy "remains a symptomatic therapy rather than a cure".<sup>115</sup> Others argued that the lack of explicit thresholds of clinical benefit contributes to the high cost of drugs, and supported adopting policies similar to the UK's proposed 'value based pricing' framework, under which drugs demonstrating a greater magnitude of benefit would command higher prices.<sup>149</sup> Other frameworks have also proposed "therapeutic benefit" as a criterion for assessing the value of therapies for rare diseases.<sup>140</sup> Empirical evidence appears to support this view.<sup>128,146</sup>

#### Availability of treatment alternatives

Seven papers address the availability of alternative treatments as a consideration during the development of funding decisions for orphan drugs.<sup>68,103,120,127,134,138,144</sup> In general, the lack of disease modifying treatment options connoted "unmet need", and authors argued that "it is socially desirable to develop treatments for conditions carrying very high disease severity or

having significant unmet medical need irrespective of their rarity", and that patients should not be denied access to potentially effective new treatments for "formerly untreatable" diseases.<sup>68,138</sup> Empirical studies have demonstrated that the price of an orphan drug appears to be inversely related to the availability of alternative treatments (i.e., prices are higher where no other options exist).<sup>127</sup> Proposed frameworks have also incorporated this factor into decision making criteria.<sup>103,120</sup>

#### Safety profile of treatment

Three papers addressed safety considerations as an important decision making factor.<sup>120,127,137</sup> Two included 'safety profile' along with other proposed criteria. However, the third presented empirical work comparing characteristics of pivotal trials of orphan versus non-orphan drugs for cancer, the findings of which demonstrated that serious adverse event rates were statistically significantly higher in trials of orphan drugs.<sup>137</sup>

#### Innovation profile of treatment

In four papers, innovation as a decision making factor was explored.<sup>66,127,140,149</sup> Some authors questioned whether healthcare systems should pay more than the value of the benefits from a new technology in the hope that a more valuable future technology will be developed (i.e., paying twice for innovation).<sup>66,149</sup> Others argued that cost-containment measures, which may be necessary due to the strain that orphan drugs put on national health budgets, will not be productive or appropriate for the long term development of drugs for rare diseases.<sup>127</sup>

#### Societal impact of treatment

The importance of considering the broader impact of orphan drugs on families, and societies as a whole, was discussed in five papers.<sup>103,118,122,140,144</sup> Concerns over standard methods of assessment, which may not take into account the value of returning patients or carers to work or school, were raised.<sup>144</sup> This point was addressed in two of the proposed funding frameworks for orphan drugs that included societal and familial impact in decision making criteria.<sup>122,140</sup>

#### Impact of treatment upon the distribution of health

In six papers, authors explored the impact of orphan drugs on the distribution of health across competing patient populations.<sup>66,67,123,126,136,147</sup> It was argued that debates around whether orphan drugs should receive special status must consider opportunity costs.<sup>66</sup> Opportunity cost presents an ethical dilemma, which "has to be assessed according to the various existing concepts of distributive justice".<sup>67</sup> Those concepts include equal access, equal resources, and equal outcomes, and they often conflict with one another. For example, if a utilitarian view of distributive justice were adopted, it would be difficult to support the development and supply of orphan drugs. Empirical evidence exploring this issue was limited to one paper. This paper comprised a survey of Norwegian doctors, which found little support for prioritizing the treatment of rare diseases, although a preference for allocating resources in accordance with the principle of reserving a small portion of resources for rare disease patients was noted.<sup>147</sup> The authors of two of the papers raised concerns over postcode prescribing and equity in access to orphan drugs across jurisdictions. Different approaches to alleviating these concerns were proposed, including regulation of compassionate access at a multi-jurisdiction (European) level and assignment of equity weights to quality-adjusted life years (QALYs) during the assessment of orphan drugs by decision making bodies.<sup>123,126</sup>

### Socio-economic policy objectives

Three papers considered socio-economic policy objectives in the context of rare diseases.<sup>66,130,144</sup> Drummond *et al.* argued that "it does not make much sense (in terms of efficiency) for the public system to fund or subsidize R&D on orphan drugs and later not reimburse the resulting innovations. This strategy will lead to a waste of R&D resources (if the products are finally not used) and discourage future investment on R&D on orphan drugs".<sup>144</sup> Meanwhile, McCabe *et al.* noted that "many healthcare payers have exempted orphan drugs from formal value assessment, arguing that society values equal opportunity for people with rare and common conditions enough to justify the high costs".<sup>130</sup>

#### Cost (price) of treatment

The price of orphan drugs was discussed in 19 papers.<sup>104,106,115,121,122,124,125,127,128,130,132,133,135,138, 142–144,147,149</sup> Several presented examples of the average per patient treatment costs, concluding that the prices of orphan drugs "poses a substantial challenge for healthcare systems" and are "unsustainable".<sup>115,130</sup> Health insurers cannot, and should not, "be expected to fund, at any price, all effective orphan drugs".<sup>144</sup> In one paper, the authors attributed the high prices to, in part, "the absence of appropriate benchmarks to gauge whether prices are low, high, or too high relative to expectations".<sup>138</sup> Their views were echoed in another paper, which stated that "the price usually has very little to do with the drug's incremental benefit".<sup>135</sup> Empirical work demonstrated that "awarding orphan designation in itself is associated with higher prices for drugs for rare disease indications".<sup>124</sup>

#### Budget impact of treatment

The relevance of budget impact considerations was discussed in 13 papers.<sup>66,103,104,116,119,121,127,128, 140,141,144,148,149</sup> Several authors questioned the need to consider it at all, since the budget impact of many orphan drugs is "modest" due to small patient numbers.<sup>144</sup> Others argued that, while the number of patients with a single rare disease is small, there are thousands of these diseases, and industrial and regulatory policies encouraging R&D in rare diseases have led to a rapidly growing orphan drug market. It has been estimated that, by 2030, "specialty pharmaceuticals will account for up to 44% of a plan's total drug expenditures".<sup>119</sup> Therefore, budget impact must be considered in funding processes. Budget impact was included as a consideration in three of the papers proposing decision making frameworks for rare diseases.<sup>103,116,140</sup>

#### Cost-effectiveness of treatment

The cost-effectiveness of treatment was considered by 23 papers.<sup>66–68,103,106,116–119,121,122,125,126,128, 130,135,136,139,140,144,148–150</sup> Issues raised fell into one of two categories: appropriateness of standard cost-effectiveness methods in assessments of orphan drugs; and use of conventional cost-effectiveness thresholds to determine the cost-effectiveness of orphan drugs. Several authors suggested that standard methodologies of health technology assessments must be updated and tailored to orphan drugs.<sup>122,144</sup> The application of conventional cost-effectiveness thresholds to coverage decisions has generated significant debate. Some authors argued that 'cost-effectiveness' should be treated similarly for orphan and non-orphan drugs and that cost-

effectiveness ratios offer an equitable way to guide decision making.<sup>126,135</sup> Others argued that "a complete restriction on the funding of ultra-orphan drugs is not a practical or realistic solution".<sup>141</sup> A number of the papers proposing decision making frameworks included cost-effectiveness as a consideration.<sup>103,106,116,140,150</sup>

#### Feasibility of diagnosing the disease

In one paper, the authors argued that funding decisions need to consider whether diagnosis of the rare disease is technically feasible.<sup>120</sup> Not all jurisdictions have the infrastructure, resources, or expertise to accurately diagnose some rare diseases.

#### Feasibility of providing treatment

In one paper, the authors considered the feasibility of treatment as a decision making criterion.<sup>120</sup> They indicated that specialist training and expertise are often required to ensure patients are appropriately managed.

#### Industrial and commercial policy considerations

Twelve papers addressed commercial considerations as they relate to the reimbursement of orphan drugs.<sup>66,120,121,129,133,134,138,142,143,145,146,149</sup> Some argued that "because of their small market potential, [orphan drugs] are not attractive for pharmaceutical companies to develop and market".<sup>120</sup> Others questioned this position, arguing that the costs of development for orphan drugs are lower, since clinical trials are shorter, regulatory findings are more successful, and Orphan Drug Act benefits such as fee waivers, R&D grants, and tax incentives are available.<sup>129</sup> Citing empirical work, the latter authors argued that "taken together, lower costs, higher rates of regulatory success and parity of revenue-generating potential translate into higher profitability of orphan vs non-orphan drugs".

#### Legal considerations

Two papers raised legal considerations as potential decision making factors.<sup>121,126</sup> Siddiqui and Rajkumar considered the implications of the patent system, while Moberly explained that "legal concerns over commercial expectations" contributed towards the UK Department of Health moving commissioning away from the West Midlands Specialized Services Agency".<sup>121,126</sup>

### Stakeholder preferences, value propositions, and institutional structures

In addition to the 19 candidate decision factors, the review also identified stakeholder preferences, value propositions, and institutional structures as important elements in the reimbursement of orphan drugs.

#### Stakeholder preferences

Three sources of preferences that decision makers might consider when making coverage decisions for treatments for rare diseases were identified:

- 1. The preferences of patients;<sup>103,126</sup>
- 2. The preferences of physicians;<sup>147</sup>
- 3. The preferences of society.<sup>66,136,144,147</sup>

### Value propositions

The following value propositions, comprising statements around how individual or multiple candidate decision factors should be valued or weighed during decision making, were identified:

- The 'rule of rescue', which supports the non-abandonment regardless of cost of identifiable patients with a life-threatening illness if an effective treatment is available. (This addresses 'identifiability of the beneficiaries of treatment', 'severity (seriousness) of disease', 'extent to which the disease is life threatening or chronically debilitating', and 'availability of treatment alternatives', and explicitly excludes 'cost (price) of treatment');<sup>67,136,141,142</sup>
- The 'equity principle', which argues against special consideration for patients with rare diseases. (This addresses 'societal impact of treatment', 'impact of treatment upon the distribution of health in the population' and 'magnitude of treatment benefit', placing greater weight on the first two factors);<sup>66,132,135,136,141,142,147</sup>
- 3. The 'rights-based approach', which proposes that individuals have a right to a decent minimum level of health care, implying that treatments for rare diseases should be made available if the respective patients have no other treatment options. (This addresses 'impact of treatment upon the distribution of health in the population' defining equity in terms of equal access to treatment and 'availability of treatment alternatives').<sup>141,142</sup>

## Institutional structures

Some authors called for a dedicated funding program for rare diseases and the establishment of an independent body responsible for their assessment. A WHO Orphan Medicines Model List was also proposed as a complement to existing Model List of Essential Medicines.<sup>120</sup>

Integrating the identified candidate decision factors, preferences and value propositions into a coherent decision making framework

## Categorizing the identified candidate decision factors

Based on qualitative analyses of discussions related to the 19 candidate decision factors in papers, relationships among them were identified. These were used to group the factors into three categories:

- a) Those that determine the *opportunity cost* of providing coverage for the orphan therapy or its relevant comparators;
- b) Those that bear upon the *value* assigned to the orphan therapy, its comparators, and the opportunity cost of each; and
- c) Those factors that are *neither* value-bearing *nor* determining the opportunity cost, but are, nevertheless, relevant for the decision about whether to provide coverage.

## 'Opportunity cost'-determining factors

The 'opportunity cost'-determining factors identified in the review included:

- Cost (price) of treatment
- Budget impact of treatment

As described in the papers, the budget impact of treatment is a function of the size of the patient population and the cost of treatment per patient, which, in turn, is a function of the treatment's purchase price and any other resources required for the safe and effective delivery of the treatment. The larger the budget impact, the greater the opportunity cost when the treatment is covered by the health care budget, since more treatments will need to be forgone by other patients.

## Value-bearing factors

The value-bearing factors were further grouped into four non-mutually exclusive categories:

- 1. Disease-related factors
- 2. Technology-related factors
- 3. Population-related factors
- 4. Socio-economic-related factors

## 1. Disease-related factors

The disease-related value-bearing factors identified in the review include:

- Prevalence (rarity) of disease
- Severity (seriousness) of disease
- Identifiability of the beneficiaries of treatment
- Extent to which the disease is life-threatening or chronically debilitating without treatment
- Impact of disease upon the distribution of health in the population
- Availability of treatment alternatives

## 2. Treatment-related factors

The treatment-related value-bearing factors identified in the review include:

- Evidence of treatment efficacy or effectiveness
- Magnitude of treatment benefit
- Safety profile of treatment
- Innovation profile of treatment
- Societal impact of treatment
- Impact of treatment upon the distribution of health in the population

## 3. Population-related factors

The population-related value-bearing factors identified in the review included:

- Societal impact of treatment
- Impact of treatment upon the distribution of health in the population
- Socio-economic policy objectives

## 4. Socio-economic-related factors

The socio-economic-related value-bearing factors identified in the review included:

- Societal impact of treatment
- Impact of treatment upon the distribution of health in the population
- Socio-economic policy objectives
- Industrial and commercial policy considerations
- Legal considerations

## Other decision factors

The remaining identified candidate decision factors were neither value-bearing nor 'opportunity cost'-determining, but were viewed as potentially influencing the decision about whether to provide coverage for an orphan therapy. These included:

- Feasibility of diagnosing the disease
- Feasibility of providing treatment
- Cost-effectiveness of treatment

Based on the findings of the review, feasibility of diagnosing the disease and of providing treatment are regarded as *necessary but not sufficient* conditions for the funding of an orphan therapy.

Given considerable debate in the literature around the cost-effectiveness of treatment, it requires careful consideration before integrating it within a decision making framework. This is discussed in further detail later in the paper.

## Preferences

The results of the scoping review highlighted the diversity of views around the candidate decision factors and how they should be operationalized in coverage decision making. Views often reflected preferences for how healthcare should be allocated across competing patient populations. As noted in several of the papers, those preferences may vary by stakeholder community. Therefore, decision makers may wish to incorporate the preferences of one or more

*stakeholders* when making coverage decisions for orphan therapies. The preferences of patients, physicians and society at large were explicitly identified as possible considerations. However, inferences to input from other stakeholders, such as the members of expert bodies or commercial partners, were made.

Given that preferences may vary, when incorporating these into a coherent decision making framework the preferences of each stakeholder (or stakeholder community) may be considered as representing a unique preference function,  $f_j$ , where *j* denotes the stakeholder in question. Within each preference function are a number of arguments,  $v_1, v_2, ..., v_n$ , representing each of the *n* value-bearing factors. Each stakeholder may place a different weight – which can include zero – on each of these value-bearing factors. For example, a physician might place a large weight on the safety profile of a treatment, whereas a patient might place a smaller weight on its safety profile but a larger weight on the expected magnitude of benefit.

The value that each stakeholder places on any particular treatment – whether that is the orphan therapy being appraised, a comparator, or a treatment forgone by other patients should it be funded – depends upon the weights placed by the stakeholder on each of the value-bearing factors and the extent to which the each of these value-bearing factors is relevant to the treatment in question. For example, if a stakeholder places a high weight on "severity of disease", then (all else equal) a treatment for patients with more severe disease will be valued more highly by the stakeholder than a treatment for patients with less severe disease. The value placed on treatment *i* by stakeholder *j* is denoted by  $P_j^i$ , where  $P_j^i = f_j(v_1, v_2, ..., v_n)$ .

## Value propositions

As mentioned above, the scoping review identified three value propositions – the 'rule of rescue', the 'equity principle', and the 'rights-based approach'. While this is not an exhaustive list, it provides examples of value propositions that might be considered by decision makers.

Value propositions may be viewed in a similar way to preferences. Each value proposition, k, is a unique function,  $g_k$ , of the *n* value-bearing factors,  $v_1, v_2, ..., v_n$ . Each value proposition places different weights on these factors. For example, the 'rule of rescue' places relatively large weights on 'identifiability of the beneficiaries of treatment' and 'extent to which the disease is life-threatening or chronically debilitating', but relatively little weight on 'impact of treatment upon the distribution of health'. By contrast, the 'equity principle' places no weight on 'identifiability of the beneficiaries of treatment', nor on 'prevalence (rarity) of disease', but a much greater weight upon 'impact of treatment upon the distribution of health in the population'.

In common with preferences, the value that any particular value proposition assigns to a treatment depends upon the weights placed on each of the value-bearing factors and the extent to which each of these is relevant to the treatment. All else equal, the 'rights-based approach' would assign a greater value to an effective treatment if patients have no other treatment options, whereas the 'equality principle' would not. The value placed on treatment *i* by value proposition *k* is denoted by  $Q_k^i$ , where  $Q_k^i = g_k(v_1, v_2, ..., v_n)$ .

## Our proposed framework

The above considerations may be used to map out a coherent decision making *framework*, which incorporates the role that each of the candidate decision factors, preferences and value propositions could play in the decision making process. This framework is summarized in Figure 3.2. The various value-bearing factors are considered in the yellow box at the top-left of the figure. The value placed on any particular treatment by each stakeholder and by each of the various alternative value propositions is a function of these value-bearing factors.

The value placed on treatment *i* by the *decision maker* is a function, *h*, of the value placed on treatment *i* by each stakeholder  $(P_1^i, P_2^i, ..., P_J^i)$  and the value placed on treatment *i* by each value proposition  $(Q_1^i, Q_2^i, ..., Q_K^i)$ , where *J* is the number of relevant stakeholders and *K* is the number of relevant value propositions. The decision maker determines how much weight (if any) is placed on the values of each stakeholder and each value proposition. These weights may be reflective of the composition of the committee which makes decisions and of the *process* by which stakeholders are consulted and decisions are made. For example, if patients or advocacy groups are given the opportunity to address the committee prior to the decision, the relative weight assigned to the values of those stakeholders by the decision maker might be increased. The value placed on treatment *i* by the decision maker is denoted by  $V^i$ , where  $V^i = h(P_1^i, P_2^i, ..., P_J^i, Q_1^i, Q_2^i, ..., Q_K^i)$ .



#### Figure 3.2: Proposed framework for aiding coverage decisions for orphan therapies

The decision maker's valuation of the orphan therapy and each relevant comparator is considered in the grey box to the lower left of Figure 3.2. Alongside this, in the grey box to its right, the decision maker also considers its valuation of the *opportunity cost* of the orphan therapy and each relevant comparator – that is, its valuation of the treatment(s) that would be forgone by *other* patients if the orphan therapy (or one of its comparators) were to be funded by the public health care system. This opportunity cost is determined by consideration of the 'opportunity cost'-determining factors listed in the green box at the top-right of the figure. The opportunity cost of treatment *i* is denoted as *i'*. The value placed on *i'* by the decision maker is  $V^{i'}$ , where  $V^{i'} = h(P_1^{i'}, P_2^{i'}, ..., P_1^{i'}, Q_1^{i'}, Q_2^{i'}, ..., Q_K^{i'})$ . When making a coverage decision, the decision maker compares its valuations of the orphan therapy and each of its relevant comparators,  $V^i$ , to its valuation of the opportunity cost of each,  $V^{i'}$ . This enables the decision maker to determine the *net value* of the orphan therapy and each of its comparators,  $NV^i$ , where  $NV^i = V^i - V^{i'}$ . If the net value of the orphan therapy is negative, then it should not be covered by the health care system, since its value is lower than that of the treatment(s) it is expected to displace. If its net value is positive, but lower than that of one or more relevant comparators, then, again, the orphan therapy should not be funded, since greater value can be gained by funding one of its comparators instead. The orphan therapy should only be funded if its net value is positive and greater than that of each relevant comparator.

However, there are other potential decision-bearing factors which the decision maker may wish to consider, listed in the blue box at the bottom-left of Figure 3.2. In particular, if diagnosis or treatment of the orphan disease is not feasible then the orphan therapy should not be covered, since the expected value cannot be realized.

## Considering the 'cost-effectiveness of treatment' within a decision making framework

The 'cost-effectiveness of treatment' is the only candidate decision factor identified in the scoping review that is not explicitly considered as a factor within the proposed framework. It requires special consideration for three key reasons:

- First, the cost-effectiveness of treatment is a composite of (at least) two other identified candidate decision factors: the cost of treatment; and the effectiveness of treatment. The unit of 'effectiveness' used might also be a function of multiple other candidate decision factors; for example, estimation of the QALYs gained with treatment combines consideration of the 'severity (seriousness) of disease' and the 'magnitude of treatment benefit'.
- 2. Second, the cost-effectiveness of treatment is generally determined using a decision rule, the most common involving the comparison of the incremental cost-effectiveness ratio (ICER) of the treatment to a 'cost-effectiveness threshold'.<sup>60</sup> In the context of a budget constrained health care system, this threshold is an estimate of the opportunity cost of funding the treatment (in terms of the units of 'effectiveness' forgone elsewhere in the system).<sup>26,55,151</sup> Consideration of the cost-effectiveness of treatment therefore also incorporates consideration of 'opportunity cost'-determining factors.

3. Third, by explicitly incorporating consideration of opportunity cost, cost-effectiveness analysis facilitates comparison of the 'effectiveness' of the treatment in question and its comparators to the 'effectiveness' of the treatment(s) forgone as a result of their funding. In valuing these, cost-effectiveness analysis typically assumes that the decision maker adopts the 'equity principle' as a value proposition – all units of 'effectiveness' are valued equally across the treatment, its comparators, and the opportunity cost, regardless of the prevalence (rarity) of disease or the identifiability of the beneficiaries of treatment. Furthermore, the 'value' of any treatment considered in a cost-effectiveness analysis is typically determined *only* in terms of these units of effectiveness – all other value-bearing factors are assumed to have zero weight.

Thus, the 'cost-effectiveness of treatment' (or any measure of the 'efficiency' of treatment which combines multiple value-bearing factors, a consideration of opportunity cost, and/or a specific value proposition) should not be incorporated within a coherent decision making framework as an additional 'factor'. To do so would amount to a partial double counting of opportunity cost and effectiveness, the extent of which depends upon the relative weights attached to cost, effectiveness and efficiency. Under specific circumstances, basing reimbursement decisions upon the results of a cost-effectiveness analysis is *equivalent* to making decisions using the framework proposed. In all other circumstances - including when the decision maker adopts a different value proposition to the 'equity principle', or otherwise applies a different value to each treatment than that implied by the measure of 'effectiveness' used in the cost-effectiveness analysis - this framework provides an *alternative* means to informing decisions that is coherent with the principals underlying cost-effectiveness analysis but which allows for a broader account of value than conventional cost-effectiveness analysis. This is because the proposed framework imposes no constraints upon the value-bearing factors that may be considered, the value propositions that may be adopted by the decision maker, or the relative value that may be placed upon any of these, whilst preserving the consideration of opportunity cost that is central to costeffectiveness analysis.

## Summary of steps required for coherent coverage decisions

As was highlighted in the results of the scoping review, within a budget constrained health care system, any decision to fund therapy for some patients inevitably imposes an *opportunity cost* by displacing treatments that would otherwise be provided to other patients. Providing coverage for any therapy (whether for a rare disease or otherwise) is desirable only if the *value* of doing so is greater than the *value* of this opportunity cost. Taking all of the findings into account, it may therefore be argued that coherent coverage decisions for orphan drugs require the following steps:

- 1. Establish whether the orphan therapy in question has any *relevant comparators* (treatment alternatives);
- 2. Estimate the *opportunity cost* (i.e., the other treatments expected to be displaced) resulting from providing coverage for the orphan therapy;
- 3. Estimate the opportunity cost associated with providing coverage for each relevant comparator;
- 4. Determine the *value* of the orphan therapy and each comparator;
- 5. Determine the *value* of the *opportunity cost* of the orphan therapy and each comparator;
- 6. Calculate the *net value* of the orphan therapy and each comparator by comparing the value of each to the value of their opportunity cost;
- 7. Provide coverage for the orphan therapy only if its net value is positive *and* exceeds that of each relevant comparator.

## Discussion

In this paper, we identified social value arguments in published scholarly papers related to the reimbursement of orphan drugs and key linkages among them in order to construct a coherent decision making framework. Discussions around funding specific orphan drugs and the principles of orphan drug coverage can be characterized as a discussion of values. Advocates of all positions have advanced value-based arguments as to why orphan drugs should or should not be given a special value status in the allocation of limited health care resources.<sup>102</sup> However, based on our scoping review, there is ambiguity around what is being valued and from what perspective. Similarly, the values positions implicitly assumed in constructing arguments are often not acknowledged. We have attempted to parse the literature and offer order to the consideration of the value of orphan drugs in the context of health care coverage decisions in the presence of limited resources.

To this end, we identified a set of candidate decision factors that authors have proposed should or should not be considered. Some of these are value-bearing factors, which we have characterized as disease-related, treatment-related, population-related, and/or socio-economicrelated. The latter includes legally mandated policy considerations. The remaining factors are not value-bearing but, nonetheless, important for health care coverage decisions, in particular those which determine the opportunity cost of a decision to provide funding. We also identified three potential sources of preferences – those of patients, physicians, and society – and a number of propositions about how values should be incorporated into the decision making process. The 'rule of rescue' proposes that opportunity cost be given a close to zero weight when there are identifiable victims facing imminent death or substantial disability. The 'equity principle' considers values equally for the beneficiaries of treatment and those bearing the opportunity cost, whilst the 'rights-based approach' disregards the issue of opportunity cost entirely in cases where patients have few alternative treatment options.

We propose that decision makers seek to identify which value-bearing factors they deem pertinent to their decision, whose preferences they wish to consider, and what value propositions underpin their decisions. We have identified how these need to be applied consistently to all technologies and populations affected by the decision: the new orphan drug, any existing therapy for the same disease which will be displaced, and any therapies which will be displaced elsewhere in the system to fund any additional costs of a positive coverage decision (the opportunity cost). This approach enables decision makers to arrive at a coverage decision based upon the value of the orphan therapy and its opportunity cost.

In recent years, many published frameworks for making reimbursement decisions on a range of health technologies have used multi-criteria decision analysis (MCDA). The framework we present highlights a number of issues with existing applications of MCDA. For example, a recent paper by Endrei et al. outlines the six major criteria used in the reimbursement of new medical technologies in Hungary: "health care priorities"; "severity of the disease"; "equity"; "costeffectiveness and quality of life"; "aggregated budget impact"; and "national and international respect".<sup>152</sup> Each of these is given a "points weight" which sums to a total of 100. As described above, 'cost-effectiveness' is a composite of other decision factors. Therefore, its inclusion in an MCDA framework results in 'double-counting'. Furthermore, cost-effectiveness analysis incorporates an explicit consideration of opportunity cost, which in a budget constrained health care system is determined in part by the "aggregated budget impact" of the treatment. It also incorporates an implicit value proposition based upon the 'equity principle'. The consideration of cost-effectiveness within an MCDA, alongside severity of illness, equity, and aggregated budget impact - where each is assigned a relative weight - becomes invalid. MCDA work conducted in the Vancouver Coastal Health Authority suffers from a similar issue by including "efficiency, effectiveness and appropriateness" among the criteria considered.<sup>153</sup> Within the field of rare diseases, Sussex et al. recently conducted a pilot study of MCDA methods, identifying eight attributes for establishing the value of an orphan medicine.<sup>154</sup> While the authors appropriately excluded consideration of costs or cost-effectiveness from these criteria, they note that their approach was intended to "focus on the benefits of [orphan drugs], which can then be compared with net costs, including the price of the [orphan drug] itself". The framework presented in this paper suggests that another step is required before the "benefits" of an orphan drug can be compared to its net costs - consideration of the opportunity cost resulting from these net costs, and an assessment of the "benefits" forgone as a result. A common theme among these existing implementations of MCDA is that the approach to considering costs appears misplaced. It seems inappropriate to consider costs as an afterthought to compare against the benefits of the treatment

in question, or alongside value-bearing factors as an attribute within an MCDA (either as a separate "cost" attribute or embedded within an attribute representing "budget impact", "cost-effectiveness" or "efficiency"). It seems more appropriate to consider costs as a determinant of the opportunity cost of the treatment. This opportunity cost should then be valued by the decision maker in a manner consistent with the valuation of the treatment and its comparators.

We hope that structuring discussions using this framework might also guide the focus and design of future research to ensure that empirical insights into value arguments around the coverage of treatments for rare diseases meet the needs of decision makers. The recent paper by Linley and Hughes highlights the importance of exploring whether perceived societal values, upon which decision-makers have based funding policies, reflect actual societal values; their findings suggest that these often differ.<sup>155</sup> The use of our proposed framework to structure both policy discussions and decisions might aid transparency about the nature of reimbursement decisions for orphan drugs, the values relied upon, and how these values have been implemented.

## Bibliography for Chapter 3

Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in the economic evaluation of health-care technologies. *Health Economics*.
2011;20(1):2–15. doi:10.1002/hec.1612.

55. Culyer A, McCabe C, Briggs A, et al. Searching for a threshold, not setting one: the role of the National Institute for Health and Clinical Excellence. *Journal of health services research* & *policy*. 2007;12(1):56–8. doi:10.1258/135581907779497567.

60. McCabe C, Claxton K, Culyer A. The NICE Cost-Effectiveness Threshold: What it is and What that Means. *PharmacoEconomics*. 2008;26(9):733–744. doi:10.2165/00019053-200826090-00004.

66. McCabe C, Claxton K, Tsuchiya A. Orphan drugs and the NHS: should we value rarity. *BMJ*. 2005;331(7523):1016–9.

67. Pinxten W, Denier Y, Dooms M, Cassiman J-JJ, Dierickx K. A fair share for the orphans: ethical guidelines for a fair distribution of resources within the bounds of the 10-year-old European Orphan Drug Regulation. *J Med Ethics*. 2012;38(3):148–53. doi:10.1136/medethics-2011-100094.

Clarke J. Is the current approach to reviewing new drugs condemning the victims of rare diseases to death? A call for a national orphan drug review policy. *Can Med Assoc J*. 2006;174(2):189–190. doi:10.1503/cmaj.050706.

72. McCabe C, Claxton K, Culyer AJ. The NICE cost-effectiveness threshold: what it is and what that means. *Pharmacoeconomics*. 2008;26(9):733–44.

92. Haffner ME. Adopting orphan drugs--two dozen years of treating rare diseases. *N Engl J Med.* 2006;354(5):445–7. doi:10.1056/NEJMp058317.

93. Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. *Nat Rev Drug Discov*.
2010;9(7):519–22. doi:10.1038/nrd3160.

94. Dunoyer M. Accelerating access to treatments for rare diseases. *Nature Reviews Drug Discovery*. 2011. doi:10.1038/nrd3493.

95. Food and Drug Administration. Developing Products for Rare Diseases & Conditions.2016.

96. Food and Drug Administration. Orphan Drug Regulations. *Federal Register*.
2013;78(113):35117–35135.

97. Salari K, Watkins H, Ashley EA. Personalized medicine: hope or hype? *Eur Heart J*. 2012;33(13):1564–70. doi:10.1093/eurheartj/ehs112.

98. Reeves A, McKee M, Basu S, Stuckler D. The political economy of austerity and healthcare: cross-national analysis of expenditure changes in 27 European nations 1995-2011. *Health Policy*. 2014;115(1):1–8. doi:10.1016/j.healthpol.2013.11.008.

99. Stafinski T. Role of centralized review processes for making reimbursement decisions on new health technologies in Europe. *ClinicoEconomics and Outcomes Research*. 2011:117. doi:10.2147/CEOR.S14407.

100. Stafinski T, Menon D, Philippon DJ, McCabe C. Health technology funding decisionmaking processes around the world: the same, yet different. *Pharmacoeconomics*.

2011;29(6):475-95. doi:10.2165/11586420-00000000-00000.

101. Simoens S. Pricing and reimbursement of orphan drugs: the need for more transparency. *Orphanet J Rare Dis.* 2011;6:42. doi:10.1186/1750-1172-6-42.

102. Drummond M, Towse A. Orphan drugs policies: a suitable case for treatment. *The European Journal of Health Economics*. 2014. doi:10.1007/s10198-014-0560-1.

103. Stafinski T, Menon D, McCabe C, Philippon DJ. To fund or not to fund: development of a decision-making framework for the coverage of new health technologies. *Pharmacoeconomics*. 2011;29(9):771–80. doi:10.2165/11539840-00000000-00000.

104. Schey C, Milanova T, Hutchings A. Estimating the budget impact of orphan medicines in Europe: 2010 - 2020. *Orphanet Journal of Rare Diseases*. 2011;6(1):62. doi:10.1186/1750-1172-6-62.

105. Hutchings A, Schey C, Dutton R, Achana F, Antonov K. Estimating the budget impact of orphan drugs in Sweden and France 2013-2020. *Orphanet J Rare Dis*. 2014;9:22. doi:10.1186/1750-1172-9-22.

106. Hughes-Wilson W, Palma A, Schuurman A, Simoens S. Paying for the Orphan Drug System: break or bend? Is it time for a new evaluation system for payers in Europe to take account of new rare disease treatments? *Orphanet J Rare Dis.* 2012;7:74. doi:10.1186/1750-1172-7-74.
107. Mays N, Roberts E, Popay J. Synthesising research evidence. In: Routledge London;2001:188–220.

108. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.

109. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. *International Journal of Social Research Methodology*. 2005;8(1):19–32. doi:10.1080/1364557032000119616.

110. PRISM Group. Promoting rare-disease innovations through sustainable mechanisms.2014.

111. Ritchie J, Spencer L. Qualitative data analysis for applied policy research. In: ; 2002.

112. Pawson. Evidence-based Policy: In Search of a Method. *Evaluation*. 2002;8(2):157–181. doi:10.1177/1358902002008002512.

113. Bryman, Burgess. Analyzing qualitative data.; 1994. doi:10.4324/9780203413081.

114. Oliver S. Making research more useful: integrating different perspectives and different methods. 2001. Available at: http://eprints.ioe.ac.uk/id/eprint/5142.

115. Barrett PM, Alagely A, Topol EJ. Cystic fibrosis in an era of genomically guided therapy. *Hum Mol Genet*. 2012;21(R1):R66–71. doi:10.1093/hmg/dds345.

116. Winquist E, Bell CM, Clarke JT, et al. An evaluation framework for funding drugs for rare diseases. *Value Health*. 2012;15(6):982–6. doi:10.1016/j.jval.2012.06.009.

117. Wild C, Hintringer K, Nachtnebel A. Orphan drugs in oncology. *Pharmaceuticals, Policy and Law.* 2011;13(3,4):223–232. doi:10.3233/PPL-2011-0327.

118. Valverde J-L, Prevot. Editorial. *Pharmaceuticals Policy and Law.* 2011;13(3,4):115–116.doi:10.3233/PPL-2011-0317.

119. Sullivan SD. The promise of specialty pharmaceuticals: are they worth the price? *J Manag Care Pharm*. 2008;14(4 Suppl):S3–6.

120. Stolk P, Willemen MJ, Leufkens HG. Rare essentials: drugs for rare diseases as essential medicines. *Bull World Health Organ*. 2006;84(9):745–51.

121. Siddiqui M, Rajkumar SV. The high cost of cancer drugs and what we can do about it. *Mayo Clin Proc.* 2012;87(10):935–43. doi:10.1016/j.mayocp.2012.07.007.

122. Prevot J, Watters D. HTA's and access to rare diseases therapies: The view from the PID community. *Pharmaceuticals*. 2011. Available at:

http://content.iospress.com/articles/pharmaceuticals-policy-and-law/ppl00322.

123. Picavet E, Cassiman D, Simoens S. Evaluating and improving orphan drug regulations in Europe: a Delphi policy study. *Health Policy*. 2012;108(1):1–9.

doi:10.1016/j.healthpol.2012.08.023.

124. Picavet E, Dooms M, Cassiman D, Simoens S. Drugs for rare diseases: influence of orphan designation status on price. *Appl Health Econ Health Policy*. 2011;9(4):275–9. doi:10.2165/11590170-00000000-00000.

125. Owen A, Spinks J, Meehan A, et al. A new model to evaluate the long-term cost effectiveness of orphan and highly specialised drugs following listing on the Australian Pharmaceutical Benefits Scheme: the Bosentan Patient Registry. *J Med Econ*. 2008;11(2):235–43. doi:10.3111/13696990802034525.

126. Moberly T. Rationing and access to orphan drugs. *Pharmaceutical journal*.2005;275(7374):569–570.

127. Michel M, Toumi M. Access to orphan drugs in Europe: current and future issues. *Expert Rev Pharmacoecon Outcomes Res.* 2012;12(1):23–9. doi:10.1586/erp.11.95.

128. Mentzakis E, Stefanowska P, Hurley J. A discrete choice experiment investigating preferences for funding drugs used to treat orphan diseases: an exploratory study. *Health Econ Policy Law.* 2011;6(3):405–33. doi:10.1017/S1744133110000344.

129. Meekings KN, Williams CS, Arrowsmith JE. Orphan drug development: an economically viable strategy for biopharma R&D. *Drug Discov Today*. 2012;17(13-14):660–4. doi:10.1016/j.drudis.2012.02.005.

130. McCabe C, Stafinski T, Menon D. Is it time to revisit orphan drug policies? *BMJ*.2010;341:c4777.

131. Mavris M, Cam Y Le. Involvement of patient organisations in research and development of orphan drugs for rare diseases in europe. *Mol Syndromol*. 2012;3(5):237–43. doi:10.1159/000342758.

 Matthews, Glass. The Effect of Market-Based Economic Factors on the Adoption of Orphan Drugs Across Multiple Countries. *Therapeutic Innovation & Regulatory Science*.
 2013;47(2):226–234. doi:10.1177/2168479012471945. 133. Luisetti M, Balfour-Lynn IM, Johnson SR, et al. Perspectives for improving the evaluation and access of therapies for rare lung diseases in Europe. *Respir Med*.
2012;106(6):759–68. doi:10.1016/j.rmed.2012.02.016.

134. Liang BA, Mackey T. Health care policy. Reforming off-label promotion to enhance orphan disease treatment. *Science*. 2010;327(5963):273–4. doi:10.1126/science.1181567.

135. Laupacis A. Evidence and values: requirements for public reimbursement of drugs for rare diseases - a case study in oncology - Reply. *Canandian Journal of Clinical Pharmacology*. 2009;16(2):e282–4.

136. Largent EA, Pearson SD. Which orphans will find a home? The rule of rescue in resource allocation for rare diseases. *Hastings Cent Rep.* 2012;42(1):27–34.

137. Kesselheim AS, Myers JA, Avorn J. Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. *JAMA*. 2011;305(22):2320–6. doi:10.1001/jama.2011.769.

138. Kanavos P, Nicod E. What is wrong with orphan drug policies? Suggestions for ways forward. *Value Health*. 2012;15(8):1182–4. doi:10.1016/j.jval.2012.08.2202.

139. Joppi R, Bertele' V, Garattini S. Orphan drugs, orphan diseases. The first decade of orphan drug legislation in the EU. *Eur J Clin Pharmacol*. 2013;69(4):1009–24. doi:10.1007/s00228-012-1423-2.

140. Hutchings A, Ethgen O, Schmitt C, Rollet P. Defining Elements of Value for Rare Disease Treatments. *Value in Health*. 2012;15(4):A31. doi:10.1016/j.jval.2012.03.176.

141. Hughes DA. Drugs for exceptionally rare diseases: do they deserve special status for funding? *QJM*. 2005;98(11):829–836. doi:10.1093/qjmed/hci128.

142. Gupta S. Rare diseases: Canada's "research orphans." *Open Medicine*. 2012. Available at: http://www.openmedicine.ca/article/viewArticle/482/451.

143. Garattini S. Time to revisit the orphan drug law. *Eur J Clin Pharmacol*. 2012;68(2):113. doi:10.1007/s00228-011-1115-3.

144. Drummond MF, Wilson DA, Kanavos P, Ubel P, Rovira J. Assessing the economic challenges posed by orphan drugs. *Int J Technol Assess Health Care*. 2007;23(1):36–42. doi:10.1017/S0266462307051550.

145. Drakulich A. Global Healthcare on the Ground: NIH Aims to Help Treat 200 Rare Diseases. *Pharmaceutical Technology*. 2011;35(8).

146. Dickson PI, Pariser AR, Groft SC, et al. Research challenges in central nervous system manifestations of inborn errors of metabolism. *Mol Genet Metab*. 2011;102(3):326–38. doi:10.1016/j.ymgme.2010.11.164.

147. Desser AS. Prioritizing treatment of rare diseases: a survey of preferences of Norwegian doctors. *Social Science & Medicine*. 2013. Available at:

http://www.sciencedirect.com/science/article/pii/S027795361300350X.

148. Denis A, Mergaert L, Fostier C, Cleemput I, Simoens S. Budget impact analysis of orphan drugs in Belgium: estimates from 2008 to 2013. *J Med Econ*. 2010;13(2):295–301. doi:10.3111/13696998.2010.491427.

149. Claxton K, Lindsay A, Buxton M, et al. Value based pricing for NHS drugs: an opportunity not to be missed? *BMJ: British Medical Journal*. 2008;336(7638):251–254. doi:10.2307/20508852.

150. Clarke J, Bell C, Coyle D, et al. A policy framework for funding drugs for rare diseases. *Value in Health*. 2009;12(7):A243. doi:10.1016/S1098-3015(10)74186-3.

151. Claxton K, Martin S, Soares M, et al. Methods for the Estimation of the NICE Cost Effectiveness Threshold. *CHE Research Paper 81*. 2013.

152. Endrei D, Molics B, Ágoston I. Multicriteria decision analysis in the reimbursement of new medical technologies: real-world experiences from Hungary. *Value in Health*. 2014. Available at: http://www.ajicjournal.org/article/S1098-3015(14)00046-1/abstract.

153. Mitton C, Dionne F, Damji R, Campbell D, Bryan S. Difficult decisions in times of constraint: criteria based resource allocation in the Vancouver Coastal Health Authority. *BMC Health Serv Res.* 2011;11:169. doi:10.1186/1472-6963-11-169.

154. Sussex J, Rollet P, Garau M, Schmitt C, Kent A, Hutchings A. A pilot study of multicriteria decision analysis for valuing orphan medicines. *Value Health*. 2013;16(8):1163–9. doi:10.1016/j.jval.2013.10.002.

155. Linley WG, Hughes DA. Societal views on NICE, cancer drugs fund and value-based pricing criteria for prioritising medicines: a cross-sectional survey of 4118 adults in Great Britain. *Health Econ.* 2013;22(8):948–64. doi:10.1002/hec.2872.

#### Chapter 4: Some inconsistencies in NICE's consideration of social values

#### Mike Paulden<sup>1</sup>, James F. O'Mahony<sup>2</sup>, Anthony J. Culyer<sup>3,4</sup> and Christopher McCabe<sup>1</sup>

<sup>1</sup> Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada

<sup>2</sup> Department of Health Policy and Management, Trinity College Dublin, Dublin, Ireland

<sup>3</sup> Centre for Health Economics, University of York, Heslington, UK

<sup>4</sup> Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada

#### Acknowledgements

The authors wish to thank Richard Edlin for providing insightful comments during discussions prior to the preparation of this manuscript. All authors contributed towards the ideas presented in this paper and all authors assisted with the writing and editing of the manuscript. AJC was Vice Chair of NICE from 1999 to 2003 and is currently Chair of NICE's International Advisory Group, but does not consider himself to be conflicted for the purposes of this manuscript. CM was Director of NICE's Decision Support Unit from 2003-2006, and a member of NICE's Medical Technologies Advisory Committee from 2010-2011, but does not consider himself to be conflicted for the purposes of interest. MP is the overall guarantor of this work.

#### Abstract

The UK's National Institute for Health and Care Excellence (NICE) recently proposed amendments to its methods for the appraisal of health technologies. Previous amendments in 2009 and 2011 placed a greater value on the health of patients at the "end of life" and in cases where "treatment effects are both substantial in restoring health and sustained over a very long period". Drawing lessons from these previous amendments, we critically appraise NICE's proposals.

The proposals repeal "end of life" considerations but add consideration of the "proportional" and "absolute" QALY loss from illness. NICE's cost-effectiveness threshold may increase from £20,000 to £50,000 per QALY based upon these and four other considerations: "certainty of the ICER"; if health related quality of life is "inadequately captured"; the "innovative nature" of the technology; and "non-health objectives of the NHS".

We demonstrate that NICE's previous amendments are flawed: they contain logical inconsistencies which can result in different values being placed on health gains for identical patients, and they do not apply value weights to patients bearing the opportunity cost of NICE's recommendations. The proposals retain both flaws and are also poorly justified. Applying value weights to patients bearing the opportunity cost would lower NICE's threshold, in some cases to below £20,000 per QALY. Furthermore, this baseline threshold is higher than current estimates of the opportunity cost.

NICE's proposed threshold range is too high, for empirical and methodological reasons. NICE's proposals will harm the health of unidentifiable patients, whilst privileging the identifiable beneficiaries of new health technologies.

#### Key points for decision makers

- The UK's National Institute for Health and Care Excellence (NICE) recently proposed amendments to its methods for the appraisal of new health technologies.
- The proposals would increase the upper range of NICE's cost-effectiveness range from £30,000 to £50,000 per QALY for all interventions, based upon special considerations: "proportional" and "absolute" QALY loss from illness; "certainty of the ICER"; if health related quality of life is "inadequately captured"; the "innovative nature" of the technology; and "non-health objectives of the NHS".
- NICE's proposals are problematic: there are inconsistencies in the treatment of social values; the special considerations are unquantified and unjustified; and the proposed threshold range is too high, for both empirical and methodological reasons.
- If implemented, the proposals would be destructive of population health, harming unidentified patients in order to privilege the identified beneficiaries of new health technologies.

#### Introduction

The UK's National Institute for Health and Care Excellence (NICE) recently proposed amendments to its methods for the appraisal of health technologies.<sup>156</sup> These are based upon the "terms of reference" issued to NICE by the UK's Department of Health, following the UK government's response to the 2013 Health Select Committee report into NICE.<sup>157</sup> The Department of Health called for a number of modifications to NICE's methods to allow for "value assessment of branded medicines under Value-Based Pricing [VBP]", and specifically requested that NICE's methods should, among other requirements:

- 1. "Include a simple system of weighting for burden of illness that appropriately reflects the differential value of treatments for the most serious conditions";
- 2. "Include a proportionate system for taking account of wider societal benefits";
- 3. "Not include a further weighting for therapeutic innovation and improvement"; and
- "Adopt the same benefit perspective for all technologies falling within the scope of VBP, and for displaced treatments".<sup>82</sup>

In response, NICE issued a consultation paper in March 2014 setting out proposals to amend its existing "Guide to the Methods of Technology Appraisal".<sup>82</sup> The consultation paper clarifies that NICE currently adopts a baseline cost-effectiveness threshold of £20,000 per QALY [quality adjusted life-year], representing the "opportunity cost of programmes displaced by new, more costly technologies" (p.27). This threshold may be increased up to £30,000 per QALY upon consideration of four factors: "certainty of the ICER [incremental cost-effectiveness ratio]"; "HRQoL [health-related quality of life] inadequately captured"; "innovative nature of technology"; and "non-health objectives of the NHS" (p.5). The threshold may be further increased up to £50,000 per QALY for technologies providing "life extending treatment at the end of life" (p.5), which were given special consideration by NICE in a 2009 amendment to its guidance.<sup>84</sup> A figure on p.5 separates this final consideration from the others, implying that the first four together cannot increase the threshold by more than an additional £20,000 per QALY.

The consultation paper then details NICE's proposed amendments. Consideration of "life extending treatment at the end of life" would be repealed and two new considerations would be added that might justify an increased threshold: "burden of illness" and "wider societal impact". The former is determined by the "proportional QALY loss" resulting from illness, while the latter is proxied by the "absolute QALY loss", in both cases calculated from the present time forwards rather than from the onset of illness.<sup>158,159</sup> Since the proportional QALY loss increases towards 1 as death approaches, "burden of illness" may be viewed as approximating the role of "life extending treatment at the end of life".<sup>159</sup> Meanwhile, the "wider societal impact" consideration favours the young and/or severely ill, for whom the absolute QALY loss tends to be greatest. The proposed amendments maintain a maximum threshold of £50,000 per QALY and retain consideration of "certainty of the ICER", "HRQoL inadequately captured", "innovative nature of technology", and "non-health objectives of the NHS". However, the wall of separation between these and other considerations has been removed, along with the £30,000 per QALY cap on the threshold that may be justified by these four considerations alone (p.13). Instead, these considerations will be grouped alongside "burden of illness" and "wider societal impact" and collectively these may be used to justify a threshold anywhere between £20,000 and £50,000 per QALY (p.13).

Curiously, the consultation makes no mention of a 2011 NICE guidance amendment, whereby it lowered its discount rate on health effects in cases where "treatment effects are both substantial in restoring health and sustained over a very long period", in effect lowering a technology's ICER and increasing the likelihood of adoption.<sup>83</sup> In common with the newly proposed "wider societal impact" consideration, this amendment favoured the young and/or severely ill; indeed, it was implemented specifically so that NICE could recommend an expensive drug for young osteosarcoma patients.<sup>160</sup> Since NICE's consultation does not propose repealing this amendment, NICE's future methods may therefore favour some young and/or severely ill patients in two complementary ways: first by reducing the ICER of treatments through "selective discounting"; and second by allowing for a higher threshold due to "wider societal impact" (and possibly also other considerations).

The purpose of this paper is to appraise NICE's proposals with respect to the consistency of its treatment of social values. First, we review the two previous amendments to NICE's methods,

204

and describe a number of inconsistencies regarding the incorporation of social values in each. We demonstrate these by considering a number of examples in which application of the social values incorporated within NICE's amended guidance results in inconsistent outcomes, including discrimination against the very patients NICE's guidance is intended to benefit. We show that it is not possible for NICE to prioritize some patients without deprioritizing others, and that this deprioritization is not obvious. We also demonstrate that NICE's use of arbitrary criteria in these previous amendments results in discontinuities in NICE's application of social values, with very different values assigned to similar health outcomes for similar patients. Next, we appraise NICE's most recent proposals and consider whether these inconsistencies, or any other issues, are present. We finish by recommending some steps that NICE could take to ensure consistency in its consideration of social values in the future.

#### Previous amendments to NICE's guidance

Two previous amendments to NICE's guidance focused upon considerations of social value: the 2009 "end of life" amendment, and the 2011 "selective discounting" amendment.<sup>83,84</sup> Prior to these amendments, NICE's guidance recommended that consistent methods be adopted across all cost-effectiveness analyses.<sup>161</sup> NICE's committees were instructed to use a threshold range of £20,000 to £30,000 per QALY in all appraisals, which was intended to represent (in principle) an unmodified estimate of the opportunity cost of adopting technologies within a fixed NHS budget.<sup>60,161</sup> Future costs and health outcomes were discounted at a single rate in all appraisals. Overall, NICE's methods broadly reflected a basic equity position in which each QALY was assigned equal value for all individuals in society (the so-called "a QALY is a QALY" position). Despite concerns raised by Harris and others, NICE's methods did not inherently discriminate on the basis of life expectancy.<sup>85,162</sup>

#### "End of life" amendment (2009)

NICE's "end of life" amendment marked a change in this basic equity position. It specified the following criteria which justified giving "greater weight to QALYs achieved in the later stages of terminal diseases" when appraising "end of life treatments":

- "The treatment is indicated for patients with a short life expectancy, normally less than 24 months";
- "There is sufficient evidence to indicate that the treatment offers an extension to life, normally of at least an additional 3 months, compared to current NHS treatment"; and
- "The treatment is licensed or otherwise indicated, for small patient populations".<sup>84</sup>

Where these criteria apply, NICE's appraisal committees were to consider "the magnitude of the additional weight that would need to be assigned to the QALY benefits in this patient group for the cost-effectiveness of the technology to fall within the current threshold range".<sup>84</sup> However, NICE's recent consultation notes that, rather than assigning an additional weight to QALY benefits, NICE reinterpreted this amendment as permitting a higher threshold of up to £50,000 per QALY, regarded as equivalent to applying "a maximum weight of 2.5 from a starting point of £20,000 per QALY".<sup>82</sup> Since, at the time of this amendment, NICE's best estimate of the opportunity cost of its decisions was reflected by its threshold range of £20,000 to £30,000 per QALY, its willingness to recommend "end of life" treatments with ICERs of up to £50,000 per QALY implied that NICE no longer valued the QALYs of all individuals equally; instead, providing an additional QALY to an "end of life" patient was assigned approximately twice the value of providing an additional QALY to any other patient. As Paulden & Culyer noted, this increased the potential for NICE's guidance to discriminate against patients with longer life expectancy.<sup>162</sup>

#### Inconsistencies resulting from the use of arbitrary cut-offs

Although NICE's methods are constructed around the use of the QALY as a measure of effectiveness, the cut-offs specified in the "end of life" amendment are based upon unadjusted life expectancy (LE): typically patients must have "less than 24 months" of remaining LE and be the beneficiary of a treatment appraised by NICE that "offers an extension to life, normally of at least an additional 3 months, compared to current NHS treatment".<sup>84</sup> Thus a treatment for a

patient with 3 years of remaining LE of poor quality would not meet the "end of life" criteria, while a treatment for another patient with 18 months of remaining LE of excellent quality might meet them, even if the first patient has fewer remaining QALYs. Similarly, a treatment providing an additional 3 months LE of extremely poor quality might satisfy the criteria, while a treatment providing an additional 2 months LE of excellent quality would not, even if the latter provided a greater QALY benefit. It is not clear why NICE regards quality of life as integral to decisions regarding cost-effectiveness, yet irrelevant to its "end of life" criteria.

In cases where a technology satisfies NICE's "end of life" criteria by meeting the 3-month cutoff, NICE applies an additional weight to *all* of the health benefits gained, not only to those health benefits experienced beyond the cut-off. The perversity of this is best shown by example. Suppose NICE appraises a technology (A) which provides an additional 2 months of LE of a given quality and which otherwise meets the "end of life" criteria. Since the technology fails to meet the "3 month" cut-off, no additional weight is applied to patients' QALYs. Now suppose NICE appraises a similar technology (B) for the same patient subgroup which provides 3 months of additional LE of a slightly lower quality than that of technology A. Since technology B meets the "end of life" criteria, NICE would apply a weight to all of the QALYs gained by its beneficiaries, *including those gained during the first 2 months of extended LE*. For those 2 months, NICE may therefore apply a *higher* value to a *lower* quality state of health for *exactly the same patients* – the very patients NICE's "end of life" amendment was intended to benefit.

#### Inconsistencies resulting from the failure to consider opportunity cost

Because disinvestment decisions in the NHS are taken by local decision makers, NICE does not know which specific services will be displaced following its recommendations. Nevertheless, given that a substantial proportion of health care resources are used by patients who are approaching death, at least *some* of this opportunity cost must fall upon patients regarded as being at the "end of life".<sup>163</sup> When NICE recommends a new "end of life" treatment, many of the patients bearing the opportunity cost will therefore be similar to those who stand to benefit. If NICE places a greater value on the health of "end of life" patients, it follows that they must account for those similarly placed patients bearing the opportunity cost. However, the "end of life" amendment only places a greater value on the health of the *beneficiaries* of treatment under review.

While it may seem appropriate to use a higher threshold to account for a greater value placed on the health of the beneficiaries of treatment (an assumption returned to below), there are important implications for the threshold when we consider how a greater value on health might apply to those bearing the opportunity cost. When a greater value is applied to displaced health, this implies that a *lower* threshold should be used. The appropriate threshold depends upon the proportion of those bearing the opportunity cost considered to be at the "end of life" and therefore deserving of special consideration. Given the increasing data on the characteristics of the recipients of NHS care, the resulting threshold can and should be evidence based.<sup>164</sup>

Suppose that NICE is appraising a new treatment for end of life patients, and assume (for now) that the opportunity cost of adopting the treatment is known to fall entirely upon existing services for patients also at the end of life. Suppose that for every £20,000 spent on the new treatment a single QALY is forgone by displacing existing services i.e. the shadow price of the relevant budget is £20,000 per QALY. Finally, suppose that NICE wishes to assign 2.5x the value to additional QALYs for end of life patients as it does to additional QALYs for all other patients. What threshold should NICE use to appraise the new end of life treatment? Following the logic of its "end of life" amendment and subsequent implementation, NICE would adopt a  $\pounds$ 50,000 per QALY threshold. Yet this would be counterproductive, because a new treatment with an ICER of £40,000 per QALY would displace two QALYs for each QALY gained, and those displaced QALYs would be forgone by end of life patients whose health should also be valued 2.5x as highly. Under such guidance, NICE would recommend some new treatments with ICERs above £20,000, even though these would displace more QALYs than they gain *in end of life patients*, the very group NICE ostensibly values more. It logically follows that where every patient is subject to special consideration - including the beneficiaries of treatment and those bearing the opportunity cost – the appropriate threshold to adopt is £20,000 per QALY, exactly the same as the shadow price of the budget. Alternatively, suppose that *none* of the opportunity cost falls on end of life patients, but rather on other patients not considered to be at the end of life. In this case the appropriate threshold to adopt is indeed £50,000 per QALY. Evidently, a far more realistic assumption would be that *some* of those patients bearing the opportunity cost are subject to special consideration but others are not. In this case, the appropriate threshold lies somewhere between £20,000 and £50,000 per QALY. The greater the proportion of end of life

patients among those bearing the opportunity cost, the closer the threshold should be to £20,000 per QALY.

NICE's decision to assign special consideration to "end of life" patients also has important implications beyond the appraisal of "end of life" treatments. Even when NICE appraises a new technology that does *not* meet the "end of life" criteria, the potential exists for its opportunity cost to be borne by patients who are at the end of life. Returning to the example above, suppose (for now) that *none* of the beneficiaries of the technology, but *all* of the patients bearing the opportunity cost, are considered to be at the end of life and subject to special consideration. One QALY is displaced by end of life patients for every £20,000 spent on the new technology, and each displaced QALY is assigned twice the value of each QALY gained. It follows that the appropriate threshold is £10,000 per QALY. Alternatively, and more realistically, if *some* of those bearing the opportunity cost are subject to special consideration. The proportion of those bearing the opportunity cost who are subject to special consideration. The critical point is that, by assigning special consideration to one subgroup of patients (in this case those at the "end of life"), NICE must use a threshold *lower* than the shadow price of the budget when appraising technologies that do not benefit this subgroup.

Since NICE's subsequent amendments have broadened the scope for patients to be assigned special consideration beyond "end of life" cases, it is useful to specify generalizable results:

- A. The greater the weight placed on the health of those provided special consideration, and the greater the proportion of such patients among those bearing the opportunity cost of NICE's recommendations, the *lower* the threshold NICE should use in its appraisal of technologies which do not benefit such patients.
- B. Where *multiple* avenues exist for assigning special consideration (as under NICE's recently proposed amendments), if the bearers of the opportunity cost are assigned *greater* special consideration than the beneficiaries of treatment then the threshold should be *lower* than the shadow price of the budget, and vice versa.

Three critical results follow from this:

- The greater the scope for NICE to assign special consideration to patients, the lower the threshold must be for technologies that benefit patients *not* assigned special consideration, since patients given special consideration will constitute a greater proportion of those bearing the opportunity cost.
- 2. If the case mix of those benefitting from technologies recommended by NICE is similar to the case mix of those bearing the opportunity cost, then the *weighted average* of the thresholds used across all of NICE's appraisals must equal the shadow price of the budget, where this average is weighted by the budget impact of each technology appraised.
- 3. If NICE specifies a maximum weight that may be assigned to the health of any patient (as it does in its recent proposals), and if *any* of those bearing the opportunity cost are assigned special consideration, then the maximum threshold that NICE may use for any appraisal is *unambiguously lower than* the product of this weight and the shadow price of the budget.

It follows that NICE's current and proposed threshold range is too high: the maximum threshold of £50,000 per QALY is too high in all cases – even when appraising "end of life" treatments – and the minimum threshold of £20,000 per QALY is also too high in many cases. As a result, NICE may be recommending new treatments which displace not only more QALYs but also more *value* than they provide, privileging the identifiable beneficiaries of new interventions recommended by NICE while harming the unidentified users of existing NHS services who bear the opportunity cost of their adoption.

#### Inconsistencies resulting from the conflation of QALY weights and threshold weights

Although NICE's "end of life" amendment requires appraisal committees to consider "the magnitude of the additional weight that would need to be assigned to the QALY benefits" in order for an "end of life" treatment to appear cost-effective, NICE has reinterpreted this as permitting a higher threshold of £50,000 per QALY, corresponding to a weight of 2.5 applied to a £20,000 per QALY threshold. However, as demonstrated above, if *any* of the patients bearing

the opportunity cost are also granted special consideration then the appropriate threshold is not a simple multiple of the shadow price of the budget and the QALY weight.

Even if *none* of those patients bearing the opportunity cost is given special consideration, the reinterpretation of QALY weights as a threshold weight is problematic. Consider a treatment which costs less than its comparator and is less effective (i.e. it lies in the SW quadrant of the cost-effectiveness plane). The treatment should be considered cost-effective only if its ICER lies *above* the threshold, and a weight on the QALYs of the beneficiaries should be accounted for by *lowering* the threshold rather than raising it.

Next, consider a treatment that is more expensive but less effective, or vice versa (i.e. it lies in the NW or SE quadrant). If a higher weight is applied to the QALYs of the beneficiaries, this will move the treatment deeper into its respective quadrant (Figure 4.1). This is clearly of interest to NICE, since this will reduce uncertainty about whether the treatment is cost-effective. Yet there is no means to account for this by adjusting the threshold.

Finally, consider a new treatment for "end of life" patients with two comparators: usual care, which is less expensive and less effective; and an alternative treatment, which is less expensive but more effective. Suppose the alternative treatment provides an additional 2 months of LE compared to usual care at greatly improved HRQoL, whereas the new treatment provides 4 months of additional LE compared to usual care but at a worsened HRQoL. Only the new treatment meets NICE's "end of life" criteria. Suppose that, when a weight is placed on the QALYs of the beneficiaries of the new treatment, it now appears both more effective and more cost-effective than the alternative treatment (Figure 4.2). If NICE were to apply this weight to the threshold instead of the QALYs directly, then the new treatment would appear to be dominated by the alternative treatment and hence appear (incorrectly) to be not cost-effective.

It follows that the use of a threshold weight rather than a QALY weight may result in inconsistencies when appraising technologies with more than one comparator and/or which lie outside of the NE quadrant of the cost-effectiveness plane. A solution to these difficulties is to adopt a "net benefit" framework in which both health benefits and the health expected to be forgone can be weighted directly for each strategy.<sup>26</sup>

Figure 4.1: Potential impact of applying QALY weights to strategies in the NW and SE quadrants







#### "Selective discounting" amendment (2011)

In 2011, NICE made a further amendment to its methods guidance alongside its appraisal of mifamurtide, a drug indicated for osteosarcoma (a rare disease that principally afflicts children and young adults).<sup>83</sup> Under NICE's standard 3.5% per annum discount rate, mifamurtide's estimated ICER was £57,000 per QALY. The appraisal committee noted that applying differential discounting, at 3.5% and 1.5% for costs and health effects respectively, reduced the ICER to £36,000 per QALY. NICE amended its guidance to state that costs and health effects be differentially discounted at 3.5% and 1.5% respectively in selective cases in which "treatment effects are both substantial in restoring health and sustained over a very long period (normally at least 30 years)". Following this amendment, NICE recommended mifamurtide.

O'Mahony and Paulden outlined a number of concerns and inconsistencies with this amendment.<sup>83</sup> Among these was the increased scope for NICE's guidance to discriminate on the basis of life expectancy, since the arbitrary "30 years" cut-off excludes individuals with less than 30 years LE following treatment. In NICE's 2013 Guide to the Methods of Technology Appraisal, the lower 1.5% rate was also applied to costs.<sup>14</sup> While this satisfied one of the concerns expressed by O'Mahony and Paulden, other inconsistencies remained unaddressed.

#### Inconsistencies resulting from the use of arbitrary cut-offs

In common with the "end of life" amendment, the criteria for NICE's "selective discounting" amendment use an arbitrary cut-off: a technology should provide a treatment effect for "at least 30 years". If a technology meets these criteria, a lower discount rate is applied to health benefits in *all* time periods, not only those after the cut-point. As O'Mahony and Paulden note, this results in potential inconsistencies. Consider two interventions for the same patients, the first yielding benefits for 29 years, the second yielding slightly smaller benefits for 29 years and an additional benefit in the 30th year (and so only the second meets the criteria for selective discounting). Since NICE would apply a lower discount rate to benefits from the second intervention in all 30 years, for the initial 29 years NICE may assign a *higher* value to a *lower* quality state of health for *exactly the same patients*. As in the example from NICE's "end of life" amendment provided earlier, this would harm the very patients the amendment was intended to benefit.

#### Inconsistencies resulting from the failure to consider opportunity cost

As with the "end of life" amendment, the "selective discounting" amendment fails to consider that similar (or identical) patients to those granted special consideration among the beneficiaries of treatment might bear the opportunity cost of NICE's recommendations. While a solution to this inconsistency in the case of the "end of life" amendment is to reduce the threshold, accounting for opportunity cost within a "selective discounting" framework is not straightforward.

Suppose that the appropriate discount rate for costs and health benefits in "non-special" cases is 3.5%, and that NICE wishes to give special consideration to some patients by applying a lower 1.5% discount rate to their health outcomes. It follows that a lower discount rate should also be applied to the health outcomes forgone by those patients subject to special consideration who bear the opportunity cost. Although these benefits forgone are not accounted for directly in the ICER, discounting the health benefits forgone at a lower rate is equivalent to discounting the incremental costs of the technology at a lower rate (assuming the shadow price of the budget remains constant).<sup>26,165</sup> In cases where every patient benefiting from treatment and every patient bearing the opportunity cost is subject to special consideration, the same lower discount rate may simply be applied to both the incremental costs and incremental health benefits. But if only a proportion of patients who bear the opportunity cost are subject to special consideration, then incremental costs should be discounted at a rate somewhere between 1.5% and 3.5% (depending upon this proportion). Furthermore, in cases where the beneficiaries of treatment are not subject to special consideration, the potential still exists for some patients bearing the opportunity cost to be subject to special consideration. In such cases, incremental benefits should be discounted at 3.5% and incremental costs at a rate between 1.5% and 3.5%. It follows that neither the original nor the modified amendment appropriately accounted for opportunity cost. It also seems far more straightforward and transparent for NICE to assign a direct weight to the QALYs of patients provided with special consideration than to use "selective discounting".

#### The proposed amendment to NICE's guidance

The proposals in NICE's consultation suffer from many of the same inconsistencies afflicting NICE's previous amendments. There are specific flaws with the conditions attached to QALY weightings that are analogous to specific flaws with previous amendments. There is also a general flaw in all of NICE's amendments that special considerations are not applied consistently across the beneficiaries and those bearing the opportunity cost.

*Issues arising from the use of "absolute QALY loss" as a proxy for "wider societal impact"* NICE was asked by the Department of Health to consider the "wider social impact" associated with a disease; however, it is unclear how this is related to the proposed weighting of "absolute QALY loss" i.e. the health lost by individuals. Considering wider societal impact risks prioritization of those with greater economic or social participation, since restoring the health of such individuals may be associated with greater productivity gains than restoring the health of other individuals. This would appear to be in contravention of the NHS Constitution, which states that "access to NHS services is based on clinical need, not an individual's ability to pay".<sup>166,167</sup> This can be mitigated by applying a common productivity weight to all individuals; however, if the number of beneficiaries and patients bearing the opportunity cost is equal then decisions will be unaffected. It follows that accounting for wider social impact is either unlawfully discriminatory or potentially unnecessary.

#### Inconsistencies in weighting disease severity from the use of "absolute QALY loss"

The proposed weight for "absolute QALY loss" assigns greater value to treatments for diseases that impose larger QALY losses over a patient's lifetime, irrespective of the health gain per unit of expenditure. This can result in inconsistencies whereby individuals with a disease that persists continuously over many years will benefit from a higher weighting on their health than otherwise similar individuals with multiple independent diseases that impose the same total QALY loss. This may serve to bias health care resource allocation in favour of chronic disease management in a way that would not be justified by an objective of maximizing health gain. Furthermore, it potentially introduces discrimination between patients that have similar capacity to benefit from health care expenditure. It may also result in age-based discrimination: since the absolute QALY loss from a disease tends to be greater with longer remaining life expectancy, and since younger patients usually have longer life expectancy, the absolute QALY weighting stands to favour the young over the old irrespective of their potential health gain per unit of expenditure.

#### Inconsistent treatment of benefits due to consideration of "proportional QALY loss"

The proposed weighting for "proportional QALY loss" also creates potential for inconsistencies in the weighting of health effects. The proportional QALY loss depends upon the remaining life expectancy *without* the disease in question, generally resulting in a smaller weighting for younger patients. A common health gain – for example the treatment of an acute event without long term health effects – may therefore be weighted differently for young and old patients. It is doubtful if the potential biases of the proportional and absolute QALY loss weights will systematically compensate in a way to allay concerns of age discrimination becoming inherent in NICE's decision making process.

#### *Inconsistencies resulting from capping the threshold weight at 2.5x*

NICE's proposed limit of 2.5x on the weight that can be applied to the baseline £20,000 per QALY threshold introduces an apparent inconsistency whereby special considerations may carry more value when applied to independent interventions than when applied simultaneously to a common intervention. Consequently, NICE is advocating explicitly allocating additional resources in response to the presence of specific attributes in some circumstances, but not rewarding the very same attributes in other circumstances. This inconsistency stands to create inefficiencies and potentially unwarranted discrimination between otherwise similar patients.

#### Inconsistencies between NICE's threshold and empirical estimates of the opportunity cost

Despite acknowledging that the baseline cost-effectiveness threshold of £20,000 per QALY represents the "opportunity cost of programmes displaced by new, more costly technologies", NICE makes no mention of the extensive recent empirical work – supported by NICE – which aimed to estimate this.<sup>151</sup> This work estimated the shadow price of the NHS budget to be below £20,000 per QALY, implying that NICE's proposed threshold is too high and is likely to result in the adoption of technologies which displace more value than they create.

#### Inconsistencies resulting from the failure to consider opportunity cost

As with previous amendments, NICE's proposals do not apply value considerations consistently to the beneficiaries of new technologies and those who bear the opportunity cost. NICE is proposing to adopt a higher threshold for appraising new technologies depending upon the "certainty of the ICER", whether health related quality of life is "inadequately captured", the "innovative nature" of the technology, and "non-health objectives of the NHS", yet the impact upon each of these from the displacement of existing services will not be considered. Indeed, if a special weight were to be attached to "certainty of the ICER" for both the new technology and the opportunity cost, this might be expected to raise the value of existing services relative to new technologies, because of the greater certainty of the costs and effectiveness of displaced services arising from their use in practice.

#### Discussion

The recently proposed amendments to NICE's guidance raise a considerable number of concerns. NICE is proposing a formal system for assigning values to health benefits using weights that are neither explicitly stated nor consensus-based. The quantitative basis for these weights has neither been provided nor evidenced; while NICE has applied implicit weights to certain attributes in the past, this is not a sound rationale for applying such weights in the future. Although the proposed system of weights ostensibly offers a formalization of NICE's decision criteria, the criteria remain in large part arbitrary and opaque. In essence, the proposals extend the limit of the threshold range for non-"end of life" treatments from £30,000 to £50,000 per QALY, increasing the scope for unaccountable discretion and allocations that are neither efficient nor fair.

The proposals also raise a number of questions. Is NICE's favouring of the young, those with severe illness, and individuals at the end of life consistent with the values of the UK public? Why has NICE proposed to repeal the "end of life" amendment but not the "selective discounting" amendment, given that the effect of each is approximated through the new "burden of illness" and "wider societal impact" considerations? Why do the proposals extend the scope for the threshold to be increased due to "innovative nature of technology" when the Department of Health's terms of reference specifically request that NICE "not include a further weighting for therapeutic innovation and improvement"? And why has NICE failed to apply special value weights to those bearing the opportunity cost of its decisions, despite the Department of Health's request that NICE "adopt the same benefit perspective for all technologies… and for displaced treatments"?

Within a resource constrained health care system, it is not possible to improve treatment access for one group of individuals without curtailing access for other groups. NICE's apparent

217

favouring of the young and those at the end of life inevitably disadvantages other patients. Even if discrimination on such grounds is consistent with the values of the public, NICE's proposed methods are not. NICE has repeatedly privileged the identified beneficiaries of treatment over those bearing the opportunity cost. As a result, NICE may recommend a treatment which displaces more QALYs than it gains in the very patients whose health it ostensibly values more. This may create the perception that NICE does not value the special value considerations *per se*, but only if doing so favours the adoption of a new technology. Such an approach would be ethically untenable as well as manifestly incompatible with NICE's previous basic equity position and the terms of reference provided by the Department of Health.

This raises the broader issue of whether NICE's revealed values are defensible – specifically, valuing the health of some patients more than others. It might be argued that NICE is an agent of a legitimate and accountable higher authority (the UK's elected parliament), and so its values should be those that prevail.<sup>25,26</sup> Or it might be held that it is the values of the British public, perhaps as revealed by NICE's Citizens Council, that should be reflected in NICE's methods. It is not clear to which possible source of moral authority these various amendments are appealing; nor which would be the more legitimate. Further, it is not apparent whether NICE's interpretation of these unclearly expressed values is reasonable. What is evident, however, is that an inconsistent treatment of social values cannot be sustained. It may therefore be timely for NICE to hold back from a poorly evidenced incorporation of social value arguments in its decision making processes while better evidence is generated regarding the values held by the public and also by social agents. It may be informative to test, for example, the extent to which NICE's previous basic equity position ("a QALY is a QALY") is generally acceptable, and what exceptions (if any) might be widely accepted by the public. The value judgments of policy makers well-versed in seeking solutions that transcend sectional interests may also be revealed through well-conducted experiments (the subjects of which may include parliamentarians and the members of NICE's Appraisal Committees). An appropriate strategy for NICE at this stage might therefore be to seek National Institute for Health Research support for such work.

In light of this, we recommend that NICE should:

- 1. Eliminate arbitrary cut-offs in the application of value weights;
- Implement research and public consultation processes to support the development of a broader value framework and associated implementation plans. This would require that NICE:
  - a. Specify how it will operationalize the measurement of each of the special value considerations included in the revised methods;
  - b. Specify the magnitude of the value weight it will assign to each special value consideration, and the evidence on which that weight is based;
  - c. Specify how the value weights assigned to all the special value considerations will be aggregated to arrive at the 'value multiplier' for each specific technology appraisal;
  - d. Specify how it will operationalize the assessment of the special value considerations in the patient groups likely to bear the opportunity cost of its recommendations, in order to meet the requirement that it "adopt the same benefit perspective for all technologies... and for displaced treatments".

Satisfying these recommendations will not be straightforward. An expert workshop may be worth convening to resolve the issues we have raised, and, so far as possible, to achieve consensus on future revisions. NICE's accretion of ad hoc adjustments has compounded inconsistency upon inconsistency and, quite apart from being inherently undesirable, the lack of transparency has made it hard for ordinary people to understand NICE's reasoning. It is plain that the current proposals are unlikely to command agreement, not because of disagreement with NICE's social value judgments but because of the inappropriate way in which it treats people having the same characteristics, and hence entitlements, differentially. There is a fairly straightforward remedy for all of these difficulties, whose starting point is to address priorities by attributing weights to those whom NICE wishes especially to protect, rather than by adjusting discount rates or thresholds. Further research relating to those bearing the opportunity cost, and the prevalence of special characteristics amongst them, is required to give reasonable effect to this symmetry of treatment.

Until such research is complete, we recommend that NICE reverts to the basic equity position it adopted prior to the recent amendments, under which all QALYs were assigned equal value ("a QALY is a QALY"). Not only would this reduce the scope for discrimination on the basis of life expectancy, but it would give all patients greater confidence that NICE has consistently considered the impact of its recommendations on their health. It would also satisfy the Department of Health's requirements that NICE "adopt the same benefit perspective for all technologies... and for displaced treatments" and also "not include a further weighting for therapeutic innovation and improvement", neither of which is satisfied by NICE's recent proposals.

It might be argued that reverting to equal value weights would preclude the use of "a simple system of weighting for burden of illness that appropriately reflects the differential value of treatments for the most serious conditions" or "a proportionate system for taking account of wider societal benefits", both of which were also requested by the Department of Health. However, if NICE calculates QALYs using an EQ-5D utility algorithm with an N3 term, which provides a weight for the added disutility of severe ill health on one or more dimensions, then this alone might meet the requirement to account for the burden associated with severe illness through a "simple system of weighting".<sup>58</sup> This approach has the added attraction of being derived from a large survey of UK public values. Furthermore, as we noted earlier, it does not appear possible to account for "wider societal benefits" in a way that would make a difference to NICE's decision making while also remaining consistent with the principles laid out in the NHS Constitution. Since an unlawful system for taking account of wider societal benefits is clearly not "proportional", it may therefore not be feasible for NICE to meet this specific request. It follows that reverting to its previous basic equity position, under which all QALYs were assigned equal value, may be the most appropriate means for NICE to satisfy, in the short term and to the greatest extent possible, the requirements placed upon it by the Department of Health.

Our critique of NICE's proposals should be tempered by an acknowledgement that NICE was placed in a difficult position; it was obliged to modify its methods in a way that was unlikely to be achieved by consensus. Nevertheless, it should be noted that NICE's proposals allow for large additional QALY weights. As such, NICE's proposals do not seem to be a conservative response to the requests made of it. Furthermore, NICE's proposals do not meet the Department of

220

Health's requirements: they fail to adequately apply the same benefits perspective to health displaced, they maintain a further weighting for therapeutic innovation and improvement, and the absolute QALY loss adjustment does not clearly correspond to "wider social impact".

It was a notable feature of the early years of NICE that difficult questions of method were identified openly so that all who might claim to have relevant expertise were able to fully participate in both the creation of, and subsequent revisions to, the methods guidance. We do not doubt that such transparency continues to be a prime social value of NICE.

#### Bibliography for Chapter 4

14. National Institute for Health and Care Excellence. *Guide to the methods of technology appraisal 2013.*; 2013.

25. Paulden M, Claxton K. Budget allocation and the revealed social rate of time preference for health. *Health Econ.* 2012;21(5):612–8. doi:10.1002/hec.1730.

Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in the economic evaluation of health-care technologies. *Health Economics*. 2011;20(1):2–15. doi:10.1002/hec.1612.

58. Dolan P. Modeling valuations for EuroQol health states. *Med Care*. 1997;35(11):1095–108.

82. National Institute for Health and Care Excellence. *Consultation Paper: Value Based Assessment of Health Technologies.*; 2014.

83. National Institute for Health and Care Excellence. *Discounting of health benefits in special circumstances*.; 2011.

84. National Institute for Health and Care Excellence. *Appraising life-extending, end of life treatments*.; 2009.

85. Harris J. NICE and not so nice. *Journal of Medical Ethics*. 2005;31(12):685–688. doi:10.1136/jme.2005.014134.

151. Claxton K, Martin S, Soares M, et al. Methods for the Estimation of the NICE Cost Effectiveness Threshold. *CHE Research Paper 81*. 2013.

156. National Institute for Health and Care Excellence. Methods of Technology Appraisal Consultation. 2014.

157. Secretary of State for Health. *The Government's Response to the Health Select Committee's Eighth Report of Session 2012-13 on the National Institute for Health and Clinical Excellence.*; 2013.

158. Stolk EA, Donselaar G van, Brouwer WB, Busschbach JJ. Reconciliation of economic concerns and health policy: illustration of an equity adjustment procedure using proportional shortfall. *Pharmacoeconomics*. 2004;22(17):1097–107.

159. Office of Health Economics. *Clarifying meanings of absolute and proportional shortfall with examples.*; 2013.

160. O'Mahony JF, Paulden M. NICE's selective application of differential discounting: ambiguous, inconsistent, and unjustified. *Value Health*. 2014;17(5):493–6.

doi:10.1016/j.jval.2013.02.014.

161. National Institute for Health and Care Excellence. *Guide to the methods of technology appraisal 2008.*; 2008.

162. Paulden M, Culyer AJ. Does cost-effectiveness analysis discriminate against patients with short life expectancy? Matters of logic and matters of context. *CHE Research Paper 55*. 2010.

163. Seshamani M, Gray AM. A longitudinal study of the effects of age and time to death on hospital costs. *J Health Econ*. 2004;23(2):217–35. doi:10.1016/j.jhealeco.2003.08.004.

164. Kasteridis P, Street A, Dolman M, et al. The Importance of Multimorbidity in Explaining Utilisation and Costs Across Health and Social Care Settings: Evidence from South Somerset's Symphony Project. *CHE Research Paper 96*. 2014.

165. Claxton K, Sculpher M, Culyer A, McCabe C. Discounting and cost-effectiveness in NICE–stepping back to sort out a confusion. *Health Economics*. 2006;15(1):1–4. doi:10.1002/hec.1081.

166. Raftery. Value based pricing: can it work? *BMJ*. 2013;347(oct11 3):f5941–f5941. doi:10.1136/bmj.f5941.

167. Department of Health. NHS Constitution for England. 2013.

#### Conclusion Contributions to knowledge

This thesis has provided contributions to knowledge in a number of areas.

In Chapters 1 and 2, we developed a model of the cost-effectiveness threshold that incorporates consideration of diminishing marginal returns, non-marginal budget impact, and multiple decision makers with imperfect information and potentially conflicting objectives. This model allowed for separate estimation of optimal thresholds for net investments and net disinvestments, and consideration of different assumptions regarding the decision making agent's authority.

We used this model to derive specifications of the optimal threshold under a range of alternative scenarios, demonstrating the potential for threshold curves to have a variety of functional forms. These results showed, for the first time, that threshold curves may 'kink' in a number of possible directions at the origin of the CE plane, resulting in different optimal thresholds for marginal net investments and net disinvestments. We also found that threshold curves may pass through the NW and/or SE quadrants of the CE plane, with important implications for the cost-effectiveness of technologies conventionally regarded as 'dominant' or 'dominated'.

In Chapter 3, we proposed a decision making framework for new technologies that integrates the social value arguments expressed in the orphan drugs literature while respecting the principles of horizontal and vertical equity. Although the focus of this chapter was upon the assessment of orphan drugs, the principles underlying this framework – including the differentiation between value-bearing decision factors and those that determine the opportunity cost – are also applicable in assessments of technologies for non-orphan diseases.

In Chapter 4, we demonstrated some inconsistencies in NICE's recent attempts at implementing an alternative vertical equity position. Although this work focused upon NICE, our findings have implications for other decision makers who adopt an objective with an implied vertical equity position that assigns greater weight to benefits arising for some individuals than for others.

In the remainder of this section, we will summarize specific contributions to knowledge by providing a response to each of the research questions considered in the Introduction.

#### Chapter 1

### 1. Is the conventional exposition of the cost-effectiveness threshold consistent with the assumptions underlying the standard theoretical model?

We found that the conventional exposition of the threshold, as a linear function passing through the origin of the CE plane, is a special case that arises under the following conditions:

- a) Initial technologies are *divisible* and exhibit *constant* returns to scale;
- b) A single initial technology remains *partially* adopted following initial allocation; and
- c) The budget impact of each new technology is sufficiently small that reallocation involves expanding or contracting *only* the partially adopted initial technology.

If condition (a) does not hold, then the threshold curve is not linear. Rather, it will be a concave function if technologies are divisible and exhibit diminishing returns to scale, or a step function if technologies are non-divisible (see p.63).

If condition (a) holds, then (b) will generally hold (see p.46). However, an exception arises if the initial budget is *just sufficient* to exhaust the last initial technology adopted during the initial allocation. In this case, adopting a net investment will result in contraction of this exhausted marginal initial technology, while adopting a net disinvestment will result in expansion of *another* initial technology. Since the marginal ICER in contraction of the exhausted technology will generally differ from the marginal ICER in expansion of the other technology, this results in a special case where the threshold curves for net investments and net disinvestments 'kink' at the origin of the CE plane. We did not observe this special case in the analysis we conducted.

If condition (c) does not hold, then reallocation involves two or more initial technologies. Since their marginal ICERs in expansion or contraction will generally differ, this results in 'kinks' in the threshold curve where reallocation switches from one initial technology to another (see p.60).

The conventional assumption that the numerical threshold represents the ICER of the marginal health technology '*displaced*' in order to fund the new technology is appropriate if, in *addition* to conditions (a), (b) and (c) above, *one* of the following conditions also applies: (d) the new technology is a net investment *and* the most efficient marginal decrease in expenditure on initial technologies is to *contract* an initial technology in the NE quadrant (rather than expand an initial technology in the SW quadrant); or (e) the new technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technology is a net disinvestment *and* the most efficient marginal increase in expenditure on initial technologies is to *contract* an initial

technology in the SW quadrant (rather than expand an initial technology in the NE quadrant). If *neither* (d) *nor* (e) holds, then no initial technologies are '*displaced*' during reallocation. Rather, adopting the new technology results in *expansion* of an initial technology.

# 2. What are the implications for the specification of the optimal cost-effectiveness threshold of relaxing the assumptions of divisibility of technologies and constant returns to scale in the standard model?

Under the 'standard' assumptions of divisibility and constant returns, the optimal threshold for both net investments and net disinvestments remains *constant* as the budget impact of the new technology increases, *until* reallocation switches from the first initial technology to the next. The threshold then changes *continuously* thereafter, falling for net investments and increasing for net disinvestments. Since the marginal ICER of each initial technology does not change with expansion or contraction, the threshold curves resemble a piecewise linear function, with 'kinks' at the points where reallocation switches from one initial technology to another.

If technologies are divisible but exhibit *diminishing* returns to scale, then the optimal threshold for both net investments and net disinvestments changes *immediately* and *continuously* as the budget impact increases, falling for net investments and increasing for net disinvestments. As a result, the threshold curves are entirely concave with no 'kinks' (see p.63).

If technologies are *non-divisible*, then the threshold curves resemble a step function, with each 'step' corresponding to a different optimal reallocation of initial technologies. For both net investments and net disinvestments, the threshold increases with the budget impact until the set of initial technologies subject to reallocation changes, at which point the threshold immediately falls and then begins increasing again. A special case arises for net disinvestments with a sufficiently small budget impact that no subsequent reallocation is possible. In this case, the threshold curve lies on the vertical axis of the CE plane and the numerical threshold is mathematically undefined (see p.65).

### 3. Should the same cost-effectiveness threshold be used to consider 'net investments' and 'net disinvestments'? If not, under what conditions might these differ?

If conditions (a), (b) and (c) from the response to question 1 hold, then the same thresholds should be used to consider net investments and net disinvestments.

If initial technologies are divisible and exhibit constant returns to scale, but the budget impact of a new technology violates condition (c), then these thresholds generally differ (see p.60).

If initial technologies are divisible and exhibit diminishing returns to scale, these thresholds are *similar* but *not identical* if the budget impact of a new technology is *marginal*. The thresholds for net investments and net disinvestments diverge as the budget impact increases (see p.63).

If initial technologies are non-divisible, then these thresholds generally differ, regardless of the budget impact (see p.64).

#### Chapter 2

## 4. What are the implications for the specification of the optimal cost-effectiveness threshold of considering multiple decision makers with imperfect information?

We found that the optimal threshold depends upon the information available to each decision maker. Our work demonstrates, for the first time, the potential for threshold curves to pass through the NW and/or south-east SE quadrants of the agent's CE plane. This requires a novel interpretation of numerical ICERs, and raises the possibility that 'dominated' technologies may be cost-effective while 'dominant' technologies may not be (see p.109).

If the agent and reallocator have similar information, which differs from that available to the allocator, then reallocation following a net investment represents an opportunity to 'correct' what the agent and reallocator *perceive* to be an inefficient initial allocation of resources. Reallocation may therefore be associated with *positive*, rather than negative, expected incremental net benefit to the agent. If so, the agent may be willing to recommend some new technologies that lie within the NW quadrant, provided the expected *net* incremental benefit of their adoption and the subsequent reallocation is positive.

Alternatively, if the agent and *allocator* have similar information, which differs from that available to the *reallocator*, then the agent may not 'trust' the reallocator to make an efficient reallocation following adoption of a new technology. If the agent perceives that reallocation

following a net disinvestment will result in *negative* expected incremental benefit, then the agent might *not* recommend some technologies that lie in the SE quadrant, since the expected *net* incremental benefit of their adoption and the subsequent reallocation is negative.

We also find that the threshold may be 'kinked' at the origin of the CE plane, with different optimal thresholds for net investments than for net disinvestments.

#### 5. Does the optimal threshold depend upon the authority of the decision making 'agent'?

The optimal threshold depends upon whether the agent has authority to implement a net investment or net disinvestment of resources in initial technologies as an *alternative* to recommending adoption of a new technology. If the agent and allocator have different information, the agent may wish to implement such a reallocation in order to 'correct' perceived inefficiencies in the initial allocation of resources.

The optimal threshold also depends upon whether the agent has authority to *mandate* reallocation following adoption of a new technology and/or following implementation of an alternative to the new technology. With this authority, the agent can 'overrule' what it perceives to be inefficient reallocations carried out by the reallocator.

If the agent *has* the authority to implement an alternative net investment or net disinvestment of resources instead of recommending adoption of a new technology, *and* if the agent has the *same* authority to mandate reallocation following adoption of the new technology as it does following implementation of an alternative to the new technology – that is, the agent *has* this authority in *both* cases, or does *not* have this authority in *either* case – then in some cases the threshold is *not* dependent upon the expected incremental benefit gained or forgone through reallocation. Two further conditions must hold for this to be the case: the agent must have *different information* to the *allocator*, such that the agent *perceives* the initial allocation of resources to be inefficient; and the expected *net* incremental benefit of implementing an alternative to the new technology, and its subsequent reallocation, must be *positive*. If these assumptions hold, the agent will consider a new technology cost-effective if it provides greater expected incremental benefit to the agent than the agent's preferred *alternative* to the new technology (see p.127).

Given the difficulty of empirically estimating the gain or loss in incremental benefit associated with reallocation in real world practice, the opportunity to adopt a conceptually different threshold may be worthy of further consideration, particularly if this alternative specification of the threshold is easier to estimate empirically.

#### Chapter 3

# 6. What are the social value arguments that have been advanced in the literature relating to the reimbursement of orphan drugs?

We identified 19 'candidate decision factors' in the orphan drugs literature (see p.174):

- 1. Prevalence (rarity) of disease;
- 2. Severity (seriousness) of disease;
- 3. Identifiability of the beneficiaries of treatment;
- 4. Extent to which the disease is life-threatening or chronically debilitating;
- 5. Evidence of treatment efficacy or effectiveness;
- 6. Magnitude of treatment benefit;
- 7. Safety profile of treatment;
- 8. Innovation profile of treatment;
- 9. Societal impact of treatment;
- 10. Availability of treatment alternatives;
- 11. Impact of treatment upon the distribution of health in the population;
- 12. Socio-economic policy objectives;
- 13. Cost (price) of treatment;
- 14. Budget impact of treatment;
- 15. Cost-effectiveness of treatment;
- 16. Feasibility of diagnosing the disease;
- 17. Feasibility of providing treatment;
- 18. Industrial and commercial policy considerations; and
- 19. Legal considerations.

In addition, we identified three sources of stakeholder preferences (see p.181):

- 1. The preferences of patients;
- 2. The preferences of physicians; and
- 3. The preferences of society.

Finally, we identified three value propositions (see p.181):

- 1. The 'rule of rescue';
- 2. The 'equity principle'; and
- 3. The 'rights-based approach'.

# 7. Can these social value arguments be categorized and synthesized into a coherent decision making framework?

We categorized the 19 identified candidate decision factors into three groups (see p.182):

- a. Those that determine the *opportunity cost* of providing coverage for the orphan therapy or its relevant comparators;
- b. Those that bear upon the *value* assigned to the orphan therapy, its comparators, and the opportunity cost of each; and
- c. Those factors that are *neither* value-bearing *nor* determine the opportunity cost.

We further categorized the value-bearing factors into four non-mutually exclusive groups:

- i. Disease-related factors;
- ii. Technology-related factors;
- iii. Population-related factors; and
- iv. Socio-economic-related factors.

Finally, we proposed a means for integrating the identified candidate decision factors, stakeholder preferences and value propositions into a coherent decision making framework (see p.186). The key feature of this framework is that the factors which determine the opportunity cost of a new technology and its comparators (including cost and budget impact) are considered separately to other factors. Once the opportunity cost of each is established, the value-bearing factors, stakeholder preferences and value propositions are then applied

consistently across the new technology, its comparators, and the opportunity cost of each. This allows for decisions which maintain horizontal equity, while also respecting the decision maker's vertical equity position.

The principles underlying this decision making framework, and the categories used to group the candidate decision factors, are generalizable beyond the consideration of orphan drugs. The key feature of this framework is that the opportunity cost determining factors are isolated from the remaining factors, allowing the value-bearing factors, stakeholder preferences and value propositions to be applied consistently to both the new technology and its opportunity cost, respecting the principle of horizontal equity.

#### Chapter 4

### 8. Are there any inconsistencies in the consideration of social values within NICE's existing methods for the economic evaluation of health technologies?

Prior to 2009, NICE's methods broadly reflected a vertical equity position in which each QALY was assigned equal value for all individuals in society. At this time, NICE's threshold represented, in principle, an unmodified estimate of the opportunity cost of adopting technologies, such that NICE's recommendations maintained horizontal equity and respected this implied vertical equity position.

NICE's 'end-of-life' guidance in 2009, and its introduction of selective discounting in 2011, introduced inconsistencies in its consideration of social values (see p.205). A key inconsistency with both amendments is that they effectively apply an additional weight *only* to the health of the beneficiaries of the technology under assessment, with no consideration made of the individuals who bear the opportunity cost. If those bearing the opportunity cost include any individuals with similar characteristics to the beneficiaries, this not only violates the principle of horizontal equity but also results in an inconsistent application of NICE's vertical equity position. A further inconsistency arises with both amendments due to their use of arbitrary cut-offs. This could potentially result in NICE unwittingly discriminating against the very individuals for whom it wishes to discriminate in favour. Finally, inconsistencies arise from the application of the 'end-of-life' guidance, due to NICE's conflation of QALY weights and threshold weights.
# 9. Are there any inconsistencies in the consideration of social values within NICE's proposals for 'value-based pricing', made available for public consultation in 2014?

NICE's proposals for 'value-based pricing' suffer from many of the same inconsistencies as its previous amendments (see p.215). In particular, the proposals effectively apply an additional weight *only* to the health of beneficiaries, with no consideration made of those who bear the opportunity cost.

The proposals also introduced a number of additional inconsistencies:

- The proposed weight for "absolute QALY loss" as a means for accounting for disease severity might result in individuals with a disease that persists continuously over many years benefiting from a higher weighting on their health than otherwise similar individuals with multiple independent diseases that impose the same total QALY loss. This potentially introduces discrimination between patients that have similar capacity to benefit from health care expenditure. It may also result in age-based discrimination: since the absolute QALY loss from a disease tends to be greater with longer remaining life expectancy, this weighting stands to favour the young over the old irrespective of their potential health gain per unit of expenditure.
- The proposed weighting for "proportional QALY loss" depends upon the remaining life expectancy *without* the disease in question, generally resulting in a smaller weighting for younger patients. A common health gain may therefore be weighted differently for young and old patients, raising concerns about age discrimination.
- 3. The proposed limit of 2.5x on the weight that can be applied to the baseline £20,000 per QALY threshold introduces an apparent inconsistency whereby special considerations may carry more value when applied to independent interventions than when applied simultaneously to a common intervention. Consequently, NICE is advocating explicitly allocating additional resources in response to the presence of specific attributes in some circumstances, but not rewarding the very same attributes in other circumstances. This inconsistency stands to create inefficiencies and potentially unwarranted discrimination between otherwise similar patients.

# 10. What steps can NICE, as an exemplar decision maker, take to resolve any identified inconsistencies in its consideration of social values?

We recommended that NICE eliminates arbitrary cut-offs in the application of value weights, and implements research and public consultation processes to support the development of a broader value framework and associated implementation plans (see p.217).

This would require that NICE specifies how it will operationalize the measurement of each special value consideration, the magnitude of the value weight it will assign to each, how these will be aggregated to arrive at the 'value multiplier' for each specific technology appraisal, and how it will operationalize the assessment of the special value considerations in the patient groups likely to bear the opportunity cost of its recommendations.

These recommendations have broader implications for other decision makers who may be considering adopting a vertical equity position that assigns a greater weight to benefits arising to some individuals but not to others. A fundamental requirement for horizontal equity to be maintained is that special value considerations are applied consistently across the beneficiaries of new technologies and those who bear the opportunity cost of their adoption. This is the key principle underlying the decision making framework proposed in Chapter 3. This finding is generalizable to technologies other than orphan drugs, and to decision makers other than NICE.

# Implications for health care resource allocation in Canada

We will now consider the implications of our findings for two specific issues in the allocation of health care resources in Canada:

- 1. Appropriate decision making frameworks for assessing new technologies;
- 2. Equity in the allocation of health care resources across Canada.

### Appropriate decision making frameworks

There are a number of agencies in Canada that conduct assessments of health technologies.<sup>168</sup> The most well-known is CADTH, which "makes reimbursement recommendations to Canada's federal, provincial, and territorial public drug plans" through two channels: the Common Drug Review (CDR) and the pan-Canadian Oncology Drug Review (pCODR).<sup>91</sup> There are also provincial HTA agencies, including the Ontario Health Technology Advisory Committee (OHTAC), which "makes recommendations to Ontario's Ministry of Health and Long-Term Care on whether health interventions should be publicly funded or not".<sup>169</sup>

Each agency adopts its own framework to guide its recommendations. For example, the Canadian Drug Expert Committee (CDEC), which provides advice to CADTH on which new drugs to recommend as part of its CDR process, takes into account the following considerations:

- 1. "Patient group input";
- 2. "Clinical studies demonstrating the safety, efficacy, and effectiveness of the drug compared with alternatives";
- 3. "Therapeutic advantages and disadvantages relative to current accepted therapy"; and
- 4. "Cost and cost-effectiveness relative to current accepted therapy".<sup>170</sup>

The pCODR Expert Review Committee (pERC), which provides recommendations as part of CADTH's pCODR process, adopts a "deliberative framework" that incorporates four "criteria":

- 1. "Clinical benefit";
- 2. "Patient-based values";
- 3. "Economic evaluation"; and
- 4. "Adoption feasibility".<sup>171</sup>

The Ontario Health Technology Advisory Committee (OHTAC) is perhaps the most transparent Canadian HTA agency with regards to its decision making framework. In 2009, Johnson and colleagues published a framework of 'decision determinants', subsequently revised in 2010, that included four criteria for OHTAC to consider when making recommendations:

- 1. "Overall clinical benefit";
- 2. "Value for money";
- 3. "Consistency with expected societal and ethical values"; and
- 4. "Feasibility of adoption into the health system".<sup>172,173</sup>

In 2012, OHTAC established a subcommittee to update this framework. [Disclosure: I was a member of this subcommittee from January 2012 until September 2013]. The revised framework proposed by this subcommittee was based upon a theoretical model in which "bioethics / social science", "evidence based medicine" and "economic evaluation" were regarded as distinct "scientific paradigms".<sup>174</sup> Within this subcommittee, three further subcommittees were formed, with separate responsibility for deriving appropriate criteria within each of these "paradigms".

The "bioethics / social science" subcommittee identified a number of "core values relevant to OHTAC decision making", which were categorized into two groups: those considered to be "traditional in HTA", and those considered to be "not traditional in HTA".<sup>40</sup>

The values considered to be "traditional in HTA" were:

- a. "Effectiveness" (considered to be a "clinical" value);
- b. "Resource stewardship" and "resource sufficiency" ("economic" values); and
- c. "Evidence-informed policy" and "quality" ("over-arching" values).

The values considered to be "not traditional in HTA" (all considered as "social" values) were:

- a. "Equity";
- b. "Solidarity";
- c. "Population health";
- d. "Patient-centred care";
- e. "Collaboration"; and
- f. "Shared responsibility for health".

235

Although no report has yet been published, the subcommittee's recommendations were presented at a public lecture in March 2015 and at the 2015 CADTH Symposium.<sup>40,174</sup> Similar to existing Canadian frameworks, the proposed framework incorporates four separate "domains":

- 1. "Benefits and harms" (which includes "effectiveness" and "adverse events");
- 2. "Economics" (which includes "cost-effectiveness");
- 3. "Patient centred care" (which includes "patient values and preferences" and "equity in access and outcome", among other considerations); and
- 4. "Health system feasibility" (which includes "cost considerations", "budget impact estimation", and "organizational implications").

Our work raises questions about the appropriateness of the decision making frameworks used by CDEC, pERC and OHTAC, given their incorporation of specific "domains" or "criteria".

As we found in Chapters 1 and 2, if a vertical equity position is adopted in which incremental benefits for all individuals are given equal value, then the appropriate cost-effectiveness threshold depends upon the budget impact of the technology under consideration. Determining whether a technology is cost-effective also requires consideration of its incremental benefit, which in practice depends upon a number of factors, including its effectiveness and the likelihood, and severity, of any adverse events. In Chapter 3 we then considered a number of social value arguments which might be used to inform an *alternative* vertical equity position. In Chapter 4 we demonstrated how NICE's implicit attempts to reflect such an alternative vertical equity position – by applying modifications to its methods for economic evaluation – may have resulted in a violation of horizontal equity, an inconsistent application of NICE's implied vertical equity position, and the recommendation of technologies that might diminish population health.

It is clear from our work that considerations of incremental benefit, cost-effectiveness, equity, budget impact and population health are intricately related. None of these can be considered in isolation of the others. Yet these considerations are typically separated within Canadian decision making frameworks. In CDEC's framework, these are distributed across considerations 2 to 4. The first of CDEC's considerations, "patient group input", raises equity issues of its own, since the *only* patient groups considered are those representing the beneficiaries of the technology, and not the bearers of the opportunity cost. In the framework used by pERC, and that recently proposed by the OHTAC subcommittee, these considerations are distributed across all four

domains. Some considerations are separated from others through the specification of distinct 'criteria' for each domain. In OHTAC's case, these considerations are also explicitly separated in the theoretical underpinnings of the framework, based upon the notion of "scientific paradigms". A particular concern with this approach is that it might result in decision makers overlooking the implications that considerations in one domain have for related considerations in other domains.

For example, if the OHTAC committee were to consider "patient values and preferences" and "equity in access and outcome" in isolation from economic considerations, then it might not consider the values and preferences of individuals who would bear the opportunity cost of a decision to adopt a new technology, nor might the committee consider the equity implications that arise if individuals who bear the opportunity cost have reduced access to health care and diminished health outcomes. Contrary to the intentions of the subcommittee, this separation of social and ethical values from economic considerations might therefore result in OHTAC making recommendations that exacerbate health inequalities, rather than alleviate them.

It is notable that, in the classification of social values identified by the OHTAC subcommittee, "effectiveness", "equity" and "population health" were determined not to be "economic" criteria, with the latter two considered to be "not traditional considerations in HTA". Yet effectiveness is clearly an important contributor to the cost-effectiveness of a technology. Furthermore, as we have shown, the appropriate threshold to use in economic evaluations depends upon the vertical equity position adopted by the decision maker. Finally, one of the standard outputs of economic evaluations conducted for HTA agencies such as NICE is the 'net health benefit' of a technology – when derived using an appropriate estimate of the threshold, this represents a direct estimate of the implications of adopting the technology for population health.<sup>46,175</sup> It is therefore incorrect to state that "equity" and "population health" are not traditional considerations in HTA, or that all three social values are not economic criteria.

Given the interconnectedness of the considerations discussed above, decision makers in Canada should develop frameworks that do not rely upon the use of separate 'domains' or 'criteria'. This is not a straightforward task. It will require decision makers to consider what their vertical equity position is (e.g., do they value health gains for all individuals equally, or do they wish to prioritize certain groups?). It will also require decision makers to determine the prevalence of

237

individuals who belong to prioritized groups, not only among the beneficiaries of new health technologies but also among those who bear the opportunity cost of their adoption.

As we noted in Chapter 4, if decision makers choose to prioritize patients in certain groups, and if the prevalence of prioritized individuals among the beneficiaries of a new technology is greater than among the bearers of the opportunity cost, then this will increase the likelihood that the technology appears cost-effective. However, if this prevalence is lower among the beneficiaries, consistency requires that the decision maker considers this technology to be *less* cost-effective than it would if no individuals were to be prioritized.

If horizontal equity is to be maintained, decision makers should not regard the consideration of additional social values – including the prioritization of patients in certain groups – as an opportunity to make some technologies appear *more* cost-effective without considering the possibility that other technologies will appear *less* cost-effective (as NICE attempted to do by raising its cost-effectiveness threshold for some technologies without lowering it for others). Decision makers must instead acknowledge that each additional social value argument that favours adoption of a new technology when applied to the beneficiaries might have an opposing effect – of possibly greater magnitude – when applied to the bearers of the opportunity cost. Canadian decision makers must develop frameworks that reflect this. The framework proposed in Chapter 3 provides a template for developing such frameworks in future.

#### Equity in the allocation of health care resources across Canada

In Chapter 1, we demonstrated that the set of optimal thresholds depends upon the initial budget of the health care system. Since each Canadian province and territory has its own health care system, and hence its own health budget, it follows that the set of optimal thresholds would be expected to differ across provinces and territories.

For example, suppose that Ontario and Alberta have different health budgets, such that the initial allocation of resources in each health care system differs. Furthermore, suppose that the objective of each health care system is to maximize some measure of 'benefit' (e.g. QALYs) across the respective population, with no weights applied to benefits for different individuals. Finally, suppose that the reallocation that follows adoption of a net investment within Ontario's

health care system results in a reduction in incremental benefit that is greater than the reduction in incremental benefit following adoption of a similar net investment in Alberta. It follows that the optimal threshold for net investments, at any given budget impact, is lower in Ontario than in Alberta.<sup>176</sup>

In this context, the use of *different* thresholds by decision makers in each province or territory is required for horizontal equity to be maintained in the allocation of health care resources within each province or territory. By way of demonstration, suppose a new technology that constitutes a net investment is simultaneously considered for adoption in both Ontario and Alberta. The ICER of the technology is estimated to be \$50,000 per QALY in both provinces. Given the budget impact of the technology, the initial allocation of resources in each province, and the expected reallocation of resources following adoption of the technology, the optimal threshold is estimated to be \$40,000 per QALY in Ontario and \$60,000 per QALY in Alberta. It follows that adopting the technology would satisfy the Alberta decision maker's objective (since more QALYs would be gained in Alberta by the beneficiaries of the new technology than would be forgone in Alberta by the bearers of the opportunity cost) but would *not* satisfy the Ontario decision maker's objective (since more QALYs would be forgone in Ontario by the bearers of the opportunity cost than would be gained in Ontario by the beneficiaries). Yet, if the same threshold were to be used in Ontario and Alberta, the technology would be declared cost-effective in *both* provinces or in *neither* province. Regarding the technology as cost-effective in Ontario would imply that the decision maker places greater weight on the QALYs of the beneficiaries than on the QALYs of those who bear the opportunity  $\cos t$  – given the decision maker's vertical equity position, this would violate horizontal equity within Ontario. Not regarding the technology as cost-effective in Alberta would imply that the Alberta decision maker places greater weight on the QALYs of patients who bear the opportunity cost than on the QALYs of the beneficiaries - this would violate horizontal equity within Alberta. Maintaining horizontal equity within both provinces requires that the optimal threshold be adopted in each province, resulting in a lower threshold in Ontario than in Alberta.

However, adopting a different set of thresholds in each province and territory *might* be perceived as a violation of horizontal equity *across* Canada. If new technologies are funded in some provinces and territories but not others, then individuals who are identical in every ethically

239

relevant respect except for their province or territory of residence might receive differential access to health technologies, implying a differential valuation on identical benefits for otherwise identical individuals.

If this is perceived to be a violation of horizontal equity, one possible means of addressing this is to use identical thresholds across Canada – however, as noted above, this would violate horizontal equity *within* each province and territory. An alternative means of addressing this perceived violation – which would maintain horizontal equity both *within* and *across* provinces and territories – is to reallocate health care resources across Canada, such that the optimal threshold in each province and territory is identical.

Nevertheless, it is not clear that adopting different thresholds in each province and territory should necessarily be perceived as violating horizontal equity *across* Canada. Since the Canadian constitution assigns most aspects of health care as the responsibility of provinces, and since the constitution permits provinces to raise their own revenues, it is inevitable that there will be differences in the willingness and ability of provinces and territories to fund health care for otherwise identical individuals.<sup>177</sup> These differences were not fully addressed by the constitutional reforms of 1982, nor by transfer payments under the Canada Health Act.<sup>10,178,179</sup> An alternative perception might therefore be that the organization of health care in Canada reflects a vertical equity position in which the health of otherwise identical individuals in different provinces or territories may be assigned unequal value. Under this perception, using different thresholds in each province and territory does *not* necessarily violate horizontal equity *across* Canada.

The appropriate mechanism for maintaining horizontal equity both *within* and *across* provinces and territories therefore depends upon whether the health of otherwise identical individuals in different provinces or territories is assigned equal value. If so, then any differences in estimates of optimal thresholds across provinces or territories should be addressed by reallocating health care resources across Canada until these optimal thresholds equalize, at which point an *identical* threshold may be adopted in each province and territory. If not, then no reallocation of health care resources is necessary, and *different* thresholds should be used for decision making in each province and territory. Finally, it should be noted that health budgets may be constrained not only at the provincial or territorial level, but also at a more local level. In principle, each part of a health care system that faces a budget constraint has its own set of optimal thresholds, raising potential equity issues.

For example, a rural health care centre that operates from a constrained budget might have a different set of optimal thresholds than a research hospital in an urban centre that also operates from a (different) constrained budget. If funding a net investment results in a greater opportunity cost in the rural health care centre than in the research hospital – that is, if each dollar spent on the new technology results in a greater loss in incremental benefit among other patients – then the optimal threshold for the rural health care centre is lower than for the research hospital. It follows that a new technology might be adopted by the research hospital but not by the rural health care centre. This might seem problematic if the rural community has historically worse health outcomes, since adopting a new technology only in the urban community might exacerbate health inequalities. If equalizing health outcomes across the province is a policy objective, a decision maker might be tempted to apply the same threshold across the province, or even use a higher threshold for the rural health care centre, in order to facilitate the adoption of the new technology in the rural community. However, this would be counterproductive, since funding the new technology in the rural community would result in a greater amount of forgone benefit among other patients in the rural community than would be provided by the new technology, worsening health outcomes even further and violating horizontal equity within the rural community.

A more appropriate response would be to acknowledge the difference in the set of optimal thresholds between the two settings. If this difference is considered to be excessive then policy makers should reallocate health care resources from the urban centre to the rural community. This would raise the optimal threshold for the rural health care centre, lower the optimal threshold for the urban research hospital, and reduce health inequalities between the two.

#### Final remarks

Incorporating social values into the assessment of new health technologies, while respecting the principles of horizontal and vertical equity, is not straightforward.

In the simplest case – where the decision maker adopts a vertical equity position in which benefits for all individuals are assigned the same value – maintaining horizontal equity requires consideration of the benefits forgone by other patients who bear the opportunity cost of adopting the new technology. Estimating these forgone benefits requires a 'supply-side' estimate of the cost-effectiveness threshold. With the exception of the UK, no empirical research has yet been conducted into supply-side thresholds in any country.

Even the most sophisticated empirical research into supply-side thresholds so far conducted – that by Claxton and colleagues – adopted a methodology which did not allow for the estimation of different thresholds for net investments and net disinvestments, nor did it allow for estimation of thresholds that are conditional upon the budget impact of the new technology.<sup>27</sup> Our work in Chapters 1 and 2 showed that the optimal thresholds for net investments and net disinvestments and net disinvestments may be very different, and that optimal thresholds may also differ substantially between new technologies with large budget impact and those with small budget impact.

It follows that decision makers currently have insufficient evidence to determine whether adopting new technologies will displace more benefits than will be gained, and hence may be unaware as to whether their recommendations are consistent with the principle of horizontal equity. In the absence of empirical evidence on supply-side thresholds, decision makers also have insufficient evidence to determine whether existing allocations of health care resources across different budget holders within the same health care system are equitable. There is a clear and urgent need for further empirical research in this area, and there is also a need to develop more sophisticated methods that allow for estimation of a 'set' of optimal thresholds, rather than a single threshold that is assumed to apply in all cases.

In a more complex case – where the decision maker wishes to adopt an alternative vertical equity position in which benefits are valued more highly for some individuals than for others – maintaining horizontal equity requires that the decision maker understands the prevalence of those characteristics judged to be deserving of special consideration, not only among the beneficiaries of the new technology but also among those who will bear the opportunity cost.

242

This is necessary so that each factor which results in a greater value being assigned to the health benefits arising to the beneficiaries of a new technology may also be applied consistently to those who bear the opportunity cost. The framework we proposed in Chapter 3 provides a template for decision makers who may wish to develop such a framework in practice.

In Chapter 4, we demonstrated how the naïve use of 'threshold weights', assigned without consideration of the opportunity cost, can result in perverse outcomes, including discrimination against the very individuals whom the decision maker wishes to prioritize. This is particularly plausible if the costs associated with a new technology are met by a budget holder with responsibility for patients with specific characteristics, since the bearers of the opportunity cost are more likely to include patients with similar characteristics to the beneficiaries.

For example, suppose that a decision maker in Ontario wishes to assign greater value to health benefits in children compared to similar benefits in adults. If Sick Kids Hospital in Toronto incurs additional costs by adopting a new technology to treat a childhood illness, then the opportunity cost will likely be borne by *other* sick children whose treatment is funded from the same budget. Assessing this new technology using a relatively high cost-effectiveness threshold, on the basis that the beneficiaries are children and so their health benefits should be valued more highly, is counter-productive if it results in a *greater* amount of *forgone* health benefits among *other sick children*. The net result is worsened population health outcomes among the very individuals to whom the decision maker wishes to assign priority.

If equity is an important social value, then it is vital that social value considerations are not made in the absence of economics. Similarly, it is vital that economics is not conducted in isolation of social value considerations. Considering social values and economics within separate 'domains' – as some Canadian decision makers currently do - is conceptually simpler, but it undermines both considerations and results in an inequitable allocation of limited health care resources.

The challenge currently facing researchers and decision makers is to integrate economics and social values into a coherent framework in which opportunity cost is considered appropriately and social values are applied consistently across all individuals in society.

### Bibliography for Conclusion

10. Parliament of Canada. Canada Health Act.; 1985.

40. Miller F, Krahn M, Brooker A. Improving the Appraisal of Non-Drug Technologies: Revising the Ontario Decision Framework. Presentation at the 2015 CADTH Symposium. 2015.

46. Sculpher M, Claxton K. Real economics needs to reflect real decisions: a response to Johnson. *PharmacoEconomics*. 2012;30(2):133–6. doi:10.2165/11596660-000000000-00000.

91. CADTH. Programs and Services. 2016.

168. Menon D, Stafinski T. Health technology assessment in Canada: 20 years strong? *Value Health*. 2009;12 Suppl 2:S14–9. doi:10.1111/j.1524-4733.2009.00554.x.

169. Health Quality Ontario. Recommendations from the Ontario Health Technology Advisory Committee. 2016.

170. CADTH. *Procedure for the CADTH Common Drug Review*. Ottawa, Canada: CADTH;2014.

171. CADTH. *Pan-Canadian Oncology Drug Review Deliberative Framework*. Pan-Canadian Oncology Drug Review; 2011.

172. Johnson AP, Sikich NJ, Evans G, et al. Health technology assessment: a comprehensive framework for evidence-based recommendations in Ontario. *Int J Technol Assess Health Care*. 2009;25(2):141–50. doi:10.1017/S0266462309090199.

173. Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care. *Decision Determinants Guidance Document*.

174. Krahn, M. Developing a Values Based Framework for Decision Making in Health Technology Assessment. CADTH Lecture Series. 2015.

175. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. *Med Decis Making*. 1998;18(2 Suppl):S68–80.

176. Paulden M, O'Mahony J, McCabe C. The determinants of change in the costeffectiveness threshold. *Medical Decision Making (forthcoming)*.

177. Parliament of the United Kingdom. British North America Act.; 1867.

178. Parliament of the United Kingdom. Canada Act 1982.; 1982.

179. Deraspe R, James. Canada Health Transfer: Equal-per-Capita Cash by 2014. 2011.

## Bibliography

 Paulden M, Stafinski T, Menon D, McCabe C. Value-based reimbursement decisions for orphan drugs: a scoping review and decision framework. *Pharmacoeconomics*. 2015;33(3):255– 69. doi:10.1007/s40273-014-0235-x.

2. Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Some inconsistencies in NICE's consideration of social values. *Pharmacoeconomics*. 2014;32(11):1043–53. doi:10.1007/s40273-014-0204-4.

3. Hill S, Olson L. NICE, Social Values, and Balancing Objectivity and Equity. *PharmacoEconomics*. 2014;32(11):1039–1041. doi:10.1007/s40273-014-0220-4.

4. Paulden M, O'Mahony JF, Culyer AJ, McCabe C. Objectivity and equity: clarity required. A response to Hill and Olson. *PharmacoEconomics*. 2014;32(12):1249–50. doi:10.1007/s40273-014-0239-6.

5. Boyle T. Budget will see tough decisions in health care. *Toronto Star*. April 4, 2015.

6. Galloway G. Health spending won't meet needs of aging Canadians, report warns. *The Globe and Mail.* July 2, 2015.

Wilton S. Long Canadian wait times send patients south for surgery. *Calgary Herald*.
 April 4, 2014.

8. Health Council of Canada. *Where you live matters: Canadian views on health care quality*. Health Council of Canada; 2014.

Palmer S, Raftery J. Economic Notes: opportunity cost. *BMJ*. 1999;318(7197):1551–2.
 Parliament of Canada. *Canada Health Act.*; 1985.

11. O'Donnell J, Pham S, Pashos C, Miller D, Smith M. Health Technology Assessment: Lessons Learned from Around the World—An Overview. *Value Health*. 2009;12(s2):S1–S5. doi:10.1111/j.1524-4733.2009.00550.x.

12. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. *Methods for the economic evaluation of health care programmes*. 4th ed. Oxford University Press; 2015.

13. World Health Organization. 2015 Global Survey on Health Technology Assessment by National Authorities. Geneva: World Health Organization; 2015.

14. National Institute for Health and Care Excellence. *Guide to the methods of technology appraisal 2013.*; 2013.

15. Canadian Agency for Drugs and Technologies in Health. *Guidelines for the Economic Evaluation of Health Technologies: Canada.*; 2006.

16. Stephens JM, H B, D JA. International survey of methods used in health technology assessment (HTA): does practice meet the principles proposed for good research? *Comparative Effectiveness Research*. 2012;(2):29–44.

17. Mathes T, Jacobs E, Morfeld J-C, Pieper D. Methods of international health technology assessment agencies for economic evaluations- a comparative analysis. *Bmc Health Serv Res.* 2013;13(1):1–10. doi:10.1186/1472-6963-13-371.

18. Pliskin J, Shepard D, Weinstein M. Utility Functions for Life Years and Health Status. *Oper Res.* 1980;28(1):206–224. doi:10.1287/opre.28.1.206.

19. Black RC. "utility". The New Palgrave Dictionary of Economics. 2008.

20. Hicks JR, Allen RG. A Reconsideration of the Theory of Value. Part I. *Economica*. 1934;1(1):52–76.

21. Weinstein M, Zeckhauser R. Critical ratios and efficient allocation. *J Public Econ*. 1973;2(2):147–157. doi:10.1016/0047-2727(73)90002-9.

22. Centre for Health Economics. *iDSI Workshop on Cost-Effectiveness Thresholds: Conceptualisation and Estimation*. University of York; 2015.

23. Gyrd-Hansen D. Willingness to pay for a QALY: theoretical and methodological issues. *Pharmacoeconomics*. 2005;23(5):423–32.

24. Dolan P, Shaw R, Tsuchiya A, Williams A. QALY maximisation and people's preferences: a methodological review of the literature. *Health Econ*. 2005;14(2):197–208. doi:10.1002/hec.924.

25. Paulden M, Claxton K. Budget allocation and the revealed social rate of time preference for health. *Health Econ.* 2012;21(5):612–8. doi:10.1002/hec.1730.

26. Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in the economic evaluation of health-care technologies. *Health Economics*.

2011;20(1):2-15. doi:10.1002/hec.1612.

27. Claxton K, Martin S, Soares M, et al. Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. *Health Technology Assessment*.
2015;19(14):1–503, v–vi. doi:10.3310/hta19140.

28. Gafni A, Birch S. Incremental cost-effectiveness ratios (ICERs): The silence of the lambda. *Soc Sci Med.* 2006;62(9):2091–2100. doi:10.1016/j.socscimed.2005.10.023.

29. Appleby J, Devlin N, Parkin D, Buxton M, Chalkidou K. Searching for cost effectiveness thresholds in the NHS. *Health Policy*. 2009;91(3):239–45. doi:10.1016/j.healthpol.2008.12.010.

30. Schaffer S, Sussex J, Devlin N, Walker A. Local health care expenditure plans and their opportunity costs. *Health Policy*. 2015;119(9):1237–1244. doi:10.1016/j.healthpol.2015.07.007.

31. Laupacis A, Feeny D, Detsky AS, Tugwell PX. How attractive does a new technology have to be to warrant adoption and utilization? Tentative guidelines for using clinical and economic evaluations. *CMAJ*. 1992;146(4):473–81. Available at:

http://europepmc.org/abstract/MED/1306034.

32. Neumann P, Cohen J, Weinstein M. Updating Cost-Effectiveness — The Curious Resilience of the \$50,000-per-QALY Threshold. *New Engl J Medicine*. 2014;371(9):796–797. doi:10.1056/NEJMp1405158.

33. DeJean D, Giacomini M, Schwartz L, Miller FA. Ethics in Canadian health technology assessment: a descriptive review. *Int J Technol Assess Health Care*. 2009;25(4):463–9. doi:10.1017/S0266462309990390.

34. National Institute for Health and Care Excellence. Citizens Council. 2016.

35. Citizens Council. *Should NICE and its advisory bodies take into account the severity of a disease when making decisions?* National Institute for Health and Care Excellence; 2008.

36. Citizens Council. *Are there circumstances in which the age of a person should be taken into account when NICE is making a decision about how treatments should be used in the NHS?* National Institute for Health and Care Excellence; 2002.

37. Citizens Council. *NICE's Citizens Council were asked to advise on whether or not the NHS should be prepared to pay premium prices for drugs to treat patients with very rare diseases.* . National Institute for Health and Care Excellence; 2004.

38. Citizens Council. *Is there a preference to save the life of people in imminent danger of dying?* National Institute for Health and Care Excellence; 2006.

39. Citizens Council. *What are the societal values that need to be considered when making decisions about trade-offs between equity and efficiency?* National Institute for Health and Care Excellence; 2014.

40. Miller F, Krahn M, Brooker A. Improving the Appraisal of Non-Drug Technologies: Revising the Ontario Decision Framework. Presentation at the 2015 CADTH Symposium. 2015.

41. Duclos. Horizontal and Vertical Equity. The New Palgrave Dictionary of Economics. In:2nd Edition, 2012 Version. Palgrave Macmillan; 2016.

42. Musgrave A, Musgrave PB. *Public Finance in Theory and Practice*. New York: McGraw-Hill; 1976.

43. Culyer AJ. Need: The idea won't do—But we still need it. *Soc Sci Med.* 1995;40(6):727–730. doi:10.1016/0277-9536(94)00307-F.

44. Culyer A. Equity - some theory and its policy implications. *J Med Ethics*.2001;27(4):275–283. doi:10.1136/jme.27.4.275.

45. Claxton K, Walker S, Palmer S, Sculpher M. *Appropriate Perspectives for Health Care Decisions*. York, UK: University of York

46. Sculpher M, Claxton K. Real economics needs to reflect real decisions: a response to Johnson. *PharmacoEconomics*. 2012;30(2):133–6. doi:10.2165/11596660-000000000-00000.

47. Brouwer W, Culyer A, Exel J van, Rutten F. Welfarism vs. extra-welfarism. *J Health Econ.* 2008;27(2):325–338. doi:10.1016/j.jhealeco.2007.07.003.

48. Brouwer WB, Koopmanschap MA. On the economic foundations of CEA. Ladies and gentlemen, take your positions! *J Health Econ*. 2000;19(4):439–59.

49. Coast J, Smith R, Lorgelly P. Welfarism, extra-welfarism and capability: The spread of ideas in health economics. *Soc Sci Med*. 2008;67(7):1190–1198.

doi:10.1016/j.socscimed.2008.06.027.

50. Birch S, Donaldson C. Valuing the benefits and costs of health care programmes: where's the "extra" in extra-welfarism? *Soc Sci Med.* 2003;56(5):1121–1133. doi:10.1016/S0277-9536(02)00101-6.

51. Buchanan J, Wordsworth S. Welfarism Versus Extra-Welfarism: Can the Choice of
Economic Evaluation Approach Impact on the Adoption Decisions Recommended by Economic
Evaluation Studies? *Pharmacoeconomics*. 2015;33(6):571–579. doi:10.1007/s40273-015-02613.

52. Arrow KJ. A Difficulty in the Concept of Social Welfare. *Journal of Political Economy*.
1950;58(4):328–346. doi:10.1086/256963.

53. Sen A. The Impossibility of a Paretian Liberal. *J Polit Econ*. 1970;78(1):152–157. doi:10.1086/259614.

54. Sugden R, Williams A. *The Principles of Practical Cost-Benefit Analysis*. Oxford University Press; 1978.

55. Culyer A, McCabe C, Briggs A, et al. Searching for a threshold, not setting one: the role of the National Institute for Health and Clinical Excellence. *Journal of health services research & policy*. 2007;12(1):56–8. doi:10.1258/135581907779497567.

56. Shah, Praet, Devlin, Sussex, Appleby, Parkin. Is the aim of the English health care system to maximize QALYs? *Journal of Health Services Research & Policy*. 2012;17(3):157–163. doi:10.1258/jhsrp.2012.011098.

57. Coast J. Maximisation in extra-welfarism: A critique of the current position in health economics. *Soc Sci Med.* 2009;69(5):786–792. doi:10.1016/j.socscimed.2009.06.026.

58. Dolan P. Modeling valuations for EuroQol health states. *Med Care*. 1997;35(11):1095–108.

59. Paulden M. Time Preference and Discounting. Encyclopedia of Health Economics. In: Elsevier; 2014:395–403. doi:10.1016/B978-0-12-375678-7.00506-X.

60. McCabe C, Claxton K, Culyer A. The NICE Cost-Effectiveness Threshold: What it is and What that Means. *PharmacoEconomics*. 2008;26(9):733–744. doi:10.2165/00019053-200826090-00004.

61. Gold MR, Siegel JE, Russell LB, Weinstein MC. *Cost-effectiveness in health and medicine*. New York: Oxford University Press; 1996.

62. Edlin R, McCabe C, Hulme C, Hall P, Wright J. Cost E\_ffectiveness Modelling for Health Technology Assessment: A Practical Course. Springer; 2015.

63. Eckermann S, Pekarsky B. Can the Real Opportunity Cost Stand Up: Displaced Services, the Straw Man Outside the Room. *PharmacoEconomics*. 2014. doi:10.1007/s40273-014-0140-3.

64. Paulden M, McCabe C, Karnon J. Achieving allocative efficiency in healthcare: nice in theory, not so NICE in Practice? *Pharmacoeconomics*. 2014;32(4):315–8. doi:10.1007/s40273-014-0146-x.

65. Eckermann S. Kinky Thresholds Revisited: Opportunity Costs Differ in the NE and SW Quadrants. *Appl Heal Econ Heal Policy*. 2015;13(1):7–13. doi:10.1007/s40258-014-0136-3.

66. McCabe C, Claxton K, Tsuchiya A. Orphan drugs and the NHS: should we value rarity. *BMJ*. 2005;331(7523):1016–9.

67. Pinxten W, Denier Y, Dooms M, Cassiman J-JJ, Dierickx K. A fair share for the orphans: ethical guidelines for a fair distribution of resources within the bounds of the 10-year-old European Orphan Drug Regulation. *J Med Ethics*. 2012;38(3):148–53. doi:10.1136/medethics-2011-100094.

Clarke J. Is the current approach to reviewing new drugs condemning the victims of rare diseases to death? A call for a national orphan drug review policy. *Can Med Assoc J.* 2006;174(2):189–190. doi:10.1503/cmaj.050706.

69. Birch S, Gafni A. Changing the problem to fit the solution: Johannesson and Weinstein's (mis) application of economics to real world problems. *J Health Econ*. 1993;12(4):469–76.

70. Johannesson M, Weinstein MC. On the decision rules of cost-effectiveness analysis. *J Health Econ.* 1993;12(4):459–67.

71. Garber AM, Phelps CE. Economic foundations of cost-effectiveness analysis. *J Health Econ.* 1997;16(1):1–31.

72. McCabe C, Claxton K, Culyer AJ. The NICE cost-effectiveness threshold: what it is and what that means. *Pharmacoeconomics*. 2008;26(9):733–44.

73. Claxton K, Sculpher M, Drummond M. A rational framework for decision making by the National Institute For Clinical Excellence (NICE). *The Lancet*. 2002;360(9334):711–5. doi:10.1016/s0140-6736(02)09832-x.

74. Birch S, Gafni A. Cost effectiveness/utility analyses. *Journal of Health Economics*. 1992;11(3):279–296. doi:10.1016/0167-6296(92)90004-K.

75. Birch S, Gafni A. Economics and the evaluation of health care programmes:
generalisability of methods and implications for generalisability of results. *Health policy*.
2003;64(2):207–219. Available at:

http://www.sciencedirect.com/science/article/pii/S0168851002001823.

76. Birch S, Gafni A. Cost effectiveness/utility analyses: Do current decision rules lead us to where we want to be? *Journal of health economics*. 1992. Available at:

http://www.sciencedirect.com/science/article/pii/016762969290004K.

77. Birch S, Gafni A. Information created to evade reality (ICER): things we should not look to for answers. *PharmacoEconomics*. 2006;24(11):1121–31.

Epstein DM, Chalabi Z, Claxton K, Sculpher M. Efficiency, equity, and budgetary policies: informing decisions using mathematical programming. *Med Decis Making*. 2007;27(2):128–37. doi:10.1177/0272989X06297396.

79. Pekarsky B. Trust, constraints and the counterfactual: Reframing the political economy of new drugs. doi:10.1007/978-3-319-08903-4 3.

80. O'Brien BJ, Gertsen K, Willan AR, Faulkner LA. Is there a kink in consumers' threshold value for cost-effectiveness in health care? *Health Econ*. 2002;11(2):175–80.

81. Willan AR, O'Brien BJ, Leyva RA. Cost-effectiveness analysis when the WTA is greater than the WTP. *Stat Med.* 2001;20(21):3251–9.

82. National Institute for Health and Care Excellence. *Consultation Paper: Value Based Assessment of Health Technologies.*; 2014.

83. National Institute for Health and Care Excellence. *Discounting of health benefits in special circumstances*.; 2011.

84. National Institute for Health and Care Excellence. *Appraising life-extending, end of life treatments*.; 2009.

85. Harris J. NICE and not so nice. *Journal of Medical Ethics*. 2005;31(12):685–688. doi:10.1136/jme.2005.014134.

86. R Core Team. R: A language and environment for statistical computing. 2016.

87. Borchers H. adagio: Discrete and Global Optimization Routines. 2015.

88. Kellerer, Ulrich. *Knapsack Problems*. 1st ed. Berlin: Springer-Verlag Berlin Heidelberg; 2004:548.

89. Garner S, Littlejohns P. Disinvestment from low value clinical interventions: NICEly done? *BMJ (Clinical research ed)*. 2011;343:d4519.

90. Klein R. *The New Politics of the NHS: From Creation to Reinvention*. 6th Revised Edition. Radcliffe Publishing Ltd; 2010.

91. CADTH. Programs and Services. 2016.

92. Haffner ME. Adopting orphan drugs--two dozen years of treating rare diseases. *N Engl J Med.* 2006;354(5):445–7. doi:10.1056/NEJMp058317.

93. Braun MM, Farag-El-Massah S, Xu K, Coté TR. Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. *Nat Rev Drug Discov*.
2010;9(7):519–22. doi:10.1038/nrd3160.

94. Dunoyer M. Accelerating access to treatments for rare diseases. *Nature Reviews Drug Discovery*. 2011. doi:10.1038/nrd3493.

95. Food and Drug Administration. Developing Products for Rare Diseases & Conditions.2016.

96. Food and Drug Administration. Orphan Drug Regulations. *Federal Register*.
2013;78(113):35117–35135.

97. Salari K, Watkins H, Ashley EA. Personalized medicine: hope or hype? *Eur Heart J*. 2012;33(13):1564–70. doi:10.1093/eurheartj/ehs112.

98. Reeves A, McKee M, Basu S, Stuckler D. The political economy of austerity and healthcare: cross-national analysis of expenditure changes in 27 European nations 1995-2011. *Health Policy*. 2014;115(1):1–8. doi:10.1016/j.healthpol.2013.11.008.

99. Stafinski T. Role of centralized review processes for making reimbursement decisions on new health technologies in Europe. *ClinicoEconomics and Outcomes Research*. 2011:117. doi:10.2147/CEOR.S14407.

Stafinski T, Menon D, Philippon DJ, McCabe C. Health technology funding decision-making processes around the world: the same, yet different. *Pharmacoeconomics*.
2011;29(6):475–95. doi:10.2165/11586420-00000000-00000.

101. Simoens S. Pricing and reimbursement of orphan drugs: the need for more transparency. *Orphanet J Rare Dis.* 2011;6:42. doi:10.1186/1750-1172-6-42.

102. Drummond M, Towse A. Orphan drugs policies: a suitable case for treatment. *The European Journal of Health Economics*. 2014. doi:10.1007/s10198-014-0560-1.

103. Stafinski T, Menon D, McCabe C, Philippon DJ. To fund or not to fund: development of a decision-making framework for the coverage of new health technologies. *Pharmacoeconomics*. 2011;29(9):771–80. doi:10.2165/11539840-00000000-00000.

104. Schey C, Milanova T, Hutchings A. Estimating the budget impact of orphan medicines in Europe: 2010 - 2020. *Orphanet Journal of Rare Diseases*. 2011;6(1):62. doi:10.1186/1750-1172-6-62.

105. Hutchings A, Schey C, Dutton R, Achana F, Antonov K. Estimating the budget impact of orphan drugs in Sweden and France 2013-2020. *Orphanet J Rare Dis*. 2014;9:22. doi:10.1186/1750-1172-9-22.

106. Hughes-Wilson W, Palma A, Schuurman A, Simoens S. Paying for the Orphan Drug System: break or bend? Is it time for a new evaluation system for payers in Europe to take account of new rare disease treatments? *Orphanet J Rare Dis*. 2012;7:74. doi:10.1186/1750-1172-7-74.

107. Mays N, Roberts E, Popay J. Synthesising research evidence. In: Routledge London;2001:188–220.

108. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.

109. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. *International Journal of Social Research Methodology*. 2005;8(1):19–32. doi:10.1080/1364557032000119616.

110. PRISM Group. Promoting rare-disease innovations through sustainable mechanisms.2014.

111. Ritchie J, Spencer L. Qualitative data analysis for applied policy research. In: ; 2002.

112. Pawson. Evidence-based Policy: In Search of a Method. *Evaluation*. 2002;8(2):157–181. doi:10.1177/1358902002008002512.

113. Bryman, Burgess. Analyzing qualitative data.; 1994. doi:10.4324/9780203413081.

114. Oliver S. Making research more useful: integrating different perspectives and different methods. 2001. Available at: http://eprints.ioe.ac.uk/id/eprint/5142.

115. Barrett PM, Alagely A, Topol EJ. Cystic fibrosis in an era of genomically guided therapy. *Hum Mol Genet.* 2012;21(R1):R66–71. doi:10.1093/hmg/dds345.

116. Winquist E, Bell CM, Clarke JT, et al. An evaluation framework for funding drugs for rare diseases. *Value Health*. 2012;15(6):982–6. doi:10.1016/j.jval.2012.06.009.

117. Wild C, Hintringer K, Nachtnebel A. Orphan drugs in oncology. *Pharmaceuticals, Policy and Law.* 2011;13(3,4):223–232. doi:10.3233/PPL-2011-0327.

118. Valverde J-L, Prevot. Editorial. *Pharmaceuticals Policy and Law.* 2011;13(3,4):115–116.doi:10.3233/PPL-2011-0317.

119. Sullivan SD. The promise of specialty pharmaceuticals: are they worth the price? *J Manag Care Pharm.* 2008;14(4 Suppl):S3–6.

120. Stolk P, Willemen MJ, Leufkens HG. Rare essentials: drugs for rare diseases as essential medicines. *Bull World Health Organ.* 2006;84(9):745–51.

121. Siddiqui M, Rajkumar SV. The high cost of cancer drugs and what we can do about it. *Mayo Clin Proc.* 2012;87(10):935–43. doi:10.1016/j.mayocp.2012.07.007.

122. Prevot J, Watters D. HTA's and access to rare diseases therapies: The view from the PID community. *Pharmaceuticals*. 2011. Available at:

http://content.iospress.com/articles/pharmaceuticals-policy-and-law/ppl00322.

123. Picavet E, Cassiman D, Simoens S. Evaluating and improving orphan drug regulations in Europe: a Delphi policy study. *Health Policy*. 2012;108(1):1–9.

doi:10.1016/j.healthpol.2012.08.023.

124. Picavet E, Dooms M, Cassiman D, Simoens S. Drugs for rare diseases: influence of orphan designation status on price. *Appl Health Econ Health Policy*. 2011;9(4):275–9. doi:10.2165/11590170-00000000-00000.

125. Owen A, Spinks J, Meehan A, et al. A new model to evaluate the long-term cost effectiveness of orphan and highly specialised drugs following listing on the Australian Pharmaceutical Benefits Scheme: the Bosentan Patient Registry. *J Med Econ*. 2008;11(2):235–43. doi:10.3111/13696990802034525.

126. Moberly T. Rationing and access to orphan drugs. *Pharmaceutical journal*.2005;275(7374):569–570.

127. Michel M, Toumi M. Access to orphan drugs in Europe: current and future issues. *Expert Rev Pharmacoecon Outcomes Res.* 2012;12(1):23–9. doi:10.1586/erp.11.95.

128. Mentzakis E, Stefanowska P, Hurley J. A discrete choice experiment investigating preferences for funding drugs used to treat orphan diseases: an exploratory study. *Health Econ Policy Law.* 2011;6(3):405–33. doi:10.1017/S1744133110000344.

129. Meekings KN, Williams CS, Arrowsmith JE. Orphan drug development: an economically viable strategy for biopharma R&D. *Drug Discov Today*. 2012;17(13-14):660–4. doi:10.1016/j.drudis.2012.02.005.

130. McCabe C, Stafinski T, Menon D. Is it time to revisit orphan drug policies? *BMJ*.2010;341:c4777.

131. Mavris M, Cam Y Le. Involvement of patient organisations in research and development of orphan drugs for rare diseases in europe. *Mol Syndromol*. 2012;3(5):237–43. doi:10.1159/000342758.

 Matthews, Glass. The Effect of Market-Based Economic Factors on the Adoption of Orphan Drugs Across Multiple Countries. *Therapeutic Innovation & Regulatory Science*.
 2013;47(2):226–234. doi:10.1177/2168479012471945.

133. Luisetti M, Balfour-Lynn IM, Johnson SR, et al. Perspectives for improving the evaluation and access of therapies for rare lung diseases in Europe. *Respir Med*.
2012;106(6):759–68. doi:10.1016/j.rmed.2012.02.016.

134. Liang BA, Mackey T. Health care policy. Reforming off-label promotion to enhance orphan disease treatment. *Science*. 2010;327(5963):273–4. doi:10.1126/science.1181567.

135. Laupacis A. Evidence and values: requirements for public reimbursement of drugs for rare diseases - a case study in oncology - Reply. *Canandian Journal of Clinical Pharmacology*. 2009;16(2):e282–4.

136. Largent EA, Pearson SD. Which orphans will find a home? The rule of rescue in resource allocation for rare diseases. *Hastings Cent Rep.* 2012;42(1):27–34.

137. Kesselheim AS, Myers JA, Avorn J. Characteristics of clinical trials to support approval of orphan vs nonorphan drugs for cancer. *JAMA*. 2011;305(22):2320–6. doi:10.1001/jama.2011.769.

138. Kanavos P, Nicod E. What is wrong with orphan drug policies? Suggestions for ways forward. *Value Health*. 2012;15(8):1182–4. doi:10.1016/j.jval.2012.08.2202.

139. Joppi R, Bertele' V, Garattini S. Orphan drugs, orphan diseases. The first decade of orphan drug legislation in the EU. *Eur J Clin Pharmacol*. 2013;69(4):1009–24. doi:10.1007/s00228-012-1423-2.

140. Hutchings A, Ethgen O, Schmitt C, Rollet P. Defining Elements of Value for Rare Disease Treatments. *Value in Health*. 2012;15(4):A31. doi:10.1016/j.jval.2012.03.176.

141. Hughes DA. Drugs for exceptionally rare diseases: do they deserve special status for funding? *QJM*. 2005;98(11):829–836. doi:10.1093/qjmed/hci128.

142. Gupta S. Rare diseases: Canada's "research orphans." *Open Medicine*. 2012. Available at: http://www.openmedicine.ca/article/viewArticle/482/451.

143. Garattini S. Time to revisit the orphan drug law. *Eur J Clin Pharmacol*. 2012;68(2):113.doi:10.1007/s00228-011-1115-3.

144. Drummond MF, Wilson DA, Kanavos P, Ubel P, Rovira J. Assessing the economic challenges posed by orphan drugs. *Int J Technol Assess Health Care*. 2007;23(1):36–42. doi:10.1017/S0266462307051550.

145. Drakulich A. Global Healthcare on the Ground: NIH Aims to Help Treat 200 Rare Diseases. *Pharmaceutical Technology*. 2011;35(8).

146. Dickson PI, Pariser AR, Groft SC, et al. Research challenges in central nervous system manifestations of inborn errors of metabolism. *Mol Genet Metab*. 2011;102(3):326–38. doi:10.1016/j.ymgme.2010.11.164.

147. Desser AS. Prioritizing treatment of rare diseases: a survey of preferences of Norwegian doctors. *Social Science & Medicine*. 2013. Available at:

http://www.sciencedirect.com/science/article/pii/S027795361300350X.

148. Denis A, Mergaert L, Fostier C, Cleemput I, Simoens S. Budget impact analysis of orphan drugs in Belgium: estimates from 2008 to 2013. *J Med Econ*. 2010;13(2):295–301. doi:10.3111/13696998.2010.491427.

149. Claxton K, Lindsay A, Buxton M, et al. Value based pricing for NHS drugs: an opportunity not to be missed? *BMJ: British Medical Journal*. 2008;336(7638):251–254. doi:10.2307/20508852.

150. Clarke J, Bell C, Coyle D, et al. A policy framework for funding drugs for rare diseases. *Value in Health.* 2009;12(7):A243. doi:10.1016/S1098-3015(10)74186-3.

151. Claxton K, Martin S, Soares M, et al. Methods for the Estimation of the NICE Cost Effectiveness Threshold. *CHE Research Paper 81*. 2013.

152. Endrei D, Molics B, Ágoston I. Multicriteria decision analysis in the reimbursement of new medical technologies: real-world experiences from Hungary. *Value in Health*. 2014. Available at: http://www.ajicjournal.org/article/S1098-3015(14)00046-1/abstract.

153. Mitton C, Dionne F, Damji R, Campbell D, Bryan S. Difficult decisions in times of constraint: criteria based resource allocation in the Vancouver Coastal Health Authority. *BMC Health Serv Res.* 2011;11:169. doi:10.1186/1472-6963-11-169.

154. Sussex J, Rollet P, Garau M, Schmitt C, Kent A, Hutchings A. A pilot study of multicriteria decision analysis for valuing orphan medicines. *Value Health*. 2013;16(8):1163–9. doi:10.1016/j.jval.2013.10.002.

155. Linley WG, Hughes DA. Societal views on NICE, cancer drugs fund and value-based pricing criteria for prioritising medicines: a cross-sectional survey of 4118 adults in Great Britain. *Health Econ.* 2013;22(8):948–64. doi:10.1002/hec.2872.

156. National Institute for Health and Care Excellence. Methods of Technology Appraisal Consultation. 2014.

157. Secretary of State for Health. *The Government's Response to the Health Select Committee's Eighth Report of Session 2012-13 on the National Institute for Health and Clinical Excellence*.; 2013.

158. Stolk EA, Donselaar G van, Brouwer WB, Busschbach JJ. Reconciliation of economic concerns and health policy: illustration of an equity adjustment procedure using proportional shortfall. *Pharmacoeconomics*. 2004;22(17):1097–107.

159. Office of Health Economics. *Clarifying meanings of absolute and proportional shortfall with examples.*; 2013.

160. O'Mahony JF, Paulden M. NICE's selective application of differential discounting: ambiguous, inconsistent, and unjustified. *Value Health*. 2014;17(5):493–6. doi:10.1016/j.jval.2013.02.014.

161. National Institute for Health and Care Excellence. *Guide to the methods of technology appraisal 2008.*; 2008.

162. Paulden M, Culyer AJ. Does cost-effectiveness analysis discriminate against patients with short life expectancy? Matters of logic and matters of context. *CHE Research Paper 55*. 2010.

163. Seshamani M, Gray AM. A longitudinal study of the effects of age and time to death on hospital costs. *J Health Econ*. 2004;23(2):217–35. doi:10.1016/j.jhealeco.2003.08.004.

164. Kasteridis P, Street A, Dolman M, et al. The Importance of Multimorbidity in Explaining Utilisation and Costs Across Health and Social Care Settings: Evidence from South Somerset's Symphony Project. *CHE Research Paper 96*. 2014.

165. Claxton K, Sculpher M, Culyer A, McCabe C. Discounting and cost-effectiveness in NICE–stepping back to sort out a confusion. *Health Economics*. 2006;15(1):1–4. doi:10.1002/hec.1081.

166. Raftery. Value based pricing: can it work? *BMJ*. 2013;347(oct11 3):f5941–f5941. doi:10.1136/bmj.f5941.

167. Department of Health. NHS Constitution for England. 2013.

168. Menon D, Stafinski T. Health technology assessment in Canada: 20 years strong? *Value Health*. 2009;12 Suppl 2:S14–9. doi:10.1111/j.1524-4733.2009.00554.x.

169. Health Quality Ontario. Recommendations from the Ontario Health Technology Advisory Committee. 2016.

170. CADTH. *Procedure for the CADTH Common Drug Review*. Ottawa, Canada: CADTH;2014.

171. CADTH. *Pan-Canadian Oncology Drug Review Deliberative Framework*. Pan-Canadian Oncology Drug Review; 2011.

172. Johnson AP, Sikich NJ, Evans G, et al. Health technology assessment: a comprehensive framework for evidence-based recommendations in Ontario. *Int J Technol Assess Health Care*. 2009;25(2):141–50. doi:10.1017/S0266462309090199.

173. Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care. *Decision Determinants Guidance Document*.

174. Krahn, M. Developing a Values Based Framework for Decision Making in Health Technology Assessment. CADTH Lecture Series. 2015.

175. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. *Med Decis Making*. 1998;18(2 Suppl):S68–80.

176. Paulden M, O'Mahony J, McCabe C. The determinants of change in the costeffectiveness threshold. *Medical Decision Making (forthcoming)*.

177. Parliament of the United Kingdom. British North America Act.; 1867.

178. Parliament of the United Kingdom. Canada Act 1982.; 1982.

179. Deraspe R, James. Canada Health Transfer: Equal-per-Capita Cash by 2014. 2011.

Appendices

Appendix 1 (Chapter 1)

Appendix 1.1: Reallocation tables and optimal sets of cost-effectiveness thresholds

|                    |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|--------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Budget             |                   | Margina          | d                              | Cumi           | ılative        |                     | Margina          | l                              | Cum            | ulative        |                   | Margina                | l                              | Cum            | ulative        |  |  |
| impact             | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$0.1m             | R                 | -2.5             | \$40,758                       | -2.5           | \$40,758       | 0                   | -3.6             | \$27,938                       | -3.6           | \$27,938       | Q                 | -2.1                   | \$48,185                       | -2.1           | \$48,185       |  |  |
| \$0.2m             | R                 | -2.5             | \$40,758                       | -4.9           | \$40,758       | 0                   | -3.6             | \$27,938                       | -7.2           | \$27,938       | Q                 | -2.1                   | \$48,185                       | -4.2           | \$48,185       |  |  |
| \$0.3m             | R                 | -2.5             | \$40,758                       | -7.4           | \$40,758       | 0                   | -3.6             | \$27,938                       | -10.7          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -6.2           | \$48,185       |  |  |
| \$0.4m             | R                 | -2.5             | \$40,758                       | -9.8           | \$40,758       | 0                   | -3.6             | \$27,938                       | -14.3          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -8.3           | \$48,185       |  |  |
| \$0.5m             | R                 | -2.5             | \$40,758                       | -12.3          | \$40,758       | 0                   | -3.6             | \$27,938                       | -17.9          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -10.4          | \$48,185       |  |  |
| \$0.6m             | R                 | -2.5             | \$40,758                       | -14.7          | \$40,758       | 0                   | -3.6             | \$27,938                       | -21.5          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -12.5          | \$48,185       |  |  |
| \$0.7m             | R                 | -2.5             | \$40,758                       | -17.2          | \$40,758       | 0                   | -3.6             | \$27,938                       | -25.1          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -14.5          | \$48,185       |  |  |
| \$0.8m             | R                 | -2.5             | \$40,758                       | -19.6          | \$40,758       | 0                   | -3.6             | \$27,938                       | -28.6          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -16.6          | \$48,185       |  |  |
| \$0.9m             | R                 | -2.5             | \$40,758                       | -22.1          | \$40,758       | 0                   | -3.6             | \$27,938                       | -32.2          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -18.7          | \$48,185       |  |  |
| \$1.0m             | R                 | -2.5             | \$40,758                       | -24.5          | \$40,758       | 0                   | -3.6             | \$27,938                       | -35.8          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -20.8          | \$48,185       |  |  |
| \$1.1m             | R                 | -2.5             | \$40,758                       | -27.0          | \$40,758       | 0                   | -3.6             | \$27,938                       | -39.4          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -22.8          | \$48,185       |  |  |
| \$1.2m             | R                 | -2.5             | \$40,758                       | -29.4          | \$40,758       | 0                   | -3.6             | \$27,938                       | -43.0          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -24.9          | \$48,185       |  |  |
| \$1.3m             | R                 | -2.5             | \$40,758                       | -31.9          | \$40,758       | 0                   | -3.6             | \$27,938                       | -46.5          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -27.0          | \$48,185       |  |  |
| \$1.4m             | R                 | -2.5             | \$40,758                       | -34.3          | \$40,758       | 0                   | -3.6             | \$27,938                       | -50.1          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -29.1          | \$48,185       |  |  |
| \$1.5m             | R                 | -2.5             | \$40,758                       | -36.8          | \$40,758       | 0                   | -3.6             | \$27,938                       | -53.7          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -31.1          | \$48,185       |  |  |
| \$1.6m             | R                 | -2.5             | \$40,758                       | -39.3          | \$40,758       | 0                   | -3.6             | \$27,938                       | -57.3          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -33.2          | \$48,185       |  |  |
| \$1.7m             | R                 | -2.5             | \$40,758                       | -41.7          | \$40,758       | 0                   | -3.6             | \$27,938                       | -60.8          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -35.3          | \$48,185       |  |  |
| \$1.8m             | R                 | -2.5             | \$40,758                       | -44.2          | \$40,758       | 0                   | -3.6             | \$27,938                       | -64.4          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -37.4          | \$48,185       |  |  |
| \$1.9m             | R                 | -2.5             | \$40,758                       | -46.6          | \$40,758       | 0                   | -3.6             | \$27,938                       | -68.0          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -39.4          | \$48,185       |  |  |
| \$2.0m             | R                 | -2.5             | \$40,758                       | -49.1          | \$40,758       | 0                   | -3.6             | \$27,938                       | -71.6          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -41.5          | \$48,185       |  |  |
| \$2.1m             | R                 | -2.5             | \$40,758                       | -51.5          | \$40,758       | 0                   | -3.6             | \$27,938                       | -75.2          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -43.6          | \$48,185       |  |  |
| \$2.2m             | R                 | -2.5             | \$40,758                       | -54.0          | \$40,758       | 0                   | -3.6             | \$27,938                       | -78.7          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -45.7          | \$48,185       |  |  |
| \$2.3m             | R                 | -2.5             | \$40,758                       | -56.4          | \$40,758       | 0                   | -3.6             | \$27,938                       | -82.3          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -47.7          | \$48,185       |  |  |
| \$2.4m             | R                 | -2.5             | \$40,758                       | -58.9          | \$40,758       | 0                   | -3.6             | \$27,938                       | -85.9          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -49.8          | \$48,185       |  |  |
| \$2.5m             | R                 | -2.5             | \$40,758                       | -61.3          | \$40,758       | 0                   | -3.6             | \$27,938                       | -89.5          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -51.9          | \$48,185       |  |  |
| \$2.6m             | R                 | -2.5             | \$40,758                       | -63.8          | \$40,758       | 0                   | -3.6             | \$27,938                       | -93.1          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -54.0          | \$48,185       |  |  |
| \$2.7m             | R                 | -2.5             | \$40,758                       | -66.2          | \$40,758       | 0                   | -3.6             | \$27,938                       | -96.6          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -56.0          | \$48,185       |  |  |
| \$2.8m             | R                 | -2.5             | \$40,758                       | -68./          | \$40,758       | 0                   | -3.6             | \$27,938                       | -100.2         | \$27,938       | Q                 | -2.1                   | \$48,185                       | -58.1          | \$48,185       |  |  |
| \$2.9m             | K                 | -2.5             | \$40,758                       | -/1.2          | \$40,758       | 0                   | -3.6             | \$27,938                       | -103.8         | \$27,938       | Q                 | -2.1                   | \$48,185                       | -60.2          | \$48,185       |  |  |
| \$3.0m             | K<br>D            | -2.5             | \$40,758                       | -/3.6          | \$40,758       | 0                   | -3.6             | \$27,938                       | -10/.4         | \$27,938       | Q                 | -2.1                   | \$48,185                       | -62.3          | \$48,185       |  |  |
| \$3.1m             | K<br>D            | -2.5             | \$40,758                       | -/6.1          | \$40,758       | 0                   | -3.6             | \$27,938                       | -111.0         | \$27,938       | Q                 | -2.1                   | \$48,185                       | -64.3          | \$48,185       |  |  |
| \$3.2m             | K<br>D            | -2.5             | \$40,758                       | -/8.5          | \$40,758       | 0                   | -3.0             | \$27,938                       | -114.5         | \$27,938       | Q                 | -2.1                   | \$48,185                       | -00.4          | \$48,185       |  |  |
| \$3.5m             | R<br>D            | -2.5             | \$40,758                       | -01.0          | \$40,758       | 0                   | -3.0             | \$27,938                       | -116.1         | \$27,938       | Q                 | -2.1                   | \$40,105                       | -08.5          | \$40,105       |  |  |
| \$3.4III<br>\$2.5m | R<br>D            | -2.5             | \$40,758                       | -63.4          | \$40,758       | 0                   | -3.0             | \$27,938                       | -121.7         | \$27,938       | Q                 | -2.1                   | \$40,105                       | -70.0          | \$40,105       |  |  |
| \$3.5m             | P                 | 2.5              | \$40,758                       | -03.3          | \$40,758       | 0                   | -3.0             | \$27,938                       | 129.0          | \$27,938       | Q                 | -2.1                   | \$48,185                       | -72.0          | \$48 185       |  |  |
| \$3.0m             | P                 | 2.5              | \$40,758                       | -00.5          | \$40,758       | 0                   | -3.0             | \$27,938                       | 132.4          | \$27,938       | Q                 | -2.1                   | \$48,185                       | 76.8           | \$48 185       |  |  |
| \$3.7m             | R                 | -2.5             | \$40,758                       | -90.8          | \$40,758       | 0                   | -3.6             | \$27,938                       | -136.0         | \$27,938       | Q                 | -2.1                   | \$48 185                       | -78.9          | \$48 185       |  |  |
| \$3.0m             | R                 | -2.5             | \$40,758                       | -95.2          | \$40,758       | 0                   | -3.6             | \$27,938                       | -139.6         | \$27,938       | Ŏ                 | -2.1                   | \$48 185                       | -80.9          | \$48 185       |  |  |
| \$4.0m             | R                 | -2.5             | \$40,758                       | -98.1          | \$40,758       | 0                   | -3.6             | \$27,938                       | -143.2         | \$27,938       | Ŏ                 | -2.1                   | \$48 185                       | -83.0          | \$48 185       |  |  |
| \$4.0m             | R                 | -2.5             | \$40,757                       | -100.6         | \$40,758       | 0                   | -3.6             | \$27,938                       | -146.8         | \$27,938       | Ŏ                 | -2.1                   | \$48 185                       | -85.1          | \$48 185       |  |  |
| \$4.1m             | R                 | -2.5             | \$40,757                       | -103.0         | \$40,758       | 0                   | -3.6             | \$27,938                       | -140.0         | \$27,938       | Ŏ                 | -2.1                   | \$48 185                       | -87.2          | \$48 185       |  |  |
| \$4.3m             | R                 | -2.5             | \$40,758                       | -105.5         | \$40,758       | 0                   | -3.6             | \$27,938                       | -153.9         | \$27,938       | Ŏ                 | -2.1                   | \$48,185                       | -89.2          | \$48 185       |  |  |
| \$4.4m             | R                 | -2.5             | \$40,758                       | -108.0         | \$40.758       | Ő                   | -3.6             | \$27,938                       | -157.5         | \$27,938       | Ŏ                 | -2.1                   | \$48,185                       | -91.3          | \$48,185       |  |  |
| \$4.5m             | R                 | -2.5             | \$40.758                       | -110.4         | \$40.758       | Ő                   | -3.6             | \$27.938                       | -161.1         | \$27.938       | ŏ                 | -2.1                   | \$48.185                       | -93.4          | \$48.185       |  |  |
| \$4.6m             | R                 | -2.5             | \$40,758                       | -112.9         | \$40,758       | Ő                   | -3.6             | \$27,938                       | -164.6         | \$27,938       | ŏ                 | -2.1                   | \$48,185                       | -95.5          | \$48,185       |  |  |
| \$4.7m             | R                 | -2.5             | \$40,758                       | -115.3         | \$40,758       | Ő                   | -3.6             | \$27,938                       | -168.2         | \$27,938       | ŏ                 | -2.1                   | \$48,185                       | -97.5          | \$48,185       |  |  |
| \$4.8m             | R                 | -2.5             | \$40,758                       | -117.8         | \$40,758       | 0                   | -3.6             | \$27,938                       | -171.8         | \$27,938       | ò                 | -2.1                   | \$48,185                       | -99.6          | \$48,185       |  |  |
| -                  |                   |                  |                                |                | /              |                     | -                | 1                              |                | · · ·          |                   |                        | 1                              |                |                |  |  |

# Table A1.1.1: Reallocation following net investment (divisibility and constant returns)

|                    |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|--------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Budget             |                   | Margina          | d                              | Cumi           | ılative        |                     | Margina          | l                              | Cumi           | ulative        |                   | Margina                | l                              | Cumi           | ılative        |  |  |
| Impact             | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$4.9m             | R                 | -2.5             | \$40,758                       | -120.2         | \$40,758       | 0                   | -3.6             | \$27,938                       | -175.4         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -101.7         | \$48,185       |  |  |
| \$5.0m             | R                 | -2.5             | \$40,758                       | -122.7         | \$40,758       | 0                   | -3.6             | \$27,938                       | -179.0         | \$27,938       | Q                 | -2.1                   | \$48,183                       | -103.8         | \$48,185       |  |  |
| \$5.1m             | R                 | -2.5             | \$40,758                       | -125.1         | \$40,758       | 0                   | -3.6             | \$27,938                       | -182.5         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -105.8         | \$48,185       |  |  |
| \$5.2m             | R                 | -2.5             | \$40,758                       | -127.6         | \$40,758       | 0                   | -3.6             | \$27,938                       | -186.1         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -107.9         | \$48,185       |  |  |
| \$5.3m             | R                 | -2.5             | \$40,758                       | -130.0         | \$40,758       | 0                   | -3.6             | \$27,938                       | -189.7         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -110.0         | \$48,185       |  |  |
| \$5.4m             | R                 | -2.5             | \$40,758                       | -132.5         | \$40,758       | 0                   | -3.6             | \$27,938                       | -193.3         | \$27,938       | Q                 | -2.1                   | \$48,183                       | -112.1         | \$48,185       |  |  |
| \$5.5m             | R                 | -2.5             | \$40,758                       | -134.9         | \$40,758       | 0                   | -3.6             | \$27,938                       | -196.9         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -114.1         | \$48,185       |  |  |
| \$5.6m             | R                 | -2.5             | \$40,758                       | -137.4         | \$40,758       | 0                   | -3.6             | \$27,938                       | -200.4         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -116.2         | \$48,185       |  |  |
| \$5.7m             | R                 | -2.5             | \$40,758                       | -139.8         | \$40,758       | 0                   | -3.6             | \$27,938                       | -204.0         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -118.3         | \$48,185       |  |  |
| \$5.8m             | R                 | -2.5             | \$40,758                       | -142.3         | \$40,758       | 0                   | -3.6             | \$27,938                       | -207.6         | \$27,938       | Q                 | -2.1                   | \$48,183                       | -120.4         | \$48,185       |  |  |
| \$5.9m             | R                 | -2.5             | \$40,758                       | -144.8         | \$40,758       | 0                   | -3.6             | \$27,938                       | -211.2         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -122.4         | \$48,185       |  |  |
| \$6.0m             | R                 | -2.5             | \$40,758                       | -147.2         | \$40,758       | 0                   | -3.6             | \$27,938                       | -214.8         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -124.5         | \$48,185       |  |  |
| \$6.1m             | R                 | -2.5             | \$40,758                       | -149.7         | \$40,758       | 0                   | -3.6             | \$27,938                       | -218.3         | \$27,938       | Q                 | -2.1                   | \$48,183                       | -126.6         | \$48,185       |  |  |
| \$6.2m             | R                 | -2.5             | \$40,758                       | -152.1         | \$40,758       | 0                   | -3.6             | \$27,938                       | -221.9         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -128.7         | \$48,185       |  |  |
| \$6.3m             | R                 | -2.5             | \$40,758                       | -154.6         | \$40,758       | 0                   | -3.6             | \$27,938                       | -225.5         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -130.7         | \$48,185       |  |  |
| \$6.4m             | R                 | -2.5             | \$40,758                       | -157.0         | \$40,758       | 0                   | -3.6             | \$27,938                       | -229.1         | \$27,938       | Q                 | -2.1                   | \$48,186                       | -132.8         | \$48,185       |  |  |
| \$6.5m             | K D               | -2.5             | \$40,758                       | -159.5         | \$40,758       | 0                   | -3.6             | \$27,938                       | -232.7         | \$27,938       | Q                 | -2.1                   | \$48,183                       | -134.9         | \$48,185       |  |  |
| \$0.0M             | R                 | -2.5             | \$40,758                       | -161.9         | \$40,758       | 0                   | -3.0             | \$27,938                       | -230.2         | \$27,938       | 0                 | -2.1                   | \$48,180                       | -13/.0         | \$48,185       |  |  |
| \$0./M             | R<br>D            | -2.5             | \$40,758                       | -104.4         | \$40,758       | 0                   | -3.0             | \$27,938                       | -239.8         | \$27,938       | Q                 | -2.1                   | \$40,100                       | -139.0         | \$40,105       |  |  |
| \$6.0m             | R<br>D            | -2.5             | \$40,758                       | -100.8         | \$40,758       | 0                   | -3.0             | \$27,938                       | -245.4         | \$27,938       | Q                 | -2.1                   | \$46,160                       | -141.1         | \$40,103       |  |  |
| \$0.9m             | R<br>D            | -2.5             | \$40,758                       | -109.5         | \$40,758       | 0                   | -3.0             | \$27,938                       | -247.0         | \$27,938       | Q                 | -2.1                   | \$40,105                       | -145.2         | \$40,103       |  |  |
| \$7.0m             | R<br>D            | -2.5             | \$40,758                       | -1/1./         | \$40,758       | 0                   | -3.0             | \$27,930                       | -250.0         | \$27,930       | Q                 | -2.1                   | \$40,100                       | -145.5         | \$40,105       |  |  |
| \$7.1111<br>\$7.2m | R<br>D            | -2.5             | \$40,758                       | -174.2         | \$40,758       | 0                   | -3.0             | \$27,930                       | -234.1         | \$27,938       | Q                 | -2.1                   | \$40,100                       | -147.5         | \$40,103       |  |  |
| \$7.2m             | R                 | -2.5             | \$40,758                       | -179.1         | \$40,758       | 0                   | -3.6             | \$27,938                       | -261.3         | \$27,938       | Ŏ                 | -2.1                   | \$48 183                       | -147.4         | \$48 185       |  |  |
| \$7.0m             | R                 | -2.5             | \$40,758                       | -181.6         | \$40,758       | Ő                   | -3.6             | \$27,938                       | -264.9         | \$27,938       | ŏ                 | -2.1                   | \$48,186                       | -153.6         | \$48 185       |  |  |
| \$7.5m             | R                 | -2.5             | \$40,758                       | -184.0         | \$40,758       | 0                   | -3.6             | \$27,938                       | -268.4         | \$27,938       | Õ                 | -2.1                   | \$48,186                       | -155.6         | \$48 185       |  |  |
| \$7.6m             | C                 | -2.5             | \$39.802                       | -186.5         | \$40,745       | 0                   | -3.6             | \$27,938                       | -272.0         | \$27,938       | Ř                 | -2.5                   | \$40,758                       | -158.1         | \$48.070       |  |  |
| \$7.7m             | С                 | -2.5             | \$39,802                       | -189.0         | \$40,733       | 0                   | -3.6             | \$27,938                       | -275.6         | \$27,938       | R                 | -2.5                   | \$40,758                       | -160.6         | \$47,958       |  |  |
| \$7.8m             | С                 | -2.5             | \$39,802                       | -191.5         | \$40,720       | 0                   | -3.6             | \$27,938                       | -279.2         | \$27,938       | R                 | -2.5                   | \$40,758                       | -163.0         | \$47,850       |  |  |
| \$7.9m             | С                 | -2.5             | \$39,802                       | -194.1         | \$40,709       | 0                   | -3.6             | \$27,938                       | -282.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -165.5         | \$47,745       |  |  |
| \$8.0m             | С                 | -2.5             | \$39,802                       | -196.6         | \$40,697       | 0                   | -3.6             | \$27,938                       | -286.3         | \$27,938       | R                 | -2.5                   | \$40,758                       | -167.9         | \$47,643       |  |  |
| \$8.1m             | С                 | -2.5             | \$39,802                       | -199.1         | \$40,686       | 0                   | -3.6             | \$27,938                       | -289.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -170.4         | \$47,543       |  |  |
| \$8.2m             | С                 | -2.5             | \$39,802                       | -201.6         | \$40,675       | 0                   | -3.6             | \$27,938                       | -293.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -172.8         | \$47,447       |  |  |
| \$8.3m             | С                 | -2.5             | \$39,802                       | -204.1         | \$40,664       | 0                   | -3.6             | \$27,938                       | -297.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -175.3         | \$47,354       |  |  |
| \$8.4m             | С                 | -2.5             | \$39,802                       | -206.6         | \$40,653       | 0                   | -3.6             | \$27,938                       | -300.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -177.7         | \$47,262       |  |  |
| \$8.5m             | С                 | -2.5             | \$39,802                       | -209.1         | \$40,643       | 0                   | -3.6             | \$27,938                       | -304.2         | \$27,938       | R                 | -2.5                   | \$40,758                       | -180.2         | \$47,174       |  |  |
| \$8.6m             | C                 | -2.5             | \$39,802                       | -211.6         | \$40,633       | 0                   | -3.6             | \$27,938                       | -307.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -182.6         | \$47,088       |  |  |
| \$8.7m             | C                 | -2.5             | \$39,802                       | -214.2         | \$40,623       | 0                   | -3.6             | \$27,938                       | -311.4         | \$27,938       | R                 | -2.5                   | \$40,758                       | -185.1         | \$47,004       |  |  |
| \$8.8m             | C                 | -2.5             | \$39,802                       | -216.7         | \$40,614       | 0                   | -3.6             | \$27,938                       | -315.0         | \$27,938       | R                 | -2.5                   | \$40,758                       | -187.5         | \$46,922       |  |  |
| \$8.9m             | C                 | -2.5             | \$39,802                       | -219.2         | \$40,605       | 0                   | -3.6             | \$27,938                       | -318.6         | \$27,938       | R                 | -2.5                   | \$40,758                       | -190.0         | \$46,842       |  |  |
| \$9.0m             | C                 | -2.5             | \$39,802                       | -221.7         | \$40,596       | 0                   | -3.6             | \$27,938                       | -322.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -192.5         | \$46,765       |  |  |
| \$9.1m             | C                 | -2.5             | \$39,802                       | -224.2         | \$40,587       | 0                   | -3.6             | \$27,938                       | -325.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -194.9         | \$46,689       |  |  |
| \$9.2m             | C                 | -2.5             | \$39,802                       | -226.7         | \$40,578       | 0                   | -3.6             | \$27,938                       | -329.3         | \$27,938       | R                 | -2.5                   | \$40,758                       | -197.4         | \$46,616       |  |  |
| \$9.3m             | C                 | -2.5             | \$39,802                       | -229.2         | \$40,569       | 0                   | -3.6             | \$27,938                       | -332.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -199.8         | \$46,544       |  |  |
| \$9.4m             | C                 | -2.5             | \$39,802                       | -231.7         | \$40,561       | 0                   | -3.6             | \$27,938                       | -336.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -202.3         | \$46,473       |  |  |
| \$9.5m             |                   | -2.5             | \$39,802                       | -234.3         | \$40,553       | 0                   | -3.0             | \$27,938                       | -340.0         | \$27,938       | K<br>D            | -2.5                   | \$40,758                       | -204.7         | \$46,405       |  |  |
| \$9.6m             | C                 | -2.5             | \$39,802                       | -230.8         | \$40,545       | 0                   | -3.0             | \$27,938                       | -345.0         | \$27,938       | K<br>D            | -2.5                   | \$40,758                       | -207.2         | \$40,558       |  |  |
| \$9./M             | C                 | -2.5             | \$30,802                       | -239.3         | \$40,537       | 0                   | -3.0             | \$27,930                       | -34/.2         | \$27.030       | A<br>Q            | -2.5                   | \$40,759                       | -209.0         | \$46.200       |  |  |
| \$9.9m             | c                 | -2.5             | \$39.802                       | -244.3         | \$40.522       | 0                   | -3.6             | \$27,938                       | -354.4         | \$27,938       | R                 | -2.5                   | \$40.758                       | -212.1         | \$46.147       |  |  |

|         |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Budget  |                   | Margina          | 1                              | Cumi           | ulative        |                     | Margina          | 1                              | Cum            | ulative        |                   | Margina                | l                              | Cumi           | ılative        |  |  |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$10.0m | С                 | -2.5             | \$39,802                       | -246.8         | \$40,515       | 0                   | -3.6             | \$27,938                       | -357.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -217.0         | \$46,086       |  |  |
| \$10.1m | С                 | -2.5             | \$39,802                       | -249.3         | \$40,508       | 0                   | -3.6             | \$27,938                       | -361.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -219.4         | \$46,026       |  |  |
| \$10.2m | С                 | -2.5             | \$39,802                       | -251.8         | \$40,501       | 0                   | -3.6             | \$27,938                       | -365.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -221.9         | \$45,968       |  |  |
| \$10.3m | С                 | -2.5             | \$39,802                       | -254.4         | \$40,494       | 0                   | -3.6             | \$27,938                       | -368.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -224.3         | \$45,911       |  |  |
| \$10.4m | С                 | -2.5             | \$39,802                       | -256.9         | \$40,487       | 0                   | -3.6             | \$27,938                       | -372.2         | \$27,938       | R                 | -2.5                   | \$40,758                       | -226.8         | \$45,855       |  |  |
| \$10.5m | С                 | -2.5             | \$39,802                       | -259.4         | \$40,480       | 0                   | -3.6             | \$27,938                       | -375.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -229.3         | \$45,801       |  |  |
| \$10.6m | С                 | -2.5             | \$39,802                       | -261.9         | \$40,474       | 0                   | -3.6             | \$27,938                       | -379.4         | \$27,938       | R                 | -2.5                   | \$40,758                       | -231.7         | \$45,747       |  |  |
| \$10.7m | С                 | -2.5             | \$39,802                       | -264.4         | \$40,467       | 0                   | -3.6             | \$27,938                       | -383.0         | \$27,938       | R                 | -2.5                   | \$40,758                       | -234.2         | \$45,695       |  |  |
| \$10.8m | С                 | -2.5             | \$39,802                       | -266.9         | \$40,461       | 0                   | -3.6             | \$27,938                       | -386.6         | \$27,938       | R                 | -2.5                   | \$40,758                       | -236.6         | \$45,644       |  |  |
| \$10.9m | С                 | -2.5             | \$39,802                       | -269.4         | \$40,455       | 0                   | -3.6             | \$27,938                       | -390.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -239.1         | \$45,594       |  |  |
| \$11.0m | С                 | -2.5             | \$39,802                       | -271.9         | \$40,449       | 0                   | -3.6             | \$27,938                       | -393.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -241.5         | \$45,545       |  |  |
| \$11.1m | С                 | -2.5             | \$39,802                       | -274.5         | \$40,443       | 0                   | -3.6             | \$27,938                       | -397.3         | \$27,938       | R                 | -2.5                   | \$40,758                       | -244.0         | \$45,496       |  |  |
| \$11.2m | С                 | -2.5             | \$39,802                       | -277.0         | \$40,437       | 0                   | -3.6             | \$27,938                       | -400.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -246.4         | \$45,449       |  |  |
| \$11.3m | С                 | -2.5             | \$39,802                       | -279.5         | \$40,431       | 0                   | -3.6             | \$27,938                       | -404.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -248.9         | \$45,403       |  |  |
| \$11.4m | С                 | -2.5             | \$39,802                       | -282.0         | \$40,426       | 0                   | -3.6             | \$27,938                       | -408.0         | \$27,938       | R                 | -2.5                   | \$40,758                       | -251.3         | \$45,358       |  |  |
| \$11.5m | С                 | -2.5             | \$39,801                       | -284.5         | \$40,420       | 0                   | -3.6             | \$27,938                       | -411.6         | \$27,938       | R                 | -2.5                   | \$40,758                       | -253.8         | \$45,313       |  |  |
| \$11.6m | С                 | -2.5             | \$39,803                       | -287.0         | \$40,415       | 0                   | -3.6             | \$27,938                       | -415.2         | \$27,938       | R                 | -2.5                   | \$40,757                       | -256.2         | \$45,270       |  |  |
| \$11.7m | С                 | -2.5             | \$39,803                       | -289.5         | \$40,410       | 0                   | -3.6             | \$27,938                       | -418.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -258.7         | \$45,227       |  |  |
| \$11.8m | С                 | -2.5             | \$39,801                       | -292.0         | \$40,404       | 0                   | -3.6             | \$27,938                       | -422.4         | \$27,938       | R                 | -2.5                   | \$40,758                       | -261.2         | \$45,185       |  |  |
| \$11.9m | С                 | -2.5             | \$39,803                       | -294.6         | \$40,399       | 0                   | -3.6             | \$27,938                       | -425.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -263.6         | \$45,144       |  |  |
| \$12.0m | C                 | -2.5             | \$39,801                       | -297.1         | \$40,394       | 0                   | -3.6             | \$27,938                       | -429.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -266.1         | \$45,103       |  |  |
| \$12.1m | C                 | -2.5             | \$39,803                       | -299.6         | \$40,389       | 0                   | -3.6             | \$27,938                       | -433.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -268.5         | \$45,063       |  |  |
| \$12.2m | C                 | -2.5             | \$39,801                       | -302.1         | \$40,384       | 0                   | -3.6             | \$27,938                       | -436.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -271.0         | \$45,024       |  |  |
| \$12.3m | C                 | -2.5             | \$39,803                       | -304.6         | \$40,380       | 0                   | -3.6             | \$27,938                       | -440.3         | \$27,938       | R                 | -2.5                   | \$40,758                       | -273.4         | \$44,986       |  |  |
| \$12.4m | C                 | -2.5             | \$39,803                       | -307.1         | \$40,375       | 0                   | -3.6             | \$27,938                       | -443.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -275.9         | \$44,949       |  |  |
| \$12.5m | C                 | -2.5             | \$39,801                       | -309.6         | \$40,370       | 0                   | -3.6             | \$27,938                       | -447.4         | \$27,938       | R                 | -2.5                   | \$40,758                       | -278.3         | \$44,912       |  |  |
| \$12.6m | C                 | -2.5             | \$39,803                       | -312.1         | \$40,366       | 0                   | -3.6             | \$27,938                       | -451.0         | \$27,938       | R                 | -2.5                   | \$40,758                       | -280.8         | \$44,875       |  |  |
| \$12.7m | C                 | -2.5             | \$39,801                       | -314./         | \$40,361       | 0                   | -3.6             | \$27,938                       | -454.6         | \$27,938       | K                 | -2.5                   | \$40,758                       | -283.2         | \$44,840       |  |  |
| \$12.8m | C                 | -2.5             | \$39,803                       | -31/.2         | \$40,357       | 0                   | -3.6             | \$27,938                       | -458.2         | \$27,938       | K                 | -2.5                   | \$40,758                       | -285./         | \$44,805       |  |  |
| \$12.9m | C                 | -2.5             | \$39,803                       | -319.7         | \$40,352       | 0                   | -3.6             | \$27,938                       | -461./         | \$27,938       | K<br>D            | -2.5                   | \$40,758                       | -288.1         | \$44,770       |  |  |
| \$13.0m | C                 | -2.5             | \$39,801                       | -322.2         | \$40,348       | 0                   | -3.0             | \$27,938                       | -405.5         | \$27,938       | K<br>D            | -2.5                   | \$40,758                       | -290.0         | \$44,730       |  |  |
| \$13.1m | C                 | -2.5             | \$39,803                       | -324.7         | \$40,344       | 0                   | -3.0             | \$27,938                       | -408.9         | \$27,938       | R<br>D            | -2.5                   | \$40,758                       | -295.0         | \$44,705       |  |  |
| \$13.2m | C                 | -2.3             | \$39,801                       | 320.7          | \$40,340       | 0                   | -3.0             | \$27,938                       | -472.3         | \$27,938       | P                 | -2.3                   | \$40,758                       | -293.3         | \$44,070       |  |  |
| \$13.5m | C                 | -2.5             | \$39,803                       | 329.7          | \$40,330       | 0                   | -3.0             | \$27,938                       | 470.0          | \$27,938       | P                 | -2.5                   | \$40,758                       | -298.0         | \$44,606       |  |  |
| \$13.4m | C                 | -2.5             | \$39,801                       | -334.8         | \$40,328       | 0                   | -3.6             | \$27,938                       | -483.2         | \$27,938       | R                 | -2.5                   | \$40,758                       | -302.9         | \$44,575       |  |  |
| \$13.5m | C                 | -2.5             | \$39,803                       | -337.3         | \$40,320       | 0                   | -3.6             | \$27,938                       | -486.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -305.3         | \$44 544       |  |  |
| \$13.0m | C                 | -2.5             | \$39,801                       | -339.8         | \$40,324       | 0                   | -3.6             | \$27,938                       | -490.4         | \$27,938       | R                 | -2.5                   | \$40,758                       | -307.8         | \$44 514       |  |  |
| \$13.8m | C                 | -2.5             | \$39,803                       | -342.3         | \$40,316       | Ő                   | -3.6             | \$27,938                       | -493.9         | \$27,938       | R                 | -2.5                   | \$40,758                       | -310.2         | \$44 485       |  |  |
| \$13.9m | C                 | -2.5             | \$39,801                       | -344.8         | \$40.312       | 0                   | -3.6             | \$27,938                       | -497.5         | \$27,938       | R                 | -2.5                   | \$40,758                       | -312.7         | \$44,455       |  |  |
| \$14.0m | C                 | -2.5             | \$39,803                       | -347.3         | \$40.308       | 0                   | -3.6             | \$27,938                       | -501.1         | \$27,938       | R                 | -2.5                   | \$40,758                       | -315.1         | \$44.427       |  |  |
| \$14.1m | Č                 | -2.5             | \$39,803                       | -349.8         | \$40,305       | 0                   | -3.6             | \$27,938                       | -504.7         | \$27,938       | R                 | -2.5                   | \$40,758                       | -317.6         | \$44,398       |  |  |
| \$14.2m | С                 | -2.5             | \$39,801                       | -352.3         | \$40,301       | 0                   | -3.6             | \$27,938                       | -508.3         | \$27,938       | R                 | -2.5                   | \$40,758                       | -320.0         | \$44,370       |  |  |
| \$14.3m | С                 | -2.5             | \$39,803                       | -354.9         | \$40,298       | 0                   | -3.6             | \$27,938                       | -511.8         | \$27,938       | R                 | -2.5                   | \$40,758                       | -322.5         | \$44,343       |  |  |
| \$14.4m | С                 | -2.5             | \$39,801                       | -357.4         | \$40,294       | Ι                   | -5.5             | \$18,084                       | -517.4         | \$27,833       | R                 | -2.5                   | \$40,758                       | -324.9         | \$44,316       |  |  |
| \$14.5m | С                 | -2.5             | \$39,803                       | -359.9         | \$40,291       | Ι                   | -5.5             | \$18,084                       | -522.9         | \$27,730       | R                 | -2.5                   | \$40,758                       | -327.4         | \$44,289       |  |  |
| \$14.6m | С                 | -2.5             | \$39,801                       | -362.4         | \$40,287       | Ι                   | -5.5             | \$18,084                       | -528.4         | \$27,629       | R                 | -2.5                   | \$40,758                       | -329.8         | \$44,263       |  |  |
| \$14.7m | С                 | -2.5             | \$39,803                       | -364.9         | \$40,284       | Ι                   | -5.5             | \$18,084                       | -534.0         | \$27,530       | R                 | -2.5                   | \$40,758                       | -332.3         | \$44,237       |  |  |
| \$14.8m | С                 | -2.5             | \$39,803                       | -367.4         | \$40,281       | Ι                   | -5.5             | \$18,084                       | -539.5         | \$27,433       | R                 | -2.5                   | \$40,758                       | -334.8         | \$44,211       |  |  |
| \$14.9m | С                 | -2.5             | \$39,801                       | -369.9         | \$40,278       | Ι                   | -5.5             | \$18,084                       | -545.0         | \$27,338       | R                 | -2.5                   | \$40,758                       | -337.2         | \$44,186       |  |  |
| \$15.0m | С                 | -2.5             | \$39,803                       | -372.4         | \$40,274       | Ι                   | -5.5             | \$18,084                       | -550.6         | \$27,245       | R                 | -2.5                   | \$40,758                       | -339.7         | \$44,162       |  |  |

| Budge<br>implat         Tende applant         Cannulative         Marginal         Cannulative           S151         C         22.5         559.801         375.0         \$40.271         1         5.5         \$18.084         556.1         \$27.065         R         2.5         \$40.781         \$44.13           \$151.200         C         2.5         \$59.801         377.5         \$40.265         1         5.5         \$18.084         556.1         \$27.065         R         2.5         \$40.795         344.6         \$44.11           \$15.500         C         2.5         \$59.801         335.0         \$40.250         1         5.5         \$18.084         572.6         \$27.5         \$30.09         \$40.25         \$18.084         578.2         \$26.647         R         2.5         \$40.758         349.75         \$34.944.00           \$15.500         C         2.2.5         \$30.900         \$40.251         1         5.5         \$18.044         \$394.3         \$26.644         R         2.5         \$40.758         354.4         \$44.00           \$15.500         C         2.2.5         \$30.930         390.0         \$40.224         1         5.5         \$18.044         \$69.03         \$26.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Implet         Tech* <i>LEP LEP LEP</i> <t< th=""><th>Budget</th><th></th><th>Margina</th><th>1</th><th>Cumi</th><th>ılative</th><th></th><th>Margina</th><th>l</th><th>Cum</th><th>ılative</th><th></th><th>Margina</th><th>l</th><th>Cumi</th><th>ılative</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Budget             |                   | Margina          | 1                              | Cumi           | ılative        |                     | Margina          | l                              | Cum            | ılative        |                   | Margina                | l                              | Cumi           | ılative        |  |  |
| Sistam         C         2.5         Siyam         375.0         437.0         540.258         142.1         544.11           Sistam         C         2.5         Siyawi         375.0         Siyawi         55.5         Sikawi         56.5         Siyawi         325.5         Siyawi         335.5         Siyawi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | impact             | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| Sistam         C         2.5         Sikom         -561.6         S27.06         R         2.5         S40.78         3.444.6         S441.0           Sistam         C         2.5         Sikom         C         2.5         Sikom         C         2.5         Sikom         Sikom <thsikom< th="">         Sik</thsikom<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$15.1m            | С                 | -2.5             | \$39.801                       | -375.0         | \$40,271       | Ι                   | -5.5             | \$18.084                       | -556.1         | \$27,154       | R                 | -2.5                   | \$40,758                       | -342.1         | \$44,137       |  |  |
| Sis.5m         C         -2.5         Siy.80         -380.0         Siy.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$15.2m            | С                 | -2.5             | \$39,803                       | -377.5         | \$40,268       | Ι                   | -5.5             | \$18,084                       | -561.6         | \$27,065       | R                 | -2.5                   | \$40,758                       | -344.6         | \$44,113       |  |  |
| Si5.5m         C         -25.5         Si8.084         -572.7         S26.892         R         -2.5         S40.789         -349.5         S44.00           Si5.5m         C         -2.5         S39.801         -387.5         S40.226         I         -5.5         S18.084         -578.2         S26.897         R         -2.5         S40.788         -351.4         S44.8         S44.9           S15.5m         C         -2.5         S39.801         -390.5         S40.240         I         -5.5         S18.044         -600.3         S26.444         R         -2.5         S40.784         -383.9         S43.93         S36.64         R         -2.5         S40.784         -383.93         S43.93         S43.93         S44.94         S43.84         -601.8         S26.44         R         -2.5         S40.784         -343.93         S44.93         S44.93         S44.93         S44.93         S44.94         S43.84         -601.8         S26.449         R         -2.5         S40.788         -366.743.91         S43.84         -618.83         S44.94         S43.84         S45.93         S44.94         S43.84         S46.83         S46.16         R2.25         S40.788         -376.843.82         S40.788         -376.843.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$15.3m            | С                 | -2.5             | \$39,803                       | -380.0         | \$40,265       | Ι                   | -5.5             | \$18,084                       | -567.1         | \$26,977       | R                 | -2.5                   | \$40,758                       | -347.0         | \$44,089       |  |  |
| S15.5m         C         -2.5         S18.0m         -5.5         S18.0M         -5.78.2         S26.07         R         -2.5         S40.78.6         -351.9         S44.4         S44.4           S15.6m         C         -2.5         S19.801         -392.5         S18.084         -558.3         S26.742         R         -2.5         S40.778         -354.4         S44.4         S44.4         S44.5         S44.5         S44.5         S44.5         S44.5         S44.5         S44.7         S43.7         S26.744         R         -2.5         S40.788         -356.8         S44.94         S44.5         S44.7         S43.5         S44.7         S43.7         S44.7         S43.7         S43.7         S44.7         S44.7         S43.8         S44.7         S44.7         S43.8         S44.7         S44.7         S44.8         S44.7         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$15.4m            | С                 | -2.5             | \$39,801                       | -382.5         | \$40,262       | Ι                   | -5.5             | \$18,084                       | -572.7         | \$26,892       | R                 | -2.5                   | \$40,758                       | -349.5         | \$44,066       |  |  |
| SI5.6m         C         -2.5         \$39,800         -300         \$40,25         \$18,7m         C         -2.5         \$39,800         -300.5         \$315,7m         C         -2.5         \$39,800         -300.5         \$30,50         \$315,7m         C         -2.5         \$39,800         -300.5         \$30,20         1         -5.5         \$18,084         -598,48         \$25,644         R         -2.5         \$40,778         -339,3         430,378           S15,0m         C         -2.5         \$39,800         -300.7         1         -5.5         \$18,084         -600.3         \$26,649         R         -2.5         \$40,778         -366,7         343,99         S16,0m         C         -2.5         \$39,801         -401.6         \$40,216         1         -5.5         \$18,084         -601.4         \$26,260         R         -2.5         \$40,778         -371.6         \$43,88         S16,5m         C         -2.5         \$39,801         -401.6         \$40,224         \$25,518,084         -602.4         \$25,610         R         -2.5         \$40,778         -371.6         \$43,88         S16,5m         C         -2.5         \$39,801         -412.5         \$40,224         1         -5.5         \$18,084 <t< th=""><th>\$15.5m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-385.0</th><th>\$40,259</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-578.2</th><th>\$26,807</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-351.9</th><th>\$44,043</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$15.5m            | С                 | -2.5             | \$39,803                       | -385.0         | \$40,259       | Ι                   | -5.5             | \$18,084                       | -578.2         | \$26,807       | R                 | -2.5                   | \$40,758                       | -351.9         | \$44,043       |  |  |
| SIS.7m         C         -2.5         \$39,801         -392.5         \$40,250         I         -5.5         \$18,084         -689.3         \$226,564         R         -2.5         \$340,758         -353.6         \$343,99           SIS.5m         C         -2.5         \$39,803         -397.5         \$40,278         -361.7         \$43,95           SI6.0m         C         -2.5         \$39,803         -397.6         \$40,244         I         -5.5         \$18,084         -600.3         \$26,648         R         -2.5         \$40,758         -361.2         \$43,93           SI6.1m         C         -2.5         \$39,801         -400.1         \$40,236         I         -5.5         \$18,084         -616.9         \$25,6314         R         -2.5         \$40,758         -371.6         \$43,84           S16,3m         C         -2.5         \$39,803         -401.1         \$40,236         I         -5.5         \$18,084         -616.9         \$26,167         R         -2.5         \$40,758         -371.6         \$43,84           S16,5m         C         -2.5         \$39,803         -410.5         \$40,228         I         -5.5         \$18,084         -633.5         \$26,0168         R.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$15.6m            | С                 | -2.5             | \$39,801                       | -387.5         | \$40,256       | Ι                   | -5.5             | \$18,084                       | -583.7         | \$26,725       | R                 | -2.5                   | \$40,758                       | -354.4         | \$44,020       |  |  |
| S15.8m         C         -2.5         S19,801         -392.5         S40,250         1         -5.5         S18,084         -690.3         S26,564         R         -2.5         S40,758         -361.7         S43.95           S16.0m         C         -2.5         S19,803         -300.1         S40.244         1         -5.5         S18,084         -600.3         S26.466         R         -2.5         S40,758         -361.7         S43.95           S16.0m         C         -2.5         S19,803         -400.1         S40.242         1         -5.5         S18,084         -616.9         S26,167         R         -2.5         S40,758         -360.1         S43.98           S16.4m         C         -2.5         S19,801         -401.6         S40,224         1         -5.5         S18,084         -630.9         S26,107         R         -2.5         S40,758         -374.0         S43.98           S16.6m         C         -2.5         S19,803         -441.2         S40,226         1         -5.5         S18,084         -630.9         S25,977         R         -2.5         S40,758         -374.0         S43.98           S16.6m         C         -2.5         S19,803 <t< th=""><th>\$15.7m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-390.0</th><th>\$40,253</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-589.3</th><th>\$26,644</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-356.8</th><th>\$43,998</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$15.7m            | С                 | -2.5             | \$39,803                       | -390.0         | \$40,253       | Ι                   | -5.5             | \$18,084                       | -589.3         | \$26,644       | R                 | -2.5                   | \$40,758                       | -356.8         | \$43,998       |  |  |
| S15.0m         C         -2.5         S39,803         -395.1         S40,027         1         -5.5         S18,084         -600.8         S26,460         R         -2.5         S40,758         -364.2         S43,93           S16.0m         C         -2.5         S39,801         -400.1         S40,024         1         -5.5         S18,084         -601.8         S26,400         R         -2.5         S40,758         -361.2         S43,893           S16,0m         C         -2.5         S39,803         -400.6         S40,234         1         -5.5         S18,084         -621.4         S26,116         R         -2.5         S40,758         -371.6         S43,88           S16,4m         C         -2.5         S39,803         -401.1         S40,213         1         -5.5         S18,084         -632.5         S26,046         R         -2.5         S40,758         -371.6         S43,88         S43,72           S16,6m         C         -2.5         S39,803         -401.1         S40,223         1         -5.5         S18,084         -635.6         S25,977         R         -2.5         S40,758         -381.8         S43,75           S16.0m         C         2.5 <th< th=""><th>\$15.8m</th><th>С</th><th>-2.5</th><th>\$39,801</th><th>-392.5</th><th>\$40,250</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-594.8</th><th>\$26,564</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-359.3</th><th>\$43,976</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$15.8m            | С                 | -2.5             | \$39,801                       | -392.5         | \$40,250       | Ι                   | -5.5             | \$18,084                       | -594.8         | \$26,564       | R                 | -2.5                   | \$40,758                       | -359.3         | \$43,976       |  |  |
| S16.0m         C         -2.5         S39,801         -400.1         S40.244         I         -5.5         S18,084         -601.8         S26,409         R         -2.5         S40,758         -366.2         S43.91           S16.1m         C         -2.5         S39,801         -400.1         S40.230         I         -5.5         S18,084         -611.4         S26.200         R         -2.5         S40,758         -360.1         S43.86           S16.5m         C         -2.5         S39,803         -400.1         S40.230         I         -5.5         S18,084         -623.5         S26,046         R         -2.5         S40,758         -378.6         S43.88           S16.6m         C         -2.5         S39,803         -417.2         S40.228         I         -5.5         S18,084         -633.5         S26,046         R         -2.5         S40,758         -378.6         S43.83         S43.77         C         S25         S18,084         -643.4         S25,047         R         -2.5         S40,758         -378.6         S43.83         S43.77         S40.758         -378.6         S43.84         S43.73           S16.6m         C         -2.5S49,033         -412.2S40,211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$15.9m            | С                 | -2.5             | \$39,803                       | -395.1         | \$40,247       | Ι                   | -5.5             | \$18,084                       | -600.3         | \$26,486       | R                 | -2.5                   | \$40,758                       | -361.7         | \$43,954       |  |  |
| Si6.1m         C         -2.5         S39,801         -400.1         S40,242         1         -5.5         S18,084         -61.4         S20,200         R         -2.5         S40,758         -36.7         S43,88           Si6.5m         C         -2.5         S39,803         -402.5         S40,236         I         -5.5         S18,084         -62.20         R         -2.5         S40,758         -371.6         S43,88           Si6.5m         C         -2.5         S39,803         -410.1         S40,231         I         -5.5         S18,084         -633.5         S26,046         R         -2.5         S40,758         -376.5         S43,83           Si6.6m         C         -2.5         S39,803         -412.5         S40,226         I         -5.5         S18,084         -643.0         S25,977         R         -2.5         S40,758         -378.9         S43,83           Si6.6m         C         -2.5         S39,803         -412.5         S40,221         I         -5.5         S18,084         -661.7         S25,843         R         -2.5         S40,758         -383.8         S43,75           Sif.0m         C         -2.5         S39,803         -422.7         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$16.0m            | С                 | -2.5             | \$39,803                       | -397.6         | \$40,244       | Ι                   | -5.5             | \$18,084                       | -605.8         | \$26,409       | R                 | -2.5                   | \$40,758                       | -364.2         | \$43,932       |  |  |
| S16.2m         C         -2.5         S39.801         -402.6         S40.239         1         -5.5         S18.084         -62.9         S2.62.00         R         -2.5         S40.758         -376.1         S43.86           S16.4m         C         -2.5         S39.801         -407.6         S40.234         1         -5.5         S18.084         -622.4         S2.617         R         -2.5         S40.758         -371.6         S43.85           S16.6m         C         -2.5         S39.801         -411.6         S40.228         1         -5.5         S18.084         -633.5         S25.977         R         -2.5         S40.758         -381.4         S43.758           S16.6m         C         -2.5         S39.801         -412.5         S40.221         1         -5.5         S18.084         -651.5         S25.977         R         -2.5         S40.758         -388.3         S43.73           S17.0m         C         -2.5         S39.803         -422.7         S40.218         1         -5.5         S18.084         -661.1         S25.460         R         -2.5         S40.758         -388.3         S43.73           S17.0m         C         -2.5         S39.801 <t< th=""><th>\$16.1m</th><th>С</th><th>-2.5</th><th>\$39,801</th><th>-400.1</th><th>\$40,242</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-611.4</th><th>\$26,334</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-366.7</th><th>\$43,911</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$16.1m            | С                 | -2.5             | \$39,801                       | -400.1         | \$40,242       | Ι                   | -5.5             | \$18,084                       | -611.4         | \$26,334       | R                 | -2.5                   | \$40,758                       | -366.7         | \$43,911       |  |  |
| S16.4m         C         -2.5         \$39,801         -405.1         \$40,234         I         -5.5         \$18,084         -622.4         \$22,116         R         -2.5         \$40,758         -371.6         \$43,86           S16.5m         C         -2.5         \$39,801         -410.1         \$40,231         I         -5.5         \$18,084         -633.5         \$26,040         R         -2.5         \$40,758         -374.0         \$33,84           S16.5m         C         -2.5         \$39,801         -411.5         \$40,228         I         -5.5         \$18,084         -644.6         \$25,909         R         -2.5         \$40,758         -381.4         \$43,86           S16.5m         C         -2.5         \$39,801         -417.7         \$40,221         I         -5.5         \$18,084         -665.1         \$25,671         R         -2.5         \$40,758         -388.7         \$43,75           S17.0m         C         -2.5         \$39,801         -425.2         \$40,213         I         -5.5         \$18,084         -667.1         \$25,651         R         -2.5         \$40,758         -391.2         \$43,70           S17.0m         C         -2.5         \$39,803 <t< th=""><th>\$16.2m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-402.6</th><th>\$40,239</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-616.9</th><th>\$26,260</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-369.1</th><th>\$43,890</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$16.2m            | С                 | -2.5             | \$39,803                       | -402.6         | \$40,239       | Ι                   | -5.5             | \$18,084                       | -616.9         | \$26,260       | R                 | -2.5                   | \$40,758                       | -369.1         | \$43,890       |  |  |
| si6.6m         C         -2.5         \$39,803         -407.6         \$44,24         1         -5.5         \$18,084         -633.5         \$226,046         R         -2.5         \$40,758         -377.6         \$43,84           \$16.6m         C         -2.5         \$39,803         -412.6         \$40,228         I         -5.5         \$18,084         -633.5         \$25,004         R         -2.5         \$40,758         -378.9         \$43,84           \$16,6m         C         -2.5         \$39,803         -411.7         \$40,223         I         -5.5         \$18,084         -644.6         \$25,909         R         -2.5         \$40,758         -388.8         \$43,77           \$16,6m         C         -2.5         \$39,803         -422.7         \$40,221         I         -5.5         \$18,084         -661.1         \$25,630         R         -2.5         \$40,758         -388.7         \$43,73           \$17,0m         C         -2.5         \$39,801         -42.7         \$40,213         I         -5.5         \$18,084         -667.7         \$25,560         R         -2.5         \$40,758         -338.5         \$43,73           \$17,1m         C         -2.5         \$39,801 <th< th=""><th>\$16.3m</th><th>С</th><th>-2.5</th><th>\$39,801</th><th>-405.1</th><th>\$40,236</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-622.4</th><th>\$26,187</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-371.6</th><th>\$43,869</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$16.3m            | С                 | -2.5             | \$39,801                       | -405.1         | \$40,236       | Ι                   | -5.5             | \$18,084                       | -622.4         | \$26,187       | R                 | -2.5                   | \$40,758                       | -371.6         | \$43,869       |  |  |
| S16.5m         C         -2.5         S39,803         -410.1         S40,238         I         -5.5         S18,084         -633.5         S26,046         R         -2.5         S40,758         -376.5         S43,88           S16.6m         C         -2.5         S39,801         -411.7         S40,228         I         -5.5         S18,084         -650.1         S25,977         R         -2.5         S40,758         -388.3         S43,77           S16.6m         C         -2.5         S39,801         -417.7         S40,221         I         -5.5         S18,084         -650.1         S25,843         R         -2.5         S40,758         -388.3         S43,77           S17.0m         C         -2.5         S39,803         -427.7         S40,218         I         -5.5         S18,084         -661.1         S25,713         R         -2.5         S40,758         -393.6         S43.7           S17.0m         C         -2.5         S39,801         -420.7         S40,213         I         -5.5         S18,084         -672.2         S25,526         R         -2.5         S40,758         -393.6         S43,69           S17.0m         C         -2.5         S39,803 <th< th=""><th>\$16.4m</th><th>C</th><th>-2.5</th><th>\$39,803</th><th>-407.6</th><th>\$40,234</th><th>I</th><th>-5.5</th><th>\$18,084</th><th>-628.0</th><th>\$26,116</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-374.0</th><th>\$43,849</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$16.4m            | C                 | -2.5             | \$39,803                       | -407.6         | \$40,234       | I                   | -5.5             | \$18,084                       | -628.0         | \$26,116       | R                 | -2.5                   | \$40,758                       | -374.0         | \$43,849       |  |  |
| S16.cm       C       -2.5       S39,801       -412.6       S40,226       1       -5.5       S18,084       -639.0       S25,977       R       -2.5       S40,758       -378.9       S43,87         S16.7m       C       -2.5       S39,803       -412.2       S40,226       I       -5.5       S18,084       -650.1       S25,843       R       -2.5       S40,758       -388.4       S43,78         S10.0m       C       -2.5       S39,803       -420.2       S40,218       I       -5.5       S18,084       -651.1       S25,777       R       -2.5       S40,758       -388.7       S43,73         S17.0m       C       -2.5       S39,803       -427.7       S40,213       I       -5.5       S18,084       -666.7       S25,650       R       -2.5       S40,758       -391.2       S43,76         S17.0m       C       -2.5       S39,803       -427.7       S40,213       I       -5.5       S18,084       -6672.2       S25,560       R       -2.5       S40,758       -391.2       S43,76         S17.0m       C       -2.5       S39,803       -432.7       S40,204       I       -5.5       S18,084       -694.3       S25,407       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$16.5m            | C                 | -2.5             | \$39,803                       | -410.1         | \$40,231       | I                   | -5.5             | \$18,084                       | -633.5         | \$26,046       | R                 | -2.5                   | \$40,758                       | -376.5         | \$43,829       |  |  |
| S16.7m         C         -2.5         S18,083         -644.6         S25,909         R         -2.5         S40,758         -381.4         S43,7           S16.8m         C         -2.5         S39,803         -417.7         S40,223         I         -5.5         S18,084         -655.0         S25,843         R         -2.5         S40,758         -388.3         S43,77           S17.0m         C         -2.5         S39,803         -422.7         S40,218         I         -5.5         S18,084         -6661.1         S25,713         R         -2.5         S40,758         -388.7         S43,73           S17.0m         C         -2.5         S39,803         -422.7         S40,210         I         -5.5         S18,084         -6661.1         S25,507         R         -2.5         S40,758         -393.6         S43,73           S17.3m         C         -2.5         S39,801         -432.7         S40,200         I         -5.5         S18,084         -668.3         S25,466         R         -2.5         S40,758         -398.5         S43,65           S17.0m         C         -2.5         S39,803         -432.7         S40,200         I         -5.5         S18,084         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$16.6m            | C                 | -2.5             | \$39,801                       | -412.6         | \$40,228       | I                   | -5.5             | \$18,084                       | -639.0         | \$25,977       | R                 | -2.5                   | \$40,758                       | -378.9         | \$43,809       |  |  |
| S16.9m         C         -2.5         S18.09         -5.5         S18.084         -650.1         S25.843         R         -2.5         S40.758         -838.8         S43.7           S16.9m         C         -2.5         S39.803         -422.7         S40.218         I         -5.5         S18.084         -661.1         S25.777         R         -2.5         S40.758         -388.7         S43.75           S17.0m         C         -2.5         S39.801         -425.2         S40.216         I         -5.5         S18.084         -661.1         S25.713         R         -2.5         S40.758         -393.6         S43.65           S17.0m         C         -2.5         S39.801         -430.2         S40.211         I         -5.5         S18.084         -672.7         S25.267         R         -2.5         S40.758         -393.6         S43.65           S17.0m         C         -2.5         S39.801         -433.3         S40.204         I         -5.5         S18.084         -694.3         S25.466         R         -2.5         S40.758         -396.1         S43.65           S17.0m         C         -2.5         S39.801         -443.3         S40.204         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$16.7m            | C                 | -2.5             | \$39,803                       | -415.2         | \$40,226       | I                   | -5.5             | \$18,084                       | -644.6         | \$25,909       | R                 | -2.5                   | \$40,758                       | -381.4         | \$43,789       |  |  |
| S16.9m         C         -2.5         \$39,803         -42.0.2         \$40,21         1         -5.5         \$18,084         -653.6         \$22,777         R         -2.5         \$40,788         -388.7         \$43,73           \$17.0m         C         -2.5         \$39,801         -425.2         \$40,218         I         -5.5         \$18,084         -666.1         \$25,713         R         -2.5         \$40,788         -388.7         \$43,73           \$17.3m         C         -2.5         \$39,803         -422.7         \$40,213         1         -5.5         \$18,084         -666.7         \$25,687         R         -2.5         \$40,758         -390.6         \$43,65           \$17.3m         C         -2.5         \$39,803         -432.7         \$40,209         I         -5.5         \$18,084         -688.8         \$25,407         R         -2.5         \$40,758         -401.0         \$43,64         \$43,65         \$43,65         \$43,65         \$43,65         \$43,65         \$43,65         \$44,53         \$40,204         I         -5.5         \$18,084         -688.8         \$25,407         R         -2.5         \$40,758         +401.5         \$43,65         \$43,56         \$43,65         \$43,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$16.8m            | C                 | -2.5             | \$39,801                       | -417.7         | \$40,223       | l                   | -5.5             | \$18,084                       | -650.1         | \$25,843       | R                 | -2.5                   | \$40,758                       | -383.8         | \$43,770       |  |  |
| S17.0m         C         -2.5         S39,803         -422.7         S40,718         1         -5.5         S18,884         -661.1         S25,715         R         -2.5         S40,758         -388.7         S43,71           S17.1m         C         -2.5         S39,801         -425.7         S40,218         1         -5.5         S18,084         -672.2         S25,587         R         -2.5         S40,758         -393.6         S43,66           S17.4m         C         -2.5         S39,801         -430.2         S40,211         1         -5.5         S18,084         -677.7         S25,526         R         -2.5         S40,758         -398.5         S43,66           S17.5m         C         -2.5         S39,801         -435.3         S40,204         1         -5.5         S18,084         -694.3         S25,466         R         -2.5         S40,756         -403.5         S43,66           S17.7m         C         -2.5         S39,801         -442.8         S40,204         1         -5.5         S18,084         -694.3         S25,348         R         -2.5         S40,758         +403.5         S43,62           S17.7m         C         -2.5         S39,801 <t< th=""><th>\$16.9m</th><th>C</th><th>-2.5</th><th>\$39,803</th><th>-420.2</th><th>\$40,221</th><th>I</th><th>-5.5</th><th>\$18,084</th><th>-655.6</th><th>\$25,777</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-386.3</th><th>\$43,751</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$16.9m            | C                 | -2.5             | \$39,803                       | -420.2         | \$40,221       | I                   | -5.5             | \$18,084                       | -655.6         | \$25,777       | R                 | -2.5                   | \$40,758                       | -386.3         | \$43,751       |  |  |
| S17.1m       C       -2.5       \$39,801       -42.5.       \$40,758       -591.2       \$43,67         S17.2m       C       -2.5       \$39,801       -430.2       \$40,211       I       -5.5       \$18,084       -672.2       \$25,587       R       -2.5       \$40,758       -393.6       \$43,67         S17.3m       C       -2.5       \$39,803       -432.7       \$40,020       I       -5.5       \$18,084       -677.7       \$25,526       R       -2.5       \$40,758       -393.6       \$43,67         S17.5m       C       -2.5       \$39,801       -433.3       \$40,020       I       -5.5       \$18,084       -694.3       \$25,348       R       -2.5       \$40,758       -401.5       \$43,62         S17.5m       C       -2.5       \$39,803       -440.3       \$40,0202       I       -5.5       \$18,084       -694.3       \$25,231       R       -2.5       \$40,758       -401.5       \$43,62         S17.5m       C       -2.5       \$39,803       -444.5       \$40,0202       I       -5.5       \$18,084       -710.9       \$25,179       R       -2.5       \$40,758       +410.5       \$43,63       \$35,518,084       -710.9       \$25,179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$17.0m            | C                 | -2.5             | \$39,803                       | -422.7         | \$40,218       | I                   | -5.5             | \$18,084                       | -661.1         | \$25,713       | R                 | -2.5                   | \$40,758                       | -388.7         | \$43,732       |  |  |
| S17.2m         C         -2.5         \$39,803         -42/.1         \$342,151         1         -5.5         \$18,804         -612/.2         \$22,526         R         -2.5         \$40,758         -393.6         \$43,65           S17.4m         C         -2.5         \$39,803         -432.7         \$40,209         I         -5.5         \$18,804         -683.3         \$225,466         R         -2.5         \$40,758         -396.1         \$43,65           \$17.5m         C         -2.5         \$39,801         -433.3         \$40,204         I         -5.5         \$18,084         -683.3         \$225,407         R         -2.5         \$40,758         -401.0         \$43,65           \$17.7m         C         -2.5         \$39,803         -447.8         \$40,020         I         -5.5         \$18,084         -609.9         \$25,291         R         -2.5         \$40,758         -400.5         \$43,60           \$17.9m         C         -2.5         \$39,803         -442.8         \$40,197         I         -5.5         \$18,084         -710.9         \$25,179         R         -2.5         \$40,758         -410.5         \$343,65         \$313,60         \$25,179         R         -2.5         \$40,758 <th>\$17.1m</th> <th>C</th> <th>-2.5</th> <th>\$39,801</th> <th>-425.2</th> <th>\$40,216</th> <th>I</th> <th>-5.5</th> <th>\$18,084</th> <th>-666.7</th> <th>\$25,650</th> <th>R</th> <th>-2.5</th> <th>\$40,758</th> <th>-391.2</th> <th>\$43,713</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$17.1m            | C                 | -2.5             | \$39,801                       | -425.2         | \$40,216       | I                   | -5.5             | \$18,084                       | -666.7         | \$25,650       | R                 | -2.5                   | \$40,758                       | -391.2         | \$43,713       |  |  |
| S17.3m       C       -2.5       \$39,801       -430.2       \$49,07       1       -5.5       \$18,084       -677.7       \$25,226       K       -2.5       \$49,078       -396.1       \$44,50         S17.4m       C       -2.5       \$39,801       -435.3       \$40,200       I       -5.5       \$18,084       -668.3       \$22,407       R       -2.5       \$40,758       -498.5       \$43,66         S17.5m       C       -2.5       \$39,801       -443.3       \$40,204       I       -5.5       \$18,084       -694.3       \$22,548       R       -2.5       \$40,758       -490.5       \$43,66         S17.5m       C       -2.5       \$39,801       -440.3       \$40,204       I       -5.5       \$18,084       -699.3       \$22,211       R       -2.5       \$40,758       -400.5       \$43,66       \$43,56       \$517.8m       C       -2.5       \$39,803       -443.3       \$40,199       I       -5.5       \$18,084       -710.4       \$22,234       R       -2.5       \$40,758       -410.8       \$43,55       \$518.081       -716.4       \$22,179       R       -2.5       \$40,758       -413.3       \$43,53       \$518.084       -716.4       \$22,1070       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$17.2m            | C                 | -2.5             | \$39,803                       | -427.7         | \$40,213       | I                   | -5.5             | \$18,084                       | -6/2.2         | \$25,587       | K                 | -2.5                   | \$40,758                       | -393.6         | \$43,695       |  |  |
| S17.4m       C       -2.3       339,803       -432.7       340,209       1       -5.5       \$18,084       -608.3       \$22,400       R       -2.3       \$40,758       -401.0       \$43,64         S17.5m       C       -2.5       \$39,801       -433.53       \$40,204       I       -5.5       \$18,084       -668.8       \$25,407       R       -2.5       \$40,758       -401.0       \$43,64         S17.5m       C       -2.5       \$39,803       -442.8       \$40,109       I       -5.5       \$18,084       -609.9       \$25,291       R       -2.5       \$40,758       -401.0       \$43,65         S17.5m       C       -2.5       \$39,803       -442.8       \$40,197       I       -5.5       \$18,084       -710.9       \$25,217       R       -2.5       \$40,758       -410.8       \$43,55         S18.0m       C       -2.5       \$39,803       -447.8       \$40,197       I       -5.5       \$18,084       -710.4       \$25,179       R       -2.5       \$40,758       -411.8       \$43,55       \$5       \$18,084       -717.5       \$25,017       R       -2.5       \$40,758       -415.7       \$43,53       \$35       \$38,081       -466.4       \$40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$17.3m            | C                 | -2.5             | \$39,801                       | -430.2         | \$40,211       | I                   | -5.5             | \$18,084                       | -0//./         | \$25,526       | K<br>D            | -2.5                   | \$40,758                       | -396.1         | \$43,677       |  |  |
| s17.5m       C       -2.5       s39,001       -45.3       s40,200       1       -5.5       s18,084       -608.3       s2.3,407       R       -2.5       s40,758       -401.0       s43,00         s17.5m       C       -2.5       s39,803       -440.3       s40,202       I       -5.5       s18,084       -699.9       s25,291       R       -2.5       s40,758       -400.5       s43,60         s17.5m       C       -2.5       s39,803       -442.8       s40,199       I       -5.5       s18,084       -705.4       s25,234       R       -2.5       s40,758       -400.5       s43,60         s17.9m       C       -2.5       s39,801       -447.8       s40,197       I       -5.5       s18,084       -710.4       s25,179       R       -2.5       s40,758       -411.8       s43,57         s18.0m       C       -2.5       s39,803       -450.3       s40,193       I       -5.5       s18,084       -716.4       s25,124       R       -2.5       s40,758       -411.8       s43,53       s43,53       s43,53       s43,53       s43,53       s44.75       s40,178       440,184       I       -5.5       s18,084       -721.6       s25,017 <t< th=""><th>\$17.4m<br/>\$17.5m</th><th>C</th><th>-2.5</th><th>\$39,803</th><th>-432.7</th><th>\$40,209</th><th>I</th><th>-5.5</th><th>\$18,084</th><th>-085.5</th><th>\$25,400</th><th>R<br/>D</th><th>-2.3</th><th>\$40,758</th><th>-398.3</th><th>\$43,039</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$17.4m<br>\$17.5m | C                 | -2.5             | \$39,803                       | -432.7         | \$40,209       | I                   | -5.5             | \$18,084                       | -085.5         | \$25,400       | R<br>D            | -2.3                   | \$40,758                       | -398.3         | \$43,039       |  |  |
| S17.0m       C       -2.5       \$39,803       -440.3       \$40,202       1       -5.5       \$18,084       -709.3       \$22,291       R       -2.5       \$40,758       -400.5       \$43,65         S17.7m       C       -2.5       \$39,801       -442.8       \$40,199       I       -5.5       \$18,084       -705.4       \$25,291       R       -2.5       \$40,758       -400.8       \$43,55         S17.7m       C       -2.5       \$39,801       -442.8       \$40,197       I       -5.5       \$18,084       -701.9       \$25,179       R       -2.5       \$40,758       -410.8       \$43,55         S18.1m       C       -2.5       \$39,803       -447.8       \$40,193       I       -5.5       \$18,084       -771.6       \$25,070       R       -2.5       \$40,758       -411.8       \$43,55         S18.2m       C       -2.5       \$39,803       -452.8       \$40,190       I       -5.5       \$18,084       -773.5       \$25,070       R       -2.5       \$40,758       -410.8       \$43,55       \$55       S18,084       -773.3       \$24,913       R       -2.5       \$40,758       -420.6       \$43,43,59       \$55       \$18,084       -773.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$17.5m            | C                 | -2.5             | \$39,801                       | -435.5         | \$40,200       | I                   | -5.5             | \$18,084                       | -000.0         | \$25,407       | P                 | -2.3                   | \$40,756                       | -401.0         | \$43,041       |  |  |
| S17.8m       C       -2.5       \$39,801       -442.8       \$40,199       1       -5.5       \$18,084       -705.4       \$25,271       R       -2.5       \$40,758       -408.4       \$43,55         \$17.9m       C       -2.5       \$39,801       -442.8       \$40,199       I       -5.5       \$18,084       -710.9       \$25,179       R       -2.5       \$40,758       -410.8       \$43,55         \$18.0m       C       -2.5       \$39,801       -447.8       \$40,195       I       -5.5       \$18,084       -710.4       \$25,179       R       -2.5       \$40,758       -410.8       \$43,55         \$18.0m       C       -2.5       \$39,803       -450.3       \$40,193       I       -5.5       \$18,084       -727.5       \$25,017       R       -2.5       \$40,758       -411.8       \$43,358         \$18.2m       C       -2.5       \$39,803       -452.4       \$40,188       I       -5.5       \$18,084       -727.5       \$25,017       R       -2.5       \$40,758       -420.6       \$43,358         \$18.3m       C       -2.5       \$39,803       -452.4       \$40,188       I       -5.5       \$18,084       -773.0       \$24,913       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$17.0m            | C                 | -2.5             | \$39,803                       | -440.3         | \$40,204       | I                   | -5.5             | \$18,084                       | -699.9         | \$25,348       | R                 | -2.5                   | \$40,758                       | -405.9         | \$43,606       |  |  |
| S17.0m         C         2.5         S39,801         11.2         51.7         R         2.5         510,301         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13         10.13 <th10.13< th=""> <th10.13< th=""> <th10.13< th=""></th10.13<></th10.13<></th10.13<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$17.8m            | C                 | -2.5             | \$39,803                       | -442.8         | \$40,202       | I                   | -5.5             | \$18,084                       | -705.4         | \$25,234       | R                 | -2.5                   | \$40,758                       | -408.4         | \$43,589       |  |  |
| S18.0m         C         -2.5         \$39,801         -147.8         \$03,031         1         -5.5         \$18,084         -716.4         \$22,124         R         -2.5         \$40,758         -413.3         \$43,55           \$18.0m         C         -2.5         \$39,803         -450.3         \$40,193         I         -5.5         \$18,084         -716.4         \$25,124         R         -2.5         \$40,758         -413.3         \$43,55           \$18.0m         C         -2.5         \$39,803         -452.4         \$40,190         I         -5.5         \$18,084         -772.0         \$25,070         R         -2.5         \$40,758         -418.2         \$43,53           \$18.3m         C         -2.5         \$39,801         -455.4         \$40,188         I         -5.5         \$18,084         -733.0         \$24,913         R         -2.5         \$40,758         -423.1         \$43,30         \$45.79         \$40,186         I         -5.5         \$18,084         -738.6         \$24,913         R         -2.5         \$40,758         -423.5         \$43,30           \$18.5m         C         -2.5         \$39,803         -462.9         \$40,178         I         -5.5         \$18,084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$17.0m            | C                 | -2.5             | \$39,803                       | -445.3         | \$40,197       | I                   | -5.5             | \$18,084                       | -710.9         | \$25,179       | R                 | -2.5                   | \$40,758                       | -410.8         | \$43,572       |  |  |
| Si8.im         C         -2.5         \$39,803         -450.3         \$40,193         I         -5.5         \$18,084         -722.0         \$25,070         R         -2.5         \$40,758         -415.7         \$43,53           S18.im         C         -2.5         \$39,803         -452.8         \$40,190         I         -5.5         \$18,084         -727.5         \$25,070         R         -2.5         \$40,758         -418.2         \$43,53           S18.im         C         -2.5         \$39,801         -455.4         \$40,188         I         -5.5         \$18,084         -773.0         \$24,965         R         -2.5         \$40,758         -420.6         \$43,50           S18.im         C         -2.5         \$39,801         -465.4         \$40,186         I         -5.5         \$18,084         -738.6         \$24,913         R         -2.5         \$40,758         -423.1         \$43,49           S18.5m         C         -2.5         \$39,801         -466.4         \$40,182         I         -5.5         \$18,084         -749.6         \$24,812         R         -2.5         \$40,758         -428.0         \$43,45           S18.7m         C         -2.5         \$39,803 <t< th=""><th>\$18.0m</th><th>C</th><th>-2.5</th><th>\$39,801</th><th>-447.8</th><th>\$40,195</th><th>I</th><th>-5.5</th><th>\$18,084</th><th>-716.4</th><th>\$25,124</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-413.3</th><th>\$43,555</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$18.0m            | C                 | -2.5             | \$39,801                       | -447.8         | \$40,195       | I                   | -5.5             | \$18,084                       | -716.4         | \$25,124       | R                 | -2.5                   | \$40,758                       | -413.3         | \$43,555       |  |  |
| \$18.2m       C       -2.5       \$39,803       -452.8       \$40,190       I       -5.5       \$18,084       -727.5       \$25,017       R       -2.5       \$40,758       -418.2       \$43,52         \$18.3m       C       -2.5       \$39,801       -455.4       \$40,188       I       -5.5       \$18,084       -733.0       \$24,965       R       -2.5       \$40,758       -420.6       \$43,50         \$18.4m       C       -2.5       \$39,803       -457.9       \$40,186       I       -5.5       \$18,084       -738.6       \$24,913       R       -2.5       \$40,758       -420.6       \$43,49         \$18.5m       C       -2.5       \$39,801       -460.4       \$40,184       I       -5.5       \$18,084       -749.6       \$24,812       R       -2.5       \$40,758       -428.0       \$43,45         \$18.6m       C       -2.5       \$39,803       -462.9       \$40,182       I       -5.5       \$18,084       -749.6       \$24,812       R       -2.5       \$40,758       -428.0       \$43,45         \$18.7m       C       -2.5       \$39,803       -467.9       \$40,178       I       -5.5       \$18,084       -760.7       \$24,715       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$18.1m            | Č                 | -2.5             | \$39,803                       | -450.3         | \$40,193       | I                   | -5.5             | \$18,084                       | -722.0         | \$25.070       | R                 | -2.5                   | \$40,758                       | -415.7         | \$43,539       |  |  |
| S18.3m       C       -2.5       \$39,801       -455.4       \$40,188       I       -5.5       \$18,084       -733.0       \$24,965       R       -2.5       \$40,758       -420.6       \$43,50         \$18.4m       C       -2.5       \$39,803       -457.9       \$40,186       I       -5.5       \$18,084       -733.6       \$24,913       R       -2.5       \$40,758       -420.6       \$43,36         \$18.5m       C       -2.5       \$39,801       -460.4       \$40,184       I       -5.5       \$18,084       -744.1       \$24,862       R       -2.5       \$40,758       -423.0       \$43,47         \$18.6m       C       -2.5       \$39,801       -466.4       \$40,182       I       -5.5       \$18,084       -749.6       \$24,812       R       -2.5       \$40,758       -428.0       \$43,45         \$18.6m       C       -2.5       \$39,803       -467.9       \$40,180       I       -5.5       \$18,084       -760.7       \$24,715       R       -2.5       \$40,758       -430.4       \$43,44         \$18.8m       C       -2.5       \$39,803       -470.4       \$40,176       I       -5.5       \$18,084       -771.7       \$24,667       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$18.2m            | С                 | -2.5             | \$39,803                       | -452.8         | \$40,190       | Ι                   | -5.5             | \$18,084                       | -727.5         | \$25,017       | R                 | -2.5                   | \$40,758                       | -418.2         | \$43,523       |  |  |
| \$18.4m       C       -2.5       \$39,803       -457.9       \$40,186       I       -5.5       \$18,084       -738.6       \$24,913       R       -2.5       \$40,758       -423.1       \$43,49         \$18.5m       C       -2.5       \$39,801       -460.4       \$40,184       I       -5.5       \$18,084       -744.1       \$24,862       R       -2.5       \$40,758       -423.1       \$43,49         \$18.6m       C       -2.5       \$39,803       -462.9       \$40,182       I       -5.5       \$18,084       -749.6       \$24,812       R       -2.5       \$40,758       -428.0       \$43,45         \$18.6m       C       -2.5       \$39,801       -465.4       \$40,180       I       -5.5       \$18,084       -776.7       \$24,715       R       -2.5       \$40,758       -428.0       \$43,44         \$18.8m       C       -2.5       \$39,803       -467.9       \$40,176       I       -5.5       \$18,084       -760.7       \$24,715       R       -2.5       \$40,758       -430.4       \$43,49         \$18.9m       C       -2.5       \$39,803       -470.4       \$40,176       I       -5.5       \$18,084       -771.7       \$24,620       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$18.3m            | С                 | -2.5             | \$39,801                       | -455.4         | \$40,188       | Ι                   | -5.5             | \$18,084                       | -733.0         | \$24,965       | R                 | -2.5                   | \$40,758                       | -420.6         | \$43,506       |  |  |
| \$18.5m         C         -2.5         \$39,801         -460.4         \$40,184         I         -5.5         \$18,084         -744.1         \$24,862         R         -2.5         \$40,758         -425.5         \$43,47           \$18.6m         C         -2.5         \$39,803         -462.9         \$40,182         I         -5.5         \$18,084         -749.6         \$24,812         R         -2.5         \$40,758         -428.0         \$43,45           \$18.7m         C         -2.5         \$39,803         -465.4         \$40,178         I         -5.5         \$18,084         -775.2         \$24,763         R         -2.5         \$40,758         -428.0         \$43,44           \$18.8m         C         -2.5         \$39,803         -467.9         \$40,178         I         -5.5         \$18,084         -760.7         \$24,763         R         -2.5         \$40,758         -432.9         \$43,44           \$18.9m         C         -2.5         \$39,803         -470.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,677         R         -2.5         \$40,758         -432.9         \$43,39           \$19.0m         C         -2.5         \$39,801 <t< th=""><th>\$18.4m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-457.9</th><th>\$40,186</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-738.6</th><th>\$24,913</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-423.1</th><th>\$43,490</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$18.4m            | С                 | -2.5             | \$39,803                       | -457.9         | \$40,186       | Ι                   | -5.5             | \$18,084                       | -738.6         | \$24,913       | R                 | -2.5                   | \$40,758                       | -423.1         | \$43,490       |  |  |
| \$18.6m         C         -2.5         \$39,803         -462.9         \$40,182         I         -5.5         \$18,084         -749.6         \$24,812         R         -2.5         \$40,758         -428.0         \$43,45           \$18.7m         C         -2.5         \$39,801         -465.4         \$40,180         I         -5.5         \$18,084         -752.2         \$24,763         R         -2.5         \$40,758         -428.0         \$43,44           \$18.8m         C         -2.5         \$39,803         -467.9         \$40,178         I         -5.5         \$18,084         -760.7         \$24,715         R         -2.5         \$40,758         -432.9         \$43,42           \$18.9m         C         -2.5         \$39,803         -470.4         \$40,176         I         -5.5         \$18,084         -760.7         \$24,671         R         -2.5         \$40,758         -432.9         \$43,42           \$19.0m         C         -2.5         \$39,801         -472.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,573         R         -2.5         \$40,758         -442.3         \$43,39         \$453,39         \$41,27         \$43,36         \$41,27         \$43,36 <th>\$18.5m</th> <th>С</th> <th>-2.5</th> <th>\$39,801</th> <th>-460.4</th> <th>\$40,184</th> <th>Ι</th> <th>-5.5</th> <th>\$18,084</th> <th>-744.1</th> <th>\$24,862</th> <th>R</th> <th>-2.5</th> <th>\$40,758</th> <th>-425.5</th> <th>\$43,475</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$18.5m            | С                 | -2.5             | \$39,801                       | -460.4         | \$40,184       | Ι                   | -5.5             | \$18,084                       | -744.1         | \$24,862       | R                 | -2.5                   | \$40,758                       | -425.5         | \$43,475       |  |  |
| \$18.7m         C         -2.5         \$39,801         -465.4         \$40,180         I         -5.5         \$18,084         -755.2         \$24,763         R         -2.5         \$40,758         -430.4         \$43,44           \$18.8m         C         -2.5         \$39,803         -467.9         \$40,178         I         -5.5         \$18,084         -760.7         \$24,715         R         -2.5         \$40,758         -432.9         \$43,42           \$18.9m         C         -2.5         \$39,803         -470.4         \$40,176         I         -5.5         \$18,084         -760.7         \$24,715         R         -2.5         \$40,758         -432.9         \$43,44           \$19.0m         C         -2.5         \$39,801         -472.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,620         R         -2.5         \$40,758         -437.8         \$43,39           \$19.1m         C         -2.5         \$39,801         -475.5         \$40,170         I         -5.5         \$18,084         -777.3         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.1m         C         -2.5         \$39,803 <t< th=""><th>\$18.6m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-462.9</th><th>\$40,182</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-749.6</th><th>\$24,812</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-428.0</th><th>\$43,459</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$18.6m            | С                 | -2.5             | \$39,803                       | -462.9         | \$40,182       | Ι                   | -5.5             | \$18,084                       | -749.6         | \$24,812       | R                 | -2.5                   | \$40,758                       | -428.0         | \$43,459       |  |  |
| \$18.8m         C         -2.5         \$39,803         -467.9         \$40,178         I         -5.5         \$18,084         -760.7         \$24,715         R         -2.5         \$40,758         -432.9         \$43,42           \$18.9m         C         -2.5         \$39,803         -470.4         \$40,176         I         -5.5         \$18,084         -760.7         \$24,715         R         -2.5         \$40,758         -432.9         \$43,42           \$19.0m         C         -2.5         \$39,801         -472.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,620         R         -2.5         \$40,758         -437.8         \$43,39           \$19.1m         C         -2.5         \$39,801         -475.5         \$40,170         I         -5.5         \$18,084         -771.7         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.1m         C         -2.5         \$39,801         -478.0         \$40,170         I         -5.5         \$18,084         -777.3         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.2m         C         -2.5         \$39,803 <t< th=""><th>\$18.7m</th><th>С</th><th>-2.5</th><th>\$39,801</th><th>-465.4</th><th>\$40,180</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-755.2</th><th>\$24,763</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-430.4</th><th>\$43,444</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$18.7m            | С                 | -2.5             | \$39,801                       | -465.4         | \$40,180       | Ι                   | -5.5             | \$18,084                       | -755.2         | \$24,763       | R                 | -2.5                   | \$40,758                       | -430.4         | \$43,444       |  |  |
| \$18.9m         C         -2.5         \$39,803         -470.4         \$40,176         I         -5.5         \$18,084         -766.2         \$24,667         R         -2.5         \$40,758         -435.3         \$43,41           \$19.0m         C         -2.5         \$39,801         -472.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,620         R         -2.5         \$40,758         -437.8         \$43,35           \$19.1m         C         -2.5         \$39,803         -475.5         \$40,172         I         -5.5         \$18,084         -771.7         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.1m         C         -2.5         \$39,801         -478.0         \$40,170         I         -5.5         \$18,084         -777.3         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.2m         C         -2.5         \$39,803         -480.5         \$40,160         I         -5.5         \$18,084         -778.8         \$24,4527         R         -2.5         \$40,758         -442.7         \$43,36           \$19.3m         C         -2.5         \$39,803         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$18.8m            | С                 | -2.5             | \$39,803                       | -467.9         | \$40,178       | Ι                   | -5.5             | \$18,084                       | -760.7         | \$24,715       | R                 | -2.5                   | \$40,758                       | -432.9         | \$43,429       |  |  |
| \$19.0m         C         -2.5         \$39,801         -472.9         \$40,174         I         -5.5         \$18,084         -771.7         \$24,620         R         -2.5         \$40,758         -437.8         \$43,33           \$19.1m         C         -2.5         \$39,803         -475.5         \$40,172         I         -5.5         \$18,084         -771.7         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.2m         C         -2.5         \$39,801         -478.0         \$40,170         I         -5.5         \$18,084         -777.3         \$24,573         R         -2.5         \$40,758         -442.7         \$43,36           \$19.2m         C         -2.5         \$39,801         -478.0         \$40,170         I         -5.5         \$18,084         -778.8         \$24,427         R         -2.5         \$40,758         -442.7         \$43,36           \$19.3m         C         -2.5         \$39,803         -480.5         \$40,166         I         -5.5         \$18,084         -788.3         \$24,482         R         -2.5         \$40,758         -442.7         \$43,36           \$19.5m         C         -2.5         \$39,801 <t< th=""><th>\$18.9m</th><th>С</th><th>-2.5</th><th>\$39,803</th><th>-470.4</th><th>\$40,176</th><th>Ι</th><th>-5.5</th><th>\$18,084</th><th>-766.2</th><th>\$24,667</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-435.3</th><th>\$43,413</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$18.9m            | С                 | -2.5             | \$39,803                       | -470.4         | \$40,176       | Ι                   | -5.5             | \$18,084                       | -766.2         | \$24,667       | R                 | -2.5                   | \$40,758                       | -435.3         | \$43,413       |  |  |
| \$19.1m         C         -2.5         \$39,803         -475.5         \$40,172         I         -5.5         \$18,084         -777.3         \$24,573         R         -2.5         \$40,758         -440.3         \$43,38           \$19.2m         C         -2.5         \$39,801         -478.0         \$40,170         I         -5.5         \$18,084         -782.8         \$24,573         R         -2.5         \$40,758         -442.7         \$43,36           \$19.3m         C         -2.5         \$39,803         -480.5         \$40,168         I         -5.5         \$18,084         -782.8         \$24,4527         R         -2.5         \$40,758         -442.7         \$43,36           \$19.3m         C         -2.5         \$39,803         -480.5         \$40,168         I         -5.5         \$18,084         -783.8         \$24,432         R         -2.5         \$40,758         -445.2         \$43,33           \$19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,334         R         -2.5         \$40,758         -445.1         \$43,32           \$19.5m         C         -2.5         \$39,801         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$19.0m            | С                 | -2.5             | \$39,801                       | -472.9         | \$40,174       | Ι                   | -5.5             | \$18,084                       | -771.7         | \$24,620       | R                 | -2.5                   | \$40,758                       | -437.8         | \$43,399       |  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$19.1m            | С                 | -2.5             | \$39,803                       | -475.5         | \$40,172       | I                   | -5.5             | \$18,084                       | -777.3         | \$24,573       | R                 | -2.5                   | \$40,758                       | -440.3         | \$43,384       |  |  |
| \$19.3m         C         -2.5         \$39,803         -480.5         \$40,168         I         -5.5         \$18,084         -788.3         \$24,482         R         -2.5         \$40,758         -445.2         \$43,35           \$19.4m         C         -2.5         \$39,803         -483.0         \$40,166         I         -5.5         \$18,084         -793.9         \$24,438         R         -2.5         \$40,758         -445.2         \$43,33           \$19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,394         R         -2.5         \$40,758         -447.6         \$43,33           \$19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,394         R         -2.5         \$40,758         -450.1         \$43,32           \$19.6m         C         -2.5         \$39,803         -488.0         \$40,162         I         -5.5         \$18,084         -804.9         \$24,350         R         -2.5         \$40,758         -452.5         \$43,31           \$19.7m         C         -2.5         \$39,801 <t< th=""><th>\$19.2m</th><th>С</th><th>-2.5</th><th>\$39,801</th><th>-478.0</th><th>\$40,170</th><th>I</th><th>-5.5</th><th>\$18,084</th><th>-782.8</th><th>\$24,527</th><th>R</th><th>-2.5</th><th>\$40,758</th><th>-442.7</th><th>\$43,369</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$19.2m            | С                 | -2.5             | \$39,801                       | -478.0         | \$40,170       | I                   | -5.5             | \$18,084                       | -782.8         | \$24,527       | R                 | -2.5                   | \$40,758                       | -442.7         | \$43,369       |  |  |
| \$19.4m         C         -2.5         \$39,803         -483.0         \$40,166         I         -5.5         \$18,084         -793.9         \$24,438         R         -2.5         \$40,758         -447.6         \$43,34           \$19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,394         R         -2.5         \$40,758         -447.6         \$43,34           \$19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,394         R         -2.5         \$40,758         -450.1         \$43,32           \$19.6m         C         -2.5         \$39,803         -488.0         \$40,162         I         -5.5         \$18,084         -804.9         \$24,350         R         -2.5         \$40,758         -452.5         \$43,31           \$19.7m         C         -2.5         \$39,801         -490.5         \$40,161         I         -5.5         \$18,084         -810.5         \$24,307         R         -2.5         \$40,758         -455.0         \$43,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$19.3m            | C                 | -2.5             | \$39,803                       | -480.5         | \$40,168       | I                   | -5.5             | \$18,084                       | -788.3         | \$24,482       | R                 | -2.5                   | \$40,758                       | -445.2         | \$43,355       |  |  |
| S19.5m         C         -2.5         \$39,801         -485.5         \$40,164         I         -5.5         \$18,084         -799.4         \$24,394         R         -2.5         \$40,758         -450.1         \$43,32           \$19.6m         C         -2.5         \$39,803         -488.0         \$40,162         I         -5.5         \$18,084         -804.9         \$24,350         R         -2.5         \$40,758         -452.5         \$43,31           \$19.7m         C         -2.5         \$39,801         -490.5         \$40,161         I         -5.5         \$18,084         -800.5         \$24,307         R         -2.5         \$40,758         -455.0         \$43,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$19.4m            | C                 | -2.5             | \$39,803                       | -483.0         | \$40,166       | l                   | -5.5             | \$18,084                       | -793.9         | \$24,438       | R                 | -2.5                   | \$40,758                       | -447.6         | \$43,341       |  |  |
| \$19.6m         C         -2.5         \$39,805         -488.0         \$40,162         I         -5.5         \$18,084         -804.9         \$24,350         R         -2.5         \$40,758         -452.5         \$43,31           \$19.7m         C         -2.5         \$39,801         -490.5         \$40,161         I         -5.5         \$18,084         -810.5         \$24,307         R         -2.5         \$40,758         -455.0         \$43,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$19.5m            | C                 | -2.5             | \$39,801                       | -485.5         | \$40,164       | I                   | -5.5             | \$18,084                       | -799.4         | \$24,394       | R                 | -2.5                   | \$40,758                       | -450.1         | \$43,327       |  |  |
| <b>519.7m</b> C -2.5 \$39,801 -490.5 \$40,161 I -5.5 \$18,084 -810.5 \$24,307 R -2.5 \$40,758 -455.0 \$43,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$19.6m            | C                 | -2.5             | \$39,803                       | -488.0         | \$40,162       | l                   | -5.5             | \$18,084                       | -804.9         | \$24,350       | R                 | -2.5                   | \$40,758                       | -452.5         | \$43,313       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$19.7m            | C                 | -2.5             | \$39,801                       | -490.5         | \$40,161       |                     | -5.5             | \$18,084                       | -810.5         | \$24,307       | R                 | -2.5                   | \$40,758                       | -455.0         | \$43,299       |  |  |
| <b>517.011</b> U -2.5 <b>519.805</b> -495.0 <b>540.159</b> I -5.5 <b>\$18.084</b> -816.0 <b>\$24.265</b> K -2.5 <b>\$40.758</b> -457.4 <b>\$43.285</b> (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 576 (4) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$19.8m            | C                 | -2.5             | \$39,803                       | -493.0         | \$40,159       | I                   | -5.5             | \$18,084                       | -816.0         | \$24,265       | R<br>D            | -2.5                   | \$40,758                       | -45/.4         | \$43,285       |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$19.9m            | C                 | -2.5             | \$39,801                       | -493.0         | \$40,137       | I                   | -5.5             | \$10,084                       | -021.3         | \$24,224       | K<br>D            | -2.5                   | \$40,759                       | -439.9         | \$43,272       |  |  |
| $\frac{3200 \text{m}}{520 \text{ m}} = \frac{5}{2} - \frac{322}{2} - 32$ | \$20.0m            | C                 | -2.5             | \$39,803                       | -500.6         | \$40 153       | I                   | -5.5             | \$18,084                       | -832.6         | \$24 142       | R                 | -2.5                   | \$40,758                       | -464.8         | \$43 245       |  |  |

|                      |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                 |  |  |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|-----------------|--|--|
| Budget               |                   | Margina          | d                              | Cumi           | ılative        |                     | Margina          | u –                            | Cum            | ulative        |                   | Margina                | Cumulative                     |                |                 |  |  |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>+e</sup> |  |  |
| \$20.2m              | С                 | -2.5             | \$39,801                       | -503.1         | \$40,152       | Ι                   | -5.5             | \$18,084                       | -838.1         | \$24,102       | R                 | -2.5                   | \$40,758                       | -467.2         | \$43,232        |  |  |
| \$20.3m              | С                 | -2.5             | \$39,803                       | -505.6         | \$40,150       | Ι                   | -5.5             | \$18,084                       | -843.6         | \$24,063       | R                 | -2.5                   | \$40,758                       | -469.7         | \$43,219        |  |  |
| \$20.4m              | С                 | -2.5             | \$39,801                       | -508.1         | \$40,148       | Ι                   | -5.5             | \$18,084                       | -849.2         | \$24,024       | R                 | -2.5                   | \$40,758                       | -472.2         | \$43,207        |  |  |
| \$20.5m              | С                 | -2.5             | \$39,803                       | -510.6         | \$40,146       | Ι                   | -5.5             | \$18,084                       | -854.7         | \$23,985       | R                 | -2.5                   | \$40,758                       | -474.6         | \$43,194        |  |  |
| \$20.6m              | С                 | -2.5             | \$39,803                       | -513.1         | \$40,145       | Ι                   | -5.5             | \$18,084                       | -860.2         | \$23,947       | R                 | -2.5                   | \$40,758                       | -477.1         | \$43,181        |  |  |
| \$20.7m              | С                 | -2.5             | \$39,801                       | -515.7         | \$40,143       | Ι                   | -5.5             | \$18,084                       | -865.7         | \$23,910       | R                 | -2.5                   | \$40,758                       | -479.5         | \$43,169        |  |  |
| \$20.8m              | C                 | -2.5             | \$39,803                       | -518.2         | \$40,141       | I                   | -5.5             | \$18,084                       | -871.3         | \$23,873       | R                 | -2.5                   | \$40,758                       | -482.0         | \$43,157        |  |  |
| \$20.9m              | С                 | -2.5             | \$39,801                       | -520.7         | \$40,140       | I                   | -5.5             | \$18,084                       | -876.8         | \$23,836       | R                 | -2.5                   | \$40,758                       | -484.4         | \$43,145        |  |  |
| \$21.0m              | С                 | -2.5             | \$39,803                       | -523.2         | \$40,138       | I                   | -5.5             | \$18,084                       | -882.3         | \$23,800       | R                 | -2.5                   | \$40,758                       | -486.9         | \$43,132        |  |  |
| \$21.1m              | С                 | -2.5             | \$39,801                       | -525.7         | \$40,137       | I                   | -5.5             | \$18,084                       | -887.9         | \$23,765       | R                 | -2.5                   | \$40,758                       | -489.3         | \$43,121        |  |  |
| \$21.2m              | С                 | -2.5             | \$39,803                       | -528.2         | \$40,135       | I                   | -5.5             | \$18,084                       | -893.4         | \$23,730       | R                 | -2.5                   | \$40,758                       | -491.8         | \$43,109        |  |  |
| \$21.3m              | Н                 | -3.0             | \$33,472                       | -531.2         | \$40,098       | I                   | -5.5             | \$18,084                       | -898.9         | \$23,695       | R                 | -2.5                   | \$40,758                       | -494.2         | \$43,097        |  |  |
| \$21.4m              | Н                 | -3.0             | \$33,472                       | -534.2         | \$40,060       | I                   | -5.5             | \$18,084                       | -904.5         | \$23,661       | R                 | -2.5                   | \$40,758                       | -496.7         | \$43,086        |  |  |
| \$21.5m              | Н                 | -3.0             | \$33,472                       | -537.2         | \$40,024       | I                   | -5.5             | \$18,084                       | -910.0         | \$23,627       | R                 | -2.5                   | \$40,758                       | -499.1         | \$43,074        |  |  |
| \$21.6m              | Н                 | -3.0             | \$33,472                       | -540.2         | \$39,988       | I                   | -5.5             | \$18,084                       | -915.5         | \$23,593       | R                 | -2.5                   | \$40,758                       | -501.6         | \$43,063        |  |  |
| \$21.7m              | H                 | -3.0             | \$33,472                       | -543.2         | \$39,952       | I                   | -5.5             | \$18,084                       | -921.0         | \$23,560       | R                 | -2.5                   | \$40,758                       | -504.0         | \$43,052        |  |  |
| \$21.8m              | H                 | -3.0             | \$33,472                       | -546.1         | \$39,916       | l                   | -5.5             | \$18,084                       | -926.6         | \$23,527       | R                 | -2.5                   | \$40,758                       | -506.5         | \$43,040        |  |  |
| \$21.9m              | H                 | -3.0             | \$33,472                       | -549.1         | \$39,881       | I<br>T              | -5.5             | \$18,084                       | -932.1         | \$23,495       | R                 | -2.5                   | \$40,758                       | -509.0         | \$43,029        |  |  |
| \$22.0m              | H                 | -3.0             | \$33,472                       | -552.1         | \$39,847       | I                   | -5.5             | \$18,084                       | -937.6         | \$23,463       | K                 | -2.5                   | \$40,758                       | -511.4         | \$43,019        |  |  |
| \$22.1m              | H                 | -3.0             | \$33,472                       | -555.1         | \$39,812       | I<br>T              | -5.5             | \$18,084                       | -943.2         | \$23,432       | K<br>D            | -2.5                   | \$40,758                       | -513.9         | \$43,008        |  |  |
| \$22.2m              | H                 | -3.0             | \$33,472                       | -558.1         | \$39,778       | I<br>T              | -5.5             | \$18,084                       | -948./         | \$23,401       | K<br>D            | -2.5                   | \$40,758                       | -516.5         | \$42,997        |  |  |
| \$22.3m              | H                 | -3.0             | \$33,472                       | -501.1         | \$39,745       | I                   | -5.5             | \$18,084                       | -954.2         | \$23,370       | K<br>D            | -2.5                   | \$40,758                       | -518.8         | \$42,980        |  |  |
| \$22.4m              | Н<br>Ц            | -3.0             | \$33,472                       | -567.1         | \$39,712       | I                   | -5.5             | \$18,084                       | -959.8         | \$23,339       | K<br>D            | -2.5                   | \$40,758                       | -521.2         | \$42,976        |  |  |
| \$22.5111<br>\$22.6m | н<br>Н            | -3.0             | \$33,472                       | 570.0          | \$39,079       | I                   | -5.5             | \$18,084                       | -903.3         | \$23,309       | P                 | -2.5                   | \$40,758                       | -525.7         | \$42,900        |  |  |
| \$22.0m              | н                 | -3.0             | \$33,472                       | 573.0          | \$39,040       | I                   | -5.5             | \$18,084                       | 976.3          | \$23,279       | P                 | -2.5                   | \$40,758                       | 528.6          | \$42,935        |  |  |
| \$22.7m              | Н                 | -3.0             | \$33,472                       | -576.0         | \$39,582       | I                   | -5.5             | \$18,084                       | -981.9         | \$23,230       | R                 | -2.5                   | \$40,758                       | -520.0         | \$42,945        |  |  |
| \$22.0m              | Н                 | -3.0             | \$33,472                       | -579.0         | \$39,551       | I                   | -5.5             | \$18,084                       | -987.4         | \$23,221       | R                 | -2.5                   | \$40,758                       | -533.5         | \$42,935        |  |  |
| \$23.0m              | Н                 | -3.0             | \$33,472                       | -582.0         | \$39 519       | I                   | -5.5             | \$18,084                       | -992.9         | \$23,152       | R                 | -2.5                   | \$40,758                       | -535.9         | \$42,915        |  |  |
| \$23.1m              | Н                 | -3.0             | \$33,472                       | -585.0         | \$39,488       | I                   | -5.5             | \$18,084                       | -998.5         | \$23,136       | R                 | -2.5                   | \$40,758                       | -538.4         | \$42,905        |  |  |
| \$23.2m              | Н                 | -3.0             | \$33,472                       | -588.0         | \$39,458       | I                   | -5.5             | \$18,084                       | -1004.0        | \$23,108       | R                 | -2.5                   | \$40,758                       | -540.8         | \$42,896        |  |  |
| \$23.3m              | Н                 | -3.0             | \$33,472                       | -591.0         | \$39,428       | Ι                   | -5.5             | \$18,084                       | -1009.5        | \$23,080       | R                 | -2.5                   | \$40,758                       | -543.3         | \$42,886        |  |  |
| \$23.4m              | Н                 | -3.0             | \$33,472                       | -593.9         | \$39,398       | Ι                   | -5.5             | \$18,084                       | -1015.1        | \$23,053       | R                 | -2.5                   | \$40,758                       | -545.8         | \$42,876        |  |  |
| \$23.5m              | Н                 | -3.0             | \$33,472                       | -596.9         | \$39,368       | Ι                   | -5.5             | \$18,084                       | -1020.6        | \$23,026       | R                 | -2.5                   | \$40,758                       | -548.2         | \$42,867        |  |  |
| \$23.6m              | Н                 | -3.0             | \$33,472                       | -599.9         | \$39,339       | Ι                   | -5.5             | \$18,084                       | -1026.1        | \$22,999       | R                 | -2.5                   | \$40,758                       | -550.7         | \$42,857        |  |  |
| \$23.7m              | Н                 | -3.0             | \$33,472                       | -602.9         | \$39,310       | Ι                   | -5.5             | \$18,084                       | -1031.6        | \$22,973       | R                 | -2.5                   | \$40,758                       | -553.1         | \$42,848        |  |  |
| \$23.8m              | Н                 | -3.0             | \$33,472                       | -605.9         | \$39,281       | Ι                   | -5.5             | \$18,084                       | -1037.2        | \$22,947       | R                 | -2.5                   | \$40,758                       | -555.6         | \$42,839        |  |  |
| \$23.9m              | Η                 | -3.0             | \$33,472                       | -608.9         | \$39,252       | Ι                   | -5.5             | \$18,084                       | -1042.7        | \$22,921       | R                 | -2.5                   | \$40,758                       | -558.0         | \$42,830        |  |  |
| \$24.0m              | Н                 | -3.0             | \$33,472                       | -611.9         | \$39,224       | Ι                   | -5.5             | \$18,084                       | -1048.2        | \$22,896       | R                 | -2.5                   | \$40,758                       | -560.5         | \$42,821        |  |  |
| \$24.1m              | Н                 | -3.0             | \$33,472                       | -614.9         | \$39,196       | Ι                   | -5.5             | \$18,084                       | -1053.8        | \$22,870       | R                 | -2.5                   | \$40,758                       | -562.9         | \$42,812        |  |  |
| \$24.2m              | Н                 | -3.0             | \$33,472                       | -617.8         | \$39,168       | Ι                   | -5.5             | \$18,084                       | -1059.3        | \$22,845       | R                 | -2.5                   | \$40,756                       | -565.4         | \$42,803        |  |  |
| \$24.3m              | Н                 | -3.0             | \$33,472                       | -620.8         | \$39,141       | I                   | -5.5             | \$18,084                       | -1064.8        | \$22,821       | R                 | -2.5                   | \$40,758                       | -567.8         | \$42,794        |  |  |
| \$24.4m              | Н                 | -3.0             | \$33,472                       | -623.8         | \$39,114       | Ι                   | -5.5             | \$18,084                       | -1070.3        | \$22,796       | R                 | -2.5                   | \$40,758                       | -570.3         | \$42,785        |  |  |
| \$24.5m              | Н                 | -3.0             | \$33,472                       | -626.8         | \$39,087       | Ι                   | -5.5             | \$18,084                       | -1075.9        | \$22,772       | R                 | -2.5                   | \$40,758                       | -572.7         | \$42,776        |  |  |
| \$24.6m              | Н                 | -3.0             | \$33,472                       | -629.8         | \$39,060       | Ι                   | -5.5             | \$18,084                       | -1081.4        | \$22,748       | R                 | -2.5                   | \$40,758                       | -575.2         | \$42,768        |  |  |
| \$24.7m              | Н                 | -3.0             | \$33,472                       | -632.8         | \$39,034       | Ι                   | -5.5             | \$18,084                       | -1086.9        | \$22,724       | R                 | -2.5                   | \$40,758                       | -577.7         | \$42,759        |  |  |
| \$24.8m              | Н                 | -3.0             | \$33,472                       | -635.8         | \$39,008       | I                   | -5.5             | \$18,084                       | -1092.5        | \$22,701       | R                 | -2.5                   | \$40,758                       | -580.1         | \$42,751        |  |  |
| \$24.9m              | H                 | -3.0             | \$33,472                       | -638.8         | \$38,982       | I                   | -5.5             | \$18,084                       | -1098.0        | \$22,678       | R                 | -2.5                   | \$40,758                       | -582.6         | \$42,742        |  |  |
| \$25.0m              | H                 | -3.0             | \$33,473                       | -641.7         | \$38,956       | l                   | -5.5             | \$18,084                       | -1103.5        | \$22,655       | R                 | -2.5                   | \$40,758                       | -585.0         | \$42,734        |  |  |
| \$25.1m              | H                 | -3.0             | \$33,472                       | -644.7         | \$38,931       | l                   | -5.5             | \$18,084                       | -1109.1        | \$22,632       | R                 | -2.5                   | \$40,758                       | -587.5         | \$42,726        |  |  |
| \$25.2m              | H                 | -3.0             | \$33,472                       | -647.7         | \$38,906       | I                   | -5.5             | \$18,084                       | -1114.6        | \$22,609       | R                 | -2.5                   | \$40,758                       | -589.9         | \$42,718        |  |  |

|                      |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Budget               |                   | Margina          | d                              | Cumi           | ılative        |                     | Margina          | 1                              | Cum            | ılative        |                   | Margina                | Cumi                           | Cumulative     |                |  |  |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$25.3m              | Н                 | -3.0             | \$33,472                       | -650.7         | \$38,881       | I                   | -5.5             | \$18.084                       | -1120.1        | \$22.587       | R                 | -2.5                   | \$40.758                       | -592.4         | \$42,710       |  |  |
| \$25.4m              | Н                 | -3.0             | \$33,473                       | -653.7         | \$38,856       | I                   | -5.5             | \$18,084                       | -1125.6        | \$22,565       | R                 | -2.5                   | \$40,758                       | -594.8         | \$42,702       |  |  |
| \$25.5m              | Н                 | -3.0             | \$33,472                       | -656.7         | \$38,832       | Ι                   | -5.5             | \$18,084                       | -1131.2        | \$22,543       | R                 | -2.5                   | \$40,758                       | -597.3         | \$42,694       |  |  |
| \$25.6m              | Н                 | -3.0             | \$33,472                       | -659.7         | \$38,807       | Ι                   | -5.5             | \$18,084                       | -1136.7        | \$22,521       | R                 | -2.5                   | \$40,758                       | -599.7         | \$42,686       |  |  |
| \$25.7m              | Н                 | -3.0             | \$33,472                       | -662.7         | \$38,783       | Ι                   | -5.5             | \$18,084                       | -1142.2        | \$22,500       | R                 | -2.5                   | \$40,758                       | -602.2         | \$42,678       |  |  |
| \$25.8m              | Н                 | -3.0             | \$33,473                       | -665.6         | \$38,759       | Ι                   | -5.5             | \$18,084                       | -1147.8        | \$22,478       | R                 | -2.5                   | \$40,758                       | -604.6         | \$42,670       |  |  |
| \$25.9m              | Н                 | -3.0             | \$33,472                       | -668.6         | \$38,736       | Ι                   | -5.5             | \$18,084                       | -1153.3        | \$22,457       | R                 | -2.5                   | \$40,758                       | -607.1         | \$42,662       |  |  |
| \$26.0m              | Н                 | -3.0             | \$33,472                       | -671.6         | \$38,712       | Ι                   | -5.5             | \$18,084                       | -1158.8        | \$22,437       | R                 | -2.5                   | \$40,758                       | -609.5         | \$42,655       |  |  |
| \$26.1m              | Н                 | -3.0             | \$33,472                       | -674.6         | \$38,689       | Ι                   | -5.5             | \$18,084                       | -1164.4        | \$22,416       | R                 | -2.5                   | \$40,758                       | -612.0         | \$42,647       |  |  |
| \$26.2m              | Н                 | -3.0             | \$33,473                       | -677.6         | \$38,666       | Ι                   | -5.5             | \$18,084                       | -1169.9        | \$22,395       | R                 | -2.5                   | \$40,758                       | -614.5         | \$42,639       |  |  |
| \$26.3m              | Н                 | -3.0             | \$33,472                       | -680.6         | \$38,643       | Ι                   | -5.5             | \$18,084                       | -1175.4        | \$22,375       | R                 | -2.5                   | \$40,758                       | -616.9         | \$42,632       |  |  |
| \$26.4m              | Н                 | -3.0             | \$33,472                       | -683.6         | \$38,621       | Ι                   | -5.5             | \$18,084                       | -1180.9        | \$22,355       | R                 | -2.5                   | \$40,758                       | -619.4         | \$42,625       |  |  |
| \$26.5m              | Н                 | -3.0             | \$33,472                       | -686.6         | \$38,598       | Ι                   | -5.5             | \$18,084                       | -1186.5        | \$22,335       | R                 | -2.5                   | \$40,758                       | -621.8         | \$42,617       |  |  |
| \$26.6m              | Н                 | -3.0             | \$33,473                       | -689.5         | \$38,576       | Ι                   | -5.5             | \$18,084                       | -1192.0        | \$22,315       | R                 | -2.5                   | \$40,758                       | -624.3         | \$42,610       |  |  |
| \$26.7m              | Н                 | -3.0             | \$33,472                       | -692.5         | \$38,554       | Ι                   | -5.5             | \$18,084                       | -1197.5        | \$22,296       | R                 | -2.5                   | \$40,758                       | -626.7         | \$42,603       |  |  |
| \$26.8m              | Н                 | -3.0             | \$33,472                       | -695.5         | \$38,532       | Ι                   | -5.5             | \$18,084                       | -1203.1        | \$22,276       | R                 | -2.5                   | \$40,758                       | -629.2         | \$42,595       |  |  |
| \$26.9m              | Н                 | -3.0             | \$33,472                       | -698.5         | \$38,511       | Ι                   | -5.5             | \$18,084                       | -1208.6        | \$22,257       | R                 | -2.5                   | \$40,758                       | -631.6         | \$42,588       |  |  |
| \$27.0m              | Н                 | -3.0             | \$33,473                       | -701.5         | \$38,489       | Ι                   | -5.5             | \$18,084                       | -1214.1        | \$22,238       | R                 | -2.5                   | \$40,758                       | -634.1         | \$42,581       |  |  |
| \$27.1m              | Н                 | -3.0             | \$33,472                       | -704.5         | \$38,468       | I                   | -5.5             | \$18,084                       | -1219.7        | \$22,219       | R                 | -2.5                   | \$40,758                       | -636.5         | \$42,574       |  |  |
| \$27.2m              | H                 | -3.0             | \$33,472                       | -707.5         | \$38,447       | I                   | -5.5             | \$18,084                       | -1225.2        | \$22,201       | R                 | -2.5                   | \$40,758                       | -639.0         | \$42,567       |  |  |
| \$27.3m              | Н                 | -3.0             | \$33,472                       | -710.5         | \$38,426       | I                   | -5.5             | \$18,084                       | -1230.7        | \$22,182       | R                 | -2.5                   | \$40,758                       | -641.4         | \$42,560       |  |  |
| \$27.4m              | Н                 | -3.0             | \$33,473                       | -713.4         | \$38,405       | I                   | -5.5             | \$18,084                       | -1236.2        | \$22,164       | R                 | -2.5                   | \$40,758                       | -643.9         | \$42,553       |  |  |
| \$27.5m              | Н                 | -3.0             | \$33,472                       | -716.4         | \$38,385       | I                   | -5.5             | \$18,084                       | -1241.8        | \$22,146       | R                 | -2.5                   | \$40,758                       | -646.3         | \$42,547       |  |  |
| \$27.6m              | Н                 | -3.0             | \$33,472                       | -719.4         | \$38,364       | I                   | -5.5             | \$18,084                       | -1247.3        | \$22,128       | R                 | -2.5                   | \$40,758                       | -648.8         | \$42,540       |  |  |
| \$27.7m              | H                 | -3.0             | \$33,472                       | -722.4         | \$38,344       | I                   | -5.5             | \$18,084                       | -1252.8        | \$22,110       | R                 | -2.5                   | \$40,758                       | -651.3         | \$42,533       |  |  |
| \$27.8m              | H                 | -3.0             | \$33,473                       | -725.4         | \$38,324       | l                   | -5.5             | \$18,084                       | -1258.4        | \$22,092       | R                 | -2.5                   | \$40,758                       | -653.7         | \$42,526       |  |  |
| \$27.9m              | H                 | -3.0             | \$33,472                       | -728.4         | \$38,304       | l                   | -5.5             | \$18,084                       | -1263.9        | \$22,075       | R                 | -2.5                   | \$40,758                       | -656.2         | \$42,520       |  |  |
| \$28.0m              | H                 | -3.0             | \$33,472                       | -/31.4         | \$38,284       | I                   | -5.5             | \$18,084                       | -1269.4        | \$22,057       | K                 | -2.5                   | \$40,758                       | -658.6         | \$42,513       |  |  |
| \$28.1m              | H                 | -3.0             | \$33,472                       | -/34.4         | \$38,265       | I                   | -5.5             | \$18,084                       | -12/5.0        | \$22,040       | K                 | -2.5                   | \$40,758                       | -001.1         | \$42,507       |  |  |
| \$28.2m              | H                 | -3.0             | \$33,473                       | -/3/.3         | \$38,245       | I                   | -5.5             | \$18,084                       | -1280.5        | \$22,023       | R                 | -2.5                   | \$40,758                       | -663.5         | \$42,500       |  |  |
| \$28.3m              | H                 | -3.0             | \$33,472                       | - /40.3        | \$38,220       | I                   | -5.5             | \$18,084                       | -1280.0        | \$22,000       | K<br>D            | -2.5                   | \$40,758                       | -000.0         | \$42,494       |  |  |
| \$20.4III<br>\$29.5m | п                 | -5.0             | \$33,472                       | -/45.5         | \$38,207       | I                   | -5.5             | \$18,084                       | -1291.3        | \$21,969       | R<br>D            | -2.5                   | \$40,758                       | -008.4         | \$42,400       |  |  |
| \$20.5111<br>\$28.6m | и<br>Н            | -3.0             | \$33,472                       | -740.3         | \$38,160       | I                   | -5.5             | \$18,084                       | -1297.1        | \$21,975       | P                 | -2.5                   | \$40,758                       | -070.9         | \$42,401       |  |  |
| \$28.0m              | н                 | -3.0             | \$33,473                       | 752.3          | \$38,109       | I                   | -5.5             | \$18,084                       | 1302.0         | \$21,930       | P                 | 2.5                    | \$40,758                       | 675.8          | \$42,475       |  |  |
| \$28.7m              | Н                 | -3.0             | \$33,472                       | -755.3         | \$38,132       | I                   | -5.5             | \$18,084                       | -1313 7        | \$21,940       | R                 | -2.5                   | \$40,758                       | -678.2         | \$42,463       |  |  |
| \$28.9m              | Н                 | -3.0             | \$33,472                       | -758.3         | \$38,114       | I                   | -5.5             | \$18,084                       | -1319.7        | \$21,923       | R                 | -2.5                   | \$40,758                       | -680.7         | \$42,405       |  |  |
| \$20.9m              | Н                 | -3.0             | \$33,473                       | -761.2         | \$38,095       | I                   | -5.5             | \$18,084                       | -1324 7        | \$21,907       | R                 | -2.5                   | \$40,758                       | -683.2         | \$42,450       |  |  |
| \$29.0m              | H                 | -3.0             | \$33,472                       | -764.2         | \$38,077       | I                   | -5.5             | \$18,084                       | -1330.2        | \$21,876       | R                 | -2.5                   | \$40,758                       | -685.6         | \$42,430       |  |  |
| \$29.2m              | Н                 | -3.0             | \$33,472                       | -767.2         | \$38.059       | I                   | -5.5             | \$18,084                       | -1335.8        | \$21,860       | R                 | -2.5                   | \$40,758                       | -688.1         | \$42,438       |  |  |
| \$29.3m              | Н                 | -3.0             | \$33,472                       | -770.2         | \$38.042       | I                   | -5.5             | \$18,084                       | -1341.3        | \$21,844       | R                 | -2.5                   | \$40,758                       | -690.5         | \$42,432       |  |  |
| \$29.4m              | Н                 | -3.0             | \$33,473                       | -773.2         | \$38.024       | I                   | -5.5             | \$18,084                       | -1346.8        | \$21.829       | R                 | -2.5                   | \$40,758                       | -693.0         | \$42.426       |  |  |
| \$29.5m              | Н                 | -3.0             | \$33,472                       | -776.2         | \$38,006       | I                   | -5.5             | \$18,084                       | -1352.4        | \$21,814       | R                 | -2.5                   | \$40,758                       | -695.4         | \$42,420       |  |  |
| \$29.6m              | Н                 | -3.0             | \$33,472                       | -779.2         | \$37,989       | I                   | -5.5             | \$18,084                       | -1357.9        | \$21,798       | R                 | -2.5                   | \$40,758                       | -697.9         | \$42,415       |  |  |
| \$29.7m              | Н                 | -3.0             | \$33,473                       | -782.2         | \$37,972       | Ι                   | -5.5             | \$18,084                       | -1363.4        | \$21,783       | R                 | -2.5                   | \$40,758                       | -700.3         | \$42,409       |  |  |
| \$29.8m              | Н                 | -3.0             | \$33,472                       | -785.1         | \$37,955       | Ι                   | -5.5             | \$18,084                       | -1369.0        | \$21,768       | R                 | -2.5                   | \$40,758                       | -702.8         | \$42,403       |  |  |
| \$29.9m              | Н                 | -3.0             | \$33,472                       | -788.1         | \$37,938       | Ι                   | -5.5             | \$18,084                       | -1374.5        | \$21,754       | R                 | -2.5                   | \$40,758                       | -705.2         | \$42,397       |  |  |
| \$30.0m              | Н                 | -3.0             | \$33,472                       | -791.1         | \$37,921       | Ι                   | -5.5             | \$18,084                       | -1380.0        | \$21,739       | R                 | -2.5                   | \$40,758                       | -707.7         | \$42,392       |  |  |
| \$30.1m              | Н                 | -3.0             | \$33,473                       | -794.1         | \$37,904       | Ι                   | -5.5             | \$18,084                       | -1385.5        | \$21,724       | R                 | -2.5                   | \$40,758                       | -710.1         | \$42,386       |  |  |
| \$30.2m              | Н                 | -3.0             | \$33,472                       | -797.1         | \$37,887       | Ι                   | -5.5             | \$18,084                       | -1391.1        | \$21,710       | R                 | -2.5                   | \$40,758                       | -712.6         | \$42,380       |  |  |
| \$30.3m              | Н                 | -3.0             | \$33,472                       | -800.1         | \$37,871       | Ι                   | -5.5             | \$18,084                       | -1396.6        | \$21,695       | R                 | -2.5                   | \$40,758                       | -715.0         | \$42,375       |  |  |

|                      |                   | Prin             | nary budget                    | (\$50m)        |                | Lower budget (\$0m) |                  |                                |                |                |                   | Higher budget (\$100m) |                                |                |                |  |  |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|---------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------------|--------------------------------|----------------|----------------|--|--|
| Budget               |                   | Margina          | 1                              | Cumi           | ulative        |                     | Margina          | l                              | Cum            | ulative        |                   | Margina                | l                              | Cumulative     |                |  |  |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup>   | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |  |  |
| \$30.4m              | Н                 | -3.0             | \$33.472                       | -803.1         | \$37,855       | Ι                   | -5.5             | \$18,084                       | -1402.1        | \$21,681       | R                 | -2.5                   | \$40,758                       | -717.5         | \$42,369       |  |  |
| \$30.5m              | Н                 | -3.0             | \$33,473                       | -806.1         | \$37,838       | Ι                   | -5.5             | \$18,084                       | -1407.7        | \$21,667       | R                 | -2.5                   | \$40,758                       | -720.0         | \$42,364       |  |  |
| \$30.6m              | Н                 | -3.0             | \$33,472                       | -809.0         | \$37,822       | Ι                   | -5.5             | \$18,084                       | -1413.2        | \$21,653       | R                 | -2.5                   | \$40,758                       | -722.4         | \$42,358       |  |  |
| \$30.7m              | Н                 | -3.0             | \$33,472                       | -812.0         | \$37,806       | Ι                   | -5.5             | \$18,084                       | -1418.7        | \$21,639       | R                 | -2.5                   | \$40,758                       | -724.9         | \$42,353       |  |  |
| \$30.8m              | Н                 | -3.0             | \$33,472                       | -815.0         | \$37,790       | Ι                   | -5.5             | \$18,084                       | -1424.3        | \$21,625       | R                 | -2.5                   | \$40,758                       | -727.3         | \$42,348       |  |  |
| \$30.9m              | Н                 | -3.0             | \$33,473                       | -818.0         | \$37,775       | Ι                   | -5.5             | \$18,084                       | -1429.8        | \$21,612       | R                 | -2.5                   | \$40,756                       | -729.8         | \$42,342       |  |  |
| \$31.0m              | Н                 | -3.0             | \$33,472                       | -821.0         | \$37,759       | Т                   | -6.5             | \$15,316                       | -1436.3        | \$21,583       | R                 | -2.5                   | \$40,758                       | -732.2         | \$42,337       |  |  |
| \$31.1m              | Н                 | -3.0             | \$33,472                       | -824.0         | \$37,743       | Т                   | -6.5             | \$15,316                       | -1442.8        | \$21,555       | R                 | -2.5                   | \$40,758                       | -734.7         | \$42,332       |  |  |
| \$31.2m              | Н                 | -3.0             | \$33,472                       | -827.0         | \$37,728       | Т                   | -6.5             | \$15,316                       | -1449.4        | \$21,527       | R                 | -2.5                   | \$40,758                       | -737.1         | \$42,326       |  |  |
| \$31.3m              | Н                 | -3.0             | \$33,473                       | -830.0         | \$37,713       | Т                   | -6.5             | \$15,316                       | -1455.9        | \$21,499       | R                 | -2.5                   | \$40,758                       | -739.6         | \$42,321       |  |  |
| \$31.4m              | Н                 | -3.0             | \$33,472                       | -832.9         | \$37,697       | Т                   | -6.5             | \$15,316                       | -1462.4        | \$21,471       | R                 | -2.5                   | \$40,758                       | -742.0         | \$42,316       |  |  |
| \$31.5m              | Н                 | -3.0             | \$33,472                       | -835.9         | \$37,682       | Т                   | -6.5             | \$15,316                       | -1469.0        | \$21,444       | R                 | -2.5                   | \$40,758                       | -744.5         | \$42,311       |  |  |
| \$31.6m              | Н                 | -3.0             | \$33,472                       | -838.9         | \$37,667       | Т                   | -6.5             | \$15,316                       | -1475.5        | \$21,417       | R                 | -2.5                   | \$40,758                       | -746.9         | \$42,306       |  |  |
| \$31.7m              | Н                 | -3.0             | \$33,473                       | -841.9         | \$37,652       | Т                   | -6.5             | \$15,316                       | -1482.0        | \$21,390       | R                 | -2.5                   | \$40,758                       | -749.4         | \$42,301       |  |  |
| \$31.8m              | Н                 | -3.0             | \$33,472                       | -844.9         | \$37,638       | Т                   | -6.5             | \$15,316                       | -1488.5        | \$21,363       | R                 | -2.5                   | \$40,758                       | -751.9         | \$42,296       |  |  |
| \$31.9m              | Н                 | -3.0             | \$33,472                       | -847.9         | \$37,623       | Т                   | -6.5             | \$15,316                       | -1495.1        | \$21,337       | R                 | -2.5                   | \$40,758                       | -754.3         | \$42,291       |  |  |
| \$32.0m              | Н                 | -3.0             | \$33,472                       | -850.9         | \$37,608       | Т                   | -6.5             | \$15,316                       | -1501.6        | \$21,311       | R                 | -2.5                   | \$40,758                       | -756.8         | \$42,286       |  |  |
| \$32.1m              | Н                 | -3.0             | \$33,473                       | -853.9         | \$37,594       | Т                   | -6.5             | \$15,316                       | -1508.1        | \$21,285       | R                 | -2.5                   | \$40,758                       | -759.2         | \$42,281       |  |  |
| \$32.2m              | Н                 | -3.0             | \$33,472                       | -856.9         | \$37,579       | Т                   | -6.5             | \$15,316                       | -1514.7        | \$21,259       | R                 | -2.5                   | \$40,758                       | -761.7         | \$42,276       |  |  |
| \$32.3m              | Н                 | -3.0             | \$33,472                       | -859.8         | \$37,565       | Т                   | -6.5             | \$15,316                       | -1521.2        | \$21,233       | R                 | -2.5                   | \$40,758                       | -764.1         | \$42,271       |  |  |
| \$32.4m              | Н                 | -3.0             | \$33,472                       | -862.8         | \$37,551       | Т                   | -6.5             | \$15,316                       | -1527.7        | \$21,208       | R                 | -2.5                   | \$40,758                       | -766.6         | \$42,266       |  |  |
| \$32.5m              | Н                 | -3.0             | \$33,473                       | -865.8         | \$37,537       | Т                   | -6.5             | \$15,316                       | -1534.3        | \$21,183       | R                 | -2.5                   | \$40,758                       | -769.0         | \$42,261       |  |  |
| \$32.6m              | Н                 | -3.0             | \$33,472                       | -868.8         | \$37,523       | Т                   | -6.5             | \$15,316                       | -1540.8        | \$21,158       | R                 | -2.5                   | \$40,758                       | -771.5         | \$42,257       |  |  |
| \$32.7m              | Н                 | -3.0             | \$33,472                       | -871.8         | \$37,509       | Т                   | -6.5             | \$15,316                       | -1547.3        | \$21,133       | R                 | -2.5                   | \$40,758                       | -773.9         | \$42,252       |  |  |
| \$32.8m              | Н                 | -3.0             | \$33,472                       | -874.8         | \$37,495       | Т                   | -6.5             | \$15,316                       | -1553.8        | \$21,109       | R                 | -2.5                   | \$40,758                       | -776.4         | \$42,247       |  |  |
| \$32.9m              | H                 | -3.0             | \$33,473                       | -877.8         | \$37,482       | Т                   | -6.5             | \$15,316                       | -1560.4        | \$21,085       | R                 | -2.5                   | \$40,758                       | -778.8         | \$42,242       |  |  |
| \$33.0m              | H                 | -3.0             | \$33,472                       | -880.8         | \$37,468       | T                   | -6.5             | \$15,316                       | -1566.9        | \$21,061       | R                 | -2.5                   | \$40,758                       | -781.3         | \$42,238       |  |  |
| \$33.1m              | H                 | -3.0             | \$33,472                       | -883.7         | \$37,455       | I                   | -6.5             | \$15,316                       | -15/3.4        | \$21,037       | K                 | -2.5                   | \$40,758                       | -/83./         | \$42,233       |  |  |
| \$33.2m              | H                 | -3.0             | \$33,472                       | -886.7         | \$37,441       | T                   | -6.5             | \$15,316                       | -1580.0        | \$21,013       | R                 | -2.5                   | \$40,758                       | -786.2         | \$42,228       |  |  |
| \$33.3m              | H                 | -3.0             | \$33,473                       | -889.7         | \$37,428       | Т                   | -6.5             | \$15,316                       | -1586.5        | \$20,990       | R                 | -2.5                   | \$40,758                       | -/88./         | \$42,224       |  |  |
| \$33.4m              | H                 | -3.0             | \$33,472                       | -892.7         | \$37,415       | I                   | -6.5             | \$15,316                       | -1593.0        | \$20,967       | K                 | -2.5                   | \$40,758                       | -/91.1         | \$42,219       |  |  |
| \$33.5m              | H                 | -3.0             | \$33,472                       | -895.7         | \$37,401       | I<br>T              | -0.5             | \$15,310                       | -1599.5        | \$20,943       | K<br>D            | -2.5                   | \$40,758                       | - /93.0        | \$42,215       |  |  |
| \$33.0M              | П                 | -3.0             | \$33,472                       | -696.7         | \$37,300       | T                   | -0.5             | \$15,510                       | -1000.1        | \$20,921       | R                 | -2.5                   | \$40,758                       | -790.0         | \$42,210       |  |  |
| \$33.711             | П<br>Ц            | -3.0             | \$33,473                       | -901.7         | \$27,373       | T                   | -0.5             | \$15,310                       | -1012.0        | \$20,898       | R<br>D            | -2.5                   | \$40,758                       | -798.3         | \$42,200       |  |  |
| \$33.0m              | н                 | -3.0             | \$33,472                       | 907.6          | \$37,302       | T                   | -0.5             | \$15,316                       | 1625.7         | \$20,873       | P                 | -2.5                   | \$40,758                       | 803.4          | \$42,201       |  |  |
| \$33.9m              | П<br>Ц            | -3.0             | \$33,472                       | -907.0         | \$37,330       | T                   | -0.5             | \$15,310                       | -1023.7        | \$20,833       | R<br>D            | -2.5                   | \$40,758                       | -803.4         | \$42,197       |  |  |
| \$34.0m              | н                 | -3.0             | \$33,472                       | -910.0         | \$37,337       | T                   | -0.5             | \$15,316                       | 1638.7         | \$20,851       | P                 | -2.5                   | \$40,758                       | 808.3          | \$42,193       |  |  |
| \$34.1111<br>\$34.2m | H                 | -3.0             | \$33,473                       | -915.0         | \$37 312       | T                   | -6.5             | \$15,316                       | -1645 3        | \$20,809       | R                 | -2.5                   | \$40,758                       | -810.7         | \$42,100       |  |  |
| \$34.2m              | Н                 | -3.0             | \$33,472                       | -910.0         | \$37,312       | T                   | -6.5             | \$15,316                       | -1651.8        | \$20,787       | R                 | -2.5                   | \$40,758                       | -813.2         | \$42,184       |  |  |
| \$34.5m              | Н                 | -3.0             | \$33,472                       | -919.0         | \$37,299       | T                   | -6.5             | \$15,316                       | -1658.3        | \$20,703       | R                 | -2.5                   | \$40,758                       | -815.6         | \$42,180       |  |  |
| \$34.5m              | H                 | -3.0             | \$33,473                       | -925.6         | \$37,207       | T                   | -6.5             | \$15,316                       | -1664.8        | \$20,744       | R                 | -2.5                   | \$40,758                       | -818.1         | \$42,173       |  |  |
| \$34.5m              | H                 | -3.0             | \$33,472                       | -928.6         | \$37,262       | T                   | -6.5             | \$15,316                       | -1671.4        | \$20,723       | R                 | -2.5                   | \$40,758                       | -820.5         | \$42,171       |  |  |
| \$34.7m              | H                 | -3.0             | \$33,472                       | -931.5         | \$37.250       | Ť                   | -6.5             | \$15.316                       | -1677.9        | \$20.681       | R                 | -2.5                   | \$40.758                       | -823.0         | \$42,163       |  |  |
| \$34.8m              | H                 | -3.0             | \$33,472                       | -934.5         | \$37.238       | Ť                   | -6.5             | \$15,316                       | -1684.4        | \$20,660       | R                 | -2.5                   | \$40,758                       | -825.5         | \$42,159       |  |  |
| \$34.9m              | H                 | -3.0             | \$33,473                       | -937.5         | \$37.226       | Ť                   | -6.5             | \$15,316                       | -1691.0        | \$20,639       | R                 | -2.5                   | \$40,758                       | -827.9         | \$42,154       |  |  |
| \$35.0m              | H                 | -3.0             | \$33,472                       | -940.5         | \$37.214       | Ť                   | -6.5             | \$15.316                       | -1697.5        | \$20.619       | R                 | -2.5                   | \$40.758                       | -830.4         | \$42,150       |  |  |
| \$35.1m              | H                 | -3.0             | \$33,472                       | -943.5         | \$37.202       | Ť                   | -6.5             | \$15.316                       | -1704.0        | \$20.598       | R                 | -2.5                   | \$40.758                       | -832.8         | \$42,146       |  |  |
| \$35.2m              | H                 | -3.0             | \$33,472                       | -946.5         | \$37,191       | Ť                   | -6.5             | \$15,316                       | -1710.5        | \$20,578       | R                 | -2.5                   | \$40,758                       | -835.3         | \$42,142       |  |  |
| \$35.3m              | Н                 | -3.0             | \$33,473                       | -949.5         | \$37,179       | Т                   | -6.5             | \$15,316                       | -1717.1        | \$20,558       | R                 | -2.5                   | \$40,758                       | -837.7         | \$42,138       |  |  |
| \$35.4m              | Н                 | -3.0             | \$33,472                       | -952.5         | \$37,167       | Т                   | -6.5             | \$15,316                       | -1723.6        | \$20,538       | R                 | -2.5                   | \$40,758                       | -840.2         | \$42,134       |  |  |
|          |                   | Primary budget (\$50m) |                                |                |                              |                   | Lo               | wer budget                                                | (\$0m)         |                |                   | Higl             | her budget (                   | \$100m)        |                |
|----------|-------------------|------------------------|--------------------------------|----------------|------------------------------|-------------------|------------------|-----------------------------------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget   |                   | Margina                | 1                              | Cumi           | ulative                      |                   | Margina          | l                                                         | Cumi           | ılative        |                   | Margina          | l                              | Cumi           | ılative        |
| impact   | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup>                            | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$35.5m  | Н                 | -3.0                   | \$33,472                       | -955.4         | \$37,156                     | Т                 | -6.5             | \$15,316                                                  | -1730.1        | \$20,519       | R                 | -2.5             | \$40,758                       | -842.6         | \$42,130       |
| \$35.6m  | Н                 | -3.0                   | \$33,472                       | -958.4         | \$37,144                     | Т                 | -6.5             | \$15,316                                                  | -1736.7        | \$20,499       | R                 | -2.5             | \$40,758                       | -845.1         | \$42,126       |
| \$35.7m  | Н                 | -3.0                   | \$33,473                       | -961.4         | \$37,133                     | Т                 | -6.5             | \$15,316                                                  | -1743.2        | \$20,480       | R                 | -2.5             | \$40,758                       | -847.5         | \$42,122       |
| \$35.8m  | Н                 | -3.0                   | \$33,472                       | -964.4         | \$37,121                     | Т                 | -6.5             | \$15,316                                                  | -1749.7        | \$20,460       | R                 | -2.5             | \$40,758                       | -850.0         | \$42,118       |
| \$35.9m  | Н                 | -3.0                   | \$33,472                       | -967.4         | \$37,110                     | Т                 | -6.5             | \$15,316                                                  | -1756.2        | \$20,441       | R                 | -2.5             | \$40,758                       | -852.4         | \$42,114       |
| \$36.0m  | Н                 | -3.0                   | \$33,472                       | -970.4         | \$37,099                     | Т                 | -6.5             | \$15,316                                                  | -1762.8        | \$20,422       | R                 | -2.5             | \$40,758                       | -854.9         | \$42,110       |
| \$36.1m  | Н                 | -3.0                   | \$33,473                       | -973.4         | \$37,088                     | Т                 | -6.5             | \$15,316                                                  | -1769.3        | \$20,403       | R                 | -2.5             | \$40,758                       | -857.4         | \$42,106       |
| \$36.2m  | Н                 | -3.0                   | \$33,472                       | -976.4         | \$37,077                     | Т                 | -6.5             | \$15,316                                                  | -1775.8        | \$20,385       | R                 | -2.5             | \$40,758                       | -859.8         | \$42,103       |
| \$36.3m  | Н                 | -3.0                   | \$33,472                       | -979.3         | \$37,066                     | Т                 | -6.5             | \$15,316                                                  | -1782.4        | \$20,366       | R                 | -2.5             | \$40,758                       | -862.3         | \$42,099       |
| \$36.4m  | Н                 | -3.0                   | \$33,472                       | -982.3         | \$37,055                     | Т                 | -6.5             | \$15,316                                                  | -1788.9        | \$20,348       | R                 | -2.5             | \$40,758                       | -864.7         | \$42,095       |
| \$36.5m  | Н                 | -3.0                   | \$33,473                       | -985.3         | \$37,044                     | Т                 | -6.5             | \$15,316                                                  | -1795.4        | \$20,329       | R                 | -2.5             | \$40,758                       | -867.2         | \$42,091       |
| \$36.6m  | Н                 | -3.0                   | \$33,472                       | -988.3         | \$37,033                     | Т                 | -6.5             | \$15,316                                                  | -1802.0        | \$20,311       | R                 | -2.5             | \$40,758                       | -869.6         | \$42,087       |
| \$36.7m  | Н                 | -3.0                   | \$33,472                       | -991.3         | \$37,022                     | Т                 | -6.5             | \$15,316                                                  | -1808.5        | \$20,293       | R                 | -2.5             | \$40,758                       | -872.1         | \$42,084       |
| \$36.8m  | Н                 | -3.0                   | \$33,472                       | -994.3         | \$37,012                     | Т                 | -6.5             | \$15,316                                                  | -1815.0        | \$20,275       | R                 | -2.5             | \$40,758                       | -874.5         | \$42,080       |
| \$36.9m  | Н                 | -3.0                   | \$33,473                       | -997.3         | \$37,001                     | Т                 | -6.5             | \$15,316                                                  | -1821.5        | \$20,258       | R                 | -2.5             | \$40,758                       | -877.0         | \$42,076       |
| \$37.0m  | Н                 | -3.0                   | \$33,472                       | -1000.3        | \$36,991                     | Т                 | -6.5             | \$15,316                                                  | -1828.1        | \$20,240       | R                 | -2.5             | \$40,758                       | -879.4         | \$42,073       |
| \$37.1m  | Н                 | -3.0                   | \$33,472                       | -1003.2        | \$36,980                     | Т                 | -6.5             | \$15,316                                                  | -1834.6        | \$20,222       | R                 | -2.5             | \$40,758                       | -881.9         | \$42,069       |
| \$37.2m  | Н                 | -3.0                   | \$33,472                       | -1006.2        | \$36,970                     | Т                 | -6.5             | \$15,316                                                  | -1841.1        | \$20,205       | R                 | -2.5             | \$40,758                       | -884.3         | \$42,065       |
| \$37.3m  | Н                 | -3.0                   | \$33,473                       | -1009.2        | \$36,959                     | Т                 | -6.5             | \$15,316                                                  | -1847.7        | \$20,188       | R                 | -2.5             | \$40,758                       | -886.8         | \$42,062       |
| \$37.4m  | Н                 | -3.0                   | \$33,472                       | -1012.2        | \$36,949                     | Т                 | -6.5             | \$15,316                                                  | -1854.2        | \$20,171       | R                 | -2.5             | \$40,758                       | -889.2         | \$42,058       |
| \$37.5m  | Н                 | -3.0                   | \$33,472                       | -1015.2        | \$36,939                     | Т                 | -6.5             | \$15,316                                                  | -1860.7        | \$20,154       | R                 | -2.5             | \$40,758                       | -891.7         | \$42,055       |
| \$37.6m  | Н                 | -3.0                   | \$33,473                       | -1018.2        | \$36,929                     | Т                 | -6.5             | \$15,316                                                  | -1867.2        | \$20,137       | R                 | -2.5             | \$40,756                       | -894.2         | \$42,051       |
| \$37.7m  | Н                 | -3.0                   | \$33,472                       | -1021.2        | \$36,919                     | Т                 | -6.5             | \$15,316                                                  | -1873.8        | \$20,120       | R                 | -2.5             | \$40,758                       | -896.6         | \$42,047       |
| \$37.8m  | Н                 | -3.0                   | \$33,472                       | -1024.2        | \$36,908                     | Т                 | -6.5             | \$15,316                                                  | -1880.3        | \$20,103       | R                 | -2.5             | \$40,758                       | -899.1         | \$42,044       |
| \$37.9m  | Н                 | -3.0                   | \$33,472                       | -1027.1        | \$36,898                     | Т                 | -6.5             | \$15,316                                                  | -1886.8        | \$20,087       | R                 | -2.5             | \$40,758                       | -901.5         | \$42,040       |
| \$38.0m  | Н                 | -3.0                   | \$33,473                       | -1030.1        | \$36,889                     | Т                 | -6.5             | \$15,316                                                  | -1893.4        | \$20,070       | R                 | -2.5             | \$40,758                       | -904.0         | \$42,037       |
| \$38.1m  | Н                 | -3.0                   | \$33,472                       | -1033.1        | \$36,879                     | Т                 | -6.5             | \$15,316                                                  | -1899.9        | \$20,054       | R                 | -2.5             | \$40,758                       | -906.4         | \$42,033       |
| \$38.2m  | Н                 | -3.0                   | \$33,472                       | -1036.1        | \$36,869                     | Т                 | -6.5             | \$15,316                                                  | -1906.4        | \$20,038       | R                 | -2.5             | \$40,758                       | -908.9         | \$42,030       |
| \$38.3m  | Н                 | -3.0                   | \$33,472                       | -1039.1        | \$36,859                     | Т                 | -6.5             | \$15,316                                                  | -1913.0        | \$20,021       | R                 | -2.5             | \$40,758                       | -911.3         | \$42,027       |
| \$38.4m  | Н                 | -3.0                   | \$33,473                       | -1042.1        | \$36,849                     | Т                 | -6.5             | \$15,316                                                  | -1919.5        | \$20,005       | R                 | -2.5             | \$40,758                       | -913.8         | \$42,023       |
| \$38.5m  | Н                 | -3.0                   | \$33,472                       | -1045.1        | \$36,840                     | Т                 | -6.5             | \$15,316                                                  | -1926.0        | \$19,990       | R                 | -2.5             | \$40,758                       | -916.2         | \$42,020       |
| \$38.6m  | H                 | -3.0                   | \$33,472                       | -1048.1        | \$36,830                     | T                 | -6.5             | \$15,316                                                  | -1932.5        | \$19,974       | R                 | -2.5             | \$40,758                       | -918.7         | \$42,016       |
| \$38.7m  | H                 | -3.0                   | \$33,472                       | -1051.0        | \$36,821                     | Т                 | -6.5             | \$15,316                                                  | -1939.1        | \$19,958       | R                 | -2.5             | \$40,758                       | -921.1         | \$42,013       |
| \$38.8m  | H                 | -3.0                   | \$33,473                       | -1054.0        | \$36,811                     | Т                 | -6.5             | \$15,316                                                  | -1945.6        | \$19,942       | R                 | -2.5             | \$40,758                       | -923.6         | \$42,010       |
| \$38.9m  | H                 | -3.0                   | \$33,472                       | -1057.0        | \$36,802                     | Т                 | -6.5             | \$15,316                                                  | -1952.1        | \$19,927       | R                 | -2.5             | \$40,758                       | -926.0         | \$42,006       |
| \$39.0m  | H                 | -3.0                   | \$33,472                       | -1060.0        | \$36,792                     | T                 | -6.5             | \$15,316                                                  | -1958.7        | \$19,912       | R                 | -2.5             | \$40,758                       | -928.5         | \$42,003       |
| \$39.1m  | H                 | -3.0                   | \$33,472                       | -1063.0        | \$36,783                     | T                 | -6.5             | \$15,316                                                  | -1965.2        | \$19,896       | R                 | -2.5             | \$40,758                       | -931.0         | \$42,000       |
| \$39.2m  | H                 | -3.0                   | \$33,473                       | -1066.0        | \$36,774                     | Т                 | -6.5             | \$15,316                                                  | -19/1.7        | \$19,881       | R                 | -2.5             | \$40,758                       | -933.4         | \$41,997       |
| \$39.3m  | H                 | -3.0                   | \$33,472                       | -1069.0        | \$36,764                     | I                 | -6.5             | \$15,316                                                  | -19/8.2        | \$19,866       | K                 | -2.5             | \$40,758                       | -935.9         | \$41,993       |
| \$39.4m  | H                 | -3.0                   | \$33,472                       | -10/2.0        | \$36,755                     | I                 | -6.5             | \$15,316                                                  | -1984.8        | \$19,851       | K                 | -2.5             | \$40,758                       | -938.3         | \$41,990       |
| \$39.5m  | H                 | -3.0                   | \$33,472                       | -10/4.9        | \$36,746                     | I                 | -6.5             | \$15,316                                                  | -1991.3        | \$19,836       | K                 | -2.5             | \$40,758                       | -940.8         | \$41,987       |
| \$39.6m  | 0                 | -3.6                   | \$27,938                       | -10/8.5        | \$30,717                     | T                 | -6.5             | \$15,316                                                  | -1997.8        | \$19,821       | K                 | -2.5             | \$40,758                       | -943.2         | \$41,984       |
| \$39./m  | 0                 | -3.0                   | \$27,938                       | -1082.1        | \$30,088                     | I<br>T            | -0.5             | \$15,516                                                  | -2004.4        | \$19,807       | K<br>D            | -2.5             | \$40,758                       | -945./         | \$41,981       |
| \$39.8m  | 0                 | -3.0                   | \$27,938                       | -1085./        | \$30,039                     | I<br>T            | -0.5             | \$15,510                                                  | -2010.9        | \$19,/92       | K<br>P            | -2.5             | \$40,758                       | -948.1         | \$41,9//       |
| \$39.9m  | 0                 | -3.0                   | \$27,938                       | -1089.3        | \$30,030                     | T                 | -0.3             | \$15,516                                                  | -2017.4        | \$19,778       | K<br>P            | -2.5             | \$40,758                       | -950.6         | \$41,974       |
| \$40.0m  | 0                 | -3.0                   | \$27,938                       | -1092.8        | \$30,002                     | T                 | -0.3             | \$15,516                                                  | -2024.0        | \$19,703       | K<br>D            | -2.5             | \$40,758<br>\$40,759           | -955.0         | \$41,971       |
| \$40.1m  | 0                 | -3.0                   | \$27,938                       | -1090.4        | \$30,374                     | T                 | -0.3             | \$15,516                                                  | -2030.5        | \$19,749       | K<br>D            | -2.5             | \$40,758<br>\$40,759           | -933.3         | \$41,908       |
| \$40.2m  | 0                 | -3.0                   | \$27,938                       | -1100.0        | \$36,519                     | I<br>T            | -0.3             | \$15,310                                                  | -2037.0        | \$19,/33       | R<br>P            | -2.5             | \$40,758                       | -937.9         | \$41,903       |
| \$40.510 | 0                 | -5.0                   | \$27.039                       | 1107.2         | \$36,000                     | T                 | -0.5             | \$15,310                                                  | 2050 1         | \$19,721       | R<br>D            | -2.5             | \$40,759                       | -900.4         | \$41,902       |
| \$40.4m  | 0                 | -3.0                   | \$27.930                       | -11107.2       | \$36.462                     | T                 | -0.5             | \$15,316                                                  | -2050.1        | \$19.603       | R                 | -2.5             | \$40 758                       | -965 3         | \$41 956       |
| 940.5m   | 0                 | -5.0                   | 941,750                        | 1110./         | φ <b>50,</b> <del>1</del> 02 |                   | -0.5             | $\varphi_{1} \sigma_{3} \sigma_{1} \sigma_{1} \sigma_{1}$ | 2000.0         | Ψ17,075        |                   | -2.5             | $\psi = 0, 1 = 0$              | -705.5         | Ψ1,750         |

|         |                   | Prin             | ary budget                     | (\$50m)        |                |                   | Lo               | wer budget                     | (\$0m)         |                |                   | Higl             | her budget (                   | (\$100m)       |                |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina          | 1                              | Cumi           | ulative        |                   | Margina          | d g                            | Cum            | ulative        |                   | Margina          | 1                              | Cumi           | ılative        |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$40.6m | 0                 | -3.6             | \$27,938                       | -1114.3        | \$36,435       | Т                 | -6.5             | \$15,316                       | -2063.1        | \$19,679       | R                 | -2.5             | \$40,758                       | -967.8         | \$41,953       |
| \$40.7m | 0                 | -3.6             | \$27,938                       | -1117.9        | \$36,408       | Т                 | -6.5             | \$15,316                       | -2069.7        | \$19,665       | R                 | -2.5             | \$40,758                       | -970.2         | \$41,950       |
| \$40.8m | 0                 | -3.6             | \$27,938                       | -1121.5        | \$36,381       | Т                 | -6.5             | \$15,316                       | -2076.2        | \$19,651       | R                 | -2.5             | \$40,758                       | -972.7         | \$41,947       |
| \$40.9m | 0                 | -3.6             | \$27,938                       | -1125.1        | \$36,354       | Т                 | -6.5             | \$15,316                       | -2082.7        | \$19,638       | R                 | -2.5             | \$40,758                       | -975.1         | \$41,944       |
| \$41.0m | 0                 | -3.6             | \$27,938                       | -1128.6        | \$36,327       | Т                 | -6.5             | \$15,316                       | -2089.2        | \$19,624       | R                 | -2.5             | \$40,758                       | -977.6         | \$41,941       |
| \$41.1m | 0                 | -3.6             | \$27,938                       | -1132.2        | \$36,301       | Т                 | -6.5             | \$15,316                       | -2095.8        | \$19,611       | R                 | -2.5             | \$40,758                       | -980.0         | \$41,938       |
| \$41.2m | 0                 | -3.6             | \$27,938                       | -1135.8        | \$36,274       | Т                 | -6.5             | \$15,316                       | -2102.3        | \$19,598       | R                 | -2.5             | \$40,758                       | -982.5         | \$41,935       |
| \$41.3m | 0                 | -3.6             | \$27,938                       | -1139.4        | \$36,248       | Т                 | -6.5             | \$15,316                       | -2108.8        | \$19,584       | R                 | -2.5             | \$40,758                       | -984.9         | \$41,932       |
| \$41.4m | 0                 | -3.6             | \$27,938                       | -1143.0        | \$36,222       | Т                 | -6.5             | \$15,316                       | -2115.4        | \$19,571       | R                 | -2.5             | \$40,758                       | -987.4         | \$41,929       |
| \$41.5m | 0                 | -3.6             | \$27,938                       | -1146.5        | \$36,196       | Т                 | -6.5             | \$15,316                       | -2121.9        | \$19,558       | R                 | -2.5             | \$40,758                       | -989.8         | \$41,926       |
| \$41.6m | 0                 | -3.6             | \$27,938                       | -1150.1        | \$36,170       | Т                 | -6.5             | \$15,316                       | -2128.4        | \$19,545       | R                 | -2.5             | \$40,758                       | -992.3         | \$41,923       |
| \$41.7m | 0                 | -3.6             | \$27,938                       | -1153.7        | \$36,145       | Т                 | -6.5             | \$15,316                       | -2134.9        | \$19,532       | R                 | -2.5             | \$40,758                       | -994.7         | \$41,920       |
| \$41.8m | 0                 | -3.6             | \$27,938                       | -1157.3        | \$36,120       | Т                 | -6.5             | \$15,316                       | -2141.5        | \$19,519       | R                 | -2.5             | \$40,758                       | -997.2         | \$41,917       |
| \$41.9m | 0                 | -3.6             | \$27,938                       | -1160.8        | \$36,094       | Т                 | -6.5             | \$15,316                       | -2148.0        | \$19,506       | R                 | -2.5             | \$40,758                       | -999.7         | \$41,915       |
| \$42.0m | 0                 | -3.6             | \$27,938                       | -1164.4        | \$36,069       | Т                 | -6.5             | \$15,316                       | -2154.5        | \$19,494       | R                 | -2.5             | \$40,758                       | -1002.1        | \$41,912       |
| \$42.1m | 0                 | -3.6             | \$27,938                       | -1168.0        | \$36,044       | Т                 | -6.5             | \$15,316                       | -2161.1        | \$19,481       | R                 | -2.5             | \$40,758                       | -1004.6        | \$41,909       |
| \$42.2m | 0                 | -3.6             | \$27,938                       | -1171.6        | \$36,020       | Т                 | -6.5             | \$15,316                       | -2167.6        | \$19,469       | R                 | -2.5             | \$40,758                       | -1007.0        | \$41,906       |
| \$42.3m | 0                 | -3.6             | \$27,938                       | -1175.2        | \$35,995       | Т                 | -6.5             | \$15,316                       | -2174.1        | \$19,456       | R                 | -2.5             | \$40,758                       | -1009.5        | \$41,903       |
| \$42.4m | 0                 | -3.6             | \$27,938                       | -1178.7        | \$35,971       | Т                 | -6.5             | \$15,316                       | -2180.7        | \$19,444       | R                 | -2.5             | \$40,758                       | -1011.9        | \$41,900       |
| \$42.5m | 0                 | -3.6             | \$27,938                       | -1182.3        | \$35,946       | Т                 | -6.5             | \$15,316                       | -2187.2        | \$19,431       | R                 | -2.5             | \$40,758                       | -1014.4        | \$41,898       |
| \$42.6m | 0                 | -3.6             | \$27,938                       | -1185.9        | \$35,922       | Т                 | -6.5             | \$15,316                       | -2193.7        | \$19,419       | R                 | -2.5             | \$40,758                       | -1016.8        | \$41,895       |
| \$42.7m | 0                 | -3.6             | \$27,938                       | -1189.5        | \$35,898       | Т                 | -6.5             | \$15,316                       | -2200.2        | \$19,407       | R                 | -2.5             | \$40,758                       | -1019.3        | \$41,892       |
| \$42.8m | 0                 | -3.6             | \$27,938                       | -1193.1        | \$35,874       | Т                 | -6.5             | \$15,316                       | -2206.8        | \$19,395       | R                 | -2.5             | \$40,758                       | -1021.7        | \$41,890       |
| \$42.9m | 0                 | -3.6             | \$27,938                       | -1196.6        | \$35,850       | Т                 | -6.5             | \$15,316                       | -2213.3        | \$19,383       | R                 | -2.5             | \$40,758                       | -1024.2        | \$41,887       |
| \$43.0m | 0                 | -3.6             | \$27,938                       | -1200.2        | \$35,827       | Т                 | -6.5             | \$15,316                       | -2219.8        | \$19,371       | R                 | -2.5             | \$40,758                       | -1026.6        | \$41,884       |
| \$43.1m | 0                 | -3.6             | \$27,938                       | -1203.8        | \$35,803       | Т                 | -6.5             | \$15,316                       | -2226.4        | \$19,359       | R                 | -2.5             | \$40,758                       | -1029.1        | \$41,881       |
| \$43.2m | 0                 | -3.6             | \$27,938                       | -1207.4        | \$35,780       | Т                 | -6.5             | \$15,316                       | -2232.9        | \$19,347       | R                 | -2.5             | \$40,758                       | -1031.5        | \$41,879       |
| \$43.3m | 0                 | -3.6             | \$27,938                       | -1211.0        | \$35,757       | Т                 | -6.5             | \$15,316                       | -2239.4        | \$19,335       | R                 | -2.5             | \$40,758                       | -1034.0        | \$41,876       |
| \$43.4m | 0                 | -3.6             | \$27,938                       | -1214.5        | \$35,734       | Т                 | -6.5             | \$15,316                       | -2245.9        | \$19,324       | R                 | -2.5             | \$40,758                       | -1036.5        | \$41,873       |
| \$43.5m | 0                 | -3.6             | \$27,938                       | -1218.1        | \$35,711       | Т                 | -6.5             | \$15,316                       | -2252.5        | \$19,312       | R                 | -2.5             | \$40,758                       | -1038.9        | \$41,871       |
| \$43.6m | 0                 | -3.6             | \$27,938                       | -1221.7        | \$35,688       | Т                 | -6.5             | \$15,316                       | -2259.0        | \$19,301       | R                 | -2.5             | \$40,758                       | -1041.4        | \$41,868       |
| \$43.7m | 0                 | -3.6             | \$27,938                       | -1225.3        | \$35,665       | Т                 | -6.5             | \$15,316                       | -2265.5        | \$19,289       | R                 | -2.5             | \$40,758                       | -1043.8        | \$41,866       |
| \$43.8m | 0                 | -3.6             | \$27,938                       | -1228.9        | \$35,643       | Т                 | -6.5             | \$15,316                       | -2272.1        | \$19,278       | R                 | -2.5             | \$40,758                       | -1046.3        | \$41,863       |
| \$43.9m | 0                 | -3.6             | \$27,938                       | -1232.4        | \$35,621       | Т                 | -6.5             | \$15,316                       | -2278.6        | \$19,266       | R                 | -2.5             | \$40,758                       | -1048.7        | \$41,860       |
| \$44.0m | 0                 | -3.6             | \$27,938                       | -1236.0        | \$35,598       | Т                 | -6.5             | \$15,316                       | -2285.1        | \$19,255       | R                 | -2.5             | \$40,758                       | -1051.2        | \$41,858       |
| \$44.1m | 0                 | -3.6             | \$27,938                       | -1239.6        | \$35,576       | Т                 | -6.5             | \$15,316                       | -2291.7        | \$19,244       | R                 | -2.5             | \$40,758                       | -1053.6        | \$41,855       |
| \$44.2m | 0                 | -3.6             | \$27,938                       | -1243.2        | \$35,554       | Т                 | -6.5             | \$15,316                       | -2298.2        | \$19,233       | R                 | -2.5             | \$40,758                       | -1056.1        | \$41,853       |
| \$44.3m | 0                 | -3.6             | \$27,938                       | -1246.8        | \$35,532       | T                 | -6.5             | \$15,316                       | -2304.7        | \$19,222       | R                 | -2.5             | \$40,756                       | -1058.5        | \$41,850       |
| \$44.4m | 0                 | -3.6             | \$27,938                       | -1250.3        | \$35,511       | Т                 | -6.5             | \$15,316                       | -2311.2        | \$19,210       | R                 | -2.5             | \$40,758                       | -1061.0        | \$41,848       |
| \$44.5m | 0                 | -3.6             | \$27,938                       | -1253.9        | \$35,489       | Т                 | -6.5             | \$15,316                       | -2317.8        | \$19,199       | R                 | -2.5             | \$40,758                       | -1063.4        | \$41,845       |
| \$44.6m | 0                 | -3.6             | \$27,938                       | -1257.5        | \$35,468       | Т                 | -6.5             | \$15,316                       | -2324.3        | \$19,189       | R                 | -2.5             | \$40,758                       | -1065.9        | \$41,843       |
| \$44.7m | 0                 | -3.6             | \$27,938                       | -1261.1        | \$35,446       | Т                 | -6.5             | \$15,316                       | -2330.8        | \$19,178       | R                 | -2.5             | \$40,758                       | -1068.4        | \$41,840       |
| \$44.8m | 0                 | -3.6             | \$27,938                       | -1264.6        | \$35,425       | T                 | -6.5             | \$15,316                       | -2337.4        | \$19,167       | R                 | -2.5             | \$40,758                       | -1070.8        | \$41,838       |
| \$44.9m | 0                 | -3.6             | \$27,938                       | -1268.2        | \$35,404       | T                 | -6.5             | \$15,316                       | -2343.9        | \$19,156       | ĸ                 | -2.5             | \$40,758                       | -10/3.3        | \$41,835       |
| \$45.0m | 0                 | -3.6             | \$27,938                       | -1271.8        | \$35,383       | T                 | -6.5             | \$15,316                       | -2350.4        | \$19,146       | R                 | -2.5             | \$40,758                       | -10/5.7        | \$41,833       |
| \$45.1m | 0                 | -3.6             | \$27,938                       | -1275.4        | \$35,362       | T                 | -6.5             | \$15,316                       | -2356.9        | \$19,135       | R                 | -2.5             | \$40,758                       | -1078.2        | \$41,830       |
| \$45.2m | 0                 | -3.6             | \$27,938                       | -12/9.0        | \$35,341       | T                 | -6.5             | \$15,316                       | -2363.5        | \$19,124       | ĸ                 | -2.5             | \$40,758                       | -1080.6        | \$41,828       |
| \$45.3m | 0                 | -3.6             | \$27,938                       | -1282.5        | \$35,320       | T                 | -6.5             | \$15,316                       | -2370.0        | \$19,114       | R                 | -2.5             | \$40,758                       | -1083.1        | \$41,825       |
| \$45.4m | 0                 | -3.6             | \$27,938                       | -1286.1        | \$35,300       | Т                 | -6.5             | \$15,316                       | -23/6.5        | \$19,103       | K                 | -2.5             | \$40,758                       | -1085.5        | \$41,823       |
| \$45.5m | 0                 | -3.6             | \$27,938                       | -1289.7        | \$35,279       | T                 | -6.5             | \$15,316                       | -2383.1        | \$19,093       | K                 | -2.5             | \$40,758                       | -1088.0        | \$41,821       |
| \$45.6m | 0                 | -3.6             | \$27,938                       | -1293.3        | \$35,259       | T                 | -6.5             | \$15,316                       | -2389.6        | \$19,083       | R                 | -2.5             | \$40,758                       | -1090.4        | \$41,818       |

|         |                   | Primary budget (\$50m) |                                |                |                |                   | Lo               | wer budget                     | (\$0m)         |                |                   | Hig              | her budget (                   | \$100m)        |                |
|---------|-------------------|------------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina                | l                              | Cumi           | ılative        |                   | Margina          | l                              | Cumi           | ılative        |                   | Margina          | l                              | Cumi           | ılative        |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$45.7m | 0                 | -3.6                   | \$27,938                       | -1296.9        | \$35,239       | Т                 | -6.5             | \$15,316                       | -2396.1        | \$19,072       | R                 | -2.5             | \$40,758                       | -1092.9        | \$41,816       |
| \$45.8m | 0                 | -3.6                   | \$27,938                       | -1300.4        | \$35,219       | Т                 | -6.5             | \$15,316                       | -2402.6        | \$19,062       | R                 | -2.5             | \$40,758                       | -1095.3        | \$41,813       |
| \$45.9m | 0                 | -3.6                   | \$27,938                       | -1304.0        | \$35,199       | Т                 | -6.5             | \$15,316                       | -2409.2        | \$19,052       | R                 | -2.5             | \$40,758                       | -1097.8        | \$41,811       |
| \$46.0m | 0                 | -3.6                   | \$27,938                       | -1307.6        | \$35,179       | Т                 | -6.5             | \$15,316                       | -2415.7        | \$19,042       | R                 | -2.5             | \$40,758                       | -1100.2        | \$41,809       |
| \$46.1m | 0                 | -3.6                   | \$27,938                       | -1311.2        | \$35,159       | Т                 | -6.5             | \$15,316                       | -2422.2        | \$19,032       | R                 | -2.5             | \$40,758                       | -1102.7        | \$41,806       |
| \$46.2m | 0                 | -3.6                   | \$27,938                       | -1314.8        | \$35,140       | Т                 | -6.5             | \$15,316                       | -2428.8        | \$19,022       | R                 | -2.5             | \$40,758                       | -1105.2        | \$41,804       |
| \$46.3m | 0                 | -3.6                   | \$27,938                       | -1318.3        | \$35,120       | Т                 | -6.5             | \$15,317                       | -2435.3        | \$19,012       | R                 | -2.5             | \$40,758                       | -1107.6        | \$41,802       |
| \$46.4m | 0                 | -3.6                   | \$27,938                       | -1321.9        | \$35,101       | T                 | -6.5             | \$15,314                       | -2441.8        | \$19,002       | R                 | -2.5             | \$40,758                       | -1110.1        | \$41,799       |
| \$46.5m | 0                 | -3.6                   | \$27,938                       | -1325.5        | \$35,081       | Т                 | -6.5             | \$15,316                       | -2448.4        | \$18,992       | R                 | -2.5             | \$40,758                       | -1112.5        | \$41,797       |
| \$46.6m | 0                 | -3.6                   | \$27,938                       | -1329.1        | \$35,062       | T                 | -6.5             | \$15,316                       | -2454.9        | \$18,983       | R                 | -2.5             | \$40,758                       | -1115.0        | \$41,795       |
| \$46.7m | 0                 | -3.6                   | \$27,938                       | -1332.7        | \$35,043       | T                 | -6.5             | \$15,314                       | -2461.4        | \$18,973       | R                 | -2.5             | \$40,758                       | -111/.4        | \$41,793       |
| \$46.8m | 0                 | -3.6                   | \$27,938                       | -1336.2        | \$35,024       | T                 | -6.5             | \$15,316                       | -2467.9        | \$18,963       | R                 | -2.5             | \$40,758                       | -1119.9        | \$41,790       |
| \$46.9m | 0                 | -3.6                   | \$27,938                       | -1339.8        | \$35,005       | T                 | -6.5             | \$15,316                       | -24/4.5        | \$18,954       | R                 | -2.5             | \$40,758                       | -1122.3        | \$41,788       |
| \$47.0m | 0                 | -3.0                   | \$27,938                       | -1343.4        | \$34,980       | I                 | -0.5             | \$15,314                       | -2481.0        | \$18,944       | K<br>D            | -2.5             | \$40,758                       | -1124.8        | \$41,780       |
| \$47.1m | 0                 | -3.0                   | \$27,938                       | -134/.0        | \$34,967       | I<br>T            | -0.5             | \$15,510                       | -2487.5        | \$18,934       | K<br>D            | -2.5             | \$40,758                       | -112/.2        | \$41,784       |
| \$47.2m | 0                 | -5.0                   | \$27,930                       | -1550.0        | \$34,949       | T                 | -0.5             | \$15,510                       | -2494.1        | \$18,923       | R<br>D            | -2.5             | \$40,758                       | -1129./        | \$41,781       |
| \$47.5m | 0                 | -5.0                   | \$27,938                       | -1334.1        | \$34,930       | T                 | -0.5             | \$15,510                       | -2500.0        | \$18,910       | R<br>D            | -2.3             | \$40,758                       | -1132.1        | \$41,779       |
| \$47.4m | 0                 | -3.0                   | \$27,938                       | -1357.7        | \$34,912       | T                 | -0.5             | \$15,314                       | -2513.6        | \$18,900       | P                 | -2.3             | \$40,758                       | -1134.0        | \$41,775       |
| \$47.5m | 0                 | -3.0                   | \$27,938                       | 1364.0         | \$34,875       | T                 | -0.5             | \$15,316                       | 2520.2         | \$18,897       | P                 | -2.5             | \$40,758                       | 1130.5         | \$41,773       |
| \$47.0m | 0                 | -3.6                   | \$27,938                       | -1368.4        | \$34,857       | T                 | -6.5             | \$15,310                       | -2526.2        | \$18,878       | R                 | -2.5             | \$40,758                       | -1142.0        | \$41,770       |
| \$47.8m | 0                 | -3.6                   | \$27,938                       | -1372.0        | \$34,839       | T                 | -6.5             | \$15,316                       | -2533.2        | \$18,869       | R                 | -2.5             | \$40,758                       | -1144.4        | \$41,778       |
| \$47.9m | 0                 | -3.6                   | \$27,938                       | -1375.6        | \$34 821       | T                 | -6.5             | \$15,316                       | -2539.8        | \$18,860       | R                 | -2.5             | \$40,758                       | -1146.9        | \$41,766       |
| \$48.0m | Õ                 | -3.6                   | \$27,938                       | -1379.2        | \$34,803       | T                 | -6.5             | \$15,314                       | -2546.3        | \$18.851       | R                 | -2.5             | \$40,758                       | -1149.3        | \$41,764       |
| \$48.1m | 0                 | -3.6                   | \$27,938                       | -1382.8        | \$34,785       | Т                 | -6.5             | \$15,316                       | -2552.8        | \$18,842       | R                 | -2.5             | \$40,758                       | -1151.8        | \$41,762       |
| \$48.2m | 0                 | -3.6                   | \$27,938                       | -1386.3        | \$34,768       | Т                 | -6.5             | \$15,316                       | -2559.4        | \$18,833       | R                 | -2.5             | \$40,758                       | -1154.2        | \$41,760       |
| \$48.3m | 0                 | -3.6                   | \$27,938                       | -1389.9        | \$34,750       | Т                 | -6.5             | \$15,316                       | -2565.9        | \$18,824       | R                 | -2.5             | \$40,751                       | -1156.7        | \$41,758       |
| \$48.4m | 0                 | -3.6                   | \$27,938                       | -1393.5        | \$34,733       | Т                 | -6.5             | \$15,314                       | -2572.4        | \$18,815       | R                 | -2.5             | \$40,766                       | -1159.1        | \$41,755       |
| \$48.5m | 0                 | -3.6                   | \$27,938                       | -1397.1        | \$34,715       | Т                 | -6.5             | \$15,316                       | -2578.9        | \$18,806       | R                 | -2.5             | \$40,750                       | -1161.6        | \$41,753       |
| \$48.6m | 0                 | -3.6                   | \$27,938                       | -1400.7        | \$34,698       | Т                 | -6.5             | \$15,316                       | -2585.5        | \$18,797       | R                 | -2.5             | \$40,766                       | -1164.0        | \$41,751       |
| \$48.7m | 0                 | -3.6                   | \$27,938                       | -1404.2        | \$34,681       | Т                 | -6.5             | \$15,314                       | -2592.0        | \$18,789       | R                 | -2.5             | \$40,750                       | -1166.5        | \$41,749       |
| \$48.8m | 0                 | -3.6                   | \$27,938                       | -1407.8        | \$34,664       | Т                 | -6.5             | \$15,316                       | -2598.5        | \$18,780       | R                 | -2.5             | \$40,766                       | -1168.9        | \$41,747       |
| \$48.9m | 0                 | -3.6                   | \$27,938                       | -1411.4        | \$34,646       | Т                 | -6.5             | \$15,316                       | -2605.1        | \$18,771       | R                 | -2.5             | \$40,750                       | -1171.4        | \$41,745       |
| \$49.0m | 0                 | -3.6                   | \$27,938                       | -1415.0        | \$34,629       | Т                 | -6.5             | \$15,316                       | -2611.6        | \$18,763       | R                 | -2.5             | \$40,766                       | -1173.9        | \$41,743       |
| \$49.1m | 0                 | -3.6                   | \$27,938                       | -1418.6        | \$34,613       | Т                 | -6.5             | \$15,314                       | -2618.1        | \$18,754       | R                 | -2.5             | \$40,750                       | -1176.3        | \$41,741       |
| \$49.2m | 0                 | -3.6                   | \$27,938                       | -1422.1        | \$34,596       | Т                 | -6.5             | \$15,316                       | -2624.6        | \$18,745       | R                 | -2.5             | \$40,766                       | -1178.8        | \$41,739       |
| \$49.3m | 0                 | -3.6                   | \$27,938                       | -1425.7        | \$34,579       | Т                 | -6.5             | \$15,316                       | -2631.2        | \$18,737       | R                 | -2.5             | \$40,750                       | -1181.2        | \$41,737       |
| \$49.4m | 0                 | -3.6                   | \$27,938                       | -1429.3        | \$34,562       | Т                 | -6.5             | \$15,314                       | -2637.7        | \$18,728       | R                 | -2.5             | \$40,766                       | -1183.7        | \$41,735       |
| \$49.5m | 0                 | -3.6                   | \$27,938                       | -1432.9        | \$34,546       | Т                 | -6.5             | \$15,316                       | -2644.2        | \$18,720       | R                 | -2.5             | \$40,750                       | -1186.1        | \$41,733       |
| \$49.6m | 0                 | -3.6                   | \$27,938                       | -1436.5        | \$34,529       | Т                 | -6.5             | \$15,316                       | -2650.8        | \$18,712       | R                 | -2.5             | \$40,766                       | -1188.6        | \$41,731       |
| \$49.7m | 0                 | -3.6                   | \$27,938                       | -1440.0        | \$34,513       | T                 | -6.5             | \$15,314                       | -2657.3        | \$18,703       | R                 | -2.5             | \$40,750                       | -1191.0        | \$41,729       |
| \$49.8m | 0                 | -3.6                   | \$27,938                       | -1443.6        | \$34,497       | T                 | -6.5             | \$15,316                       | -2663.8        | \$18,695       | R                 | -2.5             | \$40,766                       | -1193.5        | \$41,727       |
| \$49.9m | 0                 | -3.6                   | \$27,938                       | -1447.2        | \$34,481       | T                 | -6.5             | \$15,316                       | -26/0.4        | \$18,687       | R                 | -2.5             | \$40,750                       | -1195.9        | \$41,725       |
| \$50.0m | 0                 | -3.6                   | \$27,938                       | -1450.8        | \$34,464       | 1                 | -6.5             | \$15,316                       | -26/6.9        | \$18,678       | K                 | -2.5             | \$40,766                       | -1198.4        | \$41,723       |

