
Commonsense Knowledge Generation and Analysis
using Deep Learning Models

by

Navid Rezaei Sarchoghaei

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Navid Rezaei Sarchoghaei, 2023



Abstract

There has been a renewed interest in commonsense as a stepping stone toward

achieving human-level intelligence. By digesting enormous amounts of data in

different forms, such as visual, lingual, and sensory, humans are able to create a

world model for themselves. It is hypothesized that this knowledge is the basis

for commonsense, which can be defined as a collection of models of the world

that know the plausibility of entities or interactions. This commonsensical

world model helps humans learn new skills with very few trials, as they can

predict the consequences of actions and plan and reason for the next steps.

In our work, we explore and experiment with how we can generate com-

monsense knowledge and how it can ultimately benefit deep learning models to

gain commonsense. We also analyze the weaknesses of large language models

(LLMs) in a commonsense context and provide solutions to improve LLMs in

commonsensical tasks.

Inspired by how toddlers learn about their environment, we first introduce

a methodology to generate commonsense knowledge using only visual input.

We use knowledge graphs as the preferred method of data storage, as they

are easy to access and require low time complexity to expand. We further

expand the knowledge stored with plausibility weights of triples and contextual

information.

As linguistics is an important next step in a toddler’s mental model of the

world, we experiment with transformer-based language models to expand the

vision-based commonsense even further. Through experiments with language
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models, we observe that larger language models, trained in an unsupervised

fashion, have more embedded commonsense than their smaller counterparts.

Symbolic and vetted storage of commonsense knowledge from different sources

can improve commonsense capabilities in smaller language models. Resource-

restricted use cases, such as smartphones or self-driving cars, benefit from

offline smaller language models.

During our research, we noticed the high cost of human annotations to

gather human commonsense datasets used to train language models. As a

by-product of our research, we proposed a model-agnostic prompt technique

to reduce costly human textual annotations for fine-tuning language models.

Lastly, we demonstrate that out-of-ordinary questions can throw the LLMs

off guard. We illustrate how negated complementary questions adversely affect

the model responses. We propose a model-agnostic methodology to improve

the performance in negated complementary scenarios. Our method outper-

forms few-shot generation from GPT-3 (by more than 11 points) and, more

importantly, highlights the significance of studying the response of large lan-

guage models in different commonsensical scenarios.
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This thesis is an original work by Navid Rezaei Sarchoghaei submitted in
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mat, “Utilizing language models to expand vision-based commonsense knowl-

edge graphs,” Symmetry, vol. 14, no. 8, 2022, ISSN: 2073-8994. DOI:
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Chapter 6 of this thesis contains the article: N. Rezaei and M. Z. Re-
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Chapter 1

Introduction

1.1 Motivation

The construction of intelligent systems, especially with human-like intelligence,

has been a long-term goal of many researchers, companies, and organizations.

Whether it is possible to build a sentient artificial being can quickly become a

more philosophical question than a scientific one. To the best of our knowledge,

no proven intelligence upper-bound theory exists in artificial intelligence (AI)

research, as the Shannon theorem in information theory [6], to specify the

possible upper bound for achievable intelligence. However, with the current

state of knowledge, we can define and synthesize intelligence to the best of our

ability and scientifically improve on different factors.

Human intelligence has unique capabilities, such as learning, self-awareness,

creativity, and commonsense. These categorizations may not be perfect, but

they allow us to divide and conquer the critical task of creating intelligent

systems. There has been much work on the learning aspects, which has been

fruitful. For example, stochastic gradient descent has been a significant part

of almost all modern deep-learning systems. Research on other aspects of

intelligence is, however, in its infancy. Therefore, we narrow our focus to com-

monsense in AI systems. We try to answer these questions: What are some

excellent methods to extract and represent commonsense from these models?

Do modern deep learning models have inherent commonsense? How can the

automatically-extracted commonsense benefit humans and deep learning mod-

els alike? A good definition paves the way to answer these questions better.

1



1.2 Research Overview

In this work, we focus on different aspects of commonsense and their rele-

vance with deep learning models. We first focus on generating commonsense

knowledge graphs from visual data using deep learning vision models. We

then expand these vision-based commonsense knowledge graphs with language

models. We also discuss and introduce methodologies to reduce the required

annotation data in visual commonsense tasks. We finally analyze the existence

of commonsense in large language models and specifically focus on the concept

of negated complementary commonsense.

1.2.1 Commonsense Definition

Commonsense is trivial yet challenging as people rarely talk or write about

it. As early as toddler years, humans can understand if something is out of

place without even a developed language ability. Language can deepen the

commonsense understanding and its formalization.

Yann LeCun, an inventor of convolutional neural networks, believes that a

collection of world models representing what is likely, plausible, or impossible

makes our commonsense [7]. John McCarthy classifies human commonsense

into two categories of knowledge and ability. The commonsense ability is the

action based on the gained commonsense knowledge [8].

The human experience gained through different senses, such as vision or

touch, is the base for constructing commonsense knowledge. For example,

knowing that fire is hot is common knowledge gained through touch and vision.

Therefore, avoiding touching fire, not burning, is a commonsense ability based

on this knowledge.

Commonsense knowledge is context-dependent. For instance, the people

who live in the earth’s northern hemisphere know the month of July to be a

hot summer month, while the people in the southern hemisphere observe it as

a cold winter month. Assuming no interaction between the people of the two

hemispheres, the commonsense of these two groups is different about a specific

month. Furthermore, context is not limited to physical or geographical loca-
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tions but can also include temporal aspects. For example, it is more common

to see more formally-dressed people in the 1960s than in the 2020s.

Commonsense knowledge is inherently uncertain. Moreover, the degree of

correctness of commonsense knowledge depends on the joint group of observers.

For instance, it is a common occurrence to see the sun covered by clouds but

less common to be covered by the moon.

Commonsense can also be classified into different categories, such as physi-

cal interactions, order of events, and social dynamics. An example of a physical

commonsense is observing desks in a classroom. Regarding the order of events,

lighting a match to start a fire makes sense. Finally, in social constructs, saying

thanks after receiving a gift is commonsense.

In the study of commonsense, we should also be alert to biases. For exam-

ple, the existence of more women nurses or men construction workers should

not result in biases towards genders, especially when developing AI systems

that could one day have impactful decision-making.

1.2.2 Commonsense, Deep Learning, and Knowledge Graphs

Commonsense knowledge seems evident and natural for a human being, but

this knowledge is challenging to be acquired by a machine. The gap in learn-

ing that type of information is filled out by techniques and methods linked to

collecting and representing commonsense knowledge and self-supervised learn-

ing in the pre-training phase of models. New models, such as large language

models, appear to have emerging capabilities, such as commonsense, while

being scaled up. These newly-formed abilities are still under research and

experimentation.

The existence of stand-alone commonsense databases is shown in the liter-

ature to benefit commonsense teaching to AI models ([9], [10]). Humans and

automated methods can help improve the accuracy and knowledge in these

commonsense databases. Both traditional and deep learning models can use

explicit or acquired commonsense to do commonsensical reasoning.

There are usually two types of deep learning models, goal-specific (fine-

tuned) and generic (pre-trained). While (smaller) goal-specific models can be
3



used to improve commonsense knowledge databases, larger generic models can

directly exhibit commonsense. Furthermore, it is shown in different works,

such as [11], that the larger the models, the better they are at more complex

tasks, such as commonsense. Please note that pre-training is a specific task in

itself, such as image classification in vision models or next token prediction in

language models. Given the pre-training nature, the process can be supervised

or self-supervised. Lately, the pre-training is focused on self-supervision, which

means using available unlabeled data, such as web corpus in language models,

and not being trained by specifically-labeled data, such as a labeled sentiment

classification dataset.

Regarding stand-alone commonsense knowledge database structure, knowl-

edge graphs have proven to be an effective data structure ([9], [10]). We follow

the same pattern in our research. In a nutshell, commonsense knowledge

graphs represent facts and relations between them, characterizing real-world

scenarios and situations. Such graphs focus on elements and aspects related

to everyday activities, arrangements, and natural circumstances. Things like:

flower in vase, tree has trunk, food on plate, shoe is less likely made of metal,

or arm is most likely to be able to move, bend and be strong.

The co-existence of external commonsense knowledge and deep learning

models can benefit both. Deep learning models can learn from these databases

to upgrade their knowledge. The commonsense knowledge database can also

benefit from automated deep learning-based methods and inherent self-supervised

knowledge from some deep learning models to enhance its knowledge.

1.3 Objectives

Our research focuses on analysis, extraction, and representation of common-

sense with a focus on deep learning models and knowledge graphs. The ulti-

mate goal is to identify approaches supporting the construction and expansion

of commonsense knowledge graphs using contextual information drawn from

images and large language models and to improve the performance of lan-

guage models in general on commonsense tasks by identifying shortcomings

4



and proposing appropriate solutions.

To accomplish that, we envision the following tasks:

• Development of methodologies to generate commonsense similar to how

toddlers visually learn about their environment; convolutional neural

networks (CNNs) are utilized to construct vision-based commonsense

knowledge graphs.

• Application of transformer-based language models to expand vision-based

commonsense knowledge; Fine-tuning and automated generation of prompts

are explored to enable extraction of information from the models.

• Reduction of cost in human commonsense data annotation, which is a

vital part of commonsense research; Model-agnostic prompting methods

are analyzed to reduce the time and cost needed to annotate data.

• Improvement of commonsense abilities in large language models (LLMs);

commonsense abilities are analyzed in LLMs, and methods with low

computation overhead are proposed to improve the LLMs’ commonsense

abilities.

1.4 Outline

This thesis has been prepared in a paper-based format and is organized as

follows:

Chapter 2 is a brief review of the necessary vision and language background

concepts required to understand the following chapters.

Chapter 3 is titled Image-based World-perceiving Knowledge Graph (WpKG)

with Imprecision. Knowledge graphs are a data format that enables the rep-

resentation of semantics. Most available graphs focus on representing facts,

their features, and the relations between them. However, from the point of

view of possible applications of semantically rich data formats in intelligent,

real-world scenarios, there is a need for knowledge graphs that describe con-

textual information regarding realistic and casual relations between items in
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the real world. This chapter presents a methodology for generating knowledge

graphs addressing such a need. We call them World-perceiving Knowledge Gra-

phs – WpKG. The process of their construction is based on analyzing images.

We apply deep learning image processing methods to extract scene graphs.

We combine these graphs and process the obtained graph to determine the

importance of relations between items detected on the images. The generated

WpKG is used as a basis for constructing possibility graphs. We illustrate the

process and show some snippets of the generated knowledge and possibility

graphs.

Chapter 4 is titled Generating Contextual Weighted Commonsense Knowl-

edge Graphs. There has been a renewed interest in commonsense knowledge

and reasoning. To achieve artificial general intelligence, systems must exhibit

not only the recognition abilities of humans but also other essential aspects

of being human, such as commonsense and causality. Recent literature has

shown that external commonsense knowledge graphs benefit various systems

in multiple ways, including improvements in the commonsense abilities of deep

learning models. This chapter investigates an auto-generation of weighted

commonsense knowledge graphs representing general information, as well as

graphs containing contextual information. The method leads to construct-

ing graphs with frequency-based weights associated with nodes and relations.

The proposed construction methodology has the advantage of a never-ending

learning paradigm. We evaluate the constructed contextual knowledge graphs

qualitatively and quantitatively. The commonsense knowledge graphs are in-

herently explainable and can support commonsense reasoning. Finally, we

analyze commonsense reasoning approaches using contextual graphs and dis-

cuss the results.

Chapter 5 is titled Utilizing Language Models to Expand Vision-Based

Commonsense Knowledge Graphs. The introduction and ever-growing size

of the transformer deep-learning architecture have had a tremendous impact

not only in the field of natural language processing but also in other fields. The

transformer-based language models have contributed to a renewed interest in

commonsense knowledge due to the abilities of deep learning models. Recent
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literature has focused on analyzing commonsense embedded within the pre-

trained parameters of these models and embedding missing commonsense using

knowledge graphs and fine-tuning. We base our current work on the empiri-

cally proven language understanding of very large transformer-based language

models to expand a limited commonsense knowledge graph initially generated

only on visual data. The few-shot-prompted pre-trained language models can

learn the context of an initial knowledge graph with less bias than language

models fine-tuned on a large initial corpus. It is also shown that these models

can offer new concepts that are added to the vision-based knowledge graph.

This two-step approach of vision mining and language model prompts results

in the auto-generation of a commonsense knowledge graph well equipped with

physical commonsense, which is human commonsense gained by interacting

with the physical world. To prompt the language models, we adapted the

chain-of-thought method of prompting. To the best of our knowledge, it is a

novel contribution to the domain of the generation of commonsense knowledge,

which can result in a five-fold cost reduction compared to the state-of-the-

art. Another contribution is assigning fuzzy linguistic terms to the generated

triples. The process is end-to-end in the context of knowledge graphs. It means

the triples are verbalized in natural language, and after being processed, the

results are converted back to triples and added to the commonsense knowledge

graph.

Chapter 6 is titled Super-Prompting: Utilizing Model-Independent Contex-

tual Data to Reduce Data Annotation Required in Visual Commonsense Tasks.

Pre-trained language models have shown excellent results in few-shot learning

scenarios using in-context learning. Although impressive, the size of language

models can be prohibitive to make them usable in on-device applications, such

as sensors or smartphones. With smaller language models, task-specific data

annotation is needed to fine-tune the language model for a specific purpose.

However, data annotation can have a substantial financial and time burden for

small research groups, startups, and companies. In this chapter, we analyze

different prompt-based fine-tuning techniques to improve results on both lan-

guage and multimodal causal transformer models. We use a dataset focusing
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on visual commonsense reasoning in time to evaluate our results. Our results

show that by simple model-agnostic prompt-based fine-tuning, comparable re-

sults can be reached by only using 35%-40% of the fine-tuning training dataset.

The proposed approaches result in significant time and financial savings. Fur-

thermore, as the proposed methods make minimal architectural assumptions,

other researchers can use the results in their transformer models with minimal

adaptations.

Chapter 7 is titled Negated Complementary Commonsense using Large

Language Models. Larger language models, such as GPT-3, have shown to be

excellent in many tasks. However, we demonstrate that out-of-ordinary ques-

tions can throw the model off guard. This work focuses on finding answers

to negated complementary questions in commonsense scenarios. We illustrate

how such questions adversely affect the model responses. We propose a model-

agnostic methodology to improve the performance in negated complementary

scenarios. Our method outperforms few-shot generation from GPT-3 (by more

than 11 points) and, more importantly, highlights the significance of studying

the response of large language models in negated complementary questions.

Finally, Chapter 8 concludes the thesis and introduces possible future

works.

NOTE: Throughout our research, we make use of human evaluations. We

use Amazon SageMaker 1 and mTurk 2 platforms to conduct human evalua-

tions. SageMaker or mTurk selected the human evaluators based on provided

criteria. Our only criterion was to exclude minors. The human evaluator pool

consists of an expert workforce trained on various machine learning tasks, as

claimed by Amazon.

To better understand the connections and motivation of different chapters

of this thesis, please refer to Fig.1.1.

1https://aws.amazon.com/sagemaker/data-labeling
2https://www.mturk.com/
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Chapter 2

Background

2.1 Neural Network Basics

Each neuron in an artificial neural network imitates a biological neuron. Each

neuron has a linear transformation section and an activation function, which

is a non-linearity.

Each linear transformation consists of weights multiplied by each input and

a bias added to the sum. The linear transformation aggregates all the input

information.

Common activation functions are Sigmoid, Tanh, ReLU, and Leaky ReLU.

Here is the sigmoid function as an example:

σ(x) =
1

1 + e−x
=

ex

ex + 1
. (2.1)

By mixing these neuron units, we can create a neural network structure.

A straightforward example of a neural network structure is a feed-forward

network (or fully connected). In this type of network, neurons are arranged in

layers, and neurons from each layer are all connected to the next and previous

layers’ neurons.

2.2 Computer Vision

Computer vision is the process of observing and processing visual data by ma-

chines. Visual data is usually considered part of the electromagnetic spectrum

visible to humans.
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Each image has different attributes that could be understood and processed

by a vision algorithm. For example, if an image is described in the RGB color

model (Red-Green-Blue), each pixel will have a specific value of these primary

color elements between 0 and 255. This results in an image tensor of size

[height, width, 3] that describes an image, where 3 is the number of color

channels of RGB. For instance, the above image will be of a tensor of shape

[1260, 750, 3] (2.835 million tensor elements).

Traditionally, there have been different methods to ingest and process

these bits of data, e.g., edge detection, image spectrum, and other methods

to find features in an image. However, unlike feature detection, data-driven

approaches depend on a large set of training data, usually labeled, to rec-

ognize images and differentiate between their contents. The trained model

is then evaluated on a smaller set of unseen testing data. Some examples

of data-driven approaches are K-nearest neighbors, support vector machines

(SVM), multi-layer perceptron neural networks, and convolutional neural net-

works (CNNs).

We need a task and a baseline to evaluate these models and see which one

is better suited and superior in vision tasks. Image classification has been

traditionally a foundational vision task as in PASCAL VOC1 competition and

the evolved ILSVRC2 competition. Some reasons for its popularity are its vast

application in different scenarios and the fact that many vision tasks, such as

object recognition and image captioning, could be reduced to the image clas-

sification task. ILSVRC stands for ImageNet Large Scale Visual Recognition

Challenge, which is an annual competition to do image classification on a sub-

set of the relatively large ImageNet dataset3. The original ImageNet dataset

is organized according to WordNet4 hierarchy, where each word node of the

tree has hundreds or thousands of image samples. Quantitatively, ImageNet

has almost 22K categories and 14M image examples for them. The subset

dataset of ImageNet used in the ILSVRC competition has 1,000 object classes
1http://host.robots.ox.ac.uk/pascal/VOC/
2http://www.image-net.org/challenges/LSVRC/
3http://www.image-net.org/
4https://wordnet.princeton.edu/
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and almost 1.4M images, compared to only 20 object classes and almost 22K

images used in the PASCAL VOC challenge.

In the initial years of the ImageNet classification challenge, the state-of-

the-art algorithms used were data-driven but mainly focused on traditional

machine learning algorithms, such as SVM. However, 2012 was a turning point,

which reduced the classification error results from around 25% to only around

16%! The model used was called SuperVision (AlexNet). The model had

five convolutional layers and three fully-connected layers. The computation

was made possible using GPUs. It was trained on two NVIDIA GPUs for

about a week. The model had 650K neurons, 60M parameters, and 630M

connections. The final feature layer had a dimension of 4096. The winning

models in the following years followed almost the same architecture but deeper.

