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The fa c t that we live at the bottom o f  a deep gravity well, on the surface o f  a gas 
covered planet going around a nuclear fireball 90 million miles away and think 
this to be normal is obviously some indication o f  how skewed our perspective

tends to be.

-D ouglas Adams, 1998
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Abstract

Recognizing the high suitability o f fuzzy logic-based models for the task o f system 

modelling and knowledge discovery, this work proposes a new approach to the auto­

matic identification and optimization of fuzzy models. With a highly effective two- 

phase design process, we are able to realize adaptive logic processing in the form 

o f structural and parametric optimization. Efficient structural learning is achieved 

through the use o f well-established methods in Boolean minimization, with the 

resulting structure then refined with fuzzy neurons. The combination of a purely 

logic-driven architecture with this novel hybrid-learning scheme helps to develop 

transparent and accurate models while exhibiting superb computational efficiency. 

Further, this adaptive fuzzy modelling framework exhibits excellent potential for 

driving intelligent systems that must operate in dynamic and rapidly changing envi­

ronments. In further studies, we investigate this avenue and identify various critical 

design issues as we propose a versatile neurofuzzy hardware platform.
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Chapter 1 

Introduction

One cannot dispute the benefits o f modelling complex real-world systems, concepts, 
and processes, of which there are two main desires. First, if the model is an 
accurate one, not only is it able to behave in the same way the target system would 
under familiar conditions, but also for unforeseen circumstances where we would 
otherwise have no way of knowing how the system would react; this is accom­
plished through generalization of its knowledge, effectively achieving predictive 
capabilities. Further, if the model is sufficiently transparent, we are able to interpret 
and learn the details o f how the system works, gaining powerful knowledge that 
was previously unattainable; as well, this communication through interpretability 
is not a one-way street, as a user could also potentially modify its structure in 
order to make corrections or augmentations. The importance o f these two qualities 
become quite evident when referring to any o f a large list of useful applications, 
where just a few examples include: business intelligence, ex. predicting property 
value or customer trends and understanding the cause of them; real-time process 
control, where we can achieve desired behaviour while potentially discovering ways 
to optimize its operation; robotics, ex. learning and generalizing for navigation 
in unpredictable environments, where its learnt knowledge could be checked by a 
designer to verify appropriate behaviour; medicine, such as automatic diagnosis of 
diseases and characterization o f what causes them; the possibilities are endless.

Successfully modelling a complex system is a difficult task. As we are funda­
mentally in the realm of mathematics, we must attempt to quantify the target system 
numerically. This requires taking measurements of a few, tens or even hundreds of 
independent variables (attributes), each o f which could represent a significant con­
tributing factor in dictating the target’s behaviour. Since this behaviour is precisely 
what we are trying to learn and understand (model), we encounter the problem 
of having to deal with high levels o f dimensionality as the number of variables, 
or inputs, increases. Like attempting to understand the real world itself, one can 
potentially consider an infinite number o f perspectives that may or may not have a

1
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significant impact on what we are trying to comprehend.
Attempting to build a model by hand is often impractical, and even when fea­

sible (i.e. only a few variables to deal with), it can be an extremely tedious and 
time-consuming process requiring one or more domain experts for designing its 
architecture; such models can often be lacking in accuracy as well. With these 
difficulties, some means of automatic model identification is highly desirable and 
often utilized, where a machine may learn from raw system data in order to build a 
transparent knowledge base from which to act. However, we are still far away from 
an ideal framework for such a solution, making it an active area of research.

1.1 Objectives

It is important to emphasize that any model is constructed (designed) with some 
fundamental objectives in mind. These objectives are directly applicable in the 
development of some modelling framework, so the resulting methodologies may 
apply to a broad range o f applications. In particular, there are several dominant 
goals that one may strive to accomplish in system modelling:

•  Accurate approximation abilities. The model should be able to capture the 
nature of the data (system) by minimizing a certain performance index (ex. 
sum of squared errors), where the error is measured by comparing model 
output (behaviour) to the desired output observed from the system. The 
accuracy of this approximation should remain high even when computing 
output from new data, of which there is no observed system reaction, as we 
must be able to rely on the model to produce a correct result.

•  Intuitive interpretation abilities. The model should be a transparent one, 
meaning that it describes the system in a format that is easily understood 
by the user, helps reveal the most essential dependencies, and quantifies the 
relationships at some level of information granularity. There is a fundamental 
guiding instrument here, known as Occam’s razor principle. It states that a 
simple model is always preferred over a more complex one if both approxi­
mate (explain) the data to the same degree. Therefore, we should strive for 
the most concise explanations as possible. This would also greatly help in 
avoiding the problem of over-fitting training data, which can quickly destroy 
the models generalization abilities.

•  Robustness to high dimensionality. The model should be reasonably capable 
of overcoming the “curse” of dimensionality. As mentioned above, quantify­
ing real-world entities can often involve very high levels o f dimensionality;

2
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the model should possess faculties for dealing with such situations, effec­
tively discovering which elements have significant impact on the system’s 
behaviour.

•  High computational efficiency. In several ways, the model should be an 
efficient one, wasting as little computation time as possible. For one, the 
model-building process o f identification and subsequent optimization should 
be relatively fast, without sacrificing learning quality. As well, it is desirable 
for the finalized model to be proficient in its information processing, quickly 
producing accurate output (behaviour) when presented with new input data. 
The application area is critical here, as each have their own timing constraints; 
from this statement it is obvious that increased efficiency results in applica­
bility to a wider rage of real-world problems.

Unfortunately, the two most fundamental modelling thrusts, namely accuracy 
and transparency, are somewhat in conflict with each other. For instance, efforts 
in achieving high accuracy quite often fall back on the “black box” information 
processing paradigm, where the knowledge residing in the resultant model can­
not be appropriately communicated to the user in any kind of easily-understood 
format. As well, it can be quite difficult to autonomously learn a concise, highly 
interpretable architecture while maintaining high levels of accuracy. Further, in the 
presence of highly dimensional systems, these problems are amplified considerably. 
Additionally, coming up with effective solutions to these apparent problems can 
also result in the requirement o f significantly longer computation times.

Motivated by these challenges, this thesis seeks to achieve a modelling frame­
work that is able to strike a flexible and effective balance between accuracy and 
transparency, promoting efficiency even when dealing with high levels o f dimen­
sionality.

1.2 Approach

Traditionally, methods of autonomous learning and system modelling have dealt 
with information directly, often presented in the form o f overly-detailed numerical 
information. However, as the complexity of a system increases, it becomes more 
difficult and eventually impossible to make a precise statement about its behaviour. 
It is quite evident that one does not always need such precision in numerical data, 
and can even cause problems when considering that there is often some degree 
of uncertainty within the information itself. In contrast, human beings have the 
ability to take in and evaluate all sorts of information from the physical world we 
are in contact with and mentally analyze, average and summarize all of this input 
data into an optimum course o f action. In an attempt to mimic this behaviour, we

3
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can employ methods abstracting available system data, creating conceptual entities 
that embrace elements of visible similarity, functional adherence, and spatial or 
temporal proximity. These information granules arise as “building blocks” o f the 
problem under discussion, and can be used to describe a system ’s behaviour and 
carry out processing at the level that is the most suitable for the designer o f the 
system as well as pertinent to its potential user. This is method of information 
abstraction and processing is referred to as granular computing.

Within the realm o f granular computing exists the technologies of fuzzy sets and 
fuzzy logic. Fuzzy sets are information granules that represent notions possessing 
some semantic meaning, such as high temperature, medium  pressure, small neigh­
bourhood, low  speed, etc.; they can capture almost any condition for which we have 
words. The definition of such concepts can have unclear boundaries, i.e. they are 
“fuzzy” terms; fuzzy sets possess inherent abilities to represent and process this 
uncertainty. Upon constructing fuzzy sets to represent various concepts, we need 
a means of working with them. Fuzzy logic is the answer here, allowing us to 
combine various notions or abstractions together in order to infer some high-level 
action, essentially computing with words (something humans do every day).

Fuzzy sets and fuzzy logic have become one of the emerging areas in con­
temporary technologies of information processing; recent studies spread across 
various areas, from control, pattern recognition, and knowledge-based systems to 
computer vision and artificial life. A significant number of direct real-world imple­
mentations range from home appliances to industrial installations, with fuzzy sets 
by themselves or together with other modern approaches. Generally, all of these 
applications involve some sort of model development, defining linguistic rules on 
how to behave and react. Hence, the fundamental idea of fuzzy modelling emerges. 
Fuzzy models use fuzzy sets to define a perspective of the system’s environment, 
and employ fuzzy logic for knowledge-based processing in order to approximate 
system behaviour. It is in this highly suitable environment that we seek to achieve 
the objectives outlined in this thesis, leading to the creation o f a fuzzy model 
development framework for effective real-world system modelling.

1.3 Contributions

The key contributions of this thesis are twofold.

1. We introduce a highly effective fuzzy modelling framework, suitable for a 
wide range of applications. The heart of this framework consists of an effi­
cient and accurate learning methodology for model identification even in the 
presence of highly-dimensional systems. It is capable of discovering concise, 
human-interpretable logic-based structures in data, which are then further 
refined in order to achieve high levels of accuracy and generalization while

4
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retaining this transparency. As a direct result of the work, a comprehensive 
software-based fuzzy model development environment was created, called 
Third Eye.

2. In broadening the range of potential applications even further, we propose an 
optimized, digital hardware-accelerated platform supporting the novel fuzzy 
modelling framework introduced in this thesis. The conceptual platform 
is thoroughly examined through qualitative and quantitative investigations, 
laying a solid foundation for its future implementation.

1.4 Thesis Organization

The flow of the thesis is a very natural one; brief overviews o f key technologies 
are given only when they have been formally introduced as part o f the modelling 
framework; qualitative and quantitative analyses are presented upon the proposal 
of any new architectures or methodologies, including extensive experimentation for 
theoretical validation. W hat follows is a brief summary of the chapters to follow.

Chapter 2: Fuzzy Modelling Fundamentals. In this chapter we give an overview 
of fuzzy modelling and comment on the state-of-the-art. We also present a general 
model architecture and modelling scenario that is adhered to for the remainder of 
the thesis.

Chapter 3: Fuzzy M odelling through Logic Minimization. Here we introduce 
the fuzzy modelling framework in detail. Several design issues are presented along 
with solutions, and we conduct investigations that show the importance of the two- 
phase development methodology. The results o f extensive experimentation are also 
presented, demonstrating the effectiveness of the framework.

Chapter 4: Fuzzy Neural Networks for Intelligent Hardware Engines. In this 
chapter we propose an hardware-based intelligent neurofuzzy platform based upon 
the aforementioned approach to fuzzy model identification. The architecture of the 
processing core o f the platform is described, along with detailed experiments for 
investigating pertinent hardware design issues.

Chapter 5: Closing. We conclude this work with a review of our contributions 
along with a consideration of future work in the area of system modelling and 
knowledge discovery.

5
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Chapter 2 

Fuzzy Modelling: Fundamentals and 
Beyond

In this chapter we give a short discussion of fuzzy sets and logic, proceeding with 
an overview of fuzzy modelling including a brief review of the state-of-the-art. 
We then provide some detailed architectural considerations along with a modelling 
scenario that is adhered to for the remainder of the thesis.

2.1 Fuzzy Sets and Logic

A set is an information granule specifying some existing commonalities between 
certain objects, bringing them together in a group. This idea occurs frequently in 
human behaviour as we tend to organize, summarize, and generalize knowledge 
about objects; the encapsulation o f the objects into a collection whose members 
all share some general features or properties naturally implies the notion of a set. 
In defining these shared similarities, the nature o f a set often has some linguistic 
quality, in order to group elements such as fa s t cars or tall buildings. As a re­
sult, employing sets as an abstraction of numerical information allows machines to 
“think” much like we do, perceiving the environment in more manageable chunks of 
information. This type of perspective is highly beneficial when operating in the real 
world. For instance, when perceiving the temperature o f a room, humans have no 
need to know the exact temperature, something which may be constantly changing, 
but very slightly. That is, we’re not especially concerned if it is 21.53° C or 22.31° 
C and it happens to increase to 22.85° C, as long as it is close to standard room 
temperature, promoting comfort -  there is no time or energy wasted on constant, 
overly-accurate temperature estimates.

However, a problem here lies in determining membership to a set, which is 
fundamentally a process of dichotomization, imposing a binary, all or none classi­
fication decision: either accept (true, 1) or reject (false, 0 ) an object as belonging

7
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0

Figure 2.1: Fuzzy sets constructed over the temperature universe

to a given collection (set). This limitation is quite evident in the real world. In 
the context of temperature, for instance, how are we to determine if it is either 
exactly cold or warm? Is there some distinct boundary in which, as soon as the 
temperature reaches a specific level, we suddenly feel warm  rather than cold l Most 
people would never entertain such a notion. A brief except from Borel [4], further 
demonstrates the issue.

One seed does not constitute a pile nor two nor three... from  the other side ev­
erybody will agree that 100 million seeds constitute a pile. What therefore is 
the appropriate limit? Can we say that 325,647 seeds d on ’t constitute a pile but 
325,648 do? (Borel, 1950)

Recognizing the need for an effective way of representing this uncertainty, Lotfi 
A. Zadeh proposed the idea o f fu zzy  sets, coined in his seminal paper, “Fuzzy 
Sets” [32]. Fuzzy sets are an extension o f classical set theory, characterized by 
a membership function which maps the elements of a universe of discourse into 
the unit interval. The value 0 means that the element is not included in the given 
set, and 1 describes a fully included member (this behaviour corresponds to the 
indicator function of classical sets). The values between 0 and 1 characterize fuzzy 
members. This idea o f “fuzziness” allows a machine to deal with imprecision and 
uncertainty in “understanding” real-world concepts. As an example, in the universe 
of temperature, we can use fuzzy sets to represent the concepts of cold, warm, and 
hot, as seen in Figure 2.1. Here we see the use of trapezoidal membership functions; 
a point on the scale has three “truth values” or fuzzy activations -  one for each of 
the three functions. For the particular temperature shown, the three truth values 
could be interpreted as describing the temperature as, say, “fairly cold”, “slightly 
warm”, and “not at all hot”. In addition to the simplistic trapezoidal membership 
functions, there are many other types well-documented in the literature [2 1 ].
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Table 2.1: Selected t/s-norm pairs (X ,Y  G [0,1])

Pair Formulae

M inimum

Maximum

m in im u m (X  ,Y )  

m axim u in (X .Y )

A lgebraic Product 

Probabilistic Sum

X Y

X + Y - X Y

Lukasiew icz A N D  

Lukasiew icz OR

nta .x(0 ,X  +  Y -  1) 

m in ( \ ,X  +  Y)

Fuzzy logic is an extension of Boolean logic dealing with the idea of partial 
truth, captured by fuzzy sets. Hence, unlike Boolean logic, fuzzy logic allows for 
these partial (fuzzy) membership values between 0 and 1. It provides a means of 
performing operations on fuzzy sets to combine, compare, or aggregate them; these 
constructs are of an utmost importance in any situation involving information and 
data processing. Fuzzy set operations, known as triangular norms, are an exten­
sion of traditional set operations, principally including the classical set operations 
intersection and union, which parallel the Boolean operators AND and OR. For 
the AND operation, we have t-norms, and s-norms for the OR operation. While 
there are many different kinds of t/s-norm pairs [2 1 ], they all have the boundary 
conditions of Boolean AND and OR -  see Table 2.1 for a list of the more popular 
pairs. Regarding another fundamental operation, the negation or Boolean NOT 
operator, this is usually taken as 1 — X , where X  is some truth value on the unit 
internal, [0 , 1].

Using fuzzy logic we can define rules for behaviour, in the form of “if condition, 
then action” statements, combining and aggregating fuzzy sets from different uni­
verses. For example, a rule-base describing outdoor comfort could partially consist 
of something like “if temperature is warm AND humidity is low, then comfort 
level is high, OR if temperature is hot AND humidity is high, then comfort level 
is low.” Upon defining an entire rule-base for determining comfort level, machines 
can infer such a concept through fuzzy sets and the aforementioned logic-based 
t/s-norm operations.