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$0.1m reduction in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m reduction in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in contraction for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

| Devileret |                   | Primary budget (\$50m) |                                |                |                |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|-----------|-------------------|------------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget    |                   | Margina                | d                              | Cum            | ulative        |                   | Margina          | ıl                             | Cum            | ulative        |                   | Margina          | al                             | Cun            | ıulative       |
| impact    | Tech <sup>a</sup> | $\Delta E_m^{b}$       | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$0.1m    | R                 | 2.5                    | \$40,758                       | 2.5            | \$40,758       | 0                 | 3.6              | \$27,938                       | 3.6            | \$27,938       | 0                 | 2.1              | \$48,185                       | 2.1            | \$48,185       |
| \$0.2m    | R                 | 2.5                    | \$40,758                       | 4.9            | \$40,758       | 0                 | 3.6              | \$27,938                       | 7.2            | \$27,938       | Q                 | 2.1              | \$48,185                       | 4.2            | \$48,185       |
| \$0.3m    | R                 | 2.5                    | \$40,758                       | 7.4            | \$40,758       | 0                 | 3.6              | \$27,938                       | 10.7           | \$27,938       | Q                 | 2.1              | \$48,185                       | 6.2            | \$48,185       |
| \$0.4m    | R                 | 2.5                    | \$40,758                       | 9.8            | \$40,758       | 0                 | 3.6              | \$27,938                       | 14.3           | \$27,938       | Q                 | 2.1              | \$48,185                       | 8.3            | \$48,185       |
| \$0.5m    | R                 | 2.5                    | \$40,758                       | 12.3           | \$40,758       | 0                 | 3.6              | \$27,938                       | 17.9           | \$27,938       | Q                 | 2.1              | \$48,185                       | 10.4           | \$48,185       |
| \$0.6m    | R                 | 2.5                    | \$40,758                       | 14.7           | \$40,758       | 0                 | 3.6              | \$27,938                       | 21.5           | \$27,938       | Q                 | 2.1              | \$48,185                       | 12.5           | \$48,185       |
| \$0.7m    | R                 | 2.5                    | \$40,758                       | 17.2           | \$40,758       | 0                 | 3.6              | \$27,938                       | 25.1           | \$27,938       | Q                 | 2.1              | \$48,185                       | 14.5           | \$48,185       |
| \$0.8m    | R                 | 2.5                    | \$40,758                       | 19.6           | \$40,758       | 0                 | 3.6              | \$27,938                       | 28.6           | \$27,938       | Q                 | 2.1              | \$48,185                       | 16.6           | \$48,185       |
| \$0.9m    | R                 | 2.5                    | \$40,758                       | 22.1           | \$40,758       | 0                 | 3.6              | \$27,938                       | 32.2           | \$27,938       | Q                 | 2.1              | \$48,185                       | 18.7           | \$48,185       |
| \$1.0m    | R                 | 2.5                    | \$40,758                       | 24.5           | \$40,758       | 0                 | 3.6              | \$27,938                       | 35.8           | \$27,938       | Q                 | 2.1              | \$48,185                       | 20.8           | \$48,185       |
| \$1.1m    | R                 | 2.5                    | \$40,758                       | 27.0           | \$40,758       | 0                 | 3.6              | \$27,938                       | 39.4           | \$27,938       | Q                 | 2.1              | \$48,185                       | 22.8           | \$48,185       |
| \$1.2m    | R                 | 2.5                    | \$40,758                       | 29.4           | \$40,758       | 0                 | 3.6              | \$27,938                       | 43.0           | \$27,938       | Q                 | 2.1              | \$48,185                       | 24.9           | \$48,185       |
| \$1.3m    | R                 | 2.5                    | \$40,758                       | 31.9           | \$40,758       | 0                 | 3.6              | \$27,938                       | 46.5           | \$27,938       | Q                 | 2.1              | \$48,185                       | 27.0           | \$48,185       |
| \$1.4m    | R                 | 2.5                    | \$40,758                       | 34.3           | \$40,758       | 0                 | 3.6              | \$27,938                       | 50.1           | \$27,938       | Q                 | 2.1              | \$48,185                       | 29.1           | \$48,185       |
| \$1.5m    | R                 | 2.5                    | \$40,758                       | 36.8           | \$40,758       | 0                 | 3.6              | \$27,938                       | 53.7           | \$27,938       | Q                 | 2.1              | \$48,185                       | 31.1           | \$48,185       |
| \$1.6m    | R                 | 2.5                    | \$40,758                       | 39.3           | \$40,758       | 0                 | 3.6              | \$27,938                       | 57.3           | \$27,938       | Q                 | 2.1              | \$48,185                       | 33.2           | \$48,185       |
| \$1.7m    | R                 | 2.5                    | \$40,758                       | 41.7           | \$40,758       | 0                 | 3.6              | \$27,938                       | 60.8           | \$27,938       | Q                 | 2.1              | \$48,185                       | 35.3           | \$48,185       |
| \$1.8m    | R                 | 2.5                    | \$40,758                       | 44.2           | \$40,758       | 0                 | 3.6              | \$27,938                       | 64.4           | \$27,938       | Q                 | 2.1              | \$48,185                       | 37.4           | \$48,185       |
| \$1.9m    | R                 | 2.5                    | \$40,758                       | 46.6           | \$40,758       | 0                 | 3.6              | \$27,938                       | 68.0           | \$27,938       | Q                 | 2.1              | \$48,185                       | 39.4           | \$48,185       |
| \$2.0m    | R                 | 2.5                    | \$40,758                       | 49.1           | \$40,758       | 0                 | 3.6              | \$27,938                       | 71.6           | \$27,938       | Q                 | 2.1              | \$48,185                       | 41.5           | \$48,185       |
| \$2.1m    | R                 | 2.5                    | \$40,758                       | 51.5           | \$40,758       | 0                 | 3.6              | \$27,938                       | 75.2           | \$27,938       | Q                 | 2.1              | \$48,185                       | 43.6           | \$48,185       |
| \$2.2m    | R                 | 2.5                    | \$40,758                       | 54.0           | \$40,758       | 0                 | 3.6              | \$27,938                       | 78.7           | \$27,938       | Q                 | 2.1              | \$48,185                       | 45.7           | \$48,185       |
| \$2.3m    | R                 | 2.5                    | \$40,758                       | 56.4           | \$40,758       | 0                 | 3.6              | \$27,938                       | 82.3           | \$27,938       | Q                 | 2.1              | \$48,185                       | 47.7           | \$48,185       |
| \$2.4m    | R                 | 2.5                    | \$40,758                       | 58.9           | \$40,758       | 0                 | 3.6              | \$27,938                       | 85.9           | \$27,938       | Q                 | 2.1              | \$48,185                       | 49.8           | \$48,185       |
| \$2.5m    | R                 | 2.5                    | \$40,758                       | 61.3           | \$40,758       | 0                 | 3.6              | \$27,938                       | 89.5           | \$27,938       | Q                 | 2.1              | \$48,185                       | 51.9           | \$48,185       |
| \$2.6m    | R                 | 2.5                    | \$40,758                       | 63.8           | \$40,758       | 0                 | 3.6              | \$27,938                       | 93.1           | \$27,938       | Q                 | 2.1              | \$48,185                       | 54.0           | \$48,185       |
| \$2.7m    | R                 | 2.5                    | \$40,758                       | 66.2           | \$40,758       | 0                 | 3.6              | \$27,938                       | 96.6           | \$27,938       | Q                 | 2.1              | \$48,185                       | 56.0           | \$48,185       |
| \$2.8m    | R                 | 2.5                    | \$40,758                       | 68.7           | \$40,758       | 0                 | 3.6              | \$27,938                       | 100.2          | \$27,938       | Q                 | 2.1              | \$48,185                       | 58.1           | \$48,185       |
| \$2.9m    | R                 | 2.5                    | \$40,758                       | 71.2           | \$40,758       | 0                 | 3.6              | \$27,938                       | 103.8          | \$27,938       | Q                 | 2.1              | \$48,185                       | 60.2           | \$48,185       |
| \$3.0m    | R                 | 2.5                    | \$40,758                       | 73.6           | \$40,758       | 0                 | 3.6              | \$27,938                       | 107.4          | \$27,938       | Q                 | 2.1              | \$48,185                       | 62.3           | \$48,185       |
| \$3.1m    | R                 | 2.5                    | \$40,758                       | 76.1           | \$40,758       | 0                 | 3.6              | \$27,938                       | 111.0          | \$27,938       | Q                 | 2.1              | \$48,185                       | 64.3           | \$48,185       |
| \$3.2m    | R                 | 2.5                    | \$40,758                       | 78.5           | \$40,758       | 0                 | 3.6              | \$27,938                       | 114.5          | \$27,938       | Q                 | 2.1              | \$48,185                       | 66.4           | \$48,185       |
| \$3.3m    | R                 | 2.5                    | \$40,758                       | 81.0           | \$40,758       | 0                 | 3.6              | \$27,938                       | 118.1          | \$27,938       | Q                 | 2.1              | \$48,185                       | 68.5           | \$48,185       |
| \$3.4m    | R                 | 2.5                    | \$40,758                       | 83.4           | \$40,758       | 0                 | 3.6              | \$27,938                       | 121.7          | \$27,938       | Q                 | 2.1              | \$48,185                       | 70.6           | \$48,185       |
| \$3.5m    | R                 | 2.5                    | \$40,758                       | 85.9           | \$40,758       | 0                 | 3.6              | \$27,938                       | 125.3          | \$27,938       | Q                 | 2.1              | \$48,185                       | 72.6           | \$48,185       |
| \$3.6m    | R                 | 2.5                    | \$40,758                       | 88.3           | \$40,758       | 0                 | 3.6              | \$27,938                       | 128.9          | \$27,938       | Q                 | 2.1              | \$48,185                       | 74.7           | \$48,185       |
| \$3.7m    | R                 | 2.5                    | \$40,758                       | 90.8           | \$40,758       | 0                 | 3.6              | \$27,938                       | 132.4          | \$27,938       | Q                 | 2.1              | \$48,185                       | 76.8           | \$48,185       |
| \$3.8m    | R                 | 2.5                    | \$40,758                       | 93.2           | \$40,758       | 0                 | 3.6              | \$27,938                       | 136.0          | \$27,938       | Q                 | 2.1              | \$48,185                       | 78.9           | \$48,185       |
| \$3.9m    | R                 | 2.5                    | \$40,758                       | 95.7           | \$40,758       | 0                 | 3.6              | \$27,938                       | 139.6          | \$27,938       | Q                 | 2.1              | \$48,185                       | 80.9           | \$48,185       |
| \$4.0m    | R                 | 2.5                    | \$40,758                       | 98.1           | \$40,758       | 0                 | 3.6              | \$27,938                       | 143.2          | \$27,938       | Q                 | 2.1              | \$48,185                       | 83.0           | \$48,185       |
| \$4.1m    | R                 | 2.5                    | \$40,757                       | 100.6          | \$40,758       | 0                 | 3.6              | \$27,938                       | 146.8          | \$27,938       | Q                 | 2.1              | \$48,185                       | 85.1           | \$48,185       |
| \$4.2m    | R                 | 2.5                    | \$40,758                       | 103.0          | \$40,758       | 0                 | 3.6              | \$27,938                       | 150.3          | \$27,938       | Q                 | 2.1              | \$48,185                       | 87.2           | \$48,185       |
| \$4.3m    | R                 | 2.5                    | \$40,758                       | 105.5          | \$40,758       | 0                 | 3.6              | \$27,938                       | 153.9          | \$27,938       | Q                 | 2.1              | \$48,185                       | 89.2           | \$48,185       |
| \$4.4m    | R                 | 2.5                    | \$40,758                       | 108.0          | \$40,758       | 0                 | 3.6              | \$27,938                       | 157.5          | \$27,938       | Q                 | 2.1              | \$48,185                       | 91.3           | \$48,185       |
| \$4.5m    | R                 | 2.5                    | \$40,758                       | 110.4          | \$40,758       | 0                 | 3.6              | \$27,938                       | 161.1          | \$27,938       | Q                 | 2.1              | \$48,185                       | 93.4           | \$48,185       |
| \$4.6m    | R                 | 2.5                    | \$40,758                       | 112.9          | \$40,758       | 0                 | 3.6              | \$27,938                       | 164.6          | \$27,938       | Q                 | 2.1              | \$48,185                       | 95.5           | \$48,185       |
| \$4.7m    | R                 | 2.5                    | \$40,758                       | 115.3          | \$40,758       | 0                 | 3.6              | \$27,938                       | 168.2          | \$27,938       | Q                 | 2.1              | \$48,185                       | 97.5           | \$48,185       |
| \$4.8m    | R                 | 2.5                    | \$40,758                       | 117.8          | \$40,758       | 0                 | 3.6              | \$27,938                       | 171.8          | \$27,938       | Q                 | 2.1              | \$48,185                       | 99.6           | \$48,185       |

## Table A1.1.2: Reallocation following net disinvestment (divisibility and constant returns)

|                  |                   | Prim           | ary budget ( | (\$50m)        |          |                   | Lo             | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                      |
|------------------|-------------------|----------------|--------------|----------------|----------|-------------------|----------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------------|
| Budget           |                   | Margina        | l            | Cum            | ulative  |                   | Margina        | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative              |
| impact           | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER°        | $\Delta E^{d}$ | λ-e      | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$       |
| \$4.9m           | R                 | 2.5            | \$40,758     | 120.2          | \$40,758 | 0                 | 3.6            | \$27,938                       | 175.4          | \$27,938       | 0                 | 2.1              | \$48,186                       | 101.7          | \$48,185             |
| \$5.0m           | R                 | 2.5            | \$40,758     | 122.7          | \$40,758 | 0                 | 3.6            | \$27,938                       | 179.0          | \$27,938       | Q                 | 2.1              | \$48,183                       | 103.8          | \$48,185             |
| \$5.1m           | R                 | 2.5            | \$40,758     | 125.1          | \$40,758 | 0                 | 3.6            | \$27,938                       | 182.5          | \$27,938       | Q                 | 2.1              | \$48,186                       | 105.8          | \$48,185             |
| \$5.2m           | R                 | 2.5            | \$40,758     | 127.6          | \$40,758 | 0                 | 3.6            | \$27,938                       | 186.1          | \$27,938       | Q                 | 2.1              | \$48,186                       | 107.9          | \$48,185             |
| \$5.3m           | R                 | 2.5            | \$40,758     | 130.0          | \$40,758 | 0                 | 3.6            | \$27,938                       | 189.7          | \$27,938       | Q                 | 2.1              | \$48,186                       | 110.0          | \$48,185             |
| \$5.4m           | R                 | 2.5            | \$40,758     | 132.5          | \$40,758 | 0                 | 3.6            | \$27,938                       | 193.3          | \$27,938       | Q                 | 2.1              | \$48,183                       | 112.1          | \$48,185             |
| \$5.5m           | R                 | 2.5            | \$40,758     | 134.9          | \$40,758 | 0                 | 3.6            | \$27,938                       | 196.9          | \$27,938       | Q                 | 2.1              | \$48,186                       | 114.1          | \$48,185             |
| \$5.6m           | R                 | 2.5            | \$40,758     | 137.4          | \$40,758 | 0                 | 3.6            | \$27,938                       | 200.4          | \$27,938       | Q                 | 2.1              | \$48,186                       | 116.2          | \$48,185             |
| \$5.7m           | R                 | 2.5            | \$40,758     | 139.8          | \$40,758 | 0                 | 3.6            | \$27,938                       | 204.0          | \$27,938       | Q                 | 2.1              | \$48,186                       | 118.3          | \$48,185             |
| \$5.8m           | R                 | 2.5            | \$40,758     | 142.3          | \$40,758 | 0                 | 3.6            | \$27,938                       | 207.6          | \$27,938       | Q                 | 2.1              | \$48,183                       | 120.4          | \$48,185             |
| \$5.9m           | R                 | 2.5            | \$40,758     | 144.8          | \$40,758 | 0                 | 3.6            | \$27,938                       | 211.2          | \$27,938       | Q                 | 2.1              | \$48,186                       | 122.4          | \$48,185             |
| \$6.0m           | R                 | 2.5            | \$40,758     | 147.2          | \$40,758 | 0                 | 3.6            | \$27,938                       | 214.8          | \$27,938       | Q                 | 2.1              | \$48,186                       | 124.5          | \$48,185             |
| \$6.1m           | R                 | 2.5            | \$40,758     | 149.7          | \$40,758 | 0                 | 3.6            | \$27,938                       | 218.3          | \$27,938       | Q                 | 2.1              | \$48,183                       | 126.6          | \$48,185             |
| \$6.2m           | R                 | 2.5            | \$40,758     | 152.1          | \$40,758 | 0                 | 3.6            | \$27,938                       | 221.9          | \$27,938       | Q                 | 2.1              | \$48,186                       | 128.7          | \$48,185             |
| \$6.3m           | R                 | 2.5            | \$40,758     | 154.6          | \$40,758 | 0                 | 3.6            | \$27,938                       | 225.5          | \$27,938       | Q                 | 2.1              | \$48,186                       | 130.7          | \$48,185             |
| \$6.4m           | R                 | 2.5            | \$40,758     | 157.0          | \$40,758 | 0                 | 3.6            | \$27,938                       | 229.1          | \$27,938       | Q                 | 2.1              | \$48,186                       | 132.8          | \$48,185             |
| \$6.5m           | R                 | 2.5            | \$40,758     | 159.5          | \$40,758 | 0                 | 3.6            | \$27,938                       | 232.7          | \$27,938       | Q                 | 2.1              | \$48,183                       | 134.9          | \$48,185             |
| \$6.6m           | R                 | 2.5            | \$40,758     | 161.9          | \$40,758 | 0                 | 3.6            | \$27,938                       | 236.2          | \$27,938       | Q                 | 2.1              | \$48,186                       | 137.0          | \$48,185             |
| \$6./m           | K<br>D            | 2.5            | \$40,758     | 166.9          | \$40,758 | 0                 | 3.0            | \$27,938                       | 239.8          | \$27,938       | Q                 | 2.1              | \$48,180                       | 139.0          | \$48,185             |
| \$0.8M           | K<br>D            | 2.5            | \$40,758     | 160.8          | \$40,758 | 0                 | 3.0            | \$27,938                       | 243.4          | \$27,938       | Q                 | 2.1              | \$48,180                       | 141.1          | \$48,185             |
| \$0.9m           | R<br>D            | 2.5            | \$40,738     | 109.5          | \$40,758 | 0                 | 2.6            | \$27,938                       | 247.0          | \$27,938       | Q                 | 2.1              | \$40,105                       | 145.2          | \$40,103             |
| \$7.0m           | R<br>D            | 2.5            | \$40,738     | 174.2          | \$40,758 | 0                 | 3.0            | \$27,938                       | 250.0          | \$27,938       | Q                 | 2.1              | \$40,100                       | 143.3          | \$40,103             |
| \$7.1m<br>\$7.2m | R                 | 2.5            | \$40,758     | 174.2          | \$40,758 | 0                 | 3.0            | \$27,938                       | 254.1          | \$27,938       | Q                 | 2.1              | \$48,180                       | 147.5          | \$48,185             |
| \$7.2m           | R                 | 2.5            | \$40,758     | 179.1          | \$40,758 | 0                 | 3.6            | \$27,938                       | 261.3          | \$27,938       | Ŏ                 | 2.1              | \$48,183                       | 151.5          | \$48,185             |
| \$7.0m           | R                 | 2.5            | \$40,758     | 181.6          | \$40,758 | Ő                 | 3.6            | \$27,938                       | 264.9          | \$27,938       | Ŏ                 | 2.1              | \$48,186                       | 153.6          | \$48 185             |
| \$7.5m           | R                 | 2.5            | \$40,758     | 184.0          | \$40,758 | 0                 | 3.6            | \$27,938                       | 268.4          | \$27,938       | õ                 | 2.1              | \$48,186                       | 155.6          | \$48 185             |
| \$7.6m           | R                 | 2.5            | \$40,758     | 186.5          | \$40,758 | Ö                 | 3.6            | \$27,938                       | 272.0          | \$27,938       | Ŏ                 | 2.1              | \$48,186                       | 157.7          | \$48,185             |
| \$7.7m           | R                 | 2.5            | \$40,758     | 188.9          | \$40,758 | 0                 | 3.6            | \$27,938                       | 275.6          | \$27,938       | ò                 | 2.1              | \$48,183                       | 159.8          | \$48,185             |
| \$7.8m           | R                 | 2.5            | \$40,758     | 191.4          | \$40,758 | 0                 | 3.6            | \$27,938                       | 279.2          | \$27,938       | Q                 | 2.1              | \$48,186                       | 161.9          | \$48,185             |
| \$7.9m           | R                 | 2.5            | \$40,758     | 193.8          | \$40,758 | 0                 | 3.6            | \$27,938                       | 282.8          | \$27,938       | Q                 | 2.1              | \$48,186                       | 164.0          | \$48,185             |
| \$8.0m           | R                 | 2.5            | \$40,758     | 196.3          | \$40,758 | 0                 | 3.6            | \$27,938                       | 286.3          | \$27,938       | Q                 | 2.1              | \$48,186                       | 166.0          | \$48,185             |
| \$8.1m           | R                 | 2.5            | \$40,758     | 198.7          | \$40,758 | 0                 | 3.6            | \$27,938                       | 289.9          | \$27,938       | Q                 | 2.1              | \$48,183                       | 168.1          | \$48,185             |
| \$8.2m           | R                 | 2.5            | \$40,758     | 201.2          | \$40,758 | 0                 | 3.6            | \$27,938                       | 293.5          | \$27,938       | Q                 | 2.1              | \$48,186                       | 170.2          | \$48,185             |
| \$8.3m           | R                 | 2.5            | \$40,758     | 203.6          | \$40,758 | 0                 | 3.6            | \$27,938                       | 297.1          | \$27,938       | Q                 | 2.1              | \$48,186                       | 172.3          | \$48,185             |
| \$8.4m           | R                 | 2.5            | \$40,758     | 206.1          | \$40,758 | 0                 | 3.6            | \$27,938                       | 300.7          | \$27,938       | Q                 | 2.1              | \$48,186                       | 174.3          | \$48,185             |
| \$8.5m           | R                 | 2.5            | \$40,758     | 208.5          | \$40,758 | 0                 | 3.6            | \$27,938                       | 304.2          | \$27,938       | Q                 | 2.1              | \$48,183                       | 176.4          | \$48,185             |
| \$8.6m           | R                 | 2.5            | \$40,758     | 211.0          | \$40,758 | 0                 | 3.6            | \$27,938                       | 307.8          | \$27,938       | Q                 | 2.1              | \$48,186                       | 178.5          | \$48,185             |
| \$8.7m           | R                 | 2.5            | \$40,758     | 213.5          | \$40,758 | 0                 | 3.6            | \$27,938                       | 311.4          | \$27,938       | Q                 | 2.1              | \$48,186                       | 180.6          | \$48,185             |
| \$8.8m           | R                 | 2.5            | \$40,758     | 215.9          | \$40,758 | 0                 | 3.6            | \$27,938                       | 315.0          | \$27,938       | Q                 | 2.1              | \$48,186                       | 182.6          | \$48,185             |
| \$8.9m           | R                 | 2.5            | \$40,758     | 218.4          | \$40,758 | 0                 | 3.6            | \$27,938                       | 318.6          | \$27,938       | Q                 | 2.1              | \$48,183                       | 184.7          | \$48,185             |
| \$9.0m           | R                 | 2.5            | \$40,758     | 220.8          | \$40,758 | 0                 | 3.6            | \$27,938                       | 322.1          | \$27,938       | Q                 | 2.1              | \$48,186                       | 186.8          | \$48,185             |
| \$9.1m           | R                 | 2.5            | \$40,758     | 223.3          | \$40,758 | 0                 | 3.6            | \$27,938                       | 325.7          | \$27,938       | Q                 | 2.1              | \$48,186                       | 188.9          | \$48,185             |
| \$9.2m           | K                 | 2.5            | \$40,758     | 225.7          | \$40,758 | 0                 | 3.6            | \$27,938                       | 329.3          | \$27,938       | Q                 | 2.1              | \$48,186                       | 190.9          | \$48,185             |
| 59.3m            | K<br>P            | 2.5            | \$40,758     | 228.2          | \$40,758 | 0                 | 3.0            | \$27,938                       | 2265           | \$27,938       | <u>v</u>          | 2.1              | \$48,185                       | 193.0          | \$48,185             |
| \$9.4m           | R<br>P            | 2.3            | \$40,758     | 230.0          | \$40,758 | 0                 | 3.0            | \$27,938                       | 240.0          | \$27,938       | <u>v</u>          | 2.1              | \$48,180                       | 195.1          | \$48,185<br>\$48,185 |
| \$9.5m           | R<br>D            | 2.5            | \$40,758     | 235.1          | \$40,758 | 0                 | 2.6            | \$27,938                       | 240.0          | \$27,938       |                   | 2.1              | \$40,100                       | 197.2          | \$40,100<br>\$48,185 |
| \$9.0m           | R                 | 2.5            | \$40,758     | 233.5          | \$40,758 | 0                 | 3.0            | \$27.938                       | 343.0          | \$27,938       |                   | 2.1              | \$48 182                       | 201.3          | \$48 185             |
| \$9.7m           | R                 | 2.5            | \$40,758     | 240.4          | \$40,758 | õ                 | 3.6            | \$27,938                       | 350.8          | \$27,938       | ŏ                 | 2.1              | \$48 186                       | 201.5          | \$48 185             |
| \$9.9m           | R                 | 2.5            | \$40,758     | 242.9          | \$40,758 | 0                 | 3.6            | \$27,938                       | 354.4          | \$27,938       | ŏ                 | 2.1              | \$48,186                       | 205.5          | \$48,185             |

|         |                   | Prim               | ary budget ( | (\$50m)        |                 |                   | Loi              | ver budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|---------|-------------------|--------------------|--------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina            | l            | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |
| impact  | Tech <sup>a</sup> | $\Delta E_{m}^{b}$ | ICER°        | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$10.0m | R                 | 2.5                | \$40,758     | 245.4          | \$40,758        | 0                 | 3.6              | \$27,938                       | 357.9          | \$27,938       | 0                 | 2.1              | \$48,186                       | 207.5          | \$48,185       |
| \$10.1m | R                 | 2.5                | \$40,756     | 247.8          | \$40,758        | 0                 | 3.6              | \$27,938                       | 361.5          | \$27,938       | Q                 | 2.1              | \$48,183                       | 209.6          | \$48,185       |
| \$10.2m | R                 | 2.5                | \$40,758     | 250.3          | \$40,758        | 0                 | 3.6              | \$27,938                       | 365.1          | \$27,938       | Q                 | 2.1              | \$48,186                       | 211.7          | \$48,185       |
| \$10.3m | R                 | 2.5                | \$40,758     | 252.7          | \$40,758        | 0                 | 3.6              | \$27,938                       | 368.7          | \$27,938       | Q                 | 2.1              | \$48,186                       | 213.8          | \$48,185       |
| \$10.4m | R                 | 2.5                | \$40,758     | 255.2          | \$40,758        | 0                 | 3.6              | \$27,938                       | 372.2          | \$27,938       | Q                 | 2.1              | \$48,186                       | 215.8          | \$48,185       |
| \$10.5m | R                 | 2.5                | \$40,758     | 257.6          | \$40,758        | 0                 | 3.6              | \$27,938                       | 375.8          | \$27,938       | Q                 | 2.1              | \$48,183                       | 217.9          | \$48,185       |
| \$10.6m | R                 | 2.5                | \$40,758     | 260.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 378.8          | \$27,982       | Q                 | 2.1              | \$48,186                       | 220.0          | \$48,185       |
| \$10.7m | R                 | 2.5                | \$40,758     | 262.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 381.8          | \$28,025       | Q                 | 2.1              | \$48,186                       | 222.1          | \$48,185       |
| \$10.8m | R                 | 2.5                | \$40,758     | 265.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 384.8          | \$28,067       | Q                 | 2.1              | \$48,186                       | 224.1          | \$48,185       |
| \$10.9m | R                 | 2.5                | \$40,758     | 267.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 387.8          | \$28,109       | Q                 | 2.1              | \$48,183                       | 226.2          | \$48,185       |
| \$11.0m | R                 | 2.5                | \$40,758     | 269.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 390.8          | \$28,150       | Q                 | 2.1              | \$48,186                       | 228.3          | \$48,185       |
| \$11.1m | R                 | 2.5                | \$40,758     | 272.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 393.8          | \$28,190       | Q                 | 2.1              | \$48,186                       | 230.4          | \$48,185       |
| \$11.2m | R                 | 2.5                | \$40,758     | 274.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 396.7          | \$28,230       | Q                 | 2.1              | \$48,186                       | 232.4          | \$48,185       |
| \$11.3m | R                 | 2.5                | \$40,758     | 277.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 399.7          | \$28,269       | Q                 | 2.1              | \$48,183                       | 234.5          | \$48,185       |
| \$11.4m | R                 | 2.5                | \$40,758     | 279.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 402.7          | \$28,308       | Q                 | 2.1              | \$48,186                       | 236.6          | \$48,185       |
| \$11.5m | R                 | 2.5                | \$40,758     | 282.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 405.7          | \$28,346       | Q                 | 2.1              | \$48,186                       | 238.7          | \$48,185       |
| \$11.6m | R                 | 2.5                | \$40,758     | 284.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 408.7          | \$28,383       | Q                 | 2.1              | \$48,186                       | 240.7          | \$48,185       |
| \$11.7m | R                 | 2.5                | \$40,758     | 287.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 411.7          | \$28,420       | Q                 | 2.1              | \$48,183                       | 242.8          | \$48,185       |
| \$11.8m | R                 | 2.5                | \$40,758     | 289.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 414.7          | \$28,457       | Q                 | 2.1              | \$48,186                       | 244.9          | \$48,185       |
| \$11.9m | R                 | 2.5                | \$40,758     | 292.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 417.7          | \$28,492       | Q                 | 2.1              | \$48,186                       | 247.0          | \$48,185       |
| \$12.0m | R                 | 2.5                | \$40,758     | 294.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 420.6          | \$28,528       | Q                 | 2.1              | \$48,186                       | 249.0          | \$48,185       |
| \$12.1m | R                 | 2.5                | \$40,758     | 296.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 423.6          | \$28,563       | Q                 | 2.1              | \$48,183                       | 251.1          | \$48,185       |
| \$12.2m | R                 | 2.5                | \$40,758     | 299.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 426.6          | \$28,597       | Q                 | 2.1              | \$48,186                       | 253.2          | \$48,185       |
| \$12.3m | R                 | 2.5                | \$40,758     | 301.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 429.6          | \$28,631       | Q                 | 2.1              | \$48,186                       | 255.3          | \$48,185       |
| \$12.4m | R                 | 2.5                | \$40,758     | 304.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 432.6          | \$28,664       | Q                 | 2.1              | \$48,183                       | 257.3          | \$48,185       |
| \$12.5m | R                 | 2.5                | \$40,758     | 306.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 435.6          | \$28,697       | Q                 | 2.1              | \$48,186                       | 259.4          | \$48,185       |
| \$12.6m | R                 | 2.5                | \$40,758     | 309.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 438.6          | \$28,730       | Q                 | 2.1              | \$48,186                       | 261.5          | \$48,185       |
| \$12.7m | R                 | 2.5                | \$40,758     | 311.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 441.6          | \$28,762       | Q                 | 2.1              | \$48,186                       | 263.6          | \$48,185       |
| \$12.8m | R                 | 2.5                | \$40,758     | 314.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 444.5          | \$28,794       | Q                 | 2.1              | \$48,183                       | 265.6          | \$48,185       |
| \$12.9m | R                 | 2.5                | \$40,758     | 316.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 447.5          | \$28,825       | Q                 | 2.1              | \$48,186                       | 267.7          | \$48,185       |
| \$13.0m | R                 | 2.5                | \$40,758     | 319.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 450.5          | \$28,856       | Q                 | 2.1              | \$48,186                       | 269.8          | \$48,185       |
| \$13.1m | R                 | 2.5                | \$40,758     | 321.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 453.5          | \$28,886       | Q                 | 2.1              | \$48,186                       | 271.9          | \$48,185       |
| \$13.2m | R                 | 2.5                | \$40,758     | 323.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 456.5          | \$28,916       | Q                 | 2.1              | \$48,183                       | 273.9          | \$48,185       |
| \$13.3m | R                 | 2.5                | \$40,758     | 326.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 459.5          | \$28,946       | Q                 | 2.1              | \$48,186                       | 276.0          | \$48,185       |
| \$13.4m | R                 | 2.5                | \$40,758     | 328.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 462.5          | \$28,975       | Q                 | 2.1              | \$48,186                       | 278.1          | \$48,185       |
| \$13.5m | R                 | 2.5                | \$40,758     | 331.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 465.5          | \$29,004       | Q                 | 2.1              | \$48,186                       | 280.2          | \$48,185       |
| \$13.6m | R                 | 2.5                | \$40,758     | 333.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 468.4          | \$29,032       | Q                 | 2.1              | \$48,183                       | 282.2          | \$48,185       |
| \$13.7m | R                 | 2.5                | \$40,758     | 336.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 471.4          | \$29,060       | Q                 | 2.1              | \$48,186                       | 284.3          | \$48,185       |
| \$13.8m | R                 | 2.5                | \$40,758     | 338.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 474.4          | \$29,088       | Q                 | 2.1              | \$48,186                       | 286.4          | \$48,185       |
| \$13.9m | R                 | 2.5                | \$40,758     | 341.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 477.4          | \$29,116       | Q                 | 2.1              | \$48,186                       | 288.5          | \$48,185       |
| \$14.0m | R                 | 2.5                | \$40,758     | 343.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 480.4          | \$29,143       | Q                 | 2.1              | \$48,183                       | 290.5          | \$48,185       |
| \$14.1m | R                 | 2.5                | \$40,758     | 345.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 483.4          | \$29,170       | М                 | 2.0              | \$49,596                       | 292.6          | \$48,195       |
| \$14.2m | R                 | 2.5                | \$40,758     | 348.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 486.4          | \$29,196       | М                 | 2.0              | \$49,596                       | 294.6          | \$48,205       |
| \$14.3m | R                 | 2.5                | \$40,758     | 350.9          | \$40,758        | Н                 | 3.0              | \$33,473                       | 489.4          | \$29,222       | M                 | 2.0              | \$49,596                       | 296.6          | \$48,214       |
| \$14.4m | R                 | 2.5                | \$40,758     | 353.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 492.3          | \$29,248       | M                 | 2.0              | \$49,596                       | 298.6          | \$48,223       |
| \$14.5m | R                 | 2.5                | \$40,758     | 355.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 495.3          | \$29,273       | M                 | 2.0              | \$49,596                       | 300.6          | \$48,233       |
| \$14.6m | R                 | 2.5                | \$40,758     | 358.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 498.3          | \$29,298       | M                 | 2.0              | \$49,596                       | 302.6          | \$48,242       |
| \$14.7m | R                 | 2.5                | \$40,758     | 360.7          | \$40,758        | Н                 | 3.0              | \$33,473                       | 501.3          | \$29,323       | М                 | 2.0              | \$49,596                       | 304.7          | \$48,251       |
| \$14.8m | R                 | 2.5                | \$40,758     | 363.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 504.3          | \$29,348       | M                 | 2.0              | \$49,596                       | 306.7          | \$48,259       |
| \$14.9m | R                 | 2.5                | \$40,758     | 365.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 507.3          | \$29,372       | М                 | 2.0              | \$49,596                       | 308.7          | \$48,268       |
| \$15.0m | R                 | 2.5                | \$40,758     | 368.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 510.3          | \$29,396       | M                 | 2.0              | \$49,596                       | 310.7          | \$48,277       |

|                      |                   | Prim           | ary budget ( | (\$50m)        |                 |                   | Lo               | ver budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|----------------------|-------------------|----------------|--------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina        | l            | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER°        | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$15.1m              | R                 | 2.5            | \$40,758     | 370.5          | \$40,758        | Н                 | 3.0              | \$33,473                       | 513.3          | \$29,420       | М                 | 2.0              | \$49,596                       | 312.7          | \$48,285       |
| \$15.2m              | R                 | 2.5            | \$40,758     | 372.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 516.2          | \$29,443       | М                 | 2.0              | \$49,596                       | 314.7          | \$48,294       |
| \$15.3m              | R                 | 2.5            | \$40,758     | 375.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 519.2          | \$29,467       | М                 | 2.0              | \$49,596                       | 316.8          | \$48,302       |
| \$15.4m              | R                 | 2.5            | \$40,758     | 377.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 522.2          | \$29,489       | М                 | 2.0              | \$49,596                       | 318.8          | \$48,310       |
| \$15.5m              | R                 | 2.5            | \$40,758     | 380.3          | \$40,758        | Н                 | 3.0              | \$33,473                       | 525.2          | \$29,512       | М                 | 2.0              | \$49,596                       | 320.8          | \$48,318       |
| \$15.6m              | R                 | 2.5            | \$40,758     | 382.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 528.2          | \$29,535       | М                 | 2.0              | \$49,596                       | 322.8          | \$48,326       |
| \$15.7m              | R                 | 2.5            | \$40,758     | 385.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 531.2          | \$29,557       | М                 | 2.0              | \$49,596                       | 324.8          | \$48,334       |
| \$15.8m              | R                 | 2.5            | \$40,758     | 387.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 534.2          | \$29,579       | М                 | 2.0              | \$49,596                       | 326.8          | \$48,342       |
| \$15.9m              | R                 | 2.5            | \$40,758     | 390.1          | \$40,758        | Н                 | 3.0              | \$33,473                       | 537.2          | \$29,600       | М                 | 2.0              | \$49,596                       | 328.9          | \$48,350       |
| \$16.0m              | R                 | 2.5            | \$40,758     | 392.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 540.1          | \$29,622       | М                 | 2.0              | \$49,596                       | 330.9          | \$48,357       |
| \$16.1m              | R                 | 2.5            | \$40,758     | 395.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 543.1          | \$29,643       | М                 | 2.0              | \$49,596                       | 332.9          | \$48,365       |
| \$16.2m              | R                 | 2.5            | \$40,758     | 397.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 546.1          | \$29,664       | М                 | 2.0              | \$49,596                       | 334.9          | \$48,372       |
| \$16.3m              | R                 | 2.5            | \$40,758     | 399.9          | \$40,758        | Н                 | 3.0              | \$33,473                       | 549.1          | \$29,685       | М                 | 2.0              | \$49,596                       | 336.9          | \$48,379       |
| \$16.4m              | R                 | 2.5            | \$40,758     | 402.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 552.1          | \$29,705       | M                 | 2.0              | \$49,596                       | 338.9          | \$48,387       |
| \$16.5m              | R                 | 2.5            | \$40,758     | 404.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 555.1          | \$29,725       | M                 | 2.0              | \$49,596                       | 341.0          | \$48,394       |
| \$16.6m              | R                 | 2.5            | \$40,758     | 407.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 558.1          | \$29,745       | М                 | 2.0              | \$49,596                       | 343.0          | \$48,401       |
| \$16.7m              | R                 | 2.5            | \$40,756     | 409.7          | \$40,758        | Н                 | 3.0              | \$33,473                       | 561.1          | \$29,765       | М                 | 2.0              | \$49,596                       | 345.0          | \$48,408       |
| \$16.8m              | R                 | 2.5            | \$40,758     | 412.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 564.0          | \$29,785       | M                 | 2.0              | \$49,596                       | 347.0          | \$48,415       |
| \$16.9m              | R                 | 2.5            | \$40,758     | 414.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 567.0          | \$29,804       | M                 | 2.0              | \$49,596                       | 349.0          | \$48,422       |
| \$17.0m              | R                 | 2.5            | \$40,758     | 417.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 570.0          | \$29,823       | M                 | 2.0              | \$49,596                       | 351.0          | \$48,428       |
| \$17.1m              | R                 | 2.5            | \$40,758     | 419.5          | \$40,758        | Н                 | 3.0              | \$33,473                       | 573.0          | \$29,842       | M                 | 2.0              | \$49,596                       | 353.1          | \$48,435       |
| \$17.2m              | R                 | 2.5            | \$40,758     | 422.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 576.0          | \$29,861       | M                 | 2.0              | \$49,596                       | 355.1          | \$48,442       |
| \$17.3m              | R                 | 2.5            | \$40,758     | 424.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 579.0          | \$29,880       | M                 | 2.0              | \$49,596                       | 357.1          | \$48,448       |
| \$17.4m              | R                 | 2.5            | \$40,758     | 426.9          | \$40,758        | H                 | 3.0              | \$33,472                       | 582.0          | \$29,898       | M                 | 2.0              | \$49,596                       | 359.1          | \$48,454       |
| \$17.5m              | R                 | 2.5            | \$40,758     | 429.4          | \$40,758        | H                 | 3.0              | \$33,473                       | 585.0          | \$29,917       | M                 | 2.0              | \$49,596                       | 361.1          | \$48,461       |
| \$17.6m              | R                 | 2.5            | \$40,758     | 431.8          | \$40,758        | H                 | 3.0              | \$33,472                       | 587.9          | \$29,935       | M                 | 2.0              | \$49,596                       | 363.1          | \$48,467       |
| \$17.7m              | R                 | 2.5            | \$40,758     | 434.3          | \$40,758        | H                 | 3.0              | \$33,472                       | 590.9          | \$29,953       | M                 | 2.0              | \$49,596                       | 365.1          | \$48,473       |
| \$17.8m              | K                 | 2.5            | \$40,758     | 436.7          | \$40,758        | H                 | 3.0              | \$33,472                       | 593.9          | \$29,970       | M                 | 2.0              | \$49,596                       | 367.2          | \$48,480       |
| \$17.9m              | R                 | 2.5            | \$40,758     | 439.2          | \$40,758        | H                 | 3.0              | \$33,473                       | 596.9          | \$29,988       | M                 | 2.0              | \$49,596                       | 369.2          | \$48,486       |
| \$18.0m              | R                 | 2.5            | \$40,758     | 441.6          | \$40,758        | H                 | 3.0              | \$33,472                       | 599.9          | \$30,005       | M                 | 2.0              | \$49,596                       | 371.2          | \$48,492       |
| \$18.1m              | K                 | 2.5            | \$40,758     | 444.1          | \$40,758        | H                 | 3.0              | \$33,472                       | 602.9          | \$30,022       | M                 | 2.0              | \$49,596                       | 3/3.2          | \$48,498       |
| \$18.2m              | K<br>D            | 2.5            | \$40,758     | 440.5          | \$40,758        | H                 | 3.0              | \$33,472                       | 605.9          | \$30,039       | M                 | 2.0              | \$49,596                       | 373.2          | \$48,504       |
| \$18.3m              | R                 | 2.5            | \$40,738     | 449.0          | \$40,758        | п                 | 3.0              | \$33,473                       | 611.9          | \$30,030       | IVI<br>M          | 2.0              | \$49,390                       | 270.2          | \$48,309       |
| \$10.4III<br>\$19.5m | R<br>D            | 2.5            | \$40,758     | 452.0          | \$40,758        | 11<br>U           | 3.0              | \$33,472                       | 614.9          | \$20,073       | M                 | 2.0              | \$49,390                       | 291.2          | \$48,515       |
| \$18.5m              | P                 | 2.5            | \$40,758     | 455.9          | \$40,758        | н                 | 3.0              | \$33,472                       | 617.8          | \$30,089       | M                 | 2.0              | \$49,590                       | 383.3          | \$48 527       |
| \$18.0m              | R<br>D            | 2.5            | \$40,758     | 450.4          | \$40,758        | и<br>П            | 3.0              | \$33,472                       | 620.8          | \$20,100       | M                 | 2.0              | \$49,390                       | 295.2          | \$48,527       |
| \$18.7m              | P                 | 2.5            | \$40,758     | 461.3          | \$40,758        | н                 | 3.0              | \$33,473                       | 623.8          | \$30,122       | M                 | 2.0              | \$49,590                       | 387.3          | \$48,532       |
| \$18.0m              | P                 | 2.5            | \$40,758     | 401.3          | \$40,758        | н<br>Н            | 3.0              | \$33,472                       | 626.8          | \$30,156       | M                 | 2.0              | \$49,390                       | 380.3          | \$48,538       |
| \$10.9m              | R                 | 2.5            | \$40,758     | 466.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 629.8          | \$30,134       | M                 | 2.0              | \$49,596                       | 391.4          | \$48 549       |
| \$19.0m              | R                 | 2.5            | \$40,758     | 468.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 632.8          | \$30,170       | M                 | 2.0              | \$49,596                       | 393.4          | \$48 554       |
| \$19.1m              | R                 | 2.5            | \$40,758     | 400.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 635.7          | \$30,201       | M                 | 2.0              | \$49 596                       | 395.4          | \$48 559       |
| \$19.2m              | R                 | 2.5            | \$40,758     | 473.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 638.7          | \$30,201       | M                 | 2.0              | \$49 596                       | 397.4          | \$48 564       |
| \$19.4m              | R                 | 2.5            | \$40,758     | 476.0          | \$40.758        | Н                 | 3.0              | \$33.473                       | 641.7          | \$30.231       | M                 | 2.0              | \$49.596                       | 399.4          | \$48.570       |
| \$19.5m              | R                 | 2.5            | \$40.758     | 478.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 644.7          | \$30.246       | M                 | 2.0              | \$49.596                       | 401.4          | \$48,575       |
| \$19.6m              | R                 | 2.5            | \$40.758     | 480.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 647.7          | \$30.261       | M                 | 2.0              | \$49.596                       | 403.5          | \$48,580       |
| \$19.7m              | R                 | 2.5            | \$40,758     | 483.3          | \$40.758        | Н                 | 3.0              | \$33.472                       | 650.7          | \$30.276       | M                 | 2.0              | \$49.596                       | 405.5          | \$48.585       |
| \$19.8m              | R                 | 2.5            | \$40,758     | 485.8          | \$40.758        | Н                 | 3.0              | \$33.473                       | 653.7          | \$30.290       | M                 | 2.0              | \$49.596                       | 407.5          | \$48.590       |
| \$19.9m              | R                 | 2.5            | \$40,758     | 488.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 656.7          | \$30,305       | М                 | 2.0              | \$49,593                       | 409.5          | \$48,595       |
| \$20.0m              | R                 | 2.5            | \$40,758     | 490.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 659.6          | \$30,319       | М                 | 2.0              | \$49,596                       | 411.5          | \$48,600       |
| \$20.1m              | R                 | 2.5            | \$40,758     | 493.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 662.6          | \$30,333       | М                 | 2.0              | \$49,596                       | 413.5          | \$48,605       |

|                      |                   | Prim           | ary budget (                   | (\$50m)        |                |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|----------------------|-------------------|----------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina        | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | d                              | Cun            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$20.2m              | R                 | 2.5            | \$40,758                       | 495.6          | \$40,758       | Н                 | 3.0              | \$33,473                       | 665.6          | \$30,347       | М                 | 2.0              | \$49,596                       | 415.6          | \$48,610       |
| \$20.3m              | R                 | 2.5            | \$40,758                       | 498.1          | \$40,758       | Н                 | 3.0              | \$33,472                       | 668.6          | \$30,361       | М                 | 2.0              | \$49,596                       | 417.6          | \$48,614       |
| \$20.4m              | R                 | 2.5            | \$40,758                       | 500.5          | \$40,758       | Н                 | 3.0              | \$33,472                       | 671.6          | \$30,375       | М                 | 2.0              | \$49,596                       | 419.6          | \$48,619       |
| \$20.5m              | R                 | 2.5            | \$40,758                       | 503.0          | \$40,758       | Н                 | 3.0              | \$33,472                       | 674.6          | \$30,389       | М                 | 2.0              | \$49,596                       | 421.6          | \$48,624       |
| \$20.6m              | R                 | 2.5            | \$40,758                       | 505.4          | \$40,758       | Н                 | 3.0              | \$33,473                       | 677.6          | \$30,403       | М                 | 2.0              | \$49,596                       | 423.6          | \$48,628       |
| \$20.7m              | R                 | 2.5            | \$40,758                       | 507.9          | \$40,758       | Н                 | 3.0              | \$33,472                       | 680.6          | \$30,416       | М                 | 2.0              | \$49,596                       | 425.6          | \$48,633       |
| \$20.8m              | R                 | 2.5            | \$40,758                       | 510.3          | \$40,758       | Н                 | 3.0              | \$33,472                       | 683.5          | \$30,429       | М                 | 2.0              | \$49,596                       | 427.7          | \$48,637       |
| \$20.9m              | R                 | 2.5            | \$40,758                       | 512.8          | \$40,758       | Н                 | 3.0              | \$33,472                       | 686.5          | \$30,443       | M                 | 2.0              | \$49,596                       | 429.7          | \$48,642       |
| \$21.0m              | R                 | 2.5            | \$40,758                       | 515.2          | \$40,758       | Н                 | 3.0              | \$33,473                       | 689.5          | \$30,456       | M                 | 2.0              | \$49,596                       | 431.7          | \$48,646       |
| \$21.1m              | R                 | 2.5            | \$40,758                       | 517.7          | \$40,758       | H                 | 3.0              | \$33,472                       | 692.5          | \$30,469       | М                 | 2.0              | \$49,596                       | 433.7          | \$48,651       |
| \$21.2m              | R                 | 2.5            | \$40,758                       | 520.1          | \$40,758       | H                 | 3.0              | \$33,472                       | 695.5          | \$30,482       | М                 | 2.0              | \$49,596                       | 435.7          | \$48,655       |
| \$21.3m              | R                 | 2.5            | \$40,758                       | 522.6          | \$40,758       | H                 | 3.0              | \$33,472                       | 698.5          | \$30,494       | M                 | 2.0              | \$49,596                       | 437.7          | \$48,659       |
| \$21.4m              | R                 | 2.5            | \$40,758                       | 525.0          | \$40,758       | H                 | 3.0              | \$33,473                       | 701.5          | \$30,507       | M                 | 2.0              | \$49,596                       | 439.8          | \$48,664       |
| \$21.5m              | R                 | 2.5            | \$40,758                       | 527.5          | \$40,758       | H                 | 3.0              | \$33,472                       | 704.5          | \$30,520       | M                 | 2.0              | \$49,596                       | 441.8          | \$48,668       |
| \$21.6m              | R                 | 2.5            | \$40,758                       | 530.0          | \$40,758       | H                 | 3.0              | \$33,472                       | 707.4          | \$30,532       | M                 | 2.0              | \$49,593                       | 443.8          | \$48,672       |
| \$21./m              | K<br>D            | 2.5            | \$40,758                       | 532.4          | \$40,758       | H                 | 3.0              | \$33,472                       | /10.4          | \$30,545       | M                 | 2.0              | \$49,596                       | 445.8          | \$48,676       |
| \$21.8m              | K                 | 2.5            | \$40,758                       | 534.9          | \$40,758       | H                 | 3.0              | \$33,473                       | 716.4          | \$30,557       | M                 | 2.0              | \$49,396                       | 447.8          | \$48,081       |
| \$21.9m              | K<br>D            | 2.5            | \$40,758                       | 520.8          | \$40,758       | H<br>U            | 3.0              | \$33,472                       | 710.4          | \$30,509       | M                 | 2.0              | \$49,590                       | 449.8          | \$48,085       |
| \$22.0m              | P                 | 2.3            | \$40,738                       | 542.2          | \$40,758       | н<br>Н            | 3.0              | \$33,472                       | 719.4          | \$30,581       | M                 | 2.0              | \$49,590                       | 451.9          | \$48,009       |
| \$22.1111<br>\$22.2m | P                 | 2.3            | \$40,738                       | 544.2          | \$40,758       | н<br>Н            | 3.0              | \$33,472                       | 725.4          | \$30,593       | M                 | 2.0              | \$49,590                       | 455.9          | \$48,093       |
| \$22.2m              | P                 | 2.5            | \$40,758                       | 547.1          | \$40,758       | н                 | 3.0              | \$33,473                       | 723.4          | \$30,005       | M                 | 2.0              | \$49,590                       | 457.0          | \$48,097       |
| \$22.5m              | R                 | 2.5            | \$40,758                       | 549.6          | \$40,758       | Н                 | 3.0              | \$33,472                       | 731.4          | \$30,678       | M                 | 2.0              | \$49,596                       | 459.9          | \$48 705       |
| \$22.4m              | R                 | 2.5            | \$40,758                       | 552.0          | \$40,758       | H                 | 3.0              | \$33,472                       | 734.3          | \$30,640       | M                 | 2.0              | \$49 596                       | 461.9          | \$48,709       |
| \$22.6m              | R                 | 2.5            | \$40,758                       | 554.5          | \$40,758       | Н                 | 3.0              | \$33,473                       | 737.3          | \$30,651       | M                 | 2.0              | \$49 596                       | 463.9          | \$48,712       |
| \$22.7m              | R                 | 2.5            | \$40,758                       | 556.9          | \$40,758       | Н                 | 3.0              | \$33,472                       | 740.3          | \$30,663       | M                 | 2.0              | \$49,596                       | 466.0          | \$48,716       |
| \$22.8m              | R                 | 2.5            | \$40,758                       | 559.4          | \$40,758       | Н                 | 3.0              | \$33,472                       | 743.3          | \$30,674       | М                 | 2.0              | \$49,596                       | 468.0          | \$48,720       |
| \$22.9m              | R                 | 2.5            | \$40,758                       | 561.9          | \$40,758       | Н                 | 3.0              | \$33,472                       | 746.3          | \$30,685       | М                 | 2.0              | \$49,596                       | 470.0          | \$48,724       |
| \$23.0m              | R                 | 2.5            | \$40,758                       | 564.3          | \$40,758       | Н                 | 3.0              | \$33,473                       | 749.3          | \$30,696       | М                 | 2.0              | \$49,596                       | 472.0          | \$48,727       |
| \$23.1m              | R                 | 2.5            | \$40,758                       | 566.8          | \$40,758       | Н                 | 3.0              | \$33,472                       | 752.3          | \$30,707       | М                 | 2.0              | \$49,596                       | 474.0          | \$48,731       |
| \$23.2m              | R                 | 2.5            | \$40,758                       | 569.2          | \$40,758       | Н                 | 3.0              | \$33,472                       | 755.3          | \$30,718       | М                 | 2.0              | \$49,593                       | 476.0          | \$48,735       |
| \$23.3m              | R                 | 2.5            | \$40,758                       | 571.7          | \$40,758       | Н                 | 3.0              | \$33,472                       | 758.2          | \$30,729       | М                 | 2.0              | \$49,596                       | 478.1          | \$48,738       |
| \$23.4m              | R                 | 2.5            | \$40,756                       | 574.1          | \$40,758       | Н                 | 3.0              | \$33,473                       | 761.2          | \$30,740       | М                 | 2.0              | \$49,596                       | 480.1          | \$48,742       |
| \$23.5m              | R                 | 2.5            | \$40,758                       | 576.6          | \$40,758       | Н                 | 3.0              | \$33,472                       | 764.2          | \$30,751       | М                 | 2.0              | \$49,596                       | 482.1          | \$48,746       |
| \$23.6m              | R                 | 2.5            | \$40,758                       | 579.0          | \$40,758       | Н                 | 3.0              | \$33,472                       | 767.2          | \$30,761       | M                 | 2.0              | \$49,596                       | 484.1          | \$48,749       |
| \$23.7m              | R                 | 2.5            | \$40,758                       | 581.5          | \$40,758       | Н                 | 3.0              | \$33,472                       | 770.2          | \$30,772       | М                 | 2.0              | \$49,596                       | 486.1          | \$48,753       |
| \$23.8m              | R                 | 2.5            | \$40,758                       | 583.9          | \$40,758       | H                 | 3.0              | \$33,473                       | 773.2          | \$30,782       | М                 | 2.0              | \$49,596                       | 488.1          | \$48,756       |
| \$23.9m              | R                 | 2.5            | \$40,758                       | 586.4          | \$40,758       | H                 | 3.0              | \$33,472                       | 776.2          | \$30,792       | M                 | 2.0              | \$49,596                       | 490.2          | \$48,760       |
| \$24.0m              | R                 | 2.5            | \$40,758                       | 588.8          | \$40,758       | H                 | 3.0              | \$33,472                       | 779.2          | \$30,803       | M                 | 2.0              | \$49,596                       | 492.2          | \$48,763       |
| \$24.1m              | K                 | 2.5            | \$40,758                       | 591.3          | \$40,758       | H                 | 3.0              | \$33,472                       | /82.1          | \$30,813       | M                 | 2.0              | \$49,596                       | 494.2          | \$48,766       |
| \$24.2m              | K<br>D            | 2.5            | \$40,758                       | 593.7          | \$40,758       | H                 | 3.0              | \$33,4/3                       | /85.1          | \$30,823       | M                 | 2.0              | \$49,596                       | 496.2          | \$48,770       |
| \$24.3m              | R<br>D            | 2.5            | \$40,758<br>\$40,759           | 508.2          | \$40,758       | н                 | 3.0              | \$33,472                       | /88.1          | \$20,833       | M                 | 2.0              | \$49,396                       | 498.2          | \$48,775       |
| \$24.4m              | R<br>P            | 2.5            | \$40,758                       | 598./          | \$40,758       | п<br>Ц            | 3.0              | \$33,472                       | 70/ 1          | \$30,843       | M                 | 2.0              | \$49,390                       | 502.2          | \$40,770       |
| \$24.5m<br>\$24.6m   | P                 | 2.5            | \$40,758                       | 603.6          | \$40,758       | н                 | 3.0              | \$33,472                       | 707 1          | \$30,853       | M                 | 2.0              | \$49,590                       | 504.3          | \$48 782       |
| \$24.0m              | R                 | 2.5            | \$40,758                       | 606.0          | \$40,758       | Н                 | 3.0              | \$33,472                       | 800.1          | \$30,803       | M                 | 2.0              | \$49,590                       | 506.3          | \$48 786       |
| \$24.7m              | R                 | 2.5            | \$40,758                       | 608.5          | \$40,758       | н                 | 3.0              | \$33 472                       | 803.1          | \$30,873       | M                 | 2.0              | \$49.590                       | 508.3          | \$48 780       |
| \$24.0m              | R                 | 2.5            | \$40,758                       | 610.9          | \$40,758       | н                 | 3.0              | \$33 472                       | 806.0          | \$30,892       | M                 | 2.0              | \$49 593                       | 510.3          | \$48 793       |
| \$25.0m              | R                 | 2.5            | \$40,758                       | 613.4          | \$40,758       | Н                 | 3.0              | \$33,473                       | 809.0          | \$30,901       | M                 | 2.0              | \$49,596                       | 512.3          | \$48,796       |
| \$25.1m              | R                 | 2.5            | \$40,758                       | 615.8          | \$40,758       | H                 | 3.0              | \$33,472                       | 812.0          | \$30,911       | M                 | 2.0              | \$49,596                       | 514.4          | \$48,799       |
| \$25.2m              | R                 | 2.5            | \$40,758                       | 618.3          | \$40,758       | Н                 | 3.0              | \$33,472                       | 815.0          | \$30,920       | М                 | 2.0              | \$49,596                       | 516.4          | \$48,802       |

|                    |                   | Prim           | ary budget (         | (\$50m)        |                 |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|--------------------|-------------------|----------------|----------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget             |                   | Margina        | 1                    | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cun            | ulative        |
| impact             | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> °  | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$25.3m            | R                 | 2.5            | \$40,758             | 620.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 818.0          | \$30,929       | М                 | 2.0              | \$49,596                       | 518.4          | \$48,805       |
| \$25.4m            | R                 | 2.5            | \$40,758             | 623.2          | \$40,758        | Н                 | 3.0              | \$33,473                       | 821.0          | \$30,939       | М                 | 2.0              | \$49,596                       | 520.4          | \$48,808       |
| \$25.5m            | R                 | 2.5            | \$40,758             | 625.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 824.0          | \$30,948       | М                 | 2.0              | \$49,596                       | 522.4          | \$48,811       |
| \$25.6m            | R                 | 2.5            | \$40,758             | 628.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 827.0          | \$30,957       | М                 | 2.0              | \$49,596                       | 524.4          | \$48,814       |
| \$25.7m            | R                 | 2.5            | \$40,758             | 630.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 829.9          | \$30,966       | М                 | 2.0              | \$49,596                       | 526.5          | \$48,817       |
| \$25.8m            | R                 | 2.5            | \$40,758             | 633.0          | \$40,758        | Н                 | 3.0              | \$33,473                       | 832.9          | \$30,975       | М                 | 2.0              | \$49,596                       | 528.5          | \$48,820       |
| \$25.9m            | R                 | 2.5            | \$40,758             | 635.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 835.9          | \$30,984       | М                 | 2.0              | \$49,596                       | 530.5          | \$48,823       |
| \$26.0m            | R                 | 2.5            | \$40,758             | 637.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 838.9          | \$30,993       | М                 | 2.0              | \$49,596                       | 532.5          | \$48,826       |
| \$26.1m            | R                 | 2.5            | \$40,758             | 640.4          | \$40,758        | Н                 | 3.0              | \$33,472                       | 841.9          | \$31,002       | М                 | 2.0              | \$49,596                       | 534.5          | \$48,829       |
| \$26.2m            | R                 | 2.5            | \$40,758             | 642.8          | \$40,758        | Н                 | 3.0              | \$33,473                       | 844.9          | \$31,010       | М                 | 2.0              | \$49,596                       | 536.5          | \$48,832       |
| \$26.3m            | R                 | 2.5            | \$40,758             | 645.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 847.9          | \$31,019       | М                 | 2.0              | \$49,596                       | 538.6          | \$48,835       |
| \$26.4m            | R                 | 2.5            | \$40,758             | 647.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 850.9          | \$31,028       | M                 | 2.0              | \$49,596                       | 540.6          | \$48,838       |
| \$26.5m            | R                 | 2.5            | \$40,758             | 650.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 853.8          | \$31,036       | М                 | 2.0              | \$49,596                       | 542.6          | \$48,840       |
| \$26.6m            | R                 | 2.5            | \$40,758             | 652.6          | \$40,758        | Н                 | 3.0              | \$33,473                       | 856.8          | \$31,045       | M                 | 2.0              | \$49,593                       | 544.6          | \$48,843       |
| \$26.7m            | R                 | 2.5            | \$40,758             | 655.1          | \$40,758        | H                 | 3.0              | \$33,472                       | 859.8          | \$31,053       | М                 | 2.0              | \$49,596                       | 546.6          | \$48,846       |
| \$26.8m            | R                 | 2.5            | \$40,758             | 657.5          | \$40,758        | H                 | 3.0              | \$33,472                       | 862.8          | \$31,062       | M                 | 2.0              | \$49,596                       | 548.6          | \$48,849       |
| \$26.9m            | R                 | 2.5            | \$40,758             | 660.0          | \$40,758        | H                 | 3.0              | \$33,473                       | 865.8          | \$31,070       | M                 | 2.0              | \$49,596                       | 550.6          | \$48,851       |
| \$27.0m            | R                 | 2.5            | \$40,758             | 662.4          | \$40,758        | H                 | 3.0              | \$33,472                       | 868.8          | \$31,078       | M                 | 2.0              | \$49,596                       | 552.7          | \$48,854       |
| \$27.1m            | K                 | 2.5            | \$40,758             | 664.9          | \$40,758        | H                 | 3.0              | \$33,472                       | 8/1.8          | \$31,086       | M                 | 2.0              | \$49,596                       | 554.7          | \$48,857       |
| \$27.2m            | R                 | 2.5            | \$40,758             | 667.4          | \$40,758        | H                 | 3.0              | \$33,472                       | 8/4.8          | \$31,094       | M                 | 2.0              | \$49,596                       | 550.7          | \$48,860       |
| \$27.3m            | K<br>D            | 2.5            | \$40,758             | (72.2          | \$40,758        | H                 | 3.0              | \$33,473                       | 8//./          | \$31,103       | M                 | 2.0              | \$49,596                       | 558.7          | \$48,802       |
| \$27.4m            | K<br>D            | 2.5            | \$40,758             | 674.7          | \$40,758        | H                 | 3.0              | \$33,472                       | 880.7          | \$31,111       | M                 | 2.0              | \$49,590                       | 562.7          | \$48,805       |
| \$27.5m            | R<br>P            | 2.3            | \$40,738             | 677.2          | \$40,758        | п                 | 3.0              | \$33,472                       | 886.7          | \$31,119       | M                 | 2.0              | \$49,390                       | 564.8          | \$48,807       |
| \$27.0m            | R                 | 2.5            | \$40,758             | 679.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 889.7          | \$31,127       | M                 | 2.0              | \$49,596                       | 566.8          | \$48,873       |
| \$27.7m            | R                 | 2.5            | \$40,758             | 682.1          | \$40,758        | Н                 | 3.0              | \$33,472                       | 892.7          | \$31,134       | M                 | 2.0              | \$49 596                       | 568.8          | \$48,875       |
| \$27.0m            | R                 | 2.5            | \$40,758             | 684.5          | \$40,758        | Н                 | 3.0              | \$33,472                       | 895.7          | \$31,150       | M                 | 2.0              | \$49 596                       | 570.8          | \$48,878       |
| \$28.0m            | R                 | 2.5            | \$40,758             | 687.0          | \$40,758        | Н                 | 3.0              | \$33,472                       | 898.7          | \$31,158       | M                 | 2.0              | \$49.596                       | 572.8          | \$48,880       |
| \$28.1m            | R                 | 2.5            | \$40,758             | 689.4          | \$40,758        | Н                 | 3.0              | \$33,473                       | 901.6          | \$31,165       | М                 | 2.0              | \$49,596                       | 574.8          | \$48,883       |
| \$28.2m            | R                 | 2.5            | \$40,758             | 691.9          | \$40,758        | Н                 | 3.0              | \$33,472                       | 904.6          | \$31,173       | М                 | 2.0              | \$49,593                       | 576.9          | \$48,885       |
| \$28.3m            | R                 | 2.5            | \$40,758             | 694.3          | \$40,758        | Н                 | 3.0              | \$33,472                       | 907.6          | \$31,181       | М                 | 2.0              | \$49,596                       | 578.9          | \$48,888       |
| \$28.4m            | R                 | 2.5            | \$40,758             | 696.8          | \$40,758        | Н                 | 3.0              | \$33,472                       | 910.6          | \$31,188       | М                 | 2.0              | \$49,596                       | 580.9          | \$48,890       |
| \$28.5m            | R                 | 2.5            | \$40,758             | 699.2          | \$40,758        | Н                 | 3.0              | \$33,473                       | 913.6          | \$31,196       | М                 | 2.0              | \$49,596                       | 582.9          | \$48,893       |
| \$28.6m            | R                 | 2.5            | \$40,758             | 701.7          | \$40,758        | Н                 | 3.0              | \$33,472                       | 916.6          | \$31,203       | М                 | 2.0              | \$49,596                       | 584.9          | \$48,895       |
| \$28.7m            | R                 | 2.5            | \$40,758             | 704.2          | \$40,758        | Н                 | 3.0              | \$33,472                       | 919.6          | \$31,210       | М                 | 2.0              | \$49,596                       | 586.9          | \$48,897       |
| \$28.8m            | R                 | 2.5            | \$40,758             | 706.6          | \$40,758        | Н                 | 3.0              | \$33,472                       | 922.6          | \$31,218       | М                 | 2.0              | \$49,596                       | 589.0          | \$48,900       |
| \$28.9m            | R                 | 2.5            | \$40,758             | 709.1          | \$40,758        | С                 | 2.5              | \$39,802                       | 925.1          | \$31,241       | М                 | 2.0              | \$49,596                       | 591.0          | \$48,902       |
| \$29.0m            | R                 | 2.5            | \$40,758             | 711.5          | \$40,758        | С                 | 2.5              | \$39,802                       | 927.6          | \$31,264       | М                 | 2.0              | \$49,596                       | 593.0          | \$48,905       |
| \$29.1m            | R                 | 2.5            | \$40,758             | 714.0          | \$40,758        | C                 | 2.5              | \$39,802                       | 930.1          | \$31,287       | М                 | 2.0              | \$49,596                       | 595.0          | \$48,907       |
| \$29.2m            | R                 | 2.5            | \$40,758             | 716.4          | \$40,758        | C                 | 2.5              | \$39,802                       | 932.6          | \$31,310       | М                 | 2.0              | \$49,596                       | 597.0          | \$48,909       |
| \$29.3m            | R                 | 2.5            | \$40,758             | 718.9          | \$40,758        | C                 | 2.5              | \$39,802                       | 935.1          | \$31,333       | М                 | 2.0              | \$49,596                       | 599.0          | \$48,912       |
| \$29.4m            | R                 | 2.5            | \$40,758             | 721.3          | \$40,758        | C                 | 2.5              | \$39,802                       | 937.6          | \$31,356       | М                 | 2.0              | \$49,596                       | 601.1          | \$48,914       |
| \$29.5m            | R                 | 2.5            | \$40,758             | 723.8          | \$40,758        | C                 | 2.5              | \$39,802                       | 940.1          | \$31,378       | M                 | 2.0              | \$49,596                       | 603.1          | \$48,916       |
| \$29.6m            | R                 | 2.5            | \$40,758             | 726.2          | \$40,758        | C                 | 2.5              | \$39,802                       | 942.7          | \$31,401       | M                 | 2.0              | \$49,596                       | 605.1          | \$48,918       |
| \$29.7m            | K                 | 2.5            | \$40,758             | 728.7          | \$40,758        | C                 | 2.5              | \$39,802                       | 945.2          | \$31,423       | M                 | 2.0              | \$49,596                       | 607.1          | \$48,921       |
| \$29.8m            | ĸ                 | 2.5            | \$40,758             | /31.1          | \$40,758        | C                 | 2.5              | \$39,802                       | 947.7          | \$31,445       | M                 | 2.0              | \$49,596                       | 609.1          | \$48,923       |
| \$29.9m            | K<br>P            | 2.5            | \$40,758             | /33.0          | \$40,758        | C                 | 2.5              | \$39,802                       | 950.2          | \$31,467       | M                 | 2.0              | \$49,593                       | 611.1          | \$48,925       |
| \$30.0m            | R<br>P            | 2.5            | \$40,756<br>\$40,756 | /30.1          | \$40,758        | C                 | 2.3              | \$39,802                       | 952.7          | \$31,489       | M                 | 2.0              | \$49,396                       | 615.2          | \$48,927       |
| \$30.1m<br>\$20.2m | r.<br>P           | 2.5            | \$40,759             | 730.5          | \$40,759        | C                 | 2.5              | \$30,802                       | 955.2          | \$31,511       | M                 | 2.0              | \$49,390                       | 617.2          | \$18 032       |
| \$30.2m            | R                 | 2.5            | \$40,758             | 743.4          | \$40,758        | C                 | 2.5              | \$39,802                       | 960.2          | \$31 555       | M                 | 2.0              | \$49 596                       | 619.2          | \$48 934       |

|                      |                   | Prim           | ary budget ( | (\$50m)        |                 |                   | Lov            | ver budget (                   | \$0m)          |                |                   | High             | er budget (\$                  | 100m)          |                |
|----------------------|-------------------|----------------|--------------|----------------|-----------------|-------------------|----------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina        | 1            | Cum            | ulative         |                   | Margina        | 1                              | Cum            | ulative        |                   | Margina          | l                              | Cum            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER°        | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$30.4m              | R                 | 2.5            | \$40,758     | 745.9          | \$40,758        | С                 | 2.5            | \$39.802                       | 962.8          | \$31,576       | М                 | 2.0              | \$49,596                       | 621.2          | \$48,936       |
| \$30.5m              | R                 | 2.5            | \$40,758     | 748.3          | \$40,758        | С                 | 2.5            | \$39,802                       | 965.3          | \$31,597       | М                 | 2.0              | \$49,596                       | 623.2          | \$48,938       |
| \$30.6m              | R                 | 2.5            | \$40,758     | 750.8          | \$40,758        | С                 | 2.5            | \$39,802                       | 967.8          | \$31,619       | М                 | 2.0              | \$49,596                       | 625.3          | \$48,940       |
| \$30.7m              | R                 | 2.5            | \$40,758     | 753.2          | \$40,758        | С                 | 2.5            | \$39,802                       | 970.3          | \$31,640       | М                 | 2.0              | \$49,596                       | 627.3          | \$48,942       |
| \$30.8m              | R                 | 2.5            | \$40,758     | 755.7          | \$40,758        | С                 | 2.5            | \$39,802                       | 972.8          | \$31,661       | М                 | 2.0              | \$49,596                       | 629.3          | \$48,944       |
| \$30.9m              | R                 | 2.5            | \$40,758     | 758.1          | \$40,758        | С                 | 2.5            | \$39,802                       | 975.3          | \$31,682       | М                 | 2.0              | \$49,596                       | 631.3          | \$48,947       |
| \$31.0m              | R                 | 2.5            | \$40,758     | 760.6          | \$40,758        | С                 | 2.5            | \$39,802                       | 977.8          | \$31,703       | М                 | 2.0              | \$49,596                       | 633.3          | \$48,949       |
| \$31.1m              | R                 | 2.5            | \$40,758     | 763.0          | \$40,758        | С                 | 2.5            | \$39,802                       | 980.3          | \$31,724       | М                 | 2.0              | \$49,596                       | 635.3          | \$48,951       |
| \$31.2m              | R                 | 2.5            | \$40,758     | 765.5          | \$40,758        | С                 | 2.5            | \$39,802                       | 982.9          | \$31,744       | М                 | 2.0              | \$49,596                       | 637.4          | \$48,953       |
| \$31.3m              | R                 | 2.5            | \$40,758     | 767.9          | \$40,758        | С                 | 2.5            | \$39,802                       | 985.4          | \$31,765       | М                 | 2.0              | \$49,596                       | 639.4          | \$48,955       |
| \$31.4m              | R                 | 2.5            | \$40,758     | 770.4          | \$40,758        | С                 | 2.5            | \$39,802                       | 987.9          | \$31,785       | М                 | 2.0              | \$49,596                       | 641.4          | \$48,957       |
| \$31.5m              | R                 | 2.5            | \$40,758     | 772.9          | \$40,758        | С                 | 2.5            | \$39,802                       | 990.4          | \$31,806       | М                 | 2.0              | \$49,596                       | 643.4          | \$48,959       |
| \$31.6m              | R                 | 2.5            | \$40,758     | 775.3          | \$40,758        | C                 | 2.5            | \$39,802                       | 992.9          | \$31,826       | M                 | 2.0              | \$49,593                       | 645.4          | \$48,961       |
| \$31.7m              | R                 | 2.5            | \$40,758     | 777.8          | \$40,758        | C                 | 2.5            | \$39,802                       | 995.4          | \$31,846       | M                 | 2.0              | \$49,596                       | 647.4          | \$48,963       |
| \$31.8m              | R                 | 2.5            | \$40,758     | 780.2          | \$40,758        | C                 | 2.5            | \$39,802                       | 997.9          | \$31,866       | М                 | 2.0              | \$49,596                       | 649.4          | \$48,965       |
| \$31.9m              | R                 | 2.5            | \$40,758     | 782.7          | \$40,758        | C                 | 2.5            | \$39,802                       | 1000.4         | \$31,886       | M                 | 2.0              | \$49,596                       | 651.5          | \$48,967       |
| \$32.0m              | R                 | 2.5            | \$40,758     | 785.1          | \$40,758        | C                 | 2.5            | \$39,802                       | 1003.0         | \$31,906       | M                 | 2.0              | \$49,596                       | 653.5          | \$48,969       |
| \$32.1m              | R                 | 2.5            | \$40,758     | 787.6          | \$40,758        | C                 | 2.5            | \$39,802                       | 1005.5         | \$31,926       | M                 | 2.0              | \$49,596                       | 655.5          | \$48,970       |
| \$32.2m              | K<br>D            | 2.5            | \$40,758     | 790.0          | \$40,758        | C                 | 2.5            | \$39,802                       | 1008.0         | \$31,945       | M                 | 2.0              | \$49,596                       | 657.5          | \$48,972       |
| \$32.3m              | K<br>D            | 2.5            | \$40,758     | 792.5          | \$40,758        | C                 | 2.5            | \$39,802                       | 1010.5         | \$31,905       | M                 | 2.0              | \$49,596                       | 659.5          | \$48,974       |
| \$32.4III<br>\$22.5m | R<br>D            | 2.5            | \$40,738     | 794.9          | \$40,758        | C                 | 2.5            | \$39,802                       | 1015.0         | \$31,984       | M                 | 2.0              | \$49,390                       | 662.6          | \$48,970       |
| \$32.5III<br>\$32.6m | R<br>D            | 2.5            | \$40,738     | 700.8          | \$40,758        | C                 | 2.5            | \$39,802                       | 1013.3         | \$32,005       | M                 | 2.0              | \$49,390                       | 665.6          | \$40,970       |
| \$32.0m              | P                 | 2.5            | \$40,758     | 802.3          | \$40,758        | C                 | 2.5            | \$39,802                       | 1018.0         | \$32,023       | M                 | 2.0              | \$49,590                       | 667.6          | \$48,980       |
| \$32.7m              | R                 | 2.5            | \$40,758     | 804.7          | \$40,758        | C                 | 2.5            | \$39,802                       | 1020.3         | \$32,042       | M                 | 2.0              | \$49,596                       | 669.6          | \$48,982       |
| \$32.0m              | R                 | 2.5            | \$40,758     | 807.2          | \$40,758        | C                 | 2.5            | \$39,803                       | 1025.6         | \$32,001       | M                 | 2.0              | \$49,596                       | 671.6          | \$48 985       |
| \$33.0m              | R                 | 2.5            | \$40,758     | 809.7          | \$40,758        | C                 | 2.5            | \$39,803                       | 1028.1         | \$32,000       | M                 | 2.0              | \$49 596                       | 673.6          | \$48,987       |
| \$33.1m              | R                 | 2.5            | \$40,758     | 812.1          | \$40,758        | C                 | 2.5            | \$39,801                       | 1030.6         | \$32,118       | M                 | 2.0              | \$49.596                       | 675.7          | \$48,989       |
| \$33.2m              | R                 | 2.5            | \$40,758     | 814.6          | \$40,758        | C                 | 2.5            | \$39,803                       | 1033.1         | \$32,136       | М                 | 2.0              | \$49,593                       | 677.7          | \$48,991       |
| \$33.3m              | R                 | 2.5            | \$40,758     | 817.0          | \$40,758        | С                 | 2.5            | \$39,801                       | 1035.6         | \$32,155       | М                 | 2.0              | \$49,596                       | 679.7          | \$48,993       |
| \$33.4m              | R                 | 2.5            | \$40,758     | 819.5          | \$40,758        | С                 | 2.5            | \$39,803                       | 1038.1         | \$32,173       | М                 | 2.0              | \$49,596                       | 681.7          | \$48,995       |
| \$33.5m              | R                 | 2.5            | \$40,758     | 821.9          | \$40,758        | С                 | 2.5            | \$39,801                       | 1040.6         | \$32,192       | М                 | 2.0              | \$49,596                       | 683.7          | \$48,996       |
| \$33.6m              | R                 | 2.5            | \$40,758     | 824.4          | \$40,758        | С                 | 2.5            | \$39,803                       | 1043.2         | \$32,210       | М                 | 2.0              | \$49,596                       | 685.7          | \$48,998       |
| \$33.7m              | R                 | 2.5            | \$40,758     | 826.8          | \$40,758        | С                 | 2.5            | \$39,803                       | 1045.7         | \$32,228       | М                 | 2.0              | \$49,596                       | 687.8          | \$49,000       |
| \$33.8m              | R                 | 2.5            | \$40,758     | 829.3          | \$40,758        | С                 | 2.5            | \$39,801                       | 1048.2         | \$32,246       | N                 | 1.6              | \$61,479                       | 689.4          | \$49,029       |
| \$33.9m              | R                 | 2.5            | \$40,758     | 831.7          | \$40,758        | С                 | 2.5            | \$39,803                       | 1050.7         | \$32,265       | N                 | 1.6              | \$61,479                       | 691.0          | \$49,059       |
| \$34.0m              | R                 | 2.5            | \$40,758     | 834.2          | \$40,758        | С                 | 2.5            | \$39,801                       | 1053.2         | \$32,283       | N                 | 1.6              | \$61,479                       | 692.6          | \$49,088       |
| \$34.1m              | R                 | 2.5            | \$40,758     | 836.6          | \$40,758        | С                 | 2.5            | \$39,803                       | 1055.7         | \$32,300       | N                 | 1.6              | \$61,479                       | 694.3          | \$49,117       |
| \$34.2m              | R                 | 2.5            | \$40,758     | 839.1          | \$40,758        | C                 | 2.5            | \$39,803                       | 1058.2         | \$32,318       | N                 | 1.6              | \$61,479                       | 695.9          | \$49,146       |
| \$34.3m              | R                 | 2.5            | \$40,758     | 841.6          | \$40,758        | C                 | 2.5            | \$39,801                       | 1060.7         | \$32,336       | N                 | 1.6              | \$61,479                       | 697.5          | \$49,174       |
| \$34.4m              | R                 | 2.5            | \$40,758     | 844.0          | \$40,758        | C                 | 2.5            | \$39,803                       | 1063.3         | \$32,354       | N                 | 1.6              | \$61,479                       | 699.1          | \$49,203       |
| \$34.5m              | R                 | 2.5            | \$40,758     | 846.5          | \$40,758        | C                 | 2.5            | \$39,801                       | 1065.8         | \$32,371       | N                 | 1.6              | \$61,479                       | 700.8          | \$49,232       |
| \$34.6m              | R                 | 2.5            | \$40,758     | 848.9          | \$40,758        | C                 | 2.5            | \$39,803                       | 1068.3         | \$32,389       | N                 | 1.6              | \$61,479                       | /02.4          | \$49,260       |
| \$34.7m              | K<br>P            | 2.5            | \$40,758     | 851.4          | \$40,758        | C                 | 2.5            | \$39,801                       | 1070.8         | \$32,406       | N<br>N            | 1.0              | \$61,479                       | 705.7          | \$49,288       |
| \$34.8m              | K<br>P            | 2.5            | \$40,758     | 855.8          | \$40,758        | C                 | 2.5            | \$39,803                       | 10/3.3         | \$32,423       | IN<br>N           | 1.0              | \$01,479                       | /03./          | \$49,510       |
| \$34.9m              | K<br>P            | 2.5            | \$40,758     | 830.3          | \$40,758        | C                 | 2.5            | \$39,803                       | 10/5.8         | \$32,441       | IN<br>N           | 1.0              | \$61,479                       | 702.0          | \$49,344       |
| \$35.0m              | R<br>D            | 2.5            | \$40,758     | 861.2          | \$40,758        | C                 | 2.3            | \$20,802                       | 10/0.3         | \$22,438       | IN<br>N           | 1.0              | \$61,479                       | 710.5          | \$49,372       |
| \$35.111<br>\$35.2m  | R                 | 2.5            | \$40,758     | 863.6          | \$40,758        | C                 | 2.5            | \$39,803                       | 1083.4         | \$32,473       | N N               | 1.0              | \$61.479                       | 710.5          | \$49,400       |
| \$35.2m              | R                 | 2.5            | \$40,758     | 866.1          | \$40,758        | C                 | 2.5            | \$39.803                       | 1085.9         | \$32,509       | N                 | 1.0              | \$61 479                       | 713.8          | \$49 455       |
| \$35.4m              | R                 | 2.5            | \$40,758     | 868.5          | \$40,758        | Č                 | 2.5            | \$39,803                       | 1088.4         | \$32,526       | N                 | 1.6              | \$61,479                       | 715.4          | \$49,482       |

|          |                   | Prim               | ary budget ( | (\$50m)        |          |                   | Loi            | wer budget (                   | (\$0m)         |                      |                   | High             | er budget (\$                  | 100m)          |                 |
|----------|-------------------|--------------------|--------------|----------------|----------|-------------------|----------------|--------------------------------|----------------|----------------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget   |                   | Margina            | 1            | Cum            | ulative  |                   | Margina        | 1                              | Cum            | ulative              |                   | Margina          | 1                              | Cum            | ulative         |
| impact   | Tech <sup>a</sup> | $\Delta E_{m}^{b}$ | ICER°        | $\Delta E^{d}$ | λ-e      | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$       | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> |
| \$35.5m  | R                 | 2.5                | \$40,758     | 871.0          | \$40,758 | С                 | 2.5            | \$39.801                       | 1090.9         | \$32,542             | Ν                 | 1.6              | \$61.479                       | 717.0          | \$49,509        |
| \$35.6m  | R                 | 2.5                | \$40,758     | 873.4          | \$40,758 | С                 | 2.5            | \$39,803                       | 1093.4         | \$32,559             | Ν                 | 1.6              | \$61,479                       | 718.7          | \$49,536        |
| \$35.7m  | R                 | 2.5                | \$40,758     | 875.9          | \$40,758 | С                 | 2.5            | \$39,801                       | 1095.9         | \$32,576             | Ν                 | 1.6              | \$61,479                       | 720.3          | \$49,563        |
| \$35.8m  | R                 | 2.5                | \$40,758     | 878.4          | \$40,758 | С                 | 2.5            | \$39,803                       | 1098.4         | \$32,592             | Ν                 | 1.6              | \$61,479                       | 721.9          | \$49,590        |
| \$35.9m  | R                 | 2.5                | \$40,758     | 880.8          | \$40,758 | С                 | 2.5            | \$39,801                       | 1100.9         | \$32,609             | Ν                 | 1.6              | \$61,479                       | 723.5          | \$49,617        |
| \$36.0m  | R                 | 2.5                | \$40,758     | 883.3          | \$40,758 | С                 | 2.5            | \$39,803                       | 1103.5         | \$32,625             | Ν                 | 1.6              | \$61,479                       | 725.2          | \$49,644        |
| \$36.1m  | R                 | 2.5                | \$40,758     | 885.7          | \$40,758 | С                 | 2.5            | \$39,803                       | 1106.0         | \$32,641             | N                 | 1.6              | \$61,479                       | 726.8          | \$49,670        |
| \$36.2m  | R                 | 2.5                | \$40,758     | 888.2          | \$40,758 | С                 | 2.5            | \$39,801                       | 1108.5         | \$32,657             | N                 | 1.6              | \$61,479                       | 728.4          | \$49,696        |
| \$36.3m  | R                 | 2.5                | \$40,758     | 890.6          | \$40,758 | C                 | 2.5            | \$39,803                       | 1111.0         | \$32,674             | N                 | 1.6              | \$61,479                       | 730.0          | \$49,723        |
| \$36.4m  | R                 | 2.5                | \$40,758     | 893.1          | \$40,758 | С                 | 2.5            | \$39,801                       | 1113.5         | \$32,690             | N                 | 1.6              | \$61,479                       | 731.7          | \$49,749        |
| \$36.5m  | R                 | 2.5                | \$40,758     | 895.5          | \$40,758 | С                 | 2.5            | \$39,803                       | 1116.0         | \$32,706             | N                 | 1.6              | \$61,479                       | 733.3          | \$49,775        |
| \$36.6m  | R                 | 2.5                | \$40,758     | 898.0          | \$40,758 | С                 | 2.5            | \$39,803                       | 1118.5         | \$32,722             | N                 | 1.6              | \$61,479                       | 734.9          | \$49,801        |
| \$36.7m  | R                 | 2.5                | \$40,758     | 900.4          | \$40,758 | C                 | 2.5            | \$39,801                       | 1121.0         | \$32,738             | N                 | 1.6              | \$61,479                       | 736.6          | \$49,827        |
| \$36.8m  | R                 | 2.5                | \$40,756     | 902.9          | \$40,758 | C                 | 2.5            | \$39,803                       | 1123.6         | \$32,753             | N                 | 1.6              | \$61,479                       | 738.2          | \$49,852        |
| \$36.9m  | R                 | 2.5                | \$40,758     | 905.3          | \$40,758 | C                 | 2.5            | \$39,801                       | 1126.1         | \$32,769             | N                 | 1.6              | \$61,479                       | 739.8          | \$49,878        |
| \$37.0m  | R                 | 2.5                | \$40,758     | 907.8          | \$40,758 | C                 | 2.5            | \$39,803                       | 1128.6         | \$32,785             | N                 | 1.6              | \$61,479                       | 741.4          | \$49,903        |
| \$37.1m  | R                 | 2.5                | \$40,758     | 910.2          | \$40,758 | C                 | 2.5            | \$39,801                       | 1131.1         | \$32,800             | N                 | 1.6              | \$61,479                       | 743.1          | \$49,929        |
| \$37.2m  | R                 | 2.5                | \$40,758     | 912.7          | \$40,758 | C                 | 2.5            | \$39,803                       | 1133.6         | \$32,816             | N                 | 1.6              | \$61,479                       | 744.7          | \$49,954        |
| \$37.3m  | K<br>D            | 2.5                | \$40,758     | 915.2          | \$40,758 | C                 | 2.5            | \$39,803                       | 1136.1         | \$32,831             | N                 | 1.6              | \$61,479                       | 746.3          | \$49,979        |
| \$37.4m  | K<br>D            | 2.5                | \$40,758     | 917.0          | \$40,758 | C                 | 2.5            | \$39,801                       | 1138.0         | \$32,847             | IN<br>N           | 1.0              | \$61,479                       | 747.9          | \$50,004        |
| \$37.5m  | R<br>D            | 2.5                | \$40,758     | 920.1          | \$40,758 | C                 | 2.5            | \$39,803                       | 1141.1         | \$32,802             | IN<br>N           | 1.0              | \$61,479                       | 749.0          | \$50,029        |
| \$37.0m  | R<br>D            | 2.5                | \$40,758     | 922.3          | \$40,758 | C                 | 2.3            | \$39,601                       | 1145.0         | \$32,877             | IN<br>N           | 1.0              | \$61,479                       | 752.8          | \$50,034        |
| \$37.7m  | P                 | 2.5                | \$40,758     | 923.0          | \$40,758 | C                 | 2.5            | \$39,803                       | 1140.2         | \$32,092             | N                 | 1.0              | \$61,479                       | 754.4          | \$50,078        |
| \$37.0m  | R                 | 2.5                | \$40,758     | 927.4          | \$40,758 | C                 | 2.5            | \$39,803                       | 1151.2         | \$32,907             | W                 | 0.6              | \$168 385                      | 755.0          | \$50,105        |
| \$38.0m  | R                 | 2.5                | \$40,758     | 932.3          | \$40,758 | C                 | 2.5            | \$39,803                       | 1151.2         | \$32,923             | W                 | 0.0              | \$168,385                      | 755.6          | \$50,289        |
| \$38.1m  | R                 | 2.5                | \$40,758     | 934.8          | \$40,758 | C                 | 2.5            | \$39,801                       | 1156.2         | \$32,952             | W                 | 0.6              | \$168,385                      | 756.2          | \$50,382        |
| \$38.2m  | R                 | 2.5                | \$40,758     | 937.2          | \$40,758 | C                 | 2.5            | \$39,803                       | 1158.7         | \$32,967             | W                 | 0.6              | \$168,385                      | 756.8          | \$50,474        |
| \$38.3m  | R                 | 2.5                | \$40,758     | 939.7          | \$40,758 | C                 | 2.5            | \$39,803                       | 1161.2         | \$32,982             | W                 | 0.6              | \$168,385                      | 757.4          | \$50,567        |
| \$38.4m  | R                 | 2.5                | \$40,758     | 942.1          | \$40,758 | С                 | 2.5            | \$39,801                       | 1163.7         | \$32,997             | W                 | 0.6              | \$168,385                      | 758.0          | \$50,659        |
| \$38.5m  | R                 | 2.5                | \$40,758     | 944.6          | \$40,758 | С                 | 2.5            | \$39,803                       | 1166.3         | \$33,011             | W                 | 0.6              | \$168,385                      | 758.6          | \$50,751        |
| \$38.6m  | R                 | 2.5                | \$40,758     | 947.1          | \$40,758 | С                 | 2.5            | \$39,801                       | 1168.8         | \$33,026             | W                 | 0.6              | \$168,385                      | 759.2          | \$50,843        |
| \$38.7m  | R                 | 2.5                | \$40,758     | 949.5          | \$40,758 | С                 | 2.5            | \$39,803                       | 1171.3         | \$33,041             | W                 | 0.6              | \$168,385                      | 759.8          | \$50,935        |
| \$38.8m  | R                 | 2.5                | \$40,758     | 952.0          | \$40,758 | С                 | 2.5            | \$39,801                       | 1173.8         | \$33,055             | W                 | 0.6              | \$168,385                      | 760.4          | \$51,027        |
| \$38.9m  | R                 | 2.5                | \$40,758     | 954.4          | \$40,758 | С                 | 2.5            | \$39,803                       | 1176.3         | \$33,069             | W                 | 0.6              | \$168,385                      | 761.0          | \$51,118        |
| \$39.0m  | R                 | 2.5                | \$40,758     | 956.9          | \$40,758 | С                 | 2.5            | \$39,803                       | 1178.8         | \$33,084             | W                 | 0.6              | \$168,385                      | 761.6          | \$51,210        |
| \$39.1m  | R                 | 2.5                | \$40,758     | 959.3          | \$40,758 | С                 | 2.5            | \$39,801                       | 1181.3         | \$33,098             | W                 | 0.6              | \$168,385                      | 762.2          | \$51,301        |
| \$39.2m  | R                 | 2.5                | \$40,758     | 961.8          | \$40,758 | С                 | 2.5            | \$39,803                       | 1183.8         | \$33,112             | W                 | 0.6              | \$168,385                      | 762.8          | \$51,392        |
| \$39.3m  | R                 | 2.5                | \$40,758     | 964.2          | \$40,758 | C                 | 2.5            | \$39,801                       | 1186.4         | \$33,127             | W                 | 0.6              | \$168,385                      | 763.4          | \$51,483        |
| \$39.4m  | R                 | 2.5                | \$40,758     | 966.7          | \$40,758 | C                 | 2.5            | \$39,803                       | 1188.9         | \$33,141             | W                 | 0.6              | \$168,385                      | 763.9          | \$51,574        |
| \$39.5m  | R                 | 2.5                | \$40,758     | 969.1          | \$40,758 | C                 | 2.5            | \$39,803                       | 1191.4         | \$33,155             | W                 | 0.6              | \$168,386                      | 764.5          | \$51,665        |
| \$39.6m  | R                 | 2.5                | \$40,758     | 971.6          | \$40,758 | C                 | 2.5            | \$39,801                       | 1193.9         | \$33,169             | W                 | 0.6              | \$168,384                      | 765.1          | \$51,755        |
| \$39.7m  | R                 | 2.5                | \$40,758     | 974.0          | \$40,758 | C                 | 2.5            | \$39,803                       | 1196.4         | \$33,183             | W                 | 0.6              | \$168,384                      | /65./          | \$51,846        |
| \$39.8m  | K<br>P            | 2.5                | \$40,758     | 9/6.3          | \$40,758 | C                 | 2.5            | \$39,801                       | 1198.9         | \$33,196             | W                 | 0.6              | \$168,587                      | /66.3          | \$51,936        |
| \$39.9m  | K<br>P            | 2.5                | \$40,758     | 9/8.9          | \$40,758 | C                 | 2.5            | \$39,803                       | 1201.4         | \$33,210             | W                 | 0.6              | \$108,584                      | /00.9          | \$52,020        |
| \$40.0m  | K<br>P            | 2.5                | \$40,758     | 981.4          | \$40,758 | C                 | 2.5            | \$39,801                       | 1203.9         | \$33,224             | W<br>W            | 0.0              | \$168,384                      | 760 1          | \$52,110        |
| \$40.110 | R<br>P            | 2.5                | \$40,758     | 903.9          | \$40,758 | C                 | 2.3            | \$39,003                       | 1200.5         | \$33,238<br>\$33,251 | W<br>W/           | 0.0              | \$168.291                      | 769.7          | \$52,200        |
| \$40.2m  | R                 | 2.5                | \$40,758     | 988.8          | \$40,758 | C                 | 2.5            | \$39,803                       | 1209.0         | \$33,231             | W                 | 0.0              | \$168 384                      | 769.7          | \$52,290        |
| \$40.5m  | R                 | 2.5                | \$40,758     | 991.2          | \$40,758 | C                 | 2.5            | \$39.803                       | 1211.5         | \$33,203             | w                 | 0.0              | \$168 387                      | 769.9          | \$52,300        |
| \$40.5m  | R                 | 2.5                | \$40,758     | 993.7          | \$40,758 | Č                 | 2.5            | \$39,801                       | 1216.5         | \$33,292             | W                 | 0.6              | \$168,384                      | 770.5          | \$52,564        |

|                    |                   | Prim               | ary budget (         | (\$50m)        |          |                   | Loi            | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                 |
|--------------------|-------------------|--------------------|----------------------|----------------|----------|-------------------|----------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget             |                   | Margina            | 1                    | Cum            | ulative  |                   | Margina        | 1                              | Cum            | ulative        |                   | Margina          | ıl                             | Cum            | ulative         |
| impact             | Tech <sup>a</sup> | $\Delta E_{m}^{b}$ | ICER°                | $\Delta E^{d}$ | λ-e      | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> |
| \$40.6m            | R                 | 2.5                | \$40,758             | 996.1          | \$40,758 | С                 | 2.5            | \$39,803                       | 1219.0         | \$33,305       | W                 | 0.6              | \$168,384                      | 771.1          | \$52.654        |
| \$40.7m            | R                 | 2.5                | \$40,758             | 998.6          | \$40,758 | С                 | 2.5            | \$39,803                       | 1221.5         | \$33,319       | W                 | 0.6              | \$168,387                      | 771.7          | \$52,743        |
| \$40.8m            | R                 | 2.5                | \$40,751             | 1001.0         | \$40,758 | С                 | 2.5            | \$39,801                       | 1224.0         | \$33,332       | W                 | 0.6              | \$168,384                      | 772.3          | \$52,832        |
| \$40.9m            | R                 | 2.5                | \$40,766             | 1003.5         | \$40,758 | С                 | 2.5            | \$39,803                       | 1226.6         | \$33,345       | W                 | 0.6              | \$168,384                      | 772.9          | \$52,920        |
| \$41.0m            | R                 | 2.5                | \$40,750             | 1005.9         | \$40,758 | С                 | 2.5            | \$39,801                       | 1229.1         | \$33,358       | W                 | 0.6              | \$168,387                      | 773.5          | \$53,009        |
| \$41.1m            | R                 | 2.5                | \$40,766             | 1008.4         | \$40,758 | С                 | 2.5            | \$39,803                       | 1231.6         | \$33,372       | W                 | 0.6              | \$168,384                      | 774.0          | \$53,098        |
| \$41.2m            | R                 | 2.5                | \$40,750             | 1010.8         | \$40,758 | С                 | 2.5            | \$39,801                       | 1234.1         | \$33,385       | W                 | 0.6              | \$168,384                      | 774.6          | \$53,186        |
| \$41.3m            | R                 | 2.5                | \$40,766             | 1013.3         | \$40,758 | С                 | 2.5            | \$39,803                       | 1236.6         | \$33,398       | W                 | 0.6              | \$168,387                      | 775.2          | \$53,274        |
| \$41.4m            | R                 | 2.5                | \$40,750             | 1015.8         | \$40,758 | С                 | 2.5            | \$39,803                       | 1239.1         | \$33,411       | W                 | 0.6              | \$168,384                      | 775.8          | \$53,362        |
| \$41.5m            | R                 | 2.5                | \$40,766             | 1018.2         | \$40,758 | С                 | 2.5            | \$39,801                       | 1241.6         | \$33,424       | W                 | 0.6              | \$168,384                      | 776.4          | \$53,450        |
| \$41.6m            | R                 | 2.5                | \$40,750             | 1020.7         | \$40,758 | С                 | 2.5            | \$39,803                       | 1244.1         | \$33,437       | W                 | 0.6              | \$168,387                      | 777.0          | \$53,538        |
| \$41.7m            | R                 | 2.5                | \$40,766             | 1023.1         | \$40,758 | С                 | 2.5            | \$39,801                       | 1246.7         | \$33,449       | W                 | 0.6              | \$168,384                      | 777.6          | \$53,626        |
| \$41.8m            | R                 | 2.5                | \$40,750             | 1025.6         | \$40,758 | С                 | 2.5            | \$39,803                       | 1249.2         | \$33,462       | W                 | 0.6              | \$168,384                      | 778.2          | \$53,714        |
| \$41.9m            | R                 | 2.5                | \$40,766             | 1028.0         | \$40,758 | С                 | 2.5            | \$39,803                       | 1251.7         | \$33,475       | W                 | 0.6              | \$168,387                      | 778.8          | \$53,801        |
| \$42.0m            | R                 | 2.5                | \$40,750             | 1030.5         | \$40,758 | С                 | 2.5            | \$39,801                       | 1254.2         | \$33,488       | W                 | 0.6              | \$168,384                      | 779.4          | \$53,888        |
| \$42.1m            | R                 | 2.5                | \$40,766             | 1032.9         | \$40,758 | С                 | 2.5            | \$39,803                       | 1256.7         | \$33,500       | W                 | 0.6              | \$168,384                      | 780.0          | \$53,975        |
| \$42.2m            | R                 | 2.5                | \$40,750             | 1035.4         | \$40,758 | С                 | 2.5            | \$39,801                       | 1259.2         | \$33,513       | W                 | 0.6              | \$168,387                      | 780.6          | \$54,062        |
| \$42.3m            | R                 | 2.5                | \$40,766             | 1037.8         | \$40,758 | С                 | 2.5            | \$39,803                       | 1261.7         | \$33,525       | W                 | 0.6              | \$168,384                      | 781.2          | \$54,149        |
| \$42.4m            | R                 | 2.5                | \$40,750             | 1040.3         | \$40,758 | C                 | 2.5            | \$39,801                       | 1264.2         | \$33,538       | W                 | 0.6              | \$168,384                      | 781.8          | \$54,236        |
| \$42.5m            | R                 | 2.5                | \$40,766             | 1042.7         | \$40,758 | С                 | 2.5            | \$39,803                       | 1266.8         | \$33,550       | W                 | 0.6              | \$168,387                      | 782.4          | \$54,323        |
| \$42.6m            | Q                 | 2.1                | \$48,185             | 1044.8         | \$40,773 | R                 | 2.5            | \$40,758                       | 1269.2         | \$33,564       | W                 | 0.6              | \$168,384                      | 783.0          | \$54,409        |
| \$42.7m            | Q                 | 2.1                | \$48,185             | 1046.9         | \$40,788 | R                 | 2.5            | \$40,758                       | 1271.7         | \$33,578       | W                 | 0.6              | \$168,384                      | 783.5          | \$54,496        |
| \$42.8m            | Q                 | 2.1                | \$48,185             | 1049.0         | \$40,802 | R                 | 2.5            | \$40,758                       | 1274.1         | \$33,592       | W                 | 0.6              | \$168,387                      | 784.1          | \$54,582        |
| \$42.9m            | Q                 | 2.1                | \$48,185             | 1051.0         | \$40,817 | R                 | 2.5            | \$40,758                       | 1276.6         | \$33,606       | W                 | 0.6              | \$168,384                      | 784.7          | \$54,668        |
| \$43.0m            | Q                 | 2.1                | \$48,185             | 1053.1         | \$40,831 | R                 | 2.5            | \$40,758                       | 1279.0         | \$33,619       | W                 | 0.6              | \$168,384                      | 785.3          | \$54,754        |
| \$43.1m            | Q                 | 2.1                | \$48,185             | 1055.2         | \$40,846 | R                 | 2.5            | \$40,758                       | 1281.5         | \$33,633       | W                 | 0.6              | \$168,387                      | 785.9          | \$54,840        |
| \$43.2m            | Q                 | 2.1                | \$48,185             | 1057.3         | \$40,860 | R                 | 2.5            | \$40,758                       | 1283.9         | \$33,647       | W                 | 0.6              | \$168,384                      | 786.5          | \$54,926        |
| \$43.3m            | Q                 | 2.1                | \$48,185             | 1059.3         | \$40,874 | R                 | 2.5            | \$40,758                       | 1286.4         | \$33,660       | W                 | 0.6              | \$168,384                      | 787.1          | \$55,011        |
| \$43.4m            | Q                 | 2.1                | \$48,185             | 1061.4         | \$40,889 | R                 | 2.5            | \$40,758                       | 1288.8         | \$33,674       | W                 | 0.6              | \$168,387                      | 787.7          | \$55,097        |
| \$43.5m            | Q                 | 2.1                | \$48,185             | 1063.5         | \$40,903 | R                 | 2.5            | \$40,758                       | 1291.3         | \$33,687       | W                 | 0.6              | \$168,384                      | 788.3          | \$55,182        |
| \$43.6m            | Q                 | 2.1                | \$48,185             | 1065.6         | \$40,917 | R                 | 2.5            | \$40,758                       | 1293.7         | \$33,701       | W                 | 0.6              | \$168,384                      | 788.9          | \$55,267        |
| \$43.7m            | Q                 | 2.1                | \$48,185             | 1067.6         | \$40,931 | R                 | 2.5            | \$40,758                       | 1296.2         | \$33,714       | W                 | 0.6              | \$168,387                      | 789.5          | \$55,352        |
| \$43.8m            | Q                 | 2.1                | \$48,185             | 1069.7         | \$40,945 | R                 | 2.5            | \$40,758                       | 1298.7         | \$33,727       | W                 | 0.6              | \$168,384                      | 790.1          | \$55,437        |
| \$43.9m            | Q                 | 2.1                | \$48,185             | 1071.8         | \$40,959 | R                 | 2.5            | \$40,758                       | 1301.1         | \$33,740       | W                 | 0.6              | \$168,384                      | 790.7          | \$55,522        |
| \$44.0m            | Q                 | 2.1                | \$48,185             | 1073.9         | \$40,973 | R                 | 2.5            | \$40,758                       | 1303.6         | \$33,754       | W                 | 0.6              | \$168,387                      | 791.3          | \$55,607        |
| \$44.1m            | Q                 | 2.1                | \$48,185             | 1075.9         | \$40,987 | R                 | 2.5            | \$40,758                       | 1306.0         | \$33,767       | W                 | 0.6              | \$168,384                      | 791.9          | \$55,692        |
| \$44.2m            | Q                 | 2.1                | \$48,185             | 107/8.0        | \$41,001 | R                 | 2.5            | \$40,758                       | 1308.5         | \$33,780       | W                 | 0.6              | \$168,384                      | 792.5          | \$55,776        |
| \$44.3m            | Q                 | 2.1                | \$48,185             | 1080.1         | \$41,015 | R                 | 2.5            | \$40,758                       | 1310.9         | \$33,793       | W                 | 0.6              | \$168,387                      | 793.0          | \$55,860        |
| \$44.4m            | Q                 | 2.1                | \$48,185             | 1082.2         | \$41,029 | R                 | 2.5            | \$40,758                       | 1313.4         | \$33,806       | W                 | 0.6              | \$168,384                      | 793.6          | \$55,945        |
| \$44.5m            | Q                 | 2.1                | \$48,185             | 1084.2         | \$41,042 | R                 | 2.5            | \$40,758                       | 1315.8         | \$33,819       | W                 | 0.6              | \$168,384                      | 794.2          | \$56,029        |
| \$44.6m            | Q                 | 2.1                | \$48,185             | 1086.3         | \$41,056 | R                 | 2.5            | \$40,758                       | 1318.3         | \$33,832       | W                 | 0.6              | \$168,387                      | 794.8          | \$56,113        |
| \$44.7m            | Q                 | 2.1                | \$48,185             | 1088.4         | \$41,070 | R                 | 2.5            | \$40,758                       | 1320.7         | \$33,845       | W                 | 0.6              | \$168,384                      | 795.4          | \$56,196        |
| \$44.8m            | Q                 | 2.1                | \$48,185             | 1090.5         | \$41,083 | R                 | 2.5            | \$40,758                       | 1323.2         | \$33,858       | W                 | 0.6              | \$168,384                      | 796.0          | \$56,280        |
| \$44.9m            | Q                 | 2.1                | \$48,185             | 1092.5         | \$41,097 | K                 | 2.5            | \$40,758                       | 1325.6         | \$33,870       | W                 | 0.6              | \$168,387                      | /96.6          | \$30,304        |
| \$45.0m            | Q                 | 2.1                | \$48,185             | 1094.6         | \$41,110 | K<br>D            | 2.5            | \$40,758                       | 1328.1         | \$33,883       | W                 | 0.6              | \$168,384                      | 797.2          | \$56,44/        |
| \$45.1m            | Q                 | 2.1                | \$48,185             | 1096./         | \$41,124 | K<br>D            | 2.5            | \$40,758                       | 1330.6         | \$33,896       | W                 | 0.6              | \$168,384                      | /9/.8          | \$36,330        |
| \$45.2m            | <u> </u>          | 2.1                | \$48,185             | 1098.8         | \$41,15/ | ĸ                 | 2.5            | \$40,758                       | 1333.0         | \$33,908       | W                 | 0.6              | \$108,38/                      | /98.4          | \$30,014        |
| \$45.3m            | <u> </u>          | 2.1                | \$48,185             | 1100.8         | \$41,150 | K<br>P            | 2.5            | \$40,758                       | 1333.3         | \$33,921       | W<br>W            | 0.6              | \$108,384                      | 700.6          | \$30,09/        |
| \$45.4m            |                   | 2.1                | \$40,105<br>\$40,105 | 1102.9         | \$41,103 | R<br>D            | 2.5            | \$40,758                       | 1337.9         | \$22.044       | W                 | 0.0              | \$168.287                      | 799.0<br>800.2 | \$56,962        |
| \$45.5m<br>\$45.6m |                   | 2.1                | \$40,103             | 1105.0         | \$41,177 | R<br>D            | 2.3            | \$40,758                       | 1340.4         | \$33,940       | W<br>W            | 0.0              | \$168.281                      | 800.2          | \$56.045        |
| \$43.0III          | L V               | 2.1                | φ40,100              | 110/.1         | \$¥1,17U | IV.               | 2.5            | \$ <del>4</del> 0,758          | 1342.0         | \$JJ,7J0       | vv                | 0.0              | \$100,504                      | 000.0          | \$JU,74J        |

| <b>D</b> 1 4         |                   | Prim             | ary budget                     | (\$50m)        |                |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (\$                  | 100m)          |                |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina          | I                              | Cum            | ulative        |                   | Margina          | l                              | Cum            | ulative        |                   | Margina          | ıl                             | Cum            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$45.7m              | Q                 | 2.1              | \$48,185                       | 1109.1         | \$41,203       | R                 | 2.5              | \$40,758                       | 1345.3         | \$33,971       | W                 | 0.6              | \$168,384                      | 801.4          | \$57,028       |
| \$45.8m              | Q                 | 2.1              | \$48,185                       | 1111.2         | \$41,216       | R                 | 2.5              | \$40,758                       | 1347.7         | \$33,983       | W                 | 0.6              | \$168,387                      | 802.0          | \$57,110       |
| \$45.9m              | Q                 | 2.1              | \$48,185                       | 1113.3         | \$41,229       | R                 | 2.5              | \$40,758                       | 1350.2         | \$33,996       | W                 | 0.6              | \$168,384                      | 802.6          | \$57,193       |
| \$46.0m              | Q                 | 2.1              | \$48,185                       | 1115.4         | \$41,242       | R                 | 2.5              | \$40,758                       | 1352.6         | \$34,008       | W                 | 0.6              | \$168,384                      | 803.1          | \$57,275       |
| \$46.1m              | Q                 | 2.1              | \$48,185                       | 1117.4         | \$41,255       | R                 | 2.5              | \$40,758                       | 1355.1         | \$34,020       | W                 | 0.6              | \$168,387                      | 803.7          | \$57,357       |
| \$46.2m              | Q                 | 2.1              | \$48,185                       | 1119.5         | \$41,268       | R                 | 2.5              | \$40,758                       | 1357.5         | \$34,032       | W                 | 0.6              | \$168,384                      | 804.3          | \$57,439       |
| \$46.3m              | Q                 | 2.1              | \$48,185                       | 1121.6         | \$41,280       | R                 | 2.5              | \$40,758                       | 1360.0         | \$34,044       | W                 | 0.6              | \$168,384                      | 804.9          | \$57,521       |
| \$46.4m              | Q                 | 2.1              | \$48,185                       | 1125.7         | \$41,293       | K<br>D            | 2.5              | \$40,758                       | 1362.4         | \$34,056       | W                 | 0.6              | \$168,387                      | 805.5          | \$57,602       |
| \$46.5m              | Q                 | 2.1              | \$48,185                       | 1125.8         | \$41,300       | K<br>D            | 2.5              | \$40,758                       | 1364.9         | \$34,008       | W                 | 0.6              | \$108,384                      | 806.1          | \$57,084       |
| \$40.0m              | Q                 | 2.1              | \$40,103                       | 1127.8         | \$41,516       | R<br>D            | 2.5              | \$40,757                       | 1260.8         | \$34,080       | W                 | 0.6              | \$108,384                      | 800.7          | \$57.947       |
| \$46.7m              | Q                 | 2.1              | \$40,103                       | 1129.9         | \$41,331       | R<br>D            | 2.5              | \$40,758                       | 1272.2         | \$34,092       | W                 | 0.0              | \$168.387                      | 807.3          | \$57,029       |
| \$40.011<br>\$46.9m  | Q                 | 2.1              | \$40,103                       | 1132.0         | \$41,344       | P                 | 2.5              | \$40,738                       | 1374.7         | \$34,104       | W                 | 0.0              | \$168,384                      | 808.5          | \$58,000       |
| \$40.7m              | 0                 | 2.1              | \$48 185                       | 1134.1         | \$41,350       | R                 | 2.5              | \$40,758                       | 1377.2         | \$34,110       | W                 | 0.0              | \$168,387                      | 809.1          | \$58,009       |
| \$47.0m              | Ŏ                 | 2.1              | \$48 185                       | 1138.2         | \$41 381       | R                 | 2.5              | \$40,758                       | 1379.6         | \$34,140       | W                 | 0.6              | \$168,384                      | 809.7          | \$58,171       |
| \$47.2m              | Õ                 | 2.1              | \$48,185                       | 1140.3         | \$41,393       | R                 | 2.5              | \$40,758                       | 1382.1         | \$34,152       | W                 | 0.6              | \$168,384                      | 810.3          | \$58,252       |
| \$47.3m              | ò                 | 2.1              | \$48,185                       | 1142.4         | \$41,406       | R                 | 2.5              | \$40,758                       | 1384.5         | \$34,163       | W                 | 0.6              | \$168,387                      | 810.9          | \$58,333       |
| \$47.4m              | Ò                 | 2.1              | \$48,186                       | 1144.4         | \$41,418       | R                 | 2.5              | \$40,758                       | 1387.0         | \$34,175       | W                 | 0.6              | \$168,384                      | 811.5          | \$58,413       |
| \$47.5m              | Q                 | 2.1              | \$48,183                       | 1146.5         | \$41,430       | R                 | 2.5              | \$40,758                       | 1389.4         | \$34,187       | W                 | 0.6              | \$168,384                      | 812.1          | \$58,494       |
| \$47.6m              | Q                 | 2.1              | \$48,186                       | 1148.6         | \$41,442       | R                 | 2.5              | \$40,758                       | 1391.9         | \$34,198       | W                 | 0.6              | \$168,387                      | 812.6          | \$58,574       |
| \$47.7m              | Q                 | 2.1              | \$48,186                       | 1150.7         | \$41,455       | R                 | 2.5              | \$40,758                       | 1394.3         | \$34,210       | W                 | 0.6              | \$168,384                      | 813.2          | \$58,654       |
| \$47.8m              | Q                 | 2.1              | \$48,186                       | 1152.7         | \$41,467       | R                 | 2.5              | \$40,758                       | 1396.8         | \$34,221       | W                 | 0.6              | \$168,384                      | 813.8          | \$58,734       |
| \$47.9m              | Q                 | 2.1              | \$48,183                       | 1154.8         | \$41,479       | R                 | 2.5              | \$40,758                       | 1399.2         | \$34,233       | W                 | 0.6              | \$168,387                      | 814.4          | \$58,814       |
| \$48.0m              | Q                 | 2.1              | \$48,186                       | 1156.9         | \$41,491       | R                 | 2.5              | \$40,758                       | 1401.7         | \$34,244       | W                 | 0.6              | \$168,384                      | 815.0          | \$58,894       |
| \$48.1m              | Q                 | 2.1              | \$48,186                       | 1159.0         | \$41,503       | R                 | 2.5              | \$40,758                       | 1404.2         | \$34,255       | W                 | 0.6              | \$168,384                      | 815.6          | \$58,974       |
| \$48.2m              | Q                 | 2.1              | \$48,186                       | 1161.0         | \$41,515       | R                 | 2.5              | \$40,758                       | 1406.6         | \$34,267       | W                 | 0.6              | \$168,387                      | 816.2          | \$59,053       |
| \$48.3m              | Q                 | 2.1              | \$48,183                       | 1163.1         | \$41,527       | R                 | 2.5              | \$40,758                       | 1409.1         | \$34,278       | W                 | 0.6              | \$168,384                      | 816.8          | \$59,133       |
| \$48.4m              | Q                 | 2.1              | \$48,186                       | 1165.2         | \$41,539       | R                 | 2.5              | \$40,758                       | 1411.5         | \$34,289       | W                 | 0.6              | \$168,384                      | 817.4          | \$59,212       |
| \$48.5m              | Q                 | 2.1              | \$48,186                       | 116/.3         | \$41,550       | K<br>D            | 2.5              | \$40,758                       | 1414.0         | \$34,301       | W                 | 0.6              | \$168,387                      | 818.0          | \$59,292       |
| \$48.6m              | <u>Q</u>          | 2.1              | \$48,185                       | 1109.3         | \$41,502       | K<br>D            | 2.5              | \$40,758                       | 1410.4         | \$34,312       | W                 | 0.6              | \$108,384                      | 818.0          | \$59,571       |
| \$40./III<br>\$49.9m | Q                 | 2.1              | \$40,100                       | 11/1.4         | \$41,574       | R<br>D            | 2.5              | \$40,758                       | 1416.9         | \$34,323       | W                 | 0.6              | \$108,384                      | 819.2<br>810.8 | \$59,430       |
| \$40.011<br>\$48.0m  | 0                 | 2.1              | \$48,180                       | 1175.6         | \$41,580       | R                 | 2.3              | \$40,738                       | 1421.3         | \$34,334       | W                 | 0.0              | \$168,387                      | 820.4          | \$59,529       |
| \$40.7m              | 0                 | 2.1              | \$48,183                       | 1177.6         | \$41,609       | R                 | 2.5              | \$40,758                       | 1426.2         | \$34 356       | W                 | 0.0              | \$168,384                      | 821.0          | \$59,686       |
| \$49.0m              | Ŏ                 | 2.1              | \$48,186                       | 1179.7         | \$41.620       | R                 | 2.5              | \$40,758                       | 1428.7         | \$34 367       | W                 | 0.6              | \$168,387                      | 821.6          | \$59,765       |
| \$49.2m              | Õ                 | 2.1              | \$48,186                       | 1181.8         | \$41.632       | R                 | 2.5              | \$40,758                       | 1431.1         | \$34 378       | W                 | 0.6              | \$168,384                      | 822.1          | \$59.843       |
| \$49.3m              | ò                 | 2.1              | \$48,186                       | 1183.9         | \$41,643       | R                 | 2.5              | \$40,758                       | 1433.6         | \$34,389       | W                 | 0.6              | \$168,384                      | 822.7          | \$59,921       |
| \$49.4m              | Ò                 | 2.1              | \$48,183                       | 1185.9         | \$41,655       | R                 | 2.5              | \$40,758                       | 1436.1         | \$34,400       | W                 | 0.6              | \$168,387                      | 823.3          | \$60,000       |
| \$49.5m              | Q                 | 2.1              | \$48,186                       | 1188.0         | \$41,666       | R                 | 2.5              | \$40,758                       | 1438.5         | \$34,411       | W                 | 0.6              | \$168,384                      | 823.9          | \$60,078       |
| \$49.6m              | Q                 | 2.1              | \$48,186                       | 1190.1         | \$41,678       | R                 | 2.5              | \$40,758                       | 1441.0         | \$34,422       | W                 | 0.6              | \$168,384                      | 824.5          | \$60,156       |
| \$49.7m              | Q                 | 2.1              | \$48,186                       | 1192.2         | \$41,689       | R                 | 2.5              | \$40,758                       | 1443.4         | \$34,432       | W                 | 0.6              | \$168,387                      | 825.1          | \$60,234       |
| \$49.8m              | Q                 | 2.1              | \$48,183                       | 1194.2         | \$41,700       | R                 | 2.5              | \$40,758                       | 1445.9         | \$34,443       | W                 | 0.6              | \$168,384                      | 825.7          | \$60,312       |
| \$49.9m              | Q                 | 2.1              | \$48,186                       | 1196.3         | \$41,712       | R                 | 2.5              | \$40,758                       | 1448.3         | \$34,454       | W                 | 0.6              | \$168,384                      | 826.3          | \$60,389       |
| \$50.0m              | Q                 | 2.1              | \$48,186                       | 1198.4         | \$41,723       | R                 | 2.5              | \$40,758                       | 1450.8         | \$34,464       | W                 | 0.6              | \$168,387                      | 826.9          | \$60,467       |

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$0.1m increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m increase in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in expansion for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

| <b>D</b> 1 4 |                   | Prin             | nary budget                    | (\$50m)        |                |                   | L                | ower budget (                  | (\$0m)         |                |                   | High             | her budget (S                  | \$100m)        |                |
|--------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget       |                   | Margina          | ıl                             | Cumi           | ulative        |                   | Margin           | al                             | Cumi           | ılative        |                   | Margina          | ıl                             | Cum            | ulative        |
| impact       | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$0.1m       | М                 | -2.3             | \$43,235                       | -2.3           | \$43,235       | R                 | -4.0             | \$48,185                       | -4.0           | \$24,859       | R                 | -1.7             | \$59,957                       | -1.7           | \$59,957       |
| \$0.2m       | R                 | -2.3             | \$43,211                       | -4.6           | \$43,223       | 0                 | -4.0             | \$48,185                       | -8.1           | \$24,838       | М                 | -1.7             | \$59,944                       | -3.3           | \$59,950       |
| \$0.3m       | Н                 | -2.3             | \$43,191                       | -6.9           | \$43,212       | 0                 | -4.1             | \$48,185                       | -12.1          | \$24,776       | Q                 | -1.7             | \$59,920                       | -5.0           | \$59,940       |
| \$0.4m       | С                 | -2.3             | \$43,088                       | -9.3           | \$43,181       | Q                 | -4.1             | \$48,185                       | -16.2          | \$24,736       | М                 | -1.7             | \$59,871                       | -6.7           | \$59,923       |
| \$0.5m       | Q                 | -2.3             | \$43,072                       | -11.6          | \$43,159       | R                 | -4.1             | \$48,185                       | -20.2          | \$24,707       | R                 | -1.7             | \$59,846                       | -8.3           | \$59,908       |
| \$0.6m       | Н                 | -2.3             | \$43,067                       | -13.9          | \$43,144       | Н                 | -4.1             | \$48,185                       | -24.3          | \$24,687       | М                 | -1.7             | \$59,799                       | -10.0          | \$59,890       |
| \$0.7m       | R                 | -2.3             | \$43,057                       | -16.2          | \$43,132       | С                 | -4.1             | \$48,185                       | -28.4          | \$24,664       | Q                 | -1.7             | \$59,756                       | -11.7          | \$59,870       |
| \$0.8m       | М                 | -2.3             | \$42,965                       | -18.6          | \$43,111       | 0                 | -4.1             | \$48,185                       | -32.5          | \$24,642       | R                 | -1.7             | \$59,735                       | -13.4          | \$59,854       |
| \$0.9m       | Н                 | -2.3             | \$42,943                       | -20.9          | \$43,092       | 0                 | -4.1             | \$48,185                       | -36.6          | \$24,606       | М                 | -1.7             | \$59,726                       | -15.0          | \$59,839       |
| \$1.0m       | R                 | -2.3             | \$42,903                       | -23.2          | \$43,073       | R                 | -4.1             | \$48,185                       | -40.7          | \$24,577       | М                 | -1.7             | \$59,653                       | -16.7          | \$59,821       |
| \$1.1m       | Н                 | -2.3             | \$42,817                       | -25.6          | \$43,050       | Н                 | -4.1             | \$48,185                       | -44.8          | \$24,543       | С                 | -1.7             | \$59,630                       | -18.4          | \$59,803       |
| \$1.2m       | С                 | -2.3             | \$42,807                       | -27.9          | \$43,029       | 0                 | -4.1             | \$48,185                       | -49.0          | \$24,510       | R                 | -1.7             | \$59,624                       | -20.1          | \$59,788       |
| \$1.3m       | Q                 | -2.3             | \$42,754                       | -30.2          | \$43,008       | R                 | -4.2             | \$48,185                       | -53.1          | \$24,473       | Q                 | -1.7             | \$59,592                       | -21.7          | \$59,773       |
| \$1.4m       | R                 | -2.3             | \$42,747                       | -32.6          | \$42,989       | 0                 | -4.2             | \$48,185                       | -57.3          | \$24,438       | М                 | -1.7             | \$59,579                       | -23.4          | \$59,759       |
| \$1.5m       | Н                 | -2.3             | \$42,691                       | -34.9          | \$42,969       | E                 | -4.2             | \$48,185                       | -61.5          | \$24,399       | R                 | -1.7             | \$59,512                       | -25.1          | \$59,743       |
| \$1.6m       | М                 | -2.3             | \$42,689                       | -37.3          | \$42,952       | 0                 | -4.2             | \$48,185                       | -65.7          | \$24,361       | М                 | -1.7             | \$59,505                       | -26.8          | \$59,728       |
| \$1.7m       | R                 | -2.3             | \$42,592                       | -39.6          | \$42,930       | Н                 | -4.2             | \$48,185                       | -69.9          | \$24,327       | С                 | -1.7             | \$59,484                       | -28.5          | \$59,713       |
| \$1.8m       | Н                 | -2.3             | \$42,564                       | -41.9          | \$42,910       | R                 | -4.2             | \$48,185                       | -74.1          | \$24,296       | М                 | -1.7             | \$59,431                       | -30.2          | \$59,698       |
| \$1.9m       | С                 | -2.4             | \$42,523                       | -44.3          | \$42,889       | 0                 | -4.2             | \$48,185                       | -78.3          | \$24,260       | Q                 | -1.7             | \$59,427                       | -31.8          | \$59,683       |
| \$2.0m       | Н                 | -2.4             | \$42,437                       | -46.7          | \$42,866       | С                 | -4.2             | \$48,185                       | -82.6          | \$24,228       | R                 | -1.7             | \$59,401                       | -33.5          | \$59,669       |
| \$2.1m       | R                 | -2.4             | \$42,435                       | -49.0          | \$42,846       | Q                 | -4.2             | \$48,185                       | -86.8          | \$24,197       | М                 | -1.7             | \$59,356                       | -35.2          | \$59,654       |
| \$2.2m       | Q                 | -2.4             | \$42,431                       | -51.4          | \$42,827       | Û                 | -4.2             | \$48,185                       | -91.0          | \$24,169       | С                 | -1.7             | \$59,337                       | -36.9          | \$59,640       |
| \$2.3m       | M                 | -2.4             | \$42,405                       | -53.7          | \$42,808       | R                 | -4.3             | \$48,185                       | -95.3          | \$24,138       | R                 | -1.7             | \$59,289                       | -38.6          | \$59,624       |
| \$2.4m       | Н                 | -2.4             | \$42,308                       | -56.1          | \$42,787       | 0                 | -4.3             | \$48,185                       | -99.5          | \$24,109       | М                 | -1.7             | \$59,281                       | -40.3          | \$59,610       |
| \$2.5m       | R                 | -2.4             | \$42,278                       | -58.5          | \$42,766       | Н                 | -4.3             | \$48,185                       | -103.8         | \$24,080       | Q                 | -1.7             | \$59,260                       | -41.9          | \$59,596       |
| \$2.6m       | С                 | -2.4             | \$42,234                       | -60.8          | \$42,746       | 0                 | -4.3             | \$48,185                       | -108.1         | \$24,048       | M                 | -1.7             | \$59,206                       | -43.6          | \$59,581       |
| \$2.7m       | Н                 | -2.4             | \$42,179                       | -63.2          | \$42,725       | М                 | -4.3             | \$48,185                       | -112.4         | \$24,018       | С                 | -1.7             | \$59,190                       | -45.3          | \$59,566       |
| \$2.8m       | R                 | -2.4             | \$42,121                       | -65.6          | \$42,703       | R                 | -4.3             | \$48,185                       | -116.7         | \$23,987       | R                 | -1.7             | \$59,176                       | -47.0          | \$59,552       |
| \$2.9m       | М                 | -2.4             | \$42,114                       | -67.9          | \$42,682       | N                 | -4.3             | \$48,185                       | -121.0         | \$23,959       | N                 | -1.7             | \$59,166                       | -48.7          | \$59,539       |
| \$3.0m       | Q                 | -2.4             | \$42,103                       | -70.3          | \$42,663       | 0                 | -4.3             | \$48,185                       | -125.4         | \$23,929       | М                 | -1.7             | \$59,130                       | -50.4          | \$59,525       |
| \$3.1m       | Н                 | -2.4             | \$42,049                       | -72.7          | \$42,642       | Н                 | -4.4             | \$48,185                       | -129.7         | \$23,896       | Q                 | -1.7             | \$59,093                       | -52.1          | \$59,511       |
| \$3.2m       | R                 | -2.4             | \$41,963                       | -75.1          | \$42,621       | Т                 | -4.4             | \$48,185                       | -134.1         | \$23,866       | R                 | -1.7             | \$59,064                       | -53.8          | \$59,497       |
| \$3.3m       | С                 | -2.4             | \$41,942                       | -77.5          | \$42,600       | Т                 | -4.4             | \$48,185                       | -138.4         | \$23,836       | М                 | -1.7             | \$59,053                       | -55.5          | \$59,483       |
| \$3.4m       | Н                 | -2.4             | \$41,918                       | -79.9          | \$42,580       | R                 | -4.4             | \$48,185                       | -142.8         | \$23,808       | С                 | -1.7             | \$59,042                       | -57.2          | \$59,470       |
| \$3.5m       | 0                 | -2.4             | \$41,879                       | -82.2          | \$42,559       | 0                 | -4.4             | \$48,185                       | -147.2         | \$23,781       | М                 | -1.7             | \$58,977                       | -58.9          | \$59,456       |
| \$3.6m       | 0                 | -2.4             | \$41,823                       | -84.6          | \$42,538       | Т                 | -4.4             | \$48,185                       | -151.5         | \$23,756       | R                 | -1.7             | \$58,951                       | -60.6          | \$59,442       |
| \$3.7m       | М                 | -2.4             | \$41,814                       | -87.0          | \$42,519       | Т                 | -4.4             | \$48,185                       | -155.9         | \$23,731       | Q                 | -1.7             | \$58,925                       | -62.3          | \$59,428       |
| \$3.8m       | R                 | -2.4             | \$41,804                       | -89.4          | \$42,499       | Т                 | -4.4             | \$48,185                       | -160.3         | \$23,706       | М                 | -1.7             | \$58,900                       | -64.0          | \$59,414       |
| \$3.9m       | Н                 | -2.4             | \$41,787                       | -91.8          | \$42,481       | Т                 | -4.4             | \$48,185                       | -164.7         | \$23,682       | С                 | -1.7             | \$58,893                       | -65.7          | \$59,400       |
| \$4.0m       | Q                 | -2.4             | \$41,771                       | -94.2          | \$42,463       | Т                 | -4.4             | \$48,185                       | -169.1         | \$23,659       | R                 | -1.7             | \$58,839                       | -67.4          | \$59,386       |
| \$4.1m       | 0                 | -2.4             | \$41,766                       | -96.6          | \$42,446       | Т                 | -4.4             | \$48,185                       | -173.5         | \$23,636       | М                 | -1.7             | \$58,822                       | -69.1          | \$59,372       |
| \$4.2m       | 0                 | -2.4             | \$41,709                       | -99.0          | \$42,428       | 0                 | -4.4             | \$48,185                       | -177.9         | \$23,613       | Q                 | -1.7             | \$58,756                       | -70.8          | \$59,358       |
| \$4.3m       | Н                 | -2.4             | \$41,654                       | -101.4         | \$42,409       | Т                 | -4.4             | \$48,185                       | -182.3         | \$23,591       | M                 | -1.7             | \$58,744                       | -72.5          | \$59,343       |
| \$4.4m       | 0                 | -2.4             | \$41,652                       | -103.8         | \$42,392       | Т                 | -4.4             | \$48,185                       | -186.7         | \$23,570       | С                 | -1.7             | \$58,743                       | -74.2          | \$59,329       |
| \$4.5m       | С                 | -2.4             | \$41,646                       | -106.2         | \$42,375       | С                 | -4.4             | \$48,185                       | -191.1         | \$23,549       | R                 | -1.7             | \$58,725                       | -75.9          | \$59,316       |
| \$4.6m       | R                 | -2.4             | \$41,645                       | -108.6         | \$42,359       | Т                 | -4.4             | \$48,185                       | -195.5         | \$23,528       | М                 | -1.7             | \$58,666                       | -77.6          | \$59,302       |
| \$4.7m       | 0                 | -2.4             | \$41,595                       | -111.0         | \$42,342       | Т                 | -4.4             | \$48,185                       | -199.9         | \$23,508       | R                 | -1.7             | \$58,613                       | -79.3          | \$59,287       |
| \$4.8m       | 0                 | -2.4             | \$41,538                       | -113.4         | \$42,325       | R                 | -4.4             | \$48,185                       | -204.4         | \$23,489       | С                 | -1.7             | \$58,593                       | -81.0          | \$59,272       |

## Table A1.1.3: Reallocation following net investment (divisibility and diminishing returns)

|        |                   | Primary budget (\$50m) |          |                |          |                   | L                       | ower budget ( | (\$0m)         |          |                   | High                    | ner budget (S | \$100m)         |          |
|--------|-------------------|------------------------|----------|----------------|----------|-------------------|-------------------------|---------------|----------------|----------|-------------------|-------------------------|---------------|-----------------|----------|
| Budget |                   | Margina                | <u>u</u> | Cumi           | ılative  |                   | Margina                 | ul            | Cumi           | ulative  |                   | Margina                 | d             | Cum             | ulative  |
| impact | Tech <sup>a</sup> | $\Lambda E_{mb}$       | ICER°    | $\Delta E^{d}$ | 2+e      | Tech <sup>a</sup> | ∧ <i>E</i> <sup>b</sup> | ICER°         | $\Delta E^{d}$ | 2+e      | Tech <sup>a</sup> | ∧ <i>E</i> <sup>b</sup> | ICER°         | $\Lambda E^{d}$ | 2+e      |
| \$4.9m | Н                 | -2.4                   | \$41.521 | -115.8         | \$42,309 | I                 | -4.4                    | \$48,186      | -208.8         | \$23,470 | M                 | -1.7                    | \$58.588      | -82.7           | \$59.258 |
| \$5.0m | M                 | -2.4                   | \$41,505 | -118.2         | \$42,292 | Т                 | -4.4                    | \$48,183      | -213.2         | \$23,452 | 0                 | -1.7                    | \$58,586      | -84.4           | \$59,244 |
| \$5.1m | R                 | -2.4                   | \$41 485 | -120.6         | \$42,276 | I                 | -4.4                    | \$48,186      | -217.6         | \$23,434 | Ň                 | -17                     | \$58,508      | -86.1           | \$59,230 |
| \$5.2m | 0                 | -2.4                   | \$41 481 | -123.0         | \$42,260 | T                 | -4.4                    | \$48,186      | -222.1         | \$23,416 | R                 | -1.7                    | \$58,499      | -87.8           | \$59,216 |
| \$5.3m | Ő                 | -2.4                   | \$41 432 | -125.5         | \$42,245 | I                 | -4.4                    | \$48,186      | -226.5         | \$23,399 | C                 | -1.7                    | \$58,442      | -89.5           | \$59,201 |
| \$5.4m | Õ                 | -2.4                   | \$41 423 | -127.9         | \$42,229 | T                 | -4.4                    | \$48 183      | -230.9         | \$23,382 | M                 | -1.7                    | \$58,429      | -91.2           | \$59,186 |
| \$5.5m | H                 | -2.4                   | \$41 387 | -130.3         | \$42 213 | 0                 | -4.4                    | \$48 186      | -235.4         | \$23,366 | 0                 | -1.7                    | \$58,415      | -92.9           | \$59,100 |
| \$5.6m | 0                 | -2.4                   | \$41.365 | -132.7         | \$42,213 | н                 | -4.4                    | \$48 186      | -239.8         | \$23,350 | R                 | -1.7                    | \$58 385      | -94 7           | \$59.158 |
| \$5.0m | Č                 | -2.4                   | \$41 345 | -135.1         | \$42,190 | I                 | -4.4                    | \$48,186      | -244 3         | \$23,335 | M                 | -1.7                    | \$58 349      | -96.4           | \$59.143 |
| \$5.8m | R                 | -2.4                   | \$41 325 | -137.5         | \$42,168 | 0                 | -4.4                    | \$48 183      | -248 7         | \$23,320 | C                 | -1.7                    | \$58,290      | -98.1           | \$59,129 |
| \$5.0m | 0                 | -2.4                   | \$41.307 | -140.0         | \$42,153 | T                 | -4.4                    | \$48 186      | -253.2         | \$23,326 | R                 | -1.7                    | \$58,271      | -99.8           | \$59.114 |
| \$6.0m | H                 | -2.4                   | \$41,252 | -142.4         | \$42,133 | I                 | -4.4                    | \$48 186      | -257.6         | \$23,200 | M                 | -1.7                    | \$58,269      | -101.5          | \$59,099 |
| \$6.0m | 0                 | -2.4                   | \$41 249 | -144.8         | \$42,123 | Т                 | -4.5                    | \$48 183      | -262.1         | \$23,277 | 0                 | -1.7                    | \$58,243      | -103.2          | \$59.085 |
| \$6.7m | 0                 | -2.4                   | \$41,249 | -147.2         | \$42,123 | I                 | -4.5                    | \$48,185      | -266.5         | \$23,277 | M                 | -1.7                    | \$58,188      | -105.0          | \$59,000 |
| \$6.3m | M                 | _2.1                   | \$41 187 | -149.7         | \$42,092 | Т                 | -4.5                    | \$48 186      | -271.0         | \$23,200 | R                 | -1.7                    | \$58,157      | -106.7          | \$59,056 |
| \$6.4m | R                 | -2.4                   | \$41,167 | -152.1         | \$42,072 | I                 | -4.5                    | \$48,186      | -275.4         | \$23,230 | C                 | -1.7                    | \$58,137      | -108.4          | \$59.041 |
| \$6.5m | 0                 | -2.4                   | \$41 133 | -154.5         | \$42,063 | Т                 | -4.5                    | \$48 183      | -279.9         | \$23,230 | M                 | -1.7                    | \$58,106      | -110.1          | \$59,077 |
| \$6.6m | н                 | -2.4                   | \$41,116 | -157.0         | \$42,005 | I                 | -4.5                    | \$48 186      | -284.4         | \$23,225 | 0                 | -1.7                    | \$58,070      | -111.8          | \$59,027 |
| \$6.7m | 0                 | -2.4                   | \$41.088 | -159.4         | \$42,033 | I                 | -4.5                    | \$48 186      | -288.8         | \$23,210 | R                 | -1.7                    | \$58,043      | -113.6          | \$58.997 |
| \$6.8m | ŏ                 | -2.4                   | \$41,000 | -161.8         | \$42,033 | T                 | -4.5                    | \$48,186      | -200.0         | \$23,197 | M                 | -1.7                    | \$58,045      | -115.3          | \$58,983 |
| \$6.9m | Č                 | -2.4                   | \$41.040 | -164.3         | \$42,004 | I                 | -4.5                    | \$48 183      | -297.8         | \$23,101 | C                 | -1.7                    | \$57,983      | -117.0          | \$58,968 |
| \$7.0m | 0                 | -2.4                   | \$41,040 | -166.7         | \$41,990 | T                 | -4.5                    | \$48,185      | -302.3         | \$23,172 | M                 | -1.7                    | \$57,942      | -118.7          | \$58,953 |
| \$7.0m | R                 | -2.4                   | \$41,013 | -169.1         | \$41,976 | 0                 | -4.5                    | \$48,186      | -306.7         | \$23,137 | R                 | -1.7                    | \$57,928      | -120.5          | \$58,938 |
| \$7.1m | Н                 | -2.4                   | \$40.979 | -171.6         | \$41,970 | R                 | -4.5                    | \$48,186      | -311.2         | \$23,147 | 0                 | -1.7                    | \$57,920      | -120.5          | \$58,924 |
| \$7.2m | 0                 | -2.4                   | \$40,957 | -174.0         | \$41.947 | I                 | -4.5                    | \$48 183      | -315.7         | \$23,135 | M                 | -1.7                    | \$57,859      | -123.9          | \$58,909 |
| \$7.0m | 0                 | -2.4                   | \$40,897 | -176.5         | \$41.933 | T                 | -4.5                    | \$48 186      | -320.2         | \$23,121 | C                 | -1.7                    | \$57,829      | -125.6          | \$58,894 |
| \$7.5m | M                 | -2.4                   | \$40,859 | -178.9         | \$41 918 | I                 | -4.5                    | \$48 186      | -324.7         | \$23,101 | R                 | -1.7                    | \$57,813      | -127.4          | \$58,879 |
| \$7.6m | Н                 | -2.4                   | \$40,841 | -181.4         | \$41,904 | Т                 | -4.5                    | \$48 186      | -329.2         | \$23,089 | M                 | -1.7                    | \$57,776      | -129.1          | \$58,864 |
| \$7.0m | R                 | -2.4                   | \$40,839 | -183.8         | \$41,889 | I                 | -4.5                    | \$48 183      | -333.7         | \$23,009 | 0                 | -1.7                    | \$57,720      | -130.8          | \$58,849 |
| \$7.8m | 0                 | -2.4                   | \$40,838 | -186.3         | \$41,876 | T                 | -4.5                    | \$48,186      | -338.1         | \$23,070 | R                 | -1.7                    | \$57,698      | -132.6          | \$58,834 |
| \$7.0m | 0                 | -2.5                   | \$40,779 | -188.7         | \$41.861 | I                 | -4.5                    | \$48,186      | -342.6         | \$23,007 | M                 | -1.7                    | \$57,693      | -134.3          | \$58,819 |
| \$8.0m | Ő                 | -2.5                   | \$40,739 | -191.2         | \$41.847 | T                 | -4.5                    | \$48,186      | -347.1         | \$23,025 | C                 | -1.7                    | \$57,673      | -136.0          | \$58,805 |
| \$8.1m | Č                 | -2.5                   | \$40,730 | -193.6         | \$41,833 | I                 | -4.5                    | \$48 183      | -351.7         | \$23,034 | M                 | -1.7                    | \$57,608      | -137.8          | \$58,790 |
| \$8.2m | 0                 | -2.5                   | \$40,719 | -196.1         | \$41.819 | T                 | -4.5                    | \$48 186      | -356.2         | \$23,023 | R                 | -1.7                    | \$57 583      | -139.5          | \$58,775 |
| \$8.3m | H                 | -2.5                   | \$40,703 | -198.5         | \$41.805 | I                 | -4.5                    | \$48,186      | -360.7         | \$23,012 | 0                 | -1.7                    | \$57 544      | -141.3          | \$58,760 |
| \$8.4m | R                 | -2.5                   | \$40.676 | -201.0         | \$41,791 | T                 | -4.5                    | \$48,186      | -365.2         | \$23,002 | M                 | -1.7                    | \$57.524      | -143.0          | \$58,745 |
| \$8.5m | N                 | -2.5                   | \$40.672 | -203.5         | \$41.778 | Ī                 | -4.5                    | \$48.183      | -369.7         | \$22,991 | C                 | -1.7                    | \$57.518      | -144.7          | \$58.730 |
| \$8.6m | 0                 | -2.5                   | \$40,660 | -205.9         | \$41.764 | 0                 | -4.5                    | \$48,186      | -374.2         | \$22,981 | Ř                 | -1.7                    | \$57.467      | -146.5          | \$58,715 |
| \$8.7m | Ő                 | -2.5                   | \$40,600 | -208.4         | \$41.751 | Ť                 | -4.5                    | \$48,186      | -378.8         | \$22,970 | M                 | -1.7                    | \$57,439      | -148.2          | \$58,700 |
| \$8.8m | H                 | -2.5                   | \$40,563 | -210.8         | \$41,737 | I                 | -4.5                    | \$48,186      | -383.3         | \$22,960 | 0                 | -1.7                    | \$57 367      | -150.0          | \$58,684 |
| \$8.9m | 0                 | -2.5                   | \$40.539 | -213.3         | \$41,723 | I                 | -4.5                    | \$48,183      | -387.8         | \$22,950 | Č                 | -1.7                    | \$57.360      | -151.7          | \$58,669 |
| \$9.0m | M                 | -2.5                   | \$40.520 | -215.8         | \$41,709 | Т                 | -4.5                    | \$48,186      | -392.3         | \$22,940 | M                 | -1.7                    | \$57.353      | -153.4          | \$58,654 |
| \$9.1m | R                 | -2.5                   | \$40,513 | -218.2         | \$41 695 | Н                 | -4.5                    | \$48 186      | -396.9         | \$22,929 | R                 | -17                     | \$57 352      | -155.2          | \$58,640 |
| \$9.2m | 0                 | -2.5                   | \$40,479 | -220.7         | \$41.682 | I                 | -4.5                    | \$48,186      | -401.4         | \$22,919 | M                 | -1.7                    | \$57.267      | -156.9          | \$58.624 |
| \$9.3m | H                 | -2.5                   | \$40.422 | -223.2         | \$41.668 | Ť                 | -4.5                    | \$48.183      | -405.9         | \$22,910 | R                 | -1.7                    | \$57.235      | -158.7          | \$58.609 |
| \$9.4m | 0                 | -2.5                   | \$40.419 | -225.7         | \$41.654 | R                 | -4.5                    | \$48.186      | -410.5         | \$22,900 | C                 | -1.7                    | \$57.203      | -160.4          | \$58.594 |
| \$9.5m | Ċ                 | -2.5                   | \$40.415 | -228.1         | \$41.641 | I                 | -4.5                    | \$48.186      | -415.0         | \$22,890 | 0                 | -1.7                    | \$57.188      | -162.2          | \$58.579 |
| \$9.6m | 0                 | -2.5                   | \$40.383 | -230.6         | \$41.627 | Т                 | -4.5                    | \$48.186      | -419.6         | \$22,881 | M                 | -1.7                    | \$57.180      | -163.9          | \$58.564 |
| \$9.7m | ò                 | -2.5                   | \$40.358 | -233.1         | \$41.614 | I                 | -4.5                    | \$48.183      | -424.1         | \$22,871 | R                 | -1.8                    | \$57.120      | -165.7          | \$58.548 |
| \$9.8m | R                 | -2.5                   | \$40.348 | -235.6         | \$41.600 | Ť                 | -4.6                    | \$48.186      | -428.7         | \$22.862 | M                 | -1.8                    | \$57.093      | -167.4          | \$58.533 |
| \$9.9m | 0                 | -2.5                   | \$40,297 | -238.1         | \$41,587 | I                 | -4.6                    | \$48,186      | -433.2         | \$22,852 | С                 | -1.8                    | \$57.044      | -169.2          | \$58,518 |

|         | Primary budget (\$50n |                  |                                | (\$50m)        |                |                   | Le               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (S                   | \$100m)        |                |
|---------|-----------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                       | Margina          | 1                              | Cumi           | ılative        |                   | Margina          | ıl                             | Cumi           | ılative        |                   | Margina          | d a c                          | Cum            | ulative        |
| impact  | Tech <sup>a</sup>     | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$10.0m | Н                     | -2.5             | \$40,281                       | -240.5         | \$41,573       | Т                 | -4.6             | \$48,186                       | -437.8         | \$22,843       | Q                 | -1.8             | \$57,009                       | -170.9         | \$58,502       |
| \$10.1m | 0                     | -2.5             | \$40,236                       | -243.0         | \$41,560       | Ι                 | -4.6             | \$48,183                       | -442.3         | \$22,833       | М                 | -1.8             | \$57,005                       | -172.7         | \$58,487       |
| \$10.2m | R                     | -2.5             | \$40,183                       | -245.5         | \$41,546       | 0                 | -4.6             | \$48,186                       | -446.9         | \$22,824       | R                 | -1.8             | \$57,003                       | -174.4         | \$58,472       |
| \$10.3m | 0                     | -2.5             | \$40,175                       | -248.0         | \$41,532       | Т                 | -4.6             | \$48,186                       | -451.5         | \$22,815       | U                 | -1.8             | \$56,943                       | -176.2         | \$58,457       |
| \$10.4m | М                     | -2.5             | \$40,169                       | -250.5         | \$41,518       | Ι                 | -4.6             | \$48,186                       | -456.0         | \$22,805       | М                 | -1.8             | \$56,917                       | -178.0         | \$58,442       |
| \$10.5m | Н                     | -2.5             | \$40,138                       | -253.0         | \$41,505       | Т                 | -4.6             | \$48,183                       | -460.6         | \$22,796       | R                 | -1.8             | \$56,886                       | -179.7         | \$58,426       |
| \$10.6m | 0                     | -2.5             | \$40,114                       | -255.5         | \$41,491       | Ι                 | -4.6             | \$48,186                       | -465.2         | \$22,787       | С                 | -1.8             | \$56,885                       | -181.5         | \$58,412       |
| \$10.7m | С                     | -2.5             | \$40,096                       | -258.0         | \$41,478       | Т                 | -4.6             | \$48,186                       | -469.8         | \$22,778       | Q                 | -1.8             | \$56,828                       | -183.2         | \$58,396       |
| \$10.8m | 0                     | -2.5             | \$40,052                       | -260.5         | \$41,464       | Ι                 | -4.6             | \$48,186                       | -474.3         | \$22,769       | М                 | -1.8             | \$56,828                       | -185.0         | \$58,381       |
| \$10.9m | Q                     | -2.5             | \$40,021                       | -263.0         | \$41,450       | Т                 | -4.6             | \$48,183                       | -478.9         | \$22,760       | R                 | -1.8             | \$56,769                       | -186.8         | \$58,366       |
| \$11.0m | R                     | -2.5             | \$40,018                       | -265.5         | \$41,437       | I                 | -4.6             | \$48,186                       | -483.5         | \$22,750       | М                 | -1.8             | \$56,739                       | -188.5         | \$58,351       |
| \$11.1m | Н                     | -2.5             | \$39,995                       | -268.0         | \$41,423       | Т                 | -4.6             | \$48,186                       | -488.1         | \$22,741       | С                 | -1.8             | \$56,724                       | -190.3         | \$58,336       |
| \$11.2m | 0                     | -2.5             | \$39,990                       | -270.5         | \$41,410       | I                 | -4.6             | \$48,186                       | -492.7         | \$22,732       | R                 | -1.8             | \$56,652                       | -192.0         | \$58,320       |
| \$11.3m | 0                     | -2.5             | \$39,928                       | -273.0         | \$41,397       | Т                 | -4.6             | \$48,183                       | -497.3         | \$22,723       | М                 | -1.8             | \$56,649                       | -193.8         | \$58,305       |
| \$11.4m | 0                     | -2.5             | \$39,866                       | -275.5         | \$41,383       | I                 | -4.6             | \$48,186                       | -501.9         | \$22,714       | Q                 | -1.8             | \$56,646                       | -195.6         | \$58,290       |
| \$11.5m | R                     | -2.5             | \$39,851                       | -278.0         | \$41,369       | R                 | -4.6             | \$48,186                       | -506.5         | \$22,705       | С                 | -1.8             | \$56,562                       | -197.3         | \$58,275       |
| \$11.6m | Н                     | -2.5             | \$39,850                       | -280.5         | \$41,355       | 0                 | -4.6             | \$48,186                       | -511.1         | \$22,696       | М                 | -1.8             | \$56,558                       | -199.1         | \$58,259       |
| \$11.7m | М                     | -2.5             | \$39,805                       | -283.0         | \$41,342       | Т                 | -4.6             | \$48,183                       | -515.7         | \$22,687       | R                 | -1.8             | \$56,535                       | -200.9         | \$58,244       |
| \$11.8m | 0                     | -2.5             | \$39,804                       | -285.5         | \$41,328       | I                 | -4.6             | \$48,186                       | -520.3         | \$22,679       | E                 | -1.8             | \$56,494                       | -202.6         | \$58,229       |
| \$11.9m | C                     | -2.5             | \$39,771                       | -288.0         | \$41,314       | T                 | -4.6             | \$48,186                       | -524.9         | \$22,670       | M                 | -1.8             | \$56,467                       | -204.4         | \$58,214       |
| \$12.0m | 0                     | -2.5             | \$39,742                       | -290.6         | \$41,301       | l                 | -4.6             | \$48,186                       | -529.5         | \$22,661       | Q                 | -1.8             | \$56,463                       | -206.2         | \$58,199       |
| \$12.1m | H                     | -2.5             | \$39,704                       | -293.1         | \$41,287       | T                 | -4.6             | \$48,183                       | -534.2         | \$22,652       | R                 | -1.8             | \$56,417                       | -208.0         | \$58,184       |
| \$12.2m | R                     | -2.5             | \$39,684                       | -295.6         | \$41,273       | I                 | -4.6             | \$48,186                       | -538.8         | \$22,644       | C V               | -1.8             | \$56,401                       | -209.7         | \$58,168       |
| \$12.3m | 0                     | -2.5             | \$39,679                       | -298.1         | \$41,260       | I<br>T            | -4.6             | \$48,186                       | -543.4         | \$22,635       | M                 | -1.8             | \$56,375                       | -211.5         | \$58,153       |
| \$12.4m | Q                     | -2.5             | \$39,652                       | -300.6         | \$41,246       | I<br>C            | -4.6             | \$48,183                       | -548.0         | \$22,626       | K                 | -1.8             | \$56,299                       | -213.3         | \$58,138       |
| \$12.5m | U<br>U                | -2.5             | \$39,616                       | -303.2         | \$41,233       | C I               | -4.6             | \$48,186                       | -552.7         | \$22,618       | M                 | -1.8             | \$56,283                       | -215.1         | \$58,123       |
| \$12.6m | H                     | -2.5             | \$39,558                       | -305.7         | \$41,219       | I                 | -4.0             | \$48,180                       | -557.5         | \$22,009       | Q                 | -1.8             | \$50,279                       | -210.8         | \$58,108       |
| \$12.7m | D                     | -2.5             | \$39,333                       | -306.2         | \$41,203       | I                 | -4.0             | \$40,100                       | -301.9         | \$22,000       | U<br>M            | -1.0             | \$50,257                       | -218.0         | \$38,092       |
| \$12.0m | K O                   | -2.5             | \$39,310                       | -510.7         | \$41,192       | П                 | -4.0             | \$40,105                       | -300.0         | \$22,392       | D                 | -1.8             | \$56,190                       | -220.4         | \$58,077       |
| \$12.9m | C                     | 2.5              | \$39,489                       | 315.8          | \$41.164       | T                 | -4.0             | \$48,186                       | 575.0          | \$22,585       | M                 | -1.0             | \$56,096                       | 224.0          | \$58,002       |
| \$13.0m | M                     | -2.5             | \$39,478                       | -318.3         | \$41,104       | I                 | -4.6             | \$48,186                       | -580.5         | \$22,575       | 0                 | -1.8             | \$56,093                       | -224.0         | \$58,040       |
| \$13.1m | 0                     | -2.5             | \$39,426                       | -320.9         | \$41,136       | T                 | -4.7             | \$48 183                       | -585.2         | \$22,500       | C C               | -1.8             | \$56,073                       | -223.7         | \$58,015       |
| \$13.2m | Н                     | -2.5             | \$39,409                       | -323.4         | \$41,123       | 0                 | -4.7             | \$48,185                       | -589.8         | \$22,550       | R                 | -1.8             | \$56,063                       | -227.3         | \$58,000       |
| \$13.4m | 0                     | -2.5             | \$39.362                       | -326.0         | \$41.109       | I                 | -4.7             | \$48,186                       | -594 5         | \$22,550       | M                 | -1.8             | \$56,002                       | -231.1         | \$57,985       |
| \$13.5m | R                     | -2.5             | \$39,348                       | -328.5         | \$41.096       | T                 | -4.7             | \$48,186                       | -599.1         | \$22,533       | N                 | -1.8             | \$55,961                       | -232.9         | \$57,969       |
| \$13.6m | 0                     | -2.5             | \$39,299                       | -331.0         | \$41.082       | I                 | -4.7             | \$48,183                       | -603.8         | \$22,524       | R                 | -1.8             | \$55,944                       | -234.7         | \$57,954       |
| \$13.7m | 0                     | -2.5             | \$39,276                       | -333.6         | \$41,068       | Т                 | -4.7             | \$48,186                       | -608.5         | \$22,516       | С                 | -1.8             | \$55,908                       | -236.5         | \$57,938       |
| \$13.8m | Ĥ                     | -2.5             | \$39,261                       | -336.1         | \$41,054       | R                 | -4.7             | \$48,186                       | -613.1         | \$22,508       | М                 | -1.8             | \$55,907                       | -238.2         | \$57,923       |
| \$13.9m | 0                     | -2.5             | \$39,233                       | -338.7         | \$41,041       | Ι                 | -4.7             | \$48,186                       | -617.8         | \$22,499       | 0                 | -1.8             | \$55,907                       | -240.0         | \$57,908       |
| \$14.0m | R                     | -2.6             | \$39,179                       | -341.2         | \$41,027       | Т                 | -4.7             | \$48,183                       | -622.5         | \$22,491       | R                 | -1.8             | \$55,825                       | -241.8         | \$57,893       |
| \$14.1m | 0                     | -2.6             | \$39,170                       | -343.8         | \$41,013       | Ι                 | -4.7             | \$49,596                       | -627.1         | \$22,483       | М                 | -1.8             | \$55,812                       | -243.6         | \$57,877       |
| \$14.2m | Н                     | -2.6             | \$39,110                       | -346.4         | \$40,999       | Т                 | -4.7             | \$49,596                       | -631.8         | \$22,474       | С                 | -1.8             | \$55,742                       | -245.4         | \$57,862       |
| \$14.3m | С                     | -2.6             | \$39,105                       | -348.9         | \$40,985       | Ι                 | -4.7             | \$49,596                       | -636.5         | \$22,466       | Q                 | -1.8             | \$55,719                       | -247.2         | \$57,846       |
| \$14.4m | 0                     | -2.6             | \$39,105                       | -351.5         | \$40,971       | Т                 | -4.7             | \$49,596                       | -641.2         | \$22,458       | М                 | -1.8             | \$55,716                       | -249.0         | \$57,831       |
| \$14.5m | 0                     | -2.6             | \$39,040                       | -354.0         | \$40,957       | Ι                 | -4.7             | \$49,596                       | -645.9         | \$22,449       | R                 | -1.8             | \$55,706                       | -250.8         | \$57,816       |
| \$14.6m | М                     | -2.6             | \$39,035                       | -356.6         | \$40,943       | Т                 | -4.7             | \$49,596                       | -650.6         | \$22,441       | М                 | -1.8             | \$55,619                       | -252.6         | \$57,800       |
| \$14.7m | R                     | -2.6             | \$39,009                       | -359.2         | \$40,930       | 0                 | -4.7             | \$49,596                       | -655.3         | \$22,433       | R                 | -1.8             | \$55,586                       | -254.4         | \$57,784       |
| \$14.8m | 0                     | -2.6             | \$38,976                       | -361.7         | \$40,916       | Q                 | -4.7             | \$49,596                       | -660.0         | \$22,425       | С                 | -1.8             | \$55,574                       | -256.2         | \$57,769       |
| \$14.9m | Н                     | -2.6             | \$38,959                       | -364.3         | \$40,902       | Ι                 | -4.7             | \$49,596                       | -664.7         | \$22,417       | Q                 | -1.8             | \$55,530                       | -258.0         | \$57,753       |
| \$15.0m | 0                     | -2.6             | \$38,911                       | -366.9         | \$40,888       | Т                 | -4.7             | \$49,596                       | -669.4         | \$22,408       | М                 | -1.8             | \$55,521                       | -259.8         | \$57,738       |

|         |                   | Prin             | narv budget                    | (\$50m)        |                |                   | Le               | ower budget         | (\$0m)          |                |                   | High             | er budget (S                   | \$100m)        |                |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|---------------------|-----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina          | 1                              | Cumi           | ılative        |                   | Margina          | ıl                  | Cumi            | ulative        |                   | Margina          | d l                            | Ćum            | ulative        |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> ° | $\Delta E^{d}$  | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$15.1m | Q                 | -2.6             | \$38,892                       | -369.4         | \$40,874       | Ι                 | -4.7             | \$49,596            | -674.1          | \$22,400       | R                 | -1.8             | \$55,467                       | -261.6         | \$57,722       |
| \$15.2m | 0                 | -2.6             | \$38,844                       | -372.0         | \$40,860       | Т                 | -4.7             | \$49,596            | -678.8          | \$22,392       | М                 | -1.8             | \$55,423                       | -263.4         | \$57,706       |
| \$15.3m | R                 | -2.6             | \$38,838                       | -374.6         | \$40,846       | Ι                 | -4.7             | \$49,596            | -683.5          | \$22,384       | С                 | -1.8             | \$55,406                       | -265.2         | \$57,691       |
| \$15.4m | Н                 | -2.6             | \$38,807                       | -377.2         | \$40,832       | Т                 | -4.7             | \$49,596            | -688.2          | \$22,376       | R                 | -1.8             | \$55,347                       | -267.0         | \$57,675       |
| \$15.5m | 0                 | -2.6             | \$38,779                       | -379.7         | \$40,818       | Ι                 | -4.7             | \$49,596            | -693.0          | \$22,367       | Q                 | -1.8             | \$55,339                       | -268.8         | \$57,659       |
| \$15.6m | С                 | -2.6             | \$38,764                       | -382.3         | \$40,804       | Т                 | -4.7             | \$49,596            | -697.7          | \$22,359       | М                 | -1.8             | \$55,324                       | -270.6         | \$57,643       |
| \$15.7m | 0                 | -2.6             | \$38,712                       | -384.9         | \$40,790       | Ι                 | -4.7             | \$49,596            | -702.4          | \$22,351       | С                 | -1.8             | \$55,237                       | -272.4         | \$57,627       |
| \$15.8m | R                 | -2.6             | \$38,666                       | -387.5         | \$40,776       | Т                 | -4.7             | \$49,596            | -707.2          | \$22,343       | R                 | -1.8             | \$55,227                       | -274.3         | \$57,612       |
| \$15.9m | Н                 | -2.6             | \$38,653                       | -390.1         | \$40,762       | R                 | -4.7             | \$49,596            | -711.9          | \$22,334       | М                 | -1.8             | \$55,225                       | -276.1         | \$57,596       |
| \$16.0m | 0                 | -2.6             | \$38,647                       | -392.7         | \$40,748       | I                 | -4.7             | \$49,596            | -716.6          | \$22,326       | Q                 | -1.8             | \$55,147                       | -277.9         | \$57,580       |
| \$16.1m | М                 | -2.6             | \$38,626                       | -395.2         | \$40,734       | Т                 | -4.7             | \$49,596            | -721.4          | \$22,318       | М                 | -1.8             | \$55,123                       | -279.7         | \$57,564       |
| \$16.2m | 0                 | -2.6             | \$38,580                       | -397.8         | \$40,720       | 0                 | -4.7             | \$49,596            | -726.1          | \$22,310       | R                 | -1.8             | \$55,106                       | -281.5         | \$57,548       |
| \$16.3m | 0                 | -2.6             | \$38,513                       | -400.4         | \$40,706       | I                 | -4.7             | \$49,596            | -730.9          | \$22,302       | C                 | -1.8             | \$55,067                       | -283.3         | \$57,532       |
| \$16.4m | Q                 | -2.6             | \$38,502                       | -403.0         | \$40,692       | Н                 | -4.7             | \$49,596            | -735.6          | \$22,294       | М                 | -1.8             | \$55,024                       | -285.1         | \$57,516       |
| \$16.5m | Н                 | -2.6             | \$38,498                       | -405.6         | \$40,678       | Т                 | -4.8             | \$49,596            | -740.4          | \$22,286       | R                 | -1.8             | \$54,986                       | -287.0         | \$57,500       |
| \$16.6m | R                 | -2.6             | \$38,494                       | -408.2         | \$40,664       | I                 | -4.8             | \$49,596            | -745.1          | \$22,278       | Q                 | -1.8             | \$54,954                       | -288.8         | \$57,484       |
| \$16.7m | 0                 | -2.6             | \$38,448                       | -410.8         | \$40,650       | Т                 | -4.8             | \$49,596            | -749.9          | \$22,269       | М                 | -1.8             | \$54,921                       | -290.6         | \$57,468       |
| \$16.8m | C                 | -2.6             | \$38,416                       | -413.4         | \$40,636       | I                 | -4.8             | \$49,596            | -754.7          | \$22,261       | С                 | -1.8             | \$54,896                       | -292.4         | \$57,452       |
| \$16.9m | 0                 | -2.6             | \$38,379                       | -416.0         | \$40,622       | T                 | -4.8             | \$49,596            | -759.4          | \$22,253       | R                 | -1.8             | \$54,865                       | -294.2         | \$57,436       |
| \$17.0m | H                 | -2.6             | \$38,342                       | -418.6         | \$40,607       | l                 | -4.8             | \$49,596            | -764.2          | \$22,245       | M                 | -1.8             | \$54,819                       | -296.1         | \$57,420       |
| \$17.1m | R                 | -2.6             | \$38,321                       | -421.3         | \$40,593       | T                 | -4.8             | \$49,596            | -769.0          | \$22,237       | Q                 | -1.8             | \$54,760                       | -297.9         | \$57,404       |
| \$17.2m | 0                 | -2.6             | \$38,313                       | -423.9         | \$40,579       | l                 | -4.8             | \$49,596            | -7/3.8          | \$22,229       | R                 | -1.8             | \$54,743                       | -299.7         | \$57,387       |
| \$17.3m | 0                 | -2.6             | \$38,245                       | -426.5         | \$40,565       | 1                 | -4.8             | \$49,596            | -//8.6          | \$22,221       | C V               | -1.8             | \$54,723                       | -301.5         | \$57,371       |
| \$17.4m | M                 | -2.6             | \$38,199                       | -429.1         | \$40,550       | I<br>T            | -4.8             | \$49,596            | -/83.3          | \$22,212       | M                 | -1.8             | \$54,717                       | -303.4         | \$57,355       |
| \$17.5m | H                 | -2.6             | \$38,184                       | -431./         | \$40,536       | 1                 | -4.8             | \$49,596            | -/88.1          | \$22,204       | K                 | -1.8             | \$54,622                       | -305.2         | \$57,339       |
| \$17.6m | 0<br>D            | -2.0             | \$38,178                       | -434.3         | \$40,522       | 0                 | -4.8             | \$49,596            | -792.9          | \$22,190       | M                 | -1.8             | \$54,012                       | -307.0         | \$57,525       |
| \$17.7m | K                 | -2.0             | \$38,147                       | -437.0         | \$40,508       | I                 | -4.8             | \$49,596            | -/9/./          | \$22,188       | Q                 | -1.8             | \$54,564                       | -308.9         | \$57,300       |
| \$17.8m | 0                 | -2.0             | \$38,110                       | -439.0         | \$40,493       | I                 | -4.8             | \$49,596            | -802.5          | \$22,180       | U<br>M            | -1.8             | \$54,550                       | -310.7         | \$57,290       |
| \$17.9m | Q<br>C            | -2.0             | \$38,102                       | -442.2         | \$40,479       | T                 | -4.8             | \$49,390            | -607.5          | \$22,171       | D                 | -1.8             | \$54,505                       | -512.5         | \$57,274       |
| \$10.0m | 0                 | -2.0             | \$38,002                       | 447.5          | \$40,403       | P                 | -4.8             | \$49,590            | -012.2<br>817.0 | \$22,105       | M                 | -1.0             | \$54.401                       | 316.2          | \$57.241       |
| \$18.1m | н                 | -2.0             | \$38,040                       | 450.1          | \$40,431       | I                 | -4.8             | \$49,590            | 821.8           | \$22,133       | P                 | -1.0             | \$54 378                       | 318.0          | \$57,241       |
| \$18.3m | R                 | -2.0             | \$37,973                       | -452.7         | \$40,430       | T                 | -4.8             | \$49,596            | -826.6          | \$22,147       | C                 | -1.8             | \$54 375                       | -310.0         | \$57,224       |
| \$18.4m | 0                 | -2.0             | \$37,974                       | -455.4         | \$40,408       | I                 | -4.8             | \$49,596            | -831.4          | \$22,137       | 0                 | -1.8             | \$54 367                       | -321.7         | \$57,200       |
| \$18.5m | 0                 | -2.6             | \$37,903                       | -458.0         | \$40,394       | Т                 | -4.8             | \$49 596            | -836.3          | \$22,131       | M                 | -1.8             | \$54 295                       | -323.6         | \$57,175       |
| \$18.6m | H                 | -2.6             | \$37,865                       | -460.6         | \$40.379       | I                 | -4.8             | \$49.596            | -841.1          | \$22,114       | R                 | -1.8             | \$54.256                       | -325.4         | \$57,159       |
| \$18.7m | 0                 | -2.6             | \$37,836                       | -463.3         | \$40.364       | Ť                 | -4.8             | \$49.596            | -845.9          | \$22.106       | C                 | -1.8             | \$54.200                       | -327.3         | \$57.142       |
| \$18.8m | R                 | -2.6             | \$37,797                       | -465.9         | \$40,350       | I                 | -4.8             | \$49,596            | -850.8          | \$22.098       | M                 | -1.8             | \$54,186                       | -329.1         | \$57,125       |
| \$18.9m | 0                 | -2.6             | \$37,766                       | -468.6         | \$40,335       | Т                 | -4.8             | \$49,596            | -855.6          | \$22,089       | 0                 | -1.8             | \$54,168                       | -330.9         | \$57,109       |
| \$19.0m | М                 | -2.6             | \$37,752                       | -471.2         | \$40,321       | 0                 | -4.9             | \$49,596            | -860.5          | \$22,081       | R                 | -1.8             | \$54,133                       | -332.8         | \$57,092       |
| \$19.1m | Н                 | -2.7             | \$37,704                       | -473.9         | \$40,306       | Ī                 | -4.9             | \$49,596            | -865.3          | \$22,073       | М                 | -1.8             | \$54,080                       | -334.6         | \$57,076       |
| \$19.2m | С                 | -2.7             | \$37,701                       | -476.5         | \$40,292       | Т                 | -4.9             | \$49,596            | -870.2          | \$22,065       | С                 | -1.9             | \$54,023                       | -336.5         | \$57,059       |
| \$19.3m | 0                 | -2.7             | \$37,696                       | -479.2         | \$40,277       | Ι                 | -4.9             | \$49,596            | -875.0          | \$22,056       | R                 | -1.9             | \$54,010                       | -338.3         | \$57,042       |
| \$19.4m | 0                 | -2.7             | \$37,695                       | -481.8         | \$40,263       | Т                 | -4.9             | \$49,596            | -879.9          | \$22,048       | М                 | -1.9             | \$53,969                       | -340.2         | \$57,026       |
| \$19.5m | Ò                 | -2.7             | \$37,627                       | -484.5         | \$40,249       | Т                 | -4.9             | \$49,596            | -884.8          | \$22,040       | Q                 | -1.9             | \$53,967                       | -342.1         | \$57,009       |
| \$19.6m | R                 | -2.7             | \$37,621                       | -487.1         | \$40,234       | Ι                 | -4.9             | \$49,596            | -889.6          | \$22,031       | R                 | -1.9             | \$53,887                       | -343.9         | \$56,992       |
| \$19.7m | 0                 | -2.7             | \$37,556                       | -489.8         | \$40,220       | Н                 | -4.9             | \$49,596            | -894.5          | \$22,023       | М                 | -1.9             | \$53,859                       | -345.8         | \$56,975       |
| \$19.8m | Н                 | -2.7             | \$37,542                       | -492.5         | \$40,205       | Т                 | -4.9             | \$49,596            | -899.4          | \$22,015       | С                 | -1.9             | \$53,845                       | -347.6         | \$56,959       |
| \$19.9m | 0                 | -2.7             | \$37,487                       | -495.1         | \$40,191       | Ι                 | -4.9             | \$49,593            | -904.3          | \$22,007       | Q                 | -1.9             | \$53,766                       | -349.5         | \$56,942       |
| \$20.0m | R                 | -2.7             | \$37,444                       | -497.8         | \$40,176       | R                 | -4.9             | \$49,596            | -909.2          | \$21,998       | R                 | -1.9             | \$53,763                       | -351.3         | \$56,925       |
| \$20.1m | 0                 | -2.7             | \$37,415                       | -500.5         | \$40,161       | Т                 | -4.9             | \$49,596            | -914.1          | \$21,990       | М                 | -1.9             | \$53,749                       | -353.2         | \$56,908       |

|         | Primary budge     |                  |                                | (\$50m)        |                |                   | Le               | wer budget                     | (\$0m)         |                |                   | High             | er budget (S                   | \$100m)        |                         |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|-------------------------|
| Budget  |                   | Margina          | d a                            | Cumi           | ılative        |                   | Margina          | ıl                             | Cumi           | ılative        |                   | Margina          | 1                              | Cum            | ulative                 |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+\mathrm{e}}$ |
| \$20.2m | Н                 | -2.7             | \$37,376                       | -503.2         | \$40,146       | Ι                 | -4.9             | \$49,596                       | -918.9         | \$21,982       | С                 | -1.9             | \$53,666                       | -355.1         | \$56,891                |
| \$20.3m | 0                 | -2.7             | \$37,345                       | -505.8         | \$40,131       | С                 | -4.9             | \$49,596                       | -923.8         | \$21,974       | R                 | -1.9             | \$53,640                       | -356.9         | \$56,874                |
| \$20.4m | С                 | -2.7             | \$37,333                       | -508.5         | \$40,117       | Т                 | -4.9             | \$49,596                       | -928.7         | \$21,965       | М                 | -1.9             | \$53,637                       | -358.8         | \$56,857                |
| \$20.5m | М                 | -2.7             | \$37,283                       | -511.2         | \$40,102       | Ι                 | -4.9             | \$49,596                       | -933.6         | \$21,957       | Q                 | -1.9             | \$53,562                       | -360.7         | \$56,840                |
| \$20.6m | Q                 | -2.7             | \$37,278                       | -513.9         | \$40,087       | Т                 | -4.9             | \$49,596                       | -938.5         | \$21,949       | М                 | -1.9             | \$53,522                       | -362.5         | \$56,823                |
| \$20.7m | 0                 | -2.7             | \$37,274                       | -516.6         | \$40,073       | 0                 | -4.9             | \$49,596                       | -943.5         | \$21,941       | R                 | -1.9             | \$53,516                       | -364.4         | \$56,806                |
| \$20.8m | R                 | -2.7             | \$37,266                       | -519.2         | \$40,058       | Ι                 | -4.9             | \$49,596                       | -948.4         | \$21,933       | С                 | -1.9             | \$53,485                       | -366.3         | \$56,789                |
| \$20.9m | Н                 | -2.7             | \$37,211                       | -521.9         | \$40,043       | Т                 | -4.9             | \$49,596                       | -953.3         | \$21,924       | М                 | -1.9             | \$53,410                       | -368.1         | \$56,772                |
| \$21.0m | 0                 | -2.7             | \$37,202                       | -524.6         | \$40,029       | Ι                 | -4.9             | \$49,596                       | -958.2         | \$21,916       | R                 | -1.9             | \$53,390                       | -370.0         | \$56,755                |
| \$21.1m | 0                 | -2.7             | \$37,131                       | -527.3         | \$40,014       | Т                 | -4.9             | \$49,596                       | -963.1         | \$21,908       | Q                 | -1.9             | \$53,358                       | -371.9         | \$56,738                |
| \$21.2m | R                 | -2.7             | \$37,087                       | -530.0         | \$39,999       | Ι                 | -4.9             | \$49,596                       | -968.1         | \$21,900       | С                 | -1.9             | \$53,303                       | -373.8         | \$56,720                |
| \$21.3m | 0                 | -2.7             | \$37,059                       | -532.7         | \$39,984       | Т                 | -4.9             | \$49,596                       | -973.0         | \$21,891       | М                 | -1.9             | \$53,296                       | -375.6         | \$56,703                |
| \$21.4m | Н                 | -2.7             | \$37,044                       | -535.4         | \$39,969       | Ι                 | -4.9             | \$49,596                       | -977.9         | \$21,883       | R                 | -1.9             | \$53,268                       | -377.5         | \$56,686                |
| \$21.5m | 0                 | -2.7             | \$36,986                       | -538.1         | \$39,954       | Т                 | -4.9             | \$49,596                       | -982.9         | \$21,874       | М                 | -1.9             | \$53,180                       | -379.4         | \$56,669                |
| \$21.6m | C                 | -2.7             | \$36,958                       | -540.8         | \$39,939       | Ι                 | -5.0             | \$49,593                       | -987.8         | \$21,866       | Q                 | -1.9             | \$53,151                       | -381.3         | \$56,652                |
| \$21.7m | 0                 | -2.7             | \$36,915                       | -543.5         | \$39,924       | Т                 | -5.0             | \$49,596                       | -992.8         | \$21,858       | R                 | -1.9             | \$53,141                       | -383.2         | \$56,634                |
| \$21.8m | R                 | -2.7             | \$36,908                       | -546.2         | \$39,909       | I                 | -5.0             | \$49,596                       | -997.7         | \$21,849       | C                 | -1.9             | \$53,121                       | -385.0         | \$56,617                |
| \$21.9m | H                 | -2.7             | \$36,876                       | -548.9         | \$39,894       | E                 | -5.0             | \$49,596                       | -1002.7        | \$21,841       | М                 | -1.9             | \$53,062                       | -386.9         | \$56,600                |
| \$22.0m | Q                 | -2.7             | \$36,852                       | -551.7         | \$39,879       | Т                 | -5.0             | \$49,596                       | -1007.7        | \$21,832       | R                 | -1.9             | \$53,019                       | -388.8         | \$56,582                |
| \$22.1m | 0                 | -2.7             | \$36,842                       | -554.4         | \$39,865       | 0                 | -5.0             | \$49,596                       | -1012.6        | \$21,824       | М                 | -1.9             | \$52,944                       | -390.7         | \$56,565                |
| \$22.2m | M                 | -2.7             | \$36,789                       | -557.1         | \$39,850       | R                 | -5.0             | \$49,596                       | -1017.6        | \$21,816       | Q                 | -1.9             | \$52,943                       | -392.6         | \$56,547                |
| \$22.3m | 0                 | -2.7             | \$36,769                       | -559.8         | \$39,835       | I                 | -5.0             | \$49,596                       | -1022.6        | \$21,808       | C                 | -1.9             | \$52,937                       | -394.5         | \$56,530                |
| \$22.4m | R                 | -2.7             | \$36,728                       | -562.5         | \$39,820       | T                 | -5.0             | \$49,596                       | -1027.6        | \$21,799       | R                 | -1.9             | \$52,890                       | -396.4         | \$56,513                |
| \$22.5m | H                 | -2.7             | \$36,704                       | -565.3         | \$39,805       | l                 | -5.0             | \$49,596                       | -1032.5        | \$21,791       | M                 | -1.9             | \$52,826                       | -398.3         | \$56,495                |
| \$22.6m | 0                 | -2.7             | \$36,695                       | -568.0         | \$39,790       | T                 | -5.0             | \$49,596                       | -1037.5        | \$21,783       | R                 | -1.9             | \$52,765                       | -400.2         | \$56,478                |
| \$22.7m | 0                 | -2.7             | \$36,622                       | -570.7         | \$39,774       | T                 | -5.0             | \$49,596                       | -1042.5        | \$21,774       | C                 | -1.9             | \$52,751                       | -402.1         | \$56,460                |
| \$22.8m | C                 | -2.7             | \$36,575                       | -5/3.5         | \$39,759       | I                 | -5.0             | \$49,596                       | -1047.5        | \$21,766       | Q                 | -1.9             | \$52,733                       | -404.0         | \$56,443                |
| \$22.9m | 0                 | -2.7             | \$36,548                       | -5/6.2         | \$39,744       | I                 | -5.0             | \$49,596                       | -1052.5        | \$21,/5/       | M                 | -1.9             | \$52,706                       | -405.8         | \$56,425                |
| \$23.0m | K                 | -2.7             | \$36,546                       | -5/8.9         | \$39,729       | I<br>II           | -5.0             | \$49,596                       | -1057.5        | \$21,749       | K<br>M            | -1.9             | \$52,640                       | -40/./         | \$56,407                |
| \$23.1m | П                 | -2.7             | \$30,334                       | -381./         | \$39,714       | п                 | -5.0             | \$49,390                       | -1062.5        | \$21,740       | M C               | -1.9             | \$52,565                       | -409.0         | \$56,390                |
| \$23.2m | 0                 | -2.7             | \$30,472                       | -384.4         | \$39,099       | I                 | -3.0             | \$49,393                       | -1007.5        | \$21,752       | U<br>N            | -1.9             | \$52,560                       | -411.0         | \$56,372                |
| \$23.5m | 0                 | -2.7             | \$30,410                       | -387.1         | \$39,083       | T                 | -5.0             | \$49,390                       | -1072.0        | \$21,724       | N O               | -1.9             | \$52,500                       | -415.3         | \$56,227                |
| \$23.4m | D                 | -2.7             | \$26,399                       | -369.9         | \$39,008       | 1                 | -5.0             | \$49,390                       | -1077.0        | \$21,713       | Q<br>D            | -1.9             | \$52,522                       | 417.2          | \$56,337                |
| \$23.5m | н                 | -2.8             | \$36,360                       | 595.4          | \$39,033       | V<br>I            | -5.0             | \$49,590                       | 1087.6         | \$21,707       | M                 | 1.9              | \$52,515                       | 410.2          | \$56.302                |
| \$23.0m | 0                 | -2.8             | \$36,325                       | -598.2         | \$39,622       | 0                 | -5.0             | \$49,596                       | -1092.7        | \$21,098       | R                 | -1.9             | \$52,405                       | -419.2         | \$56,284                |
| \$23.7m | M                 | -2.8             | \$36,266                       | -600.9         | \$39,607       | T                 | -5.0             | \$49 596                       | -1097.7        | \$21,690       | C                 | -1.9             | \$52,300                       | -423.0         | \$56,267                |
| \$23.9m | 0                 | -2.8             | \$36,249                       | -603.7         | \$39,591       | I                 | -5.0             | \$49 596                       | -1102.7        | \$21,002       | M                 | -1.9             | \$52,340                       | -424.9         | \$56,249                |
| \$24.0m | Н                 | -2.8             | \$36,183                       | -606.4         | \$39.576       | T                 | -5.0             | \$49,596                       | -1107.8        | \$21,665       | 0                 | -1.9             | \$52,309                       | -426.8         | \$56,231                |
| \$24.1m | C                 | -2.8             | \$36,184                       | -609.2         | \$39 560       | R                 | -5.1             | \$49 596                       | -1112.8        | \$21,656       | R                 | -19              | \$52,260                       | -428.7         | \$56,213                |
| \$24.2m | R                 | -2.8             | \$36,181                       | -612.0         | \$39,545       | I                 | -5.1             | \$49.596                       | -1117.9        | \$21,648       | M                 | -1.9             | \$52,217                       | -430.6         | \$56,196                |
| \$24.3m | 0                 | -2.8             | \$36,173                       | -614.7         | \$39,530       | T                 | -5.1             | \$49,596                       | -1122.9        | \$21,639       | C                 | -1.9             | \$52,187                       | -432.6         | \$56,178                |
| \$24.4m | 0                 | -2.8             | \$36.098                       | -617.5         | \$39,515       | Ī                 | -5.1             | \$49,596                       | -1128.0        | \$21,631       | R                 | -1.9             | \$52,132                       | -434.5         | \$56,160                |
| \$24.5m | 0                 | -2.8             | \$36,022                       | -620.3         | \$39,499       | T                 | -5.1             | \$49,596                       | -1133.1        | \$21.623       | 0                 | -1.9             | \$52,094                       | -436.4         | \$56,142                |
| \$24.6m | H                 | -2.8             | \$36,007                       | -623.0         | \$39,483       | I                 | -5.1             | \$49,596                       | -1138.2        | \$21,614       | Ň                 | -1.9             | \$52,089                       | -438.3         | \$56,124                |
| \$24.7m | R                 | -2.8             | \$35.997                       | -625.8         | \$39.468       | T                 | -5.1             | \$49.596                       | -1143.2        | \$21.605       | R                 | -1.9             | \$52.005                       | -440.2         | \$56.106                |
| \$24.8m | 0                 | -2.8             | \$35,969                       | -628.6         | \$39,453       | Т                 | -5.1             | \$49,596                       | -1148.3        | \$21,597       | С                 | -1.9             | \$51,996                       | -442.2         | \$56,089                |
| \$24.9m | ò                 | -2.8             | \$35,945                       | -631.4         | \$39,437       | Ι                 | -5.1             | \$49,593                       | -1153.4        | \$21,588       | М                 | -1.9             | \$51,964                       | -444.1         | \$56,071                |
| \$25.0m | 0                 | -2.8             | \$35,869                       | -634.2         | \$39,421       | 0                 | -5.1             | \$49,596                       | -1158.5        | \$21,580       | 0                 | -1.9             | \$51,877                       | -446.0         | \$56,053                |
| \$25.1m | Ν                 | -2.8             | \$35,833                       | -637.0         | \$39,406       | Т                 | -5.1             | \$49,596                       | -1163.6        | \$21,571       | Ř                 | -1.9             | \$51,875                       | -447.9         | \$56,035                |
| \$25.2m | Н                 | -2.8             | \$35,828                       | -639.8         | \$39,390       | Ι                 | -5.1             | \$49,596                       | -1168.7        | \$21,562       | М                 | -1.9             | \$51,832                       | -449.9         | \$56,017                |

| _        |                   | Prin             | narv budget | (\$50m)         |          |                   | La               | ower budget | (\$0m)         |                 |                   | High             | er budget (S | \$100m)         |                 |
|----------|-------------------|------------------|-------------|-----------------|----------|-------------------|------------------|-------------|----------------|-----------------|-------------------|------------------|--------------|-----------------|-----------------|
| Budget   |                   | Margina          | l           | Cumi            | ılative  |                   | Margina          | ul          | Cumi           | ılative         |                   | Margina          | l            | Cum             | ulative         |
| impact   | Tech <sup>a</sup> | $\Lambda E_{mb}$ | ICER°       | $\Lambda E^{d}$ | 2+e      | Tech <sup>a</sup> | $\Lambda E_{mb}$ | ICER°       | $\Delta E^{d}$ | 2 <sup>+e</sup> | Tech <sup>a</sup> | $\Lambda E_{mb}$ | ICER°        | $\Lambda E^{d}$ | 2 <sup>+e</sup> |
| \$25.3m  | R                 | -2.8             | \$35.810    | -642.5          | \$39.374 | T                 | -5.1             | \$49.596    | -1173.8        | \$21.554        | C                 | -1.9             | \$51.804     | -451.8          | \$55,999        |
| \$25.4m  | 0                 | -2.8             | \$35,791    | -645.3          | \$39,359 | I                 | -5.1             | \$49,596    | -1178.9        | \$21,545        | R                 | -1.9             | \$51,749     | -453.7          | \$55,980        |
| \$25.5m  | Ċ                 | -2.8             | \$35,784    | -648.1          | \$39,344 | T                 | -5.1             | \$49.596    | -1184.0        | \$21.536        | М                 | -1.9             | \$51,706     | -455.7          | \$55.962        |
| \$25.6m  | 0                 | -2.8             | \$35,714    | -650.9          | \$39 328 | I                 | -5.1             | \$49 596    | -1189.2        | \$21 528        | 0                 | -1.9             | \$51.659     | -457.6          | \$55 944        |
| \$25.7m  | M                 | -2.8             | \$35,712    | -653.7          | \$39 312 | T                 | -5.1             | \$49 596    | -1194.3        | \$21,520        | Ř                 | -1.9             | \$51,618     | -459.5          | \$55,926        |
| \$25.8m  | Н                 | -2.8             | \$35,648    | -656.5          | \$39,297 | R                 | -5.1             | \$49 596    | -1199.4        | \$21,510        | C                 | -1.9             | \$51,610     | -461.5          | \$55,908        |
| \$25.9m  | 0                 | -2.8             | \$35,637    | -659.3          | \$39,281 | I                 | -5.1             | \$49 596    | -1204.6        | \$21,510        | M                 | -1.9             | \$51,573     | -463.4          | \$55,890        |
| \$26.0m  | R                 | -2.8             | \$35,626    | -662.2          | \$39,266 | T                 | -5.1             | \$49 596    | -1209.7        | \$21,201        | R                 | -1.9             | \$51,675     | -465.4          | \$55,871        |
| \$26.0m  | 0                 | -2.8             | \$35,559    | -665.0          | \$39,250 | I                 | -5.2             | \$49 596    | -1214.9        | \$21,193        | M                 | -1.9             | \$51,443     | -467.3          | \$55,853        |
| \$26.1m  | Ő                 | -2.8             | \$35,511    | -667.8          | \$39,234 | T                 | -5.2             | \$49 596    | -1220.0        | \$21,475        | 0                 | -1.9             | \$51,439     | -469.2          | \$55,835        |
| \$26.2m  | Õ                 | -2.8             | \$35,480    | -670.6          | \$39,219 | 0                 | -5.2             | \$49 596    | -1225.2        | \$21,466        | Č                 | -1.9             | \$51,415     | -471.2          | \$55,816        |
| \$26.0m  | Н                 | -2.8             | \$35,465    | -673.4          | \$39,203 | T                 | -5.2             | \$49 596    | -1230.3        | \$21,457        | R                 | -1.9             | \$51,364     | -473.1          | \$55,798        |
| \$26.5m  | R                 | -2.8             | \$35,438    | -676.2          | \$39,187 | H                 | -5.2             | \$49 596    | -1235.5        | \$21,137        | M                 | -1.9             | \$51,308     | -475.1          | \$55,780        |
| \$26.6m  | 0                 | -2.8             | \$35,401    | -679.1          | \$39,171 | I                 | -5.2             | \$49 593    | -1240.7        | \$21,440        | R                 | -2.0             | \$51,232     | -477.0          | \$55,760        |
| \$26.0m  | C                 | -2.8             | \$35,101    | -681.9          | \$39,156 | T                 | -5.2             | \$49 596    | -1245.9        | \$21,110        | C                 | -2.0             | \$51,232     | -479.0          | \$55,701        |
| \$26.7m  | 0                 | -2.0             | \$35,373    | -684 7          | \$39,130 | I                 | -5.2             | \$49,596    | -1243.9        | \$21,431        | 0                 | -2.0             | \$51,217     | -480.9          | \$55,724        |
| \$26.9m  | н                 | -2.0             | \$35,323    | -687.6          | \$39,170 | T                 | -5.2             | \$49,596    | -1251.0        | \$21,422        | X                 | -2.0             | \$51,217     | -482.9          | \$55,724        |
| \$20.9m  | R                 | -2.0             | \$35,262    | -690.4          | \$39,124 | I                 | -5.2             | \$49,596    | -1250.2        | \$21,414        | R                 | -2.0             | \$51,101     | -484.9          | \$55,687        |
| \$27.0m  | 0                 | -2.0             | \$35,250    | -693.2          | \$39,092 | T                 | -5.2             | \$49,596    | -1266.6        | \$21,405        | M                 | -2.0             | \$51,039     | -486.8          | \$55,668        |
| \$27.1m  | 0                 | -2.8             | \$35,242    | -696.1          | \$39,092 | I                 | -5.2             | \$49,596    | -1200.0        | \$21,390        | C                 | -2.0             | \$51,039     | -488.8          | \$55,650        |
| \$27.2m  | M                 | -2.0             | \$35,103    | -698.9          | \$39,060 | T                 | -5.2             | \$49,596    | -1277.0        | \$21,307        | 0                 | -2.0             | \$50,993     | -400.0          | \$55,631        |
| \$27.5m  | H                 | -2.8             | \$35,121    | 701.8           | \$39,000 | I                 | 5.2              | \$49,590    | 1282.2         | \$21,378        | P                 | 2.0              | \$50,993     | 402.7           | \$55,613        |
| \$27.4m  | 0                 | 2.0              | \$35,093    | 704.6           | \$30,028 | T                 | 5.2              | \$49,590    | 1287.5         | \$21,309        | W                 | 2.0              | \$50,971     | 492.7           | \$55,015        |
| \$27.5m  | P                 | 2.9              | \$35,063    | 707.5           | \$39,028 | P                 | 5.2              | \$49,590    | 1207.5         | \$21,300        | M                 | 2.0              | \$50,900     | 496.6           | \$55,574        |
| \$27.0m  | 0                 | -2.9             | \$35,002    | -710.3          | \$38,996 | 0                 | -5.2             | \$49,596    | -1292.7        | \$21,331        | R                 | -2.0             | \$50,898     | -498.6          | \$55,570        |
| \$27.7m  | Q<br>0            | 2.9              | \$35,040    | 713.2           | \$38,990 | Т                 | 5.2              | \$49,590    | 1303.2         | \$21,342        | C K               | 2.0              | \$50,820     | 500.6           | \$55,537        |
| \$27.0m  | C                 | 2.9              | \$33,002    | 716.0           | \$38,960 | C I               | -5.2             | \$49,590    | 1308.4         | \$21,333        | 0                 | 2.0              | \$50,820     | 502.5           | \$55,538        |
| \$27.5m  | 0                 | 2.9              | \$34,950    | 718.0           | \$38,904 | I                 | -5.2             | \$49,590    | 1313.6         | \$21,324        | M                 | 2.0              | \$50,760     | 504.5           | \$55,520        |
| \$28.1m  | н                 | 2.9              | \$34,922    | 721.8           | \$38,940 | T                 | -5.2             | \$49,590    | 1318.0         | \$21,313        | P                 | 2.0              | \$50,701     | 506.5           | \$55,301        |
| \$28.1m  | R                 | -2.9             | \$34,900    | -721.6          | \$38,952 | I                 | -5.3             | \$49,590    | -1324.1        | \$21,300        | M                 | -2.0             | \$50,715     | -508.4          | \$55,463        |
| \$28.2m  | 0                 | -2.9             | \$34,840    | -727.5          | \$38,900 | T                 | -5.3             | \$49 596    | -1324.1        | \$21,297        | C                 | -2.0             | \$50,619     | -510.4          | \$55,405        |
| \$28.5m  | 0                 | -2.9             | \$34,040    | -730.4          | \$38,883 | I                 | -5.3             | \$49,596    | -1327.4        | \$21,200        | R                 | -2.0             | \$50,579     | -512.4          | \$55,426        |
| \$28.5m  | н                 | -2.9             | \$34,750    | -733.3          | \$38,867 | T                 | -5.3             | \$49,596    | -1339.9        | \$21,270        | 0                 | -2.0             | \$50,579     | -512.4          | \$55,407        |
| \$28.5m  | R                 | -2.9             | \$34,680    | -736.2          | \$38,850 | I                 | -5.3             | \$49,596    | -1345.2        | \$21,270        | X                 | -2.0             | \$50,330     | -516.4          | \$55,407        |
| \$28.7m  | 0                 | -2.9             | \$34,676    | -739.0          | \$38,834 | T                 | -5.3             | \$49,596    | -1350.5        | \$21,201        | R                 | -2.0             | \$50,446     | -518.3          | \$55,369        |
| \$28.8m  | 0                 | -2.9             | \$34 594    | -741.9          | \$38,818 | T                 | -5.3             | \$49,596    | -1355.8        | \$21,231        | C                 | -2.0             | \$50,416     | -520.3          | \$55,350        |
| \$28.9m  | 0                 | -2.9             | \$34 557    | -744.8          | \$38,801 | I                 | -5.3             | \$49 596    | -1361.1        | \$21,233        | M                 | -2.0             | \$50,335     | -522.3          | \$55,331        |
| \$20.9 m | Č                 | -2.9             | \$34 527    | -747 7          | \$38,785 | T                 | -5.3             | \$49 596    | -1366.4        | \$21,233        | R                 | -2.0             | \$50,317     | -524.3          | \$55,312        |
| \$29.1m  | Н                 | -2.9             | \$34 524    | -750.6          | \$38,768 | 0                 | -5.3             | \$49 596    | -1371.7        | \$21,221        | 0                 | -2.0             | \$50,308     | -526.3          | \$55,293        |
| \$29.7m  | 0                 | -2.9             | \$34 510    | -753.5          | \$38 752 | I                 | -5.3             | \$49 596    | -1377.0        | \$21,211        | Č                 | -2.0             | \$50,211     | -528.3          | \$55,274        |
| \$29.3m  | R                 | -2.9             | \$34 488    | -756.4          | \$38,735 | T                 | -5.3             | \$49,596    | -1382.3        | \$21,205        | M                 | -2.0             | \$50,186     | -530.3          | \$55,255        |
| \$29.5m  | M                 | -2.9             | \$34 487    | -759.3          | \$38,719 | I                 | -5.3             | \$49 596    | -1387.7        | \$21,190        | R                 | -2.0             | \$50,183     | -532.3          | \$55,236        |
| \$29.5m  | 0                 | -2.9             | \$34 428    | -762.2          | \$38,703 | R                 | -5.3             | \$49 596    | -1393.0        | \$21,107        | Н                 | -2.0             | \$50,162     | -534.3          | \$55,217        |
| \$29.6m  | õ                 | _2.9             | \$34 344    | -765.1          | \$38,686 | T                 | -5.3             | \$49 596    | -1398 3        | \$21,168        | 0                 | -2.0             | \$50,075     | -536.3          | \$55 198        |
| \$29.7m  | H                 | -2.9             | \$34 329    | -768.0          | \$38,670 | H                 | -53              | \$49 596    | -1403 7        | \$21,159        | H                 | -2.0             | \$50,070     | -538.2          | \$55,179        |
| \$29.8m  | R                 | _2.9             | \$34 295    | -771.0          | \$38,653 | I                 | -5 3             | \$49 596    | -1409.0        | \$21,159        | R                 | -2.0             | \$50,050     | -540.2          | \$55,160        |
| \$29.0m  | 0                 | _2.9             | \$34 259    | -773.9          | \$38,637 | T                 | -5.3             | \$49 593    | -1414.4        | \$21,130        | M                 | -2.0             | \$50,030     | -542.2          | \$55.141        |
| \$30.0m  | 0                 | -2.9             | \$34 175    | -776.8          | \$38,620 | T                 | -5.3             | \$49 596    | -1419.7        | \$21,140        | C                 | -2.0             | \$50,045     | -544.2          | \$55 122        |
| \$30.1m  | н                 | -2.9             | \$34 133    | -779.7          | \$38,603 | ī                 | -5.4             | \$49 596    | -1425.1        | \$21,131        | н                 | -2.0             | \$49,978     | -546.2          | \$55,104        |
| \$30.2m  | R                 | -2.9             | \$34 101    | -782.7          | \$38 586 | T                 | -5.4             | \$49 596    | -1430.5        | \$21,122        | R                 | -2.0             | \$49 920     | -548.2          | \$55.085        |
| \$30.3m  | 0                 | -2.9             | \$34.091    | -785.6          | \$38,569 | Ī                 | -5.4             | \$49.596    | -1435.8        | \$21,103        | M                 | -2.0             | \$49,890     | -550.3          | \$55.066        |

|                      |                   | Prin             | narv budget                    | (\$50m)        |                |                   | Le               | ower budget                    | (\$0m)         |                         |                   | High             | er budget (S                   | \$100m)        |                  |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|-------------------------|-------------------|------------------|--------------------------------|----------------|------------------|
| Budget               |                   | Margina          | 1                              | Cumi           | ılative        |                   | Margina          | ul III                         | Cumi           | ılative                 |                   | Margina          | d l                            | Cum            | ulative          |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$          | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$   |
| \$30.4m              | С                 | -2.9             | \$34,087                       | -788.5         | \$38,553       | Т                 | -5.4             | \$49,596                       | -1441.2        | \$21,093                | Н                 | -2.0             | \$49,886                       | -552.3         | \$55,047         |
| \$30.5m              | Q                 | -2.9             | \$34,059                       | -791.5         | \$38,536       | 0                 | -5.4             | \$49,596                       | -1446.6        | \$21,084                | Q                 | -2.0             | \$49,841                       | -554.3         | \$55,028         |
| \$30.6m              | 0                 | -2.9             | \$34,004                       | -794.4         | \$38,519       | Ι                 | -5.4             | \$49,596                       | -1452.0        | \$21,074                | С                 | -2.0             | \$49,796                       | -556.3         | \$55,009         |
| \$30.7m              | Н                 | -2.9             | \$33,934                       | -797.4         | \$38,502       | Т                 | -5.4             | \$49,596                       | -1457.4        | \$21,065                | Н                 | -2.0             | \$49,793                       | -558.3         | \$54,990         |
| \$30.8m              | 0                 | -2.9             | \$33,920                       | -800.3         | \$38,485       | Ι                 | -5.4             | \$49,596                       | -1462.8        | \$21,055                | R                 | -2.0             | \$49,783                       | -560.3         | \$54,972         |
| \$30.9m              | R                 | -2.9             | \$33,905                       | -803.3         | \$38,468       | Т                 | -5.4             | \$49,596                       | -1468.2        | \$21,046                | М                 | -2.0             | \$49,739                       | -562.3         | \$54,953         |
| \$31.0m              | 0                 | -3.0             | \$33,833                       | -806.2         | \$38,451       | Т                 | -5.4             | \$49,596                       | -1473.7        | \$21,036                | Н                 | -2.0             | \$49,700                       | -564.3         | \$54,934         |
| \$31.1m              | М                 | -3.0             | \$33,803                       | -809.2         | \$38,434       | I                 | -5.4             | \$49,596                       | -1479.1        | \$21,026                | R                 | -2.0             | \$49,652                       | -566.3         | \$54,915         |
| \$31.2m              | 0                 | -3.0             | \$33,746                       | -812.1         | \$38,417       | R                 | -5.4             | \$49,596                       | -1484.5        | \$21,017                | Н                 | -2.0             | \$49,606                       | -568.3         | \$54,897         |
| \$31.3m              | Н                 | -3.0             | \$33,734                       | -815.1         | \$38,400       | Т                 | -5.4             | \$49,596                       | -1490.0        | \$21,007                | Q                 | -2.0             | \$49,604                       | -570.4         | \$54,878         |
| \$31.4m              | R                 | -3.0             | \$33,709                       | -818.1         | \$38,383       | I                 | -5.4             | \$49,596                       | -1495.4        | \$20,997                | С                 | -2.0             | \$49,588                       | -572.4         | \$54,859         |
| \$31.5m              | 0                 | -3.0             | \$33,660                       | -821.0         | \$38,366       | Т                 | -5.5             | \$49,596                       | -1500.9        | \$20,988                | М                 | -2.0             | \$49,588                       | -574.4         | \$54,841         |
| \$31.6m              | C                 | -3.0             | \$33,635                       | -824.0         | \$38,349       | Q                 | -5.5             | \$49,593                       | -1506.3        | \$20,978                | R                 | -2.0             | \$49,517                       | -576.4         | \$54,822         |
| \$31.7m              | 0                 | -3.0             | \$33,572                       | -827.0         | \$38,332       | l                 | -5.5             | \$49,596                       | -1511.8        | \$20,968                | H                 | -2.0             | \$49,512                       | -578.4         | \$54,804         |
| \$31.8m              | Q                 | -3.0             | \$33,547                       | -830.0         | \$38,315       | T                 | -5.5             | \$49,596                       | -1517.3        | \$20,959                | M                 | -2.0             | \$49,432                       | -580.5         | \$54,785         |
| \$31.9m              | H<br>D            | -3.0             | \$33,528                       | -832.9         | \$38,298       | 0                 | -5.5             | \$49,596                       | -1522.8        | \$20,949                | H<br>D            | -2.0             | \$49,418                       | -582.5         | \$54,766         |
| \$32.0m              | R                 | -3.0             | \$33,511                       | -835.9         | \$38,281       | I<br>I            | -5.5             | \$49,596                       | -1528.2        | \$20,939                | K                 | -2.0             | \$49,383                       | -584.5         | \$54,748         |
| \$32.1m              | 0                 | -3.0             | \$33,484                       | -838.9         | \$38,203       | 1<br>T            | -5.5             | \$49,596                       | -1535.7        | \$20,929                | C                 | -2.0             | \$49,378                       | -380.3         | \$54,729         |
| \$32.2m              | U<br>U            | -3.0             | \$33,390                       | -841.9         | \$38,240       | I                 | -5.5             | \$49,596                       | -1539.2        | \$20,920                | <u><u>v</u></u>   | -2.0             | \$49,300                       | -388.0         | \$54,711         |
| \$32.5m              | D D               | -3.0             | \$33,323                       | -044.9         | \$30,229       | T                 | -5.5             | \$49,390                       | -1344.7        | \$20,910                | M                 | -2.0             | \$49,524                       | -590.0         | \$54,092         |
| \$32.4III<br>\$22.5m | K O               | -3.0             | \$33,312                       | -047.9         | \$30,211       | I                 | -5.5             | \$49,390                       | -1555.9        | \$20,900                | D                 | -2.0             | \$49,270                       | -592.0         | \$54,074         |
| \$32.5m              | 0                 | -3.0             | \$33,307                       | -630.9         | \$38,194       | T                 | -5.5             | \$49,590                       | -1555.8        | \$20,890                | К<br>Н            | -2.0             | \$49,249                       | -594.0         | \$54,033         |
| \$32.0m              | 0<br>C            | -3.0             | \$33,217                       | -856.9         | \$38,170       | R                 | -5.5             | \$49,596                       | -1566.8        | \$20,880                | C II              | -2.0             | \$49,229                       | -598.7         | \$54,618         |
| \$32.7m              | 0                 | -3.0             | \$33,127                       | -860.0         | \$38,141       | H                 | -5.5             | \$49 596                       | -1572.4        | \$20,870                | Н                 | -2.0             | \$49,102                       | -600.7         | \$54,599         |
| \$32.9m              | H                 | -3.0             | \$33,114                       | -863.0         | \$38,124       | T                 | -5.5             | \$49 596                       | -1577.9        | \$20,850                | 0                 | -2.0             | \$49 123                       | -602.8         | \$54 581         |
| \$33.0m              | R                 | -3.0             | \$33,111                       | -866.0         | \$38,106       | I                 | -5.5             | \$49.596                       | -1583.5        | \$20,840                | M                 | -2.0             | \$49,116                       | -604.8         | \$54,562         |
| \$33.1m              | М                 | -3.0             | \$33,059                       | -869.0         | \$38,089       | Т                 | -5.6             | \$49.596                       | -1589.0        | \$20,830                | R                 | -2.0             | \$49,111                       | -606.8         | \$54,544         |
| \$33.2m              | 0                 | -3.0             | \$33.037                       | -872.1         | \$38,071       | Ι                 | -5.6             | \$49,593                       | -1594.6        | \$20,820                | Н                 | -2.0             | \$49.038                       | -608.9         | \$54,526         |
| \$33.3m              | Q                 | -3.0             | \$33,019                       | -875.1         | \$38,053       | 0                 | -5.6             | \$49,596                       | -1600.2        | \$20,810                | R                 | -2.0             | \$48,979                       | -610.9         | \$54,507         |
| \$33.4m              | 0                 | -3.0             | \$32,946                       | -878.1         | \$38,036       | Т                 | -5.6             | \$49,596                       | -1605.8        | \$20,800                | М                 | -2.0             | \$48,957                       | -613.0         | \$54,489         |
| \$33.5m              | R                 | -3.0             | \$32,911                       | -881.2         | \$38,018       | Т                 | -5.6             | \$49,596                       | -1611.3        | \$20,790                | С                 | -2.0             | \$48,950                       | -615.0         | \$54,470         |
| \$33.6m              | Н                 | -3.0             | \$32,901                       | -884.2         | \$38,001       | Ι                 | -5.6             | \$49,596                       | -1616.9        | \$20,780                | Н                 | -2.0             | \$48,942                       | -617.1         | \$54,452         |
| \$33.7m              | 0                 | -3.0             | \$32,855                       | -887.2         | \$37,983       | Т                 | -5.6             | \$49,596                       | -1622.5        | \$20,770                | Ν                 | -2.0             | \$48,921                       | -619.1         | \$54,434         |
| \$33.8m              | 0                 | -3.1             | \$32,762                       | -890.3         | \$37,965       | Ι                 | -5.6             | \$61,479                       | -1628.2        | \$20,760                | Q                 | -2.0             | \$48,881                       | -621.1         | \$54,415         |
| \$33.9m              | R                 | -3.1             | \$32,708                       | -893.4         | \$37,947       | Т                 | -5.6             | \$61,479                       | -1633.8        | \$20,750                | Н                 | -2.0             | \$48,845                       | -623.2         | \$54,397         |
| \$34.0m              | С                 | -3.1             | \$32,694                       | -896.4         | \$37,929       | E                 | -5.6             | \$61,479                       | -1639.4        | \$20,739                | R                 | -2.0             | \$48,842                       | -625.2         | \$54,379         |
| \$34.1m              | Н                 | -3.1             | \$32,688                       | -899.5         | \$37,911       | I                 | -5.6             | \$61,479                       | -1645.0        | \$20,729                | М                 | -2.0             | \$48,792                       | -627.3         | \$54,361         |
| \$34.2m              | 0                 | -3.1             | \$32,670                       | -902.5         | \$37,894       | Т                 | -5.6             | \$61,479                       | -1650.7        | \$20,719                | Н                 | -2.1             | \$48,748                       | -629.3         | \$54,342         |
| \$34.3m              | 0                 | -3.1             | \$32,578                       | -905.6         | \$37,875       | Т                 | -5.7             | \$61,479                       | -1656.3        | \$20,708                | С                 | -2.1             | \$48,731                       | -631.4         | \$54,324         |
| \$34.4m              | R                 | -3.1             | \$32,504                       | -908.7         | \$37,857       | I                 | -5.7             | \$61,479                       | -1662.0        | \$20,698                | R                 | -2.1             | \$48,704                       | -633.4         | \$54,306         |
| \$34.5m              | 0                 | -3.1             | \$32,483                       | -911.8         | \$37,839       | R                 | -5.7             | \$61,479                       | -1667.6        | \$20,688                | H                 | -2.1             | \$48,651                       | -635.5         | \$54,288         |
| \$34.6m              | Q                 | -3.1             | \$32,473                       | -914.8         | \$37,821       | 0                 | -5.7             | \$61,479                       | -1673.3        | \$20,678                | Q                 | -2.1             | \$48,633                       | -637.6         | \$54,269         |
| \$34.7m              | H                 | -3.1             | \$32,470                       | -917.9         | \$37,803       | Т                 | -5.7             | \$61,479                       | -1679.0        | \$20,667                | M                 | -2.1             | \$48,629                       | -639.6         | \$54,251         |
| \$34.8m              | D                 | -3.1             | \$32,391                       | -921.0         | \$37,785       |                   | -5.7             | \$61,479                       | -1684.7        | \$20,657                | K                 | -2.1             | \$48,570                       | -041.7         | \$54,233         |
| \$34.9m              | ĸ                 | -3.1             | \$32,299                       | -924.1         | \$37,767       | T<br>C            | -5.7             | \$61,479                       | -1690.3        | \$20,647                | H                 | -2.1             | \$48,554                       | -043.7         | \$54,215         |
| \$35.0m              | 0                 | -5.1             | \$32,295                       | -927.2         | \$57,748       |                   | -5./             | \$61,479                       | -1696.0        | \$20,636                | U<br>M            | -2.1             | \$48,511                       | -645.8         | \$54,197         |
| \$35.1m              | Н                 | -5.1             | \$32,231                       | -930.3         | \$37,730       | I                 | -5./             | \$61,479                       | -1/01./        | \$20,626                | M                 | -2.1             | \$48,401                       | -04/.9         | \$34,178         |
| \$35.2m              | C NI              | -3.1             | \$32,240                       | -935.4         | \$37.602       | T                 | -3./             | \$61.479                       | -1/0/.5        | \$20,615                | П<br>Р            | -2.1             | \$40,430                       | -049.9         | \$54,100         |
| \$35.3m              | 0                 | -3.1             | \$32,202                       | -930.5         | \$37,095       | I                 | -5.7             | \$61.479                       | -1718.0        | \$20,003                | <u>к</u>          | -2.1             | \$48 384                       | -654 1         | \$54.124         |
| 9 <b>5</b> 5.411     |                   | -5.1             | $\phi_{52,200}$                | -252.0         | ψ51,015        | 1 1               | -5.7             | φ01, 7/2                       | -1/10.7        | $\psi_{20}, 0, 0, 0, 0$ |                   | -2.1             | \$70,50 <del>1</del>           |                | φ <b>υπ,1</b> 24 |

|         |                   | Prin             | narv budget | (\$50m)         |                 |                   | Le               | wer budget | (\$0m)         |          |                   | High             | er budget (S | \$100m)         |          |
|---------|-------------------|------------------|-------------|-----------------|-----------------|-------------------|------------------|------------|----------------|----------|-------------------|------------------|--------------|-----------------|----------|
| Budget  |                   | Margina          | <u>u</u>    | Cumi            | ulative         |                   | Margina          | ul         | Cumi           | ılative  |                   | Margina          | l            | Cum             | ulative  |
| impact  | Tech <sup>a</sup> | $\Lambda E_{mb}$ | ICER°       | $\Lambda E^{d}$ | 2 <sup>+e</sup> | Tech <sup>a</sup> | $\Lambda E_{-b}$ | ICER°      | $\Delta E^{d}$ | 2+e      | Tech <sup>a</sup> | $\Lambda E_{mb}$ | ICER°        | $\Lambda E^{d}$ | 2+e      |
| \$35.5m | 0                 | -3.1             | \$32,105    | -942.7          | \$37.657        | T                 | -5.7             | \$61.479   | -1724.6        | \$20.584 | Н                 | -2.1             | \$48.357     | -656.1          | \$54,106 |
| \$35.6m | R                 | -3.1             | \$32,093    | -945.8          | \$37.639        | Т                 | -5.8             | \$61,479   | -1730.4        | \$20,573 | R                 | -2.1             | \$48,295     | -658.2          | \$54.087 |
| \$35.7m | Н                 | -3.1             | \$32,027    | -949.0          | \$37.620        | Ī                 | -5.8             | \$61,479   | -1736.2        | \$20,563 | М                 | -2.1             | \$48,291     | -660.3          | \$54.069 |
| \$35.8m | 0                 | -3.1             | \$32,008    | -952.1          | \$37,602        | T                 | -5.8             | \$61 479   | -1741 9        | \$20,552 | C                 | -2.1             | \$48,293     | -662.3          | \$54.051 |
| \$35.9m | 0                 | -3.1             | \$31,911    | -955.2          | \$37,583        | 0                 | -5.8             | \$61,479   | -1747 7        | \$20,552 | H                 | -2.1             | \$48,258     | -664.4          | \$54,033 |
| \$36.0m | 0                 | -3.1             | \$31,907    | -958.4          | \$37,564        | H                 | -5.8             | \$61,479   | -1753 5        | \$20,531 | Н                 | -2.1             | \$48,159     | -666.5          | \$54.015 |
| \$36.1m | R                 | -3.1             | \$31,885    | -961.5          | \$37,546        | I                 | -5.8             | \$61,479   | -1759.3        | \$20,520 | R                 | -2.1             | \$48,156     | -668.6          | \$53,997 |
| \$36.2m | 0                 | -3.1             | \$31,805    | -964.6          | \$37 527        | R                 | -5.8             | \$61,479   | -1765.0        | \$20,509 | 0                 | -2.1             | \$48,135     | -670.6          | \$53,978 |
| \$36.3m | H                 | -3.1             | \$31,801    | -967.8          | \$37,509        | T                 | -5.8             | \$61,479   | -1770.8        | \$20,209 | M                 | -2.1             | \$48 121     | -672.7          | \$53,960 |
| \$36.4m | 0                 | -3.2             | \$31,716    | -970.9          | \$37,490        | M                 | -5.8             | \$61,479   | -1776.6        | \$20,488 | C                 | -2.1             | \$48,068     | -674.8          | \$53.942 |
| \$36.5m | Ē                 | -3.2             | \$31 695    | -974 1          | \$37 471        | Т                 | -5.8             | \$61 479   | -1782.4        | \$20,478 | H                 | -2.1             | \$48,060     | -676.9          | \$53,924 |
| \$36.6m | R                 | -3.2             | \$31,676    | -977.2          | \$37,452        | I                 | -5.8             | \$61 479   | -1788 3        | \$20,467 | R                 | -2.1             | \$48.019     | -679.0          | \$53,906 |
| \$36.7m | 0                 | -3.2             | \$31.618    | -980.4          | \$37,434        | T                 | -5.8             | \$61 479   | -1794 1        | \$20,456 | Н                 | -2.1             | \$47,960     | -681.0          | \$53,888 |
| \$36.8m | H                 | -3.2             | \$31,572    | -983.6          | \$37.415        | I                 | -5.8             | \$61,479   | -1799.9        | \$20,445 | M                 | -2.1             | \$47,943     | -683.1          | \$53.870 |
| \$36.9m | 0                 | -3.2             | \$31 518    | -986.7          | \$37 396        | T                 | -5.8             | \$61 479   | -1805.8        | \$20,435 | R                 | -2.1             | \$47,879     | -685.2          | \$53,851 |
| \$37.0m | R                 | -3.2             | \$31,516    | -989.9          | \$37,377        | T                 | -5.9             | \$61,479   | -1811.6        | \$20,424 | 0                 | -2.1             | \$47,879     | -687.3          | \$53,833 |
| \$37.1m | 0                 | -3.2             | \$31,418    | -993 1          | \$37 358        | I                 | -5.9             | \$61,479   | -1817.5        | \$20,413 | Ĥ                 | -2.1             | \$47,859     | -689.4          | \$53,815 |
| \$37.2m | H                 | -3.2             | \$31,337    | -996 3          | \$37,338        | T                 | -5.9             | \$61,479   | -1823.4        | \$20,402 | C                 | -2.1             | \$47.842     | -691.5          | \$53,797 |
| \$37.3m | M                 | -3.2             | \$31,329    | -999 5          | \$37 319        | 0                 | -5.9             | \$61,479   | -1829.3        | \$20,391 | M                 | -2.1             | \$47,767     | -693.6          | \$53,779 |
| \$37.4m | 0                 | -3.2             | \$31,322    | -1002.7         | \$37,300        | I                 | -5.9             | \$61,479   | -1835.2        | \$20,380 | Н                 | -2.1             | \$47,758     | -695.7          | \$53,761 |
| \$37.5m | Ò                 | -3.2             | \$31,318    | -1005.9         | \$37,281        | T                 | -5.9             | \$61,479   | -1841.1        | \$20,369 | R                 | -2.1             | \$47,742     | -697.8          | \$53,743 |
| \$37.6m | R                 | -3.2             | \$31,254    | -1009.1         | \$37,262        | R                 | -5.9             | \$61,479   | -1847.0        | \$20,358 | Н                 | -2.1             | \$47,657     | -699.9          | \$53,724 |
| \$37.7m | 0                 | -3.2             | \$31,216    | -1012.3         | \$37,243        | Т                 | -5.9             | \$61,479   | -1852.9        | \$20.347 | 0                 | -2.1             | \$47.624     | -702.0          | \$53,706 |
| \$37.8m | Ċ                 | -3.2             | \$31,171    | -1015.5         | \$37,224        | I                 | -5.9             | \$61,479   | -1858.8        | \$20,335 | č                 | -2.1             | \$47,615     | -704.1          | \$53.688 |
| \$37.9m | 0                 | -3.2             | \$31,115    | -1018.7         | \$37,204        | Т                 | -5.9             | \$168,385  | -1864.8        | \$20,324 | R                 | -2.1             | \$47,601     | -706.2          | \$53,670 |
| \$38.0m | Н                 | -3.2             | \$31,102    | -1021.9         | \$37,185        | Ι                 | -6.0             | \$168,385  | -1870.7        | \$20,313 | М                 | -2.1             | \$47,587     | -708.3          | \$53,652 |
| \$38.1m | R                 | -3.2             | \$31,040    | -1025.1         | \$37,166        | Т                 | -6.0             | \$168,385  | -1876.7        | \$20,302 | Н                 | -2.1             | \$47,555     | -710.4          | \$53,634 |
| \$38.2m | 0                 | -3.2             | \$31,012    | -1028.4         | \$37,147        | Т                 | -6.0             | \$168,385  | -1882.7        | \$20,290 | R                 | -2.1             | \$47,461     | -712.5          | \$53,616 |
| \$38.3m | 0                 | -3.2             | \$30,908    | -1031.6         | \$37,127        | Ι                 | -6.0             | \$168,385  | -1888.7        | \$20,279 | Н                 | -2.1             | \$47,453     | -714.6          | \$53,597 |
| \$38.4m | E                 | -3.2             | \$30,898    | -1034.8         | \$37,107        | Т                 | -6.0             | \$168,385  | -1894.7        | \$20,268 | М                 | -2.1             | \$47,405     | -716.7          | \$53,579 |
| \$38.5m | Н                 | -3.2             | \$30,861    | -1038.1         | \$37,088        | 0                 | -6.0             | \$168,385  | -1900.7        | \$20,256 | С                 | -2.1             | \$47,387     | -718.8          | \$53,561 |
| \$38.6m | R                 | -3.2             | \$30,825    | -1041.3         | \$37,068        | Ι                 | -6.0             | \$168,385  | -1906.7        | \$20,244 | Q                 | -2.1             | \$47,362     | -720.9          | \$53,543 |
| \$38.7m | 0                 | -3.2             | \$30,805    | -1044.6         | \$37,049        | Т                 | -6.0             | \$168,385  | -1912.7        | \$20,233 | Н                 | -2.1             | \$47,351     | -723.0          | \$53,525 |
| \$38.8m | Q                 | -3.3             | \$30,713    | -1047.8         | \$37,029        | Т                 | -6.0             | \$168,385  | -1918.8        | \$20,221 | R                 | -2.1             | \$47,322     | -725.1          | \$53,507 |
| \$38.9m | 0                 | -3.3             | \$30,700    | -1051.1         | \$37,010        | Ι                 | -6.1             | \$168,385  | -1924.8        | \$20,210 | Н                 | -2.1             | \$47,247     | -727.3          | \$53,488 |
| \$39.0m | C                 | -3.3             | \$30,628    | -1054.3         | \$36,990        | R                 | -6.1             | \$168,385  | -1930.9        | \$20,198 | М                 | -2.1             | \$47,219     | -729.4          | \$53,470 |
| \$39.1m | Н                 | -3.3             | \$30,617    | -1057.6         | \$36,970        | Н                 | -6.1             | \$168,385  | -1936.9        | \$20,187 | R                 | -2.1             | \$47,181     | -731.5          | \$53,452 |
| \$39.2m | R                 | -3.3             | \$30,609    | -1060.9         | \$36,951        | Т                 | -6.1             | \$168,385  | -1943.0        | \$20,175 | С                 | -2.1             | \$47,154     | -733.6          | \$53,434 |
| \$39.3m | 0                 | -3.3             | \$30,595    | -1064.1         | \$36,931        | Т                 | -6.1             | \$168,385  | -1949.1        | \$20,163 | Н                 | -2.1             | \$47,144     | -735.7          | \$53,416 |
| \$39.4m | 0                 | -3.3             | \$30,489    | -1067.4         | \$36,911        | I                 | -6.1             | \$168,385  | -1955.2        | \$20,152 | Q                 | -2.1             | \$47,101     | -737.9          | \$53,398 |
| \$39.5m | R                 | -3.3             | \$30,391    | -1070.7         | \$36,891        | Т                 | -6.1             | \$168,386  | -1961.3        | \$20,140 | Н                 | -2.1             | \$47,040     | -740.0          | \$53,379 |
| \$39.6m | 0                 | -3.3             | \$30,381    | -1074.0         | \$36,871        | Q                 | -6.1             | \$168,384  | -1967.4        | \$20,128 | R                 | -2.1             | \$47,041     | -742.1          | \$53,361 |
| \$39.7m | H                 | -3.3             | \$30,369    | -1077.3         | \$36,851        | 1                 | -6.1             | \$168,384  | -1973.5        | \$20,116 | M                 | -2.1             | \$47,032     | -/44.2          | \$53,343 |
| \$39.8m | M                 | -3.3             | \$30,296    | -1080.6         | \$36,831        | Т                 | -6.1             | \$168,387  | -1979.7        | \$20,104 | H                 | -2.1             | \$46,936     | -746.4          | \$53,325 |
| \$39.9m | 0                 | -3.3             | \$30,275    | -1083.9         | \$36,811        | U<br>             | -6.1             | \$168,384  | -1985.8        | \$20,092 | C                 | -2.1             | \$46,920     | -748.5          | \$53,307 |
| \$40.0m | N                 | -3.3             | \$30,208    | -1087.2         | \$36,791        | T                 | -6.2             | \$168,384  | -1992.0        | \$20,081 | R                 | -2.1             | \$46,898     | -750.6          | \$53,288 |
| \$40.1m | R                 | -3.3             | \$30,171    | -1090.5         | \$36,771        | 1                 | -6.2             | \$168,387  | -1998.1        | \$20,069 | M                 | -2.1             | \$46,838     | -/52.8          | \$53,270 |
| \$40.2m | 0                 | -3.3             | \$30,167    | -1093.8         | \$36,751        | T                 | -6.2             | \$168,384  | -2004.3        | \$20,057 | Q                 | -2.1             | \$46,836     | -/54.9          | \$53,252 |
| \$40.3m | Н                 | -3.3             | \$30,118    | -109/.2         | \$30,/31        | I                 | -6.2             | \$108,384  | -2010.5        | \$20,044 | H<br>D            | -2.1             | \$40,851     | -/5/.0          | \$53,234 |
| \$40.4m | Q<br>C            | -3.3             | \$30,079    | -1100.5         | \$30,/11        | I<br>P            | -0.2             | \$106,38/  | -2010./        | \$20,032 | K<br>U            | -2.1             | \$40,/33     | -/ 39.2         | \$52,107 |
| 340.3IN |                   | -3.3             | \$30,000    | -1105.8         | \$30,091        | Л                 | -0.2             | \$100,364  | -2022.9        | \$ZU,UZU | п                 | -2.1             | \$40,723     | -/01.3          | \$33,19/ |

|         |                   | Prin             | narv budget                    | (\$50m)        |                |                   | Le               | ower budget                    | (\$0m)         |                |                   | High             | er budget (S                   | \$100m)        |                |
|---------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina          | 1                              | Cumi           | ılative        |                   | Margina          | ul III                         | Cumi           | ılative        |                   | Margina          | 1                              | Cum            | ulative        |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$40.6m | 0                 | -3.3             | \$30,056                       | -1107.1        | \$36,671       | E                 | -6.2             | \$168,384                      | -2029.2        | \$20,008       | С                 | -2.1             | \$46,685                       | -763.5         | \$53,179       |
| \$40.7m | R                 | -3.3             | \$29,951                       | -1110.5        | \$36,651       | Т                 | -6.2             | \$168,387                      | -2035.4        | \$19,996       | М                 | -2.1             | \$46,644                       | -765.6         | \$53,161       |
| \$40.8m | 0                 | -3.3             | \$29,947                       | -1113.8        | \$36,631       | Т                 | -6.2             | \$168,384                      | -2041.6        | \$19,984       | Н                 | -2.1             | \$46,619                       | -767.7         | \$53,142       |
| \$40.9m | W                 | -3.3             | \$29,934                       | -1117.2        | \$36,611       | Ι                 | -6.2             | \$168,384                      | -2047.9        | \$19,972       | R                 | -2.1             | \$46,616                       | -769.9         | \$53,124       |
| \$41.0m | Н                 | -3.3             | \$29,861                       | -1120.5        | \$36,591       | Т                 | -6.3             | \$168,387                      | -2054.2        | \$19,959       | Q                 | -2.1             | \$46,568                       | -772.0         | \$53,106       |
| \$41.1m | 0                 | -3.4             | \$29,836                       | -1123.9        | \$36,570       | Ι                 | -6.3             | \$168,384                      | -2060.5        | \$19,947       | Н                 | -2.1             | \$46,513                       | -774.2         | \$53,088       |
| \$41.2m | R                 | -3.4             | \$29,728                       | -1127.2        | \$36,550       | 0                 | -6.3             | \$168,384                      | -2066.8        | \$19,935       | R                 | -2.2             | \$46,471                       | -776.3         | \$53,069       |
| \$41.3m | 0                 | -3.4             | \$29,725                       | -1130.6        | \$36,530       | Т                 | -6.3             | \$168,387                      | -2073.1        | \$19,922       | М                 | -2.2             | \$46,447                       | -778.5         | \$53,051       |
| \$41.4m | 0                 | -3.4             | \$29,613                       | -1134.0        | \$36,509       | Т                 | -6.3             | \$168,384                      | -2079.4        | \$19,910       | С                 | -2.2             | \$46,445                       | -780.6         | \$53,033       |
| \$41.5m | Н                 | -3.4             | \$29,601                       | -1137.3        | \$36,489       | Ι                 | -6.3             | \$168,384                      | -2085.7        | \$19,897       | Н                 | -2.2             | \$46,406                       | -782.8         | \$53,015       |
| \$41.6m | R                 | -3.4             | \$29,504                       | -1140.7        | \$36,468       | Т                 | -6.3             | \$168,387                      | -2092.1        | \$19,885       | R                 | -2.2             | \$46,328                       | -785.0         | \$52,996       |
| \$41.7m | 0                 | -3.4             | \$29,499                       | -1144.1        | \$36,447       | Т                 | -6.4             | \$168,384                      | -2098.4        | \$19,872       | Н                 | -2.2             | \$46,299                       | -787.1         | \$52,978       |
| \$41.8m | С                 | -3.4             | \$29,482                       | -1147.5        | \$36,427       | R                 | -6.4             | \$168,384                      | -2104.8        | \$19,859       | Q                 | -2.2             | \$46,294                       | -789.3         | \$52,959       |
| \$41.9m | Q                 | -3.4             | \$29,418                       | -1150.9        | \$36,406       | С                 | -6.4             | \$168,387                      | -2111.2        | \$19,846       | M                 | -2.2             | \$46,243                       | -791.4         | \$52,941       |
| \$42.0m | 0                 | -3.4             | \$29,385                       | -1154.3        | \$36,385       | Ι                 | -6.4             | \$168,384                      | -2117.6        | \$19,834       | С                 | -2.2             | \$46,204                       | -793.6         | \$52,923       |
| \$42.1m | Н                 | -3.4             | \$29,334                       | -1157.7        | \$36,364       | Т                 | -6.4             | \$168,384                      | -2124.0        | \$19,821       | Н                 | -2.2             | \$46,191                       | -795.8         | \$52,904       |
| \$42.2m | R                 | -3.4             | \$29,277                       | -1161.1        | \$36,344       | Н                 | -6.4             | \$168,387                      | -2130.4        | \$19,808       | R                 | -2.2             | \$46,185                       | -797.9         | \$52,886       |
| \$42.3m | 0                 | -3.4             | \$29,270                       | -1164.6        | \$36,323       | Т                 | -6.4             | \$168,384                      | -2136.8        | \$19,796       | Н                 | -2.2             | \$46,083                       | -800.1         | \$52,868       |
| \$42.4m | 0                 | -3.4             | \$29,155                       | -1168.0        | \$36,302       | Ι                 | -6.4             | \$168,384                      | -2143.3        | \$19,783       | R                 | -2.2             | \$46,038                       | -802.3         | \$52,849       |
| \$42.5m | М                 | -3.4             | \$29,100                       | -1171.4        | \$36,281       | Т                 | -6.5             | \$168,387                      | -2149.7        | \$19,770       | М                 | -2.2             | \$46,041                       | -804.5         | \$52,831       |
| \$42.6m | Н                 | -3.4             | \$29,065                       | -1174.9        | \$36,260       | 0                 | -6.5             | \$168.384                      | -2156.2        | \$19,757       | 0                 | -2.2             | \$46.021                       | -806.6         | \$52.813       |
| \$42.7m | R                 | -3.4             | \$29,050                       | -1178.3        | \$36,238       | Т                 | -6.5             | \$168,384                      | -2162.7        | \$19,744       | Ĥ                 | -2.2             | \$45,974                       | -808.8         | \$52,794       |
| \$42.8m | 0                 | -3.4             | \$29.037                       | -1181.7        | \$36.217       | I                 | -6.5             | \$168.387                      | -2169.2        | \$19,731       | C                 | -2.2             | \$45,960                       | -811.0         | \$52.776       |
| \$42.9m | 0                 | -3.5             | \$28,920                       | -1185.2        | \$36,196       | T                 | -6.5             | \$168.384                      | -2175.7        | \$19,718       | R                 | -2.2             | \$45,897                       | -813.2         | \$52,757       |
| \$43.0m | Č                 | -3.5             | \$28,873                       | -1188.7        | \$36,175       | I                 | -6.5             | \$168,384                      | -2182.2        | \$19,705       | H                 | -2.2             | \$45,865                       | -815.3         | \$52,739       |
| \$43.1m | R                 | -3.5             | \$28,820                       | -1192.1        | \$36,153       | Т                 | -6.5             | \$168.387                      | -2188.8        | \$19,692       | М                 | -2.2             | \$45,830                       | -817.5         | \$52,720       |
| \$43.2m | 0                 | -3.5             | \$28,800                       | -1195.6        | \$36,132       | R                 | -6.6             | \$168,384                      | -2195.3        | \$19,678       | Н                 | -2.2             | \$45,755                       | -819.7         | \$52,702       |
| \$43.3m | Н                 | -3.5             | \$28,789                       | -1199.1        | \$36,111       | Т                 | -6.6             | \$168,384                      | -2201.9        | \$19,665       | R                 | -2.2             | \$45,750                       | -821.9         | \$52.683       |
| \$43.4m | 0                 | -3.5             | \$28,725                       | -1202.6        | \$36,089       | Ι                 | -6.6             | \$168.387                      | -2208.5        | \$19,651       | 0                 | -2.2             | \$45,744                       | -824.1         | \$52.665       |
| \$43.5m | ò                 | -3.5             | \$28,681                       | -1206.1        | \$36,068       | Т                 | -6.6             | \$168,384                      | -2215.1        | \$19,638       | Ĉ                 | -2.2             | \$45,712                       | -826.3         | \$52,647       |
| \$43.6m | R                 | -3.5             | \$28,589                       | -1209.6        | \$36,046       | Т                 | -6.6             | \$168,384                      | -2221.7        | \$19,624       | Н                 | -2.2             | \$45,645                       | -828.5         | \$52,628       |
| \$43.7m | 0                 | -3.5             | \$28,561                       | -1213.1        | \$36,025       | 0                 | -6.6             | \$168,387                      | -2228.4        | \$19,611       | М                 | -2.2             | \$45,618                       | -830.6         | \$52,610       |
| \$43.8m | Н                 | -3.5             | \$28,508                       | -1216.6        | \$36,003       | Ι                 | -6.7             | \$168,384                      | -2235.0        | \$19,597       | R                 | -2.2             | \$45,606                       | -832.8         | \$52,591       |
| \$43.9m | 0                 | -3.5             | \$28,438                       | -1220.1        | \$35,981       | Т                 | -6.7             | \$168,384                      | -2241.7        | \$19,583       | Н                 | -2.2             | \$45,534                       | -835.0         | \$52,573       |
| \$44.0m | R                 | -3.5             | \$28,355                       | -1223.6        | \$35,959       | Т                 | -6.7             | \$168,387                      | -2248.4        | \$19,570       | С                 | -2.2             | \$45,465                       | -837.2         | \$52,554       |
| \$44.1m | 0                 | -3.5             | \$28,316                       | -1227.1        | \$35,937       | Ι                 | -6.7             | \$168,384                      | -2255.1        | \$19,556       | 0                 | -2.2             | \$45,461                       | -839.4         | \$52,535       |
| \$44.2m | С                 | -3.5             | \$28,239                       | -1230.7        | \$35,915       | Т                 | -6.7             | \$168,384                      | -2261.8        | \$19,542       | R                 | -2.2             | \$45,459                       | -841.6         | \$52,517       |
| \$44.3m | Н                 | -3.5             | \$28,221                       | -1234.2        | \$35,893       | R                 | -6.8             | \$168,387                      | -2268.6        | \$19,528       | Н                 | -2.2             | \$45,423                       | -843.8         | \$52,498       |
| \$44.4m | 0                 | -3.5             | \$28,191                       | -1237.8        | \$35,871       | Т                 | -6.8             | \$168,384                      | -2275.3        | \$19,514       | М                 | -2.2             | \$45,401                       | -846.0         | \$52,480       |
| \$44.5m | R                 | -3.6             | \$28,120                       | -1241.3        | \$35,849       | Е                 | -6.8             | \$168,384                      | -2282.1        | \$19,499       | R                 | -2.2             | \$45,314                       | -848.2         | \$52,461       |
| \$44.6m | 0                 | -3.6             | \$28,067                       | -1244.9        | \$35,827       | Ι                 | -6.8             | \$168,387                      | -2288.9        | \$19,485       | Н                 | -2.2             | \$45,310                       | -850.5         | \$52,443       |
| \$44.7m | 0                 | -3.6             | \$27,997                       | -1248.5        | \$35,804       | Т                 | -6.8             | \$168,384                      | -2295.7        | \$19,471       | С                 | -2.2             | \$45,212                       | -852.7         | \$52,424       |
| \$44.8m | ò                 | -3.6             | \$27,940                       | -1252.0        | \$35,782       | Т                 | -6.8             | \$168,384                      | -2302.5        | \$19,457       | Н                 | -2.2             | \$45,198                       | -854.9         | \$52,405       |
| \$44.9m | Н                 | -3.6             | \$27.929                       | -1255.6        | \$35.759       | 0                 | -6.8             | \$168.387                      | -2309.4        | \$19.442       | М                 | -2.2             | \$45.181                       | -857.1         | \$52.387       |
| \$45.0m | R                 | -3.6             | \$27,883                       | -1259.2        | \$35,737       | Н                 | -6.9             | \$168,384                      | -2316.2        | \$19,428       | 0                 | -2.2             | \$45,175                       | -859.3         | \$52,368       |
| \$45.1m | 0                 | -3.6             | \$27,813                       | -1262.8        | \$35,714       | Ι                 | -6.9             | \$168,384                      | -2323.1        | \$19,414       | R                 | -2.2             | \$45,165                       | -861.5         | \$52,349       |
| \$45.2m | 0                 | -3.6             | \$27,685                       | -1266.4        | \$35,691       | Т                 | -6.9             | \$168,387                      | -2330.0        | \$19,399       | Н                 | -2.2             | \$45,084                       | -863.7         | \$52,331       |
| \$45.3m | М                 | -3.6             | \$27,664                       | -1270.0        | \$35,669       | Т                 | -6.9             | \$168,384                      | -2336.9        | \$19,385       | R                 | -2.2             | \$45,019                       | -866.0         | \$52,312       |
| \$45.4m | R                 | -3.6             | \$27,643                       | -1273.6        | \$35,646       | Т                 | -6.9             | \$168,384                      | -2343.8        | \$19,370       | Ν                 | -2.2             | \$44,988                       | -868.2         | \$52,293       |
| \$45.5m | Н                 | -3.6             | \$27,630                       | -1277.3        | \$35,623       | Ι                 | -6.9             | \$168,387                      | -2350.7        | \$19,356       | Н                 | -2.2             | \$44,970                       | -870.4         | \$52,275       |
| \$45.6m | С                 | -3.6             | \$27,573                       | -1280.9        | \$35,600       | R                 | -7.0             | \$168.384                      | -2357.7        | \$19,341       | С                 | -2.2             | \$44,958                       | -872.6         | \$52.256       |

|                     |                   | Prin             | arv budget                     | (\$50m)        |                |                   | Le               | wer budget                     | (\$0m)         |                |                   | High             | er budget (S                   | \$100m)        |                |
|---------------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget              |                   | Margina          | 1                              | Cumi           | ılative        |                   | Margina          | ıl                             | Cumi           | ılative        |                   | Margina          | a(                             | Cum            | ulative        |
| impact              | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{+e}$ |
| \$45.7m             | 0                 | -3.6             | \$27,555                       | -1284.5        | \$35,578       | Т                 | -7.0             | \$168,384                      | -2364.7        | \$19,326       | М                 | -2.2             | \$44,954                       | -874.9         | \$52,237       |
| \$45.8m             | 0                 | -3.6             | \$27,424                       | -1288.2        | \$35,554       | Т                 | -7.0             | \$168,387                      | -2371.7        | \$19,311       | Q                 | -2.2             | \$44,887                       | -877.1         | \$52,219       |
| \$45.9m             | R                 | -3.6             | \$27,402                       | -1291.8        | \$35,531       | Ι                 | -7.0             | \$168,384                      | -2378.7        | \$19,296       | R                 | -2.2             | \$44,871                       | -879.3         | \$52,200       |
| \$46.0m             | Н                 | -3.7             | \$27,325                       | -1295.5        | \$35,508       | Т                 | -7.1             | \$168,384                      | -2385.8        | \$19,281       | Н                 | -2.2             | \$44,857                       | -881.5         | \$52,181       |
| \$46.1m             | 0                 | -3.7             | \$27,292                       | -1299.1        | \$35,485       | 0                 | -7.1             | \$168,387                      | -2392.8        | \$19,266       | Н                 | -2.2             | \$44,743                       | -883.8         | \$52,163       |
| \$46.2m             | Q                 | -3.7             | \$27,229                       | -1302.8        | \$35,462       | Т                 | -7.1             | \$168,384                      | -2399.9        | \$19,251       | М                 | -2.2             | \$44,725                       | -886.0         | \$52,144       |
| \$46.3m             | 0                 | -3.7             | \$27,158                       | -1306.5        | \$35,438       | Ι                 | -7.1             | \$168,384                      | -2407.0        | \$19,235       | R                 | -2.2             | \$44,723                       | -888.2         | \$52,125       |
| \$46.4m             | R                 | -3.7             | \$27,158                       | -1310.2        | \$35,415       | Т                 | -7.1             | \$168,387                      | -2414.2        | \$19,220       | С                 | -2.2             | \$44,701                       | -890.5         | \$52,107       |
| \$46.5m             | 0                 | -3.7             | \$27,024                       | -1313.9        | \$35,391       | Т                 | -7.2             | \$168,384                      | -2421.4        | \$19,204       | Н                 | -2.2             | \$44,625                       | -892.7         | \$52,088       |
| \$46.6m             | Н                 | -3.7             | \$27,012                       | -1317.6        | \$35,368       | I                 | -7.2             | \$168,384                      | -2428.6        | \$19,188       | Q                 | -2.2             | \$44,595                       | -895.0         | \$52,069       |
| \$46.7m             | R                 | -3.7             | \$26,912                       | -1321.3        | \$35,344       | R                 | -7.2             | \$168,387                      | -2435.8        | \$19,173       | R                 | -2.2             | \$44,573                       | -897.2         | \$52,050       |
| \$46.8m             | 0                 | -3.7             | \$26,888                       | -1325.0        | \$35,320       | Т                 | -7.2             | \$168,384                      | -2443.0        | \$19,157       | Н                 | -2.2             | \$44,510                       | -899.5         | \$52,031       |
| \$46.9m             | C                 | -3.7             | \$26,874                       | -1328.7        | \$35,297       | T                 | -7.3             | \$168,384                      | -2450.2        | \$19,141       | М                 | -2.2             | \$44,490                       | -901.7         | \$52,013       |
| \$47.0m             | 0                 | -3.7             | \$26,750                       | -1332.5        | \$35,273       | E                 | -7.3             | \$168,387                      | -2457.5        | \$19,125       | C                 | -2.3             | \$44,439                       | -904.0         | \$51,994       |
| \$47.1m             | H                 | -3.7             | \$26,692                       | -1336.2        | \$35,249       | Q                 | -7.3             | \$168,384                      | -2464.8        | \$19,109       | R                 | -2.3             | \$44,425                       | -906.2         | \$51,975       |
| \$47.2m             | R                 | -3.8             | \$26,665                       | -1340.0        | \$35,225       | Т                 | -7.3             | \$168,384                      | -2472.1        | \$19,093       | H                 | -2.3             | \$44,393                       | -908.5         | \$51,956       |
| \$47.3m             | 0                 | -3.8             | \$26,611                       | -1343.7        | \$35,201       | 1                 | -7.3             | \$168,387                      | -2479.4        | \$19,077       | Q                 | -2.3             | \$44,299                       | -910.7         | \$51,937       |
| \$47.4m             | 0                 | -3.8             | \$26,470                       | -1347.5        | \$35,176       | 0                 | -7.3             | \$168,384                      | -2486.8        | \$19,061       | H                 | -2.3             | \$44,277                       | -913.0         | \$51,918       |
| \$47.5m             | Q                 | -3.8             | \$26,415                       | -1351.3        | \$35,152       | T                 | -/.4             | \$168,384                      | -2494.1        | \$19,045       | R<br>M            | -2.3             | \$44,275                       | -915.2         | \$51,899       |
| \$47.6m             | K                 | -3.8             | \$20,414                       | -1355.1        | \$35,127       | I                 | -/.4             | \$108,387                      | -2501.5        | \$19,028       | M                 | -2.3             | \$44,252                       | -91/.5         | \$51,881       |
| \$47.7m             | П                 | -3.8             | \$20,505                       | -1556.9        | \$35,105       | T                 | -/.4             | \$100,304                      | -2308.9        | \$19,012       |                   | -2.5             | \$44,175                       | -919.8         | \$51,802       |
| \$47.0m             | 0                 | -5.6             | \$20,529                       | -1302.7        | \$35,078       | I<br>U            | -/.4             | \$100,304                      | -2510.4        | \$18,993       | р                 | -2.5             | \$44,138                       | -922.0         | \$51,645       |
| \$47.5m             | P                 | -3.8             | \$26,163                       | -1300.3        | \$35,033       | D                 | -7.5             | \$168,387                      | -2323.9        | \$18,979       | К<br>U            | -2.3             | \$44,123                       | -924.3         | \$51,824       |
| \$40.011<br>\$48.1m | K<br>C            | -3.8             | \$26,102                       | -1370.3        | \$35,029       | T                 | -7.5             | \$168 384                      | -2538.8        | \$18,902       | M                 | -2.3             | \$44,039                       | -920.0         | \$51,805       |
| \$48.2m             | 0                 | -3.8             | \$26,040                       | -1378.0        | \$34,979       | I                 | -7.5             | \$168 387                      | -2546.4        | \$18,929       | 0                 | -2.3             | \$43,999                       | -931.1         | \$51,767       |
| \$48.3m             | н                 | -3.8             | \$26,029                       | -1381.8        | \$34 954       | T                 | -7.5             | \$168 384                      | -2553.9        | \$18,912       | R                 | -2.3             | \$43,973                       | -933.4         | \$51,748       |
| \$48.4m             | R                 | -3.9             | \$25,906                       | -1385.7        | \$34 929       | T                 | -7.6             | \$168,384                      | -2561.5        | \$18,895       | Н                 | -2.3             | \$43,921                       | -935.7         | \$51,729       |
| \$48.5m             | 0                 | -3.9             | \$25,893                       | -1389.5        | \$34 904       | Ċ                 | -7.6             | \$168,387                      | -2569.1        | \$18,878       | C                 | -2.3             | \$43,910                       | -937.9         | \$51,710       |
| \$48.6m             | M                 | -3.9             | \$25,843                       | -1393.4        | \$34.878       | T                 | -7.7             | \$168,384                      | -2576.8        | \$18,861       | R                 | -2.3             | \$43.823                       | -940.2         | \$51.690       |
| \$48.7m             | 0                 | -3.9             | \$25,745                       | -1397.3        | \$34,853       | 0                 | -7.7             | \$168,384                      | -2584.4        | \$18,844       | Н                 | -2.3             | \$43,800                       | -942.5         | \$51,671       |
| \$48.8m             | Н                 | -3.9             | \$25,684                       | -1401.2        | \$34,828       | Ι                 | -7.7             | \$168,387                      | -2592.1        | \$18,826       | М                 | -2.3             | \$43,754                       | -944.8         | \$51,652       |
| \$48.9m             | R                 | -3.9             | \$25,648                       | -1405.1        | \$34,802       | Т                 | -7.7             | \$168,384                      | -2599.8        | \$18,809       | 0                 | -2.3             | \$43,693                       | -947.1         | \$51,633       |
| \$49.0m             | 0                 | -3.9             | \$25,594                       | -1409.0        | \$34,777       | E                 | -7.7             | \$168,384                      | -2607.6        | \$18,791       | Ĥ                 | -2.3             | \$43,680                       | -949.4         | \$51,614       |
| \$49.1m             | Q                 | -3.9             | \$25,547                       | -1412.9        | \$34,751       | R                 | -7.8             | \$168,387                      | -2615.3        | \$18,774       | R                 | -2.3             | \$43,670                       | -951.6         | \$51,595       |
| \$49.2m             | 0                 | -3.9             | \$25,443                       | -1416.8        | \$34,725       | Т                 | -7.8             | \$168,384                      | -2623.1        | \$18,756       | С                 | -2.3             | \$43,638                       | -953.9         | \$51,576       |
| \$49.3m             | R                 | -3.9             | \$25,388                       | -1420.8        | \$34,699       | Т                 | -7.8             | \$168,384                      | -2630.9        | \$18,739       | Η                 | -2.3             | \$43,560                       | -956.2         | \$51,556       |
| \$49.4m             | С                 | -3.9             | \$25,356                       | -1424.7        | \$34,673       | Ι                 | -7.8             | \$168,387                      | -2638.8        | \$18,721       | R                 | -2.3             | \$43,518                       | -958.5         | \$51,537       |
| \$49.5m             | Н                 | -3.9             | \$25,330                       | -1428.7        | \$34,648       | Т                 | -7.9             | \$168,384                      | -2646.7        | \$18,703       | М                 | -2.3             | \$43,497                       | -960.8         | \$51,518       |
| \$49.6m             | 0                 | -4.0             | \$25,289                       | -1432.6        | \$34,622       | Т                 | -8.0             | \$168,384                      | -2654.6        | \$18,684       | Н                 | -2.3             | \$43,437                       | -963.1         | \$51,498       |
| \$49.7m             | 0                 | -4.0             | \$25,134                       | -1436.6        | \$34,596       | Ι                 | -8.0             | \$168,387                      | -2662.6        | \$18,666       | Q                 | -2.3             | \$43,386                       | -965.4         | \$51,479       |
| \$49.8m             | R                 | -4.0             | \$25,125                       | -1440.6        | \$34,569       | Т                 | -8.0             | \$168,384                      | -2670.6        | \$18,647       | С                 | -2.3             | \$43,365                       | -967.7         | \$51,460       |
| \$49.9m             | 0                 | -4.0             | \$24,976                       | -1444.6        | \$34,543       | 0                 | -8.0             | \$168,384                      | -2678.7        | \$18,629       | R                 | -2.3             | \$43,363                       | -970.1         | \$51,440       |
| \$50.0m             | Н                 | -4.0             | \$24,965                       | -1448.6        | \$34,516       | Т                 | -8.1             | \$168,387                      | -2686.8        | \$18,610       | Н                 | -2.3             | \$43,314                       | -972.4         | \$51,421       |