For example, 2014 winners GoogleNet and VGG had 22 and 16 deep CNN

layers, respectively.

2.2.1 Convolutional Neural Networks (CNNs)

In the previous part, we reviewed a brief history of the state-of-the-art models

based on their performance in the ImageNet image classification competition.

We will go deeper into the recent deep convolutional models in future sessions.

One notable breakthrough was the use of deep convolutional networks and

GPUs that resulted in better-performing models, starting from AlexNet in

2012. In this part, we discuss further what a convolutional neural network is,

and we will dissect its structure.

Convolutional Neural Networks, otherwise called CNNs or ConvNets, are

similar to the basic neural network architecture in that it is made of neurons,

connections, and non-linearities.

Multi-layer perceptrons (fully-connected neural nets) do not scale well with

the size of the images. The reason is the vast number of connections between

neurons of each layer with the next, where one neuron from the next layer is

connected to all neurons from the previous layer. All the extra connections

create more computation requirements and may even lead to overfitting due

to many parameters.
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Unlike a fully-connected neural network, a CNN accepts a 3-dimensional

image tensor as input and, in the case of an image classification task, creates

an n-dimensional vector with n being the number of classes. A simple CNN

consists of the following layers:

• Input: This is the input image, e.g. in case of CIFAR-10, it is 32x32x3.

32 by 32 pixels is the size, and 3 represents three RGB channels.

• Convolution Layer: This layer uses a fixed-size filter to sweep through

the image to calculate convolutions between the filter values and the

image pixel values underneath. We will further describe this step as the

most important concept in a CNN.

• Non-linearity layer: As in a normal neural network, different non-

linearities could be used. For example, AlexNet uses ReLU non-linearity.

• Pool layer: The pooling layer is specific and sometimes optional for a

CNN. This layer performs downsampling along the spatial dimensions.

• Fully-Connected layer: This is the last layer, which has an output of

the size we need. For instance, in the case of CIFAR-10, the output will

be of size [1, 1, 10], where each vector element represents a class score.

Convolution

To better understand the convolutional layer of a CNN, we go through some

background, including continuous and discrete convolutions, as well as some

applications of convolutions independent of neural networks.

One-Dimensional Continuous Convolution This procedure resembles

the mathematical convolution, where a function is a slide through another

function. At each point, the multiplication of one function by the reversed

and slide version of the other is calculated and summed to calculate the value.
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Mathematically, the formula is represented as (continuous functions):

f ∗ g =

∫ +∞

−∞
f(τ)g(t− τ) dτ

=

∫ +∞

−∞
g(τ)f(t− τ) dτ

(2.2)

Convolution is similar to a cross-correlation function with the difference

that one function is reversed in convolution and then slides over the other

function. In some sense, convolution is roughly a measure of the correlation

between two functions. As we can see in the animations, this heuristics is

almost true.

Two-Dimensional Discrete Convolution Two-dimensional discrete con-

volution is similar to one-dimensional discrete convolution but is applied to

two dimensions. This convolution type is a good mathematical tool for im-

age processing as images usually consist of two dimensions, and digital images

are represented discretely. The mathematical representation is similar to the

one-dimensional case:

(f ∗ g)[m,n] =
+∞∑

dm=−∞

+∞∑
dn=−∞

f [m,n] · g[dm −m, dn − n]

=
+∞∑

dm=−∞

+∞∑
dn=−∞

g[m,n] · f [dm −m, dn − n]

(2.3)

Convolutional Layer in CNN

In contrast with traditional methods, where filters are pre-defined for a specific

task, filters in a convolutional neural network are learnable. This gives the

advantage to the CNN to learn adaptive filters to accomplish the task given

as a whole system by reducing the loss function defined.

The task of convolution is similar to what we discussed earlier. There are

a few more parameters that are usually used when someone talks about a

convolutional layer.

14



Stride Stride is the steps the kernel makes in the convolution process. If it

is one, the kernel will move one by one, or if it is 2, it will move two steps

simultaneously to sweep the input.

Padding Padding is the amount of zero-padding in edge locations of the

input tensor.

Kernel Size This is something that we talked about earlier. The kernel size

can be square or not.

Calculating convolution layer output The output of the convolutional

layer can be calculated using the following formulas:

Wnew =
W − F + 2 ∗ P

S
+ 1 (2.4)

Hnew =
H − F + 2 ∗ P

S
+ 1 (2.5)

where H and W are the height and width of input, respectively. F is the

filter size in the width or height dimension. P is the padding size. S is the

stride amount.

Deep CNNs

In the previous section, we mentioned that deeper CNNs have better accuracy

in image classification tasks than shallower ones. So, let us look at what

happens under the hood in a deep convolutional neural network to gain more

insight into CNNs and how they work.

CNNs, as part of the whole data-based methods, rely on data, cost func-

tion, and training to achieve a higher-accuracy model. Looking into different

layers of CNNs from the image to the one-hot vector in the case of image

classification, we see a notable specific pattern.

The first layer applies a specific number of trainable kernels to the image.

For example, 16 different kernels of size 3×3 could create 16 different channels

as a result. As mentioned previously, these kernels have traditionally been used

to perform specific tasks on images, such as edge detection. Herefore, it is not
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surprising that this layer of deep CNN architecture focuses more on lower-level

features, such as edges.

Well-known Convolutional Neural Network Architectures In this

section, we go through some at-the-time state-of-the-art convolutional neu-

ral network architectures that performed well on the image classification task,

especially the ImageNet competition.

The ILSVRC challenge happened in 2017 until model ability in classifying

ImageNet dataset images surpassed human ability on that specific task. The

overall trend consistent with the winners after 2012 is an increase in the number

of layers until the architectures reach a deep 152-layer architecture. Beyond

2017, the challenge is still open on Kaggle5.

We go through some prominent or ground-breaking architectures to under-

stand what makes them accurate or efficient.

AlexNet (SuperVision) This 2012-winner architecture significantly re-

duced classification error from the 2011’s state-of-the-art model in the ILSVRC

competition. The main novelty in this model is using a convolutional neural

network in relatively deep architecture, compared to the 2011 winner.

This architecture uses two CNN layers with max pooling and normaliza-

tion, followed by three more CNN layers and a max pool. Lastly, three fully-

connected layers gradually reduce the 4096-wide neuron array to 1000 neurons.

There are 1000 classes, and the last layer shows the class scores.

AlexNet was the first model to use ReLu as non-linearity. Normalization

layers are not common anymore. A lot of data augmentation resulted in good

results. The dropout probability was 0.5, and the batch size was 128. The

learning rate was 0.01, with a one-tenth reduction when accuracy flattens.

VGG Compared to AlexNet, the VGG architecture is deeper (16 or 19

layers). The kernels (filters) used are also smaller (3x3) than the first CNN

layer of AlexNet, which was a square size of 11. It is shown that a stack of 3x3
5https://www.kaggle.com/c/imagenet-object-localization-challenge/overview
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convolutional layers with a stride of 1 has the same effective receptive field as

one 7x7 convolutional layer. By effective receptive field, we mean the region

in the input affected by an operation. The stack of three 3x3 convolutional

layers also uses fewer parameters than a 7x7 convolutional layer. VGG19 is

only slightly better than VGG16 but uses more memory.

Inception (GoogLeNet) The Inception model is deeper than VGG,

with 22 layers. The architecture does not have any fully-connected layers.

The architecture has 5 million parameters, 12 times less than AlexNet.

The idea with Inception architecture is to develop a good module and then

stack it multiple times. The developed module applies convolutional filter

operations in parallel in multiple receptive fields of 1, 3, and 5 and a max

polling operation. All the results are concatenated depth-wise. Although this

module is effective, it is very expensive computationally. Therefore, some

dimension reduction is also performed.

ResNet This architecture made higher numbers of layers possible. Pre-

viously, more layers could have added more to the accuracy; e.g., as mentioned

before, VGG19 did not provide significant accuracy improvement compared to

VGG 16. Deeper plain architectures perform worse than shallower ones with

the same number of iterations. The problem is not overfitting, as this worse

performance happens on training and testing datasets. The deeper networks

seem harder to optimize, and even need to remember the achieved results from

shallower layers.

ResNet architecture has some bypass paths parallel to the regular path

of convolutional modules, where the exact input gets added to the output of

the convolutional module. This way, information from previous layers have

a higher chance of being forgotten in the deeper layers because of operations

applied to them.

In the ResNet model, each residual block has two 3x3 convolutional layers.

For deeper models, the bottleneck approach of using 1x1 convolutions to make

dimensionality reduction is used to improve efficiency, similar to the Inception
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model. After every convolutional layer, batch normalization is performed.

Xavier initialization of parameters is used. Stochastic gradient descent is used

with a momentum of 0.9. The learning rate chosen is 0.1, with a reduction

of 10 when the validation error flattens. Mini-batch size is 256. No dropouts

were used. Weight decay of 1e-5 is used.

Transfer Learning

The shallower layers of a deep convolutional neural network learn more about

the basic features of images, such as lines and corners. The deeper layers

however are more detailed and can classify a whole eye. This understanding

allows us to use some of the learnings from pre-trained models and apply them

to a new dataset.

Let us say we want to classify Oxford-IIIT pet dataset6. This dataset has

37 pet classes, with roughly 200 images for each class. The images have large

variations in scale, pose, and lighting. We can either do complete training or

transfer learning. Transfer learning can be generally done with two methods

of feature extracting and fine-tuning.

One way to do that is to start with a new architecture and train it from

scratch. This, of course, is possible but may result in more training time and

comparably low precision of results due to the limited number of data.

Another method is to use a pre-trained model on ImageNet and just adapt

it for our purpose. We know that lines, corners, and other basic elements are

similar in the two datasets. As ImageNet also has many animal images, even

deeper layers can be reused as well. We need to replace some deepest layers

to adapt the model to have an output vector with the size of the classes. We

used the pre-trained model as a feature extractor in this method.

The other transfer learning method is when we want to have a fully or

partly retrained network. One example is when the target dataset is different

from the pre-trained model. In this case, we may freeze the initial layers that

do a line or corner detections but will retrain all the deeper layers with our

new dataset. We can compare this method to a good initialization for our
6https://www.robots.ox.ac.uk/ vgg/data/pets/
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network. We usually randomly initialize the weights and biases. However, we

now initialize the network closer to the possible solution (global optimum) and

continue the training until we reach that optimum point.

2.2.2 Data Augmentation

When there is not much data, or we want more data to train our models, we

can do data augmentation to increase the number of data samples we have

artificially. By data augmentation, we mean changing images to look new or

similar to the model so that it can see the samples from different angles, sizes,

and even environments.

Using the best types of data augmentation depends on the dataset itself.

There is also a fixed number of data augmentation types. Here we look at

some of the common data augmentation techniques.

Color Changes

We can also augment images by changing their colors. Here are some examples:

• Color jitter: This method randomly changes the brightness, contrast,

hue, and saturation of images.

• Random grayscale: This method randomly converts images to grayscale

with a probability of p.

Flipping and Translating

Flips can be done in different orientations. For example, random horizontal flip

and random vertical flip randomly flip the image horizontally and vertically,

respectively.

The images can also be rotated to a specific degree or even translated and

scaled using the random affine method.

Generation

Added to the normal methods of augmentation using the same photo, we can

also generate new photos to create more augmented data. We can think of
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two methods: generating new photos and using the same photos in different

scenarios.

New Generated or Artificial Images Recent generative models can gen-

erate new images by looking at a training dataset and generating new similar

photos. The same type of mechanism could be used to create extra training

data.

Another method is to use artificial images instead of real ones to train the

models. For example, this method trains self-driving cars in a simulator and

then does extra training in reality.

Same Images in Different Situations Research has also shown that sim-

ply copying and pasting images in different environments could even increase

the accuracy of the vision models.

2.3 Natural Language Processing

There are different common tasks in natural language processing (NLP). Some

are easier than others, and some can be categorized as medium or hard diffi-

culty.

Spell checking, keyword searching, and finding synonyms are relatively

easy. Parsing information from websites, documents, and other information

sources is relatively moderate. Some of the more challenging tasks in NLP are

as follows:

• Translation between languages.

• Semantic analysis to find the real meaning of the text.

• Finding reference of pronouns. This task is called Coreference.

• Answering questions about a text.

The ability to work with natural language equips us to target other useful

applications, such as spam detection and medical report analysis, as some

examples.
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2.3.1 Word Vectors

Representing words as vectors is an effective way to extract semantic knowledge

from them. By vectors, we mean n-dimensional arrays that can be defined by

hand or better learned from natural language. There are different ways to

represent words in vectors.

One simple way is to represent each word as a one-hot-vector. By this, we

mean representing each word as a vector with lots of zeros and a one. The vec-

tor’s dimension in this method will be huge and equal to the number of tokens

available in a specific language, e.g., English. Although we accomplish the task

of representing words with vectors, the vectors have a computationally huge

dimension. Furthermore, the one-hot-vectors do not embed any relationship

information in themselves, e.g., no information of how man and father may be

related.

Another way to find good word representations is to look at their context.

As John Rupert Firth, a famous English linguist from the 1950s, says: “You

shall know a word by the company it keeps”.

The context can mean different things, such as the whole document or

surrounding words.

Based on this idea, the goal is to have similar word vectors, otherwise called

embeddings, for words that usually happen in the same context.

Two ways to calculate word embeddings are:

• Dimensionality Reduction Methods

• Iteration-Based Methods

Dimensionality Reduction Methods We can define a word’s context by

its surrounding words. As a hyper-parameter, the context window can be

adjusted. For example, we can look at one or more surrounding words and

consider the context of a specific word.

Using this context, we can go through a large text and count the co-

occurrence of words. Then, these co-occurrences can be organized in a large

matrix called a co-occurrence matrix. The same words can be organized in
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rows and columns in this matrix, and the counts can be placed in the matrix

accordingly.

With a large matrix, we can reduce the dimensionality by using a matrix

dimensionality reduction method called SVD and extracting word embeddings.

These embeddings benefit from smaller dimensions as well as contextual infor-

mation embedded.

The co-occurrence matrix is the basis for a famous word embedding method

called GloVe7. The gloVe has been trained on large text corpora, such as

Wikipedia, Gigaword, Twitter, and Common Crawl.

Iteration-Based Methods Iteration-based methods can learn word embed-

dings by choosing a cost function and learning the word embeddings iteration

by iteration without looking at the overall data. This process makes it com-

putationally less intensive than co-occurrence matrix methods. One famous

method to calculate word vectors using this method is called Word2Vec.

Word2Vec uses two different methods to calculate word embeddings:

• Continuous Bag-of-Words (CBOW) tries to predict the center word using

the surrounding ones.

• Skip-gram does the opposite of CBOW and tries to predict the context

words from the center word.

We can see that finding word embeddings has been simplified to a predic-

tion task. Prediction is what machine learning, specifically neural networks,

does well if trained well and a good model is chosen.

2.3.2 Language Models and Text Generation

By modeling a language, we mean assigning a probability to the occurrence

of a set of words following each other to make a phrase. For example, given a

set of words, what word can come next to complete the sentence?

In other words, each language model predicts the probability of the oc-

currence of the next word given an observed sequence of words. Having this
7https://nlp.stanford.edu/projects/glove/
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probability, we can even generate a sentence by choosing one of the most

probable next words.

It is worth mentioning that creating a language model and generating text

can be seen at different levels, e.g., word, character, or sub-words. For in-

stance, a language model can be trained on characters only and, given a set

of characters seen, predict what next character suits the sequence well.

N-Gram Language Model

One method to model a language is to use n-gram models. N-grams are a

group of n words, such as one (unigram), two (bigram), three (trigram), or

four (4-gram).

By counting the occurrence of different n-grams in a large text, we can

calculate the occurrence probability of the next word, given an observed n-

gram.

The model is simple and understandable. However, its space complexity is

large and keeps growing with the data size because we need to store n-grams

and possible words after each n-gram with their probabilities. As a result, the

text generated using this model is better than other models, such as recurrent

neural networks.

Another problem with the n-gram model is the data sparsity issue. By

sparsity, we mean lack of occurrence of a certain sequence of words. If the se-

quence does not happen, the probability of the next word cannot be calculated

as well. The issue worsens when n gets larger because larger unique sequences

will have lower and lower probabilities of occurrence.

Fixed-Window Neural Language Model

Another method to build a language model is looking at a fixed word or token

window. Serializing the embeddings to a simple feed-forward neural network

with one hidden layer.

Unlike an n-gram language model, we do not need to store the large token

series occurrence statistics, which reduces the space complexity of the model

substantially. The lack of a specific sequence of tokens will not be an issue;
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therefore, the data sparsity issue is resolved. However, the fixed window could

be more flexible and is also small. Increasing the window size results in a

larger weight matrix and extra computational requirements. Another issue is

the need for more symmetry in this model, as each word is treated differently

by being multiplied in different trained weights.

RNN Language Model

Recurrent Neural Networks (RNNs) fix some of the shortcomings of the pre-

vious vanilla neural network model.

The previous neural language model could only process a fixed size of text.

However, RNNs can process different sequence sizes. Increasing the size of

the sequence does not affect the model size. In RNNs, the idea is to use the

same weights for all the tokens. This results in solving the symmetry issue.

RNNs can also theoretically store data from many steps back in a sequence.

The issues in RNN models are related to computation speed and accessing

information from steps much farther in the past. RNNs have other variants,

such as LSTMs and GRUs as well.

Transformer-based Language Models

Modern language models are based on the transformer architecture introduced

in [12]. The extensive pre-training in these models has become the de-facto

standard for processing natural language text. We use and focus on this type

of language model in this thesis.
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Chapter 3

Image-based World-perceiving
Knowledge Graph (WpKG) with
Imprecision

3.1 Introduction

Knowledge graphs are composed of a set of triple relations, i.e. <subject

– predicate – object>, where subjects and objects are items connected via

predicates representing relations between them. The graphs are useful in rep-

resenting data semantics and are employed in different applications, such as

common-sense and causal reasoning [13], [14], question-answering [15], natu-

ral language processing [16], and recommender systems [17]. Some examples

of existing knowledge graphs are DBpedia [18], Wikidata [19], Yago [20], the

now-retired Freebase [21], and WordNet [22]. The aforementioned knowledge

graphs contain information about facts, their features, and basic relations be-

tween them. They focus on people, geographical locations, movies, music, and

organizations and institutions. They are missing a piece of information about

everyday real-world items, their contexts, and arrangements.