2.2 Fuzzy Models

Fuzzy modelling [3,21,32] undoubtedly becomes vital whenever any application of 
fuzzy sets is anticipated. Briefly speaking, fuzzy models are modelling constructs 
featuring two main properties:

9
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Input interface 
X = Enc(x)

Output interface 
y  =  Dec( Y)

Processing •- 
core r‘ 

Y = LP{X, P)

Figure 2.2: General topology of a fuzzy model

•  They operate at the level of linguistic terms (fuzzy sets); similarly all system 
dependencies can be portrayed in the same linguistic format.

•  They represent and process uncertainty.

As seen in Figure 2.2, a general fuzzy model has two fundamental functional 
components: (a) input and output interfaces and (b) a processing core. The inter­
faces allow interaction between the conceptual, logic-driven structure of the model 
and the physical world of measured variables. More specifically, the input interlace 
realizes perception, where input variables are transformed into an internal format of 
information granules understood by the logic-processing core. The output interlace 
communicates the results of processing (output fuzzy set activations) in a form 
understood by the external world (modelling environment). These actions can be 
referred to as fuzzy encoding (input interface) and decoding (output interface) or 
more traditionally, fuzzification and defuzzification. Tbe processing core forms 
the most important component o f the fuzzy model, consisting of a knowledge base 
containing the structure and details of system behaviour, realizing inference through 
granular computation. The topology of such cores often consist of fuzzy if-then 
rules.

2.2.1 State of the Art

In the realm of fuzzy modelling, there have been a number of main pursuits attempt­
ing to meet the modelling requirements outlined in the previous chapter. These

10
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goals have been the driving force behind efforts in developing effective methodolo­
gies under the framework o f computational intelligence (Cl) [7,17], which promotes 
effective synergism between fuzzy logic, (artificial) neural networks ',  and evolu­
tionary computing 2. Neural networks [8 ] possess excellent learning abilities for 
mapping experimental data, but the resulting constructs are unstructured and very 
difficult for a human to comprehend, with its learned knowledge trapped within 
a “black box”. Consequently, they tend to complement fuzzy systems quite well, 
which exhibit superb reasoning capabilities and highly interpretable logic-oriented 
processing, but limited learning ability when presented with example data. Evolu­
tionary computing [6 ] provides effective methods of global optimization and search, 
proving beneficial to both fuzzy and neural systems; more popular evolutionary 
methods include genetic algorithms and genetic programming [6 ].

In recent years, Cl-based approaches to fuzzy modelling have become quite 
dominant, providing new modelling techniques or improvements to existing ones. 
Most commonly seen are methodologies developed using fuzzy and neural meth­
ods, often referred to as neurofuzzy or fuzzy-neural approaches. There are many 
existing in the literature [11-13, 16,21,29], some of which employ evolutionary 
methods [1 8 ,2 2 ,2 3 ,2 5 ,2 6 ]. Additionally, techniques using data clustering, es­
pecially fuzzy clustering [20], have been applied to fuzzy modelling [1 ,27 ,31], 
however the accuracy of resulting models were often somewhat lacking. To im­
prove upon this, researchers have applied evolutionary techniques in cluster-based 
modelling for subsequent optimization [5 ,14,24,30]. There have also been many 
other so-called fuzzy-evolutionary techniques [2 ,9 ,10 ,19 ,21 ,28].

In reviewing the referenced literature, a number of drawbacks become apparent. 
Techniques involving evolutionary optimization often suffer from substantial com­
puting requirements, as the population-based algorithms are quite computationally 
intensive, especially when members of the population consist of complex structures 
such as neural networks. Neurofuzzy models tend to gravitate toward meeting 
a high accuracy requirement that happens at a substantial expense of lowering 
their transparency; this is somewhat inevitable considering the underlying black- 
box processing paradigm and various topologies existing in neurocomputing. As 
well, within these Cl-based approaches, there are numerous instances involving 
some sort of optimization of input interfaces in order to achieve higher levels of 
accuracy; in many cases the distribution and/or shape of membership functions are 
modified so heavily that any semantic meaning is destroyed, with them longer able 
to represent concrete linguistic terms such as those seen in Figure 2.1. Along with 
this ever-apparent balancing act between accuracy and transparency, what becomes

'Neural networks are parallel and distributed computational structures com posed o f  numerous 
sim ple processing elem ents (neurons), inspired by biological nervous system s.

E volutionary com puting encom passes any and all population-based optimization tools using  
mechanism s inspired by b iological evolution.

1 1
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quite apparent in fuzzy modelling are the growing difficulties when dealing with 
multi-variable systems. The transparency of the models, usually regarded as some 
type of rule-based system, amplify these difficulties even further. The “curse” of 
dimensionality becomes apparent even for quite small rule-based systems, and as 
such we see the vast majority o f modelling problems handled in the literature to 
be modest in terms of the number of system variables. Overall, it is apparent that 
the successes of these hybrid development environments are somewhat limited. As 
such, we have not reached a state where large models could be built quite efficiently 
and accurately while retaining the semantic properties of the resulting constructs.

A Promising Technology

It is evident that the logic-based fabric of fuzzy models is an inherent facet of this 
modelling paradigm that needs to be preserved. While neurocomputing is an impor­
tant technology contributing to the learning abilities and subsequently to the para­
metric optimization of the fuzzy models, it is o f paramount importance to develop 
a synergistic environment in which the logic transparency of the ensuing models is 
not compromised. Perhaps one of the more interesting approaches coming out of 
the literature are Pedrycz’s fuzzy neural networks (FNN). Introduced and studied 
in [16], the idea behind fuzzy neurons and fuzzy neural networks was to develop a 
structure that is at the same time transparent and adaptive. The transparency facet 
is gained due to the logic type o f processing realized by the neurons. There are 
two fundamental classes of the neurons that is OR and AND neurons. Interestingly, 
these are generalizations of standard OR and AND gates encountered in digital 
systems. The neurons exhibit learning abilities as they come with a collection of 
adjustable connectives (weights). In this setting o f fuzzy neurons, the synergy of 
learning and transparency is well articulated. Different application-oriented aspects 
of the resulting fuzzy neural networks were discussed in detail in a number of 
previous studies [15,16,18].

Due to the unique and beneficial properties of fuzzy neurons, they become 
an important component in our model development framework introduced in next 
Chapter. Specifically, the work aims to provide comprehensive and efficient meth­
ods of building and optimizing fuzzy neural networks with knowledge-based struc­
tures.

2.3 Architectural Considerations

In order to put things into perspective for the remainder of the thesis, in this section 
we present our view o f how the architecture o f a fuzzy model should take shape, 
along with some details pertaining to the general identification (learning) process, 
with well-defined notation.
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2.3.1 General Architecture of the Fuzzy Model

Here we concentrate on the architecture of the fuzzy model and elaborate on its 
functional aspects and interaction with the numeric world. The fuzzy model fol­
lows the fundamentals of fuzzy (granular) modelling. As advocated in [16J, fuzzy 
modelling is realized at the conceptual level formed by a collection of semantically 
meaningful information granules defined in each variable. These are also regarded 
as linguistic landmarks whose choice implies a certain point of view of the data 
(system) under discussion. The architecture of the model follows the geometry of 
multidimensional data and reflects the main objective of such modelling, which is 
to cover the data by a series o f “patches”. Each patch is a fuzzy relation formed 
with the use o f fuzzy sets defined in each variable. As we require several patches, 
these are combined together by a union operation, and a fuzzy model emerges. This 
idea gives rise to a two-level topology of the model that captures the geometry of 
data.

Evidently, the geometry o f the model stands in a one-to-one correspondence 
of its logic fabric. The essence of this geometry can be captured in the form of 
AND and OR nodes (aggregation operations) as illustrated in Figure 2.3, forming 
the processing core. This figure emphasizes the structural nature of this construct. 
Considering the specific information granules shown there, we can translate it into 
the description:

{A\ and B j and £>4 ) or (A3 and C2) or (D\ and C3)

where each list is composed of fuzzy sets defined in the corresponding spaces (A, B, 
C, These lists can be considered analogous to the “if” portion (antecedent) of 
fuzzy rules, with the consequent (“then” statement) defined as the particular output 
information granule (ex. high comfort) it is trying to represent.

The AND and OR nodes seen in Figure 2.3 can be represented by a variety 
of operations for relational computation. The most fundamental logic-based ag­
gregation operations occur within the realm of two-valued logic, where we have 
simple AND and OR gates for processing binary data. Upon entering the realm of 
continuous (fuzzy) logic, we require more sophisticated components for realizing 
these logic operations, coming in the form of t/s-norms we defined earlier.

The network in Figure 2.3 pertains to a single information granule (fuzzy set) 
in the output space. In case of a number of fuzzy sets there, the architecture is 
augmented with several of these structures representing logic-based descriptions of 
their respective output granule. With each one capturing the essence o f high-level 
concepts, together they form a heterogeneous knowledge base describing behaviour 
of the entire system.
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Figure 2.3: Structure of a fuzzy model represented as an aggregation of information 
granules (fuzzy sets)

2.3.2 Modelling Scenario

Referring to Figure 2.2, from the functional standpoint, the fuzzy model is a struc­
ture of three mappings put in series, that is the encoder X =  E n c(\) , processing 
core Y =  LP(X ,P), and the decoding part y = D ec(Y ). In direct correspondence 
with system input and output, x and y  represent input and output of the model 
manifesting at the numeric level, where x E W  and y e  %  Internally, X and 
Y are information granules containing elements in the unit hypercube. Let n ',m ' 
denote the number of information granules defined for input and output spaces,
i.e. X e  [0,1]" and Y 6  [0,1]"'. Finally, we have P, representing some adjustable 
parameters of the model.

The experimental data measured from the target system are used as training 
examples, taking the form of N  input-output pairs, i.e. {x(c).ta rget(c )} , c =  
1 ,2 ,...  ,N . We require that y(c), the output of the fuzzy model for the input x(c), 
is equal to target(c), y(c) sa target(c). When concerned with the models internal 
optimization, namely the fabrication and optimization of the processing module, 
the original training data arc converted through the model interfaces to an internal 
format, that is {X (c),TA R G ET(c)}, where TA RG ET denotes the in' target out­
put information granules. This leads to to the requirement Y(c) «  TA R G ET(c), 
allowing us to focus on the mapping of the information granules rather than the 
experimental data. This approach tends to promote the interpretability of the model.

During the identification process, it is evident that two distinct learning require­
ments must be met: 1) the resulting model should have some sort of transparent, 
heterogeneous structure similar to what we see in Figure 2.3, essentially providing 
a knowledge-based architecture and 2 ) for improvements in accuracy and to better 
describe relationships and dependencies between variables in the data, any param-
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eters of the model should be properly adjusted (optimized).

2.4 Review

In this chapter we gave a brief overview of fuzzy sets and logic and their role 
in fuzzy models: constructs highly suitable for system modelling and knowledge 
discovery. Upon presenting the state-of-the-art in fuzzy modelling, comments were 
made on various shortfalls seen in the literature, ones which this thesis tries to 
provide solutions for. With the introduction of the general architecture o f the fuzzy 
model we are interested in along with a generic modelling scenario, we may now 
proceed with the introduction o f our framework for automatic model design.
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Chapter 3 

Fuzzy Modelling through Logic 
Minimization

In this chapter we conceptualize, construct, demonstrate and validate a highly effec­
tive fuzzy modelling framework, starting with a brief overview of the approach. We 
then describe the details of the learning process, followed by overviews of the key 
technologies involved. In an effort to finalize details o f the framework, important 
design issues are discussed and resolved. We then proceed to demonstrate the 
importance of structural learning, followed by extensive experiments in validating 
the worth o f this new approach to fuzzy model identification.

3.1 Overview

Here we provide an overview to our approach for the development of fuzzy mod­
els. Primarily focusing on the core o f the model, we propose a two-phase design 
process realizing adaptive logic processing in the form of structural and parametric 
optimization. Taking a significant departure from the main design direction, the 
fundamental link between binary and fuzzy logic is exploited. The wealth of design 
tools of two-valued logic is immense [2,4-9,17,20], with techniques capable of han­
dling large problems and dealing with hundreds of binary variables. The underlying 
objective there is to minimize Boolean functions so that the ensuing realization 
could be made as compact as possible. One of the tools, Espresso [2], helps satisfy 
this important goal, originally intended for digital circuit synthesis. Given the 
state of the art o f handling and simplifying Boolean functions, our objective is to 
capitalize on this well-established framework and treat it as an important phase in 
the design of fuzzy models. The proposed conceptual setting can be succinctly 
represented in the form shown in Figure 3.1.

It is instructive to briefly elaborate on the main phases of this scheme:
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numeric data 

fuzzy granulation 

binarization of information granules 

simplification of binary expressions 

refinement of the fuzzy model
s

knowledge and generalization

Figure 3.1: General design flow of the fuzzy model development.

1. Fuzzy granulation is the same as encountered in any fuzzy model; we gran­
ulate each system’s variable through a collection of semantically meaningful 
information granules (fuzzy sets).

2. The binarization helps encode these fuzzy sets into a binary format and con­
sists of two steps, i.e. thresholding and encoding.

3. Optimization of the binary model, which is realized in terms o f well-known 
techniques of two-valued logic synthesis. The result o f such minimization 
leads to the underlying structure of the fuzzy model.

4. Given the structure of the model we refine it, moving back to the fuzzy 
data (produced by the fuzzy granulation) and proceeding with a neurofuzzy 
augmentation of the model with the help o f fuzzy AND and OR neurons.

This unique combination o f the logic-driven architectures of the models along 
with the hybrid-learning scheme helps to develop transparent and accurate models 
while maintaining excellent computational efficiency. From the very beginning 
of the design, the logic fabric of the structure of the model is present, assuring 
a large degree of interpretability. As well, with suitable neural enhancements the 
specific logic nature of its underlying structure is preserved while proceeding with 
parametric refinement o f the model for achieving high levels of accuracy and more 
intuitive interpretability. This design methodology clearly distinguishes between 
structural and parametric learning, being viewed as two distinct phases of model
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building. In this sense, we do not bias the optimization by attempting to learn 
structure and parameters simultaneously.

3.2 Two-phase Model Development

Through the interfaces, the processing core of a fuzzy model receives information 
that has been abstracted into granules, upon which it performs intelligent com­
putation. The core emulates aspects o f human thought and cognition, dealing 
with information at a granular level and using logic-oriented reasoning in order 
to solve a problem. Its primary purpose is to learn and approximate a system’s 
behaviour, building and drawing upon a knowledge base that may be interpreted and 
modified by the user. Here the logic-processing core is created in two phases, taking 
advantage of a “bottom-up” approach. Starting from a completely unstructured 
state, the entity learns from example, using the training data measured from the 
target system. With this information it can adapt itself into a structure closely 
resembling the target system’s underlying mechanisms; these are the hidden inner 
workings that make up the very essence of the system and its behaviour. Following 
structural optimization, the core continues to learn during a second phase, this time 
focusing on the finer details o f the system in order to improve upon behavioural 
approximation and provide more intuitive interpretation.

3.2.1 Phase 1: Structure Discovery

The nature o f the information granulation within a fuzzy model deals with partial 
(fuzzy) membership to fuzzy sets, with aggregation carried out using triangular 
norms. Using fuzzy versus binary membership is advantageous in overcoming 
real-world problems of input imprecision, uncertainty, and output accuracy. How­
ever, traditional Boolean logic processing has previously unseen potential as an 
important component of a comprehensive fuzzy modelling environment. Given the 
fundamental link between two-valued and fuzzy logic processing, there exists here 
an excellent opportunity to take advantage of existing tools and methodologies of 
logic minimization.

In understanding this link, recall the well-known Shannon’s theorem, a powerful 
concept from two-valued systems [19]. It states, in part, that any Boolean function 
realizing a mapping {0 , 1}" to {0 , 1} can be uniquely represented as a logical sum 
of products. We refer to a product as an AND combination of input variables of the 
function, and sum as the final OR aggregation. View that this is precisely what we 
are trying to achieve in the continuous domain, using information granules in the 
logic-processing realized by the two-level structure seen in Figure 2.3.