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$0.1m reduction in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m reduction in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in contraction for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

|        | Primary budget (\$50m) |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                 |                   | Lo               | wer budget (                   | (\$0m)         |                 |                   | High             | er budget (\$                  | 100m)          |                 |
|--------|------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget |                        | Margina          | d in the second s | Cum            | ulative         |                   | Margina          | d l                            | Cum            | ulative         |                   | Margina          | ıl                             | Cun            | nulative        |
| impact | Tech <sup>a</sup>      | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> |
| \$0.1m | Н                      | 2.3              | \$43,315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3            | \$43,315        | Н                 | 4.0              | \$24,965                       | 4.0            | \$24,965        | М                 | 1.7              | \$60,015                       | 1.7            | \$60,015        |
| \$0.2m | R                      | 2.3              | \$43,365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6            | \$43,340        | 0                 | 4.0              | \$24,976                       | 8.0            | \$24,971        | R                 | 1.7              | \$60,068                       | 3.3            | \$60,042        |
| \$0.3m | С                      | 2.3              | \$43,365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.9            | \$43,348        | R                 | 4.0              | \$25,125                       | 12.0           | \$25,022        | Q                 | 1.7              | \$60,082                       | 5.0            | \$60,055        |
| \$0.4m | Q                      | 2.3              | \$43,385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.2            | \$43,357        | 0                 | 4.0              | \$25,134                       | 16.0           | \$25,050        | М                 | 1.7              | \$60,087                       | 6.7            | \$60,063        |
| \$0.5m | Н                      | 2.3              | \$43,437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.5           | \$43,373        | 0                 | 4.0              | \$25,289                       | 19.9           | \$25,097        | М                 | 1.7              | \$60,158                       | 8.3            | \$60,082        |
| \$0.6m | М                      | 2.3              | \$43,498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.8           | \$43,394        | Н                 | 3.9              | \$25,330                       | 23.9           | \$25,136        | R                 | 1.7              | \$60,179                       | 10.0           | \$60,098        |
| \$0.7m | R                      | 2.3              | \$43,518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.1           | \$43,412        | С                 | 3.9              | \$25,356                       | 27.8           | \$25,167        | М                 | 1.7              | \$60,229                       | 11.6           | \$60,117        |
| \$0.8m | Н                      | 2.3              | \$43,559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.4           | \$43,430        | R                 | 3.9              | \$25,388                       | 31.8           | \$25,194        | Q                 | 1.7              | \$60,244                       | 13.3           | \$60,133        |
| \$0.9m | С                      | 2.3              | \$43,639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.7           | \$43,453        | 0                 | 3.9              | \$25,443                       | 35.7           | \$25,222        | R                 | 1.7              | \$60,289                       | 15.0           | \$60,150        |
| \$1.0m | R                      | 2.3              | \$43,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.0           | \$43,475        | Q                 | 3.9              | \$25,547                       | 39.6           | \$25,254        | М                 | 1.7              | \$60,299                       | 16.6           | \$60,165        |
| \$1.1m | Н                      | 2.3              | \$43,680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.3           | \$43,493        | 0                 | 3.9              | \$25,595                       | 43.5           | \$25,284        | М                 | 1.7              | \$60,370                       | 18.3           | \$60,183        |
| \$1.2m | Q                      | 2.3              | \$43,694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.6           | \$43,510        | R                 | 3.9              | \$25,648                       | 47.4           | \$25,314        | R                 | 1.7              | \$60,399                       | 19.9           | \$60,201        |
| \$1.3m | M                      | 2.3              | \$43,754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29.9           | \$43,529        | Н                 | 3.9              | \$25,684                       | 51.3           | \$25,342        | 0                 | 1.7              | \$60,405                       | 21.6           | \$60,217        |
| \$1.4m | Н                      | 2.3              | \$43,801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32.1           | \$43,548        | 0                 | 3.9              | \$25,745                       | 55.2           | \$25,371        | M                 | 1.7              | \$60,439                       | 23.2           | \$60,233        |
| \$1.5m | R                      | 2.3              | \$43,822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.4           | \$43,566        | М                 | 3.9              | \$25,843                       | 59.1           | \$25,402        | М                 | 1.7              | \$60,509                       | 24.9           | \$60,251        |
| \$1.6m | С                      | 2.3              | \$43,909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.7           | \$43,587        | 0                 | 3.9              | \$25,893                       | 62.9           | \$25,432        | R                 | 1.7              | \$60,509                       | 26.5           | \$60,267        |
| \$1.7m | Н                      | 2.3              | \$43,921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.0           | \$43,607        | R                 | 3.9              | \$25,906                       | 66.8           | \$25,459        | 0                 | 1.7              | \$60,565                       | 28.2           | \$60,285        |
| \$1.8m | R                      | 2.3              | \$43,973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.3           | \$43,627        | Н                 | 3.8              | \$26,029                       | 70.6           | \$25,490        | M                 | 1.7              | \$60,578                       | 29.9           | \$60,301        |
| \$1.9m | 0                      | 2.3              | \$43,998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43.5           | \$43,646        | 0                 | 3.8              | \$26,040                       | 74.5           | \$25,519        | R                 | 1.6              | \$60,619                       | 31.5           | \$60,318        |
| \$2.0m | M                      | 2.3              | \$44,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.8           | \$43,664        | С                 | 3.8              | \$26,137                       | 78.3           | \$25,549        | М                 | 1.6              | \$60,647                       | 33.1           | \$60,334        |
| \$2.1m | Н                      | 2.3              | \$44,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48.1           | \$43,682        | R                 | 3.8              | \$26,161                       | 82.1           | \$25,577        | М                 | 1.6              | \$60,715                       | 34.8           | \$60,352        |
| \$2.2m | R                      | 2.3              | \$44,124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.3           | \$43,702        | 0                 | 3.8              | \$26,185                       | 85.9           | \$25,604        | 0                 | 1.6              | \$60,724                       | 36.4           | \$60,369        |
| \$2.3m | Н                      | 2.3              | \$44,158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.6           | \$43,721        | 0                 | 3.8              | \$26.329                       | 89.7           | \$25,635        | R                 | 1.6              | \$60,728                       | 38.1           | \$60,384        |
| \$2.4m | C                      | 2.3              | \$44,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.9           | \$43,740        | H                 | 3.8              | \$26,365                       | 93.5           | \$25,665        | W                 | 1.6              | \$60,757                       | 39.7           | \$60,400        |
| \$2.5m | М                      | 2.3              | \$44,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.1           | \$43,760        | R                 | 3.8              | \$26,414                       | 97.3           | \$25,694        | М                 | 1.6              | \$60,784                       | 41.4           | \$60,415        |
| \$2.6m | R                      | 2.3              | \$44,274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.4           | \$43,780        | 0                 | 3.8              | \$26,415                       | 101.1          | \$25,721        | R                 | 1.6              | \$60,838                       | 43.0           | \$60,431        |
| \$2.7m | Н                      | 2.3              | \$44,276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.6           | \$43,798        | Ò                 | 3.8              | \$26,471                       | 104.9          | \$25,748        | М                 | 1.6              | \$60,852                       | 44.7           | \$60,447        |
| \$2.8m | 0                      | 2.3              | \$44,299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63.9           | \$43,816        | 0                 | 3.8              | \$26.611                       | 108.6          | \$25,778        | 0                 | 1.6              | \$60,883                       | 46.3           | \$60,462        |
| \$2.9m | Ĥ                      | 2.3              | \$44,393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.2           | \$43,835        | R                 | 3.8              | \$26,664                       | 112.4          | \$25,807        | Ň                 | 1.6              | \$60,919                       | 48.0           | \$60,478        |
| \$3.0m | R                      | 2.3              | \$44,424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.4           | \$43,855        | Н                 | 3.7              | \$26,692                       | 116.1          | \$25,836        | R                 | 1.6              | \$60,947                       | 49.6           | \$60,493        |
| \$3.1m | С                      | 2.3              | \$44,440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.7           | \$43,873        | 0                 | 3.7              | \$26,750                       | 119.9          | \$25,864        | М                 | 1.6              | \$60,987                       | 51.2           | \$60,509        |
| \$3.2m | М                      | 2.2              | \$44,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72.9           | \$43,892        | С                 | 3.7              | \$26,875                       | 123.6          | \$25,895        | 0                 | 1.6              | \$61.040                       | 52.9           | \$60,526        |
| \$3.3m | Н                      | 2.2              | \$44,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.2           | \$43,911        | 0                 | 3.7              | \$26,888                       | 127.3          | \$25,924        | M                 | 1.6              | \$61.054                       | 54.5           | \$60,541        |
| \$3.4m | R                      | 2.2              | \$44,574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.4           | \$43,930        | R                 | 3.7              | \$26,912                       | 131.0          | \$25,952        | R                 | 1.6              | \$61.055                       | 56.1           | \$60,556        |
| \$3.5m | 0                      | 2.2              | \$44,595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.6           | \$43,949        | Н                 | 3.7              | \$27,012                       | 134.7          | \$25,981        | М                 | 1.6              | \$61,121                       | 57.8           | \$60,572        |
| \$3.6m | Ĥ                      | 2.2              | \$44,626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.9           | \$43,967        | 0                 | 3.7              | \$27,024                       | 138.4          | \$26,009        | R                 | 1.6              | \$61,164                       | 59.4           | \$60,589        |
| \$3.7m | С                      | 2.2              | \$44,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.1           | \$43,987        | R                 | 3.7              | \$27,158                       | 142.1          | \$26,039        | М                 | 1.6              | \$61.187                       | 61.1           | \$60,605        |
| \$3.8m | R                      | 2.2              | \$44,723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 86.4           | \$44,006        | 0                 | 3.7              | \$27,159                       | 145.8          | \$26,067        | 0                 | 1.6              | \$61,197                       | 62.7           | \$60,620        |
| \$3.9m | М                      | 2.2              | \$44,725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88.6           | \$44,024        | 0                 | 3.7              | \$27,229                       | 149.5          | \$26,095        | M                 | 1.6              | \$61,253                       | 64.3           | \$60,636        |
| \$4.0m | Н                      | 2.2              | \$44,742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.8           | \$44,042        | ò                 | 3.7              | \$27,292                       | 153.1          | \$26,124        | R                 | 1.6              | \$61,273                       | 66.0           | \$60,652        |
| \$4.1m | Н                      | 2.2              | \$44.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93.1           | \$44.061        | H                 | 3.7              | \$27,325                       | 156.8          | \$26,152        | M                 | 1.6              | \$61.319                       | 67.6           | \$60,668        |
| \$4.2m | R                      | 2.2              | \$44.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.3           | \$44,080        | R                 | 3.6              | \$27,402                       | 160.4          | \$26,181        | 0                 | 1.6              | \$61,353                       | 69.2           | \$60,684        |
| \$4.3m | 0                      | 2.2              | \$44,888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 97.5           | \$44.099        | 0                 | 3.6              | \$27.424                       | 164.1          | \$26.208        | R                 | 1.6              | \$61,381                       | 70.8           | \$60,700        |
| \$4.4m | M                      | 2.2              | \$44,955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99.7           | \$44.118        | Õ                 | 3.6              | \$27,555                       | 167.7          | \$26,237        | M                 | 1.6              | \$61,385                       | 72.5           | \$60,716        |
| \$4.5m | C                      | 2.2              | \$44,958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.0          | \$44,136        | C                 | 3.6              | \$27,573                       | 171.3          | \$26,266        | M                 | 1.6              | \$61,450                       | 74.1           | \$60,732        |
| \$4.6m | Н                      | 2.2              | \$44.971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.2          | \$44.154        | Н                 | 3.6              | \$27.630                       | 174.9          | \$26.294        | R                 | 1.6              | \$61.489                       | 75.7           | \$60.748        |
| \$4.7m | N                      | 2.2              | \$44.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.4          | \$44.171        | R                 | 3.6              | \$27.643                       | 178.6          | \$26.321        | 0                 | 1.6              | \$61.508                       | 77.3           | \$60.764        |
| \$4.8m | R                      | 2.2              | \$45.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.6          | \$44.189        | M                 | 3.6              | \$27.664                       | 182.2          | \$26.348        | M                 | 1.6              | \$61.515                       | 79.0           | \$60.779        |

## Table A1.1.4: Reallocation following net disinvestment (divisibility and diminishing returns)

|        |                   | Prim           | arv budget (                   | \$50m)         |                 |                   | Lo               | wer budget (                   | (\$0m)         |                 |                   | High           | er budget (S                   | 100m)          |                 |
|--------|-------------------|----------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|----------------|--------------------------------|----------------|-----------------|
| Budget |                   | Margina        | l                              | Cum            | ulative         | 1                 | Margina          | l                              | Cum            | ulative         |                   | Margina        | 1                              | Cum            | ulative         |
| impact | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> |
| \$4.9m | Н                 | 2.2            | \$45,084                       | 110.8          | \$44,207        | 0                 | 3.6              | \$27,685                       | 185.8          | \$26,374        | М                 | 1.6            | \$61,580                       | 80.6           | \$60,796        |
| \$5.0m | R                 | 2.2            | \$45,166                       | 113.1          | \$44,225        | 0                 | 3.6              | \$27,813                       | 189.4          | \$26,401        | R                 | 1.6            | \$61,597                       | 82.2           | \$60,811        |
| \$5.1m | 0                 | 2.2            | \$45,176                       | 115.3          | \$44,244        | R                 | 3.6              | \$27,883                       | 193.0          | \$26,429        | М                 | 1.6            | \$61.645                       | 83.8           | \$60.827        |
| \$5.2m | M                 | 2.2            | \$45,180                       | 117.5          | \$44,261        | Н                 | 3.6              | \$27,929                       | 196.6          | \$26,456        | 0                 | 1.6            | \$61.662                       | 85.5           | \$60.843        |
| \$5.3m | Н                 | 2.2            | \$45,198                       | 119.7          | \$44.279        | 0                 | 3.6              | \$27,941                       | 200.1          | \$26,483        | R                 | 1.6            | \$61,705                       | 87.1           | \$60.859        |
| \$5.4m | С                 | 2.2            | \$45,212                       | 121.9          | \$44,296        | 0                 | 3.6              | \$27,997                       | 203.7          | \$26,509        | М                 | 1.6            | \$61,709                       | 88.7           | \$60,875        |
| \$5.5m | Н                 | 2.2            | \$45,310                       | 124.1          | \$44,314        | Ò                 | 3.6              | \$28,067                       | 207.3          | \$26,536        | М                 | 1.6            | \$61,773                       | 90.3           | \$60,891        |
| \$5.6m | R                 | 2.2            | \$45,313                       | 126.3          | \$44,331        | R                 | 3.6              | \$28,120                       | 210.8          | \$26,563        | R                 | 1.6            | \$61,813                       | 91.9           | \$60,907        |
| \$5.7m | М                 | 2.2            | \$45,401                       | 128.5          | \$44,349        | 0                 | 3.5              | \$28,192                       | 214.4          | \$26,590        | Q                 | 1.6            | \$61,816                       | 93.6           | \$60,923        |
| \$5.8m | Н                 | 2.2            | \$45,422                       | 130.7          | \$44,367        | Н                 | 3.5              | \$28,221                       | 217.9          | \$26,616        | M                 | 1.6            | \$61,836                       | 95.2           | \$60,938        |
| \$5.9m | R                 | 2.2            | \$45,459                       | 132.9          | \$44,385        | С                 | 3.5              | \$28,238                       | 221.5          | \$26,642        | М                 | 1.6            | \$61,900                       | 96.8           | \$60,954        |
| \$6.0m | Q                 | 2.2            | \$45,461                       | 135.1          | \$44,403        | 0                 | 3.5              | \$28,316                       | 225.0          | \$26,668        | R                 | 1.6            | \$61,920                       | 98.4           | \$60,970        |
| \$6.1m | Ĉ                 | 2.2            | \$45,464                       | 137.3          | \$44,420        | R                 | 3.5              | \$28,355                       | 228.5          | \$26,694        | М                 | 1.6            | \$61,963                       | 100.0          | \$60,986        |
| \$6.2m | Н                 | 2.2            | \$45,534                       | 139.5          | \$44,438        | 0                 | 3.5              | \$28,438                       | 232.0          | \$26,721        | Q                 | 1.6            | \$61,969                       | 101.6          | \$61,002        |
| \$6.3m | R                 | 2.2            | \$45,605                       | 141.7          | \$44,456        | Н                 | 3.5              | \$28,508                       | 235.5          | \$26,747        | R                 | 1.6            | \$62,027                       | 103.2          | \$61,018        |
| \$6.4m | М                 | 2.2            | \$45,618                       | 143.9          | \$44,473        | 0                 | 3.5              | \$28,560                       | 239.0          | \$26,774        | Q                 | 1.6            | \$62,121                       | 104.9          | \$61,035        |
| \$6.5m | Н                 | 2.2            | \$45,645                       | 146.1          | \$44,491        | R                 | 3.5              | \$28,589                       | 242.5          | \$26,800        | R                 | 1.6            | \$62,134                       | 106.5          | \$61,051        |
| \$6.6m | С                 | 2.2            | \$45,714                       | 148.3          | \$44,509        | 0                 | 3.5              | \$28,681                       | 246.0          | \$26,827        | N                 | 1.6            | \$62,206                       | 108.1          | \$61,069        |
| \$6.7m | Q                 | 2.2            | \$45,743                       | 150.5          | \$44,527        | Q                 | 3.5              | \$28,725                       | 249.5          | \$26,853        | R                 | 1.6            | \$62,241                       | 109.7          | \$61,086        |
| \$6.8m | R                 | 2.2            | \$45,751                       | 152.7          | \$44,544        | Ĥ                 | 3.5              | \$28,789                       | 253.0          | \$26,880        | Q                 | 1.6            | \$62,272                       | 111.3          | \$61,103        |
| \$6.9m | Н                 | 2.2            | \$45,755                       | 154.8          | \$44,561        | 0                 | 3.5              | \$28,801                       | 256.4          | \$26,906        | R                 | 1.6            | \$62,348                       | 112.9          | \$61,121        |
| \$7.0m | М                 | 2.2            | \$45,831                       | 157.0          | \$44,579        | R                 | 3.5              | \$28,820                       | 259.9          | \$26,931        | Q                 | 1.6            | \$62,423                       | 114.5          | \$61,139        |
| \$7.1m | Н                 | 2.2            | \$45,865                       | 159.2          | \$44,597        | С                 | 3.5              | \$28,873                       | 263.4          | \$26,957        | R                 | 1.6            | \$62,454                       | 116.1          | \$61,157        |
| \$7.2m | R                 | 2.2            | \$45,896                       | 161.4          | \$44,614        | 0                 | 3.5              | \$28,919                       | 266.8          | \$26,982        | R                 | 1.6            | \$62,561                       | 117.7          | \$61,176        |
| \$7.3m | С                 | 2.2            | \$45,960                       | 163.6          | \$44,632        | 0                 | 3.4              | \$29,038                       | 270.3          | \$27,009        | Q                 | 1.6            | \$62,572                       | 119.3          | \$61,195        |
| \$7.4m | Н                 | 2.2            | \$45,974                       | 165.7          | \$44,650        | R                 | 3.4              | \$29,050                       | 273.7          | \$27,034        | R                 | 1.6            | \$62,666                       | 120.9          | \$61,214        |
| \$7.5m | Q                 | 2.2            | \$46,021                       | 167.9          | \$44,667        | Н                 | 3.4              | \$29,064                       | 277.2          | \$27,059        | Q                 | 1.6            | \$62,721                       | 122.5          | \$61,234        |
| \$7.6m | М                 | 2.2            | \$46,039                       | 170.1          | \$44,685        | М                 | 3.4              | \$29,100                       | 280.6          | \$27,084        | R                 | 1.6            | \$62,773                       | 124.1          | \$61,254        |
| \$7.7m | R                 | 2.2            | \$46,040                       | 172.3          | \$44,702        | 0                 | 3.4              | \$29,154                       | 284.0          | \$27,109        | Q                 | 1.6            | \$62,870                       | 125.7          | \$61,274        |
| \$7.8m | Н                 | 2.2            | \$46,083                       | 174.4          | \$44,719        | 0                 | 3.4              | \$29,271                       | 287.5          | \$27,135        | R                 | 1.6            | \$62,878                       | 127.3          | \$61,294        |
| \$7.9m | R                 | 2.2            | \$46,184                       | 176.6          | \$44,737        | R                 | 3.4              | \$29,278                       | 290.9          | \$27,160        | R                 | 1.6            | \$62,984                       | 128.8          | \$61,315        |
| \$8.0m | Н                 | 2.2            | \$46,191                       | 178.8          | \$44,755        | Н                 | 3.4              | \$29,335                       | 294.3          | \$27,185        | Q                 | 1.6            | \$63,018                       | 130.4          | \$61,336        |
| \$8.1m | С                 | 2.2            | \$46,204                       | 180.9          | \$44,772        | 0                 | 3.4              | \$29,385                       | 297.7          | \$27,211        | R                 | 1.6            | \$63,089                       | 132.0          | \$61,357        |
| \$8.2m | М                 | 2.2            | \$46,244                       | 183.1          | \$44,790        | Q                 | 3.4              | \$29,418                       | 301.1          | \$27,235        | Q                 | 1.6            | \$63,165                       | 133.6          | \$61,378        |
| \$8.3m | Q                 | 2.2            | \$46,295                       | 185.2          | \$44,807        | С                 | 3.4              | \$29,482                       | 304.5          | \$27,261        | R                 | 1.6            | \$63,195                       | 135.2          | \$61,399        |
| \$8.4m | Н                 | 2.2            | \$46,299                       | 187.4          | \$44,824        | 0                 | 3.4              | \$29,499                       | 307.9          | \$27,285        | R                 | 1.6            | \$63,300                       | 136.8          | \$61,421        |
| \$8.5m | R                 | 2.2            | \$46,328                       | 189.6          | \$44,841        | R                 | 3.4              | \$29,504                       | 311.2          | \$27,309        | Q                 | 1.6            | \$63,311                       | 138.3          | \$61,443        |
| \$8.6m | Н                 | 2.2            | \$46,407                       | 191.7          | \$44,859        | Н                 | 3.4              | \$29,600                       | 314.6          | \$27,334        | R                 | 1.6            | \$63,405                       | 139.9          | \$61,465        |
| \$8.7m | С                 | 2.2            | \$46,445                       | 193.9          | \$44,877        | 0                 | 3.4              | \$29,612                       | 318.0          | \$27,358        | Q                 | 1.6            | \$63,457                       | 141.5          | \$61,487        |
| \$8.8m | М                 | 2.2            | \$46,446                       | 196.0          | \$44,894        | 0                 | 3.4              | \$29,726                       | 321.4          | \$27,383        | R                 | 1.6            | \$63,509                       | 143.1          | \$61,509        |
| \$8.9m | R                 | 2.2            | \$46,471                       | 198.2          | \$44,911        | R                 | 3.4              | \$29,728                       | 324.7          | \$27,407        | Q                 | 1.6            | \$63,602                       | 144.6          | \$61,532        |
| \$9.0m | Н                 | 2.1            | \$46,513                       | 200.3          | \$44,928        | 0                 | 3.4              | \$29,836                       | 328.1          | \$27,432        | R                 | 1.6            | \$63,614                       | 146.2          | \$61,555        |
| \$9.1m | Q                 | 2.1            | \$46,567                       | 202.5          | \$44,946        | Н                 | 3.3              | \$29,861                       | 331.4          | \$27,457        | R                 | 1.6            | \$63,718                       | 147.8          | \$61,578        |
| \$9.2m | R                 | 2.1            | \$46,614                       | 204.6          | \$44,963        | W                 | 3.3              | \$29,934                       | 334.8          | \$27,481        | Q                 | 1.6            | \$63,746                       | 149.3          | \$61,600        |
| \$9.3m | Н                 | 2.1            | \$46,619                       | 206.8          | \$44,980        | 0                 | 3.3              | \$29,947                       | 338.1          | \$27,506        | R                 | 1.6            | \$63,823                       | 150.9          | \$61,623        |
| \$9.4m | М                 | 2.1            | \$46,644                       | 208.9          | \$44,997        | R                 | 3.3              | \$29,951                       | 341.5          | \$27,530        | Q                 | 1.6            | \$63,890                       | 152.5          | \$61,647        |
| \$9.5m | С                 | 2.1            | \$46,684                       | 211.0          | \$45,014        | 0                 | 3.3              | \$30,057                       | 344.8          | \$27,554        | R                 | 1.6            | \$63,926                       | 154.0          | \$61,670        |
| \$9.6m | Н                 | 2.1            | \$46,725                       | 213.2          | \$45,032        | С                 | 3.3              | \$30,066                       | 348.1          | \$27,578        | R                 | 1.6            | \$64,030                       | 155.6          | \$61,694        |
| \$9.7m | R                 | 2.1            | \$46,756                       | 215.3          | \$45,049        | Q                 | 3.3              | \$30,079                       | 351.4          | \$27,602        | Q                 | 1.6            | \$64,034                       | 157.2          | \$61,717        |
| \$9.8m | Н                 | 2.1            | \$46,831                       | 217.5          | \$45,066        | Н                 | 3.3              | \$30,117                       | 354.7          | \$27,625        | R                 | 1.6            | \$64,134                       | 158.7          | \$61,741        |
| \$9.9m | 0                 | 2.1            | \$46,836                       | 219.6          | \$45,083        | 0                 | 3.3              | \$30,166                       | 358.1          | \$27.649        | 0                 | 1.6            | \$64,175                       | 160.3          | \$61.764        |

| _                    |                   | Prim             | arv budget (                   | \$50m)         |                |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (S                   | 100m)          |                |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina          | d a c                          | Cum            | ulative        |                   | Margina          | l                              | Cum            | ulative        |                   | Margina          | l                              | Cum            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$10.0m              | М                 | 2.1              | \$46,839                       | 221.7          | \$45,100       | R                 | 3.3              | \$30,172                       | 361.4          | \$27,672       | R                 | 1.6              | \$64,238                       | 161.8          | \$61,788       |
| \$10.1m              | R                 | 2.1              | \$46,898                       | 223.9          | \$45,118       | N                 | 3.3              | \$30,208                       | 364.7          | \$27,695       | Q                 | 1.6              | \$64,318                       | 163.4          | \$61,812       |
| \$10.2m              | С                 | 2.1              | \$46,920                       | 226.0          | \$45,135       | 0                 | 3.3              | \$30,275                       | 368.0          | \$27,718       | R                 | 1.6              | \$64,341                       | 165.0          | \$61,836       |
| \$10.3m              | Н                 | 2.1              | \$46,936                       | 228.1          | \$45,151       | М                 | 3.3              | \$30,296                       | 371.3          | \$27,741       | R                 | 1.6              | \$64,444                       | 166.5          | \$61,860       |
| \$10.4m              | М                 | 2.1              | \$47,030                       | 230.2          | \$45,169       | Н                 | 3.3              | \$30,369                       | 374.6          | \$27,764       | Q                 | 1.6              | \$64,459                       | 168.1          | \$61,884       |
| \$10.5m              | R                 | 2.1              | \$47,040                       | 232.4          | \$45,186       | 0                 | 3.3              | \$30,382                       | 377.9          | \$27,787       | R                 | 1.5              | \$64,547                       | 169.6          | \$61,909       |
| \$10.6m              | Н                 | 2.1              | \$47,040                       | 234.5          | \$45,203       | R                 | 3.3              | \$30,391                       | 381.2          | \$27,809       | Q                 | 1.5              | \$64,599                       | 171.2          | \$61,933       |
| \$10.7m              | Q                 | 2.1              | \$47,101                       | 236.6          | \$45,220       | 0                 | 3.3              | \$30,489                       | 384.4          | \$27,832       | R                 | 1.5              | \$64,650                       | 172.7          | \$61,957       |
| \$10.8m              | Н                 | 2.1              | \$47,144                       | 238.7          | \$45,237       | 0                 | 3.3              | \$30,595                       | 387.7          | \$27,855       | Q                 | 1.5              | \$64,740                       | 174.2          | \$61,982       |
| \$10.9m              | С                 | 2.1              | \$47,154                       | 240.9          | \$45,254       | R                 | 3.3              | \$30,609                       | 391.0          | \$27,878       | R                 | 1.5              | \$64,753                       | 175.8          | \$62,006       |
| \$11.0m              | R                 | 2.1              | \$47,181                       | 243.0          | \$45,270       | Н                 | 3.3              | \$30,617                       | 394.2          | \$27,901       | R                 | 1.5              | \$64,855                       | 177.3          | \$62,031       |
| \$11.1m              | М                 | 2.1              | \$47,219                       | 245.1          | \$45,287       | С                 | 3.3              | \$30,628                       | 397.5          | \$27,924       | Q                 | 1.5              | \$64,879                       | 178.9          | \$62,056       |
| \$11.2m              | Н                 | 2.1              | \$47,248                       | 247.2          | \$45,304       | 0                 | 3.3              | \$30,700                       | 400.8          | \$27,946       | R                 | 1.5              | \$64,957                       | 180.4          | \$62,080       |
| \$11.3m              | R                 | 2.1              | \$47,321                       | 249.3          | \$45,321       | Q                 | 3.3              | \$30,713                       | 404.0          | \$27,968       | Q                 | 1.5              | \$65,017                       | 181.9          | \$62,105       |
| \$11.4m              | Н                 | 2.1              | \$47,351                       | 251.4          | \$45,338       | 0                 | 3.2              | \$30,804                       | 407.3          | \$27,991       | R                 | 1.5              | \$65,060                       | 183.5          | \$62,130       |
| \$11.5m              | Q                 | 2.1              | \$47,363                       | 253.6          | \$45,355       | R                 | 3.2              | \$30,825                       | 410.5          | \$28,013       | N                 | 1.5              | \$65,104                       | 185.0          | \$62,155       |
| \$11.6m              | С                 | 2.1              | \$47,386                       | 255.7          | \$45,372       | Н                 | 3.2              | \$30,861                       | 413.8          | \$28,036       | Q                 | 1.5              | \$65,156                       | 186.6          | \$62,179       |
| \$11.7m              | М                 | 2.1              | \$47,405                       | 257.8          | \$45,388       | E                 | 3.2              | \$30,898                       | 417.0          | \$28,058       | R                 | 1.5              | \$65,162                       | 188.1          | \$62,204       |
| \$11.8m              | Н                 | 2.1              | \$47,453                       | 259.9          | \$45,405       | 0                 | 3.2              | \$30,909                       | 420.2          | \$28,080       | R                 | 1.5              | \$65,264                       | 189.6          | \$62,228       |
| \$11.9m              | R                 | 2.1              | \$47,462                       | 262.0          | \$45,422       | 0                 | 3.2              | \$31,012                       | 423.5          | \$28,102       | Q                 | 1.5              | \$65,293                       | 191.2          | \$62,253       |
| \$12.0m              | Н                 | 2.1              | \$47,555                       | 264.1          | \$45,439       | R                 | 3.2              | \$31,040                       | 426.7          | \$28,124       | R                 | 1.5              | \$65,366                       | 192.7          | \$62,278       |
| \$12.1m              | М                 | 2.1              | \$47,587                       | 266.2          | \$45,456       | Н                 | 3.2              | \$31,101                       | 429.9          | \$28,147       | Q                 | 1.5              | \$65,430                       | 194.2          | \$62,302       |
| \$12.2m              | R                 | 2.1              | \$47,601                       | 268.3          | \$45,472       | 0                 | 3.2              | \$31,115                       | 433.1          | \$28,169       | R                 | 1.5              | \$65,467                       | 195.7          | \$62,327       |
| \$12.3m              | С                 | 2.1              | \$47,615                       | 270.4          | \$45,489       | С                 | 3.2              | \$31,171                       | 436.3          | \$28,191       | Q                 | 1.5              | \$65,567                       | 197.3          | \$62,352       |
| \$12.4m              | Q                 | 2.1              | \$47,623                       | 272.5          | \$45,506       | 0                 | 3.2              | \$31,216                       | 439.5          | \$28,213       | R                 | 1.5              | \$65,569                       | 198.8          | \$62,377       |
| \$12.5m              | Н                 | 2.1              | \$47,657                       | 274.6          | \$45,522       | R                 | 3.2              | \$31,254                       | 442.7          | \$28,235       | R                 | 1.5              | \$65,670                       | 200.3          | \$62,402       |
| \$12.6m              | R                 | 2.1              | \$47,741                       | 276.7          | \$45,539       | 0                 | 3.2              | \$31,318                       | 445.9          | \$28,257       | Q                 | 1.5              | \$65,703                       | 201.8          | \$62,427       |
| \$12.7m              | Н                 | 2.1              | \$47,758                       | 278.8          | \$45,555       | Q                 | 3.2              | \$31,322                       | 449.1          | \$28,279       | R                 | 1.5              | \$65,771                       | 203.4          | \$62,452       |
| \$12.8m              | М                 | 2.1              | \$47,767                       | 280.9          | \$45,572       | M                 | 3.2              | \$31,329                       | 452.3          | \$28,300       | Q                 | 1.5              | \$65,838                       | 204.9          | \$62,477       |
| \$12.9m              | C                 | 2.1              | \$47,843                       | 283.0          | \$45,589       | H                 | 3.2              | \$31,338                       | 455.5          | \$28,321       | R                 | 1.5              | \$65,872                       | 206.4          | \$62,502       |
| \$13.0m              | H                 | 2.1              | \$47,859                       | 285.1          | \$45,605       | 0                 | 3.2              | \$31,418                       | 458.7          | \$28,343       | R                 | 1.5              | \$65,973                       | 207.9          | \$62,527       |
| \$13.1m              | Q                 | 2.1              | \$47,880                       | 287.1          | \$45,622       | R                 | 3.2              | \$31,466                       | 461.8          | \$28,364       | Q                 | 1.5              | \$65,973                       | 209.4          | \$62,552       |
| \$13.2m              | R                 | 2.1              | \$47,880                       | 289.2          | \$45,638       | 0                 | 3.2              | \$31,518                       | 465.0          | \$28,386       | R                 | 1.5              | \$66,073                       | 210.9          | \$62,577       |
| \$13.3m              | M                 | 2.1              | \$47,944                       | 291.3          | \$45,655       | H                 | 3.2              | \$31,571                       | 468.2          | \$28,407       | Q                 | 1.5              | \$66,107                       | 212.5          | \$62,602       |
| \$13.4m              | H                 | 2.1              | \$47,960                       | 293.4          | \$45,671       | 0<br>D            | 3.2              | \$31,618                       | 4/1.3          | \$28,429       | R                 | 1.5              | \$66,174                       | 214.0          | \$62,628       |
| \$13.5m              | K                 | 2.1              | \$48,018                       | 295.5          | \$45,688       | K                 | 3.2              | \$31,676                       | 4/4.5          | \$28,451       | Q                 | 1.5              | \$66,241                       | 215.5          | \$62,653       |
| \$13.0m              | H<br>C            | 2.1              | \$48,060                       | 297.6          | \$45,704       | C                 | 3.2              | \$31,095                       | 4//./          | \$28,472       | ĸ                 | 1.5              | \$00,274                       | 217.0          | \$02,078       |
| \$13./m              | U<br>M            | 2.1              | \$48,068                       | 299.0          | \$45,721       | U<br>11           | 3.2              | \$31,/10                       | 480.8          | \$28,495       | Q<br>P            | 1.5              | \$00,374                       | 218.5          | \$62,704       |
| \$13.8m              | M                 | 2.1              | \$46,119                       | 202.9          | \$45,757       | П                 | 3.1              | \$51,601                       | 404.0          | \$28,313       | R<br>D            | 1.5              | \$00,575                       | 220.0          | \$02,729       |
| \$13.9m              | Q<br>D            | 2.1              | \$40,154                       | 205.0          | \$45,754       | D                 | 2.1              | \$31,014                       | 40/.1          | \$28,550       | K O               | 1.5              | \$66,507                       | 221.3          | \$62,734       |
| \$14.0m              | K<br>U            | 2.1              | \$40,157                       | 208.0          | \$45,776       | K O               | 2.1              | \$21,007                       | 490.2          | \$28,558       | Q<br>D            | 1.5              | \$66,507                       | 223.0          | \$62,780       |
| \$14.1m              | 11                | 2.1              | \$40,139                       | 210.0          | \$45,780       | Q Q               | 2.1              | \$31,907                       | 493.4          | \$28,379       | K O               | 1.5              | \$66,620                       | 224.5          | \$62,803       |
| \$14.2m              | П                 | 2.1              | \$40,230                       | 212.1          | \$45,805       | 0                 | 2.1              | \$31,911                       | 490.5          | \$28,000       |                   | 1.5              | \$00,039                       | 220.0          | \$02,830       |
| \$14.5m<br>\$14.6m   | M                 | 2.1              | \$40,291                       | 314.2          | \$45,819       | U<br>H            | 3.1              | \$32,008                       | 499.0          | \$28,021       | N O               | 1.5              | \$66,770                       | 227.3          | \$62.881       |
| \$14.4m              | D D               | 2.1              | \$48.201                       | 314.2          | \$45,055       | D D               | 3.1              | \$32,027                       | 505.0          | \$28,042       | P                 | 1.5              | \$66.774                       | 229.0          | \$62.007       |
| \$14.5m<br>\$14.6m   | К                 | 2.1              | \$40,274                       | 318.2          | \$45,051       | N O               | 3.1              | \$32,092                       | 500.9          | \$28,004       | R<br>D            | 1.5              | \$66.872                       | 230.3          | \$62.907       |
| \$14.0III<br>\$14.7m | 0                 | 2.1              | \$40,330                       | 320.4          | \$45,000       | 0                 | 2.1              | \$32,104                       | 512.1          | \$28,005       | N O               | 1.5              | \$66.001                       | 232.0          | \$62.059       |
| \$14./III<br>\$14.8m | P                 | 2.1              | \$18 132                       | 320.4          | \$45,004       | C                 | 3.1              | \$32,201                       | 515.2          | \$28,700       | P                 | 1.5              | \$66.075                       | 235.0          | \$62.082       |
| \$14.011<br>\$14.0m  | н                 | 2.1              | \$48 454                       | 324.4          | \$45,900       | M                 | 3.1              | \$32,202                       | 5183           | \$28,748       | 0                 | 1.5              | \$67.031                       | 235.0          | \$63.009       |
| \$15.0m              | M                 | 2.1              | \$48 461                       | 326.6          | \$45.933       | H                 | 3.1              | \$32,240                       | 521.4          | \$28,740       | R                 | 1.5              | \$67.069                       | 238.0          | \$63,009       |

|                    |                   | Prim             | arv budget (                   | \$50m)         |                      |                   | Lo               | wer budget (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (\$0m)         |                 |                   | High             | er budget (S                   | 100m)          |                 |
|--------------------|-------------------|------------------|--------------------------------|----------------|----------------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget             |                   | Margina          | d d                            | Cum            | ulative              |                   | Margina          | d a construction of the second | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative         |
| impact             | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup>      | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> |
| \$15.1m            | С                 | 2.1              | \$48,512                       | 328.6          | \$45,949             | 0                 | 3.1              | \$32,295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 524.5          | \$28,790        | Q                 | 1.5              | \$67,162                       | 239.5          | \$63,060        |
| \$15.2m            | Н                 | 2.1              | \$48,553                       | 330.7          | \$45,965             | R                 | 3.1              | \$32,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 527.6          | \$28,810        | R                 | 1.5              | \$67,173                       | 240.9          | \$63,085        |
| \$15.3m            | R                 | 2.1              | \$48,569                       | 332.7          | \$45,981             | 0                 | 3.1              | \$32,390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 530.7          | \$28,831        | R                 | 1.5              | \$67,268                       | 242.4          | \$63,111        |
| \$15.4m            | М                 | 2.1              | \$48,628                       | 334.8          | \$45,997             | Н                 | 3.1              | \$32,470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 533.8          | \$28,852        | Q                 | 1.5              | \$67,291                       | 243.9          | \$63,136        |
| \$15.5m            | Q                 | 2.1              | \$48,634                       | 336.9          | \$46,013             | Q                 | 3.1              | \$32,472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 536.8          | \$28,873        | R                 | 1.5              | \$67,367                       | 245.4          | \$63,162        |
| \$15.6m            | Н                 | 2.1              | \$48,652                       | 338.9          | \$46,029             | 0                 | 3.1              | \$32,484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 539.9          | \$28,893        | Q                 | 1.5              | \$67,420                       | 246.9          | \$63,187        |
| \$15.7m            | R                 | 2.1              | \$48,705                       | 341.0          | \$46,046             | R                 | 3.1              | \$32,504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 543.0          | \$28,914        | R                 | 1.5              | \$67,467                       | 248.4          | \$63,213        |
| \$15.8m            | С                 | 2.1              | \$48,731                       | 343.0          | \$46,062             | 0                 | 3.1              | \$32,576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 546.1          | \$28,935        | Q                 | 1.5              | \$67,549                       | 249.8          | \$63,239        |
| \$15.9m            | Н                 | 2.1              | \$48,747                       | 345.1          | \$46,078             | 0                 | 3.1              | \$32,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 549.1          | \$28,955        | R                 | 1.5              | \$67,568                       | 251.3          | \$63,264        |
| \$16.0m            | M                 | 2.0              | \$48,794                       | 347.1          | \$46,094             | Н                 | 3.1              | \$32,688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 552.2          | \$28,976        | R                 | 1.5              | \$67,664                       | 252.8          | \$63,290        |
| \$16.1m            | R                 | 2.0              | \$48,842                       | 349.2          | \$46,110             | С                 | 3.1              | \$32,694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 555.2          | \$28,996        | Q                 | 1.5              | \$67,677                       | 254.3          | \$63,315        |
| \$16.2m            | Н                 | 2.0              | \$48,847                       | 351.2          | \$46,126             | R                 | 3.1              | \$32,708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 558.3          | \$29,017        | R                 | 1.5              | \$67,760                       | 255.8          | \$63,341        |
| \$16.3m            | Q                 | 2.0              | \$48,880                       | 353.3          | \$46,142             | 0                 | 3.1              | \$32,763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 561.3          | \$29,037        | Q                 | 1.5              | \$67,804                       | 257.2          | \$63,367        |
| \$16.4m            | N                 | 2.0              | \$48,921                       | 355.3          | \$46,158             | 0                 | 3.0              | \$32,855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 564.4          | \$29,058        | R                 | 1.5              | \$67,861                       | 258.7          | \$63,392        |
| \$16.5m            | Н                 | 2.0              | \$48,940                       | 357.3          | \$46,174             | Н                 | 3.0              | \$32,902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 567.4          | \$29,078        | N                 | 1.5              | \$67,878                       | 260.2          | \$63,418        |
| \$16.6m            | С                 | 2.0              | \$48,948                       | 359.4          | \$46,189             | R                 | 3.0              | \$32,911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 570.5          | \$29,099        | Q                 | 1.5              | \$67,932                       | 261.7          | \$63,443        |
| \$16.7m            | M                 | 2.0              | \$48,956                       | 361.4          | \$46,205             | 0                 | 3.0              | \$32,946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 573.5          | \$29,119        | R                 | 1.5              | \$67,953                       | 263.1          | \$63,468        |
| \$16.8m            | R                 | 2.0              | \$48,977                       | 363.5          | \$46,221             | Q                 | 3.0              | \$33,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 576.5          | \$29,140        | R                 | 1.5              | \$68,055                       | 264.6          | \$63,494        |
| \$16.9m            | Н                 | 2.0              | \$49,039                       | 365.5          | \$46,236             | 0                 | 3.0              | \$33,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 579.6          | \$29,160        | Q                 | 1.5              | \$68,058                       | 266.1          | \$63,519        |
| \$17.0m            | R                 | 2.0              | \$49,113                       | 367.6          | \$46,252             | М                 | 3.0              | \$33,059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 582.6          | \$29,180        | W                 | 1.5              | \$68,069                       | 267.5          | \$63,544        |
| \$17.1m            | М                 | 2.0              | \$49,117                       | 369.6          | \$46,268             | R                 | 3.0              | \$33,111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 585.6          | \$29,200        | R                 | 1.5              | \$68,157                       | 269.0          | \$63,569        |
| \$17.2m            | Q                 | 2.0              | \$49,124                       | 371.6          | \$46,284             | Н                 | 3.0              | \$33,114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 588.6          | \$29,221        | Q                 | 1.5              | \$68,184                       | 270.5          | \$63,594        |
| \$17.3m            | Н                 | 2.0              | \$49,133                       | 373.7          | \$46,299             | 0                 | 3.0              | \$33,127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 591.6          | \$29,240        | R                 | 1.5              | \$68,250                       | 271.9          | \$63,619        |
| \$17.4m            | C                 | 2.0              | \$49,163                       | 375.7          | \$46,315             | C                 | 3.0              | \$33,171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 594.7          | \$29,260        | Q                 | 1.5              | \$68,310                       | 273.4          | \$63,644        |
| \$17.5m            | Н                 | 2.0              | \$49,227                       | 377.7          | \$46,330             | 0                 | 3.0              | \$33,217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 597.7          | \$29,280        | R                 | 1.5              | \$68,343                       | 274.9          | \$63,669        |
| \$17.6m            | R                 | 2.0              | \$49,248                       | 379.8          | \$46,346             | 0                 | 3.0              | \$33,307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600.7          | \$29,300        | Q                 | 1.5              | \$68,435                       | 276.3          | \$63,695        |
| \$17.7m            | М                 | 2.0              | \$49,276                       | 381.8          | \$46,361             | R                 | 3.0              | \$33,312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 603.7          | \$29,320        | R                 | 1.5              | \$68,446                       | 277.8          | \$63,719        |
| \$17.8m            | Н                 | 2.0              | \$49,324                       | 383.8          | \$46,377             | Н                 | 3.0              | \$33,322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 606.7          | \$29,340        | R                 | 1.5              | \$68,540                       | 279.2          | \$63,745        |
| \$17.9m            | Q                 | 2.0              | \$49,365                       | 385.8          | \$46,393             | 0                 | 3.0              | \$33,396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 609.7          | \$29,360        | Q                 | 1.5              | \$68,560                       | 280.7          | \$63,770        |
| \$18.0m            | C                 | 2.0              | \$49,377                       | 387.9          | \$46,408             | 0                 | 3.0              | \$33,484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 612.7          | \$29,380        | R                 | 1.5              | \$68,639                       | 282.2          | \$63,795        |
| \$18.1m            | R                 | 2.0              | \$49,383                       | 389.9          | \$46,424             | R                 | 3.0              | \$33,511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 615.6          | \$29,400        | Q                 | 1.5              | \$68,685                       | 283.6          | \$63,820        |
| \$18.2m            | Н                 | 2.0              | \$49,419                       | 391.9          | \$46,439             | H                 | 3.0              | \$33,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 618.6          | \$29,420        | R                 | 1.5              | \$68,738                       | 285.1          | \$63,845        |
| \$18.3m            | M                 | 2.0              | \$49,433                       | 393.9          | \$46,455             | Q                 | 3.0              | \$33,547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 621.6          | \$29,440        | Q                 | 1.5              | \$68,808                       | 286.5          | \$63,870        |
| \$18.4m            | H                 | 2.0              | \$49,512                       | 396.0          | \$46,470             | 0                 | 3.0              | \$33,572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 624.6          | \$29,460        | R                 | 1.5              | \$68,828                       | 288.0          | \$63,895        |
| \$18.5m            | R                 | 2.0              | \$49,517                       | 398.0          | \$46,486             | C                 | 3.0              | \$33,635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 627.6          | \$29,479        | R                 | 1.5              | \$68,927                       | 289.4          | \$63,920        |
| \$18.6m            | M                 | 2.0              | \$49,587                       | 400.0          | \$46,501             | 0                 | 3.0              | \$33,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 630.5          | \$29,499        | Q                 | 1.5              | \$68,932                       | 290.9          | \$63,945        |
| \$18.7m            | 0                 | 2.0              | \$49,588                       | 402.0          | \$46,517             | K                 | 3.0              | \$33,709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 633.5          | \$29,519        | K                 | 1.4              | \$69,027                       | 292.3          | \$63,971        |
| \$18.8m            | Q                 | 2.0              | \$49,604                       | 404.0          | \$46,532             | H                 | 3.0              | \$33,/33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 636.5          | \$29,538        | Q                 | 1.4              | \$69,056                       | 293.8          | \$63,996        |
| \$18.9m            | П                 | 2.0              | \$49,606                       | 406.0          | \$40,548             | 0                 | 3.0              | \$33,740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 639.4          | \$29,558        | ĸ                 | 1.4              | \$09,118                       | 295.2          | \$64,021        |
| \$19.0m            | K                 | 2.0              | \$49,651                       | 408.1          | \$46,563             | M                 | 3.0              | \$33,803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 642.4          | \$29,578        | Q                 | 1.4              | \$69,175                       | 296.7          | \$64,046        |
| \$19.1m            | Н                 | 2.0              | \$49,699                       | 410.1          | \$40,578             | 0<br>D            | 3.0              | \$33,833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 645.5          | \$29,597        | ĸ                 | 1.4              | \$69,219                       | 298.1          | \$64,071        |
| \$19.2m            | M                 | 2.0              | \$49,740                       | 412.1          | \$46,594             | K                 | 2.9              | \$33,904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 648.3          | \$29,617        | Q                 | 1.4              | \$69,300                       | 299.5          | \$64,096        |
| \$19.3m            | K                 | 2.0              | \$49,/83                       | 414.1          | \$40,009             | U<br>11           | 2.9              | \$33,919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 654.2          | \$29,030        | K<br>P            | 1.4              | \$69,314                       | 202.4          | \$04,121        |
| \$19.4m            | Н                 | 2.0              | \$49,/93                       | 410.1          | \$40,023             | Н                 | 2.9              | \$33,934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 657.1          | \$29,000        | К                 | 1.4              | \$69,400                       | 302.4          | \$64,140        |
| \$19.5m            | C                 | 2.0              | \$49,/98                       | 418.1          | \$40,040             | 0                 | 2.9              | \$34,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03/.1          | \$29,073        | Q<br>P            | 1.4              | \$69,420                       | 205.2          | \$64,171        |
| \$19.6m            | <u> </u>          | 2.0              | \$49,841                       | 420.1          | \$40,000             | Q<br>C            | 2.9              | \$34,039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 662.0          | \$29,094        | ĸ                 | 1.4              | \$09,50/                       | 206.9          | \$64,197        |
| \$19./m            | H<br>M            | 2.0              | \$49,885                       | 422.1          | \$40,070             |                   | 2.9              | \$34,087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 665.0          | \$29,/14        |                   | 1.4              | \$69,541                       | 209.2          | \$04,222        |
| \$19.8m            | M                 | 2.0              | \$49,891                       | 424.1          | \$40,080             |                   | 2.9              | \$34,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 669.0          | \$29,/33        | ĸ                 | 1.4              | \$69,399                       | 200.6          | \$64,247        |
| \$19.9m            | K<br>U            | 2.0              | \$49,919                       | 420.1          | \$40,701             | K<br>U            | 2.9              | \$34,101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 671.9          | \$29,752        | Q<br>P            | 1.4              | \$60,601                       | 211.1          | \$64,272        |
| \$20.0m<br>\$20.1m | 11<br>C           | 2.0              | \$50.006                       | 420.1          | \$46,731             | п<br>0            | 2.9              | \$34,133<br>\$34,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 674.7          | \$20,700        | л<br>О            | 1.4              | \$60 784                       | 312.5          | \$64 322        |
| φ40.1III           |                   | 2.0              | 900,000                        | 1.0.1          | $\varphi = 0, / J =$ |                   | 4.7              | $\phi_{J} = 1 / 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0/7./          | Q21,170         |                   | 1.7              | ψ0/,/0 <del>1</del>            | 1 214.2        | JUT, J44        |

|                      |                   | Prim             | arv budget (                   | (\$50m)        |                |                   | Lo               | wer budget (                   | (\$0m)         |                |                   | High             | er budget (S                   | 100m)          |                |
|----------------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget               |                   | Margina          | d a c                          | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cun            | ulative        |
| impact               | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$20.2m              | М                 | 2.0              | \$50,041                       | 432.1          | \$46,747       | 0                 | 2.9              | \$34,259                       | 677.6          | \$29,810       | R                 | 1.4              | \$69,793                       | 313.9          | \$64,347       |
| \$20.3m              | R                 | 2.0              | \$50,050                       | 434.1          | \$46,762       | R                 | 2.9              | \$34,295                       | 680.5          | \$29,829       | R                 | 1.4              | \$69,886                       | 315.4          | \$64,372       |
| \$20.4m              | Н                 | 2.0              | \$50,070                       | 436.1          | \$46,777       | Н                 | 2.9              | \$34,330                       | 683.5          | \$29,848       | Q                 | 1.4              | \$69,906                       | 316.8          | \$64,397       |
| \$20.5m              | Q                 | 2.0              | \$50,076                       | 438.1          | \$46,792       | 0                 | 2.9              | \$34,344                       | 686.4          | \$29,867       | R                 | 1.4              | \$69,979                       | 318.2          | \$64,422       |
| \$20.6m              | Н                 | 2.0              | \$50,161                       | 440.1          | \$46,807       | 0                 | 2.9              | \$34,427                       | 689.3          | \$29,886       | Q                 | 1.4              | \$70,023                       | 319.6          | \$64,447       |
| \$20.7m              | R                 | 2.0              | \$50,183                       | 442.1          | \$46,823       | М                 | 2.9              | \$34,487                       | 692.2          | \$29,906       | R                 | 1.4              | \$70,077                       | 321.1          | \$64,472       |
| \$20.8m              | М                 | 2.0              | \$50,188                       | 444.1          | \$46,838       | R                 | 2.9              | \$34,489                       | 695.1          | \$29,925       | Q                 | 1.4              | \$70,141                       | 322.5          | \$64,497       |
| \$20.9m              | С                 | 2.0              | \$50,212                       | 446.1          | \$46,853       | 0                 | 2.9              | \$34,511                       | 698.0          | \$29,944       | R                 | 1.4              | \$70,171                       | 323.9          | \$64,522       |
| \$21.0m              | Q                 | 2.0              | \$50,308                       | 448.1          | \$46,868       | Н                 | 2.9              | \$34,524                       | 700.9          | \$29,963       | Q                 | 1.4              | \$70,259                       | 325.3          | \$64,547       |
| \$21.1m              | R                 | 2.0              | \$50,317                       | 450.1          | \$46,883       | C                 | 2.9              | \$34,527                       | 703.8          | \$29,982       | R                 | 1.4              | \$70,264                       | 326.8          | \$64,572       |
| \$21.2m              | М                 | 2.0              | \$50,333                       | 452.0          | \$46,898       | Q                 | 2.9              | \$34,557                       | 706.7          | \$30,000       | R                 | 1.4              | \$70,358                       | 328.2          | \$64,597       |
| \$21.3m              | С                 | 2.0              | \$50,416                       | 454.0          | \$46,914       | 0                 | 2.9              | \$34,594                       | 709.5          | \$30,019       | Q                 | 1.4              | \$70,383                       | 329.6          | \$64,622       |
| \$21.4m              | R                 | 2.0              | \$50,449                       | 456.0          | \$46,929       | 0                 | 2.9              | \$34,676                       | 712.4          | \$30,038       | R                 | 1.4              | \$70,452                       | 331.0          | \$64,647       |
| \$21.5m              | М                 | 2.0              | \$50,478                       | 458.0          | \$46,945       | R                 | 2.9              | \$34,680                       | 715.3          | \$30,057       | Q                 | 1.4              | \$70,497                       | 332.4          | \$64,672       |
| \$21.6m              | Q                 | 2.0              | \$50,538                       | 460.0          | \$46,960       | H                 | 2.9              | \$34,716                       | 718.2          | \$30,075       | N                 | 1.4              | \$70,543                       | 333.9          | \$64,697       |
| \$21.7m              | R                 | 2.0              | \$50,579                       | 461.9          | \$46,976       | 0                 | 2.9              | \$34,758                       | 721.1          | \$30,094       | R                 | 1.4              | \$70,552                       | 335.3          | \$64,722       |
| \$21.8m              | <u>с</u>          | 2.0              | \$50,619                       | 463.9          | \$46,991       | 0                 | 2.9              | \$34,840                       | 723.9          | \$30,113       | Q                 | 1.4              | \$70,616                       | 336.7          | \$64,747       |
| \$21.9m              | M                 | 2.0              | \$50,620                       | 465.9          | \$47,006       | R                 | 2.9              | \$34,871                       | 726.8          | \$30,132       | R                 | 1.4              | \$70,641                       | 338.1          | \$64,771       |
| \$22.0m              | R<br>M            | 2.0              | \$50,710                       | 467.9          | \$47,022       | H                 | 2.9              | \$34,906                       | 729.7          | \$30,150       | Q                 | 1.4              | \$70,731                       | 339.5          | \$64,796       |
| \$22.1m              | M                 | 2.0              | \$50,761                       | 409.8          | \$47,038       | 0                 | 2.9              | \$34,921                       | 732.5          | \$30,109       | K<br>D            | 1.4              | \$70,730                       | 340.9          | \$04,821       |
| \$22.2m              | Q                 | 2.0              | \$50,707                       | 4/1.8          | \$47,053       | C O               | 2.9              | \$34,930                       | 735.4          | \$30,188       | K                 | 1.4              | \$70,827                       | 242.9          | \$64,845       |
| \$22.5m              | D D               | 2.0              | \$50,820                       | 4/5.8          | \$47,009       | 0                 | 2.9              | \$35,003                       | 741.1          | \$30,200       |                   | 1.4              | \$70,047                       | 245.0          | \$04,870       |
| \$22.4III<br>\$22.5m | K<br>M            | 2.0              | \$50,841                       | 4/3./          | \$47,085       | Q<br>D            | 2.9              | \$35,040                       | 741.1          | \$30,223       | R O               | 1.4              | \$70,927                       | 246.6          | \$64,020       |
| \$22.5m              | W                 | 2.0              | \$50,900                       | 479.7          | \$47,100       | K<br>O            | 2.9              | \$35,002                       | 744.0          | \$30,243       | R                 | 1.4              | \$71,018                       | 340.0          | \$64,920       |
| \$22.0m              | R                 | 2.0              | \$50,971                       | 481.6          | \$47,110       | н                 | 2.9              | \$35,005                       | 740.0          | \$30,202       | 0                 | 1.4              | \$71,010                       | 349.4          | \$64,969       |
| \$22.7m              | 0                 | 2.0              | \$50,993                       | 483.6          | \$47,132       | M                 | 2.0              | \$35,075                       | 752.5          | \$30,200       | R                 | 1.4              | \$71,070                       | 350.8          | \$64 994       |
| \$22.0m              | Č                 | 2.0              | \$51,020                       | 485.6          | \$47,163       | 0                 | 2.0              | \$35,121                       | 755.4          | \$30,317       | 0                 | 1.1              | \$71,200                       | 352.2          | \$65.018       |
| \$23.0m              | M                 | 2.0              | \$51,020                       | 487.5          | \$47,179       | Ő                 | 2.8              | \$35,242                       | 758.2          | \$30,335       | R                 | 1.1              | \$71,200                       | 353.6          | \$65,043       |
| \$23.1m              | R                 | 2.0              | \$51,104                       | 489.5          | \$47,194       | R                 | 2.8              | \$35,250                       | 761.0          | \$30,354       | R                 | 1.4              | \$71,296                       | 355.0          | \$65,068       |
| \$23.2m              | М                 | 2.0              | \$51,174                       | 491.4          | \$47,210       | Н                 | 2.8              | \$35,282                       | 763.9          | \$30,372       | 0                 | 1.4              | \$71,311                       | 356.4          | \$65,092       |
| \$23.3m              | Q                 | 2.0              | \$51,217                       | 493.4          | \$47,226       | 0                 | 2.8              | \$35,322                       | 766.7          | \$30,390       | R                 | 1.4              | \$71,393                       | 357.8          | \$65,117       |
| \$23.4m              | Ĉ                 | 2.0              | \$51,218                       | 495.3          | \$47,242       | С                 | 2.8              | \$35,375                       | 769.5          | \$30,408       | Q                 | 1.4              | \$71,429                       | 359.2          | \$65,141       |
| \$23.5m              | R                 | 2.0              | \$51,232                       | 497.3          | \$47,257       | 0                 | 2.8              | \$35,402                       | 772.3          | \$30,427       | R                 | 1.4              | \$71,485                       | 360.6          | \$65,166       |
| \$23.6m              | М                 | 1.9              | \$51,309                       | 499.2          | \$47,273       | R                 | 2.8              | \$35,438                       | 775.2          | \$30,445       | Q                 | 1.4              | \$71,541                       | 362.0          | \$65,191       |
| \$23.7m              | R                 | 1.9              | \$51,361                       | 501.2          | \$47,289       | Н                 | 2.8              | \$35,465                       | 778.0          | \$30,463       | R                 | 1.4              | \$71,572                       | 363.4          | \$65,215       |
| \$23.8m              | С                 | 1.9              | \$51,415                       | 503.1          | \$47,305       | 0                 | 2.8              | \$35,480                       | 780.8          | \$30,481       | Q                 | 1.4              | \$71,659                       | 364.8          | \$65,240       |
| \$23.9m              | Q                 | 1.9              | \$51,439                       | 505.1          | \$47,321       | Q                 | 2.8              | \$35,511                       | 783.6          | \$30,499       | R                 | 1.4              | \$71,674                       | 366.2          | \$65,264       |
| \$24.0m              | М                 | 1.9              | \$51,442                       | 507.0          | \$47,337       | 0                 | 2.8              | \$35,558                       | 786.4          | \$30,517       | R                 | 1.4              | \$71,762                       | 367.6          | \$65,289       |
| \$24.1m              | R                 | 1.9              | \$51,491                       | 508.9          | \$47,353       | R                 | 2.8              | \$35,625                       | 789.2          | \$30,536       | Q                 | 1.4              | \$71,767                       | 369.0          | \$65,313       |
| \$24.2m              | М                 | 1.9              | \$51,574                       | 510.9          | \$47,369       | 0                 | 2.8              | \$35,637                       | 792.0          | \$30,554       | R                 | 1.4              | \$71,855                       | 370.4          | \$65,338       |
| \$24.3m              | С                 | 1.9              | \$51,610                       | 512.8          | \$47,385       | Н                 | 2.8              | \$35,648                       | 794.9          | \$30,572       | Q                 | 1.4              | \$71,886                       | 371.8          | \$65,362       |
| \$24.4m              | R                 | 1.9              | \$51,621                       | 514.8          | \$47,401       | М                 | 2.8              | \$35,712                       | 797.7          | \$30,590       | R                 | 1.4              | \$71,942                       | 373.2          | \$65,387       |
| \$24.5m              | Q                 | 1.9              | \$51,659                       | 516.7          | \$47,417       | 0                 | 2.8              | \$35,714                       | 800.5          | \$30,608       | Q                 | 1.4              | \$71,994                       | 374.6          | \$65,411       |
| \$24.6m              | M                 | 1.9              | \$51,705                       | 518.6          | \$47,432       | C                 | 2.8              | \$35,784                       | 803.2          | \$30,626       | R                 | 1.4              | \$72,041                       | 375.9          | \$65,436       |
| \$24.7m              | R                 | 1.9              | \$51,746                       | 520.6          | \$47,449       | 0                 | 2.8              | \$35,792                       | 806.0          | \$30,644       | Q                 | 1.4              | \$72,108                       | 377.3          | \$65,460       |
| \$24.8m              | C                 | 1.9              | \$51,804                       | 522.5          | \$47,465       | R                 | 2.8              | \$35,811                       | 808.8          | \$30,661       | R                 | 1.4              | \$72,129                       | 378.7          | \$65,485       |
| \$24.9m              | M                 | 1.9              | \$51,834                       | 524.4          | \$47,481       | H                 | 2.8              | \$35,829                       | 811.6          | \$30,679       | Q                 | 1.4              | \$72,223                       | 380.1          | \$65,509       |
| \$25.0m              | K                 | 1.9              | \$51,878                       | 526.4          | \$47,497       | N                 | 2.8              | \$35,833                       | 814.4          | \$30,697       | K<br>D            | 1.4              | \$72,228                       | 381.5          | \$65,534       |
| \$25.1m              | V<br>M            | 1.9              | \$51,8//                       | 528.5          | \$47,513       | 0                 | 2.8              | \$35,869                       | 81/.2          | \$30,/14       | K<br>D            | 1.4              | \$72,312                       | 382.9          | \$00,008       |
| \$25.2M              | IVI               | 1.9              | \$31,902                       | 330.2          | 347,329        |                   | 2.8              | JJJ,940                        | 820.0          | 33U,/32        | ĸ                 | 1.4              | \$/2,411                       | 384.2          | \$00,083       |

|         |                   | Prim           | arv budget ( | (\$50m)        |          |                   | Lo             | wer budget (                   | (\$0m)         |          |                   | High           | er budget (S                   | 100m)          |                 |
|---------|-------------------|----------------|--------------|----------------|----------|-------------------|----------------|--------------------------------|----------------|----------|-------------------|----------------|--------------------------------|----------------|-----------------|
| Budget  |                   | Margina        | <u>l</u>     | Cum            | ulative  |                   | Margina        | l                              | Cum            | ulative  |                   | Margina        | l                              | Cum            | ulative         |
| impact  | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER°        | $\Delta E^{d}$ | λ-e      | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ-e      | Tech <sup>a</sup> | $\Delta E_m^b$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>-e</sup> |
| \$25.3m | C                 | 1.9            | \$51,996     | 532.1          | \$47,545 | 0                 | 2.8            | \$35,969                       | 822.8          | \$30,750 | R                 | 1.4            | \$72,495                       | 385.6          | \$65,608        |
| \$25.4m | R                 | 1.9            | \$52,005     | 534.0          | \$47,561 | R                 | 2.8            | \$35,996                       | 825.5          | \$30,768 | R                 | 1.4            | \$72,590                       | 387.0          | \$65,633        |
| \$25.5m | М                 | 1.9            | \$52,089     | 536.0          | \$47,577 | Н                 | 2.8            | \$36,006                       | 828.3          | \$30,785 | R                 | 1.4            | \$72,685                       | 388.4          | \$65,658        |
| \$25.6m | Q                 | 1.9            | \$52,094     | 537.9          | \$47,593 | 0                 | 2.8            | \$36,022                       | 831.1          | \$30,803 | R                 | 1.4            | \$72,770                       | 389.8          | \$65,683        |
| \$25.7m | Ř                 | 1.9            | \$52,132     | 539.8          | \$47,610 | 0                 | 2.8            | \$36,097                       | 833.9          | \$30,820 | R                 | 1.4            | \$72,865                       | 391.1          | \$65,708        |
| \$25.8m | С                 | 1.9            | \$52,187     | 541.7          | \$47,626 | 0                 | 2.8            | \$36,174                       | 836.6          | \$30,838 | R                 | 1.4            | \$72,955                       | 392.5          | \$65,733        |
| \$25.9m | М                 | 1.9            | \$52,217     | 543.6          | \$47,642 | R                 | 2.8            | \$36,181                       | 839.4          | \$30,855 | R                 | 1.4            | \$73,051                       | 393.9          | \$65,759        |
| \$26.0m | R                 | 1.9            | \$52,258     | 545.6          | \$47,658 | С                 | 2.8            | \$36,184                       | 842.2          | \$30,873 | Ν                 | 1.4            | \$73,111                       | 395.2          | \$65,784        |
| \$26.1m | Q                 | 1.9            | \$52,309     | 547.5          | \$47,674 | Н                 | 2.8            | \$36,185                       | 844.9          | \$30,890 | R                 | 1.4            | \$73,137                       | 396.6          | \$65,809        |
| \$26.2m | М                 | 1.9            | \$52,340     | 549.4          | \$47,691 | 0                 | 2.8            | \$36,249                       | 847.7          | \$30,908 | R                 | 1.4            | \$73,228                       | 398.0          | \$65,835        |
| \$26.3m | С                 | 1.9            | \$52,376     | 551.3          | \$47,707 | М                 | 2.8            | \$36,266                       | 850.4          | \$30,925 | R                 | 1.4            | \$73,319                       | 399.3          | \$65,860        |
| \$26.4m | R                 | 1.9            | \$52,386     | 553.2          | \$47,723 | 0                 | 2.8            | \$36,324                       | 853.2          | \$30,943 | R                 | 1.4            | \$73,411                       | 400.7          | \$65,886        |
| \$26.5m | М                 | 1.9            | \$52,463     | 555.1          | \$47,739 | Н                 | 2.8            | \$36,358                       | 855.9          | \$30,960 | R                 | 1.4            | \$73,497                       | 402.1          | \$65,912        |
| \$26.6m | R                 | 1.9            | \$52,513     | 557.0          | \$47,756 | R                 | 2.8            | \$36,364                       | 858.7          | \$30,977 | R                 | 1.4            | \$73,594                       | 403.4          | \$65,938        |
| \$26.7m | 0                 | 1.9            | \$52,522     | 558.9          | \$47,772 | 0                 | 2.7            | \$36,399                       | 861.4          | \$30,995 | R                 | 1.4            | \$73,681                       | 404.8          | \$65,964        |
| \$26.8m | Ň                 | 1.9            | \$52,560     | 560.8          | \$47,788 | Q                 | 2.7            | \$36,416                       | 864.2          | \$31,012 | R                 | 1.4            | \$73,768                       | 406.1          | \$65,990        |
| \$26.9m | С                 | 1.9            | \$52,564     | 562.7          | \$47,804 | 0                 | 2.7            | \$36,474                       | 866.9          | \$31,029 | R                 | 1.4            | \$73,861                       | 407.5          | \$66,016        |
| \$27.0m | М                 | 1.9            | \$52,585     | 564.6          | \$47,820 | Н                 | 2.7            | \$36,534                       | 869.7          | \$31,046 | R                 | 1.4            | \$73,954                       | 408.8          | \$66,042        |
| \$27.1m | R                 | 1.9            | \$52,640     | 566.5          | \$47,836 | R                 | 2.7            | \$36,547                       | 872.4          | \$31,064 | R                 | 1.4            | \$74,041                       | 410.2          | \$66,068        |
| \$27.2m | М                 | 1.9            | \$52,706     | 568.4          | \$47,853 | 0                 | 2.7            | \$36,548                       | 875.1          | \$31,081 | W                 | 1.4            | \$74,062                       | 411.5          | \$66,095        |
| \$27.3m | Q                 | 1.9            | \$52,733     | 570.3          | \$47,869 | С                 | 2.7            | \$36,575                       | 877.9          | \$31,098 | R                 | 1.3            | \$74,129                       | 412.9          | \$66,121        |
| \$27.4m | Ĉ                 | 1.9            | \$52,751     | 572.2          | \$47,885 | 0                 | 2.7            | \$36,622                       | 880.6          | \$31,115 | U                 | 1.3            | \$74,210                       | 414.2          | \$66,147        |
| \$27.5m | R                 | 1.9            | \$52,765     | 574.1          | \$47,901 | 0                 | 2.7            | \$36,695                       | 883.3          | \$31,132 | R                 | 1.3            | \$74,217                       | 415.6          | \$66,173        |
| \$27.6m | М                 | 1.9            | \$52,826     | 576.0          | \$47,917 | Н                 | 2.7            | \$36,704                       | 886.1          | \$31,149 | R                 | 1.3            | \$74,311                       | 416.9          | \$66,200        |
| \$27.7m | R                 | 1.9            | \$52,893     | 577.9          | \$47,934 | R                 | 2.7            | \$36,727                       | 888.8          | \$31,166 | R                 | 1.3            | \$74,399                       | 418.3          | \$66,226        |
| \$27.8m | С                 | 1.9            | \$52,937     | 579.8          | \$47,950 | 0                 | 2.7            | \$36,769                       | 891.5          | \$31,184 | R                 | 1.3            | \$74,488                       | 419.6          | \$66,252        |
| \$27.9m | Q                 | 1.9            | \$52,943     | 581.7          | \$47,966 | М                 | 2.7            | \$36,789                       | 894.2          | \$31,201 | R                 | 1.3            | \$74,577                       | 420.9          | \$66,279        |
| \$28.0m | М                 | 1.9            | \$52,944     | 583.5          | \$47,982 | 0                 | 2.7            | \$36,842                       | 896.9          | \$31,218 | R                 | 1.3            | \$74,666                       | 422.3          | \$66,306        |
| \$28.1m | R                 | 1.9            | \$53,017     | 585.4          | \$47,999 | Q                 | 2.7            | \$36,852                       | 899.6          | \$31,235 | R                 | 1.3            | \$74,755                       | 423.6          | \$66,332        |
| \$28.2m | М                 | 1.9            | \$53,064     | 587.3          | \$48,015 | Н                 | 2.7            | \$36,876                       | 902.4          | \$31,252 | R                 | 1.3            | \$74,845                       | 425.0          | \$66,359        |
| \$28.3m | С                 | 1.9            | \$53,121     | 589.2          | \$48,031 | R                 | 2.7            | \$36,909                       | 905.1          | \$31,269 | R                 | 1.3            | \$74,934                       | 426.3          | \$66,386        |
| \$28.4m | R                 | 1.9            | \$53,141     | 591.1          | \$48,047 | 0                 | 2.7            | \$36,914                       | 907.8          | \$31,285 | R                 | 1.3            | \$75,019                       | 427.6          | \$66,413        |
| \$28.5m | Q                 | 1.9            | \$53,151     | 593.0          | \$48,064 | С                 | 2.7            | \$36,958                       | 910.5          | \$31,302 | R                 | 1.3            | \$75,115                       | 429.0          | \$66,440        |
| \$28.6m | М                 | 1.9            | \$53,180     | 594.8          | \$48,080 | 0                 | 2.7            | \$36,988                       | 913.2          | \$31,319 | R                 | 1.3            | \$75,194                       | 430.3          | \$66,467        |
| \$28.7m | R                 | 1.9            | \$53,268     | 596.7          | \$48,096 | Н                 | 2.7            | \$37,044                       | 915.9          | \$31,336 | R                 | 1.3            | \$75,290                       | 431.6          | \$66,494        |
| \$28.8m | М                 | 1.9            | \$53,294     | 598.6          | \$48,112 | 0                 | 2.7            | \$37,059                       | 918.6          | \$31,353 | R                 | 1.3            | \$75,375                       | 432.9          | \$66,521        |
| \$28.9m | С                 | 1.9            | \$53,303     | 600.5          | \$48,129 | R                 | 2.7            | \$37,086                       | 921.3          | \$31,370 | R                 | 1.3            | \$75,460                       | 434.3          | \$66,548        |
| \$29.0m | Q                 | 1.9            | \$53,358     | 602.3          | \$48,145 | 0                 | 2.7            | \$37,131                       | 924.0          | \$31,386 | R                 | 1.3            | \$75,552                       | 435.6          | \$66,576        |
| \$29.1m | R                 | 1.9            | \$53,390     | 604.2          | \$48,161 | 0                 | 2.7            | \$37,202                       | 926.7          | \$31,403 | N                 | 1.3            | \$75,591                       | 436.9          | \$66,603        |
| \$29.2m | М                 | 1.9            | \$53,410     | 606.1          | \$48,177 | Н                 | 2.7            | \$37,211                       | 929.3          | \$31,420 | R                 | 1.3            | \$75,643                       | 438.2          | \$66,630        |
| \$29.3m | С                 | 1.9            | \$53,485     | 608.0          | \$48,194 | R                 | 2.7            | \$37,266                       | 932.0          | \$31,437 | R                 | 1.3            | \$75,723                       | 439.6          | \$66,658        |
| \$29.4m | R                 | 1.9            | \$53,516     | 609.8          | \$48,210 | 0                 | 2.7            | \$37,274                       | 934.7          | \$31,454 | R                 | 1.3            | \$75,815                       | 440.9          | \$66,685        |
| \$29.5m | М                 | 1.9            | \$53,525     | 611.7          | \$48,226 | Q                 | 2.7            | \$37,278                       | 937.4          | \$31,470 | R                 | 1.3            | \$75,901                       | 442.2          | \$66,713        |
| \$29.6m | Q                 | 1.9            | \$53,563     | 613.6          | \$48,242 | М                 | 2.7            | \$37,283                       | 940.1          | \$31,487 | R                 | 1.3            | \$75,988                       | 443.5          | \$66,740        |
| \$29.7m | М                 | 1.9            | \$53,637     | 615.4          | \$48,259 | С                 | 2.7            | \$37,333                       | 942.8          | \$31,503 | R                 | 1.3            | \$76,080                       | 444.8          | \$66,768        |
| \$29.8m | R                 | 1.9            | \$53,639     | 617.3          | \$48,275 | 0                 | 2.7            | \$37,344                       | 945.4          | \$31,520 | R                 | 1.3            | \$76,161                       | 446.1          | \$66,795        |
| \$29.9m | С                 | 1.9            | \$53,666     | 619.2          | \$48,291 | Н                 | 2.7            | \$37,378                       | 948.1          | \$31,537 | R                 | 1.3            | \$76,254                       | 447.5          | \$66,823        |
| \$30.0m | М                 | 1.9            | \$53,749     | 621.0          | \$48,308 | 0                 | 2.7            | \$37,417                       | 950.8          | \$31,553 | R                 | 1.3            | \$76,336                       | 448.8          | \$66,851        |
| \$30.1m | R                 | 1.9            | \$53,763     | 622.9          | \$48,324 | R                 | 2.7            | \$37,445                       | 953.4          | \$31,570 | R                 | 1.3            | \$76,429                       | 450.1          | \$66,879        |
| \$30.2m | Q                 | 1.9            | \$53,765     | 624.7          | \$48,340 | 0                 | 2.7            | \$37,485                       | 956.1          | \$31,586 | R                 | 1.3            | \$76,511                       | 451.4          | \$66,907        |
| \$30.3m | Ċ                 | 1.9            | \$53,845     | 626.6          | \$48,356 | Н                 | 2.7            | \$37,540                       | 958.8          | \$31,603 | R                 | 1.3            | \$76,599                       | 452.7          | \$66,934        |

|          |                   | Prim             | arv budget (                   | \$50m)         |                |                   | Lo               | wer budget i                   | (\$0m)         |                |                   | High             | er budget (S                   | 100m)          |                |
|----------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget   |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |                   | Margina          | 1                              | Cum            | ulative        |
| impact   | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$30.4m  | М                 | 1.9              | \$53,859                       | 628.5          | \$48,373       | 0                 | 2.7              | \$37,557                       | 961.4          | \$31,619       | R                 | 1.3              | \$76,687                       | 454.0          | \$66,962       |
| \$30.5m  | R                 | 1.9              | \$53,888                       | 630.3          | \$48,389       | R                 | 2.7              | \$37,621                       | 964.1          | \$31,636       | R                 | 1.3              | \$76,770                       | 455.3          | \$66,991       |
| \$30.6m  | Q                 | 1.9              | \$53,968                       | 632.2          | \$48,405       | 0                 | 2.7              | \$37,627                       | 966.8          | \$31,652       | R                 | 1.3              | \$76,858                       | 456.6          | \$67,019       |
| \$30.7m  | М                 | 1.9              | \$53,969                       | 634.0          | \$48,422       | Q                 | 2.7              | \$37,695                       | 969.4          | \$31,669       | R                 | 1.3              | \$76,947                       | 457.9          | \$67,047       |
| \$30.8m  | R                 | 1.9              | \$54,010                       | 635.9          | \$48,438       | 0                 | 2.7              | \$37,696                       | 972.1          | \$31,685       | R                 | 1.3              | \$77,030                       | 459.2          | \$67,075       |
| \$30.9m  | С                 | 1.9              | \$54,022                       | 637.7          | \$48,454       | С                 | 2.7              | \$37,701                       | 974.7          | \$31,702       | R                 | 1.3              | \$77,119                       | 460.5          | \$67,103       |
| \$31.0m  | М                 | 1.8              | \$54,077                       | 639.6          | \$48,470       | Н                 | 2.7              | \$37,705                       | 977.4          | \$31,718       | R                 | 1.3              | \$77,202                       | 461.8          | \$67,132       |
| \$31.1m  | R                 | 1.8              | \$54,133                       | 641.4          | \$48,487       | M                 | 2.6              | \$37,752                       | 980.0          | \$31,734       | R                 | 1.3              | \$77,292                       | 463.1          | \$67,160       |
| \$31.2m  | Q                 | 1.8              | \$54,168                       | 643.3          | \$48,503       | 0                 | 2.6              | \$37,766                       | 982.7          | \$31,750       | R                 | 1.3              | \$77,375                       | 464.4          | \$67,188       |
| \$31.3m  | M                 | 1.8              | \$54,186                       | 645.1          | \$48,519       | R                 | 2.6              | \$37,797                       | 985.3          | \$31,767       | R                 | 1.3              | \$77,465                       | 465.7          | \$67,217       |
| \$31.4m  | С                 | 1.8              | \$54,201                       | 647.0          | \$48,535       | 0                 | 2.6              | \$37,836                       | 988.0          | \$31,783       | R                 | 1.3              | \$77,543                       | 466.9          | \$67,246       |
| \$31.5m  | R                 | 1.8              | \$54,256                       | 648.8          | \$48,552       | Н                 | 2.6              | \$37,866                       | 990.6          | \$31,799       | R                 | 1.3              | \$77,634                       | 468.2          | \$67,274       |
| \$31.6m  | M                 | 1.8              | \$54,295                       | 650.6          | \$48,568       | 0                 | 2.6              | \$37,903                       | 993.2          | \$31,815       | R                 | 1.3              | \$77,718                       | 469.5          | \$67,303       |
| \$31.7m  | Q                 | 1.8              | \$54,366                       | 652.5          | \$48,584       | 0                 | 2.6              | \$37,972                       | 995.9          | \$31,832       | R                 | 1.3              | \$77,809                       | 470.8          | \$67,331       |
| \$31.8m  | C                 | 1.8              | \$54,374                       | 654.3          | \$48,600       | R                 | 2.6              | \$37,974                       | 998.5          | \$31,848       | R                 | 1.3              | \$77,888                       | 472.1          | \$67,360       |
| \$31.9m  | R                 | 1.8              | \$54,377                       | 656.2          | \$48,617       | H                 | 2.6              | \$38,026                       | 1001.1         | \$31,864       | R                 | 1.3              | \$77,973                       | 4/3.4          | \$67,389       |
| \$32.0m  | M                 | 1.8              | \$54,401                       | 658.0          | \$48,633       | 0                 | 2.6              | \$38,042                       | 1003.8         | \$31,880       | N                 | 1.3              | \$77,993                       | 474.7          | \$67,417       |
| \$32.1m  | R                 | 1.8              | \$54,499                       | 659.8          | \$48,649       | C                 | 2.6              | \$38,062                       | 1006.4         | \$31,896       | R                 | 1.3              | \$78,064                       | 475.9          | \$67,446       |
| \$32.2m  | M                 | 1.8              | \$54,508                       | 661.7          | \$48,665       | Q                 | 2.6              | \$38,103                       | 1009.0         | \$31,912       | R                 | 1.3              | \$78,143                       | 4779.5         | \$67,475       |
| \$32.3m  | 0                 | 1.8              | \$54,549                       | 663.5          | \$48,682       | D                 | 2.6              | \$38,110                       | 1011.6         | \$31,929       | K<br>D            | 1.3              | \$78,229                       | 4/8.5          | \$67,504       |
| \$32.4m  | U<br>M            | 1.8              | \$54,504                       | 005.5          | \$48,098       | K                 | 2.0              | \$38,148                       | 1014.3         | \$31,945       | K<br>D            | 1.3              | \$/8,313                       | 4/9.8          | \$07,552       |
| \$32.5m  | M<br>D            | 1.8              | \$54,609                       | 660.0          | \$48,714       | U<br>11           | 2.0              | \$38,177                       | 1010.9         | \$31,901       | K<br>D            | 1.3              | \$78,401                       | 481.0          | \$07,501       |
| \$32.011 | K                 | 1.0              | \$54,024                       | 670.8          | \$46,750       | п                 | 2.0              | \$36,164                       | 1019.3         | \$31,977       | R<br>D            | 1.5              | \$70,407                       | 402.5          | \$67,590       |
| \$32.7m  | M<br>C            | 1.0              | \$54,717                       | 672.6          | \$48,747       | M<br>0            | 2.0              | \$38,199                       | 1022.1         | \$32,009       | R                 | 1.3              | \$78,507                       | 483.0          | \$67.648       |
| \$32.0m  | R                 | 1.0              | \$54,723                       | 674.5          | \$48,705       | 0                 | 2.0              | \$38 313                       | 1024.7         | \$32,005       | R                 | 1.3              | \$78,740                       | 486.1          | \$67,677       |
| \$33.0m  | 0                 | 1.0              | \$54,744                       | 676.3          | \$48 795       | R                 | 2.0              | \$38,320                       | 1027.5         | \$32,023       | R                 | 1.3              | \$78,821                       | 487.4          | \$67,706       |
| \$33.1m  | M                 | 1.0              | \$54,819                       | 678.1          | \$48,811       | Н                 | 2.0              | \$38 342                       | 1032.6         | \$32,010       | R                 | 1.3              | \$78,908                       | 488.7          | \$67,735       |
| \$33.2m  | R                 | 1.8              | \$54.864                       | 679.9          | \$48,828       | 0                 | 2.6              | \$38,380                       | 1035.2         | \$32,072       | R                 | 1.3              | \$78,989                       | 489.9          | \$67,764       |
| \$33.3m  | C                 | 1.8              | \$54,897                       | 681.8          | \$48,844       | C                 | 2.6              | \$38,416                       | 1037.8         | \$32,088       | R                 | 1.3              | \$79.076                       | 491.2          | \$67,793       |
| \$33.4m  | М                 | 1.8              | \$54,921                       | 683.6          | \$48,860       | 0                 | 2.6              | \$38,447                       | 1040.4         | \$32,104       | R                 | 1.3              | \$79,158                       | 492.5          | \$67,822       |
| \$33.5m  | 0                 | 1.8              | \$54,954                       | 685.4          | \$48,876       | R                 | 2.6              | \$38,494                       | 1043.0         | \$32,120       | W                 | 1.3              | \$79,209                       | 493.7          | \$67,851       |
| \$33.6m  | R                 | 1.8              | \$54,984                       | 687.2          | \$48,892       | Н                 | 2.6              | \$38,497                       | 1045.6         | \$32,136       | R                 | 1.3              | \$79,239                       | 495.0          | \$67,880       |
| \$33.7m  | М                 | 1.8              | \$55,024                       | 689.0          | \$48,908       | Q                 | 2.6              | \$38,502                       | 1048.2         | \$32,152       | R                 | 1.3              | \$79,327                       | 496.2          | \$67,909       |
| \$33.8m  | С                 | 1.8              | \$55,066                       | 690.9          | \$48,925       | Ô                 | 2.6              | \$38,515                       | 1050.8         | \$32,167       | R                 | 1.3              | \$79,409                       | 497.5          | \$67,939       |
| \$33.9m  | R                 | 1.8              | \$55,109                       | 692.7          | \$48,941       | 0                 | 2.6              | \$38,580                       | 1053.3         | \$32,183       | R                 | 1.3              | \$79,498                       | 498.8          | \$67,968       |
| \$34.0m  | М                 | 1.8              | \$55,124                       | 694.5          | \$48,957       | М                 | 2.6              | \$38,626                       | 1055.9         | \$32,199       | R                 | 1.3              | \$79,573                       | 500.0          | \$67,997       |
| \$34.1m  | Q                 | 1.8              | \$55,147                       | 696.3          | \$48,973       | 0                 | 2.6              | \$38,646                       | 1058.5         | \$32,215       | R                 | 1.3              | \$79,662                       | 501.3          | \$68,026       |
| \$34.2m  | М                 | 1.8              | \$55,224                       | 698.1          | \$48,989       | Н                 | 2.6              | \$38,653                       | 1061.1         | \$32,230       | R                 | 1.3              | \$79,745                       | 502.5          | \$68,055       |
| \$34.3m  | R                 | 1.8              | \$55,227                       | 699.9          | \$49,005       | R                 | 2.6              | \$38,667                       | 1063.7         | \$32,246       | R                 | 1.3              | \$79,828                       | 503.8          | \$68,085       |
| \$34.4m  | С                 | 1.8              | \$55,236                       | 701.7          | \$49,022       | 0                 | 2.6              | \$38,713                       | 1066.3         | \$32,262       | R                 | 1.3              | \$79,911                       | 505.0          | \$68,114       |
| \$34.5m  | М                 | 1.8              | \$55,325                       | 703.5          | \$49,038       | C                 | 2.6              | \$38,764                       | 1068.9         | \$32,277       | R                 | 1.3              | \$79,994                       | 506.3          | \$68,143       |
| \$34.6m  | Q                 | 1.8              | \$55,340                       | 705.3          | \$49,054       | 0                 | 2.6              | \$38,779                       | 1071.4         | \$32,293       | R                 | 1.2              | \$80,077                       | 507.5          | \$68,173       |
| \$34.7m  | R                 | 1.8              | \$55,346                       | 707.2          | \$49,070       | Н                 | 2.6              | \$38,806                       | 1074.0         | \$32,309       | R                 | 1.2              | \$80,160                       | 508.8          | \$68,202       |
| \$34.8m  | C                 | 1.8              | \$55,408                       | 709.0          | \$49,086       | R                 | 2.6              | \$38,838                       | 1076.6         | \$32,324       | R                 | 1.2              | \$80,244                       | 510.0          | \$68,231       |
| \$34.9m  | М                 | 1.8              | \$55,423                       | 710.8          | \$49,102       | 0                 | 2.6              | \$38,844                       | 1079.2         | \$32,340       | N                 | 1.2              | \$80,323                       | 511.3          | \$68,261       |
| \$35.0m  | R                 | 1.8              | \$55,466                       | 712.6          | \$49,118       | Q                 | 2.6              | \$38,893                       | 1081.7         | \$32,355       | R                 | 1.2              | \$80,328                       | 512.5          | \$68,290       |
| \$35.1m  | M                 | 1.8              | \$55,522                       | 714.4          | \$49,134       | 0                 | 2.6              | \$38,911                       | 1084.3         | \$32,371       | R                 | 1.2              | \$80,405                       | 513.8          | \$68,320       |
| \$35.2m  | Q                 | 1.8              | \$55,528                       | 716.2          | \$49,151       | H                 | 2.6              | \$38,961                       | 1086.9         | \$32,387       | R                 | 1.2              | \$80,489                       | 515.0          | \$68,349       |
| \$35.3m  |                   | 1.8              | \$55,574                       | /18.0          | \$49,167       |                   | 2.6              | \$38,974                       | 1089.4         | \$32,402       | K                 | 1.2              | \$80,574                       | 516.2          | \$08,378       |
| \$35.4m  | K                 | 1.8              | \$ <b>33,38</b> 6              | /19.8          | \$49,183       | K                 | 2.0              | \$39,009                       | 1092.0         | \$32,418       | K                 | 1.2              | \$80,658                       | 517.5          | \$08,408       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cumulative                   |
| S35.5m         M         1.8         \$55.617         721.6         \$49,199         M         2.6         \$39,035         1094.6         \$32,433         R         1.2         \$80,736         \$1           S35.7m         M         1.8         \$55,707         723.4         \$49,215         O         2.6         \$39,104         1097.1         \$32,464         R         1.2         \$80,905         \$2           S35.7m         M         1.8         \$55,720         726.9         \$49,247         C         2.6         \$39,104         1097.1         \$32,464         R         1.2         \$80,905         \$2           S35.9m         C         1.8         \$55,720         726.9         \$49,263         H         2.6         \$39,110         1102.2         \$32,457         R         1.2         \$81,149         \$2           S36.0m         M         1.8         \$55,817         732.3         \$49,295         R         2.6         \$39,170         1107.3         \$32,510         R         1.2         \$81,124         \$2           S36.4m         Q         1.8         \$55,907         734.1         \$49,327         H         2.5         \$39,260         1115.0         \$32,556         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $E^{d}$ $\lambda^{-e}$       |
| \$35.6m         R         1.8         \$55.707         723.4         \$49.215         O         2.6         \$39.104         1097.1         \$32.448         R         1.2         \$80.821         \$2           \$35.8m         Q         1.8         \$55.717         725.2         \$49.231         O         2.6         \$39.104         1097.1         \$32.444         R         1.2         \$80.900         \$52           \$35.8m         Q         1.8         \$55.721         726.9         \$49.247         C         2.6         \$39.100         1104.8         \$32.479         R         1.2         \$81.070         \$2           \$36.0m         M         1.8         \$55.813         730.5         \$49.279         O         2.6         \$39.170         1107.3         \$32.521         R         1.2         \$81.149         \$2           \$36.0m         R         1.8         \$55.907         734.1         \$49.311         O         2.5         \$39.260         1115.0         \$32.556         R         1.2         \$81.393         52           \$36.6m         R         1.8         \$55.901         737.7         \$49.333         Q         2.5         \$39.260         1115.0         \$32.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.7 \$68,437                 |
| S35.7m         M         1.8         \$55,717         725.2         \$49,231         O         2.6         \$33,104         1099.7         \$32,464         R         1.2         \$80,900         \$2           S35.8m         Q         1.8         \$55,720         726.9         \$49,263         H         2.6         \$33,101         1102.2         \$32,479         R         1.2         \$80,985         \$2           S36.0m         M         1.8         \$55,813         730.5         \$49,279         O         2.6         \$39,170         1107.3         \$32,525         R         1.2         \$81,179         \$2           S36.1m         R         1.8         \$55,907         734.1         \$49,311         O         2.5         \$39,234         1112.4         \$32,556         R         1.2         \$81,328         \$2           S36.4m         C         1.8         \$55,907         734.1         \$49,337         Q         2.5         \$39,209         1110.5         \$32,556         R         1.2         \$81,473         \$2           S36.6m         N         1.8         \$55,901         741.3         \$49,359         O         2.5         \$39,247         112.6         \$32,637 <t< th=""><th>0.0 \$68,467</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 \$68,467                 |
| \$35.8m         Q         1.8         \$55,720         726.9         \$49,247         C         2.6         \$39,105         1102.2         \$32,479         R         1.2         \$80,985         \$52           \$36.0m         M         1.8         \$55,813         730.5         \$49,279         O         2.6         \$39,170         1107.3         \$32,510         R         1.2         \$81,149         \$52           \$36.0m         M         1.8         \$55,825         732.3         \$49,295         R         2.6         \$39,170         1107.3         \$32,551         R         1.2         \$81,149         \$25           \$36.0m         M         1.8         \$55,825         732.3         \$49,295         R         2.6         \$39,204         1112.4         \$32,556         R         1.2         \$81,314         \$25           \$36.4m         C         1.8         \$55,901         737.7         \$49,343         Q         2.5         \$39,276         1117.5         \$32,571         R         1.2         \$81,473         \$52           \$36.6m         N         1.8         \$55,061         741.3         \$49,375         R         2.5         \$39,261         1122.6         \$32,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 \$68,496                 |
| S35.9m         C         1.8         \$55,741         728.7         \$49,263         H         2.6         \$33,110         1104.8         \$32,495         R         1.2         \$\$1,070         \$52           S36.1m         R         1.8         \$55,813         730.5         \$49,279         O         2.6         \$33,170         1107.3         \$32,510         R         1.2         \$\$1,149         \$52           S36.1m         R         1.8         \$55,907         732.3         \$49,295         R         2.6         \$33,170         1109.9         \$32,525         R         1.2         \$\$1,149         \$52           S36.4m         Q         1.8         \$55,907         735.9         \$49,327         H         2.5         \$39,276         1112.4         \$32,551         R         1.2         \$\$1,314         52           S36.4m         C         1.8         \$55,907         735.9         \$49,3375         R         2.5         \$39,290         112.01         \$32,587         N         1.2         \$\$81,473         53           S36.6m         N         1.8         \$55,901         741.3         \$49,375         R         2.5         \$39,361         1122.6         \$32,617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4 \$68,526                 |
| S36.0m         M         1.8         \$55,813         730.5         \$49,279         O         2.6         \$39,170         1107.3         \$32,510         R         1.2         \$81,149         52           S36.1m         R         1.8         \$55,825         732.3         \$49,295         R         2.6         \$39,179         1109.9         \$32,525         R         1.2         \$81,228         52           S36.2m         Q         1.8         \$55,907         734.1         \$49,311         O         2.5         \$39,234         1112.4         \$32,556         R         1.2         \$81,314         52           S36.4m         C         1.8         \$55,907         737.7         \$49,343         Q         2.5         \$39,260         1115.0         \$32,571         R         1.2         \$81,473         52           S36.5m         R         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,247         1122.6         \$32,601         N         1.2         \$84,700         53           S36.7m         M         1.8         \$56,000         744.8         \$49,407         H         2.5         \$39,361         1122.2         \$32,617         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.7 \$68,555                 |
| S36.1m         R         1.8         \$55,825         732.3         \$49,295         R         2.6         \$39,179         1109.9         \$32,525         R         1.2         \$81,228         52           S36.2m         Q         1.8         \$55,907         734.1         \$49,311         O         2.5         \$39,234         1112.4         \$32,541         R         1.2         \$81,314         52           S36.4m         C         1.8         \$55,907         735.9         \$49,327         H         2.5         \$39,276         1115.0         \$32,556         R         1.2         \$81,314         52           S36.4m         C         1.8         \$55,901         737.7         \$49,343         Q         2.5         \$39,276         117.5         \$32,571         R         1.2         \$81,733         53           S36.5m         R         1.8         \$55,901         741.3         \$49,391         O         2.5         \$39,361         1122.6         \$32,602         W         1.2         \$88,700         53           S36.7m         M         1.8         \$56,006         744.8         \$49,407         H         2.5         \$39,410         1127.7         \$32,633 <t< th=""><th>4.9 \$68,585</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9 \$68,585                 |
| S36.2m         Q         1.8         \$55,907         734.1         \$49,311         O         2.5         \$39,234         1112.4         \$32,541         R         1.2         \$81,314         52           S36.3m         M         1.8         \$55,907         735.9         \$49,327         H         2.5         \$39,260         1115.0         \$32,556         R         1.2         \$81,393         52           S36.5m         R         1.8         \$55,901         737.7         \$49,343         Q         2.5         \$39,276         1117.5         \$32,571         R         1.2         \$81,473         52           S36.5m         R         1.8         \$55,901         741.3         \$49,375         R         2.5         \$39,347         1122.6         \$32,602         W         1.2         \$88,760         53           S36.5m         R         1.8         \$56,000         743.1         \$49,391         O         2.5         \$39,471         1122.6         \$32,648         W         1.1         \$87,8761         53           S36.9m         C         1.8         \$56,073         746.6         \$49,423         O         2.5         \$39,426         1130.2         \$32,648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1 \$68,614                 |
| S36.3m         M         1.8         \$55,907         735.9         \$49,327         H         2.5         \$39,260         1115.0         \$32,556         R         1.2         \$81,393         52           S36.4m         C         1.8         \$55,901         737.7         \$49,343         Q         2.5         \$39,276         1117.5         \$32,571         R         1.2         \$81,473         52           S36.5m         R         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,347         1122.6         \$32,602         W         1.2         \$84,790         53           S36.5m         M         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,361         1122.5         \$32,602         W         1.2         \$84,790         53           S36.8m         R         1.8         \$56,000         744.8         \$49,407         H         2.5         \$39,410         1127.7         \$32,633         N         1.2         \$84,790         53           S36.9m         C         1.8         \$56,095         748.4         \$49,439         M         2.5         \$39,426         1130.2         \$32,663         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.4 \$68,644                 |
| \$36.4m         C         1.8         \$55,910         737.7         \$49,343         Q         2.5         \$39,276         1117.5         \$32,571         R         1.2         \$81,473         52           \$36.5m         R         1.8         \$55,944         739.5         \$49,359         O         2.5         \$39,299         1120.1         \$32,587         N         1.2         \$82,586         53           \$36.6m         N         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,347         1122.6         \$32,602         W         1.2         \$88,760         53           \$36.6m         N         1.8         \$56,000         743.1         \$49,391         O         2.5         \$39,410         1127.7         \$32,633         N         1.2         \$86,938         53           \$36.6m         R         1.8         \$56,007         746.6         \$49,423         O         2.5         \$39,410         1127.7         \$32,633         N         1.1         \$87,861         53           \$37.0m         Q         1.8         \$56,098         750.2         \$49,435         C         2.5         \$39,426         1130.2         \$32,678         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6 \$68,674                 |
| \$36.5m         R         1.8         \$55,944         739.5         \$49,359         O         2.5         \$39,299         1120.1         \$32,587         N         1.2         \$82,586         53           \$36.6m         N         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,347         1122.6         \$32,602         W         1.2         \$88,760         53           \$36.7m         M         1.8         \$56,000         743.1         \$49,391         O         2.5         \$39,410         1127.7         \$32,633         N         1.2         \$86,938         53           \$36.8m         R         1.8         \$56,007         744.6         \$49,439         M         2.5         \$39,426         1130.2         \$32,648         W         1.1         \$88,027         53           \$37.0m         Q         1.8         \$56,098         750.2         \$49,439         M         2.5         \$39,428         1132.8         \$32,663         U         1.1         \$89,034         53           \$37.1m         M         1.8         \$56,183         752.0         \$49,470         O         2.5         \$39,490         1137.8         \$32,693 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.8 \$68,703                 |
| \$36.6m         N         1.8         \$55,961         741.3         \$49,375         R         2.5         \$39,347         1122.6         \$32,602         W         1.2         \$88,760         53           \$36.7m         M         1.8         \$56,000         743.1         \$49,391         O         2.5         \$39,361         1125.2         \$32,617         N         1.2         \$84,790         53           \$36.8m         R         1.8         \$56,000         744.8         \$49,407         H         2.5         \$39,410         1127.7         \$32,633         N         1.2         \$86,938         53           \$36.9m         C         1.8         \$56,007         746.6         \$49,423         O         2.5         \$39,426         1130.2         \$32,648         W         1.1         \$87,861         53           \$37.0m         Q         1.8         \$56,098         750.2         \$49,455         C         2.5         \$39,426         1130.3         \$32,663         U         1.1         \$89,034         53           \$37.3m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,516         1140.4         \$32,708         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 \$68,735                 |
| \$36.7m         M         1.8         \$56,000         743.1         \$49,391         O         2.5         \$39,361         1125.2         \$32,617         N         1.2         \$84,790         53           \$36.8m         R         1.8         \$56,000         744.8         \$49,407         H         2.5         \$39,410         1127.7         \$\$2,633         N         1.2         \$86,938         53           \$36.9m         C         1.8         \$56,005         748.4         \$49,439         M         2.5         \$39,426         1130.2         \$32,648         W         1.1         \$87,861         53           \$37.1m         M         1.8         \$56,095         748.4         \$49,435         C         2.5         \$39,421         1135.3         \$32,663         U         1.1         \$88,027         53           \$37.1m         M         1.8         \$56,089         750.2         \$49,455         C         2.5         \$39,441         1135.3         \$32,693         N         1.1         \$81,080         53           \$37.3m         M         1.8         \$56,183         752.0         \$49,470         O         2.5         \$39,516         1140.4         \$32,738         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.2 \$68,769                 |
| \$36.8m         R         1.8         \$56,060         744.8         \$49,407         H         2.5         \$39,410         1127.7         \$32,633         N         1.2         \$86,938         53           \$36.9m         C         1.8         \$56,007         746.6         \$49,423         O         2.5         \$39,426         1130.2         \$32,648         W         1.1         \$87,861         53           \$37.0m         Q         1.8         \$56,095         748.4         \$49,439         M         2.5         \$39,428         1132.8         \$32,663         U         1.1         \$88,027         53           \$37.1m         M         1.8         \$56,098         750.2         \$49,450         C         2.5         \$39,490         1137.8         \$32,693         N         1.1         \$89,034         53           \$37.3m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,552         1142.9         \$32,734         N         1.1         \$91,612         54           \$37.5m         Q         1.8         \$56,287         757.3         \$49,518         H         2.5         \$39,617         1148.0         \$32,754         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.4 \$68,804                 |
| \$36.9m         C         1.8         \$56,073         746.6         \$49,423         O         2.5         \$39,426         1130.2         \$32,648         W         1.1         \$87,861         53           \$37.0m         Q         1.8         \$56,095         748.4         \$49,439         M         2.5         \$39,428         1132.8         \$32,663         U         1.1         \$88,027         53           \$37.1m         M         1.8         \$56,098         750.2         \$49,455         C         2.5         \$39,441         1135.3         \$32,678         N         1.1         \$89,034         53           \$37.1m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,490         1137.8         \$32,693         N         1.1         \$91,612         54           \$37.3m         M         1.8         \$56,137         755.5         \$49,502         O         2.5         \$39,557         1142.9         \$32,724         N         1.1         \$93,084         54           \$37.5m         Q         1.8         \$56,278         757.3         \$49,518         H         2.5         \$39,657         1142.9         \$32,754         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5 \$68,843                 |
| \$37.0m         Q         1.8         \$56,095         748.4         \$49,439         M         2.5         \$39,428         1132.8         \$32,663         U         1.1         \$88,027         53           \$37.1m         M         1.8         \$56,098         750.2         \$49,455         C         2.5         \$39,441         1135.3         \$32,663         U         1.1         \$88,027         53           \$37.1m         M         1.8         \$56,183         750.2         \$49,470         O         2.5         \$39,490         1137.8         \$32,693         N         1.1         \$89,034         53           \$37.3m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,516         1140.4         \$32,708         W         1.1         \$91,612         54           \$37.5m         Q         1.8         \$56,237         757.3         \$49,518         H         2.5         \$39,557         1142.9         \$32,724         N         1.1         \$93,084         54           \$37.5m         Q         1.8         \$56,284         759.1         \$49,534         O         2.5         \$39,652         1145.4         \$32,754         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.7 \$68,883                 |
| \$37.1m         M         1.8         \$56,098         750.2         \$49,455         C         2.5         \$39,441         1135.3         \$32,678         N         1.1         \$89,034         53           \$37.2m         R         1.8         \$56,183         752.0         \$49,470         O         2.5         \$39,490         1137.8         \$32,693         N         1.1         \$89,034         53           \$37.2m         R         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,516         1140.4         \$32,708         W         1.1         \$91,612         54           \$37.5m         Q         1.8         \$56,277         755.5         \$49,502         O         2.5         \$39,557         1142.9         \$32,724         N         1.1         \$93,084         54           \$37.5m         Q         1.8         \$56,278         757.3         \$49,534         O         2.5         \$39,657         1142.9         \$32,739         N         1.1         \$95,043         54           \$37.5m         M         1.8         \$56,273         762.6         \$49,550         Q         2.5         \$39,652         1150.5         \$32,799         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8 \$68,924                 |
| \$37.2m         R         1.8         \$56,183         752.0         \$49,470         O         2.5         \$39,490         1137.8         \$32,693         N         1.1         \$91,080         53           \$37.3m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,516         1140.4         \$32,708         W         1.1         \$91,012         54           \$37.3m         C         1.8         \$56,237         755.5         \$49,502         O         2.5         \$39,552         1142.9         \$32,724         N         1.1         \$93,084         54           \$37.5m         Q         1.8         \$56,278         757.3         \$49,518         H         2.5         \$39,557         1145.4         \$32,739         N         1.1         \$95,043         54           \$37.5m         Q         1.8         \$56,284         759.1         \$49,550         Q         2.5         \$39,617         1148.0         \$32,754         W         1.0         \$96,965         54           \$37.5m         M         1.8         \$56,307         762.6         \$49,566         O         2.5         \$39,678         1153.0         \$32,769         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.9 \$68,966                 |
| \$37.3m         M         1.8         \$56,189         753.7         \$49,486         R         2.5         \$39,516         1140.4         \$32,708         W         1.1         \$91,612         54           \$37.4m         C         1.8         \$56,237         755.5         \$49,502         O         2.5         \$39,552         1142.9         \$32,724         N         1.1         \$91,612         54           \$37.5m         Q         1.8         \$56,278         757.3         \$49,518         H         2.5         \$39,557         1145.4         \$32,739         N         1.1         \$95,043         54           \$37.6m         M         1.8         \$56,284         759.1         \$49,534         O         2.5         \$39,617         1148.0         \$32,754         W         1.1         \$95,076         54           \$37.6m         M         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$96,965         54           \$37.7m         R         1.8         \$56,373         762.6         \$49,581         R         2.5         \$39,678         1153.0         \$32,784         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0 \$69,011                 |
| \$37.4m         C         1.8         \$56,237         755.5         \$49,502         O         2.5         \$33,552         1142.9         \$32,724         N         1.1         \$93,084         54           \$37.5m         Q         1.8         \$56,278         757.3         \$49,518         H         2.5         \$33,557         1145.4         \$32,739         N         1.1         \$95,043         54           \$37.6m         M         1.8         \$56,284         759.1         \$49,534         O         2.5         \$39,617         1148.0         \$32,754         W         1.1         \$95,043         54           \$37.6m         M         1.8         \$56,300         \$49,550         Q         2.5         \$39,617         1148.0         \$32,754         W         1.0         \$96,065         54           \$37.6m         M         1.8         \$56,373         762.6         \$49,566         O         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$98,306         54           \$37.9m         C         1.8         \$56,414         766.2         \$49,597         H         2.5         \$39,678         1153.0         \$32,814         U         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 \$69,057                 |
| \$37.5m         Q         1.8         \$56,278         757.3         \$49,518         H         2.5         \$39,557         1145.4         \$32,739         N         1.1         \$95,043         54           \$37.6m         M         1.8         \$56,284         759.1         \$49,534         O         2.5         \$39,617         1148.0         \$32,754         W         1.1         \$95,076         54           \$37.7m         R         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,652         1150.5         \$32,764         W         1.0         \$96,965         54           \$37.7m         R         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,672         1150.5         \$32,764         W         1.0         \$96,965         54           \$37.8m         M         1.8         \$56,373         762.6         \$49,581         R         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$98,806         54           \$37.9m         C         1.8         \$56,414         766.2         \$49,597         H         2.5         \$39,705         1158.0         \$32,814         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 \$69,104                 |
| \$37.6m         M         1.8         \$56,284         759.1         \$49,534         O         2.5         \$39,617         1148.0         \$32,754         W         1.1         \$95,076         54           \$37.7m         R         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,652         1150.5         \$\$2,764         W         1.1         \$95,076         54           \$37.7m         R         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,652         1150.5         \$\$2,769         N         1.0         \$96,965         54           \$37.8m         M         1.8         \$56,373         762.6         \$49,566         O         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$98,306         54           \$37.9m         C         1.8         \$56,414         766.2         \$49,581         R         2.5         \$39,684         1155.5         \$32,799         N         1.0         \$98,847         54           \$38.0m         R         1.8         \$56,461         766.2         \$49,597         H         2.5         \$39,705         1158.0         \$32,814         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3 \$69,155                 |
| \$37.7m         R         1.8         \$56,300         760.9         \$49,550         Q         2.5         \$39,652         1150.5         \$32,769         N         1.0         \$96,965         54           \$37.8m         M         1.8         \$56,373         762.6         \$49,566         O         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$98,806         54           \$37.9m         C         1.8         \$56,398         764.4         \$49,581         R         2.5         \$39,684         1155.5         \$32,799         N         1.0         \$98,847         54           \$38.0m         R         1.8         \$56,414         766.2         \$49,597         H         2.5         \$39,705         1158.0         \$32,814         U         1.0         \$99,915         54           \$38.1m         Q         1.8         \$56,465         767.9         \$49,613         O         2.5         \$39,742         1160.6         \$32,829         N         1.0         \$100,696         54           \$38.1m         Q         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,711         1163.1         \$32,824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3 \$69,205                 |
| \$37.8m         M         1.8         \$56,373         762.6         \$49,566         O         2.5         \$39,678         1153.0         \$32,784         W         1.0         \$98,306         54           \$37.9m         C         1.8         \$56,398         764.4         \$49,581         R         2.5         \$39,684         1155.5         \$32,799         N         1.0         \$98,847         54           \$38.0m         R         1.8         \$56,414         766.2         \$49,597         H         2.5         \$39,705         1158.0         \$32,814         U         1.0         \$99,915         54           \$38.1m         Q         1.8         \$56,465         767.9         \$49,613         O         2.5         \$39,742         1160.6         \$32,829         N         1.0         \$100,696         54           \$38.2m         M         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,711         1163.1         \$32,824         L         1.0         \$100,896         54           \$38.2m         M         1.8         \$56,469         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3 \$69,257                 |
| \$37.9m         C         1.8         \$56,398         764.4         \$49,581         R         2.5         \$39,684         1155.5         \$32,799         N         1.0         \$98,847         54           \$38.0m         R         1.8         \$56,414         766.2         \$49,597         H         2.5         \$39,705         1158.0         \$32,814         U         1.0         \$99,915         54           \$38.1m         Q         1.8         \$56,465         767.9         \$49,613         O         2.5         \$39,742         1160.6         \$32,829         N         1.0         \$100,696         54           \$38.2m         M         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,701         1163.1         \$32,824         L         1.0         \$100,696         54           \$38.2m         M         1.8         \$56,469         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859         W         1.0         \$100,847         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4 \$69,312                 |
| \$38.0m         R         1.8         \$56,414         766.2         \$49,597         H         2.5         \$33,705         1158.0         \$32,814         U         1.0         \$99,915         54           \$38.1m         Q         1.8         \$56,465         767.9         \$49,613         O         2.5         \$39,742         1160.6         \$32,829         N         1.0         \$100,696         54           \$38.2m         M         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,771         1163.1         \$32,844         L         1.0         \$100,696         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859         W         1.0         \$100,847         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859         W         1.0         \$100,847         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.4 \$69,366                 |
| \$38.1m         Q         1.8         \$56,465         767.9         \$49,613         O         2.5         \$39,742         1160.6         \$32,829         N         1.0         \$100,696         54           \$38.2m         M         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,771         1163.1         \$32,844         L         1.0         \$100,847         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859         W         1.0         \$101,335         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.4 \$69,422                 |
| \$38.2m         M         1.8         \$56,468         769.7         \$49,629         C         2.5         \$39,771         1163.1         \$32,844         L         1.0         \$100,847         54           \$38.3m         E         1.8         \$56,494         771.5         \$49,645         O         2.5         \$39,803         1165.6         \$32,859         W         1.0         \$101,335         55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.4 \$69,479                 |
| <b>\$38.3m</b> E 1.8 \$56,494   771.5 \$49,645   O 2.5 \$39,803   1165.6 \$32,859   W 1.0 \$101.335   550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.4 \$69,535                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3 \$69,592                 |
| <b>\$38.4m</b> R 1.8 \$56,536 773.3 \$49,660 M 2.5 \$39,805 1168.1 \$32,874 L 1.0 \$102,040 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3 \$69,650                 |
| <b>\$38.5m</b> M 1.8 \$56,558 775.0 \$49,676 H 2.5 \$39,850 1170.6 \$32,889 N 1.0 \$102,510 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3 \$69,708                 |
| <b>\$38.6m</b> C 1.8 \$56,564 7/6.8 \$49,592 R 2.5 \$39,852 1173.1 \$32,904 L 1.0 \$103,262 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3 \$69,767                 |
| <b>\$38.7m</b> Q 1.8 \$56,644 7/8.6 \$49,708 O 2.5 \$39,868 11/5.6 \$32,919 W 1.0 \$104,194 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2 \$69,826                 |
| <b>\$38.8m</b> M 1.8 \$56,648 780.3 \$49,723 O 2.5 \$39,928 1178.1 \$32,934 N 1.0 \$104,294 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.2 \$69,886                 |
| <b>538.9m</b> R 1.8 <b>556,654</b> 782.1 <b>549</b> ,739 O 2.5 <b>539,990</b> 1180.6 <b>532,949</b> L 1.0 <b>\$104,514</b> 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.1 \$69,946                 |
| <b>539.0</b> C 1.8 <b>536</b> , /25 /83.8 <b>549</b> , /55 H 2.5 <b>539</b> , 994 1185.1 <b>532</b> , 904 L 0.9 <b>5105</b> , /96 <b>55 620</b> 1 M 1.0 <b>6</b> , 672, 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ , 014 1165 ( $-520$ ) (014 1165 ( $-520$ , 014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ ) (014 1165 ( $-520$ | /.1 \$/0,006                 |
| <b>5.93</b> M M 1.8 <b>536</b> ,788 785.0 <b>549</b> ,770 K 2.5 <b>540</b> ,018 1185.0 <b>532</b> ,978 N 0.9 <b>5106</b> ,047 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0 \$70,067                 |
| <b>5.59.2m</b> K 1.8 $505/70$ /8/4 $549/80$ Q 2.5 $540,021$ 1188.1 $552,995$ W 0.9 $5106,905$ 55 $520,000$ L 0.0 $100,100$ 55 $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.0 \$70,129                 |
| <b>539.3m</b> M 1.8 <b>506,628</b> 789.1 <b>549,802</b> O 2.3 <b>540,031</b> 1190.6 <b>533,008</b> L 0.9 <b>5107,111</b> 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.9 \$70,191                 |
| <b>5.39.4m</b> Q 1.8 <b>50.6</b> 28 (90.9 <b>549.81</b> ) C 2.5 <b>540,096</b> (195.1 <b>535,023</b> N 0.9 <b>510</b> / $_{10}$ /3 <b>50</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J.8 \$70,253                 |
| <b>5.39.5m</b> C 1.8 $300,683$ /92.0 $349,653$ U 2.3 $340,114$ 1195.0 $353,038$ L 0.9 $3108,438$ 30 $520,520$ L 0.9 $5100,400$ L 0.9 $510$                                                                                                                                                                                                                                                        | 1.8 \$70,310                 |
| <b>3.57.011</b> IX 1.6 3.50,000 /74.4 343,047 II 2.5 340,156 1126.1 353,052 IN 0.9 $3109,409$ 20. <b>620</b> 7 M 1.9 <b>656</b> 010 706.2 940.964 M 2.5 610.160 120.6 622.067 W 0.0 610.0401 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1 \$10,379<br>2.6 \$70,442 |
| <b>520</b> $\mu$ II 10 550,916 /90.2 549,504 IVI 2.5 540,109 1200.0 555,007 W 0.9 5109,481 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 \$/0,442                 |
| <b>357.011</b> U 1.8 $300,943$ /9/.9 $349,800$ U 2.5 $340,1/2$ 1205.1 $355,082$ L 0.9 $3109,840$ 50 $620,000$ L 0.9 $57,002$ V 2.00 $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$ $100,57$                                                                                                                                                                                                                                                           | +.3 \$/0,506<br>5.4 \$70,570 |
| <b>57.7.11</b> K 1.6 $37.003$ /77.7 $347.073$ K 2.3 $340.163$ 120.5 $353.090$ U 0.9 $310.517$ 20. $540.090$ U 0.9 $310.090$ U 0.9                                                                                                                                                                                                                                                          | 5.4 \$/0,5/0<br>6.2 \$70.624 |
| <b>340.0</b> NV 1.6 327,000 001.4 343,911 U 2.5 $340,251$ 1208.1 353,111 N 0.9 $3111,141$ 200 $640,140$ 1208.1 353,111 N 0.9 $3111,141$ 200 $640,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12 $540,140$ 12                                                                                                                                                                                                                                                         | 0.3 \$70,034<br>7.2 \$70,600 |
| <b>340.3</b> $(1.6, 3.7, 0.07, 0.05.2, 347, 320, 17, 2.5, 340, 262, 1210, 2, 353, 120, 12, 0.9, 3111, 257, 256, 347, 347, 347, 347, 347, 347, 347, 347$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 \$70,099<br>21 \$70,764  |
| <b>340.2m</b> C 1.6 37,043 0047 343,942 C 2.5 $340,247$ 1215.0 $353,141$ W 0.9 $3111,943$ 30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.1  3/0, /04                |
| <b>340.01 iv</b> 1.0 <b>357.071 000.7 347.3777 K</b> 2.3 <b>340.347 121.5.3 355.153 L 0.9 3112.711 305.154 C 240.473 D 12 C 25 C 40.355 121.80 C 221.70 N 0.0 C 117.700 5 C 10 C 117.700 C 117.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 \$70,829                 |
| <b>340 Sm</b> M 17 (57182) 8102 (40.080 O) 25 (40.883 120.4 (31.85) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 10 (10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/(10.001) 11/                                                                                                                                                                                                                                                        | 0.7 \$70,094                 |

|         |                   | Prim             | ary budget (                   | (\$50m)        |                 | [                 | Lo               | wer budget i                   | (\$0m)         |                |                   | High             | er budget (S                   | 100m)          |                |
|---------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|----------------|-------------------|------------------|--------------------------------|----------------|----------------|
| Budget  |                   | Margina          | 1                              | Cum            | ulative         |                   | Margina          | l                              | Cum            | ulative        |                   | Margina          | ıl                             | Cum            | ulative        |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | $\lambda^{-e}$ |
| \$40.6m | Q                 | 1.7              | \$57,189                       | 811.9          | \$50,004        | С                 | 2.5              | \$40,415                       | 1222.9         | \$33,199       | W                 | 0.9              | \$114,303                      | 571.6          | \$71,027       |
| \$40.7m | Ĉ                 | 1.7              | \$57,202                       | 813.7          | \$50,019        | 0                 | 2.5              | \$40,419                       | 1225.4         | \$33,214       | N                 | 0.9              | \$114,410                      | 572.5          | \$71,093       |
| \$40.8m | R                 | 1.7              | \$57,234                       | 815.4          | \$50,035        | Н                 | 2.5              | \$40,422                       | 1227.9         | \$33,228       | L                 | 0.9              | \$115,737                      | 573.4          | \$71,161       |
| \$40.9m | М                 | 1.7              | \$57,267                       | 817.2          | \$50,050        | 0                 | 2.5              | \$40,479                       | 1230.3         | \$33,243       | Ν                 | 0.9              | \$116,012                      | 574.2          | \$71,228       |
| \$41.0m | R                 | 1.7              | \$57,353                       | 818.9          | \$50,066        | R                 | 2.5              | \$40,512                       | 1232.8         | \$33,257       | W                 | 0.9              | \$116,566                      | 575.1          | \$71,296       |
| \$41.1m | М                 | 1.7              | \$57,353                       | 820.7          | \$50,081        | М                 | 2.5              | \$40,520                       | 1235.3         | \$33,272       | L                 | 0.9              | \$117,312                      | 575.9          | \$71,364       |
| \$41.2m | С                 | 1.7              | \$57,362                       | 822.4          | \$50,097        | 0                 | 2.5              | \$40,540                       | 1237.7         | \$33,286       | N                 | 0.9              | \$117,589                      | 576.8          | \$71,432       |
| \$41.3m | Q                 | 1.7              | \$57,369                       | 824.1          | \$50,112        | Н                 | 2.5              | \$40,563                       | 1240.2         | \$33,301       | W                 | 0.8              | \$118,747                      | 577.6          | \$71,501       |
| \$41.4m | M                 | 1.7              | \$57,438                       | 825.9          | \$50,128        | 0                 | 2.5              | \$40,599                       | 1242.7         | \$33,315       | L                 | 0.8              | \$118,930                      | 578.5          | \$71,570       |
| \$41.5m | R                 | 1.7              | \$57,465                       | 827.6          | \$50,143        | 0                 | 2.5              | \$40,660                       | 1245.1         | \$33,330       | N                 | 0.8              | \$119,147                      | 579.3          | \$71,639       |
| \$41.6m | С                 | 1.7              | \$57,518                       | 829.4          | \$50,159        | N                 | 2.5              | \$40,672                       | 1247.6         | \$33,344       | U                 | 0.8              | \$120,180                      | 580.1          | \$71,708       |
| \$41.7m | М                 | 1.7              | \$57,524                       | 831.1          | \$50,174        | R                 | 2.5              | \$40,677                       | 1250.0         | \$33,359       | L                 | 0.8              | \$120,592                      | 581.0          | \$71,778       |
| \$41.8m | Q                 | 1.7              | \$57,544                       | 832.8          | \$50,189        | Н                 | 2.5              | \$40,703                       | 1252.5         | \$33,373       | N                 | 0.8              | \$120,685                      | 581.8          | \$71,848       |
| \$41.9m | R                 | 1.7              | \$57,584                       | 834.6          | \$50,205        | 0                 | 2.5              | \$40,718                       | 1255.0         | \$33,387       | W                 | 0.8              | \$120,850                      | 582.6          | \$71,917       |
| \$42.0m | М                 | 1.7              | \$57,607                       | 836.3          | \$50,220        | С                 | 2.5              | \$40,730                       | 1257.4         | \$33,402       | Ν                 | 0.8              | \$122,203                      | 583.4          | \$71,988       |
| \$42.1m | С                 | 1.7              | \$57,673                       | 838.1          | \$50,236        | Q                 | 2.5              | \$40,739                       | 1259.9         | \$33,416       | L                 | 0.8              | \$122,303                      | 584.2          | \$72,058       |
| \$42.2m | М                 | 1.7              | \$57,693                       | 839.8          | \$50,251        | 0                 | 2.5              | \$40,780                       | 1262.3         | \$33,430       | W                 | 0.8              | \$122,882                      | 585.1          | \$72,129       |
| \$42.3m | R                 | 1.7              | \$57,700                       | 841.5          | \$50,266        | 0                 | 2.4              | \$40,838                       | 1264.8         | \$33,445       | L                 | 0.8              | \$124,065                      | 585.9          | \$72,201       |
| \$42.4m | Q                 | 1.7              | \$57,720                       | 843.3          | \$50,282        | R                 | 2.4              | \$40,840                       | 1267.2         | \$33,459       | W                 | 0.8              | \$124,849                      | 586.7          | \$72,272       |
| \$42.5m | М                 | 1.7              | \$57,777                       | 845.0          | \$50,297        | Н                 | 2.4              | \$40,841                       | 1269.7         | \$33,473       | L                 | 0.8              | \$125,873                      | 587.5          | \$72,345       |
| \$42.6m | R                 | 1.7              | \$57,813                       | 846.7          | \$50,312        | М                 | 2.4              | \$40,859                       | 1272.1         | \$33,487       | W                 | 0.8              | \$126,756                      | 588.3          | \$72,418       |
| \$42.7m | С                 | 1.7              | \$57,827                       | 848.4          | \$50,328        | 0                 | 2.4              | \$40,898                       | 1274.6         | \$33,502       | L                 | 0.8              | \$127,740                      | 589.0          | \$72,491       |
| \$42.8m | М                 | 1.7              | \$57,860                       | 850.2          | \$50,343        | 0                 | 2.4              | \$40,957                       | 1277.0         | \$33,516       | W                 | 0.8              | \$128,606                      | 589.8          | \$72,565       |
| \$42.9m | Q                 | 1.7              | \$57,894                       | 851.9          | \$50,358        | Н                 | 2.4              | \$40,979                       | 1279.4         | \$33,530       | U                 | 0.8              | \$129,118                      | 590.6          | \$72,640       |
| \$43.0m | R                 | 1.7              | \$57,927                       | 853.6          | \$50,374        | R                 | 2.4              | \$41,002                       | 1281.9         | \$33,544       | L                 | 0.8              | \$129,660                      | 591.4          | \$72,714       |
| \$43.1m | М                 | 1.7              | \$57,941                       | 855.3          | \$50,389        | 0                 | 2.4              | \$41,016                       | 1284.3         | \$33,559       | W                 | 0.8              | \$130,405                      | 592.1          | \$72,789       |
| \$43.2m | С                 | 1.7              | \$57,984                       | 857.1          | \$50,404        | С                 | 2.4              | \$41,039                       | 1286.8         | \$33,573       | L                 | 0.8              | \$131,641                      | 592.9          | \$72,864       |
| \$43.3m | М                 | 1.7              | \$58,025                       | 858.8          | \$50,419        | 0                 | 2.4              | \$41,073                       | 1289.2         | \$33,587       | W                 | 0.8              | \$132,158                      | 593.6          | \$72,940       |
| \$43.4m | R                 | 1.7              | \$58,042                       | 860.5          | \$50,435        | Q                 | 2.4              | \$41,089                       | 1291.6         | \$33,601       | L                 | 0.7              | \$133,679                      | 594.4          | \$73,016       |
| \$43.5m | Q                 | 1.7              | \$58,072                       | 862.2          | \$50,450        | Н                 | 2.4              | \$41,115                       | 1294.1         | \$33,615       | W                 | 0.7              | \$133,862                      | 595.1          | \$73,092       |
| \$43.6m | М                 | 1.7              | \$58,106                       | 864.0          | \$50,465        | 0                 | 2.4              | \$41,134                       | 1296.5         | \$33,629       | W                 | 0.7              | \$135,525                      | 595.9          | \$73,170       |
| \$43.7m | С                 | 1.7              | \$58,136                       | 865.7          | \$50,480        | R                 | 2.4              | \$41,162                       | 1298.9         | \$33,643       | L                 | 0.7              | \$135,787                      | 596.6          | \$73,247       |
| \$43.8m | R                 | 1.7              | \$58,156                       | 867.4          | \$50,496        | М                 | 2.4              | \$41,187                       | 1301.3         | \$33,657       | W                 | 0.7              | \$137,150                      | 597.3          | \$73,325       |
| \$43.9m | М                 | 1.7              | \$58,187                       | 869.1          | \$50,511        | 0                 | 2.4              | \$41,191                       | 1303.8         | \$33,671       | U                 | 0.7              | \$137,473                      | 598.1          | \$73,403       |
| \$44.0m | Q                 | 1.7              | \$58,241                       | 870.8          | \$50,526        | 0                 | 2.4              | \$41,249                       | 1306.2         | \$33,686       | L                 | 0.7              | \$137,960                      | 598.8          | \$73,481       |
| \$44.1m | M                 | 1.7              | \$58,268                       | 872.6          | \$50,541        | Н                 | 2.4              | \$41,252                       | 1308.6         | \$33,700       | W                 | 0.7              | \$138,735                      | 599.5          | \$73,560       |
| \$44.2m | R                 | 1.7              | \$58,272                       | 874.3          | \$50,556        | 0                 | 2.4              | \$41,307                       | 1311.0         | \$33,714       | L                 | 0.7              | \$140,201                      | 600.2          | \$73,639       |
| \$44.3m | C                 | 1.7              | \$58,289                       | 876.0          | \$50,572        | R                 | 2.4              | \$41,326                       | 1313.5         | \$33,728       | W                 | 0.7              | \$140,286                      | 600.9          | \$73,718       |
| \$44.4m | M                 | 1.7              | \$58,350                       | 877.7          | \$50,587        | С                 | 2.4              | \$41,345                       | 1315.9         | \$33,742       | W                 | 0.7              | \$141,802                      | 601.6          | \$73,798       |
| \$44.5m | R                 | 1.7              | \$58,384                       | 879.4          | \$50,602        | 0                 | 2.4              | \$41,365                       | 1318.3         | \$33,756       | L                 | 0.7              | \$142,519                      | 602.3          | \$73,878       |
| \$44.6m | Q                 | 1.7              | \$58,415                       | 881.1          | \$50,617        | Н                 | 2.4              | \$41,387                       | 1320.7         | \$33,770       | W                 | 0.7              | \$143,289                      | 603.0          | \$73,958       |
| \$44.7m | M                 | 1.7              | \$58,428                       | 882.8          | \$50,632        | 0                 | 2.4              | \$41,423                       | 1323.1         | \$33,784       | W                 | 0.7              | \$144,743                      | 603.7          | \$74,039       |
| \$44.8m | С                 | 1.7              | \$58,442                       | 884.5          | \$50,647        | Q                 | 2.4              | \$41,432                       | 1325.5         | \$33,797       | L                 | 0.7              | \$144,915                      | 604.4          | \$74,120       |
| \$44.9m | R                 | 1.7              | \$58,500                       | 886.3          | \$50,663        | 0                 | 2.4              | \$41,480                       | 1328.0         | \$33,811       | U                 | 0.7              | \$145,348                      | 605.1          | \$74,201       |
| \$45.0m | М                 | 1.7              | \$58,510                       | 888.0          | \$50,678        | R                 | 2.4              | \$41,485                       | 1330.4         | \$33,825       | W                 | 0.7              | \$146,167                      | 605.8          | \$74,282       |
| \$45.1m | Q                 | 1.7              | \$58,586                       | 889.7          | \$50,693        | M                 | 2.4              | \$41,505                       | 1332.8         | \$33,839       | L                 | 0.7              | \$147,390                      | 606.5          | \$74,364       |
| \$45.2m | М                 | 1.7              | \$58,586                       | 891.4          | \$50,708        | Н                 | 2.4              | \$41,521                       | 1335.2         | \$33,853       | W                 | 0.7              | \$147,569                      | 607.2          | \$74,446       |
| \$45.3m | С                 | 1.7              | \$58,593                       | 893.1          | \$50,723        | 0                 | 2.4              | \$41,539                       | 1337.6         | \$33,867       | W                 | 0.7              | \$148,940                      | 607.8          | \$74,528       |
| \$45.4m | R                 | 1.7              | \$58,613                       | 894.8          | \$50,738        | 0                 | 2.4              | \$41,596                       | 1340.0         | \$33,881       | L                 | 0.7              | \$149,954                      | 608.5          | \$74,611       |
| \$45.5m | М                 | 1.7              | \$58,668                       | 896.5          | \$50,753        | R                 | 2.4              | \$41,644                       | 1342.4         | \$33,895       | W                 | 0.7              | \$150,290                      | 609.2          | \$74,693       |
| \$45.6m | R                 | 1.7              | \$58,727                       | 898.2          | \$50,768        | C                 | 2.4              | \$41,646                       | 1344.8         | \$33,908       | W                 | 0.7              | \$151,612                      | 609.8          | \$74,777       |

|         |                   | Prime            | urv budget (                   | \$50m)         |                 |                   | Lo               | wer budget (                   | (\$0m)         |                 |                   | High             | er budget (\$                  | 100m)          |                 |
|---------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|-------------------|------------------|--------------------------------|----------------|-----------------|
| Budget  |                   | Margina          | 1                              | Cum            | ulative         |                   | Margina          | 1                              | Cum            | ulative         |                   | Margina          | ıl                             | Cum            | ulative         |
| impact  | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> | Tech <sup>a</sup> | $\Delta E_m^{b}$ | ICER <sub>m</sub> <sup>c</sup> | $\Delta E^{d}$ | λ <sup>−e</sup> |
| \$45.7m | С                 | 1.7              | \$58,744                       | 899.9          | \$50,783        | 0                 | 2.4              | \$41,653                       | 1347.2         | \$33,922        | L                 | 0.7              | \$152,609                      | 610.5          | \$74,860        |
| \$45.8m | М                 | 1.7              | \$58,744                       | 901.6          | \$50,798        | Н                 | 2.4              | \$41,655                       | 1349.6         | \$33,936        | U                 | 0.7              | \$152,816                      | 611.1          | \$74,944        |
| \$45.9m | Q                 | 1.7              | \$58,758                       | 903.3          | \$50,813        | 0                 | 2.4              | \$41,708                       | 1352.0         | \$33,950        | W                 | 0.7              | \$152,915                      | 611.8          | \$75,027        |
| \$46.0m | М                 | 1.7              | \$58,824                       | 905.0          | \$50,828        | 0                 | 2.4              | \$41,766                       | 1354.4         | \$33,964        | W                 | 0.6              | \$154,195                      | 612.4          | \$75,111        |
| \$46.1m | R                 | 1.7              | \$58,837                       | 906.7          | \$50,843        | Q                 | 2.4              | \$41,771                       | 1356.8         | \$33,977        | L                 | 0.6              | \$155,359                      | 613.1          | \$75,195        |
| \$46.2m | С                 | 1.7              | \$58,893                       | 908.4          | \$50,858        | Н                 | 2.4              | \$41,785                       | 1359.2         | \$33,991        | W                 | 0.6              | \$155,453                      | 613.7          | \$75,279        |
| \$46.3m | М                 | 1.7              | \$58,900                       | 910.1          | \$50,873        | R                 | 2.4              | \$41,804                       | 1361.6         | \$34,005        | W                 | 0.6              | \$156,691                      | 614.4          | \$75,364        |
| \$46.4m | Q                 | 1.7              | \$58,924                       | 911.8          | \$50,888        | М                 | 2.4              | \$41,814                       | 1364.0         | \$34,019        | W                 | 0.6              | \$157,913                      | 615.0          | \$75,449        |
| \$46.5m | R                 | 1.7              | \$58,952                       | 913.5          | \$50,903        | 0                 | 2.4              | \$41,824                       | 1366.4         | \$34,032        | L                 | 0.6              | \$158,210                      | 615.6          | \$75,534        |
| \$46.6m | M                 | 1.7              | \$58,976                       | 915.2          | \$50,918        | 0                 | 2.4              | \$41,880                       | 1368.7         | \$34,046        | W                 | 0.6              | \$159,112                      | 616.2          | \$75,619        |
| \$46.7m | C                 | 1.7              | \$59,042                       | 916.9          | \$50,933        | Н                 | 2.4              | \$41,920                       | 1371.1         | \$34,060        | U                 | 0.6              | \$159,935                      | 616.9          | \$75,704        |
| \$46.8m | М                 | 1.7              | \$59,053                       | 918.6          | \$50,948        | С                 | 2.4              | \$41,943                       | 1373.5         | \$34,073        | W                 | 0.6              | \$160,295                      | 617.5          | \$75,790        |
| \$46.9m | R                 | 1.7              | \$59,063                       | 920.3          | \$50,963        | R                 | 2.4              | \$41,964                       | 1375.9         | \$34,087        | L                 | 0.6              | \$161,166                      | 618.1          | \$75,876        |
| \$47.0m | Q                 | 1.7              | \$59,095                       | 922.0          | \$50,978        | H                 | 2.4              | \$42,049                       | 1378.3         | \$34,101        | W                 | 0.6              | \$161,462                      | 618.7          | \$75,961        |
| \$47.1m | M                 | 1.7              | \$59,130                       | 923.7          | \$50,993        | Q                 | 2.4              | \$42,103                       | 1380.6         | \$34,114        | W                 | 0.6              | \$162,612                      | 619.4          | \$76,047        |
| \$47.2m | N                 | 1./              | \$59,166                       | 925.3          | \$51,008        | M                 | 2.4              | \$42,114                       | 1383.0         | \$34,128        | W                 | 0.6              | \$163,744                      | 620.0          | \$76,134        |
| \$47.3m | K                 | 1./              | \$59,175                       | 927.0          | \$51,023        | K                 | 2.4              | \$42,119                       | 1385.4         | \$34,142        | L                 | 0.6              | \$164,236                      | 620.6          | \$76,220        |
| \$47.4m | C<br>M            | 1./              | \$59,189                       | 928.7          | \$51,038        | H                 | 2.4              | \$42,180                       | 1387.8         | \$34,156        | W                 | 0.6              | \$164,861                      | 621.2          | \$76,307        |
| \$47.5m | M                 | 1.7              | \$59,207                       | 930.4          | \$51,055        | D D               | 2.4              | \$42,233                       | 1390.1         | \$34,109        | W<br>U            | 0.6              | \$165,964                      | 622.4          | \$76,394        |
| \$47.0m | V<br>M            | 1.7              | \$59,239                       | 932.1          | \$51,007        | K<br>U            | 2.4              | \$42,200                       | 1392.3         | \$24,103        | W                 | 0.0              | \$167.054                      | 622.4          | \$76,568        |
| \$47.9m | P                 | 1.7              | \$59,280                       | 035.5          | \$51,082        | M                 | 2.4              | \$42,308                       | 1307.2         | \$34,197        | T                 | 0.0              | \$167,034                      | 623.6          | \$76,508        |
| \$47.0m | C K               | 1.7              | \$59,291                       | 937.2          | \$51,097        | 0                 | 2.4              | \$42,403                       | 1399.6         | \$34 225        | W                 | 0.0              | \$168 127                      | 624.2          | \$76,742        |
| \$48.0m | м                 | 1.7              | \$59.358                       | 938.8          | \$51,112        | R                 | 2.4              | \$42,434                       | 1401.9         | \$34,223        | W                 | 0.0              | \$169,127                      | 624.8          | \$76,829        |
| \$48.1m | R                 | 1.7              | \$59,400                       | 940.5          | \$51,127        | H                 | 2.4              | \$42,436                       | 1404.3         | \$34 252        | W                 | 0.6              | \$170,236                      | 625.3          | \$76,917        |
| \$48.2m | 0                 | 1.7              | \$59.425                       | 942.2          | \$51,156        | C                 | 2.4              | \$42.524                       | 1406.6         | \$34.266        | L                 | 0.6              | \$170,742                      | 625.9          | \$77.005        |
| \$48.3m | M                 | 1.7              | \$59,428                       | 943.9          | \$51,171        | H                 | 2.3              | \$42,564                       | 1409.0         | \$34,280        | W                 | 0.6              | \$171.271                      | 626.5          | \$77.093        |
| \$48.4m | С                 | 1.7              | \$59,485                       | 945.6          | \$51,186        | R                 | 2.3              | \$42,593                       | 1411.3         | \$34,294        | W                 | 0.6              | \$172,295                      | 627.1          | \$77,181        |
| \$48.5m | М                 | 1.7              | \$59,506                       | 947.3          | \$51,201        | М                 | 2.3              | \$42,689                       | 1413.7         | \$34,308        | U                 | 0.6              | \$173,296                      | 627.7          | \$77,269        |
| \$48.6m | R                 | 1.7              | \$59,513                       | 948.9          | \$51,215        | Н                 | 2.3              | \$42,691                       | 1416.0         | \$34,321        | W                 | 0.6              | \$173,304                      | 628.3          | \$77,357        |
| \$48.7m | М                 | 1.7              | \$59,581                       | 950.6          | \$51,230        | R                 | 2.3              | \$42,746                       | 1418.4         | \$34,335        | L                 | 0.6              | \$174,189                      | 628.8          | \$77,446        |
| \$48.8m | Q                 | 1.7              | \$59,595                       | 952.3          | \$51,245        | Q                 | 2.3              | \$42,753                       | 1420.7         | \$34,349        | W                 | 0.6              | \$174,301                      | 629.4          | \$77,534        |
| \$48.9m | R                 | 1.7              | \$59,623                       | 954.0          | \$51,260        | С                 | 2.3              | \$42,806                       | 1423.0         | \$34,363        | W                 | 0.6              | \$175,291                      | 630.0          | \$77,623        |
| \$49.0m | С                 | 1.7              | \$59,630                       | 955.6          | \$51,274        | Н                 | 2.3              | \$42,817                       | 1425.4         | \$34,377        | W                 | 0.6              | \$176,267                      | 630.5          | \$77,711        |
| \$49.1m | М                 | 1.7              | \$59,652                       | 957.3          | \$51,289        | R                 | 2.3              | \$42,904                       | 1427.7         | \$34,391        | W                 | 0.6              | \$177,233                      | 631.1          | \$77,800        |
| \$49.2m | М                 | 1.7              | \$59,726                       | 959.0          | \$51,304        | Н                 | 2.3              | \$42,942                       | 1430.0         | \$34,405        | L                 | 0.6              | \$177,784                      | 631.7          | \$77,889        |
| \$49.3m | R                 | 1.7              | \$59,734                       | 960.7          | \$51,318        | М                 | 2.3              | \$42,965                       | 1432.4         | \$34,419        | W                 | 0.6              | \$178,190                      | 632.2          | \$77,978        |
| \$49.4m | Q                 | 1.7              | \$59,755                       | 962.3          | \$51,333        | R                 | 2.3              | \$43,057                       | 1434.7         | \$34,433        | W                 | 0.6              | \$179,134                      | 632.8          | \$78,068        |
| \$49.5m | М                 | 1.7              | \$59,798                       | 964.0          | \$51,348        | Н                 | 2.3              | \$43,068                       | 1437.0         | \$34,447        | U                 | 0.6              | \$179,604                      | 633.3          | \$78,157        |
| \$49.6m | R                 | 1.7              | \$59,848                       | 965.7          | \$51,362        | Q                 | 2.3              | \$43,072                       | 1439.3         | \$34,461        | W                 | 0.6              | \$180,067                      | 633.9          | \$78,246        |
| \$49.7m | M                 | 1.7              | \$59,873                       | 967.4          | \$51,377        | C                 | 2.3              | \$43,089                       | 1441.6         | \$34,474        | W                 | 0.6              | \$180,995                      | 634.4          | \$78,336        |
| \$49.8m | Q                 | 1.7              | \$59,920                       | 969.0          | \$51,392        | H                 | 2.3              | \$43,191                       | 1444.0         | \$34,488        | L                 | 0.6              | \$181,524                      | 635.0          | \$78,425        |
| \$49.9m | M                 | 1.7              | \$59,941                       | 970.7          | \$51,407        | R                 | 2.3              | \$43,211                       | 1446.3         | \$34,502        | W                 | 0.5              | \$181,914                      | 635.6          | \$78,515        |
| \$50.0m | R                 | 1.7              | \$59,956                       | 972.4          | \$51,421        | M                 | 2.3              | \$43,235                       | 1448.6         | \$34,516        | W                 | 0.5              | \$182,819                      | 636.1          | \$78,604        |

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$0.1m increase in incremental expenditure compared to the previous (smaller) level of budget impact; <sup>b</sup> Marginal change in incremental benefit (QALYs) resulting from \$0.1m increase in incremental expenditure on marginal technology; <sup>c</sup> Marginal ICER in expansion for marginal technology (note: subject to small fluctuations due to rounding error); <sup>d</sup> Cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies; <sup>e</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

|        | 1                 |                         |              |                | 1                 |                         |                         |                | 1                 |                         |                         |                |
|--------|-------------------|-------------------------|--------------|----------------|-------------------|-------------------------|-------------------------|----------------|-------------------|-------------------------|-------------------------|----------------|
| Budget |                   | Primary bu              | dget (\$50m  | )              |                   | Lower but               | dget (\$0m)             |                |                   | Higher bud              | get (\$100m             | )              |
| impact | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | Δ <b>Ε</b> ° | $\lambda^{+d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <i>E</i> <sup>c</sup> | $\lambda^{+d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <i>E</i> <sup>c</sup> | $\lambda^{+d}$ |
| \$0.1m | N                 | -\$4.1m                 | -66.7        | \$1,499        | С                 | -\$13.7m                | -344.2                  | \$291          | N                 | -\$4.1m                 | -66.7                   | \$1,499        |
| \$0.2m | N                 | -\$4.1m                 | -66.7        | \$2,999        | C                 | -\$13.7m                | -344.2                  | \$581          | N                 | -\$4.1m                 | -66.7                   | \$2,999        |
| \$0.3m | N                 | -\$4.1m                 | -66.7        | \$4,498        | C                 | -\$13.7m                | -344.2                  | \$872          | N                 | -\$4.1m                 | -66.7                   | \$4,498        |
| \$0.4m | N                 | -\$4.1m                 | -66.7        | \$5,998        | C                 | -\$13.7m                | -344.2                  | \$1,162        | N                 | -\$4.1m                 | -66.7                   | \$5,998        |
| \$0.5m | N                 | -\$4.1m                 | -66.7        | \$7,497        | C                 | -\$13.7m                | -344.2                  | \$1,453        | N                 | -\$4.1m                 | -66.7                   | \$7,497        |
| \$0.6m | N                 | -\$4.1m                 | -66.7        | \$8,997        | С                 | -\$13.7m                | -344.2                  | \$1,743        | N                 | -\$4.1m                 | -66.7                   | \$8,997        |
| \$0.7m | N                 | -\$4.1m                 | -66.7        | \$10,496       | С                 | -\$13.7m                | -344.2                  | \$2,034        | N                 | -\$4.1m                 | -66.7                   | \$10,496       |
| \$0.8m | N                 | -\$4.1m                 | -66.7        | \$11,996       | С                 | -\$13.7m                | -344.2                  | \$2,324        | N                 | -\$4.1m                 | -66.7                   | \$11,996       |
| \$0.9m | N                 | -\$4.1m                 | -66.7        | \$13,495       | C                 | -\$13.7m                | -344.2                  | \$2,615        | N                 | -\$4.1m                 | -66.7                   | \$13,495       |
| \$1.0m | N                 | -\$4.1m                 | -66.7        | \$14,995       | C                 | -\$13.7m                | -344.2                  | \$2,905        | N                 | -\$4.1m                 | -66.7                   | \$14,995       |
| \$1.1m | N                 | -\$4.1m                 | -66.7        | \$16,494       | С                 | -\$13.7m                | -344.2                  | \$3,196        | N                 | -\$4.1m                 | -66.7                   | \$16,494       |
| \$1.2m | N                 | -\$4.1m                 | -66.7        | \$17,994       | С                 | -\$13.7m                | -344.2                  | \$3,486        | N                 | -\$4.1m                 | -66.7                   | \$17,994       |
| \$1.3m | N                 | -\$4.1m                 | -66.7        | \$19,493       | С                 | -\$13.7m                | -344.2                  | \$3,777        | N                 | -\$4.1m                 | -66.7                   | \$19,493       |
| \$1.4m | N                 | -\$4.1m                 | -66.7        | \$20,993       | С                 | -\$13.7m                | -344.2                  | \$4,067        | N                 | -\$4.1m                 | -66.7                   | \$20,993       |
| \$1.5m | N                 | -\$4.1m                 | -66.7        | \$22,492       | C                 | -\$13.7m                | -344.2                  | \$4,358        | N                 | -\$4.1m                 | -66.7                   | \$22,492       |
| \$1.6m | N                 | -\$4.1m                 | -66.7        | \$23,992       | C                 | -\$13.7m                | -344.2                  | \$4,648        | N                 | -\$4.1m                 | -66.7                   | \$23,992       |
| \$1.7m | N                 | -\$4.1m                 | -66.7        | \$25,491       | С                 | -\$13.7m                | -344.2                  | \$4,939        | N                 | -\$4.1m                 | -66.7                   | \$25,491       |
| \$1.8m | N                 | -\$4.1m                 | -66.7        | \$26,991       | С                 | -\$13.7m                | -344.2                  | \$5,229        | N                 | -\$4.1m                 | -66.7                   | \$26,991       |
| \$1.9m | N                 | -\$4.1m                 | -66.7        | \$28,490       | С                 | -\$13.7m                | -344.2                  | \$5,520        | N                 | -\$4.1m                 | -66.7                   | \$28,490       |
| \$2.0m | N                 | -\$4.1m                 | -66.7        | \$29,990       | C                 | -\$13.7m                | -344.2                  | \$5,810        | N                 | -\$4.1m                 | -66.7                   | \$29,990       |
| \$2.1m | N                 | -\$4.1m                 | -66.7        | \$31,489       | С                 | -\$13.7m                | -344.2                  | \$6,101        | N                 | -\$4.1m                 | -66.7                   | \$31,489       |
| \$2.2m | N                 | -\$4.1m                 | -66.7        | \$32,989       | С                 | -\$13.7m                | -344.2                  | \$6,392        | N                 | -\$4.1m                 | -66.7                   | \$32,989       |
| \$2.3m | N                 | -\$4.1m                 | -66.7        | \$34,488       | С                 | -\$13.7m                | -344.2                  | \$6,682        | N                 | -\$4.1m                 | -66.7                   | \$34,488       |
| \$2.4m | N                 | -\$4.1m                 | -66.7        | \$35,988       | С                 | -\$13.7m                | -344.2                  | \$6,973        | N                 | -\$4.1m                 | -66.7                   | \$35,988       |
| \$2.5m | N                 | -\$4.1m                 | -66.7        | \$37,487       | C                 | -\$13.7m                | -344.2                  | \$7,263        | N                 | -\$4.1m                 | -66.7                   | \$37,487       |
| \$2.6m | N                 | -\$4.1m                 | -66.7        | \$38,987       | С                 | -\$13.7m                | -344.2                  | \$7,554        | N                 | -\$4.1m                 | -66.7                   | \$38,987       |
| \$2.7m | N                 | -\$4.1m                 | -66.7        | \$40,486       | С                 | -\$13.7m                | -344.2                  | \$7,844        | N                 | -\$4.1m                 | -66.7                   | \$40,486       |
| \$2.8m | N                 | -\$4.1m                 | -66.7        | \$41,986       | С                 | -\$13.7m                | -344.2                  | \$8,135        | N                 | -\$4.1m                 | -66.7                   | \$41,986       |
| \$2.9m | N                 | -\$4.1m                 | -66.7        | \$43,485       | С                 | -\$13.7m                | -344.2                  | \$8,425        | N                 | -\$4.1m                 | -66.7                   | \$43,485       |
| \$3.0m | N                 | -\$4.1m                 | -66.7        | \$44,984       | С                 | -\$13.7m                | -344.2                  | \$8,716        | N                 | -\$4.1m                 | -66.7                   | \$44,984       |
| \$3.1m | N                 | -\$4.1m                 | -66.7        | \$46,484       | C                 | -\$13.7m                | -344.2                  | \$9,006        | N                 | -\$4.1m                 | -66.7                   | \$46,484       |
| \$3.2m | N                 | -\$4.1m                 | -66.7        | \$47,983       | C                 | -\$13.7m                | -344.2                  | \$9,297        | N                 | -\$4.1m                 | -66.7                   | \$47,983       |
| \$3.3m | N                 | -\$4.1m                 | -66.7        | \$49,483       | С                 | -\$13.7m                | -344.2                  | \$9,587        | N                 | -\$4.1m                 | -66.7                   | \$49,483       |
| \$3.4m | N                 | -\$4.1m                 | -66.7        | \$50,982       | C                 | -\$13.7m                | -344.2                  | \$9,878        | N                 | -\$4.1m                 | -66.7                   | \$50,982       |
| \$3.5m | N                 | -\$4.1m                 | -66.7        | \$52,482       | С                 | -\$13.7m                | -344.2                  | \$10,168       | N                 | -\$4.1m                 | -66.7                   | \$52,482       |
| \$3.6m | N                 | -\$4.1m                 | -66.7        | \$53,981       | C                 | -\$13.7m                | -344.2                  | \$10,459       | N                 | -\$4.1m                 | -66.7                   | \$53,981       |
| \$3.7m | N                 | -\$4.1m                 | -66.7        | \$55,481       | C                 | -\$13.7m                | -344.2                  | \$10,749       | N                 | -\$4.1m                 | -66.7                   | \$55,481       |
| \$3.8m | N                 | -\$4.1m                 | -66.7        | \$56,980       | C                 | -\$13.7m                | -344.2                  | \$11,040       | N                 | -\$4.1m                 | -66.7                   | \$56,980       |
| \$3.9m | N                 | -\$4.1m                 | -66.7        | \$58,480       | C                 | -\$13.7m                | -344.2                  | \$11,330       | N                 | -\$4.1m                 | -66.7                   | \$58,480       |
| \$4.0m | N                 | -\$4.1m                 | -66.7        | \$59,979       | C                 | -\$13.7m                | -344.2                  | \$11,621       | N                 | -\$4.1m                 | -66.7                   | \$59,979       |
| \$4.1m | N                 | -\$4.1m                 | -66.7        | \$61,479       | C                 | -\$13.7m                | -344.2                  | \$11,912       | N                 | -\$4.1m                 | -66.7                   | \$61,479       |
| \$4.2m | С                 | -\$13.7m                | -344.2       | \$12,202       | С                 | -\$13.7m                | -344.2                  | \$12,202       | С                 | -\$13.7m                | -344.2                  | \$12,202       |
| \$4.3m | С                 | -\$13.7m                | -344.2       | \$12,493       | С                 | -\$13.7m                | -344.2                  | \$12,493       | С                 | -\$13.7m                | -344.2                  | \$12,493       |
| \$4.4m | С                 | -\$13.7m                | -344.2       | \$12,783       | С                 | -\$13.7m                | -344.2                  | \$12,783       | С                 | -\$13.7m                | -344.2                  | \$12,783       |
| \$4.5m | С                 | -\$13.7m                | -344.2       | \$13,074       | С                 | -\$13.7m                | -344.2                  | \$13,074       | С                 | -\$13.7m                | -344.2                  | \$13,074       |
| \$4.6m | С                 | -\$13.7m                | -344.2       | \$13,364       | С                 | -\$13.7m                | -344.2                  | \$13,364       | С                 | -\$13.7m                | -344.2                  | \$13,364       |
| \$4.7m | C                 | -\$13.7m                | -344.2       | \$13,655       | С                 | -\$13.7m                | -344.2                  | \$13,655       | С                 | -\$13.7m                | -344.2                  | \$13,655       |
| \$4.8m | С                 | -\$13.7m                | -344.2       | \$13,945       | С                 | -\$13.7m                | -344.2                  | \$13,945       | С                 | -\$13.7m                | -344.2                  | \$13,945       |
| \$4.9m | С                 | -\$13.7m                | -344.2       | \$14.236       | С                 | -\$13.7m                | -344.2                  | \$14.236       | С                 | -\$13.7m                | -344.2                  | \$14.236       |

## Table A1.1.5: Reallocation following net investment (non-divisibility)

| <b>D</b> 1 / |              | <b>n</b> ' <i>i</i> | 1 (650      | 1        |              | 7 1       | 1 (60 )    |          |              | TT: 1 1 1    | ( (@ 100    | 1        |
|--------------|--------------|---------------------|-------------|----------|--------------|-----------|------------|----------|--------------|--------------|-------------|----------|
| Budget       | <b>T</b> 1.9 | Primary but         | aget (\$50m | )<br>1+d | <b>T</b> 1.9 | Lower but | iget (som) | 2+d      | <b>T</b> 1.9 | Higner bua   | get (\$100m | )<br>1+d |
| impact       | Tech "       | ΔL °                | 244.2       | £14.520  | Tech "       | ΔL °      | 244.2      | £14.520  | Tech "       | Δ <b>C</b> * | 244.2       | £14.52(  |
| \$5.0m       | C            | -\$13./m            | -344.2      | \$14,526 | C            | -\$13./m  | -344.2     | \$14,526 | C            | -\$13./m     | -344.2      | \$14,520 |
| \$5.1m       | C            | -\$13./m            | -344.2      | \$14,817 | C            | -\$13./m  | -344.2     | \$14,817 | C            | -\$13./m     | -344.2      | \$14,817 |
| \$5.2m       | C            | -\$13./m            | -344.2      | \$15,107 | C            | -\$13./m  | -344.2     | \$15,107 | C            | -\$13./m     | -344.2      | \$15,107 |
| \$5.3m       | C            | -\$13./m            | -344.2      | \$15,398 | C            | -\$13./m  | -344.2     | \$15,398 | C            | -\$13./m     | -344.2      | \$15,398 |
| \$5.4m       | C            | -\$13.7m            | -344.2      | \$15,688 | C            | -\$13.7m  | -344.2     | \$15,688 | C            | -\$13.7m     | -344.2      | \$15,688 |
| \$5.5m       | C            | -\$13./m            | -344.2      | \$15,979 | C            | -\$13./m  | -344.2     | \$15,979 | C            | -\$13./m     | -344.2      | \$15,979 |
| \$5.6m       | C            | -\$13./m            | -344.2      | \$16,269 | C            | -\$13./m  | -344.2     | \$16,269 | C            | -\$13./m     | -344.2      | \$16,269 |
| \$5.7m       | C            | -\$13.7m            | -344.2      | \$16,560 | C            | -\$13.7m  | -344.2     | \$16,560 | C            | -\$13.7m     | -344.2      | \$16,560 |
| \$5.8m       | C            | -\$13.7m            | -344.2      | \$16,850 | C            | -\$13.7m  | -344.2     | \$16,850 | C            | -\$13.7m     | -344.2      | \$16,850 |
| \$5.9m       | C            | -\$13.7m            | -344.2      | \$17,141 | C            | -\$13.7m  | -344.2     | \$17,141 | C            | -\$13.7m     | -344.2      | \$17,141 |
| \$6.0m       | C            | -\$13.7m            | -344.2      | \$17,431 | C            | -\$13./m  | -344.2     | \$17,431 | C            | -\$13.7m     | -344.2      | \$17,431 |
| \$6.1m       | C            | -\$13.7m            | -344.2      | \$17,722 | C            | -\$13.7m  | -344.2     | \$17,722 | C            | -\$13.7m     | -344.2      | \$17,722 |
| \$6.2m       | С            | -\$13.7m            | -344.2      | \$18,013 | C            | -\$13.7m  | -344.2     | \$18,013 | C            | -\$13.7m     | -344.2      | \$18,013 |
| \$6.3m       | C            | -\$13.7m            | -344.2      | \$18,303 | C            | -\$13.7m  | -344.2     | \$18,303 | C            | -\$13.7m     | -344.2      | \$18,303 |
| \$6.4m       | C            | -\$13.7m            | -344.2      | \$18,594 | C            | -\$13.7m  | -344.2     | \$18,594 | C            | -\$13.7m     | -344.2      | \$18,594 |
| \$6.5m       | C            | -\$13.7m            | -344.2      | \$18,884 | C            | -\$13.7m  | -344.2     | \$18,884 | C            | -\$13.7m     | -344.2      | \$18,884 |
| \$6.6m       | C            | -\$13.7m            | -344.2      | \$19,175 | C            | -\$13.7m  | -344.2     | \$19,175 | C            | -\$13.7m     | -344.2      | \$19,175 |
| \$6.7m       | C            | -\$13.7m            | -344.2      | \$19,465 | C            | -\$13.7m  | -344.2     | \$19,465 | C            | -\$13.7m     | -344.2      | \$19,465 |
| \$6.8m       | С            | -\$13.7m            | -344.2      | \$19,756 | C            | -\$13.7m  | -344.2     | \$19,756 | С            | -\$13.7m     | -344.2      | \$19,756 |
| \$6.9m       | С            | -\$13.7m            | -344.2      | \$20,046 | С            | -\$13.7m  | -344.2     | \$20,046 | С            | -\$13.7m     | -344.2      | \$20,046 |
| \$7.0m       | С            | -\$13.7m            | -344.2      | \$20,337 | С            | -\$13.7m  | -344.2     | \$20,337 | С            | -\$13.7m     | -344.2      | \$20,337 |
| \$7.1m       | С            | -\$13.7m            | -344.2      | \$20,627 | C            | -\$13.7m  | -344.2     | \$20,627 | С            | -\$13.7m     | -344.2      | \$20,627 |
| \$7.2m       | С            | -\$13.7m            | -344.2      | \$20,918 | С            | -\$13.7m  | -344.2     | \$20,918 | С            | -\$13.7m     | -344.2      | \$20,918 |
| \$7.3m       | С            | -\$13.7m            | -344.2      | \$21,208 | С            | -\$13.7m  | -344.2     | \$21,208 | С            | -\$13.7m     | -344.2      | \$21,208 |
| \$7.4m       | С            | -\$13.7m            | -344.2      | \$21,499 | С            | -\$13.7m  | -344.2     | \$21,499 | С            | -\$13.7m     | -344.2      | \$21,499 |
| \$7.5m       | С            | -\$13.7m            | -344.2      | \$21,789 | С            | -\$13.7m  | -344.2     | \$21,789 | С            | -\$13.7m     | -344.2      | \$21,789 |
| \$7.6m       | С            | -\$13.7m            | -344.2      | \$22,080 | С            | -\$13.7m  | -344.2     | \$22,080 | С            | -\$13.7m     | -344.2      | \$22,080 |
| \$7.7m       | С            | -\$13.7m            | -344.2      | \$22,370 | С            | -\$13.7m  | -344.2     | \$22,370 | С            | -\$13.7m     | -344.2      | \$22,370 |
| \$7.8m       | С            | -\$13.7m            | -344.2      | \$22,661 | С            | -\$13.7m  | -344.2     | \$22,661 | С            | -\$13.7m     | -344.2      | \$22,661 |
| \$7.9m       | С            | -\$13.7m            | -344.2      | \$22,951 | С            | -\$13.7m  | -344.2     | \$22,951 | С            | -\$13.7m     | -344.2      | \$22,951 |
| \$8.0m       | С            | -\$13.7m            | -344.2      | \$23,242 | С            | -\$13.7m  | -344.2     | \$23,242 | С            | -\$13.7m     | -344.2      | \$23,242 |
| \$8.1m       | С            | -\$13.7m            | -344.2      | \$23,533 | C            | -\$13.7m  | -344.2     | \$23,533 | С            | -\$13.7m     | -344.2      | \$23,533 |
| \$8.2m       | С            | -\$13.7m            | -344.2      | \$23,823 | С            | -\$13.7m  | -344.2     | \$23,823 | С            | -\$13.7m     | -344.2      | \$23,823 |
| \$8.3m       | С            | -\$13.7m            | -344.2      | \$24,114 | С            | -\$13.7m  | -344.2     | \$24,114 | С            | -\$13.7m     | -344.2      | \$24,114 |
| \$8.4m       | С            | -\$13.7m            | -344.2      | \$24,404 | С            | -\$13.7m  | -344.2     | \$24,404 | С            | -\$13.7m     | -344.2      | \$24,404 |
| \$8.5m       | С            | -\$13.7m            | -344.2      | \$24,695 | С            | -\$13.7m  | -344.2     | \$24,695 | С            | -\$13.7m     | -344.2      | \$24,695 |
| \$8.6m       | С            | -\$13.7m            | -344.2      | \$24,985 | С            | -\$13.7m  | -344.2     | \$24,985 | С            | -\$13.7m     | -344.2      | \$24,985 |
| \$8.7m       | С            | -\$13.7m            | -344.2      | \$25,276 | С            | -\$13.7m  | -344.2     | \$25,276 | С            | -\$13.7m     | -344.2      | \$25,276 |
| \$8.8m       | С            | -\$13.7m            | -344.2      | \$25,566 | С            | -\$13.7m  | -344.2     | \$25,566 | С            | -\$13.7m     | -344.2      | \$25,566 |
| \$8.9m       | С            | -\$13.7m            | -344.2      | \$25,857 | С            | -\$13.7m  | -344.2     | \$25,857 | С            | -\$13.7m     | -344.2      | \$25,857 |
| \$9.0m       | С            | -\$13.7m            | -344.2      | \$26,147 | С            | -\$13.7m  | -344.2     | \$26,147 | С            | -\$13.7m     | -344.2      | \$26,147 |
| \$9.1m       | С            | -\$13.7m            | -344.2      | \$26,438 | С            | -\$13.7m  | -344.2     | \$26,438 | С            | -\$13.7m     | -344.2      | \$26,438 |
| \$9.2m       | С            | -\$13.7m            | -344.2      | \$26,728 | С            | -\$13.7m  | -344.2     | \$26,728 | С            | -\$13.7m     | -344.2      | \$26,728 |
| \$9.3m       | С            | -\$13.7m            | -344.2      | \$27,019 | С            | -\$13.7m  | -344.2     | \$27,019 | С            | -\$13.7m     | -344.2      | \$27,019 |
| \$9.4m       | С            | -\$13.7m            | -344.2      | \$27,309 | С            | -\$13.7m  | -344.2     | \$27,309 | С            | -\$13.7m     | -344.2      | \$27,309 |
| \$9.5m       | С            | -\$13.7m            | -344.2      | \$27,600 | С            | -\$13.7m  | -344.2     | \$27,600 | С            | -\$13.7m     | -344.2      | \$27,600 |
| \$9.6m       | С            | -\$13.7m            | -344.2      | \$27,890 | С            | -\$13.7m  | -344.2     | \$27,890 | С            | -\$13.7m     | -344.2      | \$27,890 |
| \$9.7m       | С            | -\$13.7m            | -344.2      | \$28,181 | С            | -\$13.7m  | -344.2     | \$28,181 | С            | -\$13.7m     | -344.2      | \$28,181 |
| \$9.8m       | C            | -\$13.7m            | -344.2      | \$28,471 | Ċ            | -\$13.7m  | -344.2     | \$28,471 | Č            | -\$13.7m     | -344.2      | \$28,471 |
| \$9.9m       | C            | -\$13.7m            | -344.2      | \$28,762 | Ċ            | -\$13.7m  | -344.2     | \$28,762 | Č            | -\$13.7m     | -344.2      | \$28,762 |
| \$10.0m      | Č            | -\$13.7m            | -344.2      | \$29,052 | Č            | -\$13.7m  | -344.2     | \$29,052 | Č            | -\$13.7m     | -344.2      | \$29,052 |
| \$10.1m      | C            | -\$13.7m            | -344.2      | \$29.343 | Ċ            | -\$13.7m  | -344.2     | \$29.343 | Ē            | -\$13.7m     | -344.2      | \$29,343 |

| Budget   |                   | Primary bu              | dget (\$50m     | )        |                   | Lower but               | dget (\$0m)    |                |                   | Higher bud      | get (\$100m     | )               |
|----------|-------------------|-------------------------|-----------------|----------|-------------------|-------------------------|----------------|----------------|-------------------|-----------------|-----------------|-----------------|
| impact   | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE <sup>c</sup> | λ+d      | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{+d}$ | Tech <sup>a</sup> | ΔC <sup>b</sup> | ΔE <sup>c</sup> | λ <sup>+d</sup> |
| \$10.2m  | С                 | -\$13.7m                | -344.2          | \$29,634 | С                 | -\$13.7m                | -344.2         | \$29,634       | С                 | -\$13.7m        | -344.2          | \$29,634        |
| \$10.3m  | С                 | -\$13.7m                | -344.2          | \$29,924 | С                 | -\$13.7m                | -344.2         | \$29,924       | С                 | -\$13.7m        | -344.2          | \$29,924        |
| \$10.4m  | С                 | -\$13.7m                | -344.2          | \$30,215 | С                 | -\$13.7m                | -344.2         | \$30,215       | С                 | -\$13.7m        | -344.2          | \$30,215        |
| \$10.5m  | С                 | -\$13.7m                | -344.2          | \$30,505 | С                 | -\$13.7m                | -344.2         | \$30,505       | С                 | -\$13.7m        | -344.2          | \$30,505        |
| \$10.6m  | С                 | -\$13.7m                | -344.2          | \$30,796 | С                 | -\$13.7m                | -344.2         | \$30,796       | С                 | -\$13.7m        | -344.2          | \$30,796        |
| \$10.7m  | С                 | -\$13.7m                | -344.2          | \$31,086 | С                 | -\$13.7m                | -344.2         | \$31,086       | С                 | -\$13.7m        | -344.2          | \$31,086        |
| \$10.8m  | С                 | -\$13.7m                | -344.2          | \$31,377 | С                 | -\$13.7m                | -344.2         | \$31,377       | С                 | -\$13.7m        | -344.2          | \$31,377        |
| \$10.9m  | С                 | -\$13.7m                | -344.2          | \$31,667 | С                 | -\$13.7m                | -344.2         | \$31,667       | С                 | -\$13.7m        | -344.2          | \$31,667        |
| \$11.0m  | С                 | -\$13.7m                | -344.2          | \$31,958 | С                 | -\$13.7m                | -344.2         | \$31,958       | С                 | -\$13.7m        | -344.2          | \$31,958        |
| \$11.1m  | С                 | -\$13.7m                | -344.2          | \$32,248 | С                 | -\$13.7m                | -344.2         | \$32,248       | С                 | -\$13.7m        | -344.2          | \$32,248        |
| \$11.2m  | С                 | -\$13.7m                | -344.2          | \$32,539 | С                 | -\$13.7m                | -344.2         | \$32,539       | С                 | -\$13.7m        | -344.2          | \$32,539        |
| \$11.3m  | С                 | -\$13.7m                | -344.2          | \$32,829 | С                 | -\$13.7m                | -344.2         | \$32,829       | С                 | -\$13.7m        | -344.2          | \$32,829        |
| \$11.4m  | С                 | -\$13.7m                | -344.2          | \$33,120 | С                 | -\$13.7m                | -344.2         | \$33,120       | С                 | -\$13.7m        | -344.2          | \$33,120        |
| \$11.5m  | С                 | -\$13.7m                | -344.2          | \$33,410 | С                 | -\$13.7m                | -344.2         | \$33,410       | С                 | -\$13.7m        | -344.2          | \$33,410        |
| \$11.6m  | С                 | -\$13.7m                | -344.2          | \$33,701 | С                 | -\$13.7m                | -344.2         | \$33,701       | С                 | -\$13.7m        | -344.2          | \$33,701        |
| \$11.7m  | С                 | -\$13.7m                | -344.2          | \$33,991 | С                 | -\$13.7m                | -344.2         | \$33,991       | С                 | -\$13.7m        | -344.2          | \$33,991        |
| \$11.8m  | С                 | -\$13.7m                | -344.2          | \$34,282 | С                 | -\$13.7m                | -344.2         | \$34,282       | С                 | -\$13.7m        | -344.2          | \$34,282        |
| \$11.9m  | С                 | -\$13.7m                | -344.2          | \$34,572 | С                 | -\$13.7m                | -344.2         | \$34,572       | С                 | -\$13.7m        | -344.2          | \$34,572        |
| \$12.0m  | С                 | -\$13.7m                | -344.2          | \$34,863 | С                 | -\$13.7m                | -344.2         | \$34,863       | C                 | -\$13.7m        | -344.2          | \$34,863        |
| \$12.1m  | С                 | -\$13.7m                | -344.2          | \$35,154 | С                 | -\$13.7m                | -344.2         | \$35,154       | C                 | -\$13.7m        | -344.2          | \$35,154        |
| \$12.2m  | С                 | -\$13.7m                | -344.2          | \$35,444 | С                 | -\$13.7m                | -344.2         | \$35,444       | С                 | -\$13.7m        | -344.2          | \$35,444        |
| \$12.3m  | С                 | -\$13.7m                | -344.2          | \$35,735 | С                 | -\$13.7m                | -344.2         | \$35,735       | С                 | -\$13.7m        | -344.2          | \$35,735        |
| \$12.4m  | С                 | -\$13.7m                | -344.2          | \$36,025 | С                 | -\$13.7m                | -344.2         | \$36,025       | C                 | -\$13.7m        | -344.2          | \$36,025        |
| \$12.5m  | С                 | -\$13.7m                | -344.2          | \$36,316 | С                 | -\$13.7m                | -344.2         | \$36,316       | C                 | -\$13.7m        | -344.2          | \$36,316        |
| \$12.6m  | С                 | -\$13.7m                | -344.2          | \$36,606 | С                 | -\$13.7m                | -344.2         | \$36,606       | C                 | -\$13.7m        | -344.2          | \$36,606        |
| \$12.7m  | С                 | -\$13.7m                | -344.2          | \$36,897 | С                 | -\$13.7m                | -344.2         | \$36,897       | С                 | -\$13.7m        | -344.2          | \$36,897        |
| \$12.8m  | С                 | -\$13.7m                | -344.2          | \$37,187 | С                 | -\$13.7m                | -344.2         | \$37,187       | С                 | -\$13.7m        | -344.2          | \$37,187        |
| \$12.9m  | С                 | -\$13.7m                | -344.2          | \$37,478 | С                 | -\$13.7m                | -344.2         | \$37,478       | С                 | -\$13.7m        | -344.2          | \$37,478        |
| \$13.0m  | С                 | -\$13.7m                | -344.2          | \$37,768 | С                 | -\$13.7m                | -344.2         | \$37,768       | С                 | -\$13.7m        | -344.2          | \$37,768        |
| \$13.1m  | С                 | -\$13.7m                | -344.2          | \$38,059 | С                 | -\$13.7m                | -344.2         | \$38,059       | С                 | -\$13.7m        | -344.2          | \$38,059        |
| \$13.2m  | C                 | -\$13.7m                | -344.2          | \$38,349 | C                 | -\$13.7m                | -344.2         | \$38,349       | C                 | -\$13.7m        | -344.2          | \$38,349        |
| \$13.3m  | C                 | -\$13.7m                | -344.2          | \$38,640 | C                 | -\$13.7m                | -344.2         | \$38,640       | C                 | -\$13.7m        | -344.2          | \$38,640        |
| \$13.4m  | C                 | -\$13.7m                | -344.2          | \$38,930 | C                 | -\$13.7m                | -344.2         | \$38,930       | C                 | -\$13.7m        | -344.2          | \$38,930        |
| \$13.5m  | C                 | -\$13.7m                | -344.2          | \$39,221 | C                 | -\$13.7m                | -344.2         | \$39,221       | C                 | -\$13.7m        | -344.2          | \$39,221        |
| \$13.6m  | C                 | -\$13.7m                | -344.2          | \$39,511 | С                 | -\$13.7m                | -344.2         | \$39,511       | C                 | -\$13.7m        | -344.2          | \$39,511        |
| \$13.7m  | C                 | -\$13.7m                | -344.2          | \$39,802 | C                 | -\$13.7m                | -344.2         | \$39,802       | C                 | -\$13.7m        | -344.2          | \$39,802        |
| \$13.8m  | C N               | -\$17.8m                | -410.9          | \$33,585 | I                 | -\$16.6m                | -917.9         | \$15,034       | C N               | -\$17.8m        | -410.9          | \$33,585        |
| \$13.9m  | C N               | -\$17.8m                | -410.9          | \$33,829 | I                 | -\$16.6m                | -917.9         | \$15,143       | C N               | -\$17.8m        | -410.9          | \$33,829        |
| \$14.0m  | C N               | -\$17.8m                | -410.9          | \$34,072 | I                 | -\$16.6m                | -917.9         | \$15,252       | C N               | -\$17.8m        | -410.9          | \$34,072        |
| \$14.1m  | C N               | -\$17.8m                | -410.9          | \$34,315 | I                 | -\$16.6m                | -91/.9         | \$15,360       | C N               | -\$17.8m        | -410.9          | \$34,315        |
| \$14.2m  | C N               | -\$17.8m                | -410.9          | \$34,559 | I                 | -\$16.6m                | -917.9         | \$15,469       | C N               | -\$17.8m        | -410.9          | \$34,559        |
| \$14.3m  | C N               | -\$17.8m                | -410.9          | \$34,802 | I                 | -\$16.6m                | -917.9         | \$15,578       | C N               | -\$17.8m        | -410.9          | \$34,802        |
| \$14.4m  | C N               | -\$17.8m                | -410.9          | \$35,046 | I                 | -\$16.6m                | -917.9         | \$15,687       | C N               | -\$17.8m        | -410.9          | \$35,046        |
| \$14.5m  | CN                | -\$17.8m                | -410.9          | \$35,289 |                   | -\$16.6m                | -917.9         | \$15,796       | CN                | -\$17.8m        | -410.9          | \$35,289        |
| \$14.6m  | C N               | -\$17.8m                | -410.9          | \$35,532 |                   | -\$16.6m                | -917.9         | \$15,905       | C N               | -\$17.8m        | -410.9          | \$35,532        |
| \$14.7m  | C N               | -\$17.8m                | -410.9          | \$35,776 |                   | -\$16.6m                | -917.9         | \$16,014       | C N               | -\$17.8m        | -410.9          | \$35,776        |
| \$14.8m  | C N               | -\$17.8m                | -410.9          | \$36,019 |                   | -\$16.6m                | -917.9         | \$16,123       | C N               | -\$17.8m        | -410.9          | \$36,019        |
| \$14.9m  | CN                | -\$17.8m                | -410.9          | \$36,262 |                   | -\$16.6m                | -917.9         | \$16,232       | CN                | -\$17.8m        | -410.9          | \$36,262        |
| \$15.0m  | C N               | -\$17.8m                | -410.9          | \$36,506 |                   | -\$16.6m                | -917.9         | \$16,341       |                   | -\$17.8m        | -410.9          | \$36,506        |
| \$15.1m  | C N               | -\$1/.8m                | -410.9          | \$36,749 | I<br>T            | -\$16.6m                | -917.9         | \$16,450       | CN<br>CN          | -\$17.8m        | -410.9          | \$36,749        |
| \$15.2m  | C N               | -\$1/.8m                | -410.9          | \$27,224 | I                 | -\$10.0m                | -91/.9         | \$10,339       |                   | -\$1/.8m        | -410.9          | \$30,992        |
| 913.3III |                   | -DI/.0III               | -410.7          | 321.230  | 1                 | -010.0III               | -71/.7         | 310.000        |                   | -DI/.0III       | -410.7          | 321.230         |
| Budget             |                   | Primary bu              | dget (\$50m     | )              |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | get (\$100m     | )                                              |
|--------------------|-------------------|-------------------------|-----------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|-----------------|------------------------------------------------|
| impact             | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE <sup>c</sup> | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE <sup>c</sup> | $\lambda^{+d}$                                 |
| \$15.4m            | C N               | -\$17.8m                | -410.9          | \$37,479       | Ι                 | -\$16.6m                | -917.9      | \$16,777       | C N               | -\$17.8m                | -410.9          | \$37,479                                       |
| \$15.5m            | C N               | -\$17.8m                | -410.9          | \$37,723       | Ι                 | -\$16.6m                | -917.9      | \$16,886       | C N               | -\$17.8m                | -410.9          | \$37,723                                       |
| \$15.6m            | C N               | -\$17.8m                | -410.9          | \$37,966       | Ι                 | -\$16.6m                | -917.9      | \$16,995       | C N               | -\$17.8m                | -410.9          | \$37,966                                       |
| \$15.7m            | C N               | -\$17.8m                | -410.9          | \$38,209       | Ι                 | -\$16.6m                | -917.9      | \$17,103       | C N               | -\$17.8m                | -410.9          | \$38,209                                       |
| \$15.8m            | C N               | -\$17.8m                | -410.9          | \$38,453       | Ι                 | -\$16.6m                | -917.9      | \$17,212       | C N               | -\$17.8m                | -410.9          | \$38,453                                       |
| \$15.9m            | C N               | -\$17.8m                | -410.9          | \$38,696       | Ι                 | -\$16.6m                | -917.9      | \$17,321       | C N               | -\$17.8m                | -410.9          | \$38,696                                       |
| \$16.0m            | C N               | -\$17.8m                | -410.9          | \$38,939       | Ι                 | -\$16.6m                | -917.9      | \$17,430       | C N               | -\$17.8m                | -410.9          | \$38,939                                       |
| \$16.1m            | C N               | -\$17.8m                | -410.9          | \$39,183       | Ι                 | -\$16.6m                | -917.9      | \$17,539       | C N               | -\$17.8m                | -410.9          | \$39,183                                       |
| \$16.2m            | C N               | -\$17.8m                | -410.9          | \$39,426       | Ι                 | -\$16.6m                | -917.9      | \$17,648       | C N               | -\$17.8m                | -410.9          | \$39,426                                       |
| \$16.3m            | C N               | -\$17.8m                | -410.9          | \$39,670       | Ι                 | -\$16.6m                | -917.9      | \$17,757       | C N               | -\$17.8m                | -410.9          | \$39,670                                       |
| \$16.4m            | C N               | -\$17.8m                | -410.9          | \$39,913       | Ι                 | -\$16.6m                | -917.9      | \$17,866       | C N               | -\$17.8m                | -410.9          | \$39,913                                       |
| \$16.5m            | C N               | -\$17.8m                | -410.9          | \$40,156       | Ι                 | -\$16.6m                | -917.9      | \$17,975       | C N               | -\$17.8m                | -410.9          | \$40,156                                       |
| \$16.6m            | C N               | -\$17.8m                | -410.9          | \$40,400       | Ι                 | -\$16.6m                | -917.9      | \$18,084       | C N               | -\$17.8m                | -410.9          | \$40,400                                       |
| \$16.7m            | C N               | -\$17.8m                | -410.9          | \$40,643       | CI                | -\$30.3m                | -1262.1     | \$13,231       | C N               | -\$17.8m                | -410.9          | \$40,643                                       |
| \$16.8m            | C N               | -\$17.8m                | -410.9          | \$40,886       | CI                | -\$30.3m                | -1262.1     | \$13,311       | C N               | -\$17.8m                | -410.9          | \$40,886                                       |
| \$16.9m            | C N               | -\$17.8m                | -410.9          | \$41,130       | CI                | -\$30.3m                | -1262.1     | \$13,390       | C N               | -\$17.8m                | -410.9          | \$41,130                                       |
| \$17.0m            | C N               | -\$17.8m                | -410.9          | \$41,373       | CI                | -\$30.3m                | -1262.1     | \$13,469       | C N               | -\$17.8m                | -410.9          | \$41,373                                       |
| \$17.1m            | C N               | -\$17.8m                | -410.9          | \$41,617       | CI                | -\$30.3m                | -1262.1     | \$13,548       | C N               | -\$17.8m                | -410.9          | \$41,617                                       |
| \$17.2m            | C N               | -\$17.8m                | -410.9          | \$41,860       | CI                | -\$30.3m                | -1262.1     | \$13,628       | C N               | -\$17.8m                | -410.9          | \$41,860                                       |
| \$17.3m            | C N               | -\$17.8m                | -410.9          | \$42,103       | CI                | -\$30.3m                | -1262.1     | \$13,707       | C N               | -\$17.8m                | -410.9          | \$42,103                                       |
| \$17.4m            | C N               | -\$17.8m                | -410.9          | \$42,347       | CI                | -\$30.3m                | -1262.1     | \$13,786       | C N               | -\$17.8m                | -410.9          | \$42,347                                       |
| \$17.5m            | C N               | -\$17.8m                | -410.9          | \$42,590       | CI                | -\$30.3m                | -1262.1     | \$13,865       | C N               | -\$17.8m                | -410.9          | \$42,590                                       |
| \$17.6m            | C N               | -\$17.8m                | -410.9          | \$42,833       | CI                | -\$30.3m                | -1262.1     | \$13,945       | C N               | -\$17.8m                | -410.9          | \$42,833                                       |
| \$17.7m            | C N               | -\$17.8m                | -410.9          | \$43,077       | CI                | -\$30.3m                | -1262.1     | \$14,024       | C N               | -\$17.8m                | -410.9          | \$43,077                                       |
| \$17.8m            | C N               | -\$17.8m                | -410.9          | \$43,320       | CI                | -\$30.3m                | -1262.1     | \$14,103       | C N               | -\$17.8m                | -410.9          | \$43,320                                       |
| \$17.9m            | Н                 | -\$18.3m                | -546.7          | \$32,740       | C I               | -\$30.3m                | -1262.1     | \$14,182       | Н                 | -\$18.3m                | -546.7          | \$32,740                                       |
| \$18.0m            | Н                 | -\$18.3m                | -546.7          | \$32,923       | C I               | -\$30.3m                | -1262.1     | \$14,261       | Н                 | -\$18.3m                | -546.7          | \$32,923                                       |
| \$18.1m            | Н                 | -\$18.3m                | -546.7          | \$33,106       | C I               | -\$30.3m                | -1262.1     | \$14,341       | Н                 | -\$18.3m                | -546.7          | \$33,106                                       |
| \$18.2m            | Н                 | -\$18.3m                | -546.7          | \$33,289       | CI                | -\$30.3m                | -1262.1     | \$14,420       | Н                 | -\$18.3m                | -546.7          | \$33,289                                       |
| \$18.3m            | Н                 | -\$18.3m                | -546.7          | \$33,472       | CI                | -\$30.3m                | -1262.1     | \$14,499       | Н                 | -\$18.3m                | -546.7          | \$33,472                                       |
| \$18.4m            | ΗN                | -\$22.4m                | -613.4          | \$29,996       | CI                | -\$30.3m                | -1262.1     | \$14,578       | ΗN                | -\$22.4m                | -613.4          | \$29,996                                       |
| \$18.5m            | ΗN                | -\$22.4m                | -613.4          | \$30,159       | CI                | -\$30.3m                | -1262.1     | \$14,658       | ΗN                | -\$22.4m                | -613.4          | \$30,159                                       |
| \$18.6m            | ΗN                | -\$22.4m                | -613.4          | \$30,322       | CI                | -\$30.3m                | -1262.1     | \$14,737       | ΗN                | -\$22.4m                | -613.4          | \$30,322                                       |
| \$18.7m            | HN                | -\$22.4m                | -613.4          | \$30,485       | CI                | -\$30.3m                | -1262.1     | \$14,816       | ΗN                | -\$22.4m                | -613.4          | \$30,485                                       |
| \$18.8m            | HN                | -\$22.4m                | -613.4          | \$30,648       | CI                | -\$30.3m                | -1262.1     | \$14,895       | ΗN                | -\$22.4m                | -613.4          | \$30,648                                       |
| \$18.9m            | HN                | -\$22.4m                | -613.4          | \$30,811       | CI                | -\$30.3m                | -1262.1     | \$14,974       | HN                | -\$22.4m                | -613.4          | \$30,811                                       |
| \$19.0m            | HN                | -\$22.4m                | -613.4          | \$30,974       | CI                | -\$30.3m                | -1262.1     | \$15,054       | HN                | -\$22.4m                | -613.4          | \$30,974                                       |
| \$19.1m            | HN                | -\$22.4m                | -613.4          | \$31,137       |                   | -\$30.3m                | -1262.1     | \$15,133       | HN                | -\$22.4m                | -613.4          | \$31,137                                       |
| \$19.2m            | HN                | -\$22.4m                | -613.4          | \$31,300       |                   | -\$30.3m                | -1262.1     | \$15,212       | HN                | -\$22.4m                | -613.4          | \$31,300                                       |
| \$19.3m            | HN                | -\$22.4m                | -613.4          | \$31,463       |                   | -\$30.3m                | -1262.1     | \$15,291       | HN                | -\$22.4m                | -613.4          | \$31,463                                       |
| \$19.4m            | HN                | -\$22.4m                | -613.4          | \$31,626       |                   | -\$30.3m                | -1262.1     | \$15,371       | HN                | -\$22.4m                | -613.4          | \$31,626                                       |
| \$19.5m            | HN                | -\$22.4m                | -613.4          | \$31,789       |                   | -\$30.3m                | -1262.1     | \$15,450       | HN                | -\$22.4m                | -613.4          | \$31,789                                       |
| \$19.6m            | HN                | -\$22.4m                | -613.4          | \$31,952       |                   | -\$30.3m                | -1262.1     | \$15,529       | HN                | -\$22.4m                | -613.4          | \$31,952                                       |
| \$19.7m            | HN                | -\$22.4m                | -613.4          | \$32,115       |                   | -\$30.3m                | -1262.1     | \$15,608       | HN                | -\$22.4m                | -013.4          | \$32,115                                       |
| \$19.8m            | HN                | -\$22.4m                | -015.4          | \$32,278       |                   | -\$30.3m                | -1262.1     | \$15,088       | HN                | -\$22.4m                | -013.4          | \$32,278                                       |
| \$19.9m            | HN                | -\$22.4m                | -013.4          | \$32,441       |                   | -\$30.3m                | -1262.1     | \$15,767       | HN                | -\$22.4m                | -013.4          | \$32,441                                       |
| \$20.0m            | H N<br>U.N        | -\$22.4m                | -015.4          | \$32,604       |                   | -\$30.3m                | -1202.1     | \$15,840       | HN                | -\$22.4m                | -013.4          | \$32,604                                       |
| \$20.1m            | HN                | -\$22.4m                | -613.4          | \$32,767       |                   | -\$30.3m                | -1262.1     | \$15,925       | HN                | -\$22.4m                | -013.4          | \$32,767                                       |
| \$20.2m            | HN                | -\$22.4m                | -015.4          | \$32,930       |                   | -\$30.3m                | -1262.1     | \$16,004       | HN                | -\$22.4m                | -013.4          | \$32,930                                       |
| \$20.3m            | HN                | -\$22.4m                | -013.4          | \$33,093       |                   | -\$30.5m                | -1202.1     | \$16,084       | HN                | -\$22.4m                | -013.4          | \$33,093                                       |
| \$20.4m<br>\$20.5m | HN                | -\$22.4111<br>_\$22.4m  | -613.4          | \$33,230       |                   | -\$30.3m                | -1202.1     | \$16,103       | HN                | -\$22.4111<br>_\$22.4m  | -613.4          | \$33,230                                       |
| 940.011            | 1111              | 044 TIH                 | -010.7          | JJJ, TI /      |                   | 0.0.0.III               | 1404.1      | 11111474       |                   | 1266.71                 |                 | NULL 1. T. |

| Budget   |                   | Primarv bu              | dget (\$50m | )               |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | get (\$100m     | )        |
|----------|-------------------|-------------------------|-------------|-----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|-----------------|----------|
| impact   | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | λ <sup>+d</sup> | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE <sup>c</sup> | λ+d      |
| \$20.6m  | ΗN                | -\$22.4m                | -613.4      | \$33,582        | CI                | -\$30.3m                | -1262.1     | \$16,321       | HN                | -\$22.4m                | -613.4          | \$33,582 |
| \$20.7m  | ΗN                | -\$22.4m                | -613.4      | \$33,745        | CI                | -\$30.3m                | -1262.1     | \$16,401       | HN                | -\$22.4m                | -613.4          | \$33,745 |
| \$20.8m  | ΗN                | -\$22.4m                | -613.4      | \$33,908        | CI                | -\$30.3m                | -1262.1     | \$16,480       | HN                | -\$22.4m                | -613.4          | \$33,908 |
| \$20.9m  | ΗN                | -\$22.4m                | -613.4      | \$34,072        | CI                | -\$30.3m                | -1262.1     | \$16,559       | ΗN                | -\$22.4m                | -613.4          | \$34,072 |
| \$21.0m  | ΗN                | -\$22.4m                | -613.4      | \$34,235        | CI                | -\$30.3m                | -1262.1     | \$16,638       | ΗN                | -\$22.4m                | -613.4          | \$34,235 |
| \$21.1m  | ΗN                | -\$22.4m                | -613.4      | \$34,398        | CI                | -\$30.3m                | -1262.1     | \$16,718       | HN                | -\$22.4m                | -613.4          | \$34,398 |
| \$21.2m  | ΗN                | -\$22.4m                | -613.4      | \$34,561        | CI                | -\$30.3m                | -1262.1     | \$16,797       | ΗN                | -\$22.4m                | -613.4          | \$34,561 |
| \$21.3m  | ΗN                | -\$22.4m                | -613.4      | \$34,724        | CI                | -\$30.3m                | -1262.1     | \$16,876       | ΗN                | -\$22.4m                | -613.4          | \$34,724 |
| \$21.4m  | ΗN                | -\$22.4m                | -613.4      | \$34,887        | CI                | -\$30.3m                | -1262.1     | \$16,955       | ΗN                | -\$22.4m                | -613.4          | \$34,887 |
| \$21.5m  | ΗN                | -\$22.4m                | -613.4      | \$35,050        | CI                | -\$30.3m                | -1262.1     | \$17,034       | ΗN                | -\$22.4m                | -613.4          | \$35,050 |
| \$21.6m  | ΗN                | -\$22.4m                | -613.4      | \$35,213        | CI                | -\$30.3m                | -1262.1     | \$17,114       | ΗN                | -\$22.4m                | -613.4          | \$35,213 |
| \$21.7m  | ΗN                | -\$22.4m                | -613.4      | \$35,376        | CI                | -\$30.3m                | -1262.1     | \$17,193       | ΗN                | -\$22.4m                | -613.4          | \$35,376 |
| \$21.8m  | ΗN                | -\$22.4m                | -613.4      | \$35,539        | CI                | -\$30.3m                | -1262.1     | \$17,272       | ΗN                | -\$22.4m                | -613.4          | \$35,539 |
| \$21.9m  | ΗN                | -\$22.4m                | -613.4      | \$35,702        | CI                | -\$30.3m                | -1262.1     | \$17,351       | ΗN                | -\$22.4m                | -613.4          | \$35,702 |
| \$22.0m  | ΗN                | -\$22.4m                | -613.4      | \$35,865        | CI                | -\$30.3m                | -1262.1     | \$17,431       | ΗN                | -\$22.4m                | -613.4          | \$35,865 |
| \$22.1m  | ΗN                | -\$22.4m                | -613.4      | \$36,028        | CI                | -\$30.3m                | -1262.1     | \$17,510       | ΗN                | -\$22.4m                | -613.4          | \$36,028 |
| \$22.2m  | ΗN                | -\$22.4m                | -613.4      | \$36,191        | CI                | -\$30.3m                | -1262.1     | \$17,589       | HN                | -\$22.4m                | -613.4          | \$36,191 |
| \$22.3m  | ΗN                | -\$22.4m                | -613.4      | \$36,354        | CI                | -\$30.3m                | -1262.1     | \$17,668       | ΗN                | -\$22.4m                | -613.4          | \$36,354 |
| \$22.4m  | ΗN                | -\$22.4m                | -613.4      | \$36,517        | CI                | -\$30.3m                | -1262.1     | \$17,748       | ΗN                | -\$22.4m                | -613.4          | \$36,517 |
| \$22.5m  | 0                 | -\$24.8m                | -887.7      | \$25,347        | CI                | -\$30.3m                | -1262.1     | \$17,827       | 0                 | -\$24.8m                | -887.7          | \$25,347 |
| \$22.6m  | 0                 | -\$24.8m                | -887.7      | \$25,460        | CI                | -\$30.3m                | -1262.1     | \$17,906       | 0                 | -\$24.8m                | -887.7          | \$25,460 |
| \$22.7m  | 0                 | -\$24.8m                | -887.7      | \$25,573        | CI                | -\$30.3m                | -1262.1     | \$17,985       | 0                 | -\$24.8m                | -887.7          | \$25,573 |
| \$22.8m  | 0                 | -\$24.8m                | -887.7      | \$25,685        | CI                | -\$30.3m                | -1262.1     | \$18,064       | 0                 | -\$24.8m                | -887.7          | \$25,685 |
| \$22.9m  | 0                 | -\$24.8m                | -887.7      | \$25,798        | CI                | -\$30.3m                | -1262.1     | \$18,144       | 0                 | -\$24.8m                | -887.7          | \$25,798 |
| \$23.0m  | 0                 | -\$24.8m                | -887.7      | \$25,910        | CI                | -\$30.3m                | -1262.1     | \$18,223       | 0                 | -\$24.8m                | -887.7          | \$25,910 |
| \$23.1m  | 0                 | -\$24.8m                | -887.7      | \$26,023        | C I               | -\$30.3m                | -1262.1     | \$18,302       | 0                 | -\$24.8m                | -887.7          | \$26,023 |
| \$23.2m  | 0                 | -\$24.8m                | -887.7      | \$26,136        | C I               | -\$30.3m                | -1262.1     | \$18,381       | 0                 | -\$24.8m                | -887.7          | \$26,136 |
| \$23.3m  | 0                 | -\$24.8m                | -887.7      | \$26,248        | C I               | -\$30.3m                | -1262.1     | \$18,461       | 0                 | -\$24.8m                | -887.7          | \$26,248 |
| \$23.4m  | 0                 | -\$24.8m                | -887.7      | \$26,361        | CI                | -\$30.3m                | -1262.1     | \$18,540       | 0                 | -\$24.8m                | -887.7          | \$26,361 |
| \$23.5m  | 0                 | -\$24.8m                | -887.7      | \$26,474        | CI                | -\$30.3m                | -1262.1     | \$18,619       | 0                 | -\$24.8m                | -887.7          | \$26,474 |
| \$23.6m  | 0                 | -\$24.8m                | -887.7      | \$26,586        | CI                | -\$30.3m                | -1262.1     | \$18,698       | 0                 | -\$24.8m                | -887.7          | \$26,586 |
| \$23.7m  | 0                 | -\$24.8m                | -887.7      | \$26,699        | CI                | -\$30.3m                | -1262.1     | \$18,778       | 0                 | -\$24.8m                | -887.7          | \$26,699 |
| \$23.8m  | 0                 | -\$24.8m                | -887.7      | \$26,812        | CI                | -\$30.3m                | -1262.1     | \$18,857       | 0                 | -\$24.8m                | -887.7          | \$26,812 |
| \$23.9m  | 0                 | -\$24.8m                | -887.7      | \$26,924        | CI                | -\$30.3m                | -1262.1     | \$18,936       | 0                 | -\$24.8m                | -887.7          | \$26,924 |
| \$24.0m  | 0                 | -\$24.8m                | -887.7      | \$27,037        | CI                | -\$30.3m                | -1262.1     | \$19,015       | 0                 | -\$24.8m                | -887.7          | \$27,037 |
| \$24.1m  | 0                 | -\$24.8m                | -887.7      | \$27,150        | CI                | -\$30.3m                | -1262.1     | \$19,094       | 0                 | -\$24.8m                | -887.7          | \$27,150 |
| \$24.2m  | 0                 | -\$24.8m                | -887.7      | \$27,262        | CI                | -\$30.3m                | -1262.1     | \$19,174       | 0                 | -\$24.8m                | -887.7          | \$27,262 |
| \$24.3m  | 0                 | -\$24.8m                | -887.7      | \$27,375        | CI                | -\$30.3m                | -1262.1     | \$19,253       | 0                 | -\$24.8m                | -887.7          | \$27,375 |
| \$24.4m  | 0                 | -\$24.8m                | -887.7      | \$27,488        | CI                | -\$30.3m                | -1262.1     | \$19,332       | 0                 | -\$24.8m                | -887.7          | \$27,488 |
| \$24.5m  | 0                 | -\$24.8m                | -887.7      | \$27,600        | CI                | -\$30.3m                | -1262.1     | \$19,411       | 0                 | -\$24.8m                | -887.7          | \$27,600 |
| \$24.6m  | 0                 | -\$24.8m                | -887.7      | \$27,713        | CI                | -\$30.3m                | -1262.1     | \$19,491       | 0                 | -\$24.8m                | -887.7          | \$27,713 |
| \$24.7m  | 0                 | -\$24.8m                | -887.7      | \$27,826        |                   | -\$30.3m                | -1262.1     | \$19,570       | 0                 | -\$24.8m                | -887.7          | \$27,826 |
| \$24.8m  | 0                 | -\$24.8m                | -887.7      | \$27,938        |                   | -\$30.3m                | -1262.1     | \$19,649       | 0                 | -\$24.8m                | -887.7          | \$27,938 |
| \$24.9m  | СН                | -\$32.0m                | -890.9      | \$27,948        |                   | -\$30.3m                | -1262.1     | \$19,728       | CH                | -\$32.0m                | -890.9          | \$27,948 |
| \$25.0m  | CH                | -\$32.0m                | -890.9      | \$28,061        |                   | -\$30.3m                | -1262.1     | \$19,808       | CH                | -\$32.0m                | -890.9          | \$28,061 |
| \$25.1m  | CH                | -\$32.0m                | -890.9      | \$28,173        | CI                | -\$30.3m                | -1262.1     | \$19,887       | СН                | -\$32.0m                | -890.9          | \$28,173 |
| \$25.2m  | CH                | -\$32.0m                | -890.9      | \$28,285        |                   | -\$30.3m                | -1262.1     | \$19,966       | СН                | -\$32.0m                | -890.9          | \$28,285 |
| \$25.3m  | CH                | -\$32.0m                | -890.9      | \$28,397        |                   | -\$30.3m                | -1262.1     | \$20,045       | СН                | -\$32.0m                | -890.9          | \$28,397 |
| \$25.4m  | CH                | -\$32.0m                | -890.9      | \$28,510        |                   | -\$30.3m                | -1262.1     | \$20,124       | СН                | -\$32.0m                | -890.9          | \$28,510 |
| \$25.5m  | CH                | -\$32.0m                | -890.9      | \$28,622        |                   | -\$30.3m                | -1262.1     | \$20,204       | CH                | -\$32.0m                | -890.9          | \$28,622 |
| \$25.6m  | СН                | -\$52.0m                | -090.9      | \$20,/34        |                   | -\$30.3m                | -1202.1     | \$20,283       | СН                | -\$52.0m                | -090.9          | \$20,/34 |
| 343./III | - СП              | -332.0III               | -070.7      | 040.040         | I U I             | -330.311                | -1404.1     | 040.004        | . UП              | D.J.4.UIII              | -070.7          | JJ20.040 |

| Dudget               |        | Primary bu | daat (\$50m | )        |        | Lower bu              | daat (SAm) |          |                   | Higher bud | aat (\$100m                           |          |
|----------------------|--------|------------|-------------|----------|--------|-----------------------|------------|----------|-------------------|------------|---------------------------------------|----------|
| impact               | Tooh 8 | ACb        | AEC         | 2+d      | Tooh 8 | Lower bu              | AEC        | 2+d      | Tooh <sup>8</sup> | ACb        | <u>χει (\$100m</u><br>ΛΕ <sup>ς</sup> | /        |
| \$25.8m              | CH     | \$32.0m    | 800.0       | \$28.058 |        | \$30.3m               | 1262.1     | \$20.441 | CH                | \$32.0m    | 800.0                                 | \$28.058 |
| \$25.0m              | СН     | \$32.0m    | 800.0       | \$20,930 | CI     | \$30.3m               | 1262.1     | \$20,441 | СН                | \$32.0m    | 800.0                                 | \$20,958 |
| \$25.7m              | СН     | \$32.0m    | 800.0       | \$29,071 | CI     | \$30.3m               | 1262.1     | \$20,521 | СН                | \$32.0m    | 800.0                                 | \$29,071 |
| \$26.0m              |        | \$32.0m    | -090.9      | \$29,185 |        | \$20.3m               | 1262.1     | \$20,600 | СЦ                | \$32.0m    | -090.9                                | \$29,105 |
| \$20.1m              |        | \$32.0m    | -090.9      | \$29,293 |        | \$20.3m               | -1202.1    | \$20,079 |                   | \$32.0m    | -090.9                                | \$29,293 |
| \$20.211             | СП     | -\$52.0m   | -890.9      | \$29,407 |        | -\$30.3III<br>\$20.2m | -1202.1    | \$20,738 | СП                | -\$32.0m   | -890.9                                | \$29,407 |
| \$20.3M              | СП     | -\$52.0m   | -890.9      | \$29,520 |        | -\$50.5III<br>\$20.2m | -1202.1    | \$20,838 | СП                | -\$32.0m   | -890.9                                | \$29,520 |
| \$20.4III<br>\$26.5m | СП     | -\$52.0m   | -890.9      | \$29,032 |        | -\$50.5III<br>\$20.2m | -1202.1    | \$20,917 | СП                | -\$32.0m   | -890.9                                | \$29,052 |
| \$20.5m              | CH     | -\$32.0m   | -890.9      | \$29,744 |        | -\$30.3m              | -1202.1    | \$20,990 | CH                | -\$32.0m   | -890.9                                | \$29,744 |
| \$26.6m              | CH     | -\$32.0m   | -890.9      | \$29,856 |        | -\$30.3m              | -1262.1    | \$21,075 | CH                | -\$32.0m   | -890.9                                | \$29,856 |
| \$26.7m              | СН     | -\$32.0m   | -890.9      | \$29,969 |        | -\$30.3m              | -1262.1    | \$21,154 | CH                | -\$32.0m   | -890.9                                | \$29,969 |
| \$26.8m              | CH     | -\$32.0m   | -890.9      | \$30,081 |        | -\$30.3m              | -1262.1    | \$21,234 | СН                | -\$32.0m   | -890.9                                | \$30,081 |
| \$26.9m              | CH     | -\$32.0m   | -890.9      | \$30,193 | CI     | -\$30.3m              | -1262.1    | \$21,313 | CH                | -\$32.0m   | -890.9                                | \$30,193 |
| \$27.0m              | CH     | -\$32.0m   | -890.9      | \$30,305 | CI     | -\$30.3m              | -1262.1    | \$21,392 | CH                | -\$32.0m   | -890.9                                | \$30,305 |
| \$27.1m              | CH     | -\$32.0m   | -890.9      | \$30,418 | CI     | -\$30.3m              | -1262.1    | \$21,471 | CH                | -\$32.0m   | -890.9                                | \$30,418 |
| \$27.2m              | СН     | -\$32.0m   | -890.9      | \$30,530 | CI     | -\$30.3m              | -1262.1    | \$21,551 | СН                | -\$32.0m   | -890.9                                | \$30,530 |
| \$27.3m              | CH     | -\$32.0m   | -890.9      | \$30,642 | CI     | -\$30.3m              | -1262.1    | \$21,630 | СН                | -\$32.0m   | -890.9                                | \$30,642 |
| \$27.4m              | СН     | -\$32.0m   | -890.9      | \$30,754 | CI     | -\$30.3m              | -1262.1    | \$21,709 | СН                | -\$32.0m   | -890.9                                | \$30,754 |
| \$27.5m              | CH     | -\$32.0m   | -890.9      | \$30,867 | CI     | -\$30.3m              | -1262.1    | \$21,788 | СH                | -\$32.0m   | -890.9                                | \$30,867 |
| \$27.6m              | CH     | -\$32.0m   | -890.9      | \$30,979 | CI     | -\$30.3m              | -1262.1    | \$21,868 | СH                | -\$32.0m   | -890.9                                | \$30,979 |
| \$27.7m              | CH     | -\$32.0m   | -890.9      | \$31,091 | CI     | -\$30.3m              | -1262.1    | \$21,947 | CH                | -\$32.0m   | -890.9                                | \$31,091 |
| \$27.8m              | CH     | -\$32.0m   | -890.9      | \$31,203 | CI     | -\$30.3m              | -1262.1    | \$22,026 | CH                | -\$32.0m   | -890.9                                | \$31,203 |
| \$27.9m              | CH     | -\$32.0m   | -890.9      | \$31,316 | CI     | -\$30.3m              | -1262.1    | \$22,105 | CH                | -\$32.0m   | -890.9                                | \$31,316 |
| \$28.0m              | CH     | -\$32.0m   | -890.9      | \$31,428 | CI     | -\$30.3m              | -1262.1    | \$22,184 | CH                | -\$32.0m   | -890.9                                | \$31,428 |
| \$28.1m              | CH     | -\$32.0m   | -890.9      | \$31,540 | CI     | -\$30.3m              | -1262.1    | \$22,264 | CH                | -\$32.0m   | -890.9                                | \$31,540 |
| \$28.2m              | CH     | -\$32.0m   | -890.9      | \$31,652 | CI     | -\$30.3m              | -1262.1    | \$22,343 | CH                | -\$32.0m   | -890.9                                | \$31,652 |
| \$28.3m              | CH     | -\$32.0m   | -890.9      | \$31,765 | CI     | -\$30.3m              | -1262.1    | \$22,422 | CH                | -\$32.0m   | -890.9                                | \$31,765 |
| \$28.4m              | CH     | -\$32.0m   | -890.9      | \$31,877 | CI     | -\$30.3m              | -1262.1    | \$22,501 | CH                | -\$32.0m   | -890.9                                | \$31,877 |
| \$28.5m              | CH     | -\$32.0m   | -890.9      | \$31,989 | CI     | -\$30.3m              | -1262.1    | \$22,581 | CH                | -\$32.0m   | -890.9                                | \$31,989 |
| \$28.6m              | CH     | -\$32.0m   | -890.9      | \$32,101 | CI     | -\$30.3m              | -1262.1    | \$22,660 | CH                | -\$32.0m   | -890.9                                | \$32,101 |
| \$28.7m              | CH     | -\$32.0m   | -890.9      | \$32,214 | CI     | -\$30.3m              | -1262.1    | \$22,739 | CH                | -\$32.0m   | -890.9                                | \$32,214 |
| \$28.8m              | CH     | -\$32.0m   | -890.9      | \$32,326 | CI     | -\$30.3m              | -1262.1    | \$22,818 | CH                | -\$32.0m   | -890.9                                | \$32,326 |
| \$28.9m              | CH     | -\$32.0m   | -890.9      | \$32,438 | CI     | -\$30.3m              | -1262.1    | \$22,898 | CH                | -\$32.0m   | -890.9                                | \$32,438 |
| \$29.0m              | CH     | -\$32.0m   | -890.9      | \$32,550 | CI     | -\$30.3m              | -1262.1    | \$22,977 | CH                | -\$32.0m   | -890.9                                | \$32,550 |
| \$29.1m              | CH     | -\$32.0m   | -890.9      | \$32,662 | CI     | -\$30.3m              | -1262.1    | \$23,056 | CH                | -\$32.0m   | -890.9                                | \$32,662 |
| \$29.2m              | CH     | -\$32.0m   | -890.9      | \$32,775 | CI     | -\$30.3m              | -1262.1    | \$23,135 | CH                | -\$32.0m   | -890.9                                | \$32,775 |
| \$29.3m              | CH     | -\$32.0m   | -890.9      | \$32,887 | CI     | -\$30.3m              | -1262.1    | \$23,214 | CH                | -\$32.0m   | -890.9                                | \$32,887 |
| \$29.4m              | CH     | -\$32.0m   | -890.9      | \$32,999 | CI     | -\$30.3m              | -1262.1    | \$23,294 | CH                | -\$32.0m   | -890.9                                | \$32,999 |
| \$29.5m              | CH     | -\$32.0m   | -890.9      | \$33,111 | CI     | -\$30.3m              | -1262.1    | \$23,373 | CH                | -\$32.0m   | -890.9                                | \$33,111 |
| \$29.6m              | CH     | -\$32.0m   | -890.9      | \$33,224 | CI     | -\$30.3m              | -1262.1    | \$23,452 | CH                | -\$32.0m   | -890.9                                | \$33,224 |
| \$29.7m              | CH     | -\$32.0m   | -890.9      | \$33,336 | CI     | -\$30.3m              | -1262.1    | \$23,531 | CH                | -\$32.0m   | -890.9                                | \$33,336 |
| \$29.8m              | CH     | -\$32.0m   | -890.9      | \$33,448 | CI     | -\$30.3m              | -1262.1    | \$23,611 | CH                | -\$32.0m   | -890.9                                | \$33,448 |
| \$29.9m              | CH     | -\$32.0m   | -890.9      | \$33,560 | CI     | -\$30.3m              | -1262.1    | \$23,690 | CH                | -\$32.0m   | -890.9                                | \$33,560 |
| \$30.0m              | CH     | -\$32.0m   | -890.9      | \$33,673 | CI     | -\$30.3m              | -1262.1    | \$23,769 | CH                | -\$32.0m   | -890.9                                | \$33,673 |
| \$30.1m              | CH     | -\$32.0m   | -890.9      | \$33,785 | CI     | -\$30.3m              | -1262.1    | \$23,848 | СH                | -\$32.0m   | -890.9                                | \$33,785 |
| \$30.2m              | CH     | -\$32.0m   | -890.9      | \$33,897 | CI     | -\$30.3m              | -1262.1    | \$23,927 | СН                | -\$32.0m   | -890.9                                | \$33,897 |
| \$30.3m              | CH     | -\$32.0m   | -890.9      | \$34,009 | CI     | -\$30.3m              | -1262.1    | \$24,007 | СН                | -\$32.0m   | -890.9                                | \$34,009 |
| \$30.4m              | CH     | -\$32.0m   | -890.9      | \$34,122 | CT     | -\$39.0m              | -1996.1    | \$15,230 | СН                | -\$32.0m   | -890.9                                | \$34,122 |
| \$30.5m              | CH     | -\$32.0m   | -890.9      | \$34,234 | C T    | -\$39.0m              | -1996.1    | \$15,280 | СН                | -\$32.0m   | -890.9                                | \$34,234 |
| \$30.6m              | СН     | -\$32.0m   | -890.9      | \$34,346 | CT     | -\$39.0m              | -1996.1    | \$15,330 | СН                | -\$32.0m   | -890.9                                | \$34,346 |
| \$30.7m              | СН     | -\$32.0m   | -890.9      | \$34,458 | CT     | -\$39.0m              | -1996.1    | \$15,380 | СН                | -\$32.0m   | -890.9                                | \$34,458 |
| \$30.8m              | СН     | -\$32.0m   | -890.9      | \$34,571 | CT     | -\$39.0m              | -1996.1    | \$15,430 | СН                | -\$32.0m   | -890.9                                | \$34,571 |
| \$30.9m              | СН     | -\$32.0m   | -890.9      | \$34.683 | СТ     | -\$39.0m              | -1996.1    | \$15,480 | CH                | -\$32.0m   | -890.9                                | \$34,683 |

| Budget  |                   | Primary bu              | dget (\$50m  | )              |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | get (\$100m     | )              |
|---------|-------------------|-------------------------|--------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|-----------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | Δ <i>E</i> ° | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE <sup>c</sup> | $\lambda^{+d}$ |
| \$31.0m | CH                | -\$32.0m                | -890.9       | \$34,795       | CT                | -\$39.0m                | -1996.1     | \$15,530       | СН                | -\$32.0m                | -890.9          | \$34,795       |
| \$31.1m | CH                | -\$32.0m                | -890.9       | \$34,907       | CT                | -\$39.0m                | -1996.1     | \$15,580       | СH                | -\$32.0m                | -890.9          | \$34,907       |
| \$31.2m | CH                | -\$32.0m                | -890.9       | \$35,020       | CT                | -\$39.0m                | -1996.1     | \$15,630       | СH                | -\$32.0m                | -890.9          | \$35,020       |
| \$31.3m | CH                | -\$32.0m                | -890.9       | \$35,132       | CT                | -\$39.0m                | -1996.1     | \$15,680       | СH                | -\$32.0m                | -890.9          | \$35,132       |
| \$31.4m | CH                | -\$32.0m                | -890.9       | \$35,244       | CT                | -\$39.0m                | -1996.1     | \$15,731       | СH                | -\$32.0m                | -890.9          | \$35,244       |
| \$31.5m | CH                | -\$32.0m                | -890.9       | \$35,356       | C T               | -\$39.0m                | -1996.1     | \$15,781       | CH                | -\$32.0m                | -890.9          | \$35,356       |
| \$31.6m | CH                | -\$32.0m                | -890.9       | \$35,469       | C T               | -\$39.0m                | -1996.1     | \$15,831       | CH                | -\$32.0m                | -890.9          | \$35,469       |
| \$31.7m | CH                | -\$32.0m                | -890.9       | \$35,581       | C T               | -\$39.0m                | -1996.1     | \$15,881       | CH                | -\$32.0m                | -890.9          | \$35,581       |
| \$31.8m | CH                | -\$32.0m                | -890.9       | \$35,693       | C T               | -\$39.0m                | -1996.1     | \$15,931       | CH                | -\$32.0m                | -890.9          | \$35,693       |
| \$31.9m | CH                | -\$32.0m                | -890.9       | \$35,805       | C T               | -\$39.0m                | -1996.1     | \$15,981       | CH                | -\$32.0m                | -890.9          | \$35,805       |
| \$32.0m | CH                | -\$32.0m                | -890.9       | \$35,917       | C T               | -\$39.0m                | -1996.1     | \$16,031       | CH                | -\$32.0m                | -890.9          | \$35,917       |
| \$32.1m | CHN               | -\$36.1m                | -957.6       | \$33,521       | C T               | -\$39.0m                | -1996.1     | \$16,081       | CHN               | -\$36.1m                | -957.6          | \$33,521       |
| \$32.2m | CHN               | -\$36.1m                | -957.6       | \$33,625       | C T               | -\$39.0m                | -1996.1     | \$16,131       | CHN               | -\$36.1m                | -957.6          | \$33,625       |
| \$32.3m | CHN               | -\$36.1m                | -957.6       | \$33,729       | C T               | -\$39.0m                | -1996.1     | \$16,181       | CHN               | -\$36.1m                | -957.6          | \$33,729       |
| \$32.4m | CHN               | -\$36.1m                | -957.6       | \$33,834       | C T               | -\$39.0m                | -1996.1     | \$16,232       | CHN               | -\$36.1m                | -957.6          | \$33,834       |
| \$32.5m | CHN               | -\$36.1m                | -957.6       | \$33,938       | CT                | -\$39.0m                | -1996.1     | \$16,282       | CHN               | -\$36.1m                | -957.6          | \$33,938       |
| \$32.6m | CHN               | -\$36.1m                | -957.6       | \$34,043       | C T               | -\$39.0m                | -1996.1     | \$16,332       | CHN               | -\$36.1m                | -957.6          | \$34,043       |
| \$32.7m | CHN               | -\$36.1m                | -957.6       | \$34,147       | CT                | -\$39.0m                | -1996.1     | \$16,382       | CHN               | -\$36.1m                | -957.6          | \$34,147       |
| \$32.8m | CHN               | -\$36.1m                | -957.6       | \$34,252       | CT                | -\$39.0m                | -1996.1     | \$16,432       | CHN               | -\$36.1m                | -957.6          | \$34,252       |
| \$32.9m | CHN               | -\$36.1m                | -957.6       | \$34,356       | CT                | -\$39.0m                | -1996.1     | \$16,482       | CHN               | -\$36.1m                | -957.6          | \$34,356       |
| \$33.0m | CHN               | -\$36.1m                | -957.6       | \$34,460       | CT                | -\$39.0m                | -1996.1     | \$16,532       | CHN               | -\$36.1m                | -957.6          | \$34,460       |
| \$33.1m | CHN               | -\$36.1m                | -957.6       | \$34,565       | CT                | -\$39.0m                | -1996.1     | \$16,582       | CHN               | -\$36.1m                | -957.6          | \$34,565       |
| \$33.2m | CHN               | -\$36.1m                | -957.6       | \$34,669       | CT                | -\$39.0m                | -1996.1     | \$16,632       | CHN               | -\$36.1m                | -957.6          | \$34,669       |
| \$33.3m | CHN               | -\$36.1m                | -957.6       | \$34,774       | CT                | -\$39.0m                | -1996.1     | \$16,682       | CHN               | -\$36.1m                | -957.6          | \$34,774       |
| \$33.4m | CHN               | -\$36.1m                | -957.6       | \$34,878       | CT                | -\$39.0m                | -1996.1     | \$16,732       | CHN               | -\$36.1m                | -957.6          | \$34,878       |
| \$33.5m | CHN               | -\$36.1m                | -957.6       | \$34,983       | CT                | -\$39.0m                | -1996.1     | \$16,783       | CHN               | -\$36.1m                | -957.6          | \$34,983       |
| \$33.6m | CHN               | -\$36.1m                | -957.6       | \$35,087       | CT                | -\$39.0m                | -1996.1     | \$16,833       | CHN               | -\$36.1m                | -957.6          | \$35,087       |
| \$33.7m | CHN               | -\$36.1m                | -957.6       | \$35,191       | C T               | -\$39.0m                | -1996.1     | \$16,883       | CHN               | -\$36.1m                | -957.6          | \$35,191       |
| \$33.8m | CHN               | -\$36.1m                | -957.6       | \$35,296       | C T               | -\$39.0m                | -1996.1     | \$16,933       | CHN               | -\$36.1m                | -957.6          | \$35,296       |
| \$33.9m | CHN               | -\$36.1m                | -957.6       | \$35,400       | C T               | -\$39.0m                | -1996.1     | \$16,983       | CHN               | -\$36.1m                | -957.6          | \$35,400       |
| \$34.0m | CHN               | -\$36.1m                | -957.6       | \$35,505       | C T               | -\$39.0m                | -1996.1     | \$17,033       | CHN               | -\$36.1m                | -957.6          | \$35,505       |
| \$34.1m | CHN               | -\$36.1m                | -957.6       | \$35,609       | C T               | -\$39.0m                | -1996.1     | \$17,083       | CHN               | -\$36.1m                | -957.6          | \$35,609       |
| \$34.2m | CHN               | -\$36.1m                | -957.6       | \$35,714       | C T               | -\$39.0m                | -1996.1     | \$17,133       | CHN               | -\$36.1m                | -957.6          | \$35,714       |
| \$34.3m | CHN               | -\$36.1m                | -957.6       | \$35,818       | C T               | -\$39.0m                | -1996.1     | \$17,183       | CHN               | -\$36.1m                | -957.6          | \$35,818       |
| \$34.4m | CHN               | -\$36.1m                | -957.6       | \$35,922       | C T               | -\$39.0m                | -1996.1     | \$17,233       | CHN               | -\$36.1m                | -957.6          | \$35,922       |
| \$34.5m | CHN               | -\$36.1m                | -957.6       | \$36,027       | CT                | -\$39.0m                | -1996.1     | \$17,284       | CHN               | -\$36.1m                | -957.6          | \$36,027       |
| \$34.6m | CHN               | -\$36.1m                | -957.6       | \$36,131       | C T               | -\$39.0m                | -1996.1     | \$17,334       | CHN               | -\$36.1m                | -957.6          | \$36,131       |
| \$34.7m | CHN               | -\$36.1m                | -957.6       | \$36,236       | C T               | -\$39.0m                | -1996.1     | \$17,384       | CHN               | -\$36.1m                | -957.6          | \$36,236       |
| \$34.8m | CHN               | -\$36.1m                | -957.6       | \$36,340       | C T               | -\$39.0m                | -1996.1     | \$17,434       | CHN               | -\$36.1m                | -957.6          | \$36,340       |
| \$34.9m | CHN               | -\$36.1m                | -957.6       | \$36,445       | C T               | -\$39.0m                | -1996.1     | \$17,484       | CHN               | -\$36.1m                | -957.6          | \$36,445       |
| \$35.0m | CHN               | -\$36.1m                | -957.6       | \$36,549       | C T               | -\$39.0m                | -1996.1     | \$17,534       | CHN               | -\$36.1m                | -957.6          | \$36,549       |
| \$35.1m | CHN               | -\$36.1m                | -957.6       | \$36,653       | C T               | -\$39.0m                | -1996.1     | \$17,584       | CHN               | -\$36.1m                | -957.6          | \$36,653       |
| \$35.2m | CHN               | -\$36.1m                | -957.6       | \$36,758       | C T               | -\$39.0m                | -1996.1     | \$17,634       | CHN               | -\$36.1m                | -957.6          | \$36,758       |
| \$35.3m | CHN               | -\$36.1m                | -957.6       | \$36,862       | C T               | -\$39.0m                | -1996.1     | \$17,684       | CHN               | -\$36.1m                | -957.6          | \$36,862       |
| \$35.4m | CHN               | -\$36.1m                | -957.6       | \$36,967       | C T               | -\$39.0m                | -1996.1     | \$17,734       | CHN               | -\$36.1m                | -957.6          | \$36,967       |
| \$35.5m | CHN               | -\$36.1m                | -957.6       | \$37,071       | C T               | -\$39.0m                | -1996.1     | \$17,785       | CHN               | -\$36.1m                | -957.6          | \$37,071       |
| \$35.6m | CHN               | -\$36.1m                | -957.6       | \$37,175       | C T               | -\$39.0m                | -1996.1     | \$17,835       | CHN               | -\$36.1m                | -957.6          | \$37,175       |
| \$35.7m | CHN               | -\$36.1m                | -957.6       | \$37,280       | C T               | -\$39.0m                | -1996.1     | \$17,885       | CHN               | -\$36.1m                | -957.6          | \$37,280       |
| \$35.8m | CHN               | -\$36.1m                | -957.6       | \$37,384       | C T               | -\$39.0m                | -1996.1     | \$17,935       | CHN               | -\$36.1m                | -957.6          | \$37,384       |
| \$35.9m | CHN               | -\$36.1m                | -957.6       | \$37,489       | C T               | -\$39.0m                | -1996.1     | \$17,985       | CHN               | -\$36.1m                | -957.6          | \$37,489       |
| \$36.0m | CHN               | -\$36.1m                | -957.6       | \$37,593       | C T               | -\$39.0m                | -1996.1     | \$18,035       | CHN               | -\$36.1m                | -957.6          | \$37,593       |
| \$36.1m | CHN               | -\$36.1m                | -957.6       | \$37.698       | CT                | -\$39.0m                | -1996.1     | \$18.085       | CHN               | -\$36.1m                | -957.6          | \$37.698       |

| Dudget   |                   | Drimary bu      | daat (\$50m | )        |          | Lower bu | daat (SAm) |          |                   | Higher buc | ant (\$100m                            | )        |
|----------|-------------------|-----------------|-------------|----------|----------|----------|------------|----------|-------------------|------------|----------------------------------------|----------|
| impact   | Tooh <sup>a</sup> | AC <sup>b</sup> | AEC         | 2+d      | Tooh 8   | Lower bu | AEC        | 2+d      | Tooh <sup>8</sup> | AC b       | <u>gei (\$100m</u><br>A E <sup>c</sup> | /        |
| sac 2m   | CO                | \$28.5m         | 1221.0      | \$20.286 | CT       | \$20.0m  | 1006.1     | ¢19.125  | D                 | \$50.0m    | 1226.8                                 | \$20.500 |
| \$36.2m  | C0                | -\$38.311       | -1231.9     | \$29,380 | CT<br>CT | -\$39.0m | -1990.1    | \$18,133 | R                 | -\$30.0m   | -1220.8                                | \$29,509 |
| \$30.311 | C0                | -\$38.311       | -1231.9     | \$29,407 | CT<br>CT | -\$39.0m | -1990.1    | \$18,185 | R                 | -\$30.0m   | -1220.8                                | \$29,390 |
| \$36.4m  | 0                 | -\$38.5m        | -1231.9     | \$29,548 |          | -\$39.0m | -1996.1    | \$18,235 | R                 | -\$50.0m   | -1220.8                                | \$29,672 |
| \$36.5m  | 00                | -\$38.5m        | -1231.9     | \$29,630 | CT<br>CT | -\$39.0m | -1996.1    | \$18,286 | R                 | -\$50.0m   | -1226.8                                | \$29,753 |
| \$36.6m  | 00                | -\$38.5m        | -1231.9     | \$29,711 | CI       | -\$39.0m | -1996.1    | \$18,336 | R                 | -\$50.0m   | -1226.8                                | \$29,835 |
| \$36.7m  | 00                | -\$38.5m        | -1231.9     | \$29,792 | CI       | -\$39.0m | -1996.1    | \$18,386 | R                 | -\$50.0m   | -1226.8                                | \$29,916 |
| \$36.8m  | 00                | -\$38.5m        | -1231.9     | \$29,873 | CI       | -\$39.0m | -1996.1    | \$18,436 | R                 | -\$50.0m   | -1226.8                                | \$29,998 |
| \$36.9m  | 0                 | -\$38.5m        | -1231.9     | \$29,954 | CT       | -\$39.0m | -1996.1    | \$18,486 | R                 | -\$50.0m   | -1226.8                                | \$30,079 |
| \$37.0m  | CO                | -\$38.5m        | -1231.9     | \$30,035 | CT       | -\$39.0m | -1996.1    | \$18,536 | R                 | -\$50.0m   | -1226.8                                | \$30,161 |
| \$37.1m  | CO                | -\$38.5m        | -1231.9     | \$30,117 | СТ       | -\$39.0m | -1996.1    | \$18,586 | R                 | -\$50.0m   | -1226.8                                | \$30,242 |
| \$37.2m  | CO                | -\$38.5m        | -1231.9     | \$30,198 | СТ       | -\$39.0m | -1996.1    | \$18,636 | R                 | -\$50.0m   | -1226.8                                | \$30,324 |
| \$37.3m  | CO                | -\$38.5m        | -1231.9     | \$30,279 | CT       | -\$39.0m | -1996.1    | \$18,686 | R                 | -\$50.0m   | -1226.8                                | \$30,406 |
| \$37.4m  | CO                | -\$38.5m        | -1231.9     | \$30,360 | C T      | -\$39.0m | -1996.1    | \$18,736 | R                 | -\$50.0m   | -1226.8                                | \$30,487 |
| \$37.5m  | CO                | -\$38.5m        | -1231.9     | \$30,441 | C T      | -\$39.0m | -1996.1    | \$18,786 | R                 | -\$50.0m   | -1226.8                                | \$30,569 |
| \$37.6m  | CO                | -\$38.5m        | -1231.9     | \$30,523 | C T      | -\$39.0m | -1996.1    | \$18,837 | R                 | -\$50.0m   | -1226.8                                | \$30,650 |
| \$37.7m  | CO                | -\$38.5m        | -1231.9     | \$30,604 | C T      | -\$39.0m | -1996.1    | \$18,887 | R                 | -\$50.0m   | -1226.8                                | \$30,732 |
| \$37.8m  | C O               | -\$38.5m        | -1231.9     | \$30,685 | C T      | -\$39.0m | -1996.1    | \$18,937 | R                 | -\$50.0m   | -1226.8                                | \$30,813 |
| \$37.9m  | CO                | -\$38.5m        | -1231.9     | \$30,766 | C T      | -\$39.0m | -1996.1    | \$18,987 | R                 | -\$50.0m   | -1226.8                                | \$30,895 |
| \$38.0m  | CO                | -\$38.5m        | -1231.9     | \$30,847 | C T      | -\$39.0m | -1996.1    | \$19,037 | R                 | -\$50.0m   | -1226.8                                | \$30,976 |
| \$38.1m  | CO                | -\$38.5m        | -1231.9     | \$30,928 | C T      | -\$39.0m | -1996.1    | \$19,087 | R                 | -\$50.0m   | -1226.8                                | \$31,058 |
| \$38.2m  | CO                | -\$38.5m        | -1231.9     | \$31,010 | C T      | -\$39.0m | -1996.1    | \$19,137 | R                 | -\$50.0m   | -1226.8                                | \$31,139 |
| \$38.3m  | CO                | -\$38.5m        | -1231.9     | \$31,091 | CT       | -\$39.0m | -1996.1    | \$19,187 | R                 | -\$50.0m   | -1226.8                                | \$31,221 |
| \$38.4m  | CO                | -\$38.5m        | -1231.9     | \$31,172 | C T      | -\$39.0m | -1996.1    | \$19,237 | R                 | -\$50.0m   | -1226.8                                | \$31,302 |
| \$38.5m  | CO                | -\$38.5m        | -1231.9     | \$31,253 | C T      | -\$39.0m | -1996.1    | \$19,287 | R                 | -\$50.0m   | -1226.8                                | \$31,384 |
| \$38.6m  | CNO               | -\$42.6m        | -1298.6     | \$29,725 | C T      | -\$39.0m | -1996.1    | \$19,338 | R                 | -\$50.0m   | -1226.8                                | \$31,465 |
| \$38.7m  | CNO               | -\$42.6m        | -1298.6     | \$29,802 | C T      | -\$39.0m | -1996.1    | \$19,388 | R                 | -\$50.0m   | -1226.8                                | \$31,547 |
| \$38.8m  | CNO               | -\$42.6m        | -1298.6     | \$29,879 | C T      | -\$39.0m | -1996.1    | \$19,438 | R                 | -\$50.0m   | -1226.8                                | \$31,628 |
| \$38.9m  | CNO               | -\$42.6m        | -1298.6     | \$29,956 | C T      | -\$39.0m | -1996.1    | \$19,488 | R                 | -\$50.0m   | -1226.8                                | \$31,710 |
| \$39.0m  | CNO               | -\$42.6m        | -1298.6     | \$30,033 | C T      | -\$39.0m | -1996.1    | \$19,538 | R                 | -\$50.0m   | -1226.8                                | \$31,791 |
| \$39.1m  | CNO               | -\$42.6m        | -1298.6     | \$30,110 | ΙT       | -\$41.9m | -2569.9    | \$15,215 | R                 | -\$50.0m   | -1226.8                                | \$31,873 |
| \$39.2m  | CNO               | -\$42.6m        | -1298.6     | \$30,187 | ΙT       | -\$41.9m | -2569.9    | \$15,254 | R                 | -\$50.0m   | -1226.8                                | \$31,954 |
| \$39.3m  | CNO               | -\$42.6m        | -1298.6     | \$30,264 | ΙT       | -\$41.9m | -2569.9    | \$15,293 | R                 | -\$50.0m   | -1226.8                                | \$32,036 |
| \$39.4m  | CNO               | -\$42.6m        | -1298.6     | \$30,341 | ΙT       | -\$41.9m | -2569.9    | \$15,332 | R                 | -\$50.0m   | -1226.8                                | \$32,117 |
| \$39.5m  | CNO               | -\$42.6m        | -1298.6     | \$30,418 | ΙT       | -\$41.9m | -2569.9    | \$15,371 | R                 | -\$50.0m   | -1226.8                                | \$32,199 |
| \$39.6m  | CNO               | -\$42.6m        | -1298.6     | \$30,495 | ΙT       | -\$41.9m | -2569.9    | \$15,409 | R                 | -\$50.0m   | -1226.8                                | \$32,280 |
| \$39.7m  | CNO               | -\$42.6m        | -1298.6     | \$30,572 | ΙT       | -\$41.9m | -2569.9    | \$15,448 | R                 | -\$50.0m   | -1226.8                                | \$32,362 |
| \$39.8m  | CNO               | -\$42.6m        | -1298.6     | \$30,649 | ΙT       | -\$41.9m | -2569.9    | \$15,487 | R                 | -\$50.0m   | -1226.8                                | \$32,443 |
| \$39.9m  | CNO               | -\$42.6m        | -1298.6     | \$30,726 | ΙT       | -\$41.9m | -2569.9    | \$15,526 | R                 | -\$50.0m   | -1226.8                                | \$32,525 |
| \$40.0m  | CNO               | -\$42.6m        | -1298.6     | \$30,803 | ΙT       | -\$41.9m | -2569.9    | \$15,565 | R                 | -\$50.0m   | -1226.8                                | \$32,606 |
| \$40.1m  | CNO               | -\$42.6m        | -1298.6     | \$30,880 | ΙT       | -\$41.9m | -2569.9    | \$15,604 | R                 | -\$50.0m   | -1226.8                                | \$32,688 |
| \$40.2m  | CNO               | -\$42.6m        | -1298.6     | \$30.957 | ΙT       | -\$41.9m | -2569.9    | \$15,643 | R                 | -\$50.0m   | -1226.8                                | \$32,769 |
| \$40.3m  | CNO               | -\$42.6m        | -1298.6     | \$31.034 | IT       | -\$41.9m | -2569.9    | \$15,682 | R                 | -\$50.0m   | -1226.8                                | \$32,851 |
| \$40.4m  | CNO               | -\$42.6m        | -1298.6     | \$31,111 | IT       | -\$41.9m | -2569.9    | \$15,721 | R                 | -\$50.0m   | -1226.8                                | \$32,933 |
| \$40.5m  | CNO               | -\$42.6m        | -1298.6     | \$31,188 | IT       | -\$41.9m | -2569.9    | \$15,760 | R                 | -\$50.0m   | -1226.8                                | \$33.014 |
| \$40.6m  | CNO               | -\$42.6m        | -1298.6     | \$31,265 | IT       | -\$41.9m | -2569.9    | \$15,799 | R                 | -\$50.0m   | -1226.8                                | \$33.096 |
| \$40.7m  | CNO               | -\$42.6m        | -1298.6     | \$31,342 | IT       | -\$41.9m | -2569.9    | \$15,837 | R                 | -\$50.0m   | -1226.8                                | \$33,177 |
| \$40.8m  | CNO               | -\$42.6m        | -1298.6     | \$31 419 | IT       | -\$41.9m | -2569.9    | \$15,876 | R                 | -\$50.0m   | -1226.8                                | \$33 259 |
| \$40.9m  | CNO               | -\$42.6m        | -1298.6     | \$31 496 | IT       | -\$41.9m | -2569.9    | \$15,915 | R                 | -\$50.0m   | -1226.8                                | \$33 340 |
| \$41.0m  | CNO               | -\$42.6m        | -1298.6     | \$31 573 | IT       | -\$41.9m | -2569.9    | \$15,954 | R                 | -\$50.0m   | -1226.8                                | \$33,422 |
| \$41.0m  | CNO               | -\$42.6m        | -1298.6     | \$31.650 | IT       | -\$41.9m | -2569.9    | \$15,903 | R                 | -\$50.0m   | -1226.8                                | \$33 502 |
| \$41.7m  | CNO               | -\$42.6m        | -1298.6     | \$31,727 | IT       | -\$41.9m | -2569.9    | \$16.032 | R                 | -\$50.0m   | -1226.8                                | \$33 585 |
| \$41.3m  | CNO               | -\$42.6m        | -1298.6     | \$31.804 | IT       | -\$41.9m | -2569.9    | \$16,032 | R                 | -\$50.0m   | -1226.8                                | \$33,666 |

| Budget             |                   | Primary bu              | dget (\$50m    | )              |                   | Lower bu                | dget (\$0m)    |                |                   | Higher bud              | lget (\$100m            | )              |
|--------------------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|-------------------------|----------------|
| impact             | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{+d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | Δ <i>E</i> <sup>c</sup> | $\lambda^{+d}$ |
| \$41.4m            | CNO               | -\$42.6m                | -1298.6        | \$31,881       | ΙT                | -\$41.9m                | -2569.9        | \$16,110       | R                 | -\$50.0m                | -1226.8                 | \$33,748       |
| \$41.5m            | CNO               | -\$42.6m                | -1298.6        | \$31,958       | ΙT                | -\$41.9m                | -2569.9        | \$16,149       | R                 | -\$50.0m                | -1226.8                 | \$33,829       |
| \$41.6m            | CNO               | -\$42.6m                | -1298.6        | \$32,035       | ΙT                | -\$41.9m                | -2569.9        | \$16,188       | R                 | -\$50.0m                | -1226.8                 | \$33,911       |
| \$41.7m            | CNO               | -\$42.6m                | -1298.6        | \$32,112       | ΙT                | -\$41.9m                | -2569.9        | \$16,227       | R                 | -\$50.0m                | -1226.8                 | \$33,992       |
| \$41.8m            | CNO               | -\$42.6m                | -1298.6        | \$32,189       | ΙT                | -\$41.9m                | -2569.9        | \$16,266       | R                 | -\$50.0m                | -1226.8                 | \$34,074       |
| \$41.9m            | CNO               | -\$42.6m                | -1298.6        | \$32,266       | ΙT                | -\$41.9m                | -2569.9        | \$16,304       | R                 | -\$50.0m                | -1226.8                 | \$34,155       |
| \$42.0m            | C N O             | -\$42.6m                | -1298.6        | \$32,343       | CIT               | -\$55.6m                | -2914.1        | \$14,413       | R                 | -\$50.0m                | -1226.8                 | \$34,237       |
| \$42.1m            | C N O             | -\$42.6m                | -1298.6        | \$32,420       | CIT               | -\$55.6m                | -2914.1        | \$14,447       | R                 | -\$50.0m                | -1226.8                 | \$34,318       |
| \$42.2m            | C N O             | -\$42.6m                | -1298.6        | \$32,497       | CIT               | -\$55.6m                | -2914.1        | \$14,482       | R                 | -\$50.0m                | -1226.8                 | \$34,400       |
| \$42.3m            | CNO               | -\$42.6m                | -1298.6        | \$32,574       | CIT               | -\$55.6m                | -2914.1        | \$14,516       | R                 | -\$50.0m                | -1226.8                 | \$34,481       |
| \$42.4m            | C N O             | -\$42.6m                | -1298.6        | \$32,651       | CIT               | -\$55.6m                | -2914.1        | \$14,550       | R                 | -\$50.0m                | -1226.8                 | \$34,563       |
| \$42.5m            | C N O             | -\$42.6m                | -1298.6        | \$32,728       | CIT               | -\$55.6m                | -2914.1        | \$14,584       | R                 | -\$50.0m                | -1226.8                 | \$34,644       |
| \$42.6m            | C N O             | -\$42.6m                | -1298.6        | \$32,805       | CIT               | -\$55.6m                | -2914.1        | \$14,619       | R                 | -\$50.0m                | -1226.8                 | \$34,726       |
| \$42.7m            | HO                | -\$43.1m                | -1434.4        | \$29,769       | CIT               | -\$55.6m                | -2914.1        | \$14,653       | R                 | -\$50.0m                | -1226.8                 | \$34,807       |
| \$42.8m            | HO                | -\$43.1m                | -1434.4        | \$29,838       | CIT               | -\$55.6m                | -2914.1        | \$14,687       | R                 | -\$50.0m                | -1226.8                 | \$34,889       |
| \$42.9m            | HO                | -\$43.1m                | -1434.4        | \$29,908       | CIT               | -\$55.6m                | -2914.1        | \$14,722       | R                 | -\$50.0m                | -1226.8                 | \$34,970       |
| \$43.0m            | HO                | -\$43.1m                | -1434.4        | \$29,978       | CIT               | -\$55.6m                | -2914.1        | \$14,756       | R                 | -\$50.0m                | -1226.8                 | \$35,052       |
| \$43.1m            | HO                | -\$43.1m                | -1434.4        | \$30,047       | CIT               | -\$55.6m                | -2914.1        | \$14,790       | R                 | -\$50.0m                | -1226.8                 | \$35,133       |
| \$43.2m            | HNO               | -\$47.2m                | -1501.1        | \$28,779       | CIT               | -\$55.6m                | -2914.1        | \$14,825       | R                 | -\$50.0m                | -1226.8                 | \$35,215       |
| \$43.3m            | HNO               | -\$47.2m                | -1501.1        | \$28,846       | CIT               | -\$55.6m                | -2914.1        | \$14,859       | R                 | -\$50.0m                | -1226.8                 | \$35,296       |
| \$43.4m            | HNO               | -\$47.2m                | -1501.1        | \$28,912       | CIT               | -\$55.6m                | -2914.1        | \$14,893       | R                 | -\$50.0m                | -1226.8                 | \$35,378       |
| \$43.5m            | HNO               | -\$47.2m                | -1501.1        | \$28,979       | CIT               | -\$55.6m                | -2914.1        | \$14,928       | R                 | -\$50.0m                | -1226.8                 | \$35,460       |
| \$43.6m            | HNO               | -\$47.2m                | -1501.1        | \$29,046       | CIT               | -\$55.6m                | -2914.1        | \$14,962       | R                 | -\$50.0m                | -1226.8                 | \$35,541       |
| \$43.7m            | HNO               | -\$47.2m                | -1501.1        | \$29,112       | CIT               | -\$55.6m                | -2914.1        | \$14,996       | R                 | -\$50.0m                | -1226.8                 | \$35,623       |
| \$43.8m            | HNO               | -\$47.2m                | -1501.1        | \$29,179       | CIT               | -\$55.6m                | -2914.1        | \$15,031       | R                 | -\$50.0m                | -1226.8                 | \$35,704       |
| \$43.9m            | HNO               | -\$47.2m                | -1501.1        | \$29,245       | CIT               | -\$55.6m                | -2914.1        | \$15,065       | R                 | -\$50.0m                | -1226.8                 | \$35,786       |
| \$44.0m            | HNO               | -\$47.2m                | -1501.1        | \$29,312       | CIT               | -\$55.6m                | -2914.1        | \$15,099       | R                 | -\$50.0m                | -1226.8                 | \$35,867       |
| \$44.1m            | HNO               | -\$47.2m                | -1501.1        | \$29,379       | CIT               | -\$55.6m                | -2914.1        | \$15,134       | R                 | -\$50.0m                | -1226.8                 | \$35,949       |
| \$44.2m            | HNO               | -\$47.2m                | -1501.1        | \$29,445       | CIT               | -\$55.6m                | -2914.1        | \$15,168       | R                 | -\$50.0m                | -1226.8                 | \$36,030       |
| \$44.3m            | HNO               | -\$47.2m                | -1501.1        | \$29,512       | CIT               | -\$55.6m                | -2914.1        | \$15,202       | R                 | -\$50.0m                | -1226.8                 | \$36,112       |
| \$44.4m            | HNO               | -\$47.2m                | -1501.1        | \$29,579       | CIT               | -\$55.6m                | -2914.1        | \$15,236       | R                 | -\$50.0m                | -1226.8                 | \$36,193       |
| \$44.5m            | HNO               | -\$47.2m                | -1501.1        | \$29,645       | CIT               | -\$55.6m                | -2914.1        | \$15,271       | R                 | -\$50.0m                | -1226.8                 | \$36,275       |
| \$44.6m            | HNO               | -\$47.2m                | -1501.1        | \$29,712       | CIT               | -\$55.6m                | -2914.1        | \$15,305       | R                 | -\$50.0m                | -1226.8                 | \$36,356       |
| \$44.7m            | HNO               | -\$47.2m                | -1501.1        | \$29,778       | CIT               | -\$55.6m                | -2914.1        | \$15,339       | R                 | -\$50.0m                | -1226.8                 | \$36,438       |
| \$44.8m            | HNO               | -\$47.2m                | -1501.1        | \$29,845       | CIT               | -\$55.6m                | -2914.1        | \$15,374       | R                 | -\$50.0m                | -1226.8                 | \$36,519       |
| \$44.9m            | HNO               | -\$47.2m                | -1501.1        | \$29,912       | CIT               | -\$55.6m                | -2914.1        | \$15,408       | R                 | -\$50.0m                | -1226.8                 | \$36,601       |
| \$45.0m            | HNO               | -\$47.2m                | -1501.1        | \$29,978       | CIT               | -\$55.6m                | -2914.1        | \$15,442       | R                 | -\$50.0m                | -1226.8                 | \$36,682       |
| \$45.1m            | HNO               | -\$47.2m                | -1501.1        | \$30,045       | CIT               | -\$55.6m                | -2914.1        | \$15,477       | R                 | -\$50.0m                | -1226.8                 | \$36,764       |
| \$45.2m            | HNO               | -\$47.2m                | -1501.1        | \$30,112       | CIT               | -\$55.6m                | -2914.1        | \$15,511       | R                 | -\$50.0m                | -1226.8                 | \$36,845       |
| \$45.3m            | HNO               | -\$47.2m                | -1501.1        | \$30,178       |                   | -\$55.6m                | -2914.1        | \$15,545       | R                 | -\$50.0m                | -1226.8                 | \$36,927       |
| \$45.4m            | HNO               | -\$47.2m                | -1501.1        | \$30,245       |                   | -\$55.6m                | -2914.1        | \$15,580       | K<br>D            | -\$50.0m                | -1226.8                 | \$37,008       |
| \$45.5m            | HNO               | -\$4/.2m                | -1501.1        | \$30,311       |                   | -\$55.6m                | -2914.1        | \$15,614       | K                 | -\$50.0m                | -1226.8                 | \$37,090       |
| \$45.6m            | HNO               | -\$4/.2m                | -1501.1        | \$30,378       |                   | -\$55.6m                | -2914.1        | \$15,648       | K                 | -\$50.0m                | -1226.8                 | \$3/,1/1       |
| \$45.7m            | HNO               | -\$4/.2m                | -1501.1        | \$30,445       |                   | -\$55.6m                | -2914.1        | \$15,683       | K                 | -\$50.0m                | -1226.8                 | \$37,253       |
| \$45.8m            | HNU               | -\$4/.2m                | -1501.1        | \$30,511       |                   | -\$55.6m                | -2914.1        | \$15,/17       | K<br>D            | -\$50.0m                | -1226.8                 | \$57,554       |
| \$45.9m            | HNU               | -54/.2m                 | -1501.1        | \$30,578       |                   | -\$33.0m                | -2914.1        | \$15,/51       | ĸ                 | -\$50.0m                | -1226.8                 | \$37,416       |
| \$46.0m            | HNU               | -\$4/.2m                | -1501.1        | \$30,644       | CIT               | -\$55.6m                | -2914.1        | \$15,786       | K<br>D            | -\$50.0m                | -1226.8                 | \$37,497       |
| \$40.1m            | HNU               | -\$47.2m                | -1501.1        | \$30,711       |                   | -\$33.0m                | -2914.1        | \$15,820       | K<br>D            | -\$50.0m                | -1220.8                 | \$37,379       |
| \$46.2m            | HNU               | -\$4/.2m                | -1501.1        | \$30,778       | CIT               | -\$55.6m                | -2914.1        | \$15,854       | K<br>D            | -\$50.0m                | -1226.8                 | \$57,000       |
| \$40.3M            | HNU               | -\$4/.2m                | -1501.1        | \$30,844       |                   | -\$33.6m                | -2914.1        | \$15,888       | K<br>D            | -\$50.0m                | -1220.8                 | \$31,142       |
| \$40.4m<br>\$46.5m | HNO               | -34/.2m                 | 1501.1         | \$30,911       |                   | -\$33.0m                | -2914.1        | \$15,925       | R<br>D            | -\$50.0m                | 1226.8                  | \$37.005       |
| 010.01             |                   | -07/.411                | -1.001.1       | JUL 7/0        |                   | -0.7.7.0111             | -/.719         | JII.J. 7.J/    |                   | -0.00.0011              | -1440.0                 | .01/ 71/)      |

| Budget  |                   | Primary bu              | dget (\$50m    | )              |                   | Lower bu                | dget (\$0m)             |                |                   | Higher bud              | lget (\$100m            | )              |
|---------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|-------------------------|----------------|-------------------|-------------------------|-------------------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{+d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <i>E</i> <sup>c</sup> | $\lambda^{+d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | Δ <b>Ε</b> <sup>c</sup> | $\lambda^{+d}$ |
| \$46.6m | HNO               | -\$47.2m                | -1501.1        | \$31,044       | CIT               | -\$55.6m                | -2914.1                 | \$15,991       | R                 | -\$50.0m                | -1226.8                 | \$37,987       |
| \$46.7m | HNO               | -\$47.2m                | -1501.1        | \$31,111       | CIT               | -\$55.6m                | -2914.1                 | \$16,026       | R                 | -\$50.0m                | -1226.8                 | \$38,068       |
| \$46.8m | HNO               | -\$47.2m                | -1501.1        | \$31,177       | CIT               | -\$55.6m                | -2914.1                 | \$16,060       | R                 | -\$50.0m                | -1226.8                 | \$38,150       |
| \$46.9m | HNO               | -\$47.2m                | -1501.1        | \$31,244       | CIT               | -\$55.6m                | -2914.1                 | \$16,094       | R                 | -\$50.0m                | -1226.8                 | \$38,231       |
| \$47.0m | HNO               | -\$47.2m                | -1501.1        | \$31,311       | CIT               | -\$55.6m                | -2914.1                 | \$16,129       | R                 | -\$50.0m                | -1226.8                 | \$38,313       |
| \$47.1m | HNO               | -\$47.2m                | -1501.1        | \$31,377       | CIT               | -\$55.6m                | -2914.1                 | \$16,163       | R                 | -\$50.0m                | -1226.8                 | \$38,394       |
| \$47.2m | HNO               | -\$47.2m                | -1501.1        | \$31,444       | CIT               | -\$55.6m                | -2914.1                 | \$16,197       | R                 | -\$50.0m                | -1226.8                 | \$38,476       |
| \$47.3m | СНО               | -\$56.8m                | -1778.6        | \$26,594       | CIT               | -\$55.6m                | -2914.1                 | \$16,232       | R                 | -\$50.0m                | -1226.8                 | \$38,557       |
| \$47.4m | СНО               | -\$56.8m                | -1778.6        | \$26,650       | CIT               | -\$55.6m                | -2914.1                 | \$16,266       | R                 | -\$50.0m                | -1226.8                 | \$38,639       |
| \$47.5m | СНО               | -\$56.8m                | -1778.6        | \$26,706       | CIT               | -\$55.6m                | -2914.1                 | \$16,300       | R                 | -\$50.0m                | -1226.8                 | \$38,720       |
| \$47.6m | СНО               | -\$56.8m                | -1778.6        | \$26,763       | CIT               | -\$55.6m                | -2914.1                 | \$16,335       | R                 | -\$50.0m                | -1226.8                 | \$38,802       |
| \$47.7m | СНО               | -\$56.8m                | -1778.6        | \$26,819       | CIT               | -\$55.6m                | -2914.1                 | \$16,369       | R                 | -\$50.0m                | -1226.8                 | \$38,883       |
| \$47.8m | СНО               | -\$56.8m                | -1778.6        | \$26,875       | CIT               | -\$55.6m                | -2914.1                 | \$16,403       | R                 | -\$50.0m                | -1226.8                 | \$38,965       |
| \$47.9m | СНО               | -\$56.8m                | -1778.6        | \$26,931       | CIT               | -\$55.6m                | -2914.1                 | \$16,438       | R                 | -\$50.0m                | -1226.8                 | \$39,046       |
| \$48.0m | СНО               | -\$56.8m                | -1778.6        | \$26,987       | CIT               | -\$55.6m                | -2914.1                 | \$16,472       | R                 | -\$50.0m                | -1226.8                 | \$39,128       |
| \$48.1m | СНО               | -\$56.8m                | -1778.6        | \$27,044       | CIT               | -\$55.6m                | -2914.1                 | \$16,506       | R                 | -\$50.0m                | -1226.8                 | \$39,209       |
| \$48.2m | СНО               | -\$56.8m                | -1778.6        | \$27,100       | CIT               | -\$55.6m                | -2914.1                 | \$16,541       | R                 | -\$50.0m                | -1226.8                 | \$39,291       |
| \$48.3m | СНО               | -\$56.8m                | -1778.6        | \$27,156       | CIT               | -\$55.6m                | -2914.1                 | \$16,575       | R                 | -\$50.0m                | -1226.8                 | \$39,372       |
| \$48.4m | СНО               | -\$56.8m                | -1778.6        | \$27,212       | CIT               | -\$55.6m                | -2914.1                 | \$16,609       | R                 | -\$50.0m                | -1226.8                 | \$39,454       |
| \$48.5m | СНО               | -\$56.8m                | -1778.6        | \$27,269       | CIT               | -\$55.6m                | -2914.1                 | \$16,643       | R                 | -\$50.0m                | -1226.8                 | \$39,535       |
| \$48.6m | СНО               | -\$56.8m                | -1778.6        | \$27,325       | CIT               | -\$55.6m                | -2914.1                 | \$16,678       | R                 | -\$50.0m                | -1226.8                 | \$39,617       |
| \$48.7m | СНО               | -\$56.8m                | -1778.6        | \$27,381       | CIT               | -\$55.6m                | -2914.1                 | \$16,712       | R                 | -\$50.0m                | -1226.8                 | \$39,698       |
| \$48.8m | СНО               | -\$56.8m                | -1778.6        | \$27,437       | CIT               | -\$55.6m                | -2914.1                 | \$16,746       | R                 | -\$50.0m                | -1226.8                 | \$39,780       |
| \$48.9m | СНО               | -\$56.8m                | -1778.6        | \$27,493       | CIT               | -\$55.6m                | -2914.1                 | \$16,781       | R                 | -\$50.0m                | -1226.8                 | \$39,861       |
| \$49.0m | СНО               | -\$56.8m                | -1778.6        | \$27,550       | CIT               | -\$55.6m                | -2914.1                 | \$16,815       | R                 | -\$50.0m                | -1226.8                 | \$39,943       |
| \$49.1m | CHO               | -\$56.8m                | -1778.6        | \$27,606       | CIT               | -\$55.6m                | -2914.1                 | \$16,849       | R                 | -\$50.0m                | -1226.8                 | \$40,024       |
| \$49.2m | СНО               | -\$56.8m                | -1778.6        | \$27,662       | CIT               | -\$55.6m                | -2914.1                 | \$16,884       | R                 | -\$50.0m                | -1226.8                 | \$40,106       |
| \$49.3m | СНО               | -\$56.8m                | -1778.6        | \$27,718       | CIT               | -\$55.6m                | -2914.1                 | \$16,918       | R                 | -\$50.0m                | -1226.8                 | \$40,187       |
| \$49.4m | СНО               | -\$56.8m                | -1778.6        | \$27,775       | CIT               | -\$55.6m                | -2914.1                 | \$16,952       | R                 | -\$50.0m                | -1226.8                 | \$40,269       |
| \$49.5m | СНО               | -\$56.8m                | -1778.6        | \$27,831       | CIT               | -\$55.6m                | -2914.1                 | \$16,987       | R                 | -\$50.0m                | -1226.8                 | \$40,350       |
| \$49.6m | СНО               | -\$56.8m                | -1778.6        | \$27,887       | CIT               | -\$55.6m                | -2914.1                 | \$17,021       | R                 | -\$50.0m                | -1226.8                 | \$40,432       |
| \$49.7m | СНО               | -\$56.8m                | -1778.6        | \$27,943       | CIT               | -\$55.6m                | -2914.1                 | \$17,055       | R                 | -\$50.0m                | -1226.8                 | \$40,514       |
| \$49.8m | СНО               | -\$56.8m                | -1778.6        | \$28,000       | CIT               | -\$55.6m                | -2914.1                 | \$17,090       | R                 | -\$50.0m                | -1226.8                 | \$40,595       |
| \$49.9m | CHO               | -\$56.8m                | -1778.6        | \$28,056       | CIT               | -\$55.6m                | -2914.1                 | \$17,124       | R                 | -\$50.0m                | -1226.8                 | \$40,677       |
| \$50.0m | CHO               | -\$56.8m                | -1778.6        | \$28,112       | CIT               | -\$55.6m                | -2914.1                 | \$17,158       | R                 | -\$50.0m                | -1226.8                 | \$40,758       |

<sup>a</sup> Technologies displaced; <sup>b</sup> Total change in incremental expenditure across all displaced technologies; <sup>c</sup> Total change in incremental benefit (QALYs) resulting from displacement of technologies; <sup>d</sup> Optimal cost-effectiveness threshold (per QALY) for net investments.

| Devileret | 1      | Duine and Lee | da at (\$50m)       |            |        | I ann an har | last (COm) |            |        | Tich an hud |                   | .)       |
|-----------|--------|---------------|---------------------|------------|--------|--------------|------------|------------|--------|-------------|-------------------|----------|
| Budget    | T 1.9  | Frimary Du    | <u>ugei (\$50m)</u> | 2-d        | T 1.9  | Lower Dua    | igei (som) | 2-4        | T 1 9  | ngner buay  | <u>ei (\$100m</u> | <u>)</u> |
| impact    | Tecn " | <u> </u>      |                     | <u>Λ</u> - | Tech " | <u> </u>     |            | <u>λ</u> - | Tecn " | <u>ΔC</u> ~ |                   | <u> </u> |
| \$0.1m    | IN/A   | \$0.0m        | 0.0                 | IN/A       | IN/A   | \$0.0m       | 0.0        | N/A        | IN/A   | \$0.0m      | 0.0               | IN/A     |
| \$0.2m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.3m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.4m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.5m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.6m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.7m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.8m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$0.9m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.0m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.1m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.2m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.3m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.4m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.5m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.6m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.7m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.8m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$1.9m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.0m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.1m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.2m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.3m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.4m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.5m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.6m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.7m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.8m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$2.9m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.0m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.1m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.2m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.3m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.4m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.5m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.6m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.7m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.8m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$3.9m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.0m    | N/A    | \$0.0m        | 0.0                 | N/A        | N/A    | \$0.0m       | 0.0        | N/A        | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.1m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$61,479   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.2m    | N/A    | \$0.0m        | 0.0                 | N/A        | Ν      | \$4.1m       | 66.7       | \$62,978   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.3m    | N/A    | \$0.0m        | 0.0                 | N/A        | Ν      | \$4.1m       | 66.7       | \$64,478   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.4m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$65,977   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.5m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$67,477   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.6m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$68,976   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.7m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$70,476   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.8m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66.7       | \$71,975   | N/A    | \$0.0m      | 0.0               | N/A      |
| \$4.9m    | N/A    | \$0.0m        | 0.0                 | N/A        | N      | \$4.1m       | 66 7       | \$73 475   | N/A    | \$0.0m      | 0.0               | N/A      |