From the human perspective, we can state that the visual information plays

a significant role in human learning processes [23]. At the same time, the eye’s

information transfer rate is quite high [24] that makes a visual stimulus to be

of significant importance in processes of gaining understanding about different

items and how they are related to each other. Given the importance of visual

data, it is appealing to develop systems that could observe, learn and create
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knowledge based on such data. Additionally, traditional knowledge graphs do

not provide any degree of confidence associated with relations. It is assumed

that all of them are equally important.

In this paper, we look at the task of creating knowledge graphs based on

visual data. The idea is to process images, generate scene graphs from them,

and aggregate these graphs. Graphs constructed in such a way contain knowl-

edge about everyday objects, their contexts and their situational information,

as well as information related to the importance of common-sense relations

between multiple objects in their natural scenarios.

We call such a graph World-perceiving Knowledge Graph, WpKG in short.

The quality and suitability of knowledge we retrieve from images depend on

the capability of tools and methods we use for image processing. Process-

ing an image means generating a scene graph representing relations between

objects/entities present on this image. Once numerous images are processed,

all scene graphs are aggregated. This alone allows us to treat the process of

constructing graphs via aggregation as the human-like process of learning via

processing of observed images.

We also look at a process of using knowledge graphs – WpKGs – to con-

struct possibility graphs reflecting conditional dependencies between sets of

entities as observed in their usual environments. The information about the

importance of relations allows us to build possibilistic conditional distribu-

tions. They are used for processing and reasoning about entities and relations

between them in their own relevant contexts. The included case study shows

an application of the presented procedure to Visual Genome (VG) dataset [25].

3.2 Related Work

Extracting information from different media to create a knowledge graph has

been examined in the literature. Yet, the area of focus of these works has

been different: some of them focus on images, some on text, and some on a

combination of both. Also, the methods used for information retrieval can be

different – automatic or manual. A brief overview is presented in subsection
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3.2.1.

Possibilistic knowledge bases and graphs are important forms representing

uncertainty of data and information [26], and [27]. A set of basic definitions

is included in the following subsections.

3.2.1 Knowledge Graph Construction

There is a number of different knowledge graph generation methods that focus

on text as the source of information, such as NELL [28], ConceptNet [9],

ReVerb [29], and Quasimodo [30]. Some other published approaches, such as

WebChild KB [31], [32] or LEVAN [33], extract knowledge from text and image

captions or only from image objects without in-image relations. Probably, the

most relevant work to our work is NEIL [34], which create a knowledge graph

directly from images.

Compared to NEIL, our proposed automatic approach is capable of extract-

ing much more types of object-to-object relations. Compared to ConceptNet,

which represents an example of a semi-automatic method of retrieving knowl-

edge from text, our proposed approach can extract common-sense relations

based on only observing visual data.

3.2.2 Possibilistic Knowledge Base

A possibilistic base is a set of pairs (p, α) where p is a proposition, and α is

a degree to which p is true and is in the interval (0, 1) [26]. Let Ω be a set

of interpretations of the real world, and possibilistic distribution π a mapping

from Ω to the interval (0, 1). An interpretation ω that satisfies p has π(ω) = 1,

and 1− α when ω fails to satisfy p. In summary:

∀ω ∈ Ω, π{p α}(w) = 1 if ω |= p

= 1− α otherwise

From now on, we identify the base as
∑

= {(pi, αi), i = 1, . . . , n}. Then

all interpretations satisfying propositions in
∑

have the possibility degree of

1, while other interpretations are ranked based on the highest values of α
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associated with proposition they do not satisfy, i.e., ∀ω ∈ Ω:

π∑(w) = 1 if ω |=
∑

= 1−max{αi : (pi, αi) ∈
∑

and ω |= ¬pi} otherwise

In other words, π∑ induces a necessity ‘grading’ of pi that evaluates to what

extent pi is a consequence of the available knowledge. The necessity measure

Nec is:

Necπ∑(pi) = 1−max{π∑(ω) | ω |= ¬pi}

Based on that, we can say that (pi, αi) is a plausible conclusion of π∑ if

Necπ∑(pi) > Necπ∑(¬pi)

and Necπ∑(pi) ≥ αi [35].

A possibility distribution π∑ is normal if there is an interpretation ω that

it totally possible, i.e., π∑(ω) = 1.

3.2.3 Possibilistic Graph

A possibility graph ΠG is an acyclic directed graph [26]. The nodes of such

a graph are associated with variables Ai, each with its domain Di; while its

edges represent dependencies between elements of nodes. For the case of binary

variables, i.e., when Di = {ai,¬ai}, the assignment of value to the variable

is called an interpretation ω. Let us denote a set of nodes that have edges

connecting them to a node Ai as its parents: Par(Ai). Possibility degrees Π

associated with nodes are:

for each node Ai without a parent Par(Ai) = 0 prior possibility degrees

associated with a single node are Π(a) for every value a ∈ Di of the vari-

able Ai; possibilities must satisfy the normalization condition: maxa∈Di
:

Π(a) = 1.

for each node Aj with parent(s) Par(Aj) 6= 0 possibility degrees are con-

ditional ones Π(a|ωPar(Aj)) where a ∈ Dj, and ωPar(Aj) is an element of
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the Cartesian product of domains Dk of variables Ak ∈ Par(Aj); as

above, conditional possibilities must satisfy the normalization condition:

maxa∈Dj
: Π(a|ωPar(Aj)) = 1.

In our case, a conditional probability measure is defined using min:

Π(p|q) = 1 if Π(q ∧ p) = Π(q)

= Π(q ∧ p) otherwise

and obeys [26]:

Π(q ∧ p) = min{Π(p|q),Π(q)}

3.3 Generation of Image-based WpKG

We introduce a systemic approach to generate knowledge graphs given vi-

sual data. Such graphs provide us with contextual information about objects

present in the world with very limited input from humans. There are unique

challenges associated with the generation of this type of graph. First, we need

methods able to detect objects in images, and second, we require tools to

extract relations between the detected objects.

Once we have the object recognition and relation extraction processes, we

execute them on a set of images. The obtained triples – <entity – relation

– entity> are aggregated into a single knowledge graph. The strength of

relations is determined by the number of co-occurrences of objects with specific

relations. The overall process is shown in Fig. 3.1.

Having a trained model, the process is liberated from specific visual data

and its annotations. Additionally, more visual data can be processed using the

proposed methodology and comprehensive context-specific knowledge graphs

could be created.

3.3.1 Detection of Objects

To detect objects and their corresponding bounding boxes, we use the Faster

R-CNN model [36]. In this model, the full image is passed through a convo-

lutional neural network (CNN) to generate image features. To detect image
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Figure 3.1: Overall procedure for generation of a knowledge graph from images

features, usually a pre-trained CNN, such as VGG network [37], trained on

ImageNet [38] is used. Given the image features as input, another neural

network, called Region Proposal Network (RPN), predicts regions that may

contain an object and their corresponding bounding boxes. This learning net-

work is the principal contribution of the Faster R-CNN model compared to

the Fast R-CNN model [39]. This results in an improvement of performance in

both training and inference. The regions of interest (RoIs) are then mapped

into the image feature tensor, and via application of a process called RoI Pool-

ing the regions are downsampled to be fed to the next neural network. This

allows for the prediction of image classes and their correct bounding boxes.

Given the error losses from the classification and bounding box predictions,

the entire network is trained end-to-end using backpropagation and stochastic

gradient descent (SGD) [40]. An illustration of the process can be found in

Fig. 3.1.

3.3.2 Identification of Relations between Objects

Determining relations between objects is required to generate scene graphs

and it can be done in several ways. There has been several publications that

propose such methods as Iterative Message Passing [41], Neural Motifs [42],

Graphical Contrastive Losses [43], and Factorizable Net [44]. In our work, we

use the Iterative Message Passing model.Â

The Iterative Message Passing model predicts relations between objects de-
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tected by the Faster R-CNN model. Mathematically, a scene graph generation

process means finding the optimal x∗ = arg maxx Pr(x|I, BI) that maximizes

the following probability function:

Pr(x|I, BI) =
∏
i∈V

∏
j 6=i

Pr(xclsi , x
bbox
i , xi→j|I, BI). (3.1)

where I is an image, BI represents proposed object boxes, x is a set of all vari-

ables, including classes, bounding boxes and relations (x = {xclsi , xbboxi , xi→j|i =

1 . . . n, j = 1 . . . n, i 6= j}), with n representing the number of proposed boxes,

xclsi as a class label of the i-th proposed box, xbboxi as the offset of bounding

box relative to the i-th proposed box, and xi→j as a predicate between the i-th

and j-th proposed boxes.

3.3.3 Aggregation of Scene Graphs

The process of amalgamating generated image scene graphs that results in a

single knowledge graph has a number of challenges: 1) establishing a unique

identifier for each entity; 2) identifying the importance of connections; 3) deal-

ing with missing values and incorrect data; and 4) keeping the knowledge graph

updated in presence of new data.

In the specific case of the Visual Genome dataset, we use synsets from

WordNet to identify nodes and relations, as well as different meanings of a

specific word. There are various methods to identify the uniqueness of words,

such as using words occurring in natural language, grouping similar words

with the same meaning, or trying to assign words to their specific synsets.

Yet, another way is to keep words and phrases as they are and let their occur-

rence numbers show the importance of connections and nodes. Such a simple

approach provides a good indication which relations are more likely to occur.Â

Another challenge is to mitigate missing or incorrect information. For

example, the used methods/models could incorrectly label objects/relations

and the processes could fail to find unique words or synsets. Even the hand-

annotated data in the Visual Genome (VG) dataset [45], which is used for

training, has missing and incorrect data [46]. The unknowns are reduced by
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relying on the information already present, such as recovering a missing synset

based on an already-known name to synset relation or WordNet.Â

3.4 Image-based WpKG: Experimental Studies

The Iterative Message Passing model [41] is trained on the VG dataset. It

contains 108,077 images that capture everyday scenarios. For evaluation, only

the most common 150 object categories and 50 predicates are used.

The Faster R-CNN model that is applied to detect objects and their bound-

ing boxes is pre-trained on MS-COCO dataset. This dataset has 80 object

categories. The training set is of size 80k images. Validation and test sets are

40k and 20k images, respectively. Around thirty percent of the VG dataset

(test set) is used to detect objects and predict predicates. The subset has

around 30,000 images. Running the process described in Section 3.3, a WpKG

with 138 nodes and 7,287 relations is generated.Â

Neo4j [47] software is used to store and analyze the generated graph. It

allows us to store object and relationship names and synsets, as well as oc-

currence numbers. Also, it visualizes a structure composed of triples subject-

predicate-object.

One advantage of the generated WpKG is the existence of common sense

relations occurring in the actual world extracted during the processing of visual

data. The most important entities related to the entity of interest can be

found by inspecting the strength of connections between them. One way to

accomplish this is to measure how often these objects are associated with each

other.

As an example, the entity plate together with the related entities is shown

in Fig. 3.2 (a). As we can see, removing non-frequent relations leads to

identification of tightly related objects relevant to the plate, Fig. 3.2 (b).

A sample of relation occurrence statistics is shown in Table 3.1. Based

on the analysis of visual data, we can find out about some common-sense

knowledge, such as places where a vase can be placed, and what can be put

into it. Most of the relations, such as flower-in-vase, make sense and agree with
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Figure 3.2: Relationships to/from plate entity: with at least one instance and
interrelationships between associated items (a); and at least 10 instances for
each relationship and without the interrelationships (b).

the crowd-sourced VG dataset. However, some relations, such as vase-in-vase,

may not make sense. This could be a shortcoming of the method/model used

for prediction of relations. Besides a better model, processing more images

and detecting more types of relations and objects may improve the results.

The comparison of our method, which is based on image processing, with

other relevant automatic and semi-automatic methods is demonstrated in Ta-

ble 3.2.

3.5 WpKG-based Possibilistic Graph and Base

The generated WpKGs consist of an enormous amount of nodes and relations.

The relations – as built via aggregation of scene graph relations – contain

information about the frequency of occurrence. This means that each relation

is equipped with a weight indicating its strength and importance. For practical

use, WpKG can be further processed and a subset of nodes together with

relations between them can be used to construct a possibilistic graph.
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subject predicate object occurrence number

woman
woman wearing shirt 192
woman holding umbrella 168
woman has hair 141

plate
plate on table 388
plate on plate 193
plate on pizza 19

flower
flower in vase 173
flower on table 41
flower on tree 15

vase
vase on table 116
vase in vase 44
vase has flower 31

Table 3.1: Three most common relations in WpKG generated using Faster
R-CNN and iterative message passing models to recognize objects and predict
relations, respectively.

Method In-Image Relations Input Source(s) Relation Types Triples Automation

NEIL [34] Yes Image < 10 < 10K Automated

ConceptNet [9] No Text < 100 34M Semi-Automated

LEVAN [33] No Text and Objects in Images < 10 < 100K Automated

WebChild KB 2.0 [32] No Text and Image/Video Captions > 1000 > 18M Automated

Quasimodo [30] No Text (logs and QA forums) Dynamic 2.3M Automated

Our Work Yes Image < 50 (Dynamic) > 7K Automated

Table 3.2: Comparison of relevant generated knowledge graphs from literature.
Our method and NEIL are the ones that focus on in-image relations.
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3.5.1 Extracting Possibilistic Graph from WpKG

A WpKG is constructed with no constraints. It contains cycles, very strong

and weak relations, as well as erroneous information due to the imperfection

of used image processing tools. In that context, as possibilistic graph is more

organized and clean. Therefore, extracting nodes and edges from WpKG and

building a graph that satisfies rules of the possibilistic graph (Section 3.2.3)

seems important steps in utilizing generated WpKGs.

First, a proto-possibilistic graph is constructed. It is free of cycles and

contains outwards relations linked to the entity of interest. The procedure

used to extract relevant entities and connections is presented as Algorithms 1

and 2. The important aspects of this process are:

Algorithm 1, line 4 the value of Depth identifies the allowed length of a

‘relation chain’ at the process of building a graph;

Algorithm 2, line 6 the procedure randomize_createGroups() is crucial in

the construction process: 1) randomization of a sequence of entities al-

lows to generate graphs with different paths; once this is combined with

a process presented in line 8 (explained below) it prevents the existence

of cycles in the generated graph; 2) grouping of relations/predicates

connected to the same object, i.e., prepositions/adjectives playing the

role of relations; as illustration, see entities flower, window, table, plant,

Fig. 3.3;

Algorithm 2, line 8 this allows to solve an issue of cycles, i.e., relations

between pairs of entities flower-vase, plant-vase and table-vase, Fig. 3.3,

would lead to cyclic directed graph; however, if a connection between

both entities already exist, a new one – in the opposite direction – is not

created.

The application of the presented procedure leads to a graph that is acyclic

and direct. It also contains occurrences associated with each connection. The

last step of constructing a possibilistic graph is to determine possibility degrees.

To do so, all input connections to a given node are analyzed. The maximum
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Algorithm 1: Construction of Proto-Possibilistic Graph
Data: Image-based WpKG; Seed_Entity; Depth
Result: Proto-Possibilistic Graph

1 begin
2 root← Seed_Entity;
3 d← 1;
4 call CreateConn(root, d,Depth);
5 return;

Algorithm 2: Generation of Connections
1 CreateConn(r, d,Depth)
2 begin
3 if d <= Depth then
4 listChild← create_list_children(r);
5 if listChild 6= ∅ then
6 randomize_createGroups(listChild);
7 for e ∈ listChild do
8 if e not_connected_to r then
9 setupConnection(r, e);

10 call CreateConn(e, d+ 1, Depth);

11 else
12 return;

13 else
14 return;

15 return;
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value is identified and is used for normalization of all other occurrence values

associated with inward connections to the node. This ensures satisfaction of

the requirement of maximum possibility equal to 1.0 (Section 3.2.3).

3.5.2 Construction of Possibilistic Base

The extracted possibilistic graph allows us to build a possibilistic knowledge

base. Here, we follow the process presented in [26]. For that purpose, we

consider the graph as a set of triples:

ΠG = {(a, Pa, α) : Π(a|Pa) = α}

where a is an instance of Ai and Pa is the Cartesian product of domains Dk

of variables Ak ∈ Par(Ai). Each such triple can be represented as a formula:

(¬a ∨ ¬Pa, 1− α)

so, following [26], we have that the possibilistic knowledge base associated with

ΠG defined as:∑
= {(¬ai ∨ ¬Pai1− αi) / (ai, Pai , αi) ∈ ΠG}

3.6 Possibilistic Graph and Base: Experimental
Studies

Let us illustrate the process of building a simple possibilistic graph and a

possibilistic knowledge base. We apply the procedure to build a graph of facts

related to the entity vase, and relations between this entity and other entities

from the vase’s environment.