For building and optimizing structure, this first phase of the cores “birth” em-
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ploys tools o f logic optimization. By temporarily converting the fuzzy granules into 
ones with strict membership boundaries, the information becomes inherently binary 
in nature, giving us a rough approximation of the target system. Of course, some 
information is lost through this process, yet the most important features and rela­
tionships explaining the system’s fundamental behaviour are retained. In this form 
we can then access established methodologies of logic minimization, providing an 
excellent means o f discovering a concise, logic-based structure within the system 
data. Upon returning to the domain o f continuous logic, this newly discovered struc­
ture may be directly utilized in processing the original fuzzy information granules, 
replacing its binary AND and OR operations used during the logic minimization 
with triangular norm computations. With this augmentation we could achieve the 
structure seen in Figure 2.3.

3.2.2 Phase 2: Parametric Refinement

It is worth stressing that even though the information granules convey detailed 
numeric information in the format of their membership functions, the resulting 
structure in Figure 2.3 does not include any other numeric quantification. A cal­
ibration of the structure is possible by equipping it with some parametric flexibility, 
leading to increased accuracy in behavioural approximation, as well as a higher 
level of interpretability as we gain more insight into the interaction between sys­
tem variables and behavioural rules. In the second phase of core development, 
the refinement o f this nature can be completed by introducing fuzzy AND and 
OR neurons in place of the existing nodes, o f which there is a direct linguistic 
correspondence.

Through fuzzy and neural methods we are able to derive a parameterized knowl­
edge-based network; here we take advantage of the profound learning abilities of 
neural networks with their parametric architecture and effective training algorithms, 
combined with the transparency and logic-oriented processing of the fuzzy model 
itself. By endowing the fuzzy neuron-based core with the ability to adjust its 
connections, it can learn the finer details of the system, with its knowledge-based 
structure helping the core from falling into pitfalls of over-training and data memo­
rization. Thus, when subjected to the appropriate learning process, this neurofuzzy 
core can improve upon accuracy, transparency, robustness and generalization.

3.3 Key Technologies

In this section, we provide more detailed overviews o f the key technologies em­
ployed in our model development framework, namely logic minimization and fuzzy 
neural networks.
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3.3.1 Two-Valued Logic Minimization

Boolean logic minimization is best known as the main part of logic synthesis, which 
converts a logic function to a circuit. Logic design consists o f the manipulation of 
a logic representation without modifying the functionality, with logic minimization 
seeking a representation with a minimal number of implicants and literals. Through 
binarization o f the information granules formed in the interfaces o f a fuzzy model, 
we are able to realize a novel application for logic minimization in the form of 
structural learning; these efficient tools can help us in sorting through large amounts 
of data, eliminating redundancy and producing a simplified, compact and equivalent 
result in the form of a logic-based structure.

Background

In providing some background on logic synthesis, the following definitions are 
found in [17].

The set o f binary values are defined as B =  {0,1}. B" can be modelled as a 
binary n-dimensional hypercube, where each elem ente = ( e \ , . . . , e „ )  6  B" is called 
a mintcrm. Boolean algebra comes from combining the set B together with the 
operations +  (disjunction, sum, OR), and •  (conjunction, product, AND).

A Boolean function /  for n variables, x i , . . .  ,.v„, is a mapping / :  B" i—> {0,1, *}, 
with * being a d on’t care condition for when the value of the function is irrelevant. 
Each minterm in B" tells us values o f the function variables, i.e. .vi =  e \ ,x i  =  e2 , 
etc. All minterms for which /  has value 1 form the ON-set of the function, with the 
OFF-set and DC-set defined as sets of minterms where /  is 0 and *, respectively. 
If a Boolean function has more than one output, it realizes a mapping /  : B" h-> 
{0,1 each output having their own ON, OFF, and DC sets.

Each variable Xj has two literals associated with it: x,- and its complement x,-. 
The literal x,(x,) represents a Boolean function evaluating to 1 (0) for minterms with 
ei =  1, and to 0 (1) for minterms with <?,• =  0. A product term is a Boolean product 
(AND) of literals, which evaluates to 1 for a minterm e if each literal included in the 
product evaluates to 1, otherwise evaluating to 0. In the former case, the product is 
said to contain e. Since a product corresponds to a set of adjacent minterms in the 
binary n-cube, a product may also be referred to as a cube. A sum-of-products is a 
Boolean sum (OR) of products, evaluating to 1 for a given minterm if some product 
contains the minterm.

An implicant of a Boolean function is a cube that contains no minterm in the 
OFF-set. A prime implicant is an implicant contained in no other implicant of the 
function. An essential prime implicant is a prime implicant containing at least one 
ON-set minterm which is not contained in any other prime implicant.

A cover of a Boolean function is a set of implicants interpreted as a sum-of- 
products, which evaluates to 1 for all minterms in the ON-set, and none o f the
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OFF-set. The term prime cover is used to refer to a cover containing only prime 
implicants.

Minimization Algorithms

The problem of two-level logic minimization is to find a cover for /  that minimizes 
a given cost function. Such a cover can be implemented as a minimum-cost sum- 
of-products equation. The cost, or size o f a cover often includes parameters such as 
the number o f cubes (products) in the cover, or the number of literals.

The Quine-McCluskey method [8 ] was one o f the first exact methods for two- 
level logic minimization, based on the observation that the implicants in a minimum- 
cost cover can be restricted to prime implicants. The algorithm consists of two 
steps: ( 1) generate the set of all prime implicants; and (2 ) select a minimum number 
o f prime implicants such that each minterm in the ON-set is contained. Although 
exact algorithms are useful, the exact two-level minimization problem involves 
computationally intractable problems. In many cases, getting satisfactory results 
(near optimal perhaps) in far less time is often more important, leading to the devel­
opment o f heuristic logic minimization tools. ESPRESSO-II [2] is a state-of-the- 
art algorithm for heuristic logic minimization, forming the main component o f the 
Espresso software distribution, developed in the 1980s as a tool for programmable 
logic array (PLA) design.

The output of ESPRESSO-II is a sum-of-products cover, which in practice is 
almost always near minimum in cardinality. The algorithm’s basic goal is to take a 
verbose representation o f a logic function and produce a condensed representation, 
essentially learning its underlying structure. The general 8 -step ESPRESSO-II 
algorithm is described in detail in [2 ], and is briefly outlined here:

1. Complement: Compute the complement of the input and the DC-set, i.e 
compute the OFF-set.

2. Expand: Expand each implicant into a prime and remove covered implicants.

3. Essential Primes: Extract the essential primes and put them in the DC-set.

4. Irredundant Cover: Find a minimal (optionally minimum) irredundant cover.

5. Reduce: Reduce each implicant to a minimum essential implicant.

6 . Iterate 2,4,5 until no improvement.

7. Lastgasp: Try reduce, expand, and irredundant cover one last time using a 
different strategy, If successful, continue the iteration.
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8 . Makesparse: Include the essential primes back into the cover and make the 
PLA structure as sparse as possible.

The fundamental Espresso algorithm has since been modified to include some 
improvements and further heuristic tuning, with the source code for the software 
readily available on the Internet 1. While there may be newer algorithms claim­
ing superiority in one or more specific problem areas [4 ,5 ,17], the software and 
source code are not as easily obtained. Regardless, Espresso is still regarded as the 
standard two-level logic minimization tool in the (VLSI) design automation com­
munity, shown to be quite capable of handling situations involving even hundreds 
of Boolean variables.

3.3.2 Fuzzy Neural Networks

Fuzzy neurons seamlessly combine transparent, logic-oriented processing with learn­
ing abilities stemming from their adjustable connections. These adaptive logic-pro- 
cessing elements connect to each other in forming a heterogeneous fuzzy neural 
network. An n-input single output OR neuron is described in the form:

y  ■ O R{\\ w)

where x ,w  G [0,1]". The connections, uq, W2 , , vv„ are arranged in a vector form 
(w). Rewriting the previous expression in a coordinate-wise manner, we obtain

n
S Xj t Wj

i=\
where the t  and s operators are realized by t/s-norms, respectively. Essentially, the 
neuron realizes an s-t composition of the corresponding finite sets x and w. The 
AND neuron y =  A N D (\\ \v) is governed by the expression

n
T Xi S VV;

1 = 1

Computationally, this neuron realizes a t-s composition of x and w.
The role of the connections in both neurons is to weight the inputs and in this 

way furnish them with required parametric flexibility. In case of OR neurons, the 
higher the connection, the more essential the associated input. For AND neurons, 
an opposite situation holds: lower connection indicates that the respective input 
is more essential. In general, a certain thresholding operation can be sought. For 
any OR neuron, we may consider the input irrelevant if the associated connection 
assumes values lower a certain threshold. An input o f the AND neuron can also be 
eliminated if the connection value exceeds a specified limit.

1 http://ww w-cad.eecs.berkeley.edu/software.htm l
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Figure 3.2: Generic, fully-connected fuzzy neural network along with detailed 
notation.

This demonstrated parametric flexibility is essential to developing the learning 
capabilities o f fuzzy neural networks formed by these neurons. Combined with 
their inherent interpretability, they become excellent candidates for forming the 
processing core of our fuzzy model, with the structure derived from results of logic 
minimization. Such a knowledge-based structure comes as a realization of logic 
expressions capturing the behaviour of experimental data representing real-world 
concepts. It is essentially a rule-based description in the form of a collection of 
if-then statements combined together in an OR-wise manner. These rules directly 
correspond to a two-layer structure of the FNN, as seen in Figure 3.2 for a fully- 
connected (i.e. structureless) example. The first layer consists of AND neurons 
forming a collection of conditions o f the rules, with the output layer of OR neurons 
aimed at aggregation of rules having the same conclusion.

Returning to the notation presented in Section 2.3.2, the network may be fully 
described by two matrices of connections. We treat w i, W2 , . . . ,  Wh and v i, V2 , . . . ,  wm' 
as vectors of connections for individual neurons. Corresponding to Figure 3.2, 
we have the yth AND neuron ( j  =  1 ,2 , . . . , / j )  reading as z,- =  A N D (X i, wj), where 
X =  X\ ,X2 , . . .  ,X„r, the kth OR neuron (k — 1 , 2 reads as Tt — OR( z;Vk),
where z =  z i,z2,-
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Training the Network

To be of any use, a fuzzy neural network’s connections must be properly adjusted 
during an appropriate learning process. A principal idea of parametric learning, 
no matter how it is implemented, can be portrayed as follows. Consider the task of 
learning the nature o f a single output information granule, Y^. For a given collection 
of N  input-output pairs of data {X (c),TA R G E Tk{c)},c  =  1 ,2 , . . .A/, we want to 
modify the network’s parameters (connections) to minimize the performance index 
Q, defined here as a squared error:

Q(c) =  [Yk(c )-T A R G E T k(c ) } 2

where Yk(c) is the activation level of the output fuzzy set T* ( k =  1 , 2 , . . .  ,m ') for a 
given training instance c.

In terms of speed and efficiency, an on-line, gradient-based method of learning 
is desirable, having been well-developed and thoroughly documented in the litera­
ture [11,12]. The general scheme o f learning can be qualitatively described as

Aconnections =  — -----
(^connections

where a  denotes a learning rate. Subsequently, the parameters of the network are 
adjusted following these increments:

nevv.connections =  connections +  Aconnections

In the case of our model, the underlying structure is already pre-defined through 
logic optimization, causing the size o f the learning problem to be greatly reduced 
from traditional fully connected networks as seen in Figure 3.2. This allows us to 
concentrate on only the most important connections rather than training the network 
from scratch.

In addition to the numeric calibration of the network, the connections of the 
fuzzy neural network help prune the original structure, done by applying the thresh­
olding operation discussed above. The network after pruning can be represented in 
an equivalent rule-based format:

If condition; and conditionj and . . .  then conclusionk

The format o f the rules varies as each rule may have a different number of 
conditions. In this setting, the connections of the fuzzy neural network can be 
interpreted as calibration factors o f the conditions and rules. The connections of the 
AND neuron modify the membership functions o f the fuzzy sets contributing to the 
Cartesian product of the overall condition part of the rule. The higher the value of 
the connection, the less specific is the fuzzy set. In the limit, when the connection

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is equal to 1, we end up with the corresponding fuzzy input being eliminated from 
the rule (in this way the rule becomes more general). The connections of the 
OR neuron determine confidence of the rule, meaning that the Cartesian product 
(overall condition of the rule) is quantified in terms of its relevance.

With the details of learning given, it is beneficial to define a few terms used 
in measuring the performance o f the networks. With Q defined as above, we use 
a sum-of-squared-errors (SSE) measure for an indication of training progress of 
individual fuzzy output granules:

Additionally, we use a root-mean-squared-error (RMSE) formula to measure per­
formance o f the model in terms of its numeric output (decoded from fuzzy output 
granules) and target system output:

With a general framework in place for effective fuzzy model development, there 
are several design issues that need to be identified, considered, and resolved. In this 
section we discuss these problems and propose solutions.

3.4.1 Granular Interfacing

As mentioned previously, in the realm o f fuzzy modelling information granulation 
is carried out as an interface to continuous system variables. These information 
granules take the form of semantically meaningful fuzzy sets, distributed fully over 
each variable’s universe o f discourse. There have been a number of theoretical and 
practical investigations into the nature of the interfaces where numerous issues con­
cerning the number of fuzzy sets, their distribution and ensuing optimization have 
been discussed, cf. [11]. Apparently, the optimization of the fuzzy sets standing in 
these interfaces could be beneficial to the model and contribute to the enhancement 
of its quality. Accepting this point of view, we must emphasize the main focus 
of this study: the logic processing core of the fuzzy model and its optimization. 
In the interest of both simplicity and semantic integrity, by default we choose 
to use membership functions spread evenly across variable spaces, although this 
could certainly be customized if there happened to be an expert who was able to 
suggest better interval distributions. Regardless, our main goal here is to construct

N

Qn = E sto
C —  1

3.4 Design Issues

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.2

0.4

0.6

0.8

0

Figure 3.3: Example interface consisting of triangular fuzzy membership functions 
and their induced binary representations (shown with dotted lines).

semantically meaningful entities, allowing us to attach intuitive linguistic labels 
such as low, medium, and high.

Due to the nature of the core, there are still important interfacing issues to 
be dealt with. During the two-phase development scheme, we deal with differing 
types of information granules; while we are always processing information at the 
level of semantic set membership across each variable’s own universe of discourse, 
we need to consider both binary and fuzzy abstractions. Therefore, we require an 
interface that allows easy transitions from two to multiple-valued logic during data 
granulation, and vice-versa. For this task, triangular membership functions appear 
to be quite suitable, offering both flexibility and simplicity; note that we keep them 
at j  overlap, as is the norm seen in the literature [12]. Figure 3.3 shows how they 
are able to translate smoothly into traditional binary sets. With a numeric value v 
existing in a particular continuous variable’s universe of discourse, we calculate a 
series of fuzzy memberships to fuzzy sets existing in the frame of cognition of the 
variable (fuzzy encoding). For a binary set-based abstraction, we first determine 
the fuzzy set from which v claims the highest membership. The encoding of v is 
given full membership to the induced binary representation o f this “winning” fuzzy 
set and zero membership to the rest, realizing a discrete, binary representation.

For error-free reconstruction of all possible numeric output values in the data, 
purely triangular membership functions used for encoding, i.e. there are no trape­
zoidal shapes on the edges of the output space. This results in a slight variation in 
the interval sizes, however the binary abstraction is performed as above for numeric 
target values coming from the training data. For computing a numeric output from 
the model, we use the centre of gravity (COG) decoding (defuzzification) scheme:
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Figure 3.4: An example of binarization o f information granules for obtaining binary 
membership from data from a two-input, one-output continuous system.

where S* are the modal values o f the membership functions on the output variable’s 
universe o f discourse.

3.4.2 Binarization: From Continuous to Two-valued Logic Rep­
resentation

In order to take advantage o f logic minimization tools for structural learning, we 
must build a binary truth table out of the abstracted system data. As mentioned 
above, here the values for each variable (input and target output) are represented as 
simple binary memberships to a few semantically meaningful sets distributed over 
their universes of discourse; recall that these sets are mutually exclusive, so a value 
would have full membership to just one set in the space, with zero membership to 
the rest. See Figure 3.4 for an illustration o f this, where we have four induced binary 
sets defined for each input variable, and two for the output variable, presenting a 
single input-output training instance for some continuous system. Table 3.1 shows 
the membership values obtained.