# Table A1.1.6: Reallocation following net disinvestment (non-divisibility)

| Budget  |                   | Primary bu              | dget (\$50)    | n)        |                   | Lower bug               | lget (\$0m)    | )               |                   | Higher bud      | get (\$100     | )m)       |
|---------|-------------------|-------------------------|----------------|-----------|-------------------|-------------------------|----------------|-----------------|-------------------|-----------------|----------------|-----------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | λ-d       | Tech <sup>a</sup> | Δ <i>C</i> <sup>b</sup> | $\Delta E^{c}$ | λ <sup>−d</sup> | Tech <sup>a</sup> | ΔC <sup>b</sup> | $\Delta E^{c}$ | λ-d       |
| \$5.0m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$74,974        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.1m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$76,474        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.2m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$77,973        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.3m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$79,473        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.4m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$80,972        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.5m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$82,472        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.6m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$83,971        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.7m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$85,470        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.8m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$86,970        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$5.9m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$88,469        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.0m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$89,969        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.1m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$91 468        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.2m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$92,968        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.3m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$94 467        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.4m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$95,967        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.5m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$97 466        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.6m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$98.966        | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.7m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$100.465       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.8m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$101,965       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$6.9m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$103,464       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.0m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$104,964       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.1m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$106,463       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.2m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$107,963       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.3m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$109.462       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.4m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$110.962       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.5m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$112,461       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.6m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$113,961       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.7m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$115,460       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.8m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$116,960       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$7.9m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$118,459       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.0m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$119,959       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.1m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$121,458       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.2m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$122,958       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.3m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$124,457       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.4m  | N/A               | \$0.0m                  | 0.0            | N/A       | Ν                 | \$4.1m                  | 66.7           | \$125,957       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.5m  | N/A               | \$0.0m                  | 0.0            | N/A       | N                 | \$4.1m                  | 66.7           | \$127,456       | N/A               | \$0.0m          | 0.0            | N/A       |
| \$8.6m  | L                 | \$8.6m                  | 42.9           | \$200,521 | N                 | \$4.1m                  | 66.7           | \$128,955       | L                 | \$8.6m          | 42.9           | \$200,521 |
| \$8.7m  | L                 | \$8.6m                  | 42.9           | \$202,853 | N                 | \$4.1m                  | 66.7           | \$130,455       | L                 | \$8.6m          | 42.9           | \$202,853 |
| \$8.8m  | L                 | \$8.6m                  | 42.9           | \$205,184 | N                 | \$4.1m                  | 66.7           | \$131,954       | L                 | \$8.6m          | 42.9           | \$205,184 |
| \$8.9m  | L                 | \$8.6m                  | 42.9           | \$207,516 | N                 | \$4.1m                  | 66.7           | \$133,454       | L                 | \$8.6m          | 42.9           | \$207,516 |
| \$9.0m  | L                 | \$8.6m                  | 42.9           | \$209,848 | N                 | \$4.1m                  | 66.7           | \$134,953       | L                 | \$8.6m          | 42.9           | \$209,848 |
| \$9.1m  | L                 | \$8.6m                  | 42.9           | \$212,179 | N                 | \$4.1m                  | 66.7           | \$136,453       | L                 | \$8.6m          | 42.9           | \$212,179 |
| \$9.2m  | L                 | \$8.6m                  | 42.9           | \$214,511 | N                 | \$4.1m                  | 66.7           | \$137,952       | L                 | \$8.6m          | 42.9           | \$214,511 |
| \$9.3m  | L                 | \$8.6m                  | 42.9           | \$216,843 | Ν                 | \$4.1m                  | 66.7           | \$139,452       | L                 | \$8.6m          | 42.9           | \$216,843 |
| \$9.4m  | L                 | \$8.6m                  | 42.9           | \$219,174 | Ν                 | \$4.1m                  | 66.7           | \$140,951       | L                 | \$8.6m          | 42.9           | \$219,174 |
| \$9.5m  | L                 | \$8.6m                  | 42.9           | \$221,506 | Ν                 | \$4.1m                  | 66.7           | \$142,451       | L                 | \$8.6m          | 42.9           | \$221,506 |
| \$9.6m  | L                 | \$8.6m                  | 42.9           | \$223,838 | N                 | \$4.1m                  | 66.7           | \$143,950       | L                 | \$8.6m          | 42.9           | \$223,838 |
| \$9.7m  | L                 | \$8.6m                  | 42.9           | \$226,169 | Ν                 | \$4.1m                  | 66.7           | \$145,450       | L                 | \$8.6m          | 42.9           | \$226,169 |
| \$9.8m  | L                 | \$8.6m                  | 42.9           | \$228,501 | Ν                 | \$4.1m                  | 66.7           | \$146,949       | L                 | \$8.6m          | 42.9           | \$228,501 |
| \$9.9m  | L                 | \$8.6m                  | 42.9           | \$230,832 | Ν                 | \$4.1m                  | 66.7           | \$148,449       | L                 | \$8.6m          | 42.9           | \$230,832 |
| \$10.0m | L                 | \$8.6m                  | 42.9           | \$233,164 | N                 | \$4.1m                  | 66.7           | \$149,948       | L                 | \$8.6m          | 42.9           | \$233,164 |
| \$10.1m | L                 | \$8.6m                  | 42.9           | \$235,496 | N                 | \$4.1m                  | 66.7           | \$151,448       | L                 | \$8.6m          | 42.9           | \$235,496 |

| Budget             |                   | Primarv bu              | dget (\$50r    | n)        |                   | Lower bud       | lget (\$0m)    |                 |                   | Higher bud      | get (\$100     | <i>(m)</i>      |
|--------------------|-------------------|-------------------------|----------------|-----------|-------------------|-----------------|----------------|-----------------|-------------------|-----------------|----------------|-----------------|
| imnact             | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | λ-d       | Tech <sup>a</sup> | ΔC <sup>b</sup> | $\Delta E^{c}$ | λ <sup>−d</sup> | Tech <sup>a</sup> | ΔC <sup>b</sup> | $\Delta E^{c}$ | 2 <sup>-d</sup> |
| \$10.2m            | L                 | \$8.6m                  | 42.9           | \$237.827 | N                 | \$4.1m          | 66.7           | \$152.947       | L                 | \$8.6m          | 42.9           | \$237.827       |
| \$10.3m            | L                 | \$8.6m                  | 42.9           | \$240,159 | N                 | \$4.1m          | 66.7           | \$154.447       | L                 | \$8.6m          | 42.9           | \$240,159       |
| \$10.4m            | L                 | \$8.6m                  | 42.9           | \$242,491 | N                 | \$4.1m          | 66.7           | \$155,946       | L                 | \$8.6m          | 42.9           | \$242.491       |
| \$10.5m            | L                 | \$8.6m                  | 42.9           | \$244 822 | N                 | \$4.1m          | 66.7           | \$157 446       | L                 | \$8.6m          | 42.9           | \$244 822       |
| \$10.6m            | L                 | \$8.6m                  | 42.9           | \$247,154 | N                 | \$4.1m          | 66.7           | \$158.945       | L                 | \$8.6m          | 42.9           | \$247,154       |
| \$10.0m            | L                 | \$8.6m                  | 42.9           | \$249 486 | N                 | \$4.1m          | 66.7           | \$160,445       | L                 | \$8.6m          | 42.9           | \$249 486       |
| \$10.7m            | L                 | \$8.6m                  | 42.9           | \$251.817 | N                 | \$4.1m          | 66.7           | \$161 944       | L                 | \$8.6m          | 42.9           | \$251.817       |
| \$10.0m            | L                 | \$8.6m                  | 42.9           | \$254 149 | N                 | \$4.1m          | 66.7           | \$163 444       | L                 | \$8.6m          | 42.9           | \$254 149       |
| \$11.0m            | I                 | \$8.6m                  | 42.9           | \$256.481 | N                 | \$4.1m          | 66.7           | \$164.943       | I                 | \$8.6m          | 42.9           | \$256.481       |
| \$11.0m            | I                 | \$8.6m                  | 42.9           | \$258,812 | N                 | \$4.1m          | 66.7           | \$166.443       | I                 | \$8.6m          | 42.9           | \$258,812       |
| \$11.1m            | I                 | \$8.6m                  | 42.9           | \$261.144 | N                 | \$4.1m          | 66.7           | \$167.942       | I                 | \$8.6m          | 42.9           | \$261 144       |
| \$11.2m            | I                 | \$8.6m                  | 42.9           | \$263,475 | N                 | \$4.1m          | 66.7           | \$160.441       | L                 | \$8.6m          | 42.9           | \$263.475       |
| \$11.5m            | L                 | \$8.0m                  | 42.9           | \$265,907 | N                 | \$4.1m          | 66.7           | \$170.041       | L                 | \$8.6m          | 42.9           | \$265,475       |
| \$11.4m            | L                 | \$8.0m                  | 42.9           | \$268,120 | IN<br>N           | \$4.1m          | 66.7           | \$170,941       | L                 | \$8.6m          | 42.9           | \$203,807       |
| \$11.5m            | L<br>I            | \$8.0m                  | 42.9           | \$206,139 | IN<br>N           | \$4.1m          | 66.7           | \$172,440       | L                 | \$8.6m          | 42.9           | \$208,139       |
| \$11.0m            | L<br>I            | \$8.011                 | 42.9           | \$270,470 | N                 | \$4.1m          | 66.7           | \$175,940       | L                 | \$8.011         | 42.9           | \$270,470       |
| \$11./m            | L                 | \$8.0111                | 42.9           | \$272,802 | IN<br>N           | \$4.1111        | 66.7           | \$175,439       | L                 | \$8.0111        | 42.9           | \$272,802       |
| \$11.8m<br>\$11.0m | L                 | \$8.0111                | 42.9           | \$273,134 | IN<br>N           | \$4.1111        | 66.7           | \$170,939       | L                 | \$8.0111        | 42.9           | \$273,134       |
| \$11.9m            | L                 | \$8.0111                | 42.9           | \$270,707 | IN<br>N           | \$4.1111        | 66.7           | \$170,430       | L                 | \$8.0111        | 42.9           | \$270,707       |
| \$12.011           | L                 | \$8.011                 | 42.9           | \$2/9,/9/ | IN<br>N           | \$4.111         | 00.7           | \$1/9,938       | L                 | \$8.011         | 42.9           | \$2/9,/9/       |
| \$12.1m            | L                 | \$8.6m                  | 42.9           | \$282,129 | IN<br>N           | \$4.1m          | 66.7           | \$181,437       | L                 | \$8.0m          | 42.9           | \$282,129       |
| \$12.2m            | L                 | \$8.011                 | 42.9           | \$284,400 | IN<br>N           | \$4.111         | 00.7           | \$182,957       | L                 | \$8.011         | 42.9           | \$284,400       |
| \$12.3m            | L                 | \$8.0m                  | 42.9           | \$280,792 | IN<br>N           | \$4.1m          | 00.7           | \$184,430       | L                 | \$8.0m          | 42.9           | \$280,792       |
| \$12.4m            | L                 | \$8.0m                  | 42.9           | \$289,123 | IN<br>N           | \$4.1m          | 00.7           | \$185,936       | L                 | \$8.0m          | 42.9           | \$289,123       |
| \$12.5m            | L                 | \$8.6m                  | 42.9           | \$291,455 | N                 | \$4.1m          | 66.7           | \$187,435       | L                 | \$8.6m          | 42.9           | \$291,455       |
| \$12.6m            | L                 | \$8.6m                  | 42.9           | \$293,787 | N                 | \$4.1m          | 66.7           | \$188,935       | L                 | \$8.6m          | 42.9           | \$293,787       |
| \$12./m            | L                 | \$8.0m                  | 42.9           | \$290,118 | IN<br>N           | \$4.1m          | 00.7           | \$190,434       | L                 | \$8.0m          | 42.9           | \$290,118       |
| \$12.8m            | L                 | \$8.0m                  | 42.9           | \$298,450 | IN<br>N           | \$4.1m          | 00.7           | \$191,934       | L                 | \$8.0m          | 42.9           | \$298,450       |
| \$12.9m            | L                 | \$8.6m                  | 42.9           | \$300,782 | N                 | \$4.1m          | 66.7           | \$193,433       | L                 | \$8.6m          | 42.9           | \$300,782       |
| \$13.0m            | L                 | \$8.6m                  | 42.9           | \$303,113 | N                 | \$4.1m          | 66.7           | \$194,933       | L                 | \$8.6m          | 42.9           | \$303,113       |
| \$13.1m            | L                 | \$8.6m                  | 42.9           | \$305,445 | N                 | \$4.1m          | 66.7           | \$196,432       | L                 | \$8.6m          | 42.9           | \$305,445       |
| \$13.2m            | L                 | \$8.0m                  | 42.9           | \$307,777 | IN<br>N           | \$4.1m          | 00.7           | \$197,932       | L                 | \$8.0m          | 42.9           | \$307,777       |
| \$13.3m            | L                 | \$8.0m                  | 42.9           | \$310,108 | IN<br>N           | \$4.1m          | 00.7           | \$199,431       | L                 | \$8.0m          | 42.9           | \$310,108       |
| \$13.4m            | L                 | \$8.6m                  | 42.9           | \$312,440 | N                 | \$4.1m          | 66.7           | \$200,931       | L                 | \$8.6m          | 42.9           | \$312,440       |
| \$13.5m            | L                 | \$8.6m                  | 42.9           | \$314,772 | N                 | \$4.1m          | 66.7           | \$202,430       | L                 | \$8.6m          | 42.9           | \$314,772       |
| \$13.6m            | L                 | \$8.6m                  | 42.9           | \$317,103 | N                 | \$4.1m          | 66.7           | \$203,930       | L                 | \$8.6m          | 42.9           | \$317,103       |
| \$13./m            | L                 | \$8.6m                  | 42.9           | \$319,435 | N                 | \$4.1m          | 66.7           | \$205,429       | L                 | \$8.6m          | 42.9           | \$319,435       |
| \$13.8m            | L                 | \$8.0m                  | 42.9           | \$321,700 | IN<br>N           | \$4.1m          | 00.7           | \$206,929       | L                 | \$8.0m          | 42.9           | \$321,700       |
| \$13.9m            | L                 | \$8.0m                  | 42.9           | \$324,098 | IN<br>N           | \$4.1m          | 00.7           | \$208,428       | L                 | \$8.0m          | 42.9           | \$324,098       |
| \$14.0m            | L                 | \$8.6m                  | 42.9           | \$320,430 | IN<br>N           | \$4.1m          | 66.7           | \$209,928       | L                 | \$8.0m          | 42.9           | \$320,430       |
| \$14.1m            | L                 | \$8.011                 | 42.9           | \$328,701 | IN N              | \$4.111         | 00.7           | \$211,427       | L                 | \$8.011         | 42.9           | \$328,701       |
| \$14.2m            | L                 | \$8.0m                  | 42.9           | \$331,093 | IN<br>N           | \$4.1m          | 00.7           | \$212,920       | L                 | \$8.0m          | 42.9           | \$331,093       |
| \$14.3m            | L                 | \$8.0m                  | 42.9           | \$333,423 | IN<br>N           | \$4.1m          | 00.7           | \$214,420       | L                 | \$8.0m          | 42.9           | \$333,423       |
| \$14.4m            |                   | \$8.0m                  | 42.9           | \$333,/30 | IN<br>N           | \$4.1m          | 66.7           | \$213,923       | L                 | \$8.0m          | 42.9           | \$333,/30       |
| \$14.5m            |                   | \$8.6m                  | 42.9           | \$338,088 | IN<br>N           | \$4.1m          | 00./           | \$217,423       |                   | \$8.6m          | 42.9           | \$338,088       |
| \$14.0m            |                   | \$8.6m                  | 42.9           | \$340,420 | IN<br>N           | \$4.1m          | 66.7           | \$218,924       |                   | \$8.6m          | 42.9           | \$340,420       |
| \$14./m            | L                 | \$8.0m                  | 42.9           | \$342,/31 | IN<br>N           | \$4.1m          | 66.7           | \$220,424       | L                 | \$8.0m          | 42.9           | \$342,/31       |
| \$14.8m            |                   | \$8.0m                  | 42.9           | \$343,083 | IN<br>N           | \$4.1m          | 66.7           | \$221,923       | L                 | \$8.0m          | 42.9           | \$343,083       |
| \$14.9m            |                   | \$8.0m                  | 42.9           | \$347,413 | IN<br>N           | \$4.1m          | 66.7           | \$223,423       | L                 | \$8.0m          | 42.9           | \$347,413       |
| \$15.0m            |                   | \$8.0m                  | 42.9           | \$349,/40 | IN<br>N           | \$4.1m          | 66.7           | \$224,922       | L                 | \$8.0m          | 42.9           | \$349,/40       |
| \$15.1m            | L                 | \$8.0m                  | 42.9           | \$352,078 | IN<br>N           | \$4.1m          | 66.7           | \$220,422       |                   | \$8.0m          | 42.9           | \$352,078       |
| \$15.2m            | L                 | \$0.0m                  | 42.9           | \$256 741 | IN<br>N           | \$4.1m          | 66.7           | \$220,421       |                   | \$0.0m          | 42.9           | \$354,409       |
| 315.JII            | L                 | 30.0m                   | 42.9           | 3330./41  | 1N                | 34.1111         | 00./           | 3227.421        | 1 L               | 30.0m           | 44.9           | 3330.741        |

| Budget   |                   | Primary bu         | doet (\$50)    | m)              |                   | Lower bu | døet (\$0m     | )                    |                   | Higher bud      | oet (\$10)     | )m)                     |
|----------|-------------------|--------------------|----------------|-----------------|-------------------|----------|----------------|----------------------|-------------------|-----------------|----------------|-------------------------|
| imnact   | Tech <sup>a</sup> | ΔC <sup>b</sup>    | $\Delta E^{c}$ | λ <sup>-d</sup> | Tech <sup>a</sup> |          | $\Delta E^{c}$ | 2-d                  | Tech <sup>a</sup> | ΔC <sup>b</sup> | $\Delta E^{c}$ | 2 <sup>-d</sup>         |
| \$15.4m  | L                 | \$8.6m             | 42.9           | \$359.073       | N                 | \$4.1m   | 66.7           | \$230,920            | L                 | \$8.6m          | 42.9           | \$359.073               |
| \$15.5m  | Ē                 | \$8.6m             | 42.9           | \$361 404       | N                 | \$4.1m   | 66.7           | \$232,420            | L                 | \$8.6m          | 42.9           | \$361 404               |
| \$15.6m  | L                 | \$8.6m             | 42.9           | \$363,736       | N                 | \$4.1m   | 66.7           | \$233.919            | L                 | \$8.6m          | 42.9           | \$363,736               |
| \$15.7m  | Ē                 | \$8.6m             | 42.9           | \$366.068       | N                 | \$4.1m   | 66.7           | \$235 419            | L                 | \$8.6m          | 42.9           | \$366.068               |
| \$15.8m  | L                 | \$8.6m             | 42.9           | \$368 399       | N                 | \$4.1m   | 66.7           | \$236,918            | L                 | \$8.6m          | 42.9           | \$368 399               |
| \$15.9m  | L                 | \$8.6m             | 42.9           | \$370,731       | N                 | \$4.1m   | 66.7           | \$238,418            | Ē.                | \$8.6m          | 42.9           | \$370,731               |
| \$16.0m  | L                 | \$8.6m             | 42.9           | \$373.063       | N                 | \$4.1m   | 66.7           | \$239,917            | L                 | \$8.6m          | 42.9           | \$373.063               |
| \$16.1m  | L                 | \$8.6m             | 42.9           | \$375 394       | N                 | \$4.1m   | 66.7           | \$241 417            | L                 | \$8.6m          | 42.9           | \$375 394               |
| \$16.2m  | L                 | \$8.6m             | 42.9           | \$377 726       | N                 | \$4.1m   | 66.7           | \$242.916            | L                 | \$8.6m          | 42.9           | \$377 726               |
| \$16.3m  | L                 | \$8.6m             | 42.9           | \$380.057       | N                 | \$4.1m   | 66.7           | \$244.416            | L                 | \$8.6m          | 42.9           | \$380.057               |
| \$16.4m  | <br>L             | \$8.6m             | 42.9           | \$382.389       | N                 | \$4.1m   | 66.7           | \$245,915            | L                 | \$8.6m          | 42.9           | \$382.389               |
| \$16.5m  | Ē                 | \$8.6m             | 42.9           | \$384 721       | N                 | \$4.1m   | 66.7           | \$247.415            | L                 | \$8.6m          | 42.9           | \$384 721               |
| \$16.6m  | Ē                 | \$8.6m             | 42.9           | \$387.052       | N                 | \$4.1m   | 66.7           | \$248 914            | L                 | \$8.6m          | 42.9           | \$387.052               |
| \$16.7m  | Ē                 | \$8.6m             | 42.9           | \$389 384       | N                 | \$4.1m   | 66.7           | \$250.414            | L                 | \$8.6m          | 42.9           | \$389 384               |
| \$16.8m  | Ē                 | \$8.6m             | 42.9           | \$391,716       | N                 | \$4.1m   | 66.7           | \$251,913            | L                 | \$8.6m          | 42.9           | \$391,716               |
| \$16.9m  | L                 | \$8.6m             | 42.9           | \$394.047       | N                 | \$4.1m   | 66.7           | \$253 412            | L                 | \$8.6m          | 42.9           | \$394.047               |
| \$17.0m  | L                 | \$8.6m             | 42.9           | \$396.379       | N                 | \$4.1m   | 66.7           | \$254,912            | L                 | \$8.6m          | 42.9           | \$396.379               |
| \$17.1m  | L                 | \$8.6m             | 42.9           | \$398,711       | N                 | \$4.1m   | 66.7           | \$256.411            | L                 | \$8.6m          | 42.9           | \$398,711               |
| \$17.2m  | L                 | \$8.6m             | 42.9           | \$401.042       | N                 | \$4.1m   | 66.7           | \$257.911            | L                 | \$8.6m          | 42.9           | \$401.042               |
| \$17.3m  | L                 | \$8.6m             | 42.9           | \$403,374       | N                 | \$4.1m   | 66.7           | \$259,410            | L                 | \$8.6m          | 42.9           | \$403.374               |
| \$17.4m  | L                 | \$8.6m             | 42.9           | \$405,706       | N                 | \$4.1m   | 66.7           | \$260,910            | L                 | \$8.6m          | 42.9           | \$405,706               |
| \$17.5m  | L                 | \$8.6m             | 42.9           | \$408,037       | N                 | \$4.1m   | 66.7           | \$262,409            | L                 | \$8.6m          | 42.9           | \$408,037               |
| \$17.6m  | L                 | \$8.6m             | 42.9           | \$410,369       | N                 | \$4.1m   | 66.7           | \$263,909            | L                 | \$8.6m          | 42.9           | \$410,369               |
| \$17.7m  | L                 | \$8.6m             | 42.9           | \$412,700       | N                 | \$4.1m   | 66.7           | \$265,408            | L                 | \$8.6m          | 42.9           | \$412,700               |
| \$17.8m  | W                 | \$17.8m            | 105.7          | \$168,385       | W                 | \$17.8m  | 105.7          | \$168,385            | W                 | \$17.8m         | 105.7          | \$168,385               |
| \$17.9m  | W                 | \$17.8m            | 105.7          | \$169,331       | W                 | \$17.8m  | 105.7          | \$169,331            | W                 | \$17.8m         | 105.7          | \$169,331               |
| \$18.0m  | W                 | \$17.8m            | 105.7          | \$170,277       | W                 | \$17.8m  | 105.7          | \$170,277            | W                 | \$17.8m         | 105.7          | \$170,277               |
| \$18.1m  | W                 | \$17.8m            | 105.7          | \$171,223       | W                 | \$17.8m  | 105.7          | \$171,223            | W                 | \$17.8m         | 105.7          | \$171,223               |
| \$18.2m  | W                 | \$17.8m            | 105.7          | \$172,169       | W                 | \$17.8m  | 105.7          | \$172,169            | W                 | \$17.8m         | 105.7          | \$172,169               |
| \$18.3m  | W                 | \$17.8m            | 105.7          | \$173,115       | Н                 | \$18.3m  | 546.7          | \$33,472             | W                 | \$17.8m         | 105.7          | \$173,115               |
| \$18.4m  | W                 | \$17.8m            | 105.7          | \$174,061       | Н                 | \$18.3m  | 546.7          | \$33,655             | W                 | \$17.8m         | 105.7          | \$174,061               |
| \$18.5m  | W                 | \$17.8m            | 105.7          | \$175,007       | Н                 | \$18.3m  | 546.7          | \$33,838             | W                 | \$17.8m         | 105.7          | \$175,007               |
| \$18.6m  | W                 | \$17.8m            | 105.7          | \$175,953       | Н                 | \$18.3m  | 546.7          | \$34,021             | W                 | \$17.8m         | 105.7          | \$175,953               |
| \$18.7m  | W                 | \$17.8m            | 105.7          | \$176,899       | Н                 | \$18.3m  | 546.7          | \$34,204             | W                 | \$17.8m         | 105.7          | \$176,899               |
| \$18.8m  | W                 | \$17.8m            | 105.7          | \$177,845       | Н                 | \$18.3m  | 546.7          | \$34,386             | W                 | \$17.8m         | 105.7          | \$177,845               |
| \$18.9m  | W                 | \$17.8m            | 105.7          | \$178,791       | Н                 | \$18.3m  | 546.7          | \$34,569             | W                 | \$17.8m         | 105.7          | \$178,791               |
| \$19.0m  | W                 | \$17.8m            | 105.7          | \$179,737       | Н                 | \$18.3m  | 546.7          | \$34,752             | W                 | \$17.8m         | 105.7          | \$179,737               |
| \$19.1m  | W                 | \$17.8m            | 105.7          | \$180,683       | Н                 | \$18.3m  | 546.7          | \$34,935             | W                 | \$17.8m         | 105.7          | \$180,683               |
| \$19.2m  | W                 | \$17.8m            | 105.7          | \$181,629       | H                 | \$18.3m  | 546.7          | \$35,118             | W                 | \$17.8m         | 105.7          | \$181,629               |
| \$19.3m  | W                 | \$17.8m            | 105.7          | \$182,575       | Н                 | \$18.3m  | 546.7          | \$35,301             | W                 | \$17.8m         | 105.7          | \$182,575               |
| \$19.4m  | W                 | \$17.8m            | 105.7          | \$183,521       | H                 | \$18.3m  | 546.7          | \$35,484             | W                 | \$17.8m         | 105.7          | \$183,521               |
| \$19.5m  | W                 | \$17.8m            | 105.7          | \$184,467       | Н                 | \$18.3m  | 546.7          | \$35,667             | W                 | \$17.8m         | 105.7          | \$184,467               |
| \$19.6m  | W                 | \$17.8m            | 105.7          | \$185,413       | H                 | \$18.3m  | 546.7          | \$35,850             | W                 | \$17.8m         | 105.7          | \$185,413               |
| \$19.7m  | M                 | \$19./m            | 397.2          | \$49,596        | H                 | \$18.3m  | 546.7          | \$36,033             | M                 | \$19.7m         | 397.2          | \$49,596                |
| \$19.8m  | M                 | \$19./m            | 397.2          | \$49,847        | H                 | \$18.3m  | 546.7          | \$36,216             | M                 | \$19./m         | 397.2          | \$49,847                |
| \$19.9m  | M                 | \$19./m            | 207.2          | \$50,099        | п                 | \$10.5m  | 546./          | \$30,398<br>\$26.501 | IVI<br>M          | \$19./m         | 207.2          | \$50,099                |
| \$20.0m  | M                 | \$19./m<br>\$10.7  | 397.2          | \$50,551        | H<br>II           | \$18.5m  | 546./          | \$30,381             | M                 | \$19./m         | 397.2          | \$50,551                |
| \$20.1m  | M                 | \$19./m<br>\$10.7m | 207.2          | \$50,003        | п                 | \$10.5m  | 546.7          | \$30,704             | M                 | \$19./m         | 207.2          | \$50,003                |
| \$20.210 | M                 | \$19./m<br>\$10.7m | 307.2          | \$51 104        | п                 | \$18.2m  | 540.7          | \$30,94/             | M                 | \$19.7m         | 307.2          | \$50,854                |
| \$20.5m  | M                 | \$19.7m            | 397.2          | \$51,100        | п                 | \$18.3m  | 546.7          | \$37,130             | M                 | \$19.7m         | 397.2          | \$51,100                |
| \$20.4m  | M                 | \$19.7m            | 397.2          | \$51.610        | Н                 | \$18.3m  | 546.7          | \$37,496             | M                 | \$19.7m         | 397.2          | \$51,558                |
|          |                   |                    | ~ ~ ~ ~ ~      | ΨU +, U + U     |                   |          | 0.0.7          | <i>401</i> ,0        |                   |                 | ~ ~            | <i>wox</i> , <i>ox0</i> |

| Budget  |                   | Primarv bu              | dget (\$50n    | n)             |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | get (\$100     | m)             |
|---------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|----------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ |
| \$20.6m | М                 | \$19.7m                 | 397.2          | \$51,861       | Н                 | \$18.3m                 | 546.7       | \$37,679       | М                 | \$19.7m                 | 397.2          | \$51,861       |
| \$20.7m | М                 | \$19.7m                 | 397.2          | \$52,113       | Н                 | \$18.3m                 | 546.7       | \$37,862       | М                 | \$19.7m                 | 397.2          | \$52,113       |
| \$20.8m | М                 | \$19.7m                 | 397.2          | \$52,365       | Н                 | \$18.3m                 | 546.7       | \$38,045       | М                 | \$19.7m                 | 397.2          | \$52,365       |
| \$20.9m | М                 | \$19.7m                 | 397.2          | \$52,617       | Н                 | \$18.3m                 | 546.7       | \$38,228       | М                 | \$19.7m                 | 397.2          | \$52,617       |
| \$21.0m | М                 | \$19.7m                 | 397.2          | \$52,868       | Н                 | \$18.3m                 | 546.7       | \$38,410       | М                 | \$19.7m                 | 397.2          | \$52,868       |
| \$21.1m | М                 | \$19.7m                 | 397.2          | \$53,120       | Н                 | \$18.3m                 | 546.7       | \$38,593       | М                 | \$19.7m                 | 397.2          | \$53,120       |
| \$21.2m | М                 | \$19.7m                 | 397.2          | \$53,372       | Н                 | \$18.3m                 | 546.7       | \$38,776       | М                 | \$19.7m                 | 397.2          | \$53,372       |
| \$21.3m | М                 | \$19.7m                 | 397.2          | \$53,624       | Н                 | \$18.3m                 | 546.7       | \$38,959       | М                 | \$19.7m                 | 397.2          | \$53,624       |
| \$21.4m | М                 | \$19.7m                 | 397.2          | \$53,875       | Н                 | \$18.3m                 | 546.7       | \$39,142       | М                 | \$19.7m                 | 397.2          | \$53,875       |
| \$21.5m | Q                 | \$21.5m                 | 446.2          | \$48,185       | Н                 | \$18.3m                 | 546.7       | \$39,325       | Q                 | \$21.5m                 | 446.2          | \$48,185       |
| \$21.6m | Q                 | \$21.5m                 | 446.2          | \$48,409       | Н                 | \$18.3m                 | 546.7       | \$39,508       | Q                 | \$21.5m                 | 446.2          | \$48,409       |
| \$21.7m | Q                 | \$21.5m                 | 446.2          | \$48,633       | Н                 | \$18.3m                 | 546.7       | \$39,691       | Q                 | \$21.5m                 | 446.2          | \$48,633       |
| \$21.8m | Q                 | \$21.5m                 | 446.2          | \$48,858       | Н                 | \$18.3m                 | 546.7       | \$39,874       | Q                 | \$21.5m                 | 446.2          | \$48,858       |
| \$21.9m | Q                 | \$21.5m                 | 446.2          | \$49,082       | Н                 | \$18.3m                 | 546.7       | \$40,057       | Q                 | \$21.5m                 | 446.2          | \$49,082       |
| \$22.0m | Q                 | \$21.5m                 | 446.2          | \$49,306       | Н                 | \$18.3m                 | 546.7       | \$40,240       | Q                 | \$21.5m                 | 446.2          | \$49,306       |
| \$22.1m | Q                 | \$21.5m                 | 446.2          | \$49,530       | Н                 | \$18.3m                 | 546.7       | \$40,422       | Q                 | \$21.5m                 | 446.2          | \$49,530       |
| \$22.2m | Q                 | \$21.5m                 | 446.2          | \$49,754       | Н                 | \$18.3m                 | 546.7       | \$40,605       | Q                 | \$21.5m                 | 446.2          | \$49,754       |
| \$22.3m | Q                 | \$21.5m                 | 446.2          | \$49,978       | Н                 | \$18.3m                 | 546.7       | \$40,788       | Q                 | \$21.5m                 | 446.2          | \$49,978       |
| \$22.4m | Q                 | \$21.5m                 | 446.2          | \$50,202       | H N               | \$22.4m                 | 613.4       | \$36,517       | Q                 | \$21.5m                 | 446.2          | \$50,202       |
| \$22.5m | Q                 | \$21.5m                 | 446.2          | \$50,426       | ΗN                | \$22.4m                 | 613.4       | \$36,680       | Q                 | \$21.5m                 | 446.2          | \$50,426       |
| \$22.6m | Q                 | \$21.5m                 | 446.2          | \$50,651       | ΗN                | \$22.4m                 | 613.4       | \$36,843       | Q                 | \$21.5m                 | 446.2          | \$50,651       |
| \$22.7m | Q                 | \$21.5m                 | 446.2          | \$50,875       | HN                | \$22.4m                 | 613.4       | \$37,006       | Q                 | \$21.5m                 | 446.2          | \$50,875       |
| \$22.8m | Q                 | \$21.5m                 | 446.2          | \$51,099       | ΗN                | \$22.4m                 | 613.4       | \$37,169       | Q                 | \$21.5m                 | 446.2          | \$51,099       |
| \$22.9m | Q                 | \$21.5m                 | 446.2          | \$51,323       | ΗN                | \$22.4m                 | 613.4       | \$37,332       | Q                 | \$21.5m                 | 446.2          | \$51,323       |
| \$23.0m | Q                 | \$21.5m                 | 446.2          | \$51,547       | ΗN                | \$22.4m                 | 613.4       | \$37,495       | Q                 | \$21.5m                 | 446.2          | \$51,547       |
| \$23.1m | Q                 | \$21.5m                 | 446.2          | \$51,771       | H N               | \$22.4m                 | 613.4       | \$37,658       | Q                 | \$21.5m                 | 446.2          | \$51,771       |
| \$23.2m | Q                 | \$21.5m                 | 446.2          | \$51,995       | H N               | \$22.4m                 | 613.4       | \$37,821       | Q                 | \$21.5m                 | 446.2          | \$51,995       |
| \$23.3m | Q                 | \$21.5m                 | 446.2          | \$52,219       | H N               | \$22.4m                 | 613.4       | \$37,984       | Q                 | \$21.5m                 | 446.2          | \$52,219       |
| \$23.4m | Q                 | \$21.5m                 | 446.2          | \$52,443       | H N               | \$22.4m                 | 613.4       | \$38,147       | Q                 | \$21.5m                 | 446.2          | \$52,443       |
| \$23.5m | Q                 | \$21.5m                 | 446.2          | \$52,668       | HN                | \$22.4m                 | 613.4       | \$38,310       | Q                 | \$21.5m                 | 446.2          | \$52,668       |
| \$23.6m | Q                 | \$21.5m                 | 446.2          | \$52,892       | ΗN                | \$22.4m                 | 613.4       | \$38,473       | Q                 | \$21.5m                 | 446.2          | \$52,892       |
| \$23.7m | Q                 | \$21.5m                 | 446.2          | \$53,116       | HN                | \$22.4m                 | 613.4       | \$38,636       | Q                 | \$21.5m                 | 446.2          | \$53,116       |
| \$23.8m | Q                 | \$21.5m                 | 446.2          | \$53,340       | ΗN                | \$22.4m                 | 613.4       | \$38,799       | Q                 | \$21.5m                 | 446.2          | \$53,340       |
| \$23.9m | Q                 | \$21.5m                 | 446.2          | \$53,564       | ΗN                | \$22.4m                 | 613.4       | \$38,962       | Q                 | \$21.5m                 | 446.2          | \$53,564       |
| \$24.0m | Q                 | \$21.5m                 | 446.2          | \$53,788       | ΗN                | \$22.4m                 | 613.4       | \$39,125       | Q                 | \$21.5m                 | 446.2          | \$53,788       |
| \$24.1m | Q                 | \$21.5m                 | 446.2          | \$54,012       | HN                | \$22.4m                 | 613.4       | \$39,288       | Q                 | \$21.5m                 | 446.2          | \$54,012       |
| \$24.2m | Q                 | \$21.5m                 | 446.2          | \$54,236       | HN                | \$22.4m                 | 613.4       | \$39,451       | Q                 | \$21.5m                 | 446.2          | \$54,236       |
| \$24.3m | Q                 | \$21.5m                 | 446.2          | \$54,460       | HN                | \$22.4m                 | 613.4       | \$39,614       | Q                 | \$21.5m                 | 446.2          | \$54,460       |
| \$24.4m | Q                 | \$21.5m                 | 446.2          | \$54,685       | HN                | \$22.4m                 | 613.4       | \$39,777       | Q                 | \$21.5m                 | 446.2          | \$54,685       |
| \$24.5m | Q                 | \$21.5m                 | 446.2          | \$54,909       | HN                | \$22.4m                 | 613.4       | \$39,940       | Q                 | \$21.5m                 | 446.2          | \$54,909       |
| \$24.6m | Q                 | \$21.5m                 | 446.2          | \$55,133       | HN                | \$22.4m                 | 613.4       | \$40,103       | Q                 | \$21.5m                 | 446.2          | \$55,133       |
| \$24.7m | Q                 | \$21.5m                 | 446.2          | \$55,357       | HN                | \$22.4m                 | 613.4       | \$40,266       | Q                 | \$21.5m                 | 446.2          | \$55,357       |
| \$24.8m | Q                 | \$21.5m                 | 446.2          | \$55,581       | 0                 | \$24.8m                 | 887.7       | \$27,938       | Q                 | \$21.5m                 | 446.2          | \$55,581       |
| \$24.9m | Q                 | \$21.5m                 | 446.2          | \$55,805       | 0                 | \$24.8m                 | 887.7       | \$28,051       | Q                 | \$21.5m                 | 446.2          | \$55,805       |
| \$25.0m | Q                 | \$21.5m                 | 446.2          | \$56,029       | 0                 | \$24.8m                 | 887.7       | \$28,164       | Q                 | \$21.5m                 | 446.2          | \$56,029       |
| \$25.1m | Q                 | \$21.5m                 | 446.2          | \$56,253       | 0                 | \$24.8m                 | 887.7       | \$28,276       | Q                 | \$21.5m                 | 446.2          | \$56,253       |
| \$25.2m | Q                 | \$21.5m                 | 446.2          | \$56,478       | 0                 | \$24.8m                 | 887.7       | \$28,389       | Q                 | \$21.5m                 | 446.2          | \$56,478       |
| \$25.3m | Q                 | \$21.5m                 | 446.2          | \$56,702       | 0                 | \$24.8m                 | 887.7       | \$28,502       | Q                 | \$21.5m                 | 446.2          | \$56,702       |
| \$25.4m | Q                 | \$21.5m                 | 446.2          | \$56,926       | 0                 | \$24.8m                 | 887.7       | \$28,614       | Q                 | \$21.5m                 | 446.2          | \$56,926       |
| \$25.5m | <u>Q</u>          | \$21.5m                 | 446.2          | \$57,150       | 0                 | \$24.8m                 | 88/./       | \$28,727       | <u> </u>          | \$21.5m                 | 446.2          | \$57,150       |
| \$25.6m | Q Q               | \$21.5m                 | 440.2          | \$37,374       | 0                 | \$24.8m                 | 88/./       | \$28,839       | <u>v</u>          | \$21.5m                 | 440.2          | \$57,509       |
| 343./M  | . 0               | 5∠1.5m                  | 440.4          | 3.27.398       | 1 0               | J∠4.8M                  | 00/./       | D40.904        |                   | J∠1.2M                  | 440.4          | 3.2/.298       |

| Budget  |                   | Primary bu              | udget (\$50n   | n)             |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | lget (\$100    | m)             |
|---------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|----------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ |
| \$25.8m | Q                 | \$21.5m                 | 446.2          | \$57,822       | 0                 | \$24.8m                 | 887.7       | \$29,065       | Q                 | \$21.5m                 | 446.2          | \$57,822       |
| \$25.9m | Q                 | \$21.5m                 | 446.2          | \$58,046       | 0                 | \$24.8m                 | 887.7       | \$29,177       | Q                 | \$21.5m                 | 446.2          | \$58,046       |
| \$26.0m | Q                 | \$21.5m                 | 446.2          | \$58,270       | 0                 | \$24.8m                 | 887.7       | \$29,290       | Q                 | \$21.5m                 | 446.2          | \$58,270       |
| \$26.1m | Q                 | \$21.5m                 | 446.2          | \$58,495       | 0                 | \$24.8m                 | 887.7       | \$29,403       | Q                 | \$21.5m                 | 446.2          | \$58,495       |
| \$26.2m | Q                 | \$21.5m                 | 446.2          | \$58,719       | 0                 | \$24.8m                 | 887.7       | \$29,515       | Q                 | \$21.5m                 | 446.2          | \$58,719       |
| \$26.3m | Q                 | \$21.5m                 | 446.2          | \$58,943       | 0                 | \$24.8m                 | 887.7       | \$29,628       | Q                 | \$21.5m                 | 446.2          | \$58,943       |
| \$26.4m | Q                 | \$21.5m                 | 446.2          | \$59,167       | 0                 | \$24.8m                 | 887.7       | \$29,741       | Q                 | \$21.5m                 | 446.2          | \$59,167       |
| \$26.5m | Q                 | \$21.5m                 | 446.2          | \$59,391       | 0                 | \$24.8m                 | 887.7       | \$29,853       | Q                 | \$21.5m                 | 446.2          | \$59,391       |
| \$26.6m | Q                 | \$21.5m                 | 446.2          | \$59,615       | 0                 | \$24.8m                 | 887.7       | \$29,966       | Q                 | \$21.5m                 | 446.2          | \$59,615       |
| \$26.7m | Q                 | \$21.5m                 | 446.2          | \$59,839       | 0                 | \$24.8m                 | 887.7       | \$30,079       | Q                 | \$21.5m                 | 446.2          | \$59,839       |
| \$26.8m | Q                 | \$21.5m                 | 446.2          | \$60,063       | 0                 | \$24.8m                 | 887.7       | \$30,191       | Q                 | \$21.5m                 | 446.2          | \$60,063       |
| \$26.9m | Q                 | \$21.5m                 | 446.2          | \$60,288       | 0                 | \$24.8m                 | 887.7       | \$30,304       | Q                 | \$21.5m                 | 446.2          | \$60,288       |
| \$27.0m | Q                 | \$21.5m                 | 446.2          | \$60,512       | 0                 | \$24.8m                 | 887.7       | \$30,417       | Q                 | \$21.5m                 | 446.2          | \$60,512       |
| \$27.1m | Q                 | \$21.5m                 | 446.2          | \$60,736       | 0                 | \$24.8m                 | 887.7       | \$30,529       | Q                 | \$21.5m                 | 446.2          | \$60,736       |
| \$27.2m | Q                 | \$21.5m                 | 446.2          | \$60,960       | 0                 | \$24.8m                 | 887.7       | \$30,642       | Q                 | \$21.5m                 | 446.2          | \$60,960       |
| \$27.3m | Q                 | \$21.5m                 | 446.2          | \$61,184       | 0                 | \$24.8m                 | 887.7       | \$30,755       | Q                 | \$21.5m                 | 446.2          | \$61,184       |
| \$27.4m | Q                 | \$21.5m                 | 446.2          | \$61,408       | 0                 | \$24.8m                 | 887.7       | \$30,867       | Q                 | \$21.5m                 | 446.2          | \$61,408       |
| \$27.5m | Q                 | \$21.5m                 | 446.2          | \$61,632       | 0                 | \$24.8m                 | 887.7       | \$30,980       | Q                 | \$21.5m                 | 446.2          | \$61,632       |
| \$27.6m | Q                 | \$21.5m                 | 446.2          | \$61,856       | 0                 | \$24.8m                 | 887.7       | \$31,093       | Q                 | \$21.5m                 | 446.2          | \$61,856       |
| \$27.7m | Q                 | \$21.5m                 | 446.2          | \$62,080       | 0                 | \$24.8m                 | 887.7       | \$31,205       | Q                 | \$21.5m                 | 446.2          | \$62,080       |
| \$27.8m | Q                 | \$21.5m                 | 446.2          | \$62,305       | 0                 | \$24.8m                 | 887.7       | \$31,318       | Q                 | \$21.5m                 | 446.2          | \$62,305       |
| \$27.9m | Q                 | \$21.5m                 | 446.2          | \$62,529       | 0                 | \$24.8m                 | 887.7       | \$31,431       | Q                 | \$21.5m                 | 446.2          | \$62,529       |
| \$28.0m | Q                 | \$21.5m                 | 446.2          | \$62,753       | 0                 | \$24.8m                 | 887.7       | \$31,543       | Q                 | \$21.5m                 | 446.2          | \$62,753       |
| \$28.1m | Q                 | \$21.5m                 | 446.2          | \$62,977       | 0                 | \$24.8m                 | 887.7       | \$31,656       | Q                 | \$21.5m                 | 446.2          | \$62,977       |
| \$28.2m | Q                 | \$21.5m                 | 446.2          | \$63,201       | 0                 | \$24.8m                 | 887.7       | \$31,769       | Q                 | \$21.5m                 | 446.2          | \$63,201       |
| \$28.3m | Q                 | \$21.5m                 | 446.2          | \$63,425       | 0                 | \$24.8m                 | 887.7       | \$31,881       | Q                 | \$21.5m                 | 446.2          | \$63,425       |
| \$28.4m | Q                 | \$21.5m                 | 446.2          | \$63,649       | 0                 | \$24.8m                 | 887.7       | \$31,994       | Q                 | \$21.5m                 | 446.2          | \$63,649       |
| \$28.5m | Q                 | \$21.5m                 | 446.2          | \$63,873       | 0                 | \$24.8m                 | 887.7       | \$32,106       | Q                 | \$21.5m                 | 446.2          | \$63,873       |
| \$28.6m | Q                 | \$21.5m                 | 446.2          | \$64,098       | 0                 | \$24.8m                 | 887.7       | \$32,219       | Q                 | \$21.5m                 | 446.2          | \$64,098       |
| \$28.7m | Q                 | \$21.5m                 | 446.2          | \$64,322       | 0                 | \$24.8m                 | 887.7       | \$32,332       | Q                 | \$21.5m                 | 446.2          | \$64,322       |
| \$28.8m | Q                 | \$21.5m                 | 446.2          | \$64,546       | 0                 | \$24.8m                 | 887.7       | \$32,444       | Q                 | \$21.5m                 | 446.2          | \$64,546       |
| \$28.9m | Q                 | \$21.5m                 | 446.2          | \$64,770       | N O               | \$28.9m                 | 954.4       | \$30,282       | Q                 | \$21.5m                 | 446.2          | \$64,770       |
| \$29.0m | Q                 | \$21.5m                 | 446.2          | \$64,994       | N O               | \$28.9m                 | 954.4       | \$30,387       | Q                 | \$21.5m                 | 446.2          | \$64,994       |
| \$29.1m | Q                 | \$21.5m                 | 446.2          | \$65,218       | N O               | \$28.9m                 | 954.4       | \$30,492       | Q                 | \$21.5m                 | 446.2          | \$65,218       |
| \$29.2m | Q                 | \$21.5m                 | 446.2          | \$65,442       | NO                | \$28.9m                 | 954.4       | \$30,596       | Q                 | \$21.5m                 | 446.2          | \$65,442       |
| \$29.3m | Q                 | \$21.5m                 | 446.2          | \$65,666       | NO                | \$28.9m                 | 954.4       | \$30,701       | Q                 | \$21.5m                 | 446.2          | \$65,666       |
| \$29.4m | Q                 | \$21.5m                 | 446.2          | \$65,890       | NO                | \$28.9m                 | 954.4       | \$30,806       | Q                 | \$21.5m                 | 446.2          | \$65,890       |
| \$29.5m | Q                 | \$21.5m                 | 446.2          | \$66,115       | NO                | \$28.9m                 | 954.4       | \$30,911       | Q                 | \$21.5m                 | 446.2          | \$66,115       |
| \$29.6m | Q                 | \$21.5m                 | 446.2          | \$66,339       | NO                | \$28.9m                 | 954.4       | \$31,016       | Q                 | \$21.5m                 | 446.2          | \$66,339       |
| \$29.7m | Q                 | \$21.5m                 | 446.2          | \$66,563       | NO                | \$28.9m                 | 954.4       | \$31,120       | Q                 | \$21.5m                 | 446.2          | \$66,563       |
| \$29.8m | Q                 | \$21.5m                 | 446.2          | \$66,787       | NO                | \$28.9m                 | 954.4       | \$31,225       | Q                 | \$21.5m                 | 446.2          | \$66,787       |
| \$29.9m | Q                 | \$21.5m                 | 446.2          | \$67,011       | NO                | \$28.9m                 | 954.4       | \$31,330       | Q                 | \$21.5m                 | 446.2          | \$67,011       |
| \$30.0m | Q                 | \$21.5m                 | 446.2          | \$67,235       | NO                | \$28.9m                 | 954.4       | \$31,435       | Q                 | \$21.5m                 | 446.2          | \$67,235       |
| \$30.1m | Q                 | \$21.5m                 | 446.2          | \$67,459       | NO                | \$28.9m                 | 954.4       | \$31,539       | Q                 | \$21.5m                 | 446.2          | \$67,459       |
| \$30.2m | Q                 | \$21.5m                 | 446.2          | \$67,683       | NO                | \$28.9m                 | 954.4       | \$31,644       | Q                 | \$21.5m                 | 446.2          | \$67,683       |
| \$30.3m | Q                 | \$21.5m                 | 446.2          | \$67,908       | NO                | \$28.9m                 | 954.4       | \$31,749       | Q                 | \$21.5m                 | 446.2          | \$67,908       |
| \$30.4m | Q                 | \$21.5m                 | 446.2          | \$68,132       | NO                | \$28.9m                 | 954.4       | \$31,854       | Q                 | \$21.5m                 | 446.2          | \$68,132       |
| \$30.5m | Q                 | \$21.5m                 | 446.2          | \$68,356       | NO                | \$28.9m                 | 954.4       | \$31,959       | Q                 | \$21.5m                 | 446.2          | \$68,356       |
| \$30.6m | Q                 | \$21.5m                 | 446.2          | \$68,580       | NO                | \$28.9m                 | 954.4       | \$32,063       | Q                 | \$21.5m                 | 446.2          | \$68,580       |
| \$30.7m | <u>Q</u>          | \$21.5m                 | 446.2          | \$68,804       | NO                | \$28.9m                 | 954.4       | \$32,168       | <u> </u>          | \$21.5m                 | 446.2          | \$68,804       |
| \$30.8m | Q Q               | \$21.5m                 | 440.2          | \$09,028       | NO                | \$28.9m                 | 954.4       | \$32,273       | <u>v</u>          | \$21.5m                 | 440.2          | \$69,028       |
| 530.9m  | 0                 | \$21.5m                 | 440.2          | 309.232        | NU                | 528.9m                  | 934.4       | 332.318        | 0                 | \$∠1.5m                 | 440.2          | 309.232        |

| Budget  |                   | Primary bu     | udget (\$50n   | n)             |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | lget (\$100    | m)             |
|---------|-------------------|----------------|----------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|----------------|----------------|
| impact  | Tech <sup>a</sup> | $\Delta C^{b}$ | $\Delta E^{c}$ | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ |
| \$31.0m | Q                 | \$21.5m        | 446.2          | \$69,476       | NO                | \$28.9m                 | 954.4       | \$32,482       | Q                 | \$21.5m                 | 446.2          | \$69,476       |
| \$31.1m | Q                 | \$21.5m        | 446.2          | \$69,700       | NO                | \$28.9m                 | 954.4       | \$32,587       | Q                 | \$21.5m                 | 446.2          | \$69,700       |
| \$31.2m | Q                 | \$21.5m        | 446.2          | \$69,925       | NO                | \$28.9m                 | 954.4       | \$32,692       | Q                 | \$21.5m                 | 446.2          | \$69,925       |
| \$31.3m | Q                 | \$21.5m        | 446.2          | \$70,149       | NO                | \$28.9m                 | 954.4       | \$32,797       | Q                 | \$21.5m                 | 446.2          | \$70,149       |
| \$31.4m | Q                 | \$21.5m        | 446.2          | \$70,373       | NO                | \$28.9m                 | 954.4       | \$32,902       | Q                 | \$21.5m                 | 446.2          | \$70,373       |
| \$31.5m | Q                 | \$21.5m        | 446.2          | \$70,597       | NO                | \$28.9m                 | 954.4       | \$33,006       | Q                 | \$21.5m                 | 446.2          | \$70,597       |
| \$31.6m | Q                 | \$21.5m        | 446.2          | \$70,821       | NO                | \$28.9m                 | 954.4       | \$33,111       | Q                 | \$21.5m                 | 446.2          | \$70,821       |
| \$31.7m | Q                 | \$21.5m        | 446.2          | \$71,045       | NO                | \$28.9m                 | 954.4       | \$33,216       | Q                 | \$21.5m                 | 446.2          | \$71,045       |
| \$31.8m | Q                 | \$21.5m        | 446.2          | \$71,269       | NO                | \$28.9m                 | 954.4       | \$33,321       | Q                 | \$21.5m                 | 446.2          | \$71,269       |
| \$31.9m | Q                 | \$21.5m        | 446.2          | \$71,493       | NO                | \$28.9m                 | 954.4       | \$33,425       | Q                 | \$21.5m                 | 446.2          | \$71,493       |
| \$32.0m | Q                 | \$21.5m        | 446.2          | \$71,718       | NO                | \$28.9m                 | 954.4       | \$33,530       | Q                 | \$21.5m                 | 446.2          | \$71,718       |
| \$32.1m | Q                 | \$21.5m        | 446.2          | \$71,942       | N O               | \$28.9m                 | 954.4       | \$33,635       | Q                 | \$21.5m                 | 446.2          | \$71,942       |
| \$32.2m | Q                 | \$21.5m        | 446.2          | \$72,166       | N O               | \$28.9m                 | 954.4       | \$33,740       | Q                 | \$21.5m                 | 446.2          | \$72,166       |
| \$32.3m | Q                 | \$21.5m        | 446.2          | \$72,390       | NO                | \$28.9m                 | 954.4       | \$33,845       | Q                 | \$21.5m                 | 446.2          | \$72,390       |
| \$32.4m | Q                 | \$21.5m        | 446.2          | \$72,614       | NO                | \$28.9m                 | 954.4       | \$33,949       | Q                 | \$21.5m                 | 446.2          | \$72,614       |
| \$32.5m | Q                 | \$21.5m        | 446.2          | \$72,838       | NO                | \$28.9m                 | 954.4       | \$34,054       | Q                 | \$21.5m                 | 446.2          | \$72,838       |
| \$32.6m | Q                 | \$21.5m        | 446.2          | \$73,062       | NO                | \$28.9m                 | 954.4       | \$34,159       | Q                 | \$21.5m                 | 446.2          | \$73,062       |
| \$32.7m | Q                 | \$21.5m        | 446.2          | \$73,286       | N O               | \$28.9m                 | 954.4       | \$34,264       | Q                 | \$21.5m                 | 446.2          | \$73,286       |
| \$32.8m | Q                 | \$21.5m        | 446.2          | \$73,510       | N O               | \$28.9m                 | 954.4       | \$34,369       | Q                 | \$21.5m                 | 446.2          | \$73,510       |
| \$32.9m | Q                 | \$21.5m        | 446.2          | \$73,735       | N O               | \$28.9m                 | 954.4       | \$34,473       | Q                 | \$21.5m                 | 446.2          | \$73,735       |
| \$33.0m | Q                 | \$21.5m        | 446.2          | \$73,959       | N O               | \$28.9m                 | 954.4       | \$34,578       | Q                 | \$21.5m                 | 446.2          | \$73,959       |
| \$33.1m | Q                 | \$21.5m        | 446.2          | \$74,183       | NO                | \$28.9m                 | 954.4       | \$34,683       | Q                 | \$21.5m                 | 446.2          | \$74,183       |
| \$33.2m | Q                 | \$21.5m        | 446.2          | \$74,407       | N O               | \$28.9m                 | 954.4       | \$34,788       | Q                 | \$21.5m                 | 446.2          | \$74,407       |
| \$33.3m | Q                 | \$21.5m        | 446.2          | \$74,631       | N O               | \$28.9m                 | 954.4       | \$34,892       | Q                 | \$21.5m                 | 446.2          | \$74,631       |
| \$33.4m | Q                 | \$21.5m        | 446.2          | \$74,855       | NO                | \$28.9m                 | 954.4       | \$34,997       | Q                 | \$21.5m                 | 446.2          | \$74,855       |
| \$33.5m | Q                 | \$21.5m        | 446.2          | \$75,079       | NO                | \$28.9m                 | 954.4       | \$35,102       | Q                 | \$21.5m                 | 446.2          | \$75,079       |
| \$33.6m | Q                 | \$21.5m        | 446.2          | \$75,303       | NO                | \$28.9m                 | 954.4       | \$35,207       | Q                 | \$21.5m                 | 446.2          | \$75,303       |
| \$33.7m | Q                 | \$21.5m        | 446.2          | \$75,528       | NO                | \$28.9m                 | 954.4       | \$35,312       | Q                 | \$21.5m                 | 446.2          | \$75,528       |
| \$33.8m | Q                 | \$21.5m        | 446.2          | \$75,752       | N O               | \$28.9m                 | 954.4       | \$35,416       | Q                 | \$21.5m                 | 446.2          | \$75,752       |
| \$33.9m | Q                 | \$21.5m        | 446.2          | \$75,976       | N O               | \$28.9m                 | 954.4       | \$35,521       | Q                 | \$21.5m                 | 446.2          | \$75,976       |
| \$34.0m | Q                 | \$21.5m        | 446.2          | \$76,200       | N O               | \$28.9m                 | 954.4       | \$35,626       | Q                 | \$21.5m                 | 446.2          | \$76,200       |
| \$34.1m | Q                 | \$21.5m        | 446.2          | \$76,424       | N O               | \$28.9m                 | 954.4       | \$35,731       | Q                 | \$21.5m                 | 446.2          | \$76,424       |
| \$34.2m | Q                 | \$21.5m        | 446.2          | \$76,648       | NO                | \$28.9m                 | 954.4       | \$35,835       | Q                 | \$21.5m                 | 446.2          | \$76,648       |
| \$34.3m | Q                 | \$21.5m        | 446.2          | \$76,872       | NO                | \$28.9m                 | 954.4       | \$35,940       | Q                 | \$21.5m                 | 446.2          | \$76,872       |
| \$34.4m | Q                 | \$21.5m        | 446.2          | \$77,096       | NO                | \$28.9m                 | 954.4       | \$36,045       | Q                 | \$21.5m                 | 446.2          | \$77,096       |
| \$34.5m | Q                 | \$21.5m        | 446.2          | \$77,320       | NO                | \$28.9m                 | 954.4       | \$36,150       | Q                 | \$21.5m                 | 446.2          | \$77,320       |
| \$34.6m | Q                 | \$21.5m        | 446.2          | \$77,545       | NO                | \$28.9m                 | 954.4       | \$36,255       | Q                 | \$21.5m                 | 446.2          | \$77,545       |
| \$34.7m | Q                 | \$21.5m        | 446.2          | \$77,769       | NO                | \$28.9m                 | 954.4       | \$36,359       | Q                 | \$21.5m                 | 446.2          | \$77,769       |
| \$34.8m | Q                 | \$21.5m        | 446.2          | \$77,993       | NO                | \$28.9m                 | 954.4       | \$36,464       | Q                 | \$21.5m                 | 446.2          | \$77,993       |
| \$34.9m | Q                 | \$21.5m        | 446.2          | \$78,217       | NO                | \$28.9m                 | 954.4       | \$36,569       | Q                 | \$21.5m                 | 446.2          | \$78,217       |
| \$35.0m | Q                 | \$21.5m        | 446.2          | \$78,441       | NO                | \$28.9m                 | 954.4       | \$36,674       | Q                 | \$21.5m                 | 446.2          | \$78,441       |
| \$35.1m | Q                 | \$21.5m        | 446.2          | \$78,665       | NO                | \$28.9m                 | 954.4       | \$36,779       | Q                 | \$21.5m                 | 446.2          | \$78,665       |
| \$35.2m | Q                 | \$21.5m        | 446.2          | \$78,889       | NO                | \$28.9m                 | 954.4       | \$36,883       | Q                 | \$21.5m                 | 446.2          | \$78,889       |
| \$35.3m | Q                 | \$21.5m        | 446.2          | \$79,113       | NO                | \$28.9m                 | 954.4       | \$36,988       | Q                 | \$21.5m                 | 446.2          | \$79,113       |
| \$35.4m | Q                 | \$21.5m        | 446.2          | \$79,338       | NO                | \$28.9m                 | 954.4       | \$37,093       | Q                 | \$21.5m                 | 446.2          | \$79,338       |
| \$35.5m | Q                 | \$21.5m        | 446.2          | \$79,562       | NO                | \$28.9m                 | 954.4       | \$37,198       | Q                 | \$21.5m                 | 446.2          | \$79,562       |
| \$35.6m | Q                 | \$21.5m        | 446.2          | \$/9,/86       | NO                | \$28.9m                 | 954.4       | \$37,302       | Q                 | \$21.5m                 | 446.2          | \$/9,/86       |
| \$35.7m | Q                 | \$21.5m        | 446.2          | \$80,010       | NO                | \$28.9m                 | 954.4       | \$37,407       | Q                 | \$21.5m                 | 446.2          | \$80,010       |
| \$35.8m | Q                 | \$21.5m        | 446.2          | \$80,234       | NO                | \$28.9m                 | 954.4       | \$37,512       | Q                 | \$21.5m                 | 446.2          | \$80,234       |
| \$35.9m | <u>Q</u>          | \$21.5m        | 446.2          | \$80,458       | NO                | \$28.9m                 | 954.4       | \$57,617       | <u> </u>          | \$21.5m                 | 446.2          | \$80,458       |
| \$36.0m | Q Q               | \$21.5m        | 440.2          | \$80,082       | NO                | \$28.9m                 | 954.4       | \$37,122       | <u>v</u>          | \$21.5m                 | 440.2          | \$80,082       |
| 330.1M  | 0                 | \$21.5m        | 440.2          | 220.200        | NU                | 5∠8.9m                  | 934.4       | 331.820        |                   | 321.5m                  | 440.2          | 220.200        |

| Budget  |                   | Primary bu              | udget (\$50n   | n)             |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | lget (\$100    | m)             |
|---------|-------------------|-------------------------|----------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|----------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ |
| \$36.2m | Q                 | \$21.5m                 | 446.2          | \$81,130       | NO                | \$28.9m                 | 954.4       | \$37,931       | Q                 | \$21.5m                 | 446.2          | \$81,130       |
| \$36.3m | Q                 | \$21.5m                 | 446.2          | \$81,355       | NO                | \$28.9m                 | 954.4       | \$38,036       | Q                 | \$21.5m                 | 446.2          | \$81,355       |
| \$36.4m | Q                 | \$21.5m                 | 446.2          | \$81,579       | NO                | \$28.9m                 | 954.4       | \$38,141       | Q                 | \$21.5m                 | 446.2          | \$81,579       |
| \$36.5m | Q                 | \$21.5m                 | 446.2          | \$81,803       | NO                | \$28.9m                 | 954.4       | \$38,245       | Q                 | \$21.5m                 | 446.2          | \$81,803       |
| \$36.6m | Q                 | \$21.5m                 | 446.2          | \$82,027       | NO                | \$28.9m                 | 954.4       | \$38,350       | Q                 | \$21.5m                 | 446.2          | \$82,027       |
| \$36.7m | Q                 | \$21.5m                 | 446.2          | \$82,251       | NO                | \$28.9m                 | 954.4       | \$38,455       | Q                 | \$21.5m                 | 446.2          | \$82,251       |
| \$36.8m | Q                 | \$21.5m                 | 446.2          | \$82,475       | NO                | \$28.9m                 | 954.4       | \$38,560       | Q                 | \$21.5m                 | 446.2          | \$82,475       |
| \$36.9m | Q                 | \$21.5m                 | 446.2          | \$82,699       | NO                | \$28.9m                 | 954.4       | \$38,665       | Q                 | \$21.5m                 | 446.2          | \$82,699       |
| \$37.0m | Q                 | \$21.5m                 | 446.2          | \$82,923       | NO                | \$28.9m                 | 954.4       | \$38,769       | Q                 | \$21.5m                 | 446.2          | \$82,923       |
| \$37.1m | Q                 | \$21.5m                 | 446.2          | \$83,148       | NO                | \$28.9m                 | 954.4       | \$38,874       | Q                 | \$21.5m                 | 446.2          | \$83,148       |
| \$37.2m | Q                 | \$21.5m                 | 446.2          | \$83,372       | NO                | \$28.9m                 | 954.4       | \$38,979       | Q                 | \$21.5m                 | 446.2          | \$83,372       |
| \$37.3m | Q                 | \$21.5m                 | 446.2          | \$83,596       | NO                | \$28.9m                 | 954.4       | \$39,084       | Q                 | \$21.5m                 | 446.2          | \$83,596       |
| \$37.4m | Q                 | \$21.5m                 | 446.2          | \$83,820       | NO                | \$28.9m                 | 954.4       | \$39,189       | Q                 | \$21.5m                 | 446.2          | \$83,820       |
| \$37.5m | M W               | \$37.5m                 | 502.9          | \$74,564       | NO                | \$28.9m                 | 954.4       | \$39,293       | M W               | \$37.5m                 | 502.9          | \$74,564       |
| \$37.6m | M W               | \$37.5m                 | 502.9          | \$74,763       | NO                | \$28.9m                 | 954.4       | \$39,398       | M W               | \$37.5m                 | 502.9          | \$74,763       |
| \$37.7m | M W               | \$37.5m                 | 502.9          | \$74,962       | NO                | \$28.9m                 | 954.4       | \$39,503       | M W               | \$37.5m                 | 502.9          | \$74,962       |
| \$37.8m | M W               | \$37.5m                 | 502.9          | \$75,161       | NO                | \$28.9m                 | 954.4       | \$39,608       | M W               | \$37.5m                 | 502.9          | \$75,161       |
| \$37.9m | M W               | \$37.5m                 | 502.9          | \$75,360       | NO                | \$28.9m                 | 954.4       | \$39,712       | M W               | \$37.5m                 | 502.9          | \$75,360       |
| \$38.0m | M W               | \$37.5m                 | 502.9          | \$75,558       | NO                | \$28.9m                 | 954.4       | \$39,817       | M W               | \$37.5m                 | 502.9          | \$75,558       |
| \$38.1m | M W               | \$37.5m                 | 502.9          | \$75,757       | NO                | \$28.9m                 | 954.4       | \$39,922       | M W               | \$37.5m                 | 502.9          | \$75,757       |
| \$38.2m | M W               | \$37.5m                 | 502.9          | \$75,956       | NO                | \$28.9m                 | 954.4       | \$40,027       | M W               | \$37.5m                 | 502.9          | \$75,956       |
| \$38.3m | M W               | \$37.5m                 | 502.9          | \$76,155       | NO                | \$28.9m                 | 954.4       | \$40,132       | M W               | \$37.5m                 | 502.9          | \$76,155       |
| \$38.4m | M W               | \$37.5m                 | 502.9          | \$76,354       | NO                | \$28.9m                 | 954.4       | \$40,236       | M W               | \$37.5m                 | 502.9          | \$76,354       |
| \$38.5m | M W               | \$37.5m                 | 502.9          | \$76,553       | NO                | \$28.9m                 | 954.4       | \$40,341       | M W               | \$37.5m                 | 502.9          | \$76,553       |
| \$38.6m | M W               | \$37.5m                 | 502.9          | \$76,751       | NO                | \$28.9m                 | 954.4       | \$40,446       | M W               | \$37.5m                 | 502.9          | \$76,751       |
| \$38.7m | M W               | \$37.5m                 | 502.9          | \$76,950       | NO                | \$28.9m                 | 954.4       | \$40,551       | M W               | \$37.5m                 | 502.9          | \$76,950       |
| \$38.8m | M W               | \$37.5m                 | 502.9          | \$77,149       | NO                | \$28.9m                 | 954.4       | \$40,655       | M W               | \$37.5m                 | 502.9          | \$77,149       |
| \$38.9m | M W               | \$37.5m                 | 502.9          | \$77,348       | NO                | \$28.9m                 | 954.4       | \$40,760       | M W               | \$37.5m                 | 502.9          | \$77,348       |
| \$39.0m | M W               | \$37.5m                 | 502.9          | \$77,547       | NO                | \$28.9m                 | 954.4       | \$40,865       | M W               | \$37.5m                 | 502.9          | \$77,547       |
| \$39.1m | M W               | \$37.5m                 | 502.9          | \$77,746       | NO                | \$28.9m                 | 954.4       | \$40,970       | M W               | \$37.5m                 | 502.9          | \$77,746       |
| \$39.2m | M W               | \$37.5m                 | 502.9          | \$77,944       | NO                | \$28.9m                 | 954.4       | \$41,075       | M W               | \$37.5m                 | 502.9          | \$77,944       |
| \$39.3m | QW                | \$39.3m                 | 551.9          | \$71,208       | N O               | \$28.9m                 | 954.4       | \$41,179       | QW                | \$39.3m                 | 551.9          | \$71,208       |
| \$39.4m | QW                | \$39.3m                 | 551.9          | \$71,389       | NO                | \$28.9m                 | 954.4       | \$41,284       | QW                | \$39.3m                 | 551.9          | \$71,389       |
| \$39.5m | QW                | \$39.3m                 | 551.9          | \$71,570       | NO                | \$28.9m                 | 954.4       | \$41,389       | QW                | \$39.3m                 | 551.9          | \$71,570       |
| \$39.6m | QW                | \$39.3m                 | 551.9          | \$71,751       | NO                | \$28.9m                 | 954.4       | \$41,494       | QW                | \$39.3m                 | 551.9          | \$71,751       |
| \$39.7m | QW                | \$39.3m                 | 551.9          | \$71,933       | NO                | \$28.9m                 | 954.4       | \$41,599       | QW                | \$39.3m                 | 551.9          | \$71,933       |
| \$39.8m | QW                | \$39.3m                 | 551.9          | \$72,114       | НQ                | \$39.8m                 | 992.9       | \$40,084       | QW                | \$39.3m                 | 551.9          | \$72,114       |
| \$39.9m | QW                | \$39.3m                 | 551.9          | \$72,295       | НQ                | \$39.8m                 | 992.9       | \$40,184       | QW                | \$39.3m                 | 551.9          | \$72,295       |
| \$40.0m | QW                | \$39.3m                 | 551.9          | \$72,476       | ΗQ                | \$39.8m                 | 992.9       | \$40,285       | QW                | \$39.3m                 | 551.9          | \$72,476       |
| \$40.1m | QW                | \$39.3m                 | 551.9          | \$72,657       | ΗQ                | \$39.8m                 | 992.9       | \$40,386       | QW                | \$39.3m                 | 551.9          | \$72,657       |
| \$40.2m | QW                | \$39.3m                 | 551.9          | \$72,839       | ΗQ                | \$39.8m                 | 992.9       | \$40,487       | QW                | \$39.3m                 | 551.9          | \$72,839       |
| \$40.3m | QW                | \$39.3m                 | 551.9          | \$73,020       | НQ                | \$39.8m                 | 992.9       | \$40,587       | QW                | \$39.3m                 | 551.9          | \$73,020       |
| \$40.4m | QW                | \$39.3m                 | 551.9          | \$73,201       | ΗQ                | \$39.8m                 | 992.9       | \$40,688       | QW                | \$39.3m                 | 551.9          | \$73,201       |
| \$40.5m | QW                | \$39.3m                 | 551.9          | \$73,382       | ΗQ                | \$39.8m                 | 992.9       | \$40,789       | QW                | \$39.3m                 | 551.9          | \$73,382       |
| \$40.6m | QW                | \$39.3m                 | 551.9          | \$73,563       | НQ                | \$39.8m                 | 992.9       | \$40,889       | QW                | \$39.3m                 | 551.9          | \$73,563       |
| \$40.7m | QW                | \$39.3m                 | 551.9          | \$73,745       | ΗQ                | \$39.8m                 | 992.9       | \$40,990       | QW                | \$39.3m                 | 551.9          | \$73,745       |
| \$40.8m | QW                | \$39.3m                 | 551.9          | \$73,926       | ΗQ                | \$39.8m                 | 992.9       | \$41,091       | QW                | \$39.3m                 | 551.9          | \$73,926       |
| \$40.9m | QW                | \$39.3m                 | 551.9          | \$74,107       | НQ                | \$39.8m                 | 992.9       | \$41,192       | QW                | \$39.3m                 | 551.9          | \$74,107       |
| \$41.0m | QW                | \$39.3m                 | 551.9          | \$74,288       | ΗQ                | \$39.8m                 | 992.9       | \$41,292       | QW                | \$39.3m                 | 551.9          | \$74,288       |
| \$41.1m | QW                | \$39.3m                 | 551.9          | \$74,469       | ΗQ                | \$39.8m                 | 992.9       | \$41,393       | QW                | \$39.3m                 | 551.9          | \$74,469       |
| \$41.2m | M Q               | \$41.2m                 | 843.4          | \$48,849       | ΗQ                | \$39.8m                 | 992.9       | \$41,494       | M Q               | \$41.2m                 | 843.4          | \$48,849       |
| \$41.3m | MQ                | \$41.2m                 | 843.4          | \$48,968       | ΗQ                | \$39.8m                 | 992.9       | \$41,594       | MQ                | \$41.2m                 | 843.4          | \$48,968       |

| Budget  |                   | Primary bu     | dget (\$50n | 1)             |                   | Lower bu                | dget (\$0m) |                |                   | Higher bud              | lget (\$100    | m)             |
|---------|-------------------|----------------|-------------|----------------|-------------------|-------------------------|-------------|----------------|-------------------|-------------------------|----------------|----------------|
| impact  | Tech <sup>a</sup> | $\Delta C^{b}$ | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ΔE°         | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | $\Delta E^{c}$ | $\lambda^{-d}$ |
| \$41.4m | MQ                | \$41.2m        | 843.4       | \$49,087       | НQ                | \$39.8m                 | 992.9       | \$41,695       | MQ                | \$41.2m                 | 843.4          | \$49,087       |
| \$41.5m | MQ                | \$41.2m        | 843.4       | \$49,205       | НQ                | \$39.8m                 | 992.9       | \$41,796       | MQ                | \$41.2m                 | 843.4          | \$49,205       |
| \$41.6m | MQ                | \$41.2m        | 843.4       | \$49,324       | НQ                | \$39.8m                 | 992.9       | \$41,897       | MQ                | \$41.2m                 | 843.4          | \$49,324       |
| \$41.7m | M Q               | \$41.2m        | 843.4       | \$49,442       | НQ                | \$39.8m                 | 992.9       | \$41,997       | MQ                | \$41.2m                 | 843.4          | \$49,442       |
| \$41.8m | M Q               | \$41.2m        | 843.4       | \$49,561       | НQ                | \$39.8m                 | 992.9       | \$42,098       | MQ                | \$41.2m                 | 843.4          | \$49,561       |
| \$41.9m | M Q               | \$41.2m        | 843.4       | \$49,679       | НQ                | \$39.8m                 | 992.9       | \$42,199       | MQ                | \$41.2m                 | 843.4          | \$49,679       |
| \$42.0m | M Q               | \$41.2m        | 843.4       | \$49,798       | НQ                | \$39.8m                 | 992.9       | \$42,299       | M Q               | \$41.2m                 | 843.4          | \$49,798       |
| \$42.1m | M Q               | \$41.2m        | 843.4       | \$49,917       | HMN               | \$42.1m                 | 1010.6      | \$41,657       | M Q               | \$41.2m                 | 843.4          | \$49,917       |
| \$42.2m | M Q               | \$41.2m        | 843.4       | \$50,035       | HMN               | \$42.1m                 | 1010.6      | \$41,756       | M Q               | \$41.2m                 | 843.4          | \$50,035       |
| \$42.3m | M Q               | \$41.2m        | 843.4       | \$50,154       | HMN               | \$42.1m                 | 1010.6      | \$41,855       | M Q               | \$41.2m                 | 843.4          | \$50,154       |
| \$42.4m | M Q               | \$41.2m        | 843.4       | \$50,272       | HMN               | \$42.1m                 | 1010.6      | \$41,954       | M Q               | \$41.2m                 | 843.4          | \$50,272       |
| \$42.5m | M Q               | \$41.2m        | 843.4       | \$50,391       | HMN               | \$42.1m                 | 1010.6      | \$42,053       | M Q               | \$41.2m                 | 843.4          | \$50,391       |
| \$42.6m | M Q               | \$41.2m        | 843.4       | \$50,509       | HMN               | \$42.1m                 | 1010.6      | \$42,152       | M Q               | \$41.2m                 | 843.4          | \$50,509       |
| \$42.7m | M Q               | \$41.2m        | 843.4       | \$50,628       | HMN               | \$42.1m                 | 1010.6      | \$42,251       | M Q               | \$41.2m                 | 843.4          | \$50,628       |
| \$42.8m | M Q               | \$41.2m        | 843.4       | \$50,747       | HMN               | \$42.1m                 | 1010.6      | \$42,350       | M Q               | \$41.2m                 | 843.4          | \$50,747       |
| \$42.9m | M Q               | \$41.2m        | 843.4       | \$50,865       | HMN               | \$42.1m                 | 1010.6      | \$42,449       | M Q               | \$41.2m                 | 843.4          | \$50,865       |
| \$43.0m | MQ                | \$41.2m        | 843.4       | \$50,984       | HMN               | \$42.1m                 | 1010.6      | \$42,548       | M Q               | \$41.2m                 | 843.4          | \$50,984       |
| \$43.1m | M Q               | \$41.2m        | 843.4       | \$51,102       | ΗO                | \$43.1m                 | 1434.4      | \$30,047       | M Q               | \$41.2m                 | 843.4          | \$51,102       |
| \$43.2m | M Q               | \$41.2m        | 843.4       | \$51,221       | ΗO                | \$43.1m                 | 1434.4      | \$30,117       | M Q               | \$41.2m                 | 843.4          | \$51,221       |
| \$43.3m | M Q               | \$41.2m        | 843.4       | \$51,339       | ΗO                | \$43.1m                 | 1434.4      | \$30,187       | M Q               | \$41.2m                 | 843.4          | \$51,339       |
| \$43.4m | M Q               | \$41.2m        | 843.4       | \$51,458       | ΗO                | \$43.1m                 | 1434.4      | \$30,257       | M Q               | \$41.2m                 | 843.4          | \$51,458       |
| \$43.5m | M Q               | \$41.2m        | 843.4       | \$51,577       | ΗO                | \$43.1m                 | 1434.4      | \$30,326       | M Q               | \$41.2m                 | 843.4          | \$51,577       |
| \$43.6m | M Q               | \$41.2m        | 843.4       | \$51,695       | ΗO                | \$43.1m                 | 1434.4      | \$30,396       | M Q               | \$41.2m                 | 843.4          | \$51,695       |
| \$43.7m | M Q               | \$41.2m        | 843.4       | \$51,814       | ΗO                | \$43.1m                 | 1434.4      | \$30,466       | M Q               | \$41.2m                 | 843.4          | \$51,814       |
| \$43.8m | M Q               | \$41.2m        | 843.4       | \$51,932       | ΗO                | \$43.1m                 | 1434.4      | \$30,535       | M Q               | \$41.2m                 | 843.4          | \$51,932       |
| \$43.9m | M Q               | \$41.2m        | 843.4       | \$52,051       | ΗO                | \$43.1m                 | 1434.4      | \$30,605       | M Q               | \$41.2m                 | 843.4          | \$52,051       |
| \$44.0m | M Q               | \$41.2m        | 843.4       | \$52,169       | ΗO                | \$43.1m                 | 1434.4      | \$30,675       | M Q               | \$41.2m                 | 843.4          | \$52,169       |
| \$44.1m | M Q               | \$41.2m        | 843.4       | \$52,288       | ΗO                | \$43.1m                 | 1434.4      | \$30,745       | M Q               | \$41.2m                 | 843.4          | \$52,288       |
| \$44.2m | M Q               | \$41.2m        | 843.4       | \$52,406       | ΗO                | \$43.1m                 | 1434.4      | \$30,814       | M Q               | \$41.2m                 | 843.4          | \$52,406       |
| \$44.3m | M Q               | \$41.2m        | 843.4       | \$52,525       | HO                | \$43.1m                 | 1434.4      | \$30,884       | M Q               | \$41.2m                 | 843.4          | \$52,525       |
| \$44.4m | M Q               | \$41.2m        | 843.4       | \$52,644       | HO                | \$43.1m                 | 1434.4      | \$30,954       | M Q               | \$41.2m                 | 843.4          | \$52,644       |
| \$44.5m | M Q               | \$41.2m        | 843.4       | \$52,762       | HO                | \$43.1m                 | 1434.4      | \$31,023       | M Q               | \$41.2m                 | 843.4          | \$52,762       |
| \$44.6m | M Q               | \$41.2m        | 843.4       | \$52,881       | HO                | \$43.1m                 | 1434.4      | \$31,093       | M Q               | \$41.2m                 | 843.4          | \$52,881       |
| \$44.7m | M Q               | \$41.2m        | 843.4       | \$52,999       | HO                | \$43.1m                 | 1434.4      | \$31,163       | M Q               | \$41.2m                 | 843.4          | \$52,999       |
| \$44.8m | M Q               | \$41.2m        | 843.4       | \$53,118       | HO                | \$43.1m                 | 1434.4      | \$31,233       | M Q               | \$41.2m                 | 843.4          | \$53,118       |
| \$44.9m | M Q               | \$41.2m        | 843.4       | \$53,236       | HO                | \$43.1m                 | 1434.4      | \$31,302       | M Q               | \$41.2m                 | 843.4          | \$53,236       |
| \$45.0m | MQ                | \$41.2m        | 843.4       | \$53,355       | HO                | \$43.1m                 | 1434.4      | \$31,372       | MQ                | \$41.2m                 | 843.4          | \$53,355       |
| \$45.1m | MQ                | \$41.2m        | 843.4       | \$53,474       | HO                | \$43.1m                 | 1434.4      | \$31,442       | MQ                | \$41.2m                 | 843.4          | \$53,474       |
| \$45.2m | MQ                | \$41.2m        | 843.4       | \$53,592       | HO                | \$43.1m                 | 1434.4      | \$31,511       | MQ                | \$41.2m                 | 843.4          | \$53,592       |
| \$45.3m | MQ                | \$41.2m        | 843.4       | \$53,711       | НО                | \$43.1m                 | 1434.4      | \$31,581       | MQ                | \$41.2m                 | 843.4          | \$53,711       |
| \$45.4m | MQ                | \$41.2m        | 843.4       | \$53,829       | HO                | \$43.1m                 | 1434.4      | \$31,651       | MQ                | \$41.2m                 | 843.4          | \$53,829       |
| \$45.5m | MQ                | \$41.2m        | 843.4       | \$53,948       | НО                | \$43.1m                 | 1434.4      | \$31,721       | MQ                | \$41.2m                 | 843.4          | \$53,948       |
| \$45.6m | MQ                | \$41.2m        | 843.4       | \$54,066       | НО                | \$43.1m                 | 1434.4      | \$31,790       | MQ                | \$41.2m                 | 843.4          | \$54,066       |
| \$45.7m | MQ                | \$41.2m        | 843.4       | \$54,185       | НО                | \$43.1m                 | 1434.4      | \$31,860       | MQ                | \$41.2m                 | 843.4          | \$54,185       |
| \$45.8m | MQ                | \$41.2m        | 843.4       | \$54,304       | HO                | \$43.1m                 | 1434.4      | \$31,930       | MQ                | \$41.2m                 | 843.4          | \$54,304       |
| \$45.9m | MQ                | \$41.2m        | 843.4       | \$54,422       | HO                | \$43.1m                 | 1434.4      | \$31,999       | MQ                | \$41.2m                 | 843.4          | \$54,422       |
| \$46.0m | MQ                | \$41.2m        | 843.4       | \$54,541       | HO                | \$43.1m                 | 1434.4      | \$32,069       | MQ                | \$41.2m                 | 843.4          | \$54,541       |
| \$46.1m | MQ                | \$41.2m        | 843.4       | \$54,659       | HO                | \$43.1m                 | 1434.4      | \$32,139       | MQ                | \$41.2m                 | 843.4          | \$54,659       |
| \$46.2m | MQ                | \$41.2m        | 843.4       | \$54,778       | HO                | \$43.1m                 | 1434.4      | \$32,209       | MQ                | \$41.2m                 | 843.4          | \$54,778       |
| \$46.3m | MQ                | \$41.2m        | 843.4       | \$54,896       | HO                | \$43.1m                 | 1434.4      | \$32,278       | MQ                | \$41.2m                 | 843.4          | \$54,896       |
| \$46.4m | MQ                | \$41.2m        | 843.4       | \$55,015       | HO                | \$43.1m                 | 1434.4      | \$32,348       | MQ                | \$41.2m                 | 843.4          | \$55,015       |
| \$40.5m | MQ                | \$41.2m        | 845.4       | \$33,134       | HU                | \$43.1m                 | 1454.4      | \$32,418       | MQ                | \$41.2m                 | 843.4          | \$22,134       |

| Budget  |                   | Primary bi              | udget (\$50n | n)             |                   | Lower bu                | dget (\$0m)  |                |                   | Higher bud              | lget (\$100  | m)             |
|---------|-------------------|-------------------------|--------------|----------------|-------------------|-------------------------|--------------|----------------|-------------------|-------------------------|--------------|----------------|
| impact  | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | ∆ <i>E</i> ° | $\lambda^{-d}$ | Tech <sup>a</sup> | Δ <b>C</b> <sup>b</sup> | Δ <b>Ε</b> ° | $\lambda^{-d}$ | Tech <sup>a</sup> | ∆ <i>C</i> <sup>b</sup> | Δ <b>Ε</b> ° | $\lambda^{-d}$ |
| \$46.6m | M Q               | \$41.2m                 | 843.4        | \$55,252       | ΗO                | \$43.1m                 | 1434.4       | \$32,488       | MQ                | \$41.2m                 | 843.4        | \$55,252       |
| \$46.7m | MQ                | \$41.2m                 | 843.4        | \$55,371       | ΗO                | \$43.1m                 | 1434.4       | \$32,557       | M Q               | \$41.2m                 | 843.4        | \$55,371       |
| \$46.8m | MQ                | \$41.2m                 | 843.4        | \$55,489       | HO                | \$43.1m                 | 1434.4       | \$32,627       | MQ                | \$41.2m                 | 843.4        | \$55,489       |
| \$46.9m | MQ                | \$41.2m                 | 843.4        | \$55,608       | HO                | \$43.1m                 | 1434.4       | \$32,697       | MQ                | \$41.2m                 | 843.4        | \$55,608       |
| \$47.0m | MQ                | \$41.2m                 | 843.4        | \$55,726       | HO                | \$43.1m                 | 1434.4       | \$32,766       | MQ                | \$41.2m                 | 843.4        | \$55,726       |
| \$47.1m | MQ                | \$41.2m                 | 843.4        | \$55,845       | HO                | \$43.1m                 | 1434.4       | \$32,836       | MQ                | \$41.2m                 | 843.4        | \$55,845       |
| \$47.2m | M Q               | \$41.2m                 | 843.4        | \$55,963       | HNO               | \$47.2m                 | 1501.1       | \$31,444       | M Q               | \$41.2m                 | 843.4        | \$55,963       |
| \$47.3m | M Q               | \$41.2m                 | 843.4        | \$56,082       | HNO               | \$47.2m                 | 1501.1       | \$31,510       | M Q               | \$41.2m                 | 843.4        | \$56,082       |
| \$47.4m | M Q               | \$41.2m                 | 843.4        | \$56,201       | HNO               | \$47.2m                 | 1501.1       | \$31,577       | M Q               | \$41.2m                 | 843.4        | \$56,201       |
| \$47.5m | M Q               | \$41.2m                 | 843.4        | \$56,319       | ΗNΟ               | \$47.2m                 | 1501.1       | \$31,644       | M Q               | \$41.2m                 | 843.4        | \$56,319       |
| \$47.6m | M Q               | \$41.2m                 | 843.4        | \$56,438       | HNO               | \$47.2m                 | 1501.1       | \$31,710       | M Q               | \$41.2m                 | 843.4        | \$56,438       |
| \$47.7m | M Q               | \$41.2m                 | 843.4        | \$56,556       | HNO               | \$47.2m                 | 1501.1       | \$31,777       | M Q               | \$41.2m                 | 843.4        | \$56,556       |
| \$47.8m | M Q               | \$41.2m                 | 843.4        | \$56,675       | HNO               | \$47.2m                 | 1501.1       | \$31,844       | M Q               | \$41.2m                 | 843.4        | \$56,675       |
| \$47.9m | M Q               | \$41.2m                 | 843.4        | \$56,793       | HNO               | \$47.2m                 | 1501.1       | \$31,910       | M Q               | \$41.2m                 | 843.4        | \$56,793       |
| \$48.0m | M Q               | \$41.2m                 | 843.4        | \$56,912       | ΗNΟ               | \$47.2m                 | 1501.1       | \$31,977       | M Q               | \$41.2m                 | 843.4        | \$56,912       |
| \$48.1m | M Q               | \$41.2m                 | 843.4        | \$57,031       | HNO               | \$47.2m                 | 1501.1       | \$32,043       | M Q               | \$41.2m                 | 843.4        | \$57,031       |
| \$48.2m | M Q               | \$41.2m                 | 843.4        | \$57,149       | HNO               | \$47.2m                 | 1501.1       | \$32,110       | M Q               | \$41.2m                 | 843.4        | \$57,149       |
| \$48.3m | M Q               | \$41.2m                 | 843.4        | \$57,268       | HNO               | \$47.2m                 | 1501.1       | \$32,177       | M Q               | \$41.2m                 | 843.4        | \$57,268       |
| \$48.4m | M Q               | \$41.2m                 | 843.4        | \$57,386       | HNO               | \$47.2m                 | 1501.1       | \$32,243       | M Q               | \$41.2m                 | 843.4        | \$57,386       |
| \$48.5m | M Q               | \$41.2m                 | 843.4        | \$57,505       | HNO               | \$47.2m                 | 1501.1       | \$32,310       | M Q               | \$41.2m                 | 843.4        | \$57,505       |
| \$48.6m | M Q               | \$41.2m                 | 843.4        | \$57,623       | HNO               | \$47.2m                 | 1501.1       | \$32,377       | M Q               | \$41.2m                 | 843.4        | \$57,623       |
| \$48.7m | M Q               | \$41.2m                 | 843.4        | \$57,742       | HNO               | \$47.2m                 | 1501.1       | \$32,443       | M Q               | \$41.2m                 | 843.4        | \$57,742       |
| \$48.8m | M Q               | \$41.2m                 | 843.4        | \$57,861       | HNO               | \$47.2m                 | 1501.1       | \$32,510       | M Q               | \$41.2m                 | 843.4        | \$57,861       |
| \$48.9m | M Q               | \$41.2m                 | 843.4        | \$57,979       | HNO               | \$47.2m                 | 1501.1       | \$32,576       | M Q               | \$41.2m                 | 843.4        | \$57,979       |
| \$49.0m | M Q               | \$41.2m                 | 843.4        | \$58,098       | HNO               | \$47.2m                 | 1501.1       | \$32,643       | M Q               | \$41.2m                 | 843.4        | \$58,098       |
| \$49.1m | M Q               | \$41.2m                 | 843.4        | \$58,216       | HNO               | \$47.2m                 | 1501.1       | \$32,710       | M Q               | \$41.2m                 | 843.4        | \$58,216       |
| \$49.2m | M Q               | \$41.2m                 | 843.4        | \$58,335       | HNO               | \$47.2m                 | 1501.1       | \$32,776       | M Q               | \$41.2m                 | 843.4        | \$58,335       |
| \$49.3m | M Q               | \$41.2m                 | 843.4        | \$58,453       | HNO               | \$47.2m                 | 1501.1       | \$32,843       | M Q               | \$41.2m                 | 843.4        | \$58,453       |
| \$49.4m | M Q               | \$41.2m                 | 843.4        | \$58,572       | HNO               | \$47.2m                 | 1501.1       | \$32,909       | M Q               | \$41.2m                 | 843.4        | \$58,572       |
| \$49.5m | M Q               | \$41.2m                 | 843.4        | \$58,691       | HNO               | \$47.2m                 | 1501.1       | \$32,976       | M Q               | \$41.2m                 | 843.4        | \$58,691       |
| \$49.6m | M Q               | \$41.2m                 | 843.4        | \$58,809       | HNO               | \$47.2m                 | 1501.1       | \$33,043       | M Q               | \$41.2m                 | 843.4        | \$58,809       |
| \$49.7m | M Q               | \$41.2m                 | 843.4        | \$58,928       | HNO               | \$47.2m                 | 1501.1       | \$33,109       | M Q               | \$41.2m                 | 843.4        | \$58,928       |
| \$49.8m | M Q               | \$41.2m                 | 843.4        | \$59,046       | HNO               | \$47.2m                 | 1501.1       | \$33,176       | M Q               | \$41.2m                 | 843.4        | \$59,046       |
| \$49.9m | M Q               | \$41.2m                 | 843.4        | \$59,165       | HNO               | \$47.2m                 | 1501.1       | \$33,243       | M Q               | \$41.2m                 | 843.4        | \$59,165       |
| \$50.0m | R                 | \$50.0m                 | 1226.8       | \$40,758       | HNO               | \$47.2m                 | 1501.1       | \$33,309       | MQ                | \$41.2m                 | 843.4        | \$59,283       |

<sup>a</sup> Technologies adopted; <sup>b</sup> Total change in incremental expenditure across all adopted technologies.; <sup>c</sup> Total change in incremental benefit (QALYs) resulting from adoption of technologies; <sup>d</sup> Optimal cost-effectiveness threshold (per QALY) for net disinvestments.

#### Appendix 2 (Chapter 2)

Appendix 2.1: Algebraic specification of optimal numerical thresholds Eckermann and Pekarsky introduced some useful notation for specifying the optimal costeffectiveness threshold.<sup>63</sup> Under specific assumptions, they determined that the optimal threshold in an allocatively inefficient health system is given by:

$$\left(\frac{1}{n}+\frac{1}{d}-\frac{1}{m}\right)^{-1}$$

where n denotes the "[average] ICER of the most cost-effective service in expansion", d denotes the "[average] ICER of the displaced services", and m denotes the "[average] ICER of the least cost-effective of the existing services in contraction".

In order to specify optimal cost-effectiveness thresholds in a model that considers multiple decision makers, imperfect information, and new technologies with non-marginal budget impact, we have updated this notation as follows:

- $d_b^{x,y,z}$  represents the agent's estimate of the average ICER associated with the reallocation preferred by the *reallocator* following a *net investment*;
- $m_b^{x,z}$  represents the agent's estimate of the average ICER associated with the reallocation preferred by the *agent* following a *net investment*;
- $s_b^{x,y,z}$  represents the agent's estimate of the average ICER associated with the reallocation preferred by the *reallocator* following a *net disinvestment*; and
- $n_b^{x,z}$  represents the agent's estimate of the average ICER associated with the reallocation preferred by the *agent* following a *net disinvestment*,

where x denotes the allocator's information, y denotes the reallocator's information, z denotes the agent's information, and b denotes the budget impact of the new technology. For each of x, y and z, information is either good (G) or poor (P). Note that the *d*, *m* and *n* specified by Eckermann and Pekarsky may be considered as special cases of  $d_b^{x,y,z}$ ,  $m_b^{x,y,z}$  and  $n_b^{x,y,z}$ , in which the budget impact (*b*) is assumed to be marginal and the agent's information (*z*) is assumed to differ from the allocator and reallocator's information (*x* and *y* respectively).

Furthermore, it should be noted that Eckermann and Pekarsky's definitions of m and n are inappropriate if initial technologies are permitted to lie in the southern half of the CE plane, since an "expansion" of these initial technologies *reduces* incremental expenditure, while a "contraction" of these initial technologies *increases* incremental expenditure. For the purposes of this chapter,  $m_b^{x,y,z}$  represents the average ICER of the most efficient *reduction* in incremental expenditure on initial technologies (as required following a net investment), while  $n_b^{x,y,z}$  represents the average ICER of the most efficient are incremental expenditure on initial technologies (as required following a net investment), while  $n_b^{x,y,z}$  represents the average ICER of the most efficient increase in incremental expenditure on initial technologies (as required following a net disinvestment), regardless of whether these reductions or increases arise through contraction, expansion, or a combination of both.

Finally, Eckermann and Pekarsky's definition of *d* implies that the new technology is a net investment, since adoption results in "displaced services". This displacement may be inefficient. For our purposes,  $d_b^{x,y,z}$  therefore represents the agent's estimate of the average ICER associated with the *reallocator*'s preferred reallocation following a *net investment*. Since Eckermann and Pekarsky did not define an analogous term for net disinvestments, we denote this as  $s_b^{x,y,z}$ .

In this section, we use this notation to provide algebraic specifications of numerical thresholds for each threshold subset within each of the eight unique sets of optimal thresholds.

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$\lambda_G^+ = m_b^{G,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$\lambda_G^- = n_b^{G,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_P^+)$  is

$$\lambda_P^+ = m_b^{P,P}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_p^-)$  is

$$\lambda_P^- = n_b^{P,P}$$

#### *Threshold set* $\lambda 2$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$\lambda_G^+ = d_b^{G,P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$\lambda_G^- = s_b^{G,P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_P^+)$  is

$$\lambda_P^+ = d_b^{P,G,P}$$

$$\lambda_P^- = s_b^{P,G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$if \left(\frac{1}{n_b^{P,G}} - \frac{1}{m_b^{P,G}}\right)^{-1} > 0 \ then \ \lambda_G^+ = n_b^{P,G} \ else \ \lambda_G^+ = m_b^{P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$if \left(\frac{1}{m_b^{P,G}} - \frac{1}{n_b^{P,G}}\right)^{-1} < 0 \ then \ \lambda_G^- = m_b^{P,G} \ else \ \lambda_G^- = n_b^{P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_p^+)$  is

$$if\left(\frac{1}{n_b^{G,P}} - \frac{1}{m_b^{G,P}}\right)^{-1} > 0 \ then \ \lambda_P^+ = n_b^{G,P} \ else \ \lambda_P^+ = m_b^{G,P}$$

$$if \left(\frac{1}{m_b^{G,P}} - \frac{1}{n_b^{G,P}}\right)^{-1} < 0 \ then \ \lambda_P^- = m_b^{G,P} \ else \ \lambda_P^- = n_b^{G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$\lambda_G^+ = m_b^{P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$\lambda_G^- = n_b^{P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_P^+)$  is

$$\lambda_P^+ = m_b^{G,P}$$

$$\lambda_P^- = n_b^{G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$if \left(\frac{1}{n_b^{P,G}} - \frac{1}{d_b^{P,P,G}}\right)^{-1} > 0 \ then \ \lambda_G^+ = \left(\frac{1}{m_b^{P,G}} + \frac{1}{n_b^{P,G}} - \frac{1}{d_b^{P,P,G}}\right)^{-1} \ else \ \lambda_G^+ = m_b^{P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$if \left(\frac{1}{m_b^{P,G}} - \frac{1}{s_b^{P,P,G}}\right)^{-1} < 0 \ then \ \lambda_G^- = \left(\frac{1}{n_b^{P,G}} + \frac{1}{m_b^{P,G}} - \frac{1}{s_b^{P,P,G}}\right)^{-1} \ else \ \lambda_G^- = n_b^{P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_p^+)$  is

$$if \left(\frac{1}{n_b^{G,P}} - \frac{1}{d_b^{G,G,P}}\right)^{-1} > 0 \ then \ \lambda_P^+ = \left(\frac{1}{m_b^{G,P}} + \frac{1}{n_b^{G,P}} - \frac{1}{d_b^{G,G,P}}\right)^{-1} \ else \ \lambda_P^+ = m_b^{G,P}$$

$$if \left(\frac{1}{m_b^{G,P}} - \frac{1}{s_b^{G,P}}\right)^{-1} < 0 \ then \ \lambda_P^- = \left(\frac{1}{n_b^{G,P}} + \frac{1}{m_b^{G,P}} - \frac{1}{s_b^{G,P}}\right)^{-1} \ else \ \lambda_P^- = n_b^{G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$if \left(\frac{1}{n_b^{P,G}} - \frac{1}{m_b^{P,G}}\right)^{-1} > 0 \ then \ \lambda_G^+ = \left(\frac{1}{d_b^{P,P,G}} + \frac{1}{n_b^{P,G}} - \frac{1}{m_b^{P,G}}\right)^{-1} \ else \ \lambda_G^+ = d_b^{P,P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$if \left(\frac{1}{m_b^{P,G}} - \frac{1}{n_b^{P,G}}\right)^{-1} < 0 \ then \ \lambda_G^- = \left(\frac{1}{s_b^{P,P,G}} + \frac{1}{m_b^{P,G}} - \frac{1}{n_b^{P,G}}\right)^{-1} \ else \ \lambda_G^- = s_b^{P,P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_P^+)$  is

$$if \left(\frac{1}{n_b^{G,P}} - \frac{1}{m_b^{G,P}}\right)^{-1} > 0 \ then \ \lambda_P^+ = \left(\frac{1}{d_b^{G,G,P}} + \frac{1}{n_b^{G,P}} - \frac{1}{m_b^{G,P}}\right)^{-1} \ else \ \lambda_P^+ = d_b^{G,G,P}$$

$$if \left(\frac{1}{m_b^{G,P}} - \frac{1}{n_b^{G,P}}\right)^{-1} < 0 \ then \ \lambda_P^- = \left(\frac{1}{s_b^{G,G,P}} + \frac{1}{m_b^{G,P}} - \frac{1}{n_b^{G,P}}\right)^{-1} \ else \ \lambda_P^- = s_b^{G,G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$if \left(\frac{1}{n_b^{P,G}} - \frac{1}{d_b^{P,P,G}}\right)^{-1} > 0 \ then \ \lambda_G^+ = n_b^{P,G} \ else \ \lambda_G^+ = d_b^{P,P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$if \left(\frac{1}{m_b^{P,G}} - \frac{1}{s_b^{P,P,G}}\right)^{-1} < 0 \ then \ \lambda_G^- = m_b^{P,G} \ else \ \lambda_G^- = s_b^{P,P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_p^+)$  is

$$if \left(\frac{1}{n_b^{G,P}} - \frac{1}{d_b^{G,G,P}}\right)^{-1} > 0 \ then \ \lambda_P^+ = n_b^{G,P} \ else \ \lambda_P^+ = d_b^{G,G,P}$$

$$if \left(\frac{1}{m_b^{G,P}} - \frac{1}{s_b^{G,G,P}}\right)^{-1} < 0 \ then \ \lambda_P^- = m_b^{G,P} \ else \ \lambda_P^- = s_b^{G,G,P}$$

If the agent has good information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_G^+)$  is

$$\lambda_G^+ = d_b^{P,P,G}$$

- The optimal numerical threshold for net disinvestments  $(\lambda_G^-)$  is

$$\lambda_G^- = s_b^{P,P,G}$$

If the agent has poor information on the incremental benefit of initial technologies, then:

- The optimal numerical threshold for net investments  $(\lambda_P^+)$  is

$$\lambda_P^+ = d_b^{G,G,P}$$

$$\lambda_P^- = s_b^{G,G,P}$$

Appendix 2.2: Reallocation tables

|               |                   |                         | Reallocation     | with good in    | nformation              |                  |                 |                   |                         | Reallocation     | with poor in    | formation               |                       |                 |
|---------------|-------------------|-------------------------|------------------|-----------------|-------------------------|------------------|-----------------|-------------------|-------------------------|------------------|-----------------|-------------------------|-----------------------|-----------------|
|               | Marginal          | Estimate                | s with good info | ormation        | Estimate                | s with poor info | rmation         | Marginal          | Estimate                | s with good info | ormation        | Estimate                | s with poor info      | rmation         |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$         | $E(\Delta E)^d$ |
| \$0.1m        | С                 | -1.75                   | \$57,122         | -1.75           | -1.58                   | \$63,369         | -1.58           | Е                 | -1.76                   | \$56,770         | -1.76           | 10.43                   | -\$9,586              | 10.43           |
| \$0.2m        | R                 | -1.75                   | \$57,106         | -3.50           | -1.61                   | \$62,051         | -3.19           | Е                 | -1.82                   | \$55,023         | -3.58           | 10.22                   | -\$9,788              | 20.65           |
| \$0.3m        | Н                 | -1.75                   | \$57,058         | -5.25           | -1.47                   | \$67,849         | -4.66           | E                 | -1.87                   | \$53,427         | -5.45           | 10.02                   | -\$9,981              | 30.67           |
| \$0.4m        | 0                 | -1.75                   | \$56,981         | -7.01           | -0.54                   | \$185,534        | -5.20           | E                 | -1.92                   | \$51,963         | -7.38           | 9.83                    | -\$10,168             | 40.50           |
| \$0.5m        | R                 | -1.76                   | \$56,970         | -8.76           | -1.62                   | \$61,903         | -6.82           | E                 | -1.98                   | \$50,613         | -9.35           | 9.66                    | -\$10,348             | 50.17           |
| \$0.6m        | Н                 | -1.76                   | \$56,948         | -10.52          | -1.48                   | \$67,718         | -8.29           | E                 | -2.03                   | \$49,363         | -11.38          | 9.50                    | -\$10,522             | 59.67           |
| \$0.7m        | С                 | -1.76                   | \$56,911         | -12.28          | -1.58                   | \$63,135         | -9.88           | E                 | -2.07                   | \$48,201         | -13.45          | 9.35                    | -\$10,691             | 69.02           |
| \$0.8m        | Н                 | -1.76                   | \$56,837         | -14.04          | -1.48                   | \$67,586         | -11.36          | E                 | -2.12                   | \$47,118         | -15.57          | 9.21                    | -\$10,854             | 78.24           |
| \$0.9m        | R                 | -1.76                   | \$56,834         | -15.80          | -1.62                   | \$61,755         | -12.98          | E                 | -2.17                   | \$46,104         | -17.74          | 9.08                    | -\$11,012             | 87.32           |
| \$1.0m        | 0                 | -1.76                   | \$56,833         | -17.56          | -0.54                   | \$185,052        | -13.52          | E                 | -2.21                   | \$45,153         | -19.96          | 8.96                    | -\$11,166             | 96.27           |
| \$1.1m        | W                 | -1.76                   | \$56,787         | -19.32          | -2.26                   | \$44,258         | -15.78          | E                 | -2.26                   | \$44,259         | -22.22          | 8.84                    | -\$11,316             | 105.11          |
| \$1.2m        | E                 | -1.76                   | \$56,770         | -21.08          | 10.43                   | -\$9,586         | -5.34           | E                 | -2.30                   | \$43,416         | -24.52          | 8.72                    | -\$11,463             | 113.83          |
| \$1.3m        | Н                 | -1.76                   | \$56,726         | -22.84          | -1.48                   | \$67,454         | -6.83           | E                 | -2.35                   | \$42,619         | -26.87          | 8.62                    | -\$11,605             | 122.45          |
| \$1.4m        | U                 | -1.76                   | \$56,722         | -24.60          | -3.15                   | \$31,764         | -9.98           | E                 | -2.39                   | \$41,865         | -29.25          | 8.52                    | -\$11,744             | 130.97          |
| \$1.5m        | С                 | -1.76                   | \$56,698         | -26.37          | -1.59                   | \$62,899         | -11.57          | E                 | -2.43                   | \$41,149         | -31.69          | 8.42                    | -\$11,880             | 139.38          |
| \$1.6m        | R                 | -1.76                   | \$56,698         | -28.13          | -1.62                   | \$61,607         | -13.19          | E                 | -2.47                   | \$40,469         | -34.16          | 8.32                    | -\$12,012             | 147.71          |
| \$1.7m        | 0                 | -1.76                   | \$56,684         | -29.90          | -0.54                   | \$184,567        | -13.73          | E                 | -2.51                   | \$39,821         | -36.67          | 8.24                    | -\$12,142             | 155.94          |
| \$1.8m        | Н                 | -1.77                   | \$56,614         | -31.66          | -1.49                   | \$67,321         | -15.22          | E                 | -2.55                   | \$39,204         | -39.22          | 8.15                    | -\$12,269             | 164.09          |
| \$1.9m        | R                 | -1.77                   | \$56,561         | -33.43          | -1.63                   | \$61,458         | -16.84          | E                 | -2.59                   | \$38,615         | -41.81          | 8.07                    | -\$12,394             | 172.16          |
| \$2.0m        | 0                 | -1.77                   | \$56,534         | -35.20          | -0.54                   | \$184,079        | -17.39          | E                 | -2.63                   | \$38,051         | -44.44          | 7.99                    | -\$12,516             | 180.15          |
| \$2.1m        | Н                 | -1.77                   | \$56,501         | -36.97          | -1.49                   | \$67,187         | -18.87          | E                 | -2.67                   | \$37,511         | -47.10          | 7.91                    | -\$12,636             | 188.07          |
| \$2.2m        | C                 | -1.77                   | \$56,484         | -38.74          | -1.60                   | \$62,661         | -20.47          | E                 | -2.70                   | \$36,993         | -49.80          | 7.84                    | -\$12,754             | 195.91          |
| \$2.3m        | D                 | -1.77                   | \$56,483         | -40.51          | -5.50                   | \$18,182         | -25.97          | E                 | -2.74                   | \$36,497         | -52.54          | 7.77                    | -\$12,869             | 203.68          |
| \$2.4m        | R                 | -1.77                   | \$56,424         | -42.28          | -1.63                   | \$61,309         | -27.60          | E                 | -2.78                   | \$36,020         | -55.32          | 7.70                    | -\$12,982             | 211.38          |
| \$2.5m        | H                 | -1.//                   | \$56,389         | -44.06          | -1.49                   | \$67,053         | -29.09          | E                 | -2.81                   | \$35,561         | -58.13          | /.64                    | -\$13,094             | 219.02          |
| \$2.6m        | 0                 | -1.//                   | \$56,384         | -45.83          | -0.54                   | \$183,589        | -29.64          | E                 | -2.85                   | \$35,119         | -60.98          | 7.57                    | -\$13,203             | 226.59          |
| \$2.7m        | K                 | -1./8                   | \$56,286         | -4/.61          | -1.64                   | \$61,160         | -31.27          | E                 | -2.88                   | \$34,693         | -63.86          | 7.51                    | -\$13,311             | 234.10          |
| \$2.8m        | H<br>C            | -1./8                   | \$56,270         | -49.38          | -1.49                   | \$00,919         | -32.77          | E                 | -2.92                   | \$34,283         | -00./8          | 7.45                    | -\$13,41/             | 241.30          |
| \$2.911       | 0                 | -1./8                   | \$56,200         | -51.10          | -1.60                   | \$182,006        | -34.37          | E                 | -2.93                   | \$33,660         | -09.73          | 7.40                    | -\$13,322<br>\$12,625 | 246.93          |
| \$3.0m        | U                 | -1.78                   | \$56,162         | -32.94          | -0.33                   | \$185,090        | -34.92          | E                 | -2.98                   | \$33,304         | -72.72          | 7.34                    | \$13,025              | 250.29          |
| \$3.1m        | P                 | -1.78                   | \$56,149         | -54.72          | -1.50                   | \$61.011         | 38.05           | E                 | -3.02                   | \$32,775         | 78.79           | 7.29                    | \$13,720              | 203.38          |
| \$3.2m        | <u>к</u>          | -1.78                   | \$56,081         | -58.28          | -0.55                   | \$182,600        | -38.60          | E                 | -3.05                   | \$32,775         | -81.87          | 7.18                    | -\$13,820             | 270.81          |
| \$3.5m        | C                 | -1.78                   | \$56,050         | -60.07          | -1.61                   | \$62,180         | -40.21          | F                 | -3.12                   | \$32,92          | -84.98          | 7.13                    | -\$14 021             | 285.12          |
| \$3.5m        | H                 | -1 78                   | \$56,048         | -61.85          | -1.50                   | \$66,648         | -41 71          | Ē                 | -3.15                   | \$31,766         | -88.13          | 7.08                    | -\$14,117             | 292.21          |
| \$3.6m        | R                 | -1 79                   | \$56,010         | -63.64          | -1.64                   | \$60,860         | -43 35          | Ē                 | -3.18                   | \$31,450         | -91 31          | 7.04                    | -\$14 211             | 299.24          |
| \$3.7m        | Н                 | -1.79                   | \$55,934         | -65.42          | -1.50                   | \$66.512         | -44.85          | E                 | -3.21                   | \$31,143         | -94.52          | 6.99                    | -\$14.305             | 306.23          |
| \$3.8m        | 0                 | -1.79                   | \$55,927         | -67.21          | -0.55                   | \$182,103        | -45.40          | E                 | -3.24                   | \$30.845         | -97.77          | 6.95                    | -\$14.397             | 313.18          |
| \$3.9m        | R                 | -1.79                   | \$55.872         | -69.00          | -1.65                   | \$60,710         | -47.05          | Ē                 | -3.27                   | \$30,556         | -101.04         | 6.90                    | -\$14,487             | 320.08          |
| \$4.0m        | С                 | -1.79                   | \$55,831         | -70.79          | -1.61                   | \$61,937         | -48.67          | Е                 | -3.30                   | \$30,274         | -104.34         | 6.86                    | -\$14,577             | 326.94          |
| \$4.1m        | Н                 | -1.79                   | \$55,819         | -72.59          | -1.51                   | \$66.375         | -50.17          | Е                 | -3.33                   | \$30,000         | -107.67         | 6.82                    | -\$14,666             | 333.76          |
| \$4.2m        | U                 | -1.79                   | \$55,814         | -74.38          | -3.20                   | \$31,255         | -53.37          | Е                 | -3.36                   | \$29,734         | -111.04         | 6.78                    | -\$14,753             | 340.54          |
| \$4.3m        | 0                 | -1.79                   | \$55,773         | -76.17          | -0.55                   | \$181,601        | -53.92          | Е                 | -3.39                   | \$29,474         | -114.43         | 6.74                    | -\$14,840             | 347.28          |
| \$4.4m        | R                 | -1.79                   | \$55,733         | -77.96          | -1.65                   | \$60,559         | -55.57          | Е                 | -3.42                   | \$29,220         | -117.85         | 6.70                    | -\$14,925             | 353.98          |
| \$4.5m        | Н                 | -1.80                   | \$55,703         | -79.76          | -1.51                   | \$66,238         | -57.08          | E                 | -3.45                   | \$28,975         | -121.30         | 6.66                    | -\$15,010             | 360.64          |
| \$4.6m        | G                 | -1.80                   | \$55,644         | -81.56          | -3.45                   | \$28,945         | -60.54          | Е                 | -3.48                   | \$28,733         | -124.78         | 6.63                    | -\$15,093             | 367.27          |
| \$4.7m        | 0                 | -1.80                   | \$55,619         | -83.35          | -0.55                   | \$181,097        | -61.09          | Е                 | -3.51                   | \$28,500         | -128.29         | 6.59                    | -\$15,176             | 373.86          |
| \$4.8m        | С                 | -1.80                   | \$55,609         | -85.15          | -1.62                   | \$61,691         | -62.71          | E                 | -3.54                   | \$28,270         | -131.83         | 6.55                    | -\$15,258             | 380.41          |

# Table A2.2.1: Reallocation following net investment (allocator has good information)

|                    |                   |                        | Reallocation      | with good in       | nformation             |                      |                    |                   |                        | Reallocation     | ı with poor in     | formation          |                   |                    |
|--------------------|-------------------|------------------------|-------------------|--------------------|------------------------|----------------------|--------------------|-------------------|------------------------|------------------|--------------------|--------------------|-------------------|--------------------|
|                    | Marginal          | Estimate               | s with good info  | ormation           | Estimates              | s with poor info     | rmation            | Marginal          | Estimate               | s with good info | ormation           | Estimates          | s with poor info  | rmation            |
| Budget imnact      | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | E(ICER)          | $E(\Lambda E)^{d}$ | $E(\Lambda E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ |
| \$4.9m             | R                 | -1.80                  | \$55 594          | -86.95             | -1.66                  | \$60 408             | -64 37             | E                 | -3 57                  | \$28.047         | -135.40            | 6.52               | -\$15 339         | 386.93             |
| \$5.0m             | Н                 | -1.80                  | \$55,587          | -88.75             | -1.51                  | \$66,100             | -65.88             | E                 | -3.59                  | \$27.829         | -138.99            | 6.49               | -\$15,419         | 393.41             |
| \$5.1m             | Н                 | -1.80                  | \$55.471          | -90.55             | -1.52                  | \$65,962             | -67.40             | E                 | -3.62                  | \$27.615         | -142.61            | 6.45               | -\$15,498         | 399.87             |
| \$5.2m             | 0                 | -1.80                  | \$55,463          | -92.36             | -0.55                  | \$180 591            | -67.95             | E                 | -3.65                  | \$27,406         | -146.26            | 6.42               | -\$15,577         | 406.29             |
| \$5.2m             | R                 | -1.80                  | \$55,455          | -94.16             | -1.66                  | \$60,256             | -69.61             | M                 | -1.92                  | \$52,170         | -148.18            | 0.12               | -\$548.002        | 406.47             |
| \$5.0m             | C                 | -1.81                  | \$55,387          | -95.96             | -1.63                  | \$61 444             | -71.24             | 0                 | -1.91                  | \$52,239         | -150.09            | 0.10               | -\$1.02m          | 406.57             |
| \$5.5m             | Н                 | -1.81                  | \$55,354          | -97.77             | -1.52                  | \$65,823             | -72.76             | Ň                 | -1.75                  | \$56,981         | -151.85            | -0.54              | \$185 534         | 406.03             |
| \$5.6m             | R                 | -1.81                  | \$55,331          | -99.58             | -1.66                  | \$60,104             | -74.42             | 0                 | -1.76                  | \$56,833         | -153.60            | -0.54              | \$185,057         | 405.49             |
| \$5.0m             | 0                 | -1.01                  | \$55,307          | -101.39            | -1.00                  | \$180.082            | -74.97             | 0                 | -1.76                  | \$56,684         | -155.00            | -0.54              | \$185,052         | 404.95             |
| \$5.7m             | Н                 | -1.81                  | \$55,307          | -103.20            | -1.52                  | \$65,683             | -76.50             | 0                 | -1.77                  | \$56,534         | -157.14            | -0.54              | \$184.079         | 404.40             |
| \$5.0m             | P                 | -1.01                  | \$55,250          | 105.01             | -1.52                  | \$50,053             | 78.16              | 0                 | -1.77                  | \$56,384         | 158.01             | -0.54              | \$183.580         | 403.86             |
| \$5.9111<br>\$6.0m | C                 | -1.01                  | \$55,173          | 106.82             | -1.07                  | \$61.195             | 70.80              | 0                 | -1.77                  | \$56,232         | 160.60             | -0.54              | \$183,006         | 403.30             |
| \$6.1m             | 0                 | -1.01                  | \$55,102          | 108.64             | -1.05                  | \$170,560            | -79.80             | 0                 | -1.78                  | \$56,091         | 162.47             | -0.55              | \$183,090         | 403.31             |
| \$6.2m             | <u> </u>          | -1.01                  | \$55,149          | 110.45             | -0.50                  | \$65.543             | 81.88              | 0                 | -1.78                  | \$55,031         | 164.26             | -0.55              | \$182,000         | 402.70             |
| \$0.2111<br>\$6.2m | D                 | -1.01                  | \$55,119          | 112.27             | -1.55                  | \$50,545             | -01.00             | 0                 | -1.79                  | \$55,921         | 166.05             | -0.55              | \$182,103         | 401.66             |
| 50.5III<br>66.4m   | E                 | -1.62                  | \$55,034          | -112.27            | -1.07                  | \$39,799             | -05.55             | 0                 | -1./9                  | \$55,775         | -100.03            | -0.33              | \$181,001         | 401.00             |
| 50.4III<br>\$6.5m  | L<br>U            | -1.62                  | \$55,025          | -114.09            | 10.22                  | -\$7,700             | -73.34             | 0                 | -1.80                  | \$55,019         | -107.85            | -0.55              | \$181,097         | 401.11             |
| 50.5III<br>\$6.6m  | П                 | -1.62                  | \$53,000          | -113.90            | -1.55                  | \$03,402             | -/4.6/             | 0                 | -1.60                  | \$55,405         | -109.03            | -0.33              | \$180,391         | 400.30             |
| 50.0111<br>\$6.7m  | 0<br>C            | -1.62                  | \$54,991          | -11/./2            | -0.30                  | \$179,034            | -73.42             | 0                 | -1.61                  | \$55,507         | -1/1.40            | -0.36              | \$180,082         | 200.45             |
| 50.7III<br>66.9    | D D               | -1.62                  | \$34,933          | -119.34            | -1.04                  | \$60,945             | -//.0/             | 0                 | -1.01                  | \$53,149         | -1/5.28            | -0.36              | \$179,309         | 208 80             |
| \$0.8m             | K                 | -1.62                  | \$34,695          | -121.50            | -1.08                  | \$39,040             | -/8./4             | 0                 | -1.62                  | \$54,991         | -1/3.09            | -0.36              | \$179,034         | 398.89             |
| \$6.9m             | <u> </u>          | -1.82                  | \$54,891          | -123.19            | -3.23                  | \$30,738             | -82.00             | 0                 | -1.82                  | \$54,832         | -1/6.92            | -0.56              | \$178,014         | 398.33             |
| \$7.0m             | H                 | -1.82                  | \$54,881          | -125.01            | -1.55                  | \$05,201             | -83.33             | 0                 | -1.83                  | \$54,672         | -1/8./5            | -0.56              | \$1/8,014         | 397.77             |
| \$7.1m             | 0                 | -1.82                  | \$54,832          | -126.83            | -0.56                  | \$1/8,536            | -84.09             | 0                 | -1.83                  | \$54,511         | -180.58            | -0.56              | \$177,490         | 397.20             |
| \$7.2m             | H                 | -1.83                  | \$54,762          | -128.66            | -1.54                  | \$65,119             | -85.62             | 0                 | -1.84                  | \$54,349         | -182.42            | -0.57              | \$176,963         | 396.64             |
| \$7.3m             | R                 | -1.83                  | \$54,/52          | -130.48            | -1.68                  | \$59,492             | -8/.30             | 0                 | -1.85                  | \$54,186         | -184.27            | -0.57              | \$176,432         | 396.07             |
| \$7.4m             | 0                 | -1.83                  | \$54,707          | -132.31            | -1.65                  | \$60,690             | -88.95             | 0                 | -1.85                  | \$54,022         | -186.12            | -0.57              | \$175,898         | 395.50             |
| \$7.5m             | 0                 | -1.83                  | \$54,672          | -134.14            | -0.56                  | \$1/8,014            | -89.51             | 0                 | -1.86                  | \$53,857         | -18/.98            | -0.57              | \$1/5,362         | 394.93             |
| \$7.6m             | H                 | -1.83                  | \$54,642          | -135.97            | -1.54                  | \$64,976             | -91.05             | 0                 | -1.86                  | \$53,691         | -189.84            | -0.57              | \$174,819         | 394.36             |
| \$7.7m             | R                 | -1.83                  | \$54,610          | -137.80            | -1.69                  | \$59,339             | -92.74             | 0                 | -1.87                  | \$53,524         | -191./1            | -0.57              | \$174,277         | 393.79             |
| \$7.8m             | H                 | -1.83                  | \$54,521          | -139.64            | -1.54                  | \$64,833             | -94.28             | 0                 | -1.8/                  | \$53,356         | -193.58            | -0.58              | \$1/3,/29         | 393.21             |
| \$7.9m             | 0                 | -1.83                  | \$54,511          | -141.4/            | -0.56                  | \$177,490            | -94.84             | 0                 | -1.88                  | \$53,187         | -195.46            | -0.58              | \$1/3,181         | 392.63             |
| \$8.0m             | <u> </u>          | -1.84                  | \$54,476          | -143.31            | -1.65                  | \$60,434             | -96.50             | 0                 | -1.89                  | \$53,017         | -197.35            | -0.58              | \$172,625         | 392.05             |
| \$8.1m             | R                 | -1.84                  | \$54,468          | -145.14            | -1.69                  | \$59,184             | -98.19             | 0                 | -1.89                  | \$52,845         | -199.24            | -0.58              | \$172,067         | 391.47             |
| \$8.2m             | H                 | -1.84                  | \$54,400          | -146.98            | -1.55                  | \$64,689             | -99./3             | 0                 | -1.90                  | \$52,673         | -201.14            | -0.58              | \$171,506         | 390.89             |
| \$8.3m             | D                 | -1.84                  | \$54,349          | -148.82            | -0.57                  | \$176,963            | -100.30            | 0                 | -1.90                  | \$52,499         | -203.04            | -0.59              | \$170,940         | 390.30             |
| \$8.4m             | R II              | -1.84                  | \$54,323          | -150.66            | -1.69                  | \$59,029             | -101.99            | 0                 | -1.91                  | \$52,325         | -204.95            | -0.59              | \$1/0,3/2         | 389.72             |
| \$8.5m             | H                 | -1.84                  | \$54,279          | -152.50            | -1.55                  | \$64,544             | -103.54            | 0                 | -1.92                  | \$52,149         | -206.87            | -0.59              | \$169,797         | 389.13             |
| \$8.6m             | <u> </u>          | -1.84                  | \$54,244          | -154.55            | -1.00                  | \$00,177             | -105.20            | 0                 | -1.92                  | \$51,972         | -208.80            | -0.59              | \$169,225         | 388.34             |
| \$8./m             | 0                 | -1.85                  | \$54,180          | -156.19            | -0.57                  | \$170,432            | -105.//            | 0                 | -1.93                  | \$51,/95         | -210.73            | -0.59              | \$168,640         | 387.94             |
| \$8.8m             | R                 | -1.85                  | \$54,183          | -158.04            | -1.70                  | \$58,874             | -10/.47            | 0                 | -1.94                  | \$51,614         | -212.66            | -0.60              | \$168,059         | 387.35             |
| \$8.9m             | H                 | -1.85                  | \$54,157          | -159.88            | -1.55                  | \$64,399             | -109.02            | 0                 | -1.94                  | \$51,433         | -214.61            | -0.60              | \$167,468         | 386.75             |
| \$9.0m             | K                 | -1.85                  | \$54,040          | -161./4            | -1./0                  | \$58,/19             | -110./3            | 0                 | -1.95                  | \$51,251         | -216.56            | -0.60              | \$166,875         | 386.15             |
| \$9.1m             | Н                 | -1.85                  | \$54,034          | -103.59            | -1.56                  | \$64,253             | -112.28            | 0                 | -1.96                  | \$51,068         | -218.52            | -0.60              | \$166,279         | 385.55             |
| \$9.2m             | 0                 | -1.85                  | \$54,022          | -165.44            | -0.57                  | \$175,898            | -112.85            | 0                 | -1.97                  | \$50,883         | -220.48            | -0.60              | \$165,678         | 384.95             |
| \$9.3m             | <u> </u>          | -1.85                  | \$54,010          | -16/.29            | -1.67                  | \$59,917             | -114.52            | 0                 | -1.97                  | \$50,697         | -222.45            | -0.61              | \$165,071         | 384.34             |
| \$9.4m             | U                 | -1.85                  | \$53,953          | -169.14            | -3.31                  | \$30,213             | -11/.83            | 0                 | -1.98                  | \$50,510         | -224.43            | -0.61              | \$164,463         | 385.73             |
| \$9.5m             | H                 | -1.85                  | \$53,911          | -1/1.00            | -1.56                  | \$64,107             | -119.39            | 0                 | -1.99                  | \$50,321         | -226.42            | -0.61              | \$163,846         | 383.12             |
| \$9.6m             | ĸ                 | -1.86                  | \$53,896          | -1/2.85            | -1.71                  | \$58,563             | -121.10            | 0                 | -1.99                  | \$50,130         | -228.42            | -0.61              | \$163,228         | 382.51             |
| \$9.7m             | 0                 | -1.86                  | \$53,857          | -1/4./1            | -0.57                  | \$1/5,362            | -121.67            | 0                 | -2.00                  | \$49,939         | -230.42            | -0.61              | \$162,602         | 381.90             |
| \$9.8m             | Н                 | -1.80                  | \$33,/8/          | -1/0.5/            | -1.50                  | 303,959              | -123.23            | 0                 | -2.01                  | \$49,/45         | -232.43            | -0.62              | \$101,975         | 381.28             |
| 39.9m              | U                 | -1.80                  | 333,1/4           | -1/8.45            | -1.68                  | 339,634              | -124.91            | 0                 | -2.02                  | \$49,331         | -234.43            | -0.62              | \$101,340         | 380.00             |

|                      |                   |                   | Reallocation     | with good in      | nformation        |                        |                 |                   |                   | Reallocation     | with poor in      | iformation        |                                    |                   |
|----------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------------|-----------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimate          | s with good info | rmation           | Estimates         | s with poor info       | rmation         | Marginal          | Estimate          | s with good info | ormation          | Estimate          | s with poor info                   | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER_m) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$10.0m              | R                 | -1.86             | \$53.752         | -180.29           | -1.71             | \$58,406               | -126.62         | 0                 | -2.03             | \$49.355         | -236.47           | -0.62             | \$160.699                          | 380.04            |
| \$10.1m              | 0                 | -1.86             | \$53,691         | -182.15           | -0.57             | \$174.819              | -127.19         | 0                 | -2.03             | \$49,157         | -238.51           | -0.62             | \$160.059                          | 379.41            |
| \$10.2m              | H                 | -1.86             | \$53,663         | -184.01           | -1.57             | \$63.811               | -128.76         | 0                 | -2.04             | \$48,957         | -240 55           | -0.63             | \$159.406                          | 378 78            |
| \$10.3m              | R                 | -1.87             | \$53,608         | -185.88           | -1 72             | \$58,250               | -130.47         | Ő                 | -2.05             | \$48,756         | -242.60           | -0.63             | \$158,753                          | 378.16            |
| \$10.6m              | Н                 | -1.87             | \$53,538         | -187.75           | -1.57             | \$63,663               | -132.05         | Ő                 | -2.06             | \$48,553         | -244 66           | -0.63             | \$158,093                          | 377.52            |
| \$10.5m              | C                 | -1.87             | \$53,535         | -189.62           | -1.68             | \$59,390               | -133.73         | Ő                 | -2.07             | \$48 349         | -246 73           | -0.64             | \$157.428                          | 376.89            |
| \$10.6m              | 0                 | -1.87             | \$53,522         | -191.48           | -0.57             | \$174 277              | -134 30         | Ő                 | -2.08             | \$48,143         | -248.81           | -0.64             | \$156,755                          | 376.25            |
| \$10.0m              | R                 | -1.87             | \$53,463         | -193.35           | -1.72             | \$58,093               | -136.02         | 0                 | -2.00             | \$47.935         | -250.89           | -0.64             | \$156,079                          | 375.61            |
| \$10.7m              | F                 | -1.87             | \$53,427         | -195.23           | 10.02             | -\$9.981               | -126.01         | 0                 | -2.10             | \$47,726         | -252.99           | -0.64             | \$155,395                          | 374.97            |
| \$10.0m              | H                 | -1.87             | \$53,412         | -197.10           | -1.57             | \$63 514               | -127.58         | 0                 | -2.10             | \$47.513         | -255.09           | -0.65             | \$153,595                          | 374.32            |
| \$10.7m              | 0                 | -1.87             | \$53,356         | -198.97           | -0.58             | \$173 729              | -127.56         | 0                 | -2.10             | \$47,313         | -257.21           | -0.65             | \$154,012                          | 373.67            |
| \$11.0m              | P                 | -1.07             | \$53,330         | 200.85            | -0.38             | \$57.035               | 120.10          | 0                 | 2.11              | \$47,083         | 250.33            | -0.05             | \$153.308                          | 373.07            |
| \$11.1m<br>\$11.2m   | C K               | -1.88             | \$53,518         | 200.85            | -1.75             | \$50,123               | 121.57          | 0                 | -2.12             | \$46,867         | 259.55            | -0.05             | \$155,508                          | 272.26            |
| \$11.2m              | <u></u> н         | -1.88             | \$53,294         | 204.60            | -1.09             | \$63.364               | 133.15          | 0                 | -2.13             | \$46,648         | 263.61            | -0.00             | \$152,002                          | 371.70            |
| \$11.5m              | 0                 | -1.00             | \$55,200         | -204.00           | -1.58             | \$172.101              | 122.72          | 0                 | -2.14             | \$46,048         | -203.01           | -0.00             | \$151,000                          | 271.04            |
| \$11.4III<br>\$11.5m | P                 | -1.88             | \$53,167         | -200.48           | -0.38             | \$1/5,101              | -135./5         | 0                 | -2.13             | \$40,423         | -203.70           | -0.66             | \$151,103                          | 270.28            |
| \$11.5III<br>\$11.6m | K<br>U            | -1.00             | \$53,173         | -208.30           | -1.73             | \$57,777               | 127.04          | 0                 | -2.10             | \$40,202         | -207.93           | -0.00             | \$130,437                          | 260.71            |
| \$11.0III<br>\$11.7m | п                 | -1.66             | \$53,139         | -210.24           | -1.38             | \$05,215               | 120.46          | 0                 | -2.18             | \$43,973         | -270.10           | -0.67             | \$149,701                          | 260.04            |
| \$11./III<br>\$11.9  | w<br>C            | -1.00             | \$33,090         | -212.13           | -2.42             | \$41,362               | -139.40         | 0                 | -2.19             | \$45,746         | -272.29           | -0.67             | \$146,930                          | 309.04            |
| \$11.8m              |                   | -1.88             | \$53,052         | -214.01           | -1.70             | \$38,834               | -141.10         | 0                 | -2.20             | \$45,519         | -2/4.48           | -0.67             | \$148,207                          | 267.69            |
| \$11.9m              | H<br>D            | -1.89             | \$53,032         | -215.90           | -1.39             | \$03,002               | -142.74         | 0                 | -2.21             | \$45,284         | -278.01           | -0.68             | \$147,449                          | 307.08            |
| \$12.0m              | ĸ                 | -1.89             | \$53,027         | -217.78           | -1./4             | \$57,018               | -144.48         | 0                 | -2.22             | \$45,049         | -2/8.91           | -0.68             | \$140,083                          | 367.00            |
| \$12.1m              | 0                 | -1.89             | \$53,017         | -219.67           | -0.58             | \$172,625              | -145.06         | 0                 | -2.23             | \$44,813         | -281.14           | -0.69             | \$145,909                          | 366.32            |
| \$12.2m              | U                 | -1.89             | \$52,998         | -221.56           | -3.37             | \$29,678               | -148.43         | 0                 | -2.24             | \$44,571         | -283.39           | -0.69             | \$145,127                          | 365.63            |
| \$12.3m              | H                 | -1.89             | \$52,904         | -223.45           | -1.59             | \$62,909               | -150.02         | 0                 | -2.26             | \$44,328         | -285.64           | -0.69             | \$144,336                          | 364.94            |
| \$12.4m              | R                 | -1.89             | \$52,881         | -225.34           | -1.74             | \$57,459               | -151.76         | 0                 | -2.27             | \$44,082         | -287.91           | -0.70             | \$143,536                          | 364.24            |
| \$12.5m              | 0                 | -1.89             | \$52,845         | -227.23           | -0.58             | \$172,067              | -152.34         | 0                 | -2.28             | \$43,835         | -290.19           | -0.70             | \$142,727                          | 363.54            |
| \$12.6m              | C                 | -1.89             | \$52,806         | -229.12           | -1.71             | \$58,582               | -154.05         | 0                 | -2.29             | \$43,584         | -292.49           | -0.70             | \$141,910                          | 362.83            |
| \$12.7m              | H                 | -1.89             | \$52,775         | -231.02           | -1.59             | \$62,757               | -155.64         | 0                 | -2.31             | \$43,329         | -294.80           | -0.71             | \$141,082                          | 362.13            |
| \$12.8m              | R                 | -1.90             | \$52,734         | -232.91           | -1.75             | \$57,300               | -157.38         | 0                 | -2.32             | \$43,072         | -297.12           | -0.71             | \$140,245                          | 361.41            |
| \$12.9m              | 0                 | -1.90             | \$52,673         | -234.81           | -0.58             | \$171,506              | -157.97         | 0                 | -2.34             | \$42,810         | -299.45           | -0.72             | \$139,396                          | 360.69            |
| \$13.0m              | H                 | -1.90             | \$52,646         | -236.71           | -1.60             | \$62,603               | -159.56         | 0                 | -2.35             | \$42,550         | -301.80           | -0.72             | \$138,539                          | 359.97            |
| \$13.1m              | G                 | -1.90             | \$52,621         | -238.61           | -3.65             | \$27,373               | -163.22         | 0                 | -2.37             | \$42,282         | -304.17           | -0.73             | \$137,671                          | 359.25            |
| \$13.2m              | R                 | -1.90             | \$52,586         | -240.51           | -1.75             | \$57,140               | -164.97         | 0                 | -2.38             | \$42,012         | -306.55           | -0.73             | \$136,791                          | 358.52            |
| \$13.3m              | C                 | -1.90             | \$52,559         | -242.42           | -1.72             | \$58,308               | -166.68         | 0                 | -2.40             | \$41,736         | -308.95           | -0.74             | \$135,899                          | 357.78            |
| \$13.4m              | H                 | -1.90             | \$52,517         | -244.32           | -1.60             | \$62,448               | -168.28         | 0                 | -2.41             | \$41,461         | -311.36           | -0.74             | \$134,996                          | 357.04            |
| \$13.5m              | 0                 | -1.90             | \$52,499         | -246.23           | -0.59             | \$170,940              | -168.87         | 0                 | -2.43             | \$41,179         | -313.79           | -0.75             | \$134,081                          | 356.29            |
| \$13.6m              | R                 | -1.91             | \$52,439         | -248.13           | -1.76             | \$56,980               | -170.62         | 0                 | -2.45             | \$40,893         | -316.23           | -0.75             | \$133,154                          | 355.54            |
| \$13.7m              | H                 | -1.91             | \$52,386         | -250.04           | -1.61             | \$62,294               | -172.23         | 0                 | -2.46             | \$40,606         | -318.69           | -0.76             | \$132,212                          | 354.79            |
| \$13.8m              | 0                 | -1.91             | \$52,325         | -251.95           | -0.59             | \$170,372              | -172.82         | 0                 | -2.48             | \$40,311         | -321.17           | -0.76             | \$131,256                          | 354.02            |
| \$13.9m              | C                 | -1.91             | \$52,309         | -253.86           | -1.72             | \$58,030               | -174.54         | 0                 | -2.50             | \$40,014         | -323.67           | -0.77             | \$130,290                          | 353.26            |
| \$14.0m              | R                 | -1.91             | \$52,291         | -255.78           | -1.76             | \$56,819               | -176.30         | 0                 | -2.52             | \$39,712         | -326.19           | -0.77             | \$129,304                          | 352.48            |
| \$14.1m              | Н                 | -1.91             | \$52,255         | -257.69           | -1.61             | \$62,138               | -177.91         | 0                 | -2.54             | \$39,406         | -328.73           | -0.78             | \$128,307                          | 351.70            |
| \$14.2m              | Q                 | -1.91             | \$52,239         | -259.60           | 0.10              | -\$1.02m               | -177.81         | 0                 | -2.56             | \$39,093         | -331.29           | -0.79             | \$127,293                          | 350.92            |
| \$14.3m              | M                 | -1.92             | \$52,170         | -261.52           | 0.18              | -\$548,002             | -177.63         | 0                 | -2.58             | \$38,778         | -333.87           | -0.79             | \$126,261                          | 350.13            |
| \$14.4m              | 0                 | -1.92             | \$52,149         | -263.44           | -0.59             | \$169,797              | -178.22         | 0                 | -2.60             | \$38,456         | -336.47           | -0.80             | \$125,213                          | 349.33            |
| \$14.5m              | R                 | -1.92             | \$52,143         | -265.36           | -1.76             | \$56,658               | -179.98         | 0                 | -2.62             | \$38,129         | -339.09           | -0.81             | \$124,148                          | 348.52            |
| \$14.6m              | Н                 | -1.92             | \$52,123         | -267.28           | -1.61             | \$61,981               | -181.60         | 0                 | -2.65             | \$37,796         | -341.73           | -0.81             | \$123,063                          | 347.71            |
| \$14.7m              | С                 | -1.92             | \$52,058         | -269.20           | -1.73             | \$57,751               | -183.33         | 0                 | -2.67             | \$37,456         | -344.40           | -0.82             | \$121,960                          | 346.89            |
| \$14.8m              | U                 | -1.92             | \$52,025         | -271.12           | -3.43             | \$29,133               | -186.76         | 0                 | -2.69             | \$37,111         | -347.10           | -0.83             | \$120,834                          | 346.06            |
| \$14.9m              | R                 | -1.92             | \$51,994         | -273.04           | -1.77             | \$56,496               | -188.53         | 0                 | -2.72             | \$36,759         | -349.82           | -0.84             | \$119,690                          | 345.23            |
| \$15.0m              | Н                 | -1.92             | \$51,991         | -274.97           | -1.62             | \$61,823               | -190.15         | 0                 | -2.75             | \$36,399         | -352.57           | -0.84             | \$118,521                          | 344.38            |

|                      |                   |                        | Reallocation      | with good in       | nformation             |                      |                    |                   |                        | Reallocation     | with poor in       | nformation         |                   |                    |
|----------------------|-------------------|------------------------|-------------------|--------------------|------------------------|----------------------|--------------------|-------------------|------------------------|------------------|--------------------|--------------------|-------------------|--------------------|
|                      | Marginal          | Estimate               | s with good infa  | rmation            | Estimates              | s with poor info     | rmation            | Marginal          | Estimate               | s with good info | ormation           | Estimate           | s with poor info  | rmation            |
| Budget impact        | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | E(ICER)          | $E(\Lambda E)^{d}$ | $E(\Lambda E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ |
| \$15.1m              | 0                 | -1.92                  | \$51 972          | -276.89            | -0.59                  | \$169 225            | -190 74            | 0                 | -2.78                  | \$36,035         | -355 34            | -0.85              | \$117 331         | 343 53             |
| \$15.2m              | Ē                 | -1.92                  | \$51.963          | -278 81            | 9.83                   | -\$10,168            | -180.90            | 0                 | -2.80                  | \$35,662         | -358.15            | -0.86              | \$116.114         | 342.67             |
| \$15.3m              | D                 | -1.93                  | \$51,942          | -280.74            | -5.98                  | \$16,720             | -186.88            | Ő                 | -2.83                  | \$35,280         | -360.98            | -0.87              | \$114 873         | 341.80             |
| \$15.0m              | Н                 | -1.93                  | \$51,912          | -282.67            | -1.62                  | \$61,665             | -188 51            | 0                 | -2.87                  | \$34,889         | -363.85            | -0.88              | \$113,603         | 340.92             |
| \$15.4m              | R                 | -1.93                  | \$51,835          | -284.60            | -1.02                  | \$56 334             | -190.28            | 0                 | -2.07                  | \$34.491         | -366.75            | -0.89              | \$112,005         | 340.03             |
| \$15.5m              | C                 | -1.93                  | \$51,813          | -286.53            | -1 74                  | \$57,468             | -192.02            | 0                 | -2.93                  | \$34.082         | -369.68            | -0.90              | \$110.974         | 339.13             |
| \$15.0m              | 0                 | 1.03                   | \$51,003          | 288.46             | 0.50                   | \$168.640            | 102.61             | 0                 | 2.93                   | \$33,664         | 372.65             | -0.90              | \$100,574         | 338 21             |
| \$15.7m              | <u></u><br>и      | -1.93                  | \$51,795          | 200.20             | -0.59                  | \$100,040            | 104.24             | 0                 | -2.97                  | \$22,226         | 275.66             | -0.91              | \$109,015         | 227.20             |
| \$15.0m              | D D               | -1.93                  | \$51,724          | -290.39            | -1.03                  | \$56,172             | -194.24            | 0                 | -3.01                  | \$33,230         | 279.71             | -0.92              | \$106,210         | 226.25             |
| \$13.7III<br>\$16.0m | N 0               | -1.93                  | \$51,095          | 204.26             | -1.78                  | \$168.050            | 106.62             | 0                 | -3.05                  | \$22,794         | 281.80             | -0.94              | \$100,785         | 225.40             |
| \$10.0m              | U U               | -1.94                  | \$51,014          | -294.20            | -0.00                  | \$100,039            | -190.02            | 0                 | -3.09                  | \$32,343         | -361.60            | -0.93              | \$103,309         | 224.44             |
| \$16.1m              | П                 | -1.94                  | \$51,589          | -290.20            | -1.03                  | \$01,540             | -198.23            | 0                 | -3.14                  | \$31,878         | -364.94            | -0.96              | \$103,793         | 222.46             |
| \$16.2m              | U<br>D            | -1.94                  | \$51,546          | -298.14            | -1./3                  | \$57,185             | -199.99            | 0                 | -3.19                  | \$31,397         | -388.12            | -0.98              | \$102,233         | 333.40             |
| \$16.3m              | K                 | -1.94                  | \$51,545          | -300.08            | -1./9                  | \$50,008             | -201.78            | 0                 | -3.24                  | \$30,903         | -391.30            | -0.99              | \$100,621         | 332.47             |
| \$16.4m              | H                 | -1.94                  | \$51,454          | -302.02            | -1.63                  | \$01,185             | -203.41            | 0                 | -3.29                  | \$30,391         | -394.65            | -1.01              | \$98,957          | 331.40             |
| \$16.5m              | 0                 | -1.94                  | \$51,433          | -303.97            | -0.60                  | \$167,468            | -204.01            | 0                 | -3.35                  | \$29,863         | -398.00            | -1.03              | \$97,236          | 330.43             |
| \$16.6m              | R                 | -1.95                  | \$51,395          | -305.91            | -1.79                  | \$55,845             | -205.80            | 0                 | -3.41                  | \$29,314         | -401.41            | -1.05              | \$95,450          | 329.38             |
| \$16.7m              | H                 | -1.95                  | \$51,318          | -307.86            | -1.64                  | \$61,023             | -207.44            | 0                 | -3.48                  | \$28,746         | -404.89            | -1.07              | \$93,596          | 328.31             |
| \$16.8m              | C                 | -1.95                  | \$51,286          | -309.81            | -1.76                  | \$56,895             | -209.20            | 0                 | -3.55                  | \$28,152         | -408.44            | -1.09              | \$91,664          | 327.22             |
| \$16.9m              | 0                 | -1.95                  | \$51,251          | -311.76            | -0.60                  | \$166,875            | -209.80            | 0                 | -3.63                  | \$27,533         | -412.07            | -1.12              | \$89,648          | 326.11             |
| \$17.0m              | R                 | -1.95                  | \$51,244          | -313.72            | -1.80                  | \$55,681             | -211.59            | 0                 | -3.72                  | \$26,885         | -415.79            | -1.14              | \$87,537          | 324.96             |
| \$17.1m              | Н                 | -1.95                  | \$51,181          | -315.67            | -1.64                  | \$60,861             | -213.24            | 0                 | -3.82                  | \$26,203         | -419.61            | -1.17              | \$85,318          | 323.79             |
| \$17.2m              | R                 | -1.96                  | \$51,092          | -317.63            | -1.80                  | \$55,516             | -215.04            | 0                 | -3.92                  | \$25,484         | -423.53            | -1.21              | \$82,978          | 322.59             |
| \$17.3m              | 0                 | -1.96                  | \$51,068          | -319.59            | -0.60                  | \$166,279            | -215.64            | 0                 | -4.04                  | \$24,722         | -427.58            | -1.24              | \$80,497          | 321.35             |
| \$17.4m              | Н                 | -1.96                  | \$51,044          | -321.54            | -1.65                  | \$60,698             | -217.29            | 0                 | -4.18                  | \$23,910         | -431.76            | -1.28              | \$77,853          | 320.06             |
| \$17.5m              | U                 | -1.96                  | \$51,034          | -323.50            | -3.50                  | \$28,578             | -220.79            | 0                 | -4.34                  | \$23,039         | -436.10            | -1.33              | \$75,016          | 318.73             |
| \$17.6m              | С                 | -1.96                  | \$51,024          | -325.46            | -1.77                  | \$56,604             | -222.55            | 0                 | -4.53                  | \$22,096         | -440.63            | -1.39              | \$71,945          | 317.34             |
| \$17.7m              | R                 | -1.96                  | \$50,941          | -327.43            | -1.81                  | \$55,351             | -224.36            | 0                 | -4.75                  | \$21,065         | -445.37            | -1.46              | \$68,586          | 315.88             |
| \$17.8m              | Н                 | -1.96                  | \$50,906          | -329.39            | -1.65                  | \$60,533             | -226.01            | Н                 | -1.75                  | \$57,058         | -447.13            | -1.47              | \$67,849          | 314.41             |
| \$17.9m              | 0                 | -1.97                  | \$50,883          | -331.36            | -0.60                  | \$165,678            | -226.61            | Н                 | -1.76                  | \$56,948         | -448.88            | -1.48              | \$67,718          | 312.93             |
| \$18.0m              | R                 | -1.97                  | \$50,788          | -333.33            | -1.81                  | \$55,186             | -228.43            | Н                 | -1.76                  | \$56,837         | -450.64            | -1.48              | \$67,586          | 311.45             |
| \$18.1m              | Н                 | -1.97                  | \$50,767          | -335.30            | -1.66                  | \$60,368             | -230.08            | Н                 | -1.76                  | \$56,726         | -452.40            | -1.48              | \$67,454          | 309.97             |
| \$18.2m              | С                 | -1.97                  | \$50,759          | -337.27            | -1.78                  | \$56,310             | -231.86            | Н                 | -1.77                  | \$56,614         | -454.17            | -1.49              | \$67,321          | 308.48             |
| \$18.3m              | 0                 | -1.97                  | \$50,697          | -339.24            | -0.61                  | \$165,071            | -232.47            | Н                 | -1.77                  | \$56,501         | -455.94            | -1.49              | \$67,187          | 306.99             |
| \$18.4m              | R                 | -1.97                  | \$50,635          | -341.21            | -1.82                  | \$55,020             | -234.28            | Н                 | -1.77                  | \$56,389         | -457.71            | -1.49              | \$67,053          | 305.50             |
| \$18.5m              | Н                 | -1.98                  | \$50,627          | -343.19            | -1.66                  | \$60,202             | -235.94            | Н                 | -1.78                  | \$56,276         | -459.49            | -1.49              | \$66,919          | 304.01             |
| \$18.6m              | Е                 | -1.98                  | \$50,613          | -345.16            | 9.66                   | -\$10,348            | -226.28            | Н                 | -1.78                  | \$56,162         | -461.27            | -1.50              | \$66,784          | 302.51             |
| \$18.7m              | 0                 | -1.98                  | \$50,510          | -347.14            | -0.61                  | \$164,463            | -226.89            | Н                 | -1.78                  | \$56,048         | -463.05            | -1.50              | \$66,648          | 301.01             |
| \$18.8m              | С                 | -1.98                  | \$50,491          | -349.12            | -1.79                  | \$56,013             | -228.67            | Н                 | -1.79                  | \$55,934         | -464.84            | -1.50              | \$66,512          | 299.51             |
| \$18.9m              | Н                 | -1.98                  | \$50,487          | -351.10            | -1.67                  | \$60,035             | -230.34            | Н                 | -1.79                  | \$55,819         | -466.63            | -1.51              | \$66,375          | 298.00             |
| \$19.0m              | R                 | -1.98                  | \$50,482          | -353.09            | -1.82                  | \$54,853             | -232.16            | Н                 | -1.80                  | \$55,703         | -468.43            | -1.51              | \$66,238          | 296.49             |
| \$19.1m              | Н                 | -1.99                  | \$50,345          | -355.07            | -1.67                  | \$59,867             | -233.83            | Н                 | -1.80                  | \$55,587         | -470.23            | -1.51              | \$66,100          | 294.98             |
| \$19.2m              | R                 | -1.99                  | \$50,329          | -357.06            | -1.83                  | \$54,686             | -235.66            | Н                 | -1.80                  | \$55,471         | -472.03            | -1.52              | \$65,962          | 293.46             |
| \$19.3m              | 0                 | -1.99                  | \$50,321          | -359.05            | -0.61                  | \$163,846            | -236.27            | Н                 | -1.81                  | \$55,354         | -473.84            | -1.52              | \$65,823          | 291.94             |
| \$19.4m              | С                 | -1.99                  | \$50,220          | -361.04            | -1.79                  | \$55,712             | -238.07            | Н                 | -1.81                  | \$55,236         | -475.65            | -1.52              | \$65,683          | 290.42             |
| \$19.5m              | Н                 | -1.99                  | \$50,203          | -363.03            | -1.68                  | \$59,698             | -239.74            | Н                 | -1.81                  | \$55,119         | -477.46            | -1.53              | \$65,543          | 288.89             |
| \$19.6m              | R                 | -1.99                  | \$50,175          | -365.02            | -1.83                  | \$54,519             | -241.58            | Н                 | -1.82                  | \$55,000         | -479.28            | -1.53              | \$65,402          | 287.36             |
| \$19.7m              | 0                 | -1.99                  | \$50.130          | -367.02            | -0.61                  | \$163.228            | -242.19            | Н                 | -1.82                  | \$54.881         | -481.10            | -1.53              | \$65.261          | 285.83             |
| \$19.8m              | Н                 | -2.00                  | \$50,063          | -369.01            | -1.68                  | \$59,528             | -243.87            | Н                 | -1.83                  | \$54,762         | -482.93            | -1.54              | \$65,119          | 284.30             |
| \$19.9m              | U                 | -2.00                  | \$50.023          | -371.01            | -3.57                  | \$28,012             | -247.44            | Н                 | -1.83                  | \$54.642         | -484.76            | -1.54              | \$64,976          | 282.76             |
| \$20.0m              | R                 | -2.00                  | \$50.020          | -373.01            | -1.84                  | \$54,351             | -249.28            | 0                 | -5.02                  | \$19,920         | -489.78            | -1.54              | \$64,861          | 281.22             |
| \$20.1m              | C                 | -2.00                  | \$49,947          | -375.02            | -1.80                  | \$55,409             | -251.08            | H                 | -1.83                  | \$54,521         | -491.61            | -1.54              | \$64,833          | 279.67             |

|                      |                   |                   | Reallocation                       | with good in      | nformation        |                                    |                 |                   |                   | Reallocation                       | ı with poor in    | iformation        |                                    | -                 |
|----------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-----------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimate          | s with good info                   | rmation           | Estimates         | s with poor info                   | rmation         | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | s with poor info                   | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$20.2m              | 0                 | -2.00             | \$49,939                           | -377.02           | -0.61             | \$162,602                          | -251.70         | Н                 | -1.84             | \$54,400                           | -493.45           | -1.55             | \$64,689                           | 278.13            |
| \$20.3m              | Н                 | -2.00             | \$49,915                           | -379.02           | -1.68             | \$59,357                           | -253.38         | Н                 | -1.84             | \$54,279                           | -495.29           | -1.55             | \$64,544                           | 276.58            |
| \$20.4m              | R                 | -2.01             | \$49,865                           | -381.03           | -1.85             | \$54,182                           | -255.23         | Н                 | -1.85             | \$54,157                           | -497.14           | -1.55             | \$64.399                           | 275.03            |
| \$20.5m              | Н                 | -2.01             | \$49,774                           | -383.04           | -1.69             | \$59,186                           | -256.92         | Н                 | -1.85             | \$54.034                           | -498.99           | -1.56             | \$64.253                           | 273.47            |
| \$20.6m              | 0                 | -2.01             | \$49,745                           | -385.05           | -0.62             | \$161.975                          | -257.54         | Н                 | -1.85             | \$53,911                           | -500.85           | -1.56             | \$64,107                           | 271.91            |
| \$20.7m              | R                 | -2.01             | \$49,709                           | -387.06           | -1.85             | \$54.013                           | -259.39         | Н                 | -1.86             | \$53,787                           | -502.70           | -1.56             | \$63,959                           | 270.35            |
| \$20.8m              | С                 | -2.01             | \$49,670                           | -389.07           | -1.81             | \$55,102                           | -261.20         | Н                 | -1.86             | \$53.663                           | -504.57           | -1.57             | \$63.811                           | 268.78            |
| \$20.9m              | Н                 | -2.02             | \$49.628                           | -391.09           | -1.69             | \$59.013                           | -262.90         | Н                 | -1.87             | \$53,538                           | -506.44           | -1.57             | \$63,663                           | 267.21            |
| \$21.0m              | R                 | -2.02             | \$49,553                           | -393.10           | -1.86             | \$53.844                           | -264.75         | Н                 | -1.87             | \$53,412                           | -508.31           | -1.57             | \$63.514                           | 265.63            |
| \$21.1m              | 0                 | -2.02             | \$49.551                           | -395.12           | -0.62             | \$161.340                          | -265.37         | C                 | -1.75             | \$57,122                           | -510.06           | -1.58             | \$63,369                           | 264.06            |
| \$21.7m              | H                 | -2.02             | \$49 480                           | -397 14           | -1 70             | \$58,839                           | -267.07         | H                 | -1.88             | \$53,286                           | -511 94           | -1.58             | \$63,364                           | 262.48            |
| \$21.2m              | R                 | -2.02             | \$49,396                           | -399.17           | -1.86             | \$53,674                           | -268.94         | Н                 | -1.88             | \$53,159                           | -513.82           | -1.58             | \$63,213                           | 260.90            |
| \$21.0 m             | C                 | -2.02             | \$49,390                           | -401 19           | -1.83             | \$54 791                           | -270.76         | C                 | -1.76             | \$56,911                           | -515.52           | -1.58             | \$63,135                           | 259.31            |
| \$21.5m              | E                 | -2.03             | \$49 363                           | -403.22           | 9.50              | -\$10 522                          | -261.26         | H                 | -1.89             | \$53,032                           | -517.46           | -1.59             | \$63,062                           | 257.73            |
| \$21.5m<br>\$21.6m   | 0                 | -2.03             | \$49 355                           | -405.24           | -0.62             | \$160,699                          | -261.88         | Н                 | -1.89             | \$52,002                           | -519.35           | -1.59             | \$62,909                           | 256.14            |
| \$21.0m              | Н                 | -2.03             | \$49 334                           | -407.27           | -0.02             | \$58,664                           | -263.58         | C                 | -1.09             | \$56,698                           | -521.11           | -1.59             | \$62,909                           | 254.55            |
| \$21.7m              | R                 | -2.03             | \$49,334                           | -409.30           | -1.70             | \$53,503                           | -265.56         | н                 | -1.70             | \$52,775                           | -523.01           | -1.59             | \$62,757                           | 257.95            |
| \$21.0m              | G                 | 2.03              | \$49,202                           | 411.33            | 3.01              | \$25,503                           | 269.36          | C II              | -1.09             | \$56,484                           | 524.78            | -1.59             | \$62,757                           | 251.36            |
| \$21.7m              | - U<br>- Н        | 2.03              | \$49,202                           | 413.37            | -5.91             | \$58.488                           | 271.07          | н                 | -1.77             | \$52.646                           | 526.68            | -1.00             | \$62,603                           | 2/0 76            |
| \$22.0m              | 0                 | -2.03             | \$49,180                           | 415.37            | -1./1             | \$160,050                          | 271.60          | н<br>Н            | -1.90             | \$52,040                           | 528.58            | -1.00             | \$62,003                           | 249.70            |
| \$22.1111<br>\$22.2m | C                 | -2.03             | \$40,107                           | 417.40            | -0.02             | \$100,039                          | 272.52          | C II              | -1.90             | \$56,269                           | 520.36            | -1.00             | \$62,440                           | 246.10            |
| \$22.2111<br>\$22.3m | P                 | -2.04             | \$49,107                           | 410.49            | -1.04             | \$53,4,477                         | 275.33          | с<br>и            | -1.78             | \$50,208                           | -330.30           | -1.00             | \$62,421                           | 240.30            |
| \$22.3III<br>\$22.4m | K                 | -2.04             | \$49,082                           | 421.51            | -1.66             | \$33,332                           | -2/3.41         | П                 | -1.91             | \$52,580                           | -352.27           | -1.61             | \$62,294                           | 244.95            |
| \$22.4III<br>\$22.5m | п                 | -2.04             | \$49,030                           | 421.51            | -1./1             | \$36,512                           | -2//.12         |                   | -1./6             | \$50,050                           | -334.03           | -1.61             | \$62,180                           | 245.54            |
| \$22.5III<br>\$22.6m | 0                 | -2.04             | \$48,991                           | 425.50            | -3.03             | \$27,434                           | -280.77         | Р                 | -1.91             | \$52,255                           | -353.97           | -1.01             | \$62,138                           | 241.75            |
| \$22.0M              | D D               | -2.04             | \$48,937                           | -423.00           | -0.03             | \$139,400                          | -201.39         | K                 | -1./3             | \$57,100                           | -337.72           | -1.61             | \$62,031                           | 240.12            |
| \$22.7III<br>\$22.9m | K                 | -2.04             | \$40,924                           | -427.04           | -1.66             | \$55,100                           | -265.27         | П                 | -1.92             | \$52,125                           | -339.04           | -1.61             | \$61,981                           | 236.31            |
| \$22.0III<br>\$22.0m | П                 | -2.03             | \$40,000                           | -429.09           | -1./2             | \$56,155                           | -264.99         | D D               | -1./9             | \$55,651                           | -341.43           | -1.61             | \$61,937                           | 230.89            |
| \$22.9III<br>\$22.0m | w                 | -2.03             | \$48,820                           | 422.70            | -1.83             | \$34,100                           | -280.84         | K                 | -1.70             | \$50,970                           | -545.18           | -1.62             | \$61,903                           | 233.28            |
| \$23.0III<br>\$22.1  | W D               | -2.03             | \$40,000                           | 435.79            | -2.03             | \$38,034                           | -269.47         | П                 | -1.92             | \$51,991                           | -343.11           | -1.62             | \$01,823                           | 233.00            |
| \$23.111             | K O               | -2.03             | \$40,700                           | 427.80            | -1.69             | \$32,707                           | -291.30         | K<br>C            | -1.70             | \$55,634                           | -540.87           | -1.02             | \$61,755                           | 232.04            |
| \$23.2III<br>\$23.3m | U U               | -2.03             | \$48,730                           | 420.04            | -0.03             | \$136,733                          | -291.99         |                   | -1.80             | \$55,009                           | -548.00           | -1.02             | \$61,091                           | 230.42            |
| \$23.5m              | 11<br>D           | -2.03             | \$40,730                           | -439.94           | -1./3             | \$57,934                           | -293.71         | 11<br>D           | -1.93             | \$51,050                           | -550.59           | -1.02             | \$61,003                           | 228.80            |
| \$23.4III<br>\$23.5m | K<br>U            | -2.00             | \$40,005                           | -442.00           | -1.09             | \$52,015                           | -293.01         |                   | -1.70             | \$50,098                           | -552.50           | -1.02             | \$61,007                           | 227.10            |
| \$23.5III<br>\$23.6m | П                 | -2.06             | \$40,500                           | -444.03           | -1./3             | \$37,773                           | -297.34         | п                 | -1.93             | \$51,724                           | -554.29           | -1.63             | \$61,500                           | 223.33            |
| \$23.0III<br>\$23.7m | 0<br>C            | -2.06             | \$48,555                           | -440.11           | -0.03             | \$136,093                          | -297.97         | K C               | -1.//             | \$55,301                           | -557.86           | -1.05             | \$61,438                           | 223.92            |
| \$23.7III<br>\$23.9m | P                 | -2.00             | \$48,550                           | 450.24            | -1.80             | \$53,636                           | 201 72          | с<br>и            | -1.01             | \$55,587                           | -550.80           | -1.03             | \$61.246                           | 222.30            |
| \$23.0m              | к<br>u            | -2.00             | \$40,447                           | 452.20            | -1.90             | \$52,043                           | 202.46          | D D               | -1.94             | \$56,424                           | -559.80           | -1.03             | \$61,340                           | 210.07            |
| \$23.9m              | 0                 | -2.00             | \$48,451                           | 454.37            | -1./4             | \$157,394                          | 304.10          | K<br>C            | -1.//             | \$55,162                           | 563.30            | -1.03             | \$61,309                           | 219.03            |
| \$24.0III<br>\$24.1m | D D               | -2.07             | \$40,349                           | -434.37           | -0.04             | \$137,420                          | -304.10         |                   | -1.01             | \$55,102                           | -505.39           | -1.03             | \$61,195                           | 217.40            |
| \$24.1111<br>\$24.2m |                   | -2.07             | \$40,200                           | 458 51            | -1.91             | \$52,400                           | -300.00         | Р                 | -1.94             | \$51,434                           | -303.33           | -1.65             | \$61,165                           | 213.77            |
| \$24.2111<br>\$24.3m | C II              | -2.07             | \$40,201                           | -436.51           | -1./4             | \$57,409                           | -307.73         |                   | -1./6             | \$50,280                           | -560.05           | -1.04             | \$61,100                           | 214.13            |
| \$24.5m              | E                 | -2.07             | \$40,237                           | -400.39           | -1.07             | \$10,601                           | -309.01         | 11<br>D           | -1.93             | \$51,510                           | -309.03           | -1.04             | \$61,023                           | 212.49            |
| \$24.4111<br>\$24.5m | E<br>O            | -2.07             | \$48,201                           | -402.00           | 9.55              | -\$10,091<br>\$156,755             | 200.00          | R<br>C            | -1./0             | \$54.025                           | 572.64            | -1.04             | \$60.042                           | 210.83            |
| \$24.3III<br>\$24.6m | P                 | -2.08             | \$40,143                           | -404.74           | -0.04             | \$130,733                          | 202.90          |                   | -1.62             | \$34,933<br>\$51,101               | -3/2.00           | -1.04             | \$60.943                           | 209.21            |
| \$24.0m              | K<br>U            | -2.08             | \$40,120                           | -400.82           | -1.91             | \$32,293                           | -302.61         | Р                 | -1.95             | \$51,181                           | -3/4.01           | -1.04             | \$00,001                           | 207.37            |
| \$24./m<br>\$24.9    | п                 | -2.08             | \$40,123                           | 400.09            | -1./3             | \$57,020                           | 204.30          | R<br>P            | -1./9             | \$50,010                           | -3/0.40           | -1.04             | \$60,000                           | 203.93            |
| \$24.0111            | Р                 | -2.08             | \$47,971                           | -4/0.98           | -1./3             | \$57,039                           | 200.31          | K<br>U            | -1./9             | \$33,072                           | -5/0.19           | -1.05             | \$60,710                           | 204.28            |
| \$24.9111            | K<br>C            | -2.08             | \$47,900                           | 4/3.00            | -1.92             | \$52,119                           | 210.11          | С                 | -1.90             | \$51,044                           | -300.14           | -1.05             | \$60,098                           | 202.03            |
| \$25.0111            |                   | -2.09             | \$47,941                           | 4/3.13            | -1.08             | \$33,184                           | 312.04          |                   | -1.03             | \$34,707                           | -301.9/           | -1.05             | \$60,090                           | 200.98            |
| \$25.1111<br>\$25.2m | 0                 | -2.09             | \$47.025                           | 470 32            | -3.75             | \$156.070                          | 314 49          | P                 | -5.57             | \$10,023                           | -307.34           | -1.05             | \$60,043                           | 199.33            |
| 04J.4III             |                   | -2.09             | $\phi + (,733)$                    |                   | -0.04             | \$130,079                          | -214.40         | 11                | -1./7             | <i>433,133</i>                     | -207.14           | -1.03             | \$00,55 <b>7</b>                   | 12/.00            |

|               |                   |                         | Reallocation     | with good in      | nformation              |                  |                   |                   |                         | Reallocation     | with poor in      | ıformation        |                                    |                   |
|---------------|-------------------|-------------------------|------------------|-------------------|-------------------------|------------------|-------------------|-------------------|-------------------------|------------------|-------------------|-------------------|------------------------------------|-------------------|
|               | Marginal          | Estimate                | s with good info | ormation          | Estimates               | s with poor info | rmation           | Marginal          | Estimate                | s with good info | ormation          | Estimate          | s with poor info                   | rmation           |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$25.3m       | Н                 | -2.09                   | \$47,813         | -481.41           | -1.76                   | \$56,857         | -316.23           | Н                 | -1.96                   | \$50,906         | -591.10           | -1.65             | \$60,533                           | 196.03            |
| \$25.4m       | R                 | -2.09                   | \$47,801         | -483.51           | -1.93                   | \$51,940         | -318.16           | С                 | -1.84                   | \$54,476         | -592.94           | -1.65             | \$60,434                           | 194.38            |
| \$25.5m       | 0                 | -2.10                   | \$47,726         | -485.60           | -0.64                   | \$155,395        | -318.80           | R                 | -1.80                   | \$55,594         | -594.73           | -1.66             | \$60,408                           | 192.72            |
| \$25.6m       | Н                 | -2.10                   | \$47,655         | -487.70           | -1.76                   | \$56,667         | -320.57           | Н                 | -1.97                   | \$50,767         | -596.70           | -1.66             | \$60,368                           | 191.06            |
| \$25.7m       | R                 | -2.10                   | \$47,642         | -489.80           | -1.93                   | \$51,768         | -322.50           | R                 | -1.80                   | \$55,455         | -598.51           | -1.66             | \$60,256                           | 189.40            |
| \$25.8m       | С                 | -2.10                   | \$47,640         | -491.90           | -1.89                   | \$52,850         | -324.39           | Н                 | -1.98                   | \$50,627         | -600.48           | -1.66             | \$60,202                           | 187.74            |
| \$25.9m       | 0                 | -2.10                   | \$47,513         | -494.00           | -0.65                   | \$154,705        | -325.04           | С                 | -1.84                   | \$54,244         | -602.33           | -1.66             | \$60,177                           | 186.08            |
| \$26.0m       | Н                 | -2.11                   | \$47,495         | -496.11           | -1.77                   | \$56,481         | -326.81           | R                 | -1.81                   | \$55,315         | -604.13           | -1.66             | \$60,104                           | 184.42            |
| \$26.1m       | R                 | -2.11                   | \$47,477         | -498.21           | -1.94                   | \$51,586         | -328.75           | Н                 | -1.98                   | \$50,487         | -606.11           | -1.67             | \$60,035                           | 182.75            |
| \$26.2m       | Н                 | -2.11                   | \$47,337         | -500.33           | -1.78                   | \$56,287         | -330.52           | R                 | -1.81                   | \$55,175         | -607.93           | -1.67             | \$59,952                           | 181.08            |
| \$26.3m       | С                 | -2.11                   | \$47,335         | -502.44           | -1.90                   | \$52,512         | -332.43           | С                 | -1.85                   | \$54,010         | -609.78           | -1.67             | \$59,917                           | 179.42            |
| \$26.4m       | R                 | -2.11                   | \$47,315         | -504.55           | -1.95                   | \$51,411         | -334.37           | Н                 | -1.99                   | \$50,345         | -611.77           | -1.67             | \$59,867                           | 177.75            |
| \$26.5m       | 0                 | -2.11                   | \$47,301         | -506.67           | -0.65                   | \$154,012        | -335.02           | R                 | -1.82                   | \$55,034         | -613.58           | -1.67             | \$59,799                           | 176.07            |
| \$26.6m       | Н                 | -2.12                   | \$47,176         | -508.79           | -1.78                   | \$56,098         | -336.81           | Н                 | -1.99                   | \$50,203         | -615.57           | -1.68             | \$59,698                           | 174.40            |
| \$26.7m       | R                 | -2.12                   | \$47,150         | -510.91           | -1.95                   | \$51.232         | -338.76           | С                 | -1.86                   | \$53,774         | -617.43           | -1.68             | \$59,654                           | 172.72            |
| \$26.8m       | E                 | -2.12                   | \$47,118         | -513.03           | 9.21                    | -\$10.854        | -329.54           | R                 | -1.82                   | \$54.893         | -619.26           | -1.68             | \$59,646                           | 171.04            |
| \$26.9m       | 0                 | -2.12                   | \$47.083         | -515.15           | -0.65                   | \$153.308        | -330.20           | Н                 | -2.00                   | \$50.063         | -621.25           | -1.68             | \$59.528                           | 169.37            |
| \$27.0m       | Ċ                 | -2.13                   | \$47.027         | -517.28           | -1.92                   | \$52,170         | -332.11           | R                 | -1.83                   | \$54,752         | -623.08           | -1.68             | \$59,492                           | 167.68            |
| \$27.1m       | H                 | -2.13                   | \$47.015         | -519.41           | -1.79                   | \$55,907         | -333.90           | C                 | -1.87                   | \$53,535         | -624.95           | -1.68             | \$59,390                           | 166.00            |
| \$27.2m       | R                 | -2.13                   | \$46,986         | -521.54           | -1.96                   | \$51.054         | -335.86           | H                 | -2.00                   | \$49,915         | -626.95           | -1.68             | \$59.357                           | 164.32            |
| \$27.3m       | D                 | -2.13                   | \$46,959         | -523.67           | -6.62                   | \$15,116         | -342.48           | R                 | -1.83                   | \$54 610         | -628.78           | -1 69             | \$59.339                           | 162.63            |
| \$27.6m       | 0                 | -2.13                   | \$46,867         | -525.80           | -0.66                   | \$152.602        | -343.13           | Н                 | -2.01                   | \$49 774         | -630.79           | -1.69             | \$59,186                           | 160.94            |
| \$27.5m       | Ŭ                 | -2.13                   | \$46,860         | -527.93           | -3.81                   | \$26,241         | -346.94           | R                 | -1.84                   | \$54 468         | -632.63           | -1.69             | \$59,184                           | 159.25            |
| \$27.6m       | Н                 | -2.13                   | \$46,852         | -530.07           | -1 79                   | \$55,713         | -348 74           | C                 | -1.88                   | \$53,294         | -634 50           | -1.69             | \$59,101                           | 157.56            |
| \$27.7m       | R                 | -2.14                   | \$46.819         | -532.20           | -1.97                   | \$50.875         | -350.70           | R                 | -1.84                   | \$54.325         | -636.34           | -1.69             | \$59.029                           | 155.87            |
| \$27.8m       | C                 | -2.14                   | \$46,715         | -534 34           | -1.93                   | \$51 824         | -352.63           | Н                 | -2.02                   | \$49.628         | -638.36           | -1.69             | \$59,013                           | 154.17            |
| \$27.9m       | H                 | -2.14                   | \$46,688         | -536.49           | -1.80                   | \$55.515         | -354 43           | R                 | -1.85                   | \$54 183         | -640.20           | -1 70             | \$58,874                           | 152.47            |
| \$28.0m       | R                 | -2.14                   | \$46,655         | -538.63           | -1.97                   | \$50,695         | -356.41           | C                 | -1.88                   | \$53.052         | -642.09           | -1 70             | \$58,854                           | 150.77            |
| \$28.1m       | 0                 | -2.14                   | \$46,648         | -540.77           | -0.66                   | \$151,886        | -357.06           | H                 | -2.02                   | \$49,480         | -644 11           | -1 70             | \$58,839                           | 149.07            |
| \$28.2m       | H                 | -2.15                   | \$46.522         | -542.92           | -1.81                   | \$55.322         | -358.87           | R                 | -1.85                   | \$54.040         | -645.96           | -1.70             | \$58,719                           | 147.37            |
| \$28.3m       | R                 | -2.15                   | \$46,488         | -545.07           | -1.98                   | \$50,513         | -360.85           | Н                 | -2.03                   | \$49.334         | -647.99           | -1.70             | \$58,664                           | 145.67            |
| \$28.4m       | 0                 | -2.15                   | \$46 425         | -547.23           | -0.66                   | \$151.165        | -361 51           | C                 | -1.89                   | \$52,806         | -649.88           | -1 71             | \$58 582                           | 143.96            |
| \$28.5m       | Ċ                 | -2.16                   | \$46 398         | -549 38           | -1 94                   | \$51 472         | -363.46           | R                 | -1.86                   | \$53,896         | -651 74           | -1 71             | \$58,563                           | 142.25            |
| \$28.6m       | H                 | -2.16                   | \$46 354         | -551 54           | -1.81                   | \$55 121         | -365.27           | Н                 | -2.03                   | \$49,186         | -653 77           | -1 71             | \$58,488                           | 140 54            |
| \$28.7m       | R                 | -2.16                   | \$46 322         | -553 70           | -1.99                   | \$50,332         | -367.26           | R                 | -1.86                   | \$53,752         | -655.63           | -1 71             | \$58,406                           | 138.83            |
| \$28.8m       | 0                 | -2.16                   | \$46.202         | -555.86           | -0.66                   | \$150,437        | -367.92           | Н                 | -2.04                   | \$49.036         | -657.67           | -1.71             | \$58,312                           | 137.12            |
| \$28.9m       | H                 | -2.16                   | \$46,189         | -558.03           | -1.82                   | \$54,924         | -369.74           | C                 | -1.90                   | \$52.559         | -659.57           | -1.72             | \$58,308                           | 135.40            |
| \$29.0m       | R                 | -2.17                   | \$46,153         | -560.19           | -1.99                   | \$50,150         | -371.74           | R                 | -1.87                   | \$53.608         | -661.44           | -1.72             | \$58,250                           | 133.68            |
| \$29.1m       | E                 | -2.17                   | \$46,104         | -562.36           | 9.08                    | -\$11.012        | -362.66           | Н                 | -2.05                   | \$48.888         | -663.48           | -1.72             | \$58,133                           | 131.96            |
| \$29.2m       | C                 | -2.17                   | \$46,077         | -564 53           | -1.96                   | \$51,116         | -364.61           | R                 | -1.87                   | \$53,463         | -665 35           | -1.72             | \$58,093                           | 130.24            |
| \$29.3m       | H                 | -2.17                   | \$46,017         | -566 71           | -1.83                   | \$54 723         | -366.44           | C                 | -1.91                   | \$52,309         | -667.27           | -1.72             | \$58,030                           | 128.52            |
| \$29.4m       | R                 | -2.17                   | \$45 988         | -568.88           | -2.00                   | \$49,968         | -368.44           | H                 | -2.05                   | \$48,738         | -669 32           | -1 73             | \$57 954                           | 126.79            |
| \$29.5m       | 0                 | -2.18                   | \$45,975         | -571.06           | -0.67                   | \$149,701        | -369.11           | R                 | -1.88                   | \$53 318         | -671.19           | -1 73             | \$57,935                           | 125.07            |
| \$29.6m       | н                 | -2.18                   | \$45,851         | -573.24           | -1.83                   | \$54 520         | -370.94           | R                 | -1.88                   | \$53,173         | -673.07           | -1.73             | \$57,777                           | 123.34            |
| \$29.7m       | R                 | -2.18                   | \$45,817         | -575.42           | -2.01                   | \$49,783         | -372.95           | Н                 | -2.06                   | \$48 586         | -675.13           | -1 73             | \$57,773                           | 121.61            |
| \$29.8m       | U                 | -2.19                   | \$45,757         | -577.61           | -3.90                   | \$25 623         | -376.85           | C                 | -1.92                   | \$52.058         | -677.05           | -1 73             | \$57 751                           | 119.87            |
| \$29.9m       | Č                 | _2.19                   | \$45 751         | -579 79           | -1 97                   | \$50 755         | -378.82           | R                 | -1.89                   | \$53.027         | -678.94           | _1 74             | \$57.618                           | 118.14            |
| \$30.0m       | 0                 | -2.19                   | \$45 748         | -581.98           | -0.67                   | \$148.956        | -379 50           | Н                 | -2.06                   | \$48 431         | -681.00           | -1 74             | \$57 594                           | 116.40            |
| \$30.1m       | н                 | -2.19                   | \$45 677         | -584 17           | -0.07                   | \$54 315         | _381.34           | C                 | -2.00                   | \$51 802         | -682 03           | -1.74             | \$57.468                           | 114.66            |
| \$30.2m       | R                 | -2.19                   | \$45 648         | -586.36           | -2.02                   | \$49.601         | -383 35           | R                 | -1.95                   | \$52.881         | -684.82           | -1.74             | \$57.459                           | 112.00            |
| \$30.3m       | 0                 | -2.20                   | \$45 519         | -588 55           | -0.67                   | \$148 207        | -384.03           | Н                 | -2.07                   | \$48 281         | -686.90           | -1 74             | \$57,409                           | 111.12            |

|                      |                   |                   | Reallocation     | with good in      | nformation        |                                    |                   |                   |                   | Reallocation         | with poor in      | nformation        |                        |                   |
|----------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|------------------------|-------------------|
|                      | Marginal          | Estimate          | s with good infa | ormation          | Estimates         | s with poor info                   | rmation           | Marginal          | Estimate          | s with good info     | ormation          | Estimates         | s with poor info       | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER_m) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$30.4m              | Н                 | -2.20             | \$45 504         | -590 75           | -1.85             | \$54 113                           | -385.88           | R                 | -1 90             | \$52,734             | -688 79           | -1 75             | \$57 300               | 109.43            |
| \$30.5m              | R                 | -2.20             | \$45 477         | -592.95           | -2.02             | \$49.417                           | -387.90           | Н                 | -2.08             | \$48,123             | -690.87           | -1.75             | \$57,228               | 107.69            |
| \$30.6m              | C                 | -2.20             | \$45,421         | -595.15           | -1.98             | \$50 388                           | -389.88           | C                 | -1.94             | \$51 546             | -692.81           | -1.75             | \$57,183               | 105.94            |
| \$30.7m              | н                 | -2.20             | \$45,331         | -597.36           | -1.86             | \$53,903                           | -391 74           | B                 | -1.90             | \$52 586             | -694 71           | -1.75             | \$57,100               | 104.19            |
| \$30.7m              | R                 | -2.21             | \$45,306         | -599.57           | -2.03             | \$49,230                           | -393 77           | H                 | -1.90             | \$47.971             | -696.80           | -1.75             | \$57,039               | 107.43            |
| \$30.0m              | 0                 | -2.21             | \$45,284         | -601.77           | -0.68             | \$147.449                          | -394.45           | R                 | -1.91             | \$52.439             | -698 70           | -1.76             | \$56,980               | 100.68            |
| \$31.0m              | G                 | 2.21              | \$45,204         | 603.00            | -0.00             | \$73 573                           | 308 70            | C R               | 1.91              | \$51,786             | 700.65            | -1.76             | \$56,900               | 08.02             |
| \$31.0m              | U<br>Н            | 2.21              | \$45,157         | 606.20            | -4.25             | \$53.607                           | 400.56            | е<br>н            | 2.00              | \$47.813             | 702.75            | -1.76             | \$56,857               | 97.16             |
| \$31.1m<br>\$21.2m   | E                 | -2.21             | \$45,157         | 608.41            | -1.80             | \$11,166                           | 301.61            | P                 | -2.09             | \$52.201             | 704.66            | -1.70             | \$56,819               | 97.10             |
| \$31.2m              | P                 | 2.21              | \$45,135         | 610.63            | 2.04              | \$49.044                           | 303.65            | н                 | 2.10              | \$47.655             | 706.76            | -1.76             | \$56,667               | 03.64             |
| \$31.5m              | C K               | -2.22             | \$45,085         | 612.85            | -2.04             | \$50,017                           | 205.65            | D D               | -2.10             | \$52 142             | 708.67            | -1.70             | \$56,659               | 01.97             |
| \$31.4III<br>\$21.5m | 0                 | -2.22             | \$45,085         | -012.83           | -2.00             | \$30,017                           | -393.03           | K<br>C            | -1.92             | \$52,143             | -708.07           | -1.70             | \$50,058               | 91.67             |
| \$31.5III<br>\$21.6m | U U               | -2.22             | \$43,049         | -013.07           | -0.08             | \$140,085                          | -390.33           | D D               | -1.90             | \$51,024             | -710.03           | -1.//             | \$50,004               | 90.11             |
| \$31.0m              | D D               | -2.22             | \$44,970         | 610.52            | -1.07             | \$33,463                           | -398.20           |                   | -1.92             | \$31,994             | 714.66            | -1.//             | \$56,490               | 86.57             |
| \$31./III<br>\$21.9  | K                 | -2.22             | \$44,902         | -019.32           | -2.03             | \$145,000                          | -400.24           | 11<br>D           | -2.11             | \$47,493             | -/14.00           | -1.//             | \$50,481               | 00.37             |
| \$31.8m              | <u>U</u>          | -2.23             | \$44,813         | -021.75           | -0.69             | \$145,909                          | 402.81            | ĸ                 | -1.93             | \$51,845             | -/10.59           | -1./8             | \$50,334               | 84.79             |
| \$31.9m              | п                 | -2.23             | \$44,601         | -025.98           | -1.66             | \$33,274                           | -402.81           | U                 | -1.9/             | \$30,739             | -/18.30           | -1./8             | \$50,510               | 05.02             |
| \$32.0m              | ĸ                 | -2.23             | \$44,791         | -020.21           | -2.03             | \$48,009                           | -404.80           | H<br>D            | -2.11             | \$47,337             | -/20.6/           | -1./8             | \$50,287               | 81.24             |
| \$32.1m              | U                 | -2.23             | \$44,745         | -628.45           | -2.01             | \$49,639                           | -406.88           | K                 | -1.93             | \$51,695             | -/22.01           | -1./8             | \$50,172               | /9.40             |
| \$32.2m              | U                 | -2.24             | \$44,626         | -630.69           | -4.00             | \$24,990                           | -410.88           | H                 | -2.12             | \$47,176             | -/24./3           | -1./8             | \$56,098               | //.68             |
| \$32.3m              | H                 | -2.24             | \$44,621         | -632.93           | -1.88             | \$53,059                           | -412.76           |                   | -1.98             | \$50,491             | -/26./1           | -1./9             | \$56,013               | /5.89             |
| \$32.4m              | R                 | -2.24             | \$44,619         | -635.17           | -2.06             | \$48,480                           | -414.82           | K                 | -1.94             | \$51,545             | -/28.65           | -1./9             | \$56,008               | /4.11             |
| \$32.5m              | 0                 | -2.24             | \$44,571         | -637.41           | -0.69             | \$145,127                          | -415.51           | H                 | -2.13             | \$47,015             | -/30.78           | -1.79             | \$55,907               | 72.32             |
| \$32.6m              | R                 | -2.25             | \$44,442         | -639.66           | -2.07             | \$48,293                           | -417.58           | R                 | -1.95             | \$51,395             | -732.72           | -1.79             | \$55,845               | 70.53             |
| \$32.7m              | Н                 | -2.25             | \$44,439         | -641.91           | -1.89             | \$52,846                           | -419.48           | 0                 | -5.84             | \$17,118             | -//38.56          | -1.79             | \$55,738               | 68.73             |
| \$32.8m              | C                 | -2.25             | \$44,400         | -644.17           | -2.03             | \$49,256                           | -421.51           | C                 | -1.99             | \$50,220             | -/40.55           | -1.79             | \$55,712               | 66.94             |
| \$32.9m              | 0                 | -2.26             | \$44,328         | -646.42           | -0.69             | \$144,336                          | -422.20           | Н                 | -2.13             | \$46,852             | -742.69           | -1.79             | \$55,713               | 65.14             |
| \$33.0m              | R                 | -2.26             | \$44,269         | -648.68           | -2.08             | \$48,102                           | -424.28           | R                 | -1.95             | \$51,244             | -744.64           | -1.80             | \$55,681               | 63.35             |
| \$33.1m              | E                 | -2.26             | \$44,259         | -650.94           | 8.84              | -\$11,316                          | -415.44           | H                 | -2.14             | \$46,688             | -746.78           | -1.80             | \$55,515               | 61.54             |
| \$33.2m              | Н                 | -2.26             | \$44,258         | -653.20           | -1.90             | \$52,626                           | -417.34           | R                 | -1.96             | \$51,092             | -748.74           | -1.80             | \$55,516               | 59.74             |
| \$33.3m              | R                 | -2.27             | \$44,094         | -655.47           | -2.09             | \$47,911                           | -419.43           | С                 | -2.00             | \$49,947             | -750.74           | -1.80             | \$55,409               | 57.94             |
| \$33.4m              | 0                 | -2.27             | \$44,082         | -657.74           | -0.70             | \$143,536                          | -420.13           | R                 | -1.96             | \$50,941             | -752.70           | -1.81             | \$55,351               | 56.13             |
| \$33.5m              | Н                 | -2.27             | \$44,074         | -660.00           | -1.91             | \$52,411                           | -422.03           | Н                 | -2.15             | \$46,522             | -754.85           | -1.81             | \$55,322               | 54.32             |
| \$33.6m              | С                 | -2.27             | \$44,049         | -662.27           | -2.05             | \$48,866                           | -424.08           | R                 | -1.97             | \$50,788             | -756.82           | -1.81             | \$55,186               | 52.51             |
| \$33.7m              | R                 | -2.28             | \$43,919         | -664.55           | -2.10             | \$47,721                           | -426.18           | Н                 | -2.16             | \$46,354             | -758.98           | -1.81             | \$55,121               | 50.70             |
| \$33.8m              | Н                 | -2.28             | \$43,889         | -666.83           | -1.92             | \$52,187                           | -428.09           | С                 | -2.01             | \$49,670             | -760.99           | -1.81             | \$55,102               | 48.88             |
| \$33.9m              | 0                 | -2.28             | \$43,835         | -669.11           | -0.70             | \$142,727                          | -428.79           | R                 | -1.97             | \$50,635             | -762.97           | -1.82             | \$55,020               | 47.07             |
| \$34.0m              | R                 | -2.29             | \$43,741         | -671.40           | -2.10             | \$47,529                           | -430.90           | Н                 | -2.16             | \$46,189             | -765.13           | -1.82             | \$54,924               | 45.25             |
| \$34.1m              | Н                 | -2.29             | \$43,701         | -673.69           | -1.92             | \$51,967                           | -432.82           | R                 | -1.98             | \$50,482             | -767.11           | -1.82             | \$54,853               | 43.42             |
| \$34.2m              | C                 | -2.29             | \$43,692         | -675.97           | -2.06             | \$48,470                           | -434.88           | C                 | -2.02             | \$49,390             | -769.14           | -1.83             | \$54,791               | 41.60             |
| \$34.3m              | 0                 | -2.29             | \$43,584         | -678.27           | -0.70             | \$141,910                          | -435.59           | Н                 | -2.17             | \$46,017             | -771.31           | -1.83             | \$54,723               | 39.77             |
| \$34.4m              | R                 | -2.30             | \$43,563         | -680.56           | -2.11             | \$47,335                           | -437.70           | R                 | -1.99             | \$50,329             | -773.30           | -1.83             | \$54,686               | 37.94             |
| \$34.5m              | W                 | -2.30             | \$43,558         | -682.86           | -2.95             | \$33,948                           | -440.65           | Н                 | -2.18             | \$45,851             | -775.48           | -1.83             | \$54,520               | 36.11             |
| \$34.6m              | Н                 | -2.30             | \$43,510         | -685.16           | -1.93             | \$51,741                           | -442.58           | R                 | -1.99             | \$50,175             | -777.47           | -1.83             | \$54,519               | 34.27             |
| \$34.7m              | U                 | -2.30             | \$43,466         | -687.46           | -4.11             | \$24,341                           | -446.69           | С                 | -2.04             | \$49,107             | -779.51           | -1.84             | \$54,477               | 32.44             |
| \$34.8m              | E                 | -2.30             | \$43,416         | -689.76           | 8.72              | -\$11,463                          | -437.96           | R                 | -2.00             | \$50,020             | -781.51           | -1.84             | \$54,351               | 30.60             |
| \$34.9m              | R                 | -2.30             | \$43,386         | -692.07           | -2.12             | \$47,143                           | -440.09           | Н                 | -2.19             | \$45,677             | -783.70           | -1.84             | \$54,315               | 28.76             |
| \$35.0m              | С                 | -2.31             | \$43,329         | -694.38           | -2.08             | \$48,068                           | -442.17           | R                 | -2.01             | \$49,865             | -785.70           | -1.85             | \$54,182               | 26.91             |
| \$35.1m              | 0                 | -2.31             | \$43,329         | -696.68           | -0.71             | \$141,082                          | -442.87           | С                 | -2.05             | \$48,820             | -787.75           | -1.85             | \$54,160               | 25.06             |
| \$35.2m              | Н                 | -2.31             | \$43,322         | -698.99           | -1.94             | \$51,515                           | -444.82           | Н                 | -2.20             | \$45,504             | -789.95           | -1.85             | \$54,113               | 23.22             |
| \$35.3m              | R                 | -2.31             | \$43,206         | -701.31           | -2.13             | \$46,948                           | -446.95           | R                 | -2.01             | \$49,709             | -791.96           | -1.85             | \$54,013               | 21.36             |
| \$35.4m              | Н                 | -2.32             | \$43,129         | -703.62           | -1.95             | \$51,285                           | -448.90           | Н                 | -2.21             | \$45,331             | -794.17           | -1.86             | \$53,903               | 19.51             |

|               | Reallocation with good information       |                   |               |                                 |                   |                        |                 |                                 | Reallocation with poor information |               |                                 |                   |               |                 |  |  |
|---------------|------------------------------------------|-------------------|---------------|---------------------------------|-------------------|------------------------|-----------------|---------------------------------|------------------------------------|---------------|---------------------------------|-------------------|---------------|-----------------|--|--|
|               | Marginal Estimates with good information |                   |               | Estimates with poor information |                   |                        | Marginal        | Estimates with good information |                                    |               | Estimates with poor information |                   |               |                 |  |  |
| Budget impact | Tech <sup>a</sup>                        | $E(\Delta E_m)^b$ | $E(ICER_m)^c$ | $E(\Delta E)^{d}$               | $E(\Delta E_m)^b$ | E(ICER_m) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup>               | $E(\Delta E_m)^b$                  | $E(ICER_m)^c$ | $E(\Delta E)^{d}$               | $E(\Delta E_m)^b$ | $E(ICER_m)^c$ | $E(\Delta E)^d$ |  |  |
| \$35.5m       | 0                                        | -2.32             | \$43.072      | -705.95                         | -0.71             | \$140.245              | -449.61         | R                               | -2.02                              | \$49.553      | -796.18                         | -1.86             | \$53.844      | 17.65           |  |  |
| \$35.6m       | R                                        | -2.32             | \$43.027      | -708.27                         | -2.14             | \$46,751               | -451.75         | C                               | -2.06                              | \$48,530      | -798.25                         | -1.86             | \$53,838      | 15.79           |  |  |
| \$35.7m       | C                                        | -2.33             | \$42,961      | -710.60                         | -2.10             | \$47.659               | -453.85         | H                               | -2.21                              | \$45,157      | -800.46                         | -1.86             | \$53,697      | 13.93           |  |  |
| \$35.8m       | н                                        | -2.33             | \$42,935      | -712.93                         | -1.96             | \$51.057               | -455.80         | R                               | -2.02                              | \$49 396      | -802.48                         | -1.86             | \$53,674      | 12.07           |  |  |
| \$35.9m       | R                                        | -2.33             | \$42,847      | -715.26                         | -2.15             | \$46 557               | -457.95         | C                               | -2.07                              | \$48,237      | -804 56                         | -1.87             | \$53,513      | 10.20           |  |  |
| \$36.0m       | 0                                        | -2.34             | \$42,810      | -717.60                         | -0.72             | \$139 396              | -458.67         | R                               | -2.03                              | \$49,239      | -806 59                         | -1.87             | \$53,503      | 8 33            |  |  |
| \$36.1m       | н                                        | -2.34             | \$42,741      | -719.94                         | -1.97             | \$50,823               | -460.64         | Н                               | -2.03                              | \$44 978      | -808.81                         | -1.87             | \$53,505      | 6.46            |  |  |
| \$36.2m       | R                                        | -2.34             | \$42,664      | -722.28                         | -2.16             | \$46 361               | -462 79         | R                               | -2.04                              | \$49.082      | -810.85                         | -1.88             | \$53,332      | 4 59            |  |  |
| \$36.3m       | E                                        | -2.35             | \$42,619      | -724 63                         | 8.62              | -\$11.605              | -454.18         | H                               | -2.23                              | \$44 801      | -813.08                         | -1.88             | \$53,274      | 2.71            |  |  |
| \$36.4m       | Č                                        | -2.35             | \$42,584      | -726.98                         | -2.12             | \$47,243               | -456.29         | C                               | -2.09                              | \$47 941      | -815.17                         | -1.88             | \$53,184      | 0.83            |  |  |
| \$36.5m       | 0                                        | -2.35             | \$42,550      | -729.33                         | -0.72             | \$138 539              | -457.02         | R                               | -2.04                              | \$48,924      | -817.21                         | -1.88             | \$53,160      | -1.05           |  |  |
| \$36.6m       | н                                        | -2.35             | \$42,550      | -731.68                         | -1.98             | \$50,587               | -458.99         | Н                               | -2.24                              | \$44 621      | -819.45                         | -1.88             | \$53,059      | -2.94           |  |  |
| \$36.7m       | R                                        | -2.35             | \$42,312      | -734.03                         | -2.17             | \$46,162               | -461.16         | R                               | -2.05                              | \$48 766      | -821 50                         | -1.89             | \$52,055      | -4.82           |  |  |
| \$36.8m       | Н                                        | -2.36             | \$42,342      | -736.39                         | -1.99             | \$50,352               | -463.14         | C                               | -2.10                              | \$47,640      | -823.60                         | -1.89             | \$52,907      | -6.72           |  |  |
| \$36.9m       | R                                        | -2.36             | \$42,301      | -738.76                         | -2.18             | \$45,962               | -465.32         | н                               | -2.25                              | \$44.439      | -825.85                         | -1.89             | \$52,836      | -8.61           |  |  |
| \$37.0m       | 0 K                                      | -2.30             | \$42,301      | -741.12                         | -2.10             | \$137.671              | -466.05         | R                               | -2.25                              | \$48,605      | -827.91                         | -1.89             | \$52,840      | -10.50          |  |  |
| \$37.0m       | U                                        | -2.37             | \$42,202      | -743.49                         | -0.73             | \$23,673               | -470.27         | R                               | -2.00                              | \$48,005      | -829.97                         | -1.09             | \$52,643      | -12.40          |  |  |
| \$37.1m       | C                                        | -2.37             | \$42,275      | -745.86                         | -7.22             | \$46,819               | _472.41         | H                               | -2.00                              | \$44,258      | -832.23                         | -1.90             | \$52,645      | -14.30          |  |  |
| \$37.2m       | н                                        | -2.37             | \$42,203      | -748.23                         | -2.14             | \$50,110               | -474.40         | C                               | -2.20                              | \$47 335      | -834 35                         | -1.90             | \$52,512      | -16.21          |  |  |
| \$37.5m       | R                                        | -2.37             | \$42,145      | -750.60                         | -2.00             | \$45,764               | -476 59         | R                               | -2.11                              | \$48,286      | -836.42                         | -1.90             | \$52,512      | -18.11          |  |  |
| \$37.5m       | R 0                                      | -2.38             | \$42.012      | -752.98                         | -0.73             | \$136 791              | _477.32         | Н                               | -2.27                              | \$44.074      | -838.69                         | -1.91             | \$52,100      | -20.02          |  |  |
| \$37.5m       | Н                                        | -2.38             | \$41,939      | -755.37                         | -0.75             | \$49,870               | _479.32         | R                               | -2.27                              | \$48,126      | -840.76                         | -1.91             | \$52,411      | -20.02          |  |  |
| \$37.0m       | P                                        | 2.30              | \$41,937      | 757.75                          | 2.01              | \$45,564               | 481.52          | и<br>Н                          | 2.08                               | \$43,880      | 843.04                          | 1.02              | \$52,293      | 23.85           |  |  |
| \$37.8m       | F                                        | 2.30              | \$41,954      | 760.14                          | 8.52              | \$11.744               | 473.00          | C II                            | 2.13                               | \$47.027      | 845.17                          | 1.92              | \$52,107      | 25.77           |  |  |
| \$37.0m       | C                                        | -2.39             | \$41,803      | -762.53                         | -2.16             | \$46 388               | -475.16         | R                               | -2.13                              | \$47,966      | -847 25                         | -1.92             | \$52,170      | -27.68          |  |  |
| \$38.0m       | R                                        | -2.39             | \$41,015      | -764.93                         | -2.10             | \$45,362               | -477.36         | H                               | -2.00                              | \$43,701      | -849 54                         | -1.92             | \$51.967      | -29.61          |  |  |
| \$38.1m       | 0                                        | -2.40             | \$41,736      | -767.32                         | -2.20             | \$135,899              | -478 10         | R                               | -2.29                              | \$47,801      | -851.63                         | -1.92             | \$51,940      | -31.53          |  |  |
| \$38.2m       | Н                                        | -2.40             | \$41,730      | -769.72                         | -0.74             | \$49,628               | -480.11         | C                               | -2.09                              | \$46,715      | -853.77                         | -1.93             | \$51,940      | -33.46          |  |  |
| \$38.3m       | R                                        | -2.41             | \$41.561      | -772.13                         | -2.02             | \$45,161               | _482.33         | B                               | -2.10                              | \$47.642      | -855.87                         | -1.93             | \$51,021      | -35.39          |  |  |
| \$38.4m       | Н                                        | -2.41             | \$41,501      | -774 53                         | -2.21             | \$49 380               | -484 35         | H                               | -2.10                              | \$43 510      | -858.17                         | -1.93             | \$51,700      | -37 33          |  |  |
| \$38.5m       | 0                                        | -2.41             | \$41.461      | -776.95                         | -0.74             | \$134,996              | -485.09         | R                               | -2.11                              | \$47 477      | -860.28                         | -1.94             | \$51,586      | -39.27          |  |  |
| \$38.6m       | C                                        | -2.41             | \$41 418      | -779.36                         | -2.18             | \$45 947               | -487.27         | Н                               | -2.31                              | \$43 322      | -862.59                         | -1.94             | \$51,500      | -41.21          |  |  |
| \$38.7m       | R                                        | -2.42             | \$41 375      | -781 78                         | -2.22             | \$44 958               | -489 50         | C                               | -2.16                              | \$46 398      | -864 74                         | -1.94             | \$51,515      | -43.15          |  |  |
| \$38.8m       | D                                        | -2.12             | \$41 371      | -784 19                         | -7.51             | \$13 318               | -497.00         | R                               | -2.10                              | \$47 315      | -866.85                         | -1.95             | \$51.411      | -45.09          |  |  |
| \$38.9m       | Н                                        | -2.12             | \$41 317      | -786.62                         | -2.04             | \$49,133               | -499.04         | Н                               | -2.32                              | \$43,129      | -869.17                         | -1.95             | \$51,285      | -47.04          |  |  |
| \$39.0m       | R                                        | -2.43             | \$41 188      | -789.04                         | -2.23             | \$44 753               | -501.27         | R                               | -2.12                              | \$47,150      | -871 29                         | -1.95             | \$51,203      | -49.00          |  |  |
| \$39.1m       | 0                                        | -2.43             | \$41 179      | -791 47                         | -0.75             | \$134.081              | -502.02         | C                               | -2.12                              | \$46,077      | -873.46                         | -1.96             | \$51,252      | -50.95          |  |  |
| \$39.2m       | Ē                                        | -2.43             | \$41 149      | -793.90                         | 8.42              | -\$11,880              | -493.60         | Н                               | -2.33                              | \$42,935      | -875 79                         | -1.96             | \$51,057      | -52.91          |  |  |
| \$39.3m       | Ĥ                                        | -2.43             | \$41,107      | -796.33                         | -2.05             | \$48,878               | -495.65         | R                               | -2.13                              | \$46,986      | -877.92                         | -1.96             | \$51,054      | -54.87          |  |  |
| \$39.4m       | U                                        | -2.44             | \$41.049      | -798 77                         | -4 35             | \$22,987               | -500.00         | R                               | -2.14                              | \$46,819      | -880.06                         | -1.97             | \$50.875      | -56.84          |  |  |
| \$39.5m       | C                                        | -2.44             | \$41,014      | -801.21                         | -2.20             | \$45,498               | -502.20         | H                               | -2.34                              | \$42,741      | -882.40                         | -1.97             | \$50,823      | -58.80          |  |  |
| \$39.6m       | R                                        | -2.44             | \$40,999      | -803.65                         | -2.24             | \$44 549               | -504 44         | C                               | -2.19                              | \$45,751      | -884 58                         | -1.97             | \$50,755      | -60.77          |  |  |
| \$39.7m       | 0                                        | -2.45             | \$40.893      | -806.09                         | -0.75             | \$133,154              | -505.19         | R                               | -2.14                              | \$46.655      | -886.73                         | -1.97             | \$50,695      | -62.75          |  |  |
| \$39.8m       | H                                        | -2.45             | \$40.891      | -808.54                         | -2.06             | \$48.626               | -507.25         | Н                               | -2.35                              | \$42.542      | -889.08                         | -1.98             | \$50.587      | -64.72          |  |  |
| \$39.9m       | R                                        | -2.45             | \$40.810      | -810.99                         | -2.26             | \$44.342               | -509.50         | R                               | -2.15                              | \$46.488      | -891.23                         | -1.98             | \$50.513      | -66.70          |  |  |
| \$40.0m       | Н                                        | -2.46             | \$40.677      | -813.45                         | -2.07             | \$48.370               | -511.57         | C                               | -2.20                              | \$45.421      | -893.43                         | -1.98             | \$50.388      | -68.69          |  |  |
| \$40.1m       | R                                        | -2.46             | \$40.619      | -815.91                         | -2.27             | \$44.136               | -513.84         | H                               | -2.36                              | \$42.342      | -895.79                         | -1.99             | \$50.352      | -70.67          |  |  |
| \$40.2m       | 0                                        | -2.46             | \$40.606      | -818.37                         | -0.76             | \$132.212              | -514.59         | R                               | -2.16                              | \$46.322      | -897.95                         | -1.99             | \$50.332      | -72.66          |  |  |
| \$40.3m       | Ē                                        | -2.46             | \$40.601      | -820.83                         | -2.22             | \$45.043               | -516.81         | R                               | -2.17                              | \$46.153      | -900.12                         | -1.99             | \$50.150      | -74.65          |  |  |
| \$40.4m       | Ē                                        | -2.47             | \$40.469      | -823.31                         | 8.32              | -\$12.012              | -508.49         | H                               | -2.37                              | \$42.143      | -902.49                         | -2.00             | \$50.110      | -76.65          |  |  |
| \$40.5m       | Н                                        | -2.47             | \$40,460      | -825.78                         | -2.08             | \$48,112               | -510.57         | С                               | -2.22                              | \$45.085      | -904.71                         | -2.00             | \$50,017      | -78.65          |  |  |

|               | Reallocation with good information |                   |                  |                 |                                 |                                    |                   |                   | Reallocation with poor information |                                    |                   |                                 |               |                   |  |  |
|---------------|------------------------------------|-------------------|------------------|-----------------|---------------------------------|------------------------------------|-------------------|-------------------|------------------------------------|------------------------------------|-------------------|---------------------------------|---------------|-------------------|--|--|
|               | Marginal                           | Estimate          | s with good info | ormation        | Estimates with poor information |                                    |                   | Marginal          | Estimates with good information    |                                    |                   | Estimates with poor information |               |                   |  |  |
| Budget impact | Tech <sup>a</sup>                  | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^b$               | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$                  | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$               | $E(ICER_m)^c$ | $E(\Delta E)^{d}$ |  |  |
| \$40.6m       | R                                  | -2.47             | \$40,427         | -828.25         | -2.28                           | \$43,929                           | -512.84           | R                 | -2.17                              | \$45,988                           | -906.88           | -2.00                           | \$49,968      | -80.65            |  |  |
| \$40.7m       | G                                  | -2.48             | \$40,363         | -830.73         | -4.76                           | \$20,996                           | -517.61           | Н                 | -2.38                              | \$41,939                           | -909.27           | -2.01                           | \$49,870      | -82.66            |  |  |
| \$40.8m       | 0                                  | -2.48             | \$40,311         | -833.21         | -0.76                           | \$131,256                          | -518.37           | R                 | -2.18                              | \$45,817                           | -911.45           | -2.01                           | \$49,783      | -84.66            |  |  |
| \$40.9m       | Н                                  | -2.49             | \$40,238         | -835.69         | -2.09                           | \$47,847                           | -520.46           | 0                 | -6.54                              | \$15,280                           | -917.99           | -2.01                           | \$49,751      | -86.67            |  |  |
| \$41.0m       | R                                  | -2.49             | \$40,237         | -838.18         | -2.29                           | \$43,720                           | -522.75           | С                 | -2.23                              | \$44,745                           | -920.23           | -2.01                           | \$49,639      | -88.69            |  |  |
| \$41.1m       | С                                  | -2.49             | \$40,182         | -840.67         | -2.24                           | \$44,575                           | -524.99           | Н                 | -2.40                              | \$41,734                           | -922.63           | -2.02                           | \$49,628      | -90.70            |  |  |
| \$41.2m       | R                                  | -2.50             | \$40,043         | -843.17         | -2.30                           | \$43,510                           | -527.29           | R                 | -2.19                              | \$45,648                           | -924.82           | -2.02                           | \$49,601      | -92.72            |  |  |
| \$41.3m       | Н                                  | -2.50             | \$40,014         | -845.67         | -2.10                           | \$47,585                           | -529.39           | R                 | -2.20                              | \$45,477                           | -927.02           | -2.02                           | \$49,417      | -94.74            |  |  |
| \$41.4m       | 0                                  | -2.50             | \$40,014         | -848.16         | -0.77                           | \$130,290                          | -530.16           | Н                 | -2.41                              | \$41,527                           | -929.42           | -2.03                           | \$49,380      | -96.77            |  |  |
| \$41.5m       | R                                  | -2.51             | \$39,849         | -850.67         | -2.31                           | \$43,299                           | -532.47           | С                 | -2.25                              | \$44,400                           | -931.68           | -2.03                           | \$49,256      | -98.80            |  |  |
| \$41.6m       | Е                                  | -2.51             | \$39,821         | -853.18         | 8.24                            | -\$12,142                          | -524.23           | R                 | -2.21                              | \$45,306                           | -933.88           | -2.03                           | \$49,230      | -100.83           |  |  |
| \$41.7m       | Н                                  | -2.51             | \$39,790         | -855.70         | -2.11                           | \$47,315                           | -526.34           | Н                 | -2.42                              | \$41,317                           | -936.30           | -2.04                           | \$49,133      | -102.87           |  |  |
| \$41.8m       | U                                  | -2.51             | \$39,785         | -858.21         | -4.49                           | \$22,279                           | -530.83           | R                 | -2.22                              | \$45,137                           | -938.52           | -2.04                           | \$49,044      | -104.90           |  |  |
| \$41.9m       | С                                  | -2.52             | \$39,750         | -860.73         | -2.27                           | \$44,098                           | -533.10           | Н                 | -2.43                              | \$41,107                           | -940.95           | -2.05                           | \$48,878      | -106.95           |  |  |
| \$42.0m       | 0                                  | -2.52             | \$39,712         | -863.25         | -0.77                           | \$129,304                          | -533.87           | С                 | -2.27                              | \$44,049                           | -943.22           | -2.05                           | \$48,866      | -109.00           |  |  |
| \$42.1m       | R                                  | -2.52             | \$39,654         | -865.77         | -2.32                           | \$43,087                           | -536.19           | R                 | -2.22                              | \$44,962                           | -945.45           | -2.05                           | \$48,857      | -111.04           |  |  |
| \$42.2m       | Н                                  | -2.53             | \$39,562         | -868.29         | -2.13                           | \$47,043                           | -538.32           | R                 | -2.23                              | \$44,791                           | -947.68           | -2.05                           | \$48,669      | -113.10           |  |  |
| \$42.3m       | R                                  | -2.53             | \$39,459         | -870.83         | -2.33                           | \$42,876                           | -540.65           | Н                 | -2.45                              | \$40,891                           | -950.12           | -2.06                           | \$48,626      | -115.16           |  |  |
| \$42.4m       | 0                                  | -2.54             | \$39,406         | -873.37         | -0.78                           | \$128,307                          | -541.43           | R                 | -2.24                              | \$44,619                           | -952.36           | -2.06                           | \$48,480      | -117.22           |  |  |
| \$42.5m       | Н                                  | -2.54             | \$39,331         | -875.91         | -2.14                           | \$46,768                           | -543.57           | С                 | -2.29                              | \$43,692                           | -954.65           | -2.06                           | \$48,470      | -119.28           |  |  |
| \$42.6m       | С                                  | -2.54             | \$39,311         | -878.45         | -2.29                           | \$43,611                           | -545.86           | Н                 | -2.46                              | \$40,677                           | -957.11           | -2.07                           | \$48,370      | -121.35           |  |  |
| \$42.7m       | R                                  | -2.55             | \$39,262         | -881.00         | -2.34                           | \$42,660                           | -548.21           | R                 | -2.25                              | \$44,442                           | -959.36           | -2.07                           | \$48,293      | -123.42           |  |  |
| \$42.8m       | Е                                  | -2.55             | \$39,204         | -883.55         | 8.15                            | -\$12,269                          | -540.06           | Н                 | -2.47                              | \$40,460                           | -961.83           | -2.08                           | \$48,112      | -125.50           |  |  |
| \$42.9m       | Н                                  | -2.56             | \$39,098         | -886.11         | -2.15                           | \$46,492                           | -542.21           | R                 | -2.26                              | \$44,269                           | -964.09           | -2.08                           | \$48,102      | -127.58           |  |  |
| \$43.0m       | 0                                  | -2.56             | \$39,093         | -888.67         | -0.79                           | \$127,293                          | -542.99           | С                 | -2.31                              | \$43,329                           | -966.40           | -2.08                           | \$48,068      | -129.66           |  |  |
| \$43.1m       | R                                  | -2.56             | \$39,063         | -891.23         | -2.36                           | \$42,447                           | -545.35           | R                 | -2.27                              | \$44,094                           | -968.67           | -2.09                           | \$47,911      | -131.74           |  |  |
| \$43.2m       | R                                  | -2.57             | \$38,865         | -893.80         | -2.37                           | \$42,230                           | -547.72           | Н                 | -2.49                              | \$40,238                           | -971.15           | -2.09                           | \$47,847      | -133.83           |  |  |
| \$43.3m       | С                                  | -2.57             | \$38,862         | -896.37         | -2.32                           | \$43,111                           | -550.04           | R                 | -2.28                              | \$43,919                           | -973.43           | -2.10                           | \$47,721      | -135.93           |  |  |
| \$43.4m       | Н                                  | -2.57             | \$38,862         | -898.95         | -2.16                           | \$46,211                           | -552.20           | С                 | -2.33                              | \$42,961                           | -975.76           | -2.10                           | \$47,659      | -138.03           |  |  |
| \$43.5m       | 0                                  | -2.58             | \$38,778         | -901.52         | -0.79                           | \$126,261                          | -552.99           | Н                 | -2.50                              | \$40,014                           | -978.26           | -2.10                           | \$47,585      | -140.13           |  |  |
| \$43.6m       | R                                  | -2.59             | \$38,665         | -904.11         | -2.38                           | \$42,013                           | -555.37           | R                 | -2.29                              | \$43,741                           | -980.54           | -2.10                           | \$47,529      | -142.23           |  |  |
| \$43.7m       | Н                                  | -2.59             | \$38,622         | -906.70         | -2.18                           | \$45,928                           | -557.55           | R                 | -2.30                              | \$43,563                           | -982.84           | -2.11                           | \$47,335      | -144.35           |  |  |
| \$43.8m       | Е                                  | -2.59             | \$38,615         | -909.29         | 8.07                            | -\$12,394                          | -549.48           | Н                 | -2.51                              | \$39,790                           | -985.35           | -2.11                           | \$47,315      | -146.46           |  |  |
| \$43.9m       | U                                  | -2.60             | \$38,479         | -911.89         | -4.64                           | \$21,548                           | -554.12           | С                 | -2.35                              | \$42,584                           | -987.70           | -2.12                           | \$47,243      | -148.58           |  |  |
| \$44.0m       | R                                  | -2.60             | \$38,464         | -914.49         | -2.39                           | \$41,796                           | -556.51           | R                 | -2.30                              | \$43,386                           | -990.01           | -2.12                           | \$47,143      | -150.70           |  |  |
| \$44.1m       | 0                                  | -2.60             | \$38,456         | -917.09         | -0.80                           | \$125,213                          | -557.31           | Н                 | -2.53                              | \$39,562                           | -992.53           | -2.13                           | \$47,043      | -152.82           |  |  |
| \$44.2m       | С                                  | -2.60             | \$38,402         | -919.69         | -2.35                           | \$42,602                           | -559.66           | R                 | -2.31                              | \$43,206                           | -994.85           | -2.13                           | \$46,948      | -154.95           |  |  |
| \$44.3m       | Н                                  | -2.61             | \$38,380         | -922.30         | -2.19                           | \$45,637                           | -561.85           | С                 | -2.37                              | \$42,205                           | -997.22           | -2.14                           | \$46,819      | -157.09           |  |  |
| \$44.4m       | R                                  | -2.61             | \$38,263         | -924.91         | -2.41                           | \$41,575                           | -564.26           | Н                 | -2.54                              | \$39,331                           | -999.76           | -2.14                           | \$46,768      | -159.23           |  |  |
| \$44.5m       | Н                                  | -2.62             | \$38,134         | -927.53         | -2.21                           | \$45,347                           | -566.46           | R                 | -2.32                              | \$43,027                           | -1002.08          | -2.14                           | \$46,751      | -161.37           |  |  |
| \$44.6m       | 0                                  | -2.62             | \$38,129         | -930.16         | -0.81                           | \$124,148                          | -567.27           | R                 | -2.33                              | \$42,847                           | -1004.42          | -2.15                           | \$46,557      | -163.51           |  |  |
| \$44.7m       | R                                  | -2.63             | \$38,059         | -932.78         | -2.42                           | \$41,355                           | -569.69           | Н                 | -2.56                              | \$39,098                           | -1006.98          | -2.15                           | \$46,492      | -165.66           |  |  |
| \$44.8m       | E                                  | -2.63             | \$38,051         | -935.41         | 7.99                            | -\$12,516                          | -561.70           | С                 | -2.39                              | \$41,813                           | -1009.37          | -2.16                           | \$46,388      | -167.82           |  |  |
| \$44.9m       | С                                  | -2.64             | \$37,931         | -938.05         | -2.38                           | \$42,080                           | -564.07           | R                 | -2.34                              | \$42,664                           | -1011.71          | -2.16                           | \$46,361      | -169.98           |  |  |
| \$45.0m       | Н                                  | -2.64             | \$37,886         | -940.69         | -2.22                           | \$45,051                           | -566.29           | Н                 | -2.57                              | \$38,862                           | -1014.28          | -2.16                           | \$46,211      | -172.14           |  |  |
| \$45.1m       | R                                  | -2.64             | \$37,854         | -943.33         | -2.43                           | \$41,134                           | -568.72           | R                 | -2.35                              | \$42,484                           | -1016.64          | -2.17                           | \$46,162      | -174.31           |  |  |
| \$45.2m       | 0                                  | -2.65             | \$37,796         | -945.98         | -0.81                           | \$123,063                          | -569.54           | R                 | -2.36                              | \$42,301                           | -1019.00          | -2.18                           | \$45,962      | -176.48           |  |  |
| \$45.3m       | R                                  | -2.66             | \$37,651         | -948.63         | -2.44                           | \$40,910                           | -571.98           | С                 | -2.41                              | \$41,418                           | -1021.42          | -2.18                           | \$45,947      | -178.66           |  |  |
| \$45.4m       | Н                                  | -2.66             | \$37,635         | -951.29         | -2.23                           | \$44,753                           | -574.22           | Н                 | -2.59                              | \$38,622                           | -1024.01          | -2.18                           | \$45,928      | -180.84           |  |  |
| \$45.5m       | Е                                  | -2.67             | \$37,511         | -953.95         | 7.91                            | -\$12,636                          | -566.30           | R                 | -2.37                              | \$42,116                           | -1026.38          | -2.19                           | \$45,764      | -183.02           |  |  |
| \$45.6m       | 0                                  | -2.67             | \$37,456         | -956.62         | -0.82                           | \$121,960                          | -567.12           | Н                 | -2.61                              | \$38,380                           | -1028.99          | -2.19                           | \$45.637      | -185.21           |  |  |
|                      |                   |                   | Reallocation     | with good in      | nformation        |                  |                 |                   |                   | Reallocation     | with poor in      | nformation        |                  |                   |
|----------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-----------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info | ormation          | Estimate          | s with poor info | rmation         | Marginal          | Estimate          | s with good info | ormation          | Estimates         | s with poor info | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$45.7m              | С                 | -2.67             | \$37,448         | -959.30           | -2.41             | \$41,542         | -569.53         | R                 | -2.38             | \$41,934         | -1031.37          | -2.19             | \$45,564         | -187.41           |
| \$45.8m              | R                 | -2.67             | \$37,443         | -961.97           | -2.46             | \$40,685         | -571.99         | С                 | -2.44             | \$41,014         | -1033.81          | -2.20             | \$45,498         | -189.61           |
| \$45.9m              | Н                 | -2.68             | \$37,379         | -964.64           | -2.25             | \$44,448         | -574.24         | R                 | -2.40             | \$41,747         | -1036.20          | -2.20             | \$45,362         | -191.81           |
| \$46.0m              | R                 | -2.69             | \$37,237         | -967.33           | -2.47             | \$40,461         | -576.71         | Н                 | -2.62             | \$38,134         | -1038.83          | -2.21             | \$45,347         | -194.02           |
| \$46.1m              | U                 | -2.69             | \$37,128         | -970.02           | -4.81             | \$20,791         | -581.52         | R                 | -2.41             | \$41,561         | -1041.23          | -2.21             | \$45,161         | -196.23           |
| \$46.2m              | Н                 | -2.69             | \$37,121         | -972.71           | -2.27             | \$44,142         | -583.78         | Н                 | -2.64             | \$37,886         | -1043.87          | -2.22             | \$45,051         | -198.45           |
| \$46.3m              | 0                 | -2.69             | \$37,111         | -975.41           | -0.83             | \$120,834        | -584.61         | С                 | -2.46             | \$40,601         | -1046.33          | -2.22             | \$45,043         | -200.67           |
| \$46.4m              | R                 | -2.70             | \$37,027         | -978.11           | -2.49             | \$40,233         | -587.10         | R                 | -2.42             | \$41,375         | -1048.75          | -2.22             | \$44,958         | -202.89           |
| \$46.5m              | E                 | -2.70             | \$36,993         | -980.81           | 7.84              | -\$12,754        | -579.25         | R                 | -2.43             | \$41,188         | -1051.18          | -2.23             | \$44,753         | -205.13           |
| \$46.6m              | С                 | -2.71             | \$36,951         | -983.52           | -2.44             | \$40,992         | -581.69         | Н                 | -2.66             | \$37,635         | -1053.84          | -2.23             | \$44,753         | -207.36           |
| \$46.7m              | Н                 | -2.71             | \$36,858         | -986.23           | -2.28             | \$43,829         | -583.98         | С                 | -2.49             | \$40,182         | -1056.32          | -2.24             | \$44,575         | -209.61           |
| \$46.8m              | R                 | -2.72             | \$36,817         | -988.95           | -2.50             | \$40,006         | -586.48         | R                 | -2.44             | \$40,999         | -1058.76          | -2.24             | \$44,549         | -211.85           |
| \$46.9m              | 0                 | -2.72             | \$36,759         | -991.67           | -0.84             | \$119,690        | -587.31         | Н                 | -2.68             | \$37,379         | -1061.44          | -2.25             | \$44,448         | -214.10           |
| \$47.0m              | R                 | -2.73             | \$36,607         | -994.40           | -2.51             | \$39,776         | -589.83         | R                 | -2.45             | \$40,810         | -1063.89          | -2.26             | \$44,342         | -216.36           |
| \$47.1m              | Н                 | -2.73             | \$36,593         | -997.13           | -2.30             | \$43,512         | -592.12         | W                 | -1.76             | \$56,787         | -1065.65          | -2.26             | \$44,258         | -218.62           |
| \$47.2m              | W                 | -2.74             | \$36,534         | -999.87           | -3.51             | \$28,474         | -595.64         | Н                 | -2.69             | \$37,121         | -1068.34          | -2.27             | \$44,142         | -220.88           |
| \$47.3m              | E                 | -2.74             | \$36,497         | -1002.61          | 7.77              | -\$12,869        | -587.86         | R                 | -2.46             | \$40,619         | -1070.81          | -2.27             | \$44,136         | -223.15           |
| \$47.4m              | С                 | -2.74             | \$36,442         | -1005.35          | -2.47             | \$40,427         | -590.34         | C                 | -2.52             | \$39,750         | -1073.32          | -2.27             | \$44,098         | -225.41           |
| \$47.5m              | 0                 | -2.75             | \$36,399         | -1008.10          | -0.84             | \$118,521        | -591.18         | R                 | -2.47             | \$40,427         | -1075.80          | -2.28             | \$43,929         | -227.69           |
| \$47.6m              | R                 | -2.75             | \$36,395         | -1010.85          | -2.53             | \$39,548         | -593.71         | H                 | -2.71             | \$36,858         | -1078.51          | -2.28             | \$43,829         | -229.97           |
| \$47.7m              | H                 | -2.75             | \$36,323         | -1013.60          | -2.32             | \$43,191         | -596.03         | R                 | -2.49             | \$40,237         | -1080.99          | -2.29             | \$43,720         | -232.26           |
| \$47.8m              | R                 | -2.76             | \$36,181         | -1016.37          | -2.54             | \$39,313         | -598.57         | C                 | -2.54             | \$39,311         | -1083.54          | -2.29             | \$43,611         | -234.55           |
| \$47.9m              | H                 | -2.77             | \$36,048         | -1019.14          | -2.33             | \$42,865         | -600.90         | H                 | -2.73             | \$36,593         | -1086.27          | -2.30             | \$43,512         | -236.85           |
| \$48.0m              | 0                 | -2.78             | \$36,035         | -1021.92          | -0.85             | \$117,331        | -601.75         | R                 | -2.50             | \$40,043         | -1088.77          | -2.30             | \$43,510         | -239.15           |
| \$48.1m              | E                 | -2.78             | \$36,020         | -1024.69          | 7.70              | -\$12,982        | -594.05         | K                 | -2.51             | \$39,849         | -1091.28          | -2.31             | \$43,299         | -241.46           |
| \$48.2m              | ĸ                 | -2.78             | \$35,966         | -102/.4/          | -2.56             | \$39,081         | -596.61         | H                 | -2.75             | \$36,323         | -1094.03          | -2.32             | \$43,191         | -243.77           |
| \$48.3m              |                   | -2.78             | \$35,917         | -1030.26          | -2.31             | \$39,845         | -599.12         |                   | -2.57             | \$38,802         | -1096.60          | -2.32             | \$43,111         | -240.09           |
| \$48.4m              | H<br>D            | -2.80             | \$35,769         | -1033.05          | -2.35             | \$42,555         | -001.47         | K                 | -2.52             | \$39,634         | -1099.13          | -2.32             | \$43,087         | -248.41           |
| \$48.5m              | K<br>U            | -2.80             | \$35,751         | -1035.85          | -2.57             | \$38,847         | -604.05         | I                 | -3.38             | \$29,014         | -1102.50          | -2.33             | \$42,972         | -250.74           |
| \$40.0111<br>\$49.7m | 0                 | -2.80             | \$35,725         | 1041 45           | -5.00             | \$20,000         | 600.04          | D I               | -3.38             | \$29,578         | 1109.42           | -2.33             | \$42,920         | -255.07           |
| \$48.7m              | E                 | -2.80             | \$35,002         | 1044.26           | -0.80             | \$13.004         | 602.27          | I I               | 3 30              | \$29,439         | 1111 80           | -2.33             | \$42,870         | 257.74            |
| \$48.0m              | P                 | -2.81             | \$35,501         | 1047.08           | 2.59              | \$38,610         | 604.86          | и<br>Н            | -3.39             | \$36.048         | 1114.58           | -2.33             | \$42,808         | 260.07            |
| \$40.0m              | H                 | -2.81             | \$35,555         | 1047.08           | -2.39             | \$12,010         | 607.23          | I                 | -2.77             | \$29,506         | 1117.07           | -2.33             | \$42,805         | 262.41            |
| \$49.0m              | n<br>C            | -2.82             | \$35,407         | 1052.72           | -2.57             | \$30 246         | 600.78          | I                 | 3 30              | \$29,500         | 1121.36           | -2.34             | \$42,813         | 264.74            |
| \$49.7m              | R                 | -2.83             | \$35,314         | -1055.55          | -2.61             | \$39,240         | -612.38         | I                 | -3.40             | \$29,409         | -1121.30          | -2.34             | \$42,702         | -267.09           |
| \$49.3m              | 0                 | -2.83             | \$35,280         | -1058.39          | -0.87             | \$114 873        | -613.25         | R                 | -2.55             | \$39,262         | -1127.30          | -2.34             | \$42,660         | -269.43           |
| \$49.4m              | Н                 | -2.84             | \$35,199         | -1061 23          | -2.39             | \$41.857         | -615.64         | I                 | -3.40             | \$29 396         | -1130 71          | -2.34             | \$42,656         | -271 77           |
| \$49.5m              | E                 | -2.85             | \$35,119         | -1064.08          | 7.57              | -\$13,203        | -608.07         | Ĭ                 | -3.41             | \$29,359         | -1134.11          | -2.35             | \$42,602         | -274.12           |
| \$49.6m              | R                 | -2.85             | \$35,094         | -1066.93          | -2.62             | \$38 133         | -610.69         | Ċ                 | -2.60             | \$38 402         | -1136.72          | -2.35             | \$42,602         | -276.47           |
| \$49.7m              | H                 | -2.86             | \$34,908         | -1069.79          | -2.41             | \$41,509         | -613.10         | I                 | -3.41             | \$29.322         | -1140.13          | -2.35             | \$42.548         | -278.82           |
| \$49.8m              | 0                 | -2.87             | \$34,889         | -1072.66          | -0.88             | \$113.603        | -613.98         | Ĥ                 | -2.80             | \$35,769         | -1142.92          | -2.35             | \$42,535         | -281.17           |
| \$49.9m              | D                 | -2.87             | \$34,878         | -1075.53          | -8.91             | \$11.227         | -622.89         | I                 | -3.41             | \$29,285         | -1146.34          | -2.35             | \$42,494         | -283.52           |
| \$50.0m              | R                 | -2.87             | \$34,874         | -1078.39          | -2.64             | \$37,893         | -625.53         | R                 | -2.56             | \$39,063         | -1148.90          | -2.36             | \$42,447         | -285.88           |

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$100,000 reduction in incremental expenditure compared to the previous (smaller) level of budget impact;

<sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 reduction in incremental expenditure on marginal technology;

<sup>c</sup> Estimate (given imperfect information) of the marginal ICER in contraction for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies.

|                    |                   |                   | Reallocation     | with good i       | nformation          |                  |                 |                   |                         | Reallocation     | with poor i     | nformation          |                  |                   |
|--------------------|-------------------|-------------------|------------------|-------------------|---------------------|------------------|-----------------|-------------------|-------------------------|------------------|-----------------|---------------------|------------------|-------------------|
|                    | Marginal          | Estimates         | s with good info | rmation           | Estimates           | s with poor info | rmation         | Marginal          | Estimates               | s with good info | rmation         | Estimate            | s with poor info | rmation           |
| Budget impact      | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$0.1m             | 0                 | 1.75              | \$57,129         | 1.75              | 0.54                | \$186,014        | 0.54            | S                 | -1.00                   | -\$99,957        | -1.00           | 33.89               | \$2,951          | 33.89             |
| \$0.2m             | Н                 | 1.75              | \$57,168         | 3.50              | 1.47                | \$67,980         | 2.01            | S                 | -1.83                   | -\$54,668        | -2.83           | 19.91               | \$5,023          | 53.80             |
| \$0.3m             | R                 | 1.75              | \$57,242         | 5.25              | 1.61                | \$62,198         | 3.62            | S                 | -2.37                   | -\$42,216        | -5.20           | 16.70               | \$5,989          | 70.49             |
| \$0.4m             | 0                 | 1.75              | \$57,276         | 6.99              | 0.54                | \$186,492        | 4.15            | S                 | -2.81                   | -\$35,650        | -8.00           | 14.90               | \$6,710          | 85.40             |
| \$0.5m             | Н                 | 1.75              | \$57,278         | 8.74              | 1.47                | \$68,111         | 5.62            | S                 | -3.18                   | -\$31,430        | -11.19          | 13.70               | \$7,301          | 99.09             |
| \$0.6m             | С                 | 1.74              | \$57,332         | 10.48             | 1.57                | \$63,602         | 7.19            | S                 | -3.52                   | -\$28,424        | -14.70          | 12.81               | \$7,808          | 111.90            |
| \$0.7m             | R                 | 1.74              | \$57,377         | 12.23             | 1.60                | \$62,345         | 8.80            | S                 | -3.82                   | -\$26,144        | -18.53          | 12.11               | \$8,257          | 124.01            |
| \$0.8m             | Н                 | 1.74              | \$57,387         | 13.97             | 1.47                | \$68,240         | 10.26           | S                 | -4.11                   | -\$24,337        | -22.64          | 11.55               | \$8,661          | 135.56            |
| \$0.9m             | 0                 | 1.74              | \$57,421         | 15.71             | 0.53                | \$186,967        | 10.80           | S                 | -4.37                   | -\$22,860        | -27.01          | 11.07               | \$9,031          | 146.63            |
| \$1.0m             | Н                 | 1.74              | \$57,496         | 17.45             | 1.46                | \$68,370         | 12.26           | S                 | -4.62                   | -\$21,623        | -31.64          | 10.67               | \$9,372          | 157.30            |
| \$1.1m             | R                 | 1.74              | \$57,512         | 19.19             | 1.60                | \$62,491         | 13.86           | S                 | -4.86                   | -\$20,567        | -36.50          | 10.32               | \$9,691          | 167.62            |
| \$1.2m             | С                 | 1.74              | \$57,540         | 20.93             | 1.57                | \$63,833         | 15.43           | S                 | -5.09                   | -\$19,652        | -41.59          | 10.01               | \$9,989          | 177.63            |
| \$1.3m             | 0                 | 1.74              | \$57,567         | 22.66             | 0.53                | \$187,440        | 15.96           | S                 | -5.31                   | -\$18,849        | -46.89          | 9.74                | \$10,271         | 187.37            |
| \$1.4m             | Н                 | 1.74              | \$57,604         | 24.40             | 1.46                | \$68,499         | 17.42           | S                 | -5.51                   | -\$18,138        | -52.41          | 9.49                | \$10,538         | 196.86            |
| \$1.5m             | U                 | 1.74              | \$57,615         | 26.13             | 3.10                | \$32,264         | 20.52           | S                 | -5.71                   | -\$17,501        | -58.12          | 9.27                | \$10,792         | 206.12            |
| \$1.6m             | R                 | 1.73              | \$57,646         | 27.87             | 1.60                | \$62,638         | 22.12           | S                 | -5.91                   | -\$16,927        | -64.03          | 9.06                | \$11,035         | 215.18            |
| \$1.7m             | 0                 | 1.73              | \$57,711         | 29.60             | 0.53                | \$187,910        | 22.65           | S                 | -6.10                   | -\$16,406        | -70.12          | 8.88                | \$11,267         | 224.06            |
| \$1.8m             | Н                 | 1.73              | \$57,712         | 31.33             | 1.46                | \$68,627         | 24.11           | S                 | -6.28                   | -\$15,930        | -76.40          | 8.70                | \$11,491         | 232.76            |
| \$1.9m             | С                 | 1.73              | \$57,746         | 33.07             | 1.56                | \$64,062         | 25.67           | S                 | -6.45                   | -\$15,493        | -82.85          | 8.54                | \$11,706         | 241.30            |
| \$2.0m             | R                 | 1.73              | \$57,780         | 34.80             | 1.59                | \$62,783         | 27.26           | S                 | -6.63                   | -\$15,091        | -89.48          | 8.39                | \$11,913         | 249.70            |
| \$2.1m             | Н                 | 1.73              | \$57,820         | 36.53             | 1.45                | \$68,755         | 28.71           | S                 | -6.79                   | -\$14,718        | -96.28          | 8.26                | \$12,113         | 257.95            |
| \$2.2m             | 0                 | 1.73              | \$57,855         | 38.25             | 0.53                | \$188,378        | 29.24           | S                 | -6.96                   | -\$14,372        | -103.23         | 8.13                | \$12,307         | 266.08            |
| \$2.3m             | R                 | 1.73              | \$57,914         | 39.98             | 1.59                | \$62,929         | 30.83           | S                 | -7.12                   | -\$14,049        | -110.35         | 8.00                | \$12,495         | 274.08            |
| \$2.4m             | H                 | 1.73              | \$57,927         | 41.71             | 1.45                | \$68,882         | 32.29           | S                 | -7.27                   | -\$13,747        | -117.63         | 7.89                | \$12,678         | 281.97            |
| \$2.5m             | C                 | 1.73              | \$57,951         | 43.43             | 1.56                | \$64,289         | 33.84           | S                 | -7.43                   | -\$13,463        | -125.05         | 7.78                | \$12,855         | 289.75            |
| \$2.6m             | 0                 | 1.72              | \$57,998         | 45.16             | 0.53                | \$188,844        | 34.37           | S                 | -7.58                   | -\$13,197        | -132.63         | 7.68                | \$13,027         | 297.43            |
| \$2.7m             | H                 | 1.72              | \$58,034         | 46.88             | 1.45                | \$69,009         | 35.82           | S                 | -7.72                   | -\$12,945        | -140.36         | 7.58                | \$13,196         | 305.00            |
| \$2.8m             | R                 | 1.72              | \$58,048         | 48.60             | 1.59                | \$63,074         | 37.40           | S                 | -7.87                   | -\$12,707        | -148.23         | 7.49                | \$13,360         | 312.49            |
| \$2.9m             | H                 | 1.72              | \$58,140         | 50.32             | 1.45                | \$69,136         | 38.85           | S                 | -8.01                   | -\$12,483        | -156.24         | 7.40                | \$13,520         | 319.89            |
| \$3.0m             | 0<br>C            | 1.72              | \$38,140         | 52.04             | 0.55                | \$169,507        | 39.38           | 5                 | -6.13                   | -\$12,209        | 172.69          | 7.51                | \$13,070         | 327.20            |
| \$3.1III<br>\$2.2m | D D               | 1.72              | \$38,133         | 55.70             | 1.55                | \$64,313         | 40.95           | 5                 | -8.29                   | -\$12,000        | -1/2.08         | 7.23                | \$13,829         | 241 59            |
| \$3.2III<br>\$3.2m | R O               | 1.72              | \$38,181         | 57.20             | 0.53                | \$03,219         | 42.51           | 5                 | -0.42                   | -\$11,675        | -181.10         | 7.13                | \$13,978         | 249.66            |
| \$3.5m             | P                 | 1.72              | \$58.314         | 58.01             | 1.58                | \$63.363         | 43.04           | 5                 | -8.55                   | \$11,009         | 108 3/          | 7.08                | \$14,123         | 346.00            |
| \$3.5m             | C                 | 1.71              | \$58 357         | 60.63             | 1.50                | \$64 740         | 46.16           | S                 | -8.81                   | -\$11,315        | -207 15         | 6.94                | \$14 409         | 362.61            |
| \$3.6m             | G                 | 1.71              | \$58,369         | 62.34             | 3 29                | \$30,363         | 49.45           | S                 | -8.94                   | -\$11,545        | -216.09         | 6.87                | \$14,409         | 369.49            |
| \$3.7m             | 0                 | 1.71              | \$58,423         | 64.05             | 0.53                | \$190,228        | 49.98           | S                 | -9.07                   | -\$11,030        | -225.16         | 6.81                | \$14 682         | 376.30            |
| \$3.8m             | R                 | 1.71              | \$58,447         | 65.76             | 1.57                | \$63,508         | 51.55           | S                 | -9.19                   | -\$10,882        | -234 35         | 6.75                | \$14,815         | 383.05            |
| \$3.9m             | U                 | 1.71              | \$58,495         | 67.47             | 3.05                | \$32,756         | 54.61           | S                 | -9.31                   | -\$10,740        | -243.66         | 6.69                | \$14,945         | 389.74            |
| \$4.0m             | C                 | 1.71              | \$58,558         | 69.18             | 1.54                | \$64,962         | 56.15           | D                 | 1.65                    | \$60,684         | -242.01         | 5.12                | \$19,535         | 394.86            |
| \$4.1m             | 0                 | 1.71              | \$58,563         | 70.89             | 0.52                | \$190.684        | 56.67           | D                 | 1.55                    | \$64.611         | -240.46         | 4.81                | \$20,799         | 399.67            |
| \$4.2m             | R                 | 1.71              | \$58,579         | 72.59             | 1.57                | \$63,651         | 58.24           | D                 | 1.46                    | \$68,312         | -239.00         | 4.55                | \$21,990         | 404.21            |
| \$4.3m             | Е                 | 1.70              | \$58,696         | 74.30             | -10.67              | -\$9,375         | 47.58           | D                 | 1.39                    | \$71,822         | -237.61         | 4.33                | \$23,120         | 408.54            |
| \$4.4m             | 0                 | 1.70              | \$58,703         | 76.00             | 0.52                | \$191,139        | 48.10           | D                 | 1.33                    | \$75,168         | -236.28         | 4.13                | \$24,197         | 412.67            |
| \$4.5m             | R                 | 1.70              | \$58,711         | 77.70             | 1.57                | \$63,795         | 49.67           | D                 | 1.28                    | \$78,370         | -235.00         | 3.96                | \$25,228         | 416.64            |
| \$4.6m             | С                 | 1.70              | \$58,758         | 79.41             | 1.53                | \$65,184         | 51.20           | D                 | 1.23                    | \$81,447         | -233.77         | 3.81                | \$26,219         | 420.45            |
| \$4.7m             | 0                 | 1.70              | \$58,842         | 81.11             | 0.52                | \$191,591        | 51.72           | D                 | 1.18                    | \$84,412         | -232.59         | 3.68                | \$27,173         | 424.13            |
| \$4.8m             | R                 | 1 70              | \$58 843         | 82.81             | 1 56                | \$63,938         | 53 29           | D                 | 1.15                    | \$87,276         | -231 44         | 3 56                | \$28,095         | 427 69            |

## Table A2.2.2: Reallocation following net disinvestment (allocator has good information)

|                    |                   |                        | Reallocation      | with good i      | nformation             |                      |                    |                   |                        | Reallocation      | with poor i      | nformation             |                      |                    |
|--------------------|-------------------|------------------------|-------------------|------------------|------------------------|----------------------|--------------------|-------------------|------------------------|-------------------|------------------|------------------------|----------------------|--------------------|
|                    | Marginal          | Estimates              | s with good info  | rmation          | Estimate               | s with poor info     | rmation            | Marginal          | Estimates              | with good info    | rmation          | Estimate               | s with poor info     | rmation            |
| Budget impact      | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^d$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^d$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ |
| S4.9m              | C                 | 1 70                   | \$58 956          | 84 50            | 1.53                   | \$65 404             | 54.82              | D                 | 1 11                   | \$90.048          | -230 33          | 3 45                   | \$28 987             | 431.14             |
| \$5.0m             | R                 | 1 70                   | \$58,975          | 86.20            | 1.56                   | \$64.081             | 56.38              | D                 | 1.08                   | \$92,739          | -229.26          | 3 35                   | \$29,853             | 434 49             |
| \$5.1m             | 0                 | 1.70                   | \$58,980          | 87.89            | 0.52                   | \$192.041            | 56.90              | G                 | 1 71                   | \$58 369          | -227.54          | 3 29                   | \$30,363             | 437.78             |
| \$5.1m             | R                 | 1.69                   | \$59,106          | 89.58            | 1.56                   | \$64 224             | 58.45              | D                 | 1.05                   | \$95,352          | -226.49          | 3.25                   | \$30,695             | 441.04             |
| \$5.2m             | 0                 | 1.69                   | \$59,100          | 91.28            | 0.52                   | \$192,490            | 58.97              | D                 | 1.02                   | \$97,896          | -225.47          | 3.17                   | \$31,514             | 444.21             |
| \$5.5m             | C                 | 1.69                   | \$59,110          | 92.97            | 1.52                   | \$65,622             | 60.50              | G                 | 1.62                   | \$60,861          | -223.83          | 3.16                   | \$31,659             | 447.37             |
| \$5.5m             | R                 | 1.69                   | \$59,135          | 94.65            | 1.52                   | \$64 366             | 62.05              | U                 | 1.01                   | \$57.615          | _222.09          | 3.10                   | \$32,264             | 450.47             |
| \$5.5m             | 0                 | 1.69                   | \$59,250          | 96.34            | 0.52                   | \$192.936            | 62.57              | D                 | 1.00                   | \$100 375         | -222.09          | 3.09                   | \$32,204             | 453 57             |
| \$5.7m             | C                 | 1.69                   | \$59.348          | 98.03            | 1.52                   | \$65,839             | 64.09              | U                 | 1.00                   | \$58.495          | -210.30          | 3.05                   | \$32,512             | 456.62             |
| \$5.7m             | U                 | 1.00                   | \$50.362          | 00.03            | 3.01                   | \$33,242             | 67.10              | G                 | 1.71                   | \$63,163          | 217.80           | 3.03                   | \$32,750             | 450.02             |
| \$5.0m             | P                 | 1.00                   | \$59,302          | 101.40           | 1.55                   | \$55,242             | 68.65              | D                 | 0.97                   | \$102,796         | 216.83           | 3.04                   | \$33,001             | 452.68             |
| \$5.9III<br>\$6.0m | R O               | 1.00                   | \$59,507          | 102.08           | 0.52                   | \$102.280            | 60.16              | U                 | 1.68                   | \$50,262          | 215.15           | 3.02                   | \$33,071             | 465.60             |
| \$6.1m             | P                 | 1.00                   | \$59,591          | 103.08           | 1.55                   | \$64,650             | 70.71              | U                 | 1.00                   | \$60,216          | 212.40           | 2.07                   | \$33,242             | 468.66             |
| \$0.1111<br>\$6.2m | K O               | 1.08                   | \$59,498          | 104.70           | 0.52                   | \$102,822            | 71.22              | D                 | 0.05                   | \$105,210         | 212.52           | 2.97                   | \$33,720             | 408.00             |
| \$6.2m             | C                 | 1.00                   | \$59,527          | 100.44           | 1.51                   | \$195,622            | 71.23              | C                 | 1.52                   | \$105,159         | 211.00           | 2.95                   | \$33,032             | 474.56             |
| 30.3M              | D<br>D            | 1.08                   | \$39,343          | 108.12           | 1.51                   | \$00,035<br>\$64,701 | 74.79              | U                 | 1.33                   | \$05,508          | -211.00          | 2.94                   | \$33,972             | 4/4.30             |
| \$0.4m             | R                 | 1.08                   | \$39,027          | 109.80           | 0.51                   | \$04,791             | 74.20              | D                 | 1.04                   | \$01,038          | -209.57          | 2.92                   | \$34,192             | 4//.40             |
| \$6.5m             | 0                 | 1.08                   | \$59,002          | 111.4/           | 0.51                   | \$194,262            | 74.80              | D                 | 0.93                   | \$107,471         | -208.44          | 2.89                   | \$34,390             | 480.37             |
| \$6.6M             |                   | 1.07                   | \$39,730          | 113.15           | 1.51                   | \$00,209             | /0.31              | 0                 | 1.62                   | \$61,889          | -206.82          | 2.89                   | \$34,037             | 485.20             |
| \$0.7m             | ĸ                 | 1.0/                   | \$39,738          | 114.82           | 1.54                   | \$04,932             | 79.26              | U U               | 1.49                   | \$67,320          | -205.55          | 2.80                   | \$35,019             | 480.11             |
| \$6.8m             | D                 | 1.0/                   | \$39,790          | 110.49           | 0.51                   | \$194,699            | /8.30              | U                 | 1.59                   | \$62,709          | -203.74          | 2.85                   | \$35,110             | 488.90             |
| \$6.9m             | ĸ                 | 1.07                   | \$59,887          | 118.10           | 1.54                   | \$65,072             | /9.90              | D                 | 0.91                   | \$109,735         | -202.83          | 2.83                   | \$35,324             | 491.79             |
| \$7.0m             | C                 | 1.6/                   | \$59,928          | 119.83           | 1.50                   | \$66,481             | 81.40              | U                 | 1.5/                   | \$63,518          | -201.25          | 2.81                   | \$35,569             | 494.60             |
| \$7.1m             | 0                 | 1.67                   | \$59,930          | 121.50           | 0.51                   | \$195,137            | 81.91              | G                 | 1.44                   | \$69,219          | -199.81          | 2.78                   | \$36,007             | 497.38             |
| \$7.2m             | K                 | 1.6/                   | \$60,016          | 123.17           | 1.53                   | \$65,213             | 83.45              | U                 | 1.55                   | \$64,317          | -198.25          | 2.78                   | \$36,017             | 500.16             |
| \$7.3m             | w                 | 1.6/                   | \$60,049          | 124.83           | 2.14                   | \$46,801             | 85.58              | D                 | 0.89                   | \$111,953         | -197.36          | 2.77                   | \$36,038             | 502.93             |
| \$7.4m             | 0                 | 1.66                   | \$60,064          | 126.50           | 0.51                   | \$195,568            | 86.10              | U                 | 1.54                   | \$65,107          | -195.83          | 2.74                   | \$36,459             | 505.67             |
| \$7.5m             | C                 | 1.66                   | \$60,118          | 128.16           | 1.50                   | \$66,693             | 87.60              | D                 | 0.88                   | \$114,127         | -194.95          | 2.72                   | \$36,/38             | 508.40             |
| \$7.6m             | ĸ                 | 1.66                   | \$60,145          | 129.82           | 1.53                   | \$65,353             | 89.13              | U                 | 1.52                   | \$65,886          | -193.43          | 2.71                   | \$36,895             | 511.11             |
| \$7.7m             | 0                 | 1.66                   | \$60,196          | 131.48           | 0.51                   | \$196,005            | 89.64              | G                 | 1.41                   | \$71,019          | -192.02          | 2.71                   | \$36,943             | 513.81             |
| \$7.8m             | U                 | 1.66                   | \$60,216          | 133.14           | 2.97                   | \$33,720             | 92.60              | U                 | 1.50                   | \$66,657          | -190.52          | 2.68                   | \$37,327             | 516.49             |
| \$7.9m             | ĸ                 | 1.66                   | \$60,274          | 134.80           | 1.53                   | \$65,493             | 94.13              | D                 | 0.86                   | \$116,260         | -189.66          | 2.67                   | \$37,425             | 519.16             |
| \$8.0m             | C                 | 1.66                   | \$60,307          | 136.46           | 1.49                   | \$66,903             | 95.62              | U                 | 1.48                   | \$67,419          | -188.18          | 2.65                   | \$37,754             | 521.81             |
| \$8.1m             | 0                 | 1.66                   | \$60,328          | 138.12           | 0.51                   | \$196,433            | 96.13              | G                 | 1.3/                   | \$/2,/32          | -186.80          | 2.64                   | \$37,834             | 524.46             |
| \$8.2m             | ĸ                 | 1.66                   | \$60,402          | 139.//           | 1.52                   | \$65,632             | 97.66              | D                 | 0.84                   | \$118,356         | -185.96          | 2.62                   | \$38,100             | 527.08             |
| \$8.3m             | 0                 | 1.65                   | \$60,460          | 141.43           | 0.51                   | \$196,858            | 98.16              | U                 | 1.4/                   | \$68,172          | -184.49          | 2.62                   | \$38,176             | 529.70             |
| 58.4m              |                   | 1.65                   | 500,496           | 145.08           | 1.49                   | \$0/,112             | 99.65              | U                 | 1.45                   | \$08,918          | -185.04          | 2.59                   | \$38,593             | 532.29             |
| 58.5m              | ĸ                 | 1.65                   | \$60,530          | 144./3           | 1.52                   | \$05,772             | 101.17             | G                 | 1.34                   | \$/4,308          | -181./0          | 2.58                   | \$38,085             | 534.88             |
| 58.0m              | D                 | 1.05                   | \$00,591          | 140.58           | 0.51                   | \$19/,289            | 101.68             |                   | 0.83                   | \$120,414         | -180.8/          | 2.58                   | \$38,/03             | 540.02             |
| \$8./m             | ĸ                 | 1.05                   | \$00,058          | 148.03           | 1.52                   | \$05,910             | 103.20             | U                 | 1.44                   | \$09,055          | -1/9.43          | 2.56                   | \$39,006             | 540.02             |
| \$8.8m             | <u> </u>          | 1.65                   | \$60,683          | 149.68           | 1.49                   | \$67,319             | 104.68             | D                 | 0.82                   | \$122,439         | -178.61          | 2.54                   | \$39,414             | 542.56             |
| \$8.9m             | D                 | 1.65                   | \$60,684          | 151.33           | 5.12                   | \$19,535             | 109.80             | U                 | 1.42                   | \$70,384          | -1//.19          | 2.54                   | \$39,414             | 545.09             |
| \$9.0m             | 0                 | 1.65                   | \$60,722          | 152.98           | 0.51                   | \$197,711            | 110.31             | G                 | 1.32                   | \$75,935          | -1/5.88          | 2.53                   | \$39,500             | 547.63             |
| \$9.1m             | K<br>F            | 1.65                   | \$60,786          | 154.62           | 1.51                   | \$66,049             | 111.82             | U                 | 1.41                   | \$/1,106          | -1/4.47          | 2.51                   | \$39,818             | 550.14             |
| \$9.2m             | E                 | 1.64                   | \$60,831          | 156.26           | -10.92                 | -\$9,154             | 100.90             | D                 | 0.80                   | \$124,431         | -1/3.67          | 2.50                   | \$40,055             | 552.63             |
| \$9.3m             | 0                 | 1.64                   | 500,851           | 15/.91           | 0.50                   | \$198,138            | 101.40             | U                 | 1.39                   | \$/1,821          | -1/2.2/          | 2.49                   | \$40,219             | 557.0              |
| 59.4m              | G                 | 1.64                   | 500,861           | 109.00           | 5.16                   | \$31,659             | 104.56             | U U               | 1.29                   | \$//,439          | -1/0.98          | 2.48                   | \$40,283             | 557.60             |
| \$9.5m             |                   | 1.64                   | \$60,868          | 161.19           | 1.48                   | \$67,525             | 106.04             | U                 | 1.38                   | \$/2,528          | -169.60          | 2.46                   | \$40,615             | 560.06             |
| \$9.6m             | ĸ                 | 1.64                   | \$60,913          | 162.84           | 1.51                   | \$00,187             | 107.55             | D                 | 0.79                   | \$126,389         | -168.81          | 2.46                   | \$40,686             | 562.52             |
| \$9.7m             |                   | 1.64                   | \$60,981          | 164.48           | 0.50                   | \$198,555            | 108.06             | U                 | 1.37                   | \$/3,229          | -10/.45          | 2.44                   | \$41,007             | 567.40             |
| \$9.8m             | ĸ                 | 1.64                   | \$61,040          | 166.11           | 1.51                   | \$66,325             | 109.56             | G                 | 1.27                   | \$/8,88/          | -100.18          | 2.44                   | \$41,036             | 567.40             |
| 59.9m              |                   | 1.64                   | \$61.053          | 10/./5           | 1.48                   | 367.730              | 111.04             | 1 1)              | 0.78                   | \$128.520         | -165.40          | 2.42                   | \$41.307             | 269.82             |

|                    |                   |                    | Reallocation   | with good i        | nformation         |                      |                  |                   |                    | Reallocation         | with poor i      | nformation         |                      |                    |
|--------------------|-------------------|--------------------|----------------|--------------------|--------------------|----------------------|------------------|-------------------|--------------------|----------------------|------------------|--------------------|----------------------|--------------------|
|                    | Marginal          | Estimates          | with good info | rmation            | Estimate           | s with poor info     | rmation          | Marginal          | Estimates          | with good info       | rmation          | Estimate           | s with poor info     | rmation            |
| Budget imnact      | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER )       | $E(\Lambda E)^{d}$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER )             | $E(\Lambda E)^d$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ |
| \$10.0m            | U                 | 1 64               | \$61.058       | 169.39             | 2.92               | \$34 192             | 113.97           | U                 | 1 35               | \$73.923             | -164.05          | 2 42               | \$41 396             | 572.23             |
| \$10.0m            | 0                 | 1.64               | \$61,000       | 171.03             | 0.50               | \$198.977            | 114 47           | G                 | 1.25               | \$80,285             | -162.80          | 2 39               | \$41,763             | 574.63             |
| \$10.2m            | R                 | 1.63               | \$61,167       | 172.66             | 1.50               | \$66 463             | 115.97           | U                 | 1 34               | \$74.611             | -161.46          | 2 39               | \$41 781             | 577.02             |
| \$10.2m            | C                 | 1.63               | \$61,237       | 174.29             | 1.50               | \$67,934             | 117.45           | D                 | 0.77               | \$130,222            | -160.69          | 2.39               | \$41 919             | 579.41             |
| \$10.5m            | 0                 | 1.63               | \$61,237       | 175.93             | 0.50               | \$199 394            | 117.45           | U                 | 1 33               | \$75,293             | -159.37          | 2.37               | \$42 163             | 581.78             |
| \$10.4m            | R                 | 1.63               | \$61,293       | 177.56             | 1.50               | \$66,601             | 119.45           | G                 | 1.33               | \$81,635             | -158.14          | 2.37               | \$42,465             | 584.13             |
| \$10.5m            | 0                 | 1.63               | \$61,366       | 179.19             | 0.50               | \$199,808            | 119.95           | D                 | 0.76               | \$132,095            | -157.38          | 2.35               | \$42 523             | 586.49             |
| \$10.0m            | C                 | 1.63               | \$61,500       | 180.82             | 1 47               | \$68,137             | 121.42           | U                 | 1.32               | \$75.968             | -156.07          | 2.35               | \$42,525             | 588 84             |
| \$10.7m            | R                 | 1.63               | \$61.419       | 182.44             | 1.17               | \$66,738             | 122.91           | U                 | 1.30               | \$76,637             | -154.76          | 2.33               | \$42,916             | 591.17             |
| \$10.0m            | 0                 | 1.63               | \$61 493       | 184.07             | 0.50               | \$200,224            | 123.41           | D                 | 0.75               | \$133.942            | -154.02          | 2.32               | \$43,117             | 593.49             |
| \$10.9m            | R                 | 1.63               | \$61.546       | 185.70             | 1.50               | \$66,874             | 123.11           | G                 | 1 21               | \$82 941             | -152.81          | 2.32               | \$43,145             | 595.80             |
| \$11.0m            | C                 | 1.62               | \$61,601       | 187.32             | 1.50               | \$68,338             | 126.37           | U                 | 1 29               | \$77,300             | -151.52          | 2 31               | \$43,287             | 598.11             |
| \$11.2m            | 0                 | 1.62               | \$61,609       | 188.94             | 0.50               | \$200,634            | 126.87           | U                 | 1.29               | \$77.959             | -150.23          | 2 29               | \$43,656             | 600.40             |
| \$11.2m<br>\$11.3m | R                 | 1.62               | \$61.671       | 190.56             | 1 49               | \$67.012             | 128.36           | D                 | 0.74               | \$135,766            | -149 50          | 2.29               | \$43,704             | 602.69             |
| \$11.4m            | 0                 | 1.62               | \$61 746       | 192.18             | 0.50               | \$201.045            | 128.86           | G                 | 1 19               | \$84 208             | -148 31          | 2.28               | \$43,804             | 604 98             |
| \$11.5m            | č                 | 1.62               | \$61,781       | 193.80             | 1.46               | \$68,538             | 130.32           | Ŭ                 | 1.27               | \$78.611             | -147.04          | 2.20               | \$44.021             | 607.25             |
| \$11.6m            | R                 | 1.62               | \$61,797       | 195.42             | 1.49               | \$67,147             | 131.81           | D                 | 0.73               | \$137.563            | -146.31          | 2.26               | \$44,282             | 609.51             |
| \$11.7m            | 0                 | 1.62               | \$61,871       | 197.04             | 0.50               | \$201 455            | 132.31           | Ŭ                 | 1 26               | \$79,258             | -145.05          | 2.25               | \$44 383             | 611.76             |
| \$11.8m            | Ū                 | 1.62               | \$61.889       | 198.65             | 2.89               | \$34.657             | 135.19           | G                 | 1.17               | \$85,438             | -143.88          | 2.25               | \$44,443             | 614.01             |
| \$11.9m            | R                 | 1.61               | \$61,922       | 200.27             | 1.49               | \$67.283             | 136.68           | Ū                 | 1.25               | \$79,900             | -142.63          | 2.23               | \$44,743             | 616.24             |
| \$12.0m            | С                 | 1.61               | \$61,961       | 201.88             | 1.45               | \$68,737             | 138.13           | D                 | 0.72               | \$139,340            | -141.91          | 2.23               | \$44.855             | 618.47             |
| \$12.1m            | 0                 | 1.61               | \$61,996       | 203.49             | 0.50               | \$201.865            | 138.63           | G                 | 1.15               | \$86.633             | -140.76          | 2.22               | \$45.065             | 620.69             |
| \$12.2m            | R                 | 1.61               | \$62,047       | 205.10             | 1.48               | \$67,420             | 140.11           | U                 | 1.24               | \$80,537             | -139.51          | 2.22               | \$45.099             | 622.91             |
| \$12.3m            | 0                 | 1.61               | \$62,121       | 206.71             | 0.49               | \$202,269            | 140.61           | D                 | 0.71               | \$141,091            | -138.80          | 2.20               | \$45,419             | 625.11             |
| \$12.4m            | С                 | 1.61               | \$62,139       | 208.32             | 1.45               | \$68,935             | 142.06           | U                 | 1.23               | \$81,168             | -137.57          | 2.20               | \$45,453             | 627.31             |
| \$12.5m            | R                 | 1.61               | \$62,171       | 209.93             | 1.48               | \$67,555             | 143.54           | G                 | 1.14               | \$87,796             | -136.43          | 2.19               | \$45,670             | 629.50             |
| \$12.6m            | 0                 | 1.61               | \$62,245       | 211.54             | 0.49               | \$202,671            | 144.03           | U                 | 1.22               | \$81,795             | -135.21          | 2.18               | \$45,804             | 631.68             |
| \$12.7m            | R                 | 1.61               | \$62,296       | 213.14             | 1.48               | \$67,690             | 145.51           | D                 | 0.70               | \$142,824            | -134.51          | 2.18               | \$45,975             | 633.86             |
| \$12.8m            | С                 | 1.60               | \$62,316       | 214.75             | 1.45               | \$69,131             | 146.95           | U                 | 1.21               | \$82,417             | -133.30          | 2.17               | \$46,152             | 636.03             |
| \$12.9m            | 0                 | 1.60               | \$62,369       | 216.35             | 0.49               | \$203,075            | 147.45           | G                 | 1.12               | \$88,929             | -132.17          | 2.16               | \$46,260             | 638.19             |
| \$13.0m            | R                 | 1.60               | \$62,420       | 217.95             | 1.47               | \$67,825             | 148.92           | U                 | 1.20               | \$83,034             | -130.97          | 2.15               | \$46,498             | 640.34             |
| \$13.1m            | 0                 | 1.60               | \$62,492       | 219.55             | 0.49               | \$203,475            | 149.41           | D                 | 0.69               | \$144,534            | -130.28          | 2.15               | \$46,527             | 642.49             |
| \$13.2m            | С                 | 1.60               | \$62,493       | 221.15             | 1.44               | \$69,326             | 150.85           | W                 | 1.67               | \$60,049             | -128.61          | 2.14               | \$46,801             | 644.62             |
| \$13.3m            | R                 | 1.60               | \$62,545       | 222.75             | 1.47               | \$67,960             | 152.33           | G                 | 1.11               | \$90,035             | -127.50          | 2.14               | \$46,834             | 646.76             |
| \$13.4m            | 0                 | 1.60               | \$62,614       | 224.35             | 0.49               | \$203,878            | 152.82           | U                 | 1.20               | \$83,647             | -126.31          | 2.13               | \$46,841             | 648.89             |
| \$13.5m            | С                 | 1.60               | \$62,668       | 225.95             | 1.44               | \$69,521             | 154.25           | D                 | 0.68               | \$146,224            | -125.62          | 2.12               | \$47,072             | 651.02             |
| \$13.6m            | R                 | 1.60               | \$62,668       | 227.54             | 1.47               | \$68,094             | 155.72           | U                 | 1.19               | \$84,256             | -124.43          | 2.12               | \$47,182             | 653.14             |
| \$13.7m            | U                 | 1.59               | \$62,709       | 229.14             | 2.85               | \$35,116             | 158.57           | G                 | 1.10               | \$91,113             | -123.34          | 2.11               | \$47,395             | 655.25             |
| \$13.8m            | 0                 | 1.59               | \$62,736       | 230.73             | 0.49               | \$204,273            | 159.06           | U                 | 1.18               | \$84,859             | -122.16          | 2.10               | \$47,520             | 657.35             |
| \$13.9m            | R                 | 1.59               | \$62,792       | 232.32             | 1.47               | \$68,229             | 160.53           | D                 | 0.68               | \$147,896            | -121.48          | 2.10               | \$47,608             | 659.45             |
| \$14.0m            | С                 | 1.59               | \$62,842       | 233.91             | 1.43               | \$69,715             | 161.96           | U                 | 1.17               | \$85,459             | -120.31          | 2.09               | \$47,856             | 661.54             |
| \$14.1m            | 0                 | 1.59               | \$62,858       | 235.51             | 0.49               | \$204,671            | 162.45           | G                 | 1.09               | \$92,166             | -119.23          | 2.09               | \$47,943             | 663.63             |
| \$14.2m            | R                 | 1.59               | \$62,915       | 237.09             | 1.46               | \$68,363             | 163.91           | D                 | 0.67               | \$149,548            | -118.56          | 2.08               | \$48,142             | 665.71             |
| \$14.3m            | 0                 | 1.59               | \$62,979       | 238.68             | 0.49               | \$205,061            | 164.40           | U                 | 1.16               | \$86,055             | -117.40          | 2.08               | \$48,190             | 667.78             |
| \$14.4m            | W                 | 1.59               | \$62,990       | 240.27             | 2.04               | \$49,093             | 166.44           | G                 | 1.07               | \$93,197             | -116.32          | 2.06               | \$48,479             | 669.84             |
| \$14.5m            | C                 | 1.59               | \$63,015       | 241.86             | 1.43               | \$69,907             | 167.87           | U                 | 1.15               | \$86,646             | -115.17          | 2.06               | \$48,520             | 671.90             |
| \$14.6m            | ĸ                 | 1.59               | \$63,038       | 243.44             | 1.46               | \$68,496             | 169.33           | D                 | 0.66               | \$151,185            | -114.51          | 2.05               | \$48,667             | 673.96             |
| \$14.7m            | 0                 | 1.58               | \$63,100       | 245.03             | 0.49               | \$205,457            | 169.81           | U                 | 1.15               | \$87,234             | -113.36          | 2.05               | \$48,850             | 676.01             |
| \$14.8m            | K                 | 1.58               | \$63,160       | 246.61             | 1.46               | \$68,629             | 1/1.2/           | G<br>W            | 1.06               | \$94,205             | -112.30          | 2.04               | \$49,003             | 6/8.05             |
| \$14.9m<br>\$15.0m | U<br>C            | 1.38               | \$03,103       | 248.19             | 3.04               | \$32,830             | 175.74           | W II              | 1.59               | \$02,990<br>\$07,017 | -110./1          | 2.04               | \$49,093             | 682.12             |
| 313.011            |                   | 1.20               | 303,100        | 247.10             | 1.43               | 3/0.090              | 1/3./4           | i U               | 1.14               | 30/.01/              | -107.5/          | 2.05               | 347.1/0              | 002.12             |

|                       |                   |                   | Reallocation      | with good i       | nformation        |                  |                 |                   |                   | Reallocation   | with poor i     | nformation        |                  |                   |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-----------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------|-------------------|
|                       | Marginal          | Estimates         | with good info    | rmation           | Estimate          | s with poor info | rmation         | Marginal          | Estimates         | with good info | rmation         | Estimate          | s with poor info | rmation           |
| Budget impact         | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$15.1m               | E                 | 1.58              | \$63.218          | 251.36            | -11.21            | -\$8.922         | 164.53          | D                 | 0.65              | \$152.800      | -108.92         | 2.03              | \$49,188         | 684.15            |
| \$15.2m               | 0                 | 1.58              | \$63,221          | 252.94            | 0.49              | \$205,850        | 165.02          | Ū                 | 1 13              | \$88 397       | -107 79         | 2.02              | \$49 502         | 686.17            |
| \$15.3m               | R                 | 1.58              | \$63,283          | 254 52            | 1 45              | \$68 763         | 166.47          | G                 | 1.05              | \$95,191       | -106 74         | 2.02              | \$49 517         | 688 19            |
| \$15.4m               | 0                 | 1.58              | \$63,340          | 256.10            | 0.48              | \$206,763        | 166.96          | D                 | 0.65              | \$154 400      | -106.09         | 2.02              | \$49,702         | 690.20            |
| \$15.5m               | C                 | 1.58              | \$63,359          | 257.68            | 1 42              | \$70,288         | 168.38          | U                 | 1.12              | \$88,973       | -104.97         | 2.01              | \$49,823         | 692.21            |
| \$15.6m               | R                 | 1.58              | \$63,406          | 259.26            | 1.45              | \$68,895         | 169.83          | G                 | 1.04              | \$96,157       | -103.93         | 2.00              | \$50.019         | 694 21            |
| \$15.0m               | 0                 | 1.58              | \$63,460          | 260.83            | 0.48              | \$206,629        | 170.32          | U                 | 1.01              | \$89 545       | -102.81         | 1 99              | \$50,143         | 696.20            |
| \$15.8m               | U                 | 1.50              | \$63,518          | 262.41            | 2.81              | \$35,569         | 173.13          | D                 | 0.64              | \$155.984      | -102.01         | 1.99              | \$50,213         | 698.19            |
| \$15.0m               | R                 | 1.57              | \$63,510          | 263.98            | 1.45              | \$69,002         | 174 58          | U                 | 1 11              | \$90,114       | -101.06         | 1.99              | \$50,215         | 700.18            |
| \$15.7m               | C                 | 1.57              | \$63,527          | 265.55            | 1.43              | \$70,478         | 175.99          | G                 | 1.03              | \$97.105       | -100.03         | 1.98              | \$50,512         | 702.16            |
| \$16.0m               | 0                 | 1.57              | \$63,550          | 267.13            | 0.48              | \$207.014        | 176.48          | 0                 | 0.63              | \$157.552      | 00.30           | 1.90              | \$50,512         | 704.13            |
| \$16.1m               | P                 | 1.57              | \$63,640          | 268.70            | 1.45              | \$60,161         | 177.02          | U                 | 1.10              | \$90,678       | 08.20           | 1.97              | \$50,779         | 704.13            |
| \$16.2m               | R O               | 1.57              | \$62,608          | 200.70            | 0.49              | \$207.404        | 179.41          | G                 | 1.10              | \$90,078       | 07.27           | 1.97              | \$50,779         | 708.06            |
| \$16.4m               | C                 | 1.57              | \$63,698          | 270.27            | 1.42              | \$207,404        | 170.91          | U                 | 1.02              | \$91,034       | 96.18           | 1.90              | \$51,001         | 710.01            |
| \$10.4III<br>\$16.5m  | D                 | 1.57              | \$63,099          | 271.04            | 1.44              | \$70,000         | 19.02           | W                 | 1.10              | \$71,240       | -90.18          | 1.90              | \$51,091         | 711.07            |
| \$10.5III<br>\$16.6m  | R O               | 1.37              | \$63,771          | 273.41            | 0.49              | \$09,292         | 181.20          | W D               | 0.63              | \$03,078       | -94.03          | 1.93              | \$51,100         | 712.02            |
| \$10.0M               | 0<br>C            | 1.37              | \$03,813          | 274.97            | 0.48              | \$207,764        | 101./4          |                   | 1.00              | \$139,104      | -94.02          | 1.93              | \$51,210         | 715.92            |
| \$10.7III<br>\$16.9-1 | C D               | 1.37              | \$05,808          | 270.34            | 1.41              | \$70,835         | 103.10          | 0                 | 1.09              | \$91,/99       | -92.93          | 1.93              | \$51,400         | 717.01            |
| \$10.8III<br>\$16.0m  | R                 | 1.37              | \$03,892          | 278.10            | 1.44              | \$09,423         | 104.00          | 0                 | 1.01              | \$98,940       | -91.92          | 1.94              | \$51,470         | 710.74            |
| \$16.9m               | 0<br>D            | 1.50              | \$03,933          | 2/9.0/            | 0.48              | \$208,169        | 185.08          | D                 | 0.62              | \$100,043      | -91.30          | 1.93              | \$51,/12         | /19./4            |
| \$17.0m               | ĸ                 | 1.50              | \$64,013          | 281.23            | 1.44              | \$09,550         | 180.31          | 0                 | 1.08              | \$92,352       | -90.22          | 1.93              | \$51,/1/         | 721.08            |
| \$17.1m               | C                 | 1.56              | \$64,036          | 282.79            | 1.41              | \$71,039         | 18/.92          | G                 | 1.00              | \$99,841       | -89.22          | 1.93              | \$51,936         | 723.60            |
| \$17.2m               | 0                 | 1.56              | \$64,050          | 284.35            | 0.48              | \$208,551        | 188.40          | U                 | 1.08              | \$92,904       | -88.14          | 1.92              | \$52,026         | 725.52            |
| \$17.3m               | R                 | 1.56              | \$64,134          | 285.91            | 1.43              | \$69,687         | 189.84          | D                 | 0.62              | \$162,164      | -8/.52          | 1.92              | \$52,203         | 727.44            |
| \$17.4m               | 0                 | 1.56              | \$64,167          | 287.47            | 0.48              | \$208,934        | 190.32          | U                 | 1.07              | \$93,453       | -86.45          | 1.91              | \$52,331         | 729.35            |
| \$17.5m               | C                 | 1.56              | \$64,203          | 289.03            | 1.40              | \$/1,225         | 191./2          | G                 | 0.99              | \$100,722      | -85.46          | 1.91              | \$52,394         | /31.26            |
| \$17.6m               | R                 | 1.56              | \$64,255          | 290.58            | 1.43              | \$69,819         | 193.15          | U                 | 1.06              | \$93,997       | -84.40          | 1.90              | \$52,637         | 733.16            |
| \$17.7m               | 0                 | 1.56              | \$64,283          | 292.14            | 0.48              | \$209,306        | 193.63          | D                 | 0.61              | \$163,674      | -83.79          | 1.90              | \$52,687         | 735.06            |
| \$17.8m               | U                 | 1.55              | \$64,317          | 293.69            | 2.78              | \$36,017         | 196.41          | G                 | 0.98              | \$101,587      | -82.80          | 1.89              | \$52,844         | 736.95            |
| \$17.9m               | C                 | 1.55              | \$64,369          | 295.25            | 1.40              | \$71,409         | 197.81          | U                 | 1.06              | \$94,539       | -81.74          | 1.89              | \$52,941         | 738.84            |
| \$18.0m               | R                 | 1.55              | \$64,375          | 296.80            | 1.43              | \$69,949         | 199.24          | W                 | 1.4/              | \$68,162       | -80.28          | 1.88              | \$53,124         | 740.72            |
| \$18.1m               | 0                 | 1.55              | \$64,399          | 298.35            | 0.48              | \$209,688        | 199.71          | D                 | 0.61              | \$165,166      | -79.67          | 1.88              | \$53,169         | 742.60            |
| \$18.2m               | R                 | 1.55              | \$64,496          | 299.91            | 1.43              | \$70,080         | 201.14          | U                 | 1.05              | \$95,078       | -78.62          | 1.88              | \$53,242         | 744.48            |
| \$18.3m               | 0                 | 1.55              | \$64,515          | 301.46            | 0.48              | \$210,066        | 201.62          | G                 | 0.98              | \$102,436      | -77.64          | 1.88              | \$53,286         | 746.36            |
| \$18.4m               | C                 | 1.55              | \$64,534          | 303.00            | 1.40              | \$71,592         | 203.01          | U                 | 1.05              | \$95,613       | -76.60          | 1.87              | \$53,542         | 748.22            |
| \$18.5m               | D                 | 1.55              | \$64,611          | 304.55            | 4.81              | \$20,799         | 207.82          | D                 | 0.60              | \$166,650      | -76.00          | 1.86              | \$53,645         | 750.09            |
| \$18.6m               | R                 | 1.55              | \$64,615          | 306.10            | 1.42              | \$70,210         | 209.25          | G                 | 0.97              | \$103,273      | -75.03          | 1.86              | \$53,721         | 751.95            |
| \$18.7m               | 0                 | 1.55              | \$64,630          | 307.65            | 0.48              | \$210,438        | 209.72          | U                 | 1.04              | \$96,146       | -/3.99          | 1.86              | \$53,842         | /53.81            |
| \$18.8m               | C                 | 1.55              | \$64,699          | 309.19            | 1.39              | \$/1,7/4         | 211.11          | D                 | 0.59              | \$168,118      | -/3.39          | 1.85              | \$54,118         | 755.65            |
| \$18.9m               | R                 | 1.54              | \$64,735          | 310.74            | 1.42              | \$70,340         | 212.54          | U                 | 1.03              | \$96,675       | -/2.36          | 1.85              | \$54,136         | 757.50            |
| \$19.0m               | 0                 | 1.54              | \$64,744          | 312.28            | 0.47              | \$210,810        | 213.01          | G                 | 0.96              | \$104,096      | -71.40          | 1.85              | \$54,149         | 759.35            |
| \$19.1m               | R                 | 1.54              | \$64,855          | 313.82            | 1.42              | \$70,471         | 214.43          | U                 | 1.03              | \$97,203       | -70.37          | 1.84              | \$54,434         | 761.19            |
| \$19.2m               | 0                 | 1.54              | \$64,859          | 315.37            | 0.47              | \$211,184        | 214.90          | G                 | 0.95              | \$104,905      | -69.42          | 1.83              | \$54,570         | 763.02            |
| \$19.3m               | С                 | 1.54              | \$64,862          | 316.91            | 1.39              | \$71,956         | 216.29          | D                 | 0.59              | \$169,572      | -68.83          | 1.83              | \$54,588         | 764.85            |
| \$19.4m               | 0                 | 1.54              | \$64,973          | 318.45            | 0.47              | \$211,551        | 216.76          | U                 | 1.02              | \$97,727       | -67.80          | 1.83              | \$54,726         | 766.68            |
| \$19.5m               | R                 | 1.54              | \$64,973          | 319.99            | 1.42              | \$70,600         | 218.18          | W                 | 1.42              | \$70,477       | -66.39          | 1.82              | \$54,928         | 768.50            |
| \$19.6m               | С                 | 1.54              | \$65,025          | 321.52            | 1.39              | \$72,137         | 219.57          | G                 | 0.95              | \$105,704      | -65.44          | 1.82              | \$54,986         | 770.32            |
| \$19.7m               | 0                 | 1.54              | \$65,087          | 323.06            | 0.47              | \$211,927        | 220.04          | U                 | 1.02              | \$98,248       | -64.42          | 1.82              | \$55,018         | 772.13            |
| \$19.8m               | R                 | 1.54              | \$65,096          | 324.60            | 1.41              | \$70,729         | 221.45          | D                 | 0.58              | \$171,019      | -63.84          | 1.82              | \$55,051         | 773.95            |
| \$19.9m               | U                 | 1.54              | \$65,107          | 326.13            | 2.74              | \$36,459         | 224.20          | U                 | 1.01              | \$98,766       | -62.82          | 1.81              | \$55,307         | 775.76            |
| \$20.0m               | С                 | 1.53              | \$65,187          | 327.67            | 1.38              | \$72,316         | 225.58          | G                 | 0.94              | \$106,491      | -61.89          | 1.81              | \$55,394         | 777.56            |
| \$20.1m               | 0                 | 1.53              | \$65,198          | 329.20            | 0.47              | \$212.292        | 226.05          | D                 | 0.58              | \$172,446      | -61.31          | 1.80              | \$55,512         | 779.37            |

|                      |                   |                        | Reallocation      | with good i        | nformation             |                      |                    |                   |                        | Reallocation      | with poor i      | nformation             |                      |                  |
|----------------------|-------------------|------------------------|-------------------|--------------------|------------------------|----------------------|--------------------|-------------------|------------------------|-------------------|------------------|------------------------|----------------------|------------------|
|                      | Marginal          | Estimates              | s with good info  | rmation            | Estimate               | s with poor info     | rmation            | Marginal          | Estimates              | with good info    | rmation          | Estimate               | s with poor info     | rmation          |
| Budget impact        | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^d$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ |
| \$20.2m              | R                 | 1 53                   | \$65 210          | 330.73             | 1 41                   | \$70.859             | 227.46             | U                 | 1.01                   | \$99 282          | -60 30           | 1.80                   | \$55 596             | 781.16           |
| \$20.3m              | G                 | 1 53                   | \$65,308          | 332.26             | 2.94                   | \$33,972             | 230.40             | G                 | 0.93                   | \$107.264         | -59.37           | 1 79                   | \$55 797             | 782.96           |
| \$20.4m              | 0                 | 1.53                   | \$65,313          | 333.80             | 0.47                   | \$212.657            | 230.87             | Ŭ                 | 1.00                   | \$99,794          | -58.36           | 1 79                   | \$55,885             | 784 75           |
| \$20.5m              | R                 | 1.53                   | \$65,330          | 335.33             | 1 41                   | \$70,987             | 232.28             | D                 | 0.58                   | \$173,868         | -57.79           | 1.79                   | \$55,969             | 786.53           |
| \$20.5m              | C                 | 1.53                   | \$65,348          | 336.86             | 1 38                   | \$72.495             | 233.66             | U                 | 1.00                   | \$100,306         | -56.79           | 1.79                   | \$56,170             | 788.31           |
| \$20.0m              | 0                 | 1.53                   | \$65,424          | 338.39             | 0.47                   | \$213.024            | 234.13             | G                 | 0.93                   | \$108,028         | -55.87           | 1.78                   | \$56,194             | 790.09           |
| \$20.7m              | R                 | 1.53                   | \$65,449          | 339.91             | 1 41                   | \$71,116             | 235 54             | D                 | 0.53                   | \$175,276         | -55.30           | 1.70                   | \$56,424             | 791.86           |
| \$20.0m              | C                 | 1.53                   | \$65,508          | 341 44             | 1.41                   | \$72,673             | 236.91             | U                 | 0.99                   | \$100.814         | -54.30           | 1.77                   | \$56,456             | 793.64           |
| \$20.7m              | 0                 | 1.53                   | \$65,508          | 342.97             | 0.47                   | \$213 393            | 230.91             | G                 | 0.99                   | \$108,781         | -53.38           | 1.77                   | \$56,586             | 795.04           |
| \$21.0m              | R                 | 1.53                   | \$65,559          | 344.49             | 1.40                   | \$71 247             | 238.79             | W                 | 1.38                   | \$72.649          | -52.01           | 1.77                   | \$56,621             | 797.17           |
| \$21.1m<br>\$21.2m   | R O               | 1.55                   | \$65,647          | 346.01             | 0.47                   | \$213 753            | 230.75             | II.               | 0.00                   | \$101 319         | 51.02            | 1.77                   | \$56,738             | 708.03           |
| \$21.2m              | W                 | 1.52                   | \$65,678          | 247.54             | 1.05                   | \$215,755            | 239.23             | D                 | 0.55                   | \$176.672         | -51.02           | 1.70                   | \$56,738             | 800.60           |
| \$21.5m              | D                 | 1.52                   | \$65,676          | 240.06             | 1.95                   | \$71,272             | 241.21             | G                 | 0.07                   | \$100.524         | -30.40           | 1.70                   | \$56,072             | 800.09           |
| \$21.4III<br>\$21.5m | K O               | 1.52                   | \$65,080          | 250.58             | 0.47                   | \$71,372             | 242.01             | U                 | 0.91                   | \$109,524         | -49.54           | 1.70                   | \$50,972             | 802.43           |
| \$21.5III<br>\$21.6m | D                 | 1.52                   | \$65,759          | 252.10             | 1.40                   | \$214,114            | 243.08             | U                 | 0.98                   | \$101,822         | -40.30           | 1.75                   | \$57,019             | 804.20           |
| \$21.0III<br>\$21.7  | R                 | 1.52                   | \$05,802          | 252.10             | 0.47                   | \$71,300             | 244.47             | D                 | 0.98                   | \$102,522         | -47.02           | 1.73                   | \$57,297             | 803.94           |
| \$21./m              | U                 | 1.52                   | \$05,807          | 255.14             | 0.47                   | \$214,475            | 244.94             | D                 | 0.30                   | \$178,030         | -47.02           | 1.74                   | \$57,510             | 807.09           |
| \$21.8m              | U                 | 1.52                   | \$05,880          | 256.65             | 2./1                   | \$30,893             | 247.05             | U U               | 0.91                   | \$110,256         | -40.11           | 1.74                   | \$57,555             | 809.43           |
| \$21.9m              | E                 | 1.52                   | \$65,910          | 259.17             | -11.52                 | -\$8,0//             | 230.13             | 0                 | 0.97                   | \$102,820         | -45.14           | 1.74                   | \$57,580             | 811.17           |
| \$22.0m              | R                 | 1.52                   | \$65,920          | 358.17             | 1.40                   | \$/1,628             | 237.52             | G                 | 0.90                   | \$110,978         | -44.24           | 1.73                   | \$57,729             | 812.90           |
| \$22.1m              | 0<br>D            | 1.52                   | \$65,980          | 359.69             | 0.47                   | \$214,837            | 237.99             | D                 | 0.56                   | \$1/9,433         | -43.08           | 1.73                   | \$57,760             | 814.03           |
| \$22.2m              | ĸ                 | 1.51                   | \$66,041          | 361.20             | 1.39                   | \$/1,/5/             | 239.38             | U                 | 0.97                   | \$103,315         | -42.72           | 1.73                   | \$57,854             | 816.36           |
| \$22.3m              | 0                 | 1.51                   | \$66,089          | 362.71             | 0.46                   | \$215,193            | 239.85             | G                 | 0.90                   | \$111,693         | -41.82           | 1.72                   | \$58,100             | 818.08           |
| \$22.4m              | R                 | 1.51                   | \$66,155          | 364.22             | 1.39                   | \$71,886             | 241.24             | U                 | 0.96                   | \$103,809         | -40.86           | 1.72                   | \$58,133             | 819.80           |
| \$22.5m              | 0                 | 1.51                   | \$66,203          | 365.73             | 0.46                   | \$215,550            | 241.70             | D                 | 0.55                   | \$180,796         | -40.30           | 1.72                   | \$58,200             | 821.52           |
| \$22.6m              | R                 | 1.51                   | \$66,269          | 367.24             | 1.39                   | \$72,010             | 243.09             | W                 | 1.34                   | \$74,698          | -38.96           | 1.72                   | \$58,218             | 823.24           |
| \$22.7m              | 0                 | 1.51                   | \$66,309          | 368.75             | 0.46                   | \$215,908            | 243.55             | U                 | 0.96                   | \$104,299         | -38.01           | 1.71                   | \$58,404             | 824.95           |
| \$22.8m              | R                 | 1.51                   | \$66,392          | 370.26             | 1.39                   | \$72,134             | 244.94             | G                 | 0.89                   | \$112,397         | -37.12           | 1.71                   | \$58,469             | 826.66           |
| \$22.9m              | 0                 | 1.51                   | \$66,419          | 371.76             | 0.46                   | \$216,258            | 245.40             | D                 | 0.55                   | \$182,153         | -36.57           | 1.71                   | \$58,637             | 828.37           |
| \$23.0m              | R                 | 1.50                   | \$66,507          | 373.27             | 1.38                   | \$72,265             | 246.79             | U                 | 0.95                   | \$104,789         | -35.61           | 1.70                   | \$58,682             | 830.07           |
| \$23.1m              | 0                 | 1.50                   | \$66,525          | 374.77             | 0.46                   | \$216,614            | 247.25             | G                 | 0.88                   | \$113,094         | -34.73           | 1.70                   | \$58,827             | 831.77           |
| \$23.2m              | R                 | 1.50                   | \$66,622          | 376.27             | 1.38                   | \$72,396             | 248.63             | U                 | 0.95                   | \$105,274         | -33.78           | 1.70                   | \$58,952             | 833.47           |
| \$23.3m              | 0                 | 1.50                   | \$66,636          | 377.77             | 0.46                   | \$216,967            | 249.09             | D                 | 0.54                   | \$183,496         | -33.23           | 1.69                   | \$59,067             | 835.16           |
| \$23.4m              | U                 | 1.50                   | \$66,657          | 379.27             | 2.68                   | \$37,327             | 251.77             | G                 | 0.88                   | \$113,781         | -32.35           | 1.69                   | \$59,189             | 836.85           |
| \$23.5m              | R                 | 1.50                   | \$66,738          | 380.77             | 1.38                   | \$72,516             | 253.15             | U                 | 0.95                   | \$105,759         | -31.41           | 1.69                   | \$59,224             | 838.54           |
| \$23.6m              | 0                 | 1.50                   | \$66,742          | 382.27             | 0.46                   | \$217,320            | 253.61             | U                 | 0.94                   | \$106,239         | -30.47           | 1.68                   | \$59,492             | 840.22           |
| \$23.7m              | 0                 | 1.50                   | \$66,849          | 383.76             | 0.46                   | \$217,670            | 254.07             | D                 | 0.54                   | \$184,829         | -29.93           | 1.68                   | \$59,499             | 841.90           |
| \$23.8m              | R                 | 1.50                   | \$66,854          | 385.26             | 1.38                   | \$72,643             | 255.44             | G                 | 0.87                   | \$114,460         | -29.05           | 1.68                   | \$59,538             | 843.58           |
| \$23.9m              | 0                 | 1.49                   | \$66,961          | 386.75             | 0.46                   | \$218,017            | 255.90             | W                 | 1.30                   | \$76,641          | -27.75           | 1.67                   | \$59,732             | 845.25           |
| \$24.0m              | R                 | 1.49                   | \$66,970          | 388.25             | 1.37                   | \$72,770             | 257.28             | U                 | 0.94                   | \$106,720         | -26.81           | 1.67                   | \$59,762             | 846.93           |
| \$24.1m              | 0                 | 1.49                   | \$67,065          | 389.74             | 0.46                   | \$218,364            | 257.74             | G                 | 0.87                   | \$115,132         | -25.94           | 1.67                   | \$59,891             | 848.60           |
| \$24.2m              | R                 | 1.49                   | \$67,083          | 391.23             | 1.37                   | \$72,892             | 259.11             | D                 | 0.54                   | \$186,154         | -25.41           | 1.67                   | \$59,927             | 850.26           |
| \$24.3m              | 0                 | 1.49                   | \$67,168          | 392.72             | 0.46                   | \$218,713            | 259.56             | U                 | 0.93                   | \$107,197         | -24.47           | 1.67                   | \$60,028             | 851.93           |
| \$24.4m              | R                 | 1.49                   | \$67,204          | 394.21             | 1.37                   | \$73,019             | 260.93             | G                 | 0.86                   | \$115,796         | -23.61           | 1.66                   | \$60,234             | 853.59           |
| \$24.5m              | 0                 | 1.49                   | \$67,277          | 395.69             | 0.46                   | \$219,058            | 261.39             | U                 | 0.93                   | \$107,673         | -22.68           | 1.66                   | \$60,295             | 855.25           |
| \$24.6m              | R                 | 1.49                   | \$67,313          | 397.18             | 1.37                   | \$73,148             | 262.76             | D                 | 0.53                   | \$187,473         | -22.15           | 1.66                   | \$60,346             | 856.91           |
| \$24.7m              | G                 | 1.49                   | \$67,320          | 398.66             | 2.86                   | \$35,019             | 265.61             | U                 | 0.92                   | \$108,146         | -21.22           | 1.65                   | \$60,562             | 858.56           |
| \$24.8m              | 0                 | 1.48                   | \$67,385          | 400.15             | 0.46                   | \$219,404            | 266.07             | G                 | 0.86                   | \$116,451         | -20.36           | 1.65                   | \$60,577             | 860.21           |
| \$24.9m              | U                 | 1.48                   | \$67,419          | 401.63             | 2.65                   | \$37,754             | 268.72             | D                 | 0.53                   | \$188,775         | -19.83           | 1.65                   | \$60,772             | 861.85           |
| \$25.0m              | R                 | 1.48                   | \$67,435          | 403.11             | 1.36                   | \$73,271             | 270.08             | U                 | 0.92                   | \$108,613         | -18.91           | 1.64                   | \$60,824             | 863.50           |
| \$25.1m              | 0                 | 1.48                   | \$67,490          | 404.60             | 0.46                   | \$219,746            | 270.54             | G                 | 0.85                   | \$117,100         | -18.06           | 1.64                   | \$60,912             | 865.14           |
| \$25.2m              | R                 | 1.48                   | \$67,545          | 406.08             | 1.36                   | \$73,394             | 271.90             | U                 | 0.92                   | \$109.087         | -17.14           | 1.64                   | \$61.087             | 866.78           |