Application of Algorithm 1 to the generated WpKG allows us to extract

entities related to the entity of interest, vase. The Neo4j snapshot of WpKG

with vase and relations to ‘relevant’ entities is shown in Fig. 3.3(a). The version

processed by the algorithm is shown in Fig. 3.3(b). It contains – marked as

dashed lines – the pairs flower-vase, plant-vase, and table-vase that could result

in different graphs depending on the element of randomness embedded in the

procedure randomize_createGroups(), Algorithm 2.
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(a) WpKG

vase<latexit sha1_base64="eCD9pAH1UTrFZE0/aG0/7Drlr6A=">AAAB9HicbVBNTwIxEJ3FL8Qv1KOXjcTEE9k1GD0SvXjERD4S2JBuKdDQdtd2lkg2/A4vHjTGqz/Gm//GAntQ8CWTvLw30868MBbcoOd9O7m19Y3Nrfx2YWd3b/+geHjUMFGiKavTSES6FRLDBFesjhwFa8WaERkK1gxHtzO/OWba8Eg94CRmgSQDxfucErRS0EH2hFqmY/vEtFsseWVvDneV+BkpQYZat/jV6UU0kUwhFcSYtu/FGKREI6eCTQudxLCY0BEZsLalikhmgnS+9NQ9s0rP7UfalkJ3rv6eSIk0ZiJD2ykJDs2yNxP/89oJ9q+DlKs4Qabo4qN+IlyM3FkCbo9rRlFMLCFUc7urS4dEE4o2p4INwV8+eZU0Lsp+pXx5XylVb7I48nACp3AOPlxBFe6gBnWg8AjP8Apvzth5cd6dj0VrzslmjuEPnM8foUaSqw==</latexit>

table<latexit sha1_base64="scd95gV4OBN7d8fJUV0/n59YgE8=">AAAB9XicbVDLTgIxFL2DL8QX6tJNIzFxRWYMRpdENy4xkUcCI+mUAg3tzKS9o5IJ/+HGhca49V/c+TcWmIWCJ2lycs497e0JYikMuu63k1tZXVvfyG8WtrZ3dveK+wcNEyWa8TqLZKRbATVcipDXUaDkrVhzqgLJm8Hoeuo3H7g2IgrvcBxzX9FBKPqCUbTSfQf5E2qVIrWBSbdYcsvuDGSZeBkpQYZat/jV6UUsUTxEJqkxbc+N0U+pRsHsfYVOYnhM2YgOeNvSkCpu/HS29YScWKVH+pG2J0QyU38nUqqMGavATiqKQ7PoTcX/vHaC/Us/FWGcIA/Z/KF+IglGZFoB6QnNGcqxJZRpYXclbEg1ZWiLKtgSvMUvL5PGWdmrlM9vK6XqVVZHHo7gGE7Bgwuowg3UoA4MNDzDK7w5j86L8+58zEdzTpY5hD9wPn8AUpWTDg==</latexit>

plant
<latexit sha1_base64="UZWSOjk2SXwXl/yd1tZLoe15yUE=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4xkUcCK5kdBpgwO7uZ6VXJhv/w4kFjvPov3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxG11O/+cC1EZG6w3HM/ZAOlOgLRtFK9x3kT6jDNJZU4aRbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7OoJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmQaAekJzRnKsSWUaWFvJWxINWVogyrYELzFl5dJ46zsVcrnt5VS9SqLIw9HcAyn4MEFVOEGalAHBhqe4RXenEfnxXl3PuatOSebOYQ/cD5/AHWZkyU=</latexit>

in<latexit sha1_base64="tILQCiiu/tbuECFQxFMiSxXLA1s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS0WXRjcsK9gHtUDJppg3NY0juiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRIrgF3//2CmvrG5tbxe3Szu7e/kH58KhldWooa1IttOlExDLBFWsCB8E6iWFERoK1o/HtzG8/MmO5Vg8wSVgoyVDxmFMCTur2gD2BkRlX03654lf9OfAqCXJSQTka/fJXb6BpKpkCKoi13cBPIMyIAU4Fm5Z6qWUJoWMyZF1HFZHMhtn85Ck+c8oAx9q4pwDP1d8bGZHWTmTkJiWBkV32ZuJ/XjeF+Dp0eZIUmKKLj+JUYNB4lh8PuGEUxMQRQg13t2I6IoZQcC2VXAnBcuRV0rqoBrXq5X2tUr/J6yiiE3SKzlGArlAd3aEGaiKKNHpGr+jNA+/Fe/c+FqMFL985Rn/gff4ABemRvw==</latexit>

in<latexit sha1_base64="tILQCiiu/tbuECFQxFMiSxXLA1s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS0WXRjcsK9gHtUDJppg3NY0juiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRIrgF3//2CmvrG5tbxe3Szu7e/kH58KhldWooa1IttOlExDLBFWsCB8E6iWFERoK1o/HtzG8/MmO5Vg8wSVgoyVDxmFMCTur2gD2BkRlX03654lf9OfAqCXJSQTka/fJXb6BpKpkCKoi13cBPIMyIAU4Fm5Z6qWUJoWMyZF1HFZHMhtn85Ck+c8oAx9q4pwDP1d8bGZHWTmTkJiWBkV32ZuJ/XjeF+Dp0eZIUmKKLj+JUYNB4lh8PuGEUxMQRQg13t2I6IoZQcC2VXAnBcuRV0rqoBrXq5X2tUr/J6yiiE3SKzlGArlAd3aEGaiKKNHpGr+jNA+/Fe/c+FqMFL985Rn/gff4ABemRvw==</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

10
<latexit sha1_base64="lElyhjbwv9PI53xFimw0qV1tMYw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Ln9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWhdVr1a9vK9V6jd5HEU4gVM4Bw+uoA530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A+sKjPc=</latexit>

flower<latexit sha1_base64="vUukiyUp8rjVWc0PnqAzJIW13SM=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyURRY9FLx4r2A9oQ9lsJ+3S3STsTtQa+ku8eFDEqz/Fm//GbZuDtj4YeLw3w8y8IBFco+t+W4WV1bX1jeJmaWt7Z7ds7+03dZwqBg0Wi1i1A6pB8AgayFFAO1FAZSCgFYyup37rHpTmcXSH4wR8SQcRDzmjaKSeXe4iPKKSWSjiB1CTnl1xq+4MzjLxclIhOeo9+6vbj1kqIUImqNYdz03Qz6hCzgRMSt1UQ0LZiA6gY2hEJWg/mx0+cY6N0nfCWJmK0JmpvycyKrUey8B0SopDvehNxf+8TorhpZ/xKEkRIjZfFKbCwdiZpuD0uQKGYmwIZYqbWx02pIoyNFmVTAje4svLpHla9c6q57dnldpVHkeRHJIjckI8ckFq5IbUSYMwkpJn8krerCfrxXq3PuatBSufOSB/YH3+AMIgk9A=</latexit>
in<latexit sha1_base64="foClMCG9IX6RK1d1uC30G+uBa2I=">AAAB8HicbVDLSgMxFM3UV62vqks3wSK4KjOi6LLoxmUF+5B2KJn0ThuazAzJHbEM/Qo3LhRx6+e4829M21lo64HA4Zx7yT0nSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZAiggaKFBCO9HAVCChFYxupn7rEbQRcXSP4wR8xQaRCAVnaKWHLsITZiKa9MoVt+rOQJeJl5MKyVHvlb+6/ZinCiLkkhnT8dwE/YxpFFzCpNRNDSSMj9gAOpZGTIHxs9nBE3pilT4NY21fhHSm/t7ImDJmrAI7qRgOzaI3Ff/zOimGV77Nk6QIEZ9/FKaSYkyn6WlfaOAox5YwroW9lfIh04yj7ahkS/AWIy+T5lnVO69e3J1Xatd5HUVyRI7JKfHIJamRW1InDcKJIs/klbw52nlx3p2P+WjByXcOyR84nz9htZDM</latexit>

counter
<latexit sha1_base64="J5QaVzUV2+/e6XlOSDyaVvDBWKA=">AAAB9XicbVDLTgJBEJzFF+IL9ehlIzHxRHYNRo9ELx4xkUcCK5kdGpgwO7OZ6VXJhv/w4kFjvPov3vwbB9iDgpV0UqnqTndXGAtu0PO+ndzK6tr6Rn6zsLW9s7tX3D9oGJVoBnWmhNKtkBoQXEIdOQpoxRpoFApohqPrqd98AG24knc4jiGI6EDyPmcUrXTfQXjClKlEIuhJt1jyyt4M7jLxM1IiGWrd4lenp1gSgUQmqDFt34sxSKlGzgRMCp3EQEzZiA6gbamkEZggnV09cU+s0nP7StuS6M7U3xMpjYwZR6HtjCgOzaI3Ff/z2gn2L4OUyzhBkGy+qJ8IF5U7jcDtcQ0MxdgSyjS3t7psSDVlNgNTsCH4iy8vk8ZZ2a+Uz28rpepVFkeeHJFjckp8ckGq5IbUSJ0woskzeSVvzqPz4rw7H/PWnJPNHJI/cD5/AHihkyc=</latexit>

near<latexit sha1_base64="bFQazQoR/oISGOKyYJoBCdT/Fy4=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2k3bpZhN2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVHJo8lrHuBMyAFAqaKFBCJ9HAokBCOxjfzvz2I2gjYvWAkwT8iA2VCAVnaKVuD+EJMwVMT/vlilt156CrxMtJheRo9MtfvUHM0wgUcsmM6Xpugn7GNAouYVrqpQYSxsdsCF1LFYvA+Nn85Ck9s8qAhrG2pZDO1d8TGYuMmUSB7YwYjsyyNxP/87ophtd+JlSSIii+WBSmkmJMZ//TgdDAUU4sYVwLeyvlI6YZR5tSyYbgLb+8SloXVa9WvbyvVeo3eRxFckJOyTnxyBWpkzvSIE3CSUyeySt5c9B5cd6dj0VrwclnjskfOJ8/7X2Rrw==</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

window<latexit sha1_base64="5lp/l3Sh4AiIQJ0FUDAjQierLAY=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoiFT0WvXisYD+gDWWz2bRLN5uwO7HW0F/ixYMiXv0p3vw3btsctPXBwOO9GWbm+YngGhzn2yqsrW9sbhW3Szu7e/tl++CwpeNUUdaksYhVxyeaCS5ZEzgI1kkUI5EvWNsf3cz89gNTmsfyHiYJ8yIykDzklICR+na5B+wRVJSNuQzi8bRvV5yqMwdeJW5OKihHo29/9YKYphGTQAXRuus6CXgZUcCpYNNSL9UsIXREBqxrqCQR0142P3yKT40S4DBWpiTgufp7IiOR1pPIN50RgaFe9mbif143hfDKy7hMUmCSLhaFqcAQ41kKOOCKURATQwhV3NyK6ZAoQsFkVTIhuMsvr5LWedWtVS/uapX6dR5HER2jE3SGXHSJ6ugWNVATUZSiZ/SK3qwn68V6tz4WrQUrnzlCf2B9/gDP95PZ</latexit>
in<latexit sha1_base64="foClMCG9IX6RK1d1uC30G+uBa2I=">AAAB8HicbVDLSgMxFM3UV62vqks3wSK4KjOi6LLoxmUF+5B2KJn0ThuazAzJHbEM/Qo3LhRx6+e4829M21lo64HA4Zx7yT0nSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqDg0ey1i3A2ZAiggaKFBCO9HAVCChFYxupn7rEbQRcXSP4wR8xQaRCAVnaKWHLsITZiKa9MoVt+rOQJeJl5MKyVHvlb+6/ZinCiLkkhnT8dwE/YxpFFzCpNRNDSSMj9gAOpZGTIHxs9nBE3pilT4NY21fhHSm/t7ImDJmrAI7qRgOzaI3Ff/zOimGV77Nk6QIEZ9/FKaSYkyn6WlfaOAox5YwroW9lfIh04yj7ahkS/AWIy+T5lnVO69e3J1Xatd5HUVyRI7JKfHIJamRW1InDcKJIs/klbw52nlx3p2P+WjByXcOyR84nz9htZDM</latexit> has<latexit sha1_base64="LdW9R9nxs2y6iEminCWTLif7nTQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFjd4zjhfkQHSoSCUbTSQxf5E2ZDaia9csWtujOQZeLlpAI56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xS6qaGJ5SN6IB3LFU04sbPZhdPyIlV+iSMtS2FZKb+nshoZMw4CmxnRHFoFr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6PukLzRnKsSWUaWFvJWxINWVoQyrZELzFl5dJ86zqnVcv7s4rtes8jiIcwTGcggeXUINbqEMDGCh4hld4c4zz4rw7H/PWgpPPHMIfOJ8/I5WROw==</latexit>

has<latexit sha1_base64="LdW9R9nxs2y6iEminCWTLif7nTQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFjd4zjhfkQHSoSCUbTSQxf5E2ZDaia9csWtujOQZeLlpAI56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xS6qaGJ5SN6IB3LFU04sbPZhdPyIlV+iSMtS2FZKb+nshoZMw4CmxnRHFoFr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6PukLzRnKsSWUaWFvJWxINWVoQyrZELzFl5dJ86zqnVcv7s4rtes8jiIcwTGcggeXUINbqEMDGCh4hld4c4zz4rw7H/PWgpPPHMIfOJ8/I5WROw==</latexit> with<latexit sha1_base64="Ho9Uxpmhuq0uCansEiK0ioOqciY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbbbt0swm7E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wjm6nfeuDaiFjd4zjhQUQHSvQFo2glv4P8CbNHgcNJt1xxq+4MZJl4OalAjnq3/NXpxSyNuEImqTG+5yYYZFSjYJJPSp3U8ISyER1w31JFI26CbHbyhJxYpUf6sbalkMzU3xMZjYwZR6HtjCgOzaI3Ff/z/BT7V0EmVJIiV2y+qJ9KgjGZ/k96QnOGcmwJZVrYWwkbUk0Z2pRKNgRv8eVl0jyreufVi7vzSu06j6MIR3AMp+DBJdTgFurQAAYxPMMrvDnovDjvzse8teDkM4fwB87nDw8wkcU=</latexit> holding
<latexit sha1_base64="f3xof4W+Nl15kZWlVU1tUS6gOYE=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2A9o15LNZtvQbLIks2pZ+j+8eFDEq//Fm//GtN2Dtj4YeLw3w8y8IBHcgOt+O4WV1bX1jeJmaWt7Z3evvH/QMirVlDWpEkp3AmKY4JI1gYNgnUQzEgeCtYPR9dRvPzBtuJJ3ME6YH5OB5BGnBKx03wP2BNlQiZDLwaRfrrhVdwa8TLycVFCORr/81QsVTWMmgQpiTNdzE/AzooFTwSalXmpYQuiIDFjXUkliZvxsdvUEn1glxJHStiTgmfp7IiOxMeM4sJ0xgaFZ9Kbif143hejSz7hMUmCSzhdFqcCg8DQCHHLNKIixJYRqbm/FdEg0oWCDKtkQvMWXl0nrrOrVque3tUr9Ko+jiI7QMTpFHrpAdXSDGqiJKNLoGb2iN+fReXHenY95a8HJZw7RHzifP09pkww=</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

has<latexit sha1_base64="LdW9R9nxs2y6iEminCWTLif7nTQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPbUDbbTbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuTaiFjd4zjhfkQHSoSCUbTSQxf5E2ZDaia9csWtujOQZeLlpAI56r3yV7cfszTiCpmkxnQ8N0E/oxoFk3xS6qaGJ5SN6IB3LFU04sbPZhdPyIlV+iSMtS2FZKb+nshoZMw4CmxnRHFoFr2p+J/XSTG88jOhkhS5YvNFYSoJxmT6PukLzRnKsSWUaWFvJWxINWVoQyrZELzFl5dJ86zqnVcv7s4rtes8jiIcwTGcggeXUINbqEMDGCh4hld4c4zz4rw7H/PWgpPPHMIfOJ8/I5WROw==</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

on<latexit sha1_base64="poeKi3RksUQG9c3l6qEJ3EG6TVM=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegF48RzEOSJcxOZpMh81hmesWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruiRHALvv/tFVZW19Y3ipulre2d3b3y/kHT6tRQ1qBaaNOOiGWCK9YADoK1E8OIjARrRaObqd96ZMZyre5hnLBQkoHiMacEnPTQBfYEmVaTXrniV/0Z8DIJclJBOeq98le3r2kqmQIqiLWdwE8gzIgBTgWblLqpZQmhIzJgHUcVkcyG2ezgCT5xSh/H2rhSgGfq74mMSGvHMnKdksDQLnpT8T+vk0J8FWZcJSkwReeL4lRg0Hj6Pe5zwyiIsSOEGu5uxXRIDKHgMiq5EILFl5dJ86wanFcv7s4rtes8jiI6QsfoFAXoEtXQLaqjBqJIomf0it484714797HvLXg5TOH6A+8zx9q2ZDS</latexit>

on<latexit sha1_base64="poeKi3RksUQG9c3l6qEJ3EG6TVM=">AAAB8HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKosegF48RzEOSJcxOZpMh81hmesWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruiRHALvv/tFVZW19Y3ipulre2d3b3y/kHT6tRQ1qBaaNOOiGWCK9YADoK1E8OIjARrRaObqd96ZMZyre5hnLBQkoHiMacEnPTQBfYEmVaTXrniV/0Z8DIJclJBOeq98le3r2kqmQIqiLWdwE8gzIgBTgWblLqpZQmhIzJgHUcVkcyG2ezgCT5xSh/H2rhSgGfq74mMSGvHMnKdksDQLnpT8T+vk0J8FWZcJSkwReeL4lRg0Hj6Pe5zwyiIsSOEGu5uxXRIDKHgMiq5EILFl5dJ86wanFcv7s4rtes8jiI6QsfoFAXoEtXQLaqjBqJIomf0it484714797HvLXg5TOH6A+8zx9q2ZDS</latexit>behind<latexit sha1_base64="O6Q8ZEbPdrBtgtsGUcUXyxFArcM=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSRS0WPRi8cK9gPaUDabSbt0s4m7k2IJ/R1ePCji1R/jzX/jts1BWx8MPN6bYWaenwiu0XG+rcLa+sbmVnG7tLO7t39QPjxq6ThVDJosFrHq+FSD4BKayFFAJ1FAI19A2x/dzvz2GJTmsXzASQJeRAeSh5xRNJLXQ3jCzIchl8G0X644VWcOe5W4OamQHI1++asXxCyNQCITVOuu6yToZVQhZwKmpV6qIaFsRAfQNVTSCLSXzY+e2mdGCewwVqYk2nP190RGI60nkW86I4pDvezNxP+8borhtZdxmaQIki0WhamwMbZnCdgBV8BQTAyhTHFzq82GVFGGJqeSCcFdfnmVtC6qbq16eV+r1G/yOIrkhJySc+KSK1Ind6RBmoSRR/JMXsmbNbZerHfrY9FasPKZY/IH1ucPahqShw==</latexit> in<latexit sha1_base64="tILQCiiu/tbuECFQxFMiSxXLA1s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNS0WXRjcsK9gHtUDJppg3NY0juiGXoZ7hxoYhbv8adf2PazkJbDwQO59xL7jlRIrgF3//2CmvrG5tbxe3Szu7e/kH58KhldWooa1IttOlExDLBFWsCB8E6iWFERoK1o/HtzG8/MmO5Vg8wSVgoyVDxmFMCTur2gD2BkRlX03654lf9OfAqCXJSQTka/fJXb6BpKpkCKoi13cBPIMyIAU4Fm5Z6qWUJoWMyZF1HFZHMhtn85Ck+c8oAx9q4pwDP1d8bGZHWTmTkJiWBkV32ZuJ/XjeF+Dp0eZIUmKKLj+JUYNB4lh8PuGEUxMQRQg13t2I6IoZQcC2VXAnBcuRV0rqoBrXq5X2tUr/J6yiiE3SKzlGArlAd3aEGaiKKNHpGr+jNA+/Fe/c+FqMFL985Rn/gff4ABemRvw==</latexit>

with<latexit sha1_base64="Ho9Uxpmhuq0uCansEiK0ioOqciY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbbbt0swm7E7WE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuh9RwKRRvoEDJ24nmNAolb4Wjm6nfeuDaiFjd4zjhQUQHSvQFo2glv4P8CbNHgcNJt1xxq+4MZJl4OalAjnq3/NXpxSyNuEImqTG+5yYYZFSjYJJPSp3U8ISyER1w31JFI26CbHbyhJxYpUf6sbalkMzU3xMZjYwZR6HtjCgOzaI3Ff/z/BT7V0EmVJIiV2y+qJ9KgjGZ/k96QnOGcmwJZVrYWwkbUk0Z2pRKNgRv8eVl0jyreufVi7vzSu06j6MIR3AMp+DBJdTgFurQAAYxPMMrvDnovDjvzse8teDkM4fwB87nDw8wkcU=</latexit>