Binary Encoding

We first consider a binary coding approach. With each set in a variables space 
numbered, it may be converted to its binary equivalent; for example, a variable 
broken up into two granules can be coded with one binary input. Note that we are 
confined to powers of two for the number of sets per variable. With this in mind 
we would limit ourselves to two, four, or eight sets, noting a well-known suggested 
upper limit of seven ±  two linguistic terms for a frame of cognition [1 2 ].

Table 3.1: Set memberships obtained during binarization in Figure 3.4

Set 4] /12 43 aa b 2 b 3 Ba Y\ Yi
Mem. 0 0 1 0 1 0 0 0 0 1
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To encode the results seen in Table 3.1 we would require four Boolean inputs 
(jci ,, JC4 ) and one output (y). View that each of the four sets for an input space can 
be represented with two bits, where ‘0 0 ’ would denote the first set (ex. 1), ‘0 1 ’ the 
second, and so forth. The encoding results in the Boolean function (representing 
the target system) having a value of 1 for the minterm (1, 0, 0, 0). With a complete 
truth table defined, to gain a logic description for both Y\ and Yj, we can present the 
Boolean minimizer with both y  and its complement y.

After encoding and subsequent minimization, we would need to decode the 
binary variables in order to obtain actual set-based logic descriptions. To accom­
modate d on’t cares within the minimization results, it would be necessary to build 
a three-level logic equation for proper representation. Going back to the example, 
after minimization its feasible to encounter a product term such as y  =  .*1 »X2  •x?,, 
where X4 is not present, i.e. it is a d o n ’t care. Because of these possible don't cares 
there are situations where digits of an encoding could be either 1 or 0 , resulting in 
a number of possible sets rather than just one, essentially forming a union o f sets 
in the same universe. Thus, the above expression decodes into a two level product- 
of-sums equation, Y\ =  A3 •  (Bt, + B4 ). The third level of logic is constructed when 
summing the remaining product terms to form the cover.

There are a few drawbacks to the binary coding scheme described above. The 
first, already mentioned, is the limitation of the number of granules (sets) that may 
be used in a variables universe, being two, four, or eight instead of a more flexible 
range of two to nine inclusive. Such a limitation is undesired, and could restrict an 
expert wishing to design the interface. The second is the necessary binary decoding 
scheme; view that with inevitable d on’t cares we are restricted to certain unions 
of sets in each variables domain. For instance, for A in Figure 3.4, there are four 
possible unions if.vi or x i  is a d o n ’t care: (0,*) =  A \ UA2 , (1, *) =  A3 UA4 , (* ,0) =  
A \ UA3 , and (*,1) =  A 2 UA4 . This can limit the logic optimization from finding 
appropriate set unions.

Set-Based Encoding

A more suitable approach is a straight translation o f set memberships. For the 
results in Table 3.1 we would directly use those membership values, resulting in an 
eight inputs (.V|, . . .  ,.vs) and two outputs (yi ,>'2 ). While this results in more Boolean 
variables in comparison to binary coding, the logic optimization methodologies are 
quite capable of efficiently handling large Boolean systems.

View that with each set membership coded as its own Boolean variable, we 
encounter the issue of complements. While complements are not often considered 
in fuzzy models, they nevertheless retain meaning, ex. variable A is not low. As 
well, similar to the binary decoding scheme mentioned above, we can derive a three- 
level logic description and avoid complements altogether if desired; note how one
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or more negations of binary sets in a universe can be equivalently represented as a 
union of the remaining sets; from Figure 3.4, notice how the negation of Ai(Ai)  is 
equivalent to A 2 U A3 IM 4 . Here the logic optimization algorithms are not limited 
as with binary coding in expressing set unions to form new, broader sets when the 
nature o f the data shows these relationships to be pertinent.

Consider these possible logic representations, i.e. three levels with no com­
plements, or two levels with complements. In the interest of conciseness and 
knowledge interpretability, it is advantageous to conceive a hybrid approach in 
describing states of system variables, where we use both complements and three 
levels of logic for decoding. From the Figure 7 example, suppose we encountered 
the product term yj =  *1 »X2 •  -*8 . Using this hybrid-decoding scheme, we end up 
with Y\ =  (A3 + A4 ) * # 4 . View that it is more suitable to state “A3 or A4” rather than 
“no t/\i and not A2”, and that “not 5 4 ” is a more concise statement than “5 1 or B 2 or 
Z?3”. Interestingly, with the freedom to express these set unions and complements, 
the logic minimization is effectively realizing a simple, dynamical form of fuzzy 
interface optimization.

3.4.3 Deriving Knowledge-Based Neural Networks

With the minimization of the binary training data, a sum (union) of product terms 
(rules) for each output set will make up the result. At this point we essentially have 
several (in') collections o f crisp rules describing the concepts captured within each 
output set. With AND and OR fuzzy neurons we are able to derive a complete 
knowledge-based neural architecture from this structurally optimized core. The 
hybrid idea of a three-level logic description with complements (negations) can 
directly translate into a three-layer network, as seen in Figure 3.5 for a single fuzzy 
output granule. The heterogeneousness of the architecture can translate directly into 
the description:

(A 1 or A4) and (not B \) and C2 or 
A3 and (not C4) or 
(Z?3 or B4 ) and C\

Note how product terms are now processed with AND neurons, with the ag­
gregative sum handled by an OR neuron. Also, note that we fix the connections 
of the first hidden layer of OR neurons. The inputs to these elements are not 
weighted because they only deal with fuzzy sets existing in the same universe of 
discourse, and hence can be viewed as a union of fuzzy sets to create a new, more 
general membership function for a particular continuous variable. The degree of 
membership to this new fuzzy set is weighted like any other input when fed into the 
hidden AND layer, which deals with processing the fuzzy relations formed from
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Figure 3.5: Three-layered logic processing topology, forming the core of the fuzzy 
model. The small circles denote negations.

separate variable spaces. In this way, the two-level topology shown in both Figure 
2.3 and Figure 3.2 is preserved.

3.5 The Importance of Structural Learning

Thus far, the fuzzy modelling approach proposed in this study has been shown 
have much promise in achieving a good balance between learning accuracy and 
knowledge interpretability. Recognizing the importance of structural optimization 
is paramount here, as training the fuzzy neural network in a fully-connected, un­
structured state fails in achieving both accuracy and transparency. To validate this, 
an attempt was made to train such architectures with the Boston housing data, taken 
from the UCI repository of machine learning databases 2. Further detailed during 
the case study presented later in the paper, this 13-input dataset concerns median 
housing prices in the Boston area. For this experiment wc perform interfacing as 
detailed in section 3.4.1, with three fuzzy sets for each input yielding n' = 12*3 = 36 
inputs plus one binary input, for a total of 37 inputs. For the output space (median 
housing prices), two fuzzy sets are used, i.e. m' = 2 .

Two methods of parametric optimization were investigated. First, the gradient-

2http://www.ics.uci.edu/ mlearn/MLRepository.html
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Figure 3.6: Typical progress o f the GA for various FNN configurations being 
trained with the Boston housing data.

based method outlined in the previous section was employed, using three AND 
neurons in the hidden layer and two OR neurons in the output (one for each output 
fuzzy set), with the learning rate set to 0.01. This attempt, run for 1200 epochs, 
failed to achieve any level o f optimization, yielding no reduction o f error. The 
second method made use o f evolutionary means via a genetic algorithm (GA). The 
chromosome structure consists of all connections in the network, realizing a real- 
coded GA with gene alleles in the unit interval. Standard operators were used for 
the GA [1 0 ], with parameter values determined to be suitable through preliminary 
experimentation: a tournament based selection with an elitist mechanism (the best 
individual is always carried into the next generation); a standard mutation operator 
at a rate 0.06; a multi-point crossover operator (with the number of points varying 
randomly between pairs of individuals) at a rate of 0.7; a fitness function / ,  taken as 
the negative of V defined previously, making the highest possible fitness at 0, /  =  
—V. In a typical fashion, all experiments were conducted using a population of 200 
individuals, running for a maximum of 500 generations. These values were found 
experimentally to be justifiable. Figure 3.6 and Table 3.2 show the results of GA 
optimization for varying hidden layer sizes, carried out on a G4 1.33GHz PowerPC 
CPU. As one can see, optimization ensues, however reaching an unremarkable level 
of accuracy. Additionally, the amount of computation needed is significant, steadily 
increasing as more neurons (rules) are added.

It must be stressed here that any method of optimizing the weights of a fully- 
connected fuzzy neural network does not support its inherent interpretability, in
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Table 3.2: Testing performance and CPU times for GA-trained networks

No. Hidden Neurons V (testing set) CPU time(seconds)

3 4.93 ± 0.39 343 ± 7.7
5 4.80 ± 0.43 559 ±  18
10 4.92 ± 0.38 1100±  35
15 4.81 ± 0.32 1654 ±29

fact going against it. With all fuzzy set activations from all input variables fed into 
each and every hidden AND neuron, the learning algorithm has an enormous task 
of sorting through them in order to arrive at some sort of solution. This attempt 
is also a blind one, having to figure out for itself that it simply doesn’t work for 
an AND neuron to, for instance, accept inputs from both low  and high information 
granules of the same variable. Further, the small number of rules that are able to 
be discovered is quite limiting, with computation times steadily increasing as more 
AND neurons are added. Compare these evident problems with our approach in 
structural discovery. Employing methods of logic minimization ensures that the 
logic-processing nature of the model is fully utilized. We are also not hindered by 
attempting to select the most suitable number of rules to describe the target systems 
behaviour: this is accomplished for us automatically.

Mentioned earlier, there have been numerous synergistic approaches to fuzzy 
modelling employing evolutionary methods, with some geared toward structural 
optimization, cf. [1, 13-16]. However, their success has been limited, and rely 
heavily on computationally intensive methods. As well, they often have to perform 
numerous experiments (on a case-by-case basis) to determine suitable values for 
critical learning parameters, such as the number of rules or the maximum number of 
rule arguments. The approach proposed here is not only extremely computationally 
efficient, it is also quite natural in freely discovering an optimal or near-optimal 
structure (rule-base) with no imposed restrictions. Rather than using a general 
purpose search tool, the logic minimization techniques are more intimate with the 
data, understanding its logic nature as it strips away redundant information to reveal 
a concise behavioural description.

3.6 Experimental Studies

Experiments were carried out with creation of a multi-platform software package, 
Third Eye (Appendix A), forming a comprehensive fuzzy model development envi­
ronment encompassing the framework introduced in this chapter.

Proceeding with experimental studies, we consider both synthetic and real-
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world data. In the former, we provide a low dimensional system for meaningful 
visualization of its behaviour and validation of the knowledge learnt by the model. 
The latter provides a comprehensive case study concerning a real-world system 
detailing housing prices in the Boston area (the Boston housing dataset). We also 
briefly report on results achieved for several other datasets. Regarding the execution 
times given for various modelling tasks, all experiments were run on a G4 1.33GHz 
PowerPC-based system.

Regardless of data, the underlying goal of the modelling is to realize a knowl­
edge based mapping that intuitively describes the behaviour (output) of an u-input 
system, i.e. SR" ■—> 9T This is completed through the construction and selective 
aggregation of information granules, having n' fuzzy sets for n inputs and in' fuzzy 
sets for the output; within the granular interfaces of the model, the mapping takes 
the form [0,1]" i—» [0,1]'" . It is here where the learning takes place. With regards 
to model development, there were no options to be set for structure discovery: all 
that the logic minimizer requires is a binary truth table representing the granulated 
training data. As for the parametric learning, in all experiments the learning rate, 
a ,  was set to 0.01, with the algorithm running for 1200 epochs. These typical 
values were found experimentally to be justifiable. As well, note that we consider 
t/s-norms to be a product operation and probabilistic sum, respectively.

When discretizing a continuous system into a small number o f binary sets, it 
is difficult to avoid conflicts in the data, i.e. having two or more identical input 
patterns showing inconsistent output patterns. To circumvent this, an evolutionary 
method of determining optimal interval widths was investigated for eliminating 
conflicts and forming a blueprint for fuzzy/binary set distribution. However, it 
was not accepted because it can easily destroy the semantic integrity of set labels 
when largely varying intervals are produced. As well, any improvement in conflict 
reduction did not warrant the additional computation. For equal width intervals, 
the amount of conflicting data appears to be reasonable in many situations; refer 
to Table 3.3 for a quantitative analysis o f conflicts appearing within the Boston 
housing data at varying levels o f granularity for input and output interfaces. Note 
the low amounts o f conflicting data, as well as the trend of decreasing conflicts 
as output granularity decreases and input granularity increases, an expected result. 
As a general observation, note that the actual number of omitted data points will 
decrease when training with only sub-sets of the data, and also with increasing sys­
tem dimensionality we see longer and more complex input patterns, often resulting 
in less conflicts. It is also important to stress that this data is not lost, as we may 
re-introduce any previously conflicting data during parametric learning, where we 
deal with fuzzy information granules rather than binary. We may envision that these 
data points could be more difficult to learn.

As a final note, there are times when we may want to distinguish between 
various versions o f the model during its development. We refer to the logically
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Table 3.3: Percentages o f data points removed from the Boston housing dataset due 
to discretization conflicts

Output sets
Input sets 2 3 4 5 6 7

2 13.6 12.8 18.2 27.1 29.6 34.2

3 5.3 9.5 12.5 18.2 17.8 24.7

4 4.0 5.7 6.3 9.3 11.9 13.8

5 0.6 3.2 3.2 6.7 6.1 8.5

6 0.4 3.4 2.2 2.8 4.2 6.1

7 0.4 2.2 1.8 2.6 3.8 4.7

optimized model with binary information granules as the binary model; upon in­
troducing fuzzy granules and t/s-norm aggregation to this underlying structure, we 
call this the fuzzy model; after parameterizing the fuzzy model with the use of fuzzy 
neurons, we refer to it as the neurofuzzy model.

3.6.1 Synthetic Data

We start with synthetic data, as shown in Figure 3.7. Here we have single input, 
single output system, where we have intentionally set the dimensionality low so we 
may see a clear visual representation of its behaviour. As an “expert” attempting 
to model the system, one can infer that three equally distributed fuzzy sets could 
be suitable for both input and output, where we can assign the labels low, medium, 
and high. With these information granules defined we would expect the knowledge 
base to take the form o f three rules:

If x is low  then y  is medium  
If x is medium  then y  is low 
If x is high then y  is high

A dataset o f 50 data points was created through uniform sampling of the synthetic, 
continuous system. A random selection of 30 points (60%) for training was com­
pleted ten times for a ten-fold cross-validation, with the remaining data used for 
testing.

Using our proposed methodology, we attempt to automatically construct an 
accurate and transparent model of this synthetic data. Since we have just one 
input to the system («=1), we must realize a mapping 9  ̂ i—> 91. As a first step, 
three uniformly distributed fuzzy sets are constructed over input and output in 
their respective universes of discourse, and through this interface we focus on 
the internal mapping [0, l ]3 h-> [0, l]3. Binary representations of these information
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Figure 3.7: Synthetic dataset with one input (x) and one output (y)

granules are induced, with the approximation task temporarily assuming the form 
{0, l } 3 h-> { 0 ,1}3. The training data is passed through this binary interface, and 
any discretization conflicts are detected; these occur when the binary input patterns 
(vectors) of two or more data points are equivalent, i.e. X(c) =  X (c'), while their 
corresponding binary output vectors are not, Y(c) ^  Y (c'). When considering a 
number of these conflicts, the data points with output patterns occurring least often 
are removed. During this binarization step, the number of conflicting data points 
removed averaged at 6.9 ±  1.8 .