|               |                   |                   | Reallocation      | with good i       | nformation        |                  |                 |                   |                   | Reallocation      | with poor i       | nformation        |                                    |                 |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------------------|-----------------|
|               | Marginal          | Estimates         | with good info    | rmation           | Estimate          | s with poor info | rmation         | Marginal          | Estimates         | with good info    | rmation           | Estimate          | s with poor info                   | rmation         |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^d$ |
| \$25.3m       | 0                 | 1.48              | \$67.595          | 407.55            | 0.45              | \$220.090        | 272.35          | W                 | 1.27              | \$78.489          | -15.87            | 1.63              | \$61.173                           | 868.41          |
| \$25.4m       | R                 | 1 48              | \$67,659          | 409.03            | 1 36              | \$73 519         | 273 71          | D                 | 0.53              | \$190.074         | -15 34            | 1.63              | \$61 185                           | 870.05          |
| \$25.5m       | 0                 | 1 48              | \$67,696          | 410 51            | 0.45              | \$220,434        | 274 17          | G                 | 0.85              | \$117 741         | -14 49            | 1.63              | \$61,248                           | 871.68          |
| \$25.6m       | R                 | 1 48              | \$67,774          | 411.99            | 1 36              | \$73.643         | 275.53          | U                 | 0.91              | \$109.553         | -13.58            | 1.63              | \$61,350                           | 873 31          |
| \$25.0m       | 0                 | 1.10              | \$67,806          | 413.46            | 0.45              | \$220,770        | 275.98          | G                 | 0.91              | \$118 377         | -12.74            | 1.62              | \$61,556                           | 874.93          |
| \$25.8m       | R                 | 1 47              | \$67,889          | 414.93            | 1 36              | \$73,768         | 277.33          | D                 | 0.52              | \$191.366         | -12.21            | 1.62              | \$61,603                           | 876.56          |
| \$25.0m       | 0                 | 1.17              | \$67,907          | 416.41            | 0.45              | \$221 112        | 277.79          | U                 | 0.91              | \$110.023         | -11.30            | 1.62              | \$61,607                           | 878.18          |
| \$26.0m       | R                 | 1.17              | \$68,004          | 417.88            | 1 35              | \$73.888         | 279.14          | U                 | 0.91              | \$110,025         | -10.40            | 1.62              | \$61,870                           | 879.80          |
| \$26.0m       | 0                 | 1.17              | \$68,009          | 419.35            | 0.45              | \$221,450        | 279.59          | G                 | 0.91              | \$119,005         | -9.56             | 1.62              | \$61,904                           | 881.41          |
| \$26.1m       | 0                 | 1 47              | \$68,115          | 420.82            | 0.45              | \$221,784        | 280.04          | D                 | 0.52              | \$192,645         | -9.04             | 1.61              | \$62.012                           | 883.02          |
| \$26.2m       | R                 | 1 47              | \$68,120          | 422.28            | 1 35              | \$74.019         | 281.39          | U<br>U            | 0.90              | \$110,939         | -8.14             | 1.61              | \$62,012                           | 884.63          |
| \$26.5m       | W                 | 1.17              | \$68,162          | 423.75            | 1.88              | \$53,124         | 283.28          | B                 | 1.75              | \$57.242          | -6.39             | 1.61              | \$62,127                           | 886.24          |
| \$26.5m       | II.               | 1.17              | \$68,172          | 425.73            | 2.62              | \$38,176         | 285.90          | G                 | 0.84              | \$119.626         | -5.56             | 1.61              | \$62,120                           | 887.85          |
| \$26.5m       | 0                 | 1.47              | \$68,222          | 426.68            | 0.45              | \$222 124        | 286.35          | R                 | 1 74              | \$57 377          | -3.81             | 1.61              | \$62,220                           | 889.45          |
| \$26.0m       | R                 | 1.17              | \$68,222          | 428.15            | 1 35              | \$74 134         | 287.69          | II II             | 0.90              | \$111.408         | -2.91             | 1.60              | \$62,383                           | 891.05          |
| \$26.7m       | D                 | 1.47              | \$68.312          | 429.61            | 4 55              | \$21,990         | 207.09          | D                 | 0.50              | \$193.915         | -2.91             | 1.60              | \$62,585                           | 892.66          |
| \$26.0m       | 0                 | 1.40              | \$68,312          | 427.01            | 0.45              | \$222,000        | 202.24          | P                 | 1.74              | \$57.512          | 0.66              | 1.60              | \$62,420                           | 894.26          |
| \$20.9m       | P                 | 1.40              | \$68.348          | 432.54            | 1 35              | \$74,261         | 204.04          | G                 | 0.83              | \$120.241         | 0.17              | 1.60              | \$62,551                           | 805.86          |
| \$27.0m       | R 0               | 1.40              | \$68,173          | 434.00            | 0.45              | \$222 702        | 204.04          | W                 | 1.25              | \$80.254          | 1.42              | 1.60              | \$62,551                           | 807.45          |
| \$27.1m       | R                 | 1.40              | \$68,456          | 435.46            | 1 34              | \$74 388         | 295.83          | R                 | 1.23              | \$57.646          | 3.15              | 1.60              | \$62,548                           | 899.05          |
| \$27.2m       | R 0               | 1.46              | \$68 526          | 436.92            | 0.45              | \$223 125        | 296.28          | II II             | 0.89              | \$111.857         | 4.05              | 1.60              | \$62,630                           | 900.65          |
| \$27.5m       | P                 | 1.40              | \$68,520          | /38.38            | 1 34              | \$74.505         | 207.62          | P                 | 1.73              | \$57.780          | 5.78              | 1.00              | \$62,041                           | 902.24          |
| \$27.4m       | R O               | 1.40              | \$68,508          | 430.30            | 0.45              | \$223.450        | 297.02          | D                 | 0.51              | \$105,170         | 6.20              | 1.59              | \$62,830                           | 003.83          |
| \$27.5m       | P                 | 1.40              | \$68,625          | 439.84            | 1 34              | \$74.632         | 298.07          | G                 | 0.91              | \$120,850         | 7.12              | 1.59              | \$62,850                           | 905.85          |
| \$27.0m       | 0 K               | 1.40              | \$68,733          | 442.75            | 0.45              | \$223 789        | 299.41          | U                 | 0.89              | \$112,330         | 8.01              | 1.59              | \$62,801                           | 907.01          |
| \$27.7m       | R                 | 1.45              | \$68,795          | 444.20            | 1 34              | \$74 755         | 301.19          | B                 | 1.73              | \$57.914          | 9.73              | 1.59              | \$62,929                           | 908.60          |
| \$27.0m       | R 0               | 1.45              | \$68,828          | 145.65            | 0.45              | \$224.120        | 301.64          | P                 | 1.73              | \$58.048          | 11.46             | 1.59              | \$63.074                           | 910.10          |
| \$27.9m       | P                 | 1.45              | \$68,008          | 447.10            | 1 34              | \$74,873         | 302.08          | II II             | 0.80              | \$112 765         | 12.34             | 1.59              | \$63,147                           | 011 77          |
| \$28.0m       | II                | 1.45              | \$68,918          | 448 56            | 2 59              | \$38 593         | 305.57          | G                 | 0.82              | \$121,703         | 13.17             | 1.58              | \$63,179                           | 913.35          |
| \$28.1m       | 0                 | 1.45              | \$68,937          | 450.01            | 0.45              | \$224 452        | 306.01          | R                 | 1.72              | \$58 181          | 14.89             | 1.58              | \$63,219                           | 913.33          |
| \$28.2m       | E                 | 1.45              | \$68,979          | 451.46            | -11.88            | -\$8.418         | 294.13          | D                 | 0.51              | \$196,433         | 15.30             | 1.58              | \$63,217                           | 916.52          |
| \$28.5m       | R                 | 1.45              | \$69,023          | 452.90            | 1 33              | \$74,996         | 295.47          | B                 | 1.71              | \$58 314          | 17.11             | 1.58              | \$63,251                           | 918.09          |
| \$28.5m       | 0                 | 1.45              | \$69,023          | 454 35            | 0.44              | \$224 775        | 295.91          | U                 | 0.88              | \$113 225         | 17.00             | 1.58              | \$63,403                           | 919.67          |
| \$28.5m       | R                 | 1.45              | \$69,132          | 455.80            | 1 33              | \$75,120         | 293.91          | G                 | 0.82              | \$122.051         | 18.81             | 1.58              | \$63,488                           | 921.25          |
| \$28.0m       | 0                 | 1.45              | \$69,132          | 457.25            | 0.44              | \$225 104        | 297.69          | R                 | 1.71              | \$58.447          | 20.52             | 1.50              | \$63,508                           | 922.23          |
| \$28.8m       | G                 | 1.13              | \$69,219          | 458.69            | 2 78              | \$36,007         | 300.46          | C                 | 1.74              | \$57 332          | 20.52             | 1.57              | \$63,602                           | 924 39          |
| \$28.9m       | 0                 | 1 44              | \$69 238          | 460.14            | 0.44              | \$225 433        | 300.91          | D                 | 0.51              | \$197.679         | 22.27             | 1.57              | \$63,632                           | 925.97          |
| \$29.0m       | R                 | 1 44              | \$69 242          | 461 58            | 1 33              | \$75 239         | 302.24          | R                 | 1 71              | \$58 579          | 24.77             | 1.57              | \$63.651                           | 927.54          |
| \$29.1m       | 0                 | 1 44              | \$69 334          | 463.02            | 0.44              | \$225 759        | 302.68          | Ū                 | 0.88              | \$113.662         | 25.36             | 1.57              | \$63 654                           | 929.11          |
| \$29.2m       | R                 | 1 44              | \$69.358          | 464 46            | 1 33              | \$75 364         | 304.01          | R                 | 1 70              | \$58 711          | 27.06             | 1.57              | \$63,795                           | 930.67          |
| \$29.2m       | 0                 | 1 44              | \$69,435          | 465.90            | 0.44              | \$226.081        | 304.45          | G                 | 0.82              | \$122.641         | 27.88             | 1.57              | \$63,796                           | 932.24          |
| \$29.5m       | R                 | 1 44              | \$69 469          | 467 34            | 1 32              | \$75.483         | 305 77          | C                 | 1 74              | \$57 540          | 29.62             | 1.57              | \$63,833                           | 933.81          |
| \$29.5m       | 0                 | 1.44              | \$69.531          | 468 78            | 0.44              | \$226,403        | 306.21          | W                 | 1.74              | \$81.946          | 30.84             | 1.57              | \$63,855                           | 935.37          |
| \$29.6m       | R                 | 1.44              | \$69 580          | 470.22            | 1 32              | \$75.603         | 307.54          | U                 | 0.88              | \$114 129         | 31.71             | 1.57              | \$63,906                           | 936.94          |
| \$29.7m       | 0                 | 1 44              | \$69.633          | 471.65            | 0.44              | \$226 727        | 307.98          | R                 | 1 70              | \$58.843          | 33.41             | 1.50              | \$63,938                           | 938 50          |
| \$29.8m       | U                 | 1 44              | \$69.655          | 473.09            | 2.56              | \$39,006         | 310.54          | D                 | 0.50              | \$198.922         | 33.91             | 1.56              | \$64.033                           | 940.07          |
| \$29.0m       | R                 | 1 43              | \$69 691          | 474 53            | 1 32              | \$75 729         | 311.86          | C                 | 1 73              | \$57 746          | 35.65             | 1.56              | \$64.062                           | 941.63          |
| \$30.0m       | 0                 | 1.43              | \$69,730          | 475.96            | 0.44              | \$227.051        | 312.30          | R                 | 1.75              | \$58.975          | 37.34             | 1.50              | \$64.081                           | 943 19          |
| \$30.1m       | R                 | 1.43              | \$69,798          | 477 39            | 1 32              | \$75 844         | 313.62          | G                 | 0.81              | \$123,226         | 38.15             | 1.50              | \$64.098                           | 944 75          |
| \$30.2m       | 0                 | 1.43              | \$69.832          | 478.82            | 0.44              | \$227 371        | 314.06          | U                 | 0.87              | \$114 561         | 39.03             | 1.50              | \$64 156                           | 946 31          |
| \$30.3m       | R                 | 1.43              | \$69.915          | 480.25            | 1 32              | \$75,965         | 315.38          | R                 | 1.69              | \$59,106          | 40.72             | 1.56              | \$64 224                           | 947.86          |

|                      |                   |                    | Reallocation     | with good i        | nformation         |                      |                  |                   |                    | Reallocation   | with poor i      | nformation         |                      |                    |
|----------------------|-------------------|--------------------|------------------|--------------------|--------------------|----------------------|------------------|-------------------|--------------------|----------------|------------------|--------------------|----------------------|--------------------|
|                      | Marginal          | Estimates          | s with good info | rmation            | Estimate           | s with poor info     | rmation          | Marginal          | Estimates          | with good info | rmation          | Estimate           | s with poor info     | rmation            |
| Budget imnact        | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER)          | $E(\Lambda E)^{d}$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER )       | $E(\Lambda E)^d$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ |
| \$30.4m              | 0                 | 1 43               | \$69.930         | 481.68             | 0.44               | \$227.692            | 315.82           | C                 | 1 73               | \$57 951       | 42.44            | 1.56               | \$64 289             | 949.42             |
| \$30.5m              | R                 | 1 43               | \$70,023         | 483.11             | 1 31               | \$76,086             | 317.13           | R                 | 1.69               | \$59,236       | 44.13            | 1.55               | \$64.366             | 950.97             |
| \$30.6m              | 0                 | 1.13               | \$70,023         | 484 54             | 0.44               | \$228,009            | 317.57           | G                 | 0.81               | \$123,805      | 44 94            | 1.55               | \$64,404             | 952.52             |
| \$30.0m              | 0                 | 1.43               | \$70,025         | 485.07             | 0.44               | \$228,005            | 318.01           | U                 | 0.87               | \$115,000      | 45.81            | 1.55               | \$64,408             | 954.08             |
| \$30.7m              | P                 | 1.43               | \$70,120         | 485.57             | 1.31               | \$76,208             | 310.32           | D                 | 0.87               | \$200,152      | 46.31            | 1.55               | \$64,420             | 955.63             |
| \$30.8m              | R O               | 1.43               | \$70,130         | 407.39             | 0.44               | \$228.645            | 210.76           | D                 | 1.68               | \$200,152      | 47.00            | 1.55               | \$64,508             | 057.18             |
| \$30.9m              | D                 | 1.42               | \$70,220         | 400.02             | 1.21               | \$228,043            | 221.07           | C K               | 1.00               | \$59,507       | 4/.99            | 1.55               | \$64,508             | 957.10             |
| \$31.0III<br>\$21.1  | R                 | 1.42               | \$70,244         | 490.24             | 1.31               | \$70,330             | 321.07           | C D               | 1.72               | \$56,133       | 49./I<br>51.20   | 1.55               | \$04,515             | 938.75             |
| \$31.1m              | D                 | 1.42               | \$70,319         | 491.00             | 0.44               | \$228,904            | 321.50           | K                 | 1.08               | \$39,498       | 52.39            | 1.55               | \$04,030             | 960.28             |
| \$31.2m              | K                 | 1.42               | \$70,353         | 493.08             | 1.31               | \$70,441             | 322.81           | 0                 | 0.87               | \$115,447      | 52.20            | 1.55               | \$04,034             | 961.82             |
| \$31.3m              | U                 | 1.42               | \$70,384         | 494.50             | 2.54               | \$39,414             | 325.35           | G                 | 0.80               | \$124,381      | 53.06            | 1.55               | \$64,700             | 963.37             |
| \$31.4m              | M                 | 1.42               | \$70,395         | 495.93             | -0.25              | -\$397,560           | 325.10           | C                 | 1.71               | \$58,357       | 54.78            | 1.54               | \$64,740             | 964.91             |
| \$31.5m              | 0                 | 1.42               | \$70,418         | 497.35             | 0.44               | \$229,279            | 325.53           | R                 | 1.68               | \$59,627       | 56.45            | 1.54               | \$64,791             | 966.46             |
| \$31.6m              | R                 | 1.42               | \$70,462         | 498.76             | 1.31               | \$76,570             | 326.84           | D                 | 0.50               | \$201,377      | 56.95            | 1.54               | \$64,826             | 968.00             |
| \$31.7m              | W                 | 1.42               | \$70,477         | 500.18             | 1.82               | \$54,928             | 328.66           | U                 | 0.86               | \$115,902      | 57.81            | 1.54               | \$64,897             | 969.54             |
| \$31.8m              | 0                 | 1.42               | \$70,512         | 501.60             | 0.44               | \$229,589            | 329.10           | R                 | 1.67               | \$59,758       | 59.49            | 1.54               | \$64,932             | 971.08             |
| \$31.9m              | R                 | 1.42               | \$70,577         | 503.02             | 1.30               | \$76,687             | 330.40           | С                 | 1.71               | \$58,558       | 61.19            | 1.54               | \$64,962             | 972.62             |
| \$32.0m              | 0                 | 1.42               | \$70,607         | 504.43             | 0.43               | \$229,906            | 330.84           | G                 | 0.80               | \$124,950      | 62.00            | 1.54               | \$64,998             | 974.16             |
| \$32.1m              | R                 | 1.41               | \$70,681         | 505.85             | 1.30               | \$76,799             | 332.14           | R                 | 1.67               | \$59,887       | 63.67            | 1.54               | \$65,072             | 975.69             |
| \$32.2m              | 0                 | 1.41               | \$70,706         | 507.26             | 0.43               | \$230,218            | 332.57           | W                 | 1.20               | \$83,569       | 64.86            | 1.54               | \$65,132             | 977.23             |
| \$32.3m              | R                 | 1.41               | \$70,796         | 508.68             | 1.30               | \$76,929             | 333.87           | U                 | 0.86               | \$116,333      | 65.72            | 1.53               | \$65,151             | 978.77             |
| \$32.4m              | 0                 | 1.41               | \$70,801         | 510.09             | 0.43               | \$230,532            | 334.31           | С                 | 1.70               | \$58,758       | 67.42            | 1.53               | \$65,184             | 980.30             |
| \$32.5m              | 0                 | 1.41               | \$70.897         | 511.50             | 0.43               | \$230,840            | 334.74           | R                 | 1.67               | \$60.016       | 69.09            | 1.53               | \$65,213             | 981.83             |
| \$32.6m              | R                 | 1.41               | \$70,902         | 512.91             | 1.30               | \$77.042             | 336.04           | D                 | 0.49               | \$202.593      | 69.58            | 1.53               | \$65,219             | 983.37             |
| \$32.7m              | R                 | 1 41               | \$71.013         | 514 32             | 1 30               | \$77.160             | 337 33           | G                 | 0.80               | \$125 515      | 70.38            | 1.53               | \$65,287             | 984 90             |
| \$32.8m              | G                 | 1 41               | \$71,019         | 515.73             | 2.71               | \$36,943             | 340.04           | R                 | 1.66               | \$60,145       | 72.04            | 1.53               | \$65,353             | 986.43             |
| \$32.9m              | Ū                 | 1 41               | \$71.106         | 517.13             | 2.51               | \$39.818             | 342.55           | U                 | 0.86               | \$116 782      | 72.90            | 1.53               | \$65 389             | 987.96             |
| \$33.0m              | R                 | 1 41               | \$71,100         | 518 54             | 1 29               | \$77,280             | 343.85           | Č                 | 1 70               | \$58,956       | 74 59            | 1.53               | \$65,404             | 989.49             |
| \$33.1m              | R                 | 1.11               | \$71,230         | 519.94             | 1.29               | \$77.393             | 345.14           | B                 | 1.70               | \$60,274       | 76.25            | 1.53               | \$65,493             | 991.01             |
| \$33.2m              | P                 | 1.40               | \$71,230         | 521.34             | 1.29               | \$77.519             | 346.43           | G                 | 0.70               | \$126.072      | 77.05            | 1.55               | \$65,582             | 992.54             |
| \$33.3m              | R                 | 1.40               | \$71,342         | 522.34             | 1.29               | \$77.634             | 347.72           | 0                 | 0.79               | \$203 803      | 77.54            | 1.52               | \$65,604             | 994.06             |
| \$33.5m              | P                 | 1.40               | \$71,556         | 524.14             | 1.29               | \$77.748             | 3/0.00           | C                 | 1.60               | \$50,153       | 70.23            | 1.52               | \$65,604             | 995.50             |
| \$33.4III<br>\$22.5m | D                 | 1.40               | \$71,550         | 525.54             | 1.29               | \$77,860             | 250.20           | D                 | 1.09               | \$60,402       | 90.99            | 1.52               | \$65,622             | 007.11             |
| \$33.5III<br>\$22.6m | R D               | 1.40               | \$71,004         | 526.02             | 1.20               | \$77,009             | 251.57           | K<br>U            | 1.00               | \$117,206      | 00.00            | 1.52               | \$65,032             | 008.62             |
| \$33.011             | K                 | 1.39               | \$/1,//2         | 520.95             | 1.28               | \$77,983             | 254.05           | D                 | 0.83               | \$117,200      | 01.74            | 1.52               | \$05,058             | 998.05             |
| \$33./m              | U                 | 1.39               | \$/1,821         | 528.32             | 2.49               | \$40,219             | 354.05           | ĸ                 | 1.65               | \$60,530       | 83.39            | 1.52               | \$05,772             | 1000.15            |
| \$33.8m              | D                 | 1.39               | \$/1,822         | 529.71             | 4.33               | \$23,120             | 250.00           | C                 | 1.08               | \$39,348       | 85.07            | 1.52               | \$05,859             | 1001.67            |
| \$33.9m              | R                 | 1.39               | \$/1,880         | 531.11             | 1.28               | \$78,107             | 359.00           | G                 | 0.79               | \$120,027      | 85.80            | 1.52               | \$05,807             | 1003.19            |
| \$34.0m              | R                 | 1.39               | \$/1,984         | 532.49             | 1.28               | \$/8,21/             | 360.94           | U                 | 0.85               | \$117,647      | 86./1            | 1.52               | \$65,880             | 1004.71            |
| \$34.1m              | R                 | 1.39               | \$72,098         | 533.88             | 1.28               | \$78,339             | 362.21           | R                 | 1.65               | \$60,658       | 88.36            | 1.52               | \$65,910             | 1006.23            |
| \$34.2m              | R                 | 1.38               | \$72,202         | 535.27             | 1.27               | \$78,456             | 363.49           | D                 | 0.49               | \$205,006      | 88.85            | 1.52               | \$65,994             | 1007.74            |
| \$34.3m              | R                 | 1.38               | \$72,307         | 536.65             | 1.27               | \$78,567             | 364.76           | R                 | 1.65               | \$60,786       | 90.50            | 1.51               | \$66,049             | 1009.25            |
| \$34.4m              | R                 | 1.38               | \$72,417         | 538.03             | 1.27               | \$78,691             | 366.03           | С                 | 1.68               | \$59,543       | 92.17            | 1.51               | \$66,055             | 1010.77            |
| \$34.5m              | E                 | 1.38               | \$72,520         | 539.41             | -12.28             | -\$8,141             | 353.75           | U                 | 0.85               | \$118,078      | 93.02            | 1.51               | \$66,124             | 1012.28            |
| \$34.6m              | R                 | 1.38               | \$72,527         | 540.79             | 1.27               | \$78,802             | 355.02           | G                 | 0.79               | \$127,178      | 93.81            | 1.51               | \$66,155             | 1013.79            |
| \$34.7m              | U                 | 1.38               | \$72,528         | 542.17             | 2.46               | \$40,615             | 357.48           | R                 | 1.64               | \$60,913       | 95.45            | 1.51               | \$66,187             | 1015.30            |
| \$34.8m              | R                 | 1.38               | \$72,627         | 543.54             | 1.27               | \$78,914             | 358.75           | С                 | 1.67               | \$59,736       | 97.12            | 1.51               | \$66,269             | 1016.81            |
| \$34.9m              | W                 | 1.38               | \$72,649         | 544.92             | 1.77               | \$56,621             | 360.51           | R                 | 1.64               | \$61,040       | 98.76            | 1.51               | \$66,325             | 1018.32            |
| \$35.0m              | G                 | 1.37               | \$72,732         | 546.30             | 2.64               | \$37,834             | 363.16           | W                 | 1.17               | \$85,132       | 99.94            | 1.51               | \$66,350             | 1019.83            |
| \$35.1m              | R                 | 1.37               | \$72,738         | 547.67             | 1.27               | \$79,039             | 364.42           | U                 | 0.84               | \$118,511      | 100.78           | 1.51               | \$66,361             | 1021.33            |
| \$35.2m              | R                 | 1.37               | \$72,844         | 549.04             | 1.26               | \$79,151             | 365.69           | D                 | 0.48               | \$206,198      | 101.27           | 1.51               | \$66,379             | 1022.84            |
| \$35.3m              | R                 | 1.37               | \$72,945         | 550.41             | 1.26               | \$79,264             | 366.95           | G                 | 0.78               | \$127,720      | 102.05           | 1.51               | \$66,441             | 1024.35            |
| \$35.4m              | R                 | 1.37               | \$73.057         | 551.78             | 1.26               | \$79.378             | 368.21           | R                 | 1.63               | \$61,167       | 103.68           | 1.50               | \$66,463             | 1025.85            |

|                      |                   |                   | Reallocation     | with good i       | nformation        |                  |                   |                   |                   | Reallocation                       | with poor i       | nformation        |                                    |                   |
|----------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info | rmation           | Estimate          | s with poor info | rmation           | Marginal          | Estimates         | with good info                     | rmation           | Estimates         | s with poor info                   | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$35.5m              | R                 | 1.37              | \$73,164         | 553.15            | 1.26              | \$79.498         | 369.47            | C                 | 1.67              | \$59.928                           | 105.35            | 1.50              | \$66.481                           | 1027.35           |
| \$35.6m              | U                 | 1.37              | \$73,229         | 554.52            | 2.44              | \$41,007         | 371.90            | R                 | 1.63              | \$61.293                           | 106.98            | 1.50              | \$66,601                           | 1028.86           |
| \$35.7m              | R                 | 1 36              | \$73,265         | 555.88            | 1.26              | \$79.611         | 373.16            | U                 | 0.84              | \$118 934                          | 107.82            | 1 50              | \$66,609                           | 1030.36           |
| \$35.8m              | R                 | 1.36              | \$73,373         | 557.24            | 1.25              | \$79,726         | 374.41            | C                 | 1.66              | \$60,118                           | 109.49            | 1.50              | \$66,693                           | 1031.86           |
| \$35.9m              | R                 | 1.36              | \$73,475         | 558.60            | 1.25              | \$79,840         | 375.67            | G                 | 0.78              | \$128 261                          | 110.27            | 1.50              | \$66,720                           | 1033.36           |
| \$36.0m              | R                 | 1.36              | \$73 584         | 559.96            | 1.25              | \$79,955         | 376.92            | R                 | 1.63              | \$61.419                           | 111.90            | 1.50              | \$66,728                           | 1034.85           |
| \$36.1m              | R                 | 1.36              | \$73,692         | 561.32            | 1.25              | \$80.070         | 378.17            | D                 | 0.48              | \$207 391                          | 112.38            | 1.50              | \$66,750                           | 1036 35           |
| \$36.2m              | R                 | 1.36              | \$73,795         | 562.68            | 1.25              | \$80,180         | 379.41            | U                 | 0.10              | \$119.374                          | 113.22            | 1.50              | \$66,845                           | 1037.85           |
| \$36.3m              | R                 | 1.30              | \$73,899         | 564.03            | 1.25              | \$80,100         | 380.66            | R                 | 1.62              | \$61.546                           | 114.84            | 1.50              | \$66,874                           | 1039.34           |
| \$36.4m              | II II             | 1.35              | \$73,923         | 565.38            | 2.42              | \$41,396         | 383.07            | C                 | 1.62              | \$60.307                           | 116.50            | 1.50              | \$66,903                           | 1040 84           |
| \$30.4m              | P                 | 1.35              | \$73,923         | 566.73            | 1.24              | \$80.412         | 384 32            | G                 | 0.78              | \$128.708                          | 117.27            | 1.49              | \$66,907                           | 1040.04           |
| \$30.3III<br>\$26.6m | D                 | 1.35              | \$74,003         | 568.08            | 1.24              | \$80,412         | 295.56            | P                 | 1.62              | \$61.671                           | 112.00            | 1.49              | \$67.012                           | 1042.33           |
| \$36.0m              | D                 | 1.35              | \$74,107         | 560.00            | 1.24              | \$80,522         | 286.80            | II.               | 0.82              | \$110.804                          | 110.70            | 1.49              | \$67,012                           | 1045.32           |
| \$30.7m              | D D               | 1.35              | \$74,212         | 570.79            | 1.24              | \$80,039         | 288.04            | C                 | 1.65              | \$60.406                           | 121.29            | 1.49              | \$67,085                           | 1045.51           |
| \$30.0III<br>\$26.0m | K<br>C            | 1.33              | \$74,310         | 570.78            | 2.59              | \$20,749         | 200.62            | D                 | 0.48              | \$00,490                           | 121.36            | 1.49              | \$67,112                           | 1040.80           |
| \$30.911             | B                 | 1.34              | \$74,508         | 572.12            | 2.38              | \$38,083         | 201.86            | D                 | 0.48              | \$208,308                          | 121.60            | 1.49              | \$67,141                           | 1048.29           |
| \$37.0m              | R                 | 1.34              | \$74,421         | 574.01            | 1.24              | \$60,607         | 202.10            | R C               | 0.77              | \$01,797                           | 123.40            | 1.49              | \$07,147                           | 1049.78           |
| \$37.1m              | K                 | 1.34              | \$/4,52/         | 574.81            | 1.23              | \$80,978         | 393.10            | U<br>D            | 0.//              | \$129,328                          | 124.25            | 1.49              | \$67,272                           | 1051.27           |
| \$37.2m              | D                 | 1.34              | \$/4,011         | 570.15            | 2.39              | \$41,/81         | 395.49            | R                 | 1.01              | \$61,922                           | 125.87            | 1.49              | \$67,283                           | 1052.76           |
| \$37.3m              | K                 | 1.34              | \$/4,62/         | 579.92            | 1.23              | \$81,090         | 396.72            | C U               | 1.65              | \$60,683                           | 127.52            | 1.49              | \$67,319                           | 1054.24           |
| \$37.4m              | W                 | 1.34              | \$/4,698         | 5/8.82            | 1.72              | \$38,218         | 398.44            | U                 | 0.83              | \$120,221                          | 128.35            | 1.49              | \$67,320                           | 1055.73           |
| \$37.5m              | R                 | 1.34              | \$/4,/33         | 580.16            | 1.23              | \$81,202         | 399.67            | R                 | 1.61              | \$62,047                           | 129.96            | 1.48              | \$67,420                           | 1057.21           |
| \$37.6m              | R                 | 1.34              | \$74,833         | 581.50            | 1.23              | \$81,321         | 400.90            | D                 | 0.48              | \$209,745                          | 130.44            | 1.48              | \$67,517                           | 1058.69           |
| \$37.7m              | R                 | 1.33              | \$74,940         | 582.83            | 1.23              | \$81,427         | 402.13            | W                 | 1.15              | \$86,639                           | 131.59            | 1.48              | \$67,525                           | 1060.17           |
| \$37.8m              | R                 | 1.33              | \$75,047         | 584.17            | 1.23              | \$81,539         | 403.36            | C                 | 1.64              | \$60,868                           | 133.24            | 1.48              | \$67,525                           | 1061.65           |
| \$37.9m              | R                 | 1.33              | \$75,143         | 585.50            | 1.22              | \$81,653         | 404.58            | G                 | 0.77              | \$129,855                          | 134.01            | 1.48              | \$67,549                           | 1063.13           |
| \$38.0m              | D                 | 1.33              | \$75,168         | 586.83            | 4.13              | \$24,197         | 408.71            | R                 | 1.61              | \$62,171                           | 135.61            | 1.48              | \$67,555                           | 1064.61           |
| \$38.1m              | R                 | 1.33              | \$75,250         | 588.16            | 1.22              | \$81,766         | 409.94            | U                 | 0.83              | \$120,642                          | 136.44            | 1.48              | \$67,558                           | 1066.09           |
| \$38.2m              | U                 | 1.33              | \$75,293         | 589.48            | 2.37              | \$42,163         | 412.31            | R                 | 1.61              | \$62,296                           | 138.05            | 1.48              | \$67,690                           | 1067.57           |
| \$38.3m              | R                 | 1.33              | \$75,352         | 590.81            | 1.22              | \$81,873         | 413.53            | C                 | 1.64              | \$61,053                           | 139.69            | 1.48              | \$67,730                           | 1069.05           |
| \$38.4m              | R                 | 1.33              | \$75,455         | 592.14            | 1.22              | \$81,987         | 414.75            | U                 | 0.83              | \$121,065                          | 140.51            | 1.47              | \$67,797                           | 1070.52           |
| \$38.5m              | R                 | 1.32              | \$75,557         | 593.46            | 1.22              | \$82,102         | 415.97            | G                 | 0.77              | \$130,378                          | 141.28            | 1.47              | \$67,820                           | 1072.00           |
| \$38.6m              | R                 | 1.32              | \$75,660         | 594.78            | 1.22              | \$82,210         | 417.18            | R                 | 1.60              | \$62,420                           | 142.88            | 1.47              | \$67,825                           | 1073.47           |
| \$38.7m              | R                 | 1.32              | \$75,758         | 596.10            | 1.21              | \$82,325         | 418.40            | D                 | 0.47              | \$210,917                          | 143.35            | 1.47              | \$67,893                           | 1074.94           |
| \$38.8m              | R                 | 1.32              | \$75,867         | 597.42            | 1.21              | \$82,433         | 419.61            | C                 | 1.63              | \$61,237                           | 144.99            | 1.47              | \$67,934                           | 1076.42           |
| \$38.9m              | G                 | 1.32              | \$75,935         | 598.74            | 2.53              | \$39,500         | 422.14            | R                 | 1.60              | \$62,545                           | 146.59            | 1.47              | \$67,960                           | 1077.89           |
| \$39.0m              | R                 | 1.32              | \$75,965         | 600.05            | 1.21              | \$82,542         | 423.35            | H                 | 1.75              | \$57,168                           | 148.34            | 1.47              | \$67,980                           | 1079.36           |
| \$39.1m              | U                 | 1.32              | \$75,968         | 601.37            | 2.35              | \$42,541         | 425.70            | U                 | 0.82              | \$121,492                          | 149.16            | 1.47              | \$68,032                           | 1080.83           |
| \$39.2m              | R                 | 1.31              | \$76,069         | 602.68            | 1.21              | \$82,651         | 426.91            | G                 | 0.76              | \$130,895                          | 149.92            | 1.47              | \$68,092                           | 1082.30           |
| \$39.3m              | R                 | 1.31              | \$76,173         | 604.00            | 1.21              | \$82,768         | 428.12            | R                 | 1.60              | \$62,668                           | 151.52            | 1.47              | \$68,094                           | 1083.77           |
| \$39.4m              | R                 | 1.31              | \$76,266         | 605.31            | 1.21              | \$82,878         | 429.33            | Н                 | 1.75              | \$57,278                           | 153.26            | 1.47              | \$68,111                           | 1085.23           |
| \$39.5m              | R                 | 1.31              | \$76,377         | 606.62            | 1.20              | \$82,988         | 430.53            | С                 | 1.63              | \$61,419                           | 154.89            | 1.47              | \$68,137                           | 1086.70           |
| \$39.6m              | R                 | 1.31              | \$76,476         | 607.92            | 1.20              | \$83,091         | 431.74            | R                 | 1.59              | \$62,792                           | 156.49            | 1.47              | \$68,229                           | 1088.17           |
| \$39.7m              | R                 | 1.31              | \$76,576         | 609.23            | 1.20              | \$83,209         | 432.94            | Н                 | 1.74              | \$57,387                           | 158.23            | 1.47              | \$68,240                           | 1089.63           |
| \$39.8m              | U                 | 1.30              | \$76,637         | 610.54            | 2.33              | \$42,916         | 435.27            | U                 | 0.82              | \$121,921                          | 159.05            | 1.46              | \$68,269                           | 1091.10           |
| \$39.9m              | W                 | 1.30              | \$76,641         | 611.84            | 1.67              | \$59,732         | 436.94            | D                 | 0.47              | \$212,076                          | 159.52            | 1.46              | \$68,269                           | 1092.56           |
| \$40.0m              | E                 | 1.30              | \$76,669         | 613.14            | -12.75            | -\$7,845         | 424.20            | C                 | 1.62              | \$61,601                           | 161.14            | 1.46              | \$68,338                           | 1094.02           |
| \$40.1m              | R                 | 1.30              | \$76,675         | 614.45            | 1.20              | \$83,313         | 425.40            | G                 | 0.76              | \$131,409                          | 161.90            | 1.46              | \$68,357                           | 1095.49           |
| \$40.2m              | R                 | 1.30              | \$76,775         | 615.75            | 1.20              | \$83,431         | 426.60            | R                 | 1.59              | \$62,915                           | 163.49            | 1.46              | \$68,363                           | 1096.95           |
| \$40.3m              | R                 | 1.30              | \$76,882         | 617.05            | 1.20              | \$83,535         | 427.79            | Н                 | 1.74              | \$57,496                           | 165.23            | 1.46              | \$68,370                           | 1098.41           |
| \$40.4m              | R                 | 1.30              | \$76,976         | 618.35            | 1.20              | \$83,640         | 428.99            | R                 | 1.59              | \$63,038                           | 166.82            | 1.46              | \$68,496                           | 1099.87           |
| \$40.5m              | R                 | 1.30              | \$77.077         | 619.65            | 1.19              | \$83,759         | 430.18            | Н                 | 1.74              | \$57,604                           | 168.55            | 1.46              | \$68,499                           | 1101.33           |

|                      |                   |                        | Reallocation         | with good i        | nformation         |                      |                    |                   |                        | Reallocation      | with poor i      | nformation             |                      |                  |
|----------------------|-------------------|------------------------|----------------------|--------------------|--------------------|----------------------|--------------------|-------------------|------------------------|-------------------|------------------|------------------------|----------------------|------------------|
|                      | Marginal          | Estimates              | with good info       | rmation            | Estimate           | s with poor info     | rmation            | Marginal          | Estimates              | with good info    | rmation          | Estimate               | s with poor info     | rmation          |
| Budget impact        | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$    | $E(\Lambda E)^{d}$ | $E(\Lambda E_m)^b$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^d$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ |
| \$40.6m              | R                 | 1 30                   | \$77 184             | 620.94             | 1 19               | \$83.857             | 431.37             | U                 | 0.82                   | \$122.324         | 169 37           | 1 46                   | \$68 503             | 1102.79          |
| \$40.7m              | R                 | 1.29                   | \$77,280             | 622.24             | 1 19               | \$83,977             | 432 57             | C                 | 1.62                   | \$61,781          | 170.99           | 1 46                   | \$68,538             | 1104.25          |
| \$40.8m              | II                | 1.29                   | \$77,300             | 623.53             | 2 31               | \$43,287             | 434.88             | G                 | 0.76                   | \$131.921         | 171.75           | 1.10                   | \$68,620             | 1105.71          |
| \$40.0m              | P                 | 1.29                   | \$77,300             | 624.82             | 1 10               | \$84.076             | 436.06             | - U<br>- Н        | 1.73                   | \$57.712          | 173.48           | 1.46                   | \$68,627             | 1107.17          |
| \$40.7m              | G                 | 1.29                   | \$77,381             | 626.12             | 2.48               | \$40.283             | 438.55             | P                 | 1.75                   | \$63,160          | 175.40           | 1.40                   | \$68,627             | 1107.17          |
| \$41.0m              | D                 | 1.29                   | \$77,759             | 627.41             | 2.48               | \$84.180             | 430.33             | D                 | 0.47                   | \$05,100          | 175.52           | 1.40                   | \$68,629             | 1110.02          |
| \$41.1III<br>\$41.2m | R<br>D            | 1.29                   | \$77,477             | 628.60             | 1.19               | \$04,109             | 439.73             | W                 | 0.47                   | \$213,233         | 176.67           | 1.40                   | \$68,644             | 1111.08          |
| \$41.211             | R                 | 1.29                   | \$77,380             | (20.09             | 1.19               | \$84,303             | 440.92             | vv                | 1.14                   | \$88,090          | 177.49           | 1.40                   | \$08,000             | 1111.34          |
| \$41.3m              | R                 | 1.29                   | \$77,082             | 629.98             | 1.18               | \$84,402             | 442.11             | 0                 | 0.81                   | \$122,745         | 170.10           | 1.45                   | \$08,/38             | 1112.99          |
| \$41.4m              | R                 | 1.29                   | \$//,//9             | (22.55             | 1.18               | \$84,517             | 445.29             | U U               | 1.61                   | \$61,961          | 1/9.10           | 1.45                   | \$08,757             | 1114.45          |
| \$41.5m              | K                 | 1.28                   | \$77,882             | 632.55             | 1.18               | \$84,624             | 444.4/             | H                 | 1.73                   | \$57,820          | 180.83           | 1.45                   | \$68,755             | 1115.90          |
| \$41.6m              | U                 | 1.28                   | \$77,959             | 633.83             | 2.29               | \$43,656             | 446.76             | K                 | 1.58                   | \$63,283          | 182.41           | 1.45                   | \$68,763             | 111/.36          |
| \$41.7m              | R                 | 1.28                   | \$/7,979             | 635.12             | 1.18               | \$84,731             | 447.94             | H                 | 1.73                   | \$57,927          | 184.13           | 1.45                   | \$68,882             | 1118.81          |
| \$41.8m              | R                 | 1.28                   | \$78,076             | 636.40             | 1.18               | \$84,839             | 449.12             | G                 | 0.76                   | \$132,428         | 184.89           | 1.45                   | \$68,890             | 1120.26          |
| \$41.9m              | R                 | 1.28                   | \$78,180             | 637.68             | 1.18               | \$84,940             | 450.30             | R                 | 1.58                   | \$63,406          | 186.47           | 1.45                   | \$68,895             | 1121.71          |
| \$42.0m              | М                 | 1.28                   | \$78,201             | 638.96             | -0.29              | -\$349,089           | 450.01             | С                 | 1.61                   | \$62,139          | 188.08           | 1.45                   | \$68,935             | 1123.16          |
| \$42.1m              | R                 | 1.28                   | \$78,272             | 640.23             | 1.18               | \$85,056             | 451.19             | U                 | 0.81                   | \$123,153         | 188.89           | 1.45                   | \$68,966             | 1124.61          |
| \$42.2m              | D                 | 1.28                   | \$78,370             | 641.51             | 3.96               | \$25,228             | 455.15             | Н                 | 1.72                   | \$58,034          | 190.61           | 1.45                   | \$69,009             | 1126.06          |
| \$42.3m              | R                 | 1.28                   | \$78,376             | 642.79             | 1.17               | \$85,164             | 456.33             | D                 | 0.47                   | \$214,381         | 191.08           | 1.45                   | \$69,008             | 1127.51          |
| \$42.4m              | R                 | 1.27                   | \$78,474             | 644.06             | 1.17               | \$85,266             | 457.50             | R                 | 1.57                   | \$63,527          | 192.65           | 1.45                   | \$69,028             | 1128.96          |
| \$42.5m              | W                 | 1.27                   | \$78,489             | 645.33             | 1.63               | \$61,173             | 459.13             | С                 | 1.60                   | \$62,316          | 194.26           | 1.45                   | \$69,131             | 1130.40          |
| \$42.6m              | R                 | 1.27                   | \$78,573             | 646.61             | 1.17               | \$85,375             | 460.30             | Н                 | 1.72                   | \$58,140          | 195.98           | 1.45                   | \$69,136             | 1131.85          |
| \$42.7m              | U                 | 1.27                   | \$78,611             | 647.88             | 2.27               | \$44,021             | 462.58             | G                 | 0.75                   | \$132,929         | 196.73           | 1.45                   | \$69,147             | 1133.30          |
| \$42.8m              | R                 | 1.27                   | \$78,672             | 649.15             | 1.17               | \$85,485             | 463.75             | R                 | 1.57                   | \$63,649          | 198.30           | 1.45                   | \$69,161             | 1134.74          |
| \$42.9m              | R                 | 1.27                   | \$78,771             | 650.42             | 1.17               | \$85,594             | 464.91             | U                 | 0.81                   | \$123,579         | 199.11           | 1.44                   | \$69,204             | 1136.19          |
| \$43.0m              | R                 | 1.27                   | \$78,864             | 651.69             | 1.17               | \$85,690             | 466.08             | R                 | 1.57                   | \$63,771          | 200.68           | 1.44                   | \$69,292             | 1137.63          |
| \$43.1m              | G                 | 1.27                   | \$78,887             | 652.95             | 2.44               | \$41,036             | 468.52             | С                 | 1.60                   | \$62,493          | 202.28           | 1.44                   | \$69,326             | 1139.07          |
| \$43.2m              | R                 | 1.27                   | \$78,970             | 654.22             | 1.17               | \$85,807             | 469.68             | D                 | 0.46                   | \$215,527         | 202.74           | 1.44                   | \$69,382             | 1140.51          |
| \$43.3m              | R                 | 1.26                   | \$79,064             | 655.49             | 1.16               | \$85,911             | 470.85             | G                 | 0.75                   | \$133,428         | 203.49           | 1.44                   | \$69,406             | 1141.96          |
| \$43.4m              | R                 | 1.26                   | \$79,158             | 656.75             | 1.16               | \$86,014             | 472.01             | R                 | 1.57                   | \$63,892          | 205.06           | 1.44                   | \$69,425             | 1143.40          |
| \$43.5m              | U                 | 1.26                   | \$79,258             | 658.01             | 2.25               | \$44,383             | 474.26             | U                 | 0.81                   | \$123,993         | 205.86           | 1.44                   | \$69,430             | 1144.84          |
| \$43.6m              | R                 | 1.26                   | \$79,264             | 659.27             | 1.16               | \$86,125             | 475.42             | С                 | 1.60                   | \$62,668          | 207.46           | 1.44                   | \$69,521             | 1146.27          |
| \$43.7m              | R                 | 1.26                   | \$79,352             | 660.53             | 1.16               | \$86,229             | 476.58             | R                 | 1.56                   | \$64,013          | 209.02           | 1.44                   | \$69,556             | 1147.71          |
| \$43.8m              | R                 | 1.26                   | \$79,460             | 661.79             | 1.16               | \$86,333             | 477.74             | U                 | 0.80                   | \$124.394         | 209.82           | 1.44                   | \$69,662             | 1149.15          |
| \$43.9m              | R                 | 1.26                   | \$79,548             | 663.05             | 1.16               | \$86,438             | 478.90             | G                 | 0.75                   | \$133.924         | 210.57           | 1.44                   | \$69,667             | 1150.58          |
| \$44.0m              | R                 | 1.26                   | \$79.650             | 664.30             | 1.16               | \$86,550             | 480.05             | R                 | 1.56                   | \$64,134          | 212.13           | 1.43                   | \$69.687             | 1152.02          |
| \$44.1m              | R                 | 1.25                   | \$79,751             | 665.56             | 1.15               | \$86,648             | 481.21             | C                 | 1.59                   | \$62.842          | 213.72           | 1.43                   | \$69,715             | 1153.45          |
| \$44.2m              | R                 | 1.25                   | \$79,840             | 666.81             | 1.15               | \$86,760             | 482.36             | D                 | 0.46                   | \$216.661         | 214.18           | 1.43                   | \$69,745             | 1154.89          |
| \$44.3m              | U                 | 1.25                   | \$79,900             | 668.06             | 2.23               | \$44,743             | 484.60             | w                 | 1.12                   | \$89,506          | 215.30           | 1.43                   | \$69.759             | 1156.32          |
| \$44.4m              | R                 | 1.25                   | \$79.942             | 669.31             | 1.15               | \$86.866             | 485.75             | R                 | 1.56                   | \$64.255          | 216.86           | 1.43                   | \$69.819             | 1157.75          |
| \$44.5m              | R                 | 1.25                   | \$80.038             | 670.56             | 1.15               | \$86 964             | 486.90             | U                 | 0.80                   | \$124 813         | 217.66           | 1 43                   | \$69.891             | 1159.18          |
| \$44.6m              | R                 | 1.25                   | \$80,030             | 671.81             | 1.15               | \$87,070             | 488.05             | C                 | 1 59                   | \$63,015          | 219.24           | 1.13                   | \$69,907             | 1160.61          |
| \$44.0m              | R                 | 1.25                   | \$80,133             | 673.06             | 1.15               | \$87 184             | 489.19             | G                 | 0.74                   | \$134.414         | 219.00           | 1.13                   | \$69,920             | 1162.04          |
| \$44.8m              | W                 | 1.25                   | \$80.254             | 674 30             | 1.15               | \$62.548             | 400.70             | R                 | 1.55                   | \$64 375          | 217.59           | 1.43                   | \$69.9/0             | 1163.47          |
| \$44.0m              | G                 | 1.25                   | \$80.254             | 675.55             | 2 20               | \$41 762             | 403 10             | P                 | 1.55                   | \$64.406          | 221.04           | 1.43                   | \$70,000             | 116/ 00          |
| \$45.0m              | Q<br>Q            | 1.23                   | \$20,203             | 676 70             | 2.39               | \$27 722             | 49/ 22             | C                 | 1.55                   | \$63 189          | 223.09           | 1.43                   | \$70,000             | 1166.33          |
| \$45.0III<br>\$45.1m | R<br>D            | 1.24                   | \$00,528             | 678.04             | 1.13               | \$07,203             | 474.33             |                   | 1.38                   | \$03,100          | 224.07           | 1.43                   | \$70,098             | 1167.75          |
| \$45.1M              | R<br>P            | 1.24                   | \$00,423<br>\$20,515 | 670.04             | 1.14               | \$07,302<br>\$07,407 | 473.40             |                   | 0.40                   | \$125,210         | 223.13           | 1.43                   | \$70,111             | 1160.10          |
| \$45.2m              | K                 | 1.24                   | \$60,515             | 690.52             | 1.14               | \$8/,49/             | 490.02             | U<br>C            | 0.80                   | \$123,219         | 223.93           | 1.43                   | \$70,110             | 1109.18          |
| \$45.3M              | U<br>D            | 1.24                   | \$80,537             | 080.52             | 2.22               | \$45,099             | 498.84             | U D               | 0.74                   | \$154,904         | 220.07           | 1.43                   | \$/0,1/1             | 11/0.00          |
| \$45.4m              | K                 | 1.24                   | \$80,619             | 681.76             | 1.14               | \$87,596             | 499.98             | ĸ                 | 1.55                   | \$64,615          | 228.22           | 1.42                   | \$70,210             | 11/2.03          |
| \$45.5m              | K                 | 1.24                   | \$80,710             | 083.00             | 1.14               | \$87,704             | 502.20             |                   | 1.58                   | \$03,359          | 229.80           | 1.42                   | \$70,288             | 11/3.43          |
| \$45.0m              | K                 | 1.24                   | 380,808              | 684.24             | 1.14               | 38/.804              | 502.26             | К                 | 1.54                   | 304.735           | 251.54           | 1.42                   | \$70,340             | 11/4.87          |

|                      |                   |                   | Reallocation   | with good i     | nformation        |                  |                   |                   |                   | Reallocation   | with poor i       | information       |                  |                   |
|----------------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------|-------------------|-------------------|------------------|-------------------|
|                      | Marginal          | Estimates         | with good info | rmation         | Estimates         | s with poor info | rmation           | Marginal          | Estimates         | with good info | rmation           | Estimates         | s with poor info | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$45.7m              | R                 | 1.24              | \$80,906       | 685.47          | 1.14              | \$87,904         | 503.39            | U                 | 0.80              | \$125,612      | 232.14            | 1.42              | \$70,348         | 1176.29           |
| \$45.8m              | R                 | 1.23              | \$80,998       | 686.71          | 1.14              | \$88,013         | 504.53            | G                 | 0.74              | \$135,388      | 232.88            | 1.42              | \$70,427         | 1177.71           |
| \$45.9m              | R                 | 1.23              | \$81,096       | 687.94          | 1.13              | \$88,121         | 505.67            | R                 | 1.54              | \$64,855       | 234.42            | 1.42              | \$70,471         | 1179.13           |
| \$46.0m              | U                 | 1.23              | \$81,168       | 689.17          | 2.20              | \$45,453         | 507.87            | D                 | 0.46              | \$218,919      | 234.88            | 1.42              | \$70,472         | 1180.55           |
| \$46.1m              | R                 | 1.23              | \$81,189       | 690.40          | 1.13              | \$88,222         | 509.00            | С                 | 1.57              | \$63,530       | 236.45            | 1.42              | \$70,478         | 1181.97           |
| \$46.2m              | R                 | 1.23              | \$81,288       | 691.63          | 1.13              | \$88,324         | 510.13            | U                 | 0.79              | \$126,040      | 237.25            | 1.42              | \$70,577         | 1183.39           |
| \$46.3m              | R                 | 1.23              | \$81,380       | 692.86          | 1.13              | \$88,425         | 511.26            | R                 | 1.54              | \$64,973       | 238.78            | 1.42              | \$70,600         | 1184.80           |
| \$46.4m              | D                 | 1.23              | \$81,447       | 694.09          | 3.81              | \$26,219         | 515.08            | С                 | 1.57              | \$63,699       | 240.35            | 1.42              | \$70,666         | 1186.22           |
| \$46.5m              | R                 | 1.23              | \$81,480       | 695.32          | 1.13              | \$88,535         | 516.21            | G                 | 0.74              | \$135,868      | 241.09            | 1.41              | \$70,676         | 1187.63           |
| \$46.6m              | R                 | 1.23              | \$81,573       | 696.54          | 1.13              | \$88,629         | 517.33            | R                 | 1.54              | \$65,096       | 242.63            | 1.41              | \$70,729         | 1189.05           |
| \$46.7m              | E                 | 1.23              | \$81,624       | 697.77          | -13.29            | -\$7,523         | 504.04            | U                 | 0.79              | \$126,422      | 243.42            | 1.41              | \$70,801         | 1190.46           |
| \$46.8m              | G                 | 1.22              | \$81,635       | 698.99          | 2.35              | \$42,465         | 506.40            | W                 | 1.10              | \$90,874       | 244.52            | 1.41              | \$70,825         | 1191.87           |
| \$46.9m              | R                 | 1.22              | \$81,666       | 700.22          | 1.13              | \$88,739         | 507.52            | D                 | 0.45              | \$220,041      | 244.97            | 1.41              | \$70,832         | 1193.28           |
| \$47.0m              | R                 | 1.22              | \$81,759       | 701.44          | 1.13              | \$88,842         | 508.65            | С                 | 1.57              | \$63,868       | 246.54            | 1.41              | \$70,853         | 1194.70           |
| \$47.1m              | U                 | 1.22              | \$81,795       | 702.66          | 2.18              | \$45,804         | 510.83            | R                 | 1.53              | \$65,210       | 248.07            | 1.41              | \$70,859         | 1196.11           |
| \$47.2m              | R                 | 1.22              | \$81,853       | 703.89          | 1.12              | \$88,944         | 511.96            | G                 | 0.73              | \$136,346      | 248.80            | 1.41              | \$70,927         | 1197.52           |
| \$47.3m              | W                 | 1.22              | \$81,946       | 705.11          | 1.57              | \$63,866         | 513.52            | R                 | 1.53              | \$65,330       | 250.34            | 1.41              | \$70,987         | 1198.93           |
| \$47.4m              | R                 | 1.22              | \$81,954       | 706.33          | 1.12              | \$89,047         | 514.65            | U                 | 0.79              | \$126,839      | 251.12            | 1.41              | \$71,028         | 1200.33           |
| \$47.5m              | R                 | 1.22              | \$82,041       | 707.55          | 1.12              | \$89,150         | 515.77            | C                 | 1.56              | \$64,036       | 252.69            | 1.41              | \$71,039         | 1201.74           |
| \$47.6m              | R                 | 1.22              | \$82,142       | 708.76          | 1.12              | \$89,254         | 516.89            | R                 | 1.53              | \$65,449       | 254.21            | 1.41              | \$71,116         | 1203.15           |
| \$47.7m              | R                 | 1.22              | \$82,230       | 709.98          | 1.12              | \$89,350         | 518.01            | G                 | 0.73              | \$136,819      | 254.94            | 1.41              | \$71,169         | 1204.55           |
| \$47.8m              | R                 | 1.21              | \$82,332       | 711.19          | 1.12              | \$89,453         | 519.12            | D                 | 0.45              | \$221,151      | 255.40            | 1.40              | \$71,190         | 1205.96           |
| \$47.9m              | U                 | 1.21              | \$82,417       | 712.41          | 2.17              | \$46,152         | 521.29            | C                 | 1.56              | \$64,203       | 256.95            | 1.40              | \$71,225         | 1207.36           |
| \$48.0m              | R                 | 1.21              | \$82,420       | 713.62          | 1.12              | \$89,566         | 522.41            | R                 | 1.53              | \$65,569       | 258.48            | 1.40              | \$/1,24/         | 1208.76           |
| \$48.1m              | R                 | 1.21              | \$82,515       | 716.04          | 1.12              | \$89,034         | 523.52            | U<br>B            | 0.79              | \$127,243      | 259.27            | 1.40              | \$71,250         | 1210.17           |
| \$48.2m              | R                 | 1.21              | \$82,010       | 717.25          | 1.11              | \$89,707         | 525.75            | K<br>C            | 1.52              | \$63,080       | 260.79            | 1.40              | \$/1,3/2         | 1211.57           |
| \$48.5III<br>\$48.4m | R                 | 1.21              | \$82,700       | 719.46          | 1.11              | \$69,603         | 526.96            | C                 | 0.72              | \$04,509       | 262.07            | 1.40              | \$71,409         | 1212.97           |
| \$40.4III<br>\$49.5m | R                 | 1.21              | \$02,793       | 710.40          | 1.11              | \$89,909         | 527.07            | U                 | 0.73              | \$137,291      | 263.07            | 1.40              | \$71,418         | 1214.57           |
| \$48.5III<br>\$48.6m | G                 | 1.21              | \$82,091       | 720.87          | 2 32              | \$90,000         | 530.20            | P                 | 0.78              | \$65,802       | 265.83            | 1.40              | \$71,480         | 1213.77           |
| \$48.0m              | P                 | 1.21              | \$82,941       | 720.87          | 1.11              | \$90,171         | 531.40            | D                 | 0.45              | \$222.267      | 265.87            | 1.40              | \$71,500         | 1217.17           |
| \$48.7m              | II II             | 1.21              | \$83,034       | 722.08          | 2.15              | \$46.498         | 533.55            | C                 | 1.55              | \$64 534       | 267.37            | 1.40              | \$71,551         | 1210.57           |
| \$48.9m              | R                 | 1.20              | \$83,077       | 723.28          | 1.11              | \$90,759         | 534.66            | R                 | 1.55              | \$65,920       | 268.89            | 1.40              | \$71,592         | 1219.90           |
| \$49.0m              | R                 | 1.20              | \$83,077       | 725.69          | 1.11              | \$90,207         | 535.76            | G                 | 0.73              | \$137,760      | 269.61            | 1.40              | \$71,659         | 1221.30           |
| \$49.0m              | R                 | 1.20              | \$83,264       | 726.89          | 1.11              | \$90,473         | 536.87            | U                 | 0.75              | \$128.041      | 270.40            | 1.40              | \$71,000         | 1222.75           |
| \$49.2m              | R                 | 1.20              | \$83,354       | 728.09          | 1.11              | \$90,580         | 537.97            | R                 | 1 51              | \$66.041       | 271.91            | 1 39              | \$71,757         | 1225.54           |
| \$49.3m              | R                 | 1.20              | \$83,445       | 729.29          | 1.10              | \$90,670         | 539.08            | C                 | 1.55              | \$64.699       | 273.46            | 1.39              | \$71,774         | 1226.94           |
| \$49.4m              | R                 | 1.20              | \$83,542       | 730.48          | 1 10              | \$90,777         | 540.18            | Ŵ                 | 1.08              | \$92,201       | 274 54            | 1 39              | \$71,859         | 1228.33           |
| \$49.5m              | W                 | 1.20              | \$83,569       | 731.68          | 1.54              | \$65,132         | 541.71            | R                 | 1.51              | \$66,155       | 276.05            | 1.39              | \$71,886         | 1229.72           |
| \$49.6m              | R                 | 1.20              | \$83,640       | 732.88          | 1.10              | \$90,876         | 542.81            | G                 | 0.72              | \$138.223      | 276.78            | 1.39              | \$71,901         | 1231.11           |
| \$49.7m              | U                 | 1.20              | \$83,647       | 734.07          | 2.13              | \$46,841         | 544.95            | D                 | 0.45              | \$223,364      | 277.22            | 1.39              | \$71,901         | 1232.50           |
| \$49.8m              | М                 | 1.19              | \$83,712       | 735.27          | -0.31             | -\$320,726       | 544.64            | U                 | 0.78              | \$128,436      | 278.00            | 1.39              | \$71,922         | 1233.89           |
| \$49.9m              | R                 | 1.19              | \$83,724       | 736.46          | 1.10              | \$90,975         | 545.74            | С                 | 1.54              | \$64,862       | 279.54            | 1.39              | \$71,956         | 1235.28           |
| \$50.0m              | R                 | 1.19              | \$83,822       | 737.65          | 1.10              | \$91,083         | 546.83            | R                 | 1.51              | \$66,269       | 281.05            | 1.39              | \$72,010         | 1236.67           |

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$100,000 increase in incremental expenditure compared to the previous (smaller) level of budget impact;

<sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 increase in incremental expenditure on marginal technology;

<sup>c</sup> Estimate (given imperfect information) of the marginal ICER in expansion for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies.

|                    |                   |                         | Reallocation     | with good         | information       |                   |                   |                   |                         | Reallocation     | n with poor i     | nformation              |                   |                   |
|--------------------|-------------------|-------------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|------------------|-------------------|-------------------------|-------------------|-------------------|
|                    | Marginal          | Estimates               | s with good info | rmation           | Estimate          | es with poor info | ormation          | Marginal          | Estimate                | s with good info | ormation          | Estimate                | es with poor info | ormation          |
| Budget impact      | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$     | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$     | $E(\Delta E)^{d}$ |
| \$0.1m             | S                 | 9.31                    | -\$10,740        | 9.31              | -6.69             | \$14,945          | -6.69             | Н                 | -1.96                   | \$51,044         | -1.96             | -1.65                   | \$60,698          | -1.65             |
| \$0.2m             | S                 | 9.19                    | -\$10,882        | 18.50             | -6.75             | \$14,815          | -13.44            | С                 | -1.83                   | \$54,707         | -3.79             | -1.65                   | \$60,690          | -3.30             |
| \$0.3m             | S                 | 9.07                    | -\$11,030        | 27.57             | -6.81             | \$14,682          | -20.25            | 0                 | -5.37                   | \$18,625         | -9.16             | -1.65                   | \$60,645          | -4.94             |
| \$0.4m             | S                 | 8.94                    | -\$11,184        | 36.51             | -6.87             | \$14,547          | -27.13            | G                 | -0.86                   | \$116,451        | -10.01            | -1.65                   | \$60,576          | -6.59             |
| \$0.5m             | S                 | 8.81                    | -\$11,345        | 45.32             | -6.94             | \$14,409          | -34.07            | U                 | -0.92                   | \$108,146        | -10.94            | -1.65                   | \$60,560          | -8.25             |
| \$0.6m             | S                 | 8.69                    | -\$11,513        | 54.01             | -7.01             | \$14,268          | -41.08            | R                 | -1.79                   | \$55,733         | -12.73            | -1.65                   | \$60,559          | -9.90             |
| \$0.7m             | S                 | 8.55                    | -\$11,689        | 62.56             | -7.08             | \$14,125          | -48.16            | Н                 | -1.96                   | \$50,906         | -14.70            | -1.65                   | \$60,533          | -11.55            |
| \$0.8m             | S                 | 8.42                    | -\$11,873        | 70.98             | -7.15             | \$13,978          | -55.31            | С                 | -1.84                   | \$54,477         | -16.53            | -1.65                   | \$60,434          | -13.20            |
| \$0.9m             | S                 | 8.29                    | -\$12,066        | 79.27             | -7.23             | \$13,829          | -62.54            | R                 | -1.80                   | \$55,594         | -18.33            | -1.66                   | \$60,408          | -14.86            |
| \$1.0m             | S                 | 8.15                    | -\$12,269        | 87.42             | -7.31             | \$13,676          | -69.85            | Н                 | -1.97                   | \$50,767         | -20.30            | -1.66                   | \$60,368          | -16.52            |
| \$1.1m             | S                 | 8.01                    | -\$12,483        | 95.43             | -7.40             | \$13,520          | -77.25            | D                 | -0.53                   | \$187,471        | -20.84            | -1.66                   | \$60,348          | -18.17            |
| \$1.2m             | S                 | 7.87                    | -\$12,708        | 103.30            | -7.49             | \$13,360          | -84.73            | U                 | -0.93                   | \$107,673        | -21.76            | -1.66                   | \$60,295          | -19.83            |
| \$1.3m             | S                 | 7.72                    | -\$12,945        | 111.03            | -7.58             | \$13,196          | -92.31            | R                 | -1.80                   | \$55,455         | -23.57            | -1.66                   | \$60,256          | -21.49            |
| \$1.4m             | S                 | 7.58                    | -\$13,196        | 118.61            | -7.68             | \$13,028          | -99.99            | G                 | -0.86                   | \$115,795        | -24.43            | -1.66                   | \$60,235          | -23.15            |
| \$1.5m             | S                 | 7.43                    | -\$13,463        | 126.03            | -7.78             | \$12,855          | -107.77           | Н                 | -1.98                   | \$50,627         | -26.41            | -1.66                   | \$60,202          | -24.81            |
| \$1.6m             | S                 | 7.27                    | -\$13,747        | 133.31            | -7.89             | \$12,678          | -115.66           | С                 | -1.84                   | \$54,244         | -28.25            | -1.66                   | \$60,177          | -26.47            |
| \$1.7m             | S                 | 7.12                    | -\$14,049        | 140.43            | -8.00             | \$12,495          | -123.66           | R                 | -1.81                   | \$55,315         | -30.06            | -1.66                   | \$60,104          | -28.14            |
| \$1.8m             | S                 | 6.96                    | -\$14,372        | 147.38            | -8.13             | \$12,307          | -131.78           | Н                 | -1.98                   | \$50,487         | -32.04            | -1.67                   | \$60,035          | -29.80            |
| \$1.9m             | S                 | 6.79                    | -\$14,718        | 154.18            | -8.26             | \$12,113          | -140.04           | U                 | -0.93                   | \$107,197        | -32.97            | -1.67                   | \$60,029          | -31.47            |
| \$2.0m             | S                 | 6.63                    | -\$15,091        | 160.81            | -8.39             | \$11,913          | -148.43           | R                 | -1.81                   | \$55,174         | -34.78            | -1.67                   | \$59,952          | -33.14            |
| \$2.1m             | S                 | 6.45                    | -\$15,494        | 167.26            | -8.54             | \$11,706          | -156.98           | D                 | -0.54                   | \$186,155        | -35.32            | -1.67                   | \$59,925          | -34.81            |
| \$2.2m             | S                 | 6.28                    | -\$15,930        | 173.54            | -8.70             | \$11,491          | -165.68           | С                 | -1.85                   | \$54,010         | -37.17            | -1.67                   | \$59,917          | -36.48            |
| \$2.3m             | S                 | 6.10                    | -\$16,406        | 179.63            | -8.88             | \$11,267          | -174.55           | G                 | -0.87                   | \$115,132        | -38.04            | -1.67                   | \$59,890          | -38.15            |
| \$2.4m             | S                 | 5.91                    | -\$16,927        | 185.54            | -9.06             | \$11,035          | -183.62           | H                 | -1.99                   | \$50,346         | -40.03            | -1.67                   | \$59,867          | -39.82            |
| \$2.5m             | S                 | 5.71                    | -\$17,501        | 191.25            | -9.27             | \$10,792          | -192.88           | R                 | -1.82                   | \$55,034         | -41.84            | -1.67                   | \$59,799          | -41.49            |
| \$2.6m             | S                 | 5.51                    | -\$18,137        | 196.77            | -9.49             | \$10,538          | -202.37           | U                 | -0.94                   | \$106,720        | -42.78            | -1.67                   | \$59,762          | -43.16            |
| \$2.7m             | S                 | 5.31                    | -\$18,849        | 202.07            | -9.74             | \$10,271          | -212.11           | W                 | -1.30                   | \$76,641         | -44.09            | -1.67                   | \$59,732          | -44.84            |
| \$2.8m             | S                 | 5.09                    | -\$19,652        | 207.16            | -10.01            | \$9,989           | -222.12           | H                 | -1.99                   | \$50,204         | -46.08            | -1.68                   | \$59,698          | -46.51            |
| \$2.9m             | S                 | 4.86                    | -\$20,567        | 212.02            | -10.32            | \$9,691           | -232.44           | C                 | -1.86                   | \$53,774         | -47.94            | -1.68                   | \$59,654          | -48.19            |
| \$3.0m             | 5                 | 4.62                    | -\$21,623        | 210.05            | -10.67            | \$9,372           | -243.11           | ĸ                 | -1.82                   | \$34,893         | -49.76            | -1.68                   | \$59,646          | -49.80            |
| \$3.1m             | 5                 | 4.3/                    | -\$22,860        | 221.02            | -11.07            | \$9,031           | -254.18           | U U               | -0.87                   | \$114,460        | -50.63            | -1.68                   | \$59,540          | -51.54            |
| \$3.2m             | 5                 | 4.11                    | -\$24,337        | 223.13            | -11.55            | \$8,001           | -205.73           | H                 | -2.00                   | \$30,001         | -52.03            | -1.68                   | \$39,328          | -53.22            |
| \$3.5111           | 5                 | 3.62                    | -\$20,144        | 228.90            | -12.11            | \$0,237           | -2//.04           | D<br>U            | -0.34                   | \$104,031        | -33.17            | -1.08                   | \$39,498          | -34.90            |
| \$3.4III<br>\$2.5m | 5                 | 3.32                    | \$21,420         | 232.40            | -12.81            | \$7,000           | -290.03           | D D               | -0.94                   | \$100,240        | -34.11            | -1.08                   | \$59,495          | -30.38            |
| \$3.5m             | 5                 | 2.80                    | \$35,651         | 235.00            | -13.70            | \$6,710           | 310.25            | C K               | -1.85                   | \$53 535         | 57.81             | -1.08                   | \$59,492          | 59.95             |
| \$3.0m             | 5                 | 2.30                    | \$42.215         | 240.83            | -14.90            | \$5,080           | 335.04            | н                 | -1.87                   | \$10,017         | 50.81             | -1.08                   | \$59,390          | 61.63             |
| \$3.7m             | 5                 | 1.83                    | \$54,669         | 240.85            | -10.70            | \$5,989           | 355.94            | P                 | -2.00                   | \$54.610         | -59.01            | -1.08                   | \$59,337          | 63.32             |
| \$3.0m             | 5                 | 1.05                    | -\$99,960        | 242.00            | -19.91            | \$2,951           | -389.74           | II II             | -0.95                   | \$105 758        | -62.59            | -1.69                   | \$59,339          | -65.01            |
| \$4.0m             | D                 | -0.53                   | \$187.471        | 243.00            | -1.66             | \$60 348          | -391.40           | G                 | -0.95                   | \$113 781        | -63.47            | -1.69                   | \$59,187          | -66.70            |
| \$4.1m             | D                 | -0.55                   | \$186 155        | 242 59            | -1.67             | \$59 925          | -393.06           | Н                 | -0.00                   | \$49 773         | -65.48            | -1.09                   | \$59 186          | -68 39            |
| \$4.2m             | D                 | -0.54                   | \$184 831        | 242.05            | -1.68             | \$59 498          | -394 75           | R                 | -1.84                   | \$54 468         | -67.31            | -1.69                   | \$59 184          | -70.08            |
| \$4.3m             | D                 | -0.54                   | \$183 496        | 241.50            | -1.69             | \$59,069          | -396 44           | C                 | -1.88                   | \$53,294         | -69.19            | -1.69                   | \$59 123          | -71 77            |
| \$4.4m             | D                 | -0.55                   | \$182,151        | 240.95            | -1.71             | \$58,636          | -398.14           | D                 | -0.54                   | \$183,496        | -69.73            | -1.69                   | \$59.069          | -73.46            |
| \$4.5m             | D                 | -0.55                   | \$180,797        | 240.40            | -1.72             | \$58,200          | -399.86           | R                 | -1.84                   | \$54.325         | -71.57            | -1.69                   | \$59.029          | -75.15            |
| \$4.6m             | D                 | -0.56                   | \$179,433        | 239.84            | -1.73             | \$57,761          | -401.59           | Н                 | -2.02                   | \$49,627         | -73.59            | -1.69                   | \$59,013          | -76.85            |
| \$4.7m             | D                 | -0.56                   | \$178.057        | 239.28            | -1.74             | \$57,318          | -403.34           | U                 | -0.95                   | \$105,274        | -74.54            | -1.70                   | \$58,952          | -78.55            |
| \$4.8m             | D                 | -0.57                   | \$176.672        | 238.72            | -1.76             | \$56,872          | -405.10           | R                 | -1.85                   | \$54,183         | -76.38            | -1.70                   | \$58,874          | -80.24            |

## Table A2.2.3: Reallocation following net investment (allocator has poor information)

|                    |                   |                        | Reallocation      | with good          | information            |                   |                    |                   |                        | Reallocatio      | n with poor i      | nformation             |                      |                  |
|--------------------|-------------------|------------------------|-------------------|--------------------|------------------------|-------------------|--------------------|-------------------|------------------------|------------------|--------------------|------------------------|----------------------|------------------|
|                    | Marginal          | Estimates              | s with good info  | rmation            | Estimate               | es with poor info | ormation           | Marginal          | Estimate               | s with good info | ormation           | Estimate               | es with poor info    | ormation         |
| Budget impact      | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | E(ICER)          | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ |
| \$4.9m             | D                 | -0.57                  | \$175 275         | 238.15             | -1 77                  | \$56 423          | -406.87            | C                 | -1.88                  | \$53.052         | -78.27             | -1 70                  | \$58.854             | -81.94           |
| \$5.0m             | D                 | -0.58                  | \$173.867         | 237 57             | -1 79                  | \$55,969          | -408.66            | Н                 | -2.02                  | \$49 481         | -80.29             | -1 70                  | \$58,839             | -83.64           |
| \$5.1m             | D                 | -0.58                  | \$172.448         | 236.99             | -1.80                  | \$55.512          | -410.46            | G                 | -0.88                  | \$113.094        | -81.17             | -1 70                  | \$58,829             | -85.34           |
| \$5.1m             | D                 | -0.58                  | \$171.017         | 236.41             | -1.82                  | \$55,052          | -412.27            | R                 | -1.85                  | \$54.039         | -83.02             | -1.70                  | \$58,719             | -87.05           |
| \$5.2m             | D                 | -0.59                  | \$169 573         | 235.82             | -1.83                  | \$54 587          | -414.10            | U                 | -0.95                  | \$104 788        | -83.98             | -1.70                  | \$58,680             | -88.75           |
| \$5.0m             | D                 | -0.59                  | \$168,118         | 235.22             | -1.85                  | \$54.118          | -415.95            | н                 | -2.03                  | \$49 334         | -86.01             | -1.70                  | \$58,664             | -90.45           |
| \$5.5m             | D                 | -0.60                  | \$166,649         | 234.62             | -1.86                  | \$53,646          | _417.82            | D                 | -0.55                  | \$182,151        | -86.56             | -1.71                  | \$58,636             | -92.16           |
| \$5.6m             | D                 | -0.61                  | \$165,168         | 234.02             | -1.88                  | \$53,010          | -419.70            | C                 | -1.89                  | \$52,807         | -88.45             | -1.71                  | \$58,582             | -93.87           |
| \$5.0m             | D                 | -0.61                  | \$163,674         | 234.02             | -1.00                  | \$52,688          | -421.60            | R                 | -1.86                  | \$53,896         | -90.30             | -1.71                  | \$58,563             | -95.57           |
| \$5.8m             | D                 | -0.62                  | \$162,164         | 233.41             | -1.92                  | \$52,000          | -423.51            | н                 | -1.00                  | \$49,186         | -92.34             | -1.71                  | \$58,488             | -97.28           |
| \$5.0m             | D                 | -0.02                  | \$160.640         | 232.17             | 1.03                   | \$51,712          | 425.51             | G                 | -2.05                  | \$112 307        | 03.23              | -1.71                  | \$58,467             | 08.00            |
| \$5.9III<br>\$6.0m | D                 | -0.02                  | \$150,040         | 232.17             | -1.95                  | \$51,712          | 427.40             | D                 | -0.89                  | \$112,397        | -95.25             | -1.71                  | \$58,406             | 100.71           |
| \$6.1m             | D                 | -0.03                  | \$157,552         | 220.00             | -1.95                  | \$50,717          | 420.27             | K<br>U            | -1.80                  | \$104 200        | -95.09             | -1.71                  | \$58,406             | 102.42           |
| \$6.2m             | D                 | -0.03                  | \$157,552         | 230.90             | -1.97                  | \$50,717          | 429.37             | U<br>H            | -0.90                  | \$104,299        | -90.03             | -1.71                  | \$58,400             | -102.42          |
| \$6.2m             | D                 | -0.04                  | \$155,984         | 230.20             | -1.99                  | \$40,702          | 422.27             | n<br>C            | -2.04                  | \$52,550         | -98.09             | -1.71                  | \$50,511             | 105.95           |
| \$0.5III<br>\$6.4  | D                 | -0.65                  | \$154,400         | 229.01             | -2.01                  | \$49,703          | -455.57            | D D               | -1.90                  | \$52,539         | -99.99             | -1.72                  | \$38,308             | -103.83          |
| \$0.4m             | D                 | -0.65                  | \$152,800         | 228.90             | -2.03                  | \$49,100          | 433.41             | K<br>W            | -1.6/                  | \$33,008         | -101.83            | -1.72                  | \$38,230             | -107.37          |
| \$0.5III<br>\$6.6m | D                 | -0.00                  | \$131,185         | 228.30             | -2.03                  | \$46,007          | -457.40            | W D               | -1.54                  | \$/4,098         | -103.19            | -1.72                  | \$36,216             | -109.28          |
| \$0.0III<br>\$6.7  | D                 | -0.07                  | \$149,348         | 227.05             | -2.08                  | \$46,141          | -439.34            |                   | -0.33                  | \$160,797        | -105.73            | -1.72                  | \$38,200             | -111.00          |
| \$6.7m             | D                 | -0.68                  | \$147,890         | 220.95             | -2.10                  | \$47,009          | -441.04            | H                 | -2.05                  | \$48,887         | -105.79            | -1.72                  | \$38,133             | -112.72          |
| \$6.8m             | D                 | -0.68                  | \$146,227         | 220.27             | -2.12                  | \$47,071          | -445.70            | 0                 | -0.96                  | \$105,809        | -106.75            | -1.72                  | \$38,132             | -114.44          |
| \$6.9m             | D                 | -0.69                  | \$144,534         | 223.38             | -2.15                  | \$40,527          | -445.91            | U<br>D            | -0.90                  | \$111,093        | -107.65            | -1.72                  | \$58,101             | -110.10          |
| \$7.0m             | D                 | -0.70                  | \$142,822         | 224.88             | -2.18                  | \$45,976          | -448.09            | R                 | -1.8/                  | \$55,405         | -109.52            | -1.72                  | \$58,095             | -11/.88          |
| \$7.1m             | D                 | -0./1                  | \$141,093         | 224.17             | -2.20                  | \$45,419          | -450.29            |                   | -1.91                  | \$52,310         | -111.43            | -1.72                  | \$58,030             | -119.61          |
| \$7.2m             | D                 | -0.72                  | \$139,338         | 223.45             | -2.23                  | \$44,855          | -452.52            | H                 | -2.05                  | \$48,/3/         | -113.48            | -1./3                  | \$57,954             | -121.33          |
| \$7.3m             | D                 | -0.73                  | \$137,565         | 222.72             | -2.26                  | \$44,283          | -454.78            | K                 | -1.88                  | \$53,318         | -115.36            | -1./3                  | \$57,935             | -123.06          |
| \$7.4m             | D                 | -0.74                  | \$135,766         | 221.99             | -2.29                  | \$43,704          | -457.06            |                   | -0.97                  | \$103,315        | -116.33            | -1./3                  | \$57,855             | -124.79          |
| \$7.5m             | D                 | -0.75                  | \$133,942         | 221.24             | -2.32                  | \$43,117          | -459.38            | K                 | -1.88                  | \$53,173         | -118.21            | -1./3                  | \$57,774             | -126.52          |
| \$7.6m             | D                 | -0.76                  | \$132,095         | 220.48             | -2.35                  | \$42,523          | -461./4            | H                 | -2.06                  | \$48,585         | -120.27            | -1./3                  | \$57,774             | -128.25          |
| \$/./m             | D                 | -0.//                  | \$130,222         | 219.72             | -2.39                  | \$41,919          | -464.12            | D                 | -0.56                  | \$1/9,433        | -120.82            | -1./3                  | \$57,761             | -129.98          |
| \$7.8m             | D                 | -0.78                  | \$128,319         | 218.94             | -2.42                  | \$41,307          | -400.34            | C                 | -1.92                  | \$52,057         | -122.74            | -1./3                  | \$57,751             | -131./1          |
| \$7.9m             | D                 | -0.79                  | \$126,390         | 218.15             | -2.46                  | \$40,686          | -469.00            | G                 | -0.90                  | \$110,979        | -123.63            | -1.73                  | \$57,729             | -135.44          |
| 58.0m              | D                 | -0.80                  | \$124,431         | 217.34             | -2.50                  | \$40,055          | -4/1.50            | R                 | -1.89                  | \$55,027         | -125.55            | -1./4                  | \$57,618             | -135.18          |
| \$8.1m             | D                 | -0.82                  | \$122,438         | 210.55             | -2.54                  | \$39,414          | -4/4.03            | H                 | -2.06                  | \$48,433         | -127.60            | -1./4                  | \$57,593             | -136.92          |
| \$8.2m             | D                 | -0.83                  | \$120,415         | 215.69             | -2.58                  | \$38,762          | -4/0.01            | U                 | -0.97                  | \$102,820        | -128.57            | -1./4                  | \$57,578             | -138.03          |
| \$8.3m             | D                 | -0.84                  | \$118,356         | 214.85             | -2.62                  | \$38,100          | -4/9.24            |                   | -1.93                  | \$51,803         | -130.50            | -1./4                  | \$57,468             | -140.39          |
| \$8.4m             | <u> </u>          | -0.86                  | \$116,451         | 213.99             | -1.65                  | \$00,576          | -480.89            | K                 | -1.89                  | \$52,880         | -132.39            | -1./4                  | \$57,459             | -142.13          |
| \$8.5m             | D                 | -0.86                  | \$116,200         | 213.13             | -2.6/                  | \$37,423          | -483.30            | H                 | -2.07                  | \$48,279         | -134.40            | -1./4                  | \$57,410             | -143.88          |
| \$8.6m             | G                 | -0.80                  | \$115,795         | 212.27             | -1.60                  | \$60,233          | -485.22            | U D               | -0.91                  | \$110,250        | -135.37            | -1./4                  | \$37,333             | -145.62          |
| \$8.7m             | G                 | -0.87                  | \$115,152         | 211.40             | -1.0/                  | \$59,890          | -480.89            | D                 | -0.56                  | \$1/8,05/        | -135.93            | -1./4                  | \$57,318             | -14/.30          |
| \$8.8m             | G                 | -0.8/                  | \$114,460         | 210.53             | -1.68                  | \$59,540          | -488.57            | K                 | -1.90                  | \$52,/34         | -13/.83            | -1.75                  | \$57,300             | -149.11          |
| \$8.9m             | D                 | -0.88                  | \$114,127         | 209.65             | -2.72                  | \$30,/38          | -491.29            | U                 | -0.98                  | \$102,322        | -138.80            | -1.75                  | \$57,299             | -150.85          |
| \$9.0m             | G                 | -0.88                  | \$113,781         | 208.77             | -1.69                  | \$59,187          | -492.98            | H                 | -2.08                  | \$48,125         | -140.88            | -1.75                  | \$57,220             | -152.60          |
| \$9.1m             | G                 | -0.88                  | \$113,094         | 207.89             | -1./0                  | \$38,829          | -494.68            |                   | -1.94                  | \$51,546         | -142.82            | -1./5                  | \$57,183             | -104.50          |
| \$9.2m             | G                 | -0.89                  | \$112,397         | 207.00             | -1./1                  | \$58,467          | -496.39            | K                 | -1.90                  | \$52,586         | -144./2            | -1.75                  | \$57,140             | -156.10          |
| \$9.3m             | D                 | -0.89                  | \$111,952         | 200.10             | -2.//                  | \$36,038          | -499.1/            | Н                 | -2.08                  | \$47,969         | -140.81            | -1./5                  | \$57,041             | -15/.85          |
| 59.4m              | G                 | -0.90                  | \$111,093         | 203.21             | -1./2                  | \$58,101          | -500.89            |                   | -0.98                  | \$101,823        | -14/./9            | -1./5                  | \$57,019             | -159.61          |
| \$9.5m             | G                 | -0.90                  | \$110,979         | 204.31             | -1./3                  | \$57,729          | -502.62            | ĸ                 | -1.91                  | \$52,439         | -149./0            | -1./6                  | \$56,980             | -101.30          |
| \$9.6m             | U<br>D            | -0.91                  | \$110,256         | 203.40             | -1./4                  | \$57,353          | -504.36            | G                 | -0.91                  | \$109,523        | -150.61            | -1./6                  | \$56,972             | -163.12          |
| \$9.7m             | D                 | -0.91                  | \$109,736         | 202.49             | -2.83                  | \$35,325          | -507.19            |                   | -1.95                  | \$51,286         | -152.56            | -1.76                  | \$56,895             | -164.87          |
| \$9.8m             | G                 | -0.91                  | \$109,523         | 201.58             | -1./6                  | \$56,972          | -508.95            | <u>и</u>          | -0.5/                  | \$1/0,0/2        | -135.15            | -1./0                  | \$36,872             | -100.03          |
| \$9.9m             | U                 | -0.92                  | 2102./81          | 200.66             | -1.//                  | 320,280           | -510.72            | п                 | -2.09                  | 347.813          | -133.22            | -1./0                  | 300.800              | -108.39          |

| Image     Extinates with point information     Narginal     Extinates with point information     Extinates with point information     Extinates with point information       \$10.m     0     0.92     \$10.81     0.12     \$10.81     0.0     0.93     \$10.81     0.12     \$10.81     0.0     0.99     \$10.13     \$10.52     0.15     \$55.91     7.171       \$10.m     0     0.03     \$10.92.01     0.19     \$55.91     0.0     2.99     \$10.13     \$10.52     0.177     \$171.91       \$10.m     0     0.33     \$10.72     1.99     1.0     \$10.92     \$10.87     \$10.92     1.012     \$10.92     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96     1.771     \$55.96 <th></th> <th></th> <th colspan="3">Reallocation with good</th> <th>information</th> <th></th> <th></th> <th></th> <th></th> <th>Reallocation</th> <th>n with poor i</th> <th>nformation</th> <th></th> <th></th>                                                                                                                                                                                                                                                      |                    |                   | Reallocation with good |                   |                   | information       |                  |                   |                   |                   | Reallocation     | n with poor i     | nformation        |                      |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|------------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|----------------------|-------------------|
| Integer     Item     ICLR     ICLR    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Marginal          | Estimates              | with good info    | rmation           | Estimate          | s with poor info | ormation          | Marginal          | Estimate          | s with good info | ormation          | Estimate          | s with poor info     | rmation           |
| S10.m.     0     -0.92     S108, 46     199.71     -1.65     S00,500     512.37     R     -1.91     S22.391     1.97.13     -1.76.8     S56.439     -1.70.15       S10.m.     U     -0.93     S10.973     197.88     -1.66     S00.255     51.51.81     H     -2.10     S47.655     -1.70.2     1.75.85     S66.689     -1.75.44       S10.m.     G     -0.93     S10.77     197.88     -1.66     S50.275     7.73.20.49     W     -1.38     S72.69     1.63.31     -1.77     S56.689     -1.77.41       S10.6m.     G     -0.93     S10.77     1.71.1     S55.77     -7.78.40     W     -1.38     S72.69     1.63.31     -1.77     S56.658     -1.77.1       S10.6m.     G     -0.94     S10.62.70     1.91.21     -1.68     S59.343     -2.21.1     S14.747     -1.70.4     1.77.7     S56.648     -1.77.1     S56.648     -1.77.1     S56.648     -1.77.1     S56.648     -1.77.1     S56.648     -1.77.1     S56.648     -1.77.1 </th <th>Budget impact</th> <th>Tech <sup>a</sup></th> <th><math>E(\Delta E_m)^b</math></th> <th><math>E(ICER_{m})^{c}</math></th> <th><math>E(\Delta E)^{d}</math></th> <th><math>E(\Delta E_m)^b</math></th> <th><math>E(ICER_m)^c</math></th> <th><math>E(\Delta E)^{d}</math></th> <th>Tech <sup>a</sup></th> <th><math>E(\Delta E_m)^b</math></th> <th><math>E(ICER_m)^c</math></th> <th><math>E(\Delta E)^{d}</math></th> <th><math>E(\Delta E_m)^b</math></th> <th>E(ICER)<sup>c</sup></th> <th><math>E(\Delta E)^{d}</math></th> | Budget impact      | Tech <sup>a</sup> | $E(\Delta E_m)^b$      | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER) <sup>c</sup> | $E(\Delta E)^{d}$ |
| S10.m     G     -0.91     S108.028     197.88     1.72     556,144     551,131     U     -0.99     S10,138     198.12     -1.76     S56,658     -1.71.91       S10.2m     D     -0.93     S107.471     196.05     -2.28     S31.536     -1.71.81     -1.76     S55,658     -1.75.43       S10.4m     U     -0.93     S107.471     196.05     -2.28     S31.566     -51.518     H     -1.218     S12.649     -1.63.13     -1.77     S56.658     -1.75.43       S10.6m     U     -0.493     S10.7197     0.5108     -0.21.53     G     0.493     S10.711     -1.78.56.641     -1.78.56.641     -1.78.56.641     -1.78.56.757     -1.78.56.757     -1.78.56.757     -1.78.56.757     -1.78.56.757     -1.78.56.757     -1.77.55.6178     -1.77.55.6178     -1.77.55.6178     -1.77.55.6178     -1.77.55.6178     -1.77.55.6178     -1.77.55.6178     -1.78.55.6134     -1.87.03     -1.77.7     -1.78.55.6134     -1.87.03     -1.79.55.757     -1.79.55.757     -1.79.55.757     -1.79.55.757.757.575.757     -1.79.55.757.757.575.757<                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10.0m            | U                 | -0.92                  | \$108,146         | 199.73            | -1.65             | \$60,560         | -512.37           | R                 | -1.91             | \$52.291         | -157.13           | -1.76             | \$56,819             | -170.15           |
| S102.m     U     -0.91     S107/073     197.88     -1.66     506/295     515.80     H     -1.92     557.43     -1.60.31     -1.73.65     555.668     -1.73.44       S10.4m     G     -0.93     S107.244     190.05     -1.72     S55.77     -22.04     W     -1.38     S72.48     -1.61.31     -1.77     S56.628     -1.77.41       S10.6m     U     -0.94     S100.700     194.14     -1.67     S50.77     -22.93     G     -1.99     S10.244     -1.77     S56.664     -1.78.85       S10.6m     U     -0.94     S10.678     0.91.21     -1.41     S55.77     -22.83     G     -0.92     S10.784     -1.77     S56.664     -1.87.85       S10.7m     G     -0.91     S10.578     0.91.21     -1.41     S55.77     -22.93     S10.794     1.68.34     -1.77     S56.563     -1.77     S56.563     -1.77     S56.563     -1.78     S56.513     -1.77     S56.563     -1.78     S56.513     -1.77     S56.563     -1.78 <th>\$10.1m</th> <th>G</th> <th>-0.93</th> <th>\$108,028</th> <th>198.81</th> <th>-1.78</th> <th>\$56,194</th> <th>-514.15</th> <th>U</th> <th>-0.99</th> <th>\$101.318</th> <th>-158.12</th> <th>-1.76</th> <th>\$56,737</th> <th>-171.91</th>                                                                                                                                                                                                                                                                                                        | \$10.1m            | G                 | -0.93                  | \$108,028         | 198.81            | -1.78             | \$56,194         | -514.15           | U                 | -0.99             | \$101.318        | -158.12           | -1.76             | \$56,737             | -171.91           |
| S10.m     D     4.93     S107.47     1095     2-290     S34.596     518.70     R     1-192     S52.49     16.131     1-76     S56.621     1-77       S10.6m     U     4.93     S107.197     195.86     1-167     S50.029     -52.15     C     1-186     S51.624     -16.71     S56.621     -177     S56.640     -178       S10.6m     U     4.94     S10.648     19.24     1.67     S57.62     232.83     G     4.922     S10.874     -16.63     1.77     S56.649     -173     S56.646     -177     S56.469     -182.55     S10.708     -16.73     S56.475     -184.28     S10.575     1142     -177     S56.454     -184.55     S10.575     1143.23     -177     S56.454     -177.55     S56.454     -178.55     S56.454     -185.55     -177.55     S56.454     -185.55     -170     S56.451     -177     S56.454     -176.54     -177.55     S56.61     -177     S56.61     -177     S56.61     -177     S56.61     -177.55 <th>\$10.2m</th> <th>U</th> <th>-0.93</th> <th>\$107.673</th> <th>197.88</th> <th>-1.66</th> <th>\$60,295</th> <th>-515.81</th> <th>Н</th> <th>-2.10</th> <th>\$47,655</th> <th>-160.21</th> <th>-1.76</th> <th>\$56.668</th> <th>-173.68</th>                                                                                                                                                                                                                                                                                                 | \$10.2m            | U                 | -0.93                  | \$107.673         | 197.88            | -1.66             | \$60,295         | -515.81           | Н                 | -2.10             | \$47,655         | -160.21           | -1.76             | \$56.668             | -173.68           |
| Site     0     -0.93     Sity7.24     100     -1.79     Sity7.250.04     W     -1.38     Sity0.4     -1.67     Sity0.21     -1.77     Sity0.21     -1.77     Sity0.21     -1.77     Sity0.21     -1.77     Sity0.21     -1.77     Sity0.21     -1.77     Sity0.26     -1.86     Sity0.24     -1.77     Sity0.26     -1.86     Sity0.24     -1.77     Sity0.26     -1.86     Sity0.24     -1.77     Sity0.26     -1.88     Sity0.24     -1.92     Sity0.27     -1.77     Sity0.26     -1.77     Sity0.26     -1.88     Sity0.23     -2.23     -1.93     Sity0.27     -1.77     Sity0.27     -1.78     Sity0.27     -1.78     Sity0.21     -1.77     Sity0.21     -1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$10.3m            | D                 | -0.93                  | \$107,471         | 196.95            | -2.89             | \$34,596         | -518.70           | R                 | -1.92             | \$52,143         | -162.13           | -1.76             | \$56,658             | -175.44           |
| SiB&m     U     -0.93     SiD(7):P     -1.67     S50,029     -252.15     C     -1.96     S51,044     -1.67     S50,024     -1.67     S50,024     -1.92     S10,81     -1.66,43     -1.77     S56,056     -1.80       S10,6m     U     -0.94     S10,98     -1.68,33     -1.77     S56,450     -1.81     S10,98     -1.68,33     -1.77     S56,450     -1.81     S10,98     -1.68,33     -1.77     S56,450     -1.84     S10,99     -1.02     S10,94     -1.63     S10,450     -1.84     S10,90     -1.77     S56,451     -1.84     S11,48     -1.03     S10,450     -1.03     S10,450     -1.03     S11,48     -1.03     S11,44     -1.78     S56,451     -1.86,453     -1.78     S56,451     -1.86,454     -1.86,454     -1.86,454     -1.86,454     -1.86,454     -1.86,454     -1.86,454     -1.86,44     -1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$10.4m            | G                 | -0.93                  | \$107.264         | 196.01            | -1.79             | \$55,797         | -520.49           | W                 | -1.38             | \$72,649         | -163.51           | -1.77             | \$56.621             | -177.21           |
| Silo.m     U     0.94     Silo.720     194.14     -1.67     S58.780     -1002     Silo.781     -10631     -1.77     S56.586     +182.11       Silo.m     U     -0.94     Silo.489     195.21     -1.88     S55.394     -252.31     H     -2.11     S47.497     -170.83     -177     S56.496     -182.51       Silo.m     U     -0.94     Silo.755     190.37     -1.69     S52.23     S20.00     U     -0.97     Silo.473     -177.5     S56.445     -182.64       Silo.m     U     -0.95     Silo.5775     190.37     -1.82     S54.952     S22.22     R     -1.03     S51.845     -173.8     S56.310     -191.8     S51.845     -178     S56.310     -191.8     S51.65     -170     S51.66.91     -183.5     S41.60     -580.2     -178     S56.104     -194.194.144     -180.5     S51.65.118     -191.8     S51.65.118     -191.8     S51.65.118     -191.9     S51.65.118     -191.9     S51.65.118     -191.9     S51.65.118     -191.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$10.5m            | Ū                 | -0.93                  | \$107,197         | 195.08            | -1.67             | \$60.029         | -522.15           | C                 | -1.96             | \$51.024         | -165.47           | -1.77             | \$56,604             | -178.98           |
| SiB2m     G     -0.94     SiB2.04     -1.85     SiB2.04     -1.92     SiB2.094     -1.083     1.177     SiG406     -1.127       SiB2m     U     -0.994     SiB2.04     1.22     -1.128     SiB2.04     -1.022     SiB2.05     -1.042     -1.177     SiG434     -1.842       SiB2m     G     -0.995     SiB2.05     10.03     SiB2.23     SiB2.00     U     -0.99     SiB2.11.08     -1.77     SiG434     -1.842       SiB2m     G     -0.95     SiB2.74     18.942     -1.20     SiB2.35     C     -1.93     SiB.445     -173.8     SiG434     -180.4       SiB2m     O     -0.95     SiB2.78     1.83     SiB2.70     C     -1.93     SiB.445     -173.8     SiG4.14     -190.35     SiB.050.5     -190.178     -191.78     SiG1.74     194.44       SiB2.0m     U     -0.95     SiB2.08     1.193.8     SiB2.08     1.191.8     -172.8     SiG1.74     190.41     -190.75     SiB2.08     -192.78     -191.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$10.6m            | Ū                 | -0.94                  | \$106 720         | 194 14            | -1.67             | \$59.762         | -523.83           | G                 | -0.92             | \$108 781        | -166 39           | -1 77             | \$56 586             | -180.74           |
| SiteBam     U     -0.94     SiteSa     -1.69     SiSp.233     -52.00     U     -0.95     SiteSa     -1.77     S56.479     -1.84.28       SiteBam     U     -0.95     SiteSa     -1.69     SiteSa     -53.00     U     -0.95     SiteSa     -1.77     S56.454     -1.87.33       SiteBam     U     -0.95     SiteSa     -1.78     S58.454     -1.78     S53.344     -1.89.059       SiteBam     G     -0.95     SiteSa     -1.78     S58.457     -1.77     S56.453     -1.78     S55.250     -1.93.33     SiteSa     -1.78     S55.250     -1.93.33     SiteSa     -1.78     S55.250     -1.93.351.250     -1.71     S58.680     -530.257     -1.78     S55.250     -1.93.157     S57.27     -1.78     S55.172     -1.96.83     S51.48     -1.78     S55.250     -1.93.153     S51.27     -1.78     S55.250     -1.93.178     S51.71     -1.78     S55.250     -1.93.178     S51.21     -54.277     U     -1.00     S10.200     S1.78     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$10.7m            | G                 | -0.94                  | \$106,489         | 193.21            | -1.81             | \$55 394         | -525.63           | R                 | -1.92             | \$51 994         | -168 31           | -1 77             | \$56,496             | -182.51           |
| Si10m     U     4.99     \$10378     9132     1.40     \$53923     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$25921     \$259211     \$25921     \$259211                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$10.8m            | Ŭ                 | -0.94                  | \$106,240         | 192.26            | -1.68             | \$59,493         | -527 31           | Н                 | -2.11             | \$47 497         | -170.42           | -1 77             | \$56,479             | -184.28           |
| S11.0m     G     -0.95     \$105,705     190,370     -1.82     \$549,85     \$510,822     D     -0.57     \$175,275     -17,198     -1.77     \$55,433     +187,33       S11.1m     U     -0.95     \$105,159     188,471     -2.95     \$533,851     -335,477     C     -1.97     \$51,057     -1.78     \$55,034     -199,05       S11.1m     G     -0.95     \$104,798     186,56     -1.70     \$58,640     -370,071     177,99     -1.78     \$55,029     -193,167     178,855,020     193,157     178,92     -1.78     \$55,029     -193,167     178,92     -1.78     \$55,029     -193,157     182,12     -109,95     \$104,906     194,946     -1.83     \$54,149     -1.93     \$51,036     180,828     -1.78     \$55,070     -198,50     -1.78     \$55,089     -1.78     \$55,089     -1.79     \$56,081     -1.78     \$55,089     -1.79     \$55,008     -1.79     \$55,008     -0.20,38     \$11,3m     -1.78     \$55,017     -1.78     \$55,010     -1.78     \$56,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$10.0m            | Ŭ                 | -0.95                  | \$105,218         | 191.32            | -1.69             | \$59,223         | -529.00           | U                 | -0.99             | \$100.814        | -171 41           | -1 77             | \$56,454             | -186.06           |
| Silim     U     0.05     Silis 274     198.4     -1.70     SS8.92     -32.22     R     -1.93     SS1.845     -1.71     1.78     SS6.314     -1.91       Silim     D     -0.05     Silioly05     Silis 7     -2.95     Silis 7     C     1.97     Silis 739     -17.8     SS6.310     -191.8       Silim     U     -0.05     Silid 98     1.78     SS6.104     -191.8     SS1.695     -1.78     SS6.104     -194.8       Silim     U     -0.06     Silid 906     184.4     -1.85     SS1.100     -1.00     Silid 95     -1.78     SS6.172     -198.8     SS1.695     -1.78     SS6.170     -198.8     SS1.695     -1.78     SS6.170     -198.8     SS1.695     -1.78     SS6.170     -198.8     SS1.695     -1.78     SS6.170     -198.8     SS1.201     -1.78     SS6.013     -202.06     SS1.201     SS1.201     -1.78     SS6.013     -202.06     SS1.201     SS1.201     SS1.201     SS1.201     SS1.201     SS1.201     SS1.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$11.0m            | G                 | -0.95                  | \$105,705         | 190.37            | -1.82             | \$54 985         | -530.82           | D                 | -0.57             | \$175,275        | -171.98           | -1 77             | \$56,423             | -187.83           |
| Silizm     D     0.05     \$105,159     188,47     -2.95     \$33,831     535,471     C     1.97     \$50,759     -1.78     \$56,230     -193,16       Silizm     G     -0.95     \$104,788     186,56     -1.70     \$55,640     -53,012     R     -2.11     \$47,337     -177.8     \$56,230     -193,16       Silizm     U     -0.96     \$104,939     185,65     -1.70     \$55,640     -52,072     R     -2.13     \$51,609     -1.78     \$56,172     -196,72     196,75     196,75     196,72     -1.78     \$56,172     -196,73     \$51,609     -1.78     \$56,617     -196,78     \$51,179     -1.78     \$56,608     -200,28     18,78     -1.78     \$56,608     -200,28     18,78     -1.78     \$56,608     -200,28     18,78     -1.78     \$56,608     -200,28     18,78     -1.88     -1.78     \$56,608     -200,28     18,78     -1.78     \$56,608     -200,28     12,79     556,608     -200,29     -1.79     \$55,608     -200,20     202,20 <th>\$11.0m</th> <th>U</th> <th>-0.95</th> <th>\$105,705</th> <th>189.42</th> <th>-1.70</th> <th>\$58,952</th> <th>-532 52</th> <th>R</th> <th>-1.93</th> <th>\$51.845</th> <th>-173.91</th> <th>-1 78</th> <th>\$56,334</th> <th>-189.60</th>                                                                                                                                                                                                                                                             | \$11.0m            | U                 | -0.95                  | \$105,705         | 189.42            | -1.70             | \$58,952         | -532 52           | R                 | -1.93             | \$51.845         | -173.91           | -1 78             | \$56,334             | -189.60           |
| Silim     C     0.95     \$10.495     187.22     1.83     \$54.570     537.30     11     2.11     \$67.37     17.79     1.78     \$56.290     1.934       Silim     U     0.95     \$104.788     185.65     1.71     \$58.660     540.72     R     1.93     \$108.028     1.78     \$56.191     1.949       Silim     U     0.96     \$104.006     184.64     1.85     \$51.472     1.78     \$56.017     1.978     \$56.017     1.978     \$56.019     1.978     \$56.019     1.978     \$56.019     1.978     \$56.019     1.978     \$56.019     2.020.66       Silim     U     0.97     \$10.273     181.74     1.86     \$53.271     \$47.84     R     1.914     \$51.345     1.79     \$55.008     2.020.66       Silim     U     0.97     \$10.270     178     \$57.307     \$54.02     C     1.93     \$57.307     1.74     \$55.966     2.020     2.020     1.79     \$55.966     2.020     2.021     1.79     \$55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$11.1m            | D                 | -0.95                  | \$105,271         | 188.47            | -2.95             | \$33,851         | -535.47           | C C               | -1.97             | \$50,759         | -175.88           | -1.78             | \$56,310             | -191.38           |
| Siliam     U     -0.95     Silu/288     186.56     -1.70     SS8.800     -53901     0     -0.93     Silu/288     -1.78     SS6.194     -1.94     SS6.194     -1.78     SS6.194     -1.90     SS6.194     -1.90     SS6.194     -1.90     SS6.195     -1.78     SS6.170     -1.90     SS1.695     -1.78     SS6.170     -1.90     SS1.695     -1.78     SS6.170     -1.90     SS1.695     -1.78     SS6.170     -1.90     SS1.695     -1.78     SS6.170     -1.90     SS1.694     -1.85     SS6.170     -1.90     SS6.008     -2.00.28     SS6.008     -2.00.28     SS5.00     -2.01     SS5.01     -1.79     SS5.00     -2.01     SS5.01     -1.79     SS5.01     -1.79     SS5.00     -2.01     SS5.01     -1.79     SS5.00     -2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$11.2m            | G                 | -0.95                  | \$104 905         | 187.52            | -1.83             | \$54,570         | -537.30           | н<br>Н            | -2.11             | \$47 337         | -177.99           | -1.78             | \$56,290             | -193.16           |
| Sil.Sm     U     -0.06     5104_299     185.61     -1.71     \$58,406     -560_27     C     -0.93     551.695     -180.85     -1.78     \$56,172     -196.72       Sil.6m     G     -0.96     \$103,090     183.66     -1.72     \$58,132     -544.29     H     -2.12     \$57,176     -1.78     \$56,078     -2.90.06       Sil.7m     U     -0.97     \$103,151     162.71     -1.73     \$57,553     -546.20     C     -1.98     \$50,401     -1.78     \$56,008     -2.02.06       Sil.7m     G     -0.97     \$100,273     181.74     -1.86     \$53,573     -549.61     D     -0.58     \$173,867     -1.88.46     -1.79     \$55,008     -200.76       Sil.2m     G     -0.97     \$100,252     180.73     -1.74     \$55,737     -549.61     D     -0.58     \$173.83     -1.79     \$55,648     -210.79     95,735     -1.79     \$55,845     -210.11       Sil.2m     U     -0.98     \$100,232     173.83     -1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$11.5m<br>\$11.4m | U                 | -0.95                  | \$104,788         | 186.56            | -1.70             | \$58,680         | -539.01           | G                 | -0.93             | \$108.028        | -178.92           | -1.78             | \$56,194             | -194.94           |
| 31.6m     0     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$11.4m            | U                 | -0.95                  | \$104,788         | 185.61            | -1.70             | \$58,000         | -540.72           | R                 | -1.93             | \$51.695         | -180.85           | -1.78             | \$56,172             | -196.72           |
| Sil 1, m     U     -0.96     503, 89     103, 20     258, 132     -544, 29     H     -2.12     SYT, 175     -1.83     277     -1.78     S56, 098     -2.00, 28       Sil, m     U     -0.97     Si03, 213     181, 74     -1.78     S57, 357     -544, 60     C     -1.98     S51, 457     -1.88, 595     -1.79     S56, 008     -2.00, 83       Sil, m     U     -0.97     Si02, 220     180, 77     -1.74     S57, 78     -4.94     D     -0.58     S17, 76     -1.88, 46     -1.79     S55, 906     -20.74       Sil, m     D     -0.97     Si02, 250     17.80     -3.02     S33, 286     -554, 51     U     -1.01     S97, 395     -1.79     S55, 906     -20.74       Sil, 2m     G     -0.98     Sil0, 382     17.86     -1.89     S52, 344     -20.11     -1.79     S55, 544     -20.11       Sil, 2m     U     -0.98     Sil0, 387     17.86     -1.89     S52, 378     -21.04     -1.00     Sil0, 377     -21.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$11.5m            | G                 | -0.96                  | \$104,299         | 184.64            | -1.71             | \$54,149         | -542.57           | II II             | -1.95             | \$100.306        | -181.85           | -1.78             | \$56,170             | -198 50           |
| S11.8m     U     4.07     S103.315     112.71     11.72     S7,855     -546.02     C     -1.168     S14.140     -1.179     S56.013     -202.05       S11.9m     G     -0.07     S103.217     11.74     S57.21     -547.62     C     -1.98     S14.454     -1.87.89     -1.79     S56.003     -202.06       S11.9m     U     -0.07     S102.200     10.877     -1.74     S57.785     -549.61     D     -0.58     S17.4567     -1.88.46     -1.79     S55.060     -202.06       S12.0m     U     -0.09     S102.456     77.82     -1.88     S53.266     S44.14     H     -2.13     S47.014     -190.59     -1.79     S55.848     -200.21       S12.0m     U     -0.08     S102.321     17.88     -1.75     S57.790     -55.61     G     -0.93     S10.744     -1.79     S55.5797     -212.80       S12.0m     U     -0.08     S10.3157     17.188     -1.76     S56.775     -51.67     C     -1.99     S50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$11.0m<br>\$11.7m | U                 | -0.96                  | \$103,809         | 183.68            | -1.03             | \$58 132         | -544.29           | н                 | -1.00             | \$47,176         | -183.97           | -1.78             | \$56,098             | -100.30           |
| Billom     G     -0.97     500,223     108.74     -1.26     520,021     -547,28     C     1.194     511,445     -1.17,20     550,005     -520,38       SL2Mm     U     -0.97     S10,220     180.77     -1.74     557,78     549,01     D     -0.58     S17,345     -1.17     555,906     -20,58       SL2,m     G     -0.99     S10,236     178,82     -1.88     S53,236     -1.53,551     U     -1.00     S99,795     -191,59     -1.79     555,848     -200,21       SL2,m     G     -0.98     S10,323     178,86     -1.75     S57,209     -556,26     R     +1.95     S51,335     -1.79     S55,844     -200,21       SL2,m     U     -0.98     S10,823     178,86     -1.75     S57,209     -556,26     R     +1.95     S51,171     -1.79     S55,712     -211,83       SL2,m     U     -0.99     S10,381     174,89     -1.75     S57,709     -212,844     -1.79     S55,712     -213,846,851 <th< th=""><th>\$11.7m</th><th>U</th><th>-0.90</th><th>\$103,305</th><th>182.71</th><th>-1.72</th><th>\$57,855</th><th>-546.02</th><th>C II</th><th>-1.98</th><th>\$50.491</th><th>-185.95</th><th>-1.70</th><th>\$56,013</th><th>-200.26</th></th<>                                                                                                                                                                                                                                                                                                                     | \$11.7m            | U                 | -0.90                  | \$103,305         | 182.71            | -1.72             | \$57,855         | -546.02           | C II              | -1.98             | \$50.491         | -185.95           | -1.70             | \$56,013             | -200.26           |
| B12.m     C     B22.p     B22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$11.0m            | G                 | -0.97                  | \$103,313         | 181 74            | -1.75             | \$53,721         | -547.88           | R                 | -1.96             | \$51.545         | -187.89           | -1.79             | \$56,013             | -202.00           |
| Biz.mi     D     40.07     202002     1001     1113     202103     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12001     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$12.0m            | U                 | -0.97                  | \$102,820         | 180.77            | -1.00             | \$57 578         | -549.61           | D                 | -1.54             | \$173.867        | -188.46           | -1.79             | \$55,000             | -205.65           |
| B12.ml     D     50.7     510.70     11.20     512.00     11     21.10     510.70     11.70     555.80     20.74       S12.ml     U     -0.98     S102.436     17.85     -1.75     S57.290     -556.26     R     -1.95     S51.395     -1.79     S55.884     -20.921       S12.am     U     -0.98     S101.823     176.86     -1.75     S57.019     -556.26     R     -1.95     S51.375     -1.79     S55.884     -20.921       S12.6m     U     -0.98     S101.87     175.88     -1.89     S52.844     -559.90     O     -5.84     S17.118     -200.31     -1.79     S55.712     -216.39       S12.6m     U     -0.99     S100.81     173.90     -1.77     S56.43     -563.34     H     -2.13     S46.851     -204.44     -1.79     S55.712     -216.89       S12.0m     D     -1.00     S100.721     17.19     -1.30     S52.394     -563.54     R     -1.95     S51.02     -21.80     -1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$12.0m            | D                 | -0.97                  | \$102,820         | 170.80            | 3.02              | \$33,001         | 552.64            | <u></u><br>Н      | -0.58             | \$47.014         | 100.50            | 1.70              | \$55,906             | 207.42            |
| J12.ml     G     50.06     3102-30     11.73     512.30     11.75     512.30     11.75     552.30     207.21       S12.am     U     -0.98     \$101,823     177.85     -1.75     \$57.199     -556.26     R     -1.93     \$51,395     -1.79     \$55,787     -211.61       S12.5m     G     -0.98     \$101,823     176.86     -1.75     \$57.109     -58.61     G     -0.93     \$107,264     -1.94     -1.79     \$55,787     -214.89       S12.5m     G     -0.99     \$100,814     17.30     -1.77     \$56,737     -561.67     C     -1.99     \$51,244     -1.90     \$55,712     -21.81       S12.7m     U     -0.99     \$100,712     17.91     -1.91     \$52,394     -56.53     R     -1.95     \$51,244     -1.80     \$55,517     -221.81       S13.0m     U     -1.00     \$100,375     17.191     -3.09     \$53,134     -56.35     R     -1.96     \$51,244     -21.80     -1.80     \$55,517     -221.81 <th>\$12.1m<br/>\$12.2m</th> <th>G</th> <th>-0.97</th> <th>\$102,795</th> <th>178.82</th> <th>-5.02</th> <th>\$53,091</th> <th>554.51</th> <th>II</th> <th>-2.13</th> <th>\$90,705</th> <th>101 50</th> <th>-1.79</th> <th>\$55,900</th> <th>209.21</th>                                                                                                                                                                                                                                                                                            | \$12.1m<br>\$12.2m | G                 | -0.97                  | \$102,795         | 178.82            | -5.02             | \$53,091         | 554.51            | II                | -2.13             | \$90,705         | 101 50            | -1.79             | \$55,900             | 209.21            |
| S12.4m     U     -0.93     S102,22     177,83     -1.75     S57,019     -528,01     R     -1.75     S57,019     -1.71     S55,707     -1.71     S55,707     -1.75     S57,019     -538,01     G     -0.93     S107,264     -1.94,41     -1.79     S55,712     -212,80       S12.6m     U     -0.99     S100,1587     175,88     -1.89     S52,844     -559,90     O     -5.84     S17,118     -200,31     -1.79     S55,712     -218,39       S12.7m     U     -0.99     S100,814     173,90     -1.77     S56,454     -563,34     H     -2.13     S46,851     -204,44     -1.79     S55,712     -218,18       S12.8m     G     -0.99     S100,721     17.291     -1.91     S52,312     -568,35     R     -1.95     S51,244     -206,39     -1.80     S55,517     -221,78       S13.0m     U     -1.00     S100,375     168,91     -1.79     S55,884     -573,94     D     -0.58     S172,448     -21.00     44,66,87 <th>\$12.2m</th> <th>U</th> <th>-0.98</th> <th>\$102,450</th> <th>177.85</th> <th>-1.38</th> <th>\$57,200</th> <th>556.26</th> <th>P</th> <th>-1.00</th> <th>\$51.305</th> <th>103.54</th> <th>-1.79</th> <th>\$55,804</th> <th>211.01</th>                                                                                                                                                                                                                                                                                                             | \$12.2m            | U                 | -0.98                  | \$102,450         | 177.85            | -1.38             | \$57,200         | 556.26            | P                 | -1.00             | \$51.305         | 103.54            | -1.79             | \$55,804             | 211.01            |
| Sizem     G     -0.03     500,267     10.742     527,27     124,30     11.75     527,27     124,30       Sizem     G     -0.99     Si01,387     175,88     -1.89     Size,344     -559,90     O     -5.84     Si7,118     -200,31     -1.79     Size,721     -216,39       Sizem     G     -0.99     S100,721     172,91     -1.91     Size,394     -565,35     R     -1.95     Size,202     -202,30     -1.79     Sise,722     -218,18       Sizem     G     -0.09     S100,366     170,91     -1.30     Size,394     -565,35     R     -1.95     Size,22     -207,40     -1.80     Size,57,77     -222,18       Sizem     U     -1.00     S100,366     170,91     -1.93     Size,36     -572,12     R     -1.96     Size,244     -210,03     +1.80     Size,55,577     -222,38       Sizem     U     -1.00     S99,782     169,91     -1.93     Size,36     -57,74     C     -2.00     S49,947     -214,08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$12.5m            | U                 | -0.98                  | \$101,823         | 176.86            | -1.75             | \$57,299         | -558.01           | G                 | -0.93             | \$107.264        | -193.54           | -1.79             | \$55,845             | -212.80           |
| S12.0m   C   -0.09   \$101,318   17.338   -1.37   551.39   -561.67   C   -1.99   \$50,220   -2.02.30   -1.79   \$55,712   -216.39     S12.7m   U   -0.99   \$100,814   173.90   -1.77   \$56,645   -563.44   H   -2.13   \$46,851   -204.44   -1.79   \$55,712   -211.81     S12.8m   G   -0.99   \$100,375   171.91   -3.09   \$32,312   -568.44   U   -1.01   \$99,282   -207.40   -1.80   \$55,597   -221.78     S13.0m   U   -1.00   \$100,375   171.91   -3.09   \$32,170   -572.15   R   -1.96   \$51,092   -211.50   -1.80   \$55,517   -221.78     S13.0m   U   -1.01   \$99,282   168.91   -1.79   \$55,884   -573.94   D   -0.58   \$17,248   -212.08   -1.80   \$55,516   -222.88     S13.0m   U   -1.01   \$99,282   167.90   -1.80   \$55,516   -228.98   \$13.50   U   -1.80   \$55,516   -228.98     S13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$12.4m            | G                 | -0.98                  | \$101,823         | 175.88            | -1.75             | \$57,019         | 559.00            | 0                 | -0.93             | \$17,204         | 200.31            | -1.79             | \$55,738             | 214.59            |
| S12.7m   U   -0.99   \$100,113   174.39   -17.16   256,454   -563,44   H   -2.13   546,851   -20.444   -1.79   555,712   -21.18.18     S12.8m   G   -0.99   \$100,721   172.91   -1.91   S52,2394   -563,35   R   -1.95   S51,244   -20.39   -1.80   S55,597   -221.78     S12.9m   D   -1.00   \$100,375   171.91   -3.09   S32,312   -568.44   U   -1.01   S99,282   -07.954   -1.80   S55,517   -221.78     S13.0m   U   -1.00   \$100,306   170.91   -1.78   \$56,170   -570.22   H   -2.14   \$46,687   -0.94   -1.80   \$55,517   -221.58     S13.1m   G   -1.00   \$99,795   168.91   -1.79   \$55,884   -573.94   D   -0.58   \$172,448   -214.08   -1.80   \$55,510   -222.89     S13.4m   G   -1.01   \$99,282   167.90   -1.80   \$55,307   -577.74   C   -2.00   \$49,947   -214.08   -1.80   \$55,301 <th< th=""><th>\$12.5m</th><th>U</th><th>-0.98</th><th>\$101,387</th><th>174.80</th><th>-1.35</th><th>\$56 737</th><th>561.67</th><th>C</th><th>1 00</th><th>\$50,220</th><th>202.30</th><th>-1.79</th><th>\$55,758</th><th>216.39</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                              | \$12.5m            | U                 | -0.98                  | \$101,387         | 174.80            | -1.35             | \$56 737         | 561.67            | C                 | 1 00              | \$50,220         | 202.30            | -1.79             | \$55,758             | 216.39            |
| S12.8m   G   -0.07   \$100,0172   11.77   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.17   \$20,0747   -1.18   \$55,597   -221.18     \$13.0m   U   -1.00   \$100,306   17.091   -1.78   \$56,170   -570.257   R   -1.06   \$51,092   -211.5   -1.80   \$55,517   -222.38     \$13.1m   G   -1.100   \$99,842   169.91   -1.93   \$51,936   -572.15   R   -1.06   \$51,092   -211.5   -1.80   \$55,517   -222.88     \$13.3m   U   -1.01   \$99,842   166.89   -1.94   \$51,470   -577.68   G   -0.08   \$106,489   -215.02   -1.81   \$55,301   -228.98     \$13.6m   U   -1.01   \$98,946   166.89   -1.94   \$51,470   -577.68   G   -0.94   \$106,489   -2150.2   -1.81 <t< th=""><th>\$12.0m</th><th>U</th><th>-0.99</th><th>\$100,518</th><th>173.00</th><th>-1.70</th><th>\$56,157</th><th>563.44</th><th><u>с</u><br/>н</th><th>-1.99</th><th>\$46.851</th><th>204.44</th><th>-1.79</th><th>\$55,712</th><th>218.18</th></t<>                                                                                                                                                                                                                                                                                                                                                              | \$12.0m            | U                 | -0.99                  | \$100,518         | 173.00            | -1.70             | \$56,157         | 563.44            | <u>с</u><br>н     | -1.99             | \$46.851         | 204.44            | -1.79             | \$55,712             | 218.18            |
| S12.9m   D   -1.00   \$100,375   17.191   -3.09   \$32.274   -503.34   U   -1.01   \$90,247   -200.37   -1.180   \$55,577   -221.78     \$13.0m   U   -1.00   \$100,375   17.191   -3.09   \$32.212   -568.44   U   -1.01   \$90,282   -207.54   -1.80   \$55,517   -221.78     \$13.0m   U   -1.00   \$99,842   169.91   -1.79   \$55,884   -573.94   D   -0.58   \$17,248   -211.50   -1.80   \$55,512   -227.18     \$13.3m   U   -1.01   \$99,282   167.90   -1.80   \$55,597   -577.74   C   -2.00   \$49,947   -21.408   -1.80   \$55,409   -228.98     \$13.4m   G   -1.01   \$98,766   166.89   -1.81   \$55,507   -577.68   G   -0.94   \$106,489   -21.50   -1.81   \$55,301   -222.08     \$13.5m   U   -1.01   \$98,766   166.88   -1.81   \$55,308   -577.68   G   -0.94   \$106,489   -21.50   -1.81   \$55,301   -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$12.7m            | G                 | -0.99                  | \$100,314         | 172.01            | -1.//             | \$52.304         | 565.35            | P                 | -2.15             | \$51.244         | 206.39            | -1.79             | \$55.681             | 210.08            |
| S12.0m   D   -1.00   S100,306   17.01   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,17   -3.02,12   -1.1.81   -3.02,12   -1.1.81   -3.02,12   -1.1.81   -3.02,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$12.0m            | D                 | -0.99                  | \$100,721         | 171.91            | -3.09             | \$32,394         | -568.44           | II II             | -1.95             | \$99,282         | -207.40           | -1.80             | \$55,001             | -219.98           |
| 313.0ml   0   11.00   310,100   110.11   11.01   350,110   257.21   11   12.14   340,01   250.24   11.80   355,516   222.538     \$13.2m   U   -1.00   \$99,842   169.91   -1.79   \$55,884   -573.24   D   -0.58   \$172,448   -212.08   -1.80   \$55,512   -227.18     \$13.3m   U   -1.01   \$99,842   167.90   -1.80   \$55,597   -575.74   C   -2.00   \$49,947   -214.08   -1.80   \$55,512   -227.18     \$13.4m   G   -1.01   \$99,842   166.89   -1.94   \$51,470   -577.68   G   -0.94   \$106,489   -1.81   \$55,394   -230.79     \$13.5m   U   -1.01   \$98,766   165.88   -1.81   \$55,308   -579.49   R   -1.96   \$50,941   -21.698   -1.81   \$55,304   -230.79     \$13.7m   G   -1.02   \$98,034   163.84   -1.82   \$55,016   -281.20   U   -1.101   \$98,766   232.21   -1.81   \$55,308   -236.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$12.7m            | U                 | -1.00                  | \$100,375         | 170.01            | -5.09             | \$56,170         | 570.22            | <u></u><br>Н      | -1.01             | \$16.687         | 209.54            | -1.00             | \$55,577             | 223.58            |
| S13.2m   U   -1.00   397,922   107,91   -1.79   S57,93   D   -1.70   301,952   421,130   41.80   S55,110   -422,330     S13.3m   U   -1.00   S99,795   168,91   -1.79   S55,884   -573,94   D   -0.58   S172,448   -1.180   S55,409   -228,98     S13.3m   U   -1.01   S99,795   168,91   -1.79   S55,847   -575,74   C   -2.00   \$49,947   -214.08   -1.80   \$55,394   -222,19     S13.3m   U   -1.01   S98,247   166,88   -1.94   \$51,470   -577,68   G   -0.94   \$106,489   -21.50   -1.81   \$55,308   -232,60     S13.6m   U   -1.02   S98,247   164.86   -1.82   \$55,018   -581.30   H   -2.15   \$46,522   -21.14   -1.81   \$55,308   -232,60     S13.3m   D   -1.02   S98,247   164.84   -1.96   \$50,996   -583.26   U   -1.101   \$98,766   -222.11   -1.81   \$55,180   -238,02     S13.3m<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$13.0m            | G                 | -1.00                  | \$00,842          | 160.01            | 1.03              | \$51,036         | 572.15            | P                 | 1.06              | \$51,007         | 211.50            | -1.00             | \$55,517             | 225.38            |
| S13.3m   U   -1.01   393.91   -1.79   353.94   -575.74   C   -2.1.03   312.443   -212.03   -1.80   \$55.957   -222.18     S13.3m   U   -1.01   \$99.282   167.90   -1.80   \$55.597   -575.74   C   -2.00   \$49.47   -212.08   -1.80   \$55.394   -230.79     S13.5m   U   -1.01   \$99.896   166.89   -1.94   \$51,470   -577.68   G   -0.94   \$106,489   -21.50   -1.81   \$55.391   -232.09     \$13.7m   G   -1.01   \$98.766   163.84   -1.96   \$50.996   -583.26   U   -1.01   \$98.766   -22.11   -1.81   \$55.308   -236.21     \$13.7m   G   -1.02   \$97.896   162.82   -3.17   \$31,513   -586.44   R   -1.97   \$50.788   -22.11   -1.81   \$55,186   -238.02     \$13.9m   U   -1.02   \$97.727   161.80   -1.83   \$54,726   -588.27   H   -2.16   \$46,536   -22.427   -1.81   \$55,186   -238.02 <tr< th=""><th>\$13.1m</th><th>U</th><th>-1.00</th><th>\$00,705</th><th>168.01</th><th>1.70</th><th>\$55,884</th><th>573.04</th><th></th><th>-1.50</th><th>\$172.448</th><th>212.08</th><th>-1.00</th><th>\$55,510</th><th>227.18</th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                              | \$13.1m            | U                 | -1.00                  | \$00,705          | 168.01            | 1.70              | \$55,884         | 573.04            |                   | -1.50             | \$172.448        | 212.08            | -1.00             | \$55,510             | 227.18            |
| 313.5m   0   -1.01   397.422   101.30   -1.80   351.37   0   -2.100   347.47   -2.14.00   41.00   351.470   -2.23.70     S13.5m   U   -1.01   \$98,766   165.88   -1.81   \$55,308   -579.49   R   -1.96   \$50,941   -216.98   -1.81   \$55,331   -232.60     S13.6m   U   -1.02   \$98,247   164.86   -1.82   \$55,018   -581.30   H   -2.15   \$46,522   -219.13   -1.81   \$55,308   -230.61     S13.7m   G   -1.02   \$98,034   163.84   -1.96   \$50,996   -583.26   U   -1.01   \$98,766   -220.14   -1.81   \$55,308   -236.61     S13.8m   D   -1.02   \$97,727   161.80   -1.83   \$54,726   -588.27   H   -2.16   \$46,356   -224.27   -1.81   \$55,102   -241.65     S14.0m   U   -1.03   \$97,203   160.77   -1.84   \$54,432   -590.10   C   -2.01   \$49,670   -226.28   -1.81   \$55,102   -241.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$13.2m            | U                 | -1.00                  | \$00.282          | 167.00            | 1.80              | \$55,507         | 575.74            | C                 | -0.50             | \$10.047         | 214.08            | -1.00             | \$55,012             | 227.10            |
| 313.4m   G   -1.01   390,740   100.35   8   -1.74   311,740   -277.08   G   -1.94   \$100,957   -210.92   -1.81   \$55,351   -232.60     \$13.6m   U   -1.02   \$98,247   164.86   -1.82   \$55,018   -581.30   H   -2.15   \$46,522   -210.98   -1.81   \$55,320   -232.60     \$13.7m   G   -1.02   \$98,034   163.84   -1.96   \$50,996   -583.26   U   -1.01   \$98,766   -220.14   -1.81   \$55,308   -232.60     \$13.8m   D   -1.02   \$97,896   162.82   -3.17   \$31,513   -586.44   R   -1.97   \$50,788   -222.11   -1.81   \$55,108   -238.02     \$14.0m   U   -1.02   \$97,727   161.80   77   -1.84   \$54,726   -588.27   H   -2.16   \$46,556   -224.27   -1.81   \$55,102   -234.65     \$14.0m   U   -1.03   \$97,703   160.77   -1.84   \$54,137   -593.93   R   -1.97   \$50,635   -228.84   -1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$13.5m            | G                 | -1.01                  | \$99,282          | 166.80            | -1.00             | \$51,470         | 577.68            | G                 | -2.00             | \$106.489        | 215.02            | -1.80             | \$55,304             | 230.79            |
| S13.3m   C   11.01   305,001   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00   103.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$13.4m            | U                 | -1.01                  | \$98,740          | 165.88            | -1.94             | \$55,308         | -579.49           | R                 | -0.94             | \$50.941         | -216.98           | -1.81             | \$55,354             | -232.60           |
| S13.0m   G   -1.02   \$90,247   101.00   101.00   501,300   -1.01   \$98,766   -1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01   1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$13.5m            | U                 | -1.02                  | \$98,700          | 164.86            | -1.82             | \$55,018         | -581.30           | H                 | -1.90             | \$46 522         | -210.00           | -1.01             | \$55,320             | -232.00           |
| \$13.1 m   G   1.02   \$97,896   162.82   -3.17   \$31,513   -586.44   R   -1.97   \$50,786   -221.11   -1.81   \$55,186   -238.02     \$13.9 m   U   -1.02   \$97,727   161.80   -1.83   \$54,726   -588.27   H   -2.16   \$46,356   -222.11   -1.81   \$55,186   -238.02     \$14.0 m   U   -1.03   \$97,203   160.77   -1.84   \$54,432   -590.10   C   -2.01   \$46,356   -224.27   -1.81   \$55,123   -238.02     \$14.1 m   G   -1.03   \$97,105   159.74   -1.98   \$50,512   -592.08   D   -0.58   \$171,017   -226.87   -1.82   \$55,052   -243.47     \$14.2 m   U   -1.03   \$96,676   158.70   -1.85   \$54,137   -593.93   R   -1.97   \$50,635   -228.84   -1.82   \$55,052   -243.47     \$14.2 m   U   -1.03   \$96,676   158.70   -2.00   \$50,019   -595.93   U   -1.02   \$98,247   -229.86   -1.82   \$55,018 <th< th=""><th>\$13.0m</th><th>G</th><th>-1.02</th><th>\$98.034</th><th>163.84</th><th>-1.02</th><th>\$50,996</th><th>-583.26</th><th>II<br/>II</th><th>-1.01</th><th>\$98,766</th><th>-220.14</th><th>-1.01</th><th>\$55,308</th><th>-234.40</th></th<>                                                                                                                                                                                                                                                                                                                                                                                    | \$13.0m            | G                 | -1.02                  | \$98.034          | 163.84            | -1.02             | \$50,996         | -583.26           | II<br>II          | -1.01             | \$98,766         | -220.14           | -1.01             | \$55,308             | -234.40           |
| Silon     U     -1.02     S97,277     161.80     -1.83     S54,726     -588.27     H     -2.16     \$46,356     -224.27     -1.81     \$55,102     -239.84       S14.0m     U     -1.03     \$97,203     160.77     -1.84     \$54,726     -588.27     H     -2.16     \$46,356     -224.27     -1.81     \$55,102     -239.84       S14.0m     U     -1.03     \$97,203     160.77     -1.84     \$54,726     -588.27     H     -2.16     \$46,356     -224.27     -1.81     \$55,102     -241.65       S14.1m     G     -1.03     \$97,105     159.74     -1.98     \$50,512     -592.08     D     -0.58     \$171,017     -226.87     -1.82     \$55,052     -243.47       S14.2m     U     -1.03     \$96,676     158.70     -1.85     \$54,137     -593.93     R     -1.97     \$50,635     -228.84     -1.82     \$55,020     -245.29       S14.3m     G     -1.04     \$96,157     157.67     -2.00     \$50,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$13.7m            | D                 | -1.02                  | \$97 896          | 162.82            | -3.17             | \$31 513         | -586.44           | R                 | -1.01             | \$50,788         | -222.14           | -1.81             | \$55,186             | -238.02           |
| S10.5 m     S11.2 (S), (21)     S01.6 (S)     S03.7 (S)     S12.6 (S)     S12.7 (S)                                                                                                                                                                                                                                                                                                                                                                                     | \$13.0m            | U                 | -1.02                  | \$97,727          | 161.80            | -1.83             | \$54 726         | -588 27           | Н                 | -2.16             | \$46 356         | _222.11           | -1.81             | \$55,130             | -239.84           |
| SHAM   G   1.03   507,202   100.17   10.12   507,102   20.016   C   2.01   507,017   2.102   10.01   205,102   21.016   205,102   21.016   205,102   21.016   205,102   21.016   205,102   21.016   205,102   21.017   202,08   D   -0.58   \$171,017   -226,87   -1.82   \$55,052   -243.47     S14.2m   U   -1.03   \$96,676   158.70   -1.85   \$54,137   -593.93   R   -1.97   \$50,635   -228.84   -1.82   \$55,020   -245.29     S14.3m   G   -1.04   \$96,157   157.67   -2.00   \$50,019   -595.93   U   -1.02   \$98,247   -229.86   -1.82   \$55,018   -247.10     S14.4m   U   -1.04   \$96,146   156.62   -1.86   \$53,841   -597.79   G   -0.95   \$105,705   -230.80   -1.82   \$54,985   -248.92     S14.4m   U   -1.05   \$95,613   155.58   -1.87   \$53,542   -599.65   W   -1.42   \$70,477   -232.22 <th< th=""><th>\$13.9m</th><th>U</th><th>-1.02</th><th>\$97,727</th><th>160.77</th><th>-1.85</th><th>\$54 432</th><th>-590.10</th><th>C</th><th>-2.10</th><th>\$49,670</th><th>-226.28</th><th>-1.81</th><th>\$55,102</th><th>-235.04</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                     | \$13.9m            | U                 | -1.02                  | \$97,727          | 160.77            | -1.85             | \$54 432         | -590.10           | C                 | -2.10             | \$49,670         | -226.28           | -1.81             | \$55,102             | -235.04           |
| Sita   D   -1.03   \$97,103   157.74   -1.70   \$50,512   -593.93   D   -1.03   \$96,676   158.70   -1.85   \$54,137   -593.93   R   -1.97   \$50,635   -228.84   -1.82   \$55,018   -247.70     Sit4.3m   G   -1.04   \$96,157   157.67   -2.00   \$50,019   -595.93   U   -1.02   \$98,247   -229.86   -1.82   \$55,018   -247.70     Sit4.4m   U   -1.04   \$96,146   156.62   -1.86   \$53,841   -597.79   G   -0.95   \$105,705   -230.80   -1.82   \$55,018   -247.70     Sit4.4m   U   -1.04   \$96,146   156.62   -1.86   \$53,841   -597.79   G   -0.95   \$105,705   -230.80   -1.82   \$54,985   -248.92     Sit4.4m   U   -1.05   \$95,613   155.58   -1.87   \$53,542   -599.65   W   -1.42   \$70,477   -232.22   -1.82   \$54,928   -250.74     Sit4.6m   D   -1.05   \$95,513   153.48   -2.02   \$49,517   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$14.0m            | G                 | -1.03                  | \$97,205          | 159.74            | -1.04             | \$50,512         | -592.08           | D                 | -2.01             | \$171.017        | -226.20           | -1.82             | \$55,102             | -241.05           |
| S14.2m   O   11.05   590,070   153.70   11.07   597,970   12.07   500,070   12.23.70   12.23.70   12.22   12.23.70   12.22   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.22   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.70   12.23.71   12.23.71   12.23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$14.1m<br>\$14.2m | U                 | 1.03                   | \$96.676          | 159.74            | -1.90             | \$54,137         | 503.03            | P                 | -0.56             | \$50,635         | 228.87            | 1.82              | \$55,032             | 245.20            |
| S110m     S     -1.04     S96,136     151.07     -2.06     305,017     -593.53     C     -1.02     376,247     -22.06     -1.82     S35,016     -2247.10     -1.82     S35,016     -2247.10     -1.82     S35,016     -2247.10     -1.82     S35,016     -2247.10     -1.82     S35,017     -2230.80     -1.82     S35,4928     -2247.10     -217     S16,707     -232.02     -1.82     S54,928     -2250.74       S14.6m     D     -1.05     \$95,613     155.58     -1.87     \$53,542     -599.65     W     -1.42     \$70,477     -232.22     -1.82     \$54,928     -250.74       S14.6m     D     -1.05     \$95,513     154.53     -3.26     \$30,695     -602.91     H     -2.17     \$46,188     -234.39     -1.82     \$54,928     -250.74       S14.6m     U     -1.05     \$95,191     153.48     -2.02     \$49,517     -604.93     R     -1.98     \$50,482     -236.37     -1.82     \$54,853     -256.21       S14.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$14.3m            | G                 | -1.05                  | \$96,157          | 157.67            | _2.00             | \$50.010         | -505.03           | U                 | -1.07             | \$98.247         | -220.04           | -1.02             | \$55,020             | -247.10           |
| Site     D     -1.05     \$95,613     155.58     -1.87     \$53,542     -599,65     W     -1.42     \$70,707     -232,22     -1.82     \$54,928     -2240,72       Site     D     -1.05     \$95,613     155.58     -1.87     \$53,542     -599,65     W     -1.42     \$70,477     -232,22     -1.82     \$54,928     -250,74       Site     D     -1.05     \$95,353     154.53     -3.26     \$30,695     -602.91     H     -2.17     \$46,188     -234.39     -1.82     \$54,928     -252.56       Site     M     G     -1.05     \$95,191     153.48     -2.02     \$49,517     -604.93     R     -1.98     \$50,482     -236.37     -1.82     \$54,923     -252.56       Site     W     -1.05     \$95,078     152.43     -1.88     \$53,242     -606.81     C     -2.02     \$49,390     -238.39     -1.83     \$54,701     -256.21       Site     M     U     -1.06     \$94,593     151.37     -1.89 <t< th=""><th>\$14.5m</th><th>U</th><th>-1.04</th><th>\$96 146</th><th>156.62</th><th>-1.86</th><th>\$53.841</th><th>-597.79</th><th>G</th><th>-0.95</th><th>\$105 705</th><th>-230.80</th><th>-1.82</th><th>\$54 985</th><th>-248.92</th></t<>                                                                                                                                                                                                                                                                                                                 | \$14.5m            | U                 | -1.04                  | \$96 146          | 156.62            | -1.86             | \$53.841         | -597.79           | G                 | -0.95             | \$105 705        | -230.80           | -1.82             | \$54 985             | -248.92           |
| S14.6m     D     -1.05     \$95,015     125.05     -1.07     \$55,072     -557.05     W     -1.72     \$10,777     -222.22     -1.82     \$54,926     -220.74       \$14.6m     D     -1.05     \$95,353     154.53     -3.26     \$30,695     -602.91     H     -2.17     \$46,188     -234.39     -1.82     \$54,923     -252.56       \$14.7m     G     -1.05     \$95,191     153.48     -2.02     \$49,517     -604.93     R     -1.98     \$50,482     -236.37     -1.82     \$54,853     -254.39       \$14.8m     U     -1.05     \$95,078     152.43     -1.88     \$53,242     -606.81     C     -2.02     \$49,390     -238.39     -1.83     \$54,791     -256.21       \$14.9m     U     -1.06     \$94,539     151.37     -1.89     \$52,941     -606.870     U     -1.02     \$97,727     -238.39     -1.83     \$54,726     -256.21       \$14.9m     G     -1.06     \$94,205     150.31     -2.04     \$49,004 <th< th=""><th>\$14.5m</th><th>U</th><th>-1.04</th><th>\$95,140</th><th>155.52</th><th>-1.30</th><th>\$53 547</th><th>-500.65</th><th>w</th><th>-0.75</th><th>\$70.477</th><th>_230.00</th><th>-1.02</th><th>\$54 978</th><th>-240.72</th></th<>                                                                                                                                                                                                                                                                                              | \$14.5m            | U                 | -1.04                  | \$95,140          | 155.52            | -1.30             | \$53 547         | -500.65           | w                 | -0.75             | \$70.477         | _230.00           | -1.02             | \$54 978             | -240.72           |
| S11.0m     D     -1.00     \$99,505     151.05     -51.05     \$50,505     -602.71     11     -2.17     \$50,166     -2.57     -1.82     \$54,525     -2.52.30       \$14.7m     G     -1.05     \$99,191     153.48     -2.02     \$49,517     -604.93     R     -1.98     \$50,482     -236.37     -1.82     \$54,853     -254.39     \$51.82     \$54,853     -254.39     -1.82     \$54,853     -254.39     -1.83     \$54,791     -256.21       \$14.8m     U     -1.06     \$99,5078     152.43     -1.88     \$52,941     -606.81     C     -2.02     \$49,390     -238.39     -1.83     \$54,726     -256.21       \$14.9m     U     -1.06     \$94,539     151.37     -1.89     \$52,941     -608.70     U     -1.02     \$97,727     -239.42     -1.83     \$54,726     -256.21       \$15.0m     G     -1.06     \$94,205     150.31     -2.04     \$49,004     -610.74     H     -2.17     \$46,019     -2.183     \$54,723     -2.95.87<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$14.5m            | D                 | -1.05                  | \$95,015          | 154.53            | _3.26             | \$30.695         | -602.03           | н                 | -1.42             | \$46 188         | _234 30           | -1.02             | \$54 923             | -250.74           |
| S14.8m     U     -1.05     \$95,071     153.45     -2.02     \$47,077     -004.57     R     -1.76     \$50,462     -2.50.7     -1.82     \$54,653     -2.54.35       \$14.8m     U     -1.05     \$95,078     152.43     -1.88     \$53,242     -606.81     C     -2.02     \$49,390     -238.39     -1.83     \$54,791     -256.21       \$14.9m     U     -1.06     \$94,539     151.37     -1.89     \$52,941     -608.70     U     -1.02     \$97,727     -239.42     -1.83     \$54,726     -258.04       \$15.0m     G     -1.06     \$94,205     150.31     -2.04     \$49,004     -610.74     H     -2.17     \$46,019     -1.83     \$54,723     -259.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$14.0m            | G                 | -1.05                  | \$95,555          | 153.48            | -3.20             | \$49 517         | -604.91           | R                 | -1.08             | \$50.482         | -236.37           | -1.82             | \$54.853             | -254.30           |
| Sites     C     -1.05     352,970     -1.05     353,722     -000.01     C     -2.02     372,570     -2.03,57     -1.05     354,71     -2.02.11       \$14.9m     U     -1.06     \$94,539     151.37     -1.89     \$52,941     -608.70     U     -1.02     \$97,727     -239.42     -1.83     \$54,726     -258.04       \$15.0m     G     -1.06     \$94,205     150.31     -2.04     \$49,004     -610.74     H     -2.17     \$46,019     -2.183     \$54,726     -258.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$14.7m            | U U               | -1.05                  | \$95,191          | 152.43            | -2.02             | \$53.242         | -606.81           | C                 | -1.98             | \$49 300         | -230.37           | -1.82             | \$54 701             | -256.21           |
| <b>S15.0m</b> G $-1.05$ $977,07$ $151.01$ $-1.05$ $952,71$ $-00.16$ C $-1.02$ $971,12$ $257.42$ $-1.05$ $954,120$ $256,07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$14.0m            | U                 | -1.05                  | \$94 530          | 151.37            | -1.80             | \$52.941         | -608 70           | U                 | -1.02             | \$97 777         | -230.39           | -1.83             | \$54 726             | -258.04           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$15.0m            | G                 | -1.00                  | \$94 205          | 150.31            | -2.04             | \$49 004         | -610 74           | н                 | -2.17             | \$46.019         | -237.42           | -1.83             | \$54 723             | -259.87           |

|                      |                   | Reallocation with goo |                      |                   |                   |                                    |                   |                   |                   | Reallocation                       | n with poor i     | nformation        |                                    |                   |
|----------------------|-------------------|-----------------------|----------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates             | s with good info     | rmation           | Estimat           | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | es with poor info                  | ormation          |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$     | $E(ICER_m)^c$        | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$15.1m              | U                 | -1.06                 | \$93,996             | 149.24            | -1.90             | \$52,637                           | -612.64           | R                 | -1.99             | \$50,329                           | -243.58           | -1.83             | \$54,686                           | -261.70           |
| \$15.2m              | U                 | -1.07                 | \$93,453             | 148.17            | -1.91             | \$52,332                           | -614.55           | D                 | -0.59             | \$169,573                          | -244.17           | -1.83             | \$54,587                           | -263.53           |
| \$15.3m              | G                 | -1.07                 | \$93,197             | 147.10            | -2.06             | \$48,479                           | -616.61           | G                 | -0.95             | \$104,905                          | -245.12           | -1.83             | \$54,570                           | -265.36           |
| \$15.4m              | U                 | -1.08                 | \$92,904             | 146.03            | -1.92             | \$52,025                           | -618.53           | Н                 | -2.18             | \$45,849                           | -247.30           | -1.83             | \$54,520                           | -267.19           |
| \$15.5m              | D                 | -1.08                 | \$92,738             | 144.95            | -3.35             | \$29,853                           | -621.88           | R                 | -1.99             | \$50,175                           | -249.29           | -1.83             | \$54,519                           | -269.03           |
| \$15.6m              | Ū                 | -1.08                 | \$92,353             | 143.86            | -1.93             | \$51,716                           | -623.82           | C                 | -2.04             | \$49,107                           | -251.33           | -1.84             | \$54,477                           | -270.86           |
| \$15.7m              | G                 | -1.09                 | \$92,166             | 142.78            | -2.09             | \$47,943                           | -625.90           | Ū                 | -1.03             | \$97.203                           | -252.36           | -1.84             | \$54,432                           | -272.70           |
| \$15.8m              | Ū                 | -1.09                 | \$91 798             | 141.69            | -1.95             | \$51.406                           | -627.85           | R                 | -2.00             | \$50,020                           | -254 36           | -1.84             | \$54 351                           | -274 54           |
| \$15.9m              | Ū                 | -1.10                 | \$91,240             | 140.59            | -1.96             | \$51,093                           | -629.81           | Н                 | -2.19             | \$45.678                           | -256.55           | -1.84             | \$54.316                           | -276.38           |
| \$16.0m              | G                 | -1.10                 | \$91,113             | 139.50            | -2.11             | \$47,395                           | -631.92           | R                 | -2.01             | \$49,865                           | -258.55           | -1.85             | \$54,182                           | -278.23           |
| \$16.1m              | Ū                 | -1.10                 | \$90.678             | 138 39            | -1.97             | \$50,779                           | -633.89           | C                 | -2.05             | \$48,820                           | -260.60           | -1.85             | \$54,160                           | -280.07           |
| \$16.2m              | Ŭ                 | -1.11                 | \$90,114             | 137.28            | -1.98             | \$50,462                           | -635.87           | G                 | -0.96             | \$104.096                          | -261.56           | -1.85             | \$54 149                           | -281.92           |
| \$16.3m              | D                 | -1.11                 | \$90.049             | 136.17            | -3.45             | \$28,987                           | -639.32           | U                 | -1.03             | \$96,676                           | -262.60           | -1.85             | \$54 137                           | -283 77           |
| \$16.0m              | G                 | -1.11                 | \$90,035             | 135.06            | -2.14             | \$46,834                           | -641.45           | D                 | -0.59             | \$168,118                          | -263.19           | -1.85             | \$54,118                           | -285.62           |
| \$16.5m              | U                 | -1.12                 | \$89.546             | 133.05            | -1.99             | \$50,144                           | -643.45           | Н                 | -2.20             | \$45,505                           | -265.39           | -1.85             | \$54,111                           | -287.46           |
| \$16.5m              | U                 | -1.12                 | \$88.973             | 132.82            | -2.01             | \$49.824                           | -645.45           | R                 | -2.20             | \$49,505                           | -267.40           | -1.85             | \$54.013                           | -289.32           |
| \$16.7m              | G                 | -1.12                 | \$88,979             | 131.70            | -2.01             | \$46,259                           | -647.62           | H                 | -2.01             | \$45,331                           | -269.61           | -1.86             | \$53,904                           | -207.32           |
| \$16.7m              | U                 | 1.12                  | \$88.307             | 130.57            | 2.10              | \$49,501                           | 649.64            | P                 | 2.02              | \$49,551                           | 271.63            | -1.00             | \$53,904                           | 203.03            |
| \$16.0m              | U                 | -1.13                 | \$87,817             | 120.37            | 2.02              | \$49,501                           | 651.67            | II II             | -2.02             | \$96.146                           | 272.67            | -1.80             | \$53,841                           | 293.03            |
| \$17.0m              | G                 | -1.14                 | \$87,017             | 129.45            | -2.03             | \$45,670                           | -653.86           | C                 | -2.06             | \$48 531                           | -274.73           | -1.86             | \$53,838                           | -294.89           |
| \$17.0m              | 0                 | -1.14                 | \$87,790             | 120.29            | -2.19             | \$28,070                           | 657.42            | G                 | -2.00             | \$103 273                          | 275.69            | -1.80             | \$53,721                           | 298.60            |
| \$17.1m              | U                 | -1.15                 | \$87,273             | 127.14            | -5.50             | \$18,850                           | 659.46            | - U<br>- Н        | -0.97             | \$45,155                           | 277.01            | -1.80             | \$53,606                           | 300.47            |
| \$17.2m              | U                 | -1.15                 | \$86.646             | 120.00            | -2.05             | \$48,530                           | 661 52            | D D               | -2.21             | \$40,207                           | 270.02            | -1.80             | \$53,670                           | 202.22            |
| \$17.5m              | G                 | -1.15                 | \$86,622             | 124.04            | -2.00             | \$46,521                           | -001.33           | R<br>D            | -2.02             | \$166.640                          | -2/9.93           | -1.80             | \$53,074                           | -302.33           |
| \$17.4III<br>\$17.5m | U                 | -1.15                 | \$86,055             | 123.09            | -2.22             | \$45,005                           | 665.82            | U                 | -0.00             | \$95,613                           | 281.58            | -1.80             | \$53,040                           | 306.06            |
| \$17.5m              | U                 | -1.10                 | \$80,055             | 122.33            | -2.08             | \$40,190                           | -003.82           | C                 | -1.03             | \$95,015                           | -201.30           | -1.87             | \$53,542                           | -300.00           |
| \$17.0m              | G                 | -1.17                 | \$85,400             | 121.30            | -2.09             | \$47,830                           | 670.16            | D                 | -2.07             | \$40,237                           | -283.03           | -1.87             | \$53,513                           | -307.93           |
| \$17.7m              | U                 | -1.17                 | \$03,430             | 120.19            | -2.23             | \$44,443                           | 672.26            |                   | -2.03             | \$49,239                           | -283.08           | -1.87             | \$53,505                           | -309.80           |
| \$17.0m              | D                 | -1.18                 | \$94,039             | 117.01            | -2.10             | \$47,320                           | 675.04            | D D               | -2.22             | \$44,979                           | -287.91           | -1.87             | \$53,465                           | 212.54            |
| \$17.7m              | U D               | -1.18                 | \$84,255             | 116.64            | -3.08             | \$27,173                           | 678.06            | G                 | -2.04             | \$102.436                          | 200.02            | -1.88             | \$53,352                           | 315.34            |
| \$10.0m              | G                 | -1.19                 | \$84,209             | 115.45            | 2.12              | \$43,803                           | 680.35            | - U<br>- Н        | -0.98             | \$44,800                           | 293.15            | -1.88             | \$53,280                           | 317.30            |
| \$18.1m              | U                 | -1.19                 | \$83.647             | 114.25            | -2.28             | \$45,805                           | 682.48            | II                | -2.23             | \$95.078                           | 293.13            | -1.88             | \$53,275                           | 310.18            |
| \$10.2m              | U                 | -1.20                 | \$83,047             | 112.05            | -2.15             | \$46,041                           | 684.63            | C                 | -1.05             | \$47.040                           | 206.20            | -1.88             | \$53,242                           | 221.06            |
| \$18.5m              | G                 | -1.20                 | \$83,034             | 111.03            | -2.13             | \$42,145                           | 686.05            | D                 | -2.09             | \$165,169                          | 296.00            | -1.88             | \$53,164                           | 322.04            |
| \$10.4m              | U                 | -1.21                 | \$92,941             | 110.62            | -2.32             | \$46,152                           | 680.12            | D                 | -0.01             | \$105,108                          | 290.90            | -1.88             | \$53,109                           | 224.82            |
| \$18.5m              | U                 | -1.21                 | \$81 705             | 100.03            | 2.17              | \$45,804                           | 691.30            | W                 | -2.04             | \$68 162                           | 300.41            | -1.88             | \$53,100                           | 326.70            |
| \$18.0m              | G                 | -1.22                 | \$81,795             | 109.41            | -2.18             | \$42,465                           | 693.65            | и<br>Н            | -1.47             | \$44.621                           | 302.65            | -1.88             | \$53,060                           | 328.50            |
| \$18.8m              | 0                 | -1.22                 | \$81,055             | 106.05            | -2.55             | \$26,210                           | 697.47            | P                 | -2.24             | \$48,765                           | 304.70            | -1.88             | \$52,000                           | 330.47            |
| \$18.0m              | U                 | -1.23                 | \$81.168             | 105.72            | -2.20             | \$45,453                           | -699.67           | II II             | -2.05             | \$94.539                           | -305.76           | -1.89             | \$52,988                           | -332.36           |
| \$10.7m              | U                 | 1.23                  | \$91,100             | 104.49            | 2.20              | \$45,000                           | 701.80            | C                 | -1.00             | \$47,640                           | 207.85            | -1.09             | \$52,941                           | 224.25            |
| \$19.0m<br>\$10.1m   | G                 | -1.24                 | \$80,330             | 104.40            | 2.22              | \$45,099                           | 704.28            | н                 | -2.10             | \$47,040                           | 310.10            | -1.89             | \$52,850                           | 336.15            |
| \$19.1m<br>\$10.2m   | U                 | -1.25                 | \$70,000             | 103.23            | -2.39             | \$44,742                           | 706.52            | G                 | -2.23             | \$101 587                          | 211.00            | -1.89             | \$52,844                           | 228.04            |
| \$19.2m              | U                 | -1.23                 | \$79,900             | 101.98            | -2.24             | \$44,742                           | 708.32            | D                 | -0.98             | \$101,587                          | 212.15            | -1.89             | \$52,844                           | -338.04           |
| \$17.5m<br>\$10.4m   | G                 | -1.20                 | \$17,230             | 00.72             | -2.23             | \$41.024                           | 711.21            |                   | -2.00             | \$162.674                          | 312 76            | -1.69             | \$52,013                           | 3/1 02            |
| \$17.4III<br>\$10.5m | U                 | -1.27                 | \$78,600             | 99.43             | -2.44             | \$41,030                           | 712.48            | D                 | -0.01             | \$103,074                          | 215.20            | -1.90             | \$52,000                           | -341.03           |
| \$17.5III<br>\$10.6m | D                 | -1.2/                 | \$78.370             | 96.10             | -2.27             | \$25,229                           | 717.44            | к<br>П            | -2.00             | \$03.006                           | 316.80            | -1.90             | \$52,041                           | 3/5 62            |
| \$19.0m              |                   | -1.20                 | \$70,570             | 05.62             | -3.90             | \$43,220                           | 710.72            | о<br>и            | -1.00             | \$75,790                           | 210.15            | -1.90             | \$52,057                           | 247.52            |
| \$19./11             | C                 | -1.28                 | \$11,739<br>\$77,420 | 93.02             | -2.29             | \$45,057                           | -/19./3           | П                 | -2.20             | \$44,238<br>\$47,235               | 221.26            | -1.90             | \$52,028                           | -34/.33           |
| \$19.000             | U                 | -1.29                 | \$77.201             | 94.33             | -2.48             | \$40,282                           | -122.21           | с<br>Р            | -2.11             | \$41,333                           | -321.20           | -1.90             | \$52,512                           | -349.43           |
| \$19.911             | W/                | -1.29                 | \$77.641             | 93.04             | -2.31             | \$45,280                           | 726.20            | к<br>Ц            | -2.07             | \$40,28/                           | -323.33           | -1.91             | \$52,408                           | 352 25            |
| \$20.0m<br>\$20.1m   | W<br>I            | -1.50                 | \$76,627             | 91./3             | -1.0/             | \$12 017                           | -120.20           | G                 | -2.27             | \$100 721                          | -323.00           | -1.91             | \$52,409                           | 355 16            |
| 340.1III             | 0                 | -1.50                 | \$70,057             | 20.43             | -2.33             | \$+∠,71/                           | -120.33           | U U               | -0.79             | \$100,721                          | -520.59           | -1.71             | \$J2,394                           | -333.10           |

|                      |                   |                   | Reallocation                       | with good         | information       |                                    |                   |                   |                   | Reallocation                       | n with poor i     | nformation        |                                    |                   |
|----------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info                   | rmation           | Estimate          | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | es with poor info                  | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$20.2m              | U                 | -1.32             | \$75,968                           | 89.11             | -2.35             | \$42,541                           | -730.88           | U                 | -1.07             | \$93,453                           | -327.66           | -1.91             | \$52,332                           | -357.07           |
| \$20.3m              | G                 | -1.32             | \$75,935                           | 87.79             | -2.53             | \$39,500                           | -733.41           | R                 | -2.08             | \$48,125                           | -329.74           | -1.91             | \$52,293                           | -358.98           |
| \$20.4m              | U                 | -1.33             | \$75,292                           | 86.47             | -2.37             | \$42,162                           | -735.78           | D                 | -0.62             | \$162,164                          | -330.36           | -1.92             | \$52,202                           | -360.90           |
| \$20.5m              | D                 | -1.33             | \$75,168                           | 85.14             | -4.13             | \$24,197                           | -739.92           | Н                 | -2.28             | \$43,888                           | -332.63           | -1.92             | \$52,188                           | -362.81           |
| \$20.6m              | W                 | -1.34             | \$74.698                           | 83.80             | -1.72             | \$58,218                           | -741.63           | C                 | -2.13             | \$47.027                           | -334.76           | -1.92             | \$52,170                           | -364.73           |
| \$20.7m              | U                 | -1.34             | \$74,611                           | 82.46             | -2.39             | \$41,782                           | -744.03           | R                 | -2.08             | \$47.964                           | -336.85           | -1.92             | \$52,118                           | -366.65           |
| \$20.8m              | G                 | -1.34             | \$74,368                           | 81.11             | -2.58             | \$38,685                           | -746.61           | U                 | -1.08             | \$92,904                           | -337.92           | -1.92             | \$52.025                           | -368.57           |
| \$20.9m              | Ū                 | -1.35             | \$73.923                           | 79.76             | -2.42             | \$41,396                           | -749.03           | Н                 | -2.29             | \$43,701                           | -340.21           | -1.92             | \$51,966                           | -370.49           |
| \$21.0m              | Ū                 | -1.37             | \$73,229                           | 78.39             | -2.44             | \$41,007                           | -751.47           | R                 | -2.09             | \$47.803                           | -342.30           | -1.93             | \$51,942                           | -372.42           |
| \$21.1m              | G                 | -1.37             | \$72,732                           | 77.02             | -2.64             | \$37,834                           | -754.11           | G                 | -1.00             | \$99.842                           | -343.30           | -1.93             | \$51,936                           | -374.34           |
| \$21.7m              | W                 | -1.38             | \$72,649                           | 75.64             | -1 77             | \$56.621                           | -755.88           | C                 | -2.14             | \$46 715                           | -345 44           | -1.93             | \$51.824                           | -376.27           |
| \$21.2m              | U                 | -1.38             | \$72,528                           | 74.26             | -2.46             | \$40,616                           | -758.34           | R                 | -2.10             | \$47,639                           | -347 54           | -1.93             | \$51,765                           | -378.21           |
| \$21.0 m             | D                 | -1 39             | \$71,822                           | 72.87             | -4 33             | \$23,120                           | -762.66           | Н                 | -2.30             | \$43 512                           | -349.84           | -1.93             | \$51,765                           | -380.14           |
| \$21.5m              | U                 | -1 39             | \$71,821                           | 71.48             | -2.49             | \$40,219                           | -765.15           | U                 | -1.08             | \$92 353                           | -350.92           | -1.93             | \$51,716                           | -382.07           |
| \$21.5m              | U                 | -1.41             | \$71,021                           | 70.07             | -2.51             | \$39,818                           | -767.66           | D                 | -0.62             | \$160,640                          | -351.55           | -1.93             | \$51,712                           | -384.01           |
| \$21.0m              | G                 | -1.41             | \$71,100                           | 68.66             | -2.51             | \$36.943                           | -770.37           | B                 | -0.02             | \$47.479                           | -353.65           | -1.95             | \$51,712                           | -385.94           |
| \$21.7m              | W                 | 1.42              | \$70.477                           | 67.25             | 1.82              | \$54,028                           | 772.10            | н                 | 2.11              | \$13 322                           | 355.05            | 1.04              | \$51,500                           | 387.80            |
| \$21.0m              | <br>              | 1.42              | \$70,384                           | 65.83             | 2.54              | \$39,114                           | 774.72            | C II              | 2.51              | \$46.308                           | 358.12            | 1.04              | \$51,515                           | 380.83            |
| \$21.7m              | U                 | -1.42             | \$69.654                           | 64.30             | -2.54             | \$39,414                           | 777.20            | G                 | -2.10             | \$98.046                           | 350.12            | -1.94             | \$51,470                           | 301 77            |
| \$22.0m              | G                 | -1.44             | \$69,054                           | 62.94             | -2.30             | \$36,000                           | -780.07           | R                 | -1.01             | \$47 313                           | -361.24           | -1.94             | \$51,411                           | -393.72           |
| \$22.1111<br>\$22.2m | U                 | -1.44             | \$68.018                           | 61.49             | -2.78             | \$38,507                           | 782.66            | II II             | -2.11             | \$01 708                           | 362.33            | -1.95             | \$51,406                           | 395.66            |
| \$22.2m              | D                 | -1.45             | \$68 312                           | 60.03             | -2.59             | \$21,000                           | 787.20            | - U<br>- Н        | -1.09             | \$13,120                           | 364.65            | -1.95             | \$51,400                           | 397.61            |
| \$22.5m              | U D               | -1.40             | \$68,312                           | 58.56             | -4.55             | \$21,990                           | -787.20           | D D               | -2.32             | \$43,129                           | -304.03           | -1.95             | \$51,280                           | 200.56            |
| \$22.4III<br>\$22.5m | w                 | -1.47             | \$68,172                           | 57.10             | -2.02             | \$50,177                           | -709.02           |                   | -2.12             | \$150,106                          | -300.77           | -1.95             | \$51,252                           | 401.52            |
| \$22.3111<br>\$22.6m | VV<br>II          | -1.47             | \$67.419                           | 55.61             | -1.66             | \$33,124                           | 704.36            | W                 | -0.03             | \$65,678                           | 368.02            | -1.95             | \$51,217                           | 401.32            |
| \$22.0III<br>\$22.7m | G                 | -1.46             | \$67,220                           | 54.12             | -2.03             | \$37,733                           | 707.21            | C C               | -1.32             | \$46,077                           | -308.92           | -1.95             | \$51,100                           | 405.47            |
| \$22.7m              | U                 | -1.49             | \$66,657                           | 52.62             | -2.80             | \$33,019                           | 700.80            | U                 | -2.17             | \$40,077                           | 272.10            | -1.90             | \$51,002                           | 407.38            |
| \$22.0m              | U                 | -1.50             | \$65,887                           | 51.11             | -2.08             | \$37,327                           | -/99.89           | U<br>11           | -1.10             | \$91,240                           | -372.19           | -1.90             | \$51,095                           | 400.34            |
| \$22.9111<br>\$22.0m | w                 | -1.52             | \$65,679                           | 40.50             | -2.71             | \$50,895                           | -802.00           | D D               | -2.33             | \$42,933                           | -374.32           | -1.90             | \$51,050                           | 411.20            |
| \$23.0m              | G                 | -1.52             | \$65,308                           | 49.39             | -1.93             | \$33,072                           | 807.50            | G                 | -2.13             | \$98.034                           | 377.66            | -1.90             | \$50,004                           | 413.26            |
| \$23.1111<br>\$23.2m | U                 | -1.53             | \$65,106                           | 46.52             | -2.94             | \$35,972                           | 810.24            | P                 | -1.02             | \$46,821                           | 379.80            | -1.90             | \$50,990                           | 415.20            |
| \$23.2m              | D                 | -1.54             | \$64,611                           | 40.52             | -2.74             | \$20,700                           | 815.05            | н                 | -2.14             | \$42,741                           | 382.14            | -1.97             | \$50,873                           | 417.10            |
| \$23.5m              | U                 | -1.55             | \$64,217                           | 42.42             | -4.81             | \$26,799                           | 917.92            | II                | -2.34             | \$00.678                           | -382.14           | -1.97             | \$50,823                           | 410.16            |
| \$23.4m              | U                 | -1.55             | \$62.519                           | 41.84             | -2.78             | \$25,560                           | 820.64            | C                 | -1.10             | \$15,078                           | 285.42            | -1.97             | \$50,775                           | 421.12            |
| \$23.5m              | G                 | -1.57             | \$63,518                           | 40.26             | -2.01             | \$33,309                           | 822.69            |                   | -2.19             | \$157.552                          | -385.45           | -1.97             | \$50,755                           | 422.11            |
| \$23.0m              | W                 | -1.58             | \$62,990                           | 38.67             | -3.04             | \$10,003                           | 825.72            | P                 | -0.03             | \$46.655                           | 388.21            | -1.97             | \$50,717                           | 425.08            |
| \$23.7m              | II.               | -1.59             | \$62,700                           | 37.08             | -2.04             | \$35,116                           | 828.56            | к<br>Н            | -2.14             | \$42.542                           | 300.56            | -1.97             | \$50,595                           | 427.05            |
| \$23.0m              | U                 | -1.59             | \$61,889                           | 35.46             | -2.85             | \$34,657                           | 831.45            | P                 | -2.35             | \$46.488                           | 302.71            | -1.98             | \$50,588                           | 429.03            |
| \$23.7m              | U                 | -1.62             | \$61,059                           | 33.82             | -2.89             | \$34,057                           | -834 37           | G                 | -1.03             | \$97.105                           | -393.74           | -1.98             | \$50,513                           | -429.03           |
| \$24.0m              | G                 | -1.04             | \$60,861                           | 32.18             | 3.16              | \$31,650                           | 837.53            | U                 | -1.05             | \$90.114                           | 30/ 85            | 1.90              | \$50,512                           | 433.00            |
| \$24.1m              | 0                 | -1.04             | \$60,681                           | 30.53             | -5.10             | \$10.534                           | 842.65            | C                 | 2 20              | \$45,421                           | 307.05            | -1.98             | \$50,402                           | 434.08            |
| \$24.2111<br>\$24.3m | U                 | -1.05             | \$60,004                           | 28.87             | -5.12             | \$12,554                           | 845.62            | с<br>и            | -2.20             | \$42,421                           | 200.41            | -1.98             | \$50,388                           | 426.07            |
| \$24.5m              | w                 | -1.00             | \$60,040                           | 20.07             | -2.97             | \$16,801                           | -843.02<br>847.75 | D D               | -2.30             | \$46 222                           | 401.57            | -1.99             | \$50,331                           | 428.05            |
| \$24.4m              | W II              | -1.07             | \$50,049                           | 27.21             | 2.14              | \$22,242                           | 850.76            |                   | -2.10             | \$155.084                          | 402.21            | -1.99             | \$50,332                           | 440.04            |
| \$24.5m              | U                 | -1.08             | \$59,502                           | 23.32             | 3.05              | \$32,756                           | 853.82            | P                 | -0.04             | \$46,153                           | 404.38            | -1.99             | \$50,215                           | 440.94            |
| \$24.0m              | G                 | -1.71             | \$58,495                           | 23.81             | -3.05             | \$20,262                           | -055.02<br>957.11 | II II             | -2.17             | \$90,133                           | 405.40            | -1.99             | \$50,130                           | 444.02            |
| \$24./III<br>\$24.8m | U                 | -1./1             | \$57,509                           | 22.10             | -3.29             | \$30,303                           | 860.21            | U<br>Н            | -1.12             | \$42 142                           | 407.87            | -1.99             | \$50,144                           | 444.75            |
| \$24.011             | W                 | -1./4             | \$57,013                           | 19.60             | -5.10             | \$32,204                           | -000.21           | C II              | -2.37             | \$06 157                           | 402.01            | -2.00             | \$50,112                           | 440.75            |
| \$24.7m              | VV<br>I           | -1./0             | \$56 701                           | 16.00             | -2.20             | \$21 762                           | -002.47           | C                 | -1.04             | \$70,137                           | 411 12            | -2.00             | \$50,019                           | 450.02            |
| \$25.011             | D                 | -1.70             | \$56.482                           | 15.07             | -5.15             | \$19 197                           | -805.02           | P                 | -2.22             | \$45,080                           | _412.20           | -2.00             | \$20,017                           | _452.02           |
| \$25.1m<br>\$25.2m   | U<br>U            | -1.77             | \$55.816                           | 13.07             | -3.30             | \$31 256                           | -874 32           | Н                 | -2.17             | \$41 939                           | -415.50           | -2.00             | \$40 871                           | -454 93           |
| Q#0.4111             |                   | -1.7              | φυυ,010                            | 10.40             | -5.20             | Ψ.2.1,2.20                         | 0,7.04            | 1 11              | -2.50             | ψ Γ1,757                           | 112.00            | -2.01             | ψτ2,0/1                            | 127.75            |

|                      |                   |                   | Reallocation         | with good         | information       |                                    |                   |                   |                   | Reallocation                       | n with poor i     | nformation        |                                    | -                 |
|----------------------|-------------------|-------------------|----------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info     | rmation           | Estimate          | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | es with poor info                  | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$        | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$25.3m              | R                 | -1.79             | \$55,733             | 11.48             | -1.65             | \$60,559                           | -875.97           | U                 | -1.12             | \$88,973                           | -416.81           | -2.01             | \$49,824                           | -456.94           |
| \$25.4m              | G                 | -1.80             | \$55,644             | 9.69              | -3.45             | \$28,945                           | -879.42           | R                 | -2.18             | \$45,817                           | -418.99           | -2.01             | \$49,783                           | -458.95           |
| \$25.5m              | R                 | -1.80             | \$55,594             | 7.89              | -1.66             | \$60,408                           | -881.08           | 0                 | -6.54             | \$15,279                           | -425.54           | -2.01             | \$49,751                           | -460.96           |
| \$25.6m              | R                 | -1.80             | \$55,455             | 6.08              | -1.66             | \$60.256                           | -882.74           | D                 | -0.65             | \$154,400                          | -426.18           | -2.01             | \$49,703                           | -462.97           |
| \$25.7m              | R                 | -1.81             | \$55,315             | 4.28              | -1.66             | \$60,104                           | -884.40           | C                 | -2.23             | \$44,745                           | -428.42           | -2.01             | \$49.639                           | -464.99           |
| \$25.8m              | R                 | -1.81             | \$55,174             | 2.46              | -1.67             | \$59,952                           | -886.07           | H                 | -2.40             | \$41,733                           | -430.81           | -2.02             | \$49.625                           | -467.00           |
| \$25.9m              | R                 | -1.82             | \$55.034             | 0.65              | -1.67             | \$59,799                           | -887.74           | R                 | -2.19             | \$45.648                           | -433.00           | -2.02             | \$49,601                           | -469.02           |
| \$26.0m              | R                 | -1.82             | \$54 893             | -1.17             | -1.68             | \$59.646                           | -889.42           | G                 | -1.05             | \$95,191                           | -434.06           | -2.02             | \$49 517                           | -471.04           |
| \$26.1m              | U                 | -1.82             | \$54 891             | -3.00             | -3 25             | \$30,738                           | -892.67           | U                 | -1.13             | \$88 397                           | -435 19           | -2.02             | \$49 501                           | -473.06           |
| \$26.2m              | R                 | -1.83             | \$54 752             | -4.82             | -1.68             | \$59.492                           | -894 35           | R                 | -2.20             | \$45,477                           | -437 39           | -2.02             | \$49.414                           | -475.08           |
| \$26.3m              | C                 | -1.83             | \$54 707             | -6.65             | -1.65             | \$60,690                           | -896.00           | Н                 | -2.41             | \$41 527                           | -439 79           | -2.03             | \$49 380                           | -477 11           |
| \$26.5m              | R                 | -1.83             | \$54.610             | -8.48             | -1.69             | \$59,339                           | -897.68           | C                 | -2.25             | \$44 400                           | -442.05           | -2.03             | \$49,256                           | -479 14           |
| \$26.5m              | C                 | -1.84             | \$54 477             | -10.32            | -1.65             | \$60,434                           | -899 34           | R                 | -2.23             | \$45 308                           | -444 25           | -2.03             | \$49,230                           | -481 17           |
| \$26.5m              | R                 | -1.84             | \$54 468             | -12.15            | -1.69             | \$59 184                           | -901.03           | D                 | -0.65             | \$152,800                          | -444 91           | -2.03             | \$49 188                           | -483.20           |
| \$26.0m              | R                 | -1.84             | \$54 325             | _13.00            | -1.69             | \$59,029                           | -902.72           | U                 | -1.14             | \$87.817                           | -446.05           | -2.03             | \$49,177                           | -485.23           |
| \$26.7m              | C                 | -1.84             | \$54 244             | -15.84            | -1.66             | \$60,177                           | -904 38           | Н                 | -1.14             | \$41 319                           | -448.47           | -2.05             | \$49,177                           | -487.23           |
| \$26.0m              | P                 | 1.85              | \$54 183             | 17.68             | 1.70              | \$58.874                           | 906.08            | W                 | 1 50              | \$62,000                           | 450.05            | 2.04              | \$40,003                           | 480.31            |
| \$20.9m              | P                 | -1.05             | \$54,105             | 10.53             | 1.70              | \$58,710                           | 907.79            | P                 | 2 22              | \$45,135                           | 452.27            | 2.04              | \$49,075                           | 401.34            |
| \$27.0m              | C K               | -1.05             | \$54,039             | 21.30             | -1.70             | \$50,719                           | 909.46            | G                 | -2.22             | \$94.205                           | 453.33            | -2.04             | \$49,040                           | 403.30            |
| \$27.1m              | U                 | -1.05             | \$53.052             | 23.24             | -1.07             | \$30,213                           | 012 76            | U<br>Н            | -1.00             | \$41.105                           | 455.76            | -2.04             | \$48.881                           | 495.39            |
| \$27.2m              | P                 | -1.85             | \$53,952             | 25.00             | -5.51             | \$50,213                           | 912.70            | n<br>C            | -2.43             | \$44.049                           | 458.03            | -2.05             | \$48,861                           | 497.43            |
| \$27.5m              | C K               | -1.80             | \$53,774             | 26.05             | -1./1             | \$50,505                           | 016.15            | P                 | -2.27             | \$11.067                           | 460.26            | -2.05             | \$48,800                           | 400.52            |
| \$27.4m              | P                 | -1.00             | \$53,774             | -20.95            | -1.08             | \$59,054                           | 017.86            | II.               | -2.22             | \$97,207                           | 461.40            | -2.05             | \$48,857                           | 501.57            |
| \$27.5m              | P                 | -1.80             | \$53,752             | 20.69             | -1.71             | \$58,400                           | -917.80           | D                 | -1.13             | \$67,233                           | -401.40           | -2.05             | \$48,650                           | 502.62            |
| \$27.0m              | C K               | -1.87             | \$53,508             | 32.55             | -1.72             | \$58,230                           | 021.26            | D                 | -2.23             | \$151 183                          | 464.30            | -2.05             | \$48,609                           | 505.68            |
| \$27.7m              | P                 | -1.87             | \$53,555             | -32.33            | -1.08             | \$59,390                           | -921.20           | <br>Ц             | -0.00             | \$151,185                          | 466.74            | -2.05             | \$48,007                           | -505.08           |
| \$27.0m              | P                 | -1.87             | \$53,403             | 26.20             | -1.72             | \$58,093                           | -922.98           | II                | -2.43             | \$40,893                           | 467.00            | -2.00             | \$48,020                           | 500.80            |
| \$27.9111<br>\$28.0m | C                 | -1.00             | \$53,518             | -30.29            | -1./3             | \$57,933                           | -924.71           | D                 | -1.13             | \$44,610                           | 470.14            | -2.00             | \$48,521                           | -309.80           |
| \$28.0m              | P                 | -1.00             | \$53,294             | -36.17            | -1.09             | \$59,123                           | -920.40           | K<br>G            | -2.24             | \$944,019                          | 471.21            | -2.00             | \$48,480                           | 512.02            |
| \$20.1111<br>\$28.2m | W                 | -1.00             | \$53,175             | 41.03             | -1.73             | \$37,777                           | 930.55            | G                 | -1.07             | \$43.602                           | 473.50            | -2.00             | \$48,479                           | 515.92            |
| \$28.2m              | с<br>С            | -1.00             | \$53,050             | 43.82             | -2.42             | \$58 854                           | 032.25            | с<br>н            | -2.29             | \$40,677                           | 475.96            | -2.00             | \$48,470                           | 518.05            |
| \$28.5m              | P                 | -1.88             | \$53,022             | 45.70             | -1.70             | \$58,854                           | 033.08            | P                 | -2.40             | \$44,442                           | 478.21            | -2.07             | \$48,370                           | 520.13            |
| \$28.4m              | II                | -1.09             | \$53,027             | 47.50             | -1.74             | \$20,678                           | 027.25            | II.               | -2.23             | \$96.055                           | 470.27            | -2.07             | \$48,100                           | 522.13            |
| \$28.5m              | P                 | -1.09             | \$52,997             | 40.49             | -3.37             | \$29,078                           | 020.00            | D                 | -1.10             | \$140,549                          | 480.04            | -2.08             | \$48,170                           | 524.28            |
| \$28.0m              | C                 | -1.09             | \$52,880             | 51.29             | -1.74             | \$59,593                           | -939.09           | <br>Ц             | -0.07             | \$149,540                          | 482.51            | -2.08             | \$48,141                           | 526.26            |
| \$20.7m              | P                 | -1.09             | \$52,807             | 53.27             | -1.71             | \$57,300                           | 942.54            | P                 | -2.47             | \$44,269                           | 484.77            | -2.08             | \$48,102                           | 528.44            |
| \$28.0m              | G                 | -1.90             | \$52,754             | 55.17             | -1.75             | \$37,300                           | 946.20            | K<br>C            | -2.20             | \$13 320                           | 487.08            | -2.08             | \$48,102                           | 530.52            |
| \$20.7m              | P                 | -1.90             | \$52,022             | 57.07             | -5.05             | \$27,373                           | 947.95            | G                 | 1.00              | \$92.166                           | 488.16            | -2.08             | \$47,003                           | 532.60            |
| \$29.0m              | C                 | -1.90             | \$52,580             | -58.98            | -1.73             | \$58 308                           | -949.66           | R                 | -1.09             | \$44,094                           | -490.43           | -2.09             | \$47,943                           | -534.69           |
| \$29.1m              | P                 | 1.90              | \$52,339             | 60.88             | 1.72              | \$56,980                           | 951.42            | II II             | -2.27             | \$85,460                           | 491.60            | 2.09              | \$47,911                           | 536.78            |
| \$29.2m              | C                 | -1.91             | \$52,439             | 62.80             | -1.70             | \$58,030                           | 053.14            | U<br>Н            | -1.17             | \$40,238                           | 491.00            | 2.09              | \$47,830                           | 538.87            |
| \$29.5m              | P                 | -1.91             | \$52,510             | 64.71             | -1.72             | \$56,810                           | 954.90            | P                 | 2.49              | \$43.017                           | 496.36            | -2.09             | \$47,049                           | 540.96            |
| \$20.5m              | D                 | -1.91             | \$52,291             | -04./1            | -1.70             | \$56,659                           | -954.90           | K<br>C            | -2.28             | \$42,060                           | 408.60            | -2.10             | \$47,650                           | 542.06            |
| \$29.5m              | C                 | -1.92             | \$52,145             | -00.03            | -1.70             | \$50,058                           | -950.07           | D                 | -2.55             | \$147.806                          | 400.37            | -2.10             | \$47,600                           | 545.00            |
| \$29.0m<br>\$20.7m   | U                 | -1.92             | \$52,037             | -08.33            | -1./3             | \$20,133                           | -958.40           | р<br>Н            | -0.08             | \$40.016                           | 501.87            | -2.10             | \$47,009                           | 547.26            |
| \$47./III<br>\$20.9m | P                 | -1.92             | \$51.004             | 72.30             | -5.45             | \$56,406                           | -201.03           | D D               | -2.30             | \$13 7/2                           | 504.15            | -2.10             | \$47.500                           | 5/0 37            |
| \$27.0111<br>\$20.0m | D                 | -1.92             | \$51.042             | 74.37             | -1.//             | \$16 720                           | 060.59            | к<br>П            | -2.29             | \$84,850                           | 505.32            | -2.10             | \$47.529                           | 551 /7            |
| \$27.711             | P                 | -1.95             | \$51,742             | 76.25             | -3.90             | \$10,720                           | 071 26            | G                 | -1.10             | \$04,039                           | 506.42            | -2.10             | \$47,520                           | 552 50            |
| \$30.0III<br>\$20.1m | n<br>C            | -1.93             | \$51,043<br>\$51,002 | -70.23            | -1./8             | \$50,554                           | -7/1.30           | D                 | -1.10             | \$71,113                           | -500.45           | -2.11             | \$47,373<br>\$17,225               | -555.50           |
| \$30.1111<br>\$20.2m | P                 | -1.93             | \$51,605             | -/0.10            | -1./4             | \$56,172                           | 07/ 89            | л<br>Ц            | -2.50             | \$30,203                           | -500.72           | -2.11             | \$47,333<br>\$47,315               | 557.81            |
| \$30.2111<br>\$30.3m | к<br>С            | -1.93             | \$51,093             | 82.05             | -1./6             | \$50,172                           | 076.62            | <br>              | -2.31             | \$37,190                           | 513.50            | -2.11             | \$47.313                           | 550.02            |
| 330.3III             |                   | -1.94             | \$J1,540             | -02.03            | -1./3             | \$57,105                           | -2/0.02           |                   | -4.55             | \$+∠,J6J                           | -515.59           | -2.12             | \$+7,∠43                           | -337.74           |

|               | Reallocation with go |                   |                                    |                   | information       |                                    |                   |                   |                   | Reallocation                       | n with poor i     | nformation        |                                    |                   |
|---------------|----------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|               | Marginal             | Estimates         | s with good info                   | rmation           | Estimate          | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | es with poor info                  | ormation          |
| Budget impact | Tech <sup>a</sup>    | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$30.4m       | R                    | -1.94             | \$51,545                           | -83.99            | -1.79             | \$56,008                           | -978.41           | U                 | -1.19             | \$84,255                           | -514.77           | -2.12             | \$47,182                           | -562.04           |
| \$30.5m       | R                    | -1.95             | \$51,395                           | -85.94            | -1.79             | \$55,845                           | -980.20           | R                 | -2.30             | \$43,386                           | -517.08           | -2.12             | \$47,143                           | -564.17           |
| \$30.6m       | С                    | -1.95             | \$51,286                           | -87.89            | -1.76             | \$56,895                           | -981.96           | D                 | -0.68             | \$146.227                          | -517.76           | -2.12             | \$47.071                           | -566.29           |
| \$30.7m       | R                    | -1.95             | \$51,244                           | -89.84            | -1.80             | \$55,681                           | -983.75           | Н                 | -2.53             | \$39.562                           | -520.29           | -2.13             | \$47,043                           | -568.42           |
| \$30.8m       | R                    | -1.96             | \$51.092                           | -91.80            | -1.80             | \$55,516                           | -985.56           | R                 | -2.31             | \$43.206                           | -522.60           | -2.13             | \$46,946                           | -570.55           |
| \$30.9m       | Н                    | -1.96             | \$51,044                           | -93.76            | -1.65             | \$60,698                           | -987.20           | U                 | -1.20             | \$83.647                           | -523.80           | -2.13             | \$46,841                           | -572.68           |
| \$31.0m       | U                    | -1.96             | \$51,033                           | -95.71            | -3.50             | \$28,578                           | -990.70           | G                 | -1.11             | \$90.035                           | -524.91           | -2.14             | \$46,834                           | -574.82           |
| \$31.1m       | Ċ                    | -1.96             | \$51.024                           | -97.67            | -1.77             | \$56,604                           | -992.47           | Ċ                 | -2.37             | \$42.203                           | -527.28           | -2.14             | \$46,819                           | -576.95           |
| \$31.2m       | R                    | -1.96             | \$50,941                           | -99.64            | -1.81             | \$55,351                           | -994.28           | Ŵ                 | -1.67             | \$60.049                           | -528.94           | -2.14             | \$46,801                           | -579.09           |
| \$31.3m       | Н                    | -1.96             | \$50,906                           | -101.60           | -1.65             | \$60,533                           | -995.93           | Н                 | -2.54             | \$39.331                           | -531.49           | -2.14             | \$46,770                           | -581.23           |
| \$31.4m       | R                    | -1.97             | \$50,788                           | -103 57           | -1.81             | \$55,186                           | -997 74           | R                 | -2.32             | \$43,027                           | -533.81           | -2.14             | \$46,753                           | -583 37           |
| \$31.5m       | H                    | -1.97             | \$50,767                           | -105.54           | -1.66             | \$60,368                           | -999 40           | R                 | -2.33             | \$42,845                           | -536.15           | -2.15             | \$46,557                           | -585.51           |
| \$31.6m       | C                    | -1.97             | \$50,759                           | -107.51           | -1 78             | \$56,310                           | -1001.17          | D                 | -0.69             | \$144 534                          | -536.84           | -2.15             | \$46 527                           | -587.66           |
| \$31.7m       | R                    | -1.97             | \$50,635                           | -109.49           | -1.82             | \$55,020                           | -1002.99          | U                 | -1.20             | \$83,034                           | -538.04           | -2.15             | \$46,498                           | -589.81           |
| \$31.8m       | Н                    | -1.98             | \$50,627                           | -111.46           | -1.66             | \$60,202                           | -1004.65          | H                 | -2.56             | \$39,098                           | -540.60           | -2.15             | \$46.492                           | -591.96           |
| \$31.0m       | C                    | -1.98             | \$50,491                           | -113 44           | -1.00             | \$56,013                           | -1004.05          | C                 | -2.30             | \$41 814                           | -542.99           | -2.15             | \$46 387                           | -594.12           |
| \$32.0m       | H                    | -1.98             | \$50,487                           | -115.42           | -1.67             | \$60.035                           | -1008.10          | B                 | -2.34             | \$42,666                           | -545.33           | -2.16             | \$46 359                           | -596.28           |
| \$32.0m       | R                    | -1.98             | \$50,187                           | -117.40           | -1.82             | \$54 853                           | -1009.92          | G                 | -1.12             | \$88.929                           | -546.46           | -2.16             | \$46,259                           | -598.44           |
| \$32.7m       | Н                    | -1.99             | \$50,102                           | -119.39           | -1.67             | \$59,867                           | -1011.60          | ц<br>Н            | -2.57             | \$38,861                           | -549.03           | -2.16             | \$46,211                           | -600.60           |
| \$32.2m       | R                    | -1.99             | \$50,329                           | -121.38           | -1.83             | \$54,686                           | -1013.42          | R                 | -2.37             | \$42 484                           | -551.39           | -2.10             | \$46,164                           | -602.77           |
| \$32.5m       | C                    | -1.99             | \$50,327                           | -123.37           | -1.05             | \$55,712                           | -1015.42          | II II             | -2.33             | \$82.417                           | -552.60           | -2.17             | \$46,152                           | -604.94           |
| \$32.4m       | Н                    | -1.99             | \$50,220                           | -125.36           | -1.68             | \$59,698                           | -1016.89          | 0                 | -0.70             | \$142,922                          | -553.30           | -2.17             | \$45,976                           | -607.11           |
| \$32.5m       | P                    | 1.00              | \$50,204                           | 127.35            | -1.00             | \$54,519                           | 1018 73           | P                 | 2.36              | \$172,022                          | 555.56            | 2.10              | \$45,962                           | 609.29            |
| \$32.0m       | к<br>Н               | -1.99             | \$50,061                           | 120.35            | -1.65             | \$59,519                           | 1020.41           | K<br>C            | -2.30             | \$41.418                           | 558.08            | -2.18             | \$45,902                           | 611.46            |
| \$32.7m       | II                   | -2.00             | \$50,001                           | -131.35           | -3.57             | \$28.012                           | -1023.98          | н                 | -2.41             | \$38.622                           | -560.67           | -2.18             | \$45,926                           | -613.64           |
| \$32.0m       | P                    | -2.00             | \$50,020                           | 133.35            | -5.57             | \$54,351                           | 1025.90           | II                | 1.22              | \$81 705                           | 561.89            | 2.10              | \$45,920                           | 615.82            |
| \$33.0m       | C K                  | -2.00             | \$10,020                           | 135.35            | -1.84             | \$55,400                           | 1027.62           | P                 | -1.22             | \$42.118                           | 564.26            | -2.18             | \$45,004                           | 618.01            |
| \$33.0m       | н                    | -2.00             | \$49,947                           | 137.35            | -1.60             | \$50,409                           | 1029.31           | G                 | -2.37             | \$87.706                           | 565.40            | 2.19              | \$45,704                           | 620.20            |
| \$33.7m       | P                    | -2.00             | \$49,917                           | 130.36            | -1.08             | \$59,337                           | 1029.51           | - U<br>- Н        | -1.14             | \$38 380                           | 568.01            | 2.19              | \$45,630                           | 622.30            |
| \$33.2m       | H                    | -2.01             | \$49,703                           | -141 37           | -1.69             | \$59,186                           | -1032.84          | R                 | -2.01             | \$41.932                           | -570.39           | -2.19             | \$45,559                           | -624.59           |
| \$33.5m       | R                    | -2.01             | \$49,709                           | -143.38           | -1.05             | \$54.013                           | -1034.69          | C                 | -2.56             | \$41,012                           | -572.83           | -2.1)             | \$45,504                           | -626.78           |
| \$33.5m       | C                    | -2.01             | \$49,707                           | -145.30           | -1.81             | \$55,102                           | -1036.51          | U                 | -2.44             | \$81.168                           | -574.06           | -2.20             | \$45,453                           | -628.98           |
| \$33.6m       | Н                    | -2.01             | \$49,677                           | -147.41           | -1.69             | \$59,013                           | -1038.20          | 0                 | -0.71             | \$141.093                          | -574.77           | -2.20             | \$45,419                           | -631.18           |
| \$33.7m       | R                    | -2.02             | \$49,553                           | -149.43           | -1.86             | \$53,844                           | -1040.06          | B                 | -0.71             | \$41 748                           | -577.17           | -2.20             | \$45,362                           | -633 39           |
| \$33.8m       | H                    | -2.02             | \$49,555                           | -147.45           | -1.00             | \$58,839                           | -1040.00          | H                 | -2.40             | \$38 134                           | -579.79           | -2.20             | \$45,302                           | -635.59           |
| \$33.0m       | R                    | -2.02             | \$49 397                           | -153.47           | -1.70             | \$53,674                           | -1043.62          | R                 | -2.02             | \$41 561                           | -582.20           | -2.21             | \$45,161                           | -637.81           |
| \$34.0m       | C C                  | -2.02             | \$49 390                           | -155.50           | -1.83             | \$54 791                           | -1045.45          | II.               | -1.24             | \$80,536                           | -583.44           | _2 22             | \$45,099                           | -640.03           |
| \$34.1m       | H                    | -2.02             | \$49 334                           | -157.52           | -1.70             | \$58,664                           | -1047.15          | G                 | -1.15             | \$86,633                           | -584 59           | _2.22             | \$45,065                           | -642.24           |
| \$34.7m       | R                    | -2.03             | \$49,239                           | -159.55           | -1.70             | \$53,503                           | -1049.02          | H                 | -2.64             | \$37,887                           | -587.23           | -2.22             | \$45,003                           | -644 46           |
| \$34.2m       | G                    | -2.03             | \$49,202                           | -161 59           | -3.91             | \$25,505                           | -1052.93          | C II              | -2.46             | \$40,601                           | -589.69           | _2.22             | \$45,033                           | -646.68           |
| \$34.5m       | H                    | -2.03             | \$49,202                           | -163.62           | -1.71             | \$58.488                           | -1054.64          | R                 | -2.40             | \$41 375                           | -592.11           | -2.22             | \$44.956                           | -648.91           |
| \$34.5m       | C II                 | -2.03             | \$49,100                           | -165.66           | -1.84             | \$54 477                           | -1056.47          | D                 | -0.72             | \$139.338                          | -592.83           | _2.22             | \$44.855                           | -651.14           |
| \$34.5m       | R                    | -2.04             | \$49,082                           | -167.69           | -1.88             | \$53 332                           | -1058.35          | B                 | -0.72             | \$41 188                           | -595.26           | -2.23             | \$44,055                           | -653.37           |
| \$34.7m       | H                    | -2.04             | \$49,032                           | -169.73           | _1 71             | \$58 311                           | -1060.06          | H                 | -2.45             | \$37.63/                           | -597.01           | _2.23             | \$44 751                           | -655.61           |
| \$34.9m       | U                    | -2.04             | \$48 991                           | -171 77           | -3.65             | \$27 435                           | -1063 71          | U                 | -1.00             | \$79.900                           | -599.17           | _2.23             | \$44 742                           | -657.84           |
| \$34.0m       | R                    | -2.04             | \$48 97/                           | -173.82           | -5.05             | \$53.160                           | -1065 50          | C C               | -1.23             | \$40.182                           | -601.65           | -2.24             | \$44 575                           | -660.00           |
| \$35.0m       | H                    | -2.04             | \$48 887                           | -175.86           | _1.00             | \$58 133                           | -1067 31          | R                 | -2.49             | \$40,000                           | -604.09           | _2.24             | \$44 549                           | -667 33           |
| \$35.1m       | C                    | -2.05             | \$48 820                           | -177.01           | -1.72             | \$54 160                           | -1069.16          | н                 | -2.68             | \$37 380                           | -606 77           | -2.24             | \$44.450                           | -664 58           |
| \$35.1m       | w                    | -2.05             | \$48,800                           | -179.96           | -1.05             | \$38.033                           | -1071 70          | G                 | -2.00             | \$85.438                           | -607.94           | -2.23             | \$44 4/3                           | -666.83           |
| \$35.2m       | R                    | -2.05             | \$48 765                           | -182.01           | -2.03             | \$52.988                           | -1073.67          | U                 | -1.17             | \$79,758                           | -609.20           | -2.23             | \$44 383                           | -669.08           |
| 453.5III      |                      | -2.05             | \$48 727                           | 184.06            | 1 73              | \$57.954                           | -1075.40          | R                 | -2.45             | \$40,810                           | -611.65           | -2.25             | \$44 342                           | -671.34           |

|                      |                   |                   | Reallocation                       | with good         | information       |                                    |                   |                   |                   | Reallocation                              | n with poor i     | nformation        |                                    |                   |
|----------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|-------------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info                   | rmation           | Estimat           | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                          | ormation          | Estimate          | es with poor info                  | ormation          |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup>        | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$35.5m              | R                 | -2.06             | \$48,606                           | -186.12           | -1.89             | \$52,815                           | -1077.29          | D                 | -0.73             | \$137,565                                 | -612.38           | -2.26             | \$44,283                           | -673.60           |
| \$35.6m              | Н                 | -2.06             | \$48,585                           | -188.18           | -1.73             | \$57,774                           | -1079.02          | W                 | -1.76             | \$56,787                                  | -614.14           | -2.26             | \$44,258                           | -675.86           |
| \$35.7m              | С                 | -2.06             | \$48,531                           | -190.24           | -1.86             | \$53,838                           | -1080.88          | Н                 | -2.69             | \$37,121                                  | -616.83           | -2.27             | \$44,140                           | -678.12           |
| \$35.8m              | R                 | -2.06             | \$48,446                           | -192.30           | -1.90             | \$52.641                           | -1082.78          | R                 | -2.46             | \$40.619                                  | -619.29           | -2.27             | \$44,136                           | -680.39           |
| \$35.9m              | Н                 | -2.06             | \$48,433                           | -194.37           | -1.74             | \$57,593                           | -1084.52          | C                 | -2.52             | \$39,750                                  | -621.81           | -2.27             | \$44.098                           | -682.65           |
| \$36.0m              | R                 | -2.07             | \$48,287                           | -196.44           | -1.91             | \$52,468                           | -1086.42          | U                 | -1.27             | \$78.611                                  | -623.08           | -2.27             | \$44.022                           | -684.93           |
| \$36.1m              | Н                 | -2.07             | \$48,279                           | -198.51           | -1.74             | \$57,410                           | -1088.16          | R                 | -2.47             | \$40,427                                  | -625.56           | -2.28             | \$43,929                           | -687.20           |
| \$36.2m              | C                 | -2.07             | \$48.237                           | -200.58           | -1.87             | \$53,513                           | -1090.03          | Н                 | -2.71             | \$36,858                                  | -628.27           | -2.28             | \$43.829                           | -689.48           |
| \$36.3m              | R                 | -2.08             | \$48,125                           | -202.66           | -1.91             | \$52.293                           | -1091.95          | G                 | -1.19             | \$84,208                                  | -629.46           | -2.28             | \$43,803                           | -691.77           |
| \$36.4m              | Н                 | -2.08             | \$48,125                           | -204.74           | -1.75             | \$57.226                           | -1093.69          | R                 | -2.49             | \$40,237                                  | -631.94           | -2.29             | \$43,720                           | -694.05           |
| \$36.5m              | Н                 | -2.08             | \$47 969                           | -206.82           | -1.75             | \$57.041                           | -1095 45          | D                 | -0.74             | \$135,766                                 | -632.68           | -2.29             | \$43,704                           | -696 34           |
| \$36.6m              | R                 | -2.08             | \$47,964                           | -208.91           | -1.92             | \$52,118                           | -1097.37          | U<br>U            | -1.28             | \$77,959                                  | -633.96           | -2.29             | \$43,657                           | -698.63           |
| \$36.7m              | C                 | -2.09             | \$47,940                           | -211.00           | -1.88             | \$53,184                           | -1099.25          | Č                 | -2 54             | \$39.311                                  | -636 51           | -2.29             | \$43,611                           | -700.93           |
| \$36.8m              | U                 | -2.09             | \$47,939                           | -213.08           | -3.73             | \$26,844                           | -1102.97          | Н                 | -2.73             | \$36,593                                  | -639.24           | -2.30             | \$43 512                           | -703.22           |
| \$36.9m              | Н                 | -2.09             | \$47,813                           | -215.00           | -1.76             | \$56,855                           | -1104 73          | R                 | -2.50             | \$40,043                                  | -641 74           | -2.30             | \$43,510                           | -705.52           |
| \$37.0m              | R                 | -2.09             | \$47,803                           | -217.26           | -1.70             | \$51.942                           | -1104.75          | R                 | -2.50             | \$39,849                                  | -644 24           | -2.30             | \$43,299                           | -707.83           |
| \$37.0m              | н                 | 2.09              | \$47,605                           | 210.36            | -1.75             | \$56,668                           | 1108.03           | II II             | 1 20              | \$77.301                                  | 645.54            | 2.31              | \$43,299                           | 710.14            |
| \$37.1m              | P                 | 2.10              | \$47,639                           | 2219.50           | 1.03              | \$51,765                           | 1110.35           | - U<br>Н          | 2.75              | \$36.321                                  | 648.20            | 2.31              | \$43,200                           | 712.46            |
| \$37.2m              | R<br>C            | -2.10             | \$47,639                           | 223.56            | -1.95             | \$52,850                           | 1112.24           | G                 | -2.75             | \$82.041                                  | 649.50            | 2.32              | \$43,195                           | 714.78            |
| \$37.5m              | н                 | -2.10             | \$47.497                           | -225.50           | -1.39             | \$56,479                           | -1112.24          | D                 | -0.75             | \$133.942                                 | -650.24           | -2.32             | \$43,145                           | -717.09           |
| \$37.4III<br>\$37.5m | P                 | -2.11             | \$47,470                           | 223.07            | -1.77             | \$50,479                           | 1115.05           | C                 | -0.75             | \$38.862                                  | 652.82            | 2.32              | \$43,117                           | 710.41            |
| \$37.5m              | н                 | -2.11             | \$47,337                           | 220.80            | -1.94             | \$56,200                           | 1117.73           | P                 | -2.57             | \$30,602                                  | 655.34            | 2.32              | \$43.087                           | 721.73            |
| \$37.0m              |                   | -2.11             | \$47,337                           | 2229.89           | -1.78             | \$50,290                           | 1110.62           | I                 | 2.32              | \$39,034                                  | 658 72            | 2.32              | \$42,007                           | 724.06            |
| \$37.7m              | D                 | -2.11             | \$47,333                           | -232.00           | -1.90             | \$52,512                           | 1121.58           | I                 | -3.38             | \$29,014                                  | -038.72           | -2.33             | \$42,972                           | -724.00           |
| \$37.0m              | н                 | -2.11             | \$47,515                           | 236.23            | -1.93             | \$56,008                           | 1123.36           | I                 | -3.38             | \$29,578                                  | -002.10           | -2.33             | \$42,920                           | 728.72            |
| \$37.9III<br>\$38.0m | D D               | -2.12             | \$47,170                           | -230.23           | -1.78             | \$50,098                           | 1125.30           | D                 | -1.30             | \$70,037                                  | -003.40           | -2.33             | \$42,917                           | 721.05            |
| \$38.0m              | C K               | -2.12             | \$47,027                           | -236.33           | -1.93             | \$51,232                           | 1127.22           | K<br>I            | -2.33             | \$39,439                                  | -003.94           | -2.33             | \$42,870                           | 722.20            |
| \$38.1III<br>\$28.2m | <u></u>           | -2.13             | \$47,027                           | 240.40            | -1.92             | \$52,170                           | 1127.23           | и<br>1            | -3.33             | \$25,542                                  | 672.00            | -2.33             | \$42,808                           | 725.39            |
| \$38.2III<br>\$28.3m | D D               | -2.13             | \$46.084                           | 244.01            | -1./9             | \$55,900                           | -1129.02          | II<br>I           | -2.77             | \$30,048                                  | 675.48            | -2.33             | \$42,805                           | 738.06            |
| \$38.5m              | D                 | -2.13             | \$46,964                           | 244.73            | -1.90             | \$15,034                           | 1137.50           | I                 | -3.39             | \$29,300                                  | 678.88            | -2.34             | \$42,813                           | 740.39            |
| \$38.4III<br>\$28.5m | U                 | -2.13             | \$46,959                           | 240.00            | -0.02             | \$15,110                           | 1141.40           | I                 | -3.39             | \$29,409                                  | 682.28            | 2.34              | \$42,702                           | 740.39            |
| \$38.5m              | н                 | -2.13             | \$46,853                           | 251.13            | -5.81             | \$20,241                           | 1143.20           | P                 | -3.40             | \$39,455                                  | 684.82            | 2.34              | \$42,709                           | 745.08            |
| \$38.0m              | D                 | -2.13             | \$46,851                           | 252.27            | -1.79             | \$50,875                           | 1145.16           | I                 | -2.55             | \$20,200                                  | 688.22            | -2.34             | \$42,000                           | 747.42            |
| \$38.7m              | C K               | -2.14             | \$46,715                           | 255.41            | -1.97             | \$51,873                           | 1147.00           | I                 | -3.40             | \$29,390                                  | 601.62            | -2.34             | \$42,000                           | 740.77            |
| \$38.0m              | <u>с</u><br>и     | -2.14             | \$46.697                           | 257.55            | -1.95             | \$55,517                           | 1149.90           | I<br>C            | -3.41             | \$29,339                                  | 604.23            | -2.35             | \$42,002                           | 752.12            |
| \$30.7m              | P                 | -2.14             | \$46,655                           | 259.69            | -1.00             | \$50,605                           | 1150.87           | I                 | -2.00             | \$20,402                                  | 697.64            | 2.35              | \$42,001                           | 754.47            |
| \$39.0m              | н                 | -2.14             | \$46,533                           | 261.84            | -1.97             | \$55,320                           | 1152.67           | I                 | -3.41             | \$75.968                                  | 608.06            | 2.35              | \$42,540                           | 756.82            |
| \$30.2m              | P                 | -2.15             | \$46,322                           | 263.00            | -1.01             | \$50,520                           | 1154.65           | - U<br>Н          | -1.52             | \$35,700                                  | 701.76            | 2.35              | \$42,541                           | 750.82            |
| \$30.3m              | C                 | -2.15             | \$46,398                           | -266.15           | -1.98             | \$50,515                           | -1156.60          | D                 | -2.30             | \$132,095                                 | -702.51           | -2.35             | \$42,555                           | -761.52           |
| \$30.4m              | н                 | 2.16              | \$46,356                           | 268.31            | -1.94             | \$55,123                           | 1158.00           | I                 | -0.70             | \$20,285                                  | 705.03            | 2.35              | \$42,525                           | 763.88            |
| \$30.5m              | P                 | -2.10             | \$46,322                           | 270.47            | -1.01             | \$50,332                           | 1160.40           | G                 | 1 22              | \$81.635                                  | 707.15            | 2.35              | \$42,494                           | 766.23            |
| \$39.5m              | LI K              | -2.10             | \$46,322                           | 272.62            | -1.99             | \$54,022                           | 1162.22           | D                 | -1.22             | \$20,064                                  | 700.71            | -2.35             | \$42,403                           | 768 50            |
| \$30.7m              | D                 | -2.17             | \$46,153                           | 274.80            | -1.02             | \$50,150                           | 1164.21           | I                 | -2.50             | \$20,247                                  | 712.12            | -2.30             | \$42,440                           | 770.04            |
| \$30.8m              | C                 | -2.17             | \$46.077                           | 276.07            | -1.39             | \$50,150                           | 1166.17           | I                 | 3.42              | \$29,247                                  | 716.56            | -2.30             | \$12,740                           | 773.30            |
| \$39.0m              | <u></u> н         | -2.17             | \$46,010                           | 270.97            | -1.90             | \$54,723                           | 1168.00           | I                 | -3.42             | \$29,209                                  | 710.00            | -2.30             | \$42,385                           | 775.66            |
| \$37.711             | P                 | -2.17             | \$45 0.95                          | _281.22           | 2.00              | \$10 069                           | -1170.00          | T                 | -3.43             | \$20,171                                  | -713.30           | -2.30             | \$42,330                           | _778.03           |
| \$40.0m              | н                 | -2.17             | \$45 840                           | 283 50            | -2.00             | \$54 520                           | 1171.82           | I<br>D            | -3.43             | \$28 845                                  | 725.00            | -2.37             | \$42,273                           | 780.40            |
| \$40.1m              | 11<br>P           | -2.18             | \$45,049                           | -205.50           | -1.65             | \$34,520                           | 1173.84           | к<br>I            | -2.37             | \$20,005                                  | 720 /2            | -2.37             | \$42,230                           | -782 77           |
| \$40.2111            | I.I.              | -2.10             | \$45,017                           | 287.86            | -2.01             | \$75,100                           | 1177 74           | и<br>Ц            | -3.44             | \$25,093                                  | 732.43            | -2.37             | \$42,219                           | -/02.//           |
| \$40.511             | C                 | -2.19             | \$45,750                           | -207.00           | -5.90             | \$23,023                           | -11/0.71          | T T               | -2.02             | \$20,400                                  | -735.60           | -2.37             | \$42,198                           | -787 51           |
| \$40.4111<br>\$40.5m | н                 | -2.19             | \$45.678                           | -290.05           | -1.7/             | \$54 316                           | -11/7./1          | I<br>I            | -3.44             | \$75.202                                  | -737.01           | -2.37             | \$42,103                           | -789.88           |
| φτυ.5m               | 11                | -2.17             | $\phi_{7,0,0,0}$                   | 212.27            | -1.04             | φυτ,υ10                            | 1101.55           |                   | -1.55             | $\varphi_1 \cup \varphi_2 \cup \varphi_2$ | -/5/.01           | -2.57             | $\phi = 2, 102$                    | -/0/.00           |

|               |                   |                   | Reallocation                       | with good         | information       |                                    |                   |                   |                   | Reallocation                       | n with poor i     | nformation        |                                    |                   |
|---------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|               | Marginal          | Estimates         | s with good info                   | rmation           | Estimate          | es with poor info                  | ormation          | Marginal          | Estimate          | s with good info                   | ormation          | Estimate          | es with poor info                  | ormation          |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$40.6m       | R                 | -2.19             | \$45,648                           | -294.43           | -2.02             | \$49,601                           | -1183.57          | I                 | -3.45             | \$29,018                           | -740.46           | -2.37             | \$42,107                           | -792.25           |
| \$40.7m       | Н                 | -2.20             | \$45,505                           | -296.63           | -1.85             | \$54,111                           | -1185.42          | С                 | -2.64             | \$37,931                           | -743.10           | -2.38             | \$42,080                           | -794.63           |
| \$40.8m       | R                 | -2.20             | \$45,477                           | -298.83           | -2.02             | \$49,414                           | -1187.44          | Ι                 | -3.45             | \$28,979                           | -746.55           | -2.38             | \$42.051                           | -797.01           |
| \$40.9m       | С                 | -2.20             | \$45,421                           | -301.03           | -1.98             | \$50,388                           | -1189.43          | R                 | -2.59             | \$38.665                           | -749.13           | -2.38             | \$42.013                           | -799.39           |
| \$41.0m       | Н                 | -2.21             | \$45,331                           | -303.23           | -1.86             | \$53,904                           | -1191.28          | I                 | -3.46             | \$28,940                           | -752.59           | -2.38             | \$41,994                           | -801.77           |
| \$41.1m       | R                 | -2.21             | \$45,308                           | -305.44           | -2.03             | \$49,230                           | -1193.31          | Ī                 | -3.46             | \$28,900                           | -756.05           | -2.38             | \$41,937                           | -804.15           |
| \$41.2m       | G                 | -2.21             | \$45,220                           | -307.65           | -4.25             | \$23,523                           | -1197.56          | D                 | -0.77             | \$130.222                          | -756.82           | -2.39             | \$41,919                           | -806.54           |
| \$41.3m       | H                 | -2.21             | \$45,155                           | -309.87           | -1.86             | \$53,696                           | -1199.43          | Ī                 | -3.46             | \$28,861                           | -760.28           | -2.39             | \$41.879                           | -808.93           |
| \$41.4m       | R                 | -2.22             | \$45,135                           | -312.08           | -2.04             | \$49,046                           | -1201.47          | Н                 | -2.84             | \$35,200                           | -763.12           | -2.39             | \$41.857                           | -811.32           |
| \$41.5m       | C                 | -2.22             | \$45.086                           | -314.30           | -2.00             | \$50.017                           | -1203.47          | I                 | -3.47             | \$28,821                           | -766.59           | -2.39             | \$41.822                           | -813.71           |
| \$41.6m       | Н                 | -2.22             | \$44 979                           | -316.52           | -1.87             | \$53 485                           | -1205 34          | R                 | -2.60             | \$38,464                           | -769 19           | -2.39             | \$41 794                           | -816.10           |
| \$41.7m       | R                 | -2.22             | \$44 964                           | -318 75           | -2.05             | \$48,857                           | -1207.38          | U                 | -1 34             | \$74.611                           | -770 53           | -2.39             | \$41 782                           | -818 49           |
| \$41.8m       | Н                 | -2.23             | \$44,800                           | -320.98           | -1.88             | \$53,273                           | -1209.26          | I                 | -3.47             | \$28,781                           | -774.01           | -2 39             | \$41,762                           | -820.89           |
| \$41.0m       | R                 | -2.23             | \$44 791                           | -323 21           | -2.05             | \$48,669                           | -1211 31          | G                 | -1.25             | \$80,284                           | -775.25           | -2.39             | \$41,763                           | -823.28           |
| \$42.0m       | C C               | -2.23             | \$44 745                           | -325.45           | -2.01             | \$49,639                           | -1213.33          | 0                 | -7.80             | \$12,816                           | -783.06           | -2.40             | \$41 728                           | -825.68           |
| \$42.0m       | U                 | -2.23             | \$44 625                           | -327.69           | -4.00             | \$24,990                           | -1217.33          | I                 | -3.48             | \$28,741                           | -786 54           | -2.40             | \$41,725                           | -828.08           |
| \$42.1m       | U<br>H            | -2.24             | \$44 621                           | -329.93           | -1.88             | \$53,060                           | -1219.21          | I                 | -3.48             | \$28,711                           | -790.02           | -2.40             | \$41,647                           | -830.48           |
| \$42.2m       | R                 | -2.24             | \$44.619                           | -332.17           | -2.06             | \$48,480                           | -1221.28          | I                 | -3.49             | \$28,660                           | -793 51           | -2.40             | \$41 588                           | -832.88           |
| \$42.0m       | R                 | -2.25             | \$44 442                           | -334.42           | -2.07             | \$48,293                           | -1223.35          | R                 | -2.61             | \$38,261                           | -796.12           | -2.41             | \$41 577                           | -835.29           |
| \$42.5m       | H                 | -2.25             | \$44 440                           | -336.67           | -1.89             | \$52 844                           | -1225.35          | C                 | -2.01             | \$37,448                           | -798 79           | -2.41             | \$41,547                           | -837.70           |
| \$42.5m       | C II              | -2.25             | \$44,400                           | -338.92           | -2.03             | \$49,256                           | -1227.27          | U I               | -3.49             | \$28,619                           | -802.29           | -2.41             | \$41 528                           | -840.10           |
| \$42.0m       | R                 | -2.25             | \$44,400                           | -341.18           | -2.05             | \$48,102                           | -1227.27          | Н                 | -2.86             | \$34,906                           | -805.15           | -2.41             | \$41,520                           | -842 51           |
| \$42.7m       | н                 | -2.20             | \$44,209                           | 3/3 //            | -2.00             | \$52,628                           | 1227.35           | I                 | -2.00             | \$28.578                           | 808.65            | 2.41              | \$41,505                           | 844.02            |
| \$42.0m       | P                 | -2.20             | \$44,238                           | 345.71            | 2.00              | \$17.011                           | 1233.34           | I                 | -3.50             | \$28,576                           | 812.16            | -2.41             | \$41,400                           | 847.34            |
| \$43.0m       | H                 | -2.27             | \$44,073                           | -347.98           | -1.91             | \$52.409                           | -1235.34          | I<br>II           | -3.30             | \$73,923                           | -813 51           | -2.41             | \$41,396                           | -849 76           |
| \$43.0m       | C II              | 2.27              | \$44.049                           | 350.25            | 2.05              | \$18,866                           | 1237.24           | W                 | -1.55             | \$53,006                           | 815.30            | 2.42              | \$41,390                           | 852.17            |
| \$43.7m       | P                 | -2.27             | \$43,017                           | 352.53            | -2.05             | \$47,721                           | 1230.30           | P                 | -1.88             | \$38,060                           | 818.02            | -2.42             | \$41,362                           | -652.17           |
| \$43.3m       | к<br>Н            | -2.28             | \$43,917                           | 354.80            | -2.10             | \$52.188                           | 1241 30           | I                 | -2.03             | \$28,000                           | 821.53            | -2.42             | \$41,335                           | 857.01            |
| \$43.5m       | P                 | -2.28             | \$43,000                           | 357.00            | 2.10              | \$17 520                           | 1241.50           | D                 | -3.31             | \$128,310                          | 822.31            | -2.42             | \$41,348                           | 850.43            |
| \$43.5m       | H                 | -2.29             | \$43,743                           | -359.38           | -1.92             | \$51.966                           | -1245.33          | J                 | -0.78             | \$28,453                           | -825.82           | -2.42             | \$41,307                           | -861.85           |
| \$43.5m       | C II              | -2.29             | \$43,692                           | -361.67           | -2.06             | \$48,470                           | -1247.39          | I                 | -3.51             | \$28,411                           | -829.34           | -2.42             | \$41,207                           | -864.28           |
| \$43.7m       | R                 | -2.2)             | \$43,672                           | -363.96           | -2.00             | \$47,335                           | -1247.57          | I                 | -3.52             | \$28,369                           | -832.87           | -2.43             | \$41.165                           | -866 71           |
| \$43.8m       | W                 | -2.30             | \$43,558                           | -366.26           | -2.11             | \$33.948                           | -1252.45          | Н                 | -2.89             | \$34,610                           | -835.76           | -2.43             | \$41,105                           | -869.14           |
| \$43.9m       | н                 | -2.30             | \$43,550                           | -368.56           | -1.93             | \$51,741                           | -1252.45          | R                 | -2.69             | \$37.854                           | -838.40           | -2.43             | \$41,130                           | -871.57           |
| \$44.0m       | II                | -2.30             | \$43,512                           | -370.86           | -4.11             | \$24 341                           | -1254.59          | I                 | -2.04             | \$28 325                           | -841.93           | -2.43             | \$41,103                           | -874.00           |
| \$44.0m       | R                 | -2.30             | \$43,386                           | -373.16           | -2.12             | \$47 143                           | -1250.49          | I                 | -3.55             | \$28,323                           | -845.46           | -2.45             | \$41,041                           | -876.44           |
| \$44.1m       | C C               | -2.30             | \$43 329                           | -375.47           | -2.08             | \$48.068                           | -1262.70          | G                 | -1.27             | \$78,888                           | -846 73           | _2.11             | \$41,036                           | -878.87           |
| \$44.3m       | н<br>Н            | -2.31             | \$43 322                           | -377.78           | -1.94             | \$51,515                           | -1264.64          | U                 | -1.37             | \$73,229                           | -848 10           | _2.11             | \$41,007                           | -881.31           |
| \$44.5m       | R                 | -2.31             | \$43,206                           | -380.09           | -2.13             | \$46,946                           | -1266.77          | C                 | -2.71             | \$36,951                           | -850.80           | -2.44             | \$40,992                           | -883 75           |
| \$44.5m       | н                 | -2.32             | \$43,129                           | -382.41           | -1.95             | \$51,286                           | -1268.72          | I                 | -3 54             | \$28,239                           | -854.34           | -2.44             | \$40,972                           | -886.19           |
| \$44.6m       | R                 | -2.32             | \$43,027                           | -384 74           | -2.14             | \$46,753                           | -1200.72          | I                 | -3.54             | \$28,257                           | -857.89           | -2.44             | \$40,915                           | -888.64           |
| \$44.0m       | C C               | -2.32             | \$42,960                           | -387.06           | -2.10             | \$47,659                           | -1272.95          | R                 | -2.66             | \$37.651                           | -860.55           | _2.11             | \$40.912                           | -891.08           |
| \$44.7m       | Н                 | -2.33             | \$42,935                           | -389.39           | -1.96             | \$51.056                           | -1272.93          | I                 | -2.00             | \$28,152                           | -864.10           | -2.44             | \$40,852                           | -893 53           |
| \$44.9m       | R                 | -2.33             | \$42,955                           | -391 73           | -2.15             | \$46 557                           | -1277.06          | H                 | -2.91             | \$34 308                           | -867.01           | _2.45             | \$40,796                           | -895.98           |
| \$45.0m       | H                 | -2.35             | \$42,045                           | -394 07           | _1 97             | \$50 823                           | -1279.03          | I                 | -3.56             | \$28 109                           | -870 57           | _2.45             | \$40,788                           | -898 43           |
| \$45.0m       | R                 | -2.34             | \$42,741                           | -396.41           | -1.57             | \$46 350                           | -1281 18          | I                 | -3.56             | \$28,109                           | -874 13           | -2.45             | \$40 724                           | -070.45           |
| \$45.1m       | C                 | -2.34             | \$42,500                           | -398 76           | _2.10             | \$47 242                           | -1283 30          | D I               | -0.79             | \$126,300                          | -874 02           | -2.40             | \$40,686                           | _903 34           |
| \$45.2m       | н                 | -2.35             | \$42,505                           | -401 11           | _1 08             | \$50 588                           | -1285.30          | R                 | -0.79             | \$37.443                           | -877.60           | -2.40             | \$40,685                           | -905.80           |
| \$45.4m       | R                 | -2.35             | \$47.484                           | -403.46           | -1.96             | \$46 164                           | -1205.20          | I                 | -2.07             | \$28,020                           | -881.17           | -2.40             | \$40,659                           | -905.80           |
| \$45.5m       | H                 | -2.35             | \$42 342                           | -405.82           | -2.17             | \$50 351                           | -1289.43          | I<br>U            | -1.38             | \$72 528                           | -882 54           | -2.40             | \$40,616                           | -900.20           |
| \$45.6m       | R                 | -2.36             | \$42,299                           | -408 19           | -2.18             | \$45,962                           | -1291.61          | I                 | -3 57             | \$27.975                           | -886.12           | -2.46             | \$40 594                           | -913 19           |

|                      |                   |                   | Reallocation                       | with good       | information       |                                    |                   |                   |                   | Reallocation                       | ı with poor i     | nformation        |                                    |                   |
|----------------------|-------------------|-------------------|------------------------------------|-----------------|-------------------|------------------------------------|-------------------|-------------------|-------------------|------------------------------------|-------------------|-------------------|------------------------------------|-------------------|
|                      | Marginal          | Estimates         | with good info                     | rmation         | Estimate          | s with poor info                   | ormation          | Marginal          | Estimate          | s with good info                   | rmation           | Estimate          | es with poor info                  | ormation          |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^{d}$ |
| \$45.7m              | U                 | -2.37             | \$42,274                           | -410.55         | -4.22             | \$23,674                           | -1295.83          | Ι                 | -3.58             | \$27,930                           | -889.70           | -2.47             | \$40,528                           | -915.65           |
| \$45.8m              | С                 | -2.37             | \$42,203                           | -412.92         | -2.14             | \$46,819                           | -1297.97          | Ι                 | -3.59             | \$27,885                           | -893.29           | -2.47             | \$40,463                           | -918.13           |
| \$45.9m              | Н                 | -2.37             | \$42,143                           | -415.30         | -2.00             | \$50,112                           | -1299.96          | R                 | -2.69             | \$37,237                           | -895.97           | -2.47             | \$40,461                           | -920.60           |
| \$46.0m              | R                 | -2.37             | \$42,118                           | -417.67         | -2.19             | \$45,764                           | -1302.15          | Н                 | -2.94             | \$34,001                           | -898.91           | -2.47             | \$40,430                           | -923.07           |
| \$46.1m              | Н                 | -2.38             | \$41,939                           | -420.06         | -2.01             | \$49,871                           | -1304.15          | С                 | -2.74             | \$36,442                           | -901.66           | -2.47             | \$40,427                           | -925.54           |
| \$46.2m              | R                 | -2.38             | \$41,932                           | -422.44         | -2.19             | \$45,564                           | -1306.35          | Ι                 | -3.59             | \$27,839                           | -905.25           | -2.48             | \$40,398                           | -928.02           |
| \$46.3m              | С                 | -2.39             | \$41,814                           | -424.83         | -2.16             | \$46,387                           | -1308.50          | Ι                 | -3.60             | \$27,793                           | -908.85           | -2.48             | \$40,329                           | -930.50           |
| \$46.4m              | R                 | -2.40             | \$41,748                           | -427.23         | -2.20             | \$45,362                           | -1310.71          | G                 | -1.29             | \$77,439                           | -910.14           | -2.48             | \$40,282                           | -932.98           |
| \$46.5m              | Н                 | -2.40             | \$41,733                           | -429.62         | -2.02             | \$49,625                           | -1312.72          | Ι                 | -3.60             | \$27,746                           | -913.74           | -2.48             | \$40,263                           | -935.47           |
| \$46.6m              | R                 | -2.41             | \$41,561                           | -432.03         | -2.21             | \$45,161                           | -1314.94          | R                 | -2.70             | \$37,027                           | -916.44           | -2.49             | \$40,233                           | -937.95           |
| \$46.7m              | Н                 | -2.41             | \$41,527                           | -434.44         | -2.03             | \$49,380                           | -1316.96          | U                 | -1.39             | \$71,821                           | -917.84           | -2.49             | \$40,219                           | -940.44           |
| \$46.8m              | C                 | -2.41             | \$41,418                           | -436.85         | -2.18             | \$45,947                           | -1319.14          | I                 | -3.61             | \$27,700                           | -921.45           | -2.49             | \$40,195                           | -942.93           |
| \$46.9m              | R                 | -2.42             | \$41,375                           | -439.27         | -2.22             | \$44,956                           | -1321.36          | I                 | -3.62             | \$27,653                           | -925.06           | -2.49             | \$40,127                           | -945.42           |
| \$47.0m              | D                 | -2.42             | \$41,371                           | -441.69         | -7.51             | \$13,318                           | -1328.87          | I                 | -3.62             | \$27,606                           | -928.68           | -2.50             | \$40,059                           | -947.91           |
| \$47.1m              | Н                 | -2.42             | \$41,319                           | -444.11         | -2.04             | \$49,133                           | -1330.91          | Н                 | -2.97             | \$33,686                           | -931.65           | -2.50             | \$40,058                           | -950.41           |
| \$47.2m              | R                 | -2.43             | \$41,188                           | -446.53         | -2.23             | \$44,755                           | -1333.14          | D                 | -0.80             | \$124,431                          | -932.46           | -2.50             | \$40,055                           | -952.91           |
| \$47.3m              | Н                 | -2.43             | \$41,105                           | -448.97         | -2.05             | \$48,881                           | -1335.19          | R                 | -2.72             | \$36,817                           | -935.17           | -2.50             | \$40,006                           | -955.41           |
| \$47.4m              | U                 | -2.44             | \$41,049                           | -451.40         | -4.35             | \$22,986                           | -1339.54          | I                 | -3.63             | \$27,558                           | -938.80           | -2.50             | \$39,989                           | -957.91           |
| \$47.5m              | С                 | -2.44             | \$41,014                           | -453.84         | -2.20             | \$45,499                           | -1341.73          | I                 | -3.64             | \$27,510                           | -942.44           | -2.51             | \$39,920                           | -960.41           |
| \$47.6m              | R                 | -2.44             | \$40,999                           | -456.28         | -2.24             | \$44,549                           | -1343.98          | I                 | -3.64             | \$27,463                           | -946.08           | -2.51             | \$39,850                           | -962.92           |
| \$47.7m              | Н                 | -2.45             | \$40,893                           | -458.73         | -2.06             | \$48,626                           | -1346.04          | C                 | -2.78             | \$35,917                           | -948.86           | -2.51             | \$39,845                           | -965.43           |
| \$47.8m              | R                 | -2.45             | \$40,810                           | -461.18         | -2.26             | \$44,342                           | -1348.29          | U                 | -1.41             | \$71,106                           | -950.27           | -2.51             | \$39,818                           | -967.94           |
| \$47.9m              | H                 | -2.46             | \$40,677                           | -463.63         | -2.07             | \$48,370                           | -1350.36          | 1                 | -3.65             | \$27,414                           | -953.92           | -2.51             | \$39,779                           | -970.46           |
| \$48.0m              | R                 | -2.46             | \$40,619                           | -466.10         | -2.27             | \$44,136                           | -1352.62          | R                 | -2.73             | \$36,607                           | -956.65           | -2.51             | \$39,776                           | -972.97           |
| \$48.1m              |                   | -2.46             | \$40,601                           | -468.56         | -2.22             | \$45,042                           | -1354.84          | I I               | -3.65             | \$27,364                           | -960.30           | -2.52             | \$39,709                           | -9/5.49           |
| \$48.2m              | H                 | -2.47             | \$40,458                           | -4/1.03         | -2.08             | \$48,109                           | -1356.92          | H                 | -3.00             | \$33,368                           | -963.30           | -2.52             | \$39,678                           | -9/8.01           |
| \$48.3m              | ĸ                 | -2.4/             | \$40,427                           | -4/3.50         | -2.28             | \$43,929                           | -1359.20          | I<br>T            | -3.66             | \$27,316                           | -966.96           | -2.52             | \$39,637                           | -980.53           |
| \$48.4m              | G                 | -2.48             | \$40,363                           | -4/5.98         | -4./6             | \$20,996                           | -1363.96          |                   | -3.6/             | \$27,266                           | -9/0.63           | -2.53             | \$39,565                           | -983.06           |
| \$48.5m              | H<br>D            | -2.49             | \$40,238                           | -4/8.4/         | -2.09             | \$47,849                           | -1300.03          | R C               | -2.75             | \$30,394                           | -9/3.3/           | -2.53             | \$39,540                           | -985.59           |
| \$48.0M              | K<br>C            | -2.49             | \$40,237                           | -480.93         | -2.29             | \$43,720                           | -1308.34          | U U               | -1.52             | \$73,933                           | -9/4.09           | -2.55             | \$39,300                           | -966.12           |
| \$46.7III<br>\$48.8m | D                 | -2.49             | \$40,182                           | 485.04          | -2.24             | \$44,575                           | 1272.88           | I                 | -3.07             | \$27,210                           | -978.37           | -2.53             | \$39,491                           | -990.03           |
| \$48.0m              | К                 | -2.30             | \$40,043                           | 403.94          | -2.30             | \$43,510                           | 1274.08           | I                 | -3.08             | \$27,100                           | -982.03           | -2.34             | \$39,420                           | -993.19           |
| \$40.7m              | D D               | -2.50             | \$40,010                           | 400.05          | -2.10             | \$47,383                           | 1277.20           | D                 | -1.42             | \$10,364                           | -983.47           | -2.34             | \$39,414                           | -993.73           |
| \$49.0m              | н                 | -2.51             | \$39,649                           | -490.95         | -2.31             | \$43,299                           | 1370 /1           | J I               | -0.82             | \$27.114                           | -904.20           | -2.34             | \$39,414                           | 1000.81           |
| \$49.1m<br>\$49.2m   | II                | -2.51             | \$39,790                           | -495.40         | -2.11             | \$22 279                           | -13/9.41          | R                 | -3.09             | \$36,182                           | -987.97           | -2.54             | \$39,343                           | -1000.81          |
| \$49.3m              | C                 | -2.51             | \$39,750                           | -498.49         | -7.77             | \$44.098                           | -1386.16          | Н                 | -2.70             | \$33,041                           | -993.76           | -2.54             | \$39,290                           | -1005.55          |
| \$49.4m              | R                 | -2.52             | \$39.654                           | -501.01         | -2.27             | \$43.087                           | -1388.48          | I                 | -3.69             | \$27.064                           | -997.46           | -2.55             | \$39,290                           | -1008.44          |
| \$49.5m              | H                 | -2.52             | \$39 562                           | -503 54         | -2.13             | \$47.043                           | -1390.61          | C                 | -2.83             | \$35 377                           | -1000.28          | -2.55             | \$39,246                           | -1010 99          |
| \$49.6m              | R                 | -2.53             | \$39.459                           | -506.07         | _2 33             | \$42 876                           | -1392.94          | I                 | -3.70             | \$27.012                           | -1003.99          | -2.55             | \$39,196                           | -1013 54          |
| \$49.7m              | H                 | -2.55             | \$39 331                           | -508.62         | -2.13             | \$46 770                           | -1395.08          | I                 | -3.70             | \$26,961                           | -1007.70          | -2.55             | \$39,122                           | -1016 10          |
| \$49.8m              | C                 | -2.54             | \$39 311                           | -511 16         | -2.29             | \$43.611                           | -1397 37          | R                 | -2.78             | \$35,966                           | -1010 48          | -2.56             | \$39.081                           | -1018.65          |
| \$49.9m              | R                 | -2.55             | \$39.260                           | -513.71         | -2.34             | \$42,660                           | -1399.72          | I                 | -3.72             | \$26,908                           | -1014.19          | -2.56             | \$39.046                           | -1021.22          |
| \$50.0m              | Н                 | -2.56             | \$39.098                           | -516.26         | -2.15             | \$46,492                           | -1401.87          | Ū                 | -1.44             | \$69,654                           | -1015.63          | -2.56             | \$39.006                           | -1023.78          |

<sup>a</sup> Marginal technology in contraction. At each level of budget impact, this technology is subject to a \$100,000 reduction in incremental expenditure compared to the previous (smaller) level of budget impact;

<sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 reduction in incremental expenditure on marginal technology;

<sup>c</sup> Estimate (given imperfect information) of the marginal ICER in contraction for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire reduction in expenditure across all technologies.

|               |                   |                     | Reallocation     | with good i       | nformation              |                  |                 |                   |                         | Reallocation     | with poor i     | nformation              |                  |                   |
|---------------|-------------------|---------------------|------------------|-------------------|-------------------------|------------------|-----------------|-------------------|-------------------------|------------------|-----------------|-------------------------|------------------|-------------------|
|               | Marginal          | Estimates           | s with good info | rmation           | Estimate                | s with poor info | rmation         | Marginal          | Estimates               | s with good info | rmation         | Estimate                | s with poor info | rmation           |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^{b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | $E(\Delta E_m)^{\rm b}$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$0.1m        | 0                 | 5.02                | \$19,920         | 5.02              | 1.54                    | \$64,860         | 1.54            | R                 | 1.79                    | \$55,872         | 1.79            | 1.65                    | \$60,710         | 1.65              |
| \$0.2m        | 0                 | 4.75                | \$21,064         | 9.77              | 1.46                    | \$68,586         | 3.00            | D                 | 0.53                    | \$188,777        | 2.32            | 1.65                    | \$60,769         | 3.29              |
| \$0.3m        | 0                 | 4.53                | \$22,096         | 14.29             | 1.39                    | \$71,945         | 4.39            | U                 | 0.92                    | \$108,617        | 3.24            | 1.64                    | \$60,824         | 4.94              |
| \$0.4m        | 0                 | 4.34                | \$23,039         | 18.63             | 1.33                    | \$75,016         | 5.72            | R                 | 1.79                    | \$56,010         | 5.03            | 1.64                    | \$60,860         | 6.58              |
| \$0.5m        | 0                 | 4.18                | \$23,910         | 22.82             | 1.28                    | \$77,853         | 7.01            | Н                 | 1.95                    | \$51,181         | 6.98            | 1.64                    | \$60,861         | 8.22              |
| \$0.6m        | 0                 | 4.04                | \$24,722         | 26.86             | 1.24                    | \$80,497         | 8.25            | G                 | 0.85                    | \$117,100        | 7.83            | 1.64                    | \$60,914         | 9.86              |
| \$0.7m        | 0                 | 3.92                | \$25,484         | 30.78             | 1.21                    | \$82,978         | 9.45            | С                 | 1.82                    | \$54,935         | 9.65            | 1.64                    | \$60,943         | 11.51             |
| \$0.8m        | 0                 | 3.82                | \$26,203         | 34.60             | 1.17                    | \$85,318         | 10.63           | R                 | 1.78                    | \$56,149         | 11.43           | 1.64                    | \$61,010         | 13.14             |
| \$0.9m        | 0                 | 3.72                | \$26,884         | 38.32             | 1.14                    | \$87,537         | 11.77           | Н                 | 1.95                    | \$51,318         | 13.38           | 1.64                    | \$61,023         | 14.78             |
| \$1.0m        | 0                 | 3.63                | \$27,533         | 41.95             | 1.12                    | \$89,648         | 12.88           | U                 | 0.92                    | \$109,086        | 14.30           | 1.64                    | \$61,087         | 16.42             |
| \$1.1m        | 0                 | 3.55                | \$28,152         | 45.51             | 1.09                    | \$91,665         | 13.98           | R                 | 1.78                    | \$56,286         | 16.08           | 1.64                    | \$61,160         | 18.06             |
| \$1.2m        | 0                 | 3.48                | \$28,745         | 48.98             | 1.07                    | \$93,595         | 15.04           | W                 | 1.27                    | \$78,489         | 17.35           | 1.63                    | \$61,172         | 19.69             |
| \$1.3m        | 0                 | 3.41                | \$29,315         | 52.40             | 1.05                    | \$95,451         | 16.09           | Н                 | 1.94                    | \$51,454         | 19.29           | 1.63                    | \$61,185         | 21.32             |
| \$1.4m        | 0                 | 3.35                | \$29,863         | 55.74             | 1.03                    | \$97,235         | 17.12           | D                 | 0.53                    | \$190,075        | 19.82           | 1.63                    | \$61,187         | 22.96             |
| \$1.5m        | 0                 | 3.29                | \$30,392         | 59.03             | 1.01                    | \$98,958         | 18.13           | C                 | 1.81                    | \$55,162         | 21.63           | 1.63                    | \$61,195         | 24.59             |
| \$1.6m        | 0                 | 3.24                | \$30,903         | 62.27             | 0.99                    | \$100,621        | 19.12           | G                 | 0.85                    | \$117,742        | 22.48           | 1.63                    | \$61,247         | 26.23             |
| \$1.7m        | 0                 | 3.18                | \$31,398         | 65.46             | 0.98                    | \$102,232        | 20.10           | R                 | 1.77                    | \$56,424         | 24.25           | 1.63                    | \$61,309         | 27.86             |
| \$1.8m        | 0                 | 3.14                | \$31,877         | 68.59             | 0.96                    | \$103,794        | 21.07           | H                 | 1.94                    | \$51,589         | 26.19           | 1.63                    | \$61,346         | 29.49             |
| \$1.9m        | 0                 | 3.09                | \$32,343         | 71.68             | 0.95                    | \$105,309        | 22.02           | U                 | 0.91                    | \$109,554        | 27.11           | 1.63                    | \$61,349         | 31.12             |
| \$2.0m        | 0                 | 3.05                | \$32,795         | 74.73             | 0.94                    | \$106,782        | 22.95           | C                 | 1.81                    | \$55,387         | 28.91           | 1.63                    | \$61,444         | 32.74             |
| \$2.1m        | 0                 | 3.01                | \$33,235         | 77.74             | 0.92                    | \$108,217        | 23.88           | R                 | 1.77                    | \$56,561         | 30.68           | 1.63                    | \$61,458         | 34.57             |
| \$2.2m        | 0                 | 2.97                | \$33,664         | 80.71             | 0.91                    | \$109,612        | 24.79           | H                 | 1.93                    | \$51,724         | 32.61           | 1.63                    | \$61,506         | 36.00             |
| \$2.3m        | 0                 | 2.93                | \$34,083         | 83.65             | 0.90                    | \$110,975        | 25.69           | G                 | 0.84                    | \$118,377        | 33.46           | 1.62                    | \$61,577         | 37.62             |
| \$2.4m        | 0                 | 2.90                | \$34,491         | 80.33             | 0.89                    | \$112,504        | 20.38           | D                 | 0.32                    | \$191,504        | 25.90           | 1.62                    | \$61,002         | 39.24             |
| \$2.5m        | 0                 | 2.07                | \$34,690         | 02.25             | 0.88                    | \$113,003        | 27.40           | K                 | 1.70                    | \$30,098         | 26.65           | 1.62                    | \$61,007         | 40.87             |
| \$2.0m        | 0                 | 2.83                | \$35,280         | 92.23             | 0.87                    | \$114,673        | 20.33           | U<br>11           | 1.02                    | \$110,019        | 29.59           | 1.62                    | \$61,609         | 42.49             |
| \$2.7m        | 0                 | 2.80                | \$36,035         | 95.05             | 0.85                    | \$117 330        | 30.04           | II<br>C           | 1.95                    | \$55,609         | 40.38           | 1.62                    | \$61,603         | 45.73             |
| \$2.0m        | 0                 | 2.78                | \$36,400         | 100.57            | 0.85                    | \$117,530        | 30.89           | R                 | 1.30                    | \$56,834         | 40.38           | 1.62                    | \$61,755         | 47.35             |
| \$3.0m        | 0                 | 2.73                | \$36,759         | 103.29            | 0.84                    | \$119,689        | 31.72           | H                 | 1.70                    | \$51,991         | 44.06           | 1.62                    | \$61,823         | 48.97             |
| \$3.1m        | 0                 | 2.69                | \$37,111         | 105.29            | 0.83                    | \$120,836        | 32.55           | U                 | 0.91                    | \$110 482        | 44 97           | 1.62                    | \$61,869         | 50.59             |
| \$3.2m        | 0                 | 2.67                | \$37,456         | 108.66            | 0.82                    | \$121,959        | 33.37           | R                 | 1.76                    | \$56,970         | 46.72           | 1.62                    | \$61,903         | 52.20             |
| \$3.3m        | 0                 | 2.65                | \$37,796         | 111.30            | 0.81                    | \$123,063        | 34.18           | G                 | 0.84                    | \$119.005        | 47.56           | 1.62                    | \$61,904         | 53.82             |
| \$3.4m        | 0                 | 2.62                | \$38,127         | 113.93            | 0.81                    | \$124,148        | 34.99           | С                 | 1.79                    | \$55,831         | 49.35           | 1.61                    | \$61,936         | 55.43             |
| \$3.5m        | 0                 | 2.60                | \$38,456         | 116.53            | 0.80                    | \$125,214        | 35.79           | Н                 | 1.92                    | \$52,123         | 51.27           | 1.61                    | \$61,981         | 57.05             |
| \$3.6m        | 0                 | 2.58                | \$38,778         | 119.11            | 0.79                    | \$126,261        | 36.58           | D                 | 0.52                    | \$192,644        | 51.79           | 1.61                    | \$62,014         | 58.66             |
| \$3.7m        | 0                 | 2.56                | \$39,095         | 121.66            | 0.79                    | \$127,291        | 37.37           | R                 | 1.75                    | \$57,106         | 53.54           | 1.61                    | \$62,051         | 60.27             |
| \$3.8m        | 0                 | 2.54                | \$39,406         | 124.20            | 0.78                    | \$128,307        | 38.14           | U                 | 0.90                    | \$110,943        | 54.44           | 1.61                    | \$62,127         | 61.88             |
| \$3.9m        | 0                 | 2.52                | \$39,712         | 126.72            | 0.77                    | \$129,306        | 38.92           | Н                 | 1.91                    | \$52,255         | 56.36           | 1.61                    | \$62,137         | 63.49             |
| \$4.0m        | 0                 | 2.50                | \$40,014         | 129.22            | 0.77                    | \$130,288        | 39.69           | С                 | 1.78                    | \$56,050         | 58.14           | 1.61                    | \$62,180         | 65.10             |
| \$4.1m        | 0                 | 2.48                | \$40,311         | 131.70            | 0.76                    | \$131,258        | 40.45           | R                 | 1.75                    | \$57,242         | 59.89           | 1.61                    | \$62,198         | 66.70             |
| \$4.2m        | 0                 | 2.46                | \$40,604         | 134.16            | 0.76                    | \$132,212        | 41.20           | G                 | 0.84                    | \$119,626        | 60.73           | 1.61                    | \$62,227         | 68.31             |
| \$4.3m        | 0                 | 2.45                | \$40,895         | 136.61            | 0.75                    | \$133,152        | 41.95           | Н                 | 1.91                    | \$52,386         | 62.63           | 1.61                    | \$62,294         | 69.92             |
| \$4.4m        | 0                 | 2.43                | \$41,179         | 139.04            | 0.75                    | \$134,082        | 42.70           | R                 | 1.74                    | \$57,377         | 64.38           | 1.60                    | \$62,345         | 71.52             |
| \$4.5m        | 0                 | 2.41                | \$41,459         | 141.45            | 0.74                    | \$134,996        | 43.44           | U                 | 0.90                    | \$111,403        | 65.27           | 1.60                    | \$62,384         | 73.12             |
| \$4.6m        | 0                 | 2.40                | \$41,738         | 143.84            | 0.74                    | \$135,899        | 44.18           | С                 | 1.78                    | \$56,268         | 67.05           | 1.60                    | \$62,421         | 74.73             |
| \$4.7m        | 0                 | 2.38                | \$42,012         | 146.22            | 0.73                    | \$136,791        | 44.91           | D                 | 0.52                    | \$193,915        | 67.57           | 1.60                    | \$62,423         | 76.33             |
| \$4.8m        | 0                 | 2.37                | \$42.282         | 148.59            | 0.73                    | \$137.669        | 45.63           | Н                 | 1.90                    | \$52.517         | 69.47           | 1.60                    | \$62,448         | 77.93             |