3
<latexit sha1_base64="9a2yupNIlI5MbP9o/jiW75s+zTM=">AAAB73icbVDLTgJBEJzFF+IL9ehlIjHxRHYVo0eiF4+YyCOBDZkdGpgwO7vO9BrJhp/w4kFjvPo73vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdTP3mI2gjInWP4xj8kA2U6AvO0EqtDsITpueTbrHklt0Z6DLxMlIiGWrd4lenF/EkBIVcMmPanhujnzKNgkuYFDqJgZjxERtA21LFQjB+Ort3Qk+s0qP9SNtSSGfq74mUhcaMw8B2hgyHZtGbiv957QT7V34qVJwgKD5f1E8kxYhOn6c9oYGjHFvCuBb2VsqHTDOONqKCDcFbfHmZNM7KXqV8cVcpVa+zOPLkiByTU+KRS1Ilt6RG6oQTSZ7JK3lzHpwX5935mLfmnGzmkPyB8/kDQHuQHg==</latexit>31

<latexit sha1_base64="q6bxF0eVP1MZhoMQijbbYjbOMkg=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIzHxRHYVo0eiF4+YyMPAhswOA0yYmd3M9BrJhq/w4kFjvPo53vwbB9iDgpV0UqnqTndXGAtu0PO+ndzK6tr6Rn6zsLW9s7tX3D9omCjRlNVpJCLdColhgitWR46CtWLNiAwFa4ajm6nffGTa8Ejd4zhmgSQDxfucErTSQwfZE6bn/qRbLHllbwZ3mfgZKUGGWrf41elFNJFMIRXEmLbvxRikRCOngk0KncSwmNARGbC2pYpIZoJ0dvDEPbFKz+1H2pZCd6b+nkiJNGYsQ9spCQ7NojcV//PaCfavgpSrOEGm6HxRPxEuRu70e7fHNaMoxpYQqrm91aVDoglFm1HBhuAvvrxMGmdlv1K+uKuUqtdZHHk4gmM4BR8uoQq3UIM6UJDwDK/w5mjnxXl3PuatOSebOYQ/cD5/ALKxkFk=</latexit>

2<latexit sha1_base64="G9P3/fpZy8xK7nsPExQiqjXkc4Q=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCGzI7DDBhdnad6TWSDT/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKV2l3kT5hWpr1iyS27c5BV4mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFroJobHlI3pkHcsVTTkxk/n907JmVX6ZBBpWwrJXP09kdLQmEkY2M6Q4sgsezPxP6+T4ODKT4WKE+SKLRYNEkkwIrPnSV9ozlBOLKFMC3srYSOqKUMbUcGG4C2/vEqalbJXLV/cVUu16yyOPJzAKZyDB5dQg1uoQwMYSHiGV3hzHpwX5935WLTmnGzmGP7A+fwBPvaQHQ==</latexit> 11<latexit sha1_base64="82UAcMv8TPGPt7alvBw2brmyaQU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9kPaUDbbTbt0Nwm7E7GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWjm6nfeuTaiDi6x3HCfUUHkQgFo2ilhy7yJ8w8b9IrV9yqOwNZJl5OKpCj3it/dfsxSxWPkElqTMdzE/QzqlEwySelbmp4QtmIDnjH0ogqbvxsdvCEnFilT8JY24qQzNTfExlVxoxVYDsVxaFZ9Kbif14nxfDKz0SUpMgjNl8UppJgTKbfk77QnKEcW0KZFvZWwoZUU4Y2o5INwVt8eZk0z6reefXi7rxSu87jKMIRHMMpeHAJNbiFOjSAgYJneIU3RzsvzrvzMW8tOPnMIfyB8/kDr6WQVw==</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit> 5
<latexit sha1_base64="bBRud8c64Qu7zD68GQ7qbwPM0Gs=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYNRI9ELx4xkUcCGzI7DDBhdnad6TWSDT/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKV2l3kT5hWp71iyS27c5BV4mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFroJobHlI3pkHcsVTTkxk/n907JmVX6ZBBpWwrJXP09kdLQmEkY2M6Q4sgsezPxP6+T4ODKT4WKE+SKLRYNEkkwIrPnSV9ozlBOLKFMC3srYSOqKUMbUcGG4C2/vEqaF2WvUq7eVUq16yyOPJzAKZyDB5dQg1uoQwMYSHiGV3hzHpwX5935WLTmnGzmGP7A+fwBQ4WQIA==</latexit>

3
<latexit sha1_base64="9a2yupNIlI5MbP9o/jiW75s+zTM=">AAAB73icbVDLTgJBEJzFF+IL9ehlIjHxRHYVo0eiF4+YyCOBDZkdGpgwO7vO9BrJhp/w4kFjvPo73vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRHOo8kpFuBcyAFArqKFBCK9bAwkBCMxjdTP3mI2gjInWP4xj8kA2U6AvO0EqtDsITpueTbrHklt0Z6DLxMlIiGWrd4lenF/EkBIVcMmPanhujnzKNgkuYFDqJgZjxERtA21LFQjB+Ort3Qk+s0qP9SNtSSGfq74mUhcaMw8B2hgyHZtGbiv957QT7V34qVJwgKD5f1E8kxYhOn6c9oYGjHFvCuBb2VsqHTDOONqKCDcFbfHmZNM7KXqV8cVcpVa+zOPLkiByTU+KRS1Ilt6RG6oQTSZ7JK3lzHpwX5935mLfmnGzmkPyB8/kDQHuQHg==</latexit>8

<latexit sha1_base64="/Y4m+OYBhIEYvG8siE6kcLF/hOM=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo5ELx4xkUcCGzI7DDBhdnad6TWSDT/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKV2l3kT5hWp71iyS27c5BV4mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFroJobHlI3pkHcsVTTkxk/n907JmVX6ZBBpWwrJXP09kdLQmEkY2M6Q4sgsezPxP6+T4KDqp0LFCXLFFosGiSQYkdnzpC80ZygnllCmhb2VsBHVlKGNqGBD8JZfXiXNi7JXKV/eVUq16yyOPJzAKZyDB1dQg1uoQwMYSHiGV3hzHpwX5935WLTmnGzmGP7A+fwBSBSQIw==</latexit>

2<latexit sha1_base64="G9P3/fpZy8xK7nsPExQiqjXkc4Q=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCGzI7DDBhdnad6TWSDT/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKV2l3kT5hWpr1iyS27c5BV4mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFroJobHlI3pkHcsVTTkxk/n907JmVX6ZBBpWwrJXP09kdLQmEkY2M6Q4sgsezPxP6+T4ODKT4WKE+SKLRYNEkkwIrPnSV9ozlBOLKFMC3srYSOqKUMbUcGG4C2/vEqalbJXLV/cVUu16yyOPJzAKZyDB5dQg1uoQwMYSHiGV3hzHpwX5935WLTmnGzmGP7A+fwBPvaQHQ==</latexit> 1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

2<latexit sha1_base64="G9P3/fpZy8xK7nsPExQiqjXkc4Q=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCGzI7DDBhdnad6TWSDT/hxYPGePV3vPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpVC8gQIlb8ea0zCQvBWMb2Z+65FrIyJ1j5OY+yEdKjEQjKKV2l3kT5hWpr1iyS27c5BV4mWkBBnqveJXtx+xJOQKmaTGdDw3Rj+lGgWTfFroJobHlI3pkHcsVTTkxk/n907JmVX6ZBBpWwrJXP09kdLQmEkY2M6Q4sgsezPxP6+T4ODKT4WKE+SKLRYNEkkwIrPnSV9ozlBOLKFMC3srYSOqKUMbUcGG4C2/vEqalbJXLV/cVUu16yyOPJzAKZyDB5dQg1uoQwMYSHiGV3hzHpwX5935WLTmnGzmGP7A+fwBPvaQHQ==</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

116
<latexit sha1_base64="mEGM34uJDSARLkngTmmpuli9q98=">AAAB8XicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xkUeEDZkdBpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne6uIJbCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa6FVDDpVC8jgIlb8Wa0zCQvBmMbqZ+85FrIyJ1j+OY+yEdKNEXjKKVHjrInzD1vItJt1hyy+4MZJl4GSlBhlq3+NXpRSwJuUImqTFtz43RT6lGwSSfFDqJ4TFlIzrgbUsVDbnx09nFE3JilR7pR9qWQjJTf0+kNDRmHAa2M6Q4NIveVPzPayfYv/JToeIEuWLzRf1EEozI9H3SE5ozlGNLKNPC3krYkGrK0IZUsCF4iy8vk8ZZ2auUz+8qpep1FkcejuAYTsGDS6jCLdSgDgwUPMMrvDnGeXHenY95a87JZg7hD5zPHym0kJc=</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

4<latexit sha1_base64="KyChlqXikMpXJZMnZXy8lih8wS0=">AAAB73icbVBNS8NAEN34WetX1aOXxSJ4KolU9Fj04rGC/YA2lM120i7dbOLuRCyhf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkY3U7/1CNqIWN3jOAE/YgMlQsEZWqndRXjCrDrplcpuxZ2BLhMvJ2WSo94rfXX7MU8jUMglM6bjuQn6GdMouIRJsZsaSBgfsQF0LFUsAuNns3sn9NQqfRrG2pZCOlN/T2QsMmYcBbYzYjg0i95U/M/rpBhe+ZlQSYqg+HxRmEqKMZ0+T/tCA0c5toRxLeytlA+ZZhxtREUbgrf48jJpnle8auXirlquXedxFMgxOSFnxCOXpEZuSZ00CCeSPJNX8uY8OC/Ou/Mxb11x8pkj8gfO5w9CAJAf</latexit>

41<latexit sha1_base64="8c9pFUDZkgOFcXEU3C8Ocx5riaY=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KolU9Fj04rGC/ZA2lM120y7dTcLuRCyhv8KLB0W8+nO8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FBFvoEDJ24nmVAWSt4LRzdRvPXJtRBzd4zjhvqKDSISCUbTSQxf5E2ZVb9Irld2KOwNZJl5OypCj3it9dfsxSxWPkElqTMdzE/QzqlEwySfFbmp4QtmIDnjH0ogqbvxsdvCEnFqlT8JY24qQzNTfExlVxoxVYDsVxaFZ9Kbif14nxfDKz0SUpMgjNl8UppJgTKbfk77QnKEcW0KZFvZWwoZUU4Y2o6INwVt8eZk0zytetXJxVy3XrvM4CnAMJ3AGHlxCDW6hDg1goOAZXuHN0c6L8+58zFtXnHzmCP7A+fwBtDeQWg==</latexit>

(b) proto-possibilistic graph

vase<latexit sha1_base64="8cNChq17D623hkECXP7JYQYmOxo=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpypBRXCs4MKxSPQhNVHluE5r1U4ie1OoQj+FCwcQ4sqXcONvcNscoGWklUYzu/buBIngGhzn2yqsrW9sbhW3Szu7e/sHdvmwpeNUUdaksYhVJyCaCR6xJnAQrJMoRmQgWDsY3cz89pgpzePoHiYJ8yUZRDzklICRenbZA/YISmZeEOKxeWjasytO1ZkDrxI3JxWUo9Gzv7x+TFPJIqCCaN11nQT8jCjgVLBpyUs1SwgdkQHrGhoRybSfzVef4lOj9HEYK1MR4Ln6eyIjUuuJDEynJDDUy95M/M/rphBe+RmPkhRYRBcfhanAEONZDrjPFaMgJoYQqrjZFdMhUYSCSatkQnCXT14lrfOqW6te3NUq9es8jiI6RifoDLnoEtXRLWqgJqLoAT2jV/RmPVkv1rv1sWgtWPnMEfoD6/MHrvCUSA==</latexit>

table<latexit sha1_base64="31NMkjh2kJojJgu+7V2x1xaxQ6o=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgqsxIRZdFNy4r2Ad0SsmkmTY0yQzJHWkZ+ituXCji1h9x59+YtrPQ1gOBwzn3JDcnTAQ34HnfTmFjc2t7p7hb2ts/ODxyj8stE6easiaNRaw7ITFMcMWawEGwTqIZkaFg7XB8N/fbT0wbHqtHmCasJ8lQ8YhTAlbqu+UA2AS0zIIwwkBsbNZ3K17VWwCvEz8nFZSj0Xe/gkFMU8kUUEGM6fpeAr2MaODU3lcKUsMSQsdkyLqWKiKZ6WWL3Wf43CoDHMXaHgV4of5OZEQaM5WhnZQERmbVm4v/ed0UoptexlWSAlN0+VCUCgwxnheBB1wzCmJqCaGa210xHRFNKNi6SrYEf/XL66R1WfVr1auHWqV+m9dRRKfoDF0gH12jOrpHDdREFE3QM3pFb87MeXHenY/laMHJMyfoD5zPH2GqlKs=</latexit>

plant
<latexit sha1_base64="bxjCY6L4qDKIImahigt/ClKbsy8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5JIRY9FLx4r2A9oQtlsN+3SzSbsTqQl5K948aCIV/+IN/+N2zYHbX0w8Hhvhpl5QSK4Bsf5tkobm1vbO+Xdyt7+weGRfVzt6DhVlLVpLGLVC4hmgkvWBg6C9RLFSBQI1g0md3O/+8SU5rF8hFnC/IiMJA85JWCkgV31gE1BRZkXhDgRREI+sGtO3VkArxO3IDVUoDWwv7xhTNOISaCCaN13nQT8jCjgVLC84qWaJYROyIj1DZUkYtrPFrfn+NwoQxzGypQEvFB/T2Qk0noWBaYzIjDWq95c/M/rpxDe+BmXSQpM0uWiMBUYYjwPAg+5YhTEzBBCFTe3YjomilAwcVVMCO7qy+ukc1l3G/Wrh0ateVvEUUan6AxdIBddoya6Ry3URhRN0TN6RW9Wbr1Y79bHsrVkFTMn6A+szx+ErpTC</latexit>

10

10<latexit sha1_base64="rcYM6rqEcrf5GjzCRTPEA4lz7ZA=">AAACBXicbZDLSsNAFIYn9VbrLepSF4NFcFUSqeiy6MZlBXuBJpTJdNIOnUzCzIlYQjdufBU3LhRx6zu4822cthG09YeBj/+cw5nzB4ngGhznyyosLa+srhXXSxubW9s79u5eU8epoqxBYxGrdkA0E1yyBnAQrJ0oRqJAsFYwvJrUW3dMaR7LWxglzI9IX/KQUwLG6tqHXqgIzTxg95B5QYhdZzz+ga5ddirOVHgR3BzKKFe9a396vZimEZNABdG64zoJ+BlRwKlg45KXapYQOiR91jEoScS0n02vGONj4/RwGCvzJOCp+3siI5HWoygwnRGBgZ6vTcz/ap0Uwgs/4zJJgUk6WxSmAkOMJ5HgHleMghgZIFRx81dMB8TEAia4kgnBnT95EZqnFbdaObuplmuXeRxFdICO0Aly0TmqoWtURw1E0QN6Qi/o1Xq0nq03633WWrDymX30R9bHN8E6mBY=</latexit>

flower<latexit sha1_base64="C5L3AoaeghllXsusU+wKFc7vGeY=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7Arih6DXjxGMA9IljA76U2GzD6Y6VXDEn/FiwdFvPoh3vwbJ8keNLGgoajqprvLT6TQ6DjfVmFldW19o7hZ2tre2d2z9w+aOk4VhwaPZazaPtMgRQQNFCihnShgoS+h5Y+up37rHpQWcXSH4wS8kA0iEQjO0Eg9u9xFeEQVZl0/oIGMH0BNenbFqToz0GXi5qRCctR79le3H/M0hAi5ZFp3XCdBL2MKBZcwKXVTDQnjIzaAjqERC0F72ez4CT02Sp8GsTIVIZ2pvycyFmo9Dn3TGTIc6kVvKv7ndVIMLr1MREmKEPH5oiCVFGM6TYL2hQKOcmwI40qYWykfMsU4mrxKJgR38eVl0jytumfV89uzSu0qj6NIDskROSEuuSA1ckPqpEE4GZNn8krerCfrxXq3PuatBSufKZM/sD5/AFrrlTw=</latexit> counter<latexit sha1_base64="8LFQcoGf48e2NXd66Ax1LXJTJYk=">AAAB+3icbVDLTgJBEJzFF+IL8ehlIjHxRHYNRo9ELx4xkUcChMwOvTBhdnYz02sgG37FiweN8eqPePNvHGAPClbSSaWqO91dfiyFQdf9dnIbm1vbO/ndwt7+weFR8bjUNFGiOTR4JCPd9pkBKRQ0UKCEdqyBhb6Elj++m/utJ9BGROoRpzH0QjZUIhCcoZX6xVIXYYJp1w8ojxKFoGf9YtmtuAvQdeJlpEwy1PvFr+4g4kkICrlkxnQ8N8ZeyjQKLmFW6CYGYsbHbAgdSxULwfTSxe0zem6VAQ0ibUshXai/J1IWGjMNfdsZMhyZVW8u/ud1EgxueqlQcYKg+HJRkEiKEZ0HQQdCA0c5tYRxLeytlI+YZtxmYAo2BG/15XXSvKx41crVQ7Vcu83iyJNTckYuiEeuSY3ckzppEE4m5Jm8kjdn5rw4787HsjXnZDMn5A+czx+GwpTE</latexit>

window<latexit sha1_base64="Fujcpitbbh7u/bu7Ehy+ogaJBFw=">AAAB/HicbVDLSgNBEJyNrxhfqzl6GQyCp7ArET0GvXiMYB6QhDA7mU2GzMwuM73GZYm/4sWDIl79EG/+jZPHQRMLGoqqbrq7glhwA5737eTW1jc2t/LbhZ3dvf0D9/CoYaJEU1ankYh0KyCGCa5YHTgI1oo1IzIQrBmMbqZ+84FpwyN1D2nMupIMFA85JWClnlvsAHsELbNOEOIxV/1oPOm5Ja/szYBXib8gJbRAred+dfoRTSRTQAUxpu17MXQzooFTwSaFTmJYTOiIDFjbUkUkM91sdvwEn1qlj8NI21KAZ+rviYxIY1IZ2E5JYGiWvan4n9dOILzqZlzFCTBF54vCRGCI8DQJ3OeaURCpJYRqbm/FdEg0oWDzKtgQ/OWXV0njvOxXyhd3lVL1ehFHHh2jE3SGfHSJqugW1VAdUZSiZ/SK3pwn58V5dz7mrTlnMVNEf+B8/gBowpVF</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