After cleansing the binary data, each information granule is encoded as its 
own Boolean variable and a decision (truth) table is formed. This marks the first 
phase of creation and optimization of the processing core of our model, where a 
logic-based representation of the underlying structure of the system is discovered 
through logic minimization, namely ESPRESSO-II. In all ten experiments, the 
learnt structures were identical to each other, matching the exact representation 
as we, the “experts”, detailed previously. Using this blueprint, a parameter-free 
fuzzy neural network is constructed, where binary AND and OR operations are 
replaced with AND and OR fuzzy neurons. At this point the neurons are essentially 
functioning as fuzzy AND and OR gates realized by t/s-norm aggregation. With 
structural optimization complete, refer to Table 3.4 for the performance results 
(with all data including previously removed conflicts) when using either binary 
or fuzzy information granules for the interfacing (recall that t/s-norm operations 
function as Boolean AND and OR with two-valued data). Notice how the accuracy
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Table 3.4: Performance results (expressed in terms o f  V)  for the synthetic data after
structural learning

Sets Fuzzy sets
Training 1.1 ± 0 .2 0 0.9 ±  0.07
Testing 1.3 ± 0 .2 5 1.1 ± 0 .0 9

improves with the fuzzy sets, along with less variation between cross-validation 
iterations.

Through gradient-based parametric optimization of the fuzzy neural network 
we can achieve higher levels of accuracy and gain further insight into the behaviour 
of the system: so begins phase two. With three output fuzzy sets describing the 
system’s behaviour, each is trained individually to learn their respective concepts, 
that is low, medium, and high values of y, the progress o f training can be seen in 
Figure 3.8. The results of learning showed further improvements in performance, 
with V equating to 0.7 ±  0.04 for training and 0.8 ±  0.07 for testing. O f the ten 
iterations, the interpretation for the network leading to the best testing performance 
is shown (note that all networks were quite similar to each other):

If x  is low{0.07) then y  is m edium (0Jl)
If .v is medium(0.42) then y  is low(0.92)
If x is high(0.03) then y  is /i/g/t(0.42)

One of the most evident changes here is in the confidence level of the last rule. View 
how this tends to correspond with the behaviour shown in Figure 3.7; we see tha ty  
is high for only about 2 0 % of the range of .v, rather than an even split expected by 
the parameter-free rules.

For a visual indication of these performance results, refer to Figure 3.9, where 
we show the approximated curve produced by each version of the model: binary, 
fuzzy, and neurofuzzy. View how the fit becomes increasingly better with each 
version o f the model. One also notices the impact seen from granulation o f such a 
low-dimensional system: although sufficient for describing general behaviour, three 
fuzzy sets are perhaps not enough for truly accurate representation. In the interest 
of increasing this accuracy even further, we performed the same experiment with 
six sets for input and output. The performance results of the neurofuzzy model were 
0.29 ± 0 .1  and 0.32 ± 0 .0 9  for testing, a significant improvement as seen in Figure 
3.9.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Y! (low) 

Y2 (m edium) 

Y3 (high)

4.5

za 3.5

2.5

-0-0 0 OOOOOO 0 000000 0-0-00000-0-0-0-00<K>0 0 0 000000~

30 4010 20 500
Epoch

Figure 3.8: Parametric training progress of each fuzzy output granule for the 
synthetic data. No visible improvements seen beyond 50 epochs.
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Figure 3.9: Behaviour of each model in comparison with target system
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Table 3.5: Attributes of the Boston Housing Data

CRIM per capita crime rate by town

ZN proportion residential land zoned for lots over 25,000//2
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable 

(1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(6* — 0.63)2, 6* is the proportion of African-Americans by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $ 1000s

3.6.2 Boston Housing Data

Here we conduct a case study on the Boston housing dataset, concerning a descrip­
tion o f real estate in the Boston area where housing is characterized by a number 
of features including crime rate, number of rooms, age of houses, etc. and the 
median price of houses. The dataset consists of 506 14-dimensional points, each 
representing a single attribute (see Table 3.5). The construction o f the fuzzy model 
is completed for 304 data points (60%) treated as a training set, again using ten-fold 
cross-validation.

The goal is to create a model with three outputs, each representing an infor­
mation granule defined on the output space, i.e. the median housing price. These 
outputs take the labels of low, medium, and high. We use three granules for each 
continuous input, assigning these same linguistic labels. Note that the choice of 
these numbers was arbitrary, seeming like a reasonable number of information 
granules to use for generating rules and interpreting the knowledge to be gained. 
The binary variable CHAS was simply taken as-is. Overall, we have a total of 37 
inputs.

Proceeding with the first phase of model development, during binarization the 
amount of conflicting data was fairly small, amounting to 26.3 ±  2.1 data points: 
on average less than 9% of the training set. The discovered structures showed 
consistency between cross-validation iterations, with the number of rules (product 
terms) equalling 22.0 ± 2 .4 ,  and the number o f literals at 81.1 ±  11. Note how
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Table 3.6: Performance results for the Boston housing data after structural learning

Sets Fuzzy sets
Training 7.72 ± 0 .22 5.95 ± 0 .4 9

Testing 9.24 ± 0 .67 6.38 ± 0 .5 6

the data is fairly complex, requiring a large number of non-parameterized rules to 
describe its behavioural structure. The performance results of structural learning 
are shown in Table 3.6, for both binary and fuzzy interfaces. Here we see excellent 
performance gains with the triangular fuzzy sets. As well, notice the improved 
performance from training to testing, showing the high level of robustness of the 
fuzzy interface in achieving effective generalization.

Proceeding with parametric optimization, the results were 3.76 ± 0 .3 8  for train­
ing and 4.08 ± 0 .3 7  for testing, both significant improvements over the parameter- 
free fuzzy model. To view these improvements visually, refer to the scatter plots 
presented in Figure 3.10. In addition to the performance gain, the neural augmen­
tation to the model was able to reduce the structural complexity considerably. The 
overall best performing model (determined as the highest average performance on 
training and testing data) out o f the ten training instances was pruned using the 
thresholding process detailed in Section 3.3.2, with performance-optimal thresholds 
of 0.5 for OR neurons and 0.05 for AND neurons. As a result, the size o f the 
rule-base was simplified from 21 rules with 75 literals, to 8 rules with 15 literals. 
The interpretation of this learnt knowledge knowledge can be found in Table 3.7, 
showing a concise logic description. Note how the rules quite intuitive; for instance, 
for some high price houses, it makes sense that the average number o f rooms is 
high and the property tax is not high. Another example is how the proportion of 
lower status of the population being not low (i.e. medium  or high) results in low 
housing prices. Although the resultant structure of each of the ten networks were 
not exactly the same due to the different training data, there were many similarities 
and common rules among them. We may view the more common rules as occurring 
more prominently within the experimental data.

Finally, the computational efficiency of the model development should be em ­
phasized; for a single instance o f learning the Boston housing dataset, both struc­
tural and parametric optimization were completed together in roughly ten seconds, 
from raw data to its logic representation.
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Figure 3.10: Boston housing scatter plots showing system output vs. model output 
for the (a) fuzzy model and (b) neurofuzzy model

Table 3.7: Collection o f quantified rules derived from the Boston housing model

if-condition

CRIM medium
(0.008)

NOX high
(0.000)

medium
(0.000)

RM medium
(0.003)

high
(0.000)

AGE high
(0.000)

RAD high
(0.000)

TAX not
high
(0.000)

PTRATIO high
(0.000)

not
high
(0.002)

B medium
(0.009)

LSTAT not low 
(0.005)

medium
(0.000)

low
(0.001)

low
(0.000)

then-conclusion
MEDV low low medium medium medium medium high high

confidence 0.691 0.641 0.555 0.682 0.999 0.748 0.832 0.912
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3.6.3 Further Experiments with Real-World Data

Several experiments were conducted with other so-called regression datasets found 
at the ML repository; again a 60%/40% split of training/testing data was used. Here 
the number o f fuzzy sets used for input and output interfaces were independently 
varied from two to five per variable space, with the best performing configuration 
subjected to ten-fold cross-validation. Any nominal variables encountered were 
encoded in the form 1-out-of-n. The results are shown in Table 3.8, where we 
report on various performance measures. Note that the normalization is carried out 
by dividing V over the range o f possible output values for the respective system 
(dataset). As well, the CPU time is formed from the times for both structural and 
parametric learning. An interesting detail here is that in all cases, structure discov­
ery through logic minimization amounted to 5% (or less) o f total training time, with 
the rest of computational effort dedicated toward the gradient-based optimization. 
Further, note that we selected a rather conservative number o f learning epochs: the 
majority of error reduction occurred within the first few hundred.

In general, we see excellent performance with all o f the data, including very 
short execution times. The longest times seen were with the Abalone data, which 
was expected considering the size of the dataset (A = 4177). A point that should 
be made here is that for each dataset, the accuracy did not suffer to a large degree 
when varying the number of sets for input and output, with variations falling within 
reasonable ranges. This is important, meaning that the user, if he or she desires, 
may have some freedom in designing the granular interface without having to worry 
about poor accuracy. For instance, the user could want a more detailed linguistic 
description for the resulting model, which would require a higher number of sets in 
the input and/or output spaces.

In the interest of seeing the knowledge gained by the system modelling efforts, 
we show the derived rule-bases after pruning for each of the datasets: Table 3.9 for 
Abalone with pruning of 0.5 for OR neurons and 0.4 for AND neurons; Table 3.10 
for Auto-Mpg, with pruning thresholds of 0.4 and 0.3; Table 3.11 for the Computer 
hardware data, with thresholds of 0.5 and 0.4. Since we have already conducted a 
detailed case study of the Boston housing data, no further interpretations are shown, 
although interestingly the model with two fuzzy sets in the output space performed 
better than three, as we used previously.

By viewing these intuitive logic descriptions of the respective data, we are able 
to gain insight into their nature. For instance, we see in Table 3.10 how, among other 
attributes, weight and the model year have a large effect on automobile mileage, 
where a high model year would indicate a newer vehicle. For describing computer 
hardware performance, Table 3.11 shows how important main memory and cache 
memory are. As well, from Table 3.9 one can infer which are the most revealing 
measurements for determining age levels of abalones.
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Table 3.8: Modelling results for several well-known regression datasets

dataset Abalone Auto-Mpg Boston Housing Computer HW

Fuzzy sets 
per input

3 3 3 3

Output
fuzzy sets

2 3 2 5

Total #  
inputs

24 23 37 48

Conflicting
data

5.8% ± 0 .3 8.5% ± 0 .8 4.5% ± 0 .8 2.5% ±1.1

CPU time 
(seconds)

84.1 ± 2 4 .6 5.20 ± 0 .6 0 11.4 ±  1.8 1.51 ± 0 .3 6

Rules
(unpruned)

17.2 ± 3 .6 13.6 ±  1.3 20.8 ± 2 .4 7 .3 ±  1.3

Testing 
perf. (V)

2.32 ± 0 .0 7 3.07 ±0.31 3.82 ± 0 .4 0 68.5 ±30 .6

V (norm.) 0.0829 ±0.0025 0.0814 ±0.0082 0.0849 ±0.0089 0.0599 ±0.028

Table 3.9: Quantified logic description of the Abalone data

if-condition then-
conclusion

confidence

Length D iam eter W hole
weight

Shucked
weight

Shell
weight

Age

high
(0.002)

low
(0.304)

low 0.550

not
high
(0.002)

not
med.
(0.000)

low 0.566

not high 
(0.004)

medium
(0.002)

low 0.813

not
high
(0.286)

medium
(0.332)

not
med.
(0.002)

high 0.884

high
(0.010)

high 0.694
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Table 3.10: Quantified logic description o f the Auto-mpg data

if-conilition then-
conclusion

confidence

Horsepower Weight Model
year

Cylinders Mileage

high
(0.005)

low 0.703

medium
(0.206)

not high 
(0.001)

low 0.457

not 4 
(0.000)

low 0.420

low
(0.235)

medium 0.420

4
(0.200)

medium 0.670

medium
(0.008)

high
(0.000)

medium 0.766

low
(0.000)

high
(0.092)

high 0.825

Table 3.11: Quantified logic description of the Computer hardware data

if-condition then-
conclusion

confidence

M inimum
main
memory

M aximum
main
memory

Cache
memory

Relative
perform ance

not medium 
(0.094)

low
(0.031)

low 0.853

low
(0.000)

not low 
(0.101)

medium-low 0.816

medium
(0.033)

medium-low 0.878

medium
(0.004)

medium 0.575

high
(0.000)

high 1.000
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Table 3.12: Performance results for the Boston housing data using various regres­
sion algorithms and the proposed fuzzy modelling framework.

Learning method Kernel type Testing set performance

Ridge regression [18] Polynomial 3.23
Ridge regression [ 18] Splines 2.92

Ridge regression [18] ANOVA Splines 2.77

Relevance vector machine [21] Gaussian 2.73

Support vector machine [22] Gaussian 3.20

Regression w/ Gaussian processes [23] Gaussian 3.02

BSVR w/ (3 =  0.3 [3] Gaussian 3.51

Regression w/ Gaussian processes [23] ARD Gaussian 2.88

BSVR w/ P =  0.3 [3] ARD Gaussian 2.64

Logically optimized neurofuzzy model N/A 3.62

3.6.4 Comparison with Standard Regression Techniques

Throughout this study it has been shown how the proposed method embraces its 
logic-based foundations in order to provide a truly transparent and highly under­
standable knowledge-base. However, although the high accuracy o f the approach 
has also been demonstrated, there has not been any direct comparisons to other 
frameworks. In this section, performance comparisons are made with techniques 
focused solely on regression. Having only the goal of accuracy, these methods 
are generally top performers, not worrying about knowledge discovery, instead 
providing a black-box solution. In [3] the authors propose a Bayesian support 
vector regression approach (BSVR), comparing performance on the Boston housing 
data with a number of other regression techniques: ridge regression [18], relevance 
vector machine [21], support vector machine [22], and regression with Gaussian 
processes [23]. The results are cited here for comparison with our model. As de­
scribed in [3], the data was randomly partitioned into 481/25 training/testing splits, 
carried out 100 times and averaged, with the results seen in Table 3.12. Note that we 
cannot expect the model to surpass the performance of such algorithms making use 
of uninterpretable means including a plethora of non-linear elements. Nevertheless, 
it manages to provide comparable results. While there obviously must be some 
trade-off between accuracy and interpretability, this result is quite encouraging for 
such a heterogeneous, human-friendly knowledge-based architecture.
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3.7 Review

In this chapter we have proposed and validated an effective and novel design method­
ology for fuzzy modelling. The heterogeneous development process takes into 
account the two fundamental requirements of granular modelling, namely accu­
racy of behavioural approximation and transparency of the learnt knowledge. The 
two key technologies used here for model development, logic minimization and 
fuzzy neural networks, are instrumental in achieving overall accuracy with inherent 
abilities to provide a completely interpretable architecture. The work has resulted 
in the creation of Third Eye, an efficient, software-based fuzzy model development 
environment.
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Chapter 4

Fuzzy Neural Networks for 
Intelligent Hardware Engines

The adaptive fuzzy modelling framework presented in the previous chapter exhibits 
excellent potential for driving intelligent systems that must operate in dynamic 
and rapidly changing environments. However, to fully exploit the potential o f the 
underlying fuzzy neural networks and their parallel nature, efficient hardware im­
plementations are highly desired. In this chapter, our objective is to investigate this 
avenue and identify various critical design issues as we propose a versatile neuro­
fuzzy platform with a topology strongly influenced by theories of fuzzy modelling. 
With the novel hybrid-learning scheme presented in Chapter 3, we demonstrate 
how fuzzy neural networks are well suited in forming the adaptive logic-processing 
core of this platform, supporting intelligent information processing. Emulating 
aspects of human thought and using logic-oriented reasoning to solve a problem, 
an entity based upon this platform would be able to learn and approximate real- 
world concepts, building a knowledge base that may be interpreted and modified by 
the user. Drawing upon this knowledge, a hardware implementation has potential 
for performing inference of many simultaneous concepts in real-time, realizing 
cognition as it perceives the current state o f its environment.

4.1 Overview

With the growing need for the deployment of intelligent, highly autonomous sys­
tems, it would be beneficial for them to seamlessly combine robust learning capa­
bilities with a high level of knowledge interpretability. With the fuzzy modelling 
framework presented in Chapter 3 we are able to achieve this powerful combination. 
Realized in the form of knowledge-based fuzzy neural networks, they are able 
to build comprehensive knowledge-bases representing meaningful real-world con­
cepts. Given input data, a network is able to use its knowledge to infer the relevance
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or degree of truth o f these concepts in relation to the current state of its environment. 
With their adaptive nature, this knowledge can be gained autonomously through 
learning by example; as well, the logic-based architectures realized by these com ­
putationally intelligent entities facilitates communication between themselves and 
humans, where their learnt structures may be modified or augmented by the user if 
desired.