## Table A2.2.4: Reallocation following net disinvestment (allocator has poor information)

|               |                   |                        | Reallocation      | with good i        | nformation             |                      |                  |                   |                        | Reallocation     | with poor i        | nformation             |                      |                    |
|---------------|-------------------|------------------------|-------------------|--------------------|------------------------|----------------------|------------------|-------------------|------------------------|------------------|--------------------|------------------------|----------------------|--------------------|
|               | Marginal          | Estimates              | s with good info  | rmation            | Estimate               | s with poor info     | rmation          | Marginal          | Estimates              | s with good info | rmation            | Estimates              | s with poor info     | rmation            |
| Budget imnact | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | $E(ICER_{m})^{c}$ | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^d$ | Tech <sup>a</sup> | $E(\Lambda E_{m})^{b}$ | E(ICER)          | $E(\Lambda E)^{d}$ | $E(\Lambda E_{m})^{b}$ | E(ICER) <sup>c</sup> | $E(\Lambda E)^{d}$ |
| \$4.9m        | 0                 | 2 35                   | \$42.548          | 150.94             | 0.72                   | \$138 541            | 46.36            | R                 | 1 74                   | \$57 512         | 71.21              | 1.60                   | \$62,491             | 79.53              |
| \$5.0m        | 0                 | 2.34                   | \$42,812          | 153.28             | 0.72                   | \$139 396            | 47.07            | G                 | 0.83                   | \$120.241        | 72.04              | 1.60                   | \$62,547             | 81.13              |
| \$5.1m        | 0                 | 2 32                   | \$43.072          | 155.60             | 0.71                   | \$140,245            | 47 79            | Ŵ                 | 1 25                   | \$80,254         | 73.29              | 1.60                   | \$62,548             | 82.73              |
| \$5.2m        | 0                 | 2.31                   | \$43,329          | 157.90             | 0.71                   | \$141.082            | 48.50            | H                 | 1.20                   | \$52,646         | 75.19              | 1.60                   | \$62,603             | 84.32              |
| \$5.3m        | 0                 | 2.29                   | \$43,582          | 160.20             | 0.70                   | \$141,908            | 49.20            | R                 | 1.73                   | \$57,646         | 76.92              | 1.60                   | \$62,638             | 85.92              |
| \$5.4m        | 0                 | 2.28                   | \$43,835          | 162.48             | 0.70                   | \$142,729            | 49.90            | U                 | 0.89                   | \$111.860        | 77.82              | 1.60                   | \$62,630             | 87.52              |
| \$5.5m        | 0                 | 2.20                   | \$44 084          | 164 75             | 0.70                   | \$143.536            | 50.60            | Č                 | 1 77                   | \$56,483         | 79.59              | 1.60                   | \$62,61              | 89.11              |
| \$5.6m        | 0                 | 2.26                   | \$44 328          | 167.00             | 0.69                   | \$144 336            | 51.29            | H                 | 1.89                   | \$52,775         | 81.48              | 1 59                   | \$62,757             | 90.71              |
| \$5.7m        | Ő                 | 2.26                   | \$44 571          | 169.25             | 0.69                   | \$145 125            | 51.98            | R                 | 1 73                   | \$57,780         | 83.21              | 1 59                   | \$62,783             | 92.30              |
| \$5.8m        | 0                 | 2.23                   | \$44 811          | 171.48             | 0.69                   | \$145,909            | 52.67            | D                 | 0.51                   | \$195 179        | 83.72              | 1 59                   | \$62,830             | 93.89              |
| \$5.0m        | 0                 | 2.23                   | \$45,049          | 173 70             | 0.68                   | \$146.683            | 53 35            | G                 | 0.83                   | \$120,850        | 84 55              | 1 59                   | \$62,864             | 95.48              |
| \$6.0m        | 0                 | 2.21                   | \$45,286          | 175.91             | 0.68                   | \$147 449            | 54.03            | Ŭ                 | 0.89                   | \$112,316        | 85.44              | 1 59                   | \$62,896             | 97.07              |
| \$6.1m        | 0                 | 2.20                   | \$45,517          | 178.11             | 0.67                   | \$148 207            | 54 70            | C                 | 1 76                   | \$56,698         | 87.21              | 1 59                   | \$62,899             | 98.66              |
| \$6.2m        | 0                 | 2.19                   | \$45,748          | 180.29             | 0.67                   | \$148,958            | 55.37            | H                 | 1.89                   | \$52,904         | 89.10              | 1.59                   | \$62,909             | 100.25             |
| \$6.3m        | 0                 | 2.18                   | \$45,977          | 182.47             | 0.67                   | \$149 701            | 56.04            | R                 | 1 73                   | \$57 914         | 90.82              | 1 59                   | \$62,929             | 101.84             |
| \$6.4m        | 0                 | 2.16                   | \$46.202          | 184.63             | 0.66                   | \$150.435            | 56.70            | H                 | 1.89                   | \$53.032         | 92.71              | 1.59                   | \$63.062             | 103.43             |
| \$6.5m        | 0                 | 2.15                   | \$46.425          | 186.78             | 0.66                   | \$151,165            | 57.37            | R                 | 1.72                   | \$58.048         | 94.43              | 1.59                   | \$63.074             | 105.01             |
| \$6.6m        | 0                 | 2.14                   | \$46.648          | 188.93             | 0.66                   | \$151,888            | 58.02            | C                 | 1.76                   | \$56,911         | 96.19              | 1.58                   | \$63,135             | 106.60             |
| \$6.7m        | 0                 | 2.13                   | \$46.867          | 191.06             | 0.66                   | \$152,600            | 58.68            | Ū                 | 0.89                   | \$112,770        | 97.08              | 1.58                   | \$63,149             | 108.18             |
| \$6.8m        | 0                 | 2.12                   | \$47.083          | 193.19             | 0.65                   | \$153,311            | 59.33            | G                 | 0.82                   | \$121,453        | 97.90              | 1.58                   | \$63,178             | 109.76             |
| \$6.9m        | 0                 | 2.11                   | \$47.299          | 195.30             | 0.65                   | \$154,010            | 59.98            | Н                 | 1.88                   | \$53,159         | 99.78              | 1.58                   | \$63,213             | 111.34             |
| \$7.0m        | 0                 | 2.10                   | \$47.515          | 197.40             | 0.65                   | \$154,708            | 60.63            | R                 | 1.72                   | \$58,181         | 101.50             | 1.58                   | \$63,219             | 112.93             |
| \$7.1m        | 0                 | 2.10                   | \$47.724          | 199.50             | 0.64                   | \$155.395            | 61.27            | D                 | 0.51                   | \$196,434        | 102.01             | 1.58                   | \$63,234             | 114.51             |
| \$7.2m        | 0                 | 2.09                   | \$47.936          | 201.59             | 0.64                   | \$156,077            | 61.91            | R                 | 1.71                   | \$58,314         | 103.72             | 1.58                   | \$63,363             | 116.09             |
| \$7.3m        | 0                 | 2.08                   | \$48,142          | 203.66             | 0.64                   | \$156,757            | 62.55            | Н                 | 1.88                   | \$53,286         | 105.60             | 1.58                   | \$63,364             | 117.66             |
| \$7.4m        | 0                 | 2.07                   | \$48,349          | 205.73             | 0.64                   | \$157,426            | 63.18            | С                 | 1.75                   | \$57,122         | 107.35             | 1.58                   | \$63,369             | 119.24             |
| \$7.5m        | 0                 | 2.06                   | \$48,555          | 207.79             | 0.63                   | \$158,093            | 63.82            | U                 | 0.88                   | \$113,222        | 108.23             | 1.58                   | \$63,403             | 120.82             |
| \$7.6m        | 0                 | 2.05                   | \$48,754          | 209.84             | 0.63                   | \$158,753            | 64.45            | G                 | 0.82                   | \$122,050        | 109.05             | 1.58                   | \$63,488             | 122.39             |
| \$7.7m        | 0                 | 2.04                   | \$48,957          | 211.88             | 0.63                   | \$159,408            | 65.07            | R                 | 1.71                   | \$58,447         | 110.76             | 1.57                   | \$63,508             | 123.97             |
| \$7.8m        | 0                 | 2.03                   | \$49,157          | 213.92             | 0.62                   | \$160,056            | 65.70            | Н                 | 1.87                   | \$53,412         | 112.64             | 1.57                   | \$63,514             | 125.54             |
| \$7.9m        | 0                 | 2.03                   | \$49,356          | 215.95             | 0.62                   | \$160,702            | 66.32            | С                 | 1.74                   | \$57,332         | 114.38             | 1.57                   | \$63,601             | 127.11             |
| \$8.0m        | 0                 | 2.02                   | \$49,549          | 217.96             | 0.62                   | \$161,340            | 66.94            | D                 | 0.51                   | \$197,681        | 114.89             | 1.57                   | \$63,635             | 128.69             |
| \$8.1m        | 0                 | 2.01                   | \$49,746          | 219.97             | 0.62                   | \$161,972            | 67.56            | R                 | 1.71                   | \$58,579         | 116.59             | 1.57                   | \$63,651             | 130.26             |
| \$8.2m        | 0                 | 2.00                   | \$49,940          | 221.98             | 0.61                   | \$162,604            | 68.17            | U                 | 0.88                   | \$113,671        | 117.47             | 1.57                   | \$63,655             | 131.83             |
| \$8.3m        | 0                 | 1.99                   | \$50,130          | 223.97             | 0.61                   | \$163,225            | 68.79            | Н                 | 1.87                   | \$53,538         | 119.34             | 1.57                   | \$63,663             | 133.40             |
| \$8.4m        | 0                 | 1.99                   | \$50,320          | 225.96             | 0.61                   | \$163,848            | 69.40            | R                 | 1.70                   | \$58,711         | 121.04             | 1.57                   | \$63,795             | 134.97             |
| \$8.5m        | 0                 | 1.98                   | \$50,510          | 227.94             | 0.61                   | \$164,460            | 70.00            | G                 | 0.82                   | \$122,641        | 121.86             | 1.57                   | \$63,796             | 136.53             |
| \$8.6m        | 0                 | 1.97                   | \$50,697          | 229.91             | 0.61                   | \$165,071            | 70.61            | Н                 | 1.86                   | \$53,663         | 123.72             | 1.57                   | \$63,812             | 138.10             |
| \$8.7m        | 0                 | 1.97                   | \$50,883          | 231.88             | 0.60                   | \$165,678            | 71.21            | С                 | 1.74                   | \$57,540         | 125.46             | 1.57                   | \$63,833             | 139.67             |
| \$8.8m        | 0                 | 1.96                   | \$51,067          | 233.83             | 0.60                   | \$166,279            | 71.82            | W                 | 1.22                   | \$81,945         | 126.68             | 1.57                   | \$63,866             | 141.23             |
| \$8.9m        | Н                 | 1.95                   | \$51,181          | 235.79             | 1.64                   | \$60,861             | 73.46            | U                 | 0.88                   | \$114,121        | 127.56             | 1.56                   | \$63,906             | 142.80             |
| \$9.0m        | 0                 | 1.95                   | \$51,251          | 237.74             | 0.60                   | \$166,875            | 74.06            | R                 | 1.70                   | \$58,843         | 129.26             | 1.56                   | \$63,938             | 144.36             |
| \$9.1m        | Н                 | 1.95                   | \$51,318          | 239.69             | 1.64                   | \$61,023             | 75.70            | Н                 | 1.86                   | \$53,787         | 131.12             | 1.56                   | \$63,959             | 145.93             |
| \$9.2m        | 0                 | 1.94                   | \$51,432          | 241.63             | 0.60                   | \$167,471            | 76.29            | D                 | 0.50                   | \$198,921        | 131.62             | 1.56                   | \$64,034             | 147.49             |
| \$9.3m        | H                 | 1.94                   | \$51,454          | 243.58             | 1.63                   | \$61,185             | 77.93            | С                 | 1.73                   | \$57,746         | 133.35             | 1.56                   | \$64,062             | 149.05             |
| \$9.4m        | Н                 | 1.94                   | \$51,589          | 245.51             | 1.63                   | \$61,346             | 79.56            | R                 | 1.70                   | \$58,974         | 135.05             | 1.56                   | \$64,081             | 150.61             |
| \$9.5m        | 0                 | 1.94                   | \$51,616          | 247.45             | 0.60                   | \$168,056            | 80.15            | G                 | 0.81                   | \$123,226        | 135.86             | 1.56                   | \$64,100             | 152.17             |
| \$9.6m        | Н                 | 1.93                   | \$51,724          | 249.38             | 1.63                   | \$61,506             | 81.78            | Н                 | 1.85                   | \$53,911         | 137.71             | 1.56                   | \$64,107             | 153.73             |
| \$9.7m        | 0                 | 1.93                   | \$51,792          | 251.32             | 0.59                   | \$168,643            | 82.37            | U                 | 0.87                   | \$114,566        | 138.58             | 1.56                   | \$64,156             | 155.29             |
| \$9.8m        | H                 | 1.93                   | \$51,858          | 253.24             | 1.62                   | \$61,665             | 83.99            | R                 | 1.69                   | \$59,106         | 140.28             | 1.56                   | \$64,224             | 156.84             |
| \$9.9m        | 0                 | 1.92                   | \$51,972          | 255.17             | 0.59                   | \$169.222            | 84.58            | I H               | 1.85                   | \$54.034         | 142.13             | 1.56                   | \$64.253             | 158.40             |

|                      |                   |                   | Reallocation         | with good i       | nformation        |                        |                 |                   |                   | Reallocation   | with poor i     | nformation        |                  |                   |
|----------------------|-------------------|-------------------|----------------------|-------------------|-------------------|------------------------|-----------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------|-------------------|
|                      | Marginal          | Estimates         | s with good info     | rmation           | Estimates         | s with poor info       | rmation         | Marginal          | Estimates         | with good info | rmation         | Estimates         | s with poor info | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$        | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER_m) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$10.0m              | Н                 | 1.92              | \$51.991             | 257.09            | 1.62              | \$61.823               | 86.20           | C                 | 1.73              | \$57.951       | 143.85          | 1.56              | \$64.289         | 159.96            |
| \$10.1m              | Н                 | 1.92              | \$52,123             | 259.01            | 1.61              | \$61,981               | 87.82           | R                 | 1.69              | \$59.237       | 145 54          | 1.55              | \$64 366         | 161 51            |
| \$10.2m              | 0                 | 1.92              | \$52,149             | 260.93            | 0.59              | \$169 799              | 88.40           | Н                 | 1.85              | \$54 157       | 147 39          | 1.55              | \$64 399         | 163.06            |
| \$10.2m              | M                 | 1.92              | \$52,170             | 262.84            | -0.18             | -\$548.002             | 88.22           | G                 | 0.81              | \$123,806      | 148.20          | 1.55              | \$64 402         | 164.62            |
| \$10.6m              | 0                 | 1.92              | \$52,170             | 264.76            | -0.10             | -\$1.02m               | 88.12           | U                 | 0.87              | \$115,013      | 149.06          | 1.55              | \$64 405         | 166.17            |
| \$10.5m              | H                 | 1.91              | \$52,255             | 266.67            | 1.61              | \$62 137               | 89.73           | D                 | 0.50              | \$200,152      | 149.56          | 1.55              | \$64 430         | 167.72            |
| \$10.5m              | 0                 | 1.91              | \$52,235             | 268.58            | 0.59              | \$170.372              | 90.32           | R                 | 1.68              | \$59.367       | 151.25          | 1.55              | \$64 508         | 169.27            |
| \$10.0m              | H                 | 1.91              | \$52,326             | 270.49            | 1.61              | \$62,294               | 91.93           | C C               | 1.00              | \$58,155       | 152.97          | 1.55              | \$64 515         | 170.82            |
| \$10.7m              | 0                 | 1.91              | \$52,500             | 270.49            | 0.59              | \$170.940              | 92.51           | Н                 | 1.72              | \$54,279       | 154.81          | 1.55              | \$64 544         | 172.37            |
| \$10.0m              | н                 | 1.90              | \$52,477             | 272.40            | 1.60              | \$62.448               | 94.11           | R                 | 1.64              | \$59.498       | 156.49          | 1.55              | \$64,650         | 173.92            |
| \$10.7m              | Н                 | 1.90              | \$52,517             | 274.30            | 1.60              | \$62,603               | 95 71           | II.               | 0.87              | \$115.455      | 157.36          | 1.55              | \$64,653         | 175.02            |
| \$11.0m              | 0                 | 1.90              | \$52,640             | 278.10            | 0.58              | \$171.506              | 96.20           | U<br>Н            | 1.84              | \$54,400       | 150.20          | 1.55              | \$64,699         | 177.01            |
| \$11.1m<br>\$11.2m   | - U<br>Н          | 1.90              | \$52,075             | 270.10            | 1.50              | \$62,757               | 07.80           | G                 | 0.80              | \$124,400      | 160.00          | 1.55              | \$64,701         | 178.56            |
| \$11.2m              | 0                 | 1.89              | \$52,775             | 279.99            | 0.58              | \$172.067              | 97.89           | G                 | 1 71              | \$58 357       | 161 71          | 1.55              | \$64,701         | 180.10            |
| \$11.5m              | - U               | 1.89              | \$52,04              | 201.09            | 1.50              | \$62,000               | 100.06          | D D               | 1.71              | \$50,557       | 162.20          | 1.54              | \$64,701         | 191.64            |
| \$11.4III<br>\$11.5m | 0                 | 1.09              | \$52,904             | 205.70            | 0.58              | \$02,909               | 100.00          |                   | 0.50              | \$39,027       | 162.80          | 1.54              | \$64,791         | 192.10            |
| \$11.5m<br>\$11.6m   | <u></u><br>и      | 1.09              | \$53,017             | 285.00            | 1.50              | \$62,062               | 102.22          | <br>Ц             | 1.92              | \$201,377      | 165.72          | 1.54              | \$64,823         | 103.19            |
| \$11.0m              | 11                | 1.07              | \$53,052             | 207.33            | 1.59              | \$63,002               | 102.22          |                   | 5.02              | \$10,020       | 170.74          | 1.54              | \$64,855         | 194.73            |
| \$11./III<br>\$11.9m | П                 | 1.00              | \$53,139             | 209.43            | 1.58              | \$05,215               | 103.80          | U                 | 3.02              | \$19,920       | 171.60          | 1.34              | \$64,000         | 100.27            |
| \$11.0m              | U<br>U            | 1.00              | \$53,189             | 291.51            | 0.38              | \$62.264               | 104.56          | D D               | 0.80              | \$113,890      | 172.28          | 1.54              | \$64,901         | 10/.01            |
| \$11.9m              | П                 | 1.00              | \$53,280             | 295.19            | 1.38              | \$03,304               | 105.90          | R<br>C            | 1.07              | \$39,738       | 173.28          | 1.54              | \$64,932         | 100.80            |
| \$12.0m              | <u> </u>          | 1.07              | \$53,550             | 295.00            | 0.38              | \$1/3,/29              | 100.33          | U                 | 1./1              | \$38,338       | 176.99          | 1.54              | \$04,902         | 190.89            |
| \$12.1m              | H                 | 1.8/              | \$53,412             | 290.93            | 1.57              | \$03,514               | 108.11          | H                 | 1.83              | \$34,042       | 177.62          | 1.54              | \$64,976         | 192.43            |
| \$12.2m              | 0                 | 1.8/              | \$53,525             | 298.80            | 0.57              | \$1/4,2//              | 108.08          | G<br>D            | 0.80              | \$124,950      | 170.20          | 1.54              | \$64,997         | 193.97            |
| \$12.5m              | H                 | 1.8/              | \$33,338             | 202.52            | 1.57              | \$03,003               | 111.25          | R II              | 1.0/              | \$39,887       | 1/9.29          | 1.54              | \$65,072         | 195.50            |
| \$12.4m<br>\$12.5m   | П                 | 1.80              | \$33,003             | 204.20            | 0.57              | \$05,612               | 111.62          | п<br>W            | 1.03              | \$34,702       | 101.11          | 1.54              | \$65,119         | 197.04            |
| \$12.50              | <u> </u>          | 1.80              | \$53,088             | 20(.25            | 0.37              | \$174,622              | 112.39          | VV<br>II          | 1.20              | \$65,309       | 102.31          | 1.54              | \$05,152         | 198.38            |
| \$12.0III<br>\$12.7m | П                 | 1.80              | \$53,787             | 200.23            | 1.30              | \$03,939               | 113.90          | 0                 | 0.80              | \$110,557      | 103.17          | 1.53              | \$05,147         | 200.11            |
| \$12.7III<br>\$12.9  | <u> </u>          | 1.60              | \$53,639             | 200.07            | 0.37              | \$173,302              | 114.33          |                   | 1.70              | \$38,738       | 104.07          | 1.53              | \$05,184         | 201.04            |
| \$12.8m              | H                 | 1.85              | \$53,911             | 211.82            | 1.56              | \$04,107               | 116.09          | R                 | 1.07              | \$00,010       | 180.34          | 1.53              | \$65,213         | 203.18            |
| \$12.9m              | <u>U</u>          | 1.65              | \$54,022             | 212.67            | 0.37              | \$1/3,696              | 110.03          |                   | 1.82              | \$202,393      | 100.05          | 1.55              | \$65,210         | 204.71            |
| \$13.0m              | П                 | 1.65              | \$54,054             | 215.51            | 1.30              | \$64,233               | 110.21          | п                 | 1.82              | \$34,001       | 100.03          | 1.53              | \$65,201         | 200.24            |
| \$13.1m              | П                 | 1.65              | \$54,157             | 217.26            | 1.55              | \$04,399               | 119.70          | B                 | 0.80              | \$125,515      | 101.21          | 1.55              | \$03,290         | 207.78            |
| \$13.2m              | <u>U</u>          | 1.63              | \$54,180             | 210.20            | 0.37              | \$170,432              | 120.55          | K<br>U            | 1.00              | \$00,143       | 191.51          | 1.55              | \$05,555         | 209.51            |
| \$13.5III<br>\$13.4m | П                 | 1.64              | \$54,279             | 221.04            | 1.55              | \$04,344               | 121.00          | U                 | 0.80              | \$110,773      | 192.17          | 1.55              | \$65,392         | 210.85            |
| \$13.4m              | U<br>U            | 1.64              | \$54,546             | 222.04            | 0.37              | \$170,903              | 122.43          | П                 | 1.62              | \$53,000       | 195.99          | 1.53              | \$65,402         | 212.30            |
| \$13.5m<br>\$13.6m   | 0                 | 1.04              | \$54,400             | 324.00            | 1.55              | \$177.407              | 123.99          | P                 | 1./0              | \$20,720       | 193.00          | 1.33              | \$65.404         | 213.09            |
| \$13.0m              | U                 | 1.03              | \$54,511             | 226.55            | 0.30              | \$1//,48/              | 124.33          | к<br>u            | 1.00              | \$00,274       | 197.54          | 1.33              | \$65,493         | 213.42            |
| \$13./111            | п<br>บ            | 1.03              | \$54,521             | 320.33            | 1.34              | \$64.074               | 120.10          | С                 | 1.61              | \$126.072      | 199.10          | 1.33              | \$65,545         | 210.95            |
| \$13.00              | 0                 | 1.03              | \$54,042             | 220.21            | 1.34              | \$179.015              | 127.04          |                   | 0.79              | \$120,072      | 200 44          | 1.52              | \$65.600         | 210.4/            |
| \$13.9m              | U<br>11           | 1.83              | \$34,0/2             | 222.02            | 0.56              | \$1/8,015              | 128.20          |                   | 0.49              | \$203,803      | 200.44          | 1.52              | \$05,000         | 219.99            |
| \$14.0m              | П                 | 1.63              | \$54,702             | 222.05            | 0.56              | \$03,119               | 129.75          | D D               | 1.09              | \$39,133       | 202.13          | 1.52              | \$65,622         | 221.32            |
| \$14.111             | U<br>17           | 1.02              | \$34,034<br>\$51,001 | 225 60            | 0.30              | \$1/0,330              | 121.02          | K<br>U            | 1.00              | \$00,402       | 203.78          | 1.52              | \$03,032         | 223.04            |
| \$14.2111            | С                 | 1.02              | \$54,081             | 227 50            | 1.33              | \$60.042               | 122 47          | U<br>11           | 0.65              | \$117,211      | 204.04          | 1.52              | \$03,037         | 224.37            |
| \$14.3III<br>\$14.4m | 0                 | 1.62              | \$54,933             | 220.22            | 0.54              | \$170.054              | 133.47          | Р                 | 1.61              | \$55,230       | 200.45          | 1.52              | \$65,083         | 220.09            |
| \$14.4m<br>\$14.5    | U<br>11           | 1.02              | \$54,990             | 241 14            | 0.30              | \$1/9,034              | 134.03          | R. U              | 1.03              | \$00,330       | 200.10          | 1.52              | \$05,771         | 227.01            |
| \$14.5m              | П                 | 1.82              | \$35,000             | 242.05            | 1.53              | \$05,402<br>\$65,542   | 133.33          | п                 | 1.81              | \$33,334       | 209.91          | 1.52              | \$03,823         | 229.13            |
| \$14.0m<br>\$14.7m   | Н                 | 1.81              | \$55,119             | 244.95            | 1.53              | \$05,543               | 137.08          | C C               | 1.08              | \$39,349       | 211.39          | 1.52              | \$05,839         | 230.05            |
| \$14./M              | 0<br>C            | 1.81              | \$55,148             | 244.70            | 0.56              | \$1/9,369              | 13/.04          | U U               | 0.79              | \$120,029      | 212.38          | 1.52              | \$05,809         | 232.10            |
| \$14.8m              | <u></u><br>и      | 1.81              | \$55,162             | 240.38            | 1.03              | \$01,195               | 139.27          | U<br>P            | 0.85              | \$117,040      | 213.23          | 1.52              | \$05,880         | 233.08            |
| \$14.9m<br>\$15.0    | п                 | 1.01              | \$55,207             | 250.20            | 1.32              | \$03,083               | 140.79          | R. U              | 1.05              | \$00,038       | 214.00          | 1.52              | \$65,910         | 233.20            |
| 313.011              |                   | 1.01              | \$33,307             | 330.20            | 0.50              | \$100,003              | 141.33          | 1 1               | 1.00              | 333.4/1        | ∠10.00          | 1.52              | 303,902          | 230.12            |

|                      |                   |                   | Reallocation   | with good i       | nformation        |                      |                 |                   |                   | Reallocation   | with poor i       | nformation        |                  |                 |
|----------------------|-------------------|-------------------|----------------|-------------------|-------------------|----------------------|-----------------|-------------------|-------------------|----------------|-------------------|-------------------|------------------|-----------------|
|                      | Marginal          | Estimates         | with good info | rmation           | Estimate          | s with poor info     | rmation         | Marginal          | Estimates         | with good info | rmation           | Estimates         | s with poor info | rmation         |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ |
| \$15.1m              | Н                 | 1.81              | \$55.354       | 352.00            | 1.52              | \$65.823             | 142.87          | D                 | 0.49              | \$205.005      | 217.17            | 1.52              | \$65.993         | 238.23          |
| \$15.2m              | C                 | 1.81              | \$55 387       | 353.81            | 1.63              | \$61 444             | 144 50          | R                 | 1.65              | \$60,785       | 218.82            | 1.51              | \$66.049         | 239.75          |
| \$15.3m              | 0                 | 1.80              | \$55,463       | 355.61            | 0.55              | \$180,590            | 145.05          | C                 | 1.68              | \$59 543       | 220.50            | 1.51              | \$66,055         | 241.26          |
| \$15.4m              | н                 | 1.80              | \$55,471       | 357.41            | 1.52              | \$65,962             | 146.57          | H                 | 1.80              | \$55,587       | 220.00            | 1.51              | \$66,000         | 242 77          |
| \$15.5m              | Н                 | 1.80              | \$55 587       | 359.21            | 1.52              | \$66,100             | 148.08          | U                 | 0.85              | \$118.079      | 223.14            | 1.51              | \$66,123         | 244.28          |
| \$15.5m              | C                 | 1.80              | \$55,609       | 361.01            | 1.51              | \$61,691             | 149 70          | G                 | 0.09              | \$127,176      | 223.93            | 1.51              | \$66,125         | 245.80          |
| \$15.0m              | 0                 | 1.80              | \$55,620       | 362.81            | 0.55              | \$181.097            | 150.25          | R                 | 1.64              | \$60,913       | 225.55            | 1.51              | \$66,187         | 247.31          |
| \$15.8m              | Н                 | 1.80              | \$55,020       | 364.60            | 1.51              | \$66,238             | 151.76          | Н                 | 1.80              | \$55,703       | 223.37            | 1.51              | \$66,238         | 248.82          |
| \$15.0m              | 0                 | 1.00              | \$55,703       | 366.40            | 0.55              | \$181,600            | 152.31          | C II              | 1.60              | \$59,705       | 227.50            | 1.51              | \$66,250         | 250.33          |
| \$15.7m              | Н                 | 1.79              | \$55,772       | 368.19            | 1.51              | \$66 375             | 153.82          | R                 | 1.67              | \$61,040       | 229.04            | 1.51              | \$66,325         | 251.83          |
| \$16.0m              | C                 | 1.79              | \$55,831       | 369.98            | 1.51              | \$61,936             | 155.02          | W                 | 1.04              | \$85,132       | 231.85            | 1.51              | \$66,350         | 253.34          |
| \$16.1m              | P                 | 1.79              | \$55,851       | 371.77            | 1.01              | \$60,710             | 157.08          | II.               | 0.84              | \$118 511      | 231.85            | 1.51              | \$66,365         | 253.34          |
| \$16.2m              | R O               | 1.79              | \$55,072       | 272.56            | 0.55              | \$182,102            | 157.63          | U<br>Ц            | 1.70              | \$55,810       | 232.70            | 1.51              | \$66,305         | 256.35          |
| \$16.4m              | U<br>Н            | 1.79              | \$55,928       | 375.30            | 1.50              | \$66,512             | 150.13          | D                 | 0.48              | \$206 201      | 234.49            | 1.51              | \$66 378         | 250.55          |
| \$10.4III<br>\$16.5m | D                 | 1.79              | \$55,954       | 277.12            | 1.50              | \$60,512             | 160.79          | D<br>C            | 0.48              | \$127,720      | 234.97            | 1.51              | \$66,378         | 257.80          |
| \$10.50              | к<br>u            | 1.79              | \$56,010       | 379.01            | 1.04              | \$66,600             | 162.28          | P                 | 1.62              | \$127,720      | 233.13            | 1.51              | \$66.462         | 239.37          |
| \$10.0M              | П                 | 1.70              | \$56,048       | 280.70            | 1.30              | \$00,048             | 162.28          | K<br>C            | 1.03              | \$50,107       | 237.39            | 1.50              | \$00,405         | 260.87          |
| \$10./III<br>\$16.9m | 0                 | 1.70              | \$56,030       | 202.40            | 1.01              | \$02,180             | 164.42          | U U               | 1.07              | \$55,926       | 239.00            | 1.50              | \$66,512         | 202.37          |
| \$10.0III<br>\$1(.0  | 0<br>D            | 1.70              | \$30,079       | 204.20            | 0.33              | \$182,002            | 104.45          | П                 | 1./9              | \$55,954       | 240.83            | 1.50              | \$00,512         | 203.88          |
| \$16.9m              | K                 | 1.78              | \$56,149       | 286.04            | 1.64              | \$61,010             | 167.57          | K                 | 1.03              | \$01,293       | 242.48            | 1.50              | \$66,600         | 205.38          |
| \$17.0m              | H                 | 1.78              | \$50,102       | 380.04            | 1.50              | \$00,/84             | 10/.5/          | U                 | 0.84              | \$118,941      | 245.52            | 1.50              | \$00,005         | 200.88          |
| \$17.1m              | 0                 | 1.78              | \$50,233       | 387.82            | 0.55              | \$183,097            | 108.11          | H                 | 1./8              | \$56,048       | 245.10            | 1.50              | \$00,048         | 208.38          |
| \$17.2m              | U                 | 1.78              | \$50,208       | 389.00            | 1.60              | \$62,421             | 169.72          | C                 | 1.00              | \$60,118       | 240.77            | 1.50              | \$00,093         | 269.88          |
| \$17.3m              | H                 | 1.78              | \$56,276       | 391.38            | 1.49              | \$66,919             | 1/1.21          | G                 | 0.78              | \$128,261      | 247.55            | 1.50              | \$66,719         | 2/1.38          |
| \$17.4m              | R                 | 1./8              | \$56,286       | 393.15            | 1.64              | \$61,160             | 1/2.85          | K                 | 1.63              | \$61,420       | 249.17            | 1.50              | \$66,738         | 272.88          |
| \$17.5m              | 0                 | 1.//              | \$50,382       | 394.93            | 0.34              | \$183,387            | 1/3.39          | D                 | 0.48              | \$207,389      | 249.00            | 1.50              | \$00,701         | 274.38          |
| \$17.6m              | H<br>D            | 1.//              | \$50,389       | 390.70            | 1.49              | \$67,055             | 174.88          | H                 | 1./8              | \$50,102       | 251.44            | 1.50              | \$00,/84         | 2/5.8/          |
| \$17./m              | ĸ                 | 1.//              | \$50,424       | 398.47            | 1.63              | \$61,309             | 170.51          | U<br>D            | 0.84              | \$119,370      | 252.27            | 1.50              | \$00,840         | 277.37          |
| \$17.8m              | U U               | 1.//              | \$56,483       | 400.24            | 1.60              | \$62,661             | 1/8.11          | R                 | 1.62              | \$61,545       | 253.90            | 1.50              | \$66,874         | 2/8.86          |
| \$17.9m              | H                 | 1.//              | \$56,501       | 402.01            | 1.49              | \$6/,18/             | 1/9.60          | C U               | 1.66              | \$60,307       | 255.56            | 1.49              | \$66,903         | 280.36          |
| \$18.0m              | D                 | 1.//              | \$30,330       | 405.78            | 0.54              | \$184,081            | 180.14          | H                 | 1./8              | \$30,270       | 257.33            | 1.49              | \$66,919         | 281.85          |
| \$18.1m              | K                 | 1.//              | \$50,501       | 405.55            | 1.03              | \$01,458             | 181.//          | U<br>D            | 0.78              | \$128,798      | 258.11            | 1.49              | \$00,998         | 283.33          |
| \$18.2m              | H                 | 1.//              | \$50,014       | 407.32            | 1.49              | \$07,321             | 183.23          | K                 | 1.62              | \$01,0/1       | 259.75            | 1.49              | \$67,012         | 284.84          |
| \$18.5m              | 0                 | 1.76              | \$50,080       | 409.08            | 0.54              | \$184,507            | 185.79          | H                 | 1.//              | \$30,389       | 201.51            | 1.49              | \$67,053         | 280.33          |
| \$18.4m              | ĸ                 | 1.76              | \$50,098       | 410.84            | 1.62              | \$61,607             | 185.42          | U                 | 0.83              | \$119,796      | 262.34            | 1.49              | \$67,085         | 287.82          |
| \$18.5m              |                   | 1.70              | \$50,098       | 412.01            | 1.39              | \$62,899             | 187.01          |                   | 1.05              | \$00,490       | 203.99            | 1.49              | \$67,112         | 289.31          |
| \$18.0m              | П                 | 1.76              | \$30,723       | 414.57            | 1.46              | \$07,434             | 100.49          | D                 | 0.48              | \$208,371      | 204.47            | 1.49              | \$07,141         | 290.80          |
| \$18./m              | D                 | 1.76              | \$50,831       | 410.13            | 0.54              | \$185,052            | 189.03          | K                 | 1.62              | \$61,797       | 200.09            | 1.49              | \$67,147         | 292.29          |
| \$18.8m              | K                 | 1.76              | \$30,834       | 417.89            | 1.62              | \$01,/33             | 190.05          | H<br>C            | 1.//              | \$30,301       | 267.80            | 1.49              | \$67,18/         | 293.78          |
| \$18.9m              | п                 | 1.76              | \$30,857       | 419.03            | 1.48              | \$07,380             | 192.13          | U<br>D            | 0.77              | \$129,526      | 208.05            | 1.49              | \$07,274         | 293.20          |
| \$19.0m              |                   | 1.70              | \$50,911       | 421.41            | 1.38              | \$03,133             | 195./1          | R                 | 1.01              | \$61,922       | 270.25            | 1.49              | \$07,283         | 296.75          |
| \$19.1m              | H<br>D            | 1.76              | \$50,948       | 423.10            | 1.48              | \$07,718             | 195.19          |                   | 1.05              | \$60,683       | 271.90            | 1.49              | \$67,319         | 298.24          |
| \$19.2m              | ĸ                 | 1.76              | \$56,970       | 424.92            | 1.62              | \$61,903             | 196.81          | H                 | 1.//              | \$56,614       | 2/3.66            | 1.49              | \$67,321         | 299.72          |
| \$19.5m              | 0                 | 1.75              | \$36,983       | 420.07            | 0.54              | \$185,536            | 197.54          | U                 | 0.83              | \$120,223      | 2/4.50            | 1.49              | \$67,323         | 301.21          |
| \$19.4m              | H                 | 1.75              | \$57,058       | 428.42            | 1.47              | \$67,849             | 198.82          | K II              | 1.61              | \$62,047       | 2/6.11            | 1.48              | \$67,420         | 302.69          |
| \$19.5m              | ĸ                 | 1./5              | \$57,100       | 430.18            | 1.61              | \$62,051             | 200.43          | Н                 | 1./0              | \$30,725       | 279.25            | 1.48              | \$0/,454         | 304.17          |
| \$19.6m              | U<br>O            | 1.75              | \$57,122       | 431.93            | 1.58              | \$63,369             | 202.01          | D                 | 0.48              | \$209,746      | 278.35            | 1.48              | \$67,519         | 305.65          |
| \$19.7m              | 0                 | 1.75              | \$57,127       | 433.68            | 0.54              | \$186,012            | 202.55          | W                 | 1.15              | \$86,639       | 279.50            | 1.48              | \$67,525         | 307.13          |
| \$19.8m              | H                 | 1.75              | \$57,168       | 435.43            | 1.47              | \$67,980             | 204.02          | C                 | 1.64              | \$60,868       | 281.14            | 1.48              | \$67,525         | 308.61          |
| \$19.9m              | R                 | 1.75              | \$57,242       | 437.17            | 1.61              | \$62,198             | 205.62          | G                 | 0.77              | \$129,855      | 281.91            | 1.48              | \$67,548         | 310.10          |
| \$20.0m              | 0                 | 1.75              | \$57,277       | 438.92            | 0.54              | \$186,494            | 206.16          | K I               | 1.61              | \$62,172       | 283.52            | 1.48              | \$67,555         | 311.58          |
| \$20.1m              | Н                 | 1.75              | \$57,278       | 440.66            | 1.47              | \$68.111             | 207.63          | I U               | 0.83              | \$120.648      | 284.35            | 1.48              | \$67.561         | 313.06          |

|                    |                   |                   | Reallocation      | with good i       | nformation        |                        |                 |                   |                   | Reallocation   | with poor i     | nformation        |                                    |                 |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-----------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------------------------|-----------------|
|                    | Marginal          | Estimates         | with good info    | rmation           | Estimates         | s with poor info       | rmation         | Marginal          | Estimates         | with good info | rmation         | Estimates         | s with poor info                   | rmation         |
| Budget impact      | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER_m) <sup>c</sup> | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | E(ICER <sub>m</sub> ) <sup>c</sup> | $E(\Delta E)^d$ |
| \$20.2m            | C                 | 1.74              | \$57,332          | 442.41            | 1.57              | \$63,601               | 209.20          | Н                 | 1.76              | \$56.837       | 286.11          | 1.48              | \$67,586                           | 314.54          |
| \$20.3m            | R                 | 1.74              | \$57,377          | 444.15            | 1.60              | \$62,345               | 210.81          | R                 | 1.61              | \$62.296       | 287.72          | 1.48              | \$67.690                           | 316.01          |
| \$20.4m            | Н                 | 1.74              | \$57.387          | 445.89            | 1.47              | \$68,240               | 212.27          | Н                 | 1.76              | \$56.948       | 289.47          | 1.48              | \$67,718                           | 317.49          |
| \$20.5m            | 0                 | 1 74              | \$57 422          | 447.64            | 0.53              | \$186,965              | 212.81          | C                 | 1.64              | \$61.053       | 291.11          | 1 48              | \$67,730                           | 318.97          |
| \$20.6m            | H                 | 1.74              | \$57,496          | 449.37            | 1.46              | \$68.370               | 212.01          | Ŭ                 | 0.83              | \$121.068      | 291.94          | 1.47              | \$67,797                           | 320.44          |
| \$20.7m            | R                 | 1 74              | \$57 512          | 451.11            | 1.60              | \$62,491               | 215.87          | G                 | 0.77              | \$130.378      | 292.70          | 1 47              | \$67.820                           | 321.92          |
| \$20.8m            | C                 | 1 74              | \$57 540          | 452.85            | 1.57              | \$63,833               | 217.43          | R                 | 1.60              | \$62,420       | 294 30          | 1 47              | \$67.825                           | 323 39          |
| \$20.0m            | 0                 | 1 74              | \$57,510          | 454 59            | 0.53              | \$187.441              | 217.97          | Н                 | 1.75              | \$57.058       | 296.06          | 1 47              | \$67,849                           | 324.86          |
| \$2000 m           | Ĥ                 | 1 74              | \$57,604          | 456.32            | 1 46              | \$68,498               | 219.43          | D                 | 0.47              | \$210,914      | 296.53          | 1 47              | \$67,895                           | 326.34          |
| \$21.0m<br>\$21.1m | R                 | 1.73              | \$57,646          | 458.06            | 1.60              | \$62,638               | 221.02          | C                 | 1.63              | \$61,237       | 298.16          | 1 47              | \$67,934                           | 327.81          |
| \$21.1m            | 0                 | 1.73              | \$57,710          | 459.79            | 0.53              | \$187,910              | 221.56          | R                 | 1.60              | \$62 545       | 299.76          | 1 47              | \$67,960                           | 329.28          |
| \$21.2m            | Н                 | 1.73              | \$57,711          | 461.52            | 1 46              | \$68,627               | 223.01          | Н                 | 1.00              | \$57,168       | 301.51          | 1.17              | \$67,980                           | 330.75          |
| \$21.0 m           | C                 | 1.73              | \$57,746          | 463.26            | 1.10              | \$64.062               | 223.01          | U II              | 0.82              | \$121 490      | 302.34          | 1.17              | \$68,033                           | 332.22          |
| \$21.5m            | R                 | 1.73              | \$57,780          | 464.99            | 1.50              | \$62,783               | 226.17          | G                 | 0.02              | \$130,895      | 303.10          | 1.17              | \$68,090                           | 333.69          |
| \$21.5m            | Н                 | 1.73              | \$57,820          | 466.72            | 1.55              | \$68,755               | 220.17          | B                 | 1.60              | \$62,668       | 304 70          | 1.17              | \$68,094                           | 335.16          |
| \$21.0m            | 0                 | 1.73              | \$57,854          | 468.45            | 0.53              | \$188 377              | 227.02          | H                 | 1.00              | \$57,278       | 306.44          | 1.47              | \$68,111                           | 336.63          |
| \$21.7m            | R                 | 1.73              | \$57,001          | 470.17            | 1.59              | \$62,929               | 220.15          | C II              | 1.63              | \$61.419       | 308.07          | 1.17              | \$68,137                           | 338.09          |
| \$21.0m            | Н                 | 1.73              | \$57,927          | 471.90            | 1.55              | \$68,882               | 231.19          | B                 | 1.09              | \$62,791       | 309.66          | 1.17              | \$68,229                           | 339.56          |
| \$21.9m            | C                 | 1.73              | \$57,951          | 473.62            | 1.45              | \$64,289               | 232.75          | H                 | 1.39              | \$57 387       | 311.40          | 1.47              | \$68,220                           | 341.02          |
| \$22.0m            | 0                 | 1.73              | \$57,998          | 475.35            | 0.53              | \$188 847              | 233.28          | U II              | 0.82              | \$121.911      | 312.22          | 1.47              | \$68,240                           | 342.49          |
| \$22.1m            | Н                 | 1.72              | \$58.035          | 477.07            | 1.45              | \$69,009               | 233.20          | D                 | 0.02              | \$212.076      | 312.22          | 1.40              | \$68,200                           | 343.95          |
| \$22.2m            | R                 | 1.72              | \$58,035          | 478.79            | 1.45              | \$63,074               | 236.31          | C                 | 1.62              | \$61.601       | 314.32          | 1.40              | \$68,338                           | 345.42          |
| \$22.5m            | н                 | 1.72              | \$58,040          | 480.51            | 1.55              | \$60,136               | 230.51          | G                 | 0.76              | \$131.400      | 315.08          | 1.46              | \$68 357                           | 346.88          |
| \$22.4m            | 0                 | 1.72              | \$58,140          | 482.23            | 0.53              | \$189 304              | 238.29          | R                 | 1 59              | \$62.915       | 316.67          | 1.40              | \$68,363                           | 348 34          |
| \$22.5m            | C                 | 1.72              | \$58,155          | 483.95            | 1.55              | \$64 515               | 239.84          | H                 | 1.39              | \$57.496       | 318.41          | 1.40              | \$68,300                           | 349.81          |
| \$22.0m            | R                 | 1.72              | \$58,181          | 485.67            | 1.55              | \$63,219               | 241.42          | R                 | 1.59              | \$63,038       | 320.00          | 1.10              | \$68,496                           | 351.27          |
| \$22.7 m           | 0                 | 1.72              | \$58,282          | 487.39            | 0.53              | \$189 771              | 241.95          | Н                 | 1.39              | \$57,604       | 321.73          | 1.10              | \$68,498                           | 352.73          |
| \$22.0m            | R                 | 1.72              | \$58,314          | 489.10            | 1.58              | \$63,363               | 243.53          | U II              | 0.82              | \$122 327      | 322.55          | 1.10              | \$68,502                           | 354.19          |
| \$23.0m            | C                 | 1.71              | \$58,357          | 490.82            | 1.50              | \$64 740               | 245.07          | C C               | 1.62              | \$61,781       | 324.17          | 1.10              | \$68,532                           | 355.64          |
| \$23.0m            | 0                 | 1.71              | \$58,425          | 492.53            | 0.53              | \$190,226              | 245.60          | 0                 | 4 75              | \$21,064       | 328.91          | 1.10              | \$68,586                           | 357.10          |
| \$23.1m            | R                 | 1.71              | \$58,447          | 494.24            | 1.57              | \$63,508               | 247.17          | G                 | 0.76              | \$131.921      | 329.67          | 1 46              | \$68,623                           | 358 56          |
| \$23.2m            | C                 | 1.71              | \$58,558          | 495.95            | 1.54              | \$64,962               | 248.71          | H                 | 1 73              | \$57,711       | 331.41          | 1.10              | \$68,627                           | 360.02          |
| \$23.6m            | 0                 | 1.71              | \$58,550          | 497.65            | 0.52              | \$190,683              | 249.23          | R                 | 1.75              | \$63,160       | 332.99          | 1.10              | \$68,629                           | 361.47          |
| \$23.5m            | R                 | 1.71              | \$58,502          | 499.36            | 1.57              | \$63,651               | 250.81          | D                 | 0.47              | \$213 231      | 333.46          | 1.10              | \$68,641                           | 362.93          |
| \$23.6m            | 0                 | 1.71              | \$58,703          | 501.06            | 0.52              | \$191 139              | 251.33          | W                 | 1 14              | \$88,096       | 334 59          | 1.10              | \$68,660                           | 364.39          |
| \$23.0m            | R                 | 1.70              | \$58,703          | 502.77            | 1.57              | \$63,795               | 252.90          | Ü                 | 0.81              | \$122,746      | 335.41          | 1.10              | \$68,736                           | 365.84          |
| \$23.8m            | C                 | 1.70              | \$58,758          | 504 47            | 1.53              | \$65,184               | 254.43          | C                 | 1.61              | \$61,961       | 337.02          | 1.45              | \$68,737                           | 367.30          |
| \$23.9m            | 0                 | 1.70              | \$58 841          | 506.17            | 0.52              | \$191 593              | 254.95          | H                 | 1.01              | \$57 820       | 338 75          | 1.45              | \$68 755                           | 368 75          |
| \$24.0m            | R                 | 1.70              | \$58,843          | 507.87            | 1.56              | \$63,938               | 256.52          | R                 | 1.58              | \$63.283       | 340.33          | 1.45              | \$68,763                           | 370.21          |
| \$24.0m            | C                 | 1.70              | \$58,956          | 509.57            | 1.53              | \$65,404               | 258.04          | Н                 | 1.73              | \$57,927       | 342.06          | 1.45              | \$68,882                           | 371.66          |
| \$24.1m            | R                 | 1.70              | \$58,974          | 511.26            | 1.55              | \$64.081               | 259.61          | G                 | 0.76              | \$132,428      | 342.81          | 1.45              | \$68,886                           | 373.11          |
| \$24.3m            | 0                 | 1.70              | \$58,983          | 512.96            | 0.52              | \$192.042              | 260.13          | R                 | 1 58              | \$63,406       | 344 39          | 1.45              | \$68,895                           | 374 56          |
| \$24.0m            | R                 | 1.69              | \$59,106          | 514.65            | 1.56              | \$64 224               | 261.68          | C                 | 1.61              | \$62,138       | 346.00          | 1.45              | \$68,935                           | 376.01          |
| \$24.5m            | 0                 | 1.69              | \$59 116          | 516.34            | 0.52              | \$192,489              | 262.20          | Ŭ                 | 0.81              | \$123,160      | 346.81          | 1.45              | \$68,968                           | 377.46          |
| \$24.6m            | č                 | 1.69              | \$59,153          | 518.03            | 1.52              | \$65.622               | 263.73          | H                 | 1.72              | \$58.035       | 348.53          | 1.45              | \$69,009                           | 378.91          |
| \$24.7m            | R                 | 1.69              | \$59.237          | 519.72            | 1.55              | \$64,366               | 265.28          | D                 | 0.47              | \$214,381      | 349.00          | 1.45              | \$69.011                           | 380.36          |
| \$24.8m            | 0                 | 1.69              | \$59.256          | 521.41            | 0.52              | \$192,938              | 265.80          | R                 | 1.57              | \$63.528       | 350.57          | 1.45              | \$69.028                           | 381.81          |
| \$24.9m            | Č                 | 1.68              | \$59,349          | 523.09            | 1.52              | \$65.839               | 267.32          | C                 | 1.60              | \$62.316       | 352.18          | 1.45              | \$69,131                           | 383.25          |
| \$25.0m            | R                 | 1.68              | \$59.367          | 524.78            | 1.55              | \$64,508               | 268.87          | H                 | 1.72              | \$58,140       | 353.90          | 1.45              | \$69,136                           | 384.70          |
| \$25.1m            | 0                 | 1.68              | \$59.389          | 526.46            | 0.52              | \$193.386              | 269.38          | G                 | 0.75              | \$132.929      | 354.65          | 1.45              | \$69.148                           | 386.15          |
| \$25.2m            | R                 | 1.68              | \$59 498          | 528.14            | 1.55              | \$64 650               | 270.93          | R                 | 1.57              | \$63 650       | 356.22          | 1 45              | \$69.161                           | 387 59          |

|                      |                   |                    | Reallocation     | with good i        | nformation         |                      |                    |                   |                    | Reallocation   | with poor i        | nformation         |                      |                  |
|----------------------|-------------------|--------------------|------------------|--------------------|--------------------|----------------------|--------------------|-------------------|--------------------|----------------|--------------------|--------------------|----------------------|------------------|
|                      | Marginal          | Estimates          | s with good info | rmation            | Estimate           | s with poor info     | rmation            | Marginal          | Estimates          | with good info | rmation            | Estimate           | s with poor info     | rmation          |
| Budget imnact        | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER )         | $E(\Lambda E)^{d}$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>e</sup> | $E(\Lambda E)^{d}$ | Tech <sup>a</sup> | $E(\Lambda E)^{b}$ | E(ICER )       | $E(\Lambda E)^{d}$ | $E(\Lambda E)^{b}$ | E(ICER) <sup>e</sup> | $E(\Lambda E)^d$ |
| \$25.3m              | 0                 | 1 68               | \$59 527         | 529.82             | 0.52               | \$193 798            | 271.45             | U                 | 0.81               | \$123 574      | 357.03             | 1 45               | \$69 200             | 389.04           |
| \$25.4m              | Č                 | 1.68               | \$59.543         | 531.50             | 1.51               | \$66,055             | 272.96             | R                 | 1 57               | \$63,771       | 358.60             | 1 44               | \$69,200             | 390.48           |
| \$25.5m              | R                 | 1.68               | \$59,627         | 533.18             | 1.54               | \$64 791             | 274.50             | C C               | 1.60               | \$62.493       | 360.20             | 1 44               | \$69.326             | 391.92           |
| \$25.5m              | R                 | 1.68               | \$59,627         | 534.85             | 0.51               | \$104,791            | 275.02             | D                 | 0.46               | \$215 527      | 360.66             | 1.44               | \$60,370             | 303.37           |
| \$25.0m              | C                 | 1.03               | \$59,002         | 536.53             | 1.51               | \$66,260             | 275.02             | G                 | 0.40               | \$133,428      | 361.41             | 1.44               | \$69,07              | 393.37           |
| \$25.7m              | P                 | 1.67               | \$59,750         | 538.20             | 1.51               | \$64,932             | 278.07             | P                 | 1.57               | \$63,800       | 362.08             | 1.44               | \$69,407             | 306.25           |
| \$25.0m              | R O               | 1.07               | \$59,758         | 530.20             | 0.51               | \$194,932            | 278.58             | II II             | 0.81               | \$123.086      | 363.70             | 1.44               | \$69,423             | 397.60           |
| \$23.7III<br>\$26.0m | D                 | 1.07               | \$59,794         | 541.54             | 0.51               | \$194,704            | 270.30             | C                 | 1.60               | \$123,980      | 265.29             | 1.44               | \$69,431             | 200.12           |
| \$20.0m              | K<br>C            | 1.07               | \$59,007         | 542.21             | 1.54               | \$65,072             | 281.62             | D                 | 1.00               | \$64,012       | 266.04             | 1.44               | \$69,521             | 400.56           |
| \$20.1III<br>\$2(.2  | 0                 | 1.07               | \$59,928         | 543.21             | 1.50               | \$105,122            | 201.02             | K<br>U            | 1.50               | \$124,012      | 267.75             | 1.44               | \$69,550             | 400.30           |
| \$26.2m              | D D               | 1.67               | \$39,930         | 544.00             | 0.31               | \$193,122            | 202.14             | 0<br>C            | 0.80               | \$124,396      | 269.40             | 1.44               | \$69,002             | 402.00           |
| \$26.3m              | ĸ                 | 1.6/               | \$60,016         | 540.55             | 1.53               | \$05,215             | 283.07             | G                 | 0.75               | \$133,924      | 308.49             | 1.44               | \$09,005             | 403.43           |
| \$26.4m              | 0                 | 1.66               | \$60,064         | 548.21             | 0.51               | \$195,580            | 284.18             | ĸ                 | 1.56               | \$64,135       | 370.05             | 1.43               | \$09,087             | 404.87           |
| \$26.5m              | C                 | 1.66               | \$60,118         | 549.87             | 1.50               | \$66,693             | 285.68             |                   | 1.59               | \$62,842       | 3/1.64             | 1.43               | \$69,715             | 406.30           |
| \$26.6m              | ĸ                 | 1.66               | \$60,145         | 551.54             | 1.53               | \$65,353             | 287.21             | D                 | 0.46               | \$216,661      | 3/2.11             | 1.43               | \$69,746             | 407.74           |
| \$26.7m              | 0                 | 1.66               | \$60,197         | 553.20             | 0.51               | \$196,002            | 287.72             | W                 | 1.12               | \$89,506       | 373.22             | 1.43               | \$69,759             | 409.17           |
| \$26.8m              | R                 | 1.66               | \$60,274         | 554.86             | 1.53               | \$65,493             | 289.25             | R                 | 1.56               | \$64,255       | 374.78             | 1.43               | \$69,819             | 410.60           |
| \$26.9m              | С                 | 1.66               | \$60,307         | 556.52             | 1.49               | \$66,903             | 290.74             | U                 | 0.80               | \$124,810      | 375.58             | 1.43               | \$69,891             | 412.03           |
| \$27.0m              | 0                 | 1.66               | \$60,328         | 558.17             | 0.51               | \$196,425            | 291.25             | С                 | 1.59               | \$63,016       | 377.17             | 1.43               | \$69,907             | 413.46           |
| \$27.1m              | R                 | 1.66               | \$60,402         | 559.83             | 1.52               | \$65,632             | 292.77             | G                 | 0.74               | \$134,414      | 377.91             | 1.43               | \$69,920             | 414.89           |
| \$27.2m              | 0                 | 1.65               | \$60,459         | 561.48             | 0.51               | \$196,850            | 293.28             | R                 | 1.55               | \$64,375       | 379.47             | 1.43               | \$69,950             | 416.32           |
| \$27.3m              | С                 | 1.65               | \$60,496         | 563.14             | 1.49               | \$67,112             | 294.77             | R                 | 1.55               | \$64,495       | 381.02             | 1.43               | \$70,077             | 417.75           |
| \$27.4m              | R                 | 1.65               | \$60,530         | 564.79             | 1.52               | \$65,771             | 296.29             | С                 | 1.58               | \$63,188       | 382.60             | 1.43               | \$70,098             | 419.18           |
| \$27.5m              | 0                 | 1.65               | \$60,591         | 566.44             | 0.51               | \$197,278            | 296.80             | D                 | 0.46               | \$217,794      | 383.06             | 1.43               | \$70,110             | 420.60           |
| \$27.6m              | R                 | 1.65               | \$60,658         | 568.09             | 1.52               | \$65,910             | 298.32             | U                 | 0.80               | \$125,216      | 383.86             | 1.43               | \$70,120             | 422.03           |
| \$27.7m              | C                 | 1.65               | \$60,683         | 569.73             | 1.49               | \$67,319             | 299.80             | G                 | 0.74               | \$134,904      | 384.60             | 1.43               | \$70,174             | 423.46           |
| \$27.8m              | 0                 | 1.65               | \$60,724         | 571.38             | 0.51               | \$197,746            | 300.31             | R                 | 1.55               | \$64,616       | 386.15             | 1.42               | \$70,210             | 424.88           |
| \$27.9m              | R                 | 1.65               | \$60,785         | 573.03             | 1.51               | \$66,049             | 301.82             | С                 | 1.58               | \$63,359       | 387.72             | 1.42               | \$70,288             | 426.30           |
| \$28.0m              | 0                 | 1.64               | \$60,849         | 574.67             | 0.50               | \$198,138            | 302.33             | R                 | 1.54               | \$64,733       | 389.27             | 1.42               | \$70,343             | 427.72           |
| \$28.1m              | С                 | 1.64               | \$60,868         | 576.31             | 1.48               | \$67,525             | 303.81             | U                 | 0.80               | \$125,623      | 390.06             | 1.42               | \$70,348             | 429.15           |
| \$28.2m              | R                 | 1.64               | \$60,913         | 577.95             | 1.51               | \$66,187             | 305.32             | G                 | 0.74               | \$135,388      | 390.80             | 1.42               | \$70,426             | 430.57           |
| \$28.3m              | 0                 | 1.64               | \$60,979         | 579.59             | 0.50               | \$198,531            | 305.82             | R                 | 1.54               | \$64,855       | 392.34             | 1.42               | \$70,472             | 431.98           |
| \$28.4m              | R                 | 1.64               | \$61,040         | 581.23             | 1.51               | \$66,325             | 307.33             | D                 | 0.46               | \$218,924      | 392.80             | 1.42               | \$70,472             | 433.40           |
| \$28.5m              | С                 | 1.64               | \$61,053         | 582.87             | 1.48               | \$67,730             | 308.81             | С                 | 1.57               | \$63,530       | 394.38             | 1.42               | \$70,478             | 434.82           |
| \$28.6m              | 0                 | 1.64               | \$61,110         | 584.51             | 0.50               | \$198,965            | 309.31             | U                 | 0.79               | \$126,030      | 395.17             | 1.42               | \$70,575             | 436.24           |
| \$28.7m              | R                 | 1.63               | \$61,167         | 586.14             | 1.50               | \$66,463             | 310.81             | R                 | 1.54               | \$64,977       | 396.71             | 1.42               | \$70,597             | 437.66           |
| \$28.8m              | С                 | 1.63               | \$61,237         | 587.77             | 1.47               | \$67,934             | 312.29             | С                 | 1.57               | \$63,700       | 398.28             | 1.42               | \$70,666             | 439.07           |
| \$28.9m              | 0                 | 1.63               | \$61,241         | 589.41             | 0.50               | \$199,402            | 312.79             | G                 | 0.74               | \$135,868      | 399.01             | 1.41               | \$70,676             | 440.49           |
| \$29.0m              | R                 | 1.63               | \$61,293         | 591.04             | 1.50               | \$66,600             | 314.29             | R                 | 1.54               | \$65,091       | 400.55             | 1.41               | \$70,731             | 441.90           |
| \$29.1m              | 0                 | 1.63               | \$61,365         | 592.67             | 0.50               | \$199,800            | 314.79             | U                 | 0.79               | \$126,435      | 401.34             | 1.41               | \$70,802             | 443.31           |
| \$29.2m              | С                 | 1.63               | \$61,419         | 594.30             | 1.47               | \$68,137             | 316.26             | W                 | 1.10               | \$90,873       | 402.44             | 1.41               | \$70,825             | 444.72           |
| \$29.3m              | R                 | 1.63               | \$61,420         | 595.92             | 1.50               | \$66,738             | 317.76             | D                 | 0.45               | \$220,037      | 402.90             | 1.41               | \$70,833             | 446.14           |
| \$29.4m              | 0                 | 1.63               | \$61,493         | 597.55             | 0.50               | \$200,240            | 318.25             | С                 | 1.57               | \$63.868       | 404.46             | 1.41               | \$70,853             | 447.55           |
| \$29.5m              | R                 | 1.62               | \$61,545         | 599.18             | 1.50               | \$66.874             | 319.75             | R                 | 1.53               | \$65,210       | 406.00             | 1.41               | \$70,857             | 448.96           |
| \$29.6m              | С                 | 1.62               | \$61.601         | 600.80             | 1,46               | \$68,338             | 321.21             | G                 | 0.73               | \$136,346      | 406.73             | 1.41               | \$70,925             | 450.37           |
| \$29.7m              | 0                 | 1.62               | \$61.618         | 602.42             | 0.50               | \$200,642            | 321.71             | R                 | 1.53               | \$65,334       | 408.26             | 1.41               | \$70,987             | 451.78           |
| \$29.8m              | R                 | 1.62               | \$61.671         | 604.04             | 1.49               | \$67.012             | 323.20             | U                 | 0.79               | \$126.838      | 409.05             | 1.41               | \$71.027             | 453.18           |
| \$29.9m              | 0                 | 1.62               | \$61.744         | 605.66             | 0.50               | \$201.045            | 323.70             | Č                 | 1.56               | \$64.036       | 410.61             | 1.41               | \$71.039             | 454.59           |
| \$30.0m              | Č                 | 1.62               | \$61 781         | 607.28             | 1 46               | \$68 538             | 325.16             | R                 | 1.50               | \$65,449       | 412.14             | 1 41               | \$71,119             | 456.00           |
| \$30.1m              | R                 | 1.62               | \$61 797         | 608.90             | 1.40               | \$67 147             | 326.65             | G                 | 0.73               | \$136.819      | 412.14             | 1 41               | \$71 172             | 457.40           |
| \$30.2m              | 0                 | 1.62               | \$61.874         | 610 52             | 0.50               | \$201 450            | 327.15             | D                 | 0.45               | \$221 156      | 413.32             | 1.40               | \$71 191             | 458.81           |
| \$30.3m              | R                 | 1.61               | \$61,922         | 612.13             | 1 49               | \$67,283             | 328.63             | C                 | 1.56               | \$64 203       | 414.88             | 1.40               | \$71,225             | 460.21           |

|                      |                   |                   | Reallocation     | with good i       | nformation        |                  |                   |                   |                   | Reallocation   | with poor i     | nformation        |                  |                 |
|----------------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------|-----------------|
|                      | Marginal          | Estimates         | s with good info | rmation           | Estimates         | s with poor info | rmation           | Marginal          | Estimates         | with good info | rmation         | Estimates         | s with poor info | rmation         |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ |
| \$30.4m              | C                 | 1.61              | \$61.961         | 613.75            | 1.45              | \$68.737         | 330.09            | R                 | 1.53              | \$65.565       | 416.40          | 1.40              | \$71.245         | 461.62          |
| \$30.5m              | 0                 | 1.61              | \$61,996         | 615.36            | 0.50              | \$201.857        | 330.58            | U                 | 0.79              | \$127.239      | 417.19          | 1.40              | \$71,253         | 463.02          |
| \$30.6m              | R                 | 1.61              | \$62.047         | 616.97            | 1 48              | \$67.420         | 332.07            | R                 | 1.52              | \$65,686       | 418 71          | 1 40              | \$71 372         | 464 42          |
| \$30.7m              | 0                 | 1.61              | \$62,017         | 618 58            | 0.49              | \$202.265        | 332.56            | C                 | 1.55              | \$64 369       | 420.26          | 1 40              | \$71.409         | 465.82          |
| \$30.8m              | C                 | 1.61              | \$62,120         | 620.19            | 1 45              | \$68,935         | 334.01            | G                 | 0.73              | \$137,291      | 420.99          | 1.10              | \$71.416         | 467.22          |
| \$30.9m              | R                 | 1.61              | \$62,120         | 621.80            | 1 48              | \$67,555         | 335.49            | U                 | 0.78              | \$127,641      | 421.78          | 1 40              | \$71,477         | 468.62          |
| \$31.0m              | 0                 | 1.61              | \$62,247         | 623.40            | 0.49              | \$202 675        | 335.98            | R                 | 1.52              | \$65,802       | 423.30          | 1.10              | \$71,500         | 470.02          |
| \$31.0m              | R                 | 1.61              | \$62,217         | 625.01            | 1 48              | \$67,690         | 337.46            | D                 | 0.45              | \$222.262      | 423.75          | 1.10              | \$71,500         | 471.42          |
| \$31.1m              | C                 | 1.61              | \$62,270         | 626.61            | 1.46              | \$69,131         | 338.91            | C                 | 1.55              | \$64 534       | 425.30          | 1.40              | \$71,548         | 472.81          |
| \$31.2m              | 0                 | 1.60              | \$62,367         | 628.22            | 0.49              | \$203.087        | 339.40            | B                 | 1.55              | \$65,924       | 426.81          | 1.10              | \$71,628         | 474.21          |
| \$31.5m              | P                 | 1.60              | \$62,307         | 620.22            | 1.47              | \$67,825         | 3/0.88            | G                 | 0.73              | \$137.760      | 420.01          | 1.40              | \$71,620         | 475.60          |
| \$31.4m              | R O               | 1.00              | \$62,420         | 631.42            | 0.49              | \$203,459        | 341.37            | U                 | 0.73              | \$128,030      | 428.32          | 1.40              | \$71,059         | 477.00          |
| \$31.5m              | 0<br>C            | 1.00              | \$62,492         | 622.02            | 1.44              | \$203,439        | 242.81            | P                 | 1.51              | \$128,039      | 420.32          | 1.39              | \$71,701         | 477.00          |
| \$31.0m              | D                 | 1.00              | \$62,495         | 624.62            | 1.44              | \$67,060         | 244.29            | C K               | 1.51              | \$64,600       | 429.03          | 1.39              | \$71,757         | 478.39          |
| \$31./III<br>\$31.9m | K O               | 1.00              | \$62,545         | 626.02            | 0.40              | \$07,900         | 244.20            | W                 | 1.55              | \$04,099       | 431.30          | 1.39              | \$71,775         | 4/9./9          |
| \$31.0III<br>\$21.0  | 0<br>C            | 1.00              | \$62,613         | 627.91            | 0.49              | \$203,874        | 246.21            | W D               | 1.08              | \$92,201       | 432.40          | 1.39              | \$/1,839         | 401.10          |
| \$31.9m              | C D               | 1.00              | \$02,008         | (20.41            | 1.44              | \$69,321         | 247.69            | K C               | 0.72              | \$00,133       | 433.98          | 1.39              | \$/1,000         | 482.37          |
| \$32.0m              | R                 | 1.60              | \$62,008         | 639.41            | 1.47              | \$08,094         | 249.17            | U D               | 0.72              | \$138,223      | 434.70          | 1.39              | \$71,902         | 485.90          |
| \$32.1m              | 0                 | 1.59              | \$62,755         | 641.00            | 0.49              | \$204,290        | 348.17            | D                 | 0.45              | \$223,304      | 435.15          | 1.39              | \$71,903         | 485.55          |
| \$32.2m              | ĸ                 | 1.59              | \$62,791         | 642.59            | 1.4/              | \$68,229         | 349.63            | U                 | 0.78              | \$128,439      | 435.93          | 1.39              | \$/1,924         | 486.74          |
| \$32.3m              | C                 | 1.59              | \$62,842         | 644.18            | 1.43              | \$69,/15         | 351.07            | 0                 | 4.53              | \$22,096       | 440.45          | 1.39              | \$/1,945         | 488.13          |
| \$32.4m              | 0                 | 1.59              | \$62,858         | 645.78            | 0.49              | \$204,666        | 351.56            | C                 | 1.54              | \$64,862       | 441.99          | 1.39              | \$71,956         | 489.52          |
| \$32.5m              | R                 | 1.59              | \$62,915         | 647.37            | 1.46              | \$68,363         | 353.02            | R                 | 1.51              | \$66,273       | 443.50          | 1.39              | \$72,010         | 490.91          |
| \$32.6m              | 0                 | 1.59              | \$62,980         | 648.95            | 0.49              | \$205,044        | 353.51            | C                 | 1.54              | \$65,025       | 445.04          | 1.39              | \$72,137         | 492.30          |
| \$32.7m              | C                 | 1.59              | \$63,016         | 650.54            | 1.43              | \$69,907         | 354.94            | R                 | 1.51              | \$66,388       | 446.55          | 1.39              | \$72,140         | 493.68          |
| \$32.8m              | R                 | 1.59              | \$63,038         | 652.13            | 1.46              | \$68,496         | 356.40            | G                 | 0.72              | \$138,685      | 447.27          | 1.39              | \$72,142         | 495.07          |
| \$32.9m              | 0                 | 1.58              | \$63,099         | 653.71            | 0.49              | \$205,465        | 356.88            | U                 | 0.78              | \$128,836      | 448.04          | 1.39              | \$72,146         | 496.45          |
| \$33.0m              | R                 | 1.58              | \$63,160         | 655.29            | 1.46              | \$68,629         | 358.34            | D                 | 0.45              | \$224,462      | 448.49          | 1.38              | \$72,256         | 497.84          |
| \$33.1m              | С                 | 1.58              | \$63,188         | 656.88            | 1.43              | \$70,098         | 359.77            | R                 | 1.50              | \$66,507       | 449.99          | 1.38              | \$72,265         | 499.22          |
| \$33.2m              | 0                 | 1.58              | \$63,223         | 658.46            | 0.49              | \$205,846        | 360.25            | C                 | 1.53              | \$65,187       | 451.53          | 1.38              | \$72,316         | 500.60          |
| \$33.3m              | R                 | 1.58              | \$63,283         | 660.04            | 1.45              | \$68,763         | 361.71            | U                 | 0.77              | \$129,231      | 452.30          | 1.38              | \$72,368         | 501.99          |
| \$33.4m              | 0                 | 1.58              | \$63,339         | 661.62            | 0.48              | \$206,271        | 362.19            | G                 | 0.72              | \$139,144      | 453.02          | 1.38              | \$72,380         | 503.37          |
| \$33.5m              | С                 | 1.58              | \$63,359         | 663.20            | 1.42              | \$70,288         | 363.62            | R                 | 1.50              | \$66,622       | 454.52          | 1.38              | \$72,390         | 504.75          |
| \$33.6m              | R                 | 1.58              | \$63,406         | 664.77            | 1.45              | \$68,895         | 365.07            | С                 | 1.53              | \$65,348       | 456.05          | 1.38              | \$72,495         | 506.13          |
| \$33.7m              | 0                 | 1.58              | \$63,460         | 666.35            | 0.48              | \$206,612        | 365.55            | R                 | 1.50              | \$66,738       | 457.55          | 1.38              | \$72,516         | 507.51          |
| \$33.8m              | R                 | 1.57              | \$63,528         | 667.92            | 1.45              | \$69,028         | 367.00            | U                 | 0.77              | \$129,626      | 458.32          | 1.38              | \$72,589         | 508.89          |
| \$33.9m              | С                 | 1.57              | \$63,530         | 669.50            | 1.42              | \$70,478         | 368.42            | D                 | 0.44              | \$225,555      | 458.76          | 1.38              | \$72,608         | 510.26          |
| \$34.0m              | 0                 | 1.57              | \$63,581         | 671.07            | 0.48              | \$206,996        | 368.90            | G                 | 0.72              | \$139,599      | 459.48          | 1.38              | \$72,617         | 511.64          |
| \$34.1m              | R                 | 1.57              | \$63,650         | 672.64            | 1.45              | \$69,161         | 370.35            | R                 | 1.50              | \$66,854       | 460.98          | 1.38              | \$72,643         | 513.02          |
| \$34.2m              | 0                 | 1.57              | \$63,694         | 674.21            | 0.48              | \$207,426        | 370.83            | С                 | 1.53              | \$65,509       | 462.50          | 1.38              | \$72,673         | 514.39          |
| \$34.3m              | С                 | 1.57              | \$63,700         | 675.78            | 1.42              | \$70,666         | 372.24            | R                 | 1.49              | \$66,970       | 464.00          | 1.37              | \$72,770         | 515.77          |
| \$34.4m              | R                 | 1.57              | \$63,771         | 677.35            | 1.44              | \$69,292         | 373.69            | U                 | 0.77              | \$130,019      | 464.76          | 1.37              | \$72,809         | 517.14          |
| \$34.5m              | 0                 | 1.57              | \$63,816         | 678.92            | 0.48              | \$207,771        | 374.17            | G                 | 0.71              | \$140,052      | 465.48          | 1.37              | \$72,852         | 518.51          |
| \$34.6m              | С                 | 1.57              | \$63,868         | 680.48            | 1.41              | \$70,853         | 375.58            | W                 | 1.07              | \$93,490       | 466.55          | 1.37              | \$72,864         | 519.88          |
| \$34.7m              | R                 | 1.57              | \$63,890         | 682.05            | 1.44              | \$69,425         | 377.02            | R                 | 1.49              | \$67,087       | 468.04          | 1.37              | \$72,892         | 521.26          |
| \$34.8m              | 0                 | 1.56              | \$63,935         | 683.61            | 0.48              | \$208,160        | 377.50            | D                 | 0.44              | \$226,644      | 468.48          | 1.37              | \$72,958         | 522.63          |
| \$34.9m              | R                 | 1.56              | \$64,012         | 685.17            | 1.44              | \$69,556         | 378.94            | R                 | 1.49              | \$67,200       | 469.97          | 1.37              | \$73,019         | 524.00          |
| \$35.0m              | С                 | 1.56              | \$64,036         | 686.73            | 1.41              | \$71,039         | 380.35            | U                 | 0.77              | \$130,410      | 470.73          | 1.37              | \$73,029         | 525.37          |
| \$35.1m              | 0                 | 1.56              | \$64,049         | 688.30            | 0.48              | \$208,551        | 380.83            | G                 | 0.71              | \$140,501      | 471.45          | 1.37              | \$73,087         | 526.73          |
| \$35.2m              | R                 | 1.56              | \$64,135         | 689.86            | 1.43              | \$69,687         | 382.26            | R                 | 1.49              | \$67,317       | 472.93          | 1.37              | \$73,148         | 528.10          |
| \$35.3m              | 0                 | 1.56              | \$64,168         | 691.41            | 0.48              | \$208,943        | 382.74            | U                 | 0.76              | \$130,803      | 473.70          | 1.37              | \$73,248         | 529.47          |
| \$35.4m              | С                 | 1.56              | \$64,203         | 692.97            | 1.40              | \$71,225         | 384.14            | R                 | 1.48              | \$67,431       | 475.18          | 1.36              | \$73,271         | 530.83          |

|               |                   |                   | Reallocation      | with good i       | nformation        |                      |                   |                   |                   | Reallocation      | with poor i     | nformation        |                  |                 |
|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-------------------|------------------|-----------------|
|               | Marginal          | Estimates         | with good info    | rmation           | Estimate          | s with poor info     | rmation           | Marginal          | Estimates         | with good info    | rmation         | Estimates         | s with poor info | rmation         |
| Budget impact | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | E(ICER) <sup>c</sup> | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ |
| \$35.5m       | R                 | 1.56              | \$64.255          | 694.53            | 1.43              | \$69.819             | 385.58            | D                 | 0.44              | \$227.723         | 475.62          | 1.36              | \$73.306         | 532.20          |
| \$35.6m       | 0                 | 1.56              | \$64,280          | 696.08            | 0.48              | \$209 336            | 386.05            | G                 | 0.71              | \$140,948         | 476.33          | 1 36              | \$73 319         | 533.56          |
| \$35.7m       | Ċ                 | 1.55              | \$64 369          | 697.64            | 1 40              | \$71.409             | 387.45            | R                 | 1 48              | \$67 545          | 477.81          | 1 36              | \$73 394         | 534.92          |
| \$35.8m       | R                 | 1.55              | \$64.375          | 699.19            | 1 43              | \$69,950             | 388.88            | U                 | 0.76              | \$131 192         | 478 57          | 1 36              | \$73,466         | 536.28          |
| \$35.9m       | 0                 | 1.55              | \$64 400          | 700.74            | 0.48              | \$209,688            | 389.36            | R                 | 1 48              | \$67.659          | 480.05          | 1.36              | \$73,519         | 537.64          |
| \$36.0m       | R                 | 1.55              | \$64 495          | 702.29            | 1 43              | \$70,077             | 390.79            | G                 | 0.71              | \$141 391         | 480.76          | 1 36              | \$73,549         | 539.00          |
| \$36.1m       | 0                 | 1.55              | \$64 516          | 703.84            | 0.48              | \$210.040            | 391.26            | R                 | 1 48              | \$67,778          | 482.23          | 1.36              | \$73,643         | 540.36          |
| \$36.2m       | C                 | 1.55              | \$64 534          | 705.39            | 1.40              | \$71.592             | 392.66            | D                 | 0.44              | \$228.802         | 482.67          | 1.36              | \$73,653         | 541.72          |
| \$36.3m       | R                 | 1.55              | \$64.616          | 706.94            | 1.10              | \$70,210             | 394.08            | U                 | 0.76              | \$131 581         | 483.43          | 1.36              | \$73,684         | 543.08          |
| \$36.4m       | 0                 | 1.55              | \$64 629          | 708 49            | 0.48              | \$210,438            | 394 56            | R                 | 1 47              | \$67,889          | 484 90          | 1 36              | \$73,768         | 544 43          |
| \$36.5m       | Č                 | 1.55              | \$64,699          | 710.03            | 1 39              | \$71,775             | 395.95            | G                 | 0.71              | \$141 834         | 485.61          | 1 36              | \$73,779         | 545 79          |
| \$36.6m       | R                 | 1.55              | \$64 733          | 711.58            | 1.32              | \$70,343             | 397.37            | W                 | 1.06              | \$94 746          | 486.66          | 1.35              | \$73,843         | 547.14          |
| \$36.7m       | 0                 | 1.54              | \$64,735          | 713.12            | 0.47              | \$210,837            | 397.85            | R                 | 1.00              | \$68,004          | 488.13          | 1.35              | \$73,893         | 548.49          |
| \$36.8m       | R                 | 1.54              | \$64 855          | 714.66            | 1 42              | \$70,472             | 399.27            | U                 | 0.76              | \$131,970         | 488.89          | 1.35              | \$73,901         | 549.85          |
| \$36.9m       | 0                 | 1.54              | \$64,859          | 716.21            | 0.47              | \$211.149            | 399.74            | D                 | 0.70              | \$229.869         | 489.33          | 1.35              | \$73,998         | 551.20          |
| \$37.0m       | C                 | 1.54              | \$64.862          | 717.75            | 1 39              | \$71.956             | 401.13            | G                 | 0.70              | \$142,270         | 490.03          | 1.35              | \$74,007         | 552.55          |
| \$37.0m       | 0                 | 1.54              | \$64,002          | 710.20            | 0.47              | \$211.551            | 401.15            | P                 | 1.47              | \$68 115          | 490.05          | 1.35              | \$74,007         | 553.90          |
| \$37.1m       | P                 | 1.54              | \$64,973          | 720.83            | 1.42              | \$70,507             | 403.02            | II II             | 0.76              | \$132.354         | 402.25          | 1.35              | \$74,014         | 555.25          |
| \$37.2m       | C                 | 1.54              | \$65,025          | 722.36            | 1.42              | \$72,137             | 403.02            | B                 | 1.47              | \$68 231          | 493.72          | 1.35              | \$74,117         | 556.60          |
| \$37.5m       | 0                 | 1.54              | \$65,023          | 723.90            | 0.47              | \$211.954            | 404.91            | G                 | 0.70              | \$142,708         | 493.72          | 1.35              | \$74,140         | 557.95          |
| \$37.5m       | R                 | 1.54              | \$65,003          | 725.00            | 1.41              | \$70,731             | 406.29            | R                 | 1.46              | \$68 343          | 495.88          | 1.35              | \$74,254         | 559.29          |
| \$37.5m       | C R               | 1.54              | \$65,187          | 725.44            | 1.41              | \$70,751             | 400.27            | II II             | 0.75              | \$132.740         | 495.00          | 1.35              | \$74,201         | 560.64          |
| \$37.0m       | 0                 | 1.53              | \$65,202          | 728.50            | 0.47              | \$212,510            | 407.08            | D                 | 0.73              | \$230.942         | 490.03          | 1.35              | \$74,333         | 561.08          |
| \$37.8m       | P                 | 1.53              | \$65,202          | 720.00            | 1.41              | \$70,857             | 400.15            | P                 | 1.46              | \$68.456          | 497.07          | 1.33              | \$74,341         | 563.33          |
| \$37.0m       | 0 K               | 1.53              | \$65,210          | 731.57            | 0.47              | \$212.675            | 410.03            | G                 | 0.70              | \$143,139         | 490.33          | 1.34              | \$74,505         | 564.67          |
| \$38.0m       | R                 | 1.53              | \$65,334          | 733.10            | 1.41              | \$70,987             | 411.03            | R                 | 1.46              | \$68 573          | 500.69          | 1.34              | \$74,510         | 566.01          |
| \$38.1m       | C                 | 1.53              | \$65,348          | 734.63            | 1.41              | \$72,495             | 412.82            | U                 | 0.75              | \$133,126         | 501.44          | 1.34              | \$74,518         | 567.35          |
| \$38.2m       | 0                 | 1.53              | \$65,424          | 736.16            | 0.47              | \$213,038            | 413.29            | B                 | 1.46              | \$68,681          | 502.89          | 1.34              | \$74,548         | 568.69          |
| \$38.3m       | R                 | 1.53              | \$65,449          | 737.69            | 1.41              | \$71.119             | 414.69            | D                 | 0.43              | \$232.002         | 503.32          | 1.34              | \$74,627         | 570.03          |
| \$38.4m       | C                 | 1.53              | \$65,509          | 739.21            | 1 38              | \$72.673             | 416.07            | G                 | 0.45              | \$143 571         | 504.02          | 1.34              | \$74,683         | 571.37          |
| \$38.5m       | 0                 | 1.53              | \$65,505          | 740 74            | 0.47              | \$213 356            | 416.54            | R                 | 1.45              | \$68 795          | 505.47          | 1.34              | \$74,005         | 572.71          |
| \$38.6m       | R                 | 1.53              | \$65,555          | 742.26            | 1.40              | \$71.245             | 417.94            | II II             | 0.75              | \$133.508         | 506.22          | 1.34              | \$74,753         | 574.05          |
| \$38.7m       | 0                 | 1.53              | \$65,647          | 743.79            | 0.47              | \$213.767            | 418.41            | W                 | 1.04              | \$95,968          | 507.26          | 1.34              | \$74,705         | 575.38          |
| \$38.8m       | R                 | 1.52              | \$65,686          | 745.31            | 1.40              | \$71 372             | 419.81            | R                 | 1.04              | \$68,908          | 508.72          | 1.34              | \$74,773         | 576.72          |
| \$38.9m       | 0                 | 1.52              | \$65,759          | 746.83            | 0.47              | \$214 133            | 420.28            | G                 | 0.69              | \$143,999         | 509.41          | 1.34              | \$74,906         | 578.06          |
| \$39.0m       | R                 | 1.52              | \$65,802          | 748.35            | 1 40              | \$71,500             | 421.67            | U                 | 0.05              | \$133,889         | 510.16          | 1.34              | \$74,976         | 579.39          |
| \$39.1m       | 0                 | 1.52              | \$65,802          | 749.87            | 0.47              | \$214 454            | 422.14            | R                 | 1 45              | \$69,023          | 511.61          | 1.33              | \$74,996         | 580.72          |
| \$39.2m       | R                 | 1.52              | \$65,972          | 751.39            | 1 40              | \$71.628             | 423.54            | 0                 | 4 34              | \$23,039          | 515.95          | 1.33              | \$75,016         | 582.06          |
| \$39.3m       | 0                 | 1.52              | \$65,980          | 752.90            | 0.47              | \$214 823            | 424.00            | D                 | 0.43              | \$233.057         | 516.38          | 1 33              | \$75,023         | 583.39          |
| \$39.4m       | R                 | 1.52              | \$66,037          | 754.42            | 1 39              | \$71,757             | 425.40            | R                 | 1.45              | \$69,132          | 517.82          | 1 33              | \$75,120         | 584.72          |
| \$39.5m       | 0                 | 1.51              | \$66,089          | 755.93            | 0.46              | \$215,193            | 425.86            | G                 | 0.69              | \$144 423         | 518 51          | 1.33              | \$75,120         | 586.05          |
| \$39.6m       | R                 | 1.51              | \$66,155          | 757.44            | 1 39              | \$71.886             | 427.25            | U                 | 0.09              | \$134 271         | 519.26          | 1.33              | \$75,120         | 587.38          |
| \$39.7m       | 0                 | 1.51              | \$66,199          | 758.95            | 0.46              | \$215 564            | 427.23            | B                 | 1 44              | \$69.242          | 520.70          | 1.33              | \$75,239         | 588 71          |
| \$39.8m       | R                 | 1.51              | \$66 272          | 760.46            | 1 30              | \$72.010             | 429.10            | G                 | 0.60              | \$144 848         | 521.70          | 1.33              | \$75 347         | 590.04          |
| \$39.9m       | 0                 | 1.51              | \$66 309          | 761.97            | 0.46              | \$215 889            | 429.57            | D                 | 0.09              | \$234 110         | 521.59          | 1 33              | \$75 362         | 591 36          |
| \$40.0m       | R                 | 1.51              | \$66 388          | 763.47            | 1 30              | \$72 140             | 430.95            | R                 | 1 44              | \$69 358          | 523.26          | 1.33              | \$75,364         | 592.69          |
| \$40.1m       | 0                 | 1.51              | \$66.419          | 764.98            | 0.46              | \$216.263            | 431 42            | U                 | 0.74              | \$134 649         | 523.20          | 1.33              | \$75,402         | 594.02          |
| \$40.2m       | R                 | 1.51              | \$66 507          | 766.48            | 1 38              | \$72.265             | 432.80            | B                 | 1 44              | \$69.469          | 525.45          | 1.33              | \$75.483         | 595.34          |
| \$40.3m       | 0                 | 1.50              | \$66.520          | 767.90            | 0.46              | \$216.638            | 433.26            | G                 | 0.60              | \$145.266         | 526.13          | 1.32              | \$75 566         | 596.67          |
| \$40.4m       | R                 | 1.50              | \$66.622          | 769.49            | 1 38              | \$72 390             | 434 64            | R                 | 1 44              | \$69 580          | 520.13          | 1.32              | \$75,500         | 597.99          |
| \$40.5m       | 0                 | 1.50              | \$66,636          | 770.99            | 0.46              | \$216,967            | 435.10            | U                 | 0.74              | \$135,029         | 528.31          | 1.32              | \$75,615         | 599.31          |

|                    |                   |                   | Reallocation      | with good i       | nformation        |                  |                   |                   |                   | Reallocation   | with poor i     | nformation        |                  |                 |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------|-----------------|-------------------|------------------|-----------------|
|                    | Marginal          | Estimates         | with good info    | rmation           | Estimate          | s with poor info | rmation           | Marginal          | Estimates         | with good info | rmation         | Estimates         | s with poor info | rmation         |
| Budget impact      | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_{m})^{c}$ | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^d$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ |
| \$40.6m            | R                 | 1.50              | \$66.738          | 772.49            | 1.38              | \$72.516         | 436.48            | D                 | 0.43              | \$235.156      | 528.74          | 1.32              | \$75.699         | 600.63          |
| \$40.7m            | 0                 | 1 50              | \$66 742          | 773.98            | 0.46              | \$217 297        | 436.94            | W                 | 1.03              | \$97 161       | 529 77          | 1 32              | \$75,725         | 601.95          |
| \$40.8m            | 0                 | 1 50              | \$66.849          | 775 48            | 0.46              | \$217.675        | 437.40            | R                 | 1 43              | \$69.691       | 531.20          | 1 32              | \$75 729         | 603.27          |
| \$40.9m            | R                 | 1.50              | \$66,854          | 776.98            | 1 38              | \$72.643         | 438.78            | G                 | 0.69              | \$145,686      | 531.89          | 1.32              | \$75,783         | 604 59          |
| \$41.0m            | 0                 | 1.50              | \$66,957          | 778 47            | 0.46              | \$218,007        | 439.24            | U                 | 0.09              | \$135,408      | 532.63          | 1.32              | \$75,826         | 605.91          |
| \$41.0m            | R                 | 1 49              | \$66,970          | 779.96            | 1 37              | \$72,770         | 440.61            | R                 | 1 43              | \$69.803       | 534.06          | 1.32              | \$75,844         | 607.23          |
| \$41.7m            | 0                 | 1.49              | \$67,065          | 781.45            | 0.46              | \$218 388        | 441.07            | R                 | 1.13              | \$69,005       | 535.49          | 1.32              | \$75,965         | 608.55          |
| \$41.2m            | R                 | 1.19              | \$67,087          | 782.94            | 1 37              | \$72.892         | 442.44            | G                 | 0.68              | \$146,103      | 536.17          | 1.32              | \$75,999         | 609.86          |
| \$41.0m<br>\$41.4m | 0                 | 1.19              | \$67,007          | 784.43            | 0.46              | \$218 723        | 442.90            | D                 | 0.00              | \$236,200      | 536.60          | 1.32              | \$76,035         | 611.18          |
| \$41.5m            | R                 | 1 49              | \$67,200          | 785.92            | 1 37              | \$73.019         | 444 27            | U U               | 0.74              | \$135,783      | 537.33          | 1.32              | \$76,037         | 612.49          |
| \$41.6m            | 0                 | 1 49              | \$67,200          | 787.41            | 0.46              | \$219.058        | 444 72            | R                 | 1 43              | \$70,023       | 538.76          | 1 31              | \$76,092         | 613.81          |
| \$41.0m            | R                 | 1.49              | \$67,317          | 788.89            | 1 37              | \$73,148         | 446.09            | R                 | 1.13              | \$70,136       | 540.19          | 1 31              | \$76,202         | 615.01          |
| \$41.7m            | 0<br>0            | 1.19              | \$67,385          | 790.38            | 0.46              | \$219 394        | 446.55            | G                 | 0.68              | \$146 514      | 540.87          | 1.31              | \$76,202         | 616.43          |
| \$41.0m            | R                 | 1.40              | \$67,383          | 791.86            | 1 36              | \$73,271         | 447.91            | U                 | 0.00              | \$136,158      | 541.60          | 1.31              | \$76,247         | 617.74          |
| \$42.0m            | 0                 | 1.70              | \$67.485          | 793 34            | 0.46              | \$210 732        | 448.37            | P                 | 1 42              | \$70.244       | 543.03          | 1 31              | \$76 330         | 619.05          |
| \$42.0m            | R                 | 1.48              | \$67 545          | 794.82            | 1 36              | \$73 394         | 449.73            | D                 | 0.42              | \$237.242      | 543.05          | 1.31              | \$76,350         | 620.36          |
| \$42.1m            | 0                 | 1.40              | \$67,545          | 796.30            | 0.45              | \$220,119        | 450.18            | G                 | 0.42              | \$146.925      | 544.13          | 1.31              | \$76,428         | 621.67          |
| \$42.2m            | P                 | 1.40              | \$67,575          | 707.78            | 1 36              | \$73.510         | 451.54            | P                 | 1.42              | \$70,353       | 545.55          | 1.31              | \$76,420         | 622.08          |
| \$42.5m            | R 0               | 1.40              | \$67,000          | 700.26            | 0.45              | \$220,410        | 452.00            | II II             | 0.73              | \$136.534      | 546.28          | 1.31              | \$76,457         | 624.20          |
| \$42.5m            | R                 | 1.48              | \$67,700          | 800.73            | 1.36              | \$73,643         | 453.36            | R                 | 1.42              | \$70.467       | 547.70          | 1.31              | \$76,564         | 625.59          |
| \$42.5m            | R 0               | 1.40              | \$67,801          | 802.21            | 0.45              | \$220,799        | 453.81            | W                 | 1.42              | \$98 325       | 548 72          | 1.31              | \$76,632         | 626.90          |
| \$42.0m            | P                 | 1.47              | \$67,880          | 803.68            | 1.36              | \$73.768         | 455.16            | G                 | 0.68              | \$147.334      | 540.72          | 1.30              | \$76,641         | 628.20          |
| \$42.7m            | R O               | 1.47              | \$67,007          | 805.08            | 0.45              | \$221.002        | 455.62            | U                 | 0.08              | \$136.008      | 550.13          | 1.30              | \$76,669         | 620.51          |
| \$42.0m            | P                 | 1.47              | \$68,004          | 806.62            | 1.35              | \$73.803         | 456.07            | P                 | 1.42              | \$70,572       | 551 55          | 1.30              | \$76,687         | 630.81          |
| \$43.0m            | 0 K               | 1.47              | \$68,004          | 808.09            | 0.45              | \$221 435        | 457.42            | D                 | 0.42              | \$238 271      | 551.97          | 1.30              | \$76,087         | 632.11          |
| \$43.0m            | 0                 | 1.47              | \$68,015          | 808.09            | 0.45              | \$221,433        | 457.87            | P                 | 1.41              | \$70.686       | 553.38          | 1.30              | \$76,805         | 633.42          |
| \$43.1m            | P                 | 1.47              | \$68,115          | 811.03            | 1 35              | \$74.014         | 450.22            | G                 | 0.68              | \$147.741      | 554.06          | 1.30              | \$76,852         | 634 72          |
| \$43.2m            | R 0               | 1.47              | \$68 217          | 812.50            | 0.45              | \$222 124        | 459.67            | U                 | 0.00              | \$137.280      | 554.70          | 1.30              | \$76,832         | 636.02          |
| \$43.5m            | P                 | 1.47              | \$68,231          | 813.06            | 1 35              | \$74.140         | 461.02            | P                 | 1.41              | \$70,701       | 556.20          | 1.30              | \$76,073         | 637.32          |
| \$43.5m            | 0 K               | 1.47              | \$68 325          | 815.30            | 0.45              | \$222.469        | 461.02            | D                 | 0.42              | \$239 303      | 556.62          | 1.30              | \$77.033         | 638.62          |
| \$43.5m            | P                 | 1.40              | \$68.343          | 816.80            | 1 35              | \$74.261         | 462.82            | P                 | 1.41              | \$70,902       | 558.03          | 1.30              | \$77,033         | 630.02          |
| \$43.0m            | R<br>O            | 1.40              | \$68,173          | 818 35            | 0.45              | \$222.816        | 463.02            | G                 | 0.68              | \$148.144      | 558 70          | 1.30              | \$77,042         | 641.21          |
| \$43.7m            | P                 | 1.40              | \$68,456          | 810.95            | 1 34              | \$74 383         | 464.61            | U                 | 0.00              | \$137.652      | 550.70          | 1.30              | \$77,002         | 642.51          |
| \$43.0m            | N 0               | 1.40              | \$68 526          | 821.27            | 0.45              | \$223 115        | 465.06            | P                 | 1.41              | \$71,032       | 560.84          | 1.30              | \$77,005         | 643.81          |
| \$44.0m            | P                 | 1.40              | \$68 573          | 822.73            | 1 34              | \$74.510         | 466.40            | G                 | 0.67              | \$148.546      | 561 51          | 1.30              | \$77.271         | 645.10          |
| \$44.0m            | 0                 | 1.46              | \$68,629          | 824.19            | 0.45              | \$223,464        | 466.85            | R                 | 1 41              | \$71 124       | 562.92          | 1.29              | \$77,221         | 646.39          |
| \$44.1m            | R                 | 1.46              | \$68,681          | 825.64            | 1 34              | \$74 627         | 468.19            | U                 | 0.72              | \$138.022      | 563.64          | 1.29              | \$77,200         | 647.69          |
| \$44.3m            | 0                 | 1.40              | \$68,729          | 827.10            | 0.45              | \$223 764        | 468 64            | D                 | 0.72              | \$240 321      | 564.06          | 1.29              | \$77.363         | 648.98          |
| \$44.4m            | R                 | 1.45              | \$68 795          | 828 55            | 1 34              | \$74 755         | 469.97            | R                 | 1 40              | \$71 230       | 565.46          | 1.29              | \$77 399         | 650.27          |
| \$44.5m            | 0                 | 1.45              | \$68 833          | 830.00            | 0.45              | \$224 115        | 470.42            | G                 | 0.67              | \$148.947      | 566.13          | 1.29              | \$77.480         | 651.56          |
| \$44.6m            | R                 | 1.45              | \$68,908          | 831.45            | 1 34              | \$74 873         | 471.76            | U                 | 0.72              | \$138 391      | 566.85          | 1.29              | \$77 501         | 652.85          |
| \$44.7m            | 0                 | 1.45              | \$68.932          | 832.90            | 0.45              | \$224 467        | 472.20            | R                 | 1.40              | \$71 337       | 568.26          | 1.29              | \$77.513         | 654.14          |
| \$44.8m            | R                 | 1.45              | \$69.023          | 834 35            | 1 33              | \$74.996         | 473 54            | W                 | 1.40              | \$99.467       | 569.26          | 1.29              | \$77.518         | 655.43          |
| \$44.9m            | 0                 | 1.45              | \$69.032          | 835.80            | 0.44              | \$224 770        | 473.98            | R                 | 1.01              | \$71.449       | 570.66          | 1.29              | \$77.634         | 656.72          |
| \$45.0m            | R                 | 1.45              | \$69,132          | 837.25            | 1 33              | \$75 120         | 475 31            | G                 | 0.67              | \$149 345      | 571.33          | 1.29              | \$77.686         | 658.01          |
| \$45.1m            | 0                 | 1.45              | \$69 137          | 838.69            | 0.44              | \$225 124        | 475.76            | D                 | 0.41              | \$241 348      | 571 74          | 1.29              | \$77.692         | 659.30          |
| \$45.2m            | 0                 | 1.43              | \$69 233          | 840.14            | 0.44              | \$225,124        | 476.20            | U                 | 0.72              | \$138 760      | 572.47          | 1.29              | \$77,700         | 660.58          |
| \$45.3m            | R                 | 1 44              | \$69 242          | 841 58            | 1 33              | \$75 239         | 477 53            | R                 | 1 40              | \$71 551       | 573.86          | 1.29              | \$77 748         | 661.87          |
| \$45.4m            | 0                 | 1 44              | \$69 334          | 843.03            | 0.44              | \$225 734        | 477.97            | 0                 | 4 18              | \$23.910       | 578.04          | 1.29              | \$77 853         | 663.15          |
| \$45.5m            | R                 | 1 44              | \$69 358          | 844 47            | 1 33              | \$75 364         | 479 30            | R                 | 1 40              | \$71 664       | 579.44          | 1.20              | \$77.869         | 664 44          |
| \$45.6m            | 0                 | 1 44              | \$69,435          | 845.91            | 0.44              | \$226.091        | 479.74            | G                 | 0.67              | \$149 741      | 580.11          | 1.28              | \$77.892         | 665.72          |

|                      |                   |                   | Reallocation   | with good i       | nformation        |                  |                 |                   |                   | Reallocation     | with poor i       | nformation        |                  |                   |
|----------------------|-------------------|-------------------|----------------|-------------------|-------------------|------------------|-----------------|-------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|
|                      | Marginal          | Estimates         | with good info | rmation           | Estimates         | s with poor info | rmation         | Marginal          | Estimates         | s with good info | rmation           | Estimates         | s with poor info | rmation           |
| Budget impact        | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$  | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^d$ | Tech <sup>a</sup> | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ | $E(\Delta E_m)^b$ | $E(ICER_m)^c$    | $E(\Delta E)^{d}$ |
| \$45.7m              | R                 | 1.44              | \$69,469       | 847.35            | 1.32              | \$75,483         | 481.07          | U                 | 0.72              | \$139,127        | 580.83            | 1.28              | \$77,912         | 667.00            |
| \$45.8m              | 0                 | 1.44              | \$69,536       | 848.79            | 0.44              | \$226,398        | 481.51          | R                 | 1.39              | \$71,772         | 582.22            | 1.28              | \$77,985         | 668.29            |
| \$45.9m              | R                 | 1.44              | \$69,580       | 850.22            | 1.32              | \$75,603         | 482.83          | D                 | 0.41              | \$242,365        | 582.63            | 1.28              | \$78,018         | 669.57            |
| \$46.0m              | 0                 | 1.44              | \$69,633       | 851.66            | 0.44              | \$226,757        | 483.27          | G                 | 0.67              | \$150,132        | 583.30            | 1.28              | \$78,097         | 670.85            |
| \$46.1m              | R                 | 1.43              | \$69,691       | 853.09            | 1.32              | \$75,729         | 484.59          | R                 | 1.39              | \$71,880         | 584.69            | 1.28              | \$78,107         | 672.13            |
| \$46.2m              | 0                 | 1.43              | \$69,730       | 854.53            | 0.44              | \$227,015        | 485.03          | U                 | 0.72              | \$139,495        | 585.41            | 1.28              | \$78,113         | 673.41            |
| \$46.3m              | R                 | 1.43              | \$69,803       | 855.96            | 1.32              | \$75,844         | 486.35          | R                 | 1.39              | \$71,989         | 586.80            | 1.28              | \$78,223         | 674.69            |
| \$46.4m              | 0                 | 1.43              | \$69,832       | 857.39            | 0.44              | \$227,376        | 486.79          | G                 | 0.66              | \$150,525        | 587.46            | 1.28              | \$78,301         | 675.96            |
| \$46.5m              | R                 | 1.43              | \$69,911       | 858.82            | 1.32              | \$75,965         | 488.11          | U                 | 0.72              | \$139,860        | 588.18            | 1.28              | \$78,321         | 677.24            |
| \$46.6m              | 0                 | 1.43              | \$69,925       | 860.25            | 0.44              | \$227,687        | 488.55          | R                 | 1.39              | \$72,093         | 589.56            | 1.28              | \$78,333         | 678.52            |
| \$46.7m              | R                 | 1.43              | \$70,023       | 861.68            | 1.31              | \$76,092         | 489.86          | D                 | 0.41              | \$243,374        | 589.97            | 1.28              | \$78,345         | 679.79            |
| \$46.8m              | 0                 | 1.43              | \$70,028       | 863.11            | 0.44              | \$228,050        | 490.30          | W                 | 0.99              | \$100,574        | 590.97            | 1.28              | \$78,384         | 681.07            |
| \$46.9m              | 0                 | 1.43              | \$70,121       | 864.54            | 0.44              | \$228,311        | 490.74          | R                 | 1.38              | \$72,202         | 592.35            | 1.27              | \$78,456         | 682.35            |
| \$47.0m              | R                 | 1.43              | \$70,136       | 865.96            | 1.31              | \$76,202         | 492.05          | G                 | 0.66              | \$150,914        | 593.02            | 1.27              | \$78,503         | 683.62            |
| \$47.1m              | 0                 | 1.42              | \$70,225       | 867.38            | 0.44              | \$228,624        | 492.49          | U                 | 0.71              | \$140,223        | 593.73            | 1.27              | \$78,524         | 684.89            |
| \$47.2m              | R                 | 1.42              | \$70,244       | 868.81            | 1.31              | \$76,330         | 493.80          | R                 | 1.38              | \$72,307         | 595.11            | 1.27              | \$78,567         | 686.17            |
| \$47.3m              | 0                 | 1.42              | \$70,319       | 870.23            | 0.44              | \$228,990        | 494.23          | D                 | 0.41              | \$244,385        | 595.52            | 1.27              | \$78,669         | 687.44            |
| \$47.4m              | R                 | 1.42              | \$70,353       | 871.65            | 1.31              | \$76,447         | 495.54          | R                 | 1.38              | \$72,417         | 596.90            | 1.27              | \$78,691         | 688.71            |
| \$47.5m              | M                 | 1.42              | \$70,395       | 873.07            | -0.25             | -\$397,560       | 495.29          | G                 | 0.66              | \$151,302        | 597.56            | 1.27              | \$78,706         | 689.98            |
| \$47.6m              | 0                 | 1.42              | \$70,418       | 874.49            | 0.44              | \$229,253        | 495.73          | U                 | 0.71              | \$140,590        | 598.27            | 1.27              | \$78,728         | 691.25            |
| \$47.7m              | R                 | 1.42              | \$70,467       | 875.91            | 1.31              | \$76,564         | 497.03          | R                 | 1.38              | \$72,527         | 599.65            | 1.27              | \$78,802         | 692.52            |
| \$47.8m              | 0                 | 1.42              | \$70,512       | 877.33            | 0.44              | \$229,621        | 497.47          | G                 | 0.66              | \$151,688        | 600.31            | 1.27              | \$78,902         | 693.78            |
| \$47.9m              | R                 | 1.42              | \$70,572       | 8/8.75            | 1.30              | \$76,687         | 498.77          | R                 | 1.38              | \$72,627         | 601.69            | 1.27              | \$78,920         | 695.05            |
| \$48.0m              | 0                 | 1.42              | \$70,607       | 880.16            | 0.44              | \$229,885        | 499.21          | U                 | 0.71              | \$140,950        | 602.40            | 1.27              | \$78,933         | 696.32            |
| \$48.1m              | R                 | 1.41              | \$70,080       | 881.38            | 1.30              | \$70,805         | 500.51          | D                 | 0.41              | \$245,387        | 604.18            | 1.27              | \$78,992         | 609 95            |
| \$48.2m              | D                 | 1.41              | \$70,706       | 882.99            | 0.43              | \$230,203        | 502.24          | ĸ                 | 1.3/              | \$12,738         | 604.18            | 1.27              | \$79,033         | 700.11            |
| \$48.5III<br>\$48.4m | R                 | 1.41              | \$70,791       | 004.40            | 0.42              | \$70,925         | 502.24          | U                 | 0.00              | \$132,070        | 605.55            | 1.20              | \$79,108         | 701.29            |
| \$40.4III<br>\$49.5m | 0                 | 1.41              | \$70,801       | 003.02            | 0.43              | \$230,374        | 502.08          | D                 | 0.71              | \$141,515        | 606.02            | 1.20              | \$79,133         | 701.56            |
| \$48.5III<br>\$48.6m | P                 | 1.41              | \$70,897       | 888.64            | 1.30              | \$230,840        | 504.41          | W                 | 0.98              | \$101.660        | 607.90            | 1.20              | \$79,131         | 702.04            |
| \$48.0m              | P                 | 1.41              | \$71,013       | 800.04            | 1.30              | \$77,160         | 505.70          | P                 | 1.37              | \$72.950         | 600.27            | 1.20              | \$79,252         | 705.30            |
| \$48.7m              | R                 | 1.41              | \$71,013       | 890.05            | 1.30              | \$77,280         | 507.00          | G                 | 0.66              | \$152,950        | 609.27            | 1.20              | \$79.302         | 705.10            |
| \$48.9m              | R                 | 1.41              | \$71,230       | 892.86            | 1.29              | \$77,200         | 508.29          | 0                 | 0.00              | \$246 384        | 610.33            | 1.20              | \$79.313         | 707.69            |
| \$49.0m              | R                 | 1.40              | \$71,230       | 894.26            | 1.29              | \$77,513         | 509.58          | U                 | 0.71              | \$141 673        | 611.04            | 1.20              | \$79.334         | 708.95            |
| \$49.0m              | R                 | 1.40              | \$71,449       | 895.66            | 1.29              | \$77,634         | 510.87          | R                 | 1.37              | \$73.051         | 612.41            | 1.20              | \$79.378         | 710.21            |
| \$49.2m              | R                 | 1.10              | \$71,551       | 897.06            | 1.29              | \$77,748         | 512.15          | R                 | 1.37              | \$73,164         | 613.78            | 1.20              | \$79,498         | 711.46            |
| \$49.3m              | R                 | 1.40              | \$71,664       | 898.45            | 1.28              | \$77,869         | 513.44          | G                 | 0.65              | \$152.833        | 614.43            | 1.26              | \$79,504         | 712.72            |
| \$49.4m              | R                 | 1.39              | \$71,772       | 899.84            | 1.28              | \$77,985         | 514.72          | U                 | 0.70              | \$142.035        | 615.13            | 1.26              | \$79,536         | 713.98            |
| \$49.5m              | R                 | 1.39              | \$71,880       | 901.24            | 1.28              | \$78,107         | 516.00          | R                 | 1.36              | \$73,265         | 616.50            | 1.26              | \$79,611         | 715.24            |
| \$49.6m              | R                 | 1.39              | \$71,989       | 902.62            | 1.28              | \$78,223         | 517.28          | D                 | 0.40              | \$247,384        | 616.90            | 1.26              | \$79,634         | 716.49            |
| \$49.7m              | R                 | 1.39              | \$72,093       | 904.01            | 1.28              | \$78,333         | 518.56          | G                 | 0.65              | \$153,210        | 617.56            | 1.25              | \$79,694         | 717.75            |
| \$49.8m              | R                 | 1.38              | \$72,202       | 905.40            | 1.27              | \$78,456         | 519.83          | R                 | 1.36              | \$73,373         | 618.92            | 1.25              | \$79,726         | 719.00            |
| \$49.9m              | R                 | 1.38              | \$72,307       | 906.78            | 1.27              | \$78,567         | 521.10          | U                 | 0.70              | \$142,391        | 619.62            | 1.25              | \$79,738         | 720.25            |
| \$50.0m              | R                 | 1.38              | \$72,417       | 908.16            | 1.27              | \$78,691         | 522.37          | R                 | 1.36              | \$73,481         | 620.98            | 1.25              | \$79,840         | 721.51            |

<sup>a</sup> Marginal technology in expansion. At each level of budget impact, this technology is subject to a \$100,000 increase in incremental expenditure compared to the previous (smaller) level of budget impact;

<sup>b</sup> Estimate (given imperfect information) of the marginal change in incremental benefit (QALYs) resulting from \$100,000 increase in incremental expenditure on marginal technology;

<sup>c</sup> Estimate (given imperfect information) of the marginal ICER in expansion for the marginal technology; <sup>d</sup> Estimate (given imperfect information) of the cumulative change in incremental benefit (QALYs) resulting from entire increase in expenditure across all technologies.

Appendix 2.3: Optimal numerical thresholds

|                  |                   |                          |                   | λ                  | 1                 |                          |                   |                    |                   |                      |                   | λ                  | 2                 |                    |                   |                          |
|------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|----------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------------|
|                  | Ag                | ent has goo              | d informati       | on                 | As                | ent has poo              | or informati      | on                 | A                 | gent has go          | od informa        | tion               | A                 | gent has po        | or informat       | ion                      |
|                  | Net Inv           | estment                  | Net Disir         | ivestment          | Net Inv           | estment                  | Net Disi          | ivestment          | Net Inv           | estment              | Net Disi          | nvestment          | Net Inv           | estment            | Net Disi          | nvestment                |
| Budget impact    | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_n^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^b$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$0.1m           | 1.75              | \$57.122                 | -1.75             | \$57.129           | 1.65              | \$60.698                 | -1.65             | \$60.710           | 1.76              | \$56.770             | 1.00              | -\$99.957          | 6.69              | \$14.945           | -1.54             | \$64.860                 |
| \$0.2m           | 3.50              | \$57,114                 | -3.50             | \$57,149           | 3.30              | \$60,694                 | -3.29             | \$60,739           | 3.58              | \$55,883             | 2.83              | -\$70.680          | 13.44             | \$14.880           | -3.00             | \$66.671                 |
| \$0.3m           | 5.25              | \$57.095                 | -5.25             | \$57 180           | 4 94              | \$60,678                 | -4 94             | \$60,768           | 5 4 5             | \$55,040             | 5 20              | -\$57,710          | 20.25             | \$14 813           | -4 39             | \$68.341                 |
| \$0.4m           | 7 01              | \$57.067                 | -6.99             | \$57,204           | 6.59              | \$60,652                 | -6.58             | \$60,791           | 7 38              | \$54,237             | 8.00              | -\$49.978          | 27.13             | \$14 746           | -5.72             | \$69,896                 |
| \$0.5m           | 8 76              | \$57.048                 | -8 74             | \$57,218           | 8.25              | \$60,634                 | -8.22             | \$60,805           | 9.35              | \$53 471             | 11 19             | -\$44 702          | 34.07             | \$14 677           | -7.01             | \$71.354                 |
| \$0.6m           | 10.52             | \$57,031                 | -10.48            | \$57,237           | 9.90              | \$60,621                 | -9.86             | \$60,823           | 11 38             | \$52,740             | 14 70             | -\$40,807          | 41.08             | \$14,607           | -8.25             | \$72,731                 |
| \$0.7m           | 12.28             | \$57,014                 | -12.23            | \$57,257           | 11.55             | \$60,609                 | -11.51            | \$60,840           | 13.45             | \$52,040             | 18.53             | -\$37,780          | 48.16             | \$14 536           | -9.45             | \$74.037                 |
| \$0.7m           | 14.04             | \$56,992                 | -13.97            | \$57,273           | 13.20             | \$60,587                 | -13.14            | \$60,861           | 15.15             | \$51,369             | 22.64             | -\$35,340          | 55 31             | \$14 464           | -10.63            | \$75,282                 |
| \$0.0m           | 15.80             | \$56,974                 | -15.71            | \$57,290           | 14.86             | \$60,567                 | -14 78            | \$60,879           | 17.74             | \$50,725             | 27.01             | -\$33 319          | 62.54             | \$14 391           | -11 77            | \$76,471                 |
| \$1.0m           | 17.56             | \$56,960                 | -17.45            | \$57,200           | 16.52             | \$60,507                 | -16.42            | \$60,900           | 19.96             | \$50,725             | 31.64             | -\$31,609          | 69.85             | \$14,371           | -12.88            | \$77.612                 |
| \$1.0m           | 19.32             | \$56,944                 | -19.19            | \$57,329           | 18.17             | \$60,579                 | -18.06            | \$60,924           | 22.22             | \$49 512             | 36.50             | -\$30,138          | 77.25             | \$14,240           | -13.98            | \$78,709                 |
| \$1.1m<br>\$1.2m | 21.08             | \$56,930                 | -20.93            | \$57,346           | 19.83             | \$60,527                 | -10.00            | \$60,924           | 24.52             | \$48.940             | 41 59             | -\$28,855          | 84.73             | \$14,162           | -15.04            | \$79,766                 |
| \$1.2m           | 21.00             | \$56,914                 | -20.75            | \$57,363           | 21.49             | \$60,307                 | -21.32            | \$60,963           | 26.87             | \$48 388             | 46.89             | -\$20,000          | 92 31             | \$14,102           | -16.09            | \$80,787                 |
| \$1.5m           | 24.60             | \$56,900                 | -24.40            | \$57,380           | 23.15             | \$60,472                 | -22.96            | \$60,979           | 29.25             | \$47,855             | 52.41             | -\$26,715          | 99.99             | \$14,002           | -17.12            | \$81,775                 |
| \$1.4m           | 26.37             | \$56,887                 | -26.13            | \$57,396           | 23.13             | \$60,453                 | -24 59            | \$60,993           | 31.69             | \$47.341             | 58.12             | -\$25,809          | 107.77            | \$13,002           | -18.13            | \$82 733                 |
| \$1.5m           | 28.13             | \$56,875                 | -20.15            | \$57,370           | 24.01             | \$60,436                 | -24.55            | \$61,009           | 34.16             | \$46 844             | 64.03             | -\$23,809          | 115.66            | \$13,919           | -10.13            | \$83,663                 |
| \$1.0m           | 20.15             | \$56,863                 | -29.60            | \$57.429           | 20.47             | \$60,416                 | -20.23            | \$61,007           | 36.67             | \$46 363             | 70.12             | -\$24,767          | 123.66            | \$13,034           | -10.12            | \$84,566                 |
| \$1.7m           | 31.66             | \$56,850                 | -31.33            | \$57.445           | 29.80             | \$60,395                 | -29.49            | \$61,020           | 39.22             | \$45,897             | 76.40             | -\$23,560          | 131.78            | \$13,659           | -21.07            | \$85.445                 |
| \$1.0m           | 33.43             | \$56,834                 | -33.07            | \$57,460           | 31.47             | \$60,375                 | -27.47            | \$61,044           | 41.81             | \$45,446             | 82.85             | -\$23,500          | 140.04            | \$13,659           | -22.07            | \$86.302                 |
| \$1.9m           | 35.20             | \$56,819                 | -34.80            | \$57,476           | 33.14             | \$60,370                 | -32.74            | \$61,000           | 41.01             | \$45,009             | 89.48             | -\$22,752          | 148.43            | \$13,500           | -22.02            | \$87,138                 |
| \$2.0m           | 36.97             | \$56,804                 | -36.53            | \$57,493           | 34.81             | \$60,334                 | -34.37            | \$61,097           | 47.10             | \$44 584             | 96.28             | -\$21,812          | 156.98            | \$13,474           | -22.95            | \$87,954                 |
| \$2.1m           | 38.74             | \$56,789                 | -38.25            | \$57,509           | 36.48             | \$60,315                 | -36.00            | \$61,116           | 49.80             | \$44 172             | 103.23            | -\$21,012          | 165.68            | \$13,279           | -23.00            | \$88 751                 |
| \$2.2m           | 40.51             | \$56,776                 | -30.25            | \$57,500           | 38.15             | \$60,315                 | -37.62            | \$61,110           | 52 54             | \$43,772             | 110.35            | -\$21,511          | 174 55            | \$13,275           | -25.69            | \$89,530                 |
| \$2.5m           | 42.28             | \$56,770                 | -41 71            | \$57,520           | 39.82             | \$60,278                 | -39.24            | \$61,155           | 55 32             | \$43 383             | 117.63            | -\$20,842          | 183.62            | \$13,071           | -26.58            | \$90,293                 |
| \$2.5m           | 44.06             | \$56,746                 | -43.43            | \$57,519           | 41 49             | \$60,270                 | -40.87            | \$61,173           | 58.13             | \$43,005             | 125.05            | -\$19,991          | 192.88            | \$12,961           | -27.46            | \$91.040                 |
| \$2.6m           | 45.83             | \$56,732                 | -45.16            | \$57 576           | 43.16             | \$60,240                 | -42.49            | \$61 189           | 60.98             | \$42,636             | 132.63            | -\$19.603          | 202.37            | \$12,901           | -28.33            | \$91,773                 |
| \$2.7m           | 47.61             | \$56,716                 | -46.88            | \$57 593           | 44 84             | \$60,221                 | -44 11            | \$61,207           | 63.86             | \$42,278             | 140.36            | -\$19,237          | 212.11            | \$12,729           | -29.19            | \$92,491                 |
| \$2.8m           | 49.38             | \$56,700                 | -48.60            | \$57,609           | 46.51             | \$60,202                 | -45.73            | \$61,224           | 66.78             | \$41,929             | 148.23            | -\$18,890          | 222.12            | \$12,606           | -30.04            | \$93,195                 |
| \$2.9m           | 51.16             | \$56.685                 | -50.32            | \$57.627           | 48.19             | \$60,183                 | -47.35            | \$61,242           | 69.73             | \$41,588             | 156.24            | -\$18,561          | 232.44            | \$12,476           | -30.89            | \$93,887                 |
| \$3.0m           | 52.94             | \$56,670                 | -52.04            | \$57,644           | 49.86             | \$60,165                 | -48.97            | \$61,261           | 72.72             | \$41,257             | 164.39            | -\$18,250          | 243.11            | \$12,340           | -31.72            | \$94,567                 |
| \$3.1m           | 54.72             | \$56,653                 | -53.76            | \$57,660           | 51.54             | \$60,144                 | -50.59            | \$61,281           | 75.73             | \$40,933             | 172.68            | -\$17.953          | 254.18            | \$12,196           | -32.55            | \$95,235                 |
| \$3.2m           | 56.50             | \$56,637                 | -55.48            | \$57.677           | 53.22             | \$60,125                 | -52.20            | \$61,300           | 78.79             | \$40.617             | 181.10            | -\$17.670          | 265.73            | \$12.042           | -33.37            | \$95,891                 |
| \$3.3m           | 58.28             | \$56,620                 | -57.20            | \$57,695           | 54.90             | \$60,106                 | -53.82            | \$61,318           | 81.87             | \$40,308             | 189.65            | -\$17,400          | 277.84            | \$11,877           | -34.18            | \$96,537                 |
| \$3.4m           | 60.07             | \$56,603                 | -58.91            | \$57,713           | 56.58             | \$60,088                 | -55.43            | \$61,336           | 84.98             | \$40.007             | 198.34            | -\$17,142          | 290.65            | \$11.698           | -34.99            | \$97,173                 |
| \$3.5m           | 61.85             | \$56,587                 | -60.63            | \$57,731           | 58.27             | \$60,070                 | -57.05            | \$61,354           | 88.13             | \$39,713             | 207.15            | -\$16,896          | 304.34            | \$11,500           | -35.79            | \$97,799                 |
| \$3.6m           | 63.64             | \$56,571                 | -62.34            | \$57,748           | 59.95             | \$60,051                 | -58.66            | \$61,373           | 91.31             | \$39,425             | 216.09            | -\$16,659          | 319.25            | \$11,277           | -36.58            | \$98,415                 |
| \$3.7m           | 65.42             | \$56,554                 | -64.05            | \$57,767           | 61.63             | \$60,032                 | -60.27            | \$61,391           | 94.52             | \$39,144             | 225.16            | -\$16,433          | 335.94            | \$11,014           | -37.37            | \$99,022                 |
| \$3.8m           | 67.21             | \$56,537                 | -65.76            | \$57,784           | 63.32             | \$60,014                 | -61.88            | \$61,410           | 97.77             | \$38,869             | 234.35            | -\$16,215          | 355.85            | \$10,679           | -38.14            | \$99,620                 |
| \$3.9m           | 69.00             | \$56,520                 | -67.47            | \$57,802           | 65.01             | \$59,993                 | -63.49            | \$61,428           | 101.04            | \$38,599             | 243.66            | -\$16,006          | 389.74            | \$10,007           | -38.92            | \$100,210                |
| \$4.0m           | 70.79             | \$56,502                 | -69.18            | \$57,821           | 66.70             | \$59,973                 | -65.10            | \$61,447           | 104.34            | \$38,336             | 242.01            | -\$16,528          | 391.40            | \$10,220           | -39.69            | \$100,792                |
| \$4.1m           | 72.59             | \$56,485                 | -70.89            | \$57,839           | 68.39             | \$59,953                 | -66.70            | \$61,465           | 107.67            | \$38,078             | 240.46            | -\$17,050          | 393.06            | \$10,431           | -40.45            | \$101,366                |
| \$4.2m           | 74.38             | \$56,469                 | -72.59            | \$57,856           | 70.08             | \$59,935                 | -68.31            | \$61,483           | 111.04            | \$37,825             | 239.00            | -\$17,573          | 394.75            | \$10,640           | -41.20            | \$101,932                |
| \$4.3m           | 76.17             | \$56,453                 | -74.30            | \$57,875           | 71.77             | \$59,916                 | -69.92            | \$61,502           | 114.43            | \$37,577             | 237.61            | -\$18,097          | 396.44            | \$10,847           | -41.95            | \$102,491                |
| \$4.4m           | 77.96             | \$56,436                 | -76.00            | \$57,894           | 73.46             | \$59,896                 | -71.52            | \$61,520           | 117.85            | \$37,335             | 236.28            | -\$18,622          | 398.14            | \$11,051           | -42.70            | \$103,043                |
| \$4.5m           | 79.76             | \$56,420                 | -77.70            | \$57,912           | 75.15             | \$59,877                 | -73.12            | \$61,539           | 121.30            | \$37,097             | 235.00            | -\$19,149          | 399.86            | \$11,254           | -43.44            | \$103,588                |
| \$4.6m           | 81.56             | \$56,403                 | -79.41            | \$57,930           | 76.85             | \$59,858                 | -74.73            | \$61,558           | 124.78            | \$36,864             | 233.77            | -\$19,677          | 401.59            | \$11,454           | -44.18            | \$104,126                |
| \$4.7m           | 83.35             | \$56,386                 | -81.11            | \$57,949           | 78.55             | \$59,838                 | -76.33            | \$61,576           | 128.29            | \$36.635             | 232.59            | -\$20,207          | 403.34            | \$11.653           | -44.91            | \$104.658                |

## Table A2.3.1: Optimal numerical thresholds (threshold sets $\lambda 1$ and $\lambda 2$ )

| Japie liste li |               |                    |                          |                    | 2                        | 1                  |                          |                    |                          |                    |                          |                    | 2                  | 2                  |                          |                    |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|--------------------------|--------------------|----------------------|
| Net Investment     Ver Discussment     Net Investment     Net In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Ag                 | ent has goo              | d informati        | ion                      | A                  | ent has poo              | or informati       | on                       | A                  | gent has go              | od informat        | ion                | A                  | gent has poo             | or informat        | ion                  |
| Badget (march <i>E(AP) E(AP) E(AP)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | Net Inv            | estment                  | Net Disin          | ivestment                | Net Inv            | estment                  | Net Disi           | westment                 | Net Inv            | estment                  | Net Disi           | nvestment          | Net Inv            | estment                  | Net Disi           | nvestment            |
| Texts     Sister     Sister </th <th>Budget imnact</th> <th><math>E(\Lambda E)^{a}</math></th> <th><math>E(\lambda_{c}^{+})^{b}</math></th> <th><math>E(\Lambda E)^{c}</math></th> <th><math>E(\lambda_{c}^{-})^{d}</math></th> <th><math>E(\Lambda E)^{a}</math></th> <th><math>E(\lambda_{n}^{+})^{b}</math></th> <th><math>E(\Lambda E)^{c}</math></th> <th><math>E(\lambda_{n}^{-})^{d}</math></th> <th><math>E(\Lambda E)^{a}</math></th> <th><math>E(\lambda_{c}^{+})^{b}</math></th> <th><math>E(\Lambda E)^{c}</math></th> <th><math>E(\lambda_c^-)^d</math></th> <th><math>E(\Lambda E)^{a}</math></th> <th><math>E(\lambda_{n}^{+})^{b}</math></th> <th><math>E(\Lambda E)^{c}</math></th> <th><math>E(\lambda_{-})^{d}</math></th>                                                                                                                                                                                                                                                                                                                                                                                                                | Budget imnact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| stym     88/95     556,33     84/90     879/38     501/21     115.00     352/14     40.63     510/20       Stom     88/75     566,33     84/90     88/80     88/75     84/80     87/75     84/13     87/75     84/13     87/75     84/13     87/75     84/13     87/75     84/13     87/75     84/13     87/75     84/13     87/75     84/13     81/75     84/23     81/75     84/75     81/75     84/75     81/75     84/75     81/75     84/75     81/75     84/75     81/75     84/75     81/75     84/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75     81/75 <t< th=""><th>S4.8m</th><th>85.15</th><th>\$56 369</th><th>-82.81</th><th>\$57.967</th><th>80.24</th><th>\$59.818</th><th>-77.93</th><th>\$61 594</th><th>131.83</th><th>\$36.410</th><th>231.44</th><th>-\$20,739</th><th>405.10</th><th>\$11.849</th><th>-45.63</th><th>\$105 183</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S4.8m         | 85.15              | \$56 369                 | -82.81             | \$57.967                 | 80.24              | \$59.818                 | -77.93             | \$61 594                 | 131.83             | \$36.410                 | 231.44             | -\$20,739          | 405.10             | \$11.849                 | -45.63             | \$105 183            |
| SS.m     88.75     550.38     96.20     550.07     83.64     59.79     83.11     30.61.40     12.28     57.70     23.27.6     32.11.810     40.86.6     31.233     47.07     \$100.71       SS.m     92.36     550.30     13.78     850.66     88.75     59.799     84.32     \$61.667     14.62.6     \$51.570     227.45     32.21.61     41.10     81.79     49.20     810.725       SS.m     99.66     50.271     42.92     \$50.670     89.11     85.50     22.33     52.21.26     41.19     81.79     81.79     81.73     81.671     81.73     81.643     81.647     21.18     81.641     81.671     81.73     81.643     81.672     21.10     82.323     41.78     81.146     45.06     81.063     81.719     85.75     80.67     81.73     85.621     22.10     82.323     42.31     81.046     81.235     81.235     81.235     81.235     81.235     81.235     81.235     81.235     81.235     81.236     81.236     81.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$4.9m        | 86.95              | \$56 353                 | -84 50             | \$57,987                 | 81.94              | \$59,798                 | -79.53             | \$61.612                 | 135.40             | \$36,190                 | 230.33             | -\$21,274          | 406.87             | \$12,043                 | -46.36             | \$105,702            |
| st.m     0155     555,31     2478     552,06     282,17     561,640     162,07     527,14     522,113     410,16     512,22     447,14     410,16     512,22     447,14     447,06     512,353     226,44     422,77     512,13     447,06     512,27     552,506     414,10     512,797     423,33     524,126     414,10     512,797     423,33     524,126     414,10     512,797     423,33     524,126     414,10     512,797     423,33     524,126     414,10     512,797     423,33     524,126     414,10     512,797     423,33     524,126     417,10     513,357     516,042     222,10     522,5291     421,00     513,737     516,042     521,81     513,737     516,042     521,518     513,537     516,040     222,157     513,737     516,040     221,578     513,047     541,040     521,578     541,040     521,737     521,581     542,578     542,787     542,787     542,787     542,787     542,787     542,787     542,787     542,787     542,787     542,787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$5.0m        | 88.75              | \$56,338                 | -86.20             | \$58,007                 | 83.64              | \$59,778                 | -81.13             | \$61,631                 | 138.99             | \$35,974                 | 229.26             | -\$21,271          | 408.66             | \$12,015                 | -47.07             | \$106,702            |
| sts.m     92.56     \$55.m     92.58     \$55.m     92.64     \$51.m     94.16     \$55.m     94.27     \$55.66     97.7     \$55.66     94.16     \$56.71     94.21     \$57.7     \$55.28     444.0     \$12.99     \$13.43     >51.29     \$10.00     \$15.77     \$15.24     \$13.44     \$55.00     \$10.31     \$56.27     96.01     \$13.43     \$51.29     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.44     \$10.00     \$13.43     \$10.00     \$13.43     \$10.00     \$13.43     \$10.00     \$13.43     \$10.00     \$13.43     \$10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$5.0m        | 90.55              | \$56.321                 | -87.89             | \$58,007                 | 85 34              | \$59,779                 | -82.73             | \$61,639                 | 142.61             | \$35,762                 | 227.54             | -\$22,413          | 410.46             | \$12,235                 | _47.79             | \$106,210            |
| S5.mm     941.6     \$\$28.8     98.75     \$\$5.mm     924.7     \$\$21.95     148.18     \$\$37.98     \$\$24.7     \$\$37.98     \$\$24.7     \$\$37.98     \$\$24.7     \$\$37.98     \$\$22.97     \$\$37.98     \$\$22.97     \$\$37.98     \$\$22.93     \$\$32.10     \$\$13.95     \$\$12.292     \$\$49.00     \$\$10.821       \$\$5.mm     99.75     \$\$5.521     -9.04     \$\$59.097     -90.71     \$\$17.18     \$\$13.60     \$\$10.672     \$\$17.18     \$\$13.60     \$\$10.672     \$\$17.18     \$\$13.60     \$\$10.672     \$\$17.18     \$\$10.687     \$\$17.18     \$\$15.00     \$\$10.780     \$\$10.805     \$\$50.79     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918     \$\$10.918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$5.1m        | 92.36              | \$56 304                 | -89.58             | \$58,020                 | 87.05              | \$59,739                 | -84 32             | \$61,667                 | 146.26             | \$35,762                 | 226.49             | -\$22,959          | 412.27             | \$12,613                 | -48.50             | \$107,226            |
| S5.4m     99.50     \$50.71     -92.97     \$58.00     90.45     \$59.079     -97.13     \$53.120     218.01     \$21.10     118.05     \$30.210     52.200     523.120     128.133     53.027     49.05     \$108.700       S5.6m     99.58     \$56.237     -96.44     \$58.100     92.16     \$59.079     -90.71     \$51.73     53.647     22.10     52.27     417.82     \$13.341     51.20     51.08     \$10.09     \$55.07     110.30     \$55.08     110.00     \$50.88     110.00     \$50.88     110.00     \$50.88     110.00     \$50.88     \$10.89     \$37.128     121.68     \$27.224     123.48     53.38     110.57     \$50.60     160.88     \$27.28     124.07     54.70     \$11.09     \$50.50     56.16     100.03     \$58.200     100.71     \$59.59     90.02     56.18     100.64     \$56.18     100.71     \$59.59     90.02     56.18     101.60     \$57.74     122.53     \$52.07     \$11.51     \$53.30     100.72     \$21.40     \$11.41.207     \$41.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$5.2m        | 94.16              | \$56,288                 | -91.28             | \$58,066                 | 88 75              | \$59,719                 | -85.92             | \$61,685                 | 148.18             | \$35,768                 | 225.47             | -\$23,506          | 414.10             | \$12,019                 | -49.20             | \$107,723            |
| ss.6m     97.7     \$\$\$6.m     97.8     \$\$6.47     \$\$1.8     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.20     \$\$3.20     \$\$1.87     \$\$3.60     \$\$3.60     \$\$3.60     \$\$3.20     \$\$1.98     \$\$10.05       \$\$5.m     101.20     \$\$5.60     \$\$3.60     \$\$7.28     \$\$0.172     \$\$15.80     \$\$0.172     \$\$12.80     \$\$3.607     \$\$23.58     \$\$10.05     \$\$5.00     \$\$0.60     \$\$13.49     \$\$21.20     \$\$23.45     \$\$13.80     \$\$13.50     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     \$\$10.80     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$5.0m        | 95.96              | \$56,271                 | -92.97             | \$58,086                 | 90.45              | \$59,699                 | -87.52             | \$61,702                 | 150.09             | \$35,978                 | 223.83             | -\$24,126          | 415.95             | \$12,799                 | -49.90             | \$108,725            |
| SS.m     99.58     85.237     09.34     558.47     257.37     153.07     210.39     552.20     280.31     212.95     210.39     252.328     419.70     313.23     -51.29     810.20       SS.m     103.20     S56.201     290.71     558.18     200.30     51.557     356.670     212.90     452.581     471.60     51.557     356.670     212.90     452.6629     423.51     311.060     55.577     56.6m     106.84     55.10     106.08     553.278     100.71     555.979     -97.07     56.110     106.84     551.10     107.08     552.28     102.42     555.09     100.85     553.97     100.71     555.97     100.18     561.81     110.64     551.31     110.64     552.28     102.42     555.09     101.85     553.97     100.27     552.69     101.84     581.20     101.85     583.97     110.85     583.97     110.85     583.97     110.85     583.97     110.85     583.97     110.85     583.97     110.85     583.97     111.85     583.97 <th>\$5.5m</th> <th>97.77</th> <th>\$56,254</th> <th>-94.65</th> <th>\$58,106</th> <th>92.16</th> <th>\$59,679</th> <th>-89.11</th> <th>\$61,702</th> <th>151.85</th> <th>\$36,221</th> <th>222.09</th> <th>-\$24,764</th> <th>417.82</th> <th>\$13,164</th> <th>-50.60</th> <th>\$108,211</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$5.5m        | 97.77              | \$56,254                 | -94.65             | \$58,106                 | 92.16              | \$59,679                 | -89.11             | \$61,702                 | 151.85             | \$36,221                 | 222.09             | -\$24,764          | 417.82             | \$13,164                 | -50.60             | \$108,211            |
| ss.m     101.39     S56.201     99.801     S58.184     92.30     S61.756     155.87     256.87     219.94     325.88     421.60     51.295     55.87       0103.20     S56.101     010.40     S58.168     92.33     S58.07     107.11     S1.218     32.218     32.218     427.40     S1.88     427.40     S1.18.08     S3.33     S1.10.997     S6.6m     108.82     S5.61     10.47     S58.249     10.41     S55.399     10.12     S0.228     10.42     S1.288     10.22     S1.43     S1.337     S1.437     S5.61     S1.337     S1.11.47     S56.11     10.42     S58.249     10.43     S58.249     10.43     S58.249     10.43     S58.249     10.43     S58.249     10.43     S58.249     10.14     S58.249     10.12.42     S58.249     10.12.42     S58.249     10.12.42     S58.249     10.12.42 <th>\$5.6m</th> <th>99.58</th> <th>\$56,237</th> <th>-96.34</th> <th>\$58,126</th> <th>93.87</th> <th>\$59,659</th> <th>-90.71</th> <th>\$61,738</th> <th>153.60</th> <th>\$36,457</th> <th>221.09</th> <th>-\$25 328</th> <th>419.70</th> <th>\$13,343</th> <th>-51.29</th> <th>\$109,182</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$5.6m        | 99.58              | \$56,237                 | -96.34             | \$58,126                 | 93.87              | \$59,659                 | -90.71             | \$61,738                 | 153.60             | \$36,457                 | 221.09             | -\$25 328          | 419.70             | \$13,343                 | -51.29             | \$109,182            |
| S8.m     103.20     \$56.201     99.71     \$58.188     99.728     \$59.00     93.48     \$61.774     157.11     \$32.600     \$23.200     \$23.21     \$23.245     \$13.864     \$23.26     \$13.18     \$13.864     \$23.26     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.664     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$23.25     \$13.18     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.1645     \$13.16445     \$13.16445     \$13.16465<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5.0m        | 101.39             | \$56,220                 | -98.03             | \$58,120                 | 95.57              | \$59,640                 | -92.30             | \$61,756                 | 155.37             | \$36,687                 | 219.39             | -\$25,981          | 421.60             | \$13,520                 | -51.98             | \$109,658            |
| SS.9m     105.01     SS6,185     101.40     SS1289     99.99     S95.99     97.07     SL110     106.82     SS1,186     113.868     S13.868     S10.81     S11.851       S6.1m     110.45     S56.151     104.76     S58.250     100.25     S14.841     164.26     S37.745     213.49     -S28.577     433.37     S14.537     -S6.14     S14.409     -S6.04     S11.2422       S6.4m     114.40     S56.006     111.13     S58.310     100.28     S9.497     -105.18     S0.180     107.65     S33.11     208.44     S43.13     208.44     S13.13     208.44     S13.13     208.44     S13.13     208.44     S13.13     208.44     S13.13     208.44     S13.24     S43.13     208.44     S13.24     S43.13     208.45     S13.46 <th>\$5.8m</th> <th>103.20</th> <th>\$56,203</th> <th>-99 71</th> <th>\$58,168</th> <th>97.28</th> <th>\$59,619</th> <th>-93.89</th> <th>\$61,774</th> <th>157.14</th> <th>\$36,910</th> <th>217.80</th> <th>-\$26,629</th> <th>423 51</th> <th>\$13,695</th> <th>-52.67</th> <th>\$110,130</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$5.8m        | 103.20             | \$56,203                 | -99 71             | \$58,168                 | 97.28              | \$59,619                 | -93.89             | \$61,774                 | 157.14             | \$36,910                 | 217.80             | -\$26,629          | 423 51             | \$13,695                 | -52.67             | \$110,130            |
| Schm     106.82     S56,168     103.08     S58.270     107.11     S59.570     97.07     Scl.101     106.06     S17.39     215.15     S27.888     477.00     S14.038     541.03     S111.060       S6.1m     108.44     S56,151     104.13     S58.228     102.24     S50.14     104.13     S57.37     S111.972       S6.2m     112.27     S56.161     104.12     S58.229     102.38     S9.519     100.25     S61.823     107.25     S50.648     113.00     S20.854     433.37     S14.337     S54.70     S111.872       S6.6m     115.00     S56.081     111.47     S58.310     100.28     S9.479     105.01     S61.881     107.24     S50.064     113.14     S58.31     110.09.28     S9.479     105.01     S01.64     S33.13     208.44     -S31.162     43.453     45.00     112.86     S50.03     141.44     S51.414     113.45     S50.03     141.44     S51.17     S33.36     444.45     151.71     S88.46     117.72     S50.00     116.38 <th< th=""><th>\$5.0m</th><th>105.20</th><th>\$56,185</th><th>-101 40</th><th>\$58,188</th><th>98.99</th><th>\$59,599</th><th>-95.48</th><th>\$61,792</th><th>158.91</th><th>\$37,128</th><th>216.83</th><th>-\$27,210</th><th>425.45</th><th>\$13,868</th><th>-53.35</th><th>\$110,190</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$5.0m        | 105.20             | \$56,185                 | -101 40            | \$58,188                 | 98.99              | \$59,599                 | -95.48             | \$61,792                 | 158.91             | \$37,128                 | 216.83             | -\$27,210          | 425.45             | \$13,868                 | -53.35             | \$110,190            |
| Scim     108.4     \$56.13     1-104.7     \$58.228     102.45     \$59.50     289.56     \$11.245     \$52.07     \$12.93     \$14.007     \$47.07     \$11.159       \$6.2m     111.245     \$56.134     -106.84     \$59.519     -100.84     \$61.845     \$164.26     \$57.745     \$11.259     \$52.917     \$43.136     \$14.477     \$55.66     \$11.409     \$56.08     11.147     \$58.211     110.22     \$56.08     11.147     \$58.211     110.22     \$59.439     100.43     \$61.880     167.85     \$38.121     2008.44     \$31.168     437.46     \$14.495     \$57.73     \$11.309       \$66.m     117.72     \$56.061     -11.15     \$55.331     111.00     \$59.439     -10.610     60.196     171.44     \$38.661     205.3     33.101     443.658     >57.37     \$11.448     \$59.439     -10.176     \$50.902     173.28     \$38.661     205.3     33.101     443.658     \$37.30     444.375     \$15.247     >59.33     \$11.418     \$56.081     -11.145     \$50.997     -11.048     \$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$6.0m        | 106.82             | \$56,168                 | -103.08            | \$58,207                 | 100.71             | \$59 579                 | -97.07             | \$61,810                 | 160.69             | \$37,339                 | 215.15             | -\$27,888          | 427.40             | \$14,038                 | -54.03             | \$111,060            |
| sc.m     110.44     \$\$6,134     106.44     \$\$9,539     100.25     \$\$6,145     64.26     \$\$7,745     112.27     \$\$6,116     108.12     \$\$8,359     101.83     \$\$14,90     \$\$5,37     \$\$111,977     \$\$5,37     \$\$111,977       \$\$6,0m     114.00     \$\$56,098     109.80     \$\$8,289     107.57     \$\$9,499     103.43     \$\$14,820     \$\$20,558     433.37     \$\$14,499     56,700     \$\$11,83     \$\$47,37     \$\$14,337     \$\$14,499     56,700     \$\$11,242       \$\$6,0m     117.2     \$\$50,004     114.10     \$\$53,331     111.100     \$\$94,499     1050.18     \$\$01,952     172.48     \$\$38,402     206.64     \$\$11,371     \$\$6,86     \$11,347       \$\$6,7m     112.36     \$\$56,013     11.64     \$\$93,939     111.34     \$\$01,952     172.38     \$38,661     203.33     \$41,417     \$15,474     \$59,948     \$11,411       \$6,7m     123.0     \$55,043     121.78     \$59,430     112.91     \$55,654     123.15     \$61,227     \$16,381     \$21,417     \$15,868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$6.0m        | 108.64             | \$56,151                 | -104 76            | \$58,228                 | 102.42             | \$59,560                 | -98.66             | \$61,828                 | 162.47             | \$37 545                 | 213.49             | -\$28,573          | 429.37             | \$14 207                 | -54 70             | \$111,000            |
| S6.Jm     112.27     556.116     -108.82     559.519     -101.84     561.862     166.05     537.939     211.00     529.857     433.37     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     514.537     511.309     556.68     513.13     206.82     531.912     435.44     541.815     515.917     556.68     515.324     515.324     559.33     511.4161     559.399     111.34     559.390     121.30     555.937     110.83     559.330     112.93     501.983     177.55     531.610     201.25     533.77     643.76     515.324     459.393     515.627     450.29     515.627     450.29     515.627     450.63     515.627     450.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$6.2m        | 110.45             | \$56,134                 | -106.44            | \$58,249                 | 104.13             | \$59,539                 | -100.25            | \$61,845                 | 164.26             | \$37,745                 | 212.53             | -\$29,172          | 431.36             | \$14.373                 | -55.37             | \$111,972            |
| S6.4m     114.09     \$56,08     -109.80     \$58,289     107.57     \$59,499     -103.43     \$61,880     167.85     \$33,129     209.37     -530,568     413.41     \$14,699     -56.70     \$112,867       S6.6m     117.72     \$56,064     -111.47     \$58,810     100.28     \$59,459     -106.01     \$61,980     (66,65     \$38,313     208.44     -331,185     437.46     \$14,4858     -57.37     \$113,00       S6.6m     117.92     \$56,004     -114.42     \$58,852     112.136     \$56,003     116.44     \$51,914     -109.76     \$51,324     -58.302     \$113,447       S6.8m     123.16     \$55,003     -116.49     \$58,313     114.41     \$51,939     113.461       S7.0m     125.01     \$55,903     -121.36     \$58,466     119.16     \$59,339     112.38     \$51,622     -61.27     \$11.840       S7.0m     126.04     \$55,963     -121.36     \$58,461     119.16     \$59,339     112.38     \$50,361     113.480       S7.1m     122.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$6.3m        | 112.27             | \$56,116                 | -108.12            | \$58,269                 | 105.85             | \$59 519                 | -101.84            | \$61,862                 | 166.05             | \$37,939                 | 211.00             | -\$29.857          | 433.37             | \$14 537                 | -56.04             | \$112,422            |
| Ss.Sm     115.90     \$\$6.081     -111.47     \$\$8.301     102.82     \$\$9.479     -105.01     \$\$6.1906     53.3313     208.44     \$\$31.185     \$\$13.765     \$\$15.016     58.02     \$\$11.309       \$\$6.m     117.72     \$\$6.047     -114.82     \$\$8.352     112.22     \$\$9.439     -106.60     \$\$6.1916     71.28     \$\$8.667     203.34     \$\$32,450     441.64     \$\$15.171     -58.68     \$\$11.418       \$\$6.m     123.19     \$\$50.013     -116.16     \$\$8.9949     -110.818     \$\$61.920     717.09     \$\$38.866     203.74     -333.376     443.76     \$\$15.474     -59.98     \$\$11.647     \$\$9.99     113.44     \$\$5.904     -112.48     \$\$5.904     112.88     \$\$5.904     112.10     \$\$6.008     180.75     \$\$3.916     201.28     \$\$3.472     448.09     \$15.474     -6.127     \$11.808       \$7.m     126.83     \$\$5.946     -124.84     \$\$3.846     201.768     \$3.8472     449.848     \$45.22     \$15.748     \$11.018       \$7.m     130.48     \$5.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$6.4m        | 114.09             | \$56,098                 | -109.80            | \$58,289                 | 107.57             | \$59,499                 | -103.43            | \$61,880                 | 167.85             | \$38 129                 | 209 37             | -\$30,568          | 435.41             | \$14,699                 | -56.70             | \$112,867            |
| S6.6m     117.72     S45.064     113.15     S58.33     111.00     S59.459     -106.60     S61.035     173.28     S38.467     205.82     S31.912     439.54     S15.016     -58.02     S113.717       S6.7m     119.54     S56.030     -116.49     S58.373     114.44     S59.419     -109.76     S61.952     173.09     S38.867     205.33     -S32.630     441.64     S15.747     -59.86     S114.411       S6.6m     123.01     S55.091     -118.48     S59.390     -112.33     S61.992     177.59     S39.001     202.83     S34.019     443.76     S15.244     -59.98     S115.407       S7.0m     128.08     S55.906     -121.37     S58.436     119.06     S59.301     -114.51     S02.002     180.58     S39.317     199.81     -S35.514     450.22     S15.766     -61.27     S115.807       S7.4m     132.31     S55.940     -123.05     S59.321     -117.66     S02.0471     187.98     S39.377.789     457.06     S16.190     -63.18     S117.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$6.5m        | 115.90             | \$56,081                 | -111 47            | \$58,310                 | 109.28             | \$59 479                 | -105.01            | \$61,898                 | 169.65             | \$38 313                 | 208.44             | -\$31,185          | 437.46             | \$14,858                 | -57 37             | \$113,309            |
| S6.7m     119.54     \$56.037     -114.82     \$58,352     112.72     \$59.439     -108.18     \$61,935     173.28     \$38,8667     205.33     \$32,630     441.64     \$15,171     -58.68     \$114.18       S6.8m     123.19     \$56,013     -116.149     \$58,373     114.44     \$59,419     -109.76     \$23,930     202.83     \$33,376     443.76     \$15,234     -59.33     \$116,415       S6.7m     122.01     \$55,907     -112.10     \$58,415     117.88     \$59,309     -112.34     \$61,907     176.92     \$39,401     202.83     \$33,174     445.91     \$15,627     40.63     \$15,637       S7.1m     126.68     \$55,906     -122.10     \$58,458     121.33     \$59,341     -116.09     \$60,203     186.12     \$39,461     197.36     \$35,848     454.78     \$16,020     -62.25     \$11,808       S7.4m     132.31     55,594     -122.60     \$58,500     124.79     \$59,200     122.39     \$62,007     188.12     \$39,499     194.95     \$38,427     493.88 <th>\$6.6m</th> <th>117.72</th> <th>\$56.064</th> <th>-113.15</th> <th>\$58,331</th> <th>111.00</th> <th>\$59,459</th> <th>-106.60</th> <th>\$61,916</th> <th>171.46</th> <th>\$38,492</th> <th>206.82</th> <th>-\$31,912</th> <th>439.54</th> <th>\$15,016</th> <th>-58.02</th> <th>\$113,747</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$6.6m        | 117.72             | \$56.064                 | -113.15            | \$58,331                 | 111.00             | \$59,459                 | -106.60            | \$61,916                 | 171.46             | \$38,492                 | 206.82             | -\$31,912          | 439.54             | \$15,016                 | -58.02             | \$113,747            |
| S6.8m     12136     S56.00     -116.49     S58.373     114.44     S59.419     -109.76     S61.952     175.09     S38.836     203.74     -S33.376     443.76     S15.224     -59.38     S115.037       S7.0m     125.01     S55.997     -119.83     S58.445     117.88     S59.380     -112.30     S61.988     313.76     443.76     S15.224     -59.28     S115.037       S7.0m     125.01     S55.997     -119.83     S58.445     117.88     S59.341     -116.09     S62.025     180.58     S39.341     -116.09     S62.025     180.28     S39.346     199.81     S35.534     450.29     S15.768     -61.27     S115.880       S7.4m     130.34     S55.946     -124.83     S58.941     110.160     S62.027     187.98     S37.789     457.08     816.022     -62.55     S16.109     S11.548       S7.5m     134.14     S55.891     -128.16     S58.561     120.52     S59.200     -120.82     862.077     187.98     S39.290     461.74     S16.460     64.44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$6.7m        | 119.54             | \$56.047                 | -114.82            | \$58,352                 | 112.72             | \$59,439                 | -108.18            | \$61,935                 | 173.28             | \$38.667                 | 205.33             | -\$32,630          | 441.64             | \$15,171                 | -58.68             | \$114,181            |
| S6.9m     123.19     \$56.013     -118.16     \$58,934     116.16     \$59,339     -111.34     \$61,970     176.92     \$39,001     202.83     -534,019     445.91     \$15,474     -59.98     \$115,037       \$7.1m     126.83     \$55,980     -12.03     \$58,415     117.88     \$59,360     -112.93     \$60,988     178.75     \$39,101     202.83     -534,782     448.09     \$15,622     -60.63     \$115,400       \$7.1m     126.83     \$55,980     -121.05     \$58,445     121.33     \$59,341     -116.05     \$62,023     182.42     \$39,460     197.36     \$36,884     \$454,78     \$16.02     >536,317     452.52     \$15,001     64.18     \$117,65     \$62,0259     186.12     \$39,460     197.36     353,484     454,78     \$16.02     63.25     \$117,508       \$7.5m     134.14     \$55,911     -12.81     \$59,200     -122.39     \$62,095     188,44     40.34     43.34     \$53,220     461.74     \$116,206     64.44     \$117,927     \$17,7m     137.80     \$55,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$6.8m        | 121.36             | \$56,030                 | -116 49            | \$58.373                 | 114 44             | \$59.419                 | -109.76            | \$61,952                 | 175.09             | \$38,836                 | 203 74             | -\$33,376          | 443 76             | \$15 324                 | -59.33             | \$114 611            |
| \$7.0m     125.01     \$55.997     -119.83     \$58,415     117.88     \$59,380     -112.93     \$61,988     178.75     \$39,161     201.25     -\$34,782     448.09     \$15,622     -60.63     \$115,460       \$7.1m     126.68     \$55,960     -121.50     \$58,436     119.61     \$59,361     -114.51     \$62,005     180.24     \$35,917     199.81     -\$35,334     450.29     \$15,768     -61.27     \$115,800       \$7.3m     130.48     \$55,940     -122.30     \$50,201     117.05     \$26,021     180.42     \$39,460     198.33     337.794     457.06     61.09     -63.18     \$117.118       \$7.5m     134.14     \$55.911     -128.65     \$59,200     -122.39     \$62,113     191.71     \$40.164     192.20     450.20     450.20     450.07     8118,327       \$7.7m     137.80     \$55.877     -131.48     \$55.862     129.89     \$52,200     122.397     \$62,113     191.71     \$40.164     92.02     450.75     \$118,327       \$7.6m     131.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$6.9m        | 123.19             | \$56.013                 | -118.16            | \$58,394                 | 116.16             | \$59,399                 | -111.34            | \$61,970                 | 176.92             | \$39.001                 | 202.83             | -\$34.019          | 445.91             | \$15,474                 | -59.98             | \$115.037            |
| \$7.1m     126.83     \$55.980     -121.50     \$58,436     119.61     \$59,361     -114.51     \$62,005     180.58     \$39,317     199.81     \$33,534     450.29     \$15,768     -61.27     \$115,880       \$7.3m     130.48     \$55,946     -124.83     \$58,479     123.06     \$59,301     -116.06     \$62,021     182.42     \$39,616     197.36     \$53,698     457.478     \$16,120     -62.55     \$116,206       \$7.4m     132.11     \$55,991     -128.16     \$58,501     124.79     \$59,301     -119.24     \$62,007     187.98     \$39,899     194.95     -\$33,7789     457.06     \$16,100     -63.18     \$117,921       \$7.5m     133.14     \$55,894     -128.25     \$59,240     -122.37     \$62,107     187.88     \$40,034     193.43     \$53,290     461.74     \$16,464     \$117,927       \$7.5m     137.64     \$55,894     -133.14     \$58,853     131.71     \$59,220     -123.75     \$62,113     191.71     \$40,166     192.02     \$40,099     464.12     \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$7.0m        | 125.01             | \$55,997                 | -119.83            | \$58,415                 | 117.88             | \$59,380                 | -112.93            | \$61,988                 | 178.75             | \$39,161                 | 201.25             | -\$34,782          | 448.09             | \$15.622                 | -60.63             | \$115,460            |
| \$7.2m   128.66   \$55.963   -123.17   \$58.458   121.33   \$59.341   -116.06   \$62.023   182.42   \$39.460   198.25   \$36.317   452.52   \$15.911   -61.91   \$116.296     \$7.3m   130.48   \$55.924   -126.50   \$58.901   124.79   \$59.321   -117.24   \$62.05   \$18.12   \$39,616   197.36   -\$36.988   454.78   \$16.00   6-3.35   \$117.1524     \$7.5m   134.14   \$55.911   -128.16   \$58.581   122.52   \$59.280   -122.49   \$62.077   187.98   \$39.899   194.95   -338.472   459.38   \$16.326   6-3.82   \$117.1524     \$7.7m   137.80   \$55.877   -131.48   \$58.562   122.98   \$59.240   -122.97   \$62.133   191.71   \$40.166   192.02   -\$40.999   464.12   \$16.791   6-5.07   \$118.327     \$7.7m   137.08   \$55.871   -131.48   \$58.624   132.18   \$59.120   -122.19   \$62.167   197.35   \$40.933   831.631   451.23   \$41.633   \$46.544   \$66.57   \$118.327   \$57.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$7.1m        | 126.83             | \$55,980                 | -121.50            | \$58,436                 | 119.61             | \$59,361                 | -114.51            | \$62,005                 | 180.58             | \$39,317                 | 199.81             | -\$35,534          | 450.29             | \$15,768                 | -61.27             | \$115,880            |
| \$7.3m   130.48   \$55.946   -124.83   \$58.479   123.06   \$59.321   -117.66   \$62.041   184.27   \$39.616   197.36   -53.6988   454.78   \$16.052   -62.55   \$116.708     \$7.5m   134.14   \$55.911   -128.16   \$58.521   126.25   \$59.200   -122.82   \$62.077   187.88   \$39.899   194.95   -538.472   457.06   \$16.320   -63.18   \$117.152     \$7.5m   133.14   \$55.877   -131.48   \$58.562   129.28   \$62.017   187.80   \$39.899   194.95   -538.472   450.36   -66.44   \$117.927     \$7.5m   137.80   \$55.877   -131.48   \$58.562   129.29   \$62.113   191.71   \$40.166   192.02   >400.99   461.71   \$16.640   -64.45   \$118,327     \$7.5m   131.48   \$58.842   -133.46   \$58.842   133.44   \$59.201   -127.12   \$62.113   191.71   \$40.165   192.05   \$40.909   461.53   469.40   \$18.327     \$8.0m   143.31   \$55.824   -136.46   \$58.641   133.44   \$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$7.2m        | 128.66             | \$55,963                 | -123.17            | \$58,458                 | 121.33             | \$59,341                 | -116.09            | \$62,023                 | 182.42             | \$39,469                 | 198.25             | -\$36,317          | 452.52             | \$15,911                 | -61.91             | \$116,296            |
| \$7.4m   132.31   \$55.928   -126.50   \$58.500   124.79   \$59.301   -119.24   \$62.057   187.18   \$33,789   194.35   \$33,789   457.06   \$16,100   -63.18   \$117,118     \$7.5m   134.14   \$55,911   -128.16   \$58,521   126.52   \$59,260   -122.39   \$62,077   187.98   \$39,899   194.95   -538,472   459.38   \$16,326   -63.82   \$117,217     \$7.7m   137.80   \$55,847   -131.48   \$58,562   129.98   \$59,200   -122.39   \$62,017   187.98   \$40,041   193.43   -539,200   461.74   \$16,600   -64.45   \$117,927     \$7.7m   137.80   \$55,897   -131.48   \$58,664   135.41   \$59,200   -127.12   \$62,118   193.58   \$40,023   190.52   \$40,040   466.51   \$16,967   -66.94   \$119,208     \$8.0m   143.31   \$55,824   -136.46   \$58,624   135.18   \$59,180   -128.69   \$62,167   197.35   \$40,538   188.18   -842,513   471.150   \$16,967   -66.94   \$119,208   \$35,770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$7.3m        | 130.48             | \$55,946                 | -124.83            | \$58,479                 | 123.06             | \$59,321                 | -117.66            | \$62,041                 | 184.27             | \$39,616                 | 197.36             | -\$36,988          | 454.78             | \$16,052                 | -62.55             | \$116,708            |
| \$7.5m   134.14   \$55.911   -128.16   \$58,221   126.52   \$59,280   -120.82   \$62,097   189.84   \$39,899   194.95   -538,472   459.38   \$16,326   -63.82   \$117,524     \$7.6m   135.97   \$55,894   -129.82   \$58,541   128.25   \$59,200   -122.39   \$62,095   189.84   \$40,034   193.43   -539,290   461.74   \$16,460   -64.45   \$117,927     \$7.7m   137.80   \$55,857   -133.14   \$58,863   131.71   \$59,220   -123.57   \$62,113   193.58   \$40,293   190.52   -540,940   466.54   \$16,719   -65.70   \$118,372     \$7.9m   141.47   \$55,842   -134.80   \$56,064   133.44   \$59,210   -122.12   \$62,167   197.35   \$40,538   188.18   \$42,513   471.03   \$16,907   -66.94   \$119,508     \$8.1m   145.14   \$55,807   -133.12   \$58,666   138.65   \$59,100   -131.83   \$62,202   201.14   \$40,768   188.49   \$44,988   479.24   \$17,205   68.17   \$120,664 <t< th=""><th>\$7.4m</th><th>132.31</th><th>\$55,928</th><th>-126.50</th><th>\$58,500</th><th>124.79</th><th>\$59,301</th><th>-119.24</th><th>\$62,059</th><th>186.12</th><th>\$39,760</th><th>195.83</th><th>-\$37,789</th><th>457.06</th><th>\$16,190</th><th>-63.18</th><th>\$117,118</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$7.4m        | 132.31             | \$55,928                 | -126.50            | \$58,500                 | 124.79             | \$59,301                 | -119.24            | \$62,059                 | 186.12             | \$39,760                 | 195.83             | -\$37,789          | 457.06             | \$16,190                 | -63.18             | \$117,118            |
| \$7.6m   135.97   \$55.894   129.82   \$58,261   122.25   \$59.260   -123.97   \$62,095   189.84   \$40,034   193.43   -539.200   461.74   \$16,460   -64.45   \$117,927     \$7.7m   137.80   \$55,877   -131.48   \$58,562   129.98   \$59,220   -123.97   \$62,113   191.71   \$40,166   192.02   -\$40,099   464.12   \$16,591   -65.07   \$118,327     \$7.8m   134.44   \$55,842   -134.80   \$58,604   133.44   \$59,201   -127.12   \$62,148   195.46   \$40,417   189.66   -\$41,653   466.54   \$16,90   -66.32   \$119,107     \$8.0m   143.31   \$55,824   -136.46   \$58,624   135.18   \$59,160   -130.66   \$62,167   197.35   \$40,558   188.49   -544,964   476.61   \$17,205   -66.34   \$119,896     \$8.1m   145.25   \$55,754   -141.43   \$58,667   140.39   \$59,100   -133.40   \$62,218   204.95   840,98   470.24   \$17,319   -68.79   \$120,642     \$8.4m   150.66   \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$7.5m        | 134.14             | \$55,911                 | -128.16            | \$58,521                 | 126.52             | \$59,280                 | -120.82            | \$62,077                 | 187.98             | \$39,899                 | 194.95             | -\$38,472          | 459.38             | \$16,326                 | -63.82             | \$117,524            |
| \$7.7m   137.80   \$55,877   -131.48   \$58,562   129.98   \$59,240   -123.97   \$62,113   191.71   \$40,166   192.02   \$40,090   464.12   \$16,719   -65.07   \$118,327     \$7.8m   139,64   \$55,859   -133.14   \$58,583   131.71   \$59,220   -122.54   \$62,130   193.58   \$40,293   190.52   -\$40,904   466.54   \$16,719   -65.07   \$118,327     \$7.9m   141.47   \$55,842   -136.46   \$58,604   133.14   \$59,200   -122.69   \$62,167   197.35   \$40,538   188.18   -\$42,513   471.50   \$16,967   -66.94   \$119,508     \$8.1m   145.14   \$55,807   -138.12   \$58,666   138.65   \$59,140   -131.83   \$62,219   203.04   \$40,658   185.96   \$44,096   476.61   \$17,205   -68.17   \$120,826     \$8.2m   146.82   \$55,770   -141.43   \$58,670   133.40   \$52,120   -133.40   \$62,219   203.04   \$40,878   184.49   \$44,984   \$44,984   \$44,984   \$44,984   \$44,984   \$44,984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$7.6m        | 135.97             | \$55,894                 | -129.82            | \$58,541                 | 128.25             | \$59,260                 | -122.39            | \$62,095                 | 189.84             | \$40,034                 | 193.43             | -\$39,290          | 461.74             | \$16,460                 | -64.45             | \$117,927            |
| \$7.8m   139.64   \$55,859   -133.14   \$58,858   131.71   \$59,220   -125.54   \$62,130   193.58   \$40,293   190.52   -540,940   466.54   \$16,719   -65.70   \$118,723     \$7.9m   141.47   \$55,842   -134.80   \$58,604   133.44   \$59,201   -127.12   \$62,167   197.35   \$40,538   188.18   -542,513   471.50   \$16,844   -66.72   \$119,508     \$8.0m   143.14   \$55,807   -138.12   \$58,665   136.92   \$59,160   -130.26   \$62,185   199.24   \$40,655   186.80   -543,361   474.03   \$17,087   -67.56   \$119,896     \$8.1m   145.14   \$55,870   -139.77   \$58,666   138.65   \$59,114   -131.83   \$62,202   201.14   \$40,768   185.96   544,096   476.61   \$17,205   -68.17   \$120,282     \$8.2m   148.28   \$55,774   -144.30   \$58,687   140.39   \$59,120   -134.30   \$62,232   203.04   \$44,988   147,408   \$61,798   \$62,139   203.04   \$44,984   490.49   \$17,686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$7.7m        | 137.80             | \$55,877                 | -131.48            | \$58,562                 | 129.98             | \$59,240                 | -123.97            | \$62,113                 | 191.71             | \$40,166                 | 192.02             | -\$40,099          | 464.12             | \$16,591                 | -65.07             | \$118,327            |
| S7.9m   141.47   \$55,842   -134.80   \$58,604   133.44   \$59,201   -127.12   \$62,148   195.46   \$40,417   189.66   -\$41,653   469.00   \$16,844   -66.32   \$119,117     S8.0m   143.31   \$55,824   -136.46   \$58,624   135.18   \$59,180   -128.69   \$62,167   197.35   \$40,555   188.18   -\$42,3361   471.03   \$16,967   -66.94   \$119,508     S8.1m   145.14   \$55,707   -138.12   \$58,666   138.65   \$59,141   -131.83   \$62,202   201.14   \$40,768   188.96   -\$44,906   476.16   \$17,205   -66.817   \$120,624     S8.2m   146.98   \$55,772   -141.43   \$58,687   140.39   \$59,120   -133.40   \$62,219   203.04   \$40,878   184.49   -\$44,988   479.24   \$17,215   -68.17   \$120,624     S8.4m   150.66   \$55,754   -143.08   \$58,708   142.13   \$59,079   -138.10   \$62,233   204.95   440,88   181.70   -\$46,781   483.56   \$17,724   70.00   \$121,421   \$55,666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$7.8m        | 139.64             | \$55,859                 | -133.14            | \$58,583                 | 131.71             | \$59,220                 | -125.54            | \$62,130                 | 193.58             | \$40,293                 | 190.52             | -\$40,940          | 466.54             | \$16,719                 | -65.70             | \$118,723            |
| S8.0m   143.31   \$55,824   -136.46   \$58,624   135.18   \$59,180   -128.69   \$62,167   197.35   \$40,538   188.18   -\$42,513   471.50   \$16,967   -66.94   \$119,508     S8.1m   145.14   \$55,807   -138.12   \$58,645   136.92   \$59,160   -130.26   \$62,185   199.24   \$40,655   186.80   -\$43,361   474.03   \$17,085   66.94   \$112,025     S8.2m   146.98   \$55,770   -131.43   \$58,687   140.39   \$59,120   -133.40   \$62,219   203.04   \$40,878   184.49   -\$44,988   479.24   \$17,109   66.79   \$120,664     S8.4m   150.66   \$55,736   -144.33   \$58,708   142.13   \$59,009   -134.97   \$62,238   204.95   \$40,985   183.04   -\$45,891   480.89   \$17,468   -69.40   \$121,044     S8.5m   156.19   \$55,736   -144.33   \$58,782   143.88   \$59,079   -136.53   \$62,251   206.87   \$41,088   181.70   -\$46,781   483.56   \$17,724   -70.061   \$121,075   \$55,673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$7.9m        | 141.47             | \$55,842                 | -134.80            | \$58,604                 | 133.44             | \$59,201                 | -127.12            | \$62,148                 | 195.46             | \$40,417                 | 189.66             | -\$41,653          | 469.00             | \$16,844                 | -66.32             | \$119,117            |
| S8.1m   145.14   \$55,807   -138.12   \$58,645   136.92   \$59,160   -130.26   \$62,185   199.24   \$40,655   186.80   -\$43,361   474.03   \$17,087   -67.56   \$119,896     S8.2m   146.98   \$55,770   -131.43   \$58,666   138.65   \$59,110   -131.83   \$62,202   201.14   \$40,678   185.96   -\$44,096   476.61   \$17,205   -68.17   \$120,282     S8.3m   148.82   \$55,774   -141.33   \$58,708   142.13   \$59,120   -133.40   \$62,218   203.04   \$40,878   184.49   -\$44,988   479.24   \$17,319   -68.79   \$120,664     S8.4m   150.66   \$55,754   -144.73   \$58,708   142.13   \$59,099   -136.53   \$62,213   208.67   \$44,988   148.49   \$48.89   \$17,468   -60.40   \$121,044     S8.6m   154.35   \$55,719   -146.38   \$58,771   147.36   \$59,038   -130.76   \$62,271   208.80   \$41,189   180.87   \$44,874   486.89   \$17,468   -70.00   \$121,421     S8.6m <th< th=""><th>\$8.0m</th><th>143.31</th><th>\$55,824</th><th>-136.46</th><th>\$58,624</th><th>135.18</th><th>\$59,180</th><th>-128.69</th><th>\$62,167</th><th>197.35</th><th>\$40,538</th><th>188.18</th><th>-\$42,513</th><th>471.50</th><th>\$16,967</th><th>-66.94</th><th>\$119,508</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$8.0m        | 143.31             | \$55,824                 | -136.46            | \$58,624                 | 135.18             | \$59,180                 | -128.69            | \$62,167                 | 197.35             | \$40,538                 | 188.18             | -\$42,513          | 471.50             | \$16,967                 | -66.94             | \$119,508            |
| S8.2m   146.98   \$55,790   -139.77   \$58,666   138.65   \$59,141   -131.83   \$62,202   201.14   \$40,768   185.96   -544,096   476.61   \$17,205   -68.17   \$120,282     S8.3m   148.82   \$55,772   -141.43   \$58,687   140.39   \$59,120   -133.40   \$62,219   203.04   \$40,878   184.49   -\$44,988   479.24   \$17,139   -68.79   \$120,664     S8.4m   150.66   \$55,736   -144.73   \$58,708   142.13   \$59,079   -136.53   \$62,232   204.95   \$40,985   183.10   -\$45,781   480.89   \$17,788   -69.40   \$121,044     S8.6m   154.35   \$55,710   -146.38   \$58,792   143.62   \$59,058   -138.10   \$62,273   208.80   \$41,189   180.87   -\$47,549   485.22   \$17,724   -70.61   \$121,795     S8.7m   156.19   \$55,700   -148.03   \$58,792   149.11   \$59,017   -141.23   \$62,230   212.66   \$41,380   178.61   -\$48,487   486.89   \$17,868   -71.21   \$122,167   \$36,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$8.1m        | 145.14             | \$55,807                 | -138.12            | \$58,645                 | 136.92             | \$59,160                 | -130.26            | \$62,185                 | 199.24             | \$40,655                 | 186.80             | -\$43,361          | 474.03             | \$17,087                 | -67.56             | \$119,896            |
| \$8.3m   148.82   \$55,772   -141.43   \$58,687   140.39   \$59,120   -133.40   \$62,219   203.04   \$40,878   184.49   -\$44,988   479.24   \$17,319   -68.79   \$120,664     \$8.4m   150.66   \$55,754   -143.08   \$58,708   142.13   \$59,099   -134.97   \$62,238   204.95   \$40,985   183.04   -\$45,891   480.89   \$17,468   -69.40   \$121,044     \$8.5m   152.50   \$55,716   -144.73   \$58,728   143.88   \$59,079   -136.53   \$62,255   206.87   \$41,088   181.07   -\$46,781   483.56   \$17,578   -70.00   \$121,212     \$8.6m   154.35   \$55,700   -148.03   \$58,771   147.36   \$59,038   -139.67   \$62,291   210.73   \$41,286   179.43   -\$48,487   486.89   \$17,868   -71.21   \$122,167     \$8.7m   156.19   \$55,663   -149.68   \$58,792   149.11   \$59,017   -141.23   \$62,230   212.66   \$41,380   178.61   -\$49,268   488.57   \$18,012   -71.82   \$122,157   \$59,081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$8.2m        | 146.98             | \$55,790                 | -139.77            | \$58,666                 | 138.65             | \$59,141                 | -131.83            | \$62,202                 | 201.14             | \$40,768                 | 185.96             | -\$44,096          | 476.61             | \$17,205                 | -68.17             | \$120,282            |
| S8.4m   150.66   \$55,754   -143.08   \$58,708   142.13   \$59,099   -134.97   \$62,238   204.95   \$40,985   183.04   -\$45,891   480.89   \$17,468   -69.40   \$121,044     S8.5m   152.50   \$55,736   -144.73   \$58,728   143.88   \$59,079   -136.53   \$62,255   206.87   \$41,088   181.00   -\$46,781   483.56   \$17,478   -60.00   \$121,421     S8.6m   155.19   -146.38   \$58,779   145.62   \$59,058   -138.10   \$62,273   208.80   \$41,189   180.87   -\$47,549   485.22   \$17,244   -70.01   \$121,921     S8.7m   156.19   \$55,700   -144.83   \$59,038   -139.67   \$62,230   212.66   \$41,380   178.61   -\$49,268   488.57   \$18,012   -71.82   \$122,537     S8.7m   159.88   55,665   -151.33   \$58,872   149.11   \$59,017   -141.23   \$62,308   212.66   \$41,380   178.61   -\$49,268   488.57   \$18,012   -71.82   \$122,537     S9.0m   161.74   \$55,664 <t< th=""><th>\$8.3m</th><th>148.82</th><th>\$55,772</th><th>-141.43</th><th>\$58,687</th><th>140.39</th><th>\$59,120</th><th>-133.40</th><th>\$62,219</th><th>203.04</th><th>\$40,878</th><th>184.49</th><th>-\$44,988</th><th>479.24</th><th>\$17,319</th><th>-68.79</th><th>\$120,664</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$8.3m        | 148.82             | \$55,772                 | -141.43            | \$58,687                 | 140.39             | \$59,120                 | -133.40            | \$62,219                 | 203.04             | \$40,878                 | 184.49             | -\$44,988          | 479.24             | \$17,319                 | -68.79             | \$120,664            |
| S8.5m   152.50   \$55,736   -144.73   \$58,728   143.88   \$59,079   -136.53   \$62,255   206.87   \$41,088   181.70   -\$46,781   483.56   \$17,578   -70.00   \$121,421     S8.6m   154.35   \$55,719   -146.38   \$58,749   145.62   \$59,058   -138.10   \$62,273   208.80   \$41,189   180.87   -\$47,549   485.22   \$17,724   -70.61   \$121,795     S8.7m   156.19   \$55,700   -148.03   \$58,771   147.36   \$59,038   -139.67   \$62,291   210.73   \$41,286   179.43   -\$48,487   486.89   \$17,868   -71.12   \$122,167     S8.8m   158.04   \$55,665   -151.33   \$58,812   150.85   \$58,998   -144.36   \$62,308   212.66   \$41,471   177.19   -\$50,228   491.29   \$18,115   -71.34   \$122,537     S9.0m   161.74   \$55,666   -152.98   \$58,833   152.60   \$58,997   -144.36   \$62,343   216.66   \$41,571   177.17   492.98   \$18,256   -74.06   \$121,527     S9.1m <t< th=""><th>\$8.4m</th><th>150.66</th><th>\$55,754</th><th>-143.08</th><th>\$58,708</th><th>142.13</th><th>\$59,099</th><th>-134.97</th><th>\$62,238</th><th>204.95</th><th>\$40,985</th><th>183.04</th><th>-\$45,891</th><th>480.89</th><th>\$17,468</th><th>-69.40</th><th>\$121,044</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$8.4m        | 150.66             | \$55,754                 | -143.08            | \$58,708                 | 142.13             | \$59,099                 | -134.97            | \$62,238                 | 204.95             | \$40,985                 | 183.04             | -\$45,891          | 480.89             | \$17,468                 | -69.40             | \$121,044            |
| S8.6m   154.35   \$55,719   -146.38   \$58,749   145.62   \$59,058   -138.10   \$62,273   208.80   \$41,189   180.87   -\$47,549   485.22   \$17,724   -70.61   \$121,795     S8.7m   156.19   \$55,700   -148.03   \$58,771   147.36   \$59,038   -139.67   \$62,291   210.73   \$41,286   179.43   -\$48,487   486.89   \$17,868   -71.21   \$122,167     S8.8m   158.04   \$55,663   -149.68   \$58,792   149.11   \$59,017   -141.23   \$62,308   212.66   \$41,380   178.61   -\$49,268   488.57   \$18,012   -71.82   \$122,537     S8.9m   159.88   \$55,664   -152.98   \$58,812   150.85   \$58,998   -142.80   \$62,302   214.61   \$41,471   177.19   +\$50,228   491.29   \$18,115   -73.46   \$121,577     S9.0m   161.74   \$55,646   -152.98   \$58,854   154.35   \$58,957   -145.93   \$62,300   218.52   \$41,644   174.47   -\$52,158   494.68   \$18,396   -75.70   \$120,217   \$59.3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$8.5m        | 152.50             | \$55,736                 | -144.73            | \$58,728                 | 143.88             | \$59,079                 | -136.53            | \$62,255                 | 206.87             | \$41,088                 | 181.70             | -\$46,781          | 483.56             | \$17,578                 | -70.00             | \$121,421            |
| S8.7m   156.19   \$55,700   -148.03   \$58,771   147.36   \$59,038   -139.67   \$62,291   210.73   \$41,286   179.43   -\$48,487   486.89   \$17,868   -71.21   \$122,167     S8.8m   158.04   \$55,663   -149.68   \$58,792   149.11   \$59,017   -141.23   \$62,308   212.66   \$41,380   178.61   -\$49,268   488.57   \$18,012   -71.82   \$122,157     S8.9m   159.88   \$55,665   -151.33   \$58,812   150.85   \$58,998   -142.80   \$62,326   214.61   \$41,471   177.19   -\$50,228   491.29   \$18,115   -73.46   \$121,157     S9.0m   161.74   \$55,646   -152.98   \$58,831   152.60   \$58,977   -144.36   \$62,360   218.52   \$41,644   174.47   -\$52,158   494.68   \$18,356   -75.70   \$120,217     S9.0m   165.44   \$55,610   -156.26   \$58,874   156.10   \$58,937   -147.49   \$62,378   220.48   \$41,727   173.67   -\$52,975   496.39   \$18,534   -76.29   \$120,587   \$19,341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$8.6m        | 154.35             | \$55,719                 | -146.38            | \$58,749                 | 145.62             | \$59,058                 | -138.10            | \$62,273                 | 208.80             | \$41,189                 | 180.87             | -\$47,549          | 485.22             | \$17,724                 | -70.61             | \$121,795            |
| S8.8m   158.04   555,653   -149.08   \$58,972   149.11   \$59,017   -141.23   \$62,308   212.66   \$41,850   178.61   -549,268   488.57   \$18,012   -71.82   \$122,57     \$8.9m   159.88   \$55,665   -151.33   \$58,812   150.85   \$58,998   -142.80   \$62,326   214.61   \$41,471   177.19   -\$50,228   492.99   \$18,115   -73.46   \$121,157     \$9.0m   161.74   \$55,646   -152.98   \$58,833   152.60   \$58,977   -144.36   \$62,343   216.56   \$41,571   177.19   -\$50,228   492.98   \$18,256   -74.06   \$121,527     \$9.1m   163.59   \$55,628   -154.62   \$58,834   154.35   \$58,977   -144.93   \$62,378   220.48   \$41,727   173.67   -\$52,975   496.39   \$18,534   -76.29   \$120,587     \$9.3m   167.29   \$55,593   -157.91   \$58,895   157.85   \$58,915   -149.05   \$62,396   222.46   \$41,806   172.27   -\$53,984   499.17   \$18,631   -77.93   \$119,341   \$59,575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$8.7m        | 150.19             | \$55,700                 | -148.03            | \$58,771                 | 147.36             | \$59,038                 | -139.67            | \$62,291                 | 210.73             | \$41,286                 | 179.43             | -\$48,487          | 486.89             | \$17,868                 | -/1.21             | \$122,167            |
| S8.9m   159.88   555,665   -151.33   558,812   150.83   558,997   -142.80   562,326   214.61   541,471   177.19   -550,228   491.29   \$18,115   -73.46   \$121,157     \$9.0m   161.74   \$55,646   -152.98   \$58,833   152.60   \$58,977   -144.36   \$62,343   216.56   \$41,559   175.88   -\$51,172   492.98   \$18,256   -74.06   \$121,157     \$9.1m   163.59   \$55,628   -154.62   \$58,834   154.35   \$58,957   -145.93   \$62,360   218.52   \$41,644   174.47   -\$52,158   494.68   \$18,356   -75.70   \$120,217     \$9.2m   165.44   \$55,610   -156.26   \$58,874   156.10   \$58,937   -147.49   \$62,378   220.48   \$41,727   173.67   -\$52,975   496.39   \$18,534   -76.29   \$120,587     \$9.3m   167.29   \$55,593   -157.91   \$58,895   157.85   \$58,915   -149.05   \$62,396   222.46   \$41,806   172.27   -\$53,984   499.17   \$18,631   -77.93   \$119,341   \$59,561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$8.8m        | 158.04             | \$55,683                 | -149.68            | \$58,792                 | 149.11             | \$59,017                 | -141.23            | \$62,308                 | 212.66             | \$41,380                 | 1/8.01             | -\$49,268          | 488.57             | \$18,012                 | -/1.82             | \$122,537            |
| S9.0m   161.14   \$55,640   -152.98   \$58,833   152.00   \$58,977   -144.36   \$62,343   216.56   \$41,559   173.88   -551,172   492.98   \$18,256   -74.06   \$121,527     \$9.1m   163.59   \$55,628   -154.62   \$58,854   154.35   \$58,957   -145.93   \$62,360   218.52   \$41,644   174.47   -\$52,975   496.39   \$18,534   -76.29   \$120,217     \$9.1m   165.44   \$55,610   -156.26   \$58,854   156.10   \$58,937   -147.49   \$62,378   220.48   \$41,727   -\$52,975   496.39   \$18,534   -76.29   \$120,217     \$9.3m   167.29   \$55,573   -157.91   \$58,895   157.85   \$58,915   -149.05   \$62,376   222.46   \$41,806   172.27   -\$53,984   499.17   \$18,631   -77.93   \$119,341     \$9.4m   169.14   \$55,575   -159.55   \$58,915   159.61   \$62,413   224.43   \$41,883   170.98   -\$54,976   500.89   \$18,767   -79.56   \$118,153     \$9.5m   171.00   \$55,557   <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$8.9m        | 159.88             | \$55,665                 | -151.33            | \$58,812                 | 150.85             | \$58,998                 | -142.80            | \$62,326                 | 214.61             | \$41,471                 | 175.00             | -\$50,228          | 491.29             | \$18,115                 | -/3.46             | \$121,157            |
| 59.1m   105.39   533,026   -134.02   \$38,854   134.55   \$38,957   -145.93   \$02,300   218.52   \$41,044   1/4.47   -552,158   494.68   \$18,596   -15.10   \$120,217     \$9.2m   165.44   \$55,610   -156.26   \$58,874   156.10   \$58,937   -147.49   \$62,378   220.48   \$41,727   173.67   -\$52,975   496.39   \$18,534   -76.29   \$120,587     \$9.3m   167.29   \$55,593   -157.91   \$58,895   157.85   \$58,915   -149.05   \$62,378   222.46   \$41,806   172.27   -\$53,984   499.17   \$18,631   -77.93   \$119,341     \$9.4m   169.14   \$55,575   -159.55   \$58,915   159.61   \$58,895   -150.61   \$62,413   224.43   \$41,883   170.98   -\$54,976   500.89   \$18,767   -79.56   \$118,153     \$9.5m   171.00   \$55,557   -161.19   \$58,895   163.12   \$58,853   -152.17   \$62,440   226.42   \$41,957   169.60   -\$56,613   502.62   \$118,901   -80.15   \$118,524   \$118,524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$9.0m        | 161.74             | \$33,646                 | -152.98            | \$38,833                 | 152.60             | \$38,977                 | -144.56            | \$62,343                 | 210.56             | \$41,559                 | 1/5.88             | -\$51,1/2          | 492.98             | \$18,236                 | -/4.06             | \$121,527            |
| 59.2m     105.44     535,010     -130.20     \$38,8/4     120.10     \$38,9/4     -14/.49     \$62,5/8     220.48     \$41,7/1     17.67     -552,9/5     496.39     \$18,534     -76.29     \$120,88/       \$9.3m     167.29     \$55,593     -157.91     \$58,895     157.85     \$58,915     -149.05     \$62,396     222.46     \$41,806     172.27     -\$53,984     499.17     \$18,631     -77.93     \$119,341       \$9.4m     169.14     \$55,575     -159.55     \$58,915     159.61     \$58,895     -150.61     \$62,413     224.43     \$41,883     170.98     -\$54,976     500.89     \$18,767     -79.56     \$118,153       \$9.5m     171.00     \$55,557     -161.19     \$58,895     163.12     \$58,895     -152.17     \$62,440     226.42     \$41,957     169.60     -\$56,013     502.62     \$18,901     -80.15     \$118,524       \$9.6m     172.85     \$55,539     -162.84     \$58,955     163.12     \$58,853     -153.73     \$62,447     228.42     \$42,028     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$9.1m        | 165.59             | \$55,628                 | -154.62            | \$38,834                 | 154.55             | \$38,957                 | -145.93            | \$62,360                 | 218.52             | \$41,644                 | 1/4.4/             | -\$52,158          | 494.68             | \$18,396                 | -/5./0             | \$120,217            |
| 59.3m     107.27     355,375     -157.51     \$56,975     157.85     \$58,915     -149.05     \$02,390     222.40     \$44,800     172.27     -555,884     499.17     \$18,651     -77.95     \$119,541       \$9.4m     169.14     \$55,575     -159.55     \$58,915     159.61     \$58,895     -150.61     \$62,413     224.43     \$41,883     170.98     -\$54,976     500.89     \$18,767     -79.56     \$118,153       \$9.5m     171.00     \$55,557     -161.19     \$58,895     161.312     \$58,874     -152.17     \$62,430     226.42     \$41,957     169.60     -\$56,013     502.62     \$18,901     -80.15     \$118,524       \$9.6m     172.85     \$55,539     -162.84     \$58,855     163.12     \$58,853     -153.73     \$62,447     228.42     \$42,028     168.81     -\$56,613     502.62     \$18,904     -80.15     \$118,524       \$9.6m     172.85     \$55,539     -162.84     \$58,855     163.12     \$58,853     -153.73     \$62,447     228.42     \$42,028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$9.2m        | 165.44             | \$55,610                 | -150.20            | \$38,8/4                 | 150.10             | \$38,957                 | -14/.49            | \$62,378                 | 220.48             | \$41,/2/                 | 1/3.0/             | -\$52,975          | 496.39             | \$18,534                 | -/6.29             | \$120,587            |
| 57.411     107.14     535,515     -157.55     536,915     139.01     536,955     -100.01     502,415     224.45     541,865     170.96     -534,976     500.89     \$18,167     -79.56     \$118,155       \$9.5m     171.00     \$55,557     -161.19     \$58,935     161.312     \$58,874     -152.17     \$62,443     226.42     \$41,957     169.60     -\$56,013     502.62     \$18,901     -80.15     \$118,524       \$9.6m     172.85     \$55,539     -162.84     \$58,955     163.12     \$58,853     -153.73     \$62,447     228.42     \$42,028     168.81     -\$56,608     504.36     \$19,034     -81.78     \$117,390       \$9.7m     174.71     \$55,521     1.64.48     \$58,955     1.64.27     \$56,832     -155.79     \$20,427     167,452     \$57,039     \$07.10     \$10,125     \$23.7     \$117,390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$9.3m        | 160.14             | \$33,393<br>\$55,575     | -13/.91            | \$28,893                 | 15/.85             | \$28,915                 | -149.05            | \$62,396                 | 222.40             | \$41,800                 | 1/2.2/             | -\$33,984          | 499.1/             | \$18,031                 | -//.93             | \$119,341            |
| 57.011     171.00     535,577     -101.17     536,575     101.30     536,674     -132.17     502,430     220.42     541,577     109.00     -530,015     502.62     \$18,901     -80.15     \$118,524       \$9.6m     172.85     \$55,539     -162.84     \$58,955     163.12     \$58,853     -153.73     \$62,447     220.42     \$42,028     168.81     -\$56,688     504.36     \$19,034     -81.78     \$117,390       \$9.7m     174.71     \$55,521     164.48     \$58,955     164.87     \$58,832     -155.79     \$20,042     \$42,002     167.45     \$57,039     \$07.10     \$10,125     \$2.37     \$117,370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$9.4m        | 109.14             | \$22,272                 | -139.33            | \$38,913                 | 159.01             | \$28,893                 | -150.01            | \$62,413                 | 224.43             | \$41,885                 | 1/0.98             | -\$34,976          | 502.62             | \$18,/0/                 | -/9.30             | \$118,133            |
| <b>37.011</b> 1/2.03 3.03,037 102.04 3.05,033 103.12 3.05,035 1.13.13 302,447 226.42 342,026 106.81 -350,608 204.30 \$19,054 -81.78 \$117,590 \$0.7m 174.71 \$55.571 .164.48 \$58.975 164.87 \$58.832 .155.29 \$62.465 230.42 \$42.007 167.45 .557.00 \$57.10 \$10.155 \$9.27 \$117.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.5m         | 172.95             | \$33,337                 | -101.19            | \$20,933                 | 162.12             | \$30,8/4                 | -132.17            | \$62.447                 | 220.42             | \$41,937                 | 169.00             | -\$30,013          | 504.26             | \$10,901                 | -00.13             | \$110,324            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$9.0m        | 174.03             | \$55 521                 | -164.48            | \$58,975                 | 164.87             | \$58,832                 | -155.75            | \$62.447                 | 220.42             | \$42,028                 | 167.45             | -\$57,929          | 507.19             | \$19,034                 | -82.37             | \$117,390            |

|               |                   |                                |                          | 2                      | 1                 |                               |                   |                    |                   |                                |                       | 2                  | 2                 |                      |                   |                    |
|---------------|-------------------|--------------------------------|--------------------------|------------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|--------------------------------|-----------------------|--------------------|-------------------|----------------------|-------------------|--------------------|
|               | 10                | aut has and                    | d informati              |                        | 1                 | ant has not                   | u informati       |                    | 4                 | agent has ag                   | ad informa            | tion               | - 1               | gaut has no          | ou informat       | ion                |
|               | Ag                | eni nus goo                    | a injormali<br>Nat Disis | UN                     | Ag<br>Not Inc     | eni nus poo                   | N at Disi         | on                 | A.                | geni nus go                    | oa injorma<br>N-t Di- | 110 <i>n</i>       | A Net Inc         | geni nus poe         | Net Diel          | ion                |
|               | Net Inv           | estment                        | Net Disin                | ivestment              | Net Inv           | estment                       | Net Disi          | ivestment          | Net Inv           | estment                        | Net Dis               | investment         | Net Inv           | vestment             | Net Disi          | nvestment          |
| Budget impact | $E(\Delta E)^{a}$ | $E(\lambda_G^{\perp})^{\circ}$ | $E(\Delta E)^{c}$        | $E(\lambda_G)^{\rm u}$ | $E(\Delta E)^{a}$ | $E(\lambda_P)^{\mathfrak{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_p)^{u}$ | $E(\Delta E)^{a}$ | $E(\lambda_G^{\perp})^{\circ}$ | $E(\Delta E)^{c}$     | $E(\lambda_G)^{u}$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_p)^{u}$ |
| \$9.8m        | 176.57            | \$55,503                       | -166.11                  | \$58,996               | 166.63            | \$58,812                      | -156.85           | \$62,482           | 232.43            | \$42,163                       | 166.18                | -\$58,972          | 508.95            | \$19,255             | -83.99            | \$116,676          |
| \$9.9m        | 178.43            | \$55,485                       | -167.75                  | \$59,016               | 168.39            | \$58,791                      | -158.40           | \$62,499           | 234.45            | \$42,227                       | 165.40                | -\$59,855          | 510.72            | \$19,385             | -84.58            | \$117,043          |
| \$10.0m       | 180.29            | \$55,467                       | -169.39                  | \$59,036               | 170.15            | \$58,771                      | -159.96           | \$62,517           | 236.47            | \$42,288                       | 164.05                | -\$60,958          | 512.37            | \$19,517             | -86.20            | \$116,007          |
| \$10.1m       | 182.15            | \$55,449                       | -171.03                  | \$59,055               | 171.91            | \$58,750                      | -161.51           | \$62,535           | 238.51            | \$42,347                       | 162.80                | -\$62,039          | 514.15            | \$19,644             | -87.82            | \$115,014          |
| \$10.2m       | 184.01            | \$55,430                       | -172.66                  | \$59,075               | 173.68            | \$58,729                      | -163.06           | \$62,552           | 240.55            | \$42,403                       | 161.46                | -\$63,173          | 515.81            | \$19,775             | -88.40            | \$115,379          |
| \$10.3m       | 185.88            | \$55,412                       | -174.29                  | \$59,096               | 175.44            | \$58,708                      | -164.62           | \$62,570           | 242.60            | \$42,456                       | 160.69                | -\$64,097          | 518.70            | \$19,857             | -88.22            | \$116,751          |
| \$10.4m       | 187.75            | \$55,394                       | -175.93                  | \$59,115               | 177.21            | \$58,687                      | -166.17           | \$62,587           | 244.66            | \$42,508                       | 159.37                | -\$65,259          | 520.49            | \$19,981             | -88.12            | \$118,016          |
| \$10.5m       | 189.62            | \$55,375                       | -177.56                  | \$59,136               | 178.98            | \$58,667                      | -167.72           | \$62,604           | 246.73            | \$42,557                       | 158.14                | -\$66,397          | 522.15            | \$20,109             | -89.73            | \$117,014          |
| \$10.6m       | 191.48            | \$55,357                       | -179.19                  | \$59,156               | 180.74            | \$58,646                      | -169.27           | \$62,622           | 248.81            | \$42,603                       | 157.38                | -\$67,351          | 523.83            | \$20,236             | -90.32            | \$117,360          |
| \$10.7m       | 193.35            | \$55,339                       | -180.82                  | \$59,176               | 182.51            | \$58,626                      | -170.82           | \$62,639           | 250.89            | \$42,648                       | 156.07                | -\$68,560          | 525.63            | \$20,356             | -91.93            | \$116,399          |
| \$10.8m       | 195.23            | \$55,321                       | -182.44                  | \$59,196               | 184.28            | \$58,605                      | -172.37           | \$62,656           | 252.99            | \$42,690                       | 154.76                | -\$69,784          | 527.31            | \$20,481             | -92.51            | \$116,744          |
| \$10.9m       | 197.10            | \$55,302                       | -184.07                  | \$59,216               | 186.06            | \$58,584                      | -173.92           | \$62,674           | 255.09            | \$42,730                       | 154.02                | -\$70,772          | 529.00            | \$20,605             | -94.11            | \$115,820          |
| \$11.0m       | 198.97            | \$55,284                       | -185.70                  | \$59,237               | 187.83            | \$58,564                      | -175.46           | \$62,691           | 257.21            | \$42,767                       | 152.81                | -\$71,985          | 530.82            | \$20,723             | -95.71            | \$114,932          |
| \$11.1m       | 200.85            | \$55,266                       | -187.32                  | \$59,257               | 189.60            | \$58,543                      | -177.01           | \$62,708           | 259.33            | \$42,802                       | 151.52                | -\$73,259          | 532.52            | \$20,844             | -96.29            | \$115,274          |
| \$11.2m       | 202.72            | \$55,247                       | -188.94                  | \$59,278               | 191.38            | \$58,522                      | -178.56           | \$62,726           | 261.46            | \$42,836                       | 150.23                | -\$74,550          | 535.47            | \$20,916             | -97.89            | \$114,419          |
| \$11.3m       | 204.60            | \$55,229                       | -190.56                  | \$59,298               | 193.16            | \$58,502                      | -180.10           | \$62,743           | 263.61            | \$42,867                       | 149.50                | -\$75,587          | 537.30            | \$21,031             | -98.47            | \$114,760          |
| \$11.4m       | 206.48            | \$55,211                       | -192.18                  | \$59,319               | 194.94            | \$58,481                      | -181.64           | \$62,760           | 265.76            | \$42,895                       | 148.31                | -\$76,866          | 539.01            | \$21,150             | -100.06           | \$113,936          |
| \$11.5m       | 208.36            | \$55,192                       | -193.80                  | \$59,339               | 196.72            | \$58,460                      | -183.19           | \$62,778           | 267.93            | \$42,922                       | 147.04                | -\$78,211          | 540.72            | \$21,268             | -100.64           | \$114,274          |
| \$11.6m       | 210.24            | \$55,174                       | -195.42                  | \$59,360               | 198.50            | \$58,439                      | -184.73           | \$62,795           | 270.10            | \$42,947                       | 146.31                | -\$79,283          | 542.57            | \$21,380             | -102.22           | \$113,479          |
| \$11.7m       | 212.13            | \$55,156                       | -197.04                  | \$59,380               | 200.28            | \$58,419                      | -186.27           | \$62,812           | 272.29            | \$42,969                       | 145.05                | -\$80,662          | 544.29            | \$21,496             | -103.80           | \$112,713          |
| \$11.8m       | 214.01            | \$55,137                       | -198.65                  | \$59,401               | 202.06            | \$58,397                      | -187.81           | \$62,829           | 274.48            | \$42,990                       | 143.88                | -\$82,014          | 546.02            | \$21,611             | -104.38           | \$113,048          |
| \$11.9m       | 215.90            | \$55,119                       | -200.27                  | \$59,421               | 203.85            | \$58,376                      | -189.35           | \$62,846           | 276.69            | \$43,008                       | 142.63                | -\$83,434          | 547.88            | \$21,720             | -105.96           | \$112,308          |
| \$12.0m       | 217.78            | \$55,101                       | -201.88                  | \$59,441               | 205.64            | \$58,355                      | -190.89           | \$62,863           | 278.91            | \$43,024                       | 141.91                | -\$84,561          | 549.61            | \$21,833             | -106.53           | \$112,640          |
| \$12.1m       | 219.67            | \$55,083                       | -203.49                  | \$59,461               | 207.42            | \$58,334                      | -192.43           | \$62,880           | 281.14            | \$43,038                       | 140.76                | -\$85,965          | 552.64            | \$21,895             | -108.11           | \$111,924          |
| \$12.2m       | 221.56            | \$55,065                       | -205.10                  | \$59,482               | 209.21            | \$58,313                      | -193.97           | \$62,897           | 283.39            | \$43,051                       | 139.51                | -\$87,447          | 554.51            | \$22,001             | -108.68           | \$112,253          |
| \$12.3m       | 223.45            | \$55,047                       | -206.71                  | \$59,502               | 211.01            | \$58,292                      | -195.50           | \$62,914           | 285.64            | \$43,061                       | 138.80                | -\$88,614          | 556.26            | \$22,112             | -110.25           | \$111,561          |
| \$12.4m       | 225.34            | \$55,029                       | -208.32                  | \$59,523               | 212.80            | \$58,271                      | -197.04           | \$62,931           | 287.91            | \$43,069                       | 137.57                | -\$90,134          | 558.01            | \$22,222             | -111.82           | \$110,892          |
| \$12.5m       | 227.23            | \$55,010                       | -209.93                  | \$59,543               | 214.59            | \$58,250                      | -198.58           | \$62,948           | 290.19            | \$43,075                       | 136.43                | -\$91,620          | 559.90            | \$22,325             | -112.39           | \$111,217          |
| \$12.6m       | 229.12            | \$54,992                       | -211.54                  | \$59,563               | 216.39            | \$58,229                      | -200.11           | \$62,965           | 292.49            | \$43,079                       | 135.21                | -\$93,188          | 561.67            | \$22,433             | -113.96           | \$110,569          |
| \$12.7m       | 231.02            | \$54,974                       | -213.14                  | \$59,584               | 218.18            | \$58,208                      | -201.64           | \$62,982           | 294.80            | \$43,081                       | 134.51                | -\$94,416          | 563.44            | \$22,540             | -114.53           | \$110,891          |
| \$12.8m       | 232.91            | \$54,956                       | -214.75                  | \$59,604               | 219.98            | \$58,188                      | -203.18           | \$62,999           | 297.12            | \$43,081                       | 133.30                | -\$96,026          | 565.35            | \$22,641             | -116.09           | \$110,263          |
| \$12.9m       | 234.81            | \$54,937                       | -216.35                  | \$59,625               | 221.78            | \$58,167                      | -204.71           | \$63,015           | 299.45            | \$43,078                       | 132.17                | -\$97,599          | 568.44            | \$22,694             | -116.65           | \$110,583          |
| \$13.0m       | 236.71            | \$54,919                       | -217.95                  | \$59,646               | 223.58            | \$58,145                      | -206.24           | \$63,032           | 301.80            | \$43,074                       | 130.97                | -\$99,260          | 570.22            | \$22,798             | -118.21           | \$109,973          |
| \$13.1m       | 238.61            | \$54,901                       | -219.55                  | \$59,666               | 225.38            | \$58,124                      | -207.78           | \$63,049           | 304.17            | \$43,068                       | 130.28                | -\$100,555         | 572.15            | \$22,896             | -119.76           | \$109,382          |
| \$13.2m       | 240.51            | \$54,882                       | -221.15                  | \$59,687               | 227.18            | \$58,104                      | -209.31           | \$63,066           | 306.55            | \$43,060                       | 128.61                | -\$102,635         | 573.94            | \$22,999             | -120.33           | \$109,698          |
| \$13.3m       | 242.42            | \$54,864                       | -222.75                  | \$59,707               | 228.98            | \$58,083                      | -210.83           | \$63,083           | 308.95            | \$43,050                       | 127.50                | -\$104,313         | 575.74            | \$23,101             | -121.88           | \$109,124          |
| \$13.4m       | 244.32            | \$54,846                       | -224.35                  | \$59,728               | 230.79            | \$58,061                      | -212.36           | \$63,099           | 311.36            | \$43,037                       | 126.31                | -\$106,092         | 577.68            | \$23,196             | -122.45           | \$109,437          |
| \$13.5m       | 246.23            | \$54,828                       | -225.95                  | \$59,749               | 232.60            | \$58,040                      | -213.89           | \$63,116           | 313.79            | \$43,023                       | 125.62                | -\$107,466         | 579.49            | \$23,296             | -123.99           | \$108,879          |
| \$13.6m       | 248.13            | \$54,809                       | -227.54                  | \$59,769               | 234.40            | \$58,019                      | -215.42           | \$63,133           | 316.23            | \$43,007                       | 124.43                | -\$109,294         | 581.30            | \$23,396             | -124.55           | \$109,189          |
| \$13.7m       | 250.04            | \$54,791                       | -229.14                  | \$59,790               | 236.21            | \$57,999                      | -216.95           | \$63,150           | 318.69            | \$42,988                       | 123.34                | -\$111,078         | 583.27            | \$23,488             | -126.10           | \$108,647          |
| \$13.8m       | 251.95            | \$54,772                       | -230.73                  | \$59,810               | 238.02            | \$57,977                      | -218.47           | \$63,166           | 321.17            | \$42,967                       | 122.16                | -\$112,968         | 586.44            | \$23,532             | -127.64           | \$108,120          |
| \$13.9m       | 253.86            | \$54,754                       | -232.32                  | \$59,830               | 239.84            | \$57,956                      | -219.99           | \$63,183           | 323.67            | \$42,945                       | 121.48                | -\$114,420         | 588.27            | \$23,629             | -128.20           | \$108,426          |
| \$14.0m       | 255.78            | \$54,735                       | -233.91                  | \$59,851               | 241.65            | \$57,934                      | -221.52           | \$63,200           | 326.19            | \$42,920                       | 120.31                | -\$116,364         | 590.10            | \$23,725             | -129.73           | \$107,914          |
| \$14.1m       | 257.69            | \$54,717                       | -235.51                  | \$59,871               | 243.47            | \$57,913                      | -223.04           | \$63,217           | 328.73            | \$42,892                       | 119.23                | -\$118,261         | 592.08            | \$23,814             | -130.29           | \$108,217          |
| \$14.2m       | 259.60            | \$54,699                       | -237.10                  | \$59,892               | 245.29            | \$57,891                      | -224.57           | \$63,233           | 331.29            | \$42,863                       | 118.56                | -\$119,772         | 593.93            | \$23,909             | -131.83           | \$107,718          |
| \$14.3m       | 261.52            | \$54,680                       | -238.68                  | \$59,912               | 247.10            | \$57,870                      | -226.09           | \$63,250           | 333.87            | \$42,832                       | 117.40                | -\$121,809         | 595.93            | \$23,996             | -133.47           | \$107,143          |
| \$14.4m       | 263.44            | \$54,662                       | -240.27                  | \$59,932               | 248.92            | \$57,849                      | -227.61           | \$63,267           | 336.47            | \$42,798                       | 116.32                | -\$123,792         | 597.79            | \$24,089             | -134.03           | \$107,443          |
| \$14.5m       | 265.36            | \$54,643                       | -241.86                  | \$59,953               | 250.74            | \$57,828                      | -229.13           | \$63,283           | 339.09            | \$42,762                       | 115.17                | -\$125,901         | 599.65            | \$24,181             | -135.55           | \$106,968          |
| \$14.6m       | 267.28            | \$54,625                       | -243.44                  | \$59,973               | 252.56            | \$57,807                      | -230.65           | \$63,300           | 341.73            | \$42,723                       | 114.51                | -\$127,502         | 602.91            | \$24,216             | -137.08           | \$106,507          |
| \$14.7m       | 269.20            | \$54,607                       | -245.03                  | \$59,993               | 254.39            | \$57,786                      | -232.16           | \$63.317           | 344 40            | \$42,682                       | 113.36                | -\$129.673         | 604 93            | \$24 300             | -137.64           | \$106,803          |

|               |                    |                          |                    | λ                        | 1                  |                          |                    |                          |                    |                          |                    | 2:                       | 2                  |                          |                    |                          |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|
|               | Ag                 | ent has goo              | d informati        | on                       | As                 | ent has poo              | or informati       | on                       | A                  | gent has 90              | od informa         | tion                     | A                  | gent has not             | or informat        | ion                      |
|               | Net Inv            | estment                  | Net Disin          | ivestment                | Net Inv            | estment                  | Net Disi           | westment                 | Net Inv            | estment                  | Net Dis            | investment               | Net Inv            | estment                  | Net Disi           | nvestment                |
| Budget imnact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ |
| \$14.8m       | 271.12             | \$54.589                 | -246.61            | \$60.013                 | 256.21             | \$57.764                 | -233.68            | \$63.334                 | 347.10             | \$42.639                 | 112.30             | -\$131.789               | 606.81             | \$24.390                 | -139.27            | \$106.268                |
| \$14.9m       | 273.04             | \$54 570                 | -248 19            | \$60.033                 | 258.04             | \$57 743                 | -235.20            | \$63,350                 | 349.82             | \$42,593                 | 110.71             | -\$134 583               | 608 70             | \$24 478                 | -140 79            | \$105,829                |
| \$15.0m       | 274 97             | \$54 552                 | -249 78            | \$60,053                 | 259.87             | \$57,722                 | -236.72            | \$63,367                 | 352.57             | \$42,545                 | 109.57             | -\$136,894               | 610.74             | \$24,560                 | -141.35            | \$106,121                |
| \$15.1m       | 276.89             | \$54 534                 | -251.36            | \$60,023                 | 261.70             | \$57,701                 | -238.23            | \$63,384                 | 355 34             | \$42,494                 | 108.92             | -\$138,634               | 612.64             | \$24,647                 | -142.87            | \$105,692                |
| \$15.7m       | 278.81             | \$54 517                 | -252.94            | \$60,073                 | 263.53             | \$57,679                 | -239.75            | \$63,401                 | 358.15             | \$42,441                 | 107.79             | -\$141.017               | 614 55             | \$24,734                 | -144 50            | \$105,194                |
| \$15.2m       | 280.74             | \$54 499                 | -254 52            | \$60,113                 | 265.36             | \$57.657                 | -241.26            | \$63,417                 | 360.98             | \$42,385                 | 106.74             | -\$143 342               | 616.61             | \$24,813                 | -145.05            | \$105,482                |
| \$15.4m       | 282.67             | \$54,481                 | -256.10            | \$60,133                 | 267.19             | \$57.636                 | -242.77            | \$63,434                 | 363.85             | \$42,326                 | 106.09             | -\$145,160               | 618.53             | \$24,898                 | -146.57            | \$105.073                |
| \$15.5m       | 284 60             | \$54 463                 | -257.68            | \$60,153                 | 269.03             | \$57.615                 | -244 28            | \$63 451                 | 366.75             | \$42,264                 | 104 97             | -\$147.667               | 621.88             | \$24 924                 | -148.08            | \$104 675                |
| \$15.6m       | 286.53             | \$54 445                 | -259.26            | \$60,172                 | 270.86             | \$57 593                 | -245.80            | \$63 467                 | 369.68             | \$42,199                 | 103.93             | -\$150,107               | 623.82             | \$25,007                 | -149 70            | \$104 209                |
| \$15.7m       | 288.46             | \$54.427                 | -260.83            | \$60,192                 | 272.70             | \$57.572                 | -247.31            | \$63,484                 | 372.65             | \$42,131                 | 102.81             | -\$152,710               | 625.90             | \$25,084                 | -150.25            | \$104.492                |
| \$15.8m       | 290.39             | \$54,409                 | -262.41            | \$60.212                 | 274.54             | \$57,550                 | -248.82            | \$63,501                 | 375.66             | \$42.059                 | 102.17             | -\$154.647               | 627.85             | \$25,165                 | -151.76            | \$104.111                |
| \$15.9m       | 292.33             | \$54,391                 | -263.98            | \$60.232                 | 276.38             | \$57,529                 | -250.33            | \$63,517                 | 378.71             | \$41,985                 | 101.06             | -\$157.334               | 629.81             | \$25,246                 | -152.31            | \$104.391                |
| \$16.0m       | 294.26             | \$54,373                 | -265.55            | \$60.251                 | 278.23             | \$57.507                 | -251.83            | \$63,534                 | 381.80             | \$41,907                 | 100.03             | -\$159.954               | 631.92             | \$25,320                 | -153.82            | \$104.019                |
| \$16.1m       | 296.20             | \$54,355                 | -267.13            | \$60.271                 | 280.07             | \$57,485                 | -253.34            | \$63,551                 | 384.94             | \$41.825                 | 99.39              | -\$161.981               | 633.89             | \$25,399                 | -155.43            | \$103.582                |
| \$16.2m       | 298.14             | \$54.337                 | -268.70            | \$60.291                 | 281.92             | \$57,463                 | -254.85            | \$63,568                 | 388.12             | \$41,739                 | 98.29              | -\$164.816               | 635.87             | \$25,477                 | -157.08            | \$103,132                |
| \$16.3m       | 300.08             | \$54,319                 | -270.27            | \$60.311                 | 283.77             | \$57,441                 | -256.35            | \$63,584                 | 391.36             | \$41,650                 | 97.27              | -\$167.573               | 639.32             | \$25,496                 | -157.63            | \$103,407                |
| \$16.4m       | 302.02             | \$54,300                 | -271.84            | \$60,330                 | 285.62             | \$57,420                 | -257.86            | \$63,600                 | 394.65             | \$41,556                 | 96.18              | -\$170.522               | 641.45             | \$25,567                 | -159.13            | \$103.059                |
| \$16.5m       | 303.97             | \$54,282                 | -273.41            | \$60.350                 | 287.46             | \$57,398                 | -259.37            | \$63.617                 | 398.00             | \$41,458                 | 94.65              | -\$174.322               | 643.45             | \$25,643                 | -160.78            | \$102.628                |
| \$16.6m       | 305.91             | \$54,263                 | -274.97            | \$60,370                 | 289.32             | \$57,377                 | -260.87            | \$63,633                 | 401.41             | \$41,354                 | 94.02              | -\$176,550               | 645.45             | \$25,718                 | -162.28            | \$102,295                |
| \$16.7m       | 307.86             | \$54,245                 | -276.54            | \$60,389                 | 291.17             | \$57,355                 | -262.37            | \$63,650                 | 404.89             | \$41,246                 | 92.93              | -\$179,696               | 647.62             | \$25,787                 | -163.88            | \$101,901                |
| \$16.8m       | 309.81             | \$54,226                 | -278.10            | \$60,409                 | 293.03             | \$57,332                 | -263.88            | \$63,666                 | 408.44             | \$41,132                 | 91.92              | -\$182,759               | 649.64             | \$25,861                 | -164.43            | \$102,170                |
| \$16.9m       | 311.76             | \$54,208                 | -279.67            | \$60,429                 | 294.89             | \$57,310                 | -265.38            | \$63,682                 | 412.07             | \$41.012                 | 91.30              | -\$185,101               | 651.67             | \$25,933                 | -166.07            | \$101.764                |
| \$17.0m       | 313.72             | \$54,189                 | -281.23            | \$60,449                 | 296.74             | \$57,289                 | -266.88            | \$63,699                 | 415.79             | \$40,886                 | 90.22              | -\$188,431               | 653.86             | \$26,000                 | -167.57            | \$101,451                |
| \$17.1m       | 315.67             | \$54,171                 | -282.79            | \$60,469                 | 298.60             | \$57,266                 | -268.38            | \$63,715                 | 419.61             | \$40,752                 | 89.22              | -\$191,667               | 657.42             | \$26,011                 | -168.11            | \$101,716                |
| \$17.2m       | 317.63             | \$54,152                 | -284.35            | \$60,488                 | 300.47             | \$57,244                 | -269.88            | \$63,732                 | 423.53             | \$40,611                 | 88.14              | -\$195,142               | 659.46             | \$26,082                 | -169.72            | \$101,345                |
| \$17.3m       | 319.59             | \$54,133                 | -285.91            | \$60,508                 | 302.33             | \$57,222                 | -271.38            | \$63,748                 | 427.58             | \$40,461                 | 87.52              | -\$197,660               | 661.53             | \$26,152                 | -171.21            | \$101,045                |
| \$17.4m       | 321.54             | \$54,114                 | -287.47            | \$60,528                 | 304.19             | \$57,200                 | -272.88            | \$63,765                 | 431.76             | \$40,300                 | 86.45              | -\$201,263               | 663.74             | \$26,215                 | -172.85            | \$100,668                |
| \$17.5m       | 323.50             | \$54,095                 | -289.03            | \$60,548                 | 306.06             | \$57,178                 | -274.38            | \$63,781                 | 436.10             | \$40,128                 | 85.46              | -\$204,771               | 665.82             | \$26,283                 | -173.39            | \$100,928                |
| \$17.6m       | 325.46             | \$54,077                 | -290.58            | \$60,568                 | 307.93             | \$57,156                 | -275.87            | \$63,797                 | 440.63             | \$39,943                 | 84.40              | -\$208,537               | 667.91             | \$26,351                 | -174.88            | \$100,639                |
| \$17.7m       | 327.43             | \$54,058                 | -292.14            | \$60,587                 | 309.80             | \$57,134                 | -277.37            | \$63,814                 | 445.37             | \$39,742                 | 83.79              | -\$211,251               | 670.16             | \$26,412                 | -176.51            | \$100,276                |
| \$17.8m       | 329.39             | \$54,039                 | -293.69            | \$60,607                 | 311.67             | \$57,112                 | -278.86            | \$63,830                 | 447.13             | \$39,810                 | 82.80              | -\$214,970               | 672.26             | \$26,478                 | -178.11            | \$99,939                 |
| \$17.9m       | 331.36             | \$54,020                 | -295.25            | \$60,627                 | 313.54             | \$57,089                 | -280.36            | \$63,847                 | 448.88             | \$39,877                 | 81.74              | -\$218,975               | 675.94             | \$26,481                 | -179.60            | \$99,667                 |
| \$18.0m       | 333.33             | \$54,001                 | -296.80            | \$60,647                 | 315.42             | \$57,067                 | -281.85            | \$63,863                 | 450.64             | \$39,943                 | 80.28              | -\$224,223               | 678.06             | \$26,546                 | -180.14            | \$99,922                 |
| \$18.1m       | 335.30             | \$53,982                 | -298.35            | \$60,666                 | 317.30             | \$57,044                 | -283.35            | \$63,880                 | 452.40             | \$40,009                 | 79.67              | -\$227,182               | 680.35             | \$26,604                 | -181.77            | \$99,578                 |
| \$18.2m       | 337.27             | \$53,963                 | -299.91            | \$60,686                 | 319.18             | \$57,022                 | -284.84            | \$63,896                 | 454.17             | \$40,073                 | 78.62              | -\$231,493               | 682.48             | \$26,667                 | -183.25            | \$99,316                 |
| \$18.3m       | 339.24             | \$53,944                 | -301.46            | \$60,706                 | 321.06             | \$56,999                 | -286.33            | \$63,912                 | 455.94             | \$40,137                 | 77.64              | -\$235,692               | 684.63             | \$26,730                 | -183.79            | \$99,568                 |
| \$18.4m       | 341.21             | \$53,925                 | -303.00            | \$60,725                 | 322.94             | \$56,977                 | -287.82            | \$63,929                 | 457.71             | \$40,200                 | 76.60              | -\$240,215               | 686.95             | \$26,785                 | -185.42            | \$99,235                 |
| \$18.5m       | 343.19             | \$53,906                 | -304.55            | \$60,745                 | 324.82             | \$56,955                 | -289.31            | \$63,945                 | 459.49             | \$40,262                 | 76.00              | -\$243,428               | 689.12             | \$26,846                 | -187.01            | \$98,926                 |
| \$18.6m       | 345.16             | \$53,887                 | -306.10            | \$60,764                 | 326.70             | \$56,933                 | -290.80            | \$63,962                 | 461.27             | \$40,323                 | 75.03              | -\$247,902               | 691.30             | \$26,906                 | -188.49            | \$98,679                 |
| \$18.7m       | 347.14             | \$53,868                 | -307.65            | \$60,784                 | 328.59             | \$56,911                 | -292.29            | \$63,978                 | 463.05             | \$40,384                 | 73.99              | -\$252,739               | 693.65             | \$26,959                 | -189.03            | \$98,926                 |
| \$18.8m       | 349.12             | \$53,849                 | -309.19            | \$60,803                 | 330.47             | \$56,888                 | -293.78            | \$63,994                 | 464.84             | \$40,444                 | 73.39              | -\$256,149               | 697.47             | \$26,955                 | -190.65            | \$98,610                 |
| \$18.9m       | 351.10             | \$53,830                 | -310.74            | \$60,823                 | 332.36             | \$56,866                 | -295.26            | \$64,011                 | 466.63             | \$40,503                 | 72.36              | -\$261,193               | 699.67             | \$27,013                 | -192.13            | \$98,371                 |
| \$19.0m       | 353.09             | \$53,811                 | -312.28            | \$60,842                 | 334.25             | \$56,843                 | -296.75            | \$64,027                 | 468.43             | \$40,561                 | 71.40              | -\$266,108               | 701.89             | \$27,070                 | -193.71            | \$98,083                 |
| \$19.1m       | 355.07             | \$53,792                 | -313.82            | \$60,862                 | 336.15             | \$56,821                 | -298.24            | \$64,043                 | 470.23             | \$40,619                 | 70.37              | -\$271,419               | 704.28             | \$27,120                 | -195.19            | \$97,853                 |
| \$19.2m       | 357.06             | \$53,773                 | -315.37            | \$60,882                 | 338.04             | \$56,798                 | -299.72            | \$64,060                 | 472.03             | \$40,675                 | 69.42              | -\$276,587               | 706.52             | \$27,176                 | -196.81            | \$97,558                 |
| \$19.3m       | 359.05             | \$53,754                 | -316.91            | \$60,901                 | 339.93             | \$56,776                 | -301.21            | \$64,076                 | 473.84             | \$40,731                 | 68.83              | -\$280,410               | 708.77             | \$27,230                 | -197.34            | \$97,798                 |
| \$19.4m       | 361.04             | \$53,734                 | -318.45            | \$60,921                 | 341.83             | \$56,753                 | -302.69            | \$64,092                 | 475.65             | \$40,786                 | 67.80              | -\$286,116               | 711.21             | \$27,278                 | -198.82            | \$97,576                 |
| \$19.5m       | 363.03             | \$53,715                 | -319.99            | \$60,940                 | 343.73             | \$56,731                 | -304.17            | \$64,108                 | 477.46             | \$40,841                 | 66.39              | -\$293,738               | 713.48             | \$27,331                 | -200.43            | \$97,291                 |
| \$19.6m       | 365.02             | \$53,695                 | -321.52            | \$60,960                 | 345.63             | \$56,708                 | -305.65            | \$64,125                 | 479.28             | \$40,895                 | 65.44              | -\$299,512               | 717.44             | \$27,319                 | -202.01            | \$97,026                 |
| \$19.7m       | 367.02             | \$53.676                 | -323.06            | \$60,979                 | 347.53             | \$56.686                 | -307.13            | \$64,141                 | 481.10             | \$40,948                 | 64.42              | -\$305.797               | 719.73             | \$27.371                 | -202.55            | \$97.262                 |
|                      |                    |                          |                    | 2                        | 1                  |                          |                    |                          |                    |                          |                    | 2                        | 2                  |                          |                    |                      |
|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------|
|                      | Ag                 | ent has goo              | d informati        | on                       | A                  | ent has poo              | or informati       | on                       | A                  | gent has go              | od informa         | tion                     | A                  | gent has poo             | or informati       | on                   |
|                      | Net Inv            | estment                  | Net Disin          | ivestment                | Net Inv            | estment                  | Net Disi           | ivestment                | Net Inv            | estment                  | Net Dis            | investment               | Net Inv            | estment                  | Net Disi           | ivestment            |
| <b>Budget</b> impact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| \$19.8m              | 369.01             | \$53.656                 | -324.60            | \$60,999                 | 349.43             | \$56.663                 | -308.61            | \$64.158                 | 482.93             | \$41,000                 | 63.84              | -\$310.164               | 722.21             | \$27.416                 | -204.02            | \$97.051             |
| \$19.0m              | 371.01             | \$53,637                 | -326.13            | \$61,018                 | 351 34             | \$56,640                 | -310.10            | \$64 174                 | 484 76             | \$41.051                 | 62.82              | -\$316,755               | 724.52             | \$27,466                 | -205.62            | \$96,778             |
| \$20.0m              | 373.01             | \$53,617                 | -327.67            | \$61,038                 | 353.25             | \$56,617                 | -311.58            | \$64,190                 | 489.78             | \$40.835                 | 61.89              | -\$323 177               | 726.20             | \$27,541                 | -206.16            | \$97.012             |
| \$20.0m              | 375.02             | \$53,598                 | -329.20            | \$61,057                 | 355.16             | \$56,595                 | -313.06            | \$64,206                 | 491.61             | \$40,886                 | 61.31              | -\$327,865               | 728.53             | \$27,590                 | -207.63            | \$96,807             |
| \$20.1m              | 377.02             | \$53,578                 | -330.73            | \$61,076                 | 357.07             | \$56,572                 | -314 54            | \$64,222                 | 493.45             | \$40,936                 | 60.30              | -\$335,000               | 730.88             | \$27,638                 | -209.20            | \$96,558             |
| \$20.2m              | 379.02             | \$53,559                 | -332.26            | \$61,096                 | 358.98             | \$56,549                 | -316.01            | \$64 238                 | 495 29             | \$40,986                 | 59.37              | -\$341 946               | 733.41             | \$27,679                 | -210.81            | \$96,297             |
| \$20.5 m<br>\$20.4 m | 381.03             | \$53,540                 | -333.80            | \$61,115                 | 360.90             | \$56,526                 | -317.49            | \$64 254                 | 497.14             | \$41.035                 | 58.36              | -\$349 530               | 735.78             | \$27,726                 | -212.27            | \$96,104             |
| \$20.5m              | 383.04             | \$53,520                 | -335.33            | \$61 134                 | 362.81             | \$56,503                 | -318.97            | \$64,270                 | 498.99             | \$41.083                 | 57.79              | -\$354 739               | 739.92             | \$27,726                 | -212.27            | \$96,332             |
| \$20.5m              | 385.05             | \$53,520                 | -336.86            | \$61,154                 | 364.73             | \$56,480                 | -320.44            | \$64,286                 | 500.85             | \$41,130                 | 56.79              | -\$362 727               | 741.63             | \$27,700                 | -214 27            | \$96,141             |
| \$20.0m              | 387.06             | \$53,480                 | -338 39            | \$61,173                 | 366.65             | \$56,458                 | -321.92            | \$64 303                 | 502.71             | \$41 177                 | 55.87              | -\$370 527               | 744.03             | \$27,822                 | -215.87            | \$95,892             |
| \$20.7m              | 389.07             | \$53,461                 | -339.91            | \$61,192                 | 368 57             | \$56,434                 | -323 39            | \$64 319                 | 504 57             | \$41 223                 | 55 30              | -\$376,159               | 746.61             | \$27,859                 | -217.44            | \$95,651             |
| \$20.9m              | 391.09             | \$53,441                 | -341 44            | \$61,211                 | 370.49             | \$56,411                 | -324.86            | \$64 335                 | 506.44             | \$41,269                 | 54 30              | -\$384 871               | 749.03             | \$27,903                 | -217.97            | \$95,885             |
| \$2000 m             | 393.10             | \$53 421                 | -342.97            | \$61,231                 | 372.42             | \$56 388                 | -326.34            | \$64 351                 | 508.31             | \$41 313                 | 53.38              | -\$393 372               | 751.47             | \$27,945                 | -219.43            | \$95,000             |
| \$21.1m              | 395.12             | \$53,401                 | -344 49            | \$61,250                 | 374 34             | \$56,365                 | -327.81            | \$64 367                 | 510.06             | \$41 368                 | 52.01              | -\$405 706               | 754.11             | \$27,980                 | -221.02            | \$95,464             |
| \$21.2m              | 397.14             | \$53,381                 | -346.01            | \$61,269                 | 376.27             | \$56,342                 | -329.28            | \$64,383                 | 511.94             | \$41,411                 | 51.02              | -\$415.514               | 755.88             | \$28.047                 | -221.56            | \$95,686             |
| \$21.3m              | 399.17             | \$53,361                 | -347.54            | \$61.289                 | 378.21             | \$56,319                 | -330.75            | \$64,399                 | 513.82             | \$41,454                 | 50.46              | -\$422,157               | 758.34             | \$28,088                 | -223.01            | \$95,510             |
| \$21.4m              | 401.19             | \$53,341                 | -349.06            | \$61.308                 | 380.14             | \$56,295                 | -332.22            | \$64,415                 | 515.57             | \$41,507                 | 49.54              | -\$431.956               | 762.66             | \$28,060                 | -224.58            | \$95,291             |
| \$21.5m              | 403.22             | \$53,321                 | -350.58            | \$61,327                 | 382.07             | \$56,272                 | -333.69            | \$64,431                 | 517.46             | \$41,549                 | 48.56              | -\$442,752               | 765.15             | \$28,099                 | -226.17            | \$95,062             |
| \$21.6m              | 405.24             | \$53,301                 | -352.10            | \$61,346                 | 384.01             | \$56,249                 | -335.16            | \$64,447                 | 519.35             | \$41,590                 | 47.58              | -\$453,947               | 767.66             | \$28,137                 | -227.62            | \$94,894             |
| \$21.7m              | 407.27             | \$53,281                 | -353.62            | \$61,366                 | 385.94             | \$56,226                 | -336.63            | \$64,463                 | 521.11             | \$41,642                 | 47.02              | -\$461,496               | 770.37             | \$28,168                 | -228.15            | \$95,112             |
| \$21.8m              | 409.30             | \$53,261                 | -355.14            | \$61,385                 | 387.89             | \$56,202                 | -338.09            | \$64,479                 | 523.01             | \$41,682                 | 46.11              | -\$472,741               | 772.19             | \$28,231                 | -229.74            | \$94,889             |
| \$21.9m              | 411.33             | \$53,241                 | -356.65            | \$61,404                 | 389.83             | \$56,179                 | -339.56            | \$64,495                 | 524.78             | \$41,732                 | 45.14              | -\$485,141               | 774.72             | \$28,268                 | -231.19            | \$94,726             |
| \$22.0m              | 413.37             | \$53,221                 | -358.17            | \$61,423                 | 391.77             | \$56,155                 | -341.02            | \$64,511                 | 526.68             | \$41,771                 | 44.24              | -\$497,283               | 777.29             | \$28,304                 | -232.75            | \$94,522             |
| \$22.1m              | 415.40             | \$53,202                 | -359.69            | \$61,443                 | 393.72             | \$56,132                 | -342.49            | \$64,527                 | 528.58             | \$41,810                 | 43.68              | -\$505,917               | 780.07             | \$28,331                 | -233.28            | \$94,736             |
| \$22.2m              | 417.44             | \$53,182                 | -361.20            | \$61,462                 | 395.66             | \$56,109                 | -343.95            | \$64,543                 | 530.36             | \$41,858                 | 42.72              | -\$519,721               | 782.66             | \$28,365                 | -234.73            | \$94,577             |
| \$22.3m              | 419.48             | \$53,162                 | -362.71            | \$61,481                 | 397.61             | \$56,085                 | -345.42            | \$64,559                 | 532.27             | \$41,896                 | 41.82              | -\$533,239               | 787.20             | \$28,328                 | -236.31            | \$94,366             |
| \$22.4m              | 421.51             | \$53,142                 | -364.22            | \$61,501                 | 399.56             | \$56,061                 | -346.88            | \$64,576                 | 534.05             | \$41,943                 | 40.86              | -\$548,260               | 789.82             | \$28,361                 | -237.76            | \$94,213             |
| \$22.5m              | 423.56             | \$53,122                 | -365.73            | \$61,520                 | 401.52             | \$56,038                 | -348.34            | \$64,591                 | 535.97             | \$41,980                 | 40.30              | -\$558,265               | 791.71             | \$28,420                 | -238.29            | \$94,423             |
| \$22.6m              | 425.60             | \$53,102                 | -367.24            | \$61,540                 | 403.47             | \$56,014                 | -349.81            | \$64,607                 | 537.72             | \$42,029                 | 38.96              | -\$580,012               | 794.36             | \$28,451                 | -239.84            | \$94,230             |
| \$22.7m              | 427.64             | \$53,082                 | -368.75            | \$61,559                 | 405.43             | \$55,991                 | -351.27            | \$64,623                 | 539.64             | \$42,065                 | 38.01              | -\$597,275               | 797.21             | \$28,474                 | -241.42            | \$94,027             |
| \$22.8m              | 429.69             | \$53,062                 | -370.26            | \$61,579                 | 407.38             | \$55,967                 | -352.73            | \$64,639                 | 541.43             | \$42,111                 | 37.12              | -\$614,286               | 799.89             | \$28,504                 | -241.95            | \$94,235             |
| \$22.9m              | 431.74             | \$53,042                 | -37/1.76           | \$61,598                 | 409.34             | \$55,944                 | -354.19            | \$64,655                 | 543.18             | \$42,159                 | 36.57              | -\$626,243               | 802.60             | \$28,532                 | -243.53            | \$94,035             |
| \$23.0m              | 433.79             | \$53,022                 | -3/3.2/            | \$61,618                 | 411.30             | \$55,920                 | -355.64            | \$64,671                 | 545.11             | \$42,194                 | 35.61              | -\$645,832               | 804.55             | \$28,587                 | -245.07            | \$93,851             |
| \$23.1m              | 435.84             | \$53,002                 | -3/4.//            | \$61,638                 | 415.26             | \$33,897                 | -35/.10            | \$64,687                 | 546.87             | \$42,241                 | 34./3              | -\$665,155               | 807.50             | \$28,607                 | -245.60            | \$94,057             |
| \$23.2m              | 437.89             | \$52,982                 | -3/0.2/            | \$01,038                 | 415.25             | \$33,8/3                 | -358.50            | \$04,703                 | 548.00             | \$42,285                 | 33.78              | -\$080,821               | 810.24             | \$28,033                 | -24/.1/            | \$93,862             |
| \$23.3m              | 439.94             | \$52,962                 | -3/1.//            | \$61,67                  | 417.19             | \$55,849                 | -300.02            | \$64,719                 | 550.39             | \$42,318                 | 22.25              | \$701,092                | 815.05             | \$28,387                 | -248./1            | \$93,084             |
| \$23.4III<br>\$23.5m | 442.00             | \$52,942                 | -3/9.27            | \$61,097                 | 419.10             | \$55,825                 | -301.47            | \$64,753                 | 554.20             | \$42,304                 | 21.41              | -\$/23,227<br>\$749,192  | 820.64             | \$28,012                 | -249.25            | \$95,888             |
| \$23.5m              | 444.03             | \$52,921                 | -360.77            | \$61,727                 | 421.13             | \$55,802                 | -302.93            | \$64,751                 | 556.06             | \$42,397                 | 20.47              | \$774 570                | 820.04             | \$28,030                 | 251.22             | \$93,098             |
| \$23.0m              | 440.11             | \$52,901                 | 383.76             | \$61,757                 | 425.08             | \$55,776                 | 365.84             | \$64,782                 | 557.86             | \$42,442                 | 20.03              | \$701.024                | 825.00             | \$28,052                 | 252.00             | \$93,901             |
| \$23.7m              | 450.24             | \$52,861                 | -385.26            | \$61,776                 | 427.05             | \$55,731                 | -367.30            | \$64 798                 | 559.80             | \$42,515                 | 29.95              | -\$819 179               | 828.56             | \$28,702                 | -254 43            | \$93,713             |
| \$23.0m              | 452.30             | \$52,801                 | -386.75            | \$61,796                 | 429.03             | \$55,706                 | -368 75            | \$64.813                 | 561.57             | \$42,519                 | 27.05              | -\$861 303               | 831.45             | \$28,721                 | -254.95            | \$93,743             |
| \$24.0m              | 454 37             | \$52,820                 | -388 25            | \$61,816                 | 431.01             | \$55.683                 | -370.21            | \$64 829                 | 563 39             | \$42,600                 | 26.81              | -\$895 134               | 834 37             | \$28,764                 | -256 52            | \$93 561             |
| \$24.1m              | 456.44             | \$52.800                 | -389.74            | \$61.836                 | 433.00             | \$55.659                 | -371.66            | \$64.845                 | 565.33             | \$42.630                 | 25.94              | -\$928.957               | 837.53             | \$28,775                 | -258.04            | \$93.395             |
| \$24.2m              | 458.51             | \$52,779                 | -391.23            | \$61.856                 | 434.98             | \$55.635                 | -373.11            | \$64,860                 | 567.11             | \$42.673                 | 25.41              | -\$952.535               | 842.65             | \$28,719                 | -259.61            | \$93,218             |
| \$24.3m              | 460.59             | \$52,759                 | -392.72            | \$61,877                 | 436.97             | \$55,611                 | -374.56            | \$64,876                 | 569.06             | \$42,702                 | 24.47              | -\$992,930               | 845.62             | \$28,736                 | -260.13            | \$93,416             |
| \$24.4m              | 462.66             | \$52,738                 | -394.21            | \$61,897                 | 438.95             | \$55,587                 | -376.01            | \$64,892                 | 570.84             | \$42,744                 | 23.61              | -\$1.03m                 | 847.75             | \$28,782                 | -261.68            | \$93,243             |
| \$24.5m              | 464.74             | \$52,718                 | -395.69            | \$61,917                 | 440.94             | \$55,563                 | -377.46            | \$64,907                 | 572.66             | \$42,783                 | 22.68              | -\$1.08m                 | 850.76             | \$28,798                 | -262.20            | \$93,439             |
| \$24.6m              | 466.82             | \$52,697                 | -397.18            | \$61,937                 | 442.94             | \$55,538                 | -378.91            | \$64,923                 | 574.61             | \$42,812                 | 22.15              | -\$1.11m                 | 853.82             | \$28,812                 | -263.73            | \$93,278             |
| \$24.7m              | 468.89             | \$52 677                 | -398.66            | \$61,957                 | 444 93             | \$55 514                 | -380.36            | \$64 939                 | 576 40             | \$42,853                 | 21.22              | -\$1.16m                 | 857 11             | \$28,818                 | -265.28            | \$93,109             |

|                      |                    |                          |                    | 2                        | 1                  |                          |                    |                          |                    |                          |                    | 2                        | 2                  |                          |                    |                      |
|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------|
|                      | Ag                 | ent has goo              | d informati        | on                       | A                  | ent has poo              | or informati       | on                       | A                  | gent has go              | od informa         | tion                     | A                  | gent has not             | or informati       | ion                  |
|                      | Net Inv            | estment                  | Net Disin          | ivestment                | Net Inv            | estment                  | Net Disi           | ivestment                | Net Inv            | estment                  | Net Dis            | investment               | Net Inv            | estment                  | Net Disi           | nvestment            |
| <b>Budget</b> impact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| \$24.8m              | 470.98             | \$52.656                 | -400.15            | \$61.977                 | 446.93             | \$55.490                 | -381.81            | \$64.954                 | 578 19             | \$42.893                 | 20.36              | -\$1.22m                 | 860.21             | \$28,830                 | -265.80            | \$93 304             |
| \$24.0m              | 473.06             | \$52,636                 | -401.63            | \$61,997                 | 448.93             | \$55,465                 | -383.25            | \$64,970                 | 580.14             | \$42,920                 | 19.83              | -\$1.22m                 | 862.47             | \$28,850                 | -267.32            | \$93,148             |
| \$25.0m              | 475.15             | \$52,636                 | -403.11            | \$62.017                 | 450.93             | \$55,441                 | -384 70            | \$64.985                 | 581.97             | \$42,920                 | 18.91              | _\$1.20m                 | 865.62             | \$28,871                 | -268.87            | \$92,983             |
| \$25.0m              | 477.24             | \$52,615                 | -404 60            | \$62,017                 | 452.93             | \$55,417                 | -386.15            | \$65,001                 | 587.34             | \$42,735                 | 18.06              | -\$1.39m                 | 871.12             | \$28,801                 | -269.38            | \$93,175             |
| \$25.1m              | 479.32             | \$52,574                 | -406.08            | \$62,057                 | 454.93             | \$55 393                 | -387 59            | \$65,001                 | 589.14             | \$42,735                 | 17.14              | -\$1.57m                 | 874 32             | \$28,814                 | -270.93            | \$93,012             |
| \$25.2m              | 481.41             | \$52,571                 | -407 56            | \$62,037                 | 456.94             | \$55,368                 | -389.04            | \$65,032                 | 591.10             | \$42,802                 | 15.87              | -\$1.59m                 | 875.97             | \$28,822                 | -271.45            | \$93,204             |
| \$25.5m              | 483.51             | \$52,534                 | -409.03            | \$62,078                 | 458.95             | \$55,344                 | -390.48            | \$65,032                 | 592.94             | \$42,802                 | 15.34              | -\$1.66m                 | 879.42             | \$28,883                 | -272.96            | \$93,054             |
| \$25.5m              | 485.60             | \$52,555                 | -410 51            | \$62,070                 | 460.96             | \$55,319                 | -391.92            | \$65,040                 | 594.73             | \$42,856                 | 14 49              | -\$1.00m                 | 881.08             | \$28,942                 | -272.50            | \$92,895             |
| \$25.5m              | 487.70             | \$52,512                 | -411.99            | \$62,110                 | 462.97             | \$55,295                 | -393.37            | \$65,004                 | 596.70             | \$42,070                 | 13.58              | -\$1.90m                 | 882 74             | \$29,001                 | -275.02            | \$93.084             |
| \$25.0m              | 489.80             | \$52,471                 | -413.46            | \$62,158                 | 464 99             | \$55,270                 | -394.81            | \$65,095                 | 598.51             | \$42,902                 | 12.74              | -\$2.02m                 | 884 40             | \$29,001                 | -276.53            | \$92,938             |
| \$25.8m              | 491.90             | \$52,171                 | -414.93            | \$62,179                 | 467.00             | \$55,246                 | -396.25            | \$65,111                 | 600.48             | \$42,965                 | 12.71              | -\$2.02m                 | 886.07             | \$29,117                 | -278.07            | \$92,783             |
| \$25.0m              | 494.00             | \$52,130                 | -416.41            | \$62,179                 | 469.02             | \$55,272                 | -397.69            | \$65,127                 | 602.33             | \$43,000                 | 11.30              | -\$2.29m                 | 887.74             | \$29,175                 | -278.58            | \$92,971             |
| \$26.0m              | 496.11             | \$52,122                 | -417.88            | \$62,177                 | 471.04             | \$55,222                 | -399.13            | \$65,127                 | 604.13             | \$43,037                 | 10.40              | -\$2.50m                 | 889.42             | \$29,233                 | -280.12            | \$92,818             |
| \$26.0m              | 498.21             | \$52,100                 | -419.35            | \$62,219                 | 473.06             | \$55,173                 | -400.56            | \$65,158                 | 606.11             | \$43.061                 | 9.56               | -\$2.50m                 | 892.67             | \$29,235                 | -281.62            | \$92,677             |
| \$26.1m              | 500.33             | \$52,366                 | -420.81            | \$62,210                 | 475.08             | \$55,149                 | -402.00            | \$65,174                 | 607.93             | \$43,097                 | 9.04               | -\$2.90m                 | 894 35             | \$29,295                 | -282.14            | \$92,863             |
| \$26.2m              | 502.44             | \$52,345                 | -422.28            | \$62,281                 | 477.11             | \$55,124                 | -403.43            | \$65,190                 | 609.78             | \$43,130                 | 8 14               | -\$3.23m                 | 896.00             | \$29,353                 | -283.67            | \$92,714             |
| \$26.4m              | 504.55             | \$52,324                 | -423.75            | \$62,301                 | 479.14             | \$55.099                 | -404.87            | \$65,206                 | 611.77             | \$43,154                 | 6.39               | -\$4.13m                 | 897.68             | \$29,409                 | -284.18            | \$92.899             |
| \$26.5m              | 506.67             | \$52,303                 | -425.22            | \$62.321                 | 481.17             | \$55.074                 | -406.30            | \$65,222                 | 613.58             | \$43,189                 | 5.56               | -\$4.77m                 | 899.34             | \$29,466                 | -285.68            | \$92,761             |
| \$26.6m              | 508.79             | \$52,281                 | -426.68            | \$62,341                 | 483.20             | \$55,050                 | -407.74            | \$65,238                 | 615.57             | \$43,212                 | 3.81               | -\$6.98m                 | 901.03             | \$29,522                 | -287.21            | \$92,615             |
| \$26.7m              | 510.91             | \$52,260                 | -428.15            | \$62,362                 | 485.23             | \$55.025                 | -409.17            | \$65,254                 | 617.43             | \$43,244                 | 2.91               | -\$9.16m                 | 902.72             | \$29,577                 | -287.72            | \$92,799             |
| \$26.8m              | 513.03             | \$52,239                 | -429.61            | \$62,382                 | 487.27             | \$55,000                 | -410.60            | \$65,270                 | 619.26             | \$43,278                 | 2.40               | -\$11.17m                | 904.38             | \$29,633                 | -289.25            | \$92,654             |
| \$26.9m              | 515.15             | \$52,217                 | -431.08            | \$62,402                 | 489.31             | \$54,976                 | -412.03            | \$65,286                 | 621.25             | \$43,300                 | 0.66               | -\$40.73m                | 906.08             | \$29,688                 | -290.74            | \$92,522             |
| \$27.0m              | 517.28             | \$52,196                 | -432.54            | \$62,422                 | 491.34             | \$54,951                 | -413.46            | \$65,302                 | 623.08             | \$43,333                 | -0.17              | \$157.74m                | 907.79             | \$29,743                 | -291.25            | \$92,704             |
| \$27.1m              | 519.41             | \$52,175                 | -434.00            | \$62,442                 | 493.39             | \$54,927                 | -414.89            | \$65,318                 | 624.95             | \$43,364                 | -1.42              | \$19.12m                 | 909.46             | \$29,798                 | -292.77            | \$92,563             |
| \$27.2m              | 521.54             | \$52,154                 | -435.46            | \$62,462                 | 495.43             | \$54,902                 | -416.32            | \$65,334                 | 626.95             | \$43,385                 | -3.15              | \$8.63m                  | 912.76             | \$29,800                 | -293.28            | \$92,743             |
| \$27.3m              | 523.67             | \$52,133                 | -436.92            | \$62,483                 | 497.48             | \$54,877                 | -417.75            | \$65,350                 | 628.78             | \$43,417                 | -4.05              | \$6.75m                  | 914.47             | \$29,853                 | -294.77            | \$92,614             |
| \$27.4m              | 525.80             | \$52,111                 | -438.38            | \$62,503                 | 499.52             | \$54,852                 | -419.18            | \$65,366                 | 630.79             | \$43,438                 | -5.78              | \$4.74m                  | 916.15             | \$29,908                 | -296.29            | \$92,476             |
| \$27.5m              | 527.93             | \$52,090                 | -439.84            | \$62,523                 | 501.57             | \$54,828                 | -420.60            | \$65,382                 | 632.63             | \$43,470                 | -6.29              | \$4.37m                  | 917.86             | \$29,961                 | -296.80            | \$92,655             |
| \$27.6m              | 530.07             | \$52,069                 | -441.29            | \$62,544                 | 503.63             | \$54,803                 | -422.03            | \$65,398                 | 634.50             | \$43,499                 | -7.12              | \$3.88m                  | 919.58             | \$30,014                 | -298.32            | \$92,519             |
| \$27.7m              | 532.20             | \$52,048                 | -442.75            | \$62,564                 | 505.68             | \$54,778                 | -423.46            | \$65,414                 | 636.34             | \$43,530                 | -8.01              | \$3.46m                  | 921.26             | \$30,067                 | -299.80            | \$92,394             |
| \$27.8m              | 534.34             | \$52,026                 | -444.20            | \$62,584                 | 507.74             | \$54,753                 | -424.88            | \$65,430                 | 638.36             | \$43,549                 | -9.73              | \$2.86m                  | 922.98             | \$30,120                 | -300.31            | \$92,572             |
| \$27.9m              | 536.49             | \$52,005                 | -445.65            | \$62,605                 | 509.80             | \$54,727                 | -426.30            | \$65,447                 | 640.20             | \$43,580                 | -11.46             | \$2.44m                  | 924.71             | \$30,172                 | -301.82            | \$92,439             |
| \$28.0m              | 538.63             | \$51,984                 | -447.10            | \$62,625                 | 511.86             | \$54,702                 | -427.72            | \$65,463                 | 642.09             | \$43,608                 | -12.34             | \$2.27m                  | 926.40             | \$30,225                 | -302.33            | \$92,615             |
| \$28.1m              | 540.77             | \$51,963                 | -448.56            | \$62,646                 | 513.92             | \$54,677                 | -429.15            | \$65,479                 | 644.11             | \$43,626                 | -13.17             | \$2.13m                  | 928.13             | \$30,276                 | -303.81            | \$92,493             |
| \$28.2m              | 542.92             | \$51,941                 | -450.01            | \$62,666                 | 515.99             | \$54,653                 | -430.57            | \$65,495                 | 645.96             | \$43,656                 | -14.89             | \$1.89m                  | 930.55             | \$30,305                 | -305.32            | \$92,363             |
| \$28.3m              | 545.07             | \$51,920                 | -451.46            | \$62,686                 | 518.05             | \$54,627                 | -431.98            | \$65,512                 | 647.99             | \$43,674                 | -15.39             | \$1.84m                  | 932.25             | \$30,357                 | -305.82            | \$92,537             |
| \$28.4m              | 547.23             | \$51,898                 | -452.91            | \$62,706                 | 520.13             | \$54,602                 | -433.40            | \$65,528                 | 649.88             | \$43,700                 | -17.11             | \$1.66m                  | 933.98             | \$30,407                 | -307.33            | \$92,409             |
| \$28.5m              | 549.38             | \$51,876                 | -454.35            | \$62,726                 | 522.20             | \$54,577                 | -434.82            | \$65,544                 | 651.74             | \$43,729                 | -17.99             | \$1.58m                  | 937.35             | \$30,405                 | -308.81            | \$92,291             |
| \$28.6m              | 551.54             | \$51,855                 | -455.80            | \$62,747                 | 524.28             | \$54,551                 | -436.24            | \$65,560                 | 653.77             | \$43,746                 | -18.81             | \$1.52m                  | 939.09             | \$30,455                 | -309.31            | \$92,464             |
| \$28.7m              | 553.70             | \$51,833                 | -457.25            | \$62,767                 | 526.36             | \$54,526                 | -437.66            | \$65,577                 | 655.63             | \$43,775                 | -20.52             | \$1.40m                  | 940.80             | \$30,506                 | -310.81            | \$92,338             |
| \$28.8m              | 559.00             | \$51,811                 | -458.69            | \$62,787                 | 528.44             | \$54,501                 | -439.07            | \$65,593                 | 657.67             | \$43,/91                 | -22.27             | \$1.29m                  | 942.54             | \$30,556                 | -312.29            | \$92,223             |
| \$28.9m              | 558.03             | \$51,790                 | -460.14            | \$62,808                 | 530.52             | \$54,475                 | -440.49            | \$65,609                 | 659.57             | \$43,816                 | -22.77             | \$1.2/m                  | 946.20             | \$30,543                 | -312.79            | \$92,395             |
| \$29.0m              | 560.19             | \$51,768                 | -461.58            | \$62,828                 | 532.60             | \$54,450                 | -441.90            | \$65,626                 | 661.44             | \$43,844                 | -24.48             | \$1.18m                  | 947.95             | \$30,592                 | -514.29            | \$92,272             |
| \$29.1m              | 564.52             | \$51,740                 | -403.02            | \$62,848                 | 526.79             | \$54,424                 | -445.51            | \$05,642                 | 665.25             | \$43,839                 | -23.30             | \$1.15m                  | 949.00             | \$30,642                 | -314./9            | \$92,445             |
| \$29.2m              | 566.71             | \$51,724                 | -404.40            | \$62,808                 | 529.97             | \$54,399                 | -444./2            | \$65,639                 | 667.27             | \$43,880                 | -27.00             | \$1.08m                  | 951.42             | \$20,740                 | -310.20            | \$92,330             |
| \$29.5m              | 568.89             | \$51,702                 | 467.34             | \$62,000                 | 540.06             | \$54 347                 | 447.55             | \$65.601                 | 660.32             | \$43.025                 | -27.00             | \$1.0511                 | 955.14             | \$30,740                 | 318.25             | \$92,209             |
| \$27.4111<br>\$29.5m | 571.06             | \$51,080                 | -468 78            | \$62,909                 | 543.06             | \$54 277                 | -447.55            | \$65 708                 | 671.10             | \$43.052                 | -29.02             | \$956.664                | 956.67             | \$30,789                 | -310.23            | \$92,379             |
| \$29.5m              | 573.24             | \$51,637                 | _470.22            | \$62,929                 | 545.00             | \$54 296                 | -450.37            | \$65 724                 | 673.07             | \$43.977                 | -31.71             | \$933 383                | 958.40             | \$30,850                 | -319.75            | \$92,200             |
| \$29.7m              | 575.42             | \$51,614                 | -471.66            | \$62,970                 | 547.26             | \$54,270                 | -451.78            | \$65,740                 | 675.13             | \$43,991                 | -33.41             | \$888,901                | 961.83             | \$30.879                 | -321.71            | \$92.319             |

|                      |                    |                          |                    | 2                        | 1                  |                      |                    |                      |                    |                      |                    | 2                        | 2                  |                    |                    |                      |
|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|                      | Ag                 | ent has goo              | d informati        | on                       | A                  | ent has poo          | or informati       | on                   | A                  | gent has go          | od informa         | tion                     | A                  | gent has poo       | or informati       | on                   |
|                      | Net Inv            | estment                  | Net Disin          | westment                 | Net Inv            | estment              | Net Disi           | westment             | Net Inv            | estment              | Net Disi           | nvestment                | Net Im             | estment            | Net Disi           | nvestment            |
| <b>Budget</b> impact | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$ |
| \$29.8m              | 577.61             | \$51.592                 | -473.09            | \$62,990                 | 549 37             | \$54 244             | -453.18            | \$65 757             | 677.05             | \$44.014             | -33.91             | \$878 674                | 963.60             | \$30,926           | -323 20            | \$92,202             |
| \$29.0m              | 579.79             | \$51,570                 | -474 53            | \$63,010                 | 551.47             | \$54,219             | -454 59            | \$65,773             | 678.94             | \$44.039             | -35.65             | \$838 793                | 969.58             | \$30,838           | -323.20            | \$92,262             |
| \$30.0m              | 581.98             | \$51,578                 | -475.96            | \$63,031                 | 553 58             | \$54 193             | -456.00            | \$65,790             | 681.00             | \$44.053             | -37.34             | \$803 383                | 971.36             | \$30,885           | -325.16            | \$92,363             |
| \$30.1m              | 584.17             | \$51,576                 | -477 39            | \$63,051                 | 555.69             | \$54,166             | -457.40            | \$65,806             | 682.93             | \$44.075             | -38.15             | \$788.916                | 973.10             | \$30,932           | -326.65            | \$92,202             |
| \$30.1m              | 586.36             | \$51,520                 | -478.82            | \$63.071                 | 557.81             | \$54,100             | -458.81            | \$65,823             | 684.82             | \$44,075             | -39.03             | \$773 834                | 974.88             | \$30,978           | -327.15            | \$92,140             |
| \$30.2m              | 588 55             | \$51,301                 | -480.25            | \$63,092                 | 559.92             | \$54 114             | -460.21            | \$65,839             | 686.90             | \$44 111             | -40.72             | \$744 136                | 976.63             | \$31,025           | -328.63            | \$92,010             |
| \$30.4m              | 590.75             | \$51,460                 | -481.68            | \$63,112                 | 562.04             | \$54.088             | -461.62            | \$65,856             | 688 79             | \$44 135             | _42.44             | \$716,239                | 978.41             | \$31,025           | -330.09            | \$92,097             |
| \$30.5m              | 592.95             | \$51,438                 | -483.11            | \$63,112                 | 564.17             | \$54,060             | -463.02            | \$65,872             | 690.87             | \$44,133             | -44.13             | \$691.107                | 980.20             | \$31,071           | -330.58            | \$92,057             |
| \$30.5m              | 595.15             | \$51,430                 | 484.54             | \$63,152                 | 566.29             | \$54,002             | 464.42             | \$65,872             | 692.81             | \$44,147             | 44.13              | \$680.011                | 981.96             | \$31,162           | 332.07             | \$92,201             |
| \$30.0m              | 597.36             | \$51,415                 | -485.97            | \$63,173                 | 568.42             | \$54,030             | -465.82            | \$65,905             | 694 71             | \$44,103             | -45.81             | \$670,170                | 983.75             | \$31,102           | -332.07            | \$92,130             |
| \$30.7m              | 599.57             | \$51,373                 | 487.30             | \$63,173                 | 570.55             | \$53.083             | 467.22             | \$65,903             | 696.80             | \$44,202             | 46.31              | \$665,000                | 985.56             | \$31,207           | 334.01             | \$02,314             |
| \$30.0m              | 601.77             | \$51,371                 | 488.82             | \$63 214                 | 572.68             | \$53,965             | 468.62             | \$65.038             | 608 70             | \$44,202             | 40.31              | \$643.840                | 985.50             | \$31,251           | 335.40             | \$92,213             |
| \$30.7m              | 602.00             | \$51,346                 | 400.24             | \$62,224                 | 574.82             | \$53,937             | 470.02             | \$65,958             | 700.65             | \$44,223             | 40.71              | \$672.581                | 987.20             | \$21,201           | 225.08             | \$92,104             |
| \$31.0m              | 606.20             | \$51,320                 | 401.66             | \$62,254                 | 576.05             | \$53,930             | 471.42             | \$65,933             | 700.05             | \$44,244             | -49.71             | \$605 124                | 990.70             | \$21,226           | 227.46             | \$92,200             |
| \$31.1m<br>\$31.2m   | 608.41             | \$51,303                 | 491.00             | \$63,235                 | 570.93             | \$53,904             | 472.81             | \$65.088             | 704.66             | \$44,233             | -51.59             | \$507.018                | 992.47             | \$31,330           | 338.01             | \$92,139             |
| \$31.2m              | 610.63             | \$51,261                 | 493.00             | \$63,275                 | 581.23             | \$53,878             | 474.21             | \$66,005             | 704.00             | \$44.287             | -52.20             | \$580.857                | 005.03             | \$31,380           | 330.40             | \$92,000             |
| \$31.3III<br>\$21.4m | 612.85             | \$51,239                 | 494.30             | \$62,216                 | 582.27             | \$53,852             | 475.60             | \$66,003             | 708.67             | \$44,207             | -53.00             | \$572 220                | 993.93             | \$31,420           | 240.88             | \$92,221             |
| \$31.4III<br>\$21.5m | 615.07             | \$51,230                 | -493.93            | \$62,226                 | 585.51             | \$53,820             | 477.00             | \$66,022             | 710.62             | \$44,308             | -54.70             | \$575,230                | 997.74             | \$21,471           | 241.27             | \$92,110             |
| \$31.5m              | 617.20             | \$51,214                 | -497.33            | \$63,350                 | 587.66             | \$53,799             | 478.30             | \$66,055             | 712.56             | \$44,327             | -50.45             | \$557,975                | 1001.17            | \$31,519           | 3/2.81             | \$92,270             |
| \$31.0III<br>\$21.7m | 610.52             | \$51,191                 | -498.70            | \$62,277                 | 580.81             | \$53,772             | 470.70             | \$66,071             | 712.30             | \$44,347             | -30.93             | \$549 212                | 1001.17            | \$21,505           | 244.28             | \$92,180             |
| \$31./III<br>\$21.9m | 621.75             | \$51,109                 | -500.18            | \$62 207                 | 501.06             | \$53,740             | 4/9./9             | \$66,088             | 716.50             | \$44,337             | -57.81             | \$524 560                | 1002.99            | \$21,603           | 244.20             | \$92,070             |
| \$31.0III<br>\$21.0m | 622.08             | \$51,140                 | -501.00            | \$62,417                 | 504.12             | \$53,719             | 482.57             | \$66,105             | 710.39             | \$44,377             | -39.49             | \$534,309                | 1004.05            | \$21,605           | -344.77            | \$92,233             |
| \$31.7m              | 626.21             | \$51,124                 | -503.02            | \$63,417                 | 506.29             | \$53,093             | 402.07             | \$66,103             | 710.50             | \$44,394             | -01.19             | \$516,160                | 1000.44            | \$31,090           | -340.21            | \$92,141             |
| \$32.0m              | 620.21             | \$51,101                 | -504.45            | \$63,437                 | 508.44             | \$53,000             | 405.25             | \$66,121             | 720.07             | \$44,403             | -02.00             | \$510,109                | 1008.10            | \$31,745           | -347.08            | \$92,039             |
| \$32.1III<br>\$22.2m | 620.60             | \$51,078                 | -505.85            | \$63,438                 | 600.60             | \$53,040             | 485.55             | \$66,154             | 722.01             | \$44,422             | -03.07             | \$106.441                | 1011.60            | \$21,765           | -340.17            | \$92,197             |
| \$32.2III<br>\$32.3m | 632.03             | \$51,033                 | 508.68             | \$63,478                 | 602.77             | \$53,015             | 488.13             | \$66,171             | 724.73             | \$44,430             | -04.80             | \$490,441                | 1013.42            | \$31,851           | 351.07             | \$92,097             |
| \$32.5m              | 625.17             | \$51,033                 | -508.08            | \$62,519                 | 604.04             | \$53,580             | 480.52             | \$66,197             | 720.71             | \$44,447             | -03.72             | \$491,470                | 1015.42            | \$31,672           | -551.07            | \$92,003             |
| \$32.4III<br>\$32.5m | 627.41             | \$50.087                 | -510.09            | \$62 520                 | 607.11             | \$53,539             | 400.01             | \$66,204             | 720.79             | \$44,400             | -07.42             | \$480,347                | 1015.22            | \$31,914           | -551.50            | \$92,102             |
| \$32.5III<br>\$32.6m | 620.66             | \$50,987                 | -512.01            | \$62,559                 | 600.20             | \$53,552             | 402.20             | \$66,204             | 730.78             | \$44,473             | -09.09             | \$470,403                | 1010.09            | \$31,900           | -555.02            | \$92,003             |
| \$32.0m              | 641.01             | \$50,904                 | 514.32             | \$63,559                 | 611.46             | \$53,303             | -492.30            | \$66,220             | 738.56             | \$44,492             | -09.38             | \$466,500                | 1018.75            | \$32,001           | 354.94             | \$92,219             |
| \$32.7m              | 644.17             | \$50,941                 | 515.73             | \$63,600                 | 613.64             | \$53,478             | 495.00             | \$66,257             | 740.55             | \$44,273             | 72.04              | \$455,288                | 1020.41            | \$32,040           | 356.40             | \$92,129             |
| \$32.0m              | 646.42             | \$50,919                 | 517.13             | \$63,600                 | 615.82             | \$53,424             | 495.07             | \$66,270             | 740.33             | \$44,291             | 72.04              | \$451,200                | 1025.98            | \$32,032           | 356.88             | \$92,032             |
| \$33.0m              | 648.68             | \$50,870                 | 518 54             | \$63,640                 | 618.01             | \$53 307             | 490.45             | \$66,287             | 742.09             | \$44,299             | 74.50              | \$442.300                | 1023.82            | \$32,072           | 358 34             | \$92,187             |
| \$33.1m              | 650.04             | \$50,875                 | 510.04             | \$63,661                 | 620.20             | \$53,377             | 400.22             | \$66,303             | 744.04             | \$44,317             | 76.25              | \$434.076                | 1027.02            | \$32,115           | 350 77             | \$92,091             |
| \$33.7m              | 653.20             | \$50,830                 | -521.34            | \$63,682                 | 622.20             | \$53,370             | -499.22            | \$66,320             | 748.74             | \$44 341             | -77.05             | \$430,905                | 1029.31            | \$32,158           | -360.25            | \$92,004             |
| \$33.3m              | 655.47             | \$50,803                 | -521.54            | \$63,702                 | 624.59             | \$53 315             | -501.00            | \$66,336             | 750.74             | \$44 356             | -77.54             | \$429.468                | 1032.84            | \$32,177           | -361.71            | \$92,157             |
| \$33.4m              | 657.74             | \$50,005                 | -524.14            | \$63,702                 | 626.78             | \$53,288             | -503.37            | \$66,353             | 752.70             | \$44 373             | -79.23             | \$421,566                | 1034.69            | \$32,241           | -362.19            | \$92,005             |
| \$33.5m              | 660.00             | \$50,760                 | -525.54            | \$63,723                 | 628.98             | \$53,260             | -504.75            | \$66,370             | 754.85             | \$44 379             | -80.88             | \$414 174                | 1036.51            | \$32,200           | -363.62            | \$92,210             |
| \$33.6m              | 662.27             | \$50,734                 | -526.93            | \$63,744                 | 631.18             | \$53,201             | -506.13            | \$66,386             | 756.82             | \$44 396             | -81 74             | \$411.074                | 1038.20            | \$32,320           | -365.02            | \$92,130             |
| \$33.7m              | 664 55             | \$50,754                 | -528.32            | \$63,787                 | 633 39             | \$53,206             | -507.51            | \$66,403             | 758.98             | \$44.402             | -83 39             | \$404 129                | 1040.06            | \$32,504           | -365.55            | \$92,000             |
| \$33.8m              | 666.83             | \$50,711                 | -529.71            | \$63,808                 | 635.59             | \$53,200             | -508.89            | \$66,420             | 760.99             | \$44.416             | -85.07             | \$397 301                | 1040.00            | \$32,402           | -367.00            | \$92,190             |
| \$33.0m              | 669.11             | \$50,664                 | 531.11             | \$63,800                 | 637.81             | \$53,177             | 510.26             | \$66,436             | 762.97             | \$11 132             | -05.07             | \$304.811                | 1041.70            | \$32,443           | 368.42             | \$92,015             |
| \$34.0m              | 671.40             | \$50,604                 | -532.50            | \$63,850                 | 640.03             | \$53,123             | -511.64            | \$66,453             | 765.13             | \$44.437             | -86 71             | \$392,094                | 1045.02            | \$32,403           | -368.90            | \$92,015             |
| \$34.1m              | 673.60             | \$50,617                 | -533.88            | \$63,872                 | 642.24             | \$53,095             | -513.02            | \$66.470             | 767.11             | \$44.452             | -88.36             | \$385.911                | 1047.15            | \$32,522           | -370.35            | \$92,100             |
| \$34.7m              | 675.07             | \$50,594                 | -535.00            | \$63.893                 | 644 46             | \$53,093             | -513.02            | \$66.486             | 769.14             | \$44.465             | -88.85             | \$384.917                | 1049.02            | \$32,504           | -370.83            | \$92,070             |
| \$34.3m              | 678.27             | \$50,594                 | -536.65            | \$63,095                 | 646.68             | \$53.040             | -515 77            | \$66,503             | 771.31             | \$44 470             | -90.50             | \$379.025                | 1052.93            | \$32,002           | -372.24            | \$92,220             |
| \$34.4m              | 680.56             | \$50,546                 | -538.03            | \$63,937                 | 648.91             | \$53.012             | -517.14            | \$66 520             | 773 30             | \$44 485             | -92.17             | \$373 204                | 1054 64            | \$32,570           | -373.69            | \$92,144             |
| \$34.5m              | 682.86             | \$50 523                 | -539.41            | \$63,959                 | 651 14             | \$52 984             | -518 51            | \$66,520             | 775.48             | \$44 489             | -93.02             | \$370.881                | 1056.48            | \$32,616           | -374 17            | \$92,000             |
| \$34.6m              | 685.16             | \$50,323                 | -540.79            | \$63.981                 | 653 37             | \$52,954             | -519.88            | \$66 553             | 777 47             | \$44 503             | -93.81             | \$368.838                | 1058.35            | \$32,692           | -375 58            | \$92,204             |
| \$34.7m              | 687.46             | \$50,476                 | -542.17            | \$64.002                 | 655.61             | \$52,928             | -521.26            | \$66.570             | 779.51             | \$44.515             | -95.45             | \$363.542                | 1060.07            | \$32,734           | -377.02            | \$92.037             |

|               |                    |                        |                    | 2                    | 1                  |                    |                    |                      |                    |                        |                    | 2                    | 2                  |                    |                    |                      |
|---------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|
|               | Ag                 | ent has goo            | d informati        | on                   | A                  | ent has poo        | or informati       | on                   | A                  | gent has go            | od informa         | tion                 | A                  | gent has poo       | or informati       | ion                  |
|               | Net Inv            | estment                | Net Disir          | westment             | Net Inv            | estment            | Net Disi           | westment             | Net Inv            | estment                | Net Disi           | nvestment            | Net Im             | estment            | Net Disi           | nvestment            |
| Budget impact | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda_{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ |
| \$34.8m       | 689.76             | \$50.452               | -543 54            | \$64 024             | 657.84             | \$52,900           | -522.63            | \$66 587             | 781.51             | \$44 529               | -97.12             | \$358.306            | 1063 71            | \$32,716           | -377 50            | \$92.185             |
| \$34.9m       | 692.07             | \$50,429               | -544.92            | \$64.046             | 660.09             | \$52,900           | -524.00            | \$66,603             | 783 70             | \$44.532               | -98.76             | \$353 375            | 1065.59            | \$32,752           | -378.94            | \$92,099             |
| \$35.0m       | 694.38             | \$50,405               | -546.30            | \$64.068             | 662.33             | \$52,872           | -525.37            | \$66,620             | 785.70             | \$44 546               | _99.94             | \$350,222            | 1067.31            | \$32,793           | -380.35            | \$92,021             |
| \$35.0m       | 696.68             | \$50,405               | 547.67             | \$64,000             | 664.58             | \$52,815           | 526.73             | \$66,637             | 787.75             | \$44,540               | 100.78             | \$348 282            | 1069.16            | \$32,775           | 380.83             | \$92,021             |
| \$35.1m       | 698.99             | \$50,352               | -549.04            | \$64,070             | 666.83             | \$52,813           | -528.10            | \$66,654             | 789.95             | \$44 560               | -101.27            | \$347.601            | 1071.79            | \$32,850           | -382.26            | \$92,100             |
| \$35.2m       | 701.31             | \$50,335               | -550.41            | \$64,112             | 669.08             | \$52,767           | -529.10            | \$66,671             | 701.96             | \$44 573               | -102.05            | \$345.914            | 1073.67            | \$32,878           | -382.20            | \$92,004             |
| \$35.5m       | 703.62             | \$50,333               | -551.78            | \$64 156             | 671.34             | \$52,731           | -530.83            | \$66,688             | 794.17             | \$44 575               | -102.05            | \$341 424            | 1075.40            | \$32,078           | -384.14            | \$92,250             |
| \$35.5m       | 705.02             | \$50,287               | -553.15            | \$64,178             | 673.60             | \$52,702           | -532.20            | \$66,705             | 796.18             | \$44.588               | -105.00            | \$336,966            | 1077.29            | \$32,918           | -385 58            | \$92,070             |
| \$35.5m       | 708.27             | \$50,267               | 554.52             | \$64,200             | 675.86             | \$52,702           | 533.56             | \$66,703             | 798.25             | \$11,500               | 106.98             | \$332,762            | 1079.02            | \$32,003           | 386.05             | \$92,070             |
| \$35.0m       | 710.60             | \$50,203               | -555.88            | \$64 222             | 678.12             | \$52,645           | -534.92            | \$66,722             | 800.46             | \$44,598               | -107.82            | \$331.095            | 1079.02            | \$33,029           | -387.45            | \$92,213             |
| \$35.8m       | 712.03             | \$50,235               | 557.24             | \$64,222             | 680.30             | \$52,643           | 536.28             | \$66,756             | 802.48             | \$44,611               | 109.49             | \$326.078            | 1082.78            | \$33,063           | 388.88             | \$92,140             |
| \$35.0m       | 715.26             | \$50,215               | 558.60             | \$64,245             | 682.65             | \$52,580           | 537.64             | \$66,773             | 804.56             | \$44,671               | 110.27             | \$325,573            | 1084.52            | \$33,005           | 380.36             | \$92,000             |
| \$36.0m       | 717.60             | \$50,151               | 550.00             | \$64,207             | 684.03             | \$52,560           | 530.00             | \$66,790             | 806.50             | \$44,632               | 111.00             | \$321,729            | 1086.42            | \$33,136           | 300.70             | \$92,202             |
| \$36.1m       | 710.04             | \$50,107               | -559.90            | \$64,290             | 687.20             | \$52,500           | 540.36             | \$66,807             | 808.81             | \$44,632               | 112.38             | \$321,729            | 1080.42            | \$33,175           | 301.26             | \$92,122             |
| \$36.2m       | 719.94             | \$50,145               | -562.68            | \$64.336             | 689.48             | \$52,552           | -541.72            | \$66,824             | 810.85             | \$44 645               | -113.22            | \$319 745            | 1000.17            | \$33,210           | -392.66            | \$92,203             |
| \$30.2m       | 724.63             | \$50,095               | -562.00            | \$64,358             | 601.77             | \$52,505           | 5/3.08             | \$66.841             | 813.08             | \$44,645               | 114.84             | \$316.002            | 1090.05            | \$33,210           | 394.08             | \$92,192             |
| \$36.5m       | 724.03             | \$50,070               | 565.38             | \$64,338             | 694.05             | \$52,474           | 544.43             | \$66,850             | 815.00             | \$44,653               | 116.50             | \$312,092            | 1091.95            | \$33,243           | 304.56             | \$92,112             |
| \$36.5m       | 720.33             | \$50,070               | -566.73            | \$64,381             | 696.34             | \$52,417           | 545.70             | \$66,876             | 817.21             | \$44,653               | 117.27             | \$311,431            | 1095.09            | \$33,202           | 305.05             | \$92,233             |
| \$36.6m       | 731.68             | \$50,040               | -568.08            | \$64 427             | 698.63             | \$52,417           | -547.14            | \$66,893             | 819.45             | \$44 664               | -118.90            | \$307.832            | 1097.45            | \$33,320           | -397.37            | \$92,105             |
| \$36.7m       | 734.03             | \$49,998               | -569.43            | \$64.450             | 700.93             | \$52,360           | -548.49            | \$66,910             | 821.50             | \$44.674               | -110.70            | \$306 520            | 1099.25            | \$33,355           | -397.85            | \$92,105             |
| \$36.8m       | 736.39             | \$49,973               | -570.78            | \$64.474             | 703.22             | \$52,330           | -549.85            | \$66,928             | 823.60             | \$44.682               | -110.75            | \$303,170            | 1102.97            | \$33,364           | -399.27            | \$92,240             |
| \$36.9m       | 738.76             | \$49,975               | -572.12            | \$64.497             | 705.52             | \$52,300           | -547.05            | \$66,945             | 825.85             | \$44 681               | -121.56            | \$302,798            | 1102.77            | \$33,402           | -399.74            | \$92,10              |
| \$37.0m       | 741 12             | \$49.974               | -573.46            | \$64 520             | 707.83             | \$52,302           | -552.55            | \$66,962             | 827.91             | \$44,601               | -121.00            | \$299.640            | 1104.75            | \$33,434           | -401.13            | \$92,310             |
| \$37.0m       | 743.49             | \$49,924               | -574.81            | \$64 544             | 710.14             | \$52,272           | -553.90            | \$66,979             | 829.97             | \$44,001               | -123.40            | \$298 580            | 1108.42            | \$33,471           | -401.60            | \$92,239             |
| \$37.2m       | 745.86             | \$49.876               | -576.15            | \$64 567             | 712.46             | \$52,213           | -555.25            | \$66,997             | 832.23             | \$44 699               | -125.87            | \$295 543            | 1110.12            | \$33,503           | -403.02            | \$92,303             |
| \$37.3m       | 748.23             | \$49.851               | -577.49            | \$64,590             | 714.78             | \$52,184           | -556.60            | \$67.014             | 834.35             | \$44,706               | -127.52            | \$292.508            | 1112.24            | \$33,536           | -404.41            | \$92.234             |
| \$37.4m       | 750.60             | \$49.827               | -578.82            | \$64.614             | 717.09             | \$52,155           | -557.95            | \$67.032             | 836.42             | \$44,715               | -128.35            | \$291.392            | 1114.01            | \$33,572           | -404.88            | \$92.373             |
| \$37.5m       | 752.98             | \$49,802               | -580.16            | \$64.637             | 719.41             | \$52,126           | -559.29            | \$67,049             | 838.69             | \$44,713               | -129.96            | \$288,548            | 1115.95            | \$33,604           | -406.29            | \$92.298             |
| \$37.6m       | 755.37             | \$49,777               | -581.50            | \$64,661             | 721.73             | \$52,097           | -560.64            | \$67,066             | 840.76             | \$44,721               | -130.44            | \$288,260            | 1117.73            | \$33,640           | -407.68            | \$92,230             |
| \$37.7m       | 757.75             | \$49,752               | -582.83            | \$64,684             | 724.06             | \$52,067           | -561.98            | \$67,084             | 843.04             | \$44,719               | -131.59            | \$286,491            | 1119.63            | \$33,672           | -408.15            | \$92,369             |
| \$37.8m       | 760.14             | \$49,728               | -584.17            | \$64,708             | 726.39             | \$52,038           | -563.33            | \$67,101             | 845.17             | \$44,725               | -133.24            | \$283,709            | 1121.58            | \$33,703           | -409.56            | \$92,295             |
| \$37.9m       | 762.53             | \$49,703               | -585.50            | \$64,731             | 728.72             | \$52,009           | -564.67            | \$67,119             | 847.25             | \$44,733               | -134.01            | \$282,825            | 1123.36            | \$33,738           | -410.03            | \$92,433             |
| \$38.0m       | 764.93             | \$49,678               | -586.83            | \$64,755             | 731.05             | \$51,980           | -566.01            | \$67,136             | 849.54             | \$44,730               | -135.61            | \$280,208            | 1125.31            | \$33,768           | -411.44            | \$92,359             |
| \$38.1m       | 767.32             | \$49,653               | -588.16            | \$64,779             | 733.39             | \$51,951           | -567.35            | \$67,154             | 851.63             | \$44,738               | -136.44            | \$279,239            | 1127.23            | \$33,800           | -412.82            | \$92,293             |
| \$38.2m       | 769.72             | \$49,628               | -589.48            | \$64,802             | 735.72             | \$51,922           | -568.69            | \$67,171             | 853.77             | \$44,743               | -138.05            | \$276,716            | 1129.02            | \$33,835           | -413.29            | \$92,430             |
| \$38.3m       | 772.13             | \$49,603               | -590.81            | \$64,826             | 738.06             | \$51,893           | -570.03            | \$67,189             | 855.87             | \$44,750               | -139.69            | \$274,187            | 1130.98            | \$33,865           | -414.69            | \$92,358             |
| \$38.4m       | 774.53             | \$49,578               | -592.14            | \$64,850             | 740.39             | \$51,864           | -571.37            | \$67,207             | 858.17             | \$44,746               | -140.51            | \$273,287            | 1137.59            | \$33,756           | -416.07            | \$92,293             |
| \$38.5m       | 776.95             | \$49,553               | -593.46            | \$64,874             | 742.74             | \$51,835           | -572.71            | \$67,224             | 860.28             | \$44,753               | -141.28            | \$272,511            | 1141.40            | \$33,730           | -416.54            | \$92,429             |
| \$38.6m       | 779.36             | \$49,528               | -594.78            | \$64,898             | 745.08             | \$51,807           | -574.05            | \$67,242             | 862.59             | \$44,749               | -142.88            | \$270,156            | 1143.20            | \$33,765           | -417.94            | \$92,358             |
| \$38.7m       | 781.78             | \$49,503               | -596.10            | \$64,922             | 747.42             | \$51,778           | -575.38            | \$67,259             | 864.74             | \$44,753               | -143.35            | \$269,960            | 1145.16            | \$33,794           | -418.41            | \$92,494             |
| \$38.8m       | 784.19             | \$49,478               | -597.42            | \$64,946             | 749.77             | \$51,749           | -576.72            | \$67,277             | 866.85             | \$44,760               | -144.99            | \$267,609            | 1147.09            | \$33,825           | -419.81            | \$92,423             |
| \$38.9m       | 786.62             | \$49,452               | -598.74            | \$64,970             | 752.12             | \$51,721           | -578.06            | \$67,295             | 869.17             | \$44,755               | -146.59            | \$265,372            | 1148.89            | \$33,859           | -420.28            | \$92,558             |
| \$39.0m       | 789.04             | \$49,427               | -600.05            | \$64,994             | 754.47             | \$51,692           | -579.39            | \$67,312             | 871.29             | \$44,761               | -148.34            | \$262,917            | 1150.87            | \$33,887           | -421.67            | \$92,488             |
| \$39.1m       | 791.47             | \$49,402               | -601.37            | \$65,018             | 756.82             | \$51,664           | -580.72            | \$67,330             | 873.46             | \$44,764               | -149.16            | \$262,136            | 1152.68            | \$33,921           | -422.14            | \$92,623             |
| \$39.2m       | 793.90             | \$49,376               | -602.68            | \$65,042             | 759.17             | \$51,635           | -582.06            | \$67,348             | 875.79             | \$44,759               | -149.92            | \$261,468            | 1154.65            | \$33,950           | -423.54            | \$92,554             |
| \$39.3m       | 796.33             | \$49,351               | -604.00            | \$65,067             | 761.52             | \$51,607           | -583.39            | \$67,365             | 877.92             | \$44,765               | -151.52            | \$259,374            | 1156.60            | \$33,979           | -424.00            | \$92,688             |
| \$39.4m       | 798.77             | \$49,326               | -605.31            | \$65,091             | 763.88             | \$51,579           | -584.72            | \$67,383             | 880.06             | \$44,770               | -153.26            | \$257,072            | 1158.41            | \$34,012           | -425.40            | \$92,620             |
| \$39.5m       | 801.21             | \$49,301               | -606.62            | \$65,115             | 766.23             | \$51,551           | -586.05            | \$67,400             | 882.40             | \$44,764               | -154.89            | \$255,015            | 1160.40            | \$34,040           | -425.86            | \$92,753             |
| \$39.6m       | 803.65             | \$49,275               | -607.92            | \$65,140             | 768.59             | \$51,523           | -587.38            | \$67,418             | 884.58             | \$44,767               | -156.49            | \$253,059            | 1162.22            | \$34,073           | -427.25            | \$92,685             |
| \$39.7m       | 806.09             | \$49.250               | -609.23            | \$65,164             | 770.94             | \$51,495           | -588.71            | \$67.436             | 886.73             | \$44 771               | -158.23            | \$250,904            | 1164.21            | \$34,100           | -427.72            | \$92.819             |

|               |                   |                                |                   | 2                  | 1                 |                    |                   |                        |                   |                          |                   | 2                      | 2                 |                    |                 |                    |
|---------------|-------------------|--------------------------------|-------------------|--------------------|-------------------|--------------------|-------------------|------------------------|-------------------|--------------------------|-------------------|------------------------|-------------------|--------------------|-----------------|--------------------|
|               | 40                | ont has and                    | d informati       |                    | 4                 | nont has not       | r informati       | on                     | 4                 | aont has an              | od informa        | tion .                 |                   | gent has no        | or informati    | ion                |
|               | Ag<br>Nat Inu     | eni nus goo                    | Net Disis         | on<br>             | Nat Inc           | geni nus poo       | Net Diai          |                        | Not Inc           | geni nus go              | Net Disi          | uon<br>inn actus ant   | Nat Im            | geni nus pot       | Net Diei        | UN astronom        |
|               |                   | Esimeni                        | Net Distr         | <i>vesimeni</i>    |                   | E(1+1)             | Net Dist          | <i>E</i> (1=1)d        |                   | Esimeni                  | Thei Disi         | nvesimeni              |                   | resiment           | Net Dist        | <i>ivesimeni</i>   |
| Budget impact | $E(\Delta E)^{*}$ | $E(\lambda_{\dot{G}})^{\circ}$ | $E(\Delta E)^{c}$ | $E(\lambda_G)^{a}$ | $E(\Delta E)^{a}$ | $E(\lambda_P)^{o}$ | $E(\Delta E)^{c}$ | $E(\lambda_p)^{\rm u}$ | $E(\Delta E)^{a}$ | $E(\lambda_{G})^{\circ}$ | $E(\Delta E)^{c}$ | $E(\lambda_G)^{\circ}$ | $E(\Delta E)^{a}$ | $E(\lambda_p)^{o}$ | $E(\Delta E)^c$ | $E(\lambda_p)^{u}$ |
| \$39.8m       | 808.54            | \$49,225                       | -610.54           | \$65,189           | 773.30            | \$51,468           | -590.04           | \$67,453               | 889.08            | \$44,766                 | -159.05           | \$250,239              | 1166.17           | \$34,129           | -429.10         | \$92,751           |
| \$39.9m       | 810.99            | \$49,199                       | -611.84           | \$65,213           | 775.66            | \$51,440           | -591.36           | \$67,471               | 891.23            | \$44,770                 | -159.52           | \$250,126              | 1168.00           | \$34,161           | -429.57         | \$92,884           |
| \$40.0m       | 813.45            | \$49,173                       | -613.14           | \$65,237           | 778.03            | \$51,412           | -592.69           | \$67,489               | 893.43            | \$44,771                 | -161.14           | \$248,227              | 1170.00           | \$34,188           | -430.95         | \$92,817           |
| \$40.1m       | 815.91            | \$49,148                       | -614.45           | \$65,262           | 780.40            | \$51,384           | -594.02           | \$67,506               | 895.79            | \$44,765                 | -161.90           | \$247,678              | 1171.83           | \$34,220           | -431.42         | \$92,950           |
| \$40.2m       | 818.37            | \$49,122                       | -615.75           | \$65,286           | 782.77            | \$51,356           | -595.34           | \$67,524               | 897.95            | \$44,769                 | -163.49           | \$245,881              | 1173.84           | \$34,247           | -432.80         | \$92,884           |
| \$40.3m       | 820.84            | \$49,096                       | -617.05           | \$65,311           | 785.14            | \$51,329           | -596.67           | \$67,542               | 900.12            | \$44,772                 | -165.23           | \$243,899              | 1177.74           | \$34,218           | -433.26         | \$93,015           |
| \$40.4m       | 823.31            | \$49,070                       | -618.35           | \$65,335           | 787.51            | \$51,301           | -597.99           | \$67,560               | 902.49            | \$44,765                 | -166.82           | \$242,179              | 1179.71           | \$34,246           | -434.64         | \$92,950           |
| \$40.5m       | 825.78            | \$49,045                       | -619.65           | \$65,360           | 789.88            | \$51,274           | -599.31           | \$67,578               | 904.71            | \$44,766                 | -168.56           | \$240,278              | 1181.56           | \$34,277           | -435.10         | \$93,081           |
| \$40.6m       | 828.25            | \$49,019                       | -620.94           | \$65,384           | 792.25            | \$51,246           | -600.63           | \$67,596               | 906.88            | \$44,769                 | -169.37           | \$239,708              | 1183.57           | \$34,303           | -436.48         | \$93,016           |
| \$40.7m       | 830.73            | \$48,993                       | -622.24           | \$65,409           | 794.63            | \$51,219           | -601.95           | \$67,613               | 909.27            | \$44,761                 | -170.99           | \$238,024              | 1185.42           | \$34,334           | -436.94         | \$93,147           |
| \$40.8m       | 833.21            | \$48,967                       | -623.53           | \$65,434           | 797.01            | \$51,191           | -603.27           | \$67,631               | 911.45            | \$44,764                 | -171.75           | \$237,556              | 1187.44           | \$34,360           | -437.40         | \$93,278           |
| \$40.9m       | 835.69            | \$48,941                       | -624.82           | \$65,458           | 799.39            | \$51,164           | -604.59           | \$67,649               | 917.99            | \$44,554                 | -173.48           | \$235,760              | 1189.43           | \$34,386           | -438.78         | \$93,213           |
| \$41.0m       | 838.18            | \$48,916                       | -626.12           | \$65,483           | 801.77            | \$51,137           | -605.91           | \$67,667               | 920.23            | \$44,554                 | -175.07           | \$234,199              | 1191.28           | \$34,417           | -439.24         | \$93,344           |
| \$41.1m       | 840.67            | \$48,890                       | -627.41           | \$65,508           | 804.16            | \$51,110           | -607.23           | \$67,684               | 922.63            | \$44,547                 | -175.53           | \$234,143              | 1193.31           | \$34,442           | -440.61         | \$93,279           |
| \$41.2m       | 843.17            | \$48,863                       | -628.69           | \$65,533           | 806.54            | \$51,082           | -608.55           | \$67,702               | 924.82            | \$44,549                 | -176.67           | \$233,204              | 1197.57           | \$34,403           | -441.07         | \$93,409           |
| \$41.3m       | 845.67            | \$48,837                       | -629.98           | \$65,557           | 808.93            | \$51,055           | -609.86           | \$67,720               | 927.02            | \$44,552                 | -177.48           | \$232,697              | 1199.43           | \$34,433           | -442.44         | \$93,346           |
| \$41.4m       | 848.16            | \$48,811                       | -631.27           | \$65,582           | 811.32            | \$51,028           | -611.18           | \$67,738               | 929.42            | \$44,544                 | -179.10           | \$231,159              | 1201.47           | \$34,458           | -442.90         | \$93,475           |
| \$41.5m       | 850.67            | \$48,785                       | -632.55           | \$65,607           | 813.71            | \$51,001           | -612.49           | \$67,756               | 931.68            | \$44,543                 | -180.83           | \$229,501              | 1203.47           | \$34,484           | -444.27         | \$93,412           |
| \$41.6m       | 853.18            | \$48,758                       | -633.83           | \$65,632           | 816.10            | \$50,974           | -613.81           | \$67,774               | 933.88            | \$44,545                 | -182.41           | \$228,061              | 1205.34           | \$34,513           | -444.72         | \$93,541           |
| \$41.7m       | 855.70            | \$48,732                       | -635.12           | \$65,657           | 818.49            | \$50,947           | -615.12           | \$67,792               | 936.30            | \$44,537                 | -184.13           | \$226,466              | 1207.38           | \$34,538           | -446.09         | \$93,479           |
| \$41.8m       | 858.21            | \$48,706                       | -636.40           | \$65.682           | 820.89            | \$50,920           | -616.43           | \$67.810               | 938.52            | \$44,538                 | -184.89           | \$226,082              | 1209.26           | \$34,567           | -446.55         | \$93,607           |
| \$41.9m       | 860.73            | \$48,680                       | -637.68           | \$65,707           | 823.28            | \$50,894           | -617.74           | \$67,828               | 940.95            | \$44,529                 | -186.47           | \$224,706              | 1211.31           | \$34,591           | -447.91         | \$93,545           |
| \$42.0m       | 863.25            | \$48,654                       | -638.96           | \$65,732           | 825.68            | \$50,867           | -619.05           | \$67,846               | 943.22            | \$44,528                 | -188.08           | \$223,315              | 1213.33           | \$34.616           | -448.37         | \$93.673           |
| \$42.1m       | 865.77            | \$48.627                       | -640.23           | \$65,757           | 828.08            | \$50.841           | -620.36           | \$67.864               | 945.45            | \$44,529                 | -188.89           | \$222.884              | 1217.33           | \$34,584           | -449.73         | \$93.612           |
| \$42.2m       | 868.29            | \$48,601                       | -641.51           | \$65,782           | 830.48            | \$50,814           | -621.67           | \$67,882               | 947.68            | \$44,530                 | -190.61           | \$221,394              | 1219.22           | \$34,612           | -450.18         | \$93,739           |
| \$42.3m       | 870.83            | \$48,574                       | -642.79           | \$65,807           | 832.88            | \$50,787           | -622.98           | \$67,900               | 950.12            | \$44,521                 | -191.08           | \$221.377              | 1221.28           | \$34,636           | -451.54         | \$93.678           |
| \$42.4m       | 873 37            | \$48 548                       | -644.06           | \$65,832           | 835.29            | \$50,761           | -624 29           | \$67,918               | 952.36            | \$44 521                 | -192.65           | \$220.087              | 1223 35           | \$34 659           | -452.00         | \$93,806           |
| \$42.5m       | 875.91            | \$48 521                       | -645.33           | \$65,852           | 837.70            | \$50,734           | -625 59           | \$67,936               | 954.65            | \$44 519                 | -194.26           | \$218,784              | 1225.33           | \$34 687           | -453 36         | \$93,745           |
| \$42.6m       | 878.45            | \$48 494                       | -646.61           | \$65,882           | 840.10            | \$50,708           | -626.90           | \$67,954               | 957.11            | \$44 509                 | -195.98           | \$217 374              | 1227.27           | \$34 711           | -453.81         | \$93,872           |
| \$42.0m       | 881.00            | \$48 468                       | -647.88           | \$65,907           | 842 51            | \$50,682           | -628.20           | \$67,972               | 959.36            | \$44 509                 | -196 73           | \$217,051              | 1229.35           | \$34 734           | -455.16         | \$93,812           |
| \$42.7m       | 883.55            | \$48 441                       | -649.15           | \$65,932           | 844 92            | \$50,655           | -629.51           | \$67,990               | 961.83            | \$44 498                 | -198.30           | \$215,835              | 1229.35           | \$34 761           | -455.62         | \$93,939           |
| \$42.0m       | 886.11            | \$48.414                       | -650.42           | \$65,952           | 847.34            | \$50,629           | -630.81           | \$68,008               | 964.09            | \$44 498                 | -199.11           | \$215,655              | 1233.34           | \$34 784           | -456.97         | \$93,879           |
| \$43.0m       | 888.67            | \$48.387                       | 651.60            | \$65,983           | 840.76            | \$50,603           | 632.11            | \$68,000               | 966.40            | \$11.105                 | 200.68            | \$214,275              | 1235.34           | \$34,811           | 457.42          | \$94,005           |
| \$43.0m       | 801.23            | \$48.360                       | 652.05            | \$66,008           | 852.17            | \$50,003           | 633.42            | \$68.044               | 968.67            | \$11.101                 | 202.28            | \$214,275              | 1235.25           | \$34,811           | 457.87          | \$94,005           |
| \$43.7m       | 893.80            | \$48 333                       | -654.22           | \$66,033           | 854 59            | \$50,577           | -634 72           | \$68,044               | 971.15            | \$44 483                 | -202.28           | \$213,074              | 1237.29           | \$34,854           | -459.22         | \$94,072           |
| \$43.2m       | 896.37            | \$48.306                       | 655.49            | \$66,055           | 857.01            | \$50,531           | 636.02            | \$68,002               | 073.43            | \$44,482                 | 203.49            | \$212,000              | 1241 30           | \$34,850           | 459.67          | \$94,072           |
| \$43.5m       | 890.57            | \$48,300                       | 656 75            | \$66,093           | 850.42            | \$50,525           | 627.22            | \$68,080               | 075.76            | \$44,432                 | 205.06            | \$212,787              | 1241.30           | \$24,004           | 461.02          | \$04,137           |
| \$43.5m       | 001.52            | \$48,273                       | 658.01            | \$66,085           | 861.85            | \$50,472           | 629.62            | \$68,098               | 975.70            | \$44,478                 | 205.86            | \$211,050              | 1245.41           | \$24,020           | 461.02          | \$94,139           |
| \$43.5m       | 901.32            | \$48,232                       | -038.01           | \$66,124           | 864.28            | \$50,473           | -038.02           | \$69.124               | 978.20            | \$44,407                 | -203.80           | \$210,307              | 1243.33           | \$34,930           | 462.82          | \$94,204           |
| \$43.0m       | 904.11            | \$40,224                       | -039.27           | \$66,154           | 864.28            | \$50,447           | -039.91           | \$60,134               | 980.34            | \$44,403                 | -207.40           | \$210,103              | 1247.39           | \$34,933           | -402.82         | \$94,203           |
| \$43.7m       | 906.70            | \$48,197                       | -000.53           | \$00,139           | 800./1            | \$50,421           | -041.21           | \$08,152               | 982.84            | \$44,403                 | -209.02           | \$209,071              | 1249.51           | \$34,974           | -403.27         | \$94,330           |
| \$43.8m       | 909.29            | \$46,109                       | -001.79           | \$00,184           | 809.14            | \$30,393           | -042.31           | \$08,170               | 963.33            | \$44,431                 | -209.82           | \$208,747              | 1252.43           | \$34,971           | -404.01         | \$94,272           |
| \$43.9m       | 911.89            | \$48,142                       | -003.03           | \$00,209           | 8/1.3/            | \$50,309           | -043.81           | \$08,188               | 987.70            | \$44,44/                 | -210.57           | \$208,481              | 1259.40           | \$34,997           | -403.00         | \$94,396           |
| 544.0m        | 914.49            | \$48,114                       | -004.30           | \$00,235           | 8/4.00            | \$50,343           | -045.10           | \$08,207               | 990.01            | \$44,444                 | -212.15           | \$207,420              | 1258.49           | \$34,962           | -400.40         | \$94,339           |
| \$44.1m       | 917.09            | \$48,087                       | -005.56           | \$66,260           | 8/6.44            | \$50,317           | -646.59           | \$68,225               | 992.53            | \$44,432                 | -213.72           | \$206,344              | 1260.62           | \$34,983           | -466.85         | \$94,463           |
| \$44.2m       | 919.69            | \$48,060                       | -000.81           | \$66,286           | 8/8.8/            | \$50,292           | -04/.69           | \$68,243               | 994.85            | \$44,429                 | -214.18           | \$206,366              | 1262.70           | \$35,004           | -468.19         | \$94,406           |
| \$44.3m       | 922.30            | \$48,032                       | -668.06           | \$66,311           | 881.31            | \$50,266           | -648.98           | \$68,261               | 997.22            | \$44,424                 | -215.30           | \$205,760              | 1264.64           | \$35,030           | -468.64         | \$94,530           |
| \$44.4m       | 924.91            | \$48,005                       | -669.31           | \$66,337           | 883.75            | \$50,240           | -650.27           | \$68,279               | 999.76            | \$44,411                 | -216.86           | \$204,744              | 1266.77           | \$35,050           | -469.97         | \$94,473           |
| \$44.5m       | 927.53            | \$47,977                       | -670.56           | \$66,362           | 886.19            | \$50,215           | -651.56           | \$68,297               | 1002.08           | \$44,407                 | -217.66           | \$204,450              | 1268.72           | \$35,075           | -4/0.42         | \$94,596           |
| \$44.6m       | 930.16            | \$47,949                       | -671.81           | \$66,388           | 888.64            | \$50,189           | -652.85           | \$68,316               | 1004.42           | \$44,404                 | -219.24           | \$203,426              | 1270.86           | \$35,094           | -471.76         | \$94,540           |
| \$44.7m       | 932.78            | \$47,921                       | -673.06           | \$66,413           | 891.08            | \$50,164           | -654.14           | \$68,334               | 1006.98           | \$44,390                 | -219.99           | \$203,193              | 1272.95           | \$35,115           | -472.20         | \$94,663           |

|                      |                    |                              |                    | 2                        | 1                  |                        |                    |                      |                    |                          |                    | 2                        | 2                  |                    |                    |                      |
|----------------------|--------------------|------------------------------|--------------------|--------------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|                      | Ag                 | ent has goo                  | d informati        | on                       | A                  | ent has poo            | or informati       | on                   | A                  | gent has go              | od informa         | tion                     | A                  | gent has not       | or informati       | ion                  |
|                      | Net Inv            | estment                      | Net Disin          | vestment                 | Net Inv            | estment                | Net Disi           | nvestment            | Net Inv            | estment                  | Net Dis            | nvestment                | Net Im             | estment            | Net Disi           | nvestment            |
| <b>Budget</b> impact | $E(\Lambda E)^{a}$ | $E(\lambda_{\pm}^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| S44 8m               | 935.41             | \$47.893                     | -674 30            | \$66.439                 | 893 53             | \$50.138               | -655.43            | \$68 352             | 1009.37            | \$44 384                 | -221 54            | \$202.220                | 1274 91            | \$35,140           | -473 54            | \$94.608             |
| \$44.0m              | 938.05             | \$47,875                     | -675 55            | \$66,465                 | 895.98             | \$50,130               | -656 72            | \$68,370             | 1011 71            | \$44 380                 | -221.34            | \$202,220                | 1277.06            | \$35,159           | -473.98            | \$94,000             |
| \$45.0m              | 938.05             | \$47,803                     | 676.70             | \$66,400                 | 808.43             | \$50,087               | 658.01             | \$68.388             | 1011.71            | \$44,366                 | 2223.09            | \$201,202                | 1277.00            | \$35,139           | 475.31             | \$94,730             |
| \$45.0m              | 042.22             | \$47,857                     | 678.04             | \$66,516                 | 000.80             | \$50,087               | 650.20             | \$68,388             | 1014.28            | \$44,300                 | 225.12             | \$200,290                | 12/9.05            | \$35,105           | 475.76             | \$04 707             |
| \$45.1m              | 945.55             | \$47,809                     | 670.28             | \$66,541                 | 900.89             | \$50,002               | -039.30            | \$68,400             | 1010.04            | \$44,302                 | 225.03             | \$200,323                | 1201.19            | \$35,202           | 476.20             | \$94,797             |
| \$45.2m              | 048.63             | \$47,752                     | -079.28            | \$66 567                 | 905.54             | \$50,030               | -000.38            | \$68,424             | 1019.00            | \$44,357                 | -225.95            | \$100,000                | 1285.30            | \$35,222           | 477.52             | \$04,910             |
| \$45.5m              | 051.20             | \$47,735                     | 681.76             | \$66,507                 | 905.80             | \$10,011               | -001.07            | \$68,443             | 1021.42            | \$44,330                 | -220.07            | \$109,047                | 1285.28            | \$35,245           | 477.07             | \$04.085             |
| \$45.4III<br>\$45.5m | 951.29             | \$47,725                     | -081.70            | \$66,592                 | 908.20             | \$49,980               | -003.13            | \$68,401             | 1024.01            | \$44,330                 | 220.22             | \$198,930                | 1207.43            | \$35,204           | -4//.9/            | \$94,965             |
| \$45.5III<br>\$45.6m | 955.90             | \$47,090                     | -085.00            | \$00,018                 | 910.72             | \$49,900               | -004.44            | \$08,479             | 1020.38            | \$44,331                 | -229.80            | \$197,999                | 1209.45            | \$35,207           | -4/9.30            | \$94,931             |
| \$45.6m              | 950.02             | \$47,008                     | -084.24            | \$00,044                 | 913.19             | \$49,935               | -005.72            | \$08,497             | 1028.99            | \$44,310                 | -231.34            | \$197,109                | 1291.01            | \$35,305           | -4/9./4            | \$95,051             |
| \$45./m              | 939.30             | \$47,039                     | -083.47            | \$00,009                 | 913.03             | \$49,910               | -007.00            | \$08,515             | 1022.91            | \$44,510                 | -232.14            | \$190,804                | 1293.83            | \$35,207           | -461.07            | \$94,998             |
| \$45.0III<br>£45.0m  | 961.97             | \$47,011                     | -080.71            | \$00,093                 | 918.13             | \$49,884               | -008.29            | \$08,333             | 1035.81            | \$44,302                 | -232.00            | \$190,009                | 1297.97            | \$35,280           | -461.31            | \$95,118             |
| \$45.9m              | 964.64             | \$47,582                     | -08/.94            | \$00,721                 | 920.60             | \$49,859               | -009.57            | \$08,332             | 1030.20            | \$44,290                 | -234.42            | \$195,802                | 1299.90            | \$35,309           | -482.85            | \$95,065             |
| \$46.0m              | 967.33             | \$47,554                     | -689.17            | \$66,747                 | 923.07             | \$49,834               | -0/0.85            | \$68,570             | 1038.83            | \$44,281                 | -234.88            | \$195,847                | 1302.15            | \$35,320           | -483.27            | \$95,185             |
| \$46.1m              | 970.02             | \$47,525                     | -690.40            | \$66,772                 | 925.54             | \$49,809               | -6/2.13            | \$68,588             | 1041.23            | \$44,274                 | -236.45            | \$194,966                | 1304.15            | \$35,349           | -484.59            | \$95,132             |
| \$46.2m              | 972.71             | \$47,496                     | -691.63            | \$66,798                 | 928.02             | \$49,783               | -0/3.41            | \$08,000             | 1045.87            | \$44,258                 | -237.23            | \$194,/35                | 1306.35            | \$35,300           | -485.05            | \$95,252             |
| \$46.3m              | 9/5.41             | \$47,467                     | -692.86            | \$66,824                 | 930.50             | \$49,758               | -6/4.69            | \$68,624             | 1046.33            | \$44,250                 | -238.78            | \$193,899                | 1308.50            | \$35,384           | -486.35            | \$95,199             |
| \$46.4m              | 9/8.11             | \$47,438                     | -694.09            | \$66,850                 | 932.98             | \$49,733               | -6/5.96            | \$68,643             | 1048.75            | \$44,243                 | -240.35            | \$193,049                | 1310.71            | \$35,401           | -486.79            | \$95,318             |
| \$46.5m              | 980.81             | \$47,410                     | -695.32            | \$66,876                 | 935.47             | \$49,708               | -677.24            | \$68,661             | 1051.18            | \$44,236                 | -241.09            | \$192,874                | 1312.72            | \$35,423           | -488.11            | \$95,266             |
| \$46.6m              | 983.52             | \$47,381                     | -696.54            | \$66,902                 | 937.95             | \$49,683               | -6/8.52            | \$68,679             | 1053.84            | \$44,219                 | -242.63            | \$192,065                | 1314.94            | \$35,439           | -488.55            | \$95,385             |
| \$46.7m              | 986.23             | \$47,352                     | -697.77            | \$66,928                 | 940.44             | \$49,658               | -6/9.79            | \$68,697             | 1056.33            | \$44,210                 | -243.42            | \$191,852                | 1316.96            | \$35,460           | -489.86            | \$95,333             |
| \$46.8m              | 988.95             | \$47,323                     | -698.99            | \$66,953                 | 942.93             | \$49,633               | -681.07            | \$68,715             | 1058.76            | \$44,202                 | -244.52            | \$191,397                | 1319.14            | \$35,478           | -490.30            | \$95,452             |
| \$46.9m              | 991.67             | \$47,294                     | -700.22            | \$66,979                 | 945.42             | \$49,608               | -682.35            | \$68,734             | 1061.44            | \$44,185                 | -244.97            | \$191,450                | 1321.36            | \$35,494           | -490.74            | \$95,571             |
| \$47.0m              | 994.40             | \$47,265                     | -701.44            | \$67,005                 | 947.91             | \$49,583               | -683.62            | \$68,752             | 1063.89            | \$44,177                 | -246.54            | \$190,640                | 1328.87            | \$35,368           | -492.05            | \$95,519             |
| \$47.1m              | 997.13             | \$47,235                     | -702.66            | \$67,031                 | 950.41             | \$49,558               | -684.89            | \$68,770             | 1065.65            | \$44,198                 | -248.07            | \$189,865                | 1330.91            | \$35,389           | -492.49            | \$95,637             |
| \$47.2m              | 999.87             | \$47,206                     | -703.89            | \$67,056                 | 952.91             | \$49,533               | -686.17            | \$68,788             | 1068.35            | \$44,180                 | -248.80            | \$189,707                | 1333.14            | \$35,405           | -493.80            | \$95,586             |
| \$47.3m              | 1002.61            | \$47,177                     | -705.11            | \$67,082                 | 955.41             | \$49,508               | -687.44            | \$68,806             | 1070.81            | \$44,172                 | -250.34            | \$188,947                | 1335.19            | \$35,426           | -494.23            | \$95,704             |
| \$47.4m              | 1005.35            | \$47,148                     | -706.33            | \$67,108                 | 957.91             | \$49,483               | -688.71            | \$68,825             | 1073.32            | \$44,162                 | -251.12            | \$188,751                | 1339.54            | \$35,385           | -495.54            | \$95,653             |
| \$47.5m              | 1008.10            | \$47,118                     | -707.55            | \$67,134                 | 960.41             | \$49,458               | -689.98            | \$68,843             | 1075.80            | \$44,153                 | -252.69            | \$187,981                | 1341.74            | \$35,402           | -495.29            | \$95,904             |
| \$47.6m              | 1010.85            | \$47,089                     | -708.76            | \$67,159                 | 962.92             | \$49,433               | -691.25            | \$68,861             | 1078.51            | \$44,135                 | -254.21            | \$187,244                | 1343.98            | \$35,417           | -495.73            | \$96,021             |
| \$47.7m              | 1013.60            | \$47,060                     | -709.98            | \$67,185                 | 965.43             | \$49,408               | -692.52            | \$68,879             | 1080.99            | \$44,126                 | -254.94            | \$187,100                | 1346.04            | \$35,437           | -497.03            | \$95,970             |
| \$47.8m              | 1016.37            | \$47,030                     | -711.19            | \$67,211                 | 967.94             | \$49,383               | -693.78            | \$68,897             | 1083.54            | \$44,115                 | -255.40            | \$187,160                | 1348.29            | \$35,452           | -497.47            | \$96,087             |
| \$47.9m              | 1019.14            | \$47,000                     | -712.41            | \$67,237                 | 970.46             | \$49,358               | -695.05            | \$68,916             | 1086.27            | \$44,096                 | -256.95            | \$186,415                | 1350.36            | \$35,472           | -498.77            | \$96,036             |
| \$48.0m              | 1021.92            | \$46,971                     | -713.62            | \$67,263                 | 972.97             | \$49,333               | -696.32            | \$68,934             | 1088.77            | \$44,087                 | -258.48            | \$185,702                | 1352.62            | \$35,487           | -499.21            | \$96,153             |
| \$48.1m              | 1024.69            | \$46,941                     | -714.83            | \$67,289                 | 975.49             | \$49,309               | -697.58            | \$68,952             | 1091.28            | \$44,077                 | -259.27            | \$185,524                | 1354.85            | \$35,502           | -500.51            | \$96,102             |
| \$48.2m              | 1027.47            | \$46,911                     | -716.04            | \$67,314                 | 978.01             | \$49,284               | -698.85            | \$68,970             | 1094.03            | \$44,057                 | -260.79            | \$184,825                | 1356.92            | \$35,522           | -500.94            | \$96,219             |
| \$48.3m              | 1030.26            | \$46,882                     | -717.25            | \$67,340                 | 980.53             | \$49,259               | -700.11            | \$68,989             | 1096.60            | \$44,045                 | -262.34            | \$184,112                | 1359.20            | \$35,536           | -502.24            | \$96,169             |
| \$48.4m              | 1033.05            | \$46,851                     | -718.46            | \$67,366                 | 983.06             | \$49,234               | -701.38            | \$69,007             | 1099.13            | \$44,035                 | -263.07            | \$183,982                | 1363.96            | \$35,485           | -502.68            | \$96,285             |
| \$48.5m              | 1035.85            | \$46,821                     | -719.67            | \$67,392                 | 985.59             | \$49,209               | -702.64            | \$69,025             | 1102.50            | \$43,991                 | -263.85            | \$183,815                | 1366.05            | \$35,504           | -503.11            | \$96,401             |
| \$48.6m              | 1038.65            | \$46,792                     | -720.87            | \$67,418                 | 988.12             | \$49,184               | -703.90            | \$69,044             | 1105.88            | \$43,947                 | -265.37            | \$183,139                | 1368.34            | \$35,517           | -504.41            | \$96,351             |
| \$48.7m              | 1041.45            | \$46,762                     | -722.08            | \$67,444                 | 990.65             | \$49,160               | -705.16            | \$69,062             | 1108.42            | \$43,936                 | -265.82            | \$183,205                | 1370.58            | \$35,532           | -505.70            | \$96,302             |
| \$48.8m              | 1044.26            | \$46,731                     | -723.28            | \$67,470                 | 993.19             | \$49,135               | -706.43            | \$69,080             | 1111.80            | \$43,893                 | -267.37            | \$182,517                | 1372.88            | \$35,546           | -507.00            | \$96,253             |
| \$48.9m              | 1047.08            | \$46,701                     | -724.48            | \$67,496                 | 995.73             | \$49,110               | -707.69            | \$69,098             | 1114.58            | \$43,873                 | -268.89            | \$181,859                | 1374.98            | \$35,564           | -508.29            | \$96,205             |
| \$49.0m              | 1049.90            | \$46,671                     | -725.69            | \$67,522                 | 998.26             | \$49,085               | -708.95            | \$69,117             | 1117.97            | \$43,830                 | -269.61            | \$181,741                | 1377.29            | \$35,577           | -509.58            | \$96,158             |
| \$49.1m              | 1052.72            | \$46,641                     | -726.89            | \$67,548                 | 1000.81            | \$49,061               | -710.21            | \$69,135             | 1121.36            | \$43,786                 | -270.40            | \$181,586                | 1379.41            | \$35,595           | -510.87            | \$96,111             |
| \$49.2m              | 1055.56            | \$46,611                     | -728.09            | \$67,574                 | 1003.35            | \$49,036               | -711.46            | \$69,153             | 1124.76            | \$43,743                 | -271.91            | \$180,942                | 1383.89            | \$35,552           | -512.15            | \$96,065             |
| \$49.3m              | 1058.39            | \$46,580                     | -729.29            | \$67,600                 | 1005.89            | \$49,011               | -712.72            | \$69,171             | 1127.30            | \$43,733                 | -273.46            | \$180,285                | 1386.16            | \$35,566           | -513.44            | \$96,019             |
| \$49.4m              | 1061.23            | \$46,550                     | -730.48            | \$67,626                 | 1008.44            | \$48,987               | -713.98            | \$69,190             | 1130.71            | \$43,690                 | -274.54            | \$179,937                | 1388.48            | \$35,578           | -514.72            | \$95,974             |
| \$49.5m              | 1064.08            | \$46,519                     | -731.68            | \$67,653                 | 1010.99            | \$48,962               | -715.24            | \$69,208             | 1134.11            | \$43,646                 | -276.05            | \$179,314                | 1390.61            | \$35,596           | -516.00            | \$95,930             |
| \$49.6m              | 1066.93            | \$46,489                     | -732.88            | \$67,679                 | 1013.54            | \$48,937               | -716.49            | \$69,226             | 1136.72            | \$43,634                 | -276.78            | \$179,207                | 1392.94            | \$35,608           | -517.28            | \$95,886             |
| \$49.7m              | 1069.79            | \$46,458                     | -734.07            | \$67,705                 | 1016.10            | \$48,913               | -717.75            | \$69,245             | 1140.13            | \$43,592                 | -277.22            | \$179,278                | 1395.08            | \$35,625           | -518.56            | \$95,843             |

|               |                                                                                                       |             |                    | λ                 | 1                    |                   |                    |                   |                               |                   |                    | λ                 | 2                             |                   |                    |           |
|---------------|-------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------|----------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-----------|
|               | Ag                                                                                                    | ent has goo | d informati        | ion               | Ag                   | ent has poo       | r informati        | on                | A                             | gent has go       | od informat        | ion               | A                             | gent has poo      | or informati       | on        |
|               | Net InvestmentNet Disinvestment $\Gamma(AE)^*$ $\Gamma(AE)^*$ $\Gamma(AE)^*$ $\Gamma(AE)^*$           |             |                    | ivestment         | Net Inv              | estment           | Net Disir          | ivestment         | Net Inv                       | estment           | Net Disi           | nvestment         | Net Inv                       | estment           | Net Disir          | ivestment |
| Budget impact | Net InvestmentNet Disinvestment $E(\Delta E)^a$ $E(\lambda_G^+)^b$ $E(\Delta E)^c$ $E(\lambda_G^-)^d$ |             | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathrm{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |           |
| \$49.8m       | 1072.66                                                                                               | \$46,427    | -735.27            | \$67,731          | 1018.65              | \$48,888          | -719.00            | \$69,263          | 1142.92                       | \$43,573          | -278.00            | \$179,136         | 1397.37                       | \$35,638          | -519.83            | \$95,801  |
| \$49.9m       | 1075.53                                                                                               | \$46,396    | -736.46            | \$67,757          | 1021.22              | \$48,863          | -720.25            | \$69,281          | 1146.34                       | \$43,530          | -279.54            | \$178,505         | 1399.72                       | \$35,650          | -521.10            | \$95,758  |
| \$50.0m       | 1078.39                                                                                               | \$46,365    | -737.65            | \$67,783          | 1023.78              | \$48,839          | -721.51            | \$69,299          | 1148.90                       | \$43,520          | -281.05            | \$177,903         | 1401.87                       | \$35,667          | -522.37            | \$95,717  |