47

47<latexit sha1_base64="xFzQXXqkpKjNPxdfi3WMCb0jp5I=">AAACBXicbZDLSsNAFIYnXmu9RV3qYrAIrkoilbosunFZwV6gCWUynbRDJ5MwcyKW0I0bX8WNC0Xc+g7ufBunbQRt/WHg4z/ncOb8QSK4Bsf5spaWV1bX1gsbxc2t7Z1de2+/qeNUUdagsYhVOyCaCS5ZAzgI1k4UI1EgWCsYXk3qrTumNI/lLYwS5kekL3nIKQFjde0jL1SEZh6we8i8IMSV6nj8A1275JSdqfAiuDmUUK561/70ejFNIyaBCqJ1x3US8DOigFPBxkUv1SwhdEj6rGNQkohpP5teMcYnxunhMFbmScBT9/dERiKtR1FgOiMCAz1fm5j/1TophBd+xmWSApN0tihMBYYYTyLBPa4YBTEyQKji5q+YDoiJBUxwRROCO3/yIjTPym6lfH5TKdUu8zgK6BAdo1PkoiqqoWtURw1E0QN6Qi/o1Xq0nq03633WumTlMwfoj6yPb9/+mCo=</latexit>

11

11<latexit sha1_base64="3JaK9DLoIiMzWj+KeUS7OnHoyPw=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiuCqJVHRZdOOygr1AE8pkOmmHTiZh5kQsoTs3voobF4q49RXc+TZO2yDa+sPAx3/O4cz5g0RwDY7zZRWWlldW14rrpY3Nre0de3evqeNUUdagsYhVOyCaCS5ZAzgI1k4UI1EgWCsYXk3qrTumNI/lLYwS5kekL3nIKQFjde1DL1SEZh6we8i8IMSuOx5nP9S1y07FmQovgptDGeWqd+1PrxfTNGISqCBad1wnAT8jCjgVbFzyUs0SQoekzzoGJYmY9rPpHWN8bJweDmNlngQ8dX9PZCTSehQFpjMiMNDztYn5X62TQnjhZ1wmKTBJZ4vCVGCI8SQU3OOKURAjA4Qqbv6K6YCYYMBEVzIhuPMnL0LztOJWK2c31XLtMo+jiA7QETpBLjpHNXSN6qiBKHpAT+gFvVqP1rP1Zr3PWgtWPrOP/sj6+AadDpkk</latexit>

6

11<latexit sha1_base64="IYAKw2UEn95peijvSaEs67xcGCc=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYXEVCWoPMYKFsYi0YfURJXjOq1V5yH7BlFFGVj4FRYGEGLlI9j4G9w0A7Qc6eoenXOv7Hu8WHAFlvVtlFZW19Y3ypuVre2d3T1z/6CjokRS1qaRiGTPI4oJHrI2cBCsF0tGAk+wrje5nvndeyYVj8I7mMbMDcgo5D6nBLQ0MKuOLwlNHWAPkDqej8+zLO+2nQ3MmlW3cuBlYhekhgq0BuaXM4xoErAQqCBK9W0rBjclEjgVLKs4iWIxoRMyYn1NQxIw5ab5ERk+1soQ+5HUFQLO1d8bKQmUmgaengwIjNWiNxP/8/oJ+JduysM4ARbS+UN+IjBEeJYIHnLJKIipJoRKrv+K6ZjoVEDnVtEh2IsnL5POad1u1M9uG7XmVRFHGVXRETpBNrpATXSDWqiNKHpEz+gVvRlPxovxbnzMR0tGsXOI/sD4/AFUKpfi</latexit>

2

121<latexit sha1_base64="HPQbvDOWlbYohYdLpAiSKsn45nw=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBVUlKRZdFNy4r2Ac0oUymk3bo5MHMjVhCNm78FTcuFHHrP7jzb5ymWWjrgcs9nHMvM/d4seAKLOvbKK2srq1vlDcrW9s7u3vm/kFHRYmkrE0jEcmeRxQTPGRt4CBYL5aMBJ5gXW9yPfO790wqHoV3MI2ZG5BRyH1OCWhpYB47viQ0dYA9QOp4Pq5nWd7tup0NzKpVs3LgZWIXpIoKtAbmlzOMaBKwEKggSvVtKwY3JRI4FSyrOIliMaETMmJ9TUMSMOWm+RUZPtXKEPuR1BUCztXfGykJlJoGnp4MCIzVojcT//P6CfiXbsrDOAEW0vlDfiIwRHgWCR5yySiIqSaESq7/iumY6FhAB1fRIdiLJy+TTr1mN2rnt41q86qIo4yO0Ak6Qza6QE10g1qojSh6RM/oFb0ZT8aL8W58zEdLRrFziP7A+PwByMSYGg==</latexit>

42

121<latexit sha1_base64="VHnxBzIHXZpSkXpfJz39N0LVC+M=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiuCpJqeiy6MZlBXuBJpTJdNIOnVyYORFLyMqNr+LGhSJufQZ3vo3TNAtt/WHg4z/ncOb8Xiy4Asv6Nkorq2vrG+XNytb2zu6euX/QUVEiKWvTSESy5xHFBA9ZGzgI1oslI4EnWNebXM/q3XsmFY/CO5jGzA3IKOQ+pwS0NTCPHV8SmjrAHiB1PB836lmWg123s4FZtWpWLrwMdgFVVKg1ML+cYUSTgIVABVGqb1sxuCmRwKlgWcVJFIsJnZAR62sMScCUm+ZnZPhUO0PsR1K/EHDu/p5ISaDUNPB0Z0BgrBZrM/O/Wj8B/9JNeRgnwEI6X+QnAkOEZ5ngIZeMgphqIFRy/VdMx0TnAjq5ig7BXjx5GTr1mt2ond82qs2rIo4yOkIn6AzZ6AI10Q1qoTai6BE9o1f0ZjwZL8a78TFvLRnFzCH6I+PzB0WfmFg=</latexit>

1<latexit sha1_base64="LPTI+5K+A0PdPrZ7/Q7oHa/19UA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kHnTfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBAJI3J</latexit>

121

121<latexit sha1_base64="Js5cHlfqyCqmFo8b8dgMkBjhY1o=">AAACB3icbZDLSsNAFIYnXmu9RV0KMlgEVyUpFV0W3bisYC/QhDKZTtqhk0mYORFLyM6Nr+LGhSJufQV3vo3TC6KtPwx8/Occzpw/SATX4Dhf1tLyyuraemGjuLm1vbNr7+03dZwqyho0FrFqB0QzwSVrAAfB2oliJAoEawXDq3G9dceU5rG8hVHC/Ij0JQ85JWCsrn3khYrQzAN2D5kXhNituHn+Q1275JSdifAiuDMooZnqXfvT68U0jZgEKojWHddJwM+IAk4Fy4teqllC6JD0WcegJBHTfja5I8cnxunhMFbmScAT9/dERiKtR1FgOiMCAz1fG5v/1TophBd+xmWSApN0uihMBYYYj0PBPa4YBTEyQKji5q+YDogJBkx0RROCO3/yIjQrZbdaPruplmqXszgK6BAdo1PkonNUQ9eojhqIogf0hF7Qq/VoPVtv1vu0dcmazRygP7I+vgG5P5iQ</latexit>

3

3<latexit sha1_base64="PKT9SkQ2vHXbCuvBufeaUaS0d/E=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUm0osuiG5cV7AOaUibTSTt0MgkzN2IJATf+ihsXirj1J9z5N07bLLT1wOUezrmXmXv8WHANjvNtFZaWV1bXiuuljc2t7R17d6+po0RR1qCRiFTbJ5oJLlkDOAjWjhUjoS9Yyx9dT/zWPVOaR/IOxjHrhmQgecApASP17AMvUISmHrAHSD0/wGdZlveeXXYqzhR4kbg5KaMc9Z795fUjmoRMAhVE647rxNBNiQJOBctKXqJZTOiIDFjHUElCprvp9IYMHxulj4NImZKAp+rvjZSEWo9D30yGBIZ63puI/3mdBILLbsplnACTdPZQkAgMEZ4EgvtcMQpibAihipu/YjokJhQwsZVMCO78yYukeVpxq5Xz22q5dpXHUUSH6AidIBddoBq6QXXUQBQ9omf0it6sJ+vFerc+ZqMFK9/ZR39gff4A2WGXpg==</latexit>

2

121<latexit sha1_base64="HPQbvDOWlbYohYdLpAiSKsn45nw=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBVUlKRZdFNy4r2Ac0oUymk3bo5MHMjVhCNm78FTcuFHHrP7jzb5ymWWjrgcs9nHMvM/d4seAKLOvbKK2srq1vlDcrW9s7u3vm/kFHRYmkrE0jEcmeRxQTPGRt4CBYL5aMBJ5gXW9yPfO790wqHoV3MI2ZG5BRyH1OCWhpYB47viQ0dYA9QOp4Pq5nWd7tup0NzKpVs3LgZWIXpIoKtAbmlzOMaBKwEKggSvVtKwY3JRI4FSyrOIliMaETMmJ9TUMSMOWm+RUZPtXKEPuR1BUCztXfGykJlJoGnp4MCIzVojcT//P6CfiXbsrDOAEW0vlDfiIwRHgWCR5yySiIqSaESq7/iumY6FhAB1fRIdiLJy+TTr1mN2rnt41q86qIo4yO0Ak6Qza6QE10g1qojSh6RM/oFb0ZT8aL8W58zEdLRrFziP7A+PwByMSYGg==</latexit>

(c) possibilistic graph

Figure 3.3: A fragment of WpKG and a possibilistic graph constructed based
on it.

TheWpKG with occurrences assigned to connections allows us to determine

conditional degrees. We have simplified our graph, i.e, combined all inward

connections to a node into a single one, as shown in Fig. 3.3(c). This graph is

further processed – the occurrence numbers are used to determine possibility

values. Based on the graph in Fig. 3.3(c), we build conditional possibility

degrees. All of them are presented in Tables 3.3, 3.4, and 3.5.

(a) Π(Vase)

vase 1.
¬ vase 1.

(b) Π(Counter|Vase)

Counter|Vase vase ¬ vase
counter 1. 1.
¬ counter 1. 1.

(c) Π(Flower|Vase)

Flower|Vase vase ¬ vase
flower 1. 1.
¬ flower 1. 1.

(d) Π(Plant|Vase)

Plant|Vase vase ¬ vase
plant 1. 1.
¬ plant 1. 1.

Table 3.3: Possibility degrees for Vase, Flower, Counter, and Plant.

The last step of our case study is dedicated to the construction of a possi-

Window|Vase,Flower vase ¬vase, elsewhere
¬ flower flower

window 1. .545 1.
¬ window 1. 1. 1.

Table 3.4: Possibility degrees for Window – Π(Window|Vase,Flower)
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Shelf|Window,Vase, window, ¬ window, ¬ window ¬ window elsewhere
Flower,Counter ¬ vase, vase, ¬ vase, ¬ vase,

¬ flower, ¬ flower, flower, ¬ flower,
¬ counter ¬ counter ¬ counter counter

table .017 1. .347 .017 1.
¬ table 1. 1. 1. 1. 1.

Table 3.5: Possibility degrees for Table –
Π(Table|Window,Vase,Flower,Counter)

bilistic knowledge base, Section 3.5.2. As a result, we obtain:

∑
={ (¬window ∨ vase ∨ ¬flower, .455),

(¬table ∨ ¬window ∨ vase ∨ flower ∨ counter, .983),

(¬table ∨ window ∨ ¬vase ∨ flower ∨ counter, .653),

(¬table ∨ window ∨ vase ∨ flower ∨ ¬counter, .983) }.

3.7 Conclusion

The paper focuses on the automatic construction of a knowledge graph – called

World-perceiving Knowledge Graph (WpKG) – that contains results of the

analysis of multiple images. Further, the generated WpKG is processed and

multiple possibilistic graphs can be constructed based on it.

It is shown that using deep learning models, we can extract common-sense

situational information about objects present in visual data. The trained neu-

ral networks may already know these relations implicitly, but extracting this

knowledge in the form of a knowledge graph provides the ability to have this

information explainable and explicit. The strength of the overall procedure

depends on the capabilities of the applied learning model as well as the data

it has been trained on. By improving the models themselves, the overall pro-

cedure can be improved.

Constructed WpKGs are contextualized by images used as an input to the

presented process. A different graph will be obtained when images representing

a specific geographical location are used, while a different graph will be built
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based on images illustrated a specific historical event. Also, multiple different

possibilistic graphs can be created to reason about the correctness of contextual

utilization of specific items and relations between them.

Given the adaptability of WpKG to new scenarios, context-aware and even

time-variant knowledge graphs can be constructed. For example, processing

car images from a specific country will lead to the construction of WpKG

representing a very specific information related to cars’ details and their con-

textual settings. Another important aspect that can be considered is time. It

can affect both occurrences of relations and meanings of words linked to the

nodes.

As future work, better models can be used to improve the overall construc-

tion process, biases can be reduced by implementing procedures to diversify

the input images, and prediction of unknown objects can be added.
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Chapter 4

Generating Contextual Weighted
Commonsense Knowledge Graphs

4.1 Introduction

There has been a renewed interest in commonsense as part of achieving human-

like intelligence. Recent literature, [48] [49], has shown the importance of com-

monsense knowledge graphs in training artificial intelligence (AI) models with

commonsense. Knowledge graphs (KGs) are a semantically rich representa-

tion of data where each piece of information is represented as a triple made

of a subject (s), predicate (p), and object (o) as in s → p → o. Subjects and

objects are graph nodes, while predicates are edges.

This paper introduces a methodology for generating contextual weighted

commonsense KGs using vision-based deep learning models. Among different

types of commonsense, such as social interactions and events, we focus on

generating the physical commonsense graphs.

The choice of visual data to generate commonsense knowledge is an attempt

to mimic the human way of learning. Even before developing linguistic skills,

a human toddler acquires a good grasp of physical commonsense, for example,

position of items in relevance to each other. This commonsense knowledge is

further solidified by interacting with the real world and developing language

to gain extra knowledge.
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4.1.1 Defining Commonsense

First, it is imperative to have a clear definition of what commonsense is. A

good definition paves the way to discuss the details better.

Commonsense, as John McCarthy puts it, can be distinguished in two dif-

ferent aspects: knowledge and ability [8]. The knowledge refers to the common

knowledge gained, and the ability means to act based on the knowledge gained.

Yann LeCun, one of the inventors of convolutional neural networks, defines

commonsense as a collection of models of the world, which can lead us to know

what is likely, what is plausible, what is impossible [7].

The human perception gained through different senses, such as vision or

touch, is the base for constructing commonsense KGs. This knowledge is

context-dependent and can differ between individuals. For instance, the people

who live in the northern hemisphere of the earth know the month of July to

be a hot summer month, while the people in the southern hemisphere observe

it as a cold winter month. Context is not limited to physical or geographical

locations, but it can also include temporal aspects. For example, it is more

common to see more formally dressed people in the 1960s than in the 2020s.

Additionally, unlike factual knowledge, commonsense knowledge is inher-

ently uncertain. More probable phenomena are more likely part of common

knowledge; while, less probable occurrences make less sense for most people.

We can also classify commonsense into different categories, including phys-

ical concepts, events, and social interactions. An example of physical com-

monsense is seeing desks in a classroom, and of an event one is lighting a

match to start a fire. In social constructs, saying thanks after receiving a gift

is commonsense.

The goal of this work is to automatically extract contextual commonsense

knowledge from visual data and represent it in the format of a knowledge

graph. The graph has weighted edges that illustrate levels of certainty in

the extracted information. Commonsense graphs are used for many purposes,

including reasoning, which is shown here.
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4.1.2 Contributions

As described in the introduction, commonsense knowledge is context-dependent,

whether the context is temporal or spatial. To the best of our knowledge, no

recent paper has focused on generating commonsense knowledge adapted to

specific contexts. Current commonsense KGs, such as ConceptNet [9], lack

contextual awareness.

This paper introduces a methodology to auto-generate contextual weighted

commonsense knowledge using images from different contexts. We focus on

the feasibility and correctness of the results obtained instead of the size of the

graph.

Commonsense is inherently uncertain and subject to the amount of pro-

cessed data. In order to capture this, we propose three ways to assign weights

to graph edges (triples) based on the information extracted from the images.

We evaluate these weighting methods to see how they resonate with human

commonsense.

Using the proposed method, we generate a context-free weighted common-

sense KG, as well as contextual weighted commonsense KGs for 93 physical

contexts. Given the contextual commonsense KGs, we show different reasoning

examples using possibilistic theory.

The code and the data are available under https://github.com/navidre/

contextual_commonsense_kg.

4.2 Related Work

There have been several works in the literature regarding gathering and con-

structing commonsense KGs.

ConceptNet [9] originated from the crowdsourced project of Open Mind

Common Sense has grown into an extensive KG that includes some degree

of commonsense. It comprises 36 relations focusing on taxonomies, lexical

knowledge, and physical commonsense knowledge. ConceptNet v5.7 includes

around 3.4 million triples. It combines crowdsourcing with other databases,

such as DBPedia, WordNet, Wikitionary, and Open Cyc. As highlighted in
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[48], almost 90% of the triples are related to taxonomies and lexical data.

NEIL method [34] focuses on extracting object relationships from images.

It has resulted in a graph with 10,000 triples built around ten types of rela-

tions. Another process, LEVAN [33], uses a semi-automatic text processing

and results in a KG with less than 100 predicate types and around 34 mil-

lion triples. WebChild KB 2.0 [32] uses text and image/video captions to

automatically mine commonsense knowledge. The result is a graph with over

1,000 predicate types and 18 million triples. Quasimodo [30] uses texts in

logs and forums to mine commonsense. The result is 2.3 million triples, while

the number of predicate types is dynamic. TransOMCS [50] mines linguistic

graphs to generate a graph similar to ConceptNet with about 18.48 million

triples. Such processes can be supported by other image-specific tasks [51].

World-perceiving KG (WpKG) [1] introduces a methodology to auto-generate

commonsense KGs purely based on visual data. The commonsense KG in-

cludes 50 predicate types, 150 entity types, and over 7,000 triples. It can be

expanded based on the vocabulary and the underlying scene graph generation

models.

A recent body of work, [48] [49], focuses on annotating commonsense KGs

to use them for training language models to predict commonsense results given

a subject and a predicate. The human-annotated KGs are typically in the size

of millions and cover social interactions, events, and entity commonsense.