To fully exploit the potential o f fuzzy neural networks and their parallel na­
ture, an efficient hardware implementation is highly desirable. Perhaps the main 
motivation for such a platform is the sheer amount knowledge-based processing 
that can be efficiently accomplished. Consider a sensor-rich system with real-time 
constraints. Using fuzzy neural networks to realize the logic-processing core o f an 
adaptive fuzzy modelling system, we can build a comprehensive knowledge base 
of many different concepts and states that it must detect (infer) and act upon. This 
could lead to an architecture composed of hundreds, perhaps thousands of fuzzy 
neurons that may be executed in parallel. An example would be an autonomous 
underwater vehicle with a low-level sensor array consisting o f elements such as 
sonar readings and video. We can abstract this raw data into information granules 
and use FNNs to learn the environment, identifying and determining the size of 
schools of fish, perceiving the shape of underwater terrain, distinguishing between 
plant species, detecting obstacles, etc. In a real-world situation, the vehicle may 
need to infer whether all or many of these concepts are relevant, repeatedly gath­
ering sensor information to be processed through the knowledge base; with such a 
parallel architecture this is feasible in real time. Upon understanding the state of its 
environment, a higher-level, user-defined behavioural rule-base may be executed, 
essentially realizing autonomous behaviour with user instruction.

Along with an overview of a general topology of our proposed neurofuzzy hard­
ware architecture and a review of current fuzzy and neural hardware technologies, 
we identify and analyze key issues involved in the design o f FNN-based intelligent 
hardware engines. In particular, we attempt to address the following:

•  Presentation of a novel configurable fuzzy neuron design in hardware, along 
with identification of critical design issues.

•  Proposal of a specialized, hardware-focused hybrid-learning framework for 
adaptive logic processing, where we consider both structural and parametric 
optimization as separate mechanisms for on-chip implementation.

•  Boolean network development showing effects input dimensionality can have 
on modern optimization methods such as genetic algorithms (GA).

•  Extensive experimentation with real-world continuous data in order to pro­
vide a quantitative analysis of the identified design issues.
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Note that throughout this chapter, we frequently refer to the granularity of 
neural connections and fuzzy set membership, which is analogous to the idea of 
discretization (granulation) o f continuous data in digital systems. In addition to 
the novelty of our proposed hardware architecture, we intend to show that high- 
precision within the unit interval is unnecessary if employing fuzzy neural networks 
as a logic-processing core; when using a low-granularity representation of the unit 
interval, learning and representation need not be compromised.

4.1.1 Fuzzy and Neural Hardware Technology

While more concerned with current technologies of hardware-based neural net­
works, a brief study was conducted on recent efforts in fuzzy hardware realization. 
It was found that most o f the research was geared towards implementation of fuzzy 
set operations for fuzzy inference engines and fuzzy controllers. Solutions include 
enhanced microcontrollers with fuzzy instructions and algorithmic tuning [6,30], 
largely parallel, parameterized hardware [7,13], or some combination of the two, 
such as microprocessors with separate fuzzy coprocessing [27]. In general, devel­
opment o f these systems seems to be focused towards digital systems, although 
there has been some work done in the analog domain [9,28].

Current neural network hardware technological advancements were more closely 
examined, and it was found that while there was a broad range o f implementa­
tion techniques, the majority o f efforts could be classified as an analog [4,8,17], 
digital [10 ,23 ,29 ,31 ,32 ], or hybrid (mixed-signal) [12,20,28] solution. Analog 
systems are preferred for large productions, very low power, very high sample rate 
or bandwidth, and small size. However, connection storage is usually volatile, 
circuit behaviour is far from ideal, and the platforms are often specialized for 
specific architectures only, making development of these systems a difficult and 
normally very application-specific. Hybrid systems avoid many of these problems, 
but still remain somewhat difficult to work with during development. Digital sys­
tems, although they are subject to discretization and higher power consumption 
and circuit size, are preferred for higher accuracy, high repeatability, low noise 
sensitivity, better testability, higher flexibility, and compatibility with other types 
of preprocessing. Digital systems can also be designed more easily, thanks to the 
improvements in computer-aided design tools.

In particular, field-programmable gate arrays (FPGA) provide an excellent gen­
eral purpose development platform for digital systems. FPGAs are digital pro­
grammable devices that can be configured (programmed) to realize virtually any 
digital system, with accessibility, re-programmability, and low costs permitting 
quick and non-expensive implementations. An FPGA platform supports develop­
ment o f fast, compact solutions, providing powerful integration of hardware design 
with the software-programming paradigm. Specifically, this integration is made
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possible with the use of a hardware description language (HDL) such as Very High 
Speed Integrated Circuits HDL (VHDL) [2] or Verilog [1], which also allows us 
to create designs that may be migrated to other platforms such as different FPGA 
chips or even application-specific integrated circuits (ASIC).

The research is concerned with developing a highly configurable system that 
appeals to a wide range of application areas. With VHDL and an FPGA device we 
have an excellent opportunity to explore fuzzy neural network architectures with the 
power of hardware in the familiarity of a software-programming environment. In 
fact, nearly all research in digital hardware based neural networks takes advantage 
of FPGAs, as seen in [10 ,16 ,21 ,22 ,31 ,32]. Another prospect with creating FNN 
designs on an FPGA platform involves its dynamic reconfiguration abilities; one 
can envision a system that is able to physically reconfigure itself in order to adapt 
to a changing environment, essentially evolving into a better solution. As well, in 
conjunction with FGPA development, it could be beneficial to consider fast analog 
computational modules such as multipliers or Lukasiewicz logic arrays [18], which 
consume less power and are of smaller size than their digital counterparts.

4.2 FNN Hardware Design

In representing, learning, and inferring real-world concepts, we are essentially mod­
elling their behaviour, and hence the task is analogous to the identification and 
optimization of fuzzy models.

It is the fuzzy modelling topology shown in Figure 2.2 that we are adopting 
for our neurofuzzy hardware platform. In this study, we are concerned with the 
processing core, as it is the most difficult component to implement efficiently. This 
type of logic-processing is what fuzzy neural networks were designed for, and we 
intend to realize their structures as highly configurable elements forming intelligent 
hardware engines.

4.2.1 A Granulated Core

It is important to note that fuzzy neuroprocessing is fundamentally based upon 
fuzzy logic, which deals with continuous values on the unit interval. To realize 
this theory in the setting o f digital computing, whether we are in a high-level 
environment (software), or a low-level one (hardware), we need to apply some 
level of granulation (discretization) to the unit interval. That is, we must map the 
continuous variable into discrete values on [0,1]. As the level of discretization 
increases, intervals become broader, and the idea o f granular knowledge-based 
neural networks becomes clearer.
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Conceptually, the processing core o f a fuzzy model deals with continuous truth- 
values indicating membership to fuzzy sets defining various perspectives o f the 
data. When augmenting this core with fuzzy neurons, further continuous logic is 
introduced with the neurofuzzy connections. Naturally, applying granulation to 
this architecture would result in a loss o f information, as it would no longer be 
able to assume any value on the continuous unit interval. This raises questions 
of the need o f precision, and how it affects a networks ability to learn. On the 
positive side, dealing with these larger granules could easily result in significantly 
less computation and resources (ex. memory for storing connections), an important 
consideration when dealing with low-level digital hardware. We express this level 
of granularity applied to the processing core as g, measured in bits. For example, 
two bits of granularity would indicate four distinct levels o f truth.

4.2.2 Fuzzy Neurons in Programmable Logic

For the creation o f hardware-based fuzzy neurons, we take advantage of computer- 
aided digital design tools. In particular, VHDL is a well-known hardware de­
scription language that allows the creation of digital systems with the ease and 
familiarity o f a software-programming environment. Through VHDL-based tools, 
digital hardware can be designed and simulated on a standard PC. This design can 
then be synthesized and programmed onto a physical device such as an FPGA chip 
or ASIC.

With VHDL and programmable logic we are able to implement highly config­
urable hardware-based fuzzy neurons. There is much freedom in their creation, 
with no need to deal with any sort of fixed specifications; data and control paths 
may have variable widths, and designs can be easily modularized. Granularity can 
be set anywhere from one bit to as large as the target platform can accommodate, 
largely depending upon the size o f the knowledge base. In fact, the entire processing 
core can be dynamically reconfigurable, considering parameters such as granularity, 
t/s-norm selection, neural connections, and the underlying structure.

Aggregative AND or OR neurons are composed of t/s-norm operators; using 
VHDL, we can describe asynchronous parts that perform these operations, accept­
ing two inputs and producing an output. From these basic components we can then 
build AND and OR neurons as synchronous circuits. As an example, Figure 4.1. 
shows the hardware architecture for a 4-input OR neuron. View that we can clearly 
separate the structure into pipelined stages to provide high levels of speed and 
efficiency, with larger numbers o f inputs simply requiring more pipe stages. Further, 
pipelining is also inherent between layers of a neural network. These realizations 
lead us to a conclusion that the overall clock rate of a fuzzy neural network can be 
dependent on the largest critical logic path of the most complex triangular norm. 
Preliminary testing with FPGA synthesis o f fuzzy neurons showed the potential to
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Figure 4.1: Hardware architecture for an 4-input OR neuron, having 3 pipe stages. 
The diamonds represent digital circuits performing t/s-norm computations.

achieve network clock rates in excess of 6 6  MHz, with the latency, i.e. the number 
of cycles it takes to get an output from corresponding input, dependent upon the 
size of the network (number of inputs, layers, etc.). To give a view of the potential 
for a hardware-based FNN running at this clock speed, consider a dataset of 1000 
data points: it would take only 15^5 to compute network output for all of this data, 
showing excellent potential for very high speed learning.

4.2.3 Design Issues

The notion of granulation raises questions of practical relevance, as there must be 
some trade-off between system performance and learning accuracy. How precise 
does this form o f information processing need to be to retain an adequate ap­
proximation of the learning and representation capabilities o f continuous fuzzy 
neural networks? Another important issue in an attempt to model fuzzy neurons 
in hardware is the choice of triangular norms. Here computational simplicity is 
of importance, as we would like to avoid complex operations sudh as multiplica­
tion and division, which would result in slower processing and more hardware. 
However, we still want our networks to retain their representation and inferential 
capabilities. A disadvantage of minimum and maximum is the lack o f interactivity 
between operands, with the result reflecting the influence of only one operand. 
Conversely, algebraic product and probabilistic sum provide this interactivity, but at 
a high computational cost. Lukasiewicz AND and OR operations provide a balance 
between the two, although there is a question of how well they strike this balance.
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The method of network optimization is a critical feature o f the overall system, 
addressed in detail later in the paper. Regardless o f the learning mechanism, it is 
intended to become a modular, autonomous optimization machine, located on-chip 
or, at the very least, onboard. The idea is to have a system that continually learns 
and adapts if necessary, in order to adapt to dynamic environments, working toward 
a better solution.

Qualitative analysis of these issues is insufficient. Later in the chapter, we also 
conduct detailed experiments in order to address them quantitatively as well.

4.3 Hardware-Targeted Learning

An important FNN design issue deals with the learning effectiveness o f the net­
works. As we have already shown, straight parametric training becomes very slow 
when the size of the network gets large, with no guarantee of convergence. The 
main cause of this problem is the lack of any preliminary knowledge of about the 
structure of the network, instead having to use a fully connected topology where all 
neurons are connected with the neurons in the neighbouring layer. In following the 
framework presented in Chapter 3, rather than attempting to train the fuzzy neural 
network from scratch, we concentrate first on discovering an underlying structure 
that reflects the logic nature o f the data. This effectively reduces the number of 
connections to be adjusted during the second phase of this hybrid-learning scheme; 
here we concentrate on the parametric optimization of the network in order to learn 
the finer details of the data (system, concept) for improved accuracy.

4.3.1 Structure Discovery

Structural optimization as part of a hybrid learning approach has been studied in 
detail in this thesis. Earlier studies employed methods of evolutionary computing 
including genetic algorithms and genetic programming, with considerable success 
[5,24-26]. However, the computational efficiency was somewhat lacking, due to 
the resource-intensive nature of such methods. The parallelization of hardware for 
such population-based methods would be helpful here, but there would be a need 
of considerably more effort in designing hardware-based evolutionary algorithms, 
going above and beyond implementations of fuzzy neurons. Regardless, studies 
conducted during the development of this thesis have taken a different path, making 
use of logic minimization algorithms for discovering a concise, logic-based struc­
ture within system data.

This novel approach to structural learning has considerable potential for im­
plementation as part of an autonomous optimization vehicle on the proposed neu­
rofuzzy platform. Efforts in the development of hardware-based, on-chip logic
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minimizers [3,14,15] have achieved significant success with very fast performance 
and effective minimization. W hether implemented on separate hardware or on 
the FPGA itself, an on-chip minimizer quite effectively complements the dynamic 
reconfiguration abilities of the FPGA. Once training data is abstracted into binary 
information granules and provided to the minimizer, it can quickly perform the 
optimization and directly communicate the results to the configuration control of 
the FPGA, using a portion of its resources to create a custom fuzzy neural network, 
ready for the next step in core optimization.

4.3.2 Parametric Refinement

The FNN combines its optimized knowledge-based structure with inherent adaptive 
abilities in order to learn finer details. Although we have previously taken advantage 
of gradient-based backpropagation methods, when considering a hardware imple­
mentation, it would be beneficial to avoid such methods, which requires difficult 
circuit implementations and costly gradient calculations. Instead, methods o f si­
multaneous perturbation (SP) are suitable here, having already achieved success in 
hardware implementations [11,16]. The advantage o f these methods is simplicity, 
only needing values of the performance index for making weight adjustments. This 
makes implementation a much easier task, as the algorithm does not have to take 
error backpropagation circuits into account. In this study a unique simultaneous 
perturbation algorithm is proposed. We use <2/y to express the network approxima­
tion error for all training data (recall its definition in Chapter 3 as a sum-of-squared 
errors. View that it can be considered a function o f the network’s connections, 
<2 /v(w), as their values ultimately control its output.

A perturbation magnitude p  is used in conjunction with a sign vector s to modify 
the connections w of the network, where w and s are vectors of length equal to the 
number of connections in the network. The sign vector contains elements that have 
been randomly assigned a value of 1 or - 1, which determines whether correspond­
ing connections in w receive positive or negative perturbations. As well, a decay 
constant, cl, is applied to p  after each learning epoch to help the algorithm converge, 
realizing coarse to fine grained weight perturbations as cl gracefully decays towards 
zero. The complete algorithm is shown in Figure 4.2.

Note that we need only one forward operation of the FNN for each learning 
epoch, a distinct advantage over a traditional backpropagation method. From the 
point o f view of hardware, the simplicity of this learning method is highly ben­
eficial. If we used a backpropagating method, we would have to include error- 
propagation circuits for all weights in the network. This error propagation through 
the weights, the wiring for all weights in the network, and the overall circuit design 
becomes difficult. Instead, the SP algorithm needs only values of Qn  in order to 
update all weights, requiring only one circuit realizing this learning mechanism.
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Figure 4.2: Proposed simultaneous perturbation (SP) learning algorithm.

The calculations required for the learning rule are also extremely simple, requir­
ing no complex circuits for multiplication or division, just ones for subtraction, 
addition, comparisons, and sign changes. Since we are dealing with a granular 
integer representation of the unit interval in error calculations, the squared error 
measure is simplified as well. Additionally, the algorithm allows the utilization 
of non-differentiable t/s-norms if desired, and is very friendly to granular weight 
adjustments within the unit interval, which was the main motivation behind coarse­
grained perturbations during the earlier learning epochs.

With the final details of the platform introduced, we show a block diagram in 
Figure 4.3, detailing its topology.

4.4 Experimental Studies

In this section, we present results of comprehensive experiments carried out dealing 
with both synthetic and real-world data. The presentation and discussion o f the 
results o f several sets of experiments are divided into sub-sections.