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment; <sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

|                    |                   |                               |                   | 2                  | 3                 |                               |                   |                       |                   |                          |                   |                    | λ4                |                               |                   |                    |
|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|-----------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|
|                    | Α                 | gent has go                   | od informa        | tion               | A                 | gent has po                   | or informat       | ion                   | A                 | gent has good            | l informatio      | on                 | A                 | lgent has poo                 | r informatio      | n                  |
|                    | Net Inv           | estment                       | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disi          | nvestment             | Net In            | vestment                 | Net Disir         | ivestment          | Net In            | vestment                      | Net Disin         | vestment           |
| Budget impact      | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_p^-)^d$    | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_p^-)^d$ |
| \$0.1m             | 5.02              | \$19,920                      | 9.31              | -\$10,740          | 33.89             | \$2,951                       | 10.43             | -\$9,586              | -9.31             | -\$10,740                | -5.02             | \$19,920           | -10.43            | -\$9,586                      | -33.89            | \$2,951            |
| \$0.2m             | 9.77              | \$20,476                      | 18.50             | -\$10,810          | 53.80             | \$3,718                       | 20.65             | -\$9,686              | -18.50            | -\$10,810                | -9.77             | \$20,476           | -20.65            | -\$9,686                      | -53.80            | \$3,718            |
| \$0.3m             | 14.29             | \$20,989                      | 27.57             | -\$10,883          | 70.49             | \$4,256                       | 30.67             | -\$9,782              | -27.57            | -\$10,883                | -14.29            | \$20,989           | -30.67            | -\$9,782                      | -70.49            | \$4,256            |
| \$0.4m             | 18.63             | \$21,466                      | 36.51             | -\$10,957          | 85.40             | \$4,684                       | 40.50             | -\$9,876              | -36.51            | -\$10,957                | -18.63            | \$21,466           | -40.50            | -\$9,876                      | -85.40            | \$4,684            |
| \$0.5m             | 22.82             | \$21,914                      | 45.32             | -\$11,032          | 99.09             | \$5,046                       | 50.17             | -\$9,967              | -45.32            | -\$11,032                | -22.82            | \$21,914           | -50.17            | -\$9,967                      | -99.09            | \$5,046            |
| \$0.6m             | 26.86             | \$22,337                      | 54.01             | -\$11,110          | 111.90            | \$5,362                       | 59.67             | -\$10,055             | -54.01            | -\$11,110                | -26.86            | \$22,337           | -59.67            | -\$10,055                     | -111.90           | \$5,362            |
| \$0.7m             | 30.78             | \$22,738                      | 62.56             | -\$11,189          | 124.01            | \$5,645                       | 69.02             | -\$10,141             | -62.56            | -\$11,189                | -30.78            | \$22,738           | -69.02            | -\$10,141                     | -124.01           | \$5,645            |
| \$0.8m             | 34.60             | \$23,121                      | 70.98             | -\$11,270          | 135.56            | \$5,902                       | 78.24             | -\$10,225             | -70.98            | -\$11,270                | -34.60            | \$23,121           | -78.24            | -\$10,225                     | -135.56           | \$5,902            |
| \$0.9m             | 38.32             | \$23,486                      | 79.27             | -\$11,353          | 146.63            | \$6,138                       | 87.32             | -\$10,307             | -79.27            | -\$11,353                | -38.32            | \$23,486           | -87.32            | -\$10,307                     | -146.63           | \$6,138            |
| \$1.0m             | 41.95             | \$23,836                      | 87.42             | -\$11,439          | 157.30            | \$6,357                       | 96.27             | -\$10,387             | -87.42            | -\$11,439                | -41.95            | \$23,836           | -96.27            | -\$10,387                     | -157.30           | \$6,357            |
| \$1.1m             | 45.51             | \$24,173                      | 95.43             | -\$11,526          | 167.62            | \$6,562                       | 105.11            | -\$10,465             | -95.43            | -\$11,526                | -45.51            | \$24,173           | -105.11           | -\$10,465                     | -167.62           | \$6,562            |
| \$1.2m             | 48.98             | \$24,498                      | 103.30            | -\$11,616          | 177.63            | \$6,756                       | 113.83            | -\$10,542             | -103.30           | -\$11,616                | -48.98            | \$24,498           | -113.83           | -\$10,542                     | -177.63           | \$6,756            |
| \$1.3m             | 52.40             | \$24,811                      | 111.03            | -\$11,709          | 187.37            | \$6,938                       | 122.45            | -\$10,617             | -111.03           | -\$11,709                | -52.40            | \$24,811           | -122.45           | -\$10,617                     | -187.37           | \$6,938            |
| \$1.4m             | 55.74             | \$25,115                      | 118.61            | -\$11,804          | 196.86            | \$7,112                       | 130.97            | -\$10,690             | -118.61           | -\$11,804                | -55.74            | \$25,115           | -130.97           | -\$10,690                     | -196.86           | \$7,112            |
| \$1.5m             | 59.03             | \$25,409                      | 126.03            | -\$11,902          | 206.12            | \$7,277                       | 139.38            | -\$10,762             | -126.03           | -\$11,902                | -59.03            | \$25,409           | -139.38           | -\$10,762                     | -206.12           | \$7,277            |
| \$1.6m             | 62.27             | \$25,694                      | 133.31            | -\$12,002          | 215.18            | \$7,435                       | 147.71            | -\$10,832             | -133.31           | -\$12,002                | -62.27            | \$25,694           | -147.71           | -\$10,832                     | -215.18           | \$7,435            |
| \$1.7m             | 65.46             | \$25,972                      | 140.43            | -\$12,106          | 224.06            | \$7,587                       | 155.94            | -\$10,901             | -140.43           | -\$12,106                | -65.46            | \$25,972           | -155.94           | -\$10,901                     | -224.06           | \$7,587            |
| \$1.8m             | 68.59             | \$26,242                      | 147.38            | -\$12,213          | 232.76            | \$7,733                       | 164.09            | -\$10,969             | -147.38           | -\$12,213                | -68.59            | \$26,242           | -164.09           | -\$10,969                     | -232.76           | \$7,733            |
| \$1.9m             | 71.68             | \$26,505                      | 154.18            | -\$12,323          | 241.30            | \$7,874                       | 172.16            | -\$11,036             | -154.18           | -\$12,323                | -71.68            | \$26,505           | -172.16           | -\$11,036                     | -241.30           | \$7,874            |
| \$2.0m             | 74.73             | \$26,762                      | 160.81            | -\$12,437          | 249.70            | \$8,010                       | 180.15            | -\$11,102             | -160.81           | -\$12,437                | -74.73            | \$26,762           | -180.15           | -\$11,102                     | -249.70           | \$8,010            |
| \$2.1m             | 77.74             | \$27,012                      | 167.26            | -\$12,555          | 257.95            | \$8,141                       | 188.07            | -\$11,166             | -167.26           | -\$12,555                | -77.74            | \$27,012           | -188.07           | -\$11,166                     | -257.95           | \$8,141            |
| \$2.2m             | 80.71             | \$27,257                      | 173.54            | -\$12,677          | 266.08            | \$8,268                       | 195.91            | -\$11,230             | -173.54           | -\$12,677                | -80.71            | \$27,257           | -195.91           | -\$11,230                     | -266.08           | \$8,268            |
| \$2.3m             | 83.65             | \$27,497                      | 179.63            | -\$12,804          | 274.08            | \$8,392                       | 203.68            | -\$11,292             | -179.63           | -\$12,804                | -83.65            | \$27,497           | -203.68           | -\$11,292                     | -274.08           | \$8,392            |
| \$2.4m             | 86.55             | \$27,731                      | 185.54            | -\$12,935          | 281.97            | \$8,512                       | 211.38            | -\$11,354             | -185.54           | -\$12,935                | -86.55            | \$27,731           | -211.38           | -\$11,354                     | -281.97           | \$8,512            |
| \$2.5m             | 89.41             | \$27,960                      | 191.25            | -\$13,072          | 289.75            | \$8,628                       | 219.02            | -\$11,415             | -191.25           | -\$13,072                | -89.41            | \$27,960           | -219.02           | -\$11,415                     | -289.75           | \$8,628            |
| \$2.6m             | 92.25             | \$28,185                      | 196.77            | -\$13,214          | 297.43            | \$8,742                       | 226.59            | -\$11,474             | -196.77           | -\$13,214                | -92.25            | \$28,185           | -226.59           | -\$11,474                     | -297.43           | \$8,742            |
| \$2.7m             | 95.05             | \$28,406                      | 202.07            | -\$13,361          | 305.00            | \$8,852                       | 234.10            | -\$11,533             | -202.07           | -\$13,361                | -95.05            | \$28,406           | -234.10           | -\$11,533                     | -305.00           | \$8,852            |
| \$2.8m             | 97.83             | \$28,622                      | 207.16            | -\$13,516          | 312.49            | \$8,960                       | 241.56            | -\$11,591             | -207.16           | -\$13,516                | -97.83            | \$28,622           | -241.56           | -\$11,591                     | -312.49           | \$8,960            |
| \$2.9m             | 100.37            | \$20,033                      | 212.02            | -\$13,078          | 227.20            | \$9,000                       | 246.93            | \$11,049              | -212.02           | \$12,076                 | -100.37           | \$20,033           | -246.93           | -\$11,049<br>\$11,705         | -319.89           | \$9,000            |
| \$3.0m             | 105.29            | \$29,045                      | 210.03            | -\$13,647          | 224.42            | \$9,109                       | 250.29            | -\$11,703<br>\$11,761 | -210.03           | -\$13,647                | -105.29           | \$29,045           | -230.29           | -\$11,703<br>\$11,761         | -327.20           | \$9,109            |
| \$3.1111<br>\$2.2m | 103.99            | \$29,249                      | 221.02            | \$14,020           | 241.59            | \$9,270                       | 203.38            | \$11,701              | -221.02           | \$14,020                 | -103.99           | \$29,249           | -203.38           | \$11,701                      | 241.59            | \$9,270            |
| \$3.2m             | 111.30            | \$29,430                      | 223.13            | \$14,214           | 341.56            | \$9,308                       | 270.81            | \$11,810              | -223.13           | \$14,214                 | -108.00           | \$29,430           | 277.00            | \$11,810                      | -341.38           | \$9,308            |
| \$3.5m             | 113.03            | \$29,049                      | 228.90            | \$14,415           | 355.67            | \$9,403                       | 285.12            | \$11,075              | 2228.90           | \$14,415                 | 113.03            | \$29,049           | 285.12            | \$11,071                      | 355.67            | \$9,405            |
| \$3.4m             | 116.53            | \$30,036                      | 232.46            | -\$14,025          | 362.61            | \$9,559                       | 203.12            | -\$11,923             | -235.66           | -\$14,852                | -116.53           | \$30.036           | -203.12           | -\$11,923                     | -362.61           | \$9,559            |
| \$3.6m             | 119.11            | \$30,225                      | 238.46            | -\$15,097          | 369.49            | \$9,743                       | 299.24            | -\$12,030             | -238.46           | -\$15,097                | -119.11           | \$30,225           | -299.24           | -\$12,030                     | -369.49           | \$9,743            |
| \$3.7m             | 121.66            | \$30,412                      | 240.83            | -\$15,363          | 376.30            | \$9,833                       | 306.23            | -\$12,030             | -240.83           | -\$15,363                | -121.66           | \$30,412           | -306.23           | -\$12,050                     | -376.30           | \$9,833            |
| \$3.8m             | 124.20            | \$30,595                      | 242.66            | -\$15,660          | 383.05            | \$9,920                       | 313.18            | -\$12,002             | -242.66           | -\$15,660                | -124.20           | \$30,595           | -313.18           | -\$12,002                     | -383.05           | \$9,920            |
| \$3.9m             | 126.72            | \$30,777                      | 243.66            | -\$16,006          | 389.74            | \$10,007                      | 320.08            | -\$12,184             | -243.66           | -\$16,006                | -126.72           | \$30,777           | -320.08           | -\$12,134                     | -389.74           | \$10,007           |
| \$4.0m             | 129.22            | \$30,955                      | 243.13            | -\$16,452          | 394.86            | \$10,130                      | 326.94            | -\$12,235             | -243.13           | -\$16,452                | -129.22           | \$30,955           | -326.94           | -\$12,235                     | -394.86           | \$10,130           |
| \$4.1m             | 131.70            | \$31,132                      | 242.59            | -\$16,901          | 399.67            | \$10,259                      | 333.76            | -\$12,284             | -242.59           | -\$16,901                | -131.70           | \$31,132           | -333.76           | -\$12,284                     | -399.67           | \$10,259           |
| \$4.2m             | 134.16            | \$31,305                      | 242.05            | -\$17.352          | 404.21            | \$10.391                      | 340.54            | -\$12.333             | -242.05           | -\$17.352                | -134.16           | \$31,305           | -340.54           | -\$12.333                     | -404.21           | \$10.391           |
| \$4.3m             | 136.61            | \$31,477                      | 241.50            | -\$17.805          | 408.54            | \$10.525                      | 347.28            | -\$12,382             | -241.50           | -\$17,805                | -136.61           | \$31,477           | -347.28           | -\$12,382                     | -408.54           | \$10.525           |
| \$4.4m             | 139.04            | \$31,647                      | 240.95            | -\$18,261          | 412.67            | \$10,662                      | 353.98            | -\$12,430             | -240.95           | -\$18,261                | -139.04           | \$31,647           | -353.98           | -\$12,430                     | -412.67           | \$10,662           |
| \$4.5m             | 141.45            | \$31,814                      | 240.40            | -\$18,719          | 416.64            | \$10,801                      | 360.64            | -\$12,478             | -240.40           | -\$18,719                | -141.45           | \$31,814           | -360.64           | -\$12,478                     | -416.64           | \$10,801           |
| \$4.6m             | 143.84            | \$31,979                      | 239.84            | -\$19,179          | 420.45            | \$10,941                      | 367.27            | -\$12,525             | -239.84           | -\$19,179                | -143.84           | \$31,979           | -367.27           | -\$12,525                     | -420.45           | \$10,941           |
| \$4.7m             | 146.22            | \$32,142                      | 239.28            | -\$19,642          | 424.13            | \$11,082                      | 373.86            | -\$12.572             | -239.28           | -\$19,642                | -146.22           | \$32,142           | -373.86           | -\$12,572                     | -424.13           | \$11,082           |

## Table A2.3.2: Optimal numerical thresholds (threshold sets $\lambda 3$ and $\lambda 4$ )

|                    |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                          |                   | j.                 | 14                |                       |                   |                          |
|--------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|-----------------------|-------------------|--------------------------|
|                    | А                 | gent has go              | od informat       | tion               | A                 | gent has po              | or informat       | ion                      | A                 | gent has good            | d informatio      | n                  | A                 | gent has pool         | r informatio      | n                        |
|                    | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | nvestment                | Net In            | vestment                 | Net Disir         | ivestment          | Net Inv           | vestment              | Net Disin         | vestment                 |
| Budget impact      | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^b$    | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$4.8m             | 148 59            | \$32,304                 | 238.72            | -\$20,108          | 427.69            | \$11 223                 | 380.41            | -\$12.618                | -238 72           | -\$20,108                | -148 59           | \$32,304           | -380.41           | -\$12.618             | -427.69           | \$11 223                 |
| \$4.9m             | 150.94            | \$32,463                 | 238.15            | -\$20,576          | 431 14            | \$11,365                 | 386.93            | -\$12,610                | -238.15           | -\$20,576                | -150.94           | \$32,663           | -386.93           | -\$12,664             | -431.14           | \$11,365                 |
| \$5.0m             | 153.28            | \$32,621                 | 237 57            | -\$21,046          | 434 49            | \$11,508                 | 393.41            | -\$12,001                | -237 57           | -\$21,046                | -153.28           | \$32,621           | -393.41           | -\$12,709             | -434 49           | \$11,505                 |
| \$5.0m             | 155.20            | \$32,021                 | 236.99            | -\$21,520          | 437.78            | \$11,500                 | 399.87            | -\$12,754                | -236.99           | -\$21,510                | -155.60           | \$32,021           | -399.87           | -\$12,754             | _437.78           | \$11,500                 |
| \$5.1m             | 157.90            | \$32,777                 | 236.41            | -\$21,520          | 441.04            | \$11,000                 | 406.29            | -\$12,799                | -236.41           | -\$21,920                | -157.90           | \$32,777           | -406.29           | -\$12,794             | -437.78           | \$11,000                 |
| \$5.2m             | 160.20            | \$33,084                 | 235.82            | -\$22,475          | 444.21            | \$11,790                 | 406.47            | -\$13,039                | -235.82           | -\$22,475                | -160.20           | \$33.084           | -406.47           | -\$13,039             | -444 21           | \$11,730                 |
| \$5.5m             | 162.48            | \$33,004                 | 235.02            | -\$22,473          | 447.21            | \$12.071                 | 406.57            | -\$13,057                | -235.02           | -\$22,475                | -162.48           | \$33,004           | -406.57           | -\$13,037             | -447.37           | \$12,071                 |
| \$5.4m             | 164.75            | \$22,294                 | 233.22            | \$22,937           | 450.47            | \$12,071                 | 406.07            | \$12,202                 | -233.22           | \$22,957                 | -102.48           | \$33,233           | 406.03            | \$12,546              | 450.47            | \$12,071                 |
| \$5.5m             | 167.00            | \$22,527                 | 234.02            | \$22,020           | 452.57            | \$12,209                 | 400.03            | \$12,911                 | 234.02            | \$23,442                 | -104.75           | \$22,527           | 405.40            | \$12,911              | 453.57            | \$12,209                 |
| \$5.0m             | 160.25            | \$33,332                 | 234.02            | \$23,930           | 455.57            | \$12,347                 | 403.49            | \$14.076                 | -234.02           | \$23,930                 | -107.00           | \$33,332           | 404.05            | \$14.076              | 455.57            | \$12,347                 |
| \$5.7m             | 171.49            | \$33,078                 | 233.41            | \$24,421           | 450.62            | \$12,405                 | 404.95            | \$14,242                 | 232.70            | \$24,421                 | -109.23           | \$33,078           | 404.93            | \$14,070              | 450.66            | \$12,405                 |
| \$5.6m             | 172.70            | \$33,823                 | 232.79            | \$25,412           | 459.00            | \$12,010                 | 404.40            | \$14,542                 | -232.79           | \$25,412                 | -1/1.40           | \$33,623           | 402.86            | \$14,342              | -439.00           | \$12,018                 |
| \$5.9III<br>\$6.0m | 175.01            | \$33,907                 | 232.17            | -\$25,415          | 402.08            | \$12,732                 | 403.80            | \$14,009                 | -232.17           | -\$25,415                | -1/5./0           | \$33,907           | -405.80           | \$14,009              | -402.08           | \$12,732                 |
| \$0.0111<br>\$6.1m | 179.11            | \$34,109                 | 231.34            | -\$25,914          | 403.09            | \$12,004                 | 403.31            | -\$14,877                | -231.34           | -\$25,914                | -1/3.91           | \$34,109           | -403.31           | -\$14,677             | -403.09           | \$12,004                 |
| 50.1m              | 1/0.11            | \$34,249                 | 230.90            | \$26,026           | 408.00            | \$13,010                 | 402.70            | -\$15,145                | -230.90           | -\$20,418<br>\$26,026    | -1/8.11           | \$34,249           | -402.70           | -\$15,145<br>\$15,415 | 408.00            | \$13,010                 |
| \$6.2m             | 180.29            | \$34,389                 | 230.20            | -\$20,920          | 4/1.01            | \$13,140                 | 402.22            | -\$15,415                | -230.20           | -\$20,920                | -180.29           | \$34,389           | -402.22           | -\$15,415             | -4/1.01           | \$13,140                 |
| \$6.3m             | 182.47            | \$34,527                 | 229.01            | -\$27,437          | 4/4.30            | \$13,270                 | 401.00            | -\$15,085                | -229.01           | -\$27,437                | -182.47           | \$34,527           | -401.66           | -\$15,085             | -4/4.36           | \$13,276                 |
| \$6.4m             | 184.03            | \$34,004                 | 228.96            | -\$27,952          | 4//.48            | \$13,404                 | 401.11            | -\$15,956                | -228.96           | -\$27,952                | -184.63           | \$34,004           | -401.11           | -\$15,956             | -4//.48           | \$13,404                 |
| \$6.5m             | 180.78            | \$34,799                 | 228.30            | -\$28,472          | 480.37            | \$13,531                 | 400.56            | -\$16,227                | -228.30           | -\$28,472                | -186./8           | \$34,799           | -400.56           | -\$16,227             | -480.37           | \$13,531                 |
| \$6.6m             | 188.93            | \$34,934                 | 227.63            | -\$28,994          | 485.20            | \$13,657                 | 400.00            | -\$16,500                | -227.63           | -\$28,994                | -188.93           | \$34,934           | -400.00           | -\$16,500             | -483.20           | \$13,657                 |
| \$6.7m             | 191.06            | \$35,067                 | 226.95            | -\$29,521          | 486.11            | \$13,783                 | 399.45            | -\$16,//3                | -226.95           | -\$29,521                | -191.06           | \$35,067           | -399.45           | -\$16,//3             | -486.11           | \$13,783                 |
| \$6.8m             | 193.19            | \$35,199                 | 226.27            | -\$30,053          | 488.96            | \$13,907                 | 398.89            | -\$17,047                | -226.27           | -\$30,053                | -193.19           | \$35,199           | -398.89           | -\$17,047             | -488.96           | \$13,907                 |
| \$6.9m             | 195.30            | \$35,330                 | 225.58            | -\$30,588          | 491.79            | \$14,030                 | 398.33            | -\$17,322                | -225.58           | -\$30,588                | -195.30           | \$35,330           | -398.33           | -\$17,322             | -491.79           | \$14,030                 |
| \$7.0m             | 197.40            | \$35,460                 | 224.88            | -\$31,128          | 494.60            | \$14,153                 | 397.77            | -\$17,598                | -224.88           | -\$31,128                | -197.40           | \$35,460           | -397.77           | -\$17,598             | -494.60           | \$14,153                 |
| \$7.1m             | 199.50            | \$35,589                 | 224.17            | -\$31,673          | 497.38            | \$14,275                 | 397.20            | -\$17,875                | -224.17           | -\$31,673                | -199.50           | \$35,589           | -397.20           | -\$17,875             | -497.38           | \$14,275                 |
| \$7.2m             | 201.59            | \$35,717                 | 223.45            | -\$32,222          | 500.16            | \$14,396                 | 396.64            | -\$18,153                | -223.45           | -\$32,222                | -201.59           | \$35,717           | -396.64           | -\$18,153             | -500.16           | \$14,396                 |
| \$7.3m             | 203.66            | \$35,843                 | 222.72            | -\$32,776          | 502.93            | \$14,515                 | 396.07            | -\$18,431                | -222.72           | -\$32,776                | -203.66           | \$35,843           | -396.07           | -\$18,431             | -502.93           | \$14,515                 |
| \$7.4m             | 205.73            | \$35,969                 | 221.99            | -\$33,335          | 505.67            | \$14,634                 | 395.50            | -\$18,710                | -221.99           | -\$33,335                | -205.73           | \$35,969           | -395.50           | -\$18,710             | -505.67           | \$14,634                 |
| \$7.5m             | 207.79            | \$36,094                 | 221.24            | -\$33,900          | 508.40            | \$14,752                 | 394.93            | -\$18,991                | -221.24           | -\$33,900                | -207.79           | \$36,094           | -394.93           | -\$18,991             | -508.40           | \$14,752                 |
| \$7.6m             | 209.84            | \$36,218                 | 220.48            | -\$34,470          | 511.11            | \$14,870                 | 394.36            | -\$19,272                | -220.48           | -\$34,470                | -209.84           | \$36,218           | -394.36           | -\$19,272             | -511.11           | \$14,870                 |
| \$7.7m             | 211.88            | \$36,341                 | 219.72            | -\$35,045          | 513.81            | \$14,986                 | 393.79            | -\$19,554                | -219.72           | -\$35,045                | -211.88           | \$36,341           | -393.79           | -\$19,554             | -513.81           | \$14,986                 |
| \$7.8m             | 213.92            | \$36,462                 | 218.94            | -\$35,627          | 516.49            | \$15,102                 | 393.21            | -\$19,837                | -218.94           | -\$35,627                | -213.92           | \$36,462           | -393.21           | -\$19,837             | -516.49           | \$15,102                 |
| \$7.9m             | 215.95            | \$36,583                 | 218.15            | -\$36,214          | 519.16            | \$15,217                 | 392.63            | -\$20,121                | -218.15           | -\$36,214                | -215.95           | \$36,583           | -392.63           | -\$20,121             | -519.16           | \$15,217                 |
| \$8.0m             | 217.96            | \$36,703                 | 217.34            | -\$36,808          | 521.81            | \$15,331                 | 392.05            | -\$20,405                | -217.34           | -\$36,808                | -217.96           | \$36,703           | -392.05           | -\$20,405             | -521.81           | \$15,331                 |
| \$8.1m             | 219.97            | \$36,823                 | 216.53            | -\$37,409          | 524.46            | \$15,445                 | 391.47            | -\$20,691                | -216.53           | -\$37,409                | -219.97           | \$36,823           | -391.47           | -\$20,691             | -524.46           | \$15,445                 |
| \$8.2m             | 221.98            | \$36,941                 | 215.69            | -\$38,017          | 527.08            | \$15,557                 | 390.89            | -\$20,978                | -215.69           | -\$38,017                | -221.98           | \$36,941           | -390.89           | -\$20,978             | -527.08           | \$15,557                 |
| \$8.3m             | 223.97            | \$37,058                 | 214.85            | -\$38,632          | 529.70            | \$15,669                 | 390.30            | -\$21,265                | -214.85           | -\$38,632                | -223.97           | \$37,058           | -390.30           | -\$21,265             | -529.70           | \$15,669                 |
| \$8.4m             | 225.96            | \$37,175                 | 213.99            | -\$39,254          | 532.29            | \$15,781                 | 389.72            | -\$21,554                | -213.99           | -\$39,254                | -225.96           | \$37,175           | -389.72           | -\$21,554             | -532.29           | \$15,781                 |
| \$8.5m             | 227.94            | \$37,291                 | 213.13            | -\$39,882          | 534.88            | \$15,892                 | 389.13            | -\$21,844                | -213.13           | -\$39,882                | -227.94           | \$37,291           | -389.13           | -\$21,844             | -534.88           | \$15,892                 |
| \$8.6m             | 229.91            | \$37,406                 | 212.27            | -\$40,515          | 537.46            | \$16,001                 | 388.54            | -\$22,134                | -212.27           | -\$40,515                | -229.91           | \$37,406           | -388.54           | -\$22,134             | -537.46           | \$16,001                 |
| \$8.7m             | 231.88            | \$37,520                 | 211.40            | -\$41,154          | 540.02            | \$16,111                 | 387.94            | -\$22,426                | -211.40           | -\$41,154                | -231.88           | \$37,520           | -387.94           | -\$22,426             | -540.02           | \$16,111                 |
| \$8.8m             | 233.83            | \$37,634                 | 210.53            | -\$41,800          | 542.56            | \$16,220                 | 387.35            | -\$22,718                | -210.53           | -\$41,800                | -233.83           | \$37,634           | -387.35           | -\$22,718             | -542.56           | \$16,220                 |
| \$8.9m             | 235.79            | \$37,746                 | 209.65            | -\$42,452          | 545.09            | \$16,327                 | 386.75            | -\$23,012                | -209.65           | -\$42,452                | -235.79           | \$37,746           | -386.75           | -\$23,012             | -545.09           | \$16,327                 |
| \$9.0m             | 237.74            | \$37,857                 | 208.77            | -\$43,110          | 547.63            | \$16,435                 | 386.15            | -\$23,307                | -208.77           | -\$43,110                | -237.74           | \$37,857           | -386.15           | -\$23,307             | -547.63           | \$16,435                 |
| \$9.1m             | 239.69            | \$37,966                 | 207.89            | -\$43,774          | 550.14            | \$16,541                 | 385.55            | -\$23,603                | -207.89           | -\$43,774                | -239.69           | \$37,966           | -385.55           | -\$23,603             | -550.14           | \$16,541                 |
| \$9.2m             | 241.63            | \$38,074                 | 207.00            | -\$44,445          | 552.63            | \$16,648                 | 384.95            | -\$23,899                | -207.00           | -\$44,445                | -241.63           | \$38,074           | -384.95           | -\$23,899             | -552.63           | \$16,648                 |
| \$9.3m             | 243.58            | \$38,181                 | 206.10            | -\$45,123          | 555.12            | \$16,753                 | 384.34            | -\$24,197                | -206.10           | -\$45,123                | -243.58           | \$38,181           | -384.34           | -\$24,197             | -555.12           | \$16,753                 |
| \$9.4m             | 245.51            | \$38,287                 | 205.21            | -\$45,807          | 557.60            | \$16,858                 | 383.73            | -\$24,496                | -205.21           | -\$45,807                | -245.51           | \$38,287           | -383.73           | -\$24,496             | -557.60           | \$16,858                 |
| \$9.5m             | 247.45            | \$38,391                 | 204.31            | -\$46,499          | 560.06            | \$16,962                 | 383.12            | -\$24,796                | -204.31           | -\$46,499                | -247.45           | \$38,391           | -383.12           | -\$24,796             | -560.06           | \$16,962                 |
| \$9.6m             | 249.38            | \$38,495                 | 203.40            | -\$47,198          | 562.52            | \$17,066                 | 382.51            | -\$25,097                | -203.40           | -\$47,198                | -249.38           | \$38,495           | -382.51           | -\$25,097             | -562.52           | \$17,066                 |
| \$9.7m             | 251.32            | \$38,597                 | 202.49            | -\$47,904          | 564.96            | \$17.169                 | 381.90            | -\$25,400                | -202.49           | -\$47.904                | -251.32           | \$38,597           | -381.90           | -\$25,400             | -564.96           | \$17.169                 |

|                      |                   |                      |                   | 2                  | 3                 |                    |                   |                          |                   |                          |                   | j.                 | 14                |                          |                   |                          |
|----------------------|-------------------|----------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|                      | А                 | gent has go          | od informa        | tion               | A                 | gent has po        | or informat       | ion                      | A                 | gent has good            | d informatio      | n                  | A                 | gent has pool            | r informatio      | n                        |
|                      | Net Inv           | estment 8            | Net Disi          | nvestment          | Net Inv           | estment            | Net Disi          | nvestment                | Net In            | vestment                 | Net Disir         | ivestment          | Net Inv           | vestment                 | Net Disin         | vestment                 |
| Budget impact        | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^b$ | $E(\Delta E)^{c}$ | $E(\lambda_{p}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{p}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{p}^{-})^{d}$ |
| \$9.8m               | 253.24            | \$38,698             | 201.58            | -\$48.617          | 567.40            | \$17.272           | 381.28            | -\$25,703                | -201.58           | -\$48.617                | -253.24           | \$38.698           | -381.28           | -\$25,703                | -567.40           | \$17,272                 |
| \$9.9m               | 255.17            | \$38,798             | 200.66            | -\$49.338          | 569.82            | \$17.374           | 380.66            | -\$26.008                | -200.66           | -\$49.338                | -255.17           | \$38,798           | -380.66           | -\$26,008                | -569.82           | \$17.374                 |
| \$10.0m              | 257.09            | \$38,897             | 199.73            | -\$50.067          | 572.23            | \$17,475           | 380.04            | -\$26.313                | -199.73           | -\$50.067                | -257.09           | \$38,897           | -380.04           | -\$26,313                | -572.23           | \$17.475                 |
| \$10.1m              | 259.01            | \$38,995             | 198.81            | -\$50.803          | 574.63            | \$17,577           | 379.41            | -\$26.620                | -198.81           | -\$50.803                | -259.01           | \$38,995           | -379.41           | -\$26.620                | -574.63           | \$17.577                 |
| \$10.2m              | 260.93            | \$39,091             | 197.88            | -\$51.547          | 577.02            | \$17.677           | 378.78            | -\$26,928                | -197.88           | -\$51.547                | -260.93           | \$39.091           | -378.78           | -\$26,928                | -577.02           | \$17,677                 |
| \$10.3m              | 262.84            | \$39,187             | 196.95            | -\$52,298          | 579.41            | \$17,777           | 378.16            | -\$27.238                | -196.95           | -\$52,298                | -262.84           | \$39,187           | -378.16           | -\$27,238                | -579.41           | \$17,777                 |
| \$10.4m              | 264.76            | \$39,281             | 196.01            | -\$53.057          | 581.78            | \$17,876           | 377.52            | -\$27,548                | -196.01           | -\$53.057                | -264.76           | \$39,281           | -377.52           | -\$27,548                | -581.78           | \$17.876                 |
| \$10.5m              | 266.67            | \$39,374             | 195.08            | -\$53.824          | 584.13            | \$17,975           | 376.89            | -\$27.860                | -195.08           | -\$53.824                | -266.67           | \$39,374           | -376.89           | -\$27,860                | -584.13           | \$17,975                 |
| \$10.6m              | 268.58            | \$39,466             | 194.14            | -\$54.599          | 586.49            | \$18,074           | 376.25            | -\$28,173                | -194.14           | -\$54,599                | -268.58           | \$39,466           | -376.25           | -\$28,173                | -586.49           | \$18.074                 |
| \$10.7m              | 270.49            | \$39,558             | 193.21            | -\$55,382          | 588.84            | \$18,171           | 375.61            | -\$28,487                | -193.21           | -\$55,382                | -270.49           | \$39,558           | -375.61           | -\$28,487                | -588.84           | \$18,171                 |
| \$10.8m              | 272.40            | \$39,648             | 192.26            | -\$56,173          | 591.17            | \$18,269           | 374.97            | -\$28,803                | -192.26           | -\$56,173                | -272.40           | \$39,648           | -374.97           | -\$28,803                | -591.17           | \$18,269                 |
| \$10.9m              | 274.30            | \$39,737             | 191.32            | -\$56,973          | 593.49            | \$18,366           | 374.32            | -\$29,120                | -191.32           | -\$56,973                | -274.30           | \$39,737           | -374.32           | -\$29,120                | -593.49           | \$18,366                 |
| \$11.0m              | 276.20            | \$39,826             | 190.37            | -\$57,782          | 595.80            | \$18,462           | 373.67            | -\$29,438                | -190.37           | -\$57,782                | -276.20           | \$39.826           | -373.67           | -\$29,438                | -595.80           | \$18,462                 |
| \$11.1m              | 278.10            | \$39,914             | 189.42            | -\$58,599          | 598.11            | \$18,558           | 373.02            | -\$29,757                | -189.42           | -\$58,599                | -278.10           | \$39,914           | -373.02           | -\$29,757                | -598.11           | \$18,558                 |
| \$11.2m              | 279.99            | \$40,001             | 188.47            | -\$59,425          | 600.40            | \$18,654           | 372.36            | -\$30,078                | -188.47           | -\$59,425                | -279.99           | \$40,001           | -372.36           | -\$30,078                | -600.40           | \$18,654                 |
| \$11.3m              | 281.89            | \$40,087             | 187.52            | -\$60,261          | 602.69            | \$18,749           | 371.70            | -\$30,401                | -187.52           | -\$60,261                | -281.89           | \$40,087           | -371.70           | -\$30,401                | -602.69           | \$18,749                 |
| \$11.4m              | 283.78            | \$40,172             | 186.56            | -\$61,105          | 604.98            | \$18,844           | 371.04            | -\$30,724                | -186.56           | -\$61,105                | -283.78           | \$40,172           | -371.04           | -\$30,724                | -604.98           | \$18,844                 |
| \$11.5m              | 285.66            | \$40,257             | 185.61            | -\$61,959          | 607.25            | \$18,938           | 370.38            | -\$31,049                | -185.61           | -\$61,959                | -285.66           | \$40,257           | -370.38           | -\$31,049                | -607.25           | \$18,938                 |
| \$11.6m              | 287.55            | \$40,341             | 184.64            | -\$62,823          | 609.51            | \$19,032           | 369.71            | -\$31,376                | -184.64           | -\$62,823                | -287.55           | \$40,341           | -369.71           | -\$31,376                | -609.51           | \$19,032                 |
| \$11.7m              | 289.43            | \$40,424             | 183.68            | -\$63,697          | 611.76            | \$19,125           | 369.04            | -\$31,704                | -183.68           | -\$63,697                | -289.43           | \$40,424           | -369.04           | -\$31,704                | -611.76           | \$19,125                 |
| \$11.8m              | 291.31            | \$40,507             | 182.71            | -\$64,582          | 614.01            | \$19,218           | 368.36            | -\$32,034                | -182.71           | -\$64,582                | -291.31           | \$40,507           | -368.36           | -\$32,034                | -614.01           | \$19,218                 |
| \$11.9m              | 293.19            | \$40,589             | 181.75            | -\$65,476          | 616.24            | \$19,311           | 367.68            | -\$32,365                | -181.75           | -\$65,476                | -293.19           | \$40,589           | -367.68           | -\$32,365                | -616.24           | \$19,311                 |
| \$12.0m              | 295.06            | \$40,670             | 180.77            | -\$66,382          | 618.47            | \$19,403           | 367.00            | -\$32,697                | -180.77           | -\$66,382                | -295.06           | \$40,670           | -367.00           | -\$32,697                | -618.47           | \$19,403                 |
| \$12.1m              | 296.93            | \$40,750             | 179.80            | -\$67,297          | 620.69            | \$19,494           | 366.32            | -\$33,031                | -179.80           | -\$67,297                | -296.93           | \$40,750           | -366.32           | -\$33,031                | -620.69           | \$19,494                 |
| \$12.2m              | 298.80            | \$40,830             | 178.82            | -\$68,224          | 622.91            | \$19,586           | 365.63            | -\$33,367                | -178.82           | -\$68,224                | -298.80           | \$40,830           | -365.63           | -\$33,367                | -622.91           | \$19,586                 |
| \$12.3m              | 300.67            | \$40,909             | 177.85            | -\$69,161          | 625.11            | \$19,677           | 364.94            | -\$33,705                | -177.85           | -\$69,161                | -300.67           | \$40,909           | -364.94           | -\$33,705                | -625.11           | \$19,677                 |
| \$12.4m              | 302.53            | \$40,987             | 176.86            | -\$70,110          | 627.31            | \$19,767           | 364.24            | -\$34,044                | -176.86           | -\$70,110                | -302.53           | \$40,987           | -364.24           | -\$34,044                | -627.31           | \$19,767                 |
| \$12.5m              | 304.39            | \$41,065             | 175.88            | -\$71,071          | 629.50            | \$19,857           | 363.54            | -\$34,384                | -175.88           | -\$71,071                | -304.39           | \$41,065           | -363.54           | -\$34,384                | -629.50           | \$19,857                 |
| \$12.6m              | 306.25            | \$41,142             | 174.89            | -\$72,044          | 631.68            | \$19,947           | 362.83            | -\$34,727                | -174.89           | -\$72,044                | -306.25           | \$41,142           | -362.83           | -\$34,727                | -631.68           | \$19,947                 |
| \$12.7m              | 308.11            | \$41,219             | 173.90            | -\$73,030          | 633.86            | \$20,036           | 362.13            | -\$35,071                | -173.90           | -\$73,030                | -308.11           | \$41,219           | -362.13           | -\$35,071                | -633.86           | \$20,036                 |
| \$12.8m              | 309.97            | \$41,295             | 172.91            | -\$74,028          | 636.03            | \$20,125           | 361.41            | -\$35,417                | -172.91           | -\$74,028                | -309.97           | \$41,295           | -361.41           | -\$35,417                | -636.03           | \$20,125                 |
| \$12.9m              | 311.82            | \$41,370             | 171.91            | -\$75,039          | 638.19            | \$20,213           | 360.69            | -\$35,764                | -171.91           | -\$75,039                | -311.82           | \$41,370           | -360.69           | -\$35,764                | -638.19           | \$20,213                 |
| \$13.0m              | 313.67            | \$41,445             | 170.91            | -\$76,061          | 640.34            | \$20,302           | 359.97            | -\$36,114                | -170.91           | -\$76,061                | -313.67           | \$41,445           | -359.97           | -\$36,114                | -640.34           | \$20,302                 |
| \$13.1m              | 315.51            | \$41,520             | 169.91            | -\$77,098          | 642.49            | \$20,390           | 359.25            | -\$36,465                | -169.91           | -\$77,098                | -315.51           | \$41,520           | -359.25           | -\$36,465                | -642.49           | \$20,390                 |
| \$13.2m              | 317.36            | \$41,593             | 168.91            | -\$78,148          | 644.62            | \$20,477           | 358.52            | -\$36,819                | -168.91           | -\$78,148                | -317.36           | \$41,593           | -358.52           | -\$36,819                | -644.62           | \$20,477                 |
| \$13.3m              | 319.20            | \$41,666             | 167.90            | -\$79,212          | 646.76            | \$20,564           | 357.78            | -\$37,174                | -167.90           | -\$/9,212                | -319.20           | \$41,666           | -357.78           | -\$37,174                | -646.76           | \$20,564                 |
| \$13.4m              | 321.04            | \$41,739             | 166.89            | -\$80,291          | 648.89            | \$20,651           | 357.04            | -\$37,531                | -166.89           | -\$80,291                | -321.04           | \$41,739           | -357.04           | -\$37,531                | -648.89           | \$20,651                 |
| \$13.5m              | 322.88            | \$41,811             | 165.88            | -\$81,384          | 651.02            | \$20,737           | 356.29            | -\$37,890                | -165.88           | -\$81,384                | -322.88           | \$41,811           | -356.29           | -\$37,890                | -651.02           | \$20,737                 |
| \$13.6m              | 324.71            | \$41,883             | 164.86            | -\$82,493          | 653.14            | \$20,823           | 355.54            | -\$38,251                | -164.86           | -\$82,493                | -324./1           | \$41,883           | -355.54           | -\$38,251                | -653.14           | \$20,823                 |
| \$13.7m              | 326.55            | \$41,954             | 163.84            | -\$83,61/          | 655.25            | \$20,908           | 354.79            | -\$38,615                | -163.84           | -\$83,61/                | -326.55           | \$41,954           | -354.79           | -\$38,615                | -655.25           | \$20,908                 |
| \$13.8m              | 328.38            | \$42,025             | 162.82            | -\$84,/50          | 657.55            | \$20,993           | 354.02            | -\$38,980                | -102.82           | -\$84,/30                | -328.38           | \$42,025           | -354.02           | -\$38,980                | -037.33           | \$20,993                 |
| \$13.9m              | 330.21            | \$42,095             | 101.80            | -\$85,910          | 639.45            | \$21,078           | 353.20            | -\$39,348                | -101.80           | -\$85,910                | -330.21           | \$42,095           | -353.20           | -\$39,348                | -639.43           | \$21,078                 |
| \$14.0m              | 332.03            | \$42,104             | 100.//            | -38/,081           | 662.62            | \$21,103           | 352.48            | -339,/18                 | -100.//           | -38/,081                 | -332.03           | \$42,104           | -552.48           | -\$39,/18                | -001.54           | \$21,103                 |
| \$14.1m              | 225.60            | \$42,234             | 159.74            | -388,209           | 003.03            | \$21,24/           | 351.70            | -\$40,091                | -139./4           | -\$88,209                | -335.80           | \$42,234           | -351./0           | -\$40,091                | -003.03           | \$21,247                 |
| \$14.2m              | 227.50            | \$42,302             | 157.67            | -\$89,4/4          | 667.79            | \$21,331           | 350.92            | -\$40,405                | -138./1           | -\$89,474                | -333.08           | \$42,302           | -350.92           | -\$40,405                | -003./1           | \$21,331                 |
| \$14.5m<br>\$14.4m   | 330.20            | \$12,370             | 156.62            | \$01.020           | 660.94            | \$21,414           | 3/0 22            | \$41.222                 | -15/.0/           | \$01.020                 | -33/.30           | \$42,370           | -330.13           | -\$40,042<br>\$41,222    | 660.94            | \$21,414                 |
| \$14.4III<br>\$14.5m | 3/1 1/            | \$42,438             | 155.59            | \$02 200           | 671.00            | \$21,498           | 349.33            | \$41,222                 | -150.05           | \$02 200                 | -339.32           | \$42,438           | -349.33           | -341,222<br>\$41,604     | 671.00            | \$21,498                 |
| \$14.5III<br>\$14.6m | 341.14            | \$42,505             | 153.30            | \$04.480           | 673.06            | \$21,360           | 340.32            | \$41.004                 | -155.58           | \$04.480                 | -341.14           | \$42,505           | 347.71            | \$41.004                 | 673.06            | \$21,500                 |
| \$14.0m              | 344 76            | \$42,638             | 153.48            | -\$95 778          | 676.01            | \$21,005           | 346.89            | -\$42,377                | -153.48           | -\$95 778                | -344 76           | \$42,638           | -346.89           | -\$42,377                | -676.01           | \$21,005                 |

|                      |                    |                      |                    | 2                        | 3                  |                      |                    |                       |                    |                          |                    |                          | 14                 |                       |                    |                      |
|----------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|-----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|-----------------------|--------------------|----------------------|
|                      | А                  | gent has go          | od informa         | tion                     | A                  | gent has po          | or informat        | ion                   | A                  | gent has good            | d informatio       | on -                     | A                  | gent has poo          | r informatio       | n                    |
|                      | Net Inv            | estment              | Net Disi           | investment               | Net Inv            | estment              | Net Disi           | nvestment             | Net In             | vestment                 | Net Disir          | westment                 | Net Im             | vestment              | Net Disin          | vestment             |
| Rudget impact        | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $F(\lambda^{-})^{d}$  | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$  | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ |
| S14 8m               | 346.58             | \$42 703             | 152.43             | -\$97.095                | 678.05             | \$21.827             | 346.06             | -\$42.767             | -152.43            | -\$97.095                | -346 58            | \$42 703                 | -346.06            | -\$42 767             | -678.05            | \$21.827             |
| \$14.0m              | 348.30             | \$42,765             | 151.37             | \$08.434                 | 680.08             | \$21,027             | 345.00             | \$43,160              | 151.37             | \$08.434                 | 348.30             | \$42,765                 | 345.23             | \$43,160              | 680.08             | \$21,027             |
| \$15.0m              | 350.20             | \$42,700             | 150.31             | \$00,705                 | 682.12             | \$21,909             | 244.28             | \$42,556              | 150.21             | \$00,705                 | 350.20             | \$42,700                 | 244.29             | \$42,556              | 682.12             | \$21,909             |
| \$15.0m              | 252.00             | \$42,833             | 140.24             | -\$99,795<br>\$101,176   | 694.15             | \$21,990             | 242.52             | -\$43,550<br>\$42,055 | -130.31            | -\$77,775<br>\$101,176   | -350.20            | \$42,833                 | -344.30            | \$42,055              | -082.12            | \$21,990             |
| \$15.111             | 352.00             | \$42,697             | 149.24             | -\$101,170<br>\$102,582  | 686.17             | \$22,071             | 343.33             | -\$45,955             | -149.24            | -\$101,170<br>\$102,592  | -332.00            | \$42,697                 | -345.55            | -\$43,933<br>\$44,259 | -084.13            | \$22,071             |
| \$15.2m              | 255 (1             | \$42,901             | 146.17             | -\$102,382<br>\$104,010  | 080.17             | \$22,132             | 342.07             | -544,558              | -146.17            | -\$102,382               | -555.61            | \$42,901                 | -342.07            | -\$44,538             | -080.17            | \$22,132             |
| \$15.5m              | 355.61             | \$43,025             | 147.10             | -\$104,010               | 688.19             | \$22,232             | 341.80             | -\$44,/63             | -14/.10            | -\$104,010               | -355.61            | \$43,025                 | -341.80            | -\$44,763             | -088.19            | \$22,232             |
| \$15.4m              | 357.41             | \$43,087             | 146.03             | -\$105,461               | 690.20             | \$22,312             | 340.92             | -\$45,172             | -146.03            | -\$105,461               | -357.41            | \$43,087                 | -340.92            | -\$45,172             | -690.20            | \$22,312             |
| \$15.5m              | 359.21             | \$43,150             | 144.95             | -\$106,936               | 692.21             | \$22,392             | 340.03             | -\$45,585             | -144.95            | -\$106,936               | -359.21            | \$43,150                 | -340.03            | -\$45,585             | -692.21            | \$22,392             |
| \$15.6m              | 361.01             | \$43,212             | 143.86             | -\$108,436               | 694.21             | \$22,472             | 339.13             | -\$46,001             | -143.86            | -\$108,436               | -361.01            | \$43,212                 | -339.13            | -\$46,001             | -694.21            | \$22,472             |
| \$15.7m              | 362.81             | \$43,274             | 142.78             | -\$109,960               | 696.20             | \$22,551             | 338.21             | -\$46,420             | -142.78            | -\$109,960               | -362.81            | \$43,274                 | -338.21            | -\$46,420             | -696.20            | \$22,551             |
| \$15.8m              | 364.60             | \$43,335             | 141.69             | -\$111,511               | 698.19             | \$22,630             | 337.29             | -\$46,844             | -141.69            | -\$111,511               | -364.60            | \$43,335                 | -337.29            | -\$46,844             | -698.19            | \$22,630             |
| \$15.9m              | 366.40             | \$43,396             | 140.59             | -\$113,092               | 700.18             | \$22,709             | 336.35             | -\$47,272             | -140.59            | -\$113,092               | -366.40            | \$43,396                 | -336.35            | -\$47,272             | -700.18            | \$22,709             |
| \$16.0m              | 368.19             | \$43,456             | 139.50             | -\$114,698               | 702.16             | \$22,787             | 335.40             | -\$47,704             | -139.50            | -\$114,698               | -368.19            | \$43,456                 | -335.40            | -\$47,704             | -702.16            | \$22,787             |
| \$16.1m              | 369.98             | \$43,516             | 138.39             | -\$116,335               | 704.13             | \$22,865             | 334.44             | -\$48,140             | -138.39            | -\$116,335               | -369.98            | \$43,516                 | -334.44            | -\$48,140             | -704.13            | \$22,865             |
| \$16.2m              | 371.77             | \$43,575             | 137.28             | -\$118,004               | 706.10             | \$22,943             | 333.46             | -\$48,581             | -137.28            | -\$118,004               | -371.77            | \$43,575                 | -333.46            | -\$48,581             | -706.10            | \$22,943             |
| \$16.3m              | 373.56             | \$43,635             | 136.17             | -\$119,700               | 708.06             | \$23,021             | 332.47             | -\$49,027             | -136.17            | -\$119,700               | -373.56            | \$43,635                 | -332.47            | -\$49,027             | -708.06            | \$23,021             |
| \$16.4m              | 375.35             | \$43,693             | 135.06             | -\$121,425               | 710.01             | \$23,098             | 331.46             | -\$49,478             | -135.06            | -\$121,425               | -375.35            | \$43,693                 | -331.46            | -\$49,478             | -710.01            | \$23,098             |
| \$16.5m              | 377.13             | \$43,751             | 133.95             | -\$123,184               | 711.97             | \$23,175             | 330.43             | -\$49,935             | -133.95            | -\$123,184               | -377.13            | \$43,751                 | -330.43            | -\$49,935             | -711.97            | \$23,175             |
| \$16.6m              | 378.91             | \$43,809             | 132.82             | -\$124,979               | 713.92             | \$23,252             | 329.38             | -\$50,397             | -132.82            | -\$124,979               | -378.91            | \$43,809                 | -329.38            | -\$50,397             | -713.92            | \$23,252             |
| \$16.7m              | 380.70             | \$43,867             | 131.70             | -\$126,806               | 715.87             | \$23,328             | 328.31             | -\$50,866             | -131.70            | -\$126,806               | -380.70            | \$43,867                 | -328.31            | -\$50,866             | -715.87            | \$23,328             |
| \$16.8m              | 382.48             | \$43,924             | 130.57             | -\$128,670               | 717.81             | \$23,405             | 327.22             | -\$51,341             | -130.57            | -\$128,670               | -382.48            | \$43,924                 | -327.22            | -\$51,341             | -717.81            | \$23,405             |
| \$16.9m              | 384.26             | \$43,980             | 129.43             | -\$130,575               | 719.74             | \$23,481             | 326.11             | -\$51.823             | -129.43            | -\$130,575               | -384.26            | \$43,980                 | -326.11            | -\$51.823             | -719.74            | \$23,481             |
| \$17.0m              | 386.04             | \$44.036             | 128.29             | -\$132,514               | 721.68             | \$23,556             | 324.96             | -\$52,313             | -128.29            | -\$132,514               | -386.04            | \$44.036                 | -324.96            | -\$52,313             | -721.68            | \$23,556             |
| \$17.1m              | 387.82             | \$44.092             | 127.14             | -\$134,494               | 723.60             | \$23,632             | 323.79             | -\$52.812             | -127.14            | -\$134,494               | -387.82            | \$44.092                 | -323.79            | -\$52.812             | -723.60            | \$23.632             |
| \$17.2m              | 389.60             | \$44,148             | 126.00             | -\$136.512               | 725.52             | \$23,707             | 322.59             | -\$53.319             | -126.00            | -\$136.512               | -389.60            | \$44,148                 | -322.59            | -\$53,319             | -725.52            | \$23,707             |
| \$17.3m              | 391.38             | \$44,203             | 124.84             | -\$138.575               | 727.44             | \$23,782             | 321.35             | -\$53,836             | -124.84            | -\$138,575               | -391.38            | \$44,203                 | -321.35            | -\$53,836             | -727.44            | \$23,782             |
| \$17.4m              | 393.15             | \$44 258             | 123.69             | -\$140.677               | 729 35             | \$23,857             | 320.06             | -\$54 365             | -123.69            | -\$140,677               | -393.15            | \$44 258                 | -320.06            | -\$54 365             | -729 35            | \$23,857             |
| \$17.5m              | 394.93             | \$44 312             | 122.53             | -\$142 827               | 731.26             | \$23,931             | 318 73             | -\$54,906             | -122.53            | -\$142.827               | -394 93            | \$44 312                 | -318 73            | -\$54,906             | -731.26            | \$23,031             |
| \$17.6m              | 396.70             | \$44 366             | 121.36             | -\$145.028               | 733.16             | \$24,006             | 317.34             | -\$55.461             | -121.36            | -\$145.028               | -396.70            | \$44 366                 | -317.34            | -\$55.461             | -733.16            | \$24,006             |
| \$17.0m              | 398.47             | \$44 420             | 120.19             | -\$147 272               | 735.06             | \$24,080             | 315.88             | -\$56,034             | -120.19            | -\$147,272               | -398.47            | \$44 420                 | -315.88            | -\$56,034             | -735.06            | \$24,080             |
| \$17.7m              | 400.24             | \$44.473             | 119.01             | -\$149 571               | 736.95             | \$24,000             | 314.41             | -\$56,615             | -120.17            | -\$149.571               | -400.24            | \$44.473                 | -314.41            | -\$56,615             | -736.95            | \$24,000             |
| \$17.0m              | 402.01             | \$44,526             | 117.82             | \$151.024                | 738.84             | \$24,134             | 312.03             | \$57,201              | 117.82             | \$151.024                | 402.01             | \$44,526                 | 312.03             | \$57,201              | 738.84             | \$24,134             |
| \$17.5m              | 403.78             | \$44,520             | 116.64             | \$154.327                | 740.72             | \$24,227             | 311.45             | \$57,201              | 116.64             | \$154 327                | 403.78             | \$44,520                 | 311.45             | \$57,201              | 740.72             | \$24,227             |
| \$10.0m              | 405.78             | \$44,579             | 115.04             | \$156 781                | 740.72             | \$24,301             | 200.07             | \$59 202              | 115.45             | \$156 781                | 405.55             | \$44,579                 | 200.07             | \$58 202              | 742.60             | \$24,301             |
| \$10.1III<br>\$19.2m | 403.33             | \$44,031             | 113.45             | \$150,781                | 742.00             | \$24,374             | 209.97             | \$58,000              | -113.45            | \$150,781                | 407.33             | \$44,031                 | -309.97            | \$58,000              | 744.00             | \$24,374             |
| \$10.211             | 407.32             | \$44,085             | 114.23             | -\$139,290<br>\$161,979  | 744.40             | \$24,447             | 206.00             | \$50,599              | -114.23            | -\$139,290<br>\$161,979  | -407.32            | \$44,085                 | -306.46            | \$50,599              | -/44.40            | \$24,447             |
| \$18.5m              | 409.08             | \$44,755             | 111.03             | -\$101,878               | 740.30             | \$24,319             | 306.99             | -\$39,010             | -113.03            | -\$101,878               | -409.08            | \$44,755                 | -306.99            | -\$39,010             | -/40.30            | \$24,519             |
| \$18.4m              | 410.84             | \$44,780             | 111.84             | -\$164,517               | 750.00             | \$24,592             | 305.50             | -\$60,229             | -111.84            | -\$164,517               | -410.84            | \$44,/80                 | -305.50            | -\$60,229             | -/48.22            | \$24,392             |
| \$18.5m              | 412.61             | \$44,837             | 110.63             | -\$167,226               | /50.09             | \$24,664             | 304.01             | -\$60,854             | -110.63            | -\$16/,226               | -412.61            | \$44,837                 | -304.01            | -\$60,854             | -/50.09            | \$24,664             |
| \$18.6m              | 414.37             | \$44,887             | 109.41             | -\$170,008               | 751.95             | \$24,736             | 302.51             | -\$61,486             | -109.41            | -\$170,008               | -414.37            | \$44,887                 | -302.51            | -\$61,486             | -751.95            | \$24,736             |
| \$18.7m              | 416.13             | \$44,938             | 108.18             | -\$172,858               | 753.81             | \$24,807             | 301.01             | -\$62,124             | -108.18            | -\$172,858               | -416.13            | \$44,938                 | -301.01            | -\$62,124             | -753.81            | \$24,807             |
| \$18.8m              | 417.89             | \$44,988             | 106.95             | -\$175,777               | 755.65             | \$24,879             | 299.51             | -\$62,770             | -106.95            | -\$175,777               | -417.89            | \$44,988                 | -299.51            | -\$62,770             | -755.65            | \$24,879             |
| \$18.9m              | 419.65             | \$45,038             | 105.72             | -\$178,771               | 757.50             | \$24,950             | 298.00             | -\$63,423             | -105.72            | -\$178,771               | -419.65            | \$45,038                 | -298.00            | -\$63,423             | -/57.50            | \$24,950             |
| \$19.0m              | 421.41             | \$45,087             | 104.48             | -\$181,853               | 759.35             | \$25,021             | 296.49             | -\$64,083             | -104.48            | -\$181,853               | -421.41            | \$45,087                 | -296.49            | -\$64,083             | -759.35            | \$25,021             |
| \$19.1m              | 423.16             | \$45,136             | 103.23             | -\$185,016               | 761.19             | \$25,092             | 294.98             | -\$64,751             | -103.23            | -\$185,016               | -423.16            | \$45,136                 | -294.98            | -\$64,751             | -761.19            | \$25,092             |
| \$19.2m              | 424.92             | \$45,185             | 101.98             | -\$188,267               | 763.02             | \$25,163             | 293.46             | -\$65,426             | -101.98            | -\$188,267               | -424.92            | \$45,185                 | -293.46            | -\$65,426             | -763.02            | \$25,163             |
| \$19.3m              | 426.67             | \$45,234             | 100.72             | -\$191,618               | 764.85             | \$25,234             | 291.94             | -\$66,109             | -100.72            | -\$191,618               | -426.67            | \$45,234                 | -291.94            | -\$66,109             | -764.85            | \$25,234             |
| \$19.4m              | 428.42             | \$45,282             | 99.45              | -\$195,066               | 766.68             | \$25,304             | 290.42             | -\$66,800             | -99.45             | -\$195,066               | -428.42            | \$45,282                 | -290.42            | -\$66,800             | -766.68            | \$25,304             |
| \$19.5m              | 430.18             | \$45,330             | 98.18              | -\$198,612               | 768.50             | \$25,374             | 288.89             | -\$67,499             | -98.18             | -\$198,612               | -430.18            | \$45,330                 | -288.89            | -\$67,499             | -768.50            | \$25,374             |
| \$19.6m              | 431.93             | \$45,378             | 96.91              | -\$202,259               | 770.32             | \$25,444             | 287.36             | -\$68,206             | -96.91             | -\$202,259               | -431.93            | \$45,378                 | -287.36            | -\$68,206             | -770.32            | \$25,444             |
| \$19.7m              | 433.68             | \$45,426             | 95.62              | -\$206.018               | 772.13             | \$25,514             | 285.83             | -\$68,921             | -95.62             | -\$206.018               | -433.68            | \$45,426                 | -285.83            | -\$68,921             | -772.13            | \$25,514             |

|               |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                          |                   |                    | 24                |                          |                   |                          |
|---------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|               | А                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informa        | tion                     | A                 | gent has good            | l informatio      | on                 |                   | Agent has pool           | r informatio      | n                        |
|               | Net Inv           | vestment                 | Net Dis           | investment         | Net Inv           | estment                  | Net Disi          | investment               | Net In            | vestment                 | Net Disir         | westment           | Net In            | vestment                 | Net Disin         | vestment                 |
| Budget impact | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$19.8m       | 435.43            | \$45,473                 | 94.33             | -\$209.898         | 773.95            | \$25.583                 | 284.30            | -\$69.646                | -94.33            | -\$209,898               | -435.43           | \$45,473           | -284.30           | -\$69,646                | -773.95           | \$25,583                 |
| \$19.9m       | 437.17            | \$45,520                 | 93.04             | -\$213,892         | 775.76            | \$25,652                 | 282.76            | -\$70.378                | -93.04            | -\$213,892               | -437.17           | \$45,520           | -282.76           | -\$70.378                | -775.76           | \$25.652                 |
| \$20.0m       | 438.92            | \$45,567                 | 91.73             | -\$218.024         | 777.56            | \$25,721                 | 281.22            | -\$71,120                | -91.73            | -\$218.024               | -438.92           | \$45,567           | -281.22           | -\$71,120                | -777.56           | \$25.721                 |
| \$20.1m       | 440.66            | \$45,613                 | 90.43             | -\$222.276         | 779.37            | \$25,790                 | 279.67            | -\$71.869                | -90.43            | -\$222.276               | -440.66           | \$45.613           | -279.67           | -\$71.869                | -779.37           | \$25,790                 |
| \$20.2m       | 442.41            | \$45,659                 | 89.11             | -\$226.682         | 781.16            | \$25.859                 | 278.13            | -\$72,629                | -89.11            | -\$226,682               | -442.41           | \$45,659           | -278.13           | -\$72,629                | -781.16           | \$25,859                 |
| \$20.3m       | 444.15            | \$45,705                 | 87.79             | -\$231,221         | 782.96            | \$25,927                 | 276.58            | -\$73,397                | -87.79            | -\$231,221               | -444.15           | \$45,705           | -276.58           | -\$73,397                | -782.96           | \$25,927                 |
| \$20.4m       | 445.89            | \$45,751                 | 86.47             | -\$235,929         | 784.75            | \$25,996                 | 275.03            | -\$74,175                | -86.47            | -\$235,929               | -445.89           | \$45,751           | -275.03           | -\$74,175                | -784.75           | \$25,996                 |
| \$20.5m       | 447.64            | \$45,796                 | 85.14             | -\$240,790         | 786.53            | \$26,064                 | 273.47            | -\$74,963                | -85.14            | -\$240,790               | -447.64           | \$45,796           | -273.47           | -\$74,963                | -786.53           | \$26.064                 |
| \$20.6m       | 449.37            | \$45,841                 | 83.80             | -\$245,830         | 788.31            | \$26,132                 | 271.91            | -\$75,761                | -83.80            | -\$245,830               | -449.37           | \$45,841           | -271.91           | -\$75,761                | -788.31           | \$26,132                 |
| \$20.7m       | 451.11            | \$45,886                 | 82.46             | -\$251,039         | 790.09            | \$26,199                 | 270.35            | -\$76,569                | -82.46            | -\$251,039               | -451.11           | \$45,886           | -270.35           | -\$76,569                | -790.09           | \$26,199                 |
| \$20.8m       | 452.85            | \$45,931                 | 81.11             | -\$256,434         | 791.86            | \$26,267                 | 268.78            | -\$77,387                | -81.11            | -\$256,434               | -452.85           | \$45,931           | -268.78           | -\$77,387                | -791.86           | \$26,267                 |
| \$20.9m       | 454.59            | \$45,976                 | 79.76             | -\$262.036         | 793.64            | \$26,334                 | 267.21            | -\$78,216                | -79.76            | -\$262.036               | -454.59           | \$45,976           | -267.21           | -\$78,216                | -793.64           | \$26,334                 |
| \$21.0m       | 456.32            | \$46,020                 | 78.39             | -\$267,877         | 795.40            | \$26,402                 | 265.63            | -\$79.056                | -78.39            | -\$267,877               | -456.32           | \$46,020           | -265.63           | -\$79,056                | -795.40           | \$26,402                 |
| \$21.1m       | 458.06            | \$46,064                 | 77.02             | -\$273,957         | 797.17            | \$26,469                 | 264.06            | -\$79,907                | -77.02            | -\$273,957               | -458.06           | \$46,064           | -264.06           | -\$79,907                | -797.17           | \$26,469                 |
| \$21.2m       | 459.79            | \$46,108                 | 75.64             | -\$280,264         | 798.93            | \$26,535                 | 262.48            | -\$80,769                | -75.64            | -\$280,264               | -459.79           | \$46,108           | -262.48           | -\$80,769                | -798.93           | \$26,535                 |
| \$21.3m       | 461.52            | \$46,151                 | 74.26             | -\$286.814         | 800.69            | \$26,602                 | 260.90            | -\$81.642                | -74.26            | -\$286,814               | -461.52           | \$46,151           | -260.90           | -\$81,642                | -800.69           | \$26,602                 |
| \$21.4m       | 463.26            | \$46,195                 | 72.87             | -\$293,666         | 802.45            | \$26,668                 | 259.31            | -\$82,526                | -72.87            | -\$293,666               | -463.26           | \$46,195           | -259.31           | -\$82,526                | -802.45           | \$26,668                 |
| \$21.5m       | 464.99            | \$46,238                 | 71.48             | -\$300,786         | 804.20            | \$26,735                 | 257.73            | -\$83,422                | -71.48            | -\$300,786               | -464.99           | \$46,238           | -257.73           | -\$83,422                | -804.20           | \$26,735                 |
| \$21.6m       | 466.72            | \$46,281                 | 70.07             | -\$308,250         | 805.94            | \$26,801                 | 256.14            | -\$84,330                | -70.07            | -\$308,250               | -466.72           | \$46,281           | -256.14           | -\$84,330                | -805.94           | \$26,801                 |
| \$21.7m       | 468.45            | \$46,323                 | 68.67             | -\$316,027         | 807.69            | \$26,867                 | 254.55            | -\$85,250                | -68.67            | -\$316,027               | -468.45           | \$46,323           | -254.55           | -\$85,250                | -807.69           | \$26,867                 |
| \$21.8m       | 470.17            | \$46,366                 | 67.25             | -\$324,182         | 809.43            | \$26,932                 | 252.95            | -\$86,182                | -67.25            | -\$324,182               | -470.17           | \$46,366           | -252.95           | -\$86,182                | -809.43           | \$26,932                 |
| \$21.9m       | 471.90            | \$46,408                 | 65.83             | -\$332,699         | 811.17            | \$26,998                 | 251.36            | -\$87,127                | -65.83            | -\$332,699               | -471.90           | \$46,408           | -251.36           | -\$87,127                | -811.17           | \$26,998                 |
| \$22.0m       | 473.62            | \$46,450                 | 64.39             | -\$341,670         | 812.90            | \$27,064                 | 249.76            | -\$88,085                | -64.39            | -\$341,670               | -473.62           | \$46,450           | -249.76           | -\$88,085                | -812.90           | \$27,064                 |
| \$22.1m       | 475.35            | \$46,492                 | 62.95             | -\$351,100         | 814.63            | \$27,129                 | 248.16            | -\$89,056                | -62.95            | -\$351,100               | -475.35           | \$46,492           | -248.16           | -\$89,056                | -814.63           | \$27,129                 |
| \$22.2m       | 477.07            | \$46,534                 | 61.49             | -\$361,011         | 816.36            | \$27,194                 | 246.56            | -\$90,040                | -61.49            | -\$361,011               | -477.07           | \$46,534           | -246.56           | -\$90,040                | -816.36           | \$27,194                 |
| \$22.3m       | 478.79            | \$46,575                 | 60.03             | -\$371,480         | 818.08            | \$27,259                 | 244.95            | -\$91,039                | -60.03            | -\$371,480               | -478.79           | \$46,575           | -244.95           | -\$91,039                | -818.08           | \$27,259                 |
| \$22.4m       | 480.51            | \$46,617                 | 58.56             | -\$382,492         | 819.80            | \$27,324                 | 243.34            | -\$92,051                | -58.56            | -\$382,492               | -480.51           | \$46,617           | -243.34           | -\$92,051                | -819.80           | \$27,324                 |
| \$22.5m       | 482.23            | \$46,658                 | 57.10             | -\$394,072         | 821.52            | \$27,388                 | 241.73            | -\$93,078                | -57.10            | -\$394,072               | -482.23           | \$46,658           | -241.73           | -\$93,078                | -821.52           | \$27,388                 |
| \$22.6m       | 483.95            | \$46,699                 | 55.61             | -\$406,381         | 823.24            | \$27,453                 | 240.12            | -\$94,119                | -55.61            | -\$406,381               | -483.95           | \$46,699           | -240.12           | -\$94,119                | -823.24           | \$27,453                 |
| \$22.7m       | 485.67            | \$46,739                 | 54.13             | -\$419,380         | 824.95            | \$27,517                 | 238.51            | -\$95,175                | -54.13            | -\$419,380               | -485.67           | \$46,739           | -238.51           | -\$95,175                | -824.95           | \$27,517                 |
| \$22.8m       | 487.39            | \$46,780                 | 52.63             | -\$433,236         | 826.66            | \$27,581                 | 236.89            | -\$96,246                | -52.63            | -\$433,236               | -487.39           | \$46,780           | -236.89           | -\$96,246                | -826.66           | \$27,581                 |
| \$22.9m       | 489.10            | \$46,820                 | 51.11             | -\$448,058         | 828.37            | \$27,645                 | 235.28            | -\$97,332                | -51.11            | -\$448,058               | -489.10           | \$46,820           | -235.28           | -\$97,332                | -828.37           | \$27,645                 |
| \$23.0m       | 490.82            | \$46,861                 | 49.59             | -\$463,832         | 830.07            | \$27,708                 | 233.66            | -\$98,433                | -49.59            | -\$463,832               | -490.82           | \$46,861           | -233.66           | -\$98,433                | -830.07           | \$27,708                 |
| \$23.1m       | 492.53            | \$46,901                 | 48.06             | -\$480,692         | 831.77            | \$27,772                 | 232.04            | -\$99,551                | -48.06            | -\$480,692               | -492.53           | \$46,901           | -232.04           | -\$99,551                | -831.77           | \$27,772                 |
| \$23.2m       | 494.24            | \$46,941                 | 46.52             | -\$498,713         | 833.47            | \$27,836                 | 230.42            | -\$100,685               | -46.52            | -\$498,713               | -494.24           | \$46,941           | -230.42           | -\$100,685               | -833.47           | \$27,836                 |
| \$23.3m       | 495.95            | \$46,981                 | 44.97             | -\$518,100         | 835.16            | \$27,899                 | 228.80            | -\$101,836               | -44.97            | -\$518,100               | -495.95           | \$46,981           | -228.80           | -\$101,836               | -835.16           | \$27,899                 |
| \$23.4m       | 497.65            | \$47,021                 | 43.42             | -\$538,957         | 836.85            | \$27,962                 | 227.18            | -\$103,004               | -43.42            | -\$538,957               | -497.65           | \$47,021           | -227.18           | -\$103,004               | -836.85           | \$27,962                 |
| \$23.5m       | 499.36            | \$47,060                 | 41.84             | -\$561,625         | 838.54            | \$28,025                 | 225.55            | -\$104,190               | -41.84            | -\$561,625               | -499.36           | \$47,060           | -225.55           | -\$104,190               | -838.54           | \$28,025                 |
| \$23.6m       | 501.06            | \$47,100                 | 40.26             | -\$586,195         | 840.22            | \$28,088                 | 223.92            | -\$105,394               | -40.26            | -\$586,195               | -501.06           | \$47,100           | -223.92           | -\$105,394               | -840.22           | \$28,088                 |
| \$23.7m       | 502.77            | \$47,139                 | 38.67             | -\$612,845         | 841.90            | \$28,151                 | 222.30            | -\$106,615               | -38.67            | -\$612,845               | -502.77           | \$47,139           | -222.30           | -\$106,615               | -841.90           | \$28,151                 |
| \$23.8m       | 504.47            | \$47,178                 | 37.08             | -\$641,900         | 843.58            | \$28,213                 | 220.67            | -\$107,856               | -37.08            | -\$641,900               | -504.47           | \$47,178           | -220.67           | -\$107,856               | -843.58           | \$28,213                 |
| \$23.9m       | 506.17            | \$47,217                 | 35.46             | -\$673,968         | 845.25            | \$28,276                 | 219.03            | -\$109,115               | -35.46            | -\$673,968               | -506.17           | \$47,217           | -219.03           | -\$109,115               | -845.25           | \$28,276                 |
| \$24.0m       | 507.87            | \$47,256                 | 33.82             | -\$709,558         | 846.93            | \$28,338                 | 217.40            | -\$110,396               | -33.82            | -\$709,558               | -507.87           | \$47,256           | -217.40           | -\$110,396               | -846.93           | \$28,338                 |
| \$24.1m       | 509.57            | \$47,295                 | 32.18             | -\$748,895         | 848.60            | \$28,400                 | 215.77            | -\$111,695               | -32.18            | -\$748,895               | -509.57           | \$47,295           | -215.77           | -\$111,695               | -848.60           | \$28,400                 |
| \$24.2m       | 511.26            | \$47,334                 | 30.53             | -\$792,588         | 850.26            | \$28,462                 | 214.13            | -\$113,015               | -30.53            | -\$792,588               | -511.26           | \$47,334           | -214.13           | -\$113,015               | -850.26           | \$28,462                 |
| \$24.3m       | 512.96            | \$47,372                 | 28.87             | -\$841,640         | 851.93            | \$28,523                 | 212.49            | -\$114,357               | -28.87            | -\$841,640               | -512.96           | \$47,372           | -212.49           | -\$114,357               | -851.93           | \$28,523                 |
| \$24.4m       | 514.65            | \$47,411                 | 27.21             | -\$896,832         | 853.59            | \$28,585                 | 210.85            | -\$115,721               | -27.21            | -\$896,832               | -514.65           | \$47,411           | -210.85           | -\$115,721               | -853.59           | \$28,585                 |
| \$24.5m       | 516.34            | \$47,449                 | 25.52             | -\$959,945         | 855.25            | \$28,647                 | 209.21            | -\$117,106               | -25.52            | -\$959,945               | -516.34           | \$47,449           | -209.21           | -\$117,106               | -855.25           | \$28,647                 |
| \$24.6m       | 518.03            | \$47,488                 | 23.81             | -\$1.03m           | 856.91            | \$28,708                 | 207.57            | -\$118,515               | -23.81            | -\$1.03m                 | -518.03           | \$47,488           | -207.57           | -\$118,515               | -856.91           | \$28,708                 |
| \$24.7m       | 519.72            | \$47,526                 | 22.10             | -\$1.12m           | 858.56            | \$28,769                 | 205.93            | -\$119,946               | -22.10            | -\$1.12m                 | -519.72           | \$47,526           | -205.93           | -\$119,946               | -858.56           | \$28,769                 |

|                      |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                      |                   | j.                 | λ4                |                          |                   |                          |
|----------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|----------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|                      | Α                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informa        | ion                      | A                 | gent has good        | l informatio      | n                  |                   | Agent has poor           | r informatio      | n                        |
|                      | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | nvestment                | Net In            | vestment             | Net Disir         | ivestment          | Net In            | vestment                 | Net Disin         | vestment                 |
| Budget imnact        | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{p}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$24.8m              | 521.41            | \$47.564                 | 20.36             | -\$1.22m           | 860.21            | \$28.830                 | 204.28            | -\$121.403               | -20.36            | -\$1.22m             | -521.41           | \$47.564           | -204.28           | -\$121,403               | -860.21           | \$28,830                 |
| \$24.9m              | 523.09            | \$47.602                 | 18.60             | -\$1.34m           | 861.85            | \$28,891                 | 202.63            | -\$122.884               | -18.60            | -\$1.34m             | -523.09           | \$47.602           | -202.63           | -\$122.884               | -861.85           | \$28,891                 |
| \$25.0m              | 524.78            | \$47.639                 | 16.84             | -\$1.48m           | 863.50            | \$28,952                 | 200.98            | -\$124.389               | -16.84            | -\$1.48m             | -524.78           | \$47.639           | -200.98           | -\$124.389               | -863.50           | \$28,952                 |
| \$25.1m              | 526.46            | \$47.677                 | 15.07             | -\$1.67m           | 865.14            | \$29.013                 | 199.33            | -\$125,919               | -15.07            | -\$1.67m             | -526.46           | \$47.677           | -199.33           | -\$125,919               | -865.14           | \$29.013                 |
| \$25.2m              | 528.14            | \$47,715                 | 13.28             | -\$1.90m           | 866.78            | \$29.073                 | 197.68            | -\$127,477               | -13.28            | -\$1.90m             | -528.14           | \$47,715           | -197.68           | -\$127,477               | -866.78           | \$29,073                 |
| \$25.3m              | 529.82            | \$47,752                 | 11.48             | -\$2.20m           | 868.41            | \$29,134                 | 196.03            | -\$129.061               | -11.48            | -\$2.20m             | -529.82           | \$47,752           | -196.03           | -\$129,061               | -868.41           | \$29,134                 |
| \$25.4m              | 531.50            | \$47,789                 | 9.69              | -\$2.62m           | 870.05            | \$29,194                 | 194.38            | -\$130.674               | -9.69             | -\$2.62m             | -531.50           | \$47,789           | -194.38           | -\$130,674               | -870.05           | \$29,194                 |
| \$25.5m              | 533.18            | \$47,827                 | 7.89              | -\$3.23m           | 871.68            | \$29,254                 | 192.72            | -\$132.316               | -7.89             | -\$3.23m             | -533.18           | \$47.827           | -192.72           | -\$132,316               | -871.68           | \$29,254                 |
| \$25.6m              | 534.85            | \$47,864                 | 6.08              | -\$4.21m           | 873.31            | \$29,314                 | 191.06            | -\$133,986               | -6.08             | -\$4.21m             | -534.85           | \$47,864           | -191.06           | -\$133,986               | -873.31           | \$29.314                 |
| \$25.7m              | 536.53            | \$47,901                 | 4.28              | -\$6.01m           | 874.93            | \$29,374                 | 189.40            | -\$135,688               | -4.28             | -\$6.01m             | -536.53           | \$47,901           | -189.40           | -\$135,688               | -874.93           | \$29,374                 |
| \$25.8m              | 538.20            | \$47,938                 | 2.46              | -\$10.47m          | 876.56            | \$29,433                 | 187.74            | -\$137.421               | -2.46             | -\$10.47m            | -538.20           | \$47,938           | -187.74           | -\$137,421               | -876.56           | \$29,433                 |
| \$25.9m              | 539.87            | \$47,974                 | 0.65              | -\$40.03m          | 878.18            | \$29,493                 | 186.08            | -\$139,186               | -0.65             | -\$40.03m            | -539.87           | \$47,974           | -186.08           | -\$139,186               | -878.18           | \$29,493                 |
| \$26.0m              | 541.54            | \$48,011                 | -1.17             | \$22.13m           | 879.80            | \$29,552                 | 184.42            | -\$140,984               | 1.17              | \$22.13m             | -541.54           | \$48,011           | -184.42           | -\$140,984               | -879.80           | \$29,552                 |
| \$26.1m              | 543.21            | \$48,048                 | -3.00             | \$8.71m            | 881.41            | \$29,612                 | 182.75            | -\$142.816               | 3.00              | \$8.71m              | -543.21           | \$48,048           | -182.75           | -\$142,816               | -881.41           | \$29.612                 |
| \$26.2m              | 544.88            | \$48,084                 | -4.82             | \$5.43m            | 883.02            | \$29,671                 | 181.08            | -\$144,684               | 4.82              | \$5.43m              | -544.88           | \$48,084           | -181.08           | -\$144,684               | -883.02           | \$29,671                 |
| \$26.3m              | 546.55            | \$48,120                 | -6.65             | \$3.95m            | 884.63            | \$29,730                 | 179.42            | -\$146,587               | 6.65              | \$3.95m              | -546.55           | \$48,120           | -179.42           | -\$146,587               | -884.63           | \$29,730                 |
| \$26.4m              | 548.21            | \$48,157                 | -8.48             | \$3.11m            | 886.24            | \$29,789                 | 177.75            | -\$148,527               | 8.48              | \$3.11m              | -548.21           | \$48,157           | -177.75           | -\$148,527               | -886.24           | \$29,789                 |
| \$26.5m              | 549.87            | \$48,193                 | -10.32            | \$2.57m            | 887.85            | \$29,847                 | 176.07            | -\$150,506               | 10.32             | \$2.57m              | -549.87           | \$48,193           | -176.07           | -\$150,506               | -887.85           | \$29,847                 |
| \$26.6m              | 551.54            | \$48,229                 | -12.15            | \$2.19m            | 889.45            | \$29,906                 | 174.40            | -\$152,525               | 12.15             | \$2.19m              | -551.54           | \$48,229           | -174.40           | -\$152,525               | -889.45           | \$29,906                 |
| \$26.7m              | 553.20            | \$48,265                 | -13.99            | \$1.91m            | 891.05            | \$29,964                 | 172.72            | -\$154,584               | 13.99             | \$1.91m              | -553.20           | \$48,265           | -172.72           | -\$154,584               | -891.05           | \$29,964                 |
| \$26.8m              | 554.86            | \$48,301                 | -15.84            | \$1.69m            | 892.66            | \$30,023                 | 171.04            | -\$156,684               | 15.84             | \$1.69m              | -554.86           | \$48,301           | -171.04           | -\$156,684               | -892.66           | \$30,023                 |
| \$26.9m              | 556.52            | \$48,337                 | -17.68            | \$1.52m            | 894.26            | \$30,081                 | 169.37            | -\$158,829               | 17.68             | \$1.52m              | -556.52           | \$48,337           | -169.37           | -\$158,829               | -894.26           | \$30,081                 |
| \$27.0m              | 558.17            | \$48,372                 | -19.53            | \$1.38m            | 895.86            | \$30,139                 | 167.68            | -\$161,017               | 19.53             | \$1.38m              | -558.17           | \$48,372           | -167.68           | -\$161,017               | -895.86           | \$30,139                 |
| \$27.1m              | 559.83            | \$48,408                 | -21.39            | \$1.27m            | 897.45            | \$30,197                 | 166.00            | -\$163,253               | 21.39             | \$1.27m              | -559.83           | \$48,408           | -166.00           | -\$163,253               | -897.45           | \$30,197                 |
| \$27.2m              | 561.48            | \$48,443                 | -23.24            | \$1.17m            | 899.05            | \$30,254                 | 164.32            | -\$165,535               | 23.24             | \$1.17m              | -561.48           | \$48,443           | -164.32           | -\$165,535               | -899.05           | \$30,254                 |
| \$27.3m              | 563.14            | \$48,479                 | -25.09            | \$1.09m            | 900.65            | \$30,312                 | 162.63            | -\$167,865               | 25.09             | \$1.09m              | -563.14           | \$48,479           | -162.63           | -\$167,865               | -900.65           | \$30,312                 |
| \$27.4m              | 564.79            | \$48,514                 | -26.95            | \$1.02m            | 902.24            | \$30,369                 | 160.94            | -\$170,249               | 26.95             | \$1.02m              | -564.79           | \$48,514           | -160.94           | -\$170,249               | -902.24           | \$30,369                 |
| \$27.5m              | 566.44            | \$48,549                 | -28.81            | \$954,385          | 903.83            | \$30,426                 | 159.25            | -\$172,683               | 28.81             | \$954,385            | -566.44           | \$48,549           | -159.25           | -\$172,683               | -903.83           | \$30,426                 |
| \$27.6m              | 568.09            | \$48,584                 | -30.68            | \$899,615          | 905.42            | \$30,483                 | 157.56            | -\$175,172               | 30.68             | \$899,615            | -568.09           | \$48,584           | -157.56           | -\$175,172               | -905.42           | \$30,483                 |
| \$27.7m              | 569.73            | \$48,619                 | -32.55            | \$851,058          | 907.01            | \$30,540                 | 155.87            | -\$177,717               | 32.55             | \$851,058            | -569.73           | \$48,619           | -155.87           | -\$177,717               | -907.01           | \$30,540                 |
| \$27.8m              | 571.38            | \$48,654                 | -34.42            | \$807,713          | 908.60            | \$30,596                 | 154.17            | -\$180,319               | 34.42             | \$807,713            | -571.38           | \$48,654           | -154.17           | -\$180,319               | -908.60           | \$30,596                 |
| \$27.9m              | 573.03            | \$48,689                 | -36.29            | \$768,728          | 910.19            | \$30,653                 | 152.47            | -\$182,984               | 36.29             | \$768,728            | -573.03           | \$48,689           | -152.47           | -\$182,984               | -910.19           | \$30,653                 |
| \$28.0m              | 574.67            | \$48,724                 | -38.17            | \$733,559          | 911.77            | \$30,709                 | 150.77            | -\$185,709               | 38.17             | \$733,559            | -574.67           | \$48,724           | -150.77           | -\$185,709               | -911.77           | \$30,709                 |
| \$28.1m              | 576.31            | \$48,758                 | -40.05            | \$701,610          | 913.35            | \$30,766                 | 149.07            | -\$188,497               | 40.05             | \$701,610            | -576.31           | \$48,758           | -149.07           | -\$188,497               | -913.35           | \$30,766                 |
| \$28.2m              | 577.95            | \$48,793                 | -41.93            | \$6/2,484          | 914.94            | \$30,822                 | 147.37            | -\$191,354               | 41.93             | \$6/2,484            | -577.95           | \$48,793           | -147.37           | -\$191,354               | -914.94           | \$30,822                 |
| \$28.3m              | 5/9.59            | \$48,827                 | -43.82            | \$645,838          | 916.52            | \$30,878                 | 145.67            | -\$194,280               | 43.82             | \$645,838            | -5/9.59           | \$48,827           | -145.6/           | -\$194,280               | -916.52           | \$30,878                 |
| \$28.4m              | 581.23            | \$48,862                 | -45.70            | \$621,378          | 918.09            | \$30,934                 | 143.96            | -\$197,278               | 45.70             | \$621,378            | -581.23           | \$48,862           | -143.96           | -\$197,278               | -918.09           | \$30,934                 |
| \$28.5m              | 582.87            | \$48,896                 | -47.59            | \$598,843          | 919.67            | \$30,989                 | 142.25            | -\$200,349               | 47.59             | \$598,843            | -582.87           | \$48,896           | -142.25           | -\$200,349               | -919.67           | \$30,989                 |
| \$28.6m              | 584.51            | \$48,930                 | -49.48            | \$5//,9/8          | 921.25            | \$31,045                 | 140.54            | -\$203,498               | 49.48             | \$577,978            | -584.51           | \$48,930           | -140.54           | -\$203,498               | -921.25           | \$31,045                 |
| \$28.7m              | 580.14            | \$48,904                 | -51.38            | \$558,021          | 922.82            | \$31,100                 | 138.83            | -\$200,728               | 52.27             | \$538,021            | -380.14           | \$48,904           | -138.83           | -\$206,728               | -922.82           | \$31,100                 |
| \$28.0m              | 580.41            | \$40,022                 | -55.27            | \$522.805          | 924.39            | \$21,130                 | 137.11            | \$212,043                | 55.17             | \$522.805            | -387.77           | \$40,022           | -137.11           | \$212,442                | -924.39           | \$31,130                 |
| \$20.7III<br>\$20.0m | 501.04            | \$49,032                 | -55.17            | \$508 105          | 923.97            | \$31,211                 | 133.40            | \$216.021                | 57.07             | \$508 105            | -307.41           | \$49,032           | 133.40            | \$216.031                | 027 54            | \$31,211                 |
| \$29.0m              | 592.67            | \$49,000                 | -57.07            | \$402 /00          | 921.34            | \$31,200                 | 133.00            | -\$220,731               | 58.08             | \$493.400            | -597.04           | \$49,000           | -131.06           | -\$220,751               | -921.34           | \$31,200                 |
| \$29.1m              | 594.30            | \$49.130                 | -60.88            | \$479 507          | 930.68            | \$31,320                 | 130.24            | _\$220,317               | 60.88             | \$479 507            | -592.07           | \$49.13/           | -130.24           | -\$220,517               | -929.11           | \$31,320                 |
| \$29.2m              | 595.92            | \$49.167                 | -62.80            | \$466 589          | 932.24            | \$31.430                 | 128.52            | -\$227,199               | 62.80             | \$466 589            | -595.92           | \$49 167           | -128.52           | -\$227,199               | -932.24           | \$31,373                 |
| \$29.5m              | 597 55            | \$49 201                 | -64 71            | \$454 345          | 933.81            | \$31 484                 | 126.52            | -\$231 874               | 64 71             | \$454 345            | -597 55           | \$49 201           | -126.79           | -\$231 874               | -933.81           | \$31 484                 |
| \$29.5m              | 599.18            | \$49 234                 | -66.63            | \$442,768          | 935 37            | \$31 538                 | 125.07            | -\$235 874               | 66.63             | \$442,768            | -599.18           | \$49 234           | -125.07           | -\$235 874               | -935 37           | \$31 538                 |
| \$29.6m              | 600.80            | \$49,268                 | -68 55            | \$431 819          | 936.94            | \$31,592                 | 123.34            | -\$239 995               | 68 55             | \$431 819            | -600 80           | \$49,268           | -123.34           | -\$239 995               | -936 94           | \$31,592                 |
| \$29.7m              | 602.42            | \$49.301                 | -70.47            | \$421,460          | 938.50            | \$31.646                 | 121.61            | -\$244.233               | 70.47             | \$421,460            | -602.42           | \$49.301           | -121.61           | -\$244.233               | -938.50           | \$31.646                 |

|               |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                          |                   | j.                 | λ4                |                          |                   |                                  |
|---------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|----------------------------------|
|               | Α                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informa        | tion                     | A                 | gent has good            | l informatio      | n                  |                   | Agent has poo            | r informatio      | n                                |
|               | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | investment               | Net In            | vestment                 | Net Disir         | ivestment          | Net In            | vestment                 | Net Disin         | vestment                         |
| Budget imnact | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{p}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{\rm p}^{-})^{\rm d}$ |
| \$29.8m       | 604.04            | \$49.334                 | -72.39            | \$411.644          | 940.07            | \$31,700                 | 119.87            | -\$248,595               | 72.39             | \$411.644                | -604.04           | \$49.334           | -119.87           | -\$248,595               | -940.07           | \$31,700                         |
| \$29.9m       | 605.66            | \$49.367                 | -74.32            | \$402.325          | 941.63            | \$31,754                 | 118.14            | -\$253.094               | 74.32             | \$402.325                | -605.66           | \$49.367           | -118.14           | -\$253.094               | -941.63           | \$31,754                         |
| \$30.0m       | 607.28            | \$49,400                 | -76.25            | \$393,459          | 943.19            | \$31,807                 | 116.40            | -\$257,728               | 76.25             | \$393,459                | -607.28           | \$49,400           | -116.40           | -\$257.728               | -943.19           | \$31.807                         |
| \$30.1m       | 608.90            | \$49,433                 | -78.18            | \$385.023          | 944.75            | \$31,860                 | 114.66            | -\$262.512               | 78.18             | \$385.023                | -608.90           | \$49,433           | -114.66           | -\$262.512               | -944.75           | \$31.860                         |
| \$30.2m       | 610.52            | \$49,466                 | -80.11            | \$376,974          | 946.31            | \$31,914                 | 112.92            | -\$267,443               | 80.11             | \$376,974                | -610.52           | \$49,466           | -112.92           | -\$267.443               | -946.31           | \$31,914                         |
| \$30.3m       | 612.13            | \$49,499                 | -82.05            | \$369.280          | 947.86            | \$31,967                 | 111.18            | -\$272.533               | 82.05             | \$369.280                | -612.13           | \$49,499           | -111.18           | -\$272.533               | -947.86           | \$31,967                         |
| \$30.4m       | 613 75            | \$49.532                 | -83.99            | \$361 941          | 949 42            | \$32,020                 | 109.43            | -\$277 793               | 83.99             | \$361.941                | -613 75           | \$49 532           | -109.43           | -\$277 793               | -949 42           | \$32,020                         |
| \$30.5m       | 615 36            | \$49 565                 | -85.94            | \$354 910          | 950.97            | \$32,072                 | 107.69            | -\$283 229               | 85.94             | \$354 910                | -615 36           | \$49 565           | -107.69           | -\$283 229               | -950.97           | \$32,072                         |
| \$30.6m       | 616.97            | \$49 597                 | -87.89            | \$348 174          | 952.52            | \$32,125                 | 105 94            | -\$288 849               | 87.89             | \$348 174                | -616.97           | \$49 597           | -105 94           | -\$288,849               | -952.52           | \$32,125                         |
| \$30.7m       | 618.58            | \$49,630                 | -89.84            | \$341.724          | 954.08            | \$32,178                 | 104.19            | -\$294,660               | 89.84             | \$341.724                | -618.58           | \$49.630           | -104.19           | -\$294.660               | -954.08           | \$32,128                         |
| \$30.8m       | 620.19            | \$49.662                 | -91.80            | \$335 527          | 955.63            | \$32,230                 | 102.43            | -\$300,680               | 91.80             | \$335 527                | -620.19           | \$49.662           | -102.43           | -\$300,680               | -955.63           | \$32,230                         |
| \$30.9m       | 621.80            | \$49,695                 | -93.76            | \$329 582          | 957.18            | \$32,282                 | 100.68            | -\$306.914               | 93.76             | \$329 582                | -621.80           | \$49,695           | -100.68           | -\$306.914               | -957.18           | \$32,282                         |
| \$31.0m       | 623.40            | \$49 727                 | -95 71            | \$323,880          | 958 73            | \$32,334                 | 98.92             | -\$313 378               | 95.71             | \$323,880                | -623.40           | \$49 727           | -98.92            | -\$313 378               | -958 73           | \$32,334                         |
| \$31.1m       | 625.01            | \$49,759                 | -97.67            | \$318 405          | 960.28            | \$32,387                 | 97.16             | -\$320,080               | 97.67             | \$318.405                | -625.01           | \$49,759           | -97.16            | -\$320,080               | -960.28           | \$32,387                         |
| \$31.2m       | 626.61            | \$49,791                 | -99.64            | \$313 135          | 961.82            | \$32,307                 | 95.40             | -\$327,033               | 99.64             | \$313 135                | -626.61           | \$49 791           | -95 40            | -\$327,033               | -961.82           | \$32,438                         |
| \$31.3m       | 628.22            | \$49 824                 | -101.60           | \$308.065          | 963.37            | \$32,490                 | 93.64             | -\$334 264               | 101.60            | \$308.065                | -628.22           | \$49,824           | -93.64            | -\$334 264               | -963.37           | \$32,490                         |
| \$31.4m       | 629.82            | \$49,856                 | -103 57           | \$303,174          | 964.91            | \$32,542                 | 91.87             | -\$341 774               | 103.57            | \$303 174                | -629.82           | \$49,856           | -91.87            | -\$341 774               | -964 91           | \$32,542                         |
| \$31.5m       | 631.42            | \$49,888                 | -105.54           | \$298.463          | 966.46            | \$32,512                 | 90.11             | -\$349 585               | 105.57            | \$298.463                | -631.42           | \$49,888           | -90.11            | -\$349 585               | -966.46           | \$32,593                         |
| \$31.6m       | 633.02            | \$49,919                 | -107 51           | \$293,924          | 968.00            | \$32,645                 | 88.34             | -\$357 722               | 107.51            | \$293,924                | -633.02           | \$49,919           | -88 34            | -\$357 722               | -968.00           | \$32,645                         |
| \$31.7m       | 634.62            | \$49.951                 | -109.49           | \$289.536          | 969.54            | \$32,696                 | 86.57             | -\$366 193               | 109.49            | \$289.536                | -634 62           | \$49.951           | -86 57            | -\$366 193               | -969 54           | \$32,696                         |
| \$31.8m       | 636.22            | \$49,983                 | -111 46           | \$285 302          | 971.08            | \$32,747                 | 84 79             | -\$375.039               | 111 46            | \$285 302                | -636.22           | \$49 983           | -84 79            | -\$375.039               | -971.08           | \$32,747                         |
| \$31.9m       | 637.81            | \$50.015                 | -113.44           | \$281,202          | 972.62            | \$32,798                 | 83.02             | -\$384 267               | 113 44            | \$281,202                | -637.81           | \$50.015           | -83.02            | -\$384 267               | -972.62           | \$32,798                         |
| \$32.0m       | 639.41            | \$50,046                 | -115.42           | \$277,243          | 974.16            | \$32,849                 | 81.24             | -\$393 901               | 115.42            | \$277,243                | -639.41           | \$50.046           | -81.24            | -\$393 901               | -974 16           | \$32,849                         |
| \$32.1m       | 641.00            | \$50,078                 | -117.40           | \$273.417          | 975.69            | \$32,900                 | 79.46             | -\$403 985               | 117.40            | \$273.417                | -641.00           | \$50,078           | -79.46            | -\$403 985               | -975.69           | \$32,900                         |
| \$32.2m       | 642.59            | \$50,109                 | -119.39           | \$269,706          | 977.23            | \$32,950                 | 77.68             | -\$414.543               | 119.39            | \$269,706                | -642.59           | \$50,109           | -77.68            | -\$414.543               | -977.23           | \$32,950                         |
| \$32.3m       | 644.18            | \$50,141                 | -121.38           | \$266,115          | 978.77            | \$33,001                 | 75.89             | -\$425.613               | 121.38            | \$266,115                | -644.18           | \$50,141           | -75.89            | -\$425.613               | -978.77           | \$33.001                         |
| \$32.4m       | 645.78            | \$50,172                 | -123.37           | \$262.630          | 980.30            | \$33,051                 | 74.11             | -\$437,217               | 123.37            | \$262.630                | -645.78           | \$50,172           | -74.11            | -\$437,217               | -980.30           | \$33.051                         |
| \$32.5m       | 647.37            | \$50,204                 | -125.36           | \$259.255          | 981.83            | \$33,101                 | 72.32             | -\$449,414               | 125.36            | \$259.255                | -647.37           | \$50,204           | -72.32            | -\$449,414               | -981.83           | \$33,101                         |
| \$32.6m       | 648.95            | \$50,235                 | -127.35           | \$255,983          | 983.37            | \$33,151                 | 70.53             | -\$462,243               | 127.35            | \$255,983                | -648.95           | \$50.235           | -70.53            | -\$462,243               | -983.37           | \$33,151                         |
| \$32.7m       | 650.54            | \$50,266                 | -129.35           | \$252,803          | 984.90            | \$33,201                 | 68.73             | -\$475,763               | 129.35            | \$252,803                | -650.54           | \$50,266           | -68.73            | -\$475,763               | -984.90           | \$33,201                         |
| \$32.8m       | 652.13            | \$50,297                 | -131.35           | \$249,716          | 986.43            | \$33,251                 | 66.94             | -\$490.015               | 131.35            | \$249,716                | -652.13           | \$50,297           | -66.94            | -\$490.015               | -986.43           | \$33,251                         |
| \$32.9m       | 653.71            | \$50,328                 | -133.35           | \$246,722          | 987.96            | \$33,301                 | 65.14             | -\$505.052               | 133.35            | \$246,722                | -653.71           | \$50,328           | -65.14            | -\$505,052               | -987.96           | \$33,301                         |
| \$33.0m       | 655.29            | \$50,359                 | -135.35           | \$243.812          | 989.49            | \$33,351                 | 63.35             | -\$520,950               | 135.35            | \$243.812                | -655.29           | \$50,359           | -63.35            | -\$520,950               | -989.49           | \$33,351                         |
| \$33.1m       | 656.88            | \$50,390                 | -137.35           | \$240,984          | 991.01            | \$33,400                 | 61.54             | -\$537.822               | 137.35            | \$240,984                | -656.88           | \$50,390           | -61.54            | -\$537,822               | -991.01           | \$33,400                         |
| \$33.2m       | 658.46            | \$50,421                 | -139.36           | \$238,233          | 992.54            | \$33,450                 | 59.74             | -\$555,711               | 139.36            | \$238,233                | -658.46           | \$50,421           | -59.74            | -\$555,711               | -992.54           | \$33,450                         |
| \$33.3m       | 660.04            | \$50,452                 | -141.37           | \$235,555          | 994.06            | \$33,499                 | 57.94             | -\$574,747               | 141.37            | \$235,555                | -660.04           | \$50,452           | -57.94            | -\$574,747               | -994.06           | \$33,499                         |
| \$33.4m       | 661.62            | \$50,482                 | -143.38           | \$232,947          | 995.59            | \$33,548                 | 56.13             | -\$595,027               | 143.38            | \$232,947                | -661.62           | \$50,482           | -56.13            | -\$595,027               | -995.59           | \$33,548                         |
| \$33.5m       | 663.20            | \$50,513                 | -145.39           | \$230,410          | 997.11            | \$33,597                 | 54.32             | -\$616,668               | 145.39            | \$230,410                | -663.20           | \$50,513           | -54.32            | -\$616,668               | -997.11           | \$33,597                         |
| \$33.6m       | 664.77            | \$50,544                 | -147.41           | \$227,938          | 998.63            | \$33,646                 | 52.51             | -\$639,852               | 147.41            | \$227,938                | -664.77           | \$50,544           | -52.51            | -\$639,852               | -998.63           | \$33,646                         |
| \$33.7m       | 666.35            | \$50,574                 | -149.43           | \$225,529          | 1000.15           | \$33,695                 | 50.70             | -\$664,720               | 149.43            | \$225,529                | -666.35           | \$50,574           | -50.70            | -\$664,720               | -1000.15          | \$33,695                         |
| \$33.8m       | 667.92            | \$50,605                 | -151.45           | \$223,180          | 1001.67           | \$33,744                 | 48.88             | -\$691,444               | 151.45            | \$223,180                | -667.92           | \$50,605           | -48.88            | -\$691,444               | -1001.67          | \$33,744                         |
| \$33.9m       | 669.50            | \$50,635                 | -153.47           | \$220,888          | 1003.19           | \$33,792                 | 47.07             | -\$720,270               | 153.47            | \$220,888                | -669.50           | \$50,635           | -47.07            | -\$720,270               | -1003.19          | \$33,792                         |
| \$34.0m       | 671.07            | \$50,665                 | -155.50           | \$218,655          | 1004.71           | \$33,841                 | 45.24             | -\$751,465               | 155.50            | \$218,655                | -671.07           | \$50,665           | -45.24            | -\$751,465               | -1004.71          | \$33,841                         |
| \$34.1m       | 672.64            | \$50,696                 | -157.52           | \$216,476          | 1006.23           | \$33,889                 | 43.42             | -\$785,317               | 157.52            | \$216,476                | -672.64           | \$50,696           | -43.42            | -\$785,317               | -1006.23          | \$33,889                         |
| \$34.2m       | 674.21            | \$50,726                 | -159.55           | \$214,347          | 1007.74           | \$33,937                 | 41.60             | -\$822,178               | 159.55            | \$214,347                | -674.21           | \$50,726           | -41.60            | -\$822,178               | -1007.74          | \$33,937                         |
| \$34.3m       | 675.78            | \$50,756                 | -161.59           | \$212,270          | 1009.26           | \$33,985                 | 39.77             | -\$862,472               | 161.59            | \$212,270                | -675.78           | \$50,756           | -39.77            | -\$862,472               | -1009.26          | \$33,985                         |
| \$34.4m       | 677.35            | \$50,786                 | -163.62           | \$210,243          | 1010.77           | \$34,033                 | 37.94             | -\$906,675               | 163.62            | \$210,243                | -677.35           | \$50,786           | -37.94            | -\$906,675               | -1010.77          | \$34,033                         |
| \$34.5m       | 678.92            | \$50,816                 | -165.66           | \$208,263          | 1012.28           | \$34,081                 | 36.11             | -\$955,503               | 165.66            | \$208,263                | -678.92           | \$50,816           | -36.11            | -\$955,503               | -1012.28          | \$34,081                         |
| \$34.6m       | 680.48            | \$50,846                 | -167.69           | \$206,329          | 1013.79           | \$34,129                 | 34.27             | -\$1.01m                 | 167.69            | \$206,329                | -680.48           | \$50,846           | -34.27            | -\$1.01m                 | -1013.79          | \$34,129                         |
| \$34.7m       | 682.05            | \$50,876                 | -169.73           | \$204,439          | 1015.30           | \$34,177                 | 32.44             | -\$1.07m                 | 169.73            | \$204,439                | -682.05           | \$50,876           | -32.44            | -\$1.07m                 | -1015.30          | \$34,177                         |

|                      |                   |                          |                   | 2                  | 13                |                          |                   |                          |                   |                          |                   | j.                 | 14                |                          |                   |                          |
|----------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|                      | А                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informat       | ion                      | A                 | gent has good            | l informatio      | on                 | A                 | gent has poo             | r informatio      | п                        |
|                      | Net Inv           | estment 8                | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | nvestment                | Net In            | vestment                 | Net Disir         | ivestment          | Net In            | vestment                 | Net Disin         | vestment                 |
| Budget imnact        | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{p}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$34.8m              | 683.61            | \$50.906                 | -171.77           | \$202.592          | 1016.81           | \$34.225                 | 30.60             | -\$1.14m                 | 171.77            | \$202.592                | -683.61           | \$50,906           | -30.60            | -\$1.14m                 | -1016.81          | \$34.225                 |
| \$34.9m              | 685.17            | \$50,936                 | -173.82           | \$200,785          | 1018.32           | \$34,272                 | 28.76             | -\$1.21m                 | 173.82            | \$200,785                | -685.17           | \$50,936           | -28.76            | -\$1.21m                 | -1018.32          | \$34,272                 |
| \$35.0m              | 686.73            | \$50,966                 | -175.86           | \$199.018          | 1019.83           | \$34,320                 | 26.91             | -\$1.30m                 | 175.86            | \$199.018                | -686.73           | \$50,966           | -26.91            | -\$1.30m                 | -1019.83          | \$34,320                 |
| \$35.1m              | 688.30            | \$50,996                 | -177.91           | \$197.289          | 1021.33           | \$34,367                 | 25.06             | -\$1.40m                 | 177.91            | \$197.289                | -688.30           | \$50,996           | -25.06            | -\$1.40m                 | -1021.33          | \$34,367                 |
| \$35.2m              | 689.86            | \$51.025                 | -179.96           | \$195,598          | 1022.84           | \$34,414                 | 23.22             | -\$1.52m                 | 179.96            | \$195,598                | -689.86           | \$51.025           | -23.22            | -\$1.52m                 | -1022.84          | \$34,414                 |
| \$35.3m              | 691.41            | \$51,055                 | -182.01           | \$193,944          | 1024.35           | \$34,461                 | 21.36             | -\$1.65m                 | 182.01            | \$193,944                | -691.41           | \$51.055           | -21.36            | -\$1.65m                 | -1024.35          | \$34,461                 |
| \$35.4m              | 692.97            | \$51,084                 | -184.06           | \$192.325          | 1025.85           | \$34,508                 | 19.51             | -\$1.81m                 | 184.06            | \$192.325                | -692.97           | \$51,084           | -19.51            | -\$1.81m                 | -1025.85          | \$34,508                 |
| \$35.5m              | 694.53            | \$51,114                 | -186.12           | \$190,736          | 1027.36           | \$34,555                 | 17.65             | -\$2.01m                 | 186.12            | \$190,736                | -694.53           | \$51,114           | -17.65            | -\$2.01m                 | -1027.36          | \$34,555                 |
| \$35.6m              | 696.08            | \$51,143                 | -188.18           | \$189,181          | 1028.86           | \$34,602                 | 15.79             | -\$2.25m                 | 188.18            | \$189,181                | -696.08           | \$51,143           | -15.79            | -\$2.25m                 | -1028.86          | \$34,602                 |
| \$35.7m              | 697.64            | \$51,173                 | -190.24           | \$187,658          | 1030.36           | \$34,648                 | 13.93             | -\$2.56m                 | 190.24            | \$187,658                | -697.64           | \$51,173           | -13.93            | -\$2.56m                 | -1030.36          | \$34,648                 |
| \$35.8m              | 699.19            | \$51,202                 | -192.30           | \$186,164          | 1031.86           | \$34,695                 | 12.07             | -\$2.97m                 | 192.30            | \$186,164                | -699.19           | \$51,202           | -12.07            | -\$2.97m                 | -1031.86          | \$34,695                 |
| \$35.9m              | 700.74            | \$51,231                 | -194.37           | \$184,701          | 1033.36           | \$34,741                 | 10.20             | -\$3.52m                 | 194.37            | \$184,701                | -700.74           | \$51,231           | -10.20            | -\$3.52m                 | -1033.36          | \$34,741                 |
| \$36.0m              | 702.29            | \$51,261                 | -196.44           | \$183.263          | 1034.85           | \$34,788                 | 8.33              | -\$4.32m                 | 196.44            | \$183,263                | -702.29           | \$51,261           | -8.33             | -\$4.32m                 | -1034.85          | \$34,788                 |
| \$36.1m              | 703.84            | \$51,290                 | -198.51           | \$181.854          | 1036.35           | \$34,834                 | 6.46              | -\$5.59m                 | 198.51            | \$181.854                | -703.84           | \$51,290           | -6.46             | -\$5.59m                 | -1036.35          | \$34,834                 |
| \$36.2m              | 705.39            | \$51,319                 | -200.58           | \$180,473          | 1037.85           | \$34,880                 | 4.59              | -\$7.89m                 | 200.58            | \$180,473                | -705.39           | \$51,319           | -4.59             | -\$7.89m                 | -1037.85          | \$34,880                 |
| \$36.3m              | 706.94            | \$51,348                 | -202.66           | \$179,116          | 1039.34           | \$34,926                 | 2.71              | -\$13.40m                | 202.66            | \$179,116                | -706.94           | \$51,348           | -2.71             | -\$13.40m                | -1039.34          | \$34,926                 |
| \$36.4m              | 708.49            | \$51,377                 | -204.74           | \$177,787          | 1040.84           | \$34,972                 | 0.83              | -\$43.90m                | 204.74            | \$177,787                | -708.49           | \$51,377           | -0.83             | -\$43.90m                | -1040.84          | \$34,972                 |
| \$36.5m              | 710.03            | \$51,406                 | -206.82           | \$176,478          | 1042.33           | \$35,018                 | -1.05             | \$34.70m                 | 206.82            | \$176,478                | -710.03           | \$51,406           | 1.05              | \$34.70m                 | -1042.33          | \$35,018                 |
| \$36.6m              | 711.58            | \$51,435                 | -208.91           | \$175,196          | 1043.82           | \$35,063                 | -2.94             | \$12.46m                 | 208.91            | \$175,196                | -711.58           | \$51,435           | 2.94              | \$12.46m                 | -1043.82          | \$35,063                 |
| \$36.7m              | 713.12            | \$51,464                 | -211.00           | \$173,938          | 1045.31           | \$35,109                 | -4.82             | \$7.61m                  | 211.00            | \$173,938                | -713.12           | \$51,464           | 4.82              | \$7.61m                  | -1045.31          | \$35,109                 |
| \$36.8m              | 714.66            | \$51,493                 | -213.08           | \$172,704          | 1046.80           | \$35,155                 | -6.72             | \$5.48m                  | 213.08            | \$172,704                | -714.66           | \$51,493           | 6.72              | \$5.48m                  | -1046.80          | \$35,155                 |
| \$36.9m              | 716.21            | \$51,521                 | -215.17           | \$171,490          | 1048.29           | \$35,200                 | -8.61             | \$4.29m                  | 215.17            | \$171,490                | -716.21           | \$51,521           | 8.61              | \$4.29m                  | -1048.29          | \$35,200                 |
| \$37.0m              | 717.75            | \$51,550                 | -217.26           | \$170,299          | 1049.78           | \$35,245                 | -10.50            | \$3.52m                  | 217.26            | \$170,299                | -717.75           | \$51,550           | 10.50             | \$3.52m                  | -1049.78          | \$35,245                 |
| \$37.1m              | 719.29            | \$51,579                 | -219.36           | \$169,126          | 1051.27           | \$35,291                 | -12.40            | \$2.99m                  | 219.36            | \$169,126                | -719.29           | \$51,579           | 12.40             | \$2.99m                  | -1051.27          | \$35,291                 |
| \$37.2m              | 720.83            | \$51,607                 | -221.46           | \$167,974          | 1052.76           | \$35,336                 | -14.30            | \$2.60m                  | 221.46            | \$167,974                | -720.83           | \$51,607           | 14.30             | \$2.60m                  | -1052.76          | \$35,336                 |
| \$37.3m              | 722.36            | \$51,636                 | -223.56           | \$166,845          | 1054.24           | \$35,381                 | -16.21            | \$2.30m                  | 223.56            | \$166,845                | -722.36           | \$51,636           | 16.21             | \$2.30m                  | -1054.24          | \$35,381                 |
| \$37.4m              | 723.90            | \$51,665                 | -225.67           | \$165,731          | 1055.73           | \$35,426                 | -18.11            | \$2.06m                  | 225.67            | \$165,731                | -723.90           | \$51,665           | 18.11             | \$2.06m                  | -1055.73          | \$35,426                 |
| \$37.5m              | 725.44            | \$51,693                 | -227.77           | \$164,638          | 1057.21           | \$35,471                 | -20.02            | \$1.87m                  | 227.77            | \$164,638                | -725.44           | \$51,693           | 20.02             | \$1.87m                  | -1057.21          | \$35,471                 |
| \$37.6m              | 726.97            | \$51,721                 | -229.89           | \$163,560          | 1058.69           | \$35,516                 | -21.93            | \$1.71m                  | 229.89            | \$163,560                | -726.97           | \$51,721           | 21.93             | \$1.71m                  | -1058.69          | \$35,516                 |
| \$37.7m              | 728.50            | \$51,750                 | -232.00           | \$162,501          | 1060.17           | \$35,560                 | -23.85            | \$1.58m                  | 232.00            | \$162,501                | -728.50           | \$51,750           | 23.85             | \$1.58m                  | -1060.17          | \$35,560                 |
| \$37.8m              | 730.04            | \$51,778                 | -234.11           | \$161,462          | 1061.65           | \$35,605                 | -25.77            | \$1.47m                  | 234.11            | \$161,462                | -730.04           | \$51,778           | 25.77             | \$1.47m                  | -1061.65          | \$35,605                 |
| \$37.9m              | 731.57            | \$51,806                 | -236.23           | \$160,436          | 1063.13           | \$35,649                 | -27.68            | \$1.37m                  | 236.23            | \$160,436                | -731.57           | \$51,806           | 27.68             | \$1.37m                  | -1063.13          | \$35,649                 |
| \$38.0m              | 733.10            | \$51,835                 | -238.35           | \$159,428          | 1064.61           | \$35,694                 | -29.61            | \$1.28m                  | 238.35            | \$159,428                | -733.10           | \$51,835           | 29.61             | \$1.28m                  | -1064.61          | \$35,694                 |
| \$38.1m              | 734.63            | \$51,863                 | -240.48           | \$158,434          | 1066.09           | \$35,738                 | -31.53            | \$1.21m                  | 240.48            | \$158,434                | -734.63           | \$51,863           | 31.53             | \$1.21m                  | -1066.09          | \$35,738                 |
| \$38.2m              | 736.16            | \$51,891                 | -242.61           | \$157,457          | 1067.57           | \$35,782                 | -33.46            | \$1.14m                  | 242.61            | \$157,457                | -736.16           | \$51,891           | 33.46             | \$1.14m                  | -1067.57          | \$35,782                 |
| \$38.3m              | 737.69            | \$51,919                 | -244.73           | \$156,497          | 1069.05           | \$35,826                 | -35.39            | \$1.08m                  | 244.73            | \$156,497                | -737.69           | \$51,919           | 35.39             | \$1.08m                  | -1069.05          | \$35,826                 |
| \$38.4m              | 739.21            | \$51,947                 | -246.86           | \$155,552          | 10/0.52           | \$35,870                 | -37.33            | \$1.03m                  | 246.86            | \$155,552                | -739.21           | \$51,947           | 37.33             | \$1.03m                  | -10/0.52          | \$35,870                 |
| \$38.5m              | 740.74            | \$51,975                 | -249.00           | \$154,620          | 10/2.00           | \$35,914                 | -39.27            | \$980,494                | 249.00            | \$154,620                | -//40.//4         | \$51,975           | 39.27             | \$980,494                | -10/2.00          | \$35,914                 |
| \$38.6m              | 742.26            | \$52,003                 | -251.13           | \$153,704          | 10/3.4/           | \$35,958                 | -41.21            | \$936,731                | 251.13            | \$153,704                | -742.26           | \$52,003           | 41.21             | \$936,731                | -10/3.47          | \$35,958                 |
| \$38.7m              | 743.79            | \$52,031                 | -253.27           | \$152,803          | 1074.94           | \$36,002                 | -43.15            | \$896,873                | 253.27            | \$152,803                | -743.79           | \$52,031           | 43.15             | \$896,873                | -1074.94          | \$36,002                 |
| \$38.8m              | 745.31            | \$52,059                 | -255.41           | \$151,914          | 1076.42           | \$36,046                 | -45.10            | \$860,405                | 255.41            | \$151,914                | -745.31           | \$52,059           | 45.10             | \$860,405                | -10/6.42          | \$36,046                 |
| \$38.9m              | 746.83            | \$52,087                 | -257.55           | \$151,038          | 1077.89           | \$36,089                 | -47.04            | \$826,870                | 257.55            | \$151,038                | -/46.83           | \$52,087           | 47.04             | \$826,870                | -1077.89          | \$36,089                 |
| \$39.0m              | /48.35            | \$52,115                 | -259.69           | \$150,177          | 10/9.36           | \$30,133                 | -49.00            | \$/95,9/1                | 259.69            | \$150,177                | -/48.35           | \$52,115           | 49.00             | \$/95,971                | -10/9.36          | \$30,133                 |
| \$39.1m              | 749.87            | \$52,142                 | -261.84           | \$149,326          | 1080.83           | \$36,176                 | -50.95            | \$767,372                | 261.84            | \$149,326                | -/49.8/           | \$52,142           | 50.95             | \$767,372                | -1080.83          | \$36,176                 |
| \$39.2m              | /51.39            | \$52,170                 | -263.99           | \$148,488          | 1082.30           | \$36,219                 | -52.91            | \$/40,856                | 263.99            | \$148,488                | -/51.39           | \$52,170           | 54.97             | \$716.222                | -1082.30          | \$36,219                 |
| \$39.3m              | 754.42            | \$52,198                 | -200.13           | \$14/,001          | 1085.77           | \$30,202                 | -34.8/            | \$/10,232                | 200.13            | \$14/,001                | -/52.90           | \$52,198           | 56.84             | \$/10,232                | -1085.//          | \$30,202                 |
| \$39.4m<br>\$20.5m   | 755.02            | \$52,226                 | -208.31           | \$140,847          | 1085.23           | \$30,300                 | -30.84            | \$093,222<br>\$671,726   | 208.31            | \$140,84/                | -/34.42           | \$52,226           | 50.04             | \$671.726                | -1085.23          | \$30,300                 |
| \$39.5m              | 757 44            | \$52,234                 | -2/0.4/           | \$140,044          | 1080.70           | \$26 201                 | -36.80            | \$651 505                | 270.47            | \$140,044                | -133.93           | \$52,234           | 56.80             | \$651 505                | -1060.70          | \$26 201                 |
| \$39.0III<br>\$30.7m | 758.95            | \$52,201                 | -272.03           | \$143,231          | 1089.63           | \$36,434                 | -62.75            | \$632.704                | 272.03            | \$143,231                | -758.95           | \$52,201           | 62.75             | \$632 704                | -1089.63          | \$36,391                 |

|                      |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                          |                   | j.                   | 14                |                          |                   |                                  |
|----------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|----------------------|-------------------|--------------------------|-------------------|----------------------------------|
|                      | А                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informat       | ion                      | A                 | gent has good            | l informatio      | on                   | A                 | gent has poo             | r informatio      | n                                |
|                      | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | nvestment                | Net In            | vestment                 | Net Disir         | ivestment            | Net In            | vestment                 | Net Disin         | vestment                         |
| Budget imnact        | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$   | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{\rm p}^{-})^{\rm d}$ |
| \$39.8m              | 760.46            | \$52.337                 | -276.97           | \$143.699          | 1091.10           | \$36,477                 | -64.72            | \$614.925                | 276.97            | \$143.699                | -760.46           | \$52.337             | 64.72             | \$614,925                | -1091.10          | \$36,477                         |
| \$39.9m              | 761.97            | \$52,364                 | -279.14           | \$142.939          | 1092.56           | \$36,520                 | -66.70            | \$598,174                | 279.14            | \$142,939                | -761.97           | \$52,364             | 66.70             | \$598,174                | -1092.56          | \$36.520                         |
| \$40.0m              | 763.47            | \$52,392                 | -281.32           | \$142,189          | 1094.03           | \$36,562                 | -68.69            | \$582.347                | 281.32            | \$142,189                | -763.47           | \$52,392             | 68.69             | \$582.347                | -1094.03          | \$36.562                         |
| \$40.1m              | 764 98            | \$52,420                 | -283 50           | \$141 448          | 1095 49           | \$36,605                 | -70.67            | \$567 397                | 283 50            | \$141 448                | -764 98           | \$52,420             | 70.67             | \$567 397                | -1095 49          | \$36,605                         |
| \$40.2m              | 766.48            | \$52,447                 | -285.68           | \$140.717          | 1096.95           | \$36,647                 | -72.66            | \$553.259                | 285.68            | \$140,717                | -766.48           | \$52,447             | 72.66             | \$553,259                | -1096.95          | \$36.647                         |
| \$40.3m              | 767.99            | \$52,475                 | -287.86           | \$139,996          | 1098 41           | \$36,689                 | -74 65            | \$539.821                | 287.86            | \$139,996                | -767.99           | \$52,475             | 74.65             | \$539,821                | -1098 41          | \$36,689                         |
| \$40.4m              | 769.49            | \$52,502                 | -290.05           | \$139,286          | 1099.87           | \$36,732                 | -76.65            | \$527.071                | 290.05            | \$139,286                | -769 49           | \$52,502             | 76.65             | \$527.071                | -1099.87          | \$36,732                         |
| \$40.5m              | 770.99            | \$52,530                 | -292.24           | \$138,585          | 1101 33           | \$36,774                 | -78.65            | \$514 944                | 292.24            | \$138 585                | -770 99           | \$52,530             | 78.65             | \$514 944                | -1101 33          | \$36,774                         |
| \$40.6m              | 772.49            | \$52,558                 | -294 43           | \$137,894          | 1102 79           | \$36,816                 | -80.65            | \$503.406                | 294 43            | \$137,894                | -772 49           | \$52,558             | 80.65             | \$503.406                | -1102.79          | \$36,816                         |
| \$40.7m              | 773.98            | \$52,556                 | -296.63           | \$137,091          | 1104.25           | \$36,858                 | -82.66            | \$492,403                | 296.63            | \$137,091                | -773.98           | \$52,536             | 82.66             | \$492,403                | -1104.25          | \$36,858                         |
| \$40.8m              | 775.48            | \$52,613                 | -298.83           | \$136.534          | 1105 71           | \$36,899                 | -84.66            | \$481,902                | 298.83            | \$136 534                | -775.48           | \$52,613             | 84.66             | \$481,902                | -1105.71          | \$36,899                         |
| \$40.9m              | 776.98            | \$52,640                 | -301.03           | \$135,868          | 1107.17           | \$36,941                 | -86.67            | \$471 880                | 301.03            | \$135,868                | -776.98           | \$52,640             | 86.67             | \$471,880                | -1107.17          | \$36,941                         |
| \$41.0m              | 778.47            | \$52,667                 | -303 23           | \$135,000          | 1108.62           | \$36,983                 | -88.69            | \$462,289                | 303.23            | \$135,000                | -778.47           | \$52,610             | 88.69             | \$462,289                | -1108.62          | \$36,983                         |
| \$41.0m              | 779.96            | \$52,007                 | -305.44           | \$134 559          | 1110.02           | \$37,024                 | -90.70            | \$453 122                | 305.44            | \$134 559                | -779.96           | \$52,607             | 90.70             | \$453 122                | -1110.02          | \$37,024                         |
| \$41.7m              | 781.45            | \$52,073                 | -307.65           | \$133,917          | 1111.54           | \$37,024                 | -92 72            | \$444 348                | 307.65            | \$133,917                | -781.45           | \$52,075             | 92.72             | \$444 348                | -1111.54          | \$37,024                         |
| \$41.2m              | 782.94            | \$52,722                 | -309.87           | \$133,283          | 1112.99           | \$37,000                 | -92.72            | \$435.912                | 309.87            | \$133,283                | -782.94           | \$52,722             | 94 74             | \$435.912                | -1112.99          | \$37,000                         |
| \$41.5m              | 784.43            | \$52,750                 | 312.08            | \$132,657          | 1112.99           | \$37,107                 | 96.77             | \$427,823                | 312.08            | \$132,657                | 784.43            | \$52,750             | 96.77             | \$427,823                | 1114.45           | \$37,107                         |
| \$41.5m              | 785.02            | \$52,777                 | 314.30            | \$132,037          | 1115.00           | \$37,149                 | -90.77            | \$420.044                | 314.30            | \$132,037                | 785.02            | \$52,777             | 90.77             | \$420.044                | 1115.90           | \$37,149                         |
| \$41.5m              | 787.41            | \$52,804                 | -316.52           | \$131.428          | 1117.36           | \$37,190                 | -100.83           | \$412 574                | 316.52            | \$131.428                | -787.41           | \$52,804             | 100.83            | \$412 574                | -1117.36          | \$37,190                         |
| \$41.0m              | 788.80            | \$52,852                 | 318 75            | \$130,824          | 1118.81           | \$37,231                 | 102.87            | \$405 383                | 318 75            | \$130,824                | 788.80            | \$52,852             | 102.87            | \$405 383                | 1118.81           | \$37,231                         |
| \$41.7m              | 700.38            | \$52,855                 | 320.08            | \$130,824          | 1120.26           | \$37,272                 | 104.90            | \$308.457                | 320.08            | \$130,824                | 700.38            | \$52,855             | 102.87            | \$308.457                | 1120.26           | \$37,272                         |
| \$41.0m              | 790.38            | \$52,000                 | -320.98           | \$130,220          | 1120.20           | \$37,313                 | -104.90           | \$396,437                | 222.21            | \$130,220                | -790.38           | \$52,000             | 104.90            | \$396,437                | -1120.20          | \$37,313                         |
| \$41.9m              | 702.24            | \$52,913                 | 225.45            | \$129,030          | 1121./1           | \$27.204                 | 100.93            | \$391,709                | 225.45            | \$129,030                | 702.24            | \$52,913             | 100.93            | \$391,709                | -1121./1          | \$37,334                         |
| \$42.0m              | 793.34            | \$52,941                 | -323.43           | \$129,033          | 1123.10           | \$37,394                 | -109.00           | \$365,331                | 227.60            | \$129,033                | 704.82            | \$52,941             | 111.04            | \$365,331                | -1123.10          | \$37,394                         |
| \$42.1111<br>\$42.2m | 794.62            | \$52,908                 | 320.03            | \$120,470          | 1124.01           | \$37,435                 | 113.10            | \$373,125                | 327.09            | \$128,470                | 796.30            | \$52,908             | 113.10            | \$373,129                | 1124.01           | \$37,435                         |
| \$42.2m              | 790.30            | \$52,995                 | 222.17            | \$127,900          | 1120.00           | \$37,470                 | -115.10           | \$267 221                | 222.17            | \$127,900                | 707.79            | \$52,995             | 115.16            | \$267 221                | 1127.51           | \$27,470                         |
| \$42.5m              | 797.78            | \$53,022                 | -332.17           | \$127,544          | 1127.51           | \$37,510                 | -115.10           | \$261 720                | 224 42            | \$127,344                | 700.26            | \$53,022             | 117.10            | \$261 720                | 1127.51           | \$37,510                         |
| \$42.4m              | 800.72            | \$53,049                 | 226.67            | \$126,780          | 1120.00           | \$27,507                 | 110.28            | \$256 202                | 226.67            | \$126,780                | -799.20<br>800.72 | \$53,049             | 110.22            | \$256,202                | 1120.00           | \$37,337                         |
| \$42.5m              | 800.73            | \$53,070                 | -330.07           | \$120,230          | 1121.95           | \$27,597                 | -119.20           | \$350,502                | 228.02            | \$120,230                | -800.73           | \$53,070             | 121.25            | \$350,302                | 1121.85           | \$37,397                         |
| \$42.0m              | 803.68            | \$53,103                 | -336.92           | \$125,092          | 1131.05           | \$37,037                 | 123.42            | \$345.076                | 3/1 18            | \$125,092                | -802.21           | \$53,103             | 121.55            | \$345.976                | 1133.30           | \$37,037                         |
| \$42.7m              | 805.08            | \$53,151                 | 3/3/1/            | \$123,133          | 1133.30           | \$37,078                 | 125.50            | \$341,970                | 3/13/1/           | \$123,133                | 805.15            | \$53,151             | 125.50            | \$341,043                | 1134.74           | \$37,078                         |
| \$42.0m              | 806.62            | \$53,156                 | 345.71            | \$124,021          | 1136.10           | \$37,718                 | 127.58            | \$336,260                | 345.71            | \$124,021                | 806.62            | \$53,156             | 127.58            | \$336,260                | 1136.10           | \$37,718                         |
| \$43.0m              | 808.02            | \$53,105                 | 347.08            | \$123,571          | 1137.63           | \$37,738                 | 120.66            | \$331.645                | 347.08            | \$124,095                | 808.00            | \$53,185             | 127.56            | \$331.645                | 1137.63           | \$37,758                         |
| \$43.1m              | 800.09            | \$53,212                 | 350.25            | \$123,571          | 1130.07           | \$37,798                 | 131.74            | \$327 150                | 350.25            | \$123,571                | 800.56            | \$53,212             | 129.00            | \$327,150                | 1139.07           | \$37,798                         |
| \$43.7m              | 811.03            | \$53,259                 | -352.53           | \$123,033          | 1139.07           | \$37,858                 | -133.83           | \$327,130                | 352.53            | \$123,033                | -809.50           | \$53,259             | 133.83            | \$327,130                | -1140 51          | \$37,858                         |
| \$43.2m              | 812.50            | \$53,200                 | 354.80            | \$122,044          | 1140.01           | \$37,017                 | 135.03            | \$318 548                | 354.80            | \$122,044                | 812.50            | \$53,200             | 135.03            | \$318 548                | 1140.51           | \$37,017                         |
| \$43.5m              | 813.96            | \$53,275                 | 357.00            | \$122,039          | 1141.90           | \$37,957                 | 138.03            | \$314.430                | 357.00            | \$122,039                | -012.50<br>813.06 | \$53,275             | 138.03            | \$314,430                | 1141.90           | \$37,957                         |
| \$43.5m              | 815.43            | \$53,315                 | 350.38            | \$121,558          | 1143.40           | \$37,957                 | -138.03           | \$310,428                | 350.38            | \$121,558                | -015.90<br>815.43 | \$53.346             | 140.13            | \$310,428                | 1144.84           | \$37,957                         |
| \$43.6m              | 816.80            | \$53,340                 | 361.67            | \$120,553          | 1146.27           | \$38.036                 | 1/2 23            | \$306 530                | 361.67            | \$120,553                | -015.45<br>816.80 | \$53,340             | 142.23            | \$306 539                | 1146.27           | \$38,036                         |
| \$43.0m              | 810.89            | \$53,373                 | 262.06            | \$120,555          | 1140.27           | \$38,030                 | -142.23           | \$202,745                | 262.06            | \$120,555                | -010.09           | \$53,375             | 144.25            | \$202,745                | 1140.27           | \$38,030                         |
| \$43.7m              | 810.55            | \$53,400                 | -303.90           | \$120,007          | 114/./1           | \$38,070                 | -144.55           | \$200,743                | 366.26            | \$120,007                | -010.33           | \$53,400             | 144.55            | \$200,745                | 114/./1           | \$38,070                         |
| \$43.0m              | 821.27            | \$53,454                 | 368 56            | \$119,588          | 1150.58           | \$38,115                 | 1/8 58            | \$299,039                | 368 56            | \$119,588                | 821.27            | \$53,427             | 140.40            | \$299,039                | 1150.58           | \$38,115                         |
| \$44.0m              | 822.72            | \$53,454                 | 270.86            | \$119,115          | 1152.02           | \$38,133                 | -148.58           | \$295,471                | 370.86            | \$119,115                | -021.27<br>822.72 | \$53,454             | 150.70            | \$295,471                | 1152.02           | \$38,155                         |
| \$44.0m              | 82/ 10            | \$53 507                 | -373.16           | \$118 170          | 1152.02           | \$38 722                 | -152.82           | \$288 560                | 373.16            | \$118.170                | -824.10           | \$53 507             | 152.82            | \$288 560                | -1152.02          | \$38 722                         |
| \$44.1III<br>\$44.2m | 825.64            | \$53,507                 | 375 47            | \$117,179          | 1153.43           | \$38 272                 | -132.62           | \$200,309                | 375 47            | \$117,179                | -024.19<br>825.64 | \$53,507             | 154.05            | \$285 249                | 1154.90           | \$38,233                         |
| \$44.2III<br>\$44.3m | 827.10            | \$53,554                 | 377.79            | \$117.264          | 1156.32           | \$38 311                 | 157.00            | \$282,006                | 377.79            | \$117.264                | -023.04<br>827.10 | \$53,554<br>\$53,561 | 157.00            | \$282,006                | 1156.32           | \$38,212                         |
| \$44.5III<br>\$44.4m | 828 55            | \$53,501                 | 380.00            | \$116.812          | 1150.52           | \$38,311                 | 150.22            | \$278.847                | 380.00            | \$116.812                | -027.10           | \$53,501             | 150.22            | \$278.847                | 1157.75           | \$38,350                         |
| \$44.4III<br>\$44.5m | 830.00            | \$53,500                 | 382 /1            | \$116.367          | 1150.19           | \$38,330                 | -139.23           | \$275 771                | 382.41            | \$116.367                | 830.00            | \$53,500             | 161 37            | \$275 771                | 1150.19           | \$38,350                         |
| \$44.5III<br>\$44.6m | 831.45            | \$53,014                 | -302.41           | \$115.007          | 1157.10           | \$38,309                 | 162 51            | \$272.760                | 302.41            | \$115.007                | -030.00<br>831.45 | \$53,014             | 162 51            | \$272.760                | 1160.61           | \$38,309                         |
| \$44.0m              | 832.90            | \$53,668                 | -304.74           | \$115,524          | 1162.04           | \$38 467                 | -165.66           | \$269 822                | 387.06            | \$115,924                | -832.90           | \$53,668             | 165.66            | \$269 822                | -1162.04          | \$38.467                         |

|               |                   |                          |                   | 2                  | 3                 |                          |                   |                          |                   |                          |                   | j.                 | 14                |                          |                   |                          |
|---------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|               | А                 | gent has go              | od informa        | tion               | A                 | gent has po              | or informat       | ion                      | A                 | gent has good            | l informatio      | n                  | A                 | gent has pool            | r informatio      | п                        |
|               | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment                  | Net Disi          | nvestment                | Net In            | vestment                 | Net Disir         | ivestment          | Net In            | vestment                 | Net Disin         | vestment                 |
| Budget imnact | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$44.8m       | 834.35            | \$53,694                 | -389.39           | \$115.051          | 1163.47           | \$38,505                 | -167.82           | \$266.952                | 389.39            | \$115.051                | -834.35           | \$53.694           | 167.82            | \$266,952                | -1163.47          | \$38,505                 |
| \$44.9m       | 835.80            | \$53,721                 | -391.73           | \$114.621          | 1164.90           | \$38,544                 | -169.98           | \$264,152                | 391.73            | \$114.621                | -835.80           | \$53,721           | 169.98            | \$264,152                | -1164.90          | \$38,544                 |
| \$45.0m       | 837.25            | \$53,747                 | -394.07           | \$114,194          | 1166.33           | \$38,583                 | -172.14           | \$261.413                | 394.07            | \$114,194                | -837.25           | \$53,747           | 172.14            | \$261,413                | -1166.33          | \$38,583                 |
| \$45.1m       | 838.70            | \$53,774                 | -396.41           | \$113.771          | 1167.75           | \$38.621                 | -174.31           | \$258,738                | 396.41            | \$113.771                | -838.70           | \$53,774           | 174.31            | \$258,738                | -1167.75          | \$38.621                 |
| \$45.2m       | 840.14            | \$53,801                 | -398.76           | \$113.352          | 1169.18           | \$38,660                 | -176.48           | \$256,114                | 398.76            | \$113.352                | -840.14           | \$53,801           | 176.48            | \$256,114                | -1169.18          | \$38,660                 |
| \$45.3m       | 841.58            | \$53,827                 | -401.11           | \$112,937          | 1170.60           | \$38.698                 | -178.66           | \$253.554                | 401.11            | \$112,937                | -841.58           | \$53.827           | 178.66            | \$253,554                | -1170.60          | \$38,698                 |
| \$45.4m       | 843.03            | \$53,854                 | -403.46           | \$112.526          | 1172.03           | \$38,736                 | -180.84           | \$251.054                | 403.46            | \$112.526                | -843.03           | \$53.854           | 180.84            | \$251.054                | -1172.03          | \$38,736                 |
| \$45.5m       | 844 47            | \$53,880                 | -405.82           | \$112,117          | 1173 45           | \$38,775                 | -183.02           | \$248.603                | 405.82            | \$112,117                | -844 47           | \$53,880           | 183.02            | \$248,603                | -1173 45          | \$38,775                 |
| \$45.6m       | 845.91            | \$53,907                 | -408 19           | \$111 713          | 1174 87           | \$38,813                 | -185.21           | \$246,202                | 408.19            | \$111 713                | -845.91           | \$53,907           | 185.21            | \$246,202                | -1174 87          | \$38,813                 |
| \$45.7m       | 847.35            | \$53,933                 | -410.55           | \$111,313          | 1176.29           | \$38.851                 | -187.41           | \$243.853                | 410.55            | \$111,313                | -847.35           | \$53,933           | 187.41            | \$243,853                | -1176.29          | \$38,851                 |
| \$45.8m       | 848 79            | \$53,959                 | -412.92           | \$110,916          | 1177 71           | \$38,889                 | -189.61           | \$241 553                | 412.92            | \$110,916                | -848 79           | \$53,959           | 189.61            | \$241 553                | -1177 71          | \$38,889                 |
| \$45.9m       | 850.22            | \$53,986                 | -415 30           | \$110,523          | 1179.13           | \$38,927                 | -191.81           | \$239,299                | 415.30            | \$110,523                | -850.22           | \$53,986           | 191.81            | \$239,299                | -1179.13          | \$38,927                 |
| \$46.0m       | 851.66            | \$54.012                 | -417.67           | \$110,025          | 1180 55           | \$38,965                 | -194.02           | \$237,094                | 417.67            | \$110,325                | -851.66           | \$54.012           | 194.02            | \$237,094                | -1180.55          | \$38,965                 |
| \$46.1m       | 853.09            | \$54.039                 | -420.06           | \$109.747          | 1181.97           | \$39,003                 | -196.23           | \$234 928                | 420.06            | \$109.747                | -853.09           | \$54.039           | 196.23            | \$234 928                | -1181.97          | \$39,003                 |
| \$46.2m       | 854 53            | \$54,065                 | -422.44           | \$109.365          | 1183 39           | \$39,040                 | -198.45           | \$232,804                | 422.44            | \$109.365                | -854 53           | \$54,065           | 198.45            | \$232,804                | -1183 39          | \$39,040                 |
| \$46.3m       | 855.96            | \$54.091                 | -424.83           | \$108,984          | 1184 80           | \$39,078                 | -200.67           | \$230,727                | 424.83            | \$108,984                | -855.96           | \$54,091           | 200.67            | \$230,727                | -1184.80          | \$39,078                 |
| \$46.4m       | 857.39            | \$54 118                 | -427.23           | \$108,507          | 1186.22           | \$39,116                 | -202.89           | \$228.691                | 427.23            | \$108,507                | -857 39           | \$54 118           | 202.89            | \$228,691                | -1186.22          | \$39,116                 |
| \$46.5m       | 858.82            | \$54 144                 | -429.62           | \$108,234          | 1187.63           | \$39,153                 | -205.13           | \$226,697                | 429.62            | \$108,234                | -858.82           | \$54 144           | 205.13            | \$226,697                | -1187.63          | \$39,153                 |
| \$46.6m       | 860.25            | \$54,170                 | -432.03           | \$107,863          | 1189.05           | \$39,191                 | -207.36           | \$224,726                | 432.03            | \$107,863                | -860.25           | \$54 170           | 207.36            | \$224,726                | -1189.05          | \$39,193                 |
| \$46.7m       | 861.68            | \$54 196                 | -434 44           | \$107,605          | 1190.46           | \$39,229                 | -209.61           | \$222,798                | 434 44            | \$107,495                | -861.68           | \$54 196           | 209.61            | \$222,798                | -1190.46          | \$39,229                 |
| \$46.8m       | 863.11            | \$54 223                 | -436.85           | \$107,130          | 1191.87           | \$39,266                 | -211.85           | \$220,909                | 436.85            | \$107,130                | -863.11           | \$54 223           | 211.85            | \$220,909                | -1191.87          | \$39,266                 |
| \$46.9m       | 864 54            | \$54 249                 | -439.27           | \$106,768          | 1193.28           | \$39,303                 | -214 10           | \$219,055                | 439.27            | \$106,768                | -864 54           | \$54 249           | 214.10            | \$219,055                | -1193.28          | \$39.303                 |
| \$47.0m       | 865.96            | \$54 275                 | -441 69           | \$106,410          | 1194 70           | \$39.341                 | -216.36           | \$217,035                | 441.69            | \$106,410                | -865.96           | \$54 275           | 216.36            | \$217,234                | -1194 70          | \$39.341                 |
| \$47.1m       | 867.38            | \$54 301                 | -444 11           | \$106,056          | 1196.11           | \$39 378                 | -218.62           | \$215,446                | 444 11            | \$106,056                | -867.38           | \$54 301           | 218.62            | \$215,446                | -1196.11          | \$39.378                 |
| \$47.2m       | 868.81            | \$54.327                 | -446.53           | \$105,703          | 1197.52           | \$39.415                 | -220.88           | \$213,689                | 446.53            | \$105,703                | -868.81           | \$54.327           | 220.88            | \$213,689                | -1197.52          | \$39,415                 |
| \$47.3m       | 870.23            | \$54,353                 | -448.97           | \$105.353          | 1198.93           | \$39.452                 | -223.15           | \$211.968                | 448.97            | \$105.353                | -870.23           | \$54.353           | 223.15            | \$211.968                | -1198.93          | \$39,452                 |
| \$47.4m       | 871.65            | \$54,380                 | -451.40           | \$105.006          | 1200.33           | \$39,489                 | -225.41           | \$210.279                | 451.40            | \$105.006                | -871.65           | \$54.380           | 225.41            | \$210,279                | -1200.33          | \$39,489                 |
| \$47.5m       | 873.07            | \$54,406                 | -453.84           | \$104.662          | 1201.74           | \$39.526                 | -227.69           | \$208.616                | 453.84            | \$104.662                | -873.07           | \$54,406           | 227.69            | \$208.616                | -1201.74          | \$39.526                 |
| \$47.6m       | 874 49            | \$54 432                 | -456.28           | \$104 322          | 1203 15           | \$39 563                 | -229 97           | \$206 981                | 456.28            | \$104 322                | -874 49           | \$54 432           | 229.97            | \$206,981                | -1203 15          | \$39.563                 |
| \$47.7m       | 875.91            | \$54,458                 | -458.73           | \$103,984          | 1203.15           | \$39.600                 | -232.26           | \$205,373                | 458.73            | \$103,984                | -875.91           | \$54.458           | 232.26            | \$205,373                | -1204.55          | \$39,600                 |
| \$47.8m       | 877.33            | \$54,483                 | -461.18           | \$103.648          | 1205.96           | \$39.637                 | -234.55           | \$203,792                | 461.18            | \$103.648                | -877.33           | \$54,483           | 234.55            | \$203,792                | -1205.96          | \$39,637                 |
| \$47.9m       | 878.75            | \$54,509                 | -463.63           | \$103.314          | 1207.36           | \$39.673                 | -236.85           | \$202.237                | 463.63            | \$103.314                | -878.75           | \$54,509           | 236.85            | \$202.237                | -1207.36          | \$39,673                 |
| \$48.0m       | 880.16            | \$54 535                 | -466 10           | \$102,983          | 1208 77           | \$39,710                 | -239.15           | \$200,711                | 466.10            | \$102,983                | -880.16           | \$54 535           | 239.15            | \$200,711                | -1208 77          | \$39,710                 |
| \$48.1m       | 881.58            | \$54,561                 | -468.56           | \$102.655          | 1210.17           | \$39,747                 | -241.46           | \$199.206                | 468.56            | \$102.655                | -881.58           | \$54.561           | 241.46            | \$199.206                | -1210.17          | \$39,747                 |
| \$48.2m       | 882.99            | \$54,587                 | -471.03           | \$102.329          | 1211.57           | \$39,783                 | -243.77           | \$197,724                | 471.03            | \$102,329                | -882.99           | \$54,587           | 243.77            | \$197,724                | -1211.57          | \$39,783                 |
| \$48.3m       | 884.40            | \$54,613                 | -473.50           | \$102.005          | 1212.97           | \$39.820                 | -246.09           | \$196.267                | 473.50            | \$102.005                | -884.40           | \$54,613           | 246.09            | \$196,267                | -1212.97          | \$39,820                 |
| \$48.4m       | 885.82            | \$54,639                 | -475.98           | \$101.685          | 1214.37           | \$39.856                 | -248.41           | \$194.835                | 475.98            | \$101.685                | -885.82           | \$54.639           | 248.41            | \$194,835                | -1214.37          | \$39,856                 |
| \$48.5m       | 887.23            | \$54,665                 | -478.47           | \$101.365          | 1215.77           | \$39.892                 | -250.74           | \$193,426                | 478.47            | \$101.365                | -887.23           | \$54,665           | 250.74            | \$193,426                | -1215.77          | \$39,892                 |
| \$48.6m       | 888.64            | \$54,690                 | -480.95           | \$101.049          | 1217.17           | \$39,929                 | -253.07           | \$192.041                | 480.95            | \$101.049                | -888.64           | \$54.690           | 253.07            | \$192.041                | -1217.17          | \$39,929                 |
| \$48.7m       | 890.05            | \$54,716                 | -483.44           | \$100.736          | 1218.57           | \$39,965                 | -255.40           | \$190.678                | 483.44            | \$100.736                | -890.05           | \$54,716           | 255.40            | \$190.678                | -1218.57          | \$39,965                 |
| \$48.8m       | 891.45            | \$54,742                 | -485.94           | \$100,424          | 1219.96           | \$40,001                 | -257.74           | \$189.340                | 485.94            | \$100,424                | -891.45           | \$54,742           | 257.74            | \$189,340                | -1219.96          | \$40,001                 |
| \$48.9m       | 892.86            | \$54,768                 | -488.44           | \$100.115          | 1221.36           | \$40.037                 | -260.07           | \$188.027                | 488.44            | \$100,115                | -892.86           | \$54,768           | 260.07            | \$188.027                | -1221.36          | \$40.037                 |
| \$49.0m       | 894.26            | \$54.794                 | -490.95           | \$99.807           | 1222.75           | \$40.073                 | -262.41           | \$186.734                | 490.95            | \$99.807                 | -894.26           | \$54.794           | 262.41            | \$186.734                | -1222.75          | \$40.073                 |
| \$49.1m       | 895.66            | \$54,820                 | -493.46           | \$99,501           | 1224.15           | \$40,110                 | -264.74           | \$185,462                | 493.46            | \$99,501                 | -895.66           | \$54,820           | 264.74            | \$185,462                | -1224.15          | \$40,110                 |
| \$49.2m       | 897.06            | \$54,846                 | -495.97           | \$99,199           | 1225.54           | \$40,146                 | -267.09           | \$184.211                | 495.97            | \$99,199                 | -897.06           | \$54,846           | 267.09            | \$184,211                | -1225.54          | \$40,146                 |
| \$49.3m       | 898.45            | \$54,872                 | -498.49           | \$98,899           | 1226.94           | \$40,181                 | -269.43           | \$182,979                | 498.49            | \$98,899                 | -898.45           | \$54,872           | 269.43            | \$182,979                | -1226.94          | \$40,181                 |
| \$49.4m       | 899.84            | \$54,898                 | -501.01           | \$98,601           | 1228.33           | \$40,217                 | -271.77           | \$181,769                | 501.01            | \$98,601                 | -899.84           | \$54,898           | 271.77            | \$181,769                | -1228.33          | \$40,217                 |
| \$49.5m       | 901.24            | \$54,925                 | -503.54           | \$98,304           | 1229.72           | \$40,253                 | -274.12           | \$180,577                | 503.54            | \$98,304                 | -901.24           | \$54,925           | 274.12            | \$180,577                | -1229.72          | \$40,253                 |
| \$49.6m       | 902.62            | \$54.951                 | -506.07           | \$98.009           | 1231.11           | \$40.289                 | -276.47           | \$179.406                | 506.07            | \$98.009                 | -902.62           | \$54.951           | 276.47            | \$179.406                | -1231.11          | \$40.289                 |
| \$49.7m       | 904.01            | \$54,977                 | -508.62           | \$97,716           | 1232.50           | \$40.325                 | -278.82           | \$178.252                | 508.62            | \$97,716                 | -904.01           | \$54,977           | 278.82            | \$178,252                | -1232.50          | \$40,325                 |

|               |                                                                                                                               |             |                    | 2                 | 3                    |                   |                    |                   |                               |                   |                    | Ĵ                 | 14                            |                   |                    |          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------|----------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|----------|
|               | A                                                                                                                             | gent has go | od informat        | ion               | A                    | gent has po       | or informat        | ion               | Ag                            | gent has good     | l informatio       | on                | E.                            | 1gent has poo     | r informatio       | n        |
|               | Net Investment Net Disinvestment $E(AE)a = E(1^{+})^{b} = E(AE)a = E(1^{+})^{b}$                                              |             | ivestment          | Net Inv           | estment              | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disir         | ivestment          | Net In            | vestment                      | Net Disin         | vestment           |          |
| Budget impact | t Net Investment Net Disinvestment<br>t $E(\Delta E)^{a} = E(\lambda_{G}^{+})^{b} = E(\Delta E)^{c} = E(\lambda_{G}^{-})^{d}$ |             | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |          |
| \$49.8m       | 905.40                                                                                                                        | \$55,004    | -511.16            | \$97,426          | 1233.89              | \$40,360          | -281.17            | \$177,117         | 511.16                        | \$97,426          | -905.40            | \$55,004          | 281.17                        | \$177,117         | -1233.89           | \$40,360 |
| \$49.9m       | 906.78                                                                                                                        | \$55,030    | -513.71            | \$97,137          | 1235.28              | \$40,396          | -283.52            | \$176,000         | 513.71                        | \$97,137          | -906.78            | \$55,030          | 283.52                        | \$176,000         | -1235.28           | \$40,396 |
| \$50.0m       | 908.16                                                                                                                        | \$55,056    | -516.26            | \$96,850          | 1236.67              | \$40,431          | -285.88            | \$174,899         | 516.26                        | \$96,850          | -908.16            | \$55,056          | 285.88                        | \$174,899         | -1236.67           | \$40,431 |

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment; <sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

|                    |                    |                |                   | 2.              | 5                     |                  |                   |                  |                    |                |                   | 2                  | 6                  |               |                    |                  |
|--------------------|--------------------|----------------|-------------------|-----------------|-----------------------|------------------|-------------------|------------------|--------------------|----------------|-------------------|--------------------|--------------------|---------------|--------------------|------------------|
|                    |                    | Agant has good | informatio        |                 | 5                     | Agant has no     | or informa        | tion             | 1                  | gant has go    | od informa        | tion               | 1                  | ant has no    | or informati       | 0.11             |
|                    | Not In             | ngeni nus goou | Nat Dici          | n<br>muasturant | Not In                | vastmant         | Nat Di            | sinnastmant      | Nat Inv            | actimant       | Nat Disi          | ion<br>nuacturant  | Nat Inv            | geni nus po   | Nat Dici           | unactus ant      |
| Puda at impact     | E(AE)a             | $E(1^+)b$      | E(AE)             | E(1-)d          |                       | $E(1^{+})h$      | E(AE)             | E(1-)d           | $E(\Lambda E)$     | $E(1^+)b$      | E(AE)s            | E(1-)d             | E(AE)a             | $E(1^{\pm})b$ | E(AE)              | E(1=)d           |
| S0.1m              | $E(\Delta E)^{-1}$ | $E(\Lambda_G)$ | $E(\Delta E)^{-}$ | $E(\lambda_G)$  | $E(\Delta E)^{\circ}$ | $E(\lambda_p)^*$ | $E(\Delta E)^{+}$ | $E(\lambda_p)^*$ | $L(\Delta E)^{-1}$ | $E(\lambda_G)$ | $L(\Delta L)^{+}$ | E(1 <sub>G</sub> ) | $E(\Delta E)^{-1}$ | \$2,170       | $L(\Delta L)^{-1}$ | $E(\Lambda_P)^*$ |
| 50.1m              | -0.23              | -\$15,999      | 0.08              | -\$10,445       | 21.88                 | \$4,371          | -22.92            | \$4,303          | 10.29              | \$0,139        | 12.34             | -\$7,974           | 43.90              | \$2,179       | 43.78              | -\$2,264         |
| \$0.2m             | -12.52             | -\$15,974      | 11.05             | -\$18,095       | 29.96                 | \$0,070          | -31.14            | \$0,423          | 32.06              | \$6,239        | 25.95             | -\$7,708           | //.04              | \$2,576       | /2.44              | -\$2,761         |
| \$0.3m             | -22.43             | -\$13,375      | 16.51             | -\$18,16/       | 35.16                 | \$8,532          | -36.21            | \$8,285          | 51.02              | \$5,880        | 38.62             | -\$/,/68           | 105.82             | \$2,835       | 97.54              | -\$3,076         |
| \$0.4m             | -27.89             | -\$14,343      | 22.90             | -\$1/,46/       | 39.69                 | \$10,078         | -40.74            | \$9,818          | 65.16              | \$6,139        | 50.12             | -\$7,981           | 131.10             | \$3,051       | 121.75             | -\$3,286         |
| \$0.5m             | -33.45             | -\$14,950      | 29.49             | -\$16,957       | 42.11                 | \$11,874         | -43.31            | \$11,546         | 79.08              | \$6,323        | 61.16             | -\$8,175           | 156.08             | \$3,204       | 143.64             | -\$3,481         |
| \$0.6m             | -39.88             | -\$15,045      | 34.98             | -\$17,153       | 43.94                 | \$13,656         | -45.04            | \$13,322         | 93.60              | \$6,410        | /3.04             | -\$8,215           | 179.86             | \$3,336       | 164.38             | -\$3,650         |
| \$0.7m             | -46.48             | -\$15,062      | 41.43             | -\$16,895       | 45.11                 | \$15,518         | -46.19            | \$15,155         | 108.05             | \$6,479        | 83.69             | -\$8,364           | 202.91             | \$3,450       | 184.24             | -\$3,799         |
| \$0.8m             | -52.92             | -\$15,118      | 47.82             | -\$16,730       | 45.96                 | \$17,406         | -47.06            | \$17,000         | 122.12             | \$6,551        | 94.15             | -\$8,497           | 225.15             | \$3,553       | 203.53             | -\$3,931         |
| \$0.9m             | -59.28             | -\$15,181      | 54.33             | -\$16,564       | 46.34                 | \$19,423         | -48.52            | \$18,551         | 135.93             | \$6,621        | 104.21            | -\$8,636           | 246.93             | \$3,645       | 223.15             | -\$4,033         |
| \$1.0m             | -65.77             | -\$15,204      | 59.77             | -\$16,731       | 47.51                 | \$21,048         | -48.77            | \$20,505         | 149.68             | \$6,681        | 115.08            | -\$8,690           | 267.09             | \$3,744       | 241.31             | -\$4,144         |
| \$1.1m             | -70.76             | -\$15,544      | 66.01             | -\$16,665       | 46.73                 | \$23,538         | -48.65            | \$22,610         | 161.78             | \$6,800        | 124.86            | -\$8,810           | 288.51             | \$3,813       | 258.87             | -\$4,249         |
| \$1.2m             | -76.08             | -\$15,772      | 71.67             | -\$16,743       | 58.45                 | \$20,530         | -48.37            | \$24,809         | 174.05             | \$6,894        | 134.94            | -\$8,893           | 296.81             | \$4,043       | 276.04             | -\$4,347         |
| \$1.3m             | -82.20             | -\$15,815      | 77.93             | -\$16,682       | 58.09                 | \$22,380         | -48.96            | \$26,555         | 186.99             | \$6,952        | 144.13            | -\$9,020           | 316.65             | \$4,106       | 293.86             | -\$4,424         |
| \$1.4m             | -87.29             | -\$16,038      | 82.68             | -\$16,932       | 55.91                 | \$25,038         | -48.47            | \$28,884         | 198.78             | \$7,043        | 154.53            | -\$9,060           | 337.80             | \$4,144       | 310.40             | -\$4,510         |
| \$1.5m             | -93.41             | -\$16,059      | 88.63             | -\$16,924       | 55.17                 | \$27,187         | -46.22            | \$32,454         | 211.47             | \$7,093        | 163.44            | -\$9,178           | 357.07             | \$4,201       | 324.99             | -\$4,616         |
| \$1.6m             | -99.29             | -\$16,115      | 93.52             | -\$17,108       | 54.29                 | \$29,473         | -45.36            | \$35,273         | 223.83             | \$7,148        | 173.10            | -\$9,243           | 376.08             | \$4,254       | 340.78             | -\$4,695         |
| \$1.7m             | -105.03            | -\$16,186      | 99.23             | -\$17,133       | 54.38                 | \$31,259         | -45.47            | \$37,390         | 235.94             | \$7,205        | 181.63            | -\$9,360           | 393.73             | \$4,318       | 357.36             | -\$4,757         |
| \$1.8m             | -110.83            | -\$16,241      | 104.99            | -\$17,145       | 53.45                 | \$33,675         | -44.56            | \$40,393         | 248.02             | \$7,258        | 189.78            | -\$9,484           | 412.07             | \$4,368       | 372.75             | -\$4,829         |
| \$1.9m             | -115.47            | -\$16,455      | 109.60            | -\$17,336       | 52.30                 | \$36,329         | -43.48            | \$43,702         | 258.83             | \$7,341        | 198.76            | -\$9,559           | 430.31             | \$4,415       | 387.80             | -\$4,899         |
| \$2.0m             | -120.86            | -\$16,549      | 114.98            | -\$17,394       | 52.16                 | \$38,343         | -42.29            | \$47,295         | 270.32             | \$7,399        | 206.63            | -\$9,679           | 447.24             | \$4,472       | 402.59             | -\$4,968         |
| \$2.1m             | -124.84            | -\$16,822      | 120.20            | -\$17,471       | 51.01                 | \$41,165         | -41.18            | \$51,002         | 280.32             | \$7,491        | 214.32            | -\$9,798           | 464.90             | \$4,517       | 417.31             | -\$5,032         |
| \$2.2m             | -130.00            | -\$16,923      | 125.44            | -\$17,539       | 49.70                 | \$44,263         | -40.93            | \$53,752         | 291.42             | \$7,549        | 221.64            | -\$9,926           | 482.46             | \$4,560       | 432.74             | -\$5,084         |
| \$2.3m             | -134.03            | -\$17,161      | 129.44            | -\$17,768       | 44.44                 | \$51,761         | -39.57            | \$58,122         | 301.32             | \$7,633        | 229.82            | -\$10,008          | 503.73             | \$4,566       | 446.93             | -\$5,146         |
| \$2.4m             | -139.02            | -\$17,263      | 132.97            | -\$18,049       | 42.99                 | \$55,828         | -38.31            | \$62,654         | 312.11             | \$7.689        | 238.11            | -\$10,080          | 520.95             | \$4.607       | 461.07             | -\$5,205         |
| \$2.5m             | -143.69            | -\$17,399      | 137.59            | -\$18,170       | 41.64                 | \$60.038         | -36.89            | \$67,765         | 322.51             | \$7,752        | 244.92            | -\$10.207          | 537.86             | \$4.648       | 474.93             | -\$5.264         |
| \$2.6m             | -147.30            | -\$17,651      | 141.17            | -\$18,417       | 41.20                 | \$63,110         | -36.46            | \$71.301         | 331.80             | \$7.836        | 252.36            | -\$10.303          | 553.66             | \$4.696       | 489.65             | -\$5,310         |
| \$2.7m             | -151.11            | -\$17,868      | 145.60            | -\$18 544       | 39.63                 | \$68 133         | -35.08            | \$76,963         | 341.21             | \$7.913        | 258 54            | -\$10,443          | 570.38             | \$4 734       | 503.29             | -\$5 365         |
| \$2.8m             | -155.41            | -\$18,016      | 149 72            | -\$18,702       | 38.17                 | \$73,363         | -33 53            | \$83 511         | 351.07             | \$7,976        | 264.61            | -\$10,582          | 586.81             | \$4 772       | 516.64             | -\$5,420         |
| \$2.0m             | -159.39            | -\$18,195      | 153 59            | -\$18,881       | 36.57                 | \$79,310         | -32.08            | \$90,390         | 360.54             | \$8.044        | 270.46            | -\$10,723          | 603.21             | \$4 808       | 529.99             | -\$5,472         |
| \$3.0m             | -163.11            | -\$18 392      | 157.42            | -\$19,058       | 35.99                 | \$83 353         | -31 53            | \$95,156         | 369.70             | \$8,011        | 275.88            | -\$10,723          | 618 41             | \$4,851       | 544 11             | -\$5 514         |
| \$3.0m             | -165.67            | -\$18,712      | 160.00            | -\$19.375       | 34 44                 | \$90.011         | -29.92            | \$103 599        | 377.64             | \$8,209        | 282.04            | -\$10,991          | 634.42             | \$4 886       | 557.08             | -\$5,565         |
| \$3.7m             | 160.11             | \$18,023       | 163.20            | \$10,608        | 32.72                 | \$97,703         | 28.26             | \$113 225        | 386.42             | \$8,207        | 287.07            | \$11.147           | 650.45             | \$4,000       | 569.88             | \$5,505          |
| \$3.2m             | 170.83             | \$10,318       | 165.20            | \$10.074        | 32.72                 | \$102.892        | 27.63             | \$110,223        | 303.42             | \$8.388        | 207.07            | \$11,147           | 665.25             | \$4,920       | 583.62             | \$5,654          |
| \$3.5m             | 172.66             | \$10,602       | 167.00            | \$20,250        | 30.34                 | \$112,892        | -27.03            | \$121.114        | 400.52             | \$8,388        | 292.70            | \$11,274           | 681.00             | \$4,002       | 506.18             | \$5,703          |
| \$3.4III<br>\$2.5m | -172.00            | \$10,002       | 170.40            | \$20,230        | 28 70                 | \$12,000         | -23.93            | \$131,114        | 400.32             | \$0,409        | 297.03            | \$11,440           | 606.52             | \$5,025       | 608.66             | \$5,703          |
| \$3.5III<br>\$3.6m | -177.16            | \$20,320       | 171.15            | \$21,024        | 26.70                 | \$121,903        | -24.24            | \$144,508        | 406.12             | \$8,570        | 205.78            | \$11,031           | 712.08             | \$5,025       | 610.28             | \$5,730          |
| \$3.011            | -177.10            | \$20,520       | 171.13            | \$21,034        | 20.89                 | \$135,871        | -20.79            | \$175,176        | 413.38             | \$8,007        | 208.05            | \$11,775           | 712.08             | \$5,050       | 622.55             | -\$5,815         |
| \$3./m             | -1/8.98            | -\$20,673      | 172.71            | -\$21,423       | 25.21                 | \$140,///        | -20.08            | \$184,240        | 422.31             | \$8,701        | 308.95            | -\$11,976          | 727.39             | \$5,087       | 632.35             | -\$5,849         |
| \$3.8m             | -180.10            | -\$21,099      | 172.90            | -\$21,978       | 24.46                 | \$155,550        | -18.31            | \$207,517        | 428.50             | \$8,808        | 312.42            | -\$12,103          | 741.03             | \$5,124       | 644.07             | -\$5,894         |
| \$3.9m             | -1/9.53            | -\$21,724      | 173.30            | -\$22,504       | 22.60                 | \$1/2,555        | -15.05            | \$259,182        | 432.97             | \$9,008        | 314.02            | -\$12,420          | /50.8/             | \$5,155       | 655.21             | -\$5,952         |
| \$4.0m             | -1//.3/            | -\$22,551      | 172.05            | -\$23,249       | 19.23                 | \$207,805        | -11.//            | \$339,933        | 435.81             | \$9,178        | 314.20            | -\$12,/31          | 7/0.47             | \$5,192       | 005.05             | -\$6,009         |
| \$4.1m             | -1/0.3/            | -\$25,247      | 1/0./8            | -\$24,008       | 15.73                 | \$260,622        | -9.23             | \$444,109        | 439.76             | \$9,323        | 314.40            | -\$13,041          | /85.60             | \$5,232       | 0/0./0             | -\$6,058         |
| \$4.2m             | -175.20            | -\$23,973      | 168.61            | -\$24,909       | 10.30                 | \$407,709        | -5.43             | \$7/3,443        | 443.52             | \$9,470        | 315.49            | -\$13,313          | 798.13             | \$5,262       | 686.51             | -\$6,118         |
| \$4.3m             | -174.08            | -\$24,701      | 167.53            | -\$25,667       | 7.34                  | \$586,035        | -13.68            | \$314,239        | 447.30             | \$9,613        | 315.48            | -\$13,630          | 809.74             | \$5,310       | 708.24             | -\$6,071         |
| \$4.4m             | -171.65            | -\$25,633      | 166.30            | -\$26,459       | 3.12                  | \$1.41m          | -10.59            | \$415,353        | 449.72             | \$9,784        | 315.61            | -\$13,941          | 822.22             | \$5,351       | /18.55             | -\$6,123         |
| \$4.5m             | -170.53            | -\$26,389      | 164.23            | -\$27,401       | -1.09                 | -\$4.13m         | -6.33             | \$711,185        | 453.42             | \$9,925        | 316.58            | -\$14,215          | 834.36             | \$5,393       | 727.61             | -\$6,185         |
| \$4.6m             | -169.59            | -\$27,124      | 163.05            | -\$28,212       | -7.36                 | -\$625,401       | -1.98             | \$2,320,780      | 457.28             | \$10,060       | 316.64            | -\$14,528          | 848.25             | \$5,423       | 736.52             | -\$6,246         |
| \$4.7m             | -167.60            | -\$28,043      | 160.63            | -\$29,260       | -10.82                | -\$434,519       | 1.45              | -\$3,243,730     | 460.05             | \$10,216       | 317.94            | -\$14,783          | 859.08             | \$5,471       | 746.26             | -\$6,298         |

## Table A2.3.3: Optimal numerical thresholds (threshold sets $\lambda 5$ and $\lambda 6$ )

|                    |                    |                       |                    | 2                    | 5                  |                         |                    |                      |                    |                        |                    | λ                         | 6                  |                    |                    |                      |
|--------------------|--------------------|-----------------------|--------------------|----------------------|--------------------|-------------------------|--------------------|----------------------|--------------------|------------------------|--------------------|---------------------------|--------------------|--------------------|--------------------|----------------------|
|                    |                    | Agent has good        | informatio         | n                    |                    | Agent has po            | or informat        | tion                 | A                  | gent has go            | od informat        | ion .                     | Å A                | gent has no        | or informa         | tion                 |
|                    | Net In             | vestment              | Net Disi           | nvestment            | Net In             | vestment                | Net Dis            | investment           | Net Inv            | estment                | Net Disi           | nvestment                 | Net Inv            | estment            | Net Disi           | investment           |
| Rudget impact      | $F(\Lambda F)^{a}$ | $F(\lambda^{+})^{b}$  | $F(\Lambda F)^{c}$ | $F(\lambda_{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$      | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$      | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ |
| SA 8m              | 166.51             | \$28,827              | 150.60             | \$30.075             | 15.43              | \$311.041               | 6.01               | \$700.003            | <u>163.60</u>      | \$10.352               | 317.83             | $\frac{L(n_G)}{\$15,102}$ | 870.81             | \$5.512            | 2(ΔL)<br>754.81    | \$6.350              |
| \$4.0m             | -100.51            | \$20,612              | 159.00             | \$20,073             | 20.16              | \$242.001               | 10.61              | \$462,004            | 467.25             | \$10,352               | 217.85             | \$15,102                  | 892.42             | \$5,512            | 762.25             | \$6,420              |
| \$4.7III<br>\$5.0m | -105.46            | \$20,270              | 156.42             | \$21,082             | -20.10             | \$243,091               | 15.20              | \$226.750            | 407.33             | \$10,465               | 219.90             | -\$15,415<br>\$15,694     | 802.43             | \$5,555            | 703.23             | -\$0,420<br>\$6.491  |
| \$5.0m             | -104.39            | -\$30,379<br>\$21,271 | 154.69             | \$22.071             | -24.01             | \$172.006               | 19.00              | \$320,730            | 4/1.14             | \$10,013               | 210.20             | \$15,004<br>\$15,072      | 005.04             | \$5,594            | 790.75             | -\$0,401             |
| \$5.111            | -102.37            | \$22,102              | 152.60             | \$22,971             | -29.48             | -\$172,990<br>\$156,645 | 16.98              | -\$208,080           | 4/3./0             | \$10,703               | 210.12             | -\$15,972<br>\$16,205     | 903.04             | \$5,055            | 780.73             | -\$0,332             |
| \$5.2III<br>\$5.2m | -101.33            | \$22,193              | 152.54             | \$24.745             | -33.20             | -\$150,045<br>\$166,229 | 23.70              | \$219,403            | 477.34             | \$10,894               | 210.00             | \$16,293                  | 913.28             | \$5,001            | 701.71             | -\$0,392             |
| \$5.511            | -139.00            | -\$35,209             | 152.54             | -\$34,743            | -51.60             | -\$100,528              | 21.23              | -\$249,034           | 480.00             | \$11,042               | 319.09             | -\$10,010                 | 920.29             | \$5,739            | 791.71             | -\$0,094             |
| \$5.4m             | -158./5            | -\$34,016             | 130.30             | -\$35,807            | -30.43             | -\$1//,44/              | 19.09              | -\$2/4,210           | 485./1             | \$11,104               | 319.89             | -\$10,881                 | 925.17             | \$5,857            | 793.44             | -\$0,800             |
| \$5.5m             | -156.43            | -\$35,160             | 149.46             | -\$36,799            | -28.31             | -\$194,261              | 1/.01              | -\$312,363           | 485.93             | \$11,319               | 319.78             | -\$17,199                 | 929.25             | \$5,919            | 794.45             | -\$6,923             |
| \$5.6m             | -155.46            | -\$36,022             | 148.49             | -\$37,712            | -26.34             | -\$212,597              | 14.49              | -\$386,452           | 489.47             | \$11,441               | 319.54             | -\$17,525                 | 933.47             | \$5,999            | 796.48             | -\$7,031             |
| \$5.7m             | -154.46            | -\$36,902             | 14/.3/             | -\$38,678            | -23.30             | -\$244,619              | 12.42              | -\$459,122           | 492.96             | \$11,563               | 319.44             | -\$17,844                 | 936.54             | \$6,086            | /9/.48             | -\$7,148             |
| \$5.8m             | -153.65            | -\$3/,/49             | 145.03             | -\$39,991            | -21.24             | -\$2/3,105              | 11.84              | -\$490,012           | 496.61             | \$11,679               | 320.54             | -\$18,094                 | 940.56             | \$6,167            | /96.9/             | -\$7,278             |
| \$5.9m             | -151.69            | -\$38,894             | 143.02             | -\$41,253            | -19.34             | -\$305,090              | 9.82               | -\$600,817           | 499.09             | \$11,821               | 321.31             | -\$18,362                 | 944.71             | \$6,245            | 797.90             | -\$7,394             |
| \$6.0m             | -150.72            | -\$39,810             | 141.07             | -\$42,532            | -17.42             | -\$344,466              | 6.78               | -\$884,609           | 502.53             | \$11,940               | 322.00             | -\$18,633                 | 948.80             | \$6,324            | 799.84             | -\$7,501             |
| \$6.1m             | -148.84            | -\$40,982             | 140.00             | -\$43,570            | -14.46             | -\$421,797              | 4.82               | -\$1.27m             | 505.05             | \$12,078               | 321.80             | -\$18,956                 | 951.78             | \$6,409            | 800.71             | -\$7,618             |
| \$6.2m             | -148.06            | -\$41,876             | 139.07             | -\$44,583            | -12.48             | -\$496,618              | 1.83               | -\$3.39m             | 508.64             | \$12,189               | 321.46             | -\$19,287                 | 955.71             | \$6,487            | 802.60             | -\$7,725             |
| \$6.3m             | -147.14            | -\$42,817             | 137.97             | -\$45,662            | -10.66             | -\$590,859              | -0.15              | \$41.62m             | 512.07             | \$12,303               | 321.26             | -\$19,610                 | 959.77             | \$6,564            | 803.48             | -\$7,841             |
| \$6.4m             | -146.18            | -\$43,781             | 137.04             | -\$46,702            | 3.03               | \$2.11m                 | -2.08              | \$3.07m              | 515.44             | \$12,416               | 320.88             | -\$19,945                 | 951.93             | \$6,723            | 804.31             | -\$7,957             |
| \$6.5m             | -144.71            | -\$44,919             | 135.95             | -\$47,813            | 4.95               | \$1.31m                 | -5.01              | \$1.30m              | 518.28             | \$12,542               | 320.65             | -\$20,271                 | 955.80             | \$6,801            | 806.13             | -\$8,063             |
| \$6.6m             | -142.45            | -\$46,333             | 134.89             | -\$48,929            | 7.83               | \$843,024               | -6.95              | \$950,188            | 520.30             | \$12,685               | 320.37             | -\$20,601                 | 958.68             | \$6,884            | 806.95             | -\$8,179             |
| \$6.7m             | -141.68            | -\$47,289             | 132.97             | -\$50,388            | 9.60               | \$697,875               | -8.82              | \$759,774            | 523.81             | \$12,791               | 320.94             | -\$20,876                 | 962.62             | \$6,960            | 807.71             | -\$8,295             |
| \$6.8m             | -139.84            | -\$48,628             | 130.98             | -\$51,915            | 11.33              | \$600,166               | -11.71             | \$580,652            | 526.21             | \$12,923               | 321.56             | -\$21,147                 | 966.59             | \$7,035            | 809.49             | -\$8,400             |
| \$6.9m             | -137.93            | -\$50,026             | 130.06             | -\$53,053            | 11.47              | \$601,677               | -13.57             | \$508,653            | 528.53             | \$13,055               | 321.10             | -\$21,489                 | 972.11             | \$7,098            | 810.22             | -\$8,516             |
| \$7.0m             | -136.99            | -\$51,098             | 128.97             | -\$54,276            | 13.31              | \$525,969               | -15.43             | \$453,538            | 531.80             | \$13,163               | 320.78             | -\$21,822                 | 975.90             | \$7,173            | 810.97             | -\$8,632             |
| \$7.1m             | -136.10            | -\$52,167             | 126.68             | -\$56,048            | 16.09              | \$441,286               | -18.26             | \$388,777            | 535.10             | \$13,269               | 321.66             | -\$22,073                 | 978.67             | \$7,255            | 812.67             | -\$8,737             |
| \$7.2m             | -135.35            | -\$53,196             | 125.59             | -\$57,331            | 17.90              | \$402,341               | -20.07             | \$358,735            | 538.52             | \$13,370               | 321.31             | -\$22,408                 | 982.42             | \$7,329            | 813.35             | -\$8,852             |
| \$7.3m             | -134.42            | -\$54,307             | 124.66             | -\$58,559            | 19.56              | \$373,287               | -21.28             | \$343,119            | 541.75             | \$13,475               | 320.79             | -\$22,756                 | 986.31             | \$7,401            | 813.42             | -\$8,974             |
| \$7.4m             | -132.58            | -\$55,814             | 123.61             | -\$59,868            | 21.22              | \$348,734               | -24.08             | \$307,367            | 544.05             | \$13,602               | 320.37             | -\$23,098                 | 990.13             | \$7,474            | 815.08             | -\$9,079             |
| \$7.5m             | -131.66            | -\$56,966             | 121.68             | -\$61,636            | 23.95              | \$313,152               | -25.87             | \$289,931            | 547.24             | \$13,705               | 320.80             | -\$23,379                 | 992.84             | \$7,554            | 815.73             | -\$9,194             |
| \$7.6m             | -130.91            | -\$58,056             | 119.69             | -\$63,495            | 25.69              | \$295,796               | -27.62             | \$275,159            | 550.59             | \$13,803               | 321.27             | -\$23,656                 | 996.52             | \$7,627            | 816.34             | -\$9,310             |
| \$7.7m             | -128.65            | -\$59,850             | 118.59             | -\$64,927            | 27.29              | \$282,167               | -30.39             | \$253,365            | 552.42             | \$13,939               | 320.84             | -\$24,000                 | 1000.34            | \$7,697            | 817.96             | -\$9,414             |
| \$7.8m             | -127.76            | -\$61,051             | 117.65             | -\$66,296            | 29.00              | \$268,956               | -30.68             | \$254,238            | 555.60             | \$14,039               | 320.22             | -\$24,358                 | 1003.98            | \$7,769            | 817.10             | -\$9,546             |
| \$7.9m             | -125.85            | -\$62,775             | 116.58             | -\$67,765            | 31.69              | \$249,313               | -32.40             | \$243,808            | 557.74             | \$14,164               | 319.71             | -\$24,710                 | 1006.64            | \$7,848            | 817.67             | -\$9,662             |
| \$8.0m             | -124.91            | -\$64,046             | 114.26             | -\$70,013            | 33.26              | \$240,526               | -34.14             | \$234,358            | 560.84             | \$14,264               | 320.42             | -\$24,967                 | 1010.36            | \$7,918            | 818.24             | -\$9,777             |
| \$8.1m             | -124.15            | -\$65,245             | 113.14             | -\$71,590            | 34.80              | \$232,792               | -36.85             | \$219,804            | 564.09             | \$14,359               | 319.91             | -\$25,320                 | 1014.12            | \$7,987            | 819.80             | -\$9,881             |
| \$8.2m             | -122.29            | -\$67,055             | 111.19             | -\$73,747            | 36.46              | \$224,923               | -38.54             | \$212,793            | 566.24             | \$14,482               | 320.20             | -\$25,609                 | 1017.70            | \$8,057            | 820.31             | -\$9,996             |
| \$8.3m             | -121.38            | -\$68,382             | 110.22             | -\$75,304            | 39.10              | \$212,296               | -41.23             | \$201,302            | 569.32             | \$14,579               | 319.48             | -\$25,980                 | 1020.30            | \$8,135            | 821.84             | -\$10,099            |
| \$8.4m             | -120.42            | -\$69,754             | 109.08             | -\$77,010            | 40.58              | \$206,997               | -42.92             | \$195,714            | 572.34             | \$14,677               | 318.91             | -\$26,340                 | 1024.00            | \$8,203            | 822.35             | -\$10,215            |
| \$8.5m             | -119.65            | -\$71,038             | 107.05             | -\$79,401            | 42.20              | \$201,398               | -44.57             | \$190,697            | 575.53             | \$14,769               | 319.21             | -\$26,628                 | 1027.55            | \$8,272            | 822.83             | -\$10,330            |
| \$8.6m             | -117.73            | -\$73,052             | 106.08             | -\$81,071            | 43.71              | \$196,734               | -47.24             | \$182,060            | 577.55             | \$14,891               | 318.46             | -\$27,005                 | 1031.20            | \$8,340            | 824.31             | -\$10,433            |
| \$8.7m             | -115.45            | -\$75,355             | 104.98             | -\$82,870            | 46.30              | \$187.889               | -48.88             | \$177,999            | 579.20             | \$15.021               | 317.81             | -\$27,374                 | 1033.74            | \$8,416            | 824.77             | -\$10,548            |
| \$8.8m             | -114.52            | -\$76,844             | 103.37             | -\$85,129            | 47.74              | \$184,341               | -50.52             | \$174,177            | 582.18             | \$15,115               | 317.68             | -\$27,701                 | 1037.38            | \$8,483            | 825.22             | -\$10,664            |
| \$8.9m             | -112.66            | -\$78,996             | 101.42             | -\$87,755            | 49.32              | \$180,458               | -48.54             | \$183,360            | 584.24             | \$15,233               | 317.88             | -\$27,998                 | 1040.87            | \$8,551            | 822.04             | -\$10.827            |
| \$9.0m             | -111.91            | -\$80.420             | 100.29             | -\$89.742            | 50.75              | \$177.351               | -51.16             | \$175.906            | 587.39             | \$15.322               | 317.25             | -\$28.369                 | 1044.50            | \$8.617            | 823.47             | -\$10.929            |
| \$9.1m             | -111.02            | -\$81,968             | 99.31              | -\$91.629            | 52.30              | \$173,985               | -52.76             | \$172,471            | 590.39             | \$15,413               | 316.46             | -\$28,756                 | 1047.97            | \$8.683            | 823.87             | -\$11.045            |
| \$9.2m             | -110.09            | -\$83,570             | 96.98              | -\$94.862            | 54.83              | \$167.776               | -66.79             | \$137,752            | 593.35             | \$15.505               | 317.01             | -\$29.021                 | 1050.43            | \$8,758            | 836.68             | -\$10,996            |
| \$9.3m             | -109.34            | -\$85.060             | 95.88              | -\$96.999            | 56.26              | \$165.309               | -69.37             | \$134.055            | 596.49             | \$15,591               | 316.33             | -\$29.400                 | 1053.98            | \$8.824            | 838.06             | -\$11.097            |
| \$9.4m             | -107.48            | -\$87.455             | 94.74              | -\$99.219            | 56.04              | \$167.741               | -69.31             | \$135.630            | 598.51             | \$15,706               | 315.68             | -\$29.777                 | 1059.17            | \$8.875            | 836.77             | -\$11.234            |
| \$9.5m             | -106 55            | -\$89 158             | 92.71              | -\$102.467           | 57 55              | \$165.070               | -70 90             | \$133,996            | 601 45             | \$15,795               | 315.90             | -\$30.073                 | 1062.58            | \$8 941            | 837.15             | -\$11 348            |
| \$9.6m             | -104.62            | -\$91 757             | 91 73              | -\$104 658           | 58.91              | \$162,948               | -72.46             | \$132,492            | 603 39             | \$15,910               | 315.07             | -\$30,469                 | 1066.13            | \$9,005            | 837.48             | -\$11,270            |
| \$9.7m             | -103.73            | -\$93,510             | 89.76              | -\$108.068           | 61.40              | \$157.987               | -75.01             | \$129.321            | 606.36             | \$15,997               | 315.22             | -\$30.772                 | 1068.52            | \$9.078            | 838.80             | -\$11.564            |

|               |                    |                          |                    | 2                        | 5                  |                    |                    |                      |                    |                          |                    | 2                        | 6                  |                      |                    |                       |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|-----------------------|
|               |                    | Agent has good           | informatio         | n                        | Í                  | Agent has po       | or informat        | ion                  | A                  | gent has go              | od informat        | ion .                    | A                  | gent has pa          | or informat        | ion                   |
|               | Net In             | westment                 | Net Disi           | <br>investment           | Net In             | vestment           | Net Dis            | investment           | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment              | Net Disi           | nvestment             |
| Rudget impact | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $F(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $F(\Lambda F)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$  |
| \$9.8m        | -101.46            | -\$96 593                | 88.61              | -\$110 599               | 62.89              | \$155.832          | -76.55             | \$128.015            | 607.94             | \$16.120                 | 314 54             | -\$31.156                | 1071.91            | \$9.143              | 839.11             | -\$11.679             |
| \$9.0m        | -100.71            | -\$98 307                | 87.62              | -\$112,993               | 64.25              | \$153,032          | -78.12             | \$126,013            | 611.04             | \$16,202                 | 313 70             | -\$31,559                | 1075.38            | \$9,145              | 839.44             | -\$11,075             |
| \$10.0m       | -100.71            | \$100,231                | 86.40              | \$115.616                | 65.58              | \$157,079          | -78.23             | \$120,731            | 613.05             | \$16,202                 | 312.07             | \$31,057                 | 1075.58            | \$9,200              | 838.31             | \$11,794              |
| \$10.0m       | -77.01             | \$102,154                | 85.24              | \$118.354                | 68.03              | \$132,409          | -76.25             | \$127,820            | 615.02             | \$16,208                 | 312.97             | \$22.242                 | 1078.89            | \$9,209              | 820.57             | \$12,020              |
| \$10.1m       | -97.91             | \$104.977                | 8/ 3/              | \$120.043                | 69.03              | \$146,475          | -80.73             | \$123,081            | 610.02             | \$16,398                 | 312.27             | \$32,343                 | 1081.23            | \$9,341              | 839.37             | \$12,030              |
| \$10.2m       | -97.10             | \$107.020                | 82.20              | \$125,155                | 70.78              | \$140,800          | -82.20<br>92.91    | \$123,991            | 621.02             | \$16,478                 | 311.42             | \$22,056                 | 1089.04            | \$9,403              | 840.12             | \$12,145              |
| \$10.5m       | -90.23             | \$100,745                | 80.30              | \$120,155                | 70.78              | \$143,323          | -63.61             | \$122,901            | 624.28             | \$16,502                 | 211.71             | \$22,265                 | 1000.04            | \$9,407              | 841.26             | \$12,200              |
| \$10.4m       | -94.70             | -\$109,745<br>\$111,947  | 77.07              | \$124,461                | 72.21              | \$144,021          | -80.31             | \$120,495            | 627.22             | \$16,039                 | 212.10             | \$22,505                 | 1091.33            | \$9,550              | 041.50<br>941.57   | \$12,301<br>\$12,477  |
| \$10.5m       | -93.88             | -\$111,047<br>\$115 291  | 76.01              | \$128,001                | 75.02              | \$142,622          | -87.80             | \$117,391            | 620.12             | \$16,740                 | 211.49             | \$24,021                 | 1094.73            | \$9,391              | 842.70             | -\$12,477<br>\$12,577 |
| \$10.000      | -91.93             | -\$113,281<br>\$117,551  | 75.69              | -\$138,003<br>\$141,292  | 73.93              | \$139,393          | -90.29             | \$117,402            | 629.12             | \$16,849                 | 210.72             | \$24,051                 | 11097.04           | \$9,002              | 842.79             | -\$12,577<br>\$12,602 |
| \$10./m       | -91.02             | \$110,633                | 73.08              | -\$141,562<br>\$144,621  | //.20              | \$136,394          | -91.81             | \$110,343            | 625.09             | \$10,930                 | 200.85             | \$24,455                 | 1002.14            | \$9,723              | 843.03             | -\$12,092             |
| \$10.0m       | -90.28             | \$122.267                | 72.51              | -\$144,021<br>\$149,021  | 90.20              | \$119,739          | -95.29             | \$113,772            | 627.02             | \$17,000                 | 200.12             | \$25,260                 | 1092.14            | \$9,009              | 843.22             | -\$12,808             |
| \$10.9m       | -88.43             | -\$123,267               | /3.31              | -\$148,282               | 91.59              | \$119,012          | -95.75             | \$113,834            | 037.03             | \$17,111                 | 309.13             | -\$35,260                | 1095.39            | \$9,951              | 844.39             | -\$12,909             |
| \$11.0m       | -80.15             | -\$127,083               | /1.55              | -\$155,785               | 93.98              | \$117,048          | -97.23             | \$113,140            | 038.33             | \$17,220                 | 309.22             | -\$35,574                | 1097.03            | \$10,022             | 844.30             | -\$13,024             |
| \$11.1m       | -85.23             | -\$130,233               | /0.52              | -\$157,404               | 95.22              | \$116,578          | -98.72             | \$112,434            | 641.43             | \$17,305                 | 308.33             | -\$36,001                | 1101.01            | \$10,082             | 844.76             | -\$13,140             |
| \$11.2m       | -84.30             | -\$132,771               | 08.48              | -\$163,357               | 96.47              | \$116,099          | -101.17            | \$110,703            | 644.34             | \$17,382                 | 308.47             | -\$36,309                | 1104.34            | \$10,142             | 845.90             | -\$13,240             |
| \$11.3m       | -83.62             | -\$135,131               | 6/.35              | -\$167,791               | 97.84              | \$115,497          | -102.63            | \$110,109            | 647.40             | \$17,455                 | 307.69             | -\$36,725                | 1107.55            | \$10,203             | 846.03             | -\$13,356             |
| \$11.4m       | -81.70             | -\$139,528               | 66.18              | -\$1/2,263               | 100.21             | \$113,/6/          | -105.07            | \$108,496            | 649.26             | \$17,559                 | 306.95             | -\$37,140                | 1109.75            | \$10,273             | 847.10             | -\$13,457             |
| \$11.5m       | -80.79             | -\$142,338               | 63.83              | -\$180,167               | 101.41             | \$113,400          | -106.55            | \$107,930            | 652.12             | \$17,635                 | 307.38             | -\$37,413                | 1113.08            | \$10,332             | 847.30             | -\$13,572             |
| \$11.6m       | -/8.94             | -\$146,939               | 62.82              | -\$184,662               | 102.75             | \$112,890          | -107.99            | \$107,420            | 654.04             | \$17,736                 | 306.47             | -\$37,850                | 1116.26            | \$10,392             | 847.41             | -\$13,689             |
| \$11.7m       | -78.22             | -\$149,579               | 64.99              | -\$180,019               | 103.26             | \$113,303          | -110.42            | \$105,964            | 657.08             | \$17,806                 | 302.37             | -\$38,694                | 1120.25            | \$10,444             | 848.49             | -\$13,789             |
| \$11.8m       | -77.35             | -\$152,550               | 63.01              | -\$187,278               | 104.49             | \$112,931          | -110.45            | \$106,831            | 659.97             | \$17,880                 | 302.42             | -\$39,019                | 1123.53            | \$10,503             | 847.18             | -\$13,929             |
| \$11.9m       | -76.45             | -\$155,664               | 61.84              | -\$192,443               | 105.82             | \$112,460          | -111.88            | \$106,362            | 662.82             | \$17,954                 | 301.65             | -\$39,449                | 1126.67            | \$10,562             | 847.25             | -\$14,045             |
| \$12.0m       | -74.18             | -\$161,779               | 60.70              | -\$197,702               | 106.99             | \$112,159          | -113.34            | \$105,878            | 664.30             | \$18,064                 | 300.85             | -\$39,887                | 1129.96            | \$10,620             | 847.34             | -\$14,162             |
| \$12.1m       | -73.46             | -\$164,722               | 59.68              | -\$202,740               | 109.32             | \$110,688          | -115.75            | \$104,538            | 667.32             | \$18,132                 | 299.92             | -\$40,345                | 1132.07            | \$10,688             | 848.38             | -\$14,262             |
| \$12.2m       | -71.61             | -\$170,356               | 57.64              | -\$211,665               | 108.85             | \$112,077          | -117.17            | \$104,122            | 669.22             | \$18,230                 | 300.01             | -\$40,666                | 1136.97            | \$10,730             | 848.43             | -\$14,380             |
| \$12.3m       | -70.72             | -\$173,937               | 56.46              | -\$217,842               | 110.16             | \$111,657          | -119.57            | \$102,868            | 672.05             | \$18,302                 | 299.23             | -\$41,106                | 1140.06            | \$10,789             | 849.44             | -\$14,480             |
| \$12.4m       | -68.80             | -\$180,227               | 55.44              | -\$223,652               | 111.31             | \$111,396          | -121.02            | \$102,466            | 673.87             | \$18,401                 | 298.28             | -\$41,571                | 1143.31            | \$10,846             | 849.49             | -\$14,597             |
| \$12.5m       | -71.80             | -\$174,102               | 53.79              | -\$232,372               | 113.62             | \$110,012          | -122.43            | \$102,102            | 680.59             | \$18,367                 | 297.97             | -\$41,951                | 1145.38            | \$10,913             | 849.50             | -\$14,714             |
| \$12.6m       | -70.94             | -\$177,610               | 51.81              | -\$243,213               | 114.80             | \$109,752          | -124.82            | \$100,945            | 683.45             | \$18,436                 | 297.98             | -\$42,285                | 1148.56            | \$10,970             | 850.49             | -\$14,815             |
| \$12.7m       | -70.23             | -\$180,841               | 50.66              | -\$250,693               | 116.10             | \$109,393          | -126.23            | \$100,612            | 686.45             | \$18,501                 | 297.14             | -\$42,741                | 1151.62            | \$11,028             | 850.48             | -\$14,933             |
| \$12.8m       | -69.33             | -\$184,621               | 49.48              | -\$258,700               | 117.23             | \$109,187          | -127.66            | \$100,266            | 689.26             | \$18,571                 | 296.34             | -\$43,194                | 1154.82            | \$11,084             | 850.48             | -\$15,050             |
| \$12.9m       | -67.49             | -\$191,136               | 47.12              | -\$273,744               | 119.53             | \$107,927          | -130.05            | \$99,195             | 691.12             | \$18,665                 | 296.70             | -\$43,478                | 1156.85            | \$11,151             | 851.44             | -\$15,151             |
| \$13.0m       | -66.79             | -\$194,653               | 46.10              | -\$282,003               | 120.80             | \$107,615          | -131.45            | \$98,900             | 694.12             | \$18,729                 | 295.73             | -\$43,959                | 1159.88            | \$11,208             | 851.39             | -\$15,269             |
| \$13.1m       | -65.89             | -\$198,802               | 44.05              | -\$297,406               | 120.02             | \$109,146          | -133.83            | \$97,886             | 696.92             | \$18,797                 | 295.78             | -\$44,290                | 1164.95            | \$11,245             | 852.32             | -\$15,370             |
| \$13.2m       | -63.63             | -\$207,459               | 42.86              | -\$307,961               | 121.14             | \$108,964          | -135.25            | \$97,594             | 698.35             | \$18,902                 | 294.96             | -\$44,752                | 1168.11            | \$11,300             | 852.29             | -\$15,488             |
| \$13.3m       | -62.78             | -\$211,852               | 40.87              | -\$325,427               | 122.30             | \$108,752          | -136.65            | \$97,326             | 701.18             | \$18,968                 | 294.94             | -\$45,094                | 1171.22            | \$11,356             | 852.21             | -\$15,606             |
| \$13.4m       | -60.87             | -\$220,149               | 39.84              | -\$336,371               | 123.57             | \$108,440          | -139.04            | \$96,375             | 702.95             | \$19,062                 | 293.95             | -\$45,586                | 1174.22            | \$11,412             | 853.12             | -\$15,707             |
| \$13.5m       | -59.98             | -\$225,074               | 38.68              | -\$348,996               | 125.86             | \$107,265          | -140.47            | \$96,105             | /05./4             | \$19,129                 | 293.08             | -\$46,063                | 1176.18            | \$11,478             | 853.06             | -\$15,825             |
| \$13.6m       | -59.28             | -\$229,429               | 37.49              | -\$362,772               | 126.97             | \$107,110          | -141.87            | \$95,860             | 708.71             | \$19,190                 | 292.24             | -\$46,538                | 1179.30            | \$11,532             | 852.96             | -\$15,945             |
| \$13.7m       | -57.44             | -\$238,527               | 36.45              | -\$375,865               | 128.23             | \$106,837          | -141.89            | \$96,552             | 710.53             | \$19,281                 | 291.24             | -\$47,041                | 1182.26            | \$11,588             | 851.46             | -\$16,090             |
| \$13.8m       | -56.55             | -\$244,018               | 34.39              | -\$401,270               | 130.51             | \$105,737          | -144.27            | \$95,655             | 713.31             | \$19,346                 | 291.25             | -\$47,382                | 1184.19            | \$11,654             | 852.32             | -\$16,191             |
| \$13.9m       | -55.86             | -\$248,845               | 32.03              | -\$433,980               | 131.66             | \$105,577          | -145.67            | \$95,421             | /16.2/             | \$19,406                 | 291.57             | -\$47,673                | 1187.25            | \$11,708             | 852.18             | -\$16,311             |
| \$14.0m       | -55.02             | -\$254,469               | 30.86              | -\$453,591               | 132.76             | \$105,454          | -147.10            | \$95,174             | 719.08             | \$19,469                 | 290.67             | -\$48,164                | 1190.33            | \$11,761             | 852.07             | -\$16,431             |
| \$14.1m       | -52.75             | -\$267,310               | 29.67              | -\$475,279               | 134.02             | \$105,212          | -149.48            | \$94,330             | 720.46             | \$19,571                 | 289.81             | -\$48,652                | 1193.24            | \$11,817             | 852.88             | -\$16,532             |
| \$14.2m       | -51.87             | -\$273,782               | 27.66              | -\$513,312               | 136.98             | \$103,667          | -150.88            | \$94,117             | 723.23             | \$19,634                 | 289.75             | -\$49,008                | 1194.43            | \$11,888             | 852.71             | -\$16,653             |
| \$14.3m       | -50.02             | -\$285,865               | 26.61              | -\$537,320               | 140.03             | \$102,124          | -153.26            | \$93,308             | 725.02             | \$19,723                 | 288.72             | -\$49,530                | 1195.54            | \$11,961             | 853.51             | -\$16,754             |
| \$14.4m       | -48.11             | -\$299,307               | 25.41              | -\$566,771               | 142.30             | \$101,196          | -154.08            | \$93,458             | 726.75             | \$19,814                 | 287.84             | -\$50,027                | 1197.39            | \$12,026             | 852.73             | -\$16,887             |
| \$14.5m       | -46.67             | -\$310,719               | 24.35              | -\$595,492               | 143.40             | \$101,116          | -155.52            | \$93,238             | 728.94             | \$19,892                 | 286.81             | -\$50,556                | 1200.41            | \$12,079             | 852.56             | -\$17,008             |
| \$14.6m       | -45.97             | -\$317,612               | 23.17              | -\$630,083               | 144.65             | \$100,930          | -156.92            | \$93,039             | 731.87             | \$19,949                 | 285.89             | -\$51,069                | 1203.26            | \$12,134             | 852.34             | -\$17,129             |
| \$14.7m       | -45.09             | -\$326,050               | 21.10              | -\$696.765               | 145.79             | \$100,830          | -159.30            | \$92,277             | 734.61             | \$20.011                 | 285.86             | -\$51.423                | 1206.22            | \$12.187             | 853.08             | -\$17.232             |

|               |                    |                      |                    | 2                     | 5                  |                    |                    |                      |                    |                        |                    | 2                     | 6                  |                    |                    |                       |
|---------------|--------------------|----------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|------------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|-----------------------|
|               |                    | Agent has good       | informatio         | n                     | Í                  | Agent has no       | or informa         | tion                 | A                  | gent has go            | od informa         | ion                   | Å A                | gent has no        | or informa         | ion                   |
|               | Net                | Investment           | Net Dis            | investment            | Net In             | vestment           | Net Dis            | sinvestment          | Net Inv            | estment                | Net Disi           | nvestment             | Net Inv            | estment            | Net Disi           | nvestment             |
| Rudget impact | $F(\Lambda F)^{a}$ | $F(\lambda^{+})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$  | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$  | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$  |
| S14 8m        | L(ΔL)              | \$331.400            | 10.08              | \$775.564             | 145.23             | \$101 011          | 160 71             | \$02.080             | 737.40             | \$20.071               | 285.77             | \$51.780              | 1210.87            | \$12,223           | 852.84             | \$17.354              |
| \$14.0m       | 42.40              | \$251.412            | 17.00              | \$224 112             | 146.22             | \$101,911          | -100.71            | \$92,089             | 730.18             | \$20,071               | 283.77             | \$52,202              | 1210.87            | \$12,225           | 851.00             | \$17,504              |
| \$14.7m       | -42.40             | \$250,680            | 16.80              | \$802.047             | 140.55             | \$101,820          | -160.34            | \$92,810             | 739.10             | \$20,138               | 204.00             | \$52,505              | 1213.64            | \$12,273           | 851.00             | -\$17,309<br>\$17,621 |
| \$15.0m       | -41.70             | \$260.014            | 10.60              | -\$695,047            | 147.39             | \$101,035          | -101.99            | \$92,390             | 742.09             | \$20,213               | 203.02             | -\$52,850<br>\$52,155 | 1210.03            | \$12,329           | 850.70             | \$17,031              |
| \$15.111      | -40.82             | \$204 452            | 14.41              | -\$1.05m              | 149.88             | \$100,740          | -170.09            | \$85,755             | 744.62             | \$20,273               | 284.08             | -\$35,133             | 1218.42            | \$12,595           | 863.13             | -\$17,494<br>\$17,506 |
| \$15.2m       | -36.55             | \$417,000            | 13.10              | -\$1.15III<br>\$1.28m | 150.51             | \$95,462           | -170.40            | \$65,102             | 740.13             | \$20,371               | 283.17             | -\$55,079             | 1209.74            | \$12,505           | 863.82             | \$17,390              |
| \$15.5m       | -50.01             | -\$417,900           | 10.01              | -\$1.28m              | 159.51             | \$95,920           | -1/9.92            | \$83,038             | 750.74             | \$20,439               | 202.22             | -\$34,214             | 1210.67            | \$12,373           | 863.32             | -\$17,710             |
| \$15.4m       | -35.91             | -\$428,807           | 10.91              | -\$1.41m              | 160.78             | \$95,/84           | -182.33            | \$84,404             | 752.45             | \$20,513               | 281.14             | -\$34,770             | 1219.03            | \$12,027           | 804.10             | -\$17,821             |
| \$15.5m       | -35.03             | -\$442,480           | 8.88               | -\$1./5m              | 161.90             | \$95,/38           | -183.80            | \$84,330             | /55.45             | \$20,572               | 281.02             | -\$55,157             | 1222.52            | \$12,679           | 803.80             | -\$17,943             |
| \$15.6m       | -34.18             | -\$456,345           | 0.78               | -\$2.30m              | 163.06             | \$95,670           | -185.25            | \$84,210             | /56.21             | \$20,629               | 280.95             | -\$55,526             | 1225.36            | \$12,/31           | 863.50             | -\$18,066             |
| \$15.7m       | -32.33             | -\$485,609           | 5.54               | -\$2.83m              | 165.57             | \$94,930           | -18/.0/            | \$83,030             | 757.95             | \$20,714               | 280.02             | -\$50,008             | 1227.03            | \$12,795           | 864.10             | -\$18,109             |
| \$15.8m       | -31.45             | -\$502,462           | 4.45               | -\$3.55m              | 100.00             | \$94,802           | -18/./8            | \$84,142             | 760.65             | \$20,772               | 278.93             | -\$30,043             | 1229.73            | \$12,848           | 862.36             | -\$18,322             |
| \$15.9m       | -30.75             | -\$517,150           | 3.24               | -\$4.91m              | 16/.80             | \$94,/55           | -189.25            | \$84,017             | /63.54             | \$20,824               | 277.95             | -\$57,204             | 1232.55            | \$12,900           | 861.95             | -\$18,446             |
| \$16.0m       | -29.86             | -\$535,801           | 1.99               | -\$8.06m              | 170.14             | \$94,043           | -190.76            | \$83,876             | /66.24             | \$20,881               | 277.01             | -\$57,760             | 1234.18            | \$12,964           | 861.57             | -\$18,571             |
| \$16.1m       | -29.02             | -\$554,862           | 0.27               | -\$60.54m             | 171.44             | \$93,910           | -193.21            | \$83,329             | 768.97             | \$20,937               | 276.52             | -\$58,223             | 1236.81            | \$13,017           | 862.09             | -\$18,676             |
| \$16.2m       | -27.08             | -\$598,286           | -1./9              | \$9.05m               | 1/2.64             | \$93,837           | -194./1            | \$83,200             | //0.62             | \$21,022               | 276.36             | -\$58,620             | 1239.55            | \$13,069           | 861.64             | -\$18,801             |
| \$16.3m       | -25.21             | -\$646,487           | -2.90              | \$5.63m               | 173.81             | \$93,781           | -197.18            | \$82,664             | 772.33             | \$21,105               | 275.24             | -\$59,220             | 1242.31            | \$13,121           | 862.12             | -\$18,907             |
| \$16.4m       | -22.91             | -\$715,861           | -5.31              | \$3.09m               | 175.14             | \$93,638           | -198.74            | \$82,522             | 773.60             | \$21,200               | 275.44             | -\$59,542             | 1244.89            | \$13,174           | 861.65             | -\$19,033             |
| \$16.5m       | -22.20             | -\$743,079           | -7.43              | \$2.22m               | 177.53             | \$92,944           | -200.27            | \$82,387             | //6.4/             | \$21,250               | 275.32             | -\$59,930             | 1246.41            | \$13,238           | 861.13             | -\$19,161             |
| \$16.6m       | -21.31             | -\$779,032           | -8.70              | \$1.91m               | 178.74             | \$92,874           | -202.79            | \$81,857             | 779.14             | \$21,306               | 2/4.35             | -\$60,507             | 1249.11            | \$13,290           | 861.56             | -\$19,267             |
| \$16.7m       | -20.61             | -\$810,448           | -9.94              | \$1.68m               | 180.11             | \$92,720           | -204.40            | \$81,704             | 782.00             | \$21,355               | 273.34             | -\$61,097             | 1251.62            | \$13,343           | 861.02             | -\$19,396             |
| \$16.8m       | -19.71             | -\$852,380           | -11.07             | \$1.52m               | 181.39             | \$92,619           | -205.99            | \$81,558             | 784.67             | \$21,410               | 272.20             | -\$61,719             | 1254.23            | \$13,395           | 860.43             | -\$19,525             |
| \$16.9m       | -17.83             | -\$947,847           | -12.36             | \$1.37m               | 183.84             | \$91,929           | -208.56            | \$81,032             | 786.36             | \$21,492               | 271.21             | -\$62,313             | 1255.65            | \$13,459           | 860.77             | -\$19,634             |
| \$17.0m       | -16.97             | -\$1,001,716         | -14.44             | \$1.18m               | 185.12             | \$91,833           | -210.20            | \$80,877             | 789.06             | \$21,545               | 271.01             | -\$62,728             | 1258.24            | \$13,511           | 860.13             | -\$19,765             |
| \$17.1m       | -15.02             | -\$1,138,857         | -15.58             | \$1.10m               | 186.57             | \$91,653           | -211.89            | \$80,704             | 790.66             | \$21,628               | 269.86             | -\$63,366             | 1260.63            | \$13,565           | 859.47             | -\$19,896             |
| \$17.2m       | -14.31             | -\$1,202,288         | -16.84             | \$1.02m               | 187.90             | \$91,539           | -214.53            | \$80,174             | 793.50             | \$21,676               | 268.83             | -\$63,981             | 1263.15            | \$13,617           | 859.71             | -\$20,007             |
| \$17.3m       | -13.40             | -\$1,291,101         | -18.99             | \$911,108             | 190.45             | \$90,835           | -216.26            | \$79,997             | 796.15             | \$21,730               | 268.67             | -\$64,391             | 1264.42            | \$13,682           | 858.95             | -\$20,141             |
| \$17.4m       | -11.07             | -\$1,572,022         | -20.29             | \$857,539             | 192.00             | \$90,624           | -218.97            | \$79,462             | 797.37             | \$21,822               | 267.67             | -\$65,006             | 1266.70            | \$13,737           | 859.10             | -\$20,254             |
| \$17.5m       | -9.18              | -\$1,906,561         | -22.74             | \$769,432             | 191.75             | \$91,267           | -220.81            | \$79,253             | 799.03             | \$21,902               | 267.80             | -\$65,348             | 1270.77            | \$13,771           | 858.27             | -\$20,390             |
| \$17.6m       | -8.31              | -\$2,118,348         | -23.91             | \$736,185             | 193.27             | \$91,065           | -222.67            | \$79,041             | 801.71             | \$21,953               | 266.62             | -\$66,012             | 1273.05            | \$13,825           | 857.34             | -\$20,528             |
| \$17.7m       | -7.40              | -\$2,393,022         | -26.01             | \$680,454             | 194.82             | \$90,854           | -225.55            | \$78,476             | 804.34             | \$22,006               | 266.38             | -\$66,446             | 1275.30            | \$13,879           | 857.31             | -\$20,646             |
| \$17.8m       | -6.67              | -\$2,668,290         | -27.34             | \$651,154             | 196.53             | \$90,571           | -226.14            | \$78,713             | 807.16             | \$22,053               | 265.35             | -\$67,081             | 1277.37            | \$13,935           | 854.95             | -\$20,820             |
| \$17.9m       | -5.75              | -\$3,110,978         | -28.63             | \$625,165             | 199.29             | \$89,817           | -228.10            | \$78,474             | 809.78             | \$22,105               | 264.28             | -\$67,732             | 1278.38            | \$14,002           | 853.96             | -\$20,961             |
| \$18.0m       | -3.77              | -\$4,769,053         | -29.81             | \$603,800             | 200.84             | \$89,622           | -230.03            | \$78,249             | 811.34             | \$22,186               | 263.08             | -\$68,420             | 1280.60            | \$14,056           | 852.93             | -\$21,104             |
| \$18.1m       | -3.05              | -\$5,932,658         | -31.99             | \$565,797             | 202.55             | \$89,360           | -232.92            | \$77,709             | 814.15             | \$22,232               | 262.89             | -\$68,851             | 1282.65            | \$14,111           | 852.86             | -\$21,223             |
| \$18.2m       | -1.14              | -\$15,953,339        | -33.33             | \$546,044             | 204.14             | \$89,155           | -234.86            | \$77,494             | 815.77             | \$22,310               | 261.84             | -\$69,509             | 1284.82            | \$14,165           | 851.82             | -\$21,366             |
| \$18.3m       | -0.26              | -\$70,857,782        | -34.53             | \$530,039             | 206.90             | \$88,450           | -237.75            | \$76,973             | 818.42             | \$22,360               | 260.62             | -\$70,217             | 1285.82            | \$14,232           | 851.73             | -\$21,486             |
| \$18.4m       | 2.11               | \$8,738,166          | -36.66             | \$501,904             | 208.44             | \$88,275           | -239.71            | \$76,760             | 819.58             | \$22,451               | 260.35             | -\$70,675             | 1288.01            | \$14,286           | 850.71             | -\$21,629             |
| \$18.5m       | 3.04               | \$6,087,962          | -37.98             | \$487,041             | 210.14             | \$88,038           | -238.26            | \$77,646             | 822.18             | \$22,501               | 259.24             | -\$71,362             | 1290.04            | \$14,341           | 846.27             | -\$21,861             |
| \$18.6m       | 4.56               | \$4,081,505          | -40.49             | \$459,368             | 223.16             | \$83,349           | -240.19            | \$77,437             | 824.18             | \$22,568               | 259.30             | -\$71,731             | 1280.74            | \$14,523           | 845.21             | -\$22,006             |
| \$18.7m       | 5.30               | \$3,527,936          | -41.86             | \$446,762             | 225.91             | \$82,777           | -243.08            | \$76,931             | 826.96             | \$22,613               | 258.22             | -\$72,419             | 1281.71            | \$14,590           | 845.10             | -\$22,128             |
| \$18.8m       | 6.24               | \$3,014,171          | -43.07             | \$436,456             | 227.47             | \$82,647           | -245.03            | \$76,724             | 829.54             | \$22,663               | 256.98             | -\$73,157             | 1283.83            | \$14,644           | 844.05             | -\$22,274             |
| \$18.9m       | 8.17               | \$2,313,095          | -45.29             | \$417,289             | 229.16             | \$82,474           | -246.97            | \$76,529             | 831.13             | \$22,740               | 256.74             | -\$73,617             | 1285.84            | \$14,699           | 842.97             | -\$22,421             |
| \$19.0m       | 9.07               | \$2,094,678          | -46.68             | \$407,059             | 230.70             | \$82,359           | -249.85            | \$76,046             | 833.74             | \$22,789               | 255.64             | -\$74,324             | 1288.00            | \$14,752           | 842.83             | -\$22,543             |
| \$19.1m       | 9.82               | \$1,944,625          | -48.03             | \$397,669             | 232.38             | \$82,195           | -251.78            | \$75,860             | 836.50             | \$22,833               | 254.50             | -\$75,049             | 1290.00            | \$14,806           | 841.73             | -\$22,691             |
| \$19.2m       | 11.84              | \$1,621,015          | -49.27             | \$389,686             | 233.90             | \$82,088           | -254.65            | \$75,396             | 837.99             | \$22,912               | 253.24             | -\$75,819             | 1292.14            | \$14,859           | 841.58             | -\$22,814             |
| \$19.3m       | 12.80              | \$1,507,372          | -51.46             | \$375,083             | 236.64             | \$81,560           | -256.62            | \$75,210             | 840.54             | \$22,961               | 252.90             | -\$76,315             | 1293.06            | \$14,926           | 840.50             | -\$22,963             |
| \$19.4m       | 15.21              | \$1,275,227          | -52.86             | \$366,981             | 238.19             | \$81,447           | -259.49            | \$74,761             | 841.64             | \$23,050               | 251.77             | -\$77,054             | 1295.16            | \$14,979           | 840.33             | -\$23,086             |
| \$19.5m       | 16.17              | \$1,205,783          | -54.12             | \$360,283             | 239.86             | \$81,297           | -261.42            | \$74,592             | 844.18             | \$23,099               | 250.49             | -\$77,848             | 1297.13            | \$15,033           | 839.21             | -\$23,236             |
| \$19.6m       | 18.13              | \$1,080,793          | -56.67             | \$345,837             | 241.38             | \$81,201           | -263.38            | \$74,416             | 845.72             | \$23,176               | 250.49             | -\$78,248             | 1299.26            | \$15,086           | 838.11             | -\$23,386             |
| \$19.7m       | 18.91              | \$1.041.860          | -58.55             | \$336,447             | 244.11             | \$80,700           | -266.26            | \$73,987             | 848.44             | \$23,219               | 249.80             | -\$78,864             | 1300.16            | \$15,152           | 837.93             | -\$23,510             |

|                |                    |                 |                 | 2                | 5                 |                        |                 |                    |                    |                        |                 | 2              | 6                  |                  |                 |                   |
|----------------|--------------------|-----------------|-----------------|------------------|-------------------|------------------------|-----------------|--------------------|--------------------|------------------------|-----------------|----------------|--------------------|------------------|-----------------|-------------------|
|                |                    | Agent has good  | l informatio    | n                |                   | Agent has pa           | or informa      | tion               | A                  | gent has go            | od informa      | tion           | 4                  | gent has no      | or informa      | tion              |
|                | Not In             | argeni nus goou | Nat Disi        | n<br>invacturant | Not In            | astmant                | Nat Die         | innastmant         | Nat Inv            | actin ant              | Nat Dis         | innastmant     | Not Ins            | geni nus po      | Not Disi        | ion<br>muastraant |
| De la stimuest | E(AE)a             |                 |                 | E(1-)d           | $E(\Lambda E)$    | E(1+)b                 | $E(\Lambda E)$  | E(1=)d             |                    |                        | E(AE)           | E(1-)d         |                    | E(1+)b           |                 | E(1-)d            |
| Suaget impact  | $E(\Delta E)^{-1}$ | $E(\lambda_G)$  | $E(\Delta E)^2$ | $E(\lambda_G)^*$ | $E(\Delta E)^{n}$ | $E(\Lambda_p)^{\circ}$ | $E(\Delta E)^2$ | $E(\Lambda_p)^{-}$ | $E(\Delta E)^{-1}$ | $E(\Lambda_G)^{\circ}$ | $E(\Delta E)^2$ | $E(\lambda_G)$ | $E(\Delta E)^{-1}$ | $E(\lambda_p)^*$ | $E(\Delta E)^2$ | $E(\lambda_p)^2$  |
| \$19.8m        | 19.84              | \$998,101       | -59.95          | \$330,272        | 245.79            | \$80,558               | -268.20         | \$73,823           | 851.01             | \$23,200               | 248.01          | -\$/9,042      | 1302.12            | \$15,206         | 830.79          | -\$23,002         |
| \$19.9m        | 20.81              | \$956,449       | -62.22          | \$319,827        | 245.56            | \$81,038               | -268.81         | \$/4,031           | 853.54             | \$23,315               | 248.30          | -\$80,146      | 1305.96            | \$15,238         | 834.32          | -\$23,852         |
| \$20.0m        | 21.59              | \$926,444       | -63.66          | \$314,152        | 247.07            | \$80,949               | -2/0.//         | \$/3,864           | 856.25             | \$23,358               | 247.13          | -\$80,929      | 1308.06            | \$15,290         | 833.20          | -\$24,004         |
| \$20.1m        | 23.65              | \$850,045       | -65.89          | \$305,075        | 248.61            | \$80,850               | -2/3.64         | \$73,454           | 857.68             | \$23,435               | 246.74          | -\$81,462      | 1310.12            | \$15,342         | 832.99          | -\$24,130         |
| \$20.2m        | 25.64              | \$/8/,944       | -6/.19          | \$300,656        | 251.34            | \$80,370               | -2/5.58         | \$/3,301           | 859.18             | \$23,511               | 245.41          | -\$82,311      | 1310.99            | \$15,408         | 831.83          | -\$24,284         |
| \$20.3m        | 26.62              | \$/62,635       | -68.64          | \$295,741        | 253.00            | \$80,239               | -2/5.9/         | \$/3,558           | 861.68             | \$23,558               | 244.23          | -\$83,118      | 1312.92            | \$15,462         | 829.13          | -\$24,483         |
| \$20.4m        | 29.07              | \$701,699       | -69.96          | \$291,613        | 254.49            | \$80,160               | -278.85         | \$73,159           | 862.72             | \$23,646               | 242.89          | -\$83,989      | 1315.00            | \$15,513         | 828.90          | -\$24,611         |
| \$20.5m        | 29.87              | \$686,408       | -71.39          | \$287,156        | 256.15            | \$80,033               | -280.78         | \$73,011           | 865.41             | \$23,688               | 241.66          | -\$84,829      | 1316.92            | \$15,567         | 827.72          | -\$24,767         |
| \$20.6m        | 30.82              | \$668,459       | -73.64          | \$279,733        | 258.87            | \$79,577               | -282.74         | \$72,858           | 867.93             | \$23,735               | 241.24          | -\$85,393      | 1317.76            | \$15,633         | 826.56          | -\$24,923         |
| \$20.7m        | 31.81              | \$650,711       | -75.95          | \$272,534        | 260.36            | \$79,505               | -285.61         | \$72,475           | 870.42             | \$23,782               | 240.87          | -\$85,939      | 1319.83            | \$15,684         | 826.31          | -\$25,051         |
| \$20.8m        | 33.82              | \$615,065       | -77.43          | \$268,615        | 261.88            | \$79,424               | -287.55         | \$72,336           | 871.89             | \$23,856               | 239.66          | -\$86,790      | 1321.85            | \$15,736         | 825.10          | -\$25,209         |
| \$20.9m        | 34.62              | \$603,712       | -78.77          | \$265,324        | 263.53            | \$79,307               | -289.51         | \$72,190           | 874.56             | \$23,898               | 238.29          | -\$87,708      | 1323.74            | \$15,789         | 823.93          | -\$25,366         |
| \$21.0m        | 35.63              | \$589,411       | -81.40          | \$257,988        | 265.02            | \$79,240               | -292.39         | \$71,823           | 877.02             | \$23,945               | 238.19          | -\$88,166      | 1325.79            | \$15,840         | 823.65          | -\$25,496         |
| \$21.1m        | 37.74              | \$559,136       | -82.88          | \$254,598        | 267.74            | \$78,808               | -294.33         | \$71,689           | 878.38             | \$24,021               | 236.91          | -\$89,062      | 1326.60            | \$15,905         | 822.44          | -\$25,655         |
| \$21.2m        | 38.71              | \$547,727       | -84.39          | \$251,226        | 269.38            | \$78,699               | -297.20         | \$71,332           | 880.88             | \$24,067               | 235.67          | -\$89,956      | 1328.48            | \$15,958         | 822.15          | -\$25,786         |
| \$21.3m        | 39.72              | \$536,283       | -85.75          | \$248,401        | 270.86            | \$78,639               | -298.59         | \$71,336           | 883.33             | \$24,113               | 234.28          | -\$90,918      | 1330.52            | \$16,009         | 820.38          | -\$25,964         |
| \$21.4m        | 40.54              | \$527,826       | -88.05          | \$243,046        | 272.37            | \$78,569               | -300.52         | \$71,209           | 885.97             | \$24,154               | 233.79          | -\$91,534      | 1332.52            | \$16,060         | 819.15          | -\$26,125         |
| \$21.5m        | 42.58              | \$504,885       | -90.41          | \$237,810        | 285.22            | \$75,381               | -303.40         | \$70,864           | 887.39             | \$24,228               | 233.37          | -\$92,129      | 1323.18            | \$16,249         | 818.85          | -\$26,256         |
| \$21.6m        | 45.10              | \$478,964       | -91.95          | \$234,914        | 287.93            | \$75,019               | -305.33         | \$70,742           | 888.34             | \$24,315               | 232.09          | -\$93,065      | 1323.96            | \$16,315         | 817.61          | -\$26,419         |
| \$21.7m        | 46.13              | \$470,434       | -93.34          | \$232,485        | 289.56            | \$74,942               | -308.20         | \$70,408           | 890.76             | \$24,361               | 230.67          | -\$94,074      | 1325.82            | \$16,367         | 817.29          | -\$26,551         |
| \$21.8m        | 46.96              | \$464,177       | -94.86          | \$229,821        | 291.03            | \$74,907               | -308.83         | \$70,589           | 893.38             | \$24,402               | 229.35          | -\$95,052      | 1327.84            | \$16,418         | 814.73          | -\$26,757         |
| \$21.9m        | 47.96              | \$456,662       | -96.41          | \$227,152        | 290.45            | \$75,400               | -323.69         | \$67,658           | 895.84             | \$24,446               | 228.06          | -\$96,027      | 1331.89            | \$16,443         | 826.40          | -\$26,501         |
| \$22.0m        | 50.11              | \$439,058       | -97.83          | \$224,880        | 292.07            | \$75,324               | -325.62         | \$67,564           | 897.14             | \$24,522               | 226.61          | -\$97,083      | 1333.73            | \$16,495         | 825.14          | -\$26,662         |
| \$22.1m        | 51.16              | \$431,956       | -100.18         | \$220,606        | 294.78            | \$74,971               | -328.49         | \$67,278           | 899.53             | \$24,568               | 226.07          | -\$97,758      | 1334.49            | \$16,561         | 824.80          | -\$26,794         |
| \$22.2m        | 53.25              | \$416,922       | -102.88         | \$215,783        | 296.27            | \$74,930               | -330.42         | \$67,187           | 900.90             | \$24,642               | 225.87          | -\$98,287      | 1336.45            | \$16,611         | 823.54          | -\$26,957         |
| \$22.3m        | 54.12              | \$412,082       | -104.44         | \$213,511        | 297.73            | \$74,901               | -333.28         | \$66,910           | 903.47             | \$24,683               | 224.50          | -\$99,330      | 1338.44            | \$16,661         | 823.19          | -\$27,090         |
| \$22.4m        | 55.18              | \$405,934       | -106.87         | \$209,600        | 299.34            | \$74,831               | -335.22         | \$66,821           | 905.85             | \$24,728               | 224.00          | -\$100,002     | 1340.27            | \$16,713         | 821.91          | -\$27,254         |
| \$22.5m        | 57.74              | \$389,679       | -108.47         | \$207,435        | 299.02            | \$75,245               | -338.09         | \$66,551           | 906.73             | \$24,815               | 222.66          | -\$101,051     | 1344.02            | \$16,741         | 821.55          | -\$27,387         |
| \$22.6m        | 59.42              | \$380,343       | -109.93         | \$205,583        | 301.72            | \$74,903               | -340.03         | \$66,465           | 908.49             | \$24,877               | 221.16          | -\$102,190     | 1344.75            | \$16,806         | 820.27          | -\$27,552         |
| \$22.7m        | 60.45              | \$375,492       | -111.55         | \$203,498        | 303.17            | \$74,876               | -342.89         | \$66,202           | 910.89             | \$24,921               | 219.80          | -\$103,274     | 1346.73            | \$16,856         | 819.91          | -\$27,686         |
| \$22.8m        | 62.57              | \$364,368       | -113.03         | \$201,718        | 304.77            | \$74,810               | -344.83         | \$66,120           | 912.20             | \$24,994               | 218.28          | -\$104,451     | 1348.55            | \$16,907         | 818.61          | -\$27,852         |
| \$22.9m        | 63.48              | \$360,757       | -115.44         | \$198,364        | 306.25            | \$74,776               | -347.69         | \$65,864           | 914.73             | \$25,035               | 217.66          | -\$105,208     | 1350.49            | \$16,957         | 818.24          | -\$27,987         |
| \$23.0m        | 64.59              | \$356,118       | -117.06         | \$196,477        | 306.94            | \$74,933               | -349.62         | \$65,785           | 917.05             | \$25,080               | 216.24          | -\$106,365     | 1353.20            | \$16,997         | 816.95          | -\$28,154         |
| \$23.1m        | 66.81              | \$345,766       | -115.56         | \$199,901        | 308.37            | \$74,910               | -352.48         | \$65,535           | 918.25             | \$25,157               | 211.67          | -\$109,133     | 1355.17            | \$17,046         | 816.56          | -\$28,289         |
| \$23.2m        | 67.92              | \$341,582       | -118.05         | \$196,533        | 311.06            | \$74,584               | -354.42         | \$65,460           | 920.56             | \$25,202               | 211.09          | -\$109,908     | 1355.87            | \$17,111         | 815.26          | -\$28,457         |
| \$23.3m        | 68.84              | \$338,491       | -119.57         | \$194,867        | 312.65            | \$74,525               | -357.27         | \$65,217           | 923.06             | \$25,242               | 209.51          | -\$111,210     | 1357.67            | \$17,162         | 814.87          | -\$28,594         |
| \$23.4m        | 70.99              | \$329,603       | -121.25         | \$192,993        | 314.07            | \$74,506               | -357.90         | \$65,381           | 924.31             | \$25,316               | 208.08          | -\$112,455     | 1359.63            | \$17,211         | 812.26          | -\$28,809         |
| \$23.5m        | 72.09              | \$325,980       | -124.06         | \$189,424        | 315.65            | \$74,449               | -359.84         | \$65,307           | 926.63             | \$25,361               | 207.75          | -\$113,119     | 1361.42            | \$17,261         | 810.94          | -\$28,979         |
| \$23.6m        | 74.74              | \$315,752       | -126.21         | \$186,987        | 318.33            | \$74,138               | -362.69         | \$65,070           | 927.39             | \$25,448               | 206.73          | -\$114,158     | 1362.11            | \$17,326         | 810.53          | -\$29,117         |
| \$23.7m        | 75.89              | \$312,295       | -128.69         | \$184,166        | 319.78            | \$74,114               | -365.54         | \$64,836           | 929.65             | \$25,494               | 206.03          | -\$115,030     | 1364.02            | \$17,375         | 810.13          | -\$29,255         |
| \$23.8m        | 76.84              | \$309,752       | -130.37         | \$182,556        | 321.19            | \$74,100               | -367.47         | \$64,767           | 932.10             | \$25,534               | 204.53          | -\$116,367     | 1365.97            | \$17,424         | 808.80          | -\$29,426         |
| \$23.9m        | 78.00              | \$306,411       | -131.96         | \$181,120        | 322.76            | \$74,050               | -370.32         | \$64,539           | 934.34             | \$25,580               | 202.88          | -\$117,804     | 1367.75            | \$17,474         | 808.38          | -\$29,565         |
| \$24.0m        | 80.31              | \$298,852       | -133.71         | \$179,488        | 325.43            | \$73,749               | -372.25         | \$64,473           | 935.43             | \$25,657               | 201.36          | -\$119,189     | 1368.42            | \$17,538         | 807.05          | -\$29,738         |
| \$24.1m        | 82.54              | \$291,991       | -135.33         | \$178,088        | 326.83            | \$73,739               | -375.10         | \$64,250           | 936.59             | \$25,732               | 199.69          | -\$120.688     | 1370.37            | \$17,587         | 806.63          | -\$29.878         |
| \$24.2m        | 83.68              | \$289,201       | -137.92         | \$175,470        | 328.39            | \$73,693               | -377.03         | \$64,186           | 938.84             | \$25,776               | 198.98          | -\$121.620     | 1372.14            | \$17.637         | 805.29          | -\$30.051         |
| \$24.3m        | 84.67              | \$286,986       | -139.69         | \$173,952        | 329.82            | \$73,676               | -379.87         | \$63,968           | 941.24             | \$25,817               | 197.44          | -\$123,076     | 1374.04            | \$17,685         | 804.86          | -\$30,192         |
| \$24.4m        | 85.87              | \$284,145       | -141.44         | \$172,509        | 342.48            | \$71,245               | -381.80         | \$63,907           | 943.42             | \$25,863               | 195.86          | -\$124.582     | 1364.70            | \$17,879         | 803.51          | -\$30,367         |
| \$24.5m        | 88.61              | \$276.503       | -144.01         | \$170.132        | 345.14            | \$70.986               | -384.65         | \$63.695           | 944.07             | \$25,951               | 195.05          | -\$125.608     | 1365.36            | \$17.944         | 803.07          | -\$30.508         |
| \$24.6m        | 89.84              | \$273.820       | -145.68         | \$168.860        | 346.53            | \$70.990               | -386.58         | \$63.635           | 946.22             | \$25,998               | 193.31          | -\$127.258     | 1367.29            | \$17.992         | 801.72          | -\$30.684         |
| \$24.7m        | 92.12              | \$268,115       | -148.62         | \$166 198        | 348.07            | \$70,962               | -387.02         | \$63.821           | 947 31             | \$26.074               | 192.82          | -\$128 101     | 1369.04            | \$18.042         | 798.87          | -\$30,919         |

|                    |                    |                          |                    | 2                        | 5                  |                          |                    |                            |                    |                          |                    | 2                        | 6                  |                          |                    |                          |
|--------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|
|                    | ,                  | Agent has good           | informatio         | n                        |                    | Agent has po             | or informa         | tion                       | A                  | gent has 90              | od informa         | tion                     | Ā                  | gent has no              | or informat        | tion                     |
|                    | Net In             | vestment                 | Net Dis            | investment               | Net In             | vestment                 | Net Dis            | investment                 | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment                  | Net Disi           | nvestment                |
| Rudget impact      | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{\bar{a}})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ |
| \$24.8m            | 93.18              | \$266.166                | -150.47            | \$164 820                | 349.62             | \$70,934                 | -389.86            | \$63.612                   | 949 64             | \$26.115                 | 191 19             | -\$129.711               | 1370.80            | \$18.092                 | 798.42             | -\$31.061                |
| \$24.9m            | 95.58              | \$260,512                | -152 31            | \$163,484                | 350.99             | \$70,942                 | -390 51            | \$63,763                   | 950.60             | \$26,194                 | 189.51             | -\$131 389               | 1372 72            | \$18,139                 | 795.77             | -\$31 291                |
| \$25.0m            | 96.81              | \$258,237                | -154.04            | \$162,300                | 352.40             | \$70,941                 | -392.43            | \$63,705                   | 952.74             | \$26,240                 | 187.72             | -\$133,180               | 1374 59            | \$18,187                 | 794 40             | -\$31,470                |
| \$25.0m            | 98.09              | \$255,887                | -156.74            | \$160,140                | 351.97             | \$71,313                 | -395.27            | \$63,501                   | 954.83             | \$26,287                 | 186.88             | -\$134 313               | 1378 31            | \$18,211                 | 793.94             | -\$31,615                |
| \$25.1m            | 99.18              | \$254,089                | -158.64            | \$158.851                | 354.62             | \$71,062                 | -397.19            | \$63,445                   | 957.10             | \$26,207                 | 185.19             | -\$136.073               | 1378.94            | \$18,275                 | 792.56             | -\$31,015                |
| \$25.2m            | 101.53             | \$249 192                | -161.30            | \$156,847                | 356.15             | \$71,032                 | -400.03            | \$63,246                   | 958.11             | \$26,406                 | 184.27             | -\$137,298               | 1380.68            | \$18 324                 | 792.00             | -\$31.941                |
| \$25.0m            | 102.82             | \$247.028                | -163.21            | \$155,625                | 357.51             | \$71,030                 | -401.96            | \$63,191                   | 960.18             | \$26,453                 | 182.59             | -\$139,113               | 1382.58            | \$18,371                 | 790.71             | -\$32,123                |
| \$25.5m            | 99.75              | \$255.631                | -165.09            | \$154 463                | 360.15             | \$70,803                 | -404 79            | \$62,996                   | 966.60             | \$26,381                 | 180.86             | -\$140,990               | 1383.20            | \$18,435                 | 790.23             | -\$32,729                |
| \$25.6m            | 102 59             | \$249 549                | -168.10            | \$152,287                | 361.68             | \$70,782                 | -406.72            | \$62,9943                  | 967.12             | \$26,301                 | 180.27             | -\$142.007               | 1384.94            | \$18,485                 | 788.85             | -\$32,209                |
| \$25.0m            | 103.83             | \$247 515                | -170.84            | \$150,437                | 363.03             | \$70,793                 | -409.55            | \$62,752                   | 969.22             | \$26,170                 | 179.39             | -\$143,264               | 1386.84            | \$18,531                 | 788.36             | -\$32,599                |
| \$25.8m            | 104.92             | \$245,897                | -172.76            | \$149 343                | 364.42             | \$70,797                 | -411 48            | \$62,702                   | 971.48             | \$26,557                 | 177.68             | -\$145,201               | 1388.69            | \$18,579                 | 786.97             | -\$32,784                |
| \$25.9m            | 106.22             | \$243,832                | -175 44            | \$147,629                | 367.06             | \$70,561                 | -414 31            | \$62,514                   | 973 52             | \$26,604                 | 176.73             | -\$146 548               | 1389.30            | \$18,642                 | 786.47             | -\$32,932                |
| \$26.0m            | 108.66             | \$239,275                | -177 34            | \$146.615                | 368 57             | \$70,543                 | -416.24            | \$62,61                    | 974 42             | \$26,682                 | 174.99             | -\$148 583               | 1391.02            | \$18,691                 | 785.07             | -\$33,118                |
| \$26.1m            | 111.02             | \$235,091                | -179.26            | \$145 596                | 369.91             | \$70,558                 | -419.07            | \$62,281                   | 975.40             | \$26,758                 | 173.27             | -\$150.631               | 1392.91            | \$18,738                 | 784 57             | -\$33,267                |
| \$26.1m            | 112.32             | \$233,091                | -181.95            | \$143,992                | 371.41             | \$70,550                 | -421.90            | \$62,101                   | 977.44             | \$26,805                 | 172.31             | -\$152,053               | 1394.63            | \$18,786                 | 784.07             | -\$33,416                |
| \$26.2m            | 113.40             | \$231,916                | -184 70            | \$142,391                | 372.79             | \$70,549                 | -423.82            | \$62,054                   | 979.69             | \$26,845                 | 171.40             | -\$153,442               | 1396.48            | \$18,833                 | 782.65             | -\$33,604                |
| \$26.4m            | 114 65             | \$230,273                | -186.64            | \$141 450                | 374.12             | \$70,565                 | -425.22            | \$62,086                   | 981 77             | \$26,890                 | 169.68             | -\$155,592               | 1398.36            | \$18,879                 | 780 71             | -\$33,815                |
| \$26.5m            | 115.94             | \$228 569                | -188 55            | \$140,549                | 376.75             | \$70,338                 | -425.88            | \$62,224                   | 983.81             | \$26,936                 | 167.91             | -\$157,821               | 1398.94            | \$18,943                 | 778.03             | -\$34.061                |
| \$26.6m            | 118.78             | \$223,938                | -191.58            | \$138,843                | 378.25             | \$70,324                 | -428.71            | \$62,047                   | 984.29             | \$27.025                 | 167.28             | -\$159.018               | 1400.66            | \$18,991                 | 777.50             | -\$34.212                |
| \$26.7m            | 121.15             | \$220,395                | -193.97            | \$137,651                | 379.58             | \$70,342                 | -430.64            | \$62,001                   | 985.25             | \$27,100                 | 165.98             | -\$160.863               | 1402.53            | \$19.037                 | 776.08             | -\$34.404                |
| \$26.8m            | 122.23             | \$219,262                | -195.91            | \$136,794                | 392.07             | \$68,356                 | -429.37            | \$62,417                   | 987.49             | \$27,140                 | 164.24             | -\$163,177               | 1393.25            | \$19,236                 | 771.46             | -\$34,739                |
| \$26.9m            | 124.14             | \$216,683                | -198.62            | \$135,436                | 394.70             | \$68,154                 | -432.20            | \$62,240                   | 988.89             | \$27,202                 | 163.25             | -\$164.777               | 1393.82            | \$19,300                 | 770.93             | -\$34.893                |
| \$27.0m            | 125.44             | \$215,247                | -200.54            | \$134,637                | 396.06             | \$68,172                 | -434.13            | \$62,193                   | 990.91             | \$27,248                 | 161.47             | -\$167,213               | 1395.65            | \$19,346                 | 769.50             | -\$35,088                |
| \$27.1m            | 127.88             | \$211,913                | -203.30            | \$133,299                | 397.55             | \$68,167                 | -436.97            | \$62,018                   | 991.77             | \$27,325                 | 160.53             | -\$168,815               | 1397.36            | \$19,394                 | 768.97             | -\$35,242                |
| \$27.2m            | 128.96             | \$210,923                | -205.26            | \$132,518                | 398.87             | \$68,192                 | -438.90            | \$61,973                   | 994.01             | \$27,364                 | 158.78             | -\$171,308               | 1399.23            | \$19,439                 | 767.54             | -\$35,438                |
| \$27.3m            | 130.20             | \$209,685                | -207.21            | \$131,748                | 395.54             | \$69,019                 | -441.74            | \$61,801                   | 996.07             | \$27,408                 | 157.03             | -\$173,858               | 1405.75            | \$19,420                 | 767.00             | -\$35,593                |
| \$27.4m            | 131.48             | \$208,391                | -209.14            | \$131,011                | 398.17             | \$68,815                 | -443.68            | \$61,757                   | 998.09             | \$27,452                 | 155.23             | -\$176,507               | 1406.31            | \$19,484                 | 765.56             | -\$35,791                |
| \$27.5m            | 133.85             | \$205,457                | -212.19            | \$129,598                | 397.64             | \$69,158                 | -446.51            | \$61,589                   | 999.03             | \$27,527                 | 154.57             | -\$177,918               | 1410.03            | \$19,503                 | 765.01             | -\$35,947                |
| \$27.6m            | 135.13             | \$204,249                | -214.91            | \$128,426                | 399.13             | \$69,151                 | -448.45            | \$61,545                   | 1001.04            | \$27,571                 | 153.55             | -\$179,746               | 1411.72            | \$19,551                 | 763.57             | -\$36,146                |
| \$27.7m            | 137.98             | \$200,749                | -217.68            | \$127,248                | 400.44             | \$69,173                 | -451.29            | \$61,380                   | 1001.49            | \$27,659                 | 152.59             | -\$181,533               | 1413.58            | \$19,596                 | 763.02             | -\$36,303                |
| \$27.8m            | 139.06             | \$199,920                | -219.65            | \$126,563                | 401.80             | \$69,189                 | -453.24            | \$61,337                   | 1003.71            | \$27,697                 | 150.82             | -\$184,328               | 1415.41            | \$19,641                 | 761.58             | -\$36,503                |
| \$27.9m            | 141.42             | \$197,282                | -221.60            | \$125,905                | 403.28             | \$69,183                 | -456.07            | \$61,174                   | 1004.63            | \$27,771                 | 149.01             | -\$187,237               | 1417.09            | \$19,688                 | 761.02             | -\$36,661                |
| \$28.0m            | 142.70             | \$196,215                | -223.57            | \$125,240                | 404.59             | \$69,206                 | -458.02            | \$61,133                   | 1006.64            | \$27,815                 | 147.23             | -\$190,177               | 1418.95            | \$19,733                 | 759.57             | -\$36,863                |
| \$28.1m            | 145.15             | \$193,592                | -226.30            | \$124,172                | 407.21             | \$69,005                 | -458.71            | \$61,258                   | 1007.47            | \$27,892                 | 146.20             | -\$192,206               | 1419.49            | \$19,796                 | 756.86             | -\$37,127                |
| \$28.2m            | 146.39             | \$192,640                | -229.09            | \$123,098                | 408.69             | \$69,001                 | -461.55            | \$61,098                   | 1009.52            | \$27,934                 | 145.22             | -\$194,192               | 1421.18            | \$19,843                 | 756.29             | -\$37,287                |
| \$28.3m            | 147.45             | \$191,925                | -231.07            | \$122,475                | 410.00             | \$69,025                 | -476.72            | \$59,364                   | 1011.73            | \$27,972                 | 143.43             | -\$197,309               | 1423.04            | \$19,887                 | 768.05             | -\$36,847                |
| \$28.4m            | 148.73             | \$190,953                | -234.14            | \$121,297                | 412.62             | \$68,828                 | -478.67            | \$59,331                   | 1013.74            | \$28,015                 | 142.73             | -\$198,983               | 1423.57            | \$19,950                 | 766.59             | -\$37,047                |
| \$28.5m            | 151.09             | \$188,629                | -236.09            | \$120,719                | 413.96             | \$68,847                 | -481.51            | \$59,189                   | 1014.65            | \$28,089                 | 140.90             | -\$202,267               | 1425.38            | \$19,995                 | 766.01             | -\$37,206                |
| \$28.6m            | 153.95             | \$185,775                | -238.82            | \$119,755                | 415.43             | \$68,844                 | -483.46            | \$59,157                   | 1015.06            | \$28,176                 | 139.85             | -\$204,498               | 1427.06            | \$20,041                 | 764.55             | -\$37,408                |
| \$28.7m            | 155.01             | \$185,154                | -240.81            | \$119,181                | 416.73             | \$68,869                 | -486.31            | \$59,016                   | 1017.28            | \$28,213                 | 138.06             | -\$207,885               | 1428.91            | \$20,085                 | 763.97             | -\$37,567                |
| \$28.8m            | 150.28             | \$184,289                | -242.77            | \$118,031                | 419.36             | \$08,077                 | -480.82            | \$59,160                   | 1019.27            | \$28,233                 | 130.22             | -\$211,417               | 1429.43            | \$20,148                 | 761.05             | -\$37,843                |
| \$28.9m            | 157.50             | \$183,490                | -245.57            | \$117,087                | 420.82             | \$08,075                 | -489.00            | \$59,021                   | 1021.31            | \$28,297                 | 135.22             | -\$213,723               | 1431.11            | \$20,194                 | 759.09             | -\$38,003                |
| \$29.0m            | 159.95             | \$181,306                | -24/.30            | \$11/,142                | 422.12             | \$08,/01                 | -491.62            | \$28,989                   | 1022.13            | \$28,372                 | 133.41             | -\$217,309               | 1432.90            | \$20,238                 | /38.98             | -\$38,209                |
| \$29.1m            | 161.21             | \$180,505                | -250.30            | \$116,258                | 454.49             | \$00,975                 | -494.4/            | \$28,821                   | 1024.12            | \$28,415                 | 132.35             | -\$219,872               | 1425.73            | \$20,439                 | /58.39             | -\$38,3/1                |
| \$29.2m            | 103.38             | \$177,070                | -252.74            | \$113,334                | 433.82             | \$67.000                 | -490.45            | \$38,820<br>\$50,205       | 1025.01            | \$28,48/                 | 130.97             | -\$222,951               | 1423.33            | \$20,484                 | /30.91             | -338,3/8                 |
| \$29.5m<br>\$20.4m | 165.00             | \$177,220                | -233.82            | \$114,332                | 437.28             | \$67.025                 | -499.28            | \$20,085                   | 1027.22            | \$28,524                 | 120.23             | -\$224,982<br>\$220,004  | 1427.20            | \$20,330                 | 754.92             | -\$30,/41                |
| \$27.4111          | 167.11             | \$176.520                | -25/.00            | \$114,045<br>\$112,546   | 430.30             | \$66.962                 | 504.00             | \$20,024<br>\$50,521       | 1029.21            | \$28,000                 | 126.55             | \$232 102                | 1429.04            | \$20,373                 | 754.03             | -\$30,949<br>\$20,112    |
| \$29.5m            | 160.08             | \$170,330                | -259.61            | \$112,540                | 441.20             | \$66.869                 | 506.07             | \$58.400                   | 1031.24            | \$28,000                 | 120.55             | \$235,102                | 1427.33            | \$20,030                 | 752.74             | \$30 322                 |
| \$29.7m            | 171.02             | \$173.659                | -264.63            | \$112,711                | 443.95             | \$66,900                 | -508.92            | \$58 359                   | 1033.82            | \$28,095                 | 123.52             | -\$240 110               | 1433.06            | \$20,082                 | 752.13             | -\$39.488                |

|               |                    |                          |                    | 2                        | 5                  |                          |                    |                      |                    |                          |                    | λ                        | 6                  |                                         |                    |                          |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|-----------------------------------------|--------------------|--------------------------|
|               |                    | Agent has good           | informatio         | n                        |                    | Agent has po             | or informa         | tion                 | A                  | gent has go              | od informa         | tion                     | Ā                  | gent has po                             | or informat        | ion                      |
|               | Net In             | vestment                 | Net Dis            | investment               | Net In             | vestment                 | Net Di             | sinvestment          | Net Inv            | estment                  | Net Dis            | investment               | Net Inv            | estment                                 | Net Disi           | nvestment                |
| Rudget impact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$                | $E(\Lambda E)^{c}$ | $E(\lambda_{n}^{-})^{d}$ |
| \$29.8m       | 172.28             | \$172.971                | -267 39            | \$111 448                | 443 34             | \$67,217                 | -509.65            | \$58.472             | 1035.80            | \$28,770                 | 122.60             | -\$243.061               | 1436 79            | \$20.741                                | 749 40             | -\$39.765                |
| \$29.9m       | 174.65             | \$171,200                | -269 37            | \$110,999                | 444 66             | \$67,242                 | -511.63            | \$58 441             | 1036.68            | \$28,842                 | 120.74             | -\$247 648               | 1438 59            | \$20,784                                | 747 90             | -\$39.979                |
| \$30.0m       | 177.10             | \$169.396                | -271.39            | \$110,542                | 447.29             | \$67,071                 | -514.48            | \$58,311             | 1037.46            | \$28,917                 | 118.90             | -\$252 318               | 1439.09            | \$20,847                                | 747.29             | -\$40,145                |
| \$30.1m       | 178.35             | \$168 767                | -274 21            | \$109.770                | 448 75             | \$67,075                 | -516.46            | \$58,281             | 1039.45            | \$28,958                 | 117.85             | -\$255 399               | 1440.75            | \$20,892                                | 745 79             | -\$40,360                |
| \$30.2m       | 179.39             | \$168,348                | -277 31            | \$108,904                | 450.03             | \$67,106                 | -519.32            | \$58,153             | 1041.64            | \$28,993                 | 117.08             | -\$257,934               | 1442.58            | \$20,072                                | 745.17             | -\$40 528                |
| \$30.3m       | 180.60             | \$167,777                | -279 30            | \$108,384                | 452.66             | \$66,938                 | -521.31            | \$58,123             | 1043.67            | \$29,032                 | 115.20             | -\$263.017               | 1443.07            | \$20,997                                | 743.66             | -\$40,744                |
| \$30.4m       | 182.96             | \$166,153                | -281.33            | \$108,057                | 454 11             | \$66,944                 | -524.17            | \$57,997             | 1044 53            | \$29,104                 | 113.20             | -\$268 195               | 1444 73            | \$21,042                                | 743.04             | -\$40,913                |
| \$30.5m       | 184.22             | \$165 565                | -284 11            | \$107,354                | 455 39             | \$66,976                 | -526.15            | \$57,968             | 1046 50            | \$29,101                 | 112.23             | -\$271 759               | 1446.56            | \$21,085                                | 741 53             | -\$41 131                |
| \$30.6m       | 187.10             | \$163 553                | -286.15            | \$106,939                | 456 70             | \$67,002                 | -529.02            | \$57,843             | 1046.84            | \$29,231                 | 110.37             | -\$277.246               | 1448.35            | \$21,000                                | 740.89             | -\$41 302                |
| \$30.7m       | 188.13             | \$163,186                | -288.15            | \$106 541                | 458.15             | \$67,009                 | -531.88            | \$57,720             | 1049.03            | \$29,265                 | 108.48             | -\$283.012               | 1450.00            | \$21,120                                | 740.26             | -\$41 472                |
| \$30.8m       | 189.38             | \$162,635                | -290.99            | \$105.845                | 459.42             | \$67.040                 | -533.87            | \$57,691             | 1051.00            | \$29,306                 | 107.40             | -\$286,779               | 1451.84            | \$21,215                                | 738.74             | -\$41.692                |
| \$30.9m       | 191 75             | \$161 145                | -293 78            | \$105 182                | 462.05             | \$66.876                 | -536.74            | \$57 570             | 1051.84            | \$29.377                 | 106.27             | -\$290 781               | 1452.31            | \$21,276                                | 738.10             | -\$41 864                |
| \$31.0m       | 194 21             | \$159.622                | -295.82            | \$104 793                | 461.11             | \$67,229                 | -538.74            | \$57 542             | 1052.60            | \$29,451                 | 104.39             | -\$296,955               | 1456.35            | \$21,276                                | 736.58             | -\$42,086                |
| \$31.1m       | 195 40             | \$159,157                | -298.94            | \$104.035                | 462.55             | \$67,236                 | -541.61            | \$57.422             | 1054.61            | \$29.489                 | 103 59             | -\$300 227               | 1458.00            | \$21,331                                | 735.93             | -\$42,259                |
| \$31.2m       | 197.31             | \$158.130                | -300.96            | \$103.670                | 474.81             | \$65.710                 | -543.61            | \$57.394             | 1055.92            | \$29.548                 | 101.68             | -\$306.844               | 1448.83            | \$21.535                                | 734.41             | -\$42.483                |
| \$31.3m       | 198.33             | \$157,816                | -303.01            | \$103.298                | 476.08             | \$65,745                 | -544.38            | \$57,497             | 1058.10            | \$29,581                 | 99.80              | -\$313.620               | 1450.65            | \$21,576                                | 731.66             | -\$42,780                |
| \$31.4m       | 199.58             | \$157.331                | -305.85            | \$102,664                | 477.39             | \$65.774                 | -547.94            | \$57.305             | 1060.06            | \$29.621                 | 98.71              | -\$318,105               | 1452.43            | \$21,619                                | 731.69             | -\$42,914                |
| \$31.5m       | 200.81             | \$156.861                | -308.64            | \$102.061                | 480.02             | \$65.622                 | -550.82            | \$57,188             | 1062.02            | \$29,660                 | 97.56              | -\$322.882               | 1452.89            | \$21,681                                | 731.03             | -\$43,090                |
| \$31.6m       | 203.69             | \$155,135                | -310.70            | \$101,707                | 481.47             | \$65,633                 | -552.82            | \$57,161             | 1062.35            | \$29,745                 | 95.67              | -\$330,285               | 1454.53            | \$21,725                                | 729.50             | -\$43,318                |
| \$31.7m       | 206.06             | \$153,837                | -312.72            | \$101,367                | 482.73             | \$65,668                 | -554.31            | \$57,188             | 1063.17            | \$29,816                 | 93.75              | -\$338,122               | 1456.35            | \$21,767                                | 727.45             | -\$43,577                |
| \$31.8m       | 207.08             | \$153,566                | -315.21            | \$100,884                | 485.36             | \$65,518                 | -557.19            | \$57,072             | 1065.35            | \$29,849                 | 92.29              | -\$344,564               | 1456.80            | \$21,829                                | 726.77             | -\$43,755                |
| \$31.9m       | 208.26             | \$153,172                | -317.28            | \$100,543                | 486.80             | \$65,530                 | -559.20            | \$57,045             | 1067.36            | \$29,887                 | 90.39              | -\$352,899               | 1458.44            | \$21,873                                | 725.23             | -\$43,986                |
| \$32.0m       | 209.49             | \$152,748                | -320.13            | \$99,959                 | 488.06             | \$65,566                 | -562.08            | \$56,931             | 1069.32            | \$29,926                 | 89.29              | -\$358,401               | 1460.26            | \$21,914                                | 724.56             | -\$44,165                |
| \$32.1m       | 211.95             | \$151,454                | -323.26            | \$99,302                 | 489.36             | \$65,596                 | -564.10            | \$56,905             | 1070.06            | \$29,998                 | 88.45              | -\$362,913               | 1462.03            | \$21,956                                | 723.02             | -\$44,397                |
| \$32.2m       | 212.95             | \$151,209                | -326.06            | \$98,756                 | 488.68             | \$65,892                 | -566.98            | \$56,792             | 1072.24            | \$30,031                 | 87.28              | -\$368,933               | 1465.78            | \$21,968                                | 722.33             | -\$44,578                |
| \$32.3m       | 214.18             | \$150,811                | -325.11            | \$99,351                 | 490.11             | \$65,903                 | -569.00            | \$56,766             | 1074.20            | \$30,069                 | 82.36              | -\$392,194               | 1467.42            | \$22,011                                | 720.78             | -\$44,812                |
| \$32.4m       | 216.54             | \$149,623                | -327.15            | \$99,037                 | 491.37             | \$65,938                 | -571.89            | \$56,654             | 1075.01            | \$30,139                 | 80.42              | -\$402,909               | 1469.23            | \$22,052                                | 720.10             | -\$44,994                |
| \$32.5m       | 219.43             | \$148,114                | -329.22            | \$98,717                 | 494.00             | \$65,789                 | -574.78            | \$56,544             | 1075.31            | \$30,224                 | 78.50              | -\$413,993               | 1469.66            | \$22,114                                | 719.41             | -\$45,176                |
| \$32.6m       | 220.64             | \$147,751                | -331.27            | \$98,411                 | 495.26             | \$65,825                 | -576.80            | \$56,518             | 1077.26            | \$30,262                 | 76.56              | -\$425,806               | 1471.48            | \$22,155                                | 717.85             | -\$45,413                |
| \$32.7m       | 221.81             | \$147,422                | -333.34            | \$98,097                 | 496.69             | \$65,836                 | -578.83            | \$56,493             | 1079.27            | \$30,298                 | 74.64              | -\$438,081               | 1473.11            | \$22,198                                | 716.30             | -\$45,651                |
| \$32.8m       | 222.81             | \$147,212                | -336.21            | \$97,559                 | 497.98             | \$65,866                 | -579.45            | \$56,605             | 1081.44            | \$30,330                 | 73.51              | -\$446,198               | 1474.87            | \$22,239                                | 713.32             | -\$45,982                |
| \$32.9m       | 225.17             | \$146,112                | -339.02            | \$97,046                 | 500.62             | \$65,719                 | -580.26            | \$56,698             | 1082.25            | \$30,400                 | 72.32              | -\$454,926               | 1475.30            | \$22,301                                | 710.55             | -\$46,302                |
| \$33.0m       | 226.38             | \$145,772                | -342.16            | \$96,447                 | 501.86             | \$65,755                 | -582.30            | \$56,672             | 1084.21            | \$30,437                 | 71.46              | -\$461,829               | 1477.11            | \$22,341                                | 708.99             | -\$46,545                |
| \$33.1m       | 228.83             | \$144,650                | -344.24            | \$96,154                 | 514.03             | \$64,394                 | -584.33            | \$56,646             | 1084.93            | \$30,509                 | 69.53              | -\$476,049               | 1468.00            | \$22,548                                | 707.42             | -\$46,790                |
| \$33.2m       | 229.81             | \$144,468                | -346.29            | \$95,873                 | 515.45             | \$64,409                 | -586.37            | \$56,620             | 1087.11            | \$30,540                 | 67.57              | -\$491,321               | 1469.62            | \$22,591                                | 705.85             | -\$47,035                |
| \$33.3m       | 231.01             | \$144,147                | -349.11            | \$95,386                 | 516.69             | \$64,448                 | -588.41            | \$56,593             | 1089.06            | \$30,577                 | 66.37              | -\$501,731               | 1471.43            | \$22,631                                | 704.29             | -\$47,282                |
| \$33.4m       | 232.17             | \$143,863                | -351.98            | \$94,892                 | 519.33             | \$64,314                 | -590.45            | \$56,567             | 1091.07            | \$30,612                 | 65.22              | -\$512,124               | 1471.84            | \$22,693                                | 702.72             | -\$47,530                |
| \$33.5m       | 234.53             | \$142,842                | -354.07            | \$94,614                 | 520.75             | \$64,330                 | -592.50            | \$56,540             | 1091.87            | \$30,681                 | 63.28              | -\$529,372               | 14//3.4/           | \$22,735                                | 701.15             | -\$47,779                |
| \$33.6m       | 237.41             | \$141,528                | -356.13            | \$94,347                 | 522.04             | \$64,363                 | -594.55            | \$56,513             | 1092.14            | \$30,765                 | 61.31              | -\$547,995               | 1475.23            | \$22,776                                | 699.58             | -\$48,029                |
| \$33.7m       | 238.61             | \$141,236                | -358.23            | \$94,075                 | 523.28             | \$64,402                 | -595.40            | \$56,601             | 1094.09            | \$30,802                 | 59.37              | -\$567,590               | 1477.03            | \$22,816                                | 696.80             | -\$48,364                |
| \$33.8m       | 239.38             | \$141,080                | -301.05            | \$93,010                 | 524.70             | \$04,418                 | -594.41            | \$30,803             | 1096.27            | \$30,832                 | 57.20              | -\$581,200               | 14/8.05            | \$22,839                                | 692.18             | -\$48,832                |
| \$33.9m       | 240.77             | \$140,797                | -304.21            | \$93,079                 | 527.55             | \$64,280                 | -590.40            | \$30,833             | 1098.22            | \$30,868                 | 57.20              | -\$592,018               | 14/9.05            | \$22,920                                | 690.60             | -\$49,088                |
| \$34.0m       | 243.13             | \$139,844                | -367.09            | \$92,621                 | 528.57             | \$64,325                 | -398.52            | \$56,806             | 1099.01            | \$30,937                 | 56.09              | -\$606,130               | 1480.85            | \$22,960                                | 689.01             | -\$49,346                |
| \$34.1m       | 245.57             | \$138,859                | -369.19            | \$92,365                 | 529.98             | \$64,342                 | -600.59            | \$56,778             | 1099./1            | \$31,008                 | 54.14              | -\$629,826               | 1482.47            | \$23,002                                | 687.43             | -\$49,605                |
| \$34.2m       | 240.53             | \$138,/23                | -3/1.20            | \$92,118                 | 522.00             | \$04,373                 | -002.05            | \$30,749             | 1101.89            | \$31,038                 | 50.20              | -3033,/44                | 1484.22            | \$23,042                                | 083.83             | -349,803                 |
| \$34.3m       | 24/.0/             | \$138,489                | -3/3.3/            | \$91,805                 | 525.12             | \$04,243                 | -004.72            | \$30,720             | 1105.89            | \$31,072                 | 30.20              | -3083,283                | 1484.01            | \$23,104                                | 682.68             | -\$30,127                |
| \$34.4m       | 248.80             | \$138,232                | -3/0.20            | \$91,440                 | 525.52             | \$04,284                 | -000.79            | \$30,091             | 1105.84            | \$31,108                 | 48.90              | -\$/02,349               | 1480.41            | \$23,143                                | 082.08             | -\$30,390                |
| \$34.5m       | 252.02             | \$137,044                | -3/9.09            | \$91,00/                 | 526.04             | \$64,422                 | -022.42            | \$JJ,428             | 1100.09            | \$21,191                 | 4/./8              | -\$/22,041<br>\$749,272  | 1409.04            | \$23,109                                | 602.05             | -\$49,000<br>\$40,025    |
| \$34.0m       | 253.87             | \$136,686                | -383 74            | \$90,004                 | 536.18             | \$64 717                 | -625 39            | \$55,404             | 1110.03            | \$31,220                 | 40.24              | -\$783 736               | 1490.03            | \$23,211                                | 690.26             | -\$49,923                |
| JJ-1./III     | 200.01             | φ100,000                 | -202./-            | JU.740                   | 0.10               | $\psi \psi + (1 / 1)$    | -043.37            | 90 <b>7</b> ,700     | 1110.43            | 001,200                  |                    | -0100,100                | 1 1 7 ノ 7 . 7 ノ    | $\psi_{\Delta \Delta}, \psi_{\Delta U}$ | 070.20             | $-\phi_{J} 0, 2/1$       |

|                      |                    |                          |                    | λ.                       | 5                  |                    |                    |                      |                    |                          |                    | λ                        | 6                  |                        |                    |                      |
|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|------------------------|--------------------|----------------------|
|                      |                    | Agent has good           | information        | n                        |                    | Agent has po       | or informa         | tion                 | A                  | gent has go              | od informa         | tion                     | A                  | gent has po            | or informat        | ion                  |
|                      | Net In             | vestment                 | Net Disi           | nvestment                | Net In             | vestment           | Net Di             | sinvestment          | Net Inv            | estment                  | Net Dis            | investment               | Net Inv            | estment                | Net Disi           | nvestment            |
| Rudget impact        | $E(\Lambda E)^{a}$ | $F(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $F(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{+}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$ |
| S34 8m               | 256.22             | \$135.821                | -386.91            | \$89.945                 | 548 25             | \$63.474           | -627 47            | \$55.461             | 1111.00            | \$31 323                 | 43.36              | -\$802.641               | 1485 37            | \$23.428               | 688.66             | -\$50 533            |
| \$34.0m              | 257.34             | \$135,620                | 389.02             | \$89,743                 | 540.25             | \$63,515           | 620.05             | \$55,480             | 1113.01            | \$31,325                 | 41.30              | \$843.260                | 1487.16            | \$23,420               | 686.56             | \$50,833             |
| \$35.0m              | 257.54             | \$135,020                | 201.86             | \$89,712                 | 550.75             | \$63,515           | 620.76             | \$55,400             | 1113.01            | \$21,350                 | 40.14              | \$872.020                | 1487.10            | \$23,408               | 683.50             | \$51,201             |
| \$35.0m              | 250.30             | \$135,394                | -391.80            | \$09,317                 | 552.40             | \$63,349           | -029.70            | \$55,577             | 1114.97            | \$31,391                 | 28.04              | -\$672,029<br>\$001,445  | 1400.90            | \$23,507               | 691.09             | \$51,201             |
| \$35.1111<br>\$25.2m | 259.44             | \$133,292                | -394.70            | \$88,514                 | 554.91             | \$63,427           | 622.04             | \$55,551             | 1117.13            | \$31,419                 | 26.06              | \$052 220                | 1409.27            | \$23,509               | 680.27             | \$51,408             |
| \$35.2III<br>\$35.3m | 264.22             | \$134,414                | -390.88            | \$88,091                 | 556.04             | \$62,445           | 626.02             | \$55,520             | 1117.63            | \$21,407                 | 25.71              | \$932,329                | 1490.07            | \$23,010               | 678.76             | \$52,006             |
| \$35.5III<br>\$25.4m | 204.22             | \$133,398                | -399.73            | \$88,310                 | 557.45             | \$63,465           | -030.03            | \$55,500             | 1120.56            | \$21,557                 | 22.72              | -\$900,040<br>\$1.05m    | 1492.00            | \$23,049               | 677.15             | -\$52,000            |
| \$35.411             | 203.38             | \$133,392                | -401.80            | \$88,091                 | 557.43             | \$05,304           | -036.15            | \$55,474             | 1120.30            | \$31,391                 | 22.70              | -\$1.05m                 | 1494.20            | \$23,091               | 077.13             | -\$32,278            |
| \$35.5m              | 208.27             | \$132,329                | -405.03            | \$87,048                 | 560.09             | \$03,382           | -040.24            | \$55,448             | 1120.79            | \$31,674                 | 32.79              | -\$1.08m                 | 1494.62            | \$23,752               | 6/5.54             | -\$52,550            |
| \$35.6m              | 270.12             | \$131,792                | -407.93            | \$87,269                 | 561.31             | \$63,423           | -641.16            | \$55,525             | 1122.04            | \$31,728                 | 31.58              | -\$1.13m                 | 1496.40            | \$23,790               | 6/2./5             | -\$52,917            |
| \$35.7m              | 2/1.04             | \$131,/13                | -410.07            | \$87,039                 | 562.58             | \$63,438           | -043.27            | \$55,498             | 1124.23            | \$31,755                 | 29.59              | -\$1.21m                 | 1498.14            | \$23,830               | 6/1.13             | -\$53,194            |
| \$35.8m              | 272.20             | \$131,521                | -412.92            | \$86,699                 | 563.98             | \$63,477           | -645.37            | \$55,472             | 1126.18            | \$31,789                 | 28.32              | -\$1.26m                 | 1499.73            | \$23,871               | 669.51             | -\$53,472            |
| \$35.9m              | 273.30             | \$131,357                | -415.06            | \$86,493                 | 565.20             | \$63,517           | -647.49            | \$55,445             | 1128.19            | \$31,821                 | 26.33              | -\$1.36m                 | 1501.51            | \$23,909               | 667.89             | -\$53,751            |
| \$36.0m              | 275.65             | \$130,600                | -417.98            | \$86,129                 | 567.85             | \$63,397           | -649.61            | \$55,418             | 1128.94            | \$31,888                 | 25.10              | -\$1.43m                 | 1501.86            | \$23,970               | 666.27             | -\$54,032            |
| \$36.1m              | 276.80             | \$130,420                | -420.12            | \$85,927                 | 569.25             | \$63,416           | -651.72            | \$55,392             | 1130.89            | \$31,922                 | 23.10              | -\$1.56m                 | 1503.45            | \$24,011               | 664.65             | -\$54,315            |
| \$36.2m              | 277.71             | \$130,353                | -423.31            | \$85,517                 | 5/0.47             | \$63,457           | -653.85            | \$55,365             | 1133.08            | \$31,948                 | 22.14              | -\$1.64m                 | 1505.23            | \$24,049               | 663.02             | -\$54,599            |
| \$36.3m              | 280.15             | \$129,576                | -426.17            | \$85,177                 | 582.46             | \$62,322           | -655.97            | \$55,338             | 1133.74            | \$32,018                 | 20.85              | -\$1.74m                 | 1496.23            | \$24,261               | 661.39             | -\$54,884            |
| \$36.4m              | 281.29             | \$129,406                | -428.33            | \$84,982                 | 583.72             | \$62,359           | -656.93            | \$55,409             | 1135.69            | \$32,051                 | 18.85              | -\$1.93m                 | 1497.96            | \$24,300               | 658.59             | -\$55,269            |
| \$36.5m              | 284.18             | \$128,440                | -431.25            | \$84,637                 | 586.37             | \$62,248           | -659.06            | \$55,382             | 1135.89            | \$32,133                 | 17.60              | -\$2.07m                 | 1498.30            | \$24,361               | 656.96             | -\$55,559            |
| \$36.6m              | 286.53             | \$127,737                | -433.83            | \$84,366                 | 587.77             | \$62,270           | -661.20            | \$55,354             | 1136.63            | \$32,200                 | 16.01              | -\$2.29m                 | 1499.88            | \$24,402               | 655.33             | -\$55,850            |
| \$36.7m              | 287.61             | \$127,602                | -435.99            | \$84,177                 | 588.98             | \$62,311           | -663.34            | \$55,326             | 1138.63            | \$32,232                 | 13.99              | -\$2.62m                 | 1501.65            | \$24,440               | 653.69             | -\$56,143            |
| \$36.8m              | 288.51             | \$127,553                | -438.86            | \$83,854                 | 590.37             | \$62,333           | -665.48            | \$55,298             | 1140.82            | \$32,257                 | 12.69              | -\$2.90m                 | 1503.23            | \$24,481               | 652.05             | -\$56,437            |
| \$36.9m              | 289.64             | \$127,398                | -442.05            | \$83,474                 | 591.58             | \$62,375           | -666.28            | \$55,382             | 1142.77            | \$32,290                 | 11.71              | -\$3.15m                 | 1505.01            | \$24,518               | 649.06             | -\$56,851            |
| \$37.0m              | 290.77             | \$127,249                | -444.98            | \$83,149                 | 594.24             | \$62,265           | -668.42            | \$55,354             | 1144.73            | \$32,322                 | 10.46              | -\$3.54m                 | 1505.33            | \$24,579               | 647.42             | -\$57,150            |
| \$37.1m              | 293.11             | \$126,573                | -447.15            | \$82,969                 | 593.40             | \$62,521           | -670.57            | \$55,326             | 1145.46            | \$32,389                 | 8.43               | -\$4.40m                 | 1509.14            | \$24,584               | 645.77             | -\$57,451            |
| \$37.2m              | 294.00             | \$126,532                | -450.04            | \$82,660                 | 594.65             | \$62,558           | -671.57            | \$55,393             | 1147.66            | \$32,414                 | 7.11               | -\$5.23m                 | 1510.86            | \$24,622               | 642.96             | -\$57,857            |
| \$37.3m              | 296.43             | \$125,832                | -452.21            | \$82,484                 | 596.04             | \$62,579           | -673.72            | \$55,364             | 1148.30            | \$32,483                 | 5.09               | -\$7.33m                 | 1512.44            | \$24,662               | 641.31             | -\$58,162            |
| \$37.4m              | 299.32             | \$124,948                | -455.15            | \$82,171                 | 597.25             | \$62,620           | -675.40            | \$55,375             | 1148.48            | \$32,565                 | 3.82               | -\$9.80m                 | 1514.20            | \$24,699               | 639.17             | -\$58,513            |
| \$37.5m              | 300.39             | \$124,837                | -457.33            | \$81,998                 | 599.91             | \$62,509           | -677.56            | \$55,346             | 1150.48            | \$32,595                 | 1.78               | -\$21.04m                | 1514.51            | \$24,761               | 637.52             | -\$58,822            |
| \$37.6m              | 301.52             | \$124,703                | -460.22            | \$81,700                 | 601.30             | \$62,531           | -679.72            | \$55,317             | 1152.43            | \$32,627                 | 0.45               | -\$83.42m                | 1516.08            | \$24,801               | 635.86             | -\$59,133            |
| \$37.7m              | 301.79             | \$124,923                | -463.43            | \$81,349                 | 602.50             | \$62,572           | -681.89            | \$55,287             | 1155.22            | \$32,634                 | -0.56              | \$67.19m                 | 1517.84            | \$24,838               | 634.19             | -\$59,446            |
| \$37.8m              | 302.05             | \$125,144                | -465.62            | \$81,182                 | 614.41             | \$61,522           | -684.06            | \$55,258             | 1158.02            | \$32,642                 | -2.60              | \$14.53m                 | 1508.89            | \$25,052               | 632.53             | -\$59,760            |
| \$37.9m              | 304.40             | \$124,508                | -468.57            | \$80,884                 | 615.66             | \$61,560           | -686.24            | \$55,229             | 1158.74            | \$32,708                 | -3.89              | \$9.75m                  | 1510.61            | \$25,089               | 630.87             | -\$60,076            |
| \$38.0m              | 305.52             | \$124,380                | -470.77            | \$80,719                 | 616.86             | \$61,603           | -685.51            | \$55,433             | 1160.68            | \$32,739                 | -5.94              | \$6.40m                  | 1512.37            | \$25,126               | 626.29             | -\$60,675            |
| \$38.1m              | 305.79             | \$124,596                | -473.67            | \$80,435                 | 619.53             | \$61,499           | -687.69            | \$55,403             | 1163.47            | \$32,747                 | -7.29              | \$5.23m                  | 1512.66            | \$25,187               | 624.62             | -\$60,997            |
| \$38.2m              | 306.67             | \$124,564                | -475.87            | \$80,274                 | 620.92             | \$61,522           | -688.73            | \$55,465             | 1165.65            | \$32,771                 | -9.34              | \$4.09m                  | 1514.22            | \$25,227               | 621.80             | -\$61,435            |
| \$38.3m              | 306.94             | \$124,782                | -479.10            | \$79,942                 | 622.11             | \$61,564           | -690.91            | \$55,434             | 1168.44            | \$32,779                 | -10.37             | \$3.69m                  | 1515.98            | \$25,264               | 620.12             | -\$61,762            |
| \$38.4m              | 307.20             | \$125,000                | -482.06            | \$79,659                 | 623.50             | \$61,588           | -693.10            | \$55,403             | 1171.23            | \$32,786                 | -11.67             | \$3.29m                  | 1517.55            | \$25,304               | 618.45             | -\$62,091            |
| \$38.5m              | 307.46             | \$125,219                | -484.26            | \$79,502                 | 626.17             | \$61,485           | -695.30            | \$55,372             | 1174.02            | \$32,793                 | -13.73             | \$2.80m                  | 1517.83            | \$25,365               | 616.76             | -\$62,423            |
| \$38.6m              | 308.57             | \$125,092                | -487.17            | \$79,233                 | 627.41             | \$61,523           | -697.49            | \$55,341             | 1175.95            | \$32,824                 | -15.09             | \$2.56m                  | 1519.54            | \$25,403               | 615.08             | -\$62,756            |
| \$38.7m              | 308.83             | \$125,311                | -489.79            | \$79,013                 | 628.60             | \$61,566           | -699.70            | \$55,310             | 1178.74            | \$32,832                 | -16.75             | \$2.31m                  | 1521.29            | \$25,439               | 613.40             | -\$63,091            |
| \$38.8m              | 309.09             | \$125,530                | -492.00            | \$78,861                 | 624.51             | \$62,129           | -701.90            | \$55,279             | 1181.53            | \$32,839                 | -18.81             | \$2.06m                  | 1528.33            | \$25,387               | 611.71             | -\$63,429            |
| \$38.9m              | 310.15             | \$125,424                | -494.97            | \$78,591                 | 625.89             | \$62,151           | -702.79            | \$55,351             | 1183.51            | \$32,868                 | -20.13             | \$1.93m                  | 1529.88            | \$25,427               | 608.70             | -\$63,907            |
| \$39.0m              | 310.40             | \$125,644                | -497.89            | \$78,331                 | 627.08             | \$62,193           | -705.00            | \$55,319             | 1186.30            | \$32,875                 | -21.50             | \$1.81m                  | 1531.64            | \$25,463               | 607.01             | -\$64,250            |
| \$39.1m              | 312.75             | \$125.020                | -500.11            | \$78.184                 | 629.76             | \$62.087           | -706.08            | \$55.376             | 1186.99            | \$32.941                 | -23.58             | \$1.66m                  | 1531.90            | \$25.524               | 604.17             | -\$64.717            |
| \$39.2m              | 313.62             | \$124,991                | -499.43            | \$78,489                 | 641.61             | \$61.097           | -708.29            | \$55,344             | 1189.15            | \$32,965                 | -28.56             | \$1.37m                  | 1522.99            | \$25,739               | 602.47             | -\$65,065            |
| \$39.3m              | 316.54             | \$124,156                | -502.67            | \$78,182                 | 642.99             | \$61,121           | -710.51            | \$55,312             | 1189.27            | \$33,046                 | -29.62             | \$1.33m                  | 1524.54            | \$25,778               | 600.77             | -\$65,416            |
| \$39.4m              | 316.79             | \$124.371                | -504.90            | \$78.035                 | 642.07             | \$61.364           | -712.74            | \$55.280             | 1192.04            | \$33.053                 | -31.71             | \$1.24m                  | 1528.40            | \$25.779               | 599.07             | -\$65.769            |
| \$39.5m              | 319.24             | \$123,731                | -507.88            | \$77,774                 | 643.31             | \$61,401           | -714.97            | \$55,247             | 1192.62            | \$33,120                 | -33.05             | \$1.20m                  | 1530.09            | \$25.815               | 597.36             | -\$66.124            |
| \$39.6m              | 320.36             | \$123,612                | -510.81            | \$77 524                 | 644 50             | \$61 443           | -717.20            | \$55,215             | 1194 52            | \$33 151                 | -34 45             | \$1.15m                  | 1531.83            | \$25,851               | 595.65             | -\$66 481            |
| \$39.7m              | 320.62             | \$123,824                | -513.04            | \$77.381                 | 647.19             | \$61.342           | -719.44            | \$55,182             | 1197.29            | \$33,158                 | -36.55             | \$1.09m                  | 1532.08            | \$25,913               | 593.95             | -\$66.841            |

|                     |                   |                        |                 | 2                | 5                 |                    |                 |                   |                    |                        |                 | 2                   | 6                 |                  |                 |                  |
|---------------------|-------------------|------------------------|-----------------|------------------|-------------------|--------------------|-----------------|-------------------|--------------------|------------------------|-----------------|---------------------|-------------------|------------------|-----------------|------------------|
|                     |                   | Agent has good         | information     | n                |                   | Agent has pa       | or informat     | tion              | A                  | gent has go            | od informa      | tion                | 4                 | gent has no      | or informat     | ion              |
|                     | Not In            | ngeni nus goou         | Not Disi        | n<br>nuastmant   | Nat In            | agent nus po       | Nat Die         | ion<br>investment | Nat Inv            | actin ant              | Nat Disi        | ion<br>nuacturant   | Not Ins           | geni nus po      | Nat Disi        | nuactes ant      |
| Der der et immer et | E(AE)a            |                        | E(AE)s          | E(1-)d           | $E(\Lambda E)$ a  | E(1+)b             |                 | E(1=)d            |                    |                        | $E(\Lambda E)$  | E(1-)d              |                   | E(1+)b           | E(AE)s          | E(1-)d           |
| Buaget impact       | $E(\Delta E)^{2}$ | $E(\Lambda_G)^{\circ}$ | $E(\Delta E)^2$ | $E(\lambda_G)^*$ | $E(\Delta E)^{-}$ | $E(\lambda_p)^{*}$ | $E(\Delta E)^2$ | $E(\Lambda_p)^2$  | $E(\Delta E)^{-1}$ | $E(\Lambda_G)^{\circ}$ | $E(\Delta E)^2$ | $E(\lambda_G)^{-1}$ | $E(\Delta E)^{n}$ | $E(\lambda_P)^*$ | $E(\Delta E)^2$ | $E(\lambda_p)^2$ |
| \$39.8m             | 320.87            | \$124,037              | -516.03         | \$77,127         | 648.57            | \$01,300           | -720.55         | \$55,230          | 1200.05            | \$33,105               | -37.90          | \$1.05m             | 1535.02           | \$25,952         | 591.10          | -\$07,332        |
| \$39.9m             | 321.12            | \$124,251              | -519.29         | \$70,830         | 649.76            | \$61,407           | -722.32         | \$55,239          | 1202.81            | \$33,172               | -38.99          | \$1.02m             | 1535.30           | \$25,987         | 588.91          | -\$07,752        |
| \$40.0m             | 321.37            | \$124,466              | -521.53         | \$76,698         | 651.14            | \$61,431           | -/38.52         | \$54,163          | 1205.58            | \$33,179               | -41.10          | \$9/3,130           | 1536.91           | \$26,026         | 601.14          | -\$66,540        |
| \$40.1m             | 322.49            | \$124,346              | -524.47         | \$76,458         | 652.32            | \$61,472           | -/40./6         | \$54,133          | 1207.47            | \$33,210               | -42.52          | \$943,028           | 1538.65           | \$26,062         | 599.42          | -\$66,898        |
| \$40.2m             | 322.74            | \$124,560              | -526.72         | \$76,322         | 655.02            | \$61,372           | -/43.02         | \$54,104          | 1210.23            | \$33,217               | -44.64          | \$900,516           | 1538.88           | \$26,123         | 597.69          | -\$67,258        |
| \$40.3m             | 323.61            | \$124,534              | -529.72         | \$76,078         | 656.25            | \$61,409           | -/45.28         | \$54,074          | 1212.37            | \$33,241               | -46.01          | \$8/5,862           | 1540.57           | \$26,159         | 595.97          | -\$67,621        |
| \$40.4m             | 323.85            | \$124,749              | -531.97         | \$75,945         | 668.03            | \$60,476           | -747.54         | \$54,044          | 1215.12            | \$33,248               | -48.13          | \$839,328           | 1531.71           | \$26,376         | 594.24          | -\$67,987        |
| \$40.5m             | 326.21            | \$124,152              | -534.92         | \$75,713         | 669.42            | \$60,501           | -749.80         | \$54,014          | 1215.76            | \$33,312               | -49.56          | \$817,144           | 1533.25           | \$26,414         | 592.50          | -\$68,354        |
| \$40.6m             | 326.46            | \$124,366              | -538.18         | \$75,439         | 670.60            | \$60,543           | -752.07         | \$53,984          | 1218.52            | \$33,319               | -50.68          | \$801,098           | 1534.99           | \$26,450         | 590.77          | -\$68,724        |
| \$40.7m             | 327.52            | \$124,269              | -540.85         | \$75,252         | 669.30            | \$60,810           | -754.34         | \$53,954          | 1220.45            | \$33,348               | -52.41          | \$776,585           | 1539.20           | \$26,442         | 589.03          | -\$69,097        |
| \$40.8m             | 327.76            | \$124,481              | -543.11         | \$75,123         | 672.01            | \$60,714           | -755.50         | \$54,004          | 1223.20            | \$33,355               | -54.55          | \$747,981           | 1539.41           | \$26,504         | 586.17          | -\$69,604        |
| \$40.9m             | 328.87            | \$124,365              | -546.12         | \$74,892         | 673.38            | \$60,738           | -757.78         | \$53,974          | 1225.08            | \$33,386               | -55.94          | \$731,152           | 1540.95           | \$26,542         | 584.43          | -\$69,983        |
| \$41.0m             | 329.11            | \$124,577              | -549.08         | \$74,671         | 674.57            | \$60,780           | -758.77         | \$54,035          | 1227.83            | \$33,392               | -57.39          | \$714,408           | 1542.68           | \$26,577         | 581.39          | -\$70,521        |
| \$41.1m             | 329.36            | \$124,789              | -551.35         | \$74,545         | 675.80            | \$60,817           | -761.05         | \$54,004          | 1230.57            | \$33,399               | -59.54          | \$690,330           | 1544.37           | \$26,613         | 579.64          | -\$70,906        |
| \$41.2m             | 332.29            | \$123,988              | -553.62         | \$74,420         | 676.97            | \$60,859           | -763.34         | \$53,974          | 1230.62            | \$33,479               | -61.69          | \$667,884           | 1546.10           | \$26,648         | 577.90          | -\$71,293        |
| \$41.3m             | 332.53            | \$124,199              | -556.64         | \$74,195         | 678.35            | \$60,883           | -765.63         | \$53,943          | 1233.36            | \$33,486               | -63.10          | \$654,560           | 1547.64           | \$26,686         | 576.14          | -\$71,684        |
| \$41.4m             | 333.39            | \$124,178              | -559.92         | \$73,939         | 681.06            | \$60,788           | -767.93         | \$53,911          | 1235.47            | \$33,509               | -64.25          | \$644,398           | 1547.83           | \$26,747         | 574.39          | -\$72,077        |
| \$41.5m             | 333.63            | \$124,389              | -562.89         | \$73,727         | 682.23            | \$60,830           | -770.23         | \$53,880          | 1238.21            | \$33,516               | -65.71          | \$631,540           | 1549.57           | \$26,782         | 572.63          | -\$72,473        |
| \$41.6m             | 334.74            | \$124,276              | -565.17         | \$73,606         | 693.96            | \$59,946           | -771.42         | \$53,926          | 1240.08            | \$33,546               | -67.88          | \$612,870           | 1540.76           | \$27,000         | 569.76          | -\$73,013        |
| \$41.7m             | 337.11            | \$123,699              | -567.45         | \$73,486         | 695.33            | \$59,972           | -773.73         | \$53,895          | 1240.68            | \$33,611               | -70.04          | \$595,360           | 1542.28           | \$27,038         | 568.00          | -\$73,416        |
| \$41.8m             | 337.35            | \$123,907              | -570.49         | \$73,271         | 694.33            | \$60,202           | -776.04         | \$53,863          | 1243.40            | \$33,617               | -71.47          | \$584,842           | 1546.19           | \$27,034         | 566.23          | -\$73,821        |
| \$41.9m             | 339.82            | \$123,300              | -573.47         | \$73,064         | 695.56            | \$60,239           | -778.36         | \$53,831          | 1243.90            | \$33,684               | -72.96          | \$574,316           | 1547.86           | \$27,070         | 564.46          | -\$74,230        |
| \$42.0m             | 335.73            | \$125,099              | -575.76         | \$72,947         | 698.28            | \$60,147           | -782.15         | \$53,698          | 1250.95            | \$33,574               | -75.13          | \$559,008           | 1548.04           | \$27,131         | 564.15          | -\$74,448        |
| \$42.1m             | 335.98            | \$125,307              | -579.06         | \$72,704         | 699.46            | \$60,189           | -784.47         | \$53,667          | 1253.67            | \$33,581               | -76.31          | \$551,661           | 1549.76           | \$27,165         | 562.38          | -\$74,860        |
| \$42.2m             | 336.21            | \$125,516              | -582.10         | \$72,496         | 700.84            | \$60,214           | -784.01         | \$53,826          | 1256.39            | \$33,588               | -77.76          | \$542,715           | 1551.28           | \$27,203         | 557.81          | -\$75,653        |
| \$42.3m             | 336.44            | \$125,727              | -584.40         | \$72,382         | 702.01            | \$60,255           | -786.34         | \$53,794          | 1259.12            | \$33,595               | -79.94          | \$529,134           | 1553.01           | \$27,237         | 556.03          | -\$76,075        |
| \$42.4m             | 337.56            | \$125,609              | -587.39         | \$72,183         | 704.74            | \$60,164           | -788.68         | \$53,761          | 1260.96            | \$33,625               | -81.45          | \$520,582           | 1553.17           | \$27,299         | 554.24          | -\$76,501        |
| \$42.5m             | 338.61            | \$125,513              | -589.70         | \$72,070         | 706.12            | \$60,188           | -790.55         | \$53,760          | 1262.85            | \$33,654               | -83.64          | \$508,123           | 1554.69           | \$27,337         | 551.99          | -\$76,994        |
| \$42.6m             | 338.92            | \$125,692              | -592.41         | \$71,909         | 707.34            | \$60,226           | -792.89         | \$53,727          | 1265.57            | \$33,661               | -85.44          | \$498,621           | 1556.37           | \$27,371         | 550.20          | -\$77,427        |
| \$42.7m             | 341.18            | \$125,153              | -595.46         | \$71,709         | 708.51            | \$60,267           | -794.14         | \$53,769          | 1267.65            | \$33,684               | -86.90          | \$491,368           | 1558.08           | \$27,405         | 547.30          | -\$78,019        |
| \$42.8m             | 343.44            | \$124,621              | -598.47         | \$71,516         | 720.18            | \$59,429           | -796.49         | \$53,735          | 1270.36            | \$33,691               | -88.42          | \$484,067           | 1549.30           | \$27,625         | 545.50          | -\$78,460        |
| \$42.9m             | 345.71            | \$124,093              | -600.79         | \$71,406         | 721.56            | \$59,455           | -798.85         | \$53,702          | 1273.07            | \$33,698               | -90.63          | \$473,343           | 1550.82           | \$27,663         | 543.70          | -\$78,904        |
| \$43.0m             | 347.98            | \$123,571              | -604.11         | \$71,179         | 724.29            | \$59,368           | -801.21         | \$53,669          | 1273.62            | \$33,762               | -91.85          | \$468,154           | 1550.97           | \$27,725         | 541.89          | -\$79,351        |
| \$43.1m             | 350.25            | \$123,055              | -606.43         | \$71,072         | 725.47            | \$59,410           | -802.30         | \$53,721          | 1274.70            | \$33,812               | -94.07          | \$458,184           | 1552.68           | \$27,758         | 538.81          | -\$79,991        |
| \$43.2m             | 352.53            | \$122,544              | -609.50         | \$70,878         | 726.63            | \$59,452           | -804.67         | \$53,687          | 1276.52            | \$33,842               | -95.55          | \$452,106           | 1554.40           | \$27,792         | 537.00          | -\$80,447        |
| \$43.3m             | 354.80            | \$122,039              | -612.52         | \$70,692         | 727.85            | \$59,490           | -807.04         | \$53,653          | 1279.22            | \$33,849               | -97.09          | \$445,960           | 1556.06           | \$27,827         | 535.18          | -\$80,908        |
| \$43.4m             | 357.09            | \$121,538              | -614.85         | \$70,586         | 729.22            | \$59,515           | -809.41         | \$53,619          | 1279.18            | \$33,928               | -99.33          | \$436,940           | 1557.57           | \$27,864         | 533.36          | -\$81,371        |
| \$43.5m             | 359.38            | \$121,042              | -618.19         | \$70,367         | 731.97            | \$59,428           | -810.70         | \$53,657          | 1281.87            | \$33,935               | -100.57         | \$432,536           | 1557.70           | \$27,926         | 530.44          | -\$82,007        |
| \$43.6m             | 361.67            | \$120,553              | -620.53         | \$70,263         | 733.14            | \$59,471           | -813.08         | \$53,623          | 1284.56            | \$33,942               | -102.81         | \$424,102           | 1559.41           | \$27,959         | 528.62          | -\$82,479        |
| \$43.7m             | 363.96            | \$120.067              | -623.61         | \$70.076         | 734.51            | \$59,496           | -815.47         | \$53,588          | 1287.25            | \$33,948               | -104.31         | \$418,925           | 1560.92           | \$27,996         | 526.78          | -\$82.956        |
| \$43.8m             | 366.26            | \$119,588              | -626.64         | \$69.896         | 746.13            | \$58,703           | -817.87         | \$53,554          | 1289.31            | \$33,972               | -105.88         | \$413,691           | 1552.17           | \$28,219         | 524.95          | -\$83,437        |
| \$43.9m             | 368.56            | \$119,113              | -628.99         | \$69,794         | 745.04            | \$58,923           | -820.26         | \$53,520          | 1291.11            | \$34,002               | -108.12         | \$406.018           | 1556.13           | \$28.211         | 523.11          | -\$83.921        |
| \$44.0m             | 370.86            | \$118 644              | -632.08         | \$69.612         | 746.20            | \$58,965           | -822.66         | \$53,485          | 1293.80            | \$34,008               | -109.64         | \$401 319           | 1557.84           | \$28,244         | 521.27          | -\$84 410        |
| \$44.1m             | 373.16            | \$118,179              | -634 43         | \$69 511         | 748.96            | \$58,881           | -825.07         | \$53,450          | 1296.49            | \$34,015               | -111 89         | \$394 128           | 1557.94           | \$28 307         | 519.42          | -\$84 902        |
| \$44.2m             | 375.47            | \$117 719              | -637.47         | \$69 336         | 750.18            | \$58,919           | -827.48         | \$53,415          | 1296.90            | \$34.081               | -113 47         | \$389 534           | 1559 59           | \$28 341         | 517.57          | -\$85 399        |
| \$44.3m             | 377.78            | \$117.264              | -640.82         | \$69,130         | 751.56            | \$58 944           | -828.81         | \$53,450          | 1297.42            | \$34 145               | -114 74         | \$386.096           | 1561.08           | \$28 378         | 514.64          | -\$86,080        |
| \$44.4m             | 380.09            | \$116.813              | -643.18         | \$69.032         | 752 72            | \$58 986           | -831 23         | \$53.415          | 1299.26            | \$34 173               | -117.00         | \$379 477           | 1562.78           | \$28 411         | 512.78          | -\$86 587        |
| \$44.5m             | 382.41            | \$116.367              | -646.28         | \$68 855         | 754.09            | \$59.012           | -833.65         | \$53 380          | 1301.94            | \$34 180               | -118 54         | \$375 399           | 1564.28           | \$28,448         | 510.92          | -\$87.098        |
| \$44.6m             | 384 74            | \$115.924              | -649 34         | \$68 686         | 756.86            | \$58,928           | -836.08         | \$53 344          | 1304.61            | \$34 186               | -120.14         | \$371.246           | 1564.37           | \$28,440         | 509.05          | -\$87.613        |
| \$44.7m             | 387.06            | \$115,485              | -651.71         | \$68.588         | 758.02            | \$58,969           | -838.52         | \$53,308          | 1306.39            | \$34.216               | -122.41         | \$365,152           | 1566.07           | \$28,543         | 507.19          | -\$88,133        |

|               |                    |                          |                    | 2                        | 5                  |                          |                    |                          |                    |                          |                    | λ                        | 6                  |                          |                    |                          |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|
|               |                    | Agent has good           | informatio         | n                        |                    | Agent has po             | or informat        | tion                     | A                  | gent has go              | od informat        | tion                     | Ā                  | gent has po              | or informa         | tion                     |
|               | Net In             | vestment                 | Net Disi           | nvestment                | Net In             | vestment                 | Net Dis            | sinvestment              | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment                  | Net Dis            | investment               |
| Rudget impact | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{c}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ |
| \$44.8m       | 389.39             | \$115.051                | -654.49            | \$68.451                 | 769.60             | \$58.212                 | -840.50            | \$53.301                 | 1309.06            | \$34.223                 | -124.30            | \$360.417                | 1557.35            | \$28.767                 | 504.86             | -\$88.737                |
| \$44.9m       | 391 73             | \$114 621                | -656.87            | \$68 355                 | 770.80             | \$58,251                 | -841 69            | \$53.345                 | 1311.09            | \$34,246                 | -126 59            | \$354 702                | 1559.00            | \$28,801                 | 501.74             | -\$89.489                |
| \$45.0m       | 394.07             | \$114 194                | -659.99            | \$68,183                 | 772.18             | \$58,277                 | -844 14            | \$53,309                 | 1313 75            | \$34 253                 | -128.15            | \$351,156                | 1560.48            | \$28,837                 | 499.85             | -\$90.026                |
| \$45.1m       | 396.41             | \$113 771                | -663 36            | \$67,987                 | 773 34             | \$58 319                 | -846 59            | \$53,273                 | 1316.42            | \$34,260                 | -129.46            | \$348 370                | 1562.17            | \$28,870                 | 497.97             | -\$90,568                |
| \$45.2m       | 398.76             | \$113,352                | -666 43            | \$67,824                 | 776.13             | \$58,238                 | -849.04            | \$53,275                 | 1316.31            | \$34 338                 | -131.08            | \$344.816                | 1562.23            | \$28,933                 | 496.08             | -\$91,115                |
| \$45.3m       | 401.11             | \$112,937                | -668.83            | \$67,730                 | 777.28             | \$58,280                 | -850.43            | \$53,267                 | 1318.07            | \$34 368                 | -133 39            | \$339.610                | 1563.93            | \$28,966                 | 493.11             | -\$91,866                |
| \$45.4m       | 403.46             | \$112,526                | -668 44            | \$67,919                 | 778.65             | \$58,306                 | -852.89            | \$53,207                 | 1320.73            | \$34 375                 | -138.48            | \$327,840                | 1565.41            | \$29,002                 | 491.21             | -\$92,424                |
| \$45.5m       | 405.82             | \$112,020                | -670.85            | \$67,824                 | 790.17             | \$57,582                 | -855 36            | \$53,194                 | 1321.19            | \$34 439                 | -140.80            | \$323,159                | 1556.73            | \$29,228                 | 489.31             | -\$92,988                |
| \$45.6m       | 408.19             | \$111,713                | -673.99            | \$67,657                 | 792.97             | \$57,506                 | -857.83            | \$53,157                 | 1323.84            | \$34 445                 | -142.39            | \$320,249                | 1556.78            | \$29,291                 | 487.40             | -\$93 557                |
| \$45.7m       | 410.55             | \$111 313                | -677.07            | \$67,496                 | 794.17             | \$57,544                 | -860.31            | \$53,120                 | 1326.49            | \$34 452                 | -144.03            | \$317,287                | 1558 41            | \$29,325                 | 485.49             | -\$94 131                |
| \$45.8m       | 412.92             | \$110,916                | -679 49            | \$67 404                 | 795 33             | \$57,586                 | -862.79            | \$53,084                 | 1329.15            | \$34 458                 | -146.36            | \$312,930                | 1560.09            | \$29,357                 | 483 58             | -\$94 711                |
| \$45.9m       | 415 30             | \$110 523                | -682.89            | \$67,215                 | 796 71             | \$57.612                 | -865.28            | \$53,046                 | 1330.90            | \$34 488                 | -147 71            | \$310,751                | 1561.56            | \$29 394                 | 481.66             | -\$95 296                |
| \$46.0m       | 417.67             | \$110,135                | -686.03            | \$67.052                 | 797.86             | \$57.654                 | -866 70            | \$53.075                 | 1332.90            | \$34 511                 | -149 31            | \$308.082                | 1563.24            | \$29.426                 | 478.67             | -\$96,099                |
| \$46.1m       | 420.06             | \$109 747                | -688 46            | \$66,961                 | 796.68             | \$57,865                 | -869.20            | \$53,037                 | 1334 70            | \$34 540                 | -151.65            | \$303 986                | 1567.26            | \$29.414                 | 476 74             | -\$96 698                |
| \$46.2m       | 422.44             | \$109,365                | -691.56            | \$66,805                 | 798.06             | \$57,891                 | -871.71            | \$52,999                 | 1337.34            | \$34,546                 | -153.32            | \$301.332                | 1568.72            | \$29,451                 | 474.81             | -\$97.303                |
| \$46.3m       | 424.83             | \$108,984                | -694.00            | \$66,715                 | 800.86             | \$57,813                 | -874.21            | \$52,962                 | 1339.98            | \$34,553                 | -155.67            | \$297.429                | 1568.75            | \$29,514                 | 472.87             | -\$97.912                |
| \$46.4m       | 427.23             | \$108,607                | -697.16            | \$66.556                 | 802.02             | \$57.854                 | -874.04            | \$53.087                 | 1340.30            | \$34.619                 | -157.30            | \$294,987                | 1570.42            | \$29,546                 | 468.25             | -\$99.092                |
| \$46.5m       | 429.62             | \$108,234                | -700.27            | \$66,403                 | 813.51             | \$57,160                 | -876.56            | \$53.048                 | 1342.94            | \$34.625                 | -158.98            | \$292,497                | 1561.76            | \$29,774                 | 466.30             | -\$99.721                |
| \$46.6m       | 432.03             | \$107,863                | -702.72            | \$66,314                 | 814.72             | \$57,198                 | -879.08            | \$53,010                 | 1344.67            | \$34.655                 | -161.34            | \$288.833                | 1563.38            | \$29,807                 | 464.35             | -\$100.355               |
| \$46.7m       | 434.44             | \$107,495                | -706.14            | \$66,134                 | 816.09             | \$57,224                 | -896.03            | \$52,119                 | 1345.08            | \$34,719                 | -162.73            | \$286,979                | 1564.83            | \$29,843                 | 476.81             | -\$97,942                |
| \$46.8m       | 436.85             | \$107,130                | -708.99            | \$66,009                 | 817.25             | \$57,265                 | -897.33            | \$52,155                 | 1347.70            | \$34,726                 | -164.71            | \$284,135                | 1566.50            | \$29,876                 | 473.62             | -\$98.812                |
| \$46.9m       | 439.27             | \$106,768                | -711.45            | \$65,922                 | 820.07             | \$57,190                 | -899.86            | \$52,119                 | 1350.33            | \$34,732                 | -167.09            | \$280.693                | 1566.49            | \$29,939                 | 471.66             | -\$99.436                |
| \$47.0m       | 441.69             | \$106,410                | -714.63            | \$65,768                 | 821.23             | \$57,231                 | -902.40            | \$52,083                 | 1352.96            | \$34,739                 | -168.74            | \$278,535                | 1568.17            | \$29,971                 | 469.69             | -\$100,066               |
| \$47.1m       | 444.11             | \$106,056                | -717.76            | \$65,621                 | 822.60             | \$57,258                 | -903.89            | \$52,108                 | 1354.93            | \$34,762                 | -170.45            | \$276,328                | 1569.62            | \$30,007                 | 466.66             | -\$100,930               |
| \$47.2m       | 446.53             | \$105,703                | -720.23            | \$65,535                 | 822.76             | \$57,368                 | -906.44            | \$52,072                 | 1354.73            | \$34,841                 | -172.84            | \$273,090                | 1572.27            | \$30,020                 | 464.68             | -\$101,576               |
| \$47.3m       | 448.97             | \$105,353                | -723.68            | \$65,361                 | 834.21             | \$56,700                 | -908.55            | \$52,061                 | 1356.44            | \$34,871                 | -174.26            | \$271,438                | 1563.64            | \$30,250                 | 462.26             | -\$102,324               |
| \$47.4m       | 451.40             | \$105,006                | -726.15            | \$65,275                 | 835.41             | \$56,739                 | -911.10            | \$52,025                 | 1359.05            | \$34,877                 | -176.65            | \$268,323                | 1565.26            | \$30,283                 | 460.27             | -\$102,982               |
| \$47.5m       | 453.84             | \$104,662                | -729.35            | \$65,126                 | 838.25             | \$56,666                 | -913.67            | \$51,988                 | 1361.67            | \$34,884                 | -178.33            | \$266,359                | 1565.23            | \$30,347                 | 458.28             | -\$103,648               |
| \$47.6m       | 456.28             | \$104,322                | -732.50            | \$64,983                 | 839.41             | \$56,707                 | -916.23            | \$51,952                 | 1364.29            | \$34,890                 | -180.06            | \$264,354                | 1566.89            | \$30,379                 | 456.29             | -\$104,320               |
| \$47.7m       | 458.73             | \$103,984                | -734.98            | \$64,899                 | 840.79             | \$56,733                 | -918.81            | \$51,915                 | 1366.05            | \$34,918                 | -182.47            | \$261,418                | 1568.32            | \$30,415                 | 454.29             | -\$105,000               |
| \$47.8m       | 461.18             | \$103,648                | -738.19            | \$64,753                 | 841.94             | \$56,774                 | -921.39            | \$51,878                 | 1366.42            | \$34,982                 | -184.16            | \$259,560                | 1569.97            | \$30,446                 | 452.28             | -\$105,687               |
| \$47.9m       | 463.63             | \$103,314                | -740.69            | \$64,669                 | 843.31             | \$56,800                 | -922.92            | \$51,900                 | 1369.03            | \$34,988                 | -186.58            | \$256,732                | 1571.41            | \$30,482                 | 449.22             | -\$106,630               |
| \$48.0m       | 466.10             | \$102,983                | -743.86            | \$64,528                 | 846.16             | \$56,727                 | -925.51            | \$51,864                 | 1370.71            | \$35,018                 | -188.33            | \$254,870                | 1571.37            | \$30,547                 | 447.21             | -\$107,333               |
| \$48.1m       | 468.56             | \$102,655                | -747.33            | \$64,362                 | 857.58             | \$56,088                 | -928.10            | \$51,826                 | 1373.32            | \$35,025                 | -189.79            | \$253,442                | 1562.76            | \$30,779                 | 445.19             | -\$108,045               |
| \$48.2m       | 471.03             | \$102,329                | -749.84            | \$64,280                 | 858.73             | \$56,129                 | -930.71            | \$51,789                 | 1375.26            | \$35,048                 | -192.22            | \$250,755                | 1564.41            | \$30,810                 | 443.16             | -\$108,765               |
| \$48.3m       | 473.50             | \$102,005                | -753.07            | \$64,137                 | 859.94             | \$56,167                 | -933.31            | \$51,751                 | 1377.86            | \$35,054                 | -193.94            | \$249,049                | 1566.00            | \$30,843                 | 441.13             | -\$109,493               |
| \$48.4m       | 475.98             | \$101,685                | -756.25            | \$64,000                 | 861.31             | \$56,193                 | -935.92            | \$51,714                 | 1380.46            | \$35,061                 | -195.71            | \$247,304                | 1567.43            | \$30,879                 | 439.09             | -\$110,227               |
| \$48.5m       | 478.47             | \$101,365                | -758.78            | \$63,919                 | 862.46             | \$56,234                 | -938.54            | \$51,676                 | 1382.14            | \$35,091                 | -198.16            | \$244,754                | 1569.07            | \$30,910                 | 437.06             | -\$110,970               |
| \$48.6m       | 480.95             | \$101,049                | -761.69            | \$63,806                 | 861.19             | \$56,433                 | -939.95            | \$51,705                 | 1382.38            | \$35,157                 | -200.22            | \$242,737                | 15/3.14            | \$30,894                 | 433.81             | -\$112,032               |
| \$48.7m       | 483.44             | \$100,736                | -764.21            | \$63,726                 | 864.06             | \$56,362                 | -942.57            | \$51,667                 | 1384.97            | \$35,163                 | -202.67            | \$240,294                | 15/3.07            | \$30,959                 | 431.76             | -\$112,794               |
| \$48.8m       | 485.94             | \$100,424                | -/6/.46            | \$63,586                 | 875.43             | \$55,744                 | -944.15            | \$51,687                 | 1387.56            | \$35,170                 | -204.42            | \$238,730                | 1564.49            | \$31,192                 | 428.68             | -\$113,839               |
| \$48.9m       | 488.44             | \$100,115                | -//0.96            | \$63,427                 | 8/0.5/             | \$55,786                 | -946.77            | \$51,649                 | 1387.89            | \$35,233                 | -205.92            | \$257,475                | 1566.15            | \$31,223                 | 426.63             | -\$114,619               |
| \$49.0m       | 490.95             | \$99,807                 | -//4.16            | \$63,294                 | 877.93             | \$55,813                 | -949.40            | \$51,612                 | 1387.60            | \$35,313                 | -207.73            | \$235,883                | 1567.58            | \$31,258                 | 424.58             | -\$115,407               |
| \$49.1m       | 493.46             | \$99,501                 | -//6./1            | \$63,215                 | 879.12             | \$55,852                 | -952.02            | \$51,574                 | 1390.17            | \$35,319                 | -210.21            | \$233,574                | 1569.18            | \$31,290                 | 422.54             | -\$116,203               |
| \$49.2m       | 495.97             | \$99,199                 | -7/9.25            | \$63,137                 | 880.24             | \$55,894                 | -954.65            | \$51,537                 | 1391.82            | \$35,349                 | -212.70            | \$231,317                | 1570.84            | \$31,321                 | 420.48             | -\$117,008               |
| \$49.3m       | 498.49             | \$98,899                 | -/82.51            | \$63,002                 | 885.11             | \$33,825                 | -95/.29            | \$51,500                 | 1393.72            | \$35,5/3                 | -214.4/            | \$229,869                | 1570.76            | \$31,386                 | 418.43             | -\$11/,821               |
| \$49.4m       | 502.54             | \$98,601                 | -/85./2            | \$62,8/2                 | 884.40             | \$33,833                 | -959.92            | \$51,462                 | 1396.29            | \$35,5/9                 | -210.50            | \$228,384                | 1572.20            | \$31,421                 | 410.58             | -\$118,643               |
| \$49.5m       | 506.07             | \$98,304                 | -/88.2/            | \$62,795                 | 893.//             | \$55,200                 | -902.13            | \$51,449                 | 1397.98            | \$35,408                 | -218.80            | \$225,002                | 1565.22            | \$31,030                 | 413.88             | -\$119,399               |
| \$49.011      | 508.67             | \$90,009                 | -795.07            | \$62 510                 | 808 22             | \$55,302                 | -904.70            | \$51,412                 | 1400.34            | \$35,415                 | -220.55            | \$223,093                | 1566 78            | \$31,08/                 | 411.65             | -\$120,439               |
| 347./11       | 500.02             | $\varphi_{2/1,10}$       | -123.07            | \$02,51U                 | 070.22             | \$JJ,332                 | -200.37            | \$J1,430                 | 1703.09            | \$55, <del>4</del> 22    | -222.10            | 9223,/1Z                 | 1500.70            | φJ1,/41                  | TU0./J             | -0121,373                |

|               |                   |                               |                   | λ.5                | 5                 |                               |                   |                    |                   |                               |                   | λ                  | 6                 |                               |                   |                    |
|---------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|
|               | A                 | lgent has good                | information       | 1                  |                   | Agent has po                  | or informati      | on                 | A                 | gent has go                   | od informat       | ion                | A                 | gent has po                   | or informat       | tion               |
|               | Net Inv           | vestment                      | Net Disi          | nvestment          | Net Inv           | vestment                      | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disi          | nvestment          |
| Budget impact | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathrm{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |
| \$49.8m       | 511.16            | \$97,426                      | -797.64           | \$62,434           | 901.08            | \$55,267                      | -970.42           | \$51,318           | 1404.71           | \$35,452                      | -224.68           | \$221,646          | 1566.70           | \$31,787                      | 408.08            | -\$122,034         |
| \$49.9m       | 513.71            | \$97,137                      | -800.86           | \$62,308           | 895.92            | \$55,697                      | -973.07           | \$51,281           | 1407.27           | \$35,459                      | -226.55           | \$220,261          | 1574.64           | \$31,690                      | 406.02            | -\$122,900         |
| \$50.0m       | 516.26            | \$96,850                      | -803.44           | \$62,232           | 897.02            | \$55,740                      | -975.71           | \$51,245           | 1407.52           | \$35,523                      | -229.09           | \$218,258          | 1576.32           | \$31,720                      | 403.96            | -\$123,776         |