4.3 Methodology

We have introduced a method for generating commonsense KGs from images

using scene graph generation models in [1]. In this paper, we build on the

foundations of the previously published work.

The introduced process starts with detecting objects in a set of images

and predicting relationships between them. Then, based on the obtained re-

sults, it creates scene graphs (Section 4.3.1) – one per image. Finally, the

method aggregates the scene graphs into a final weighted commonsense KG

(Section 4.3.2). The overall process is depicted in Fig. 4.1.
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Figure 4.1: The process of generating contextual commonsense KGs from im-
ages using deep learning models. Each path focuses on a single context, and
the widths of edges (the right-most graphs) represent triple weights.

The previously published method [1] is improved by utilizing state-of-the-

art object detection and scene graph generation models in a context-free man-

ner. Furthermore, after minor modifications, we use the same context-free

commonsense knowledge generation process to construct contextual common-

sense knowledge graphs using only images as input.

4.3.1 Processing of Images

The first stage of the process focuses on the generation of scene graphs. A

scene graph is created from a single image – detected objects are represented

as nodes, and the relationships between nodes are represented as directed

edges. For example, to represent a person sitting on a bench, we could have

Man-2 as the subject, where 2 is the second instance of the object Man, sitting

on as the predicate, and Bench-1 as the object.

Object and Relation Detection

To detect objects a pre-trained Faster-RCNN [36] model is used. To determine

the image features, ResNeXt-101-FPN convolutional neural network (CNN) is

applied instead of simpler VGG-16, which results in over 7% mAP (mean av-

erage precision) score improvement on the COCO validation dataset [37], [52]–

[54]. In the Faster-RCNN algorithm, a model called Region Proposal Network

(RPN) uses the CNN-generated image features to predict regions containing
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objects. After pooling the features with regions of interest, a classifier predicts

object class scores.

Generation of Scene Graphs

In this paper, we focus on the generation of scene graphs from images with no

annotations. We apply MOTIFS model [42], which has been relatively unbi-

ased using Causal-TDE method [55]. Compared to several other models in the

literature, this combination is promising. Given the predicted bounding boxes,

object labels, and the regions-of-interest generated by the Fast-RCNN object

detection model, the MOTIFS model uses bidirectional LSTMs (Bi-LSTMs)

to predict the object features. Using these features, the MOTIFS model fine-

tunes the object classes. Using pairwise object features, the MOTIFS model

uses another set of Bi-LSTMs to predict the predicate (relation) labels. The

Causal-Total Direct Effect (Causal-TDE) unbiasing method tries to mitigate

the long-tail distribution among predicated types, where most predicate pre-

dictions comprise a few common types.

4.3.2 Formalizing Commonsense Knowledge Graph Gen-
eration

The task of aggregating scene graphs into an overall knowledge base has a few

challenges of its own [1]. Some of the main challenges are: 1) quantifying and

calculating the importance of scene graph triples; 2) identifying and removing

incorrect data; 3) updating the graph with new knowledge; and 4) considering

the different meanings of entities in different contexts.

The first task is to detect all viable objects and their relations based on

the generated scene graphs. A list of the detected objects is called DO, and

a list of the detected triples is called DT . Next, we aggregate unique triples,

such as fork-besides-plate, to construct a KG.

Next, we calculate the weights of triples. To calculate the weights, we inves-

tigate three different methods. 1) Detection Probability-based Method (DPbM).

We assign to each triple a probability of its detection provided by the applied

method (Section 4.3.1). Then, we aggregate all the probabilities assigned to
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the same triple in the form of a weighted sum. This sum is the final weight of

the triple. 2) Relative Occurrence Method (ROM). We calculate the number of

detected occurrences of each triple in all scene graphs. Then, we divide it by

the number of detected occurrences of the triple’s object in the same context.

3) Weighted Occurrence Method (WOM). This method is similar to the second

one. The difference is that we count the ‘effect’ number of triples and objects

by weighting each occurrence by its probability of detection. See Eq. 4.1 for

clarification.

Detection Probability-based Method (DPbM):

wti =

|DT |∑
j=1

δ (ti, tj) · P (tj) (4.1a)

Relative Occurrence Method (ROM):

wti =

∑|DT |
j=1 δ (ti, tj)∑|DO |
j=1 δ (oi, oj)

(4.1b)

Weighted Occurrence Method (WOM):

wti =

∑|DT |
j=1 δ (ti, tj) · P (tj)∑|DO |
j=1 δ (oi, oj) · P (oj)

(4.1c)

where wti is a weight of the ti triple, δ(·) is the Kronecker delta function, P (tj)
represents the probability of detecting triple tj by the scene graph generation
model, which is made of a subject (s), predicate (p), and object (o). The
weights are normalized by max{wti : ti ∈ DT}. Please note that all the
calculations are done for each context independently as there is one generated
knowledge graph per context.

To identify and remove incorrect data, a progressive method is applied.
We use the triple weights to determine which triples are more commonsensical
and sort the results based on the weights.

For the case of new images, new scene graphs are generated. As a re-
sult, the weights of the existing triples are updated, or new weighted triples
are added. It means that our approach represents a never-ending learning
paradigm, where the knowledge graph is easily updated in the presence of new
data.

The generic nature of the method gives the ability to generate commonsense
knowledge graphs based on context. The paper focuses on physical contexts,
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such as restaurants or parks. We show that the same proposed method can
generate contextual commonsense knowledge when applied to different con-
texts. We further evaluate this claim quantitatively in the results section.

4.4 Generation of Commonsense Knowledge Graphs
Firstly, we construct a commonsense KG with no contexts, which is superior
to the one described in [1] in size and quality. Then, we focus on generating
commonsense KGs based on different contexts and their human-based evalua-
tion.

4.4.1 Context-Free Commonsense Knowledge Graph

To demonstrate the generation of context-free commonsense KGs, we use the
testing section of the Visual Genome (VG) dataset, which has a size of 31,876
images (around 30% of the dataset). To generate scene graphs, we use MO-
TIFS model unbiased with Causal-TDE method that is able to recognize 150
types of entities, such as door, airplane, or horse, and 50 types of predicates
(relations), for example, holding, sitting, or above. The mR@50 (mean recall
at 50) is 8.2. The weights of triples are calculated using Eq.4.1.

The resulting context-free commonsense KG generation benefits from up-
graded object detection and state-of-the-art scene graph generation compared
to the results shown in [1]. The final context-free scene graph generated has
277,634 commonsense triples compared to around 7,000 triples in [1], which is
equivalent to around 39 times improvement in size.

4.4.2 Contextual Commonsense Knowledge Graph

To generate a contextual commonsense knowledge graph, we start with ‘raw’
images from the Visual Commonsense Reasoning (VCR) dataset [56]. This
dataset has around 110,000 images. The images are human-annotated regard-
ing the places they represent. After a cleaning process and removing places
with less than 100 images, we end up with 93 different locations. We consider
these places as physical contexts, such as a restaurant or classroom.

As explained above (Section 4.3), we process images from each context
to detect objects and then to predict relationships between the objects de-
tected. The threshold of keeping the predicted relations is chosen as 0.1 and
0.6 for DPbM and ROM/WOM, respectively. It has ensured obtaining higher
confidence in the identified relations. Given the object and relationship de-
tected, we generate a single scene graph for each image. The scene graphs
constructed from images belonging to a single context are aggregated to a
single KG. The triple weights are assigned using the three different methods
explained in Eq. 4.1. The sizes of the generated knowledge graphs varies de-
pending on the context, but all are less than 1,000 triples, as we have tried to
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retain only high-quality results.
An example of a contextual commonsense knowledge graph representing a

fragment of a graph that combines multiple graphs built for single contexts is
illustrated in Fig. 4.2. It shows the object plate connected to tables at different
locations. The thickness represents the strength/weight of the relation.

Figure 4.2: Snippet of a contextual KG illustrating the item plate and its
relation to tables at different locations; thickness of lines indicate a strength
of the connection.

To evaluate how weight assignment mechanisms correlate with human com-
monsense judgment, we chose the top 100 triples based on each weighting
mechanism and gave them to three humans to evaluate. The three annotators
have rated each commonsense triple as: “quite commonsensical”, “commonsen-
sical”, “making sense, but not in this context”, and “invalid/unfamiliar in any
context”. The first two options are considered as accepted. To illustrate the
third option, let us take a triple car having tire – it makes general sense, but
is it not commonsensical, for example, in the restaurant context. A triple per-
son wearing laptop makes little sense in any context and results in the fourth
option.
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Our three volunteer reviewers have evaluated the triples from two contexts:
restaurant and classroom. To measure the agreement among reviewers, we use
Krippendorff’s Alpha [57], which is a value between 0 and 1. Zero means
no agreement and one means complete agreement. As seen in Table 4.1, the
Detection Probability-based Method (DPbM) gives the highest correlation with
human commonsense, while other methods still show good results.

Weighing Schema Accept Reject N/A Accuracy (%) Alpha
DPbM 560 22 18 93.0 0.78
ROM 526 60 14 87.6 0.63
WOM 538 51 11 89.7 0.72

Table 4.1: Human evaluation of the three weighting strategies defined in
Eq. 4.1. Three reviewers were given top 100 triples from each restaurant and
classroom contextual commonsense knowledge graphs (total of 600 evaluations
per method).

4.5 Reasoning with Contextual Commonsense
Knowledge Graph

The contextual commonsense KG allows for performing reasoning tasks. To
illustrate a methodology that can utilize a contextual commonsense graph
for possibility theory-based reasoning, we incorporate an example with tables
positioned at different locations and items placed on them.

The reasoning is based on the commonsense knowledge embedded in the
auto-generated contextual knowledge graphs introduced above. The weights
linked with triples are converted into occurrences of items in contexts that are
considered. These are used to calculate required possibilities.

4.5.1 Extraction of Relevant Nodes and Occurrences

In the beginning, we extract – from the constructed contextual graph –the
information about tables at three different places and items that are on the
tables, i.e., are in the relation on with the tables. A snippet of the graph
illustrating the information is shown in Figure 4.3. As we can see, there are
several items – paper, bottle, book, laptop and cup – to be considered, all of
which appear on tables at the three locations. Although the items glass and
plate are ’seen’ at all locations, we do not use them: a) due to ambiguity of
glass – it can be treated as a ‘cup’ or as ‘lenses’; and b) due to a very small
number of occurrences of plate at tables in classrooms.

The snippet, Figure 4.3, emphasizes one item – cup – that has been found
at all three locations to a different degree. We see that it ’showed’ up 696
times on the restaurant images, but only 98 times on a table in the restaurant.
Similarly, there are occurrences of a cup in classroom and bar images.
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Figure 4.3: Subgraph of items on tables in restaurant, classroom, and bar.
The occurrences of cup are emphasized: the number of times on table versus
the total number of times.

The specific number of occurrences of individual items on tables at three
locations are included in Table 4.2. It contains the numbers of occurrences of
a given item on a table and the total number of occurrences of the items ‘seen’
at all considered images of specific locations. Additionally, the table shows the
number of times a table appeared in pictures at each location. The numbers
of pictures we have processed are 1513 of a bar, 692 of a classroom, and 2235
of a restaurant.

4.5.2 Reasoning: Inference with Uncertain Premises
In the presented reasoning process, we adopt a frequentist setting where pos-
sibility measures can be induced from the frequency of observations [58], and
the extracted subgraph is a possibilistic graph [26]. We use a deductive infer-
ence with uncertain premises. Following analysis of Modus Ponens and Modus
Tollens [59] [60], we apply the following reasoning schema:

Π( q | p ) ≥ a (4.2)
Π( p | q ) ≥ a′ (4.3)
Π(p) ∈ [ b, b′ ] (4.4)

with the consequence:

Π(q) ∈

[
a ∗ b, a′∗ → b′

]
(4.5)
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location: bar classroom restaurant

on table total on table total on table total
item:

paper 28 79 124 299 69 222
bottle 125 1562 4 52 108 634
book 20 37 164 362 47 72
laptop 4 17 47 67 37 56
cup 50 287 5 36 98 696
table 1170 837 2603

Table 4.2: on table: Number of occurrences of items on table; total: Total
number of items; Last row: Number of tables. The contexts in this case are
bar, classroom, and restaurant. The observations are made in these contexts.

where ∗ is a triangular norm (t-norm), and

a′∗ → b′ means sup{t ∈ [0, 1], a′ ∗ t ≤ b′}.

Different selection of ∗ leads to different deduction schemas. For min, Eq. 5
becomes:

Π(q) ∈

[
min(a, b),

{
1 if a’ ≤ b’
b′ if a’ > b’

]
(4.6)

and for product:

Π(q) ∈

[
a · b,

{
1 if a’ = 0
min(1, b

′

a′ ) if a’ 6= 0

]
(4.7)

For calculating a possibility measure of an individual premise, we use:

Π(p) =
number of observations of p

number of observations

and for complex premises:

Π(pi ∧ pj) = min(Π(pi),Π(pj))

In the presented example, the goal is to deduce a location of tables based
on several different items seen on tables. Additionally, we consider two levels
of the possibility of seeing these items – we are very confident that the items
are on tables, and we are very uncertain about it.

Three different sets of items on tables are considered. We define the fol-
lowing premises:

pA = (paper ∧ bottle ∧ book ∧ laptop ∧ cup)
pB = (paper ∧ book ∧ laptop)
pC = (bottle ∧ cup)

For the premises pA and q = table_in_X, we have:
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location X: bar classroom restaurant
premise:

pA min [0.2353, 1] [0.1111, 1] [0.6607, 1]
product [0.2353, 1] [0.1111, 1] [0.6607, 1]

pB min [0.2353, 1] [0.7015, 1] [0.6607, 1]
product [0.2353, 1] [0.7015, 1] [0.6607, 1]

pC min [0.1742, 1] [0.1111, 1] [0.1546, 1]
product [0.1742, 1] [0.1111, 1] [0.1546, 1]

Table 4.3: Π(table_in_X) for different locations and premises; possibility of
premises is 1, i.e. Π(pA) = Π(pB) = Π(pC) = 1.

Π(table_in_X|pA) =
|table ∧ paper ∧ bottle ∧ book ∧ laptop ∧ cup|
|paper ∧ bottle ∧ book ∧ laptop ∧ cup|

(4.8)

The numerator is a number of observations where all items of pA and table
occur at the same time. The denominator, on the other hand, is a number of
observations where all items of pA occur. We also have:

Π(pA|table_in_X) =
|table ∧ paper ∧ bottle ∧ book ∧ laptop ∧ cup|

|table_occurrences_in_X|
(4.9)

As mentioned above, two possibility measures are used when taking into ac-
count items on tables, i.e., different values of b, b′ for Π(p), Eq. 4.4. With
that, we determine Π(table_in_X) for three different locations X = bar,
X = classroom, and X = restaurant, and we use two t-norms, Eqs. 6 and 7.

The values obtained for b = b′ = 1, i.e., Π(pA|B|C) = 1, for both types of
t-norm are shown in Table 4.3. As we can see, different sets of items on a table
lead to different values of the lower bounds of possibility intervals. The values
confirm commonsense reasoning regarding occurrence of given items on tables
at specific locations. It means that the items of the premise pA lead to the
conclusion that the table is in a restaurant, while for the premise pC points to
a bar.

If we change values of b and b′ to 0.1, it can be observed that low possibilities
of pA|B|C fully ‘control’ possibilities of locations, Table 4.4. It becomes evident
that conditional parts of the deduction schema are suppressed, seen especially
when a t-norm is min. On the other hand, more interesting values can be
observed when a t-norm is product. In that case, the values of the lower bounds
of possibility intervals provide more meaningful – commonsense – findings.

4.6 Conclusion
Commonsense knowledge graphs are shown to benefit many AI technologies,
such as transformer-based language models. Hence, their construction is gain-
ing much attention.
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location X: bar classroom restaurant
premise:

pA min [0.1000, 1] [0.1000, 1] [0.1000, 1]
product [0.0235, 1] [0.0111, 1] [0.0661, 1]

pB min [0.1000, 1] [0.1000, 1] [0.1000, 1]
product [0.0235, 1] [0.0701, 1] [0.0661, 1]

pC min [0.1000, 1] [0.1000, 1] [0.1000, 1]
product [0.0174, 1] [0.0111, 1] [0.0155, 1]

Table 4.4: Π(table_in_X) for different locations and premises; possibility of
premises is 0.1, i.e. Π(pA) = Π(pB) = Π(pC) = 0.1.

This paper presents a methodology for automatically building contextual
weighted commonsense knowledge graphs based on the processing of images
using deep learning models. Three methods are introduced to assign common-
sense weights to the knowledge graph triples. The human evaluation confirms
a high correlation between the generated contextual commonsense knowledge
and human commonsense in the same context. Moreover, we show how the
generated commonsense knowledge can be used to perform possibilistic rea-
soning.
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Chapter 5

Utilizing Language Models to
Expand Vision-Based
Commonsense Knowledge Graphs

5.1 Introduction

There has been a renewed interest in commonsense as a stepping stone to-

ward achieving human-level intelligence. Some of the new research has shown

how important commonsense knowledge graphs can be in training artificial

intelligence (AI) models, which exhibit commonsense [48], [61].

Commonsensical concepts should be symmetric to any changes in their

representation. In the case of an ideal commonsense knowledge graph and an

ideal language model, transforming concepts between the two representations

of knowledge should not change their meaning. By an ideal language model,

we mean a language model that is sufficiently large and capable that can

understand language and all the concepts within. At the same time, an ideal

commonsense knowledge graph is a knowledge graph that contains all correct

commonsensical concepts.

The knowledge-symmetric transformation depends on the architecture of

the language model and the knowledge graph, both of which are not ideal.

These issues make deriving a transformation process that symmetrically maps

knowledge from one to the other challenging and impractical. To compensate

for this, we introduce a prompting methodology based on questions and an-

swers to extract from the language model the knowledge missing in the knowl-
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edge graph. In that way, the symmetry of concepts is preserved by mapping

them between two knowledge storage paradigms.

The main building blocks of knowledge graphs used to represent common-

sense knowledge are subjects, predicates, and objects. Subjects and objects

are other words for the nodes of the graph. The tail of a relationship is called

an object, and the head is called a subject. The directed edge connecting the

two is called a predicate. Knowledge graphs are directed heterogeneous graphs

in some sense.

Artificial intelligence (AI) models are reported to have limited common-

sense abilities [62], [63]. Acquiring commonsense by AI systems can make

the sample efficient in adapting to new environments, as proposed in [64].