4.4.1 Boolean Network Development

Here we conduct experiments on synthetic binary data, where we intend to give 
a quantitative view of the effect that input dimensionality has on a complexity of 
the learning problem. The experimentfqhere complement ones carried out in the 
previous chapter, further demonstrating the importance of structural optimization,
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Figure 4.3: Topology of the proposed hardware-based adaptive logic-processing 
platform.

as well as the value of logic minimization algorithms.
Using binary connections for fuzzy neurons processing binary data, recall that 

they become simple AND and OR gates. Having on/off connections such as these, 
we can realize structural optimization in the selection of neural inputs, i.e. connec­
tions equal to 1 for AND neurons make their corresponding inputs unnecessary, and 
similarly for OR neurons when their connections are equal to 0. Noting the sum-of- 
products topology in Figure 3.2, we attempt to train these Boolean logic processors 
(LP) using evolutionary means via a genetic algorithm, where the number of hidden 
neurons /? is constant for a given training instance. The chromosome structure 
consists of all connections in the network and hence is a binary version. As in the 
previous chapter, standard operators are used for the GA [19], with parameter values 
determined to be suitable through preliminary experimentation: a tournament based 
selection with an elitist mechanism (the best individual is always carried into the 
next generation); a standard mutation operator at a rate 0.04; a multi-point crossover 
operator (with the number of points varying randomly between pairs of individuals) 
at a rate of 0.5; a fitness function / ,  taken as a variation of Q, where we consider all 
N  input-output pairs at once as an average (noted that a squared error is unnecessary 
since we are dealing with binary errors):

1 N
Qga =  77 E  |n (c )  -  TARGETk(c)\

™  C —  I

Note here that k =  1 as these networks have a single Boolean output. As we 
normally try to maximize the fitness function for GA, /  is taken as 1 — Qga-, which
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Figure 4.4: Best and average fitness plots of the 6 -variable data set shown in Figure 
4.5(c).

has a maximum value o f 1. In typical fashion, all experiments were conducted using 
a population o f 2 0 0  individuals and running for a maximum of 1 0 0 0  generations. 
These values were found experimentally to be justifiable.

Here the learning goal is to find a minimal sum-of-products representation of 
Boolean datasets. The data was synthetically generated using a Boolean LP with 
randomly generated connections in the hidden layer, composed of three AND neu­
rons. For n inputs, these datasets cover the complete truth table of 2" entries. With 
increasing dimensionality comes an exponential explosion in problem complexity; 
the problem is also further complicated by the introduction o f complements into the 
learning process, effectively doubling the number o f inputs for training.

We first consider truth tables o f 4, 5, and 6  variables. This low dimensionality 
allows the results to be easily visualized with Karnaugh maps (Figure 4.5), provid­
ing an effective means for evaluating the performance o f a GA-trained Boolean LP 
in finding a simplified expression for the logical input-output relationship. After 
training a Boolean LP to achieve zero error in each case (progress o f the GA for n 
= 6  shown in Figure 4.4), the resulting network structures were translated into the 
Boolean relationships they represent (Table 4.1). These results can then be applied 
to the K-map representations o f the respective functions (Figure 4.5). Note that for 
all cases, the learning process results in discovery of the least possible number of 
terms (i.e. number o f hidden neurons, h) necessary to represent the relationship. For 
illustrative purposes, the architecture o f the trained LP representing the 4-variable 
function in Figure 4.5(a) is shown in Figure 4.6.

Next, we train Boolean logic processors with increasing dimensionality. The 
dimensionality o f the problem, n, ranged from 2 to 10 inputs, and 50 different 
Boolean datasets were generated for each value of n. We then trained network 
configurations with this data, varying the number o f neurons in the hidden layer.
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Figure 4.5: Results o f training shown on K-maps for Boolean systems with 4, 5, 
6  input variables. Shadowed regions visualize the simplification (reduction) effect 
obtained through the learning.
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Table 4.1: Boolean LP interpretations

n Boolean Expression

4 y  =  [*1 » X 2  OX'S • * 4 ]  +  [*l •■*4] +  [*1 0 X 2  « X j]

5 y  =  [.fl 0 X 2  • X l  •.V5] +  [x2 0 X 3  *4:4] +  [.Vi 0 X 2  •-V3 ».V5] +  [,V2 • X j  » .v5] +  [.V| 0 X 2  * X 3 «.V5]

6 y  =  [x\ 0 X 2  0 x 3  •JC4] +  [X] 0 X 2  » x e ]  +  [*2 •  *4] +  [.v2 * * 4  0 x 3  •  ,v6]

Figure 4.6: The trained Boolean network for the 4-variable function shown in 
Figure 4.5(a) (small circles denote complements). Note that for the AND neurons, 
only the essential connections are displayed, as the others have no effect.
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These configurations always admitted both inputs and their complements, essen­
tially doubling the number o f inputs (up to 20). Figure 4.7 shows the training 
results. As a performance measure, we count the number of datasets completely 
represented (out of 50), i.e. the datasets in which the network produced zero error.

Since the datasets were randomly generated with three minterms, it is not sur­
prising that the network configuration with h = 3 performed best. From the results 
o f the smaller networks, we see that the GA is able to find simplified relationships 
among the data (i.e. less terms), if they exist. This is evident when viewing final 
networks trained for a particular dataset, where we see that, for example, if the 
relationship can be represented with s <  3 terms, all networks with h > s are able 
to find the solution. However, the most important observation to make from Figure 
4.7 is how dimensionality severely affects training success. Note the general pattern 
in the results, showing that as dimensionality increases, the training becomes less 
effective. This leads to the conclusion that evolutionary methods can have limited 
applicability to such highly dimensional problems; interestingly, the Espresso was 
able to find solutions to every one of these problems, in a matter of milliseconds.

4.4.2 Real-World System Modelling

We now present experiments conducted with some o f the machine learning datasets 
used in the previous chapter. These experiments are important, allowing us to 
evaluate how granularity levels and triangular norms affect learning and gener­
alization. As well, we can now validate the effectiveness of our hybrid-learning 
scheme, particularly the simultaneous perturbation learning. To simulate the pro­
posed neurofuzzy hardware platform, models o f granular fuzzy neurons were built 
in a software environment along with an implementation of the SP learning al­
gorithm. As we have not yet implemented any logic minimization architecture 
in hardware, we made use o f Espresso for heuristic logic minimization. These 
software implementations provided a versatile and highly configurable simulation 
and testing environment for the hardware-based FNN processing core. As for the 
granular interfaces, we used triangular membership functions for input and output 
fuzzy sets, with their simplicity making them suitable candidates for hardware 
implementation. We used three fuzzy sets distributed evenly over each continuous 
variables universe of discourse, and any nominal variables were encoded using 1- 
out-of-n. To maintain a good level of accuracy in the output interface, we use 
a centre-of-gravity (COG) decoding (defuzzification) scheme. Additionally, for 
all experiments we use a root-mean-squared-error (RMSE) formula to measure 
performance of the resultant models (V as defined previously).
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Auto-Mpg data

The Auto-Mpg dataset consists o f 392 8 -dimensional points. Here the goal is to 
create a model of this data to predict the mileage o f an automobile (MPG) based 
on the remaining variables. With three fuzzy sets defined for each variable, their 
labels are taken as low, medium, and high. Therefore, we are attempting to learn 
the concepts of low, medium, and high mileage within our FNN-based processing 
core, in order to arrive, through the output interface, at a numeric value predicting 
mileage. Note that the learning is completed for 60% of the data treated as a training 
set, randomly selected ten times to complete a ten-fold cross-validation.

In the first phase of learning we attempt to find a structure in the data through 
logic minimization. From this structure we derive a parameter-free FNN, varying 
the granularity, g, o f these fuzzy set memberships, in order to view the effects of 
such direct discretization. The results are shown in Figure 4.8, where g ranges from 
1 to 10  bits, and we also include the result obtained for a continuous representation. 
Note that for 1 bit o f granularity, we simply provide the performance results of 
the binary structure with binary data. Interestingly, when g reaches a level of 4-5 
bits, the performance becomes practically equal to a continuous representation. As 
well, note that the minimum/maximum t/s-norm operators appear to perform best 
here, which could perhaps be attributed to the fact that they most closely resemble 
Boolean AND and OR operations.

Proceeding with parametric optimization o f the discovered structure, we now 
have an opportunity to view the effectiveness of our SP learning method in conjunc­
tion with different t/s-norms and varying fuzzy input/connection granularity. The 
training was run for 2500 epochs with a perturbation magnitude of 0.5, reaching 
zero by the last epoch. In view o f the application area, we are not simply training 
the network with high levels of granularity and performing subsequent granulation 
(discretization). This method is not compatible with the idea of a granular logic- 
processing core in hardware, where we likely would not have the resources to first 
train with high levels of granularity. Instead, it is much more desirable to train 
from the specified granularity, and see how well each configuration performs. To 
give a baseline performance comparison, we also train a continuous FNN (prod­
uct/probabilistic sum) with the standard gradient-based technique used previously, 
setting the learning rate to 0.01 and running for 2500 epochs. The training results 
are presented in Figure 4.9, showing significant performance increases over that of 
Figure 4.8, stemming from the neural augmentation. Again we see that low granu­
larities o f just 4-5 bits are able to perform as well as much higher levels, with very 
good performance seen even when g =  2 bits. As well, view that the performance 
of the SP learning method comes very close to that o f backpropagation, all while 
exhibiting significantly less computational complexity. Further, another positive 
observation of these results is the performance of each set of t/s-norms. View how
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Figure 4.7: Performance results o f training the Boolean SOM LP while varying the 
size of the hidden layer, measured as the number of datasets completely represented 
(out of 50).

the Lukasiewicz appear to strike a good balance between learning accuracy and 
computational simplicity, approaching the performance of product and probabilistic 
sum.

Choosing the best performing Lukasiewicz FNN at a granularity of 4 bits, we 
compare it with the best performing continuous FNN, showing their respective 
scatter plots in Figure 4.10. We also show the training progress for these networks, 
seen in Figure 4.11. Here the differences between the learning algorithms are quite 
apparent: the progress of the gradient learner is smooth, while the SP learner 
is very rough. On a per-epoch basis, the gradient method learns faster, but is 
actually much slower when the amount of computation is taken into account. This 
behaviour of the SP learner is largely due to its stochastic nature. As well, note 
that the SP algorithm detailed previously shows that the performance-comparing 
step of the learning should never result in a worse error than the current one as 
it progresses. This behaviour is not seen here due to the simultaneous training of 
three network structures for each of the three fuzzy outputs o f the network, which 
cannot guarantee the performance wont regress once a crisp value is decoded from 
the results of the latest weight adjustments.

As we have already extensively shown how structurally and parametrically opti­
mized fuzzy neural networks provide highly-understandable knowledge, there is no 
need to go into detail of interpretation results here. However, like before, pruning
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Figure 4.8: Average performance results (Auto-Mpg data) o f parameter-free FNN 
structure used with fuzzy inputs at varying levels of granularity (in bits) for the 
training set and testing set. ‘c’ on the x-axes denote a continuous representation.
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Figure 4.9: Average performance results (Auto-Mpg data) after SP parametric 
training of structurally-optimized granular FNNs. The baseline indicates the 
performance of a backpropagation-trained continuous FNN.
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could be used to reduce structural complexity if desired, and the networks them­
selves contain highly intuitive rules. The knowledge gained was of the quality en­
countered in the previous chapter, with the only difference amounting to discretized 
rather than continuous weights.

Boston Housing data

Here we work with the Boston housing data, where we are attempting to learn 
the concepts of low, medium, and high median housing prices. Like before, the 
learning task is completed for 60% of data treated as a training set using ten-fold 
cross-validation.

After structural optimization, the derived parameter-free FNN was subjected 
to varying granularity as , with the results shown in Figure 4.12, with g ranging 
from 1 to 10 bits in addition to a continuous representation. Again we see how 
the performance is practically identical at 4-5 bits as compared to a continuous 
representation. Noting the large performance gap between Lukasiewicz connectives 
here in comparison to the other t/s-norms, it is apparent that different realizations 
of logic operators (AND and OR) come with different abilities to approximate data. 
Without any ensuing parametric optimization, we have found that some of them 
could perform poorly.

Proceeding with parametric optimization of the optimized structure, the same 
procedure as outlined with the Auto-Mpg data was carried out here, with the re­
sults shown in Figure 4.13. Again, we see significant performance increases. The 
same observations made during the Auto-Mpg case study can also be made here, 
showing very positive results for low levels of granularity with all t/s-norms. Inter­
estingly, we also see Lukasiewicz connectives outperforming product/probabilistic 
sum. Again choosing the best performing Lukasiewicz FNN at a granularity of 
4 bits, we compare it with the best performing continuous FNN, showing their 
respective scatter plots in Figure 4.14.

4.5 Review

Hardware-based fuzzy neurocomputing is a critical step towards the design o f trans­
parent, adaptive, and highly autonomous intelligent systems. In this chapter, we 
proposed a promising neurofuzzy platform based upon the principles o f adaptive 
fuzzy modelling, and performed extensive qualitative and quantitative analysis.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 Product/Probabilistic  Sum
 M inimum/M aximum
 Lukasiewicz connectives

1 0 . 5

4 . 5

G ran u larity (b its)

 Product/Probabilistic Sum
 Minimum/Maximum
 Lukasiewicz connectives

1 0 . 5

e .s —  n :

4 . 5

G ran u larity (b its)

(a) Training (b) Testing

Figure 4.12: Average performance results (Boston housing data) o f parameter-free 
FNN used with fuzzy inputs at varying levels of granularity (in bits) for the training 
set and testing set. ‘c’ on the x-axes denote a continuous representation.
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Figure 4.13: Average performance results (Boston housing data) after SP paramet­
ric training o f structurally-optimized granular FNNs. The baseline indicates the 
performance o f a backpropagation-trained continuous FNN.
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Figure 4.14: Scatter plots showing (Boston housing) data vs. model for a 4- 
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product/probabilistic sum
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Chapter 5 

Closing

The benefits o f modelling complex real-world systems, concepts, and processes are 
numerous, most evident when a model can be efficiently and successfully designed 
with an appropriate balance between accuracy and transparency. In this thesis we 
introduced and validated an efficient modelling framework for automatically iden­
tifying transparent and accurate models from real-world system data, proceeding 
with the construction o f a solid foundation for potential implementation in high­
speed electronic hardware for real-time applications.

5.1 Discussion

As the complexity of a system increases, it becomes more difficult and eventually 
impossible to make a precise statement about its behaviour. It is quite evident that 
one does not always need need such precision that computing platforms provide. 
In contrast, human beings have the ability to take in and evaluate all sorts of in­
formation from the physical world we are in contact with and to mentally analyze, 
average and summarize all this input data into an optimum course of action. We 
are essentially granular computers, providing a great deal of motivation to try and 
mimic this behaviour in system modelling. Consequently, modelling platform taken 
in this thesis was based heavily on fuzzy sets and fuzzy logic, allowing machines 
“think” like we do as much as possible. The idea of fuzzy models emerges as we use 
fuzzy sets to define a human-like perspective o f the system’s environment, and em­
ploy fuzzy logic for intuitive knowledge-based processing in order to approximate 
system behaviour.

Despite the user-friendliness o f fuzzy models, their development can still be 
quite difficult and time-consuming if attempted manually. As a result, it is often 
highly desirable to employ some means of automatic model identification, where a 
machine may learn from raw system data, using it as training examples in order to 
build a transparent knowledge base from which to act and from which we, as users,
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can learn or make intuitive modifications. This desire lead to the goal o f realizing 
an effective data-driven design framework for fuzzy models. In seeking this goal, 
one must note that the two fundamental modelling thrusts, namely accuracy and 
transparency, are somewhat in conflict with each other. In the presence of highly 
dimensional systems, these problems are amplified considerably. Additionally, 
coming up with effective solutions to these apparent problems can also result in 
the requirement of significantly longer computation times.