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment; <sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

|                    |                   |                               |                   | λ                  | 7                 |                               |                   |                    |                   |                               |                   |                    | λ8                |                               |                   |                    |
|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|-------------------------------|-------------------|--------------------|
|                    | A                 | gent has go                   | od informat       | tion               | A                 | gent has po                   | or informat       | ion                | Ag                | gent has goo                  | od informati      | ion                | 1                 | Agent has poo                 | or informat       | ion                |
|                    | Net Inv           | estment                       | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disi          | nvestment          | Net Inv           | estment                       | Net Disir         | nvestment          | Net In            | vestment                      | Net Disi          | investment         |
| Budget impact      | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |
| \$0.1m             | 5.02              | \$19,920                      | 9.31              | -\$10,740          | 33.89             | \$2,951                       | 10.43             | -\$9,586           | 1.96              | \$51,044                      | -1.79             | \$55,872           | 1.58              | \$63,369                      | -0.54             | \$186,014          |
| \$0.2m             | 9.77              | \$20,476                      | 18.50             | -\$10,810          | 53.80             | \$3,718                       | 20.65             | -\$9,686           | 3.79              | \$52,812                      | -2.32             | \$86,224           | 3.19              | \$62,703                      | -2.01             | \$99,571           |
| \$0.3m             | 14.29             | \$20,989                      | 27.57             | -\$10,883          | 70.49             | \$4,256                       | 30.67             | -\$9,782           | 9.16              | \$32,765                      | -3.24             | \$92,587           | 4.66              | \$64,329                      | -3.62             | \$82,956           |
| \$0.4m             | 18.63             | \$21,466                      | 36.51             | -\$10,957          | 85.40             | \$4,684                       | 40.50             | -\$9,876           | 10.01             | \$39,941                      | -5.03             | \$79,593           | 5.20              | \$76,886                      | -4.15             | \$96,325           |
| \$0.5m             | 22.82             | \$21,914                      | 45.32             | -\$11,032          | 99.09             | \$5,046                       | 50.17             | -\$9,967           | 10.94             | \$45,706                      | -6.98             | \$71,639           | 6.82              | \$73,336                      | -5.62             | \$88,955           |
| \$0.6m             | 26.86             | \$22,337                      | 54.01             | -\$11,110          | 111.90            | \$5,362                       | 59.67             | -\$10,055          | 12.73             | \$47,119                      | -7.83             | \$76,595           | 8.29              | \$72,336                      | -7.19             | \$83,413           |
| \$0.7m             | 30.78             | \$22,738                      | 62.56             | -\$11,189          | 124.01            | \$5,645                       | 69.02             | -\$10,141          | 14.70             | \$47,625                      | -9.65             | \$72,511           | 9.88              | \$70,861                      | -8.80             | \$79,572           |
| \$0.8m             | 34.60             | \$23,121                      | 70.98             | -\$11,270          | 135.56            | \$5,902                       | 78.24             | -\$10,225          | 16.53             | \$48,386                      | -11.43            | \$69,963           | 11.36             | \$70,434                      | -10.26            | \$77,954           |
| \$0.9m             | 38.32             | \$23,486                      | 79.27             | -\$11,353          | 146.63            | \$6,138                       | 87.32             | -\$10,307          | 18.33             | \$49,093                      | -13.38            | \$67,248           | 12.98             | \$69,351                      | -10.80            | \$83,354           |
| \$1.0m             | 41.95             | \$23,836                      | 87.42             | -\$11,439          | 157.30            | \$6,357                       | 96.27             | -\$10,387          | 20.30             | \$49,255                      | -14.30            | \$69,930           | 13.52             | \$73,977                      | -12.26            | \$81,566           |
| \$1.1m             | 45.51             | \$24,173                      | 95.43             | -\$11,526          | 167.62            | \$6,562                       | 105.11            | -\$10,465          | 20.84             | \$52,794                      | -16.08            | \$68,422           | 15.78             | \$69,721                      | -13.86            | \$79,364           |
| \$1.2m             | 48.98             | \$24,498                      | 103.30            | -\$11,616          | 177.63            | \$6,756                       | 113.83            | -\$10,542          | 21.76             | \$55,136                      | -17.35            | \$69,161           | 5.34              | \$224,511                     | -15.43            | \$77,787           |
| \$1.3m             | 52.40             | \$24,811                      | 111.03            | -\$11,709          | 187.37            | \$6,938                       | 122.45            | -\$10,617          | 23.57             | \$55,160                      | -19.29            | \$67,378           | 6.83              | \$190,408                     | -15.96            | \$81,452           |
| \$1.4m             | 55.74             | \$25,115                      | 118.61            | -\$11,804          | 196.86            | \$7,112                       | 130.97            | -\$10,690          | 24.43             | \$57,303                      | -19.82            | \$70,635           | 9.98              | \$140,341                     | -17.42            | \$80,367           |
| \$1.5m             | 59.03             | \$25,409                      | 126.03            | -\$11,902          | 206.12            | \$7,277                       | 139.38            | -\$10,762          | 26.41             | \$56,804                      | -21.63            | \$69,338           | 11.57             | \$129,695                     | -20.52            | \$73,101           |
| \$1.6m             | 62.27             | \$25,694                      | 133.31            | -\$12,002          | 215.18            | \$7,435                       | 147.71            | -\$10,832          | 28.25             | \$56,637                      | -22.48            | \$71,167           | 13.19             | \$121,315                     | -22.12            | \$72,345           |
| \$1.7m             | 65.46             | \$25,972                      | 140.43            | -\$12,106          | 224.06            | \$7,587                       | 155.94            | -\$10,901          | 30.06             | \$56,557                      | -24.25            | \$70,089           | 13.73             | \$123,811                     | -22.65            | \$75,061           |
| \$1.8m             | 68.59             | \$26,242                      | 147.38            | -\$12,213          | 232.76            | \$7,733                       | 164.09            | -\$10,969          | 32.04             | \$56,182                      | -26.19            | \$68,720           | 15.22             | \$118,297                     | -24.11            | \$74,672           |
| \$1.9m             | 71.68             | \$26,505                      | 154.18            | -\$12,323          | 241.30            | \$7,874                       | 172.16            | -\$11,036          | 32.97             | \$57,626                      | -27.11            | \$70,095           | 16.84             | \$112,806                     | -25.67            | \$74,027           |
| \$2.0m             | 74.73             | \$26,762                      | 160.81            | -\$12,437          | 249.70            | \$8,010                       | 180.15            | -\$11,102          | 34.78             | \$57,498                      | -28.91            | \$69,177           | 17.39             | \$115,033                     | -27.26            | \$73,370           |
| \$2.1m             | 77.74             | \$27,012                      | 167.26            | -\$12,555          | 257.95            | \$8,141                       | 188.07            | -\$11,166          | 35.32             | \$59,455                      | -30.68            | \$68,450           | 18.87             | \$111,260                     | -28.71            | \$73,136           |
| \$2.2m             | 80.71             | \$27,257                      | 173.54            | -\$12,677          | 266.08            | \$8,268                       | 195.91            | -\$11,230          | 37.17             | \$59,183                      | -32.61            | \$67,458           | 20.47             | \$107,471                     | -29.24            | \$75,228           |
| \$2.3m             | 83.65             | \$27,497                      | 179.63            | -\$12,804          | 274.08            | \$8,392                       | 203.68            | -\$11,292          | 38.04             | \$60,461                      | -33.46            | \$68,744           | 25.97             | \$88,562                      | -30.83            | \$74,594           |
| \$2.4m             | 86.55             | \$27,731                      | 185.54            | -\$12,935          | 281.97            | \$8,512                       | 211.38            | -\$11,354          | 40.03             | \$59,959                      | -33.98            | \$70,629           | 27.60             | \$86,952                      | -32.29            | \$74,337           |
| \$2.5m             | 89.41             | \$27,960                      | 191.25            | -\$13,072          | 289.75            | \$8,628                       | 219.02            | -\$11,415          | 41.84             | \$59,745                      | -35.74            | \$69,942           | 29.09             | \$85,932                      | -33.84            | \$73,875           |
| \$2.6m             | 92.25             | \$28,185                      | 196.77            | -\$13,214          | 297.43            | \$8,742                       | 226.59            | -\$11,474          | 42.78             | \$60,774                      | -36.65            | \$70,936           | 29.64             | \$87,726                      | -34.37            | \$75,647           |
| \$2.7m             | 95.05             | \$28,406                      | 202.07            | -\$13,361          | 305.00            | \$8,852                       | 234.10            | -\$11,533          | 44.09             | \$61,243                      | -38.58            | \$69,982           | 31.27             | \$86,338                      | -35.82            | \$75,378           |
| \$2.8m             | 97.83             | \$28,622                      | 207.16            | -\$13,516          | 312.49            | \$8,960                       | 241.56            | -\$11,591          | 46.08             | \$60,766                      | -40.38            | \$69,342           | 32.77             | \$85,452                      | -37.40            | \$74,857           |
| \$2.9m             | 100.57            | \$28,835                      | 212.02            | -\$13,678          | 319.89            | \$9,066                       | 248.95            | -\$11,649          | 47.94             | \$60,495                      | -42.14            | \$68,820           | 34.37             | \$84,378                      | -38.85            | \$/4,644           |
| \$3.0m             | 103.29            | \$29,043                      | 216.65            | -\$13,847          | 327.20            | \$9,169                       | 256.29            | -\$11,705          | 49.76             | \$60,290                      | -44.06            | \$68,085           | 34.92             | \$85,923                      | -39.38            | \$76,182           |
| \$3.1m             | 103.99            | \$29,249                      | 221.02            | -\$14,026          | 241.59            | \$9,270                       | 203.38            | -\$11,761          | 50.03             | \$61,225                      | -44.97            | \$08,939           | 20.05             | \$85,130                      | -40.93            | \$75,740           |
| \$3.2m             | 108.00            | \$29,450                      | 225.15            | -\$14,214          | 341.58            | \$9,308                       | 270.81            | -\$11,810          | 52.03             | \$60,801                      | -40.72            | \$08,489           | 38.05             | \$84,090                      | -42.51            | \$75,274           |
| \$3.5m             | 111.30            | \$29,049                      | 228.90            | -\$14,413          | 255.67            | \$9,405                       | 277.99            | -\$11,8/1          | 54.11             | \$62,003                      | -4/.50            | \$69,382           | 38.00             | \$85,494                      | -43.04            | \$76,070           |
| \$3.4III<br>\$2.5m | 115.95            | \$29,644                      | 232.46            | \$14,023           | 262.61            | \$9,559                       | 203.12            | \$11,923           | 55.04             | \$62,651                      | -49.55            | \$68,890           | 40.21             | \$82.017                      | -44.02            | \$75,203           |
| \$3.5III<br>\$3.6m | 110.55            | \$30,030                      | 233.00            | \$15,007           | 260.40            | \$9,032                       | 292.21            | \$12,020           | 57.94             | \$62,307                      | -51.27            | \$60,202           | 41./1             | \$83,917                      | -40.10            | \$73,821           |
| \$3.0m             | 121.66            | \$30,223                      | 230.40            | \$15,097           | 276.20            | \$9,743                       | 299.24            | \$12,030           | 50.81             | \$61.862                      | -31.79            | \$69,309           | 43.33             | \$83,043                      | -49.43            | \$74,020           |
| \$3.7m             | 121.00            | \$30,412                      | 240.83            | \$15,503           | 383.05            | \$9,833                       | 313.18            | \$12,082           | 61.64             | \$61.646                      | -33.34            | \$69,103           | 44.85             | \$83.604                      | -49.90            | \$73,708           |
| \$3.0m             | 124.20            | \$30,393                      | 242.00            | -\$15,000          | 389.74            | \$10,007                      | 320.08            | -\$12,134          | 62.59             | \$62 313                      | -56.36            | \$69,790           | 47.05             | \$82,889                      | -54.61            | \$71,418           |
| \$3.7m             | 120.72            | \$30,955                      | 243.00            | -\$16,000          | 394.86            | \$10,007                      | 326.00            | -\$12,104          | 63.47             | \$63,025                      | -58.14            | \$68,797           | 48.67             | \$82,007                      | -56.15            | \$71,410           |
| \$4.0m             | 131.70            | \$31,132                      | 243.13            | -\$16,901          | 399.67            | \$10,150                      | 333.76            | -\$12,233          | 65.48             | \$62,619                      | -50.14            | \$68,460           | 50.17             | \$81 719                      | -56.67            | \$72.347           |
| \$4.7m             | 134.16            | \$31,305                      | 242.05            | -\$17,352          | 404 21            | \$10,237                      | 340.54            | -\$12,204          | 67.31             | \$62,017                      | -60.73            | \$69,164           | 53.37             | \$78.694                      | -58.24            | \$72,347           |
| \$4.2m             | 136.61            | \$31,303                      | 242.03            | -\$17,552          | 409.54            | \$10,571                      | 347.28            | -\$12,333          | 69.19             | \$62,550                      | -62.63            | \$68 653           | 53.92             | \$79,745                      | -47.58            | \$90 382           |
| \$4.5m             | 139.04            | \$31.647                      | 240.95            | -\$18 261          | 412.67            | \$10,525                      | 353.98            | -\$12,302          | 69.19             | \$63.098                      | -64 38            | \$68 348           | 55.92             | \$79 175                      | -48 10            | \$91 478           |
| \$4.5m             | 141 45            | \$31.814                      | 240.40            | -\$18,719          | 416.64            | \$10,801                      | 360.64            | -\$12,478          | 71 57             | \$62,872                      | -65.27            | \$68,940           | 57.08             | \$78 833                      | -49.67            | \$90.605           |
| \$4.6m             | 143.84            | \$31,979                      | 239.84            | -\$19,179          | 420.45            | \$10,001                      | 367.27            | -\$12,525          | 73 59             | \$62,510                      | -67.05            | \$68 604           | 60.54             | \$75,986                      | -51.20            | \$89 843           |
| \$4.7m             | 146.22            | \$32,142                      | 239.28            | -\$19.642          | 424.13            | \$11.082                      | 373.86            | -\$12,572          | 74.54             | \$63.055                      | -67.57            | \$69.560           | 61.09             | \$76,936                      | -51.72            | \$90.870           |

## Table A2.3.4: Optimal numerical thresholds (threshold sets $\lambda$ 7 and $\lambda$ 8)

|                    |                   |                          |                   | 2                  | 7                 |                    |                   |                                  |                   |                          |                   |                    | 28                |                          |                   |                                  |
|--------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------|-------------------|----------------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|----------------------------------|
|                    | A                 | gent has go              | od informat       | ion .              | A                 | gent has po        | or informat       | ion                              | Ag                | ent has goo              | d informat        | ion                | A                 | gent has poo             | or informati      | on                               |
|                    | Net Inv           | estment                  | Net Disi          | nvestment          | Net Inv           | estment            | Net Disi          | nvestment                        | Net Inv           | estment                  | Net Disi          | ivestment          | Net In            | estment                  | Net Disi          | nvestment                        |
| Budget impact      | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^b$ | $E(\Delta E)^{c}$ | $E(\lambda_{\rm p}^{-})^{\rm d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{p}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{\rm p}^{-})^{\rm d}$ |
| \$4.8m             | 148.59            | \$32,304                 | 238.72            | -\$20,108          | 427.69            | \$11.223           | 380.41            | -\$12,618                        | 76.38             | \$62,840                 | -69.47            | \$69.093           | 62.71             | \$76.542                 | -53.29            | \$90.079                         |
| \$4.9m             | 150.94            | \$32,463                 | 238.15            | -\$20,576          | 431.14            | \$11,365           | 386.93            | -\$12,664                        | 78.27             | \$62,605                 | -71.21            | \$68,810           | 64.37             | \$76,127                 | -54.82            | \$89,391                         |
| \$5.0m             | 153.28            | \$32,621                 | 237.57            | -\$21,046          | 434.49            | \$11,508           | 393.41            | -\$12,709                        | 80.29             | \$62,274                 | -72.04            | \$69,404           | 65.88             | \$75,896                 | -56.38            | \$88,690                         |
| \$5.1m             | 155.60            | \$32,777                 | 236.99            | -\$21,520          | 437.78            | \$11,650           | 399.87            | -\$12,754                        | 81.17             | \$62,828                 | -73.29            | \$69,588           | 67.40             | \$75,673                 | -56.90            | \$89,636                         |
| \$5.2m             | 157.90            | \$32,931                 | 236.41            | -\$21,996          | 441.04            | \$11,790           | 406.29            | -\$12,799                        | 83.02             | \$62,632                 | -75.19            | \$69,160           | 67.95             | \$76,528                 | -58.45            | \$88,959                         |
| \$5.3m             | 160.20            | \$33,084                 | 235.82            | -\$22,475          | 444.21            | \$11,931           | 406.47            | -\$13,039                        | 83.98             | \$63,111                 | -76.92            | \$68,901           | 69.61             | \$76,140                 | -58.97            | \$89,871                         |
| \$5.4m             | 162.48            | \$33,235                 | 235.22            | -\$22,957          | 447.37            | \$12,071           | 406.57            | -\$13,282                        | 86.01             | \$62,786                 | -77.82            | \$69,394           | 71.24             | \$75,804                 | -60.50            | \$89,260                         |
| \$5.5m             | 164.75            | \$33,384                 | 234.62            | -\$23,442          | 450.47            | \$12,209           | 406.03            | -\$13,546                        | 86.56             | \$63,543                 | -79.59            | \$69,107           | 72.76             | \$75,596                 | -62.05            | \$88,637                         |
| \$5.6m             | 167.00            | \$33,532                 | 234.02            | -\$23,930          | 453.57            | \$12,347           | 405.49            | -\$13,811                        | 88.45             | \$63,313                 | -81.48            | \$68,727           | 74.42             | \$75,249                 | -62.57            | \$89,501                         |
| \$5.7m             | 169.25            | \$33,678                 | 233.41            | -\$24,421          | 456.62            | \$12,483           | 404.95            | -\$14,076                        | 90.30             | \$63,120                 | -83.21            | \$68,500           | 74.97             | \$76,026                 | -64.09            | \$88,940                         |
| \$5.8m             | 171.48            | \$33,823                 | 232.79            | -\$24,915          | 459.66            | \$12,618           | 404.40            | -\$14,342                        | 92.34             | \$62,813                 | -83.72            | \$69,275           | 76.50             | \$75,820                 | -67.10            | \$86,443                         |
| \$5.9m             | 173.70            | \$33,967                 | 232.17            | -\$25,413          | 462.68            | \$12,752           | 403.86            | -\$14,609                        | 93.23             | \$63,286                 | -84.55            | \$69,780           | 78.16             | \$75,481                 | -68.65            | \$85,948                         |
| \$6.0m             | 175.91            | \$34,109                 | 231.54            | -\$25,914          | 465.69            | \$12,884           | 403.31            | -\$14,877                        | 95.09             | \$63,100                 | -85.44            | \$70,223           | 79.80             | \$75,189                 | -69.16            | \$86,751                         |
| \$6.1m             | 178.11            | \$34,249                 | 230.90            | -\$26,418          | 468.66            | \$13,016           | 402.76            | -\$15,145                        | 96.05             | \$63,511                 | -87.21            | \$69,949           | 80.36             | \$75,912                 | -70.71            | \$86,268                         |
| \$6.2m             | 180.29            | \$34,389                 | 230.26            | -\$26,926          | 471.61            | \$13,146           | 402.22            | -\$15,415                        | 98.09             | \$63,210                 | -89.10            | \$69,588           | 81.88             | \$75,719                 | -71.23            | \$87,047                         |
| \$6.3m             | 182.47            | \$34,527                 | 229.61            | -\$27,437          | 474.56            | \$13,276           | 401.66            | -\$15,685                        | 99.99             | \$63,008                 | -90.82            | \$69,366           | 83.55             | \$75,400                 | -72.74            | \$86,610                         |
| \$6.4m             | 184.63            | \$34,664                 | 228.96            | -\$27,952          | 477.48            | \$13,404           | 401.11            | -\$15,956                        | 101.85            | \$62,835                 | -92.71            | \$69,034           | 73.34             | \$87,269                 | -74.28            | \$86,156                         |
| \$6.5m             | 186.78            | \$34,799                 | 228.30            | -\$28,472          | 480.37            | \$13,531           | 400.56            | -\$16,227                        | 103.19            | \$62,989                 | -94.43            | \$68,833           | 74.87             | \$86,822                 | -74.80            | \$86,900                         |
| \$6.6m             | 188.93            | \$34,934                 | 227.63            | -\$28,994          | 483.26            | \$13,657           | 400.00            | -\$16,500                        | 103.75            | \$63,617                 | -96.19            | \$68,615           | 75.42             | \$87,505                 | -76.31            | \$86,492                         |
| \$6.7m             | 191.06            | \$35,067                 | 226.95            | -\$29,521          | 486.11            | \$13,783           | 399.45            | -\$16,773                        | 105.79            | \$63,333                 | -97.08            | \$69,019           | 77.07             | \$86,939                 | -77.85            | \$86,066                         |
| \$6.8m             | 193.19            | \$35,199                 | 226.27            | -\$30,053          | 488.96            | \$13,907           | 398.89            | -\$17,047                        | 106.75            | \$63,698                 | -97.90            | \$69,460           | 78.74             | \$86,358                 | -78.36            | \$86,778                         |
| \$6.9m             | 195.30            | \$35,330                 | 225.58            | -\$30,588          | 491.79            | \$14,030           | 398.33            | -\$17,322                        | 107.65            | \$64,097                 | -99.78            | \$69,152           | 82.00             | \$84,151                 | -79.90            | \$86,360                         |
| \$7.0m             | 197.40            | \$35,460                 | 224.88            | -\$31,128          | 494.60            | \$14,153           | 397.77            | -\$17,598                        | 109.52            | \$63,915                 | -101.50           | \$68,967           | 83.53             | \$83,805                 | -81.40            | \$85,993                         |
| \$7.1m             | 199.50            | \$35,589                 | 224.17            | -\$31,673          | 497.38            | \$14,275           | 397.20            | -\$17,875                        | 111.43            | \$63,716                 | -102.01           | \$69,603           | 84.09             | \$84,436                 | -81.91            | \$86,676                         |
| \$7.2m             | 201.59            | \$35,717                 | 223.45            | -\$32,222          | 500.16            | \$14,396           | 396.64            | -\$18,153                        | 113.48            | \$63,445                 | -103.72           | \$69,416           | 85.62             | \$84,089                 | -83.45            | \$86,281                         |
| \$7.3m             | 203.66            | \$35,843                 | 222.72            | -\$32,776          | 502.93            | \$14,515           | 396.07            | -\$18,431                        | 115.36            | \$63,281                 | -105.60           | \$69,129           | 87.30             | \$83,616                 | -85.58            | \$85,296                         |
| \$7.4m             | 205.73            | \$35,969                 | 221.99            | -\$33,335          | 505.67            | \$14,634           | 395.50            | -\$18,710                        | 116.33            | \$63,614                 | -107.35           | \$68,934           | 88.95             | \$83,191                 | -86.10            | \$85,951                         |
| \$7.5m             | 207.79            | \$36,094                 | 221.24            | -\$33,900          | 508.40            | \$14,752           | 394.93            | -\$18,991                        | 118.21            | \$63,448                 | -108.23           | \$69,295           | 89.51             | \$83,786                 | -87.60            | \$85,621                         |
| \$7.6m             | 209.84            | \$36,218                 | 220.48            | -\$34,470          | 511.11            | \$14,870           | 394.36            | -\$19,272                        | 120.27            | \$63,193                 | -109.05           | \$69,691           | 91.05             | \$83,468                 | -89.13            | \$85,273                         |
| \$7.7m             | 211.88            | \$30,341                 | 219.72            | -\$35,045          | 515.81            | \$14,980           | 393.79            | -\$19,554                        | 120.82            | \$03,730                 | -110.70           | \$69,518           | 92.74             | \$83,030                 | -89.04            | \$85,903                         |
| \$7.8m             | 215.92            | \$30,402                 | 218.94            | -\$35,027          | 510.49            | \$15,102           | 202.62            | -\$19,837                        | 122.74            | \$63,547                 | -112.04           | \$69,250           | 94.28             | \$82,732                 | -92.00            | \$84,232                         |
| \$7.9III<br>\$8.0m | 213.93            | \$26,262                 | 216.13            | \$26,214           | 521.01            | \$15,217           | 392.03            | -\$20,121                        | 125.03            | \$63,893                 | -114.38           | \$69,008           | 94.64             | \$83,293                 | -94.13            | \$03,920                         |
| \$8.0m             | 217.90            | \$26,822                 | 217.54            | \$27,400           | 524.46            | \$15,551           | 201.47            | -\$20,403<br>\$20,601            | 123.33            | \$63,729                 | -114.69           | \$69,055           | 90.30             | \$82,903                 | -93.02            | \$83,002                         |
| \$8.1111<br>\$8.2m | 219.97            | \$36.041                 | 210.55            | \$38,017           | 527.08            | \$15,445           | 391.47            | \$20,091                         | 127.00            | \$63,462                 | -110.39           | \$69,473           | 98.19             | \$82,493                 | -90.13            | \$83.060                         |
| \$8.2m             | 221.98            | \$37.058                 | 213.09            | -\$38,617          | 529.70            | \$15,557           | 390.39            | -\$20,978                        | 120.57            | \$63,602                 | -119.34           | \$69,504           | 100.30            | \$82,219                 | -97.00            | \$84 553                         |
| \$8.4m             | 225.97            | \$37,050                 | 213.09            | -\$39,052          | 532.70            | \$15,007           | 389.72            | -\$21,203                        | 132.30            | \$63,002                 | -121.04           | \$69 397           | 101.99            | \$82,755                 | -99.65            | \$84 292                         |
| \$8.5m             | 223.90            | \$37,291                 | 213.13            | -\$39.882          | 534.88            | \$15,701           | 389.13            | -\$21,334                        | 134.46            | \$63,215                 | -121.04           | \$69,753           | 103.54            | \$82,092                 | -101 17           | \$84.014                         |
| \$8.6m             | 227.94            | \$37,406                 | 213.13            | -\$40 515          | 537.46            | \$16,001           | 388 54            | -\$21,044                        | 135.37            | \$63,531                 | -123.72           | \$69,733           | 105.20            | \$81 746                 | -101.17           | \$84.578                         |
| \$8.7m             | 227.71            | \$37,520                 | 212.27            | -\$41,154          | 540.02            | \$16,001           | 387.94            | -\$22,134                        | 135.93            | \$64,004                 | -125.46           | \$69.345           | 105.20            | \$82 253                 | -103.20           | \$84 304                         |
| \$8.8m             | 233.83            | \$37,634                 | 210.53            | -\$41,800          | 542.56            | \$16,220           | 387.35            | -\$22,420                        | 137.83            | \$63,849                 | -126.68           | \$69,345           | 107.47            | \$81 884                 | -104.68           | \$84,063                         |
| \$8.9m             | 235.05            | \$37,746                 | 209.65            | -\$42 452          | 545.09            | \$16,327           | 386.75            | -\$23,012                        | 138.80            | \$64 120                 | -127.56           | \$69,773           | 109.02            | \$81,635                 | -109.80           | \$81,055                         |
| \$9.0m             | 237.74            | \$37,857                 | 209.03            | -\$43,110          | 547.63            | \$16,327           | 386.15            | -\$23,307                        | 140.88            | \$63,884                 | -129.26           | \$69.629           | 110.73            | \$81,055                 | -110 31           | \$81,589                         |
| \$9.1m             | 239.69            | \$37,966                 | 207.89            | -\$43,774          | 550.14            | \$16,541           | 385.55            | -\$23,603                        | 142.82            | \$63,716                 | -131.12           | \$69.404           | 112.28            | \$81.046                 | -111.82           | \$81.379                         |
| \$9.2m             | 241.63            | \$38.074                 | 207.00            | -\$44,445          | 552.63            | \$16.648           | 384.95            | -\$23,899                        | 144.72            | \$63.570                 | -131.62           | \$69,899           | 112.85            | \$81.524                 | -100.90           | \$91,181                         |
| \$9.3m             | 243.58            | \$38,181                 | 206.10            | -\$45,123          | 555.12            | \$16,753           | 384.34            | -\$24,197                        | 146.81            | \$63,348                 | -133.35           | \$69,741           | 114.52            | \$81,209                 | -101.40           | \$91,713                         |
| \$9.4m             | 245.51            | \$38,287                 | 205.21            | -\$45,807          | 557.60            | \$16.858           | 383.73            | -\$24,496                        | 147.79            | \$63,604                 | -135.05           | \$69,606           | 117.83            | \$79,777                 | -104.56           | \$89.899                         |
| \$9.5m             | 247.45            | \$38,391                 | 204.31            | -\$46,499          | 560.06            | \$16,962           | 383.12            | -\$24,796                        | 149.70            | \$63,462                 | -135.86           | \$69,926           | 119.39            | \$79.572                 | -106.04           | \$89,587                         |
| \$9.6m             | 249.38            | \$38.495                 | 203.40            | -\$47.198          | 562.52            | \$17.066           | 382.51            | -\$25.097                        | 150.61            | \$63.741                 | -137.71           | \$69.711           | 121.10            | \$79.276                 | -107.55           | \$89.258                         |
| \$9.7m             | 251.32            | \$38 597                 | 202.49            | -\$47.904          | 564.96            | \$17,169           | 381.90            | -\$25,400                        | 152.56            | \$63 582                 | -138 58           | \$69,993           | 121.67            | \$79 726                 | -108.06           | \$89.767                         |

|                      |                    |                    |                    | 2                        | 7                  |                          |                    |                          |                    |                    |                    |                          | 28                 |                          |                    |                          |
|----------------------|--------------------|--------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|
|                      | A                  | gent has go        | od informat        | ion .                    | A                  | gent has pa              | or informat        | ion                      | Ag                 | ent has goo        | d informat         | ion                      | A                  | gent has poo             | or informati       | on                       |
|                      | Net Inv            | estment            | Net Disi           | nvestment                | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment            | Net Disi           | ivestment                | Net Inv            | vestment                 | Net Disi           | nvestment                |
| Rudget impact        | $E(\Lambda E)^{a}$ | $E(\lambda_c^+)^b$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{n}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_c^+)^b$ | $E(\Lambda E)^{c}$ | $E(\lambda_{c}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{+}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ |
| \$9.8m               | 253.24             | \$38.698           | 201.58             | -\$48.617                | 567.40             | \$17,272                 | 381.28             | -\$25,703                | 153.13             | \$64,000           | -140.28            | \$69.862                 | 123.23             | \$79.526                 | -109.56            | \$89.445                 |
| \$9.9m               | 255.17             | \$38,798           | 200.66             | -\$49 338                | 569.82             | \$17,374                 | 380.66             | -\$26,008                | 155.22             | \$63,782           | -142.13            | \$69,656                 | 124.91             | \$79,259                 | -111.04            | \$89,156                 |
| \$10.0m              | 257.09             | \$38,897           | 199.73             | -\$50.067                | 572.23             | \$17,371                 | 380.04             | -\$26,313                | 157.13             | \$63,642           | -143.85            | \$69,515                 | 126.62             | \$78,977                 | -113.97            | \$87 746                 |
| \$10.0m              | 259.01             | \$38,995           | 198.81             | -\$50,803                | 574.63             | \$17,577                 | 379.41             | -\$26,620                | 158.12             | \$63,877           | -145 54            | \$69 396                 | 127.19             | \$79.408                 | -114 47            | \$88 234                 |
| \$10.1m              | 260.93             | \$39,091           | 197.88             | -\$51 547                | 577.02             | \$17,677                 | 378.78             | -\$26,928                | 160.12             | \$63,665           | -147.39            | \$69,205                 | 128.76             | \$79,219                 | -115.97            | \$87,952                 |
| \$10.3m              | 262.84             | \$39,187           | 196.95             | -\$52,298                | 579.41             | \$17,777                 | 378.16             | -\$27,238                | 162.13             | \$63,528           | -148.20            | \$69,503                 | 130.47             | \$78,943                 | -117.45            | \$87,701                 |
| \$10.4m              | 264.76             | \$39,281           | 196.01             | -\$53,057                | 581.78             | \$17,876                 | 377.52             | -\$27,548                | 163.51             | \$63,605           | -149.06            | \$69,768                 | 132.05             | \$78,761                 | -117.95            | \$88,175                 |
| \$10.5m              | 266.67             | \$39.374           | 195.08             | -\$53,824                | 584.13             | \$17,975                 | 376.89             | -\$27,860                | 165.47             | \$63,456           | -149.56            | \$70,204                 | 133.73             | \$78.517                 | -119.45            | \$87,904                 |
| \$10.6m              | 268.58             | \$39,466           | 194.14             | -\$54,599                | 586.49             | \$18.074                 | 376.25             | -\$28,173                | 166.39             | \$63,706           | -151.25            | \$70.083                 | 134.30             | \$78,926                 | -119.95            | \$88.371                 |
| \$10.7m              | 270.49             | \$39,558           | 193.21             | -\$55,382                | 588.84             | \$18,171                 | 375.61             | -\$28,487                | 168.31             | \$63,573           | -152.97            | \$69,949                 | 136.02             | \$78.662                 | -121.42            | \$88,127                 |
| \$10.8m              | 272.40             | \$39,648           | 192.26             | -\$56,173                | 591.17             | \$18.269                 | 374.97             | -\$28,803                | 170.42             | \$63.374           | -154.81            | \$69,763                 | 126.01             | \$85,710                 | -122.91            | \$87,866                 |
| \$10.9m              | 274.30             | \$39,737           | 191.32             | -\$56.973                | 593.49             | \$18.366                 | 374.32             | -\$29,120                | 171.41             | \$63.591           | -156.49            | \$69.652                 | 127.58             | \$85,437                 | -123.41            | \$88.321                 |
| \$11.0m              | 276.20             | \$39,826           | 190.37             | -\$57,782                | 595.80             | \$18,462                 | 373.67             | -\$29,438                | 171.98             | \$63,961           | -157.36            | \$69,904                 | 128.16             | \$85,833                 | -124.91            | \$88,064                 |
| \$11.1m              | 278.10             | \$39,914           | 189.42             | -\$58,599                | 598.11             | \$18,558                 | 373.02             | -\$29,757                | 173.91             | \$63,827           | -159.20            | \$69,725                 | 129.88             | \$85,462                 | -126.37            | \$87,835                 |
| \$11.2m              | 279.99             | \$40,001           | 188.47             | -\$59,425                | 600.40             | \$18,654                 | 372.36             | -\$30,078                | 175.88             | \$63,680           | -160.00            | \$70,000                 | 131.57             | \$85,124                 | -126.87            | \$88,279                 |
| \$11.3m              | 281.89             | \$40,087           | 187.52             | -\$60,261                | 602.69             | \$18,749                 | 371.70             | -\$30,401                | 177.99             | \$63,486           | -161.71            | \$69,877                 | 133.15             | \$84,866                 | -128.36            | \$88,031                 |
| \$11.4m              | 283.78             | \$40,172           | 186.56             | -\$61,105                | 604.98             | \$18,844                 | 371.04             | -\$30,724                | 178.92             | \$63,717           | -163.39            | \$69,771                 | 133.73             | \$85,247                 | -128.86            | \$88,468                 |
| \$11.5m              | 285.66             | \$40,257           | 185.61             | -\$61,959                | 607.25             | \$18,938                 | 370.38             | -\$31,049                | 180.85             | \$63,588           | -163.89            | \$70,170                 | 135.46             | \$84,896                 | -130.32            | \$88,244                 |
| \$11.6m              | 287.55             | \$40,341           | 184.64             | -\$62,823                | 609.51             | \$19,032                 | 369.71             | -\$31,376                | 181.85             | \$63,790           | -165.72            | \$69,997                 | 137.04             | \$84,646                 | -131.81            | \$88,006                 |
| \$11.7m              | 289.43             | \$40,424           | 183.68             | -\$63,697                | 611.76             | \$19,125                 | 369.04             | -\$31,704                | 183.97             | \$63,598           | -170.74            | \$68,525                 | 139.46             | \$83,896                 | -132.31            | \$88,432                 |
| \$11.8m              | 291.31             | \$40,507           | 182.71             | -\$64,582                | 614.01             | \$19,218                 | 368.36             | -\$32,034                | 185.95             | \$63,459           | -171.60            | \$68,763                 | 141.16             | \$83,595                 | -135.19            | \$87,284                 |
| \$11.9m              | 293.19             | \$40,589           | 181.75             | -\$65,476                | 616.24             | \$19,311                 | 367.68             | -\$32,365                | 187.89             | \$63,336           | -173.28            | \$68,676                 | 142.74             | \$83,367                 | -136.68            | \$87,067                 |
| \$12.0m              | 295.06             | \$40,670           | 180.77             | -\$66,382                | 618.47             | \$19,403                 | 367.00             | -\$32,697                | 188.46             | \$63,673           | -174.99            | \$68,577                 | 144.48             | \$83,057                 | -138.13            | \$86,873                 |
| \$12.1m              | 296.93             | \$40,750           | 179.80             | -\$67,297                | 620.69             | \$19,494                 | 366.32             | -\$33,031                | 190.59             | \$63,487           | -176.82            | \$68,433                 | 145.06             | \$83,415                 | -138.63            | \$87,284                 |
| \$12.2m              | 298.80             | \$40,830           | 178.82             | -\$68,224                | 622.91             | \$19,586                 | 365.63             | -\$33,367                | 191.59             | \$63,677           | -177.62            | \$68,688                 | 148.43             | \$82,195                 | -140.11            | \$87,074                 |
| \$12.3m              | 300.67             | \$40,909           | 177.85             | -\$69,161                | 625.11             | \$19,677                 | 364.94             | -\$33,705                | 193.54             | \$63,553           | -179.29            | \$68,606                 | 150.02             | \$81,991                 | -140.61            | \$87,479                 |
| \$12.4m              | 302.53             | \$40,987           | 176.86             | -\$70,110                | 627.31             | \$19,767                 | 364.24             | -\$34,044                | 194.47             | \$63,763           | -181.11            | \$68,466                 | 151.76             | \$81,709                 | -142.06            | \$87,290                 |
| \$12.5m              | 304.39             | \$41,065           | 175.88             | -\$71,071                | 629.50             | \$19,857                 | 363.54             | -\$34,384                | 200.31             | \$62,403           | -182.31            | \$68,565                 | 152.34             | \$82,054                 | -143.54            | \$87,086                 |
| \$12.6m              | 306.25             | \$41,142           | 174.89             | -\$72,044                | 631.68             | \$19,947                 | 362.83             | -\$34,727                | 202.30             | \$62,283           | -183.17            | \$68,789                 | 154.05             | \$81,794                 | -144.03            | \$87,482                 |
| \$12.7m              | 308.11             | \$41,219           | 173.90             | -\$73,030                | 633.86             | \$20,036                 | 362.13             | -\$35,071                | 204.44             | \$62,122           | -184.87            | \$68,697                 | 155.64             | \$81,599                 | -145.51            | \$87,281                 |
| \$12.8m              | 309.97             | \$41,295           | 172.91             | -\$74,028                | 636.03             | \$20,125                 | 361.41             | -\$35,417                | 206.39             | \$62,019           | -186.54            | \$68,619                 | 157.38             | \$81,330                 | -146.95            | \$87,103                 |
| \$12.9m              | 311.82             | \$41,370           | 171.91             | -\$75,039                | 638.19             | \$20,213                 | 360.69             | -\$35,764                | 207.40             | \$62,200           | -187.03            | \$68,973                 | 157.97             | \$81,663                 | -147.45            | \$87,490                 |
| \$13.0m              | 313.67             | \$41,445           | 170.91             | -\$76,061                | 640.34             | \$20,302                 | 359.97             | -\$36,114                | 209.54             | \$62,041           | -188.85            | \$68,837                 | 159.56             | \$81,472                 | -148.92            | \$87,295                 |
| \$13.1m              | 315.51             | \$41,520           | 169.91             | -\$77,098                | 642.49             | \$20,390                 | 359.25             | -\$36,465                | 211.50             | \$61,940           | -189.65            | \$69,075                 | 163.22             | \$80,261                 | -149.41            | \$87,677                 |
| \$13.2m              | 317.30             | \$41,593           | 168.91             | -\$/8,148                | 644.62             | \$20,477                 | 358.52             | -\$36,819                | 212.08             | \$62,242           | -191.31            | \$68,998                 | 164.97             | \$80,016                 | -150.85            | \$87,502                 |
| \$13.3m              | 319.20             | \$41,000           | 167.90             | -\$/9,212                | 646.76             | \$20,564                 | 357.78             | -\$3/,1/4                | 214.08             | \$62,127           | -192.17            | \$69,211                 | 166.68             | \$79,792                 | -152.33            | \$87,313                 |
| \$13.4m              | 321.04             | \$41,/39           | 166.89             | -\$80,291                | 648.89             | \$20,651                 | 357.04             | -\$3/,531                | 215.02             | \$62,321           | -193.99            | \$69,077                 | 168.28             | \$79,627                 | -152.82            | \$87,687                 |
| \$13.5m              | 322.88             | \$41,811           | 165.88             | -\$81,384                | 651.02             | \$20,737                 | 356.29             | -\$37,890                | 210.98             | \$62,218           | -195.08            | \$08,990                 | 108.87             | \$79,944                 | -154.25            | \$87,518                 |
| \$13.0M<br>\$13.7m   | 324./1             | \$41,885           | 162.84             | -\$82,493                | 655.14             | \$20,823                 | 254.70             | -\$38,231                | 219.13             | \$62,004           | -197.34            | \$08,910                 | 170.02             | \$79,707                 | -155.72            | \$87,333                 |
| \$13./m              | 320.33             | \$41,954           | 162.82             | -\$83,017                | 657.25             | \$20,908                 | 354.79             | -\$38,015                | 220.14             | \$62,233           | -199.16            | \$60,018                 | 172.23             | \$70,853                 | -158.57            | \$80,397                 |
| \$13.0m              | 220.21             | \$42,023           | 161.80             | \$85.010                 | 650.45             | \$20,993                 | 252.26             | \$20,249                 | 222.11             | \$61.070           | -199.93            | \$60.248                 | 174.54             | \$79,633                 | -139.00            | \$86,700                 |
| \$13.9m              | 332.03             | \$42,093           | 160.77             | \$87.081                 | 661.54             | \$21,078                 | 353.20             | \$30,718                 | 224.27             | \$61,979           | 202.13             | \$69,348                 | 176.30             | \$79,038                 | -100.55            | \$86,390                 |
| \$14.0m              | 222.05             | \$42,104           | 150.77             | \$88,260                 | 662.62             | \$21,103                 | 352.46             | \$40.001                 | 220.28             | \$62,151           | -202.13            | \$60,203                 | 177.01             | \$79,410                 | -101.90            | \$86,441                 |
| \$14.1m              | 225.69             | \$42,234           | 159.74             | \$80,209                 | 665 71             | \$21,247                 | 351.70             | \$40,091                 | 220.87             | \$62,052           | -203.79            | \$60 201                 | 177.91             | \$79,234                 | -102.43            | \$86,797                 |
| \$14.2111<br>\$14.3m | 337 50             | \$42,302           | 157.67             | -\$07,474                | 667.78             | \$21,331                 | 350.92             | -\$40,403                | 220.04             | \$62,052           | -204.04            | \$69,257                 | 177.63             | \$80.505                 | -164.40            | \$86.983                 |
| \$14.3m              | 330 32             | \$42,370           | 156.63             | -\$91 930                | 669.84             | \$21,414                 | 340 33             | -\$41 222                | 229.80             | \$62,212           | -208.10            | \$69 197                 | 178.22             | \$80,505                 | -166.44            | \$86 520                 |
| \$14.5m              | 341 14             | \$42,505           | 155.58             | -\$93 200                | 671.90             | \$21,498                 | 348 52             | -\$41 604                | 230.00             | \$62,370           | -209.91            | \$69.078                 | 179.98             | \$80,563                 | -167.87            | \$86 378                 |
| \$14.6m              | 342.95             | \$42,505           | 154 53             | -\$94 480                | 673.96             | \$21,500                 | 347.71             | -\$41.989                | 234 39             | \$62,440           | -211 50            | \$69.001                 | 181.60             | \$80,398                 | -169.33            | \$86 224                 |
| \$14.7m              | 344.76             | \$42,638           | 153.48             | -\$95.778                | 676.01             | \$21,745                 | 346.89             | -\$42,377                | 236.37             | \$62,191           | -212.38            | \$69.215                 | 183.33             | \$80,184                 | -169.81            | \$86 566                 |

|                      |                    |                        |                    | 2                        | 7                  |                        |                    |                          |                    |                      |                    |                          | 28                 |                    |                    |                      |
|----------------------|--------------------|------------------------|--------------------|--------------------------|--------------------|------------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|                      | A                  | gent has go            | od informa         | tion                     | A                  | gent has po            | or informat        | ion                      | Ag                 | ent has 200          | d informati        | on                       | A                  | gent has poo       | or informati       | on                   |
|                      | Net Inv            | estment                | Net Disi           | investment               | Net Inv            | estment                | Net Disi           | nvestment                | Net Inv            | estment              | Net Disi           | westment                 | Net Im             | vestment           | Net Disi           | nvestment            |
| Rudget impact        | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| \$14 8m              | 346.58             | \$42,703               | 152.43             | -\$97.095                | 678.05             | \$21.827               | 346.06             | -\$42,767                | 238 39             | \$62.082             | -213.23            | \$69.408                 | 186.76             | \$79.246           | -171 27            | \$86.413             |
| \$14.9m              | 348 39             | \$42,768               | 151.37             | -\$98.434                | 680.08             | \$21,027               | 345.23             | -\$43,160                | 239.42             | \$62,002             | -214.88            | \$69.341                 | 188 53             | \$79.033           | -174 31            | \$85,478             |
| \$15.0m              | 350.20             | \$42,833               | 150.31             | -\$99.795                | 682.12             | \$21,990               | 344 38             | -\$43 556                | 241 59             | \$62,089             | -216.68            | \$69,225                 | 190.15             | \$78,886           | -175.74            | \$85,353             |
| \$15.0m              | 352.00             | \$42,893               | 149.24             | -\$101.176               | 684.15             | \$22,071               | 343 53             | -\$43,955                | 243.58             | \$61,993             | _217.17            | \$69,530                 | 190.74             | \$79,166           | -164 53            | \$91 775             |
| \$15.1m              | 353.81             | \$42,007               | 148.17             | -\$107,170               | 686.17             | \$22,071               | 342.67             | -\$44 358                | 245.50             | \$62 252             | -217.17            | \$69,465                 | 180.90             | \$84.023           | -165.02            | \$92,111             |
| \$15.2m              | 355.61             | \$43,025               | 147.10             | -\$104.010               | 688.19             | \$22,132               | 341.80             | -\$44 763                | 245.12             | \$62,232             | -220.50            | \$69,389                 | 186.88             | \$81,869           | -166.47            | \$91,907             |
| \$15.6m              | 357.41             | \$43,087               | 146.03             | -\$105.461               | 690.20             | \$22,232               | 340.92             | -\$45,172                | 247.30             | \$62,772             | -222.30            | \$69,277                 | 188 51             | \$81,695           | -166.96            | \$92,239             |
| \$15.5m              | 359.21             | \$43,150               | 144.95             | -\$106.936               | 692.21             | \$22,312               | 340.03             | -\$45 585                | 249.29             | \$62,175             | _223.14            | \$69,463                 | 190.28             | \$81.458           | -168.38            | \$92,054             |
| \$15.5m              | 361.01             | \$43,212               | 143.86             | -\$108,736               | 694.21             | \$22,372               | 339.13             | -\$46,001                | 251.33             | \$62,070             | -223.14            | \$69,665                 | 192.02             | \$81,450           | -169.83            | \$91.856             |
| \$15.0m              | 362.81             | \$43,212               | 142.78             | -\$100,450               | 696.20             | \$22,472               | 338.21             | -\$46,001                | 252.36             | \$62,213             | -225.55            | \$69,602                 | 192.62             | \$81 510           | -170.32            | \$92.182             |
| \$15.7m              | 364.60             | \$43 335               | 141.69             | -\$109,900               | 698.19             | \$22,551               | 337.29             | -\$46,844                | 252.30             | \$62,213             | -225.57            | \$69.492                 | 194.24             | \$81 343           | -173.13            | \$91.263             |
| \$15.0m              | 366.40             | \$43,396               | 140.59             | -\$113.092               | 700.18             | \$22,050               | 336.35             | -\$47,272                | 254.50             | \$61.977             | -227.50            | \$69.421                 | 196.02             | \$81 114           | -174 58            | \$91,203             |
| \$15.9m              | 368 10             | \$43,456               | 130.50             | \$114.608                | 702.16             | \$22,707               | 335.40             | \$47,272                 | 258.55             | \$61,977             | 230.68             | \$60.361                 | 196.62             | \$81.377           | 175.00             | \$90,912             |
| \$16.0m              | 360.08             | \$43,516               | 139.30             | \$116 335                | 704.13             | \$22,767               | 334.44             | \$48.140                 | 250.55             | \$61,780             | 231.85             | \$69,301                 | 190.02             | \$81,377           | 176.48             | \$90,912             |
| \$16.1m              | 371.77             | \$43,575               | 137.28             | \$118,004                | 704.13             | \$22,803               | 333.46             | \$48 581                 | 261.56             | \$61.935             | 232.70             | \$69,441                 | 198.25             | \$81,002           | 177.02             | \$91,230             |
| \$10.2m              | 373.56             | \$43,575               | 136.17             | \$119,004                | 708.06             | \$22,943               | 332.47             | \$49,027                 | 262.60             | \$62.072             | 234.40             | \$69,019                 | 201.78             | \$80.781           | 178 /1             | \$91,051             |
| \$10.5m              | 275.35             | \$42,602               | 125.06             | \$121,425                | 710.01             | \$23,021               | 221.46             | \$40,479                 | 262.00             | \$62,212             | 224.07             | \$60,706                 | 201.78             | \$80,781           | 170.92             | \$91,303             |
| \$10.4m              | 277.12             | \$43,093               | 122.05             | \$122,423                | 711.07             | \$23,098               | 220.42             | \$40,025                 | 265.20             | \$62,312             | -234.97            | \$60.088                 | 203.41             | \$80,024           | -1/9.62            | \$91,202             |
| \$10.5m              | 378.01             | \$43,731               | 133.93             | \$123,184                | 713.02             | \$23,173               | 320.43             | \$50.307                 | 267.40             | \$62,173             | 237.30             | \$69,988                 | 204.01             | \$80,878           | -181.20            | \$91,028             |
| \$10.0m              | 378.91             | \$43,809               | 132.62             | \$126,806                | 715.92             | \$23,232               | 229.30             | \$50,397                 | 260.61             | \$61.042             | -237.39            | \$60,927                 | 203.80             | \$80,000           | -101./4            | \$91,337             |
| \$10./III<br>\$16.9m | 292.49             | \$43,807               | 131.70             | \$120,800                | 717.07             | \$23,328               | 227.22             | \$51.241                 | 209.01             | \$61,942             | -239.00            | \$60,754                 | 207.44             | \$80,303           | -165.10            | \$91,179             |
| \$10.0m              | 284.26             | \$43,924               | 130.37             | \$120,575                | 710.74             | \$23,403               | 226.11             | -\$51,541                | 271.03             | \$61,850             | -240.85            | \$69,734                 | 209.20             | \$80,307           | -104.00            | \$91,009             |
| \$10.9m              | 286.04             | \$45,960               | 129.45             | -\$150,575               | 721.69             | \$23,461               | 224.06             | -\$31,823                | 272.07             | \$01,981             | -242.40            | \$69,097                 | 209.80             | \$80,334           | -165.06            | \$91,515             |
| \$17.0m              | 207.02             | \$44,050               | 126.29             | -\$152,514<br>\$124,404  | 722.60             | \$23,330               | 324.90             | -\$32,313                | 275.60             | \$01,000             | -245.52            | \$69,807                 | 211.39             | \$80,545           | -180.31            | \$91,140             |
| \$17.1m              | 387.82             | \$44,092               | 12/.14             | -\$134,494               | 725.50             | \$23,032               | 323.79             | -\$52,812                | 273.09             | \$62,025             | -245.10            | \$69,707                 | 215.24             | \$80,193           | -18/.92            | \$90,995             |
| \$17.2m<br>\$17.2m   | 201.28             | \$44,146               | 120.00             | -\$150,512               | 723.32             | \$25,707               | 322.39             | -\$35,319                | 277.91             | \$01,891             | -240.77            | \$69,702                 | 215.04             | \$79,980           | -100.40            | \$91,294             |
| \$17.5m              | 202.15             | \$44,205               | 124.64             | -\$156,575               | 720.25             | \$23,762               | 220.06             | -\$35,850                | 279.95             | \$62,025             | -247.55            | \$69,880                 | 213.04             | \$80,227           | -109.04            | \$91,131             |
| \$17.4m              | 204.02             | \$44,238               | 123.09             | -\$140,077               | 729.55             | \$23,637               | 320.00             | -\$34,303                | 280.33             | \$62,025             | -249.17            | \$09,851                 | 217.29             | \$80,078           | -190.52            | \$91,427             |
| \$17.5m              | 206.70             | \$44,512               | 122.33             | -\$142,827               | 722.16             | \$23,931               | 217.24             | -\$34,900                | 201.30             | \$62,130             | -249.00            | \$70,090                 | 220.79             | \$79,202           | -191./2            | \$91,279             |
| \$17.0m              | 208.47             | \$44,300               | 121.30             | \$143,028                | 735.10             | \$24,000               | 215.99             | \$56,034                 | 285.69             | \$61.057             | -231.44            | \$70,162                 | 222.33             | \$79,082           | -195.15            | \$91,120             |
| \$17.7m              | 400.24             | \$44,420               | 120.19             | \$140.571                | 735.00             | \$24,080               | 214.41             | \$56,615                 | 285.08             | \$61,937             | -252.27            | \$70,102                 | 224.30             | \$78,071           | -195.05            | \$91,412             |
| \$17.0m              | 400.24             | \$44,473               | 117.01             | \$151.024                | 730.93             | \$24,134               | 212.02             | -\$50,015                | 287.91             | \$61,820             | -255.50            | \$70,107                 | 220.01             | \$78,737           | -190.41            | \$90,029             |
| \$17.7m              | 402.01             | \$44,520               | 117.02             | -\$151,924<br>\$154,227  | 730.04             | \$24,227               | 211.45             | \$57,201                 | 209.94             | \$61,730             | -255.50            | \$70,043                 | 220.01             | \$70,202           | -197.81            | \$90,492             |
| \$10.0m              | 405.78             | \$44,379               | 115.04             | -\$154,327<br>\$156 791  | 740.72             | \$24,301               | 200.07             | -\$57,794                | 290.92             | \$61,873             | -257.55            | \$09,940                 | 220.43             | \$78,800           | -199.24            | \$90,343             |
| \$10.1111<br>\$19.2m | 403.33             | \$44,031               | 113.45             | \$150,781                | 742.00             | \$24,374               | 208.48             | \$58,595                 | 293.13             | \$61,743             | 250.72             | \$70,123                 | 230.08             | \$78,007           | -199.71            | \$90,030             |
| \$10.2111<br>\$18.3m | 400.09             | \$11 735               | 113.05             | \$161.879                | 746.36             | \$24 510               | 306.00             | \$50,577                 | 294.20             | \$61.764             | 261.51             | \$60.070                 | 231.00             | \$78 721           | 201.14             | \$90,404             |
| \$18.5m              | 409.08             | \$44,735               | 111.03             | \$164 517                | 740.30             | \$24,519               | 205 50             | \$60,220                 | 290.29             | \$61,075             | 262.24             | \$09,979                 | 232.47             | \$79,529           | 202.01             | \$90,707             |
| \$18.4m              | 412.61             | \$44,780               | 110.63             | \$167.226                | 750.00             | \$24,592               | 304.01             | \$60,854                 | 290.90             | \$61.886             | 263.00             | \$70,138                 | 234.20             | \$78,00            | 207.82             | \$90,035             |
| \$18.5m              | 412.01             | \$44,037               | 100.41             | \$170,008                | 751.05             | \$24,004               | 202.51             | \$61.486                 | 290.94             | \$61,000             | -203.99            | \$70,078                 | 233.94             | \$78,409           | 200.25             | \$89,019             |
| \$18.0m              | 414.37             | \$44,007               | 109.41             | \$172,858                | 752.91             | \$24,730               | 201.01             | \$62,124                 | 202.65             | \$61,910             | -204.47            | \$70,323                 | 220.28             | \$82,199           | -209.23            | \$80,691             |
| \$10./III<br>\$10.9m | 410.13             | \$44,938               | 106.16             | \$175 777                | 755.65             | \$24,807               | 200.51             | \$62,770                 | 302.03             | \$61,700             | -200.09            | \$70,277                 | 220.89             | \$82,419           | -209.72            | \$89,100             |
| \$10.0III<br>\$18.0m | 417.69             | \$44,900               | 105.72             | \$179 771                | 757.50             | \$24,079               | 299.31             | \$62,170                 | 205.76             | \$61,700             | -207.80            | \$70,180                 | 220.07             | \$82,213           | -211.11            | \$89,032             |
| \$10.9m              | 419.03             | \$45,038               | 103.72             | \$191 952                | 750.25             | \$24,930               | 298.00             | \$64.082                 | 207.85             | \$61,717             | -208.03            | \$70,330                 | 230.34             | \$82,033           | 212.04             | \$80,920             |
| \$17.0III<br>\$10.1m | 421.41             | \$45,007<br>\$45,124   | 104.40             | -\$101,033<br>\$185,014  | 761.10             | \$25,021               | 290.49             | -\$04,065<br>\$64,751    | 210.11             | \$61.502             | 271.00             | \$70,300                 | 232.10             | \$91,639           | -213.01            | \$80,074             |
| \$17.1II<br>\$10.2m  | 423.10             | \$45,150<br>\$45,195   | 103.23             | \$188.267                | 762.02             | \$25,092               | 202.46             | -\$04,/31<br>\$65,426    | 211.00             | \$61.710             | -2/1.90            | \$70,247                 | 233.03             | \$91,082           | -214.43            | \$80.242             |
| \$17.2III<br>\$10.3m | 424.92             | \$45.234               | 101.98             | \$101,619                | 764.85             | \$25,103               | 293.40             | \$66,100                 | 313.15             | \$61.632             | 274.50             | \$70,139                 | 235.00             | \$81.686           | 216.20             | \$80,545             |
| \$17.5III<br>\$10.4m | 428.07             | \$45.282               | 00.72              | \$105.066                | 766.69             | \$25 304               | 200.42             | \$66,800                 | 313.15             | \$61.831             | 276.11             | \$70,262                 | 238.07             | \$81.400           | 216.76             | \$80,409             |
| \$17.4II<br>\$10.5m  | 420.42             | \$45,202               | 08.19              | \$108.612                | 768 50             | \$25,304               | 290.42             | \$67.400                 | 315.70             | \$61.744             | 277.87             | \$70,203                 | 230.07             | \$81 339           | 218.19             | \$80 375             |
| \$17.5m<br>\$10.6m   | 430.18             | \$45,330               | 96.10              | \$202 250                | 770.30             | \$25,574               | 200.09             | \$68 206                 | 315.02             | \$61.852             | 278.35             | \$70,177                 | 237.74             | \$81 134           | 210.10             | \$80,267             |
| \$19.7m              | 433.68             | \$45 426               | 95.62              | -\$206.018               | 772.13             | \$25 514               | 285.83             | -\$68 921                | 319.15             | \$61 727             | -279.50            | \$70,410                 | 242.19             | \$81 342           | -219.57            | \$89,207             |

|                      |                   |                      |                   | 2                  | 7                 |                    |                   |                                  |                   |                          |                   |                    | 28                |                          |                   |                          |
|----------------------|-------------------|----------------------|-------------------|--------------------|-------------------|--------------------|-------------------|----------------------------------|-------------------|--------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------|--------------------------|
|                      | A                 | gent has go          | od informa        | tion               | A                 | gent has po        | or informat       | ion                              | Ag                | ent has goo              | d informati       | on                 | A                 | gent has poo             | r informati       | on                       |
|                      | Net Inv           | estment              | Net Disi          | investment         | Net Inv           | estment            | Net Disi          | nvestment                        | Net Inv           | estment                  | Net Disi          | ivestment          | Net Inv           | estment                  | Net Disi          | ivestment                |
| Budget impact        | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_p^+)^b$ | $E(\Delta E)^{c}$ | $E(\lambda_{\rm p}^{-})^{\rm d}$ | $E(\Delta E)^{a}$ | $E(\lambda_c^+)^{\rm b}$ | $E(\Delta E)^{c}$ | $E(\lambda_c^-)^d$ | $E(\Delta E)^{a}$ | $E(\lambda_{p}^{+})^{b}$ | $E(\Delta E)^{c}$ | $E(\lambda_{p}^{-})^{d}$ |
| \$19.8m              | 435.43            | \$45,473             | 94.33             | -\$209.898         | 773.95            | \$25,583           | 284.30            | -\$69,646                        | 321.26            | \$61.633                 | -281.14           | \$70,427           | 243.87            | \$81,191                 | -221.45           | \$89,410                 |
| \$19.9m              | 437.17            | \$45,520             | 93.04             | -\$213,892         | 775.76            | \$25,652           | 282.76            | -\$70,378                        | 323.33            | \$61,547                 | -281.91           | \$70,589           | 247.44            | \$80,424                 | -224.20           | \$88,762                 |
| \$20.0m              | 438.92            | \$45,567             | 91.73             | -\$218,024         | 777.56            | \$25,721           | 281.22            | -\$71,120                        | 325.60            | \$61,425                 | -283.52           | \$70,541           | 249.28            | \$80,232                 | -225.58           | \$88,661                 |
| \$20.1m              | 440.66            | \$45,613             | 90.43             | -\$222,276         | 779.37            | \$25,790           | 279.67            | -\$71,869                        | 326.59            | \$61,545                 | -284.35           | \$70,687           | 251.08            | \$80,053                 | -226.05           | \$88,919                 |
| \$20.2m              | 442.41            | \$45,659             | 89.11             | -\$226,682         | 781.16            | \$25,859           | 278.13            | -\$72,629                        | 327.66            | \$61,649                 | -286.11           | \$70,602           | 251.70            | \$80,255                 | -227.46           | \$88,807                 |
| \$20.3m              | 444.15            | \$45,705             | 87.79             | -\$231,221         | 782.96            | \$25,927           | 276.58            | -\$73,397                        | 329.74            | \$61,564                 | -287.72           | \$70,556           | 253.38            | \$80,116                 | -230.40           | \$88,106                 |
| \$20.4m              | 445.89            | \$45,751             | 86.47             | -\$235,929         | 784.75            | \$25,996           | 275.03            | -\$74,175                        | 330.36            | \$61,752                 | -289.47           | \$70,473           | 255.23            | \$79,928                 | -230.87           | \$88,360                 |
| \$20.5m              | 447.64            | \$45,796             | 85.14             | -\$240,790         | 786.53            | \$26,064           | 273.47            | -\$74,963                        | 332.63            | \$61,629                 | -291.11           | \$70,420           | 256.92            | \$79,792                 | -232.28           | \$88,254                 |
| \$20.6m              | 449.37            | \$45,841             | 83.80             | -\$245,830         | 788.31            | \$26,132           | 271.91            | -\$75,761                        | 334.76            | \$61,537                 | -291.94           | \$70,564           | 257.54            | \$79,989                 | -233.66           | \$88,161                 |
| \$20.7m              | 451.11            | \$45,886             | 82.46             | -\$251,039         | 790.09            | \$26,199           | 270.35            | -\$76,569                        | 336.85            | \$61,453                 | -292.70           | \$70,720           | 259.39            | \$79,804                 | -234.13           | \$88,412                 |
| \$20.8m              | 452.85            | \$45,931             | 81.11             | -\$256,434         | 791.86            | \$26,267           | 268.78            | -\$77,387                        | 337.92            | \$61,553                 | -294.30           | \$70,675           | 261.20            | \$79,632                 | -235.54           | \$88,308                 |
| \$20.9m              | 454.59            | \$45,976             | 79.76             | -\$262,036         | 793.64            | \$26,334           | 267.21            | -\$78,216                        | 340.21            | \$61,433                 | -296.06           | \$70,594           | 262.90            | \$79,499                 | -236.91           | \$88,218                 |
| \$21.0m              | 456.32            | \$46,020             | 78.39             | -\$267,877         | 795.40            | \$26,402           | 265.63            | -\$79,056                        | 342.30            | \$61,349                 | -296.53           | \$70,819           | 264.75            | \$79,319                 | -237.38           | \$88,465                 |
| \$21.1m              | 458.06            | \$46,064             | 77.02             | -\$273,957         | 797.17            | \$26,469           | 264.06            | -\$79,907                        | 343.30            | \$61,462                 | -298.16           | \$70,766           | 265.37            | \$79,511                 | -238.79           | \$88,363                 |
| \$21.2m              | 459.79            | \$46,108             | 75.64             | -\$280,264         | 798.93            | \$26,535           | 262.48            | -\$80,769                        | 345.44            | \$61,370                 | -299.76           | \$70,722           | 267.07            | \$79,379                 | -239.25           | \$88,609                 |
| \$21.3m              | 461.52            | \$46,151             | 74.26             | -\$286,814         | 800.69            | \$26,602           | 260.90            | -\$81,642                        | 347.54            | \$61,287                 | -301.51           | \$70,644           | 268.94            | \$79,201                 | -241.21           | \$88,306                 |
| \$21.4m              | 463.26            | \$46,195             | 72.87             | -\$293,666         | 802.45            | \$26,668           | 259.31            | -\$82,526                        | 349.84            | \$61,171                 | -302.34           | \$70,782           | 270.76            | \$79,037                 | -242.61           | \$88,208                 |
| \$21.5m              | 464.99            | \$46,238             | 71.48             | -\$300,786         | 804.20            | \$26,735           | 257.73            | -\$83,422                        | 350.92            | \$61,267                 | -303.10           | \$70,934           | 261.26            | \$82,294                 | -243.08           | \$88,450                 |
| \$21.6m              | 466.72            | \$46,281             | 70.07             | -\$308,250         | 805.94            | \$26,801           | 256.14            | -\$84,330                        | 351.55            | \$61,443                 | -304.70           | \$70,891           | 261.88            | \$82,481                 | -244.47           | \$88,353                 |
| \$21.7m              | 468.45            | \$46,323             | 68.67             | -\$316,027         | 807.69            | \$26,867           | 254.55            | -\$85,250                        | 353.65            | \$61,360                 | -306.44           | \$70,813           | 263.58            | \$82,327                 | -244.94           | \$88,593                 |
| \$21.8m              | 470.17            | \$46,366             | 67.25             | -\$324,182         | 809.43            | \$26,932           | 252.95            | -\$86,182                        | 355.96            | \$61,243                 | -308.07           | \$70,763           | 265.45            | \$82,124                 | -247.65           | \$88,027                 |
| \$21.9m              | 471.90            | \$46,408             | 65.83             | -\$332,699         | 811.17            | \$26,998           | 251.36            | -\$87,127                        | 358.12            | \$61,153                 | -309.66           | \$70,722           | 269.36            | \$81,304                 | -236.13           | \$92,747                 |
| \$22.0m              | 473.62            | \$46,450             | 64.39             | -\$341,670         | 812.90            | \$27,064           | 249.76            | -\$88,085                        | 359.13            | \$61,260                 | -311.40           | \$70,648           | 271.07            | \$81,160                 | -237.52           | \$92,623                 |
| \$22.1m              | 475.35            | \$46,492             | 62.95             | -\$351,100         | 814.63            | \$27,129           | 248.16            | -\$89,056                        | 361.24            | \$61,178                 | -312.22           | \$70,782           | 271.69            | \$81,341                 | -237.99           | \$92,862                 |
| \$22.2m              | 477.07            | \$46,534             | 61.49             | -\$361,011         | 816.36            | \$27,194           | 246.56            | -\$90,040                        | 362.33            | \$61,270                 | -312.70           | \$70,995           | 273.53            | \$81,161                 | -239.38           | \$92,739                 |
| \$22.3m              | 478.79            | \$46,575             | 60.03             | -\$371,480         | 818.08            | \$27,259           | 244.95            | -\$91,039                        | 364.65            | \$61,155                 | -314.32           | \$70,947           | 275.41            | \$80,972                 | -239.85           | \$92,976                 |
| \$22.4m              | 480.51            | \$46,617             | 58.56             | -\$382,492         | 819.80            | \$27,324           | 243.34            | -\$92,051                        | 366.77            | \$61,074                 | -315.08           | \$71,093           | 277.12            | \$80,831                 | -241.24           | \$92,854                 |
| \$22.5m              | 482.23            | \$46,658             | 57.10             | -\$394,072         | 821.52            | \$27,388           | 241.73            | -\$93,078                        | 367.40            | \$61,242                 | -316.67           | \$71,052           | 280.77            | \$80,138                 | -241.70           | \$93,090                 |
| \$22.6m              | 483.95            | \$46,699             | 55.61             | -\$406,381         | 823.24            | \$27,453           | 240.12            | -\$94,119                        | 368.92            | \$61,260                 | -318.41           | \$70,978           | 281.39            | \$80,315                 | -243.09           | \$92,969                 |
| \$22.7m              | 485.67            | \$46,739             | 54.13             | -\$419,380         | 824.95            | \$27,517           | 238.51            | -\$95,175                        | 3/1.09            | \$61,1/1                 | -320.00           | \$70,938           | 283.27            | \$80,134                 | -243.55           | \$93,203                 |
| \$22.8m              | 487.39            | \$46,780             | 52.63             | -\$433,236         | 826.66            | \$27,581           | 236.89            | -\$96,246                        | 372.19            | \$61,260                 | -321.73           | \$70,867           | 284.99            | \$80,002                 | -244.94           | \$93,084                 |
| \$22.9m              | 489.10            | \$40,820             | 51.11             | -\$448,058         | 828.37            | \$27,045           | 235.28            | -\$97,332                        | 374.52            | \$01,140                 | -322.33           | \$70,997           | 280.84            | \$79,835                 | -245.40           | \$93,310                 |
| \$23.0m              | 490.82            | \$40,801             | 49.59             | -\$403,832         | 830.07            | \$27,708           | 233.00            | -\$98,433                        | 370.04            | \$01,000                 | -324.17           | \$70,951           | 289.47            | \$79,430                 | -240.79           | \$93,198                 |
| \$23.1III<br>\$23.2m | 492.33            | \$46,901             | 46.00             | \$408 712          | 822.47            | \$27,772           | 232.04            | \$100.685                        | 270.80            | \$61,105                 | -326.92           | \$70,251           | 291.50            | \$79,284                 | -247.23           | \$95,429                 |
| \$23.2III<br>\$23.3m | 494.24            | \$46,941             | 40.32             | \$518 100          | 033.47<br>925.16  | \$27,830           | 230.42            | \$101,836                        | 282.14            | \$60.072                 | -329.07           | \$70,373           | 291.99            | \$79,430                 | -246.03           | \$93,312                 |
| \$23.5m              | 493.93            | \$47.021             | 43.42             | \$538.057          | 836.85            | \$27,059           | 228.80            | \$103,004                        | 383.24            | \$61.058                 | 332.00            | \$70,307           | 295.71            | \$79,329                 | 251.77            | \$93,340                 |
| \$23.4III<br>\$23.5m | 497.03            | \$47,021             | 43.42             | \$561.625          | 838.54            | \$27,902           | 227.10            | \$104,100                        | 385.43            | \$60.071                 | -332.99           | \$70,273           | 293.01            | \$79,100                 | -231.77           | \$92,942                 |
| \$23.5m              | 501.06            | \$47,000             | 40.26             | \$586 195          | 840.22            | \$28,023           | 223.33            | \$105.394                        | 386.06            | \$61.130                 | 334 50            | \$70,474           | 297.34            | \$79,033                 | 253.61            | \$93,057                 |
| \$23.0m              | 502.77            | \$47,100             | 38.67             | \$612.845          | 841.00            | \$28,088           | 223.32            | \$106.615                        | 388.21            | \$61,050                 | 335.41            | \$70,555           | 297.97            | \$79,203                 | 254.07            | \$93,037                 |
| \$23.7m              | 504.47            | \$47,139             | 37.08             | -\$641,900         | 843.58            | \$28,131           | 222.30            | -\$100,015                       | 390.56            | \$60.939                 | -337.02           | \$70,000           | 301.73            | \$78,879                 | -255.44           | \$93,282                 |
| \$23.0m              | 506.17            | \$47,170             | 35.46             | -\$673.968         | 845.25            | \$28,215           | 219.03            | -\$109,115                       | 392.71            | \$60,859                 | -338.75           | \$70,513           | 303.46            | \$78,758                 | -255.90           | \$93,395                 |
| \$24.0m              | 507.87            | \$47,256             | 33.82             | -\$709.558         | 846.93            | \$28,338           | 217.05            | -\$110.396                       | 393.74            | \$60,954                 | -340.33           | \$70,535           | 304.10            | \$78,922                 | -257.28           | \$93,285                 |
| \$24.1m              | 509.57            | \$47 295             | 32.18             | -\$748 895         | 848.60            | \$28,333           | 215.77            | -\$111.695                       | 394.85            | \$61.036                 | -342.06           | \$70,456           | 306.00            | \$78 757                 | -257 74           | \$93,507                 |
| \$24.7m              | 511.26            | \$47 334             | 30.53             | -\$792 588         | 850.26            | \$28,100           | 213.77            | -\$113.015                       | 397.05            | \$60,950                 | -342.81           | \$70,190           | 307.75            | \$78,636                 | -259.11           | \$93,398                 |
| \$24.3m              | 512.96            | \$47,372             | 28.87             | -\$841 640         | 851.93            | \$28 523           | 212.49            | -\$114 357                       | 399.41            | \$60,930                 | -344 39           | \$70 560           | 309.61            | \$78 485                 | -259 56           | \$93.618                 |
| \$24.4m              | 514 65            | \$47,411             | 27.21             | -\$896 832         | 853 59            | \$28 585           | 210.85            | -\$115 721                       | 401 57            | \$60,762                 | -346.00           | \$70 520           | 300.26            | \$81 263                 | -260.93           | \$93 510                 |
| \$24.5m              | 516.34            | \$47,449             | 25.52             | -\$959 945         | 855.25            | \$28,647           | 209.21            | -\$117 106                       | 402.21            | \$60,702                 | -346.81           | \$70,644           | 300.90            | \$81 423                 | -261 39           | \$93,730                 |
| \$24.6m              | 518.03            | \$47,488             | 23.81             | -\$1 03m           | 856.91            | \$28,708           | 207.57            | -\$118 515                       | 404 38            | \$60,834                 | -348 53           | \$70 581           | 302.81            | \$81 239                 | -262.76           | \$93 623                 |
| \$24.7m              | 519.72            | \$47 526             | 22.10             | -\$1.12m           | 858.56            | \$28,769           | 205.93            | -\$119,946                       | 405 49            | \$60,913                 | -349.00           | \$70,773           | 304.56            | \$81 101                 | -265.61           | \$92,992                 |

|               |                    |                          |                    | 2                        | 7                  |                        |                    |                      |                    |                      |                    |                          | 28                 |                    |                    |                      |
|---------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|------------------------|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|               | A                  | gent has go              | od informat        | tion                     | A                  | gent has po            | or informat        | tion                 | Ag                 | ent has 200          | d informati        | on                       | A                  | gent has poo       | or informati       | on                   |
|               | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment                | Net Disi           | nvestment            | Net Inv            | estment              | Net Disir          | westment                 | Net Inv            | estment            | Net Disi           | nvestment            |
| Rudget impact | $E(\Lambda E)^{a}$ | $F(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| \$24.8m       | 521.41             | \$47 564                 | 20.36              | -\$1.22m                 | 860.21             | \$28,830               | 204.28             | -\$121.403           | 407.87             | \$60.804             | -350.58            | \$70 741                 | 306.31             | \$80.963           | -266.07            | \$93,209             |
| \$24.9m       | 523.09             | \$47,602                 | 18.60              | -\$1.34m                 | 861.85             | \$28,891               | 202.63             | -\$122,884           | 408 91             | \$60,894             | -352.18            | \$70,703                 | 308.23             | \$80,784           | -268 72            | \$92,662             |
| \$25.0m       | 524.78             | \$47,639                 | 16.84              | -\$1.48m                 | 863 50             | \$28,952               | 200.98             | -\$124 389           | 411 13             | \$60,809             | -353.90            | \$70,641                 | 310.11             | \$80,617           | -270.08            | \$92,564             |
| \$25.1m       | 526.46             | \$47,677                 | 15.07              | -\$1.67m                 | 865.14             | \$29,013               | 199.33             | -\$125,919           | 413 30             | \$60,731             | -354.65            | \$70,774                 | 313.84             | \$79,978           | -270.54            | \$92,501             |
| \$25.2m       | 528.14             | \$47.715                 | 13.28              | -\$1.90m                 | 866.78             | \$29.073               | 197.68             | -\$127.477           | 415.68             | \$60.623             | -356.22            | \$70,742                 | 314.48             | \$80,133           | -271.90            | \$92,681             |
| \$25.3m       | 529.82             | \$47,752                 | 11.48              | -\$2.20m                 | 868.41             | \$29,134               | 196.03             | -\$129.061           | 416.81             | \$60.699             | -357.03            | \$70.862                 | 316.23             | \$80,004           | -272.35            | \$92,894             |
| \$25.4m       | 531.50             | \$47 789                 | 9.69               | -\$2.62m                 | 870.05             | \$29,194               | 194.38             | -\$130.674           | 418.99             | \$60,622             | -358.60            | \$70,831                 | 318.16             | \$79,834           | -273 71            | \$92,797             |
| \$25.5m       | 533.18             | \$47,827                 | 7 89               | -\$3.23m                 | 871.68             | \$29,254               | 192.72             | -\$132,316           | 425.54             | \$59,925             | -360.20            | \$70,794                 | 318.80             | \$79,987           | -274 17            | \$93,009             |
| \$25.6m       | 534.85             | \$47 864                 | 6.08               | -\$4.21m                 | 873 31             | \$29.314               | 191.06             | -\$133,986           | 426.18             | \$60.068             | -360.66            | \$70,980                 | 320.57             | \$79.858           | -275 53            | \$92,913             |
| \$25.7m       | 536.53             | \$47.901                 | 4.28               | -\$6.01m                 | 874.93             | \$29,374               | 189.40             | -\$135,688           | 428.42             | \$59,988             | -361.41            | \$71,110                 | 322.50             | \$79,690           | -275.98            | \$93,123             |
| \$25.8m       | 538.20             | \$47,938                 | 2.46               | -\$10.47m                | 876.56             | \$29,433               | 187.74             | -\$137.421           | 430.81             | \$59.887             | -362.98            | \$71.078                 | 324.39             | \$79.533           | -277.33            | \$93.028             |
| \$25.9m       | 539.87             | \$47,974                 | 0.65               | -\$40.03m                | 878.18             | \$29,493               | 186.08             | -\$139,186           | 433.00             | \$59.815             | -363.79            | \$71,196                 | 325.04             | \$79.683           | -277.79            | \$93.237             |
| \$26.0m       | 541.54             | \$48.011                 | -1.17              | \$22.13m                 | 879.80             | \$29,552               | 184.42             | -\$140.984           | 434.06             | \$59,900             | -365.38            | \$71,159                 | 326.81             | \$79.557           | -279.14            | \$93,143             |
| \$26.1m       | 543.21             | \$48,048                 | -3.00              | \$8.71m                  | 881.41             | \$29.612               | 182.75             | -\$142,816           | 435.19             | \$59 974             | -366.94            | \$71.128                 | 328.75             | \$79 392           | -279 59            | \$93,350             |
| \$26.2m       | 544.88             | \$48,084                 | -4.82              | \$5.43m                  | 883.02             | \$29.671               | 181.08             | -\$144.684           | 437.39             | \$59,901             | -367.75            | \$71,245                 | 330.52             | \$79.268           | -280.04            | \$93.557             |
| \$26.3m       | 546.55             | \$48,120                 | -6.65              | \$3.95m                  | 884.63             | \$29,730               | 179.42             | -\$146.587           | 439.79             | \$59.801             | -368.49            | \$71.372                 | 332.43             | \$79,115           | -281.39            | \$93,463             |
| \$26.4m       | 548.21             | \$48,157                 | -8.48              | \$3.11m                  | 886.24             | \$29,789               | 177.75             | -\$148.527           | 442.05             | \$59,722             | -370.05            | \$71.341                 | 334.37             | \$78,954           | -283.28            | \$93,195             |
| \$26.5m       | 549.87             | \$48,193                 | -10.32             | \$2.57m                  | 887.85             | \$29.847               | 176.07             | -\$150.506           | 444.25             | \$59.651             | -371.64            | \$71.305                 | 335.02             | \$79.099           | -285.90            | \$92.691             |
| \$26.6m       | 551.54             | \$48,229                 | -12.15             | \$2.19m                  | 889.45             | \$29,906               | 174.40             | -\$152,525           | 444.91             | \$59,788             | -372.11            | \$71,485                 | 336.81             | \$78,977           | -286.35            | \$92,895             |
| \$26.7m       | 553.20             | \$48,265                 | -13.99             | \$1.91m                  | 891.05             | \$29,964               | 172.72             | -\$154,584           | 446.05             | \$59.859             | -373.22            | \$71,539                 | 338.76             | \$78,817           | -287.69            | \$92,807             |
| \$26.8m       | 554.86             | \$48,301                 | -15.84             | \$1.69m                  | 892.66             | \$30,023               | 171.04             | -\$156.684           | 448.47             | \$59,759             | -374.78            | \$71,509                 | 329.54             | \$81,324           | -292.24            | \$91,705             |
| \$26.9m       | 556.52             | \$48,337                 | -17.68             | \$1.52m                  | 894.26             | \$30,081               | 169.37             | -\$158,829           | 450.05             | \$59,771             | -375.58            | \$71.622                 | 330.20             | \$81,467           | -292.69            | \$91,906             |
| \$27.0m       | 558.17             | \$48,372                 | -19.53             | \$1.38m                  | 895.86             | \$30,139               | 167.68             | -\$161,017           | 452.27             | \$59,699             | -377.17            | \$71,586                 | 332.11             | \$81,298           | -294.04            | \$91,825             |
| \$27.1m       | 559.83             | \$48,408                 | -21.39             | \$1.27m                  | 897.45             | \$30,197               | 166.00             | -\$163,253           | 453.33             | \$59,780             | -377.91            | \$71,710                 | 333.90             | \$81,162           | -294.49            | \$92,024             |
| \$27.2m       | 561.48             | \$48,443                 | -23.24             | \$1.17m                  | 899.05             | \$30,254               | 164.32             | -\$165,535           | 455.76             | \$59,680             | -379.47            | \$71,680                 | 335.86             | \$80,986           | -295.83            | \$91,944             |
| \$27.3m       | 563.14             | \$48,479                 | -25.09             | \$1.09m                  | 900.65             | \$30,312               | 162.63             | -\$167,865           | 458.03             | \$59,603             | -381.02            | \$71,651                 | 342.48             | \$79,714           | -296.28            | \$92,143             |
| \$27.4m       | 564.79             | \$48,514                 | -26.95             | \$1.02m                  | 902.24             | \$30,369               | 160.94             | -\$170,249           | 460.26             | \$59,532             | -382.60            | \$71,616                 | 343.13             | \$79,853           | -297.62            | \$92,063             |
| \$27.5m       | 566.44             | \$48,549                 | -28.81             | \$954,385                | 903.83             | \$30,426               | 159.25             | -\$172,683           | 461.40             | \$59,601             | -383.06            | \$71,791                 | 346.94             | \$79,264           | -298.07            | \$92,260             |
| \$27.6m       | 568.09             | \$48,584                 | -30.68             | \$899,615                | 905.42             | \$30,483               | 157.56             | -\$175,172           | 463.64             | \$59,529             | -383.86            | \$71,902                 | 348.74             | \$79,143           | -299.41            | \$92,182             |
| \$27.7m       | 569.73             | \$48,619                 | -32.55             | \$851,058                | 907.01             | \$30,540               | 155.87             | -\$177,717           | 464.30             | \$59,660             | -384.60            | \$72,023                 | 350.70             | \$78,984           | -299.86            | \$92,378             |
| \$27.8m       | 571.38             | \$48,654                 | -34.42             | \$807,713                | 908.60             | \$30,596               | 154.17             | -\$180,319           | 466.74             | \$59,562             | -386.15            | \$71,994                 | 352.63             | \$78,836           | -301.19            | \$92,299             |
| \$27.9m       | 573.03             | \$48,689                 | -36.29             | \$768,728                | 910.19             | \$30,653               | 152.47             | -\$182,984           | 467.90             | \$59,628             | -387.72            | \$71,959                 | 354.43             | \$78,717           | -301.64            | \$92,494             |
| \$28.0m       | 574.67             | \$48,724                 | -38.17             | \$733,559                | 911.77             | \$30,709               | 150.77             | -\$185,709           | 470.14             | \$59,557             | -389.27            | \$71,930                 | 356.41             | \$78,562           | -302.98            | \$92,417             |
| \$28.1m       | 576.31             | \$48,758                 | -40.05             | \$701,610                | 913.35             | \$30,766               | 149.07             | -\$188,497           | 471.21             | \$59,633             | -390.06            | \$72,039                 | 357.06             | \$78,697           | -305.57            | \$91,960             |
| \$28.2m       | 577.95             | \$48,793                 | -41.93             | \$672,484                | 914.94             | \$30,822               | 147.37             | -\$191,354           | 473.50             | \$59,556             | -390.80            | \$72,159                 | 358.87             | \$78,580           | -306.01            | \$92,153             |
| \$28.3m       | 579.59             | \$48,827                 | -43.82             | \$645,838                | 916.52             | \$30,878               | 145.67             | -\$194,280           | 475.96             | \$59,459             | -392.34            | \$72,130                 | 360.85             | \$78,426           | -294.13            | \$96,215             |
| \$28.4m       | 581.23             | \$48,862                 | -45.70             | \$621,378                | 918.09             | \$30,934               | 143.96             | -\$197,278           | 478.21             | \$59,388             | -392.80            | \$72,301                 | 361.51             | \$78,559           | -295.47            | \$96,119             |
| \$28.5m       | 582.87             | \$48,896                 | -47.59             | \$598,843                | 919.67             | \$30,989               | 142.25             | -\$200,349           | 479.37             | \$59,453             | -394.38            | \$72,266                 | 363.46             | \$78,414           | -295.91            | \$96,313             |
| \$28.6m       | 584.51             | \$48,930                 | -49.48             | \$577,978                | 921.25             | \$31,045               | 140.54             | -\$203,498           | 480.04             | \$59,578             | -395.17            | \$72,374                 | 365.27             | \$78,298           | -297.24            | \$96,218             |
| \$28.7m       | 586.14             | \$48,964                 | -51.38             | \$558,621                | 922.82             | \$31,100               | 138.83             | -\$206,728           | 482.51             | \$59,480             | -396.71            | \$72,345                 | 367.26             | \$78,147           | -297.69            | \$96,410             |
| \$28.8m       | 587.77             | \$48,998                 | -53.27             | \$540,613                | 924.39             | \$31,156               | 137.11             | -\$210,043           | 484.77             | \$59,410             | -398.28            | \$72,311                 | 367.92             | \$78,278           | -300.46            | \$95,852             |
| \$28.9m       | 589.41             | \$49,032                 | -55.17             | \$523,805                | 925.97             | \$31,211               | 135.40             | -\$213,442           | 487.08             | \$59,333             | -399.01            | \$72,429                 | 369.74             | \$78,163           | -300.91            | \$96,043             |
| \$29.0m       | 591.04             | \$49,066                 | -57.07             | \$508,105                | 927.54             | \$31,266               | 133.68             | -\$216,931           | 488.16             | \$59,406             | -400.55            | \$72,400                 | 371.74             | \$78,012           | -302.24            | \$95,951             |
| \$29.1m       | 592.67             | \$49,100                 | -58.98             | \$493,409                | 929.11             | \$31,320               | 131.96             | -\$220,517           | 490.43             | \$59,336             | -401.34            | \$72,507                 | 362.66             | \$80,241           | -302.68            | \$96,141             |
| \$29.2m       | 594.30             | \$49,134                 | -60.88             | \$479,597                | 930.68             | \$31,375               | 130.24             | -\$224,199           | 491.60             | \$59,398             | -402.44            | \$72,557                 | 364.61             | \$80,085           | -304.01            | \$96,051             |
| \$29.3m       | 595.92             | \$49,167                 | -62.80             | \$466,589                | 932.24             | \$31,430               | 128.52             | -\$227,983           | 494.09             | \$59,301             | -402.90            | \$72,723                 | 366.44             | \$79,959           | -304.45            | \$96,240             |
| \$29.4m       | 597.55             | \$49,201                 | -64.71             | \$454,345                | 933.81             | \$31,484               | 126.79             | -\$231,874           | 496.36             | \$59,231             | -404.46            | \$72,689                 | 368.44             | \$79,796           | -305.77            | \$96,150             |
| \$29.5m       | 599.18             | \$49,234                 | -66.63             | \$442,768                | 935.37             | \$31,538               | 125.07             | -\$235,874           | 498.69             | \$59,155             | -406.00            | \$72,661                 | 369.11             | \$79,922           | -306.21            | \$96,338             |
| \$29.6m       | 600.80             | \$49,268                 | -08.55             | \$451,819                | 936.94             | \$31,592               | 123.34             | -\$259,995           | 499.37             | \$59,275             | -406.73            | \$72,776                 | 370.94             | \$/9,797           | -307.09            | \$96,248             |
| \$29./m       | 002.42             | \$49,301                 | -/0.4/             | J421,400                 | 938.30             | \$\$1,040              | 121.01             | -\$244,233           | 501.87             | 339,1/9              | -408.20            | 3/2,/48                  | 312.93             | \$/9.033           | -307.98            | 390,433              |

|                      |                    |                          |                    | 2                        | 7                  |                        |                    |                         |                    |                          |                    |                          | 28                 |                    |                    |                      |
|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|------------------------|--------------------|-------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|                      | A                  | gent has go              | od informat        | tion                     | A                  | gent has po            | or informat        | ion                     | Ag                 | ent has goo              | d informati        | on                       | A                  | gent has poo       | or informati       | on                   |
|                      | Net Inv            | estment                  | Net Disi           | nvestment                | Net Inv            | estment                | Net Disi           | nvestment               | Net Inv            | estment                  | Net Disi           | westment                 | Net Inv            | vestment           | Net Disi           | nvestment            |
| Rudget impact        | $F(\Lambda F)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$    | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $F(\lambda^{-})^{d}$ |
| \$29.8m              | 604.04             | \$49 334                 | -72.39             | \$411 644                | 940.07             | \$31,700               | 119.87             | -\$248 595              | 504.15             | \$59.109                 | -409.05            | \$72.852                 | 376.85             | \$79.076           | -310.54            | \$95,961             |
| \$29.9m              | 605.66             | \$49.367                 | -74 32             | \$402 325                | 941.63             | \$31,754               | 118.14             | -\$253.094              | 505.33             | \$59,169                 | -410.61            | \$72,819                 | 378.82             | \$78,928           | -311.86            | \$95,875             |
| \$30.0m              | 607.28             | \$49,400                 | -76.25             | \$393.459                | 943 19             | \$31,807               | 116.40             | -\$257,728              | 506.43             | \$59,238                 | -412.14            | \$72,791                 | 379.50             | \$79.052           | -312 30            | \$96,060             |
| \$30.1m              | 608.90             | \$49.433                 | -78.18             | \$385,023                | 944 75             | \$31,860               | 114.66             | -\$262 512              | 508.72             | \$59,168                 | -412.87            | \$72,905                 | 381 34             | \$78,933           | -313.62            | \$95,975             |
| \$30.2m              | 610.52             | \$49,466                 | -80.11             | \$376,974                | 946 31             | \$31,000               | 112.92             | -\$267,443              | 511.24             | \$59.072                 | -413.32            | \$73.067                 | 383 35             | \$78,779           | -314.06            | \$96,159             |
| \$30.3m              | 612.13             | \$49,499                 | -82.05             | \$369.280                | 947.86             | \$31,967               | 111.18             | -\$272.533              | 513.59             | \$58,997                 | -414.88            | \$73.034                 | 384.03             | \$78,900           | -315.38            | \$96.075             |
| \$30.4m              | 613 75             | \$49 532                 | -83.99             | \$361,941                | 949.42             | \$32,020               | 109.43             | -\$277 793              | 514 77             | \$59.055                 | -416.40            | \$73,006                 | 385.88             | \$78,782           | -315.82            | \$96,258             |
| \$30.5m              | 615.36             | \$49 565                 | -85.94             | \$354 910                | 950.97             | \$32,020               | 107.69             | -\$283 229              | 517.08             | \$58,985                 | -417.19            | \$73,108                 | 387.90             | \$78,629           | -317.13            | \$96,175             |
| \$30.6m              | 616.97             | \$49 597                 | -87.89             | \$348 174                | 952.52             | \$32,125               | 105.94             | -\$288,849              | 517.76             | \$59.101                 | -418 71            | \$73.081                 | 389.88             | \$78,485           | -317 57            | \$96 357             |
| \$30.7m              | 618.58             | \$49.630                 | -89.84             | \$341.724                | 954.08             | \$32,178               | 104.19             | -\$294.660              | 520.29             | \$59,006                 | -420.26            | \$73.049                 | 391.74             | \$78.368           | -318.01            | \$96.538             |
| \$30.8m              | 620.19             | \$49.662                 | -91.80             | \$335.527                | 955.63             | \$32,230               | 102.43             | -\$300.680              | 522.60             | \$58,936                 | -420.99            | \$73,160                 | 393.77             | \$78.218           | -319.32            | \$96.455             |
| \$30.9m              | 621.80             | \$49.695                 | -93.76             | \$329.582                | 957.18             | \$32,282               | 100.68             | -\$306.914              | 523.80             | \$58,992                 | -421.78            | \$73,262                 | 394.45             | \$78.337           | -319.76            | \$96.636             |
| \$31.0m              | 623.40             | \$49,727                 | -95.71             | \$323,880                | 958.73             | \$32,334               | 98.92              | -\$313.378              | 524.91             | \$59.058                 | -423.30            | \$73,235                 | 398.70             | \$77.753           | -321.07            | \$96.553             |
| \$31.1m              | 625.01             | \$49,759                 | -97.67             | \$318 405                | 960.28             | \$32,387               | 97.16              | -\$320,080              | 527.28             | \$58,982                 | -423.75            | \$73 393                 | 400.56             | \$77.641           | -321.50            | \$96,733             |
| \$31.2m              | 626.61             | \$49,791                 | -99.64             | \$313,135                | 961.82             | \$32,438               | 95.40              | -\$327,033              | 528.94             | \$58,985                 | -425.30            | \$73,361                 | 391.61             | \$79.672           | -322.81            | \$96,651             |
| \$31.3m              | 628.22             | \$49,824                 | -101.60            | \$308.065                | 963.37             | \$32,490               | 93.64              | -\$334,264              | 531.49             | \$58,891                 | -426.81            | \$73,334                 | 393.65             | \$79,513           | -325.35            | \$96,204             |
| \$31.4m              | 629.82             | \$49,856                 | -103.57            | \$303,174                | 964.91             | \$32,542               | 91.87              | -\$341,774              | 533.81             | \$58,822                 | -427.54            | \$73,444                 | 395.65             | \$79.364           | -325.10            | \$96,586             |
| \$31.5m              | 631.42             | \$49,888                 | -105.54            | \$298,463                | 966.46             | \$32,593               | 90.11              | -\$349,585              | 536.15             | \$58,753                 | -428.32            | \$73,543                 | 396.33             | \$79,480           | -325.53            | \$96,764             |
| \$31.6m              | 633.02             | \$49,919                 | -107.51            | \$293,924                | 968.00             | \$32,645               | 88.34              | -\$357,722              | 536.84             | \$58,863                 | -429.83            | \$73,517                 | 398.20             | \$79,358           | -326.84            | \$96,683             |
| \$31.7m              | 634.62             | \$49,951                 | -109.49            | \$289,536                | 969.54             | \$32,696               | 86.57              | -\$366,193              | 538.04             | \$58,917                 | -431.38            | \$73,485                 | 400.24             | \$79,202           | -328.66            | \$96,452             |
| \$31.8m              | 636.22             | \$49,983                 | -111.46            | \$285,302                | 971.08             | \$32,747               | 84.79              | -\$375,039              | 540.60             | \$58,824                 | -432.46            | \$73,532                 | 400.93             | \$79,316           | -329.10            | \$96,628             |
| \$31.9m              | 637.81             | \$50,015                 | -113.44            | \$281,202                | 972.62             | \$32,798               | 83.02              | -\$384,267              | 542.99             | \$58,749                 | -433.98            | \$73,506                 | 402.81             | \$79,194           | -330.40            | \$96,549             |
| \$32.0m              | 639.41             | \$50,046                 | -115.42            | \$277,243                | 974.16             | \$32,849               | 81.24              | -\$393,901              | 545.33             | \$58,680                 | -434.70            | \$73,614                 | 404.86             | \$79,040           | -330.84            | \$96,725             |
| \$32.1m              | 641.00             | \$50,078                 | -117.40            | \$273,417                | 975.69             | \$32,900               | 79.46              | -\$403,985              | 546.46             | \$58,742                 | -435.15            | \$73,768                 | 406.88             | \$78,894           | -332.14            | \$96,647             |
| \$32.2m              | 642.59             | \$50,109                 | -119.39            | \$269,706                | 977.23             | \$32,950               | 77.68              | -\$414,543              | 549.03             | \$58,649                 | -435.93            | \$73,866                 | 410.88             | \$78,369           | -332.57            | \$96,821             |
| \$32.3m              | 644.18             | \$50,141                 | -121.38            | \$266,115                | 978.77             | \$33,001               | 75.89              | -\$425,613              | 551.39             | \$58,580                 | -440.45            | \$73,334                 | 412.76             | \$78,253           | -333.87            | \$96,744             |
| \$32.4m              | 645.78             | \$50,172                 | -123.37            | \$262,630                | 980.30             | \$33,051               | 74.11              | -\$437,217              | 552.60             | \$58,632                 | -441.99            | \$73,304                 | 414.82             | \$78,105           | -334.31            | \$96,917             |
| \$32.5m              | 647.37             | \$50,204                 | -125.36            | \$259,255                | 981.83             | \$33,101               | 72.32              | -\$449,414              | 553.30             | \$58,739                 | -443.50            | \$73,280                 | 415.51             | \$78,216           | -334.74            | \$97,091             |
| \$32.6m              | 648.95             | \$50,235                 | -127.35            | \$255,983                | 983.37             | \$33,151               | 70.53              | -\$462,243              | 555.66             | \$58,669                 | -445.04            | \$73,252                 | 417.58             | \$78,068           | -336.04            | \$97,013             |
| \$32.7m              | 650.54             | \$50,266                 | -129.35            | \$252,803                | 984.90             | \$33,201               | 68.73              | -\$475,763              | 558.08             | \$58,594                 | -446.55            | \$73,229                 | 419.48             | \$77,954           | -337.33            | \$96,937             |
| \$32.8m              | 652.13             | \$50,297                 | -131.35            | \$249,716                | 986.43             | \$33,251               | 66.94              | -\$490,015              | 560.67             | \$58,502                 | -447.27            | \$73,334                 | 421.51             | \$77,816           | -340.04            | \$96,459             |
| \$32.9m              | 653.71             | \$50,328                 | -133.35            | \$246,722                | 987.96             | \$33,301               | 65.14              | -\$505,052              | 561.89             | \$58,552                 | -448.04            | \$73,430                 | 422.20             | \$77,925           | -342.55            | \$96,044             |
| \$33.0m              | 655.29             | \$50,359                 | -135.35            | \$243,812                | 989.49             | \$33,351               | 63.35              | -\$520,950              | 564.26             | \$58,483                 | -448.49            | \$73,580                 | 424.28             | \$77,779           | -343.85            | \$95,973             |
| \$33.1m              | 656.88             | \$50,390                 | -137.35            | \$240,984                | 991.01             | \$33,400               | 61.54              | -\$537,822              | 565.40             | \$58,542                 | -449.99            | \$73,557                 | 415.44             | \$79,674           | -345.14            | \$95,904             |
| \$33.2m              | 658.46             | \$50,421                 | -139.36            | \$238,233                | 992.54             | \$33,450               | 59.74              | -\$555,711              | 568.01             | \$58,450                 | -451.53            | \$73,528                 | 417.34             | \$79,551           | -346.43            | \$95,835             |
| \$33.3m              | 660.04             | \$50,452                 | -141.37            | \$235,555                | 994.06             | \$33,499               | 57.94              | -\$5/4,/4/              | 570.39             | \$58,381                 | -452.30            | \$73,624                 | 419.43             | \$79,394           | -347.72            | \$95,768             |
| \$33.4m              | 661.62             | \$50,482                 | -143.38            | \$232,947                | 995.59             | \$33,548               | 56.13              | -\$595,027              | 572.83             | \$58,307                 | -453.02            | \$73,728                 | 420.13             | \$79,500           | -349.00            | \$95,702             |
| \$33.5m              | 663.20             | \$50,513                 | -145.39            | \$230,410                | 997.11             | \$33,597               | 54.32              | -\$616,668              | 574.06             | \$58,356                 | -454.52            | \$73,704                 | 422.03             | \$79,378           | -350.29            | \$95,636             |
| \$33.6m              | 664.//             | \$50,544                 | -14/.41            | \$227,938                | 998.63             | \$33,646               | 52.51              | -\$639,852              | 5/4.//             | \$38,438                 | -456.05            | \$/3,6/6                 | 424.08             | \$79,230           | -351.57            | \$95,572             |
| \$33.7m              | 667.02             | \$50,574                 | -149.43            | \$225,529                | 1000.15            | \$33,695               | 50.70              | -\$664,720              | 570.70             | \$58,389                 | -457.55            | \$/3,653                 | 426.18             | \$79,075           | -354.05            | \$95,183             |
| \$33.8m              | 660.50             | \$50,005                 | -151.45            | \$225,180                | 1001.07            | \$33,744               | 40.00              | \$720,270               | 592.20             | \$30,297                 | -438.32            | \$73,740                 | 428.09             | \$70,933           | -550.50            | \$94,515             |
| \$33.9III<br>\$34.0m | 671.07             | \$50,055                 | -155.47            | \$220,888                | 1003.19            | \$33,792               | 47.07              | \$751.465               | 592.20             | \$30,220                 | -438.70            | \$72,007                 | 428.79             | \$79,039           | -559.00            | \$94,230             |
| \$34.0III<br>\$24.1m | 672.64             | \$50,005                 | -155.50            | \$216,033                | 1004.71            | \$33,641               | 43.24              | \$785,217               | 584.50             | \$30,273                 | -439.48            | \$73,997                 | 430.90             | \$78,903           | -300.94            | \$94,199             |
| \$34.1111            | 674.21             | \$50,090                 | -15/.52            | \$210,470                | 1000.23            | \$33,009               | 43.42              | -\$/63,31/<br>\$822.179 | 587.22             | \$58 220                 | -400.98            | \$73.046                 | 432.02             | \$78 642           | -302.22            | \$94,143             |
| \$34.2m              | 675.78             | \$50,720                 | -159.55            | \$212 270                | 1007.74            | \$33,937               | 39.77              | -\$862.472              | 589.60             | \$58 166                 | -464.00            | \$73,940                 | 435.50             | \$78.744           | -364.76            | \$94,000             |
| \$34.4m              | 677 35             | \$50,750                 | -163.62            | \$210.243                | 1010 77            | \$34 033               | 37.04              | -\$906.675              | 592.09             | \$58.007                 | -464 76            | \$74.016                 | 437 70             | \$78 592           | -366.03            | \$93 981             |
| \$34.5m              | 678.92             | \$50,700                 | -165.66            | \$208 263                | 1012.28            | \$34.081               | 36.11              | -\$955 503              | 592.11             | \$58,196                 | -465.48            | \$74.117                 | 440.65             | \$78 294           | -353 75            | \$97 526             |
| \$34.6m              | 680.48             | \$50,846                 | -167.69            | \$206,205                | 1012.28            | \$34 129               | 34.27              | -\$1.01m                | 595.26             | \$58 126                 | -466 55            | \$74 162                 | 442 58             | \$78 178           | -355.02            | \$97.460             |
| \$34.7m              | 682.05             | \$50.876                 | -169.73            | \$204 439                | 1015.30            | \$34,177               | 32.44              | -\$1.07m                | 597.91             | \$58,035                 | -468.04            | \$74,139                 | 446.69             | \$77.683           | -357.48            | \$97.068             |
|                      |                    |                        |                    | 2                    | 7                  |                    |                    |                       |                    |                        |                    |                      | 28                 |                    |                    |                      |
|----------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|-----------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|
|                      | A                  | gent has go            | od informat        | tion                 | A                  | gent has no        | or informat        | ion                   | Ao                 | ent has goo            | d informati        | on                   | A                  | gent has not       | or informati       | on                   |
|                      | Net Inv            | estment                | Net Disi           | nvestment            | Net Inv            | estment            | Net Disi           | nvestment             | Net Inv            | estment                | Net Disir          | westment             | Net Inv            | estment            | Net Disi           | nvestment            |
| Rudget impact        | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$  | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ |
| S34 8m               | 683.61             | \$50,906               | 171 77             | \$202.502            | 1016.81            | \$34 225           | 30.60              | \$1.14m               | 500 17             | \$58.081               | 168 18             | \$74.283             | 137.96             | \$70,450           | 358 75             | \$97.004             |
| \$34.0m              | 685.17             | \$50,900               | 172.82             | \$202,392            | 1010.01            | \$34,223           | 28.76              | \$1.14m               | 601.65             | \$58,081               | 460.07             | \$74,283             | 440.00             | \$70,439           | 260.51             | \$97,004             |
| \$34.7III<br>\$25.0m | 696 72             | \$50,930               | -175.82            | \$200,783            | 1010.32            | \$34,272           | 26.70              | -\$1.21111<br>\$1.20m | 604.00             | \$58,007               | 470.72             | \$74,200             | 440.09             | \$79,303           | -300.31            | \$90,800             |
| \$35.0m              | 688.73             | \$50,900               | -173.80            | \$199,018            | 1019.83            | \$34,320           | 20.91              | -\$1.30m              | 606.77             | \$57,930               | -4/0./5            | \$74,332             | 442.17             | \$79,130           | -303.10            | \$90,377             |
| \$35.111             | 680.86             | \$50,990               | -177.91            | \$197,289            | 1021.33            | \$34,307           | 23.00              | -\$1.40m              | 607.04             | \$57,047               | -4/1.43            | \$74,432             | 442.87             | \$79,233           | -304.42            | \$90,517             |
| \$35.2III<br>\$25.2m | 601.41             | \$51,025               | -1/9.90            | \$193,398            | 1022.84            | \$34,414           | 23.22              | -\$1.52III<br>\$1.65m | 600.20             | \$57,901               | 472.70             | \$74,429             | 444.02             | \$79,134           | -305.09            | \$90,237             |
| \$35.311             | 691.41             | \$51,033               | -182.01            | \$193,944            | 1024.33            | \$34,401           | 21.30              | -\$1.03III            | 609.20             | \$37,943               | -4/5./0            | \$74,320             | 440.93             | \$78,961           | -300.93            | \$90,199             |
| \$35.4m              | 692.97             | \$51,084               | -184.06            | \$192,325            | 1025.85            | \$34,508           | 19.51              | -\$1.81m              | 611.65             | \$57,870               | -4/5.18            | \$74,498             | 448.90             | \$78,860           | -368.21            | \$96,141             |
| \$35.5m              | 694.53             | \$51,114               | -180.12            | \$190,736            | 1027.36            | \$34,555           | 17.65              | -\$2.01m              | 612.38             | \$57,971               | -4/5.62            | \$74,640             | 449.61             | \$78,938           | -369.47            | \$96,085             |
| \$35.6m              | 696.08             | \$51,143               | -188.18            | \$189,181            | 1028.86            | \$34,602           | 15.79              | -\$2.25m              | 614.14             | \$57,967               | -4/6.33            | \$/4,/38             | 451.75             | \$78,805           | -3/1.90            | \$95,724             |
| \$35.7m              | 697.64             | \$51,173               | -190.24            | \$187,058            | 1030.36            | \$34,648           | 13.93              | -\$2.50m              | 616.83             | \$57,870               | -4//.81            | \$/4,/10             | 455.85             | \$78,001           | -3/3.10            | \$95,009             |
| \$35.8m              | 699.19             | \$51,202               | -192.30            | \$186,164            | 1031.86            | \$34,695           | 12.07              | -\$2.9/m              | 619.30             | \$57,808               | -4/8.5/            | \$74,806             | 455.80             | \$78,542           | -3/4.41            | \$95,616             |
| \$35.9m              | 700.74             | \$51,231               | -194.37            | \$184,701            | 1033.36            | \$34,741           | 10.20              | -\$3.52m              | 621.81             | \$57,735               | -480.05            | \$74,784             | 457.95             | \$78,392           | -3/5.67            | \$95,563             |
| \$36.0m              | 702.29             | \$51,261               | -196.44            | \$183,263            | 1034.85            | \$34,788           | 8.33               | -\$4.32m              | 623.08             | \$57,777               | -480.76            | \$74,882             | 458.67             | \$78,488           | -376.92            | \$95,512             |
| \$36.1m              | 703.84             | \$51,290               | -198.51            | \$181,854            | 1036.35            | \$34,834           | 6.46               | -\$5.59m              | 625.56             | \$57,709               | -482.23            | \$74,860             | 460.64             | \$78,370           | -378.17            | \$95,461             |
| \$36.2m              | 705.39             | \$51,319               | -200.58            | \$180,473            | 1037.85            | \$34,880           | 4.59               | -\$7.89m              | 628.27             | \$57,619               | -482.67            | \$75,000             | 462.79             | \$78,221           | -379.41            | \$95,410             |
| \$36.3m              | 706.94             | \$51,348               | -202.66            | \$179,116            | 1039.34            | \$34,926           | 2.71               | -\$13.40m             | 629.46             | \$57,669               | -483.43            | \$75,089             | 454.18             | \$79,925           | -380.66            | \$95,361             |
| \$36.4m              | 708.49             | \$51,377               | -204.74            | \$177,787            | 1040.84            | \$34,972           | 0.83               | -\$43.90m             | 631.94             | \$57,600               | -484.90            | \$75,067             | 456.29             | \$79,773           | -383.07            | \$95,021             |
| \$36.5m              | 710.03             | \$51,406               | -206.82            | \$176,478            | 1042.33            | \$35,018           | -1.05              | \$34.70m              | 632.68             | \$57,691               | -485.61            | \$75,164             | 457.02             | \$79,866           | -384.32            | \$94,973             |
| \$36.6m              | 711.58             | \$51,435               | -208.91            | \$175,196            | 1043.82            | \$35,063           | -2.94              | \$12.46m              | 633.96             | \$57,732               | -486.66            | \$75,206             | 458.99             | \$79,740           | -385.56            | \$94,927             |
| \$36.7m              | 713.12             | \$51,464               | -211.00            | \$173,938            | 1045.31            | \$35,109           | -4.82              | \$7.61m               | 636.51             | \$57,659               | -488.13            | \$75,184             | 461.16             | \$79,582           | -386.80            | \$94,881             |
| \$36.8m              | 714.66             | \$51,493               | -213.08            | \$172,704            | 1046.80            | \$35,155           | -6.72              | \$5.48m               | 639.24             | \$57,569               | -488.89            | \$75,272             | 463.14             | \$79,457           | -388.04            | \$94,836             |
| \$36.9m              | 716.21             | \$51,521               | -215.17            | \$171,490            | 1048.29            | \$35,200           | -8.61              | \$4.29m               | 641.74             | \$57,500               | -489.33            | \$75,410             | 465.32             | \$79,300           | -390.62            | \$94,464             |
| \$37.0m              | 717.75             | \$51,550               | -217.26            | \$170,299            | 1049.78            | \$35,245           | -10.50             | \$3.52m               | 644.25             | \$57,432               | -490.03            | \$75,506             | 466.05             | \$79,391           | -391.86            | \$94,421             |
| \$37.1m              | 719.29             | \$51,579               | -219.36            | \$169,126            | 1051.27            | \$35,291           | -12.40             | \$2.99m               | 645.54             | \$57,471               | -491.50            | \$75,484             | 470.27             | \$78,891           | -393.10            | \$94,379             |
| \$37.2m              | 720.83             | \$51,607               | -221.46            | \$167,974            | 1052.76            | \$35,336           | -14.30             | \$2.60m               | 648.29             | \$57,382               | -492.25            | \$75,571             | 472.41             | \$78,746           | -395.49            | \$94,061             |
| \$37.3m              | 722.36             | \$51,636               | -223.56            | \$166,845            | 1054.24            | \$35,381           | -16.21             | \$2.30m               | 649.50             | \$57,429               | -493.72            | \$75,549             | 474.40             | \$78,625           | -396.72            | \$94,020             |
| \$37.4m              | 723.90             | \$51,665               | -225.67            | \$165,731            | 1055.73            | \$35,426           | -18.11             | \$2.06m               | 650.24             | \$57,517               | -494.42            | \$75,644             | 476.59             | \$78,475           | -398.44            | \$93,866             |
| \$37.5m              | 725.44             | \$51,693               | -227.77            | \$164,638            | 1057.21            | \$35,471           | -20.02             | \$1.87m               | 652.82             | \$57,443               | -495.88            | \$75,623             | 477.32             | \$78,564           | -399.67            | \$93,827             |
| \$37.6m              | 726.97             | \$51,721               | -229.89            | \$163,560            | 1058.69            | \$35,516           | -21.93             | \$1.71m               | 655.34             | \$57,375               | -496.63            | \$75,710             | 479.32             | \$78,444           | -400.90            | \$93,789             |
| \$37.7m              | 728.50             | \$51,750               | -232.00            | \$162,501            | 1060.17            | \$35,560           | -23.85             | \$1.58m               | 658.72             | \$57,233               | -497.07            | \$75,845             | 481.52             | \$78,294           | -402.13            | \$93,751             |
| \$37.8m              | 730.04             | \$51,778               | -234.11            | \$161,462            | 1061.65            | \$35,605           | -25.77             | \$1.47m               | 662.10             | \$57,091               | -498.53            | \$75,823             | 473.00             | \$79,915           | -403.36            | \$93,714             |
| \$37.9m              | 731.57             | \$51,806               | -236.23            | \$160,436            | 1063.13            | \$35,649           | -27.68             | \$1.37m               | 663.40             | \$57,130               | -499.23            | \$75,917             | 475.16             | \$79,763           | -404.58            | \$93,677             |
| \$38.0m              | 733.10             | \$51,835               | -238.35            | \$159,428            | 1064.61            | \$35,694           | -29.61             | \$1.28m               | 665.94             | \$57,063               | -500.69            | \$75,896             | 477.36             | \$79,604           | -408.71            | \$92,975             |
| \$38.1m              | 734.63             | \$51,863               | -240.48            | \$158,434            | 1066.09            | \$35,738           | -31.53             | \$1.21m               | 669.32             | \$56,923               | -501.44            | \$75,982             | 478.10             | \$79,691           | -409.94            | \$92,941             |
| \$38.2m              | 736.16             | \$51,891               | -242.61            | \$157,457            | 1067.57            | \$35,782           | -33.46             | \$1.14m               | 672.10             | \$56,837               | -502.89            | \$75,961             | 480.11             | \$79,564           | -412.31            | \$92,649             |
| \$38.3m              | 737.69             | \$51,919               | -244.73            | \$156,497            | 1069.05            | \$35,826           | -35.39             | \$1.08m               | 675.48             | \$56,700               | -503.32            | \$76,094             | 482.33             | \$79,406           | -413.53            | \$92,617             |
| \$38.4m              | 739.21             | \$51,947               | -246.86            | \$155,552            | 1070.52            | \$35,870           | -37.33             | \$1.03m               | 678.88             | \$56,564               | -504.02            | \$76,187             | 484.35             | \$79,281           | -414.75            | \$92,586             |
| \$38.5m              | 740.74             | \$51,975               | -249.00            | \$154,620            | 1072.00            | \$35,914           | -39.27             | \$980,494             | 682.28             | \$56,429               | -505.47            | \$76,166             | 485.09             | \$79,366           | -415.97            | \$92,555             |
| \$38.6m              | 742.26             | \$52,003               | -251.13            | \$153,704            | 1073.47            | \$35,958           | -41.21             | \$936,731             | 684.82             | \$56,365               | -506.22            | \$76,251             | 487.27             | \$79,217           | -417.18            | \$92,525             |
| \$38.7m              | 743.79             | \$52,031               | -253.27            | \$152,803            | 1074.94            | \$36,002           | -43.15             | \$896,873             | 688.22             | \$56,232               | -507.26            | \$76,291             | 489.50             | \$79,061           | -418.40            | \$92,496             |
| \$38.8m              | 745.31             | \$52,059               | -255.41            | \$151,914            | 1076.42            | \$36,046           | -45.10             | \$860,405             | 691.63             | \$56,099               | -508.72            | \$76,270             | 497.00             | \$78,068           | -419.61            | \$92,467             |
| \$38.9m              | 746.83             | \$52,087               | -257.55            | \$151,038            | 1077.89            | \$36,089           | -47.04             | \$826,870             | 694.23             | \$56,033               | -509.41            | \$76,363             | 499.04             | \$77,950           | -422.14            | \$92,149             |
| \$39.0m              | 748.35             | \$52,115               | -259.69            | \$150,177            | 1079.36            | \$36,133           | -49.00             | \$795,971             | 697.64             | \$55,902               | -510.16            | \$76,447             | 501.27             | \$77,802           | -423.35            | \$92,121             |
| \$39.1m              | 749.87             | \$52,142               | -261.84            | \$149,326            | 1080.83            | \$36,176           | -50.95             | \$767,372             | 698.96             | \$55,940               | -511.61            | \$76,426             | 502.02             | \$77,885           | -425.70            | \$91,848             |
| \$39.2m              | 751.39             | \$52,170               | -263.99            | \$148,488            | 1082.30            | \$36,219           | -52.91             | \$740,856             | 701.76             | \$55,860               | -515.95            | \$75,977             | 493.60             | \$79,416           | -426.91            | \$91,822             |
| \$39.3m              | 752.90             | \$52,198               | -266.15            | \$147,661            | 1083.77            | \$36,262           | -54.87             | \$716,232             | 702.51             | \$55,942               | -516.38            | \$76,107             | 495.65             | \$79,290           | -428.12            | \$91,796             |
| \$39.4m              | 754.42             | \$52,226               | -268.31            | \$146,847            | 1085.23            | \$36,306           | -56.84             | \$693,222             | 705.93             | \$55,813               | -517.82            | \$76,088             | 500.00             | \$78,800           | -429.33            | \$91,771             |
| \$39.5m              | 755.93             | \$52,254               | -270.47            | \$146,044            | 1086.70            | \$36,349           | -58.80             | \$671,726             | 707.15             | \$55,858               | -518.51            | \$76,179             | 502.20             | \$78,655           | -430.53            | \$91,746             |
| \$39.6m              | 757.44             | \$52,281               | -272.63            | \$145,251            | 1088.17            | \$36,391           | -60.77             | \$651,595             | 709.71             | \$55,797               | -519.26            | \$76,262             | 504.44             | \$78,503           | -431.74            | \$91,722             |
| \$39.7m              | 758.95             | \$52,309               | -274.80            | \$144,470            | 1089.63            | \$36,434           | -62.75             | \$632,704             | 713.13             | \$55.670               | -520.70            | \$76.243             | 505.19             | \$78.584           | -432.94            | \$91.699             |

|                      | λ7                 |                              |                    |                          |                    |                      | 28                 |                          |                    |                          |                    |                          |                    |                    |                    |                      |
|----------------------|--------------------|------------------------------|--------------------|--------------------------|--------------------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|----------------------|
|                      | A                  | gent has go                  | od informat        | ion                      | A                  | gent has po          | or informat        | ion                      | Ag                 | ent has goo              | d informati        | on                       | A                  | gent has poo       | or informati       | on                   |
|                      | Net Inv            | estment                      | Net Disi           | nvestment                | Net Inv            | estment              | Net Disi           | nvestment                | Net Inv            | estment                  | Net Disi           | ivestment                | Net Inv            | estment            | Net Disi           | nvestment            |
| Rudget impact        | $E(\Lambda E)^{a}$ | $F(\lambda_{\pm}^{\pm})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{a}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^{+})^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda_{a}^{+})^{b}$ | $E(\Lambda E)^{c}$ | $F(\lambda_{-}^{-})^{d}$ | $E(\Lambda E)^{a}$ | $E(\lambda^+)^{b}$ | $E(\Lambda E)^{c}$ | $E(\lambda_{-})^{d}$ |
| \$39.8m              | 760.46             | \$52 337                     | -276.97            | \$143.699                | 1091.10            | \$36.477             | -64 72             | \$614.925                | 716.56             | \$55 543                 | -521.39            | \$76.334                 | 507.25             | \$78.463           | -435.27            | \$91.438             |
| \$30.0m              | 761.97             | \$52,357                     | 270.57             | \$142,030                | 1002.56            | \$36,520             | -04.72             | \$508 174                | 710.00             | \$55,045                 | 521.82             | \$76,463                 | 509.50             | \$78 312           | 136.04             | \$01.316             |
| \$35.5m              | 762.47             | \$52,304                     | 281 22             | \$142,939                | 1092.50            | \$26,520             | -00.70             | \$593,174                | 719.98             | \$55,418                 | 522.26             | \$76,403                 | 511.57             | \$78,512           | 424.20             | \$91,310             |
| \$40.0m              | 764.09             | \$52,392                     | -201.32            | \$142,169                | 1094.03            | \$30,302             | -08.09             | \$562,547                | 725.00             | \$55,295                 | -525.20            | \$76,443                 | 512.94             | \$78,191           | 424.20             | \$94,290             |
| \$40.1m              | 766.48             | \$52,420                     | -285.50            | \$141,446                | 1095.49            | \$30,003             | -/0.0/             | \$507,597                | 723.99             | \$55,255                 | -524.01            | \$76,520                 | 514.50             | \$78,040           | -423.40            | \$94,203             |
| \$40.2m              | 767.00             | \$52,447                     | -285.08            | \$140,717                | 1090.93            | \$30,047             | -72.00             | \$555,259                | 729.43             | \$55,112                 | -525.45            | \$76,507                 | 516.91             | \$77,078           | 427.70             | \$94,233             |
| \$40.511             | 767.99             | \$52,473                     | -287.80            | \$139,990                | 1098.41            | \$30,089             | -74.03             | \$539,621                | 732.24             | \$55,050                 | -320.13            | \$70,397                 | 508.40             | \$70,451           | -427.79            | \$94,203             |
| \$40.4m              | /69.49             | \$52,502                     | -290.05            | \$139,280                | 1099.87            | \$30,732             | -/0.05             | \$527,071                | 735.69             | \$54,915                 | -527.57            | \$76,577                 | 508.49             | \$79,451           | -428.99            | \$94,175             |
| \$40.5m              | 770.99             | \$52,530                     | -292.24            | \$138,585                | 1101.33            | \$36,774             | -/8.65             | \$514,944                | /3/.01             | \$54,951                 | -528.31            | \$76,659                 | 510.57             | \$79,324           | -430.18            | \$94,146             |
| \$40.6m              | 772.49             | \$52,558                     | -294.43            | \$137,894                | 1102.79            | \$36,816             | -80.65             | \$503,406                | 740.46             | \$54,831                 | -528.74            | \$76,787                 | 512.84             | \$79,166           | -431.37            | \$94,118             |
| \$40.7m              | 7/3.98             | \$52,585                     | -296.63            | \$137,209                | 1104.25            | \$36,858             | -82.66             | \$492,403                | 743.10             | \$54,771                 | -529.77            | \$76,826                 | 517.61             | \$78,631           | -432.57            | \$94,090             |
| \$40.8m              | 775.48             | \$52,613                     | -298.83            | \$136,534                | 1105.71            | \$36,899             | -84.66             | \$481,902                | 746.55             | \$54,652                 | -531.20            | \$76,807                 | 518.37             | \$78,709           | -434.88            | \$93,820             |
| \$40.9m              | 776.98             | \$52,640                     | -301.03            | \$135,868                | 1107.17            | \$36,941             | -86.67             | \$471,880                | 749.13             | \$54,596                 | -531.89            | \$76,896                 | 520.46             | \$78,585           | -436.06            | \$93,793             |
| \$41.0m              | 778.47             | \$52,667                     | -303.23            | \$135,209                | 1108.62            | \$36,983             | -88.69             | \$462,289                | 752.59             | \$54,479                 | -532.63            | \$76,977                 | 522.75             | \$78,432           | -438.55            | \$93,491             |
| \$41.1m              | 779.96             | \$52,695                     | -305.44            | \$134,559                | 1110.08            | \$37,024             | -90.70             | \$453,122                | 756.05             | \$54,362                 | -534.06            | \$76,958                 | 524.99             | \$78,287           | -439.74            | \$93,465             |
| \$41.2m              | 781.45             | \$52,722                     | -307.65            | \$133,917                | 1111.54            | \$37,066             | -92.72             | \$444,348                | 756.82             | \$54,439                 | -535.49            | \$76,939                 | 527.29             | \$78,136           | -440.92            | \$93,441             |
| \$41.3m              | 782.94             | \$52,750                     | -309.87            | \$133,283                | 1112.99            | \$37,107             | -94.74             | \$435,912                | 760.28             | \$54,322                 | -536.17            | \$77,027                 | 529.39             | \$78,015           | -442.11            | \$93,417             |
| \$41.4m              | 784.43             | \$52,777                     | -312.08            | \$132,657                | 1114.45            | \$37,149             | -96.77             | \$427,823                | 763.12             | \$54,251                 | -536.60            | \$77,153                 | 530.16             | \$78,090           | -443.29            | \$93,393             |
| \$41.5m              | 785.92             | \$52,804                     | -314.30            | \$132,039                | 1115.90            | \$37,190             | -98.80             | \$420,044                | 766.59             | \$54,136                 | -537.33            | \$77,233                 | 532.47             | \$77,939           | -444.47            | \$93,369             |
| \$41.6m              | 787.41             | \$52,832                     | -316.52            | \$131,428                | 1117.36            | \$37,231             | -100.83            | \$412,574                | 769.19             | \$54,083                 | -538.76            | \$77,214                 | 524.23             | \$79,354           | -446.76            | \$93,115             |
| \$41.7m              | 788.89             | \$52,859                     | -318.75            | \$130,824                | 1118.81            | \$37,272             | -102.87            | \$405,383                | 770.53             | \$54,118                 | -540.19            | \$77,196                 | 526.34             | \$79,226           | -447.94            | \$93,092             |
| \$41.8m              | 790.38             | \$52,886                     | -320.98            | \$130,226                | 1120.26            | \$37,313             | -104.90            | \$398,457                | 774.01             | \$54,005                 | -540.87            | \$77,283                 | 530.83             | \$78,744           | -449.12            | \$93,071             |
| \$41.9m              | 791.86             | \$52,913                     | -323.21            | \$129,636                | 1121.71            | \$37,354             | -106.95            | \$391,769                | 775.25             | \$54,047                 | -541.60            | \$77,363                 | 533.10             | \$78,597           | -450.30            | \$93,050             |
| \$42.0m              | 793.34             | \$52,941                     | -325.45            | \$129,053                | 1123.16            | \$37,394             | -109.00            | \$385,331                | 783.06             | \$53,636                 | -543.03            | \$77,344                 | 533.87             | \$78,670           | -450.01            | \$93,331             |
| \$42.1m              | 794.82             | \$52,968                     | -327.69            | \$128,476                | 1124.61            | \$37,435             | -111.04            | \$379,129                | 786.54             | \$53,526                 | -543.45            | \$77,468                 | 536.19             | \$78,516           | -451.19            | \$93,309             |
| \$42.2m              | 796.30             | \$52,995                     | -329.93            | \$127,906                | 1126.06            | \$37,476             | -113.10            | \$373,126                | 790.02             | \$53,416                 | -544.13            | \$77,555                 | 538.32             | \$78,392           | -455.15            | \$92,717             |
| \$42.3m              | 797.78             | \$53,022                     | -332.17            | \$127,344                | 1127.51            | \$37,516             | -115.16            | \$367,331                | 793.51             | \$53,308                 | -545.55            | \$77,536                 | 540.65             | \$78,239           | -456.33            | \$92,697             |
| \$42.4m              | 799.26             | \$53,049                     | -334.42            | \$126,786                | 1128.96            | \$37,557             | -117.22            | \$361,720                | 796.12             | \$53,258                 | -546.28            | \$77,615                 | 541.43             | \$78,311           | -457.50            | \$92,678             |
| \$42.5m              | 800.73             | \$53,076                     | -336.67            | \$126,236                | 1130.40            | \$37,597             | -119.28            | \$356,302                | 798.79             | \$53,205                 | -547.70            | \$77,597                 | 543.57             | \$78,187           | -459.13            | \$92,566             |
| \$42.6m              | 802.29             | \$53,098                     | -338.92            | \$125,692                | 1131.85            | \$37,637             | -121.35            | \$351,056                | 802.29             | \$53,098                 | -548.72            | \$77,635                 | 545.86             | \$78,042           | -460.30            | \$92,548             |
| \$42.7m              | 805.15             | \$53,033                     | -341.18            | \$125,153                | 1133.30            | \$37,678             | -123.42            | \$345,976                | 805.15             | \$53,033                 | -549.40            | \$77,721                 | 548.21             | \$77,890           | -462.58            | \$92,309             |
| \$42.8m              | 808.65             | \$52,928                     | -343.44            | \$124,621                | 1134.74            | \$37,718             | -125.50            | \$341,043                | 808.65             | \$52,928                 | -550.13            | \$77,800                 | 540.06             | \$79,251           | -463.75            | \$92,292             |
| \$42.9m              | 812.16             | \$52,822                     | -345.71            | \$124,093                | 1136.19            | \$37,758             | -127.58            | \$336,269                | 812.16             | \$52,822                 | -551.55            | \$77,781                 | 542.21             | \$79,121           | -464.91            | \$92,275             |
| \$43.0m              | 813.51             | \$52,858                     | -347.98            | \$123,571                | 1137.63            | \$37,798             | -129.66            | \$331,645                | 813.51             | \$52,858                 | -551.97            | \$77,903                 | 542.99             | \$79,191           | -466.08            | \$92,259             |
| \$43.1m              | 815.39             | \$52,858                     | -350.25            | \$123,055                | 1139.07            | \$37,838             | -131.74            | \$327,150                | 815.39             | \$52,858                 | -553.38            | \$77,885                 | 545.35             | \$79.032           | -468.52            | \$91,992             |
| \$43.2m              | 818.02             | \$52,811                     | -352.53            | \$122,544                | 1140.51            | \$37,878             | -133.83            | \$322,788                | 818.02             | \$52,811                 | -554.06            | \$77,970                 | 547.72             | \$78,873           | -469.68            | \$91,977             |
| \$43.3m              | 821.53             | \$52,707                     | -354.80            | \$122,039                | 1141.96            | \$37,917             | -135.93            | \$318,548                | 821.53             | \$52,707                 | -554.79            | \$78,048                 | 550.04             | \$78,722           | -470.85            | \$91,962             |
| \$43.4m              | 822.31             | \$52,778                     | -357.09            | \$121,538                | 1143.40            | \$37,957             | -138.03            | \$314,430                | 822.31             | \$52,778                 | -556.20            | \$78,030                 | 552.20             | \$78,595           | -472.01            | \$91,947             |
| \$43.5m              | 825.82             | \$52,675                     | -359.38            | \$121.042                | 1144.84            | \$37,997             | -140.13            | \$310,428                | 825.82             | \$52,675                 | -556.62            | \$78,151                 | 552.99             | \$78.663           | -474.26            | \$91,721             |
| \$43.6m              | 829 34             | \$52,572                     | -361.67            | \$120,553                | 1146.27            | \$38,036             | -142.23            | \$306 539                | 829 34             | \$52 572                 | -558.03            | \$78,133                 | 555 37             | \$78 506           | -475.42            | \$91 708             |
| \$43.7m              | 832.87             | \$52,469                     | -363.96            | \$120,067                | 1147.71            | \$38,076             | -144 35            | \$302,745                | 832.87             | \$52,672                 | -558 70            | \$78,217                 | 557.55             | \$78 379           | -476.58            | \$91,694             |
| \$43.8m              | 835.76             | \$52,109                     | -366.26            | \$119 588                | 1149.15            | \$38,115             | -146.46            | \$299.059                | 835.76             | \$52,109                 | -559.43            | \$78,294                 | 549.48             | \$79,712           | -477 74            | \$91,691             |
| \$43.9m              | 838.40             | \$52,100                     | -368 56            | \$119,113                | 1150.58            | \$38,155             | -148 58            | \$295,471                | 838.40             | \$52,100                 | -560.84            | \$78,276                 | 554.12             | \$79,224           | -478 90            | \$91,669             |
| \$44.0m              | 841.93             | \$52,362                     | -370.86            | \$118 644                | 1152.02            | \$38 194             | -150.70            | \$291.976                | 841.93             | \$52,362                 | -561 51            | \$78.360                 | 556 51             | \$79.063           | -480.05            | \$91,656             |
| \$44.1m              | 845.46             | \$52,201                     | -373.16            | \$118,179                | 1153.45            | \$38 732             | -152.82            | \$288 569                | 845.46             | \$52,201                 | -562.92            | \$78 342                 | 557 31             | \$79.130           | -481 21            | \$91.644             |
| \$44.7m              | 846.73             | \$52,101                     | -375 47            | \$117 710                | 115/ 80            | \$38 777             | -152.02            | \$285,209                | 846.73             | \$52,101                 | -563.64            | \$78 /10                 | 550.66             | \$78.076           | _482.36            | \$91,633             |
| \$11.2m              | 848 10             | \$52,201                     | -377.78            | \$117.264                | 1156.32            | \$38 311             | -157.00            | \$282.006                | 848 10             | \$52,201                 | -564.06            | \$78 538                 | 561.85             | \$78.846           | -484.60            | \$91,035             |
| \$44.5III<br>\$44.4m | 850.80             | \$52,255                     | 380.00             | \$116.812                | 1157.75            | \$38 350             | 150.22             | \$278.847                | 850.80             | \$52,255                 | -504.00            | \$78 520                 | 564.26             | \$78.689           | 485.75             | \$91,410             |
| \$44.411             | 854.24             | \$52,100                     | 382.41             | \$116.267                | 1150.19            | \$38,350             | -137.23            | \$275 771                | 854 24             | \$52,100                 | 566 12             | \$78.604                 | 566.46             | \$78 559           | 486.00             | \$91,400             |
| \$44.5III<br>\$44.6m | 857.90             | \$51,007                     | -302.41            | \$115,007                | 1160.61            | \$38,309             | -101.57            | \$272.760                | 857.90             | \$51,007                 | -500.15            | \$78.690                 | 567.27             | \$78.600           | 489.05             | \$01 295             |
| \$44.000             | 860.55             | \$51,700                     | -304.74            | \$115,724                | 1162.04            | \$38.467             | -105.51            | \$260 822                | 860 55             | \$51,700                 | -568.26            | \$78.660                 | 560.60             | \$78.464           | -400.03            | \$91,303             |
| J++./III             | 000.55             | $\varphi_{J1,JTT}$           | -307.00            | φ115,405                 | 1102.04            | JJ0, TU/             | -105.00            | 9209,02Z                 | 000.55             | 001,274                  | -300.20            | 9/0.002                  | 509.09             | J/0,704            | -402.12            | 971,513              |

|                      | λ7                 |                        |                    |                      |                    | 28                 |                    |                            |                    |                        |                    |                      |                    |                    |                    |                      |
|----------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|
|                      | A                  | gent has go            | od informat        | tion                 | A                  | gent has no        | or informat        | ion                        | Ac                 | ent has goo            | d informati        | on                   | A                  | gent has poo       | or informati       | on                   |
|                      | Net Inv            | estment                | Net Disi           | nvestment            | Net Inv            | estment            | Net Disi           | nvestment                  | Net Inv            | estment                | Net Disi           | <br>vestment         | Net Im             | estment            | Net Disi           | nvestment            |
| Rudget impact        | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})d$          | $F(\Lambda F)^{a}$ | $F(\lambda^{\pm})^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ | $F(\Lambda F)^{a}$ | $F(\lambda^+)^{b}$ | $F(\Lambda F)^{c}$ | $F(\lambda^{-})^{d}$ |
| S44 8m               | 864.10             | \$51.846               | 380 30             | $L(\chi_G)$          | 1163 A7            | \$38 505           | 167.82             | $\frac{E(n_p)}{\$266.952}$ | 864.10             | \$51.846               | 560.26             | \$78.600             | 561 70             | \$70 758           | L(ΔL)<br>400.70    | \$01.281             |
| \$44.0m              | 867.01             | \$51,840               | 201 72             | \$114,621            | 1164.00            | \$38,505           | 160.08             | \$260,952                  | 867.01             | \$51,840               | -309.20            | \$78,099             | 564.07             | \$79,750           | 402.10             | \$91,281             |
| \$44.7III<br>\$45.0m | 807.01             | \$51,787               | -391.73            | \$114,021            | 1166.22            | \$20,544           | -109.98            | \$204,132                  | 807.01             | \$51,787               | -570.00            | \$78,081             | 566.20             | \$79,000           | 404 22             | \$91,041             |
| \$45.0m              | 870.37             | \$51,090               | -394.07            | \$114,194            | 1167.75            | \$28,282           | -1/2.14            | \$201,413                  | 870.37             | \$51,090               | -3/1.33            | \$70,004             | 569 72             | \$79,404           | -494.55            | \$91,032             |
| \$45.1III<br>£45.2   | 874.13             | \$51,594               | -390.41            | \$113,771            | 1160.19            | \$38,021           | -1/4.31            | \$256,130                  | 874.13             | \$51,594               | -3/1./4            | \$78.057             | 560.54             | \$79,300           | -495.48            | \$91,024             |
| \$45.2m              | 874.93             | \$51,002               | -398.70            | \$113,332            | 1109.18            | \$38,000           | -170.46            | \$250,114                  | 874.93             | \$51,002               | 572.47             | \$78,937             | 571.09             | \$79,303           | -490.02            | \$91,010             |
| \$45.511             | 8//.00             | \$51,018               | -401.11            | \$112,937            | 1170.00            | \$38,098           | -1/8.00            | \$255,554                  | 877.00             | \$51,018               | -3/3.80            | \$78,939             | 574.22             | \$79,198           | -498.84            | \$90,811             |
| \$45.4m              | 881.17             | \$51,523               | -403.46            | \$112,526            | 11/2.03            | \$38,/30           | -180.84            | \$251,054                  | 881.17             | \$51,523               | -5/8.04            | \$78,541             | 574.22             | \$79,064           | -499.98            | \$90,804             |
| \$45.5m              | 882.54             | \$51,555               | -405.82            | \$112,117            | 11/3.43            | \$38,775           | -183.02            | \$248,603                  | 882.34             | \$51,555               | -5/9.44            | \$78,524             | 566.30             | \$80,346           | -501.12            | \$90,797             |
| \$45.6m              | 886.12             | \$51,460               | -408.19            | \$111,/13            | 11/4.8/            | \$38,813           | -185.21            | \$246,202                  | 886.12             | \$51,460               | -580.11            | \$78,606             | 567.12             | \$80,406           | -502.26            | \$90,790             |
| \$45.7m              | 889.70             | \$51,366               | -410.55            | \$111,313            | 1176.29            | \$38,851           | -18/.41            | \$243,853                  | 889.70             | \$51,366               | -580.83            | \$/8,681             | 569.53             | \$80,242           | -503.39            | \$90,784             |
| \$45.8m              | 893.29             | \$51,271               | -412.92            | \$110,916            | 11//./1            | \$38,889           | -189.61            | \$241,553                  | 893.29             | \$51,271               | -582.22            | \$/8,664             | 5/1.99             | \$80,072           | -504.53            | \$90,778             |
| \$45.9m              | 895.97             | \$51,229               | -415.30            | \$110,523            | 1179.13            | \$38,927           | -191.81            | \$239,299                  | 895.97             | \$51,229               | -582.63            | \$78,780             | 574.24             | \$79,932           | -505.67            | \$90,772             |
| \$46.0m              | 898.91             | \$51,173               | -417.67            | \$110,135            | 1180.55            | \$38,965           | -194.02            | \$237,094                  | 898.91             | \$51,173               | -583.30            | \$78,862             | 576.71             | \$79,763           | -507.87            | \$90,575             |
| \$46.1m              | 901.66             | \$51,128               | -420.06            | \$109,747            | 1181.97            | \$39,003           | -196.23            | \$234,928                  | 901.66             | \$51,128               | -584.69            | \$78,845             | 581.52             | \$79,275           | -509.00            | \$90,570             |
| \$46.2m              | 905.25             | \$51,036               | -422.44            | \$109,365            | 1183.39            | \$39,040           | -198.45            | \$232,804                  | 905.25             | \$51,036               | -585.41            | \$78,919             | 583.78             | \$79,139           | -510.13            | \$90,565             |
| \$46.3m              | 908.85             | \$50,944               | -424.83            | \$108,984            | 1184.80            | \$39,078           | -200.67            | \$230,727                  | 908.85             | \$50,944               | -586.80            | \$78,903             | 584.61             | \$79,198           | -511.26            | \$90,560             |
| \$46.4m              | 910.14             | \$50,981               | -427.23            | \$108,607            | 1186.22            | \$39,116           | -202.89            | \$228,691                  | 910.14             | \$50,981               | -587.46            | \$78,984             | 587.10             | \$79,033           | -515.08            | \$90,084             |
| \$46.5m              | 913.74             | \$50,890               | -429.62            | \$108,234            | 1187.63            | \$39,153           | -205.13            | \$226,687                  | 913.74             | \$50,890               | -588.18            | \$79,058             | 579.26             | \$80,276           | -516.21            | \$90,080             |
| \$46.6m              | 916.44             | \$50,849               | -432.03            | \$107,863            | 1189.05            | \$39,191           | -207.36            | \$224,726                  | 916.44             | \$50,849               | -589.56            | \$79,042             | 581.69             | \$80,111           | -517.33            | \$90,077             |
| \$46.7m              | 917.84             | \$50,881               | -434.44            | \$107,495            | 1190.46            | \$39,229           | -209.61            | \$222,798                  | 917.84             | \$50,881               | -589.97            | \$79,156             | 583.98             | \$79,969           | -504.04            | \$92,651             |
| \$46.8m              | 921.45             | \$50,790               | -436.85            | \$107,130            | 1191.87            | \$39,266           | -211.85            | \$220,909                  | 921.45             | \$50,790               | -590.97            | \$79,192             | 586.48             | \$79,799           | -506.40            | \$92,418             |
| \$46.9m              | 925.06             | \$50,699               | -439.27            | \$106,768            | 1193.28            | \$39,303           | -214.10            | \$219,055                  | 925.06             | \$50,699               | -592.35            | \$79,176             | 587.31             | \$79,855           | -507.52            | \$92,409             |
| \$47.0m              | 928.68             | \$50,609               | -441.69            | \$106,410            | 1194.70            | \$39,341           | -216.36            | \$217,234                  | 928.68             | \$50,609               | -593.02            | \$79,256             | 589.83             | \$79,685           | -508.65            | \$92,402             |
| \$47.1m              | 931.65             | \$50,555               | -444.11            | \$106,056            | 1196.11            | \$39,378           | -218.62            | \$215,446                  | 931.65             | \$50,555               | -593.73            | \$79,329             | 592.12             | \$79,544           | -510.83            | \$92,202             |
| \$47.2m              | 932.46             | \$50,619               | -446.53            | \$105,703            | 1197.52            | \$39,415           | -220.88            | \$213,689                  | 932.46             | \$50,619               | -595.11            | \$79,313             | 595.64             | \$79,243           | -511.96            | \$92,195             |
| \$47.3m              | 935.17             | \$50,579               | -448.97            | \$105,353            | 1198.93            | \$39,452           | -223.15            | \$211,968                  | 935.17             | \$50,579               | -595.52            | \$79,426             | 587.86             | \$80,461           | -513.52            | \$92,109             |
| \$47.4m              | 938.80             | \$50,490               | -451.40            | \$105,006            | 1200.33            | \$39,489           | -225.41            | \$210,279                  | 938.80             | \$50,490               | -596.90            | \$79,410             | 590.34             | \$80,293           | -514.65            | \$92,102             |
| \$47.5m              | 942.44             | \$50,401               | -453.84            | \$104,662            | 1201.74            | \$39,526           | -227.69            | \$208,616                  | 942.44             | \$50,401               | -597.56            | \$79,490             | 591.18             | \$80,347           | -515.77            | \$92,096             |
| \$47.6m              | 946.08             | \$50,313               | -456.28            | \$104,322            | 1203.15            | \$39,563           | -229.97            | \$206,981                  | 946.08             | \$50,313               | -598.27            | \$79,562             | 593.71             | \$80,174           | -516.89            | \$92,090             |
| \$47.7m              | 948.86             | \$50,271               | -458.73            | \$103,984            | 1204.55            | \$39,600           | -232.26            | \$205,373                  | 948.86             | \$50,271               | -599.65            | \$79,546             | 596.03             | \$80,030           | -518.01            | \$92,084             |
| \$47.8m              | 950.27             | \$50,302               | -461.18            | \$103,648            | 1205.96            | \$39,637           | -234.55            | \$203,792                  | 950.27             | \$50,302               | -600.31            | \$79,625             | 598.57             | \$79,857           | -519.12            | \$92,078             |
| \$47.9m              | 953.92             | \$50,214               | -463.63            | \$103,314            | 1207.36            | \$39,673           | -236.85            | \$202,237                  | 953.92             | \$50,214               | -601.69            | \$79,609             | 600.90             | \$79,713           | -521.29            | \$91,887             |
| \$48.0m              | 956.65             | \$50,175               | -466.10            | \$102,983            | 1208.77            | \$39,710           | -239.15            | \$200,711                  | 956.65             | \$50,175               | -602.40            | \$79,682             | 601.75             | \$79,767           | -522.41            | \$91,882             |
| \$48.1m              | 960.30             | \$50,088               | -468.56            | \$102,655            | 1210.17            | \$39,747           | -241.46            | \$199,206                  | 960.30             | \$50,088               | -602.81            | \$79,794             | 594.05             | \$80,969           | -523.52            | \$91,877             |
| \$48.2m              | 963.30             | \$50,036               | -471.03            | \$102,329            | 1211.57            | \$39,783           | -243.77            | \$197,724                  | 963.30             | \$50,036               | -604.18            | \$79,777             | 596.61             | \$80,790           | -524.64            | \$91,873             |
| \$48.3m              | 966.96             | \$49,950               | -473.50            | \$102,005            | 1212.97            | \$39,820           | -246.09            | \$196,267                  | 966.96             | \$49,950               | -604.84            | \$79,856             | 599.12             | \$80,618           | -525.75            | \$91,869             |
| \$48.4m              | 970.63             | \$49,865               | -475.98            | \$101,685            | 1214.37            | \$39,856           | -248.41            | \$194,835                  | 970.63             | \$49,865               | -605.55            | \$79,928             | 601.47             | \$80,469           | -526.86            | \$91,865             |
| \$48.5m              | 973.37             | \$49,827               | -478.47            | \$101,365            | 1215.77            | \$39,892           | -250.74            | \$193,426                  | 973.37             | \$49,827               | -606.92            | \$79,912             | 604.05             | \$80,292           | -527.97            | \$91,861             |
| \$48.6m              | 974.69             | \$49,862               | -480.95            | \$101,049            | 1217.17            | \$39,929           | -253.07            | \$192,041                  | 974.69             | \$49,862               | -607.90            | \$79,947             | 609.04             | \$79,797           | -530.29            | \$91,648             |
| \$48.7m              | 978.37             | \$49,777               | -483.44            | \$100,736            | 1218.57            | \$39,965           | -255.40            | \$190,678                  | 978.37             | \$49,777               | -609.27            | \$79,931             | 609.91             | \$79,848           | -531.40            | \$91,645             |
| \$48.8m              | 982.05             | \$49,692               | -485.94            | \$100,424            | 1219.96            | \$40,001           | -257.74            | \$189,340                  | 982.05             | \$49,692               | -609.93            | \$80,009             | 602.27             | \$81,027           | -533.55            | \$91,463             |
| \$48.9m              | 983.47             | \$49,722               | -488.44            | \$100,115            | 1221.36            | \$40,037           | -260.07            | \$188,027                  | 983.47             | \$49,722               | -610.33            | \$80,120             | 604.86             | \$80,845           | -534.66            | \$91,460             |
| \$49.0m              | 984.28             | \$49,782               | -490.95            | \$99,807             | 1222.75            | \$40,073           | -262.41            | \$186,734                  | 984.28             | \$49,782               | -611.04            | \$80,191             | 607.23             | \$80,695           | -535.76            | \$91,458             |
| \$49.1m              | 987.97             | \$49,698               | -493.46            | \$99,501             | 1224.15            | \$40,110           | -264.74            | \$185,462                  | 987.97             | \$49,698               | -612.41            | \$80,175             | 609.78             | \$80,521           | -536.87            | \$91,456             |
| \$49.2m              | 990.74             | \$49,660               | -495.97            | \$99,199             | 1225.54            | \$40,146           | -267.09            | \$184,211                  | 990.74             | \$49,660               | -613.78            | \$80,159             | 612.38             | \$80,342           | -537.97            | \$91,454             |
| \$49.3m              | 993.76             | \$49,609               | -498.49            | \$98,899             | 1226.94            | \$40,181           | -269.43            | \$182,979                  | 993.76             | \$49,609               | -614.43            | \$80,237             | 613.25             | \$80,391           | -539.08            | \$91,453             |
| \$49.4m              | 997.46             | \$49,526               | -501.01            | \$98,601             | 1228.33            | \$40,217           | -271.77            | \$181,769                  | 997.46             | \$49,526               | -615.13            | \$80,308             | 615.64             | \$80,241           | -540.18            | \$91,451             |
| \$49.5m              | 1000.29            | \$49,486               | -503.54            | \$98,304             | 1229.72            | \$40,253           | -274.12            | \$180,577                  | 1000.29            | \$49,486               | -616.50            | \$80,292             | 608.07             | \$81,405           | -541.71            | \$91,377             |
| \$49.6m              | 1003.99            | \$49,403               | -506.07            | \$98,009             | 1231.11            | \$40,289           | -276.47            | \$179,406                  | 1003.99            | \$49,403               | -616.90            | \$80,402             | 610.69             | \$81,219           | -542.81            | \$91,376             |
| \$49.7m              | 1007.70            | \$49.320               | -508.62            | \$97,716             | 1232.50            | \$40.325           | -278.82            | \$178 252                  | 1007 70            | \$49 320               | -617 56            | \$80,478             | 613.10             | \$81.063           | -544 95            | \$91 201             |

|               | λ7                         |                               |                                                       |                    |                                  | 28                            |                   |                            |                   |                               |                   |                            |                   |                               |                   |                    |
|---------------|----------------------------|-------------------------------|-------------------------------------------------------|--------------------|----------------------------------|-------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-------------------|----------------------------|-------------------|-------------------------------|-------------------|--------------------|
|               | Agent has good information |                               |                                                       | A                  | Agent has poor information       |                               |                   | Agent has good information |                   |                               |                   | Agent has poor information |                   |                               |                   |                    |
|               | Net Inv                    | estment                       | nt Net Disinvestment Net Investment Net Disinvestment |                    | Net Investment Net Disinvestment |                               | Net Investment    |                            | Net Disinvestment |                               |                   |                            |                   |                               |                   |                    |
| Budget impact | $E(\Delta E)^{a}$          | $E(\lambda_G^+)^{\mathrm{b}}$ | $E(\Delta E)^{c}$                                     | $E(\lambda_G^-)^d$ | $E(\Delta E)^{a}$                | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$         | $E(\Delta E)^{a}$ | $E(\lambda_G^+)^{\mathrm{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_G^-)^d$         | $E(\Delta E)^{a}$ | $E(\lambda_P^+)^{\mathbf{b}}$ | $E(\Delta E)^{c}$ | $E(\lambda_P^-)^d$ |
| \$49.8m       | 1010.48                    | \$49,284                      | -511.16                                               | \$97,426           | 1233.89                          | \$40,360                      | -281.17           | \$177,117                  | 1010.48           | \$49,284                      | -618.92           | \$80,463                   | 613.98            | \$81,110                      | -544.64           | \$91,437           |
| \$49.9m       | 1014.19                    | \$49,202                      | -513.71                                               | \$97,137           | 1235.28                          | \$40,396                      | -283.52           | \$176,000                  | 1014.19           | \$49,202                      | -619.62           | \$80,533                   | 622.89            | \$80,111                      | -545.74           | \$91,436           |
| \$50.0m       | 1015.63                    | \$49,231                      | -516.26                                               | \$96,850           | 1236.67                          | \$40,431                      | -285.88           | \$174,899                  | 1015.63           | \$49,231                      | -620.98           | \$80,518                   | 625.53            | \$79,933                      | -546.83           | \$91,435           |

<sup>a</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net investment to be considered cost-effective; <sup>b</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net investment; <sup>c</sup> Agent's estimate of the minimum incremental benefit (QALYs) required for a net disinvestment to be considered cost-effective; <sup>d</sup> Agent's estimate of the optimal cost-effectiveness threshold for a net disinvestment.

### Appendix 3 (Chapter 3)

Appendix 3.1: Search strategy used for scoping review

Searches run February - April 2013

### 1. PubMed (<u>www.pubmed.gov</u>, searched 26 Feb 2013 with updates to October 2013)

| Search | Query                                                         | Items found |
|--------|---------------------------------------------------------------|-------------|
| #85    | Search #83 OR #84                                             | 735         |
|        | Search #17 AND #70 Filters: Publication date from 1990/01/01; |             |
| #83    | Humans; English; French                                       | 728         |
|        | Search (#17 AND #70) AND (in process[sb] OR publisher[sb] OR  |             |
| #84    | pubmednotmedline[sb])                                         | 7           |
| #71    | Search #17 AND #70                                            | 887         |
|        | Search #17 AND #70 Filters: Publication date from 1990/01/01; |             |
| #82    | English; French                                               | 804         |
|        | Search #17 AND #70 Filters: Publication date from 1990/01/01; |             |
| #81    | English                                                       | 740         |
| #80    | Search #17 AND #70 Filters: Publication date from 1990/01/01  | 858         |
|        | Search #17 AND (in process[sb] OR publisher[sb] OR            |             |
| #77    | pubmednotmedline[sb])                                         | 136         |
| #17    | Search #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #14          | 5238        |
|        | Search #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #14          |             |
|        | Filters: Publication date from 1990/01/01; Humans; English;   |             |
| #75    | French                                                        | 4215        |
|        | Search #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #14          |             |
| #74    | Filters: Publication date from 1990/01/01; Humans; English    | 3999        |
|        | Search #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #14          |             |
| #73    | Filters: Publication date from 1990/01/01; Humans             | 4723        |
|        | Search #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #8 OR #14          | 10.61       |
| #72    | Filters: Publication date from 1990/01/01                     | 4964        |
| #70    | Search #46 OR #69                                             | 2231090     |
|        | Search #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR       |             |
|        | #54 OR #55 OR #56 OR #57 OR #58 OR #59 OR #62 OR #63 OR       |             |
| #69    | #64 OR #65 OR #66 OR #67 OR #68                               | 515355      |
| #68    | Search insurance[ti]                                          | 17294       |
| #67    | Search budget*[ti]                                            | 5090        |
| #66    | Search framework*[ti]                                         | 17267       |
| #65    | Search regulat*[ti]                                           | 320095      |
| #64    | Search legislat*[ti]                                          | 9931        |
| #63    | Search HTA[ti]                                                | 108         |
| #62    | Search "technology assessment*[ti]                            | 1632        |
| #59    | Search policy*[ti]                                            | 27068       |

| #58 | Search policies[ti]                                     | 7202    |
|-----|---------------------------------------------------------|---------|
| #57 | Search policy[ti]                                       | 26684   |
| #56 | Search decision*[ti]                                    | 36977   |
| #55 | Search catastrophic[ti]                                 | 1585    |
| #54 | Search "co-pay*"[ti]                                    | 19      |
| #53 | Search copay*[ti]                                       | 223     |
| #52 | Search cost-shar*[ti]                                   | 303     |
| #51 | Search access[ti]                                       | 26086   |
| #50 | Search coverage[ti]                                     | 9825    |
| #49 | Search fund*[ti]                                        | 28223   |
| #48 | Search financ*[ti]                                      | 12120   |
| #47 | Search reimburs*[ti]                                    | 4205    |
|     | Search #18 OR #19 OR #20 OR #21 OR #22 OR #23 OR #24 OR |         |
|     | #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR |         |
|     | #33 OR #34 OR #35 OR #36 OR #37 OR #38 OR #39 OR #40 OR |         |
| #46 | #41 OR #42 OR #43 OR #44 OR #45                         | 1847462 |
| #45 | Search ethics                                           | 166830  |
| #44 | Search economics                                        | 571693  |
| #43 | Search standards                                        | 594053  |
| #42 | Search legislation and jurisprudence                    | 205662  |
| #41 | Search technology assessment, biomedical[mh]            | 8805    |
| #40 | Search cost control[mh]                                 | 27221   |
| #39 | Search cost sharing[mh]                                 | 3376    |
| #38 | Search National Health Programs[mh]                     | 70119   |
| #37 | Search insurance, health[mh]                            | 116457  |
| #36 | Search insurance, health, reimbursement[mh]             | 36230   |
| #35 | Search insurance coverage[mh]                           | 9741    |
| #34 | Search models, econometric[mh]                          | 3654    |
| #33 | Search models, economic[mh]                             | 9054    |
| #32 | Search economics[mh]                                    | 464528  |
| #31 | Search budgets[mh]                                      | 11595   |
| #30 | Search moral obligations[mh]                            | 5415    |
| #29 | Search financing, organized[mh]                         | 189397  |
| #28 | Search cost-benefit analysis[mh]                        | 55269   |
| #27 | Search health services accessibility[mh]                | 77273   |
| #26 | Search health care rationing[mh]                        | 9999    |
| #25 | Search delivery of health care[mh]                      | 731728  |
| #24 | Search reimbursement mechanisms[mh]                     | 29260   |
| #23 | Search state medicine[mh]                               | 44588   |
| #22 | Search public policy[mh]                                | 102864  |
| #21 | Search health policy[mh]                                | 75898   |
| #20 | Search policy making[mh]                                | 17436   |
| #19 | Search decision making, organizational[mh]              | 10214   |

| #18 | Search decision making[mh]        | 109061 |
|-----|-----------------------------------|--------|
| #14 | Search "rare cancer*"[ti]         | 85     |
| #8  | Search "ultra rare"[ti]           | 9      |
| #6  | Search "orphan drug*"[ti]         | 145    |
| #5  | Search "orphan disease*"[ti]      | 60     |
| #4  | Search "rare disorder"[ti]        | 110    |
| #3  | Search "rare disease*"[ti]        | 594    |
| #2  | Search orphan drug production[mh] | 700    |
| #1  | Search rare diseases[mh]          | 4023   |

#### 2. The Cochrane Library (issue 1 of 12, 2013, John Wiley & Sons)

Total results: 509 (0 relevant from 280 Cochrane Reviews, 6 from DARE, selected 1 from 172 Central trials, 0 relevant from 19 Methods, 19 from 19 from HTA, & 10 from 10 of NHS EED

| #1  | rare diseases:ti,ab,kw (Word variations have been searched)803 |
|-----|----------------------------------------------------------------|
| #2  | orphan drug production 24                                      |
| #3  | "rare disease*" 236                                            |
| #4  | "rare disorder*" 30                                            |
| #5  | "orphan disease*" 15                                           |
| #6  | "orphan drug*" 23                                              |
| #7  | "ultra rare" 0                                                 |
| #8  | "rare cancer*" 10                                              |
| #9  | #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 1022              |
| #10 | decision making 17699                                          |
| #11 | policy making 4341                                             |
| #12 | health policy 6651                                             |
| #13 | public policy 1962                                             |
| #14 | state medicine 15996                                           |
| #15 | reimbursement mechanisms 147                                   |
| #16 | delivery of health care 4769                                   |
| #17 | health care rationing 160                                      |
| #18 | health services accessibility 669                              |
| #19 | cost-benefit analysis 14224                                    |
| #20 | financing, organized 90                                        |
| #21 | moral obligations 21                                           |
| #22 | economics 19665                                                |
| #23 | models, economic 9091                                          |
| #24 | models, econometric 414                                        |
| #25 | insurance coverage 292                                         |
| #26 | insurance, health 2291                                         |
| #27 | insurance, health, reimbursement 338                           |
| #28 | national health programs 6984                                  |
| #29 | cost sharing 1154                                              |

- #30 cost control 36744
- #31 technology assessment, biomedical 921
- #32 legislation and jurisprudence 482
- #33 standards 65025
- #34 economics 19665
- #35 ethics 2384
- #36 #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22
- or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 115592
- #37 reimburs\* or financ\* or fund\* or coverage or access\* or cost\* or copay\* or "co-pay\*" or catastrophic or decision\* 82452
- #38 #36 or #37 138747
- #39 policy or policies or legislat\* or regulat\* or "technology assessment" or HTA or framework or budget or insurance 39100
- #40 #38 or #39 158417
- #41 #9 and #40 509

## 3. Centre for Reviews & Dissemination (CRD): DARE, NHS EED & HTA databases <a href="http://www.crd.york.ac.uk/crdweb/HomePage.asp">http://www.crd.york.ac.uk/crdweb/HomePage.asp</a> (searched 28 Feb 2013)

| 1 | MeSH DESCRIPTOR Rare Diseases EXPLODE ALL TREES          | 5  |
|---|----------------------------------------------------------|----|
| 2 | MeSH DESCRIPTOR Orphan Drug Production EXPLODE ALL TREES | 4  |
| 3 | ("rare disease*") OR ("orphan drug*") OR ("ultra rare")  | 36 |
| 4 | #1 OR #2 OR #3                                           | 36 |

### 4. EMBASE (Ovid, 1974 to 17 Feb 2013)

| 1  | exp *rare disease/                                                                                  | 1485   |
|----|-----------------------------------------------------------------------------------------------------|--------|
| 2  | exp *orphan drug/                                                                                   | 610    |
| 3  | ultra rare.mp.                                                                                      | 42     |
| 4  | 1 or 2 or 3                                                                                         | 2049   |
| 5  | exp *decision making/                                                                               | 37041  |
| 6  | exp *health care policy/                                                                            | 50482  |
| 7  | exp *policy/                                                                                        | 19015  |
| 8  | exp *national health service/                                                                       | 21553  |
| 9  | exp *economic aspect/                                                                               | 331813 |
| 10 | exp *reimbursement/ or exp *"health care cost"/ or exp *"cost"/                                     | 67527  |
| 11 | exp *health care delivery/                                                                          | 443114 |
| 12 | exp *"cost benefit analysis"/                                                                       | 7327   |
| 13 | exp *financial management/                                                                          | 91938  |
| 14 | exp *morality/                                                                                      | 7445   |
| 15 | exp *ethics/ or exp *medical ethics/                                                                | 84249  |
| 16 | exp *budget/                                                                                        | 4298   |
| 17 | exp *economics/ or exp *health economics/                                                           | 197002 |
| 18 | exp *health insurance/                                                                              | 82038  |
| 19 | exp *"cost effectiveness analysis"/                                                                 | 11995  |
| 20 | exp *biomedical technology assessment/                                                              | 3840   |
| 21 | exp *law/                                                                                           | 33751  |
| 22 | exp *jurisprudence/                                                                                 | 19123  |
| 23 | 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 | 964538 |
| 24 | 4 and 23                                                                                            | 253    |
| 25 | limit 24 to yr="1990 -Current"                                                                      | 248    |

#### 5. Web of Science (Thomson Reuters, searched 13 Mar 2013)

# 3 579 #2 AND #1

Timespan=1990-2013

Search language=English

# 2 Topic=(decision\* OR policy OR policies OR reimbursement OR rationing OR access OR accessibility) OR Topic=(financing OR economic\* OR model\* OR cost\* OR assessment\* OR budget\*) OR Topic=(moral OR ethic\* OR legislation)

*Timespan=1990-2013* 

Search language=English

# 1 Title=("rare diseases" OR "rare disorder\*" OR "orphan drug\*" OR "orphan disease\*" OR "ultra rare")

Timespan=1990-2013

Search language=English

#### 6. EconLit (EBSCOHost, searched 13 Mar 2013)

| S1 | rare disease*<br>OR rare                        | Limiters- Published Date from: 19900101-20131231 | (72) |
|----|-------------------------------------------------|--------------------------------------------------|------|
|    | disorder* OR<br>orphan drug*<br>OR "ultra rare" | Search modes- Find all my search terms           |      |

#### 7. PAIS International (ProQuest, searched 14 Mar 2013)

= 60 results

(rare disease\*) OR (rare disorder\* OR orphan drug\*) OR (ultra rare) limited 1990 to date

#### 8. Sociological Abstracts (ProQuest, searched 14 Mar 2013)

= 305 results

(rare disease\*) OR (rare disorder\* OR orphan drug\*) OR (ultra rare) limited 1990 to date

## 9. Canadian Business and Current Affairs (CBCA Complete, Proquest, searched 20 Mar 2013)

= 546 results

ti(rare disease\*) OR ti((rare disorder\* OR orphan drug\*)) OR ti(ultra rare) limited 1990 to date, English or French

#### 10. ABI/INFORM Global (Proquest, searched 20 Mar 2013)

= 335 results

ti((rare disease\*) OR (rare disorder\*) OR (orphan drug\*) OR (ultra rare)) limited 1990 to date, English or French

#### 11. Scopus (SciVerse, searched 20 Mar 2013)

= 110 results

(TITLE("rare disease\*" OR "rare disorder\*" OR "orphan drug\* "OR "ultra rare") AND PUBYEAR> 1989) AND (TITLE(decision\* OR policy\* OR policies OR reimbursement OR delivery OR rationing OR access\* OR financing OR economic\*OR coverage OR cost\* OR legislation\* OR funding))

#### 12. Proquest Dissertations & Theses Fulltext (Proquest, searched 20 Mar 2013)

= 157 results

all((rare disease\*) OR (rare disorder\*) OR (orphan drug\*) OR (ultra rare)) AND all(decision\* OR policy OR policies OR reimbursement OR rationing OR access\* OR economic\* OR funding OR legislation OR coverage) limited 1990 to date, English or French

#### 13. Canadian Newsstand Complete (Proquest, searched 20 Mar 2013)

#### = 7 results

ti((rare disease\*) OR (rare disorder\*) OR (orphan drug\*) OR (ultra rare)) AND ti(decision\* OR policy OR policies OR reimbursement OR economic\* OR rationing OR access\* OR fund\* OR legislation OR catastrophic OR regulat\*) limited to 1990 to date, English or French, document type: Article, Bibliography, Book, Commentary, Conference, Editorial, Essay, Feature, General Information, Government & Official Document, Review

**Grey literature search** (searched April 2013; \*unless otherwise noted, the search terms were: rare disease\* or rare disorder\* or orphan drug\*)

- www.google.ca ("rare disease\*" OR "rare disorder\*" OR "orphan drug\*" OR "ultra rare") AND (decision\* OR policy OR policies OR reimbursement OR economic\* OR rationing OR access\* OR fund\* OR legislation OR catastrophic OR regulat\*) \*scanned first 300 hits

#### Canada

- KU-UC (Quebec Population Health Research Network (QPHRN)) http://www.santepop.qc.ca/en/index.html

- Canadian Organization for Rare Disorders http://www.raredisorders.ca/ \*scanned web site

- National Library of Canada. AMICUS: Canadian National Catalogue <u>http://www.collectionscanada.gc.ca/amicus/index-e.html</u>

#### US

- New York Academy of Medicine Grey literature collection http://www.greylit.org/home

- RAND <u>www.rand.org</u>

- US Food and Drug Administration. Rare Diseases Program <u>http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/uc</u> <u>m221248.htm</u> \*scanned web page and publications

- US Food and Drug Administration. Humanitarian Device Exemptions <u>http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/P</u>remarketSubmissions/HumanitarianDeviceExemption/default.htm \*scanned web page

- National Institutes of Health Office of Rare Diseases Research <u>http://rarediseases.info.nih.gov/</u> \*scanned web page and resources

- National Organization for Rare Disorders (NORD) <u>www.rarediseases.org</u> \*scanned web site and publications

-Patient-Centred Outcomes Research Institute http://www.pcori.org/ \*scanned web page

Europe

- NHS Evidence <u>www.evidence.nhs.uk</u> \*rare diseases in their filter categories: management, commissioning, policy and service development

- Open Grey http://www.opengrey.eu/

- Rare Cancers Foundation http://www.rarercancers.org.uk/ \*scanned policy section / reports

- Genetic Alliance UK http://www.geneticalliance.org.uk/ \*scanned publications

- Orphanet: the portal for rare diseases and orphan drugs <u>http://www.orpha.net/consor/cgi-bin/index.php</u> \*scanned web page sections and 2012-2013 issues of newsletter

- EURORDIS: Rare Diseases Europe http://www.eurordis.org/about-eurordis

- European Commission <u>http://ec.europa.eu/index\_en.htm</u> \*scanned web page on health / human diseases / policy

- European Union Committee of Experts on Rare Diseases <u>http://www.eucerd.eu/?page\_id=13</u> \*scanned web page sections on recommendations / reports / and national resources <u>http://www.eucerd.eu/?page\_id=154</u> \*scanned country-by-country publications

#### Australia

- Rare Voices Australia http://www.rarevoices.org.au/ \*scanned web page

- Australian Government. Life Saving Drugs Program <u>http://www.health.gov.au/lsdp</u> \*scanned web page

Appendix 3.2: Data extracted during scoping review

### Table A3.2.1: Data extracted during scoping review (1 of 6)

| <b>G</b> ( )             | Purnose Sources                                                                                                                                                                                                    |                                                                                                                                                                                           | Opportunity-cost determi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ning factors                                                                                                                                                                                                                                                                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                    | Purpose                                                                                                                                                                                                            | Sources                                                                                                                                                                                   | Cost (price) of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Budget impact of treatment                                                                                                                                                                                                                                                                                                |
| Barrett et al.<br>(2012) | To explore the genomic pathophysiology<br>of cystic fibrosis, and how genomically<br>guided therapies such as ivacaftor<br>provide benefit to those with the disease<br>but at a considerably elevated price point | The authors provide a brief overview of: CF; the CFTR protein; the CFTR gene and its mutations; ivacaftor; and future directions, including efforts to reduce the cost of such therapies. | The yearly cost per patient is \$294,000, and patients are<br>likely to receive such therapies for 30 years or more. The<br>author cites other orphan drugs with similar price points<br>(eculizimab costs \$409,500 per year, galsulfase costs<br>\$365,000 per year, etc.) and warns that orphan drug prices<br>may be "unsustainable".                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |
| Clarke<br>(2006)         | To advocate for a "national orphan drug review policy" in Canada                                                                                                                                                   | Opinion, supported by the author's review of<br>Common Drug Review (CDR) reviews<br>undertaken from 2003 to 2005                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           |
| Clarke et al.<br>(2009)  | To describe the policy framework for<br>assessing rare diseases developed by the<br>Drugs for Rare Diseases Working Group<br>(DRD WG) of the Ontario Public Drug<br>Programs                                       | Policy framework for assessing rare diseases<br>developed by the Drugs for Rare Diseases<br>Working Group (DRD WG) of the Ontario<br>Public Drug Program                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Considered as part of the author's proposed framework                                                                                                                                                                                                                                                                     |
| Claxton et<br>al. (2008) | To explain the key principles of value<br>based pricing (VBP) and consider some<br>of the concerns about such a scheme                                                                                             | Opinion, which builds upon a theoretical model<br>and example of VBP developed by the authors                                                                                             | Price negotiation and guidance ought to account for both the<br>value of the technology and the value of the evidence that<br>may be forgone for future NHS patients. For "me too" drugs<br>the manufacturer can charge the same price as the<br>incumbent, or they can charge a higher price if they can<br>demonstrate additional health benefits                                                                                                                                                                                                                                                                                                                                 | While VBP may lead to lower prices for<br>some drugs, the overall NHS spend on drugs<br>may increase if new and valuable drugs are<br>developed that command higher prices                                                                                                                                                |
| Denis et al.<br>(2010)   | To calculate the budget impact of orphan<br>drugs in Belgium in 2008 and to forecast<br>how this budget impact will evolve over<br>the next 5 years (2008-2013)                                                    | Budget impact analysis conducted by the authors                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The budget impact of orphan drugs in<br>Belgium in 2008 was $66.2$<br>million, equivalent to 0.3% of overall health<br>expenditure. The estimated 2013 budget<br>impact in the medium-growth scenario is<br>6162 million, $6130$ million in the low-growth<br>scenario, and $6204$ million in the high-growth<br>scenario |
| Desser<br>(2013)         | To examine Norwegian doctors'<br>preferences for prioritizing rarity in the<br>allocation of health resources and to<br>compare these preferences with those<br>previously elicited from the general<br>population | Results from a surveys given to 551 members of<br>the Norwegian Medical Association and<br>compared with results from general population<br>surveys                                       | When the cost of treating rare disease patients is equal to the cost of treating common disease patients (equal-cost scenario), the majority of doctors (69.5%) indicated indifference between the two. When the cost of treating rare disease patients is greater than the cost of treating common disease patients (costly-rare scenario), the majority of doctors will treat the common disease group. When respondents were permitted to divide funds in the equal-cost scenario, the mean share of funds allocated to the rare disease group was 41.5%. When respondents were permitted to divide funds in the enarbare of funds allocated to the rare disease group was 27.3% |                                                                                                                                                                                                                                                                                                                           |
| Dickson et<br>al. (2011) | To foster dialogue between stakeholders<br>(academia, industry, government and<br>patient groups) of treatments for inborn<br>errors of metabolism (IEM) with CNS<br>manifestation                                 | The proceedings of a workshop entitled Research<br>Challenges in CNS Manifestations of Inborn<br>Errors of Metabolism                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           |
| Drakulich<br>(2011)      | To describe an approach by the<br>International Rare Disease Consortium<br>to increase development of treatments<br>for rare diseases, aiming for 200 new<br>therapies by 2020                                     | The author describes the activities and goals of<br>the International Rare Disease Research<br>Consortium.                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                           |

| Study                              | Durnoso                                                                                                                                                                                                                                                                                                   | Sources                                                                                                                                                                                                                                                                                                                                     | Opportunity-cost determining factors                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Study                              | r ur pose                                                                                                                                                                                                                                                                                                 | Sources                                                                                                                                                                                                                                                                                                                                     | Cost (price) of treatment                                                                                                                                                                                                                                                                                                                                                                                             | Budget impact of treatment                                                                      |  |
| Drummond<br>et al. (2007)          | To discuss whether standard methods for<br>HTA are adequate for assisting decisions<br>on patient access to and funding of<br>orphan drugs, and to outline a research<br>agenda to help understand the societal<br>value of orphan drugs and issues<br>surrounding their development, funding,<br>and use | The authors draw on discussions that took place<br>at a Roundtable on the Use of Health Economics<br>for Orphan Drugs, held at the LSE in 2005                                                                                                                                                                                              | Health insurers cannot, and should not, be expected to fund,<br>at any price, all effective orphan drugs                                                                                                                                                                                                                                                                                                              | Budget impactof orphan drugs is modest                                                          |  |
| Dunoyer<br>(2011)                  | To highlight areas in which "novel<br>approaches" could facilitate regulatory<br>approval and access to treatments for<br>rare diseases                                                                                                                                                                   | Opinion, based upon author's experiences as head of GSK's Rare Diseases team                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |
| Garattini<br>(2012)                | To propose that we revisit, and make<br>changes to, the EU's orphan drug law                                                                                                                                                                                                                              | Opinion, citing Italian data on the yearly cost of<br>orphan drugs (662m EUR), from which the<br>authors estimates the average cost of a daily<br>defined dose (DDD) and hence the maximum<br>gross income for an orphan drug in Europe.                                                                                                    | The average cost of a daily defined dose (DDD) of orphan drugs in Italy is about €97                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |  |
| Gupta<br>(2012)                    | To advocate for a comprehensive<br>legislative strategy to improve Canadian<br>orphan disease care and research                                                                                                                                                                                           | A review of legislation initiated to promote R&D<br>related to rare disease in Australia, France,<br>Germany, Japan, Singapore, Spain, Taiwan, the<br>USA, and the EU. The author also reviews<br>multi-national initiatives                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |
| Hughes et al.<br>(2005)            | To explore whether ultra-orphan drugs<br>merit special status in health system<br>funding decisions.                                                                                                                                                                                                      | Opinion, supported by the results of the authors'<br>survey of the funding status of ultra-orphan drug<br>laronidase across European countries                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | The budget impact of orphan drugs is "limited".                                                 |  |
| Hughes-<br>Wilson et al.<br>(2012) | To propose the development of a new<br>assessment system for use by Member<br>State governments in the evaluation of<br>new orphan drugs at the time of pricing<br>and reimbursement                                                                                                                      | Opinion                                                                                                                                                                                                                                                                                                                                     | Two main criticisms of the current regulatory system for<br>orphan drugs are: the high prices of orphan drugs and their<br>inability to meet standard cost-effectiveness thresholds; and<br>the system itself which allows companies to benefit from<br>achieving orphan drug designation on their product                                                                                                            |                                                                                                 |  |
| Hutchings et<br>al. (2012)         | To provide preliminary insight into the<br>elements of value which are important<br>when assessing rare disease treatments<br>and how they might be considered<br>together within a value framework                                                                                                       | A conceptual framework was designed based on<br>the literature gathered and tested with rare<br>disease experts, patient group representatives,<br>and payers.<br>A literature review was utilized to identify<br>elements of value.                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                       | Economic and budgetary implications<br>considered as part of the author's proposed<br>framework |  |
| Joppi et al.<br>(2012)             | To assess the methodological quality of<br>Orphan Medicinal Product (OMP)<br>submissions to the European Medicines<br>Agency and discuss possible reasons for<br>the small number of products licensed                                                                                                    | Information was obtained for the period 2000 to<br>2010 on orphan drug designation, and<br>methodological details were obtained from the<br>EMA website and European Public Assessment<br>reports, and descriptive statistics were produced.                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |
| Kanavos &<br>Nicod (2012)          | To respond to Cote & Keating's critique<br>of orphan drug policies, and to offer the<br>authors' own perspective                                                                                                                                                                                          | Opinion                                                                                                                                                                                                                                                                                                                                     | There is an absence of appropriate benchmarks to gauge<br>whether prices are low, high, or too high relative to<br>expectations – prices are relative to value, and not all value<br>parameters have been (or can be) incorporated in informing<br>pricing decisions. Our standard tools are not sufficient to<br>take all value considerations into account, partly due to lack<br>of data and incomplete registries |                                                                                                 |  |
| Kesselheim<br>et al. (2011)        | To compare characteristics of pivotal<br>clinical trials of orphan drugs for cancer<br>with non-orphan cancer drugs approved<br>between 2004 and 2010                                                                                                                                                     | Authors identified all new orphan (15) and non-<br>orphan (12) cancer drugs approved by the FDA<br>between 2004-2010. The authors then compared<br>the design features (randomization, blinding,<br>primary end point) of the pivotal trials<br>supporting approval of orphan and non-orphan<br>drugs, and rates of adverse safety outcomes |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |

| Study                           | Durnoso                                                                                                                                                                                                                                    | Sources                                                                                                                                                                                                                                                                                                                                                                       | Opportunity-cost determi                                                                                                                                                                                                                                                                                                                        | ning factors                                                                                                                                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                           | rurpose                                                                                                                                                                                                                                    | Sources                                                                                                                                                                                                                                                                                                                                                                       | Cost (price) of treatment                                                                                                                                                                                                                                                                                                                       | Budget impact of treatment                                                                                                                                                                                          |
|                                 |                                                                                                                                                                                                                                            | (deaths not due to disease progression, serious adverse events, dropouts) in pivotal trials.                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| Largent &<br>Pearson<br>(2012)  | To outline and deconstruct the argument<br>from the "rule of rescue" that is made in<br>support of coverage of orphan drugs                                                                                                                | Opinion, drawing on Adams & Brantner's \$1bn<br>estimate of the cost to bring a new drug to<br>market                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| Laupacis<br>(2009)              | To critique Drummond et al.'s review<br>"Evidence and Values: Requirements for<br>Public Reimbursement of Drugs for<br>Rare Diseases", which looked at the<br>requirements for public reimbursement<br>of drugs for rare diseases          | Opinion, based on previous review by<br>Drummond et al.                                                                                                                                                                                                                                                                                                                       | Drug prices have been increasing over time, and the price<br>generally has little to do with the drug's incremental cost<br>benefit. This might be addressed by indicating to the<br>pharmaceutical companies that they must meet a certain<br>standard of efficiency                                                                           |                                                                                                                                                                                                                     |
| Liang &<br>Mackev<br>(2010)     | To review current legislation on off-<br>label drug use and to recommend<br>permittance of appropriate off-label drug<br>promotion by drug manufacturers in<br>order to improve orphan disease<br>patients' access to necessary treatments | Reviews the 1983 Orphan Drug Act (ODA); The<br>Food, Drug, and Cosmetic Act; and the 1997<br>FDA Modernization Act                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| Luisetti at<br>al. (2012)       | To review current sources of clinical<br>data for rare lung diseases and the<br>regulatory challenges facing their<br>treatment                                                                                                            | A roundtable session was held by the 8 authors of this paper                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| Matthews<br>and Glass<br>(2013) | To assess the impact of market-based<br>economic factors on orphan drug<br>adoption across France, Germany,<br>Spain, the UK, and the USA                                                                                                  | The authors studied 13 orphan drugs, approved<br>for 15 indications, which were available for<br>purchase across all the study countries in 2007.                                                                                                                                                                                                                             | A negative nonsignificant relationship exists among market-<br>based pricing of pharmaceutical products and the adoption of<br>orphan drugs                                                                                                                                                                                                     |                                                                                                                                                                                                                     |
| Mavris & Le<br>Cam (2012)       | To describe initiatives of patient<br>organizations to promote research into<br>rare diseases                                                                                                                                              | A survey of 772 rare disease organizations in Europe was conducted                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| McCabe et<br>al. (2005)         | To examine justification for special<br>status for rare diseases, and to ask<br>whether the cost effectiveness of drugs<br>for rare or very rare diseases should be<br>treated differently from that of other<br>interventions             | The authors review current practice and<br>regulations around orphan drugs in the UK and<br>US, and summarize the funding status and costs<br>of some example ultra-orphan drugs in the UK                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 | Special status for orphan drugs may also<br>impose substantial and increasing costs on<br>the healthcare system – costs borne by other,<br>unknown patients                                                         |
| McCabe et<br>al. (2010)         | To respond to the study by Desser et al.,<br>and to argue that decision makers<br>"revisit" orphan drug policies to better<br>reflect society's values and to address<br>the increasing fiscal challenge.                                  | Opinion, supported by a survey by Desser et al.<br>which asked a representative sample of the<br>Norwegian population whether society should<br>pay more to treat rare diseases                                                                                                                                                                                               | The increasing number of orphan drugs, and the prices<br>charged for them, pose a substantial and growing fiscal<br>challenge for healthcare systems                                                                                                                                                                                            |                                                                                                                                                                                                                     |
| Meekings et<br>al. (2012)       | To demonstrate that the revenue-<br>generating potential of orphan drugs is<br>as great as for non-orphan drugs                                                                                                                            | Information on drugs with orphan drug<br>designation was collected from Thomson<br>Reuters' Integrity and publically available<br>sources of orphan drug approvals published by<br>the FDA and EMA. Global sales forecasts for<br>orphan drugs were obtained from the Thomson<br>Reuters' Forecast.                                                                           |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |
| Mentzakis et<br>al. (2011)      | A pilot study of a discrete choice<br>experiment (DCE) to investigate<br>individual preferences regarding the<br>public funding of orphan drugs                                                                                            | Discrete choice experiment. For every decision,<br>213 respondents decided between: a drug<br>treatment for a rare disease with specified<br>attribute levels for cost-per-patient, total budget<br>impact, severity of disease, and life-years gained<br>through treatment; and a drug treatment for a<br>common disease with correspondingly specified<br>attribute levels. | The coefficients for both total budget impact and cost per<br>patient are not statistically significant for either common or<br>rare disease; neither cost attribute influences preferences<br>over drug funding. Individuals do not prefer to have the<br>Ontario government spend more for orphan drugs than for<br>drugs for common diseases | The coefficients for both total budget impact<br>and cost per patient are not statistically<br>significant for either common or rare disease;<br>neither cost attribute influences preferences<br>over drug funding |

| Study                            | Burnoso                                                                                                                                                                                                                                                          | Soumoos                                                                                                                                                                                                                                                | Opportunity-cost determining factors                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study                            | rurpose                                                                                                                                                                                                                                                          | Sources                                                                                                                                                                                                                                                | Cost (price) of treatment                                                                                                                                                                                                                                                                                                                                                   | Budget impact of treatment                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                  |                                                                                                                                                                                                                                                                  | A pilot DCE was carried out on 208 participants<br>(mostly students) in the McMaster University<br>Experimental Economics Laboratory.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Michel &<br>Toumi<br>(2012)      | To summarise current and future issues<br>in the development of and access to<br>orphan drugs in Europe                                                                                                                                                          | A review of the relevant incentivizing,<br>regulatory, pricing, and reimbursement processes<br>in the European Union and individual Member<br>States                                                                                                   | A trend has been noted between prevalence of a disease,<br>availability of alternative treatment, and price of the<br>corresponding orphan drug . Prices also varied widely, up to<br>160% higher in some countries compared to others. Prices<br>were lowest in France, Belgium, The Netherlands, and<br>Romania, and highest in Italy, Greece and Denmark                 | The economic burden of orphan drugs is increasing                                                                                                                                                                                                                                                                                                                                          |  |
| Moberly<br>(2005)                | To look at the implications of giving<br>special status to orphan drugs, and the<br>difficulties justifying this                                                                                                                                                 | McCabe (2005), Hughes (2005), West Midlands<br>Specialised Services Agency (WMSSA), Burls<br>(2005)                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Owen (2008)                      | To describe a "unique risk-sharing<br>model" utilised in Australia, aimed at<br>providing clinical evidence to support<br>modelled predictions of longer-term<br>health outcomes for an orphan drug<br>product                                                   | Authors describe a risk-sharing model for<br>bosentan utilised in Australia                                                                                                                                                                            | The future price of bosentan is linked to registry survival outcomes                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Picavet et al.<br>(2011)         | To analyze the influence, if any, of<br>orphan drug designation status on the<br>price setting of drugs for rare disease<br>indication                                                                                                                           | Drug prices were obtained from Belgian<br>hospitals, the Belgian Centre for Pharmaco-<br>therapeutic Information, or directly from<br>pharmaceutical companies. The defined daily<br>dose (DDD) was used to convert these prices<br>into daily prices. | The median price per DDD was higher for designated orphan<br>drugs ( $\notin$ 138.56 [interquartile range; IQR $\notin$ 406.57) than for<br>non-designated drugs ( $\notin$ 16.55[IQR $\notin$ 28.05]) [p<0.01]<br>The authors concluded that awarding orphan designation<br>status, in itself, is associated with higher prices for drugs for<br>rare disease indications. |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Picavet et al.<br>(2012)         | To obtain the views of orphan drug<br>experts in Europe on existing<br>regulations, and to evaluate orphan drug<br>policies in Europe                                                                                                                            | A 2 round Delphi survey of 47 European experts<br>was conducted, to evaluate existing orphan drug<br>policies in Europe and to formulate<br>recommendations for future policy development                                                              |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Pinxten et al.<br>(2012)         | To analyze the ethical aspects of funding<br>R&D in the field of rare disease, and to<br>propose an ethical framework to help<br>policy makers fairly allocate resources<br>"at the macro level" for the prevention,<br>diagnosis and treatment of rare diseases | Opinion                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Prevot &<br>Watters<br>(2011)    | To examine the use of HTA's in<br>assessing rare disease treatments,<br>specifically for primary<br>immunodeficiencies (PID), and<br>suggesting additional factors that should<br>be considered when making a<br>reimbursement decision                          | Cites quotes from patients diagnosed and treated<br>for PID, and data that suggests late diagnosis and<br>treatment results in increased morbidity,<br>complications and mortality                                                                     | Should be taking into account only alongside other factors,<br>and should include the impact of a restricted access to the<br>appropriate therapy and the medical costs that would be<br>incurred in the treatment of the symptoms (rather than the<br>cause).                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Schey et al.<br>(2011)           | To estimate the budget impact of orphan<br>medicines in Europe between 2010 and<br>2020, as a percentage of total European<br>pharmaceutical expenditure                                                                                                         | A disease-based epidemiological model was<br>developed based upon trends in the designation<br>and approval of new orphan medicines,<br>prevalence estimates of orphan diseases, and<br>historical price and sales data for orphan drugs in<br>Europe  | The median cost of existing orphan drugs is 32,242 EUR per year                                                                                                                                                                                                                                                                                                             | The share of the pharmaceutical market<br>represented by orphan drugs is predicted to<br>increase from 3.3% in 2010 to a peak of 4.6%<br>in 2016, before leveling off until 2020. In<br>sensitivity analyses the peak-year budget<br>impact ranged from 3% to 6.6%. "Fears of<br>unsustainable cost escalation should not be<br>used as rationale to review the orphan drug<br>regulation" |  |
| Siddiqui &<br>Rajkumar<br>(2012) | To examine the reasons behind the high<br>costs of cancer drugs and to suggest<br>policies and interventions that can be<br>used to lower the cost of these drugs                                                                                                | Opinion                                                                                                                                                                                                                                                | The retail prices of drugs are a function of the costs of<br>development, the addressable patient population, the patent<br>life, and the projected returns on investment. The<br>development of new cancer drugs is usually associated with                                                                                                                                | Due to the soaring cost of cancer drugs, the<br>absolute cost to society will become<br>increasingly unaffordable                                                                                                                                                                                                                                                                          |  |

| Study                      | Dunnaga                                                                                                                                                                                                                                            | Courses                                                                                                                                                                                                                    | Opportunity-cost determining factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Study                      | rurpose                                                                                                                                                                                                                                            | Sources                                                                                                                                                                                                                    | Cost (price) of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Budget impact of treatment                                                                                                                                                                                                                                                                                        |  |  |
|                            |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                            | metrics such as "superior responses" and "longer overall<br>survival" Thus, new versions of old cancer drugs do not<br>become alternatives that create competition for price.<br>The soaring cost of cancer drugs has at least 3 major<br>problems: 1) the absolute cost to society will become<br>increasingly unaffordable; 2) it will become difficult for<br>insurance companies to price policy premiums accurately<br>because the approval, clinical acceptance and incorporation<br>of expensive new drugs is unpredictable and geographically<br>variable; and 3) almost all approved cancer drugs will<br>eventually be used for conditions and settings not approved<br>by the FDA (off-label). |                                                                                                                                                                                                                                                                                                                   |  |  |
| Stafinski et<br>al. (2011) | To develop a technology funding<br>decision-making framework informed<br>by the experiences of multiple<br>healthcare systems and the view of<br>senior-level decision makers in Canada                                                            | A 1-day, facilitated workshop with 16 senior-<br>level healthcare decision makers in Canada,<br>supported by findings from a critical review of<br>health technology coverage decision-making<br>processes in 20 countries |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Considered by workshop participants to be a critical input into decision-making processes                                                                                                                                                                                                                         |  |  |
| Stolk et al.<br>(2006)     | To propose that the WHO adopt an<br>"Orphan Medicines Model List" as an<br>addition to the Model List of Essential<br>Medicines (EML), and to propose<br>selection criteria for this new list                                                      | This paper was based upon an Invited Discussion<br>Paper for the 14th Meeting of the WHO<br>Committee on the Selection and Use of Essential<br>Medicines                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |  |  |
| Sullivan<br>(2008)         | To outline emerging strategies and case<br>study examples for the medical and<br>pharmacy benefits management of<br>specialty pharmaceuticals                                                                                                      | The author gives a brief overview of speciality<br>pharmaceuticals, then uses two case studies to<br>describe the steps taken by payers to determine<br>their overall value                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | It is anticipated that by 2030, specialty<br>pharmaceuticals will account for up to 44%<br>of a plan's total health expenditure. Costs<br>associated with these agents are projected to<br>have a significant impact on health care<br>systems and play a large role in determining<br>coverage and reimbursement |  |  |
| Valverde<br>(2011)         | To advocate for greater involvement of<br>key stakeholders in HTA processes for<br>rare disease therapies                                                                                                                                          | Opinion                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |  |  |
| Wild et al.<br>(2011)      | To review the six orphan oncology drugs<br>assessed by the Austrian Horizon<br>Scanning System in Oncology (HSS-O)                                                                                                                                 | Authors' review of the LBI-HTA assessments<br>approving 6 orphan drugs with oncological<br>indications (Azacitidine, Everolimus,<br>Trabectedin, Plerixafor, Nilotinib, and Dasatinib)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   |  |  |
| Winquist et<br>al. (2012)  | [Similar to Clarke et al.] To develop a<br>framework for informing funding<br>decisions for drugs for rare diseases in<br>Ontario, using enzyme replacement<br>therapies for diseases of inherited<br>metabolic enzyme deficiency as an<br>example | A policy framework for funding drugs for rare<br>diseases developed by the Drugs for Rare<br>Diseases working group convened by the<br>Ontario Public Drug Programs                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Considered as part of the author's proposed framework                                                                                                                                                                                                                                                             |  |  |

### Table A3.2.2: Data extracted during scoping review (2 of 6)

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               | Disease-related value                             | -bearing factors                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                     | Prevalence (rarity) of disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Severity (seriousness)<br>of disease                                                                                                                                                                                                                                                                                          | Identifiability of the beneficiaries of treatment | Extent to which the disease is<br>life-threatening or chronically<br>debilitating | Impact of treatment upon the distribution of health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Availability of treatment alternatives                                                                                                                                                                                                                                                                                     |
| Barrett et<br>al. (2012)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Clarke<br>(2006)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | The author asks<br>whether Canadian<br>patients should be<br>"denied access to<br>potentially effective<br>new treatments for<br>formerly untreatable<br>and serious diseases<br>only because it is<br>virtually impossible to<br>evaluate the cost-<br>effectiveness of those<br>treatments using<br>conventional criteria"? |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The author asks whether<br>Canadian patients<br>should be "denied<br>access to potentially<br>effective new treatments<br>for formerly untreatable<br>and serious diseases<br>only because it is<br>virtually impossible to<br>evaluate the cost-<br>effectiveness of those<br>treatments using<br>conventional criteria"? |
| Clarke et al.<br>(2009)   | Considered as part of the author's<br>proposed framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Claxton et<br>al. (2008)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Denis et al.<br>(2010)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Desser<br>(2013)          | When the cost of treating rare<br>disease patients is equal to the cost<br>of treating common disease patients<br>(equal-cost scenario), the majority<br>of doctors (69.5%) indicated<br>indifference between the two.<br>When the cost of treating rare<br>disease patients is greater than the<br>cost of treating common disease<br>patients (costly-rare scenario), the<br>majority of doctors will treat the<br>common disease group. When<br>respondents were permitted to<br>divide funds in the equal-cost<br>scenario, the mean share of funds<br>allocated to the rare disease group<br>was 41.5%. When respondents<br>were permitted to divide funds in<br>the costly-rare scenario, the mean<br>share of funds allocated to the rare<br>disease group was 27.3% |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   | The authors find little support<br>among Norwegian doctors for<br>prioritizing the treatment of rare<br>diseases, although a preference for<br>allocating resources in accordance<br>with the principle of reserving a<br>small portion of resources for rare<br>disease patients is noted. 48.3%<br>prefer allocating funds so that the<br>largest number of patients receives<br>treatment, while 44.4% believe a<br>small share should go towards the<br>rare disease group, 5.3% believe the<br>budget should be divided equally,<br>and 2.0% believe the majority of the<br>budget should be allocated to the<br>rare disease group |                                                                                                                                                                                                                                                                                                                            |
| Dickson et                | uiscase group was 27.370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Drakulich<br>(2011)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                            |
| Drummond<br>et al. (2007) | Research needed on impact of rarity on ICER of orphan drugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Considered by PBAC                                                                                                                                                                                                                                                                                                            |                                                   |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Considered by PBAC                                                                                                                                                                                                                                                                                                         |

|                                    | Disease-related value-bearing factors                                                                                    |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                              | Prevalence (rarity) of disease                                                                                           | Severity (seriousness)<br>of disease                                                                                                                                                                                                                                                                                             | Identifiability of the beneficiaries of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extent to which the disease is<br>life-threatening or chronically<br>debilitating                                                                                                                                                                                                                                                                                                                                                                                            | Impact of treatment upon the distribution of health                                                                                                         | Availability of treatment alternatives                                                                                                                |
| Dunoyer<br>(2011)                  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Garattini<br>(2012)                |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Gupta<br>(2012)                    |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Hughes et<br>al. (2005)            | Key issue is whether "rarity"<br>represents a rational basis to apply<br>a different value to patients' health<br>gains. | Key issue is whether<br>"gravity of the<br>condition" represents a<br>rational basis to apply a<br>different value to<br>patients' health gains.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Hughes-<br>Wilson et<br>al. (2012) |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Hutchings<br>et al. (2012)         | Rarity is a requirement for<br>treatments to be assessed under<br>author's proposed framework                            | Burden of disease<br>considered as part of<br>the author's proposed<br>framework                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Joppi et al.<br>(2012)             |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Kanavos &<br>Nicod<br>(2012)       |                                                                                                                          | It is socially desirable<br>to develop treatments<br>for conditions with<br>high disease severity or<br>unmet medical need,<br>irrespective of rarity                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             | It is socially desirable to<br>develop treatments for<br>conditions with high<br>disease severity or<br>unmet medical need,<br>irrespective of rarity |
| Kesselheim<br>et al. (2011)        |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                                                       |
| Largent &<br>Pearson<br>(2012)     |                                                                                                                          | When few people have<br>an illness, it is easier to<br>see them as individuals<br>rather than anonymous<br>members of a group of<br>patients. This is even<br>more the case when a<br>rare condition produces<br>visible signs of illness<br>and when individuals<br>are publicized through<br>photo campaigns and<br>telethons. | When few people have an illness, it is<br>easier to see them as individuals rather<br>than anonymous members of a group<br>of patients. Identifiability is not an<br>appropriate ethical justification for<br>providing preferential coverage. A<br>counterpoint to this might be<br>contractualist theory: first, the public<br>are generally willing to give<br>preference to patients with life-<br>threatening or severe illnesses;<br>second, the literature suggests that<br>people desire reassurance that they<br>live in a compassionate society, which<br>might be provided by spending more<br>on the rescue of an identified few. But<br>"it strains credulity to say that the<br>more caring society is the one that<br>sacrifices several anonymous lives in<br>order to save an identifiable one".<br>Finally, fairness requires that we not<br>discriminate on morally irrelevant<br>grounds. For rare disease patients,<br>identifiability results from undeserved | Prioritarianism is an ethical<br>argument for favouring the<br>worst off. A sickest-first<br>principle might require<br>allocation of resources even<br>when only minor gains can be<br>achieved and the cost is very<br>high. "Lifesaving orphan<br>therapies and therapies that<br>restore of maintain<br>capabilities central to<br>functioning in society should<br>be covered. Orphan therapies<br>that do not achieve these<br>health outcomes clearly<br>should not". | "It strains credulity to say that the<br>more caring society is the one that<br>sacrifices several anonymous lives<br>in order to save an identifiable one" |                                                                                                                                                       |

|                                 | Disease-related value-bearing factors                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Study                           | Prevalence (rarity) of disease                                                                                                                                                                                                                                                                                                                                                                                                                | Severity (seriousness)<br>of disease                                                                                                                                                                                 | Identifiability of the beneficiaries of treatment                                                                                                                 | Extent to which the disease is<br>life-threatening or chronically<br>debilitating | Impact of treatment upon the distribution of health                                                                                                            | Availability of treatment alternatives |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      | properties, both advantageous and<br>disadvantageous. They should not<br>receive any preference in health<br>resource allocation because they are<br>identifiable |                                                                                   |                                                                                                                                                                |                                        |
| Laupacis<br>(2009)              | Rareness should not be used as a<br>justification for a high price, only<br>to be followed by a huge market<br>expansion of the drug                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Liang &<br>Mackev<br>(2010)     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Luisetti at<br>al. (2012)       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Matthews<br>and Glass<br>(2013) |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Mavris &<br>Le Cam<br>(2012)    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| McCabe et<br>al. (2005)         | The justification for special status<br>for rare diseases must rest on the<br>question: do we value the health<br>gain to two individuals differently<br>because one individual has a<br>common disorder and the other has<br>a rare disorder? Valuing health<br>outcomes more highly for no other<br>reason than rarity of the condition<br>seems unsustainable and<br>incompatible with other equity<br>principles and theories of justice. |                                                                                                                                                                                                                      | Special status for orphan drugs may<br>also impose substantial and increasing<br>costs on the healthcare system – costs<br>borne by other, unknown patients       |                                                                                   | Special status for orphan drugs may<br>also impose substantial and<br>increasing costs on the healthcare<br>system – costs borne by other,<br>unknown patients |                                        |
| McCabe et<br>al. (2010)         | Existing arguments that society<br>values providing access to orphan<br>drugs have not been based on<br>evidence, and are contradicted by<br>the evidence on social values<br>collected by Desser et al.                                                                                                                                                                                                                                      | Existing arguments that<br>society values<br>providing access to<br>orphan drugs have not<br>been based on<br>evidence, and are<br>contradicted by the<br>evidence on social<br>values collected by<br>Desser et al. |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Meekings et<br>al. (2012)       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |
| Mentzakis<br>et al. (2011)      | The probability that participants<br>would prefer funding a drug<br>increases by about 30 % from a rare<br>to a common disease.                                                                                                                                                                                                                                                                                                               | The coefficient for<br>disease severity and<br>life-years gained are<br>both significant and<br>positive. The<br>probability of<br>preferring funding a<br>drug for a severe<br>condition is 22%                     |                                                                                                                                                                   |                                                                                   |                                                                                                                                                                |                                        |

|                                  |                                                                                                                                                                                    |                                                                                                                                       | Disease-related value                                                                              | -bearing factors                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                            | Prevalence (rarity) of disease                                                                                                                                                     | Severity (seriousness)<br>of disease                                                                                                  | Identifiability of the beneficiaries of treatment                                                  | Extent to which the disease is<br>life-threatening or chronically<br>debilitating                                                                                                                                                                                                 | Impact of treatment upon the distribution of health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Availability of treatment alternatives                                                                                                                      |
|                                  |                                                                                                                                                                                    | higher than for a moderate condition                                                                                                  |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
| Michel &<br>Toumi<br>(2012)      | A trend has been noted between<br>prevalence of a disease, availability<br>of alternative treatment, and price<br>of the corresponding orphan drug                                 |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A trend has been noted<br>between prevalence of a<br>disease, availability of<br>alternative treatment,<br>and price of the<br>corresponding orphan<br>drug |
| Moberly<br>(2005)                | WMSSA found that rarity should<br>not be an overriding factor when<br>considering funding                                                                                          |                                                                                                                                       | WMSSA found that identifiability<br>should not be an overriding factor<br>when considering funding |                                                                                                                                                                                                                                                                                   | Citing Hughes, notes that political<br>concerns over postcode prescribing<br>contributed to the UK DoH moving<br>commissioning away from<br>WMSSA, and suggests that equity<br>weights should be assigned to<br>QALYs                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |
| Owen<br>(2008)                   |                                                                                                                                                                                    |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
| Picavet et<br>al. (2011)         | Prevalence of rare diseases did not<br>significantly differ between<br>designated orphan drugs and non-<br>designated drugs (p=0.71).                                              |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
| Picavet et<br>al. (2012)         |                                                                                                                                                                                    |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   | The authors favour reducing cross-<br>country inequalities in access to<br>orphan drugs by regulating<br>compassionate access at the<br>European level                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |
| Pinxten et<br>al. (2012)         |                                                                                                                                                                                    |                                                                                                                                       |                                                                                                    | Orphan drug development is<br>compliant with the core<br>biomedical objectives of<br>health care because the rare<br>disease patients that these<br>drugs treat have urgent,<br>objective medical needs and<br>their lives are in danger if they<br>do not receive necessary care | The major challenge is to "address<br>the ethical dilemma of 'opportunity<br>cost' [this] has to be assessed<br>according to the various existing<br>concepts of distributive justice". It is<br>very difficult for the utilitarian<br>concept of distributive justice to<br>support the development and supply<br>of orphan drugs. Also the principle<br>of 'non-abandonment' does not<br>automatically entail a full realisation<br>of equality of opportunity in all of<br>its different concepts (equal access,<br>equal resources, and equal<br>outcomes) |                                                                                                                                                             |
| Prevot &<br>Watters<br>(2011)    |                                                                                                                                                                                    |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
| Schey et al. (2011)              |                                                                                                                                                                                    |                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |
| Siddiqui &<br>Rajkumar<br>(2012) | The retail prices of drugs are a<br>function of the costs of<br>development, the addressable<br>patient population, the patent life,<br>and the projected returns on<br>investment | The seriousness of a<br>cancer diagnosis<br>influences how much<br>cost patients and<br>physicians are willing<br>to bear for minimal |                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |

|                            |                                                                                                      |                                                                                                                  | Disease-related value                             | -bearing factors                                                                                            |                                                     |                                                                                                                     |
|----------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Study                      | Prevalence (rarity) of disease                                                                       | Severity (seriousness)<br>of disease                                                                             | Identifiability of the beneficiaries of treatment | Extent to which the disease is<br>life-threatening or chronically<br>debilitating                           | Impact of treatment upon the distribution of health | Availability of treatment alternatives                                                                              |
|                            |                                                                                                      | incremental benefits.<br>Cancer drugs are<br>expensive partly<br>because of the<br>seriousness of the<br>disease |                                                   |                                                                                                             |                                                     |                                                                                                                     |
| Stafinski et<br>al. (2011) |                                                                                                      | Considered by<br>workshop participants<br>to be a critical input<br>into decision-making<br>processes            |                                                   |                                                                                                             |                                                     | Considered by<br>workshop participants<br>to be a critical input into<br>decision-making<br>processes               |
| Stolk et al.<br>(2006)     | Proposed criteria include<br>requirement that disease prevalence<br>is < 5-7.5 per 10,000 population |                                                                                                                  |                                                   | Proposed criteria include<br>requirement that disease is<br>life-threatening or chronically<br>debilitating |                                                     | Proposed criteria<br>include requirement that<br>there be no alternatives<br>on the WHO Essential<br>Medicines List |
| Sullivan<br>(2008)         |                                                                                                      |                                                                                                                  |                                                   |                                                                                                             |                                                     |                                                                                                                     |
| Valverde<br>(2011)         |                                                                                                      |                                                                                                                  |                                                   |                                                                                                             |                                                     |                                                                                                                     |
| Wild et al.<br>(2011)      |                                                                                                      |                                                                                                                  |                                                   |                                                                                                             |                                                     |                                                                                                                     |
| Winquist et<br>al. (2012)  | Considered as part of the author's<br>proposed framework                                             |                                                                                                                  |                                                   |                                                                                                             |                                                     |                                                                                                                     |

## Table A3.2.3: Data extracted during scoping review (3 of 6)Note: Columns marked with \* are duplicated from earlier tables

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]                                                                                                                                                | <b>Freatment-related va</b>    | alue-bearing factors                                                                                                                                                                                                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                    | Evidence of treatment efficacy or<br>effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Magnitude of treatment benefit                                                                                                                   | Safety profile of<br>treatment | Innovation profile of<br>treatment                                                                                                                                                                                                   | Societal impact of<br>treatment | Impact of treatment upon the distribution of<br>health*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Barrett et<br>al. (2012) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | While ivacaftor represents a major step<br>forward in terms of disease<br>management, it remains a symptomatic<br>treatment (rather than a cure) |                                |                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Clarke<br>(2006)         | <ol> <li>The author asks whether Canadian<br/>patients should be "denied access to<br/>potentially effective new treatments<br/>for formerly untreatable and serious<br/>diseases only because it is virtually<br/>impossible to evaluate the cost-<br/>effectiveness of those treatments using<br/>conventional criteria"? 2. It is difficult<br/>to evaluate effectiveness due to the<br/>nature of rare diseases (complex,<br/>multi-system, highly variable clinical<br/>courses, lack of knowledge about the<br/>untreated course of disease)</li> </ol> |                                                                                                                                                  |                                |                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Clarke et al.<br>(2009)  | Considered as part of the author's<br>proposed framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                  |                                |                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Claxton et<br>al. (2008) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manufacturer can charge a higher price<br>if they can demonstrate additional<br>health benefits                                                  |                                | Value of innovation –<br>why should the NHS<br>pay more than the value<br>of the benefits from a<br>new technology in the<br>hope that a more<br>valuable future<br>technology will be<br>developed – paying<br>twice for innovation |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Denis et al.<br>(2010)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                |                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Desser<br>(2013)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48.3% prefer allocating funds so that<br>the largest number of patients receives<br>treatment                                                    |                                |                                                                                                                                                                                                                                      |                                 | The authors find little support among<br>Norwegian doctors for prioritizing the<br>treatment of rare diseases, although a<br>preference for allocating resources in<br>accordance with the principle of reserving a<br>small portion of resources for rare disease<br>patients is noted. 48.3% prefer allocating<br>funds so that the largest number of patients<br>receives treatment, while 44.4% believe a<br>small share should go towards the rare<br>disease group, 5.3% believe the budget<br>should be divided equally, and 2.0% believe<br>the majority of the budget should be allocated<br>to the rare disease group |
| Dickson et<br>al. (2011) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                |                                                                                                                                                                                                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                                    |                                                                                                                                 | ]                                                                                                                                    | Freatment-related v                                                                                               | alue-bearing factors                                                                 |                                                                                                                                                                                     |                                                                                                                                                             |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                              | Evidence of treatment efficacy or<br>effectiveness                                                                              | Magnitude of treatment benefit                                                                                                       | Safety profile of<br>treatment                                                                                    | Innovation profile of<br>treatment                                                   | Societal impact of treatment                                                                                                                                                        | Impact of treatment upon the distribution of<br>health*                                                                                                     |
| Drakulich<br>(2011)                |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Drummond<br>et al. (2007)          | Health insurers cannot, and should not,<br>be expected to fund, at any price, all<br>effective orphan drugs                     |                                                                                                                                      |                                                                                                                   |                                                                                      | Standard HTA methods<br>may not capture the full<br>societal value of some<br>health technologies, and<br>there are serious<br>shortcomings in the<br>evaluation of orphan<br>drugs |                                                                                                                                                             |
| Dunoyer<br>(2011)                  |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Garattini<br>(2012)                |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Gupta<br>(2012)                    |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Hughes et<br>al. (2005)            |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Hughes-<br>Wilson et al.<br>(2012) |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Hutchings<br>et al. (2012)         |                                                                                                                                 | Theraputic benefit of treatment<br>considered as part of the author's<br>proposed framework                                          |                                                                                                                   | Scientific innovation<br>considered as part of<br>the author's proposed<br>framework | Familial and societal<br>impact considered as<br>part of the author's<br>proposed framework                                                                                         |                                                                                                                                                             |
| Joppi et al.<br>(2012)             | More stringent criteria recommeded by authors                                                                                   |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Kanavos &<br>Nicod<br>(2012)       |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Kesselheim<br>et al. (2011)        | Orphan drug trials were more likely to<br>assess disease response (68% vs. 27%)<br>rather than overall survival (8% vs.<br>27%) |                                                                                                                                      | Orphan drug<br>trials resulted in<br>more patients<br>with serious<br>adverse events<br>(48% vs. 36%;<br>p=0.04). |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Largent &<br>Pearson<br>(2012)     |                                                                                                                                 | Potential health gains must be<br>evaluated in context to determine if<br>they provide a benefit over what is<br>currently available |                                                                                                                   |                                                                                      |                                                                                                                                                                                     | "It strains credulity to say that the more<br>caring society is the one that sacrifices<br>several anonymous lives in order to save an<br>identifiable one" |
| Laupacis<br>(2009)                 |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Liang &<br>Mackev<br>(2010)        |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Luisetti at<br>al. (2012)          |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |
| Matthews<br>and Glass<br>(2013)    |                                                                                                                                 |                                                                                                                                      |                                                                                                                   |                                                                                      |                                                                                                                                                                                     |                                                                                                                                                             |

|                              |                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                     | Freatment-related va                                                | alue-bearing factors                                                                                                                                                                                                                              |                                 |                                                                                                                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                        | Evidence of treatment efficacy or<br>effectiveness                                                                                                                                                                                                                                                                                                                 | Magnitude of treatment benefit                                                                                                                                                                        | Safety profile of<br>treatment                                      | Innovation profile of<br>treatment                                                                                                                                                                                                                | Societal impact of<br>treatment | Impact of treatment upon the distribution of health*                                                                                                                                                            |
| Mavris &<br>Le Cam<br>(2012) |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| McCabe et<br>al. (2005)      | The level of evidence required should<br>depend on the consequences of the<br>uncertainty – how much will society<br>lose in terms of resources and health<br>foregone if a wrong decision is made?                                                                                                                                                                |                                                                                                                                                                                                       |                                                                     | Cost of production and<br>value of innovation<br>cannot justify special<br>treatment for orphan<br>drugs                                                                                                                                          |                                 | Special status for orphan drugs may also<br>impose substantial and increasing costs on the<br>healthcare system – costs borne by other,<br>unknown patients                                                     |
| McCabe et<br>al. (2010)      |                                                                                                                                                                                                                                                                                                                                                                    | Existing arguments that society values<br>providing access to orphan drugs have<br>not been based on evidence, and are<br>contradicted by the evidence on social<br>values collected by Desser et al. |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| Meekings et<br>al. (2012)    |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| Mentzakis<br>et al. (2011)   |                                                                                                                                                                                                                                                                                                                                                                    | The coefficient for disease severity and<br>life-years gained are both significant<br>and positive. the probability of<br>preferring a drug that increases life by<br>1 year increase by 4.5%         |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| Michel &<br>Toumi<br>(2012)  | Information may be collected through patient registries                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                       | Information<br>may be<br>collected<br>through patient<br>registries | cost-containment<br>measures – which may<br>be necessary due to the<br>strain that orphan drugs<br>put on national health<br>budgets – will not be<br>productive or<br>appropriate for the long<br>term development of<br>drugs for rare diseases |                                 |                                                                                                                                                                                                                 |
| Moberly<br>(2005)            |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 | Citing Hughes, notes that political concerns<br>over postcode prescribing contributed to the<br>UK DoH moving commissioning away from<br>WMSSA, and suggests that equity weights<br>should be assigned to QALYs |
| Owen<br>(2008)               | The primary outcomes measured<br>varied for each approved drug and<br>included: overall survival,<br>progression-free survival, and<br>surrogate parameters (c.g., molecular<br>response). Overall survival was used<br>as a primary outcome measure for only<br>one of the 6 drugs studied. There is a<br>lack of proven effectiveness at the<br>time of approval |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| Picavet et al.<br>(2011)     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                 |
| Picavet et al.<br>(2012)     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 | The authors favour reducing cross-country<br>inequalities in access to orphan drugs by<br>regulating compassionate access at the<br>European level                                                              |
| Pinxten et<br>al. (2012)     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                     |                                                                                                                                                                                                                                                   |                                 | dilemma of 'opportunity cost' [this] has to<br>be assessed according to the various existing                                                                                                                    |

|                                  | Treatment-related value-bearing factors                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Study                            | Evidence of treatment efficacy or<br>effectiveness                                                                                                      | Magnitude of treatment benefit                                                                                                                                                                                                                                                                                                                                                                                            | Safety profile of<br>treatment                                                                    | Innovation profile of<br>treatment | Societal impact of<br>treatment                                                                                                                                                                                                       | Impact of treatment upon the distribution of<br>health*                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                    |                                                                                                                                                                                                                                       | concepts of distributive justice". It is very<br>difficult for the utilitarian concept of<br>distributive justice to support the<br>development and supply of orphan drugs.<br>Also the principle of 'non-abandonment'<br>does not automatically entail a full realisation<br>of equality of opportunity in all of its<br>different concepts (equal access, equal<br>resources, and equal outcomes) |  |  |
| Prevot &<br>Watters<br>(2011)    |                                                                                                                                                         | The impact of therapy on life<br>expectancy and quality of life should<br>be taken into account when considering<br>funding for PID treatment                                                                                                                                                                                                                                                                             |                                                                                                   |                                    | Impact on societal and<br>professional life should<br>be taken into account<br>when considering<br>funding for PID<br>treatment. Collection of<br>data on broader<br>economic value of PID<br>diagnosis and treatment<br>is necessary |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Schey et al.<br>(2011)           |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Siddiqui &<br>Rajkumar<br>(2012) |                                                                                                                                                         | The development of new cancer drugs<br>is usually associated with metrics such<br>as "superior responses" and "longer<br>overall survival" Thus, new versions of<br>old cancer drugs do not become<br>alternatives that create competition for<br>price. There is no requirement for a<br>minimum magnitude of benefit. Cancer<br>drugs are expensive partly because of<br>the lack of thresholds for clinical<br>benefit |                                                                                                   |                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Stafinski et<br>al. (2011)       | Considered by workshop participants<br>to be a critical input into decision-<br>making processes                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                    | Considered by<br>workshop participants<br>to be a critical input<br>into decision-making<br>processes                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Stolk et al.<br>(2006)           | Proposed criteria include requirement<br>that treatment is effective                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                           | Proposed<br>criteria include<br>requirement that<br>treatment has a<br>positive safety<br>profile |                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Sullivan<br>(2008)               |                                                                                                                                                         | Well-designed disease-based<br>pharmacoeconomic models will in<br>some cases help to identify<br>subpopulations where the drug will<br>have greater benefit                                                                                                                                                                                                                                                               |                                                                                                   |                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Valverde<br>(2011)               | There is a need to look beyond<br>medical and cost-effectiveness factors<br>to include the societal impact of health<br>technologies in the HTA process |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                    | There is a need to look<br>beyond medical and<br>cost-effectiveness<br>factors to include the<br>societal impact of                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

|                       | Treatment-related value-bearing factors                                                                                                                                            |                                |                   |                       |                        |                                              |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|-----------------------|------------------------|----------------------------------------------|--|--|--|--|
| Study                 | Evidence of treatment efficacy or                                                                                                                                                  | Magnituda of treatment henefit | Safety profile of | Innovation profile of | Societal impact of     | Impact of treatment upon the distribution of |  |  |  |  |
|                       | effectiveness                                                                                                                                                                      | Magnitude of treatment benefit | treatment         | treatment             | treatment              | health*                                      |  |  |  |  |
|                       |                                                                                                                                                                                    |                                |                   |                       | health technologies in |                                              |  |  |  |  |
|                       |                                                                                                                                                                                    |                                |                   |                       | the HTA process        |                                              |  |  |  |  |
| Wild et al.<br>(2011) | there is a strong and outspoken<br>agreement among HTA agencies that<br>orphan drugs have to prove<br>effectiveness like any other drug.<br>Overall survival was used as a primary |                                |                   |                       |                        |                                              |  |  |  |  |
| (2011)                | outcome measure for only one of the 6<br>drugs studied. There is a lack of                                                                                                         |                                |                   |                       |                        |                                              |  |  |  |  |
|                       | proven effectiveness at the time of                                                                                                                                                |                                |                   |                       |                        |                                              |  |  |  |  |
|                       | approval                                                                                                                                                                           |                                |                   |                       |                        |                                              |  |  |  |  |
| Winquist et           | Considered as part of the author's                                                                                                                                                 |                                |                   |                       |                        |                                              |  |  |  |  |
| al. (2012)            | proposed framework                                                                                                                                                                 |                                |                   |                       |                        |                                              |  |  |  |  |

## Table A3.2.4: Data extracted during scoping review (4 of 6)Note: Columns marked with \* are duplicated from earlier tables

|                           | Socio-economic-related value-bearing factors                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Study                     | Societal impact of<br>treatment*                                                                                                                                                 | Impact of treatment upon the distribution of health*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Socio-economic policy<br>objectives                                                                               | Industrial and commercial policy considerations                                                                                                                                                                                                                                                                                                                                         | Legal considerations |  |  |  |
| Barrett et al.<br>(2012)  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Clarke<br>(2006)          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Clarke et al.<br>(2009)   |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Claxton et<br>al. (2008)  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | Domestic research and development: current<br>pharmaceutical price regulation does not incentivise<br>inward investment – choice of location is influenced<br>by incentives including investment in infrastructure,<br>degree of public investment in research, and local<br>costs – is it appropriate to use NHS resources for<br>industrial policy rather than improvement in health? |                      |  |  |  |
| Denis et al.<br>(2010)    |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Desser<br>(2013)          |                                                                                                                                                                                  | The authors find little support among Norwegian<br>doctors for prioritizing the treatment of rare diseases,<br>although a preference for allocating resources in<br>accordance with the principle of reserving a small<br>portion of resources for rare disease patients is noted.<br>48.3% prefer allocating funds so that the largest<br>number of patients receives treatment, while 44.4%<br>believe a small share should go towards the rare<br>disease group, 5.3% believe the budget should be<br>divided equally, and 2.0% believe the majority of the<br>budget should be allocated to the rare disease group |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Dickson et<br>al. (2011)  |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Drakulich<br>(2011)       |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Drummond<br>et al. (2007) | Standard HTA methods<br>may not capture the full<br>societal value of some<br>health technologies, and<br>there are serious<br>shortcomings in the<br>evaluation of orphan drugs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Health insurers cannot,<br>and should not, be<br>expected to fund, at any<br>price, all effective orphan<br>drugs |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Dunoyer<br>(2011)         |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |
| Garattini<br>(2012)       |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                   | The average cost of a daily defined dose (DDD) of<br>orphan drugs in Italy is about €97, which translates<br>into a total gross income of €885 million for 1 year of<br>treatment for 25,000 people in Europe. Even after ex-<br>factory price is applied, with 10-year market<br>exclusivity the pharmaceutical company will amply<br>recover their expenses of developing the drug    |                      |  |  |  |

|                                    | Socio-economic-related value-bearing factors                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Study                              | Societal impact of<br>treatment*                                                            | Impact of treatment upon the distribution of health*                                                                                                     | Socio-economic policy<br>objectives                                                                                                                                                                                                                     | Industrial and commercial policy considerations                                                                                                                                                                                                                                                                           | Legal considerations |  |  |  |
| Gupta<br>(2012)                    |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Hughes et al.<br>(2005)            |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Hughes-<br>Wilson et al.<br>(2012) |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Hutchings et<br>al. (2012)         | Familial and societal<br>impact considered as part<br>of the author's proposed<br>framework |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Joppi et al.<br>(2012)             |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Kanavos &<br>Nicod (2012)          |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         | What is considered to be "sufficiently profitable"<br>needs to be defined. Appropriate benchmarks are<br>needed to argue that returns from orphan drugs are<br>excessive. Orphan drugs are supported by a<br>regulatory framework which, in principle, should<br>make the cost of drug discovery and development<br>lower |                      |  |  |  |
| Kesselheim<br>et al. (2011)        |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Largent &<br>Pearson<br>(2012)     |                                                                                             | "It strains credulity to say that the more caring society<br>is the one that sacrifices several anonymous lives in<br>order to save an identifiable one" |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Laupacis<br>(2009)                 |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Liang &<br>Mackev<br>(2010)        |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Luisetti at<br>al. (2012)          |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         | There should be tax exemptions for R&D for orphan drugs                                                                                                                                                                                                                                                                   |                      |  |  |  |
| Matthews<br>and Glass<br>(2013)    |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| Mavris & Le<br>Cam (2012)          |                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |
| McCabe et<br>al. (2005)            |                                                                                             | Special status for orphan drugs may also impose<br>substantial and increasing costs on the healthcare<br>system – costs borne by other, unknown patients | The justification for<br>special status for rare<br>diseases must rest on the<br>question: do we value the<br>health gain to two<br>individuals differently<br>because one individual<br>has a common disorder<br>and the other has a rare<br>disorder? | Cost of production and value of innovation cannot<br>justify special treatment for orphan drugs                                                                                                                                                                                                                           |                      |  |  |  |
| McCabe et<br>al. (2010)            |                                                                                             |                                                                                                                                                          | The increasing number of<br>orphan drugs, and the<br>prices charged for them,<br>pose a substantial and<br>growing fiscal challenge<br>for healthcare systems                                                                                           |                                                                                                                                                                                                                                                                                                                           |                      |  |  |  |

|                                           | Socio-economic-related value-bearing factors                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Study                                     | Societal impact of<br>treatment*                                                                                                                               | Impact of treatment upon the distribution of health*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Socio-economic policy<br>objectives | Industrial and commercial policy considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Legal considerations                                                                                                  |  |  |
| Meekings et<br>al. (2012)                 |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | The average orphan drug generates more revenue<br>than the average non-orphan drug. Also the costs of<br>developement are expected to be lower for orphan<br>drugs, since clinical trials are shorter, regulatory<br>findings are more successful, and R&D costs can be<br>lowered as a result of the various ODA benefits (fee<br>waivers, R&D grants, tax incentives, etc.), The mean<br>present value (PV) per drug over the period 1987-<br>2030 was \$12.1bn for orphan drugs and \$11.5bn for<br>non-orphan drugs, corresponding to an average PV of<br>\$406m and \$399m per year respectively. Whereas the<br>mean PV for non-orphan drugs remained<br>approximately constant between 2000 and 2010, at<br>\$600m per year, the mean PV of orphan drugs nearly<br>doubled from \$351 in 2000 to \$637m in 2010.<br>Orphan drugs have greater profitability than other<br>drugs when considered in the full context of<br>developmental drivers, including: government<br>financial incentives, smaller clinical trial sizes,<br>shorter clinical trial times, and higher rates of<br>regulatory success |                                                                                                                       |  |  |
| Mentzakis et                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| al. (2011)<br>Michel &<br>Toumi<br>(2012) |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| Moberly<br>(2005)                         |                                                                                                                                                                | Citing Hughes, notes that political concerns over<br>postcode prescribing contributed to the UK DoH<br>moving commissioning away from WMSSA, and<br>suggests that equity weights should be assigned to<br>QALYs                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Legal concerns over<br>commercial expectation<br>contributed to the UK DoH<br>moving commissioning away<br>from WMSSA |  |  |
| Owen (2008)                               |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| Picavet et al.<br>(2011)                  |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| Picavet et al.<br>(2012)                  |                                                                                                                                                                | The authors favour reducing cross-country<br>inequalities in access to orphan drugs by regulating<br>compassionate access at the European level                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| Pinxten et<br>al. (2012)                  |                                                                                                                                                                | The major challenge is to "address the ethical<br>dilemma of 'opportunity cost' [this] has to be<br>assessed according to the various existing concepts of<br>distributive justice". It is very difficult for the<br>utilitarian concept of distributive justice to support<br>the development and supply of orphan drugs. Also the<br>principle of 'non-abandonment' does not<br>automatically entail a full realisation of equality of<br>opportunity in all of its different concepts (equal<br>access, equal resources, and equal outcomes) |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |
| Prevot &<br>Watters<br>(2011)             | Impact on societal and<br>professional life should be<br>taken into account when<br>considering funding for<br>PID treatment. Collection<br>of data on broader |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       |  |  |

|                                  | Socio-economic-related value-bearing factors                                                                                                                   |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Study                            | Societal impact of<br>treatment*                                                                                                                               | Impact of treatment upon the distribution of health* | Socio-economic policy<br>objectives | Industrial and commercial policy considerations                                                                                                                           | Legal considerations                                                                                                                                                                                                                                                                 |  |  |  |
|                                  | economic value of PID<br>diagnosis and treatment is<br>necessary                                                                                               |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Schey et al.<br>(2011)           |                                                                                                                                                                |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Siddiqui &<br>Rajkumar<br>(2012) |                                                                                                                                                                |                                                      |                                     | The retail prices of drugs are a function of the costs of<br>development, the addressable patient population, the<br>patent life, and the projected returns on investment | The retail prices of drugs are a<br>function of the patent life,<br>among other things. Cancer<br>drugs are expensive partly<br>because of the 'monopoly'<br>position many pharmaceutical<br>companies find themselves in<br>and the lack of a true generic<br>price check in cancer |  |  |  |
| Stafinski et<br>al. (2011)       | Considered by workshop<br>participants to be a critical<br>input into decision-making<br>processes                                                             |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Stolk et al.<br>(2006)           |                                                                                                                                                                |                                                      |                                     | "Because of their small market potential, [orphan<br>drugs] are not attractive for pharmaceutical<br>companies to develop and market".                                    |                                                                                                                                                                                                                                                                                      |  |  |  |
| Sullivan<br>(2008)               |                                                                                                                                                                |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Valverde<br>(2011)               | There is a need to look<br>beyond medical and cost-<br>effectiveness factors to<br>include the societal impact<br>of health technologies in<br>the HTA process |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Wild et al. (2011)               |                                                                                                                                                                |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |
| Winquist et<br>al. (2012)        |                                                                                                                                                                |                                                      |                                     |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                      |  |  |  |

# Table A3.2.5: Data extracted during scoping review (5 of 6)Note: Columns marked with \* are duplicated from earlier tables

|                           | Pop                                                                                                                                                                           | oulation-related value-bearing factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                      | Othe                                        | r factors                                | Cost-effectiveness                                                                                                                                                                                                                                                                                |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                     | Societal impact of treatment*                                                                                                                                                 | Impact of treatment upon the distribution of health*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Socio-economic<br>policy objectives*                                                                                 | Feasibility of<br>diagnosing the<br>disease | Feasibility of<br>providing<br>treatment | Cost-effectiveness of treatment                                                                                                                                                                                                                                                                   |
| Barrett et<br>al. (2012)  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Clarke<br>(2006)          |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          | The author asks whether Canadian patients should be "denied<br>access to potentially effective new treatments for formerly<br>untreatable and serious diseases only because it is virtually<br>impossible to evaluate the cost-effectiveness of those treatments<br>using conventional criteria"? |
| Clarke et<br>al. (2009)   |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          | Considered as part of the author's proposed framework                                                                                                                                                                                                                                             |
| Claxton et<br>al. (2008)  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          | Assessment ought to be transparent and based on independent scientific analysis                                                                                                                                                                                                                   |
| Denis et al.<br>(2010)    |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          | Given the budget impact of orphan drugs in Belgium in 2008, the total number of QALYs required to satisfy a €34,000 per QALY threshold value varied from 1 (Increlex) to 229 (Myozyme)                                                                                                            |
| Desser<br>(2013)          |                                                                                                                                                                               | The authors find little support among<br>Norwegian doctors for prioritizing the<br>treatment of rare diseases, although a<br>preference for allocating resources in<br>accordance with the principle of<br>reserving a small portion of resources<br>for rare disease patients is noted. 48.3%<br>prefer allocating funds so that the<br>largest number of patients receives<br>treatment, while 44.4% believe a small<br>share should go towards the rare disease<br>group, 5.3% believe the budget should<br>be divided equally, and 2.0% believe<br>the majority of the budget should be<br>allocated to the rare disease group |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Dickson et<br>al. (2011)  |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Drakulich<br>(2011)       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Drummond<br>et al. (2007) | Standard HTA methods may<br>not capture the full societal<br>value of some health<br>technologies, and there are<br>serious shortcomings in the<br>evaluation of orphan drugs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Health insurers<br>cannot, and should<br>not, be expected to<br>fund, at any price,<br>all effective orphan<br>drugs |                                             |                                          | Standard HTA methods may not capture the full societal value of<br>some health technologies, and there are serious shortcomings in<br>the evaluation of orphan drugs                                                                                                                              |
| Dunoyer<br>(2011)         |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Garattini<br>(2012)       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |
| Gupta<br>(2012)           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                   |

|                                    | Po                                                       | Population-related value-bearing factors                                                                                                                    |                                      | Other factors                               |                                          | Cost-effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                              | Societal impact of treatment*                            | Impact of treatment upon the distribution of health*                                                                                                        | Socio-economic<br>policy objectives* | Feasibility of<br>diagnosing the<br>disease | Feasibility of<br>providing<br>treatment | Cost-effectiveness of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hughes et<br>al. (2005)            |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hughes-<br>Wilson et<br>al. (2012) | Familial and sociatal impact                             |                                                                                                                                                             |                                      |                                             |                                          | 1. Two main criticisms of the current regulatory system for<br>orphan drugs are: the high prices of orphan drugs and their<br>inability to meet standard cost-effectiveness thresholds; and the<br>system itself which allows companies to benefit from achieving<br>orphan drug designation on their product. 2. Given the inability<br>of orphan drugs to meet current cost-effectiveness thresholds, the<br>standard methodologies of Health Technology Assessments must<br>be updated and tailored specific to orphan drugs                                                                                                                                                                                                                                                                   |
| Hutchings<br>et al. (2012)         | considered as part of the<br>author's proposed framework |                                                                                                                                                             |                                      |                                             |                                          | Economic and budgetary implications considered as part of the author's proposed framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Joppi et al.<br>(2012)             |                                                          |                                                                                                                                                             |                                      |                                             |                                          | More stringent criteria recommeded by authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Kanavos &<br>Nicod<br>(2012)       |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Kesselheim<br>et al. (2011)        |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Largent &<br>Pearson<br>(2012)     |                                                          | "It strains credulity to say that the more<br>caring society is the one that sacrifices<br>several anonymous lives in order to<br>save an identifiable one" |                                      |                                             |                                          | The opportunity costs must be weighed to determine if they are<br>acceptable. In health care, the desire to save lives at any cost<br>must be reconciled with the reality of resource scarcity. It is<br>essential to find a way to quantify the opportunity costs<br>associated with coverage of expensive orphan drugs, regardless<br>of how small an overall expense these may be to a healthcare<br>system or insurance company. Funding orphan drugs is<br>acceptable only if the benefits to rare disease patients are seen to<br>outweigh to costs to others. However, prioritarianism is an<br>ethical argument for favouring the worst off - a sickest-first<br>principle might require allocation of resources even when only<br>minor gains can be achieved and the cost is very high. |
| Laupacis<br>(2009)                 |                                                          |                                                                                                                                                             |                                      |                                             |                                          | The author agrees with Drummon et al's statement that elements<br>of social value are not incorporated in traditional measures of<br>benefit in economic studies. The author disagrees with Drummon<br>et al's sole definition of equity as "fairness in access to<br>therapies", and provides two further definitions: "freedom from<br>bias or favouritism" and "fairness; impartiality justice." Based on<br>these definitions, the author argues that cost-effectiveness or<br>cost-utility ratios are an equitable way of guiding decision-<br>making                                                                                                                                                                                                                                        |
| Liang &<br>Mackev<br>(2010)        |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Luisetti at<br>al. (2012)          |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Matthews<br>and Glass<br>(2013)    |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mavris &<br>Le Cam<br>(2012)       |                                                          |                                                                                                                                                             |                                      |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                             | Po                            | Population-related value-bearing factors                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                               | Othe                                        | r factors                                | Cost-effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study                       | Societal impact of treatment* | Impact of treatment upon the distribution of health*                                                                                                                                                                                                                                                                                                                             | Socio-economic<br>policy objectives*                                                                                                                                                                                                                          | Feasibility of<br>diagnosing the<br>disease | Feasibility of<br>providing<br>treatment | Cost-effectiveness of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| McCabe et<br>al. (2005)     |                               | Special status for orphan drugs may<br>also impose substantial and increasing<br>costs on the healthcare system – costs<br>borne by other, unknown patients                                                                                                                                                                                                                      | The justification for<br>special status for<br>rare diseases must<br>rest on the question:<br>do we value the<br>health gain to two<br>individuals<br>differently because<br>one individual has a<br>common disorder<br>and the other has a<br>rare disorder? |                                             |                                          | Cost effectiveness should be treated the same way for orphan<br>drugs and those for more common conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| McCabe et<br>al. (2010)     |                               |                                                                                                                                                                                                                                                                                                                                                                                  | The increasing<br>number of orphan<br>drugs, and the prices<br>charged for them,<br>pose a substantial<br>and growing fiscal<br>challenge for<br>healthcare systems                                                                                           |                                             |                                          | Orphan drugs do not meet conventional measures of good value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Meekings                    |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| et al. (2012)               |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          | In the internet on the tenter the community of the second se |
| et al. (2011)               |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          | each life-year gained for a rare diseases than for a common one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Michel &<br>Toumi<br>(2012) |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Moberly<br>(2005)           |                               | Citing Hughes, notes that political<br>concerns over postcode prescribing<br>contributed to the UK DoH moving<br>commissioning away from WMSSA,<br>and suggests that equity weights should<br>be assigned to OALYs                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                             |                                          | "Complete restriction of funding for orphan drugs may be<br>justifiable from a health economics perspective but that is not<br>the only basis on which we judge access to treatment. A more<br>pragmatic approach is to find ways to make such treatments<br>available." - Hughes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Owen<br>(2008)              |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          | Modelling of long term clinical and economic outcomes is often<br>employed by the sponsors of orphan drugs, since large scale<br>clinical trial data are usually unavailable. The accuracy of this<br>modelling is difficult to assess, resulting in uncertainty in the<br>long-term cost-effectiveness of orphan drugs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Picavet et<br>al. (2011)    |                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                               |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Picavet et<br>al. (2012)    |                               | The authors favour reducing cross-<br>country inequalities in access to orphan<br>drugs by regulating compassionate<br>access at the European level                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               |                                             |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pinxten et<br>al. (2012)    |                               | The major challenge is to "address the<br>ethical dilemma of 'opportunity cost'<br>[this] has to be assessed according to<br>the various existing concepts of<br>distributive justice". It is very difficult<br>for the utilitarian concept of distributive<br>justice to support the development and<br>supply of orphan drugs. Also the<br>principle of 'non-abandonment' does |                                                                                                                                                                                                                                                               |                                             |                                          | The major challenge is to "address the ethical dilemma of<br>'opportunity cost' [this] has to be assessed according to the<br>various existing concepts of distributive justice".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | Pop                                                                                                                                                                                                                             | oulation-related value-bearing factors                                                                                                                               |                                      | Other factors                                                                                                 |                                                                                                                                              | Cost-effectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study                            | Societal impact of treatment*                                                                                                                                                                                                   | Impact of treatment upon the distribution of health*                                                                                                                 | Socio-economic<br>policy objectives* | Feasibility of<br>diagnosing the<br>disease                                                                   | Feasibility of<br>providing<br>treatment                                                                                                     | Cost-effectiveness of treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                  |                                                                                                                                                                                                                                 | not automatically entail a full realisation<br>of equality of opportunity in all of its<br>different concepts (equal access, equal<br>resources, and equal outcomes) |                                      |                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Prevot &<br>Watters<br>(2011)    | Impact on societal and<br>professional life should be<br>taken into account when<br>considering funding for PID<br>treatment. Collection of data<br>on broader economic value<br>of PID diagnosis and<br>treatment is necessary |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | Authors acknowledge that HTA and comparative effectiveness<br>analysis are increasingly used to guide healthcare budgetary<br>decisions                                                                                                                                                                                                                                                                                                                                                           |  |
| Schey et al.<br>(2011)           |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Siddiqui &<br>Rajkumar<br>(2012) |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | The seriousness of a cancer diagnosis influences how much cost<br>patients and physicians are willing to bear for minimal<br>incremental benefits. Economic analysis should be conducted to<br>manage the cost of cancer drugs                                                                                                                                                                                                                                                                    |  |
| Stafinski et<br>al. (2011)       | Considered by workshop<br>participants to be a critical<br>input into decision-making<br>processes                                                                                                                              |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | Considered by workshop participants to be a critical input into decision-making processes                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Stolk et al.<br>(2006)           |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      | Proposed<br>criteria include<br>requirement<br>that diagnosis<br>of the disease is<br>technically<br>feasible | Proposed criteria<br>include<br>requirement that<br>any necessary<br>specialist training,<br>knowledge and<br>infrastructure is<br>available |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Sullivan<br>(2008)               |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | Methods of determining value of specialty drugs are restricted by<br>a lack of clinical & economic data. Sophisticated disease-based<br>pharmacoeconomic models have been developed to fill this gap.<br>Well-designed models will indicate the extent to which drug<br>costs may be offset by reductions in other medical costs, will<br>evaluate the cost-effectiveness of new treatment, and in some<br>cases will help to identify subpopulations where the drug will<br>have greater benefit |  |
| Valverde<br>(2011)               | There is a need to look<br>beyond medical and cost-<br>effectiveness factors to<br>include the societal impact of<br>health technologies in the<br>HTA process                                                                  |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | There is a need to look beyond medical and cost-effectiveness factors to include the societal impact of health technologies in the HTA process                                                                                                                                                                                                                                                                                                                                                    |  |
| Wild et al.<br>(2011)            |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | There is a concern among HTA agencies that many orphan drugs fail conventional cost-effectiveness considerations                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Winquist et<br>al. (2012)        |                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                      |                                                                                                               |                                                                                                                                              | Considered as part of the author's proposed framework                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

|                                    |                            | Stakeholder preference                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value propositions                                                                         |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
|------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study                              | Preferences of<br>patients | Preferences of physicians                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preferences of society                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The "rule of rescue"                                                                       | The "equity principle"                                                                                                                                                                                                                                                                                                        | The "rights-based<br>approach"                                                                                                                                                                                                      |  |
| Barrett et<br>al. (2012)           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Clarke<br>(2006)                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Clarke et al.<br>(2009)            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Claxton et<br>al. (2008)           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Denis et al.<br>(2010)             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Desser<br>(2013)                   |                            | Substantial differences exist between<br>the preferences of doctors and the<br>general population. When treating rare<br>disease is more costly, a larger share of<br>doctors than the general population<br>prioritize treating the largest number of<br>patients. The author finds "some<br>support" for the idea that these<br>differences reflect doctors' greater<br>experience in making difficult medical<br>decisions and choice avoidance by the<br>general population. | Substantial differences exist between<br>the preferences of doctors and the<br>general population. When treating rare<br>disease is more costly, a larger share<br>of doctors than the general population<br>prioritize treating the largest number<br>of patients. The author finds "some<br>support" for the idea that these<br>differences reflect doctors' greater<br>experience in making difficult<br>medical decisions and choice<br>avoidance by the general population. |                                                                                            | When respondents were permitted<br>to divide funds in the equal-cost<br>scenario, the mean share of funds<br>allocated to the rare disease group<br>was 41.5%. When respondents<br>were permitted to divide funds in<br>the costly-rare scenario, the mean<br>share of funds allocated to the rare<br>disease group was 27.3% |                                                                                                                                                                                                                                     |  |
| Dickson et<br>al. (2011)           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Drakulich<br>(2011)                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Drummond<br>et al. (2007)          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | More research is needed to assess the<br>societal value of health technologies<br>and the methods of funding the<br>development and use of orphan drugs                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Dunoyer<br>(2011)                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Garattini<br>(2012)                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Gupta<br>(2012)                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |
| Hughes et<br>al. (2005)            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The "rule of rescue" proposes a commitment to non-abandonment of those with rare diseases. | The "equity principle" argues<br>against special consideration for<br>patients with rare diseases                                                                                                                                                                                                                             | The "rights-based<br>approach", in which<br>individuals are<br>entitled to a decent<br>minimum level of<br>health care (as<br>adopted in EU<br>legislation), requires<br>that treatments for<br>rare diseases are made<br>available |  |
| Hughes-<br>Wilson et al.<br>(2012) |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                     |  |

# Table A3.2.6: Data extracted during scoping review (6 of 6)

|                                 |                            | Stakeholder preferen      | ces                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value propositions                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|---------------------------------|----------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Study                           | Preferences of<br>patients | Preferences of physicians | Preferences of society                                                                                                                                                                                                                                                                                               | The "rule of rescue"                                                                                                                                                                                                                                                                                                                                                                                                                                     | The "equity principle"                                                                                                                                                                                                                                                                                                                                                                                | The "rights-based<br>approach" |
| Hutchings et<br>al. (2012)      |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Joppi et al.<br>(2012)          |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Kanavos &<br>Nicod (2012)       |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Kesselheim<br>et al. (2011)     |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Largent &<br>Pearson<br>(2012)  |                            |                           | The public are generally willing to<br>give preference to patients with life-<br>threatening or severe illnesses. Also,<br>the literature suggests that people<br>desire reassurance that they live in a<br>compassionate society, which might<br>be provided by spending more on the<br>rescue of an identified few | There are three constituent parts to<br>the rule of rescue: identifiable<br>individuals; endangered lives; and<br>opportunity costs. "There is no<br>ethically sound argument for<br>allocating resources on the basis of<br>Identifiability By shifting the<br>discussion to focus on [the other two]<br>elements of the rule of rescue, it is<br>possible to justify giving priority<br>consideration to some – though not all<br>– orphan therapies". | Fairness requires that we not<br>discriminate on morally irrelevant<br>grounds. Rare disease patients<br>should not receive any preference<br>in health resource allocation<br>because they are identifiable                                                                                                                                                                                          |                                |
| Laupacis<br>(2009)              |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The author disagrees with<br>Drummond et al's sole definition<br>of equity as "fairness in access to<br>therapies", and provides two<br>further definitions: "freedom from<br>bias or favouritism" and "fairness;<br>impartiality; justice" Based on<br>these definitions, the author argues<br>that cost-effectiveness or cost-<br>utility ratios are an equitable way<br>of guiding decision-making |                                |
| Liang &<br>Mackev<br>(2010)     |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Luisetti at<br>al. (2012)       |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Matthews<br>and Glass<br>(2013) |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Some countries "place more<br>importance on equity versus<br>concern for an efficient<br>pharmaceutical market"                                                                                                                                                                                                                                                                                       |                                |
| Mavris &<br>Le Cam<br>(2012)    |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| McCabe et<br>al. (2005)         |                            |                           | The justification for special status for<br>rare diseases must rest on the<br>question: does society value the health<br>gain to two individuals differently<br>because one individual has a common<br>disorder and the other has a rare<br>disorder?                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Valuing health outcomes more<br>highly for no other reason than<br>rarity of the condition seems<br>unsustainable and incompatible<br>with other equity principles and<br>theories of justice.                                                                                                                                                                                                        |                                |
| McCabe et<br>al. (2010)         |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| Meekings et<br>al. (2012)       |                            |                           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                       |                                |

|                                         |                                                                                                                | Stakeholder preferen      | ces                    | Value propositions                                                                                                                                                                                                                                                                                                                            |                        |                                |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|--|
| Study                                   | Preferences of<br>patients                                                                                     | Preferences of physicians | Preferences of society | The "rule of rescue"                                                                                                                                                                                                                                                                                                                          | The "equity principle" | The "rights-based<br>approach" |  |
| Mentzakis<br>et al. (2011)              |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Michel &<br>Toumi<br>(2012)             |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Moberly<br>(2005)                       | Lobbying by<br>patient groups<br>contributed to<br>the UK DoH<br>moving<br>commissioning<br>away from<br>WMSSA |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Owen (2008)<br>Picavet et al.<br>(2011) |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Picavet et al.<br>(2012)                |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Pinxten et<br>al. (2012)                |                                                                                                                |                           |                        | It is unethical to preclude rare<br>diseases from public health care<br>resources as this violates the principle<br>of non-abandonment. It is also<br>unethical to allocate unlimited<br>resources to a single field in<br>healthcare, such as rare diseases. A<br>compromise must be reached, taking<br>opportunity costs into consideration |                        |                                |  |
| Prevot &<br>Watters<br>(2011)           |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Schey et al.<br>(2011)                  |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Siddiqui &<br>Rajkumar<br>(2012)        |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Stafinski et<br>al. (2011)              | Considered by<br>workshop<br>participants to<br>be a critical<br>input into<br>decision-making<br>processes    |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Stolk et al.<br>(2006)                  |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Sullivan<br>(2008)                      |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Valverde<br>(2011)                      |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Wild et al.<br>(2011)                   |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |
| Winquist et<br>al. (2012)               |                                                                                                                |                           |                        |                                                                                                                                                                                                                                                                                                                                               |                        |                                |  |

### Appendix 4 (Chapter 4)

### Appendix 4.1: Objectivity and Equity: Clarity Required. A Response to Hill and Olson

## Mike Paulden<sup>1</sup>, James F. O'Mahony<sup>2</sup>, Anthony J. Culyer<sup>3,4</sup> and Christopher McCabe<sup>1</sup>

<sup>1</sup> Department of Emergency Medicine, University of Alberta, Edmonton, AB, Canada

<sup>2</sup> Department of Health Policy and Management, Trinity College Dublin, Dublin, Ireland

<sup>3</sup> Centre for Health Economics, University of York, Heslington, UK

<sup>4</sup> Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada

#### Acknowledgements

All authors assisted with the writing and editing of this letter. MP is supported by grants from the Canadian Institutes of Health Research (CIHR) and Genome Canada. JOM is supported by Ireland's Health Research Board. CM is supported by a Capital Health Research Chair Endowment. None of the authors has any relevant conflicts of interest. MP is the overall guarantor.

We thank Hill and Olson for their thoughtful commentary on our article.<sup>2,3</sup> We would like to take the opportunity to clarify our position and to correct some important matters of fact.

Hill and Olson write that "at the heart of the argument of Paulden et al. is an ethical claim: that all QALYs are of equal value". We did not make this claim, and such a claim is not required for our arguments to hold. Our arguments rely instead upon a less controversial ethical claim: that equal value should be assigned to the QALYs of individuals with identical characteristics whose circumstances differ only to the extent that some are the identifiable beneficiaries of an intervention while others are the non-identifiable bearers of the opportunity cost. While not ethically incontestable, this is no more than an application of the principle of horizontal justice, namely that people with like characteristics (of ethical relevance) be treated the same.<sup>44</sup> That means that the QALYs of those who are alike in the relevant respects ought to receive the same weight, whatever it may be. A different conclusion follows if the relevant respects differ. In such cases we are concerned with determining the appropriate vertical differentiation between people with different characteristics. To accord some people more favourable treatment by weighting their QALYs more than those of others is an easily justifiable departure from the OALY=OALY=OALY principle, appealing as it does to a principle of vertical justice, for which we expressed neither approval nor disapproval. One such vertical principle suggested by NICE has been to accord benefits accruing to people at the 'end of life' a greater weight. Our point was merely that the procedure, as applied hitherto by NICE, involves a conflict with horizontal justice by virtue of not according the anonymous losers who have the same characteristics a similar favourable weight. The solution is (at least in principle) plain – to weight the health gains (or losses) of all patients at the 'end of life' in the same way.

Although we did not make the claim that all QALYs are of equal value, we did call for NICE to return (for the time being) to the position that all QALYs are valued equally. This suggestion was not motivated by any belief that all QALYs should necessarily be equally weighted, but rather by a concern that the current and recently proposed methods of applying preferential weights do so inconsistently. To reiterate the point made in our paper, we feel that reverting to the equal valuation of QALYs is a pragmatic position to hold until such time as both a sound rationale and a consistent means of applying preferential weighting have been established.

Elsewhere, Hill and Olsen defend the use of 'arbitrary' cut points as providing "ethical advantages of certainty and transparency", while acknowledging that they may "disadvantage some people in ways that may be unfair". As we demonstrated in our paper, NICE's use of arbitrary cut points in its amended methods guidance not only disadvantages people in ways that are "unfair" (an ethical problem in itself), but may in some cases disadvantage the very individuals that NICE intends to benefit. This is a manifest inconsistency. It is also a problem regardless of the ethical position adopted, and clearly diminishes the "certainty and transparency" of NICE's guidance.

Our criticisms of 'selective discounting' were not "largely ethical", as Hill and Olson suggest – rather, we demonstrated explicitly that 'selective discounting' is logically inconsistent, *regardless of the ethical position adopted*. Moreover, we did not "question whether small absolute gains in survival, even if they are large in relative terms, really do represent 'additional value'". Obviously, small absolute gains in survival represent 'additional value'; the question is whether this additional value should be given even greater weight simply because the gains are large in relative terms. Whatever our views on the intrinsic merits of this (which we have not expressed) it seems that some ethical justification is required and, again, that some appeal to the public view may be appropriate.

Our primary concern is that the values of NICE and similar agencies are defensible and applied consistently. If there is a wish to prioritize the health of individuals with specific ethically appealing characteristics (e.g. those at the 'end of life'), policy makers must be cognizant of the possibility that individuals other than those who are the immediate focus of policy may also have those characteristics and may bear the opportunity cost of their decisions. Failure to account for this risks biasing assessments in favour of the adoption of new interventions, and may compromise the health of all patients, including the very individuals whose needs NICE has said it wishes to prioritize.

Yours sincerely,

Mike Paulden, James F O'Mahony, Anthony J Culyer, Christopher McCabe

454