Commonsense knowledge graphs can help AI systems both explicitly and im-

plicitly: explicitly by querying the commonsense knowledge graph itself, or

implicitly by knowledge transfer methods, such as the fine-tuning of language

models as reported in [48]. This is similar to how a BERT model is fine-tuned

on a SQuAD dataset for reading comprehension [65]. In addition, expressing

commonsense knowledge in the symbolic format can help with commonsense

knowledge explainability and the vetting process.

Using only vision to generate commonsense knowledge as proposed in [2],

[66] has its advantages and disadvantages. By processing images and videos, we

can perceive visual cues that are not usually written or spoken about, but they

make our common understanding of how physical entities exist and interact.

On the other hand, fine-tuned vision-based deep learning models are limited to

the concept and relation vocabulary that they are trained on, which is usually

limited, and are not usually capable of understanding the intricacies of natural

language. An ideal self-supervised vision model, which can absorb and learn all

the visual interactions, could theoretically suffice. However, the current vision

models have shortcomings that we believe can be addressed via the utilization

of language models. For example, scene graph generation models are limited

regarding the number of detected relationship types. Increasing the number

of relationship types does not provide a satisfying solution, as there is still a

bias toward the frequently seen relationships in the supervised training [55].
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In this paper, we explore and use the extra knowledge that language mod-

els offer to expand on the limited auto-generated vision-based commonsense

knowledge graphs. We chose to use few-shot learning in larger transformer-

architecture-based language models, as larger models have shown to perform

well on language benchmarks without requiring further fine-tuning on a spe-

cific task. We experiment with not only adding new concepts to the vision-

based commonsense knowledge graph but also new types of relationships with

fuzzy-style linguistic weights.

5.1.1 Commonsense Definition

Having a good definition of commonsense is imperative to better understand

and discuss the work and results. Commonsense is simple, as almost everyone

knows it, and is challenging, as no one often talks or writes about it.

Yann LeCun, an inventor of convolutional neural networks, believes that

a collection of models of the world that represents what is likely, plausible,

or impossible makes our commonsense [62]. John McCarthy classifies human

commonsense into two categories of knowledge and ability. The commonsense

ability is the action based on the gained commonsense knowledge [8].

Commonsense knowledge is inherently uncertain and context-dependent.

The degree of correctness of commonsense knowledge depends on the common

group of observers. For instance, the people who live in the northern hemi-

sphere know July to be a hot summer month, while the people in the southern

hemisphere observe it as a colder winter month.

Commonsense can also be classified into different topics, such as physical

interactions, order of events, and social dynamics. In this paper, we mainly

focus on physical commonsense, such as the usage of an object and its relative

location, compared to other objects.

In a nutshell, commonsense knowledge graphs are graphs that represent

facts and relations between them that are characteristic of real-world scenarios

and situations. Such graphs focus on elements and aspects related to everyday

activities, arrangements of things, and normal/natural circumstances, such as

flower in vase, tree has trunk, food on plate, shoe is less likely made of metal,
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or arm is most likely to be able to move, bend and be strong.

Such facts seem very obvious and normal/natural for a human being, but

this knowledge is not easy to be acquired by a machine. The gap in the

processes of learning that type of information is filled out by techniques and

methods linked to collecting and representing commonsense knowledge.

5.1.2 Contributions

The goal is to utilize transformer-based language models to expand vision-

based commonsense knowledge graphs. In this paper, we propose an extension

of the methodology for constructing a commonsense knowledge graph proposed

in [2], [66] with a technique based on questions and answers prompting very

large language models. The new technique addresses generating prompts that

are used as inputs to the language models. First, a prompt is entered into the

model. Then, the obtained response that contains facts/information is added

to expand a knowledge graph. The method is illustrated in Figure 5.1.

LANGUAGE 
MODEL

Commonsense
Knowledge Graph

interaction
with 

Language 
Model

generation
of new
triples

Expanded
Commonsense

Knowledge Graph

Figure 5.1: Expansion of a vision-based commonsense knowledge graph with
relevant but new information.

In particular, the contributions of the paper are as follows:

• A multi-modal methodology for constructing commonsense knowledge
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graphs;

• A process of generating question/answer-based prompts for language

models based on triples extracted from an existing commonsense knowl-

edge graph, or based on the input from users;

• An expansion of the standard structure of knowledge graphs by introduc-

ing an approach to add degrees of likeliness as indicators of the ‘strength’

of triples that are added to commonsense knowledge graphs; the degrees

are expressed with linguistic terms , such as more likely, less likely;

• An evaluation process based on Amazon Mechanical Turk.

5.2 Related Work

The work presented in this paper falls into the category of tasks that focus on

completion and expansion of a commonsense knowledge base. There is related

literature that addresses the methods and tools to achieve these goals.

5.2.1 Expansion of Knowledge Bases

The work presented in [67], [68] focuses on link prediction between known

entities within a graph. These methods are not able to expand beyond the

current conceptual knowledge in the graph. They are more suited toward

finding possible relations between currently known concepts.

Recent works have tried to use language models, especially transformers

[12], to achieve better results in the tasks of the completion and expansion

of the knowledge base. The authors of [69] use language models to construct

knowledge graphs: they assume to have a subject and object and then use the

language model to predict an appropriate relationship between them.

Ref. [70] indicates that using the next token prediction capability of pre-

trained language models, one can use them as a factual knowledge base, e.g., to

find the birthplace of a specific person. Among the language models analyzed,

the largest transformer-based language model, BERT-Large [71], performed

better than others. This paper confirms the overall consensus in the research
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community that the larger the language models become, the more capable

they become.

There has been recent works to train very large generic transformer-based

language models, such as GPT-3 by OpenAI [72], Meta’s OPT-175B [73], and

Google’s PaLM [11]. There is a common consensus among all recent findings

that larger language models can potentially be more capable of performing

diverse tasks. Additionally, they do not need costly fine-tuning and data

collection. Yet, providing appropriate prompts to language models can be

challenging.

Processes of generating prompts are a subject of recent research publica-

tions. Prompts serve as input to large language models [74] and are used to

reduce the amount of data required for fine-tuning [4]. By prompt, we mean a

set of tokens and a short text that constitute the input to the model. Prompts

could have different purposes, such as providing context, tone, or a sample of

expected responses. They are part of the few-shot-learning process and are

usually used instead of fine-tuning a language model. While prompts benefit

the overall performance, their design does not follow a specific rule. Some

even call the process ‘prompt engineering.’ Question and answering tasks are

improved by few-example prompts when using large language models [72]. Ex-

tra chain-of-thought language prompts that contain reasoning steps are shown

to improve more complex tasks related to arithmetics and commonsense [74].

The chain-of-thought process helps find missing parts of knowledge [75]. The

work is similar to unsupervised data creation [76]. However, questions and

answers used in this paper serve as prompts to foundation models. They are

not used directly on text for reading comprehension.

5.2.2 Construction and Expansion of Commonsense Knowl-
edge

A body of literature [48], [61] focuses on annotating commonsense knowledge

graphs to train language models for predicting commonsense information based

on the given subject and predicate. The human-annotated knowledge graphs

are typically in the size of millions and cover social interactions, events, and
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entity commonsense. The ATOMIC-COMET work [48] is based on manually

creating a commonsense knowledge graph. This graph is used to train a small

language model, such as GPT-2, on the human-annotated data. Our approach

is different. We focus on generating a commonsense knowledge graph auto-

matically rather than manually. The method comprises two phases, the first

based on vision and the second enriching the results using language. The

manual generation of commonsense knowledge graphs can become costly, as

shown in [4]. Our approach seems to be more similar to [61], where GPT-3 is

utilized to generate commonsense knowledge graphs. The proposed method is

different in multiple ways. One is that we use a two-step method, where the

feed for GPT-3 is provided by visual data, while [61] uses human-annotated

data. Moreover, [61] only generates the most probable results, while we gener-

ate both highly probable and less probable results. Our approach has a cost of

roughly one-fifth of the method described in [61] when considering the linguis-

tic generation part and using the same GPT-3 model size. The reduced cost

is because our prompt method accommodates the generation of N = 5 triples

in one pass. Another difference is that [61] is proposed to only find an object

given the subject and predicate, while our approach works in both ways and

can suggest an appropriate subject given the predicate and object.

Several papers have experimented with the new very large transformers,

such as GPT-3 [61]. This work focuses on prompting GPT-3 with some anno-

tated commonsense triples, then extracting GPT-3’s commonsense and adding

it to a graph. It assumes pre-defined predicates and does not explicitly discuss

the weight of the triples. The process takes subjects and predicates and uses

causal language models to predict the most suitable objects. The method we

introduce in this paper can also predict the triples’ subjects.

It was discussed in [77], [78] that training a model on commonsense knowl-

edge base completion (CKBC) task suffers from low-coverage training data.

Therefore, training on specific data results in the model’s over-fitting and re-

duces its performance on novel data. Based on these observations, we focused

our efforts on generically trained language models, which are large enough to

accommodate few-shot learning.
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A few recent works report on generating knowledge graphs from visual

data. As an example, the NEIL method [34] extracts object relationships in

images and results in 10,000 triples using 10 types of predicates.

One of the main physical commonsense knowledge graphs is ConceptNet

[9]. As much as it can be helpful and treated as a reference, it has some draw-

backs that our work can potentially resolve in the future. First, ConceptNet

is mainly human annotated and cannot be continuously and cost-effectively

updated. Our work suggests a methodology to continuously and automati-

cally update the missing commonsense knowledge. Second, ConceptNet has

a limited predicate related to location–the vague AtLocation predicate. Our

method is able to enrich the commonsense knowledge with more fine-grained

relations, such as Above, Below, and others. Third, ConceptNet is limited in

terms of its predicate types, too. Our approach can enrich ConceptNet with

new types of predicates, such as NotIsA or CanEat. An essential weakness of

ConceptNet is its lack of context. For example, finding a desk in a classroom

is more probable than in a bar. Our approach can potentially expand and en-

rich ConceptNet with weighted contextual relations. Moreover, it can be done

automatically if part of ConceptNet is used as a seed commonsense knowledge

graph.

5.3 Image-Based Construction of Commonsense
Knowledge Graph

In our previous works, we introduced methodologies to generate a common-

sense knowledge graph, called world-perceiving knowledge graph (WpKG), by

only using visual data [2], [66]. Like human infants who gain commonsense

details about their physical world before they learn to express them in lan-

guage, the introduced process focuses on deducing commonsense knowledge

by observing many images.

The WpKG paper [66] introduces a methodology to auto-generate com-

monsense using deep learning models to perform object detection and relation

prediction. The final WpKG graph has 7000 triples using 50 predicate and
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150 entity types. [2] expands on the previous work to generate contextual and

weighted commonsense knowledge graph, C-WpKG, in 93 contexts using state-

of-the-art object and relation detection models. In the following sub-sections,

we describe the process of reaching these results.

5.3.1 Extraction of Scene Graphs

The first step in the process is to analyze each image individually by detecting

the existing objects and extracting possible relations between the objects in

the image. The resulting graph representing objects in images as nodes and

their relationships as edges is called a scene graph.

A convolutional neural network (CNN) model, such as Faster-RCNN [36],

is used to detect the objects. To produce image features, ResNeXt-101-FPN

CNN model [79] is utilized, which is needed for the region proposal network

(RPN) of the Faster-RCNN model. The output of the pre-trained object

detection model includes objects in the image, together with their bounding

boxes and class scores.

To predict relations between the objects and generate a scene graph for

each image, the MOTIFS model [42] unbiased by the Causal-TDE method

[55] is used. Then, the scene graph for each image is generated based on the

object features and relations between them.

5.3.2 Fusion of Scene Graphs

Regularly observed phenomena make up collective commonsense knowledge.

Similarly, we aggregate the scene graphs extracted from the images into a

single knowledge graph that comprises possible commonsense relations. To

differentiate between relationships to know if a phenomenon is a one-time

event or a typical one, we assign weights to the links representing the relations.

Different methods of assigning weights to the observations are investigated.

Among them, a probability-based approach is selected. It correlates the most

with human commonsense during human evaluations. This weight assignment

method follows Equation (5.1).
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wti =

|DT |∑
j=1

δ (ti, tj) · P (tj) (5.1)

where wti is a weight of the ti triple, δ(·) is Kronecker delta function, P (tj)

represents the probability of detecting each instance of triple tj, which is made

of a subject (s), predicate (p), and object (o). The weights are also normalized

by max{wti : ti ∈ DT}. The list of all detected triples is represented by DT .

Variations of the same method have been shown to work in context-free

and contextual scenarios. In this paper, we only focus on context-free visual

commonsense knowledge.

5.4 Expanding Knowledge Graph Using Language
Model

The automatic construction of commonsense knowledge graphs requires re-

trieving commonsense knowledge. It seems natural—also for a human being—

to start that process by analyzing images and pictures representing real-world

situations. Yet, to further increase commonsense knowledge and expand knowl-

edge graphs, other sources of information are required and beneficial. One of

them is verbal, textual information.

Therefore, to diversify information embedded in vision-based commonsense

knowledge graphs and further expand them, we propose a human-like method

of assimilating commonsense knowledge using linguistic-based data sources.

5.4.1 Methodology

The proposed method is intuitive and straightforward. It starts with interac-

tion with a language model using short texts created based on the common-

sense knowledge graph to be expanded. Then, the obtained results, i.e., the

retrieved pieces of information and facts, are added to the graph as triples.

The overview of the process is illustrated in Figure 5.2. It shows the WpKG

as a graph from which some triples are extracted. The information from these

triples is used to instantiate prompt templates (Section 5.4.3) that represent
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training data for a language model. The instantiated prompts are entered

into the model. As a result, the obtained pieces of information are converted

into new triples. These new triples are added to the WpKG, leading to its

expansion.

5.4.2 Language Models

Larger language models, such as GPT-3, have shown promising results on

diverse benchmarks with only a few examples of each task. The results are

sometimes even comparable with smaller language models, which are fine-

tuned on a large corpus of data. Recent research has shown the usefulness and

effectiveness of large language models in automatic commonsense knowledge

generation [61]. In this paper, we utilize different versions of a large language

model, called GPT-3 [72], to expand vision-based commonsense knowledge

graphs.
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Figure 5.2: Process of expanding a graph using language model.

GPT-3 is a causal language model with almost the same yet larger archi-

tecture as previous iterations of the same model (GPT and GPT-2). The goal
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of a causal model is to predict the next token given the previous tokens. The

language model assigns a probability to all the tokens to decide which one

could happen next.

Choosing the highest probability next token may not be the best option,

given the task. In this paper, we use nucleus (top-p) sampling to generate the

text responses [80] and also adjust the temperature of the sampling to reach

better results.

By reducing the temperature, we basically increase the likelihood of high-

probability next tokens and reduce the likelihood of low-probability next to-

kens. This setting results in more deterministic next tokens to be chosen

when selecting the next token randomly. The temperature is implemented as

a coefficient inside the softmax function. Empirically, we observed that lower

temperature works better for simpler cases, while the higher temperature can

work for more complex cases that need diverse results, e.g., finding objects

that are less likely to exist given a subject and a predicate.

In nucleus (top-p) sampling, instead of sampling from all the tokens, the

algorithm chooses from the set of tokens that their cumulative probability of

occurrence next is smaller than a given probability p. In our experiments,

we keep the p value equal to one to choose from the most diverse vocabulary

possible.

5.4.3 Language Model Prompts

Retrieving information from GPT-3 involves prompting the model with a few

examples that serve as a few-shot learning training data. The content and

the structure of the responses depend on these prompts. Therefore, experi-

mentation with different prompts to achieve the desired structure is necessary.

Formally, the examples that define the structure and content of an interaction

with a language model are called prompts.

The purpose of a prompt is to ‘show’ the model how to interpret and re-

spond to an input text appended to the prompt, which in our case is a question.

For example, one wants to retrieve a piece of information about the most com-

mon items found on a table in a conference room. In such a case, the following
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prompt is constructed and used:

prompt: Q: What can be found on table in bar? Name five.
A: bottle, class, cup, napkin, fork.

Q: What can be found on table in conference room?
Name five.

GPT-3 response: paper, glass, laptop, phone, box.

This example is a simple explanation of the role of the prompt. As it can

be seen, the first part of the prompt—Q and A—is one-shot training data

and ‘teaches’ the model that for a type of question like Q, a proper response

looks like A. After that, the ‘real’ question Q: What can be found on table in

conference room? is asked. Then, finally, the model responds with five items

it ‘thinks’ represents the most suitable response.

Sometimes, one example is not enough, and multiple examples need to be

provided to serve as few-shot learning training data. Empirically, we find that

explaining the task and a well-defined question format help the model respond

better.

To achieve more accurate results, we also utilize the chain-of-thought prompt-

ing method introduced in [74] for the fuzzy and the predicate expansion cases,

described in Sections 5.5.2 and 5.5.3, respectively. In each example answer

in the prompt, we hand-craft a reasoning that can help narrow down to the

correct response. The model learns to generate a similar pattern and, as a

result, generates a reasoning before answering the asked question.

5.5 Expansion of Commonsense Graph

To illustrate the benefits of using a language model for expanding the WpKG,

we extract information from GPT-3 to construct different triples. It shows how

versatile the interaction with the model can be and how different results are

obtained. The presented utilization of GPT-3 involves the following scenarios:

• Asking for subjects and objects for given relations using a basic prompt
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template;

• Asking for the most and least likely subjects and objects for given rela-

tions to construct fuzzy triples;

• Asking for the most and least likely objects with novel relations given

by a user.

Expanding the existing graph means ‘asking’ the language model to provide

answers that contain the most suitable pieces of information that are directly

added to the graph as nodes—subjects and objects—and relations that link

the existing nodes to the newly added ones.

The questions are prepared based on templates that are initialized with

facts/information obtained from the WpKG or from a user. Three sets of

templates are constructed, one for each type of defined-above scenarios.

5.5.1 Simple Triples

In the beginning, a straightforward scenario that involves adding simple triples,

i.e., triples that are not associated with degrees of strength of relations between

subjects and objects, is presented. In such a case, GPT-3 is asked questions

that result in retrieving from the model facts that are interpreted as subjects

or as objects. It means that the questions are of the format 〈?s, relationX ,

objectX〉 when subjects are asked for, or 〈subjectX , relationX , ?o〉 when objects

are asked for. The retrieved subjects and objects are added as triples with the

relationX to the WpKG.

In a nutshell, the process—for a single relationX—is as follows:

• Extract five triples with the relationX from the WpKG.

• Select randomly one triple from the set of five, say, triple k; it is used in

the process

of customization of a prompt template for the relationX .

– Extract a set of five most popular objects Objk fitting 〈subjectk,

relationX , -〉

from the WpKG.
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– Extract