Motivated by these challenges, we recognized the fundamental link between 
Boolean and fuzzy logic, leading to the novel application of established methods 
in Boolean logic minimization to fuzzy model identification. They are able to find 
compact logic-based structures in data, revealing the most pertinent details o f the 
target system ’s behaviour. To improve upon accuracy, these structures discovered 
from minimization were directly utilized in designing the architecture of heteroge­
neous fuzzy neural networks for the adaptive, knowledge-based logic-processing 
core of the fuzzy model. As a result, the framework is capable of discovering con­
cise, accurate, and human-interpretable logic-based structures in real-world data.

In broadening the range of potential applications even further, we conducted 
detailed investigations into the potential implementation o f the adaptive fuzzy mod­
elling framework in high-speed digital electronics. This lead to the proposal of 
an optimized hardware-accelerated platform supporting the realization of intelli­
gent systems for operation in dynamic, real-time environments. The conceptual 
architecture was thoroughly examined through qualitative and quantitative investi­
gations, showing excellent potential for its future implementation. By effectively 
learning and developing a knowledge base of real-world concepts, such a hardware 
implementation can realize cognition, inferring the relevance of many concepts 
simultaneously in real-time in order to form a high-level opinion of the current 
state of its environment.

5.2 Conclusions and Future Work

With the use of heuristic methods o f logic minimization in conjunction with neuro- 
fuzzy augmentation, many problems faced by researchers today in the field of fuzzy 
model identification have been overcome. In designing the adaptive processing 
core, the most critical component o f a fuzzy model, there is no longer any need 
to rely on methods that provide inaccurate behavioural approximation, difficult 
interpretability, computational complexity, or limiting parameters (such as choosing 
a fixed number of rules) that must be experimented with. As well, we have demon­
strated an ability to handle high-dimensional problems while retaining excellent 
computational efficiency. Employing methods o f logic minimization ensures that 
the logic-processing nature of the model is fully utilized. Through understanding
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the logic nature o f real-world data from the very beginning o f the design, they reveal 
an intuitive and concise structure that directly forms a blueprint for a heterogeneous 
fuzzy neural network architecture.

The research conducted in the construction of the framework has resulted in 
its implementation as an efficient, multiplatform software-based fuzzy model de­
velopment environment, Third Eye. However, there are still further issues worth 
investigating in the pursuit of an ideal adaptive fuzzy modelling framework:

•  Interpretation mechanisms where emphasis is placed on a more sophisticated 
pruning process, where we could consider the importance of various crite­
ria such as accuracy (how much the pruning affects the performance index) 
and interpretability, where structural complexity could be measured by such 
parameters as the number of rules and/or literals.

•  Further optimization of the granular interface is certainly worth detailed con­
sideration, with potential to improve accuracy. They may be better con­
structed by capturing the nature of the data: methods such as fuzzy equal­
ization [3] or various techniques o f fuzzy clustering [2] could be of interest 
here.

•  A newer logic minimizer, BOOM [1], claims superiority over ESPRESSO-II 
in a variety o f areas. Interestingly, one of the claims made involves being 
better equipped to handling sparsely defined, high-dimensional Boolean sys­
tems. Given that this is precisely what we get from the granulation of a real- 
world continuous dataset, BOOM may well be worth investigating. Although 
ESPRESSO-II had no problems in quickly discovering minimal structures for 
the data experimented with here, BOOM could prove useful for much larger 
problems that ESPRESSO-II might struggle with, ex. thousands of variables.

With regards to the hardware platform, the hybrid-learning approach detailed 
here presented very hardware-friendly methods for both structural and paramet­
ric learning, with great potential for forming an on-chip autonomous optimiza­
tion vehicle for creating FNN-based hardware engines. From experiments, the 
effectiveness of this learning was validated with a variety of triangular norms; in 
particular, Lukasiewicz connectives have been shown to provide comparable infer­
ential capabilities to product and probabilistic sum, yet remaining relatively simple 
computationally, thus making them good candidates for hardware implementation. 
As well, an important discovery was made regarding the necessity of precision in 
representing the unit interval for fuzzy information processing, as we demonstrated 
how fuzzy neurons are able to retain their learning capabilities while dramatically 
reducing this precision (granularity). We have determined that just a few bits of 
resolution, at the most 4 or 5 bits, are necessary to achieve performance on par with
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that o f a continuous representation, with good results seen for as little as 2  bits of 
precision. This reduction in granularity is important in a hardware environment, 
where would potentially need to store and process hundreds, even thousands of 
neural connections and information granules. In contrast, if we needed to maintain 
high granularities of 8  or 16 bits, this would severely impact hardware resources.

Concerning hardware development, an FPGA platform and the use of VHDL 
will be ideal for our efforts, as the environment allows much freedom in the creation 
of and experimentation with hardware-based fuzzy neurons. In particular, one of 
the most interesting aspects is the combination o f on-chip logic-minimization with 
dynamic FPGA reconfiguration for autonomously discovering and implementing 
logic-based neurofuzzy structures. The idea o f a system that is able to physically 
reconfigure itself in order to adapt to its changing environment is extremely appeal­
ing, and worth detailed investigations.
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Appendix A 

T h i r d  E y e : Demonstration through 
example

We present a demonstration through example of the Third Eye fuzzy model develop­
ment environment, using the Auto-M pg dataset. This demonstration is carried out 
on a UNIX shell. The software can be compiled and run in any similar environment, 
such as Sun SparcOS, HPUX, IBM AIX, BSD, Linux, Mac OS X, or Windows XP 
(via Cygwin).

The raw system data should be in standard .csv (comma-separated values) format. 
Row vectors (datapoints) must be consistent in length. Alphanumeric data is per­
mitted. The tool eyeds takes in the raw input data and tries to automatically detect 
continuous and nominal variables:

$ eyeds au to -m p g .c sv  
8 v a r i a b le s ,  392 d a ta p o in ts
v a r ia b le  1 (v l) i s  c o n tin u o u s ; min = 9, max = 46 .6  
v a r ia b le  2 (v2) i s  nom in a l; 3 4 5 6 8 

v a r ia b le  3 (v3) i s  c o n tin u o u s ; min = 6 8 , max = 455
v a r ia b le  4 (v4) i s  c o n tin u o u s ; min = 46, max = 230
v a r ia b le  5 (v5) i s  c o n tin u o u s ; min = 1613, max = 5140
v a r ia b le  6 (v6 ) i s  c o n tin u o u s ; min = 8 , max = 2 4 . 8
v a r ia b le  7 (v7) i s  c o n tin u o u s ; min = 70, max = 82
v a r ia b le  8 (v8 ) i s  n om inal; 1 2  3

An output file, au to -m p g .d s , is created. This is also in CSV format, with a special 
header, where each header line is signified by

! 1 ,v l ,v 2 ,v 3 ,v 4 ,v 5 ,v 6 , v 7 ,v 8
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!t,C,N,C,C,C,C,C,N
!p,"9.00, 46.60","3, 4, 5, 6, 8","68.00, 455.00","46.00, 230.00", 
"1613.00, 5140.00","8.00, 24.80","70.00, 82.00","1, 2, 3"

! 1 indicates variable labels.
!t indicates variable type: ’C ’ for continuous, or ’N ’ for nominal.
! p indicates variable parameters. If continuous, its minimum and maximum values 
are specified here. If nominal, each unique value is specifed.

Since the parameters were auto-detected okay, we only modify the variable names:

!1, mpg, cylinders, displacement, horsepower, weight, acceleration, 
model year, origin

Note that it is possible to encode only selected values o f a nominal variable, if 
desired: simply specify only the desired ones in the above header. For instance, if 
we only cared about cars having 4, 6 , or 8  cylinders, we would only note these in 
the !p header, creating 3 binary variables when using 1-out-of-n encoding; these 
would all take the value of 0 when running into an automobile (data point) with 3 
or 5 cylinders.

If we want to split the data into training/testing sets, we can use dsplit:

DSplit - randomly split datasets for training and testing 
usage: dsenc <ratio> <dataset>
options:
-r rand() seed for split 
-o create file showing ordering

$ dsplit 0.6 auto-mpg.ds

Running this command peforms a random 60/40 training/testing split, creating 
auto-mpg.ds. train and auto-mpg.ds .test, which contain headers identical to 
auto-mpg.ds to preserve variable details.

We can now build a granular interface, using g f ace:

gface - granular interfacing 
usage: gface [options] <dataset>
options:
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- s  p r i n t  d a ta s e t  s t a t s
-U use  un ifo rm  d i s t r i b u t i o n  f o r  <arg> t r i a n g u l a r  fu zzy  s e t s  ( in p u t)  
- 0  encode nom inal in p u ts  u s in g  1 - o u t - o f - n  
-y  u se  v a r ia b le  <arg> ( s t a r t i n g  from 1 ) as th e  t a r g e t  o u tp u t 
-u  u se  un ifo rm  d i s t .  f o r  <arg> t r i a n g u l a r  fuzzy  s e t s  (o u tp u t)
-o  encode nom inal o u tp u t u s in g  1 - o u t - o f - n  
-n  in c lu d e  com plem ents (n e g a tio n s )  o f  encoded in p u ts  
-b  c r e a te  i n t e r f a c e  as  E sp re s so -c o m p a tib le  t r u t h  t a b le  
- i  im port c o n f ig u r a t io n  from  <arg>
-x  e x p o rt i n t e r f a c e  c o n f ig u ra t io n

First we need to create a binary interface:

$ g fa c e  -U3 -0  - y l  -u3  -b  a u to -m p g .d s . t r a in  
c o n f l i c t s :  18

Running the above command creates 3 fuzzy sets for each continuous input vari­
able, encodes each nominal input variable with 1-out-of-n, and creates 3 fuzzy sets 
for the output, which is selected as variable 1, ’mpg’. This creates 23 inputs and 3 
outputs. Using the -b  option, the interface is binarized, and au to -m p g .d s  . t r a i n  
is run through it, finding and omitting any conflicting data.

The output is au to -m p g .d s  . t r a i n . t t ,  which is in the Espresso file-format. This 
can be run through any Boolean minimizer supporting this format. Here w e’ll use 
Espresso:

$ e s p re s s o  a u t o - m p g .d s . t r a i n . t t  > au to -m p g .d s .m in

The output, au to -m p g .d s  .min, looks like this:

. i  23 

.o 3 

.p  13
----------1 l — i —
0 -----------------1 --------
_ 0--------------------i _ _ i
 1  0 - 1 -

 1 --------------

0 — 1 ---------- 1 - 0 -------

 000
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o 1--- 1---------- 100
 1 0  010
 ! _ 0  0 010
 1 0  0 -  010

 0  1— 0  010
.e

Here we see 13 rules, separable by binary outputs. To translate this into a fuzzy 
neural network structure, we use fnngen:

FNNgen - generate fuzzy neural network structure files 
usage: fnngen [options] coutput filename>
options:
-e generate structure (s) from espresso file (specify filename)
-c espresso data contains (arg) continuous inputs
-f espresso data contains (arg) fuzzy sets per continuous input

$ fnngen -e auto-mpg.ds.min -c5 -f3 FNNb

This creates three parameter-free 3-layer logic networks (topology discussed in 
Chapter 3), FNNb. 1, FNNb. 2, and FNNb. 3, one for each fuzzy output.
FNNb. 1 is shown to demonstrate the FNN file format:

46 3 6 2 5 
2 , 0  1 2
0,23 0.000 0,11 0.000 

2,1 1 4
0,24 0.000 0,13 0.000 0,16 0.000 0,22 0.000

2,2 1 3
0,4 0 ..000 0,36 0 . 0 0 0 0,15 0 . 0 0 0 0 0

2,3 1 1

O
O

o

0 ..000

<51*

CM

1 4
0,4 0 ,.000 0,13 0 . 0 0 0 0,16 0.000 0,43

2,5 1 3
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0 , 23  0 . 0 0 0  0 , 7  0 . 000  0 , 1 2  0 . 000

3 .0  0 6
2 .0  1 .000  2 ,1  1 .000 2 ,2  1 .000  2 ,3  1.000 2 ,4  1.000 2 ,5  1.000 

In the first line:

4 6 inputs, where 46 = 23 * 2, to admit negations 
3 layers
6 is the maximum layer size 
2 indicates product is to be used for the t-norm
5 indicates probabilistic sum for the s-norm

The rest o f the file is an order-insensitive list of neurons. Looking at the first entry,

2 , 0 means this neuron is located in the 2nd layer, 1st position.
These are coordinates of the neuron’s position in the network, essentially a 2D
matrix, where the first hidden layer is layer 1, and the output is (for this example)
layer 3. Note that in this example there was no need for the first hidden layer of OR 
neurons for set unions (see topology in Chapter 3), so there are no neurons listed in 
this layer.

1 is the type o f neuron:
1 - AND 
O -O R

2 indicates 2 inputs to the neuron 
0 ,23 0 .000  0 ,11  0.000
These are the inputs to the neuron, where the first two numbers are coordinates to 
the output o f some other neuron in the network. Note that 0 is reserved for the input 
layer, which is why the first hidden layer is 1, as mentioned above. Following the 
coordinates is the weight of each input, here 0 to indicate their full relevance.

To train the networks, we must use gface to get the fuzzy data:

$ g fa c e  -U3 -0  - y l  -u3  -x  -n  a u to -m p g .d s . t r a in  
$ g fa c e  -U3 -0  - y l  -u3  -x  -n  a u to -m p g .d s . te s t

Like before, running the above command creates 3 fuzzy sets for each continuous 
input variable, encodes each nominal input variable with 1-out-of-n, and creates 3 
fuzzy sets for the output, which is selected as variable 1, mpg. We don’t use the -b

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



option (which induces binary sets), but specify -n  because we need negations for 
the FNNs we created. The -x  option was specified here for illustrative purposes, 
outputting an interface configuration in EYE format:

3, input, fuzzy, 3, 132.5000,261.5000,390.5000
4, input, fuzzy, 3, 76.6667,138.0000,199.3333
5, input, fuzzy, 3, 2200.8333,3376.5000,4552.1667
6, input, fuzzy, 3, 10.8000,16.4000,22.0000
7, input, fuzzy, 3, 72.0000,76.0000,80.0000 
2, input, 1-out-of-n
8, input, 1-out-of-n
0, output, fuzzy, 3, 9.0000,27.8000,46.6000

Here we see each variable number, distinguished as an input or output, encoding 
type, and (if fuzzy) the number of sets followed by the locations of their modal 
values (peaks). This could be modified and then utilized by importing the file with 
the -i option.

The gface command creates the encoded data (auto-mpg .train. enc) in a format 
accepted by fnntrain, employing gradient-based optimization:

FNNtrain - gradient-based optimization of a fuzzy neural network 
usage: fnntrain [options] <encoded data> <networkl> <network2> ..
options:
-v verbose (shows training progress)
-e specify maximum number of learning epochs (default: 1000)
-r learning rate (default: 0.01)
-s rand() seed
-o create output files for training progress and final network 
(arg: output file extension)

$ fnntrain -o trained auto-mpg.ds.train.enc FNNb.l FNNb.2 FNNb.3

The result is a combined and trained (parameterized) network, FNN.trained. Us­
ing fnntest we can measure performance:

FNNtest - fuzzy neural network simulation
usage: fnnsim [options] <encoded data> <networkl> <network2> ...
options:
-p prune with given threshold
-v verbose when processing (show network output and target)
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$ fnnsim -D auto-mpg.ds.train.enc FNN.trained
SSE = 2120.05
Avg. Error = 2.2297
RMSE = 3.00358

$ fnnsim -D auto-mpg.ds.test.enc FNN.trained
SSE = 1980.67
Avg. Error = 2.65576
RMSE = 3.55186

fnnsim could also be used with the original binary FNNs in a similar way:

$ fnnsim -D auto-mpg.ds.train.enc FNNb.l FNNb.2 FNNb.3
SSE = 4356.81
Avg. Error = 3.31679
RMSE = 4.30577

The -v  option can be used to show results for each datapoint, useful for thing such 
as generating scatter plots. The networks can be pruned using the -p  option to 
reduce its size. Rules can be directly interpreted from the FNN.trained file, or 
optionally run through the fnnrules tool to generate an HTML table showing the 
quantified rule-base, similar to the tables presented in Chapter 3. Finally, all of 
this functionality may be automated through the use of the eye3 shell script, which 
permits easy n-fold cross-validation.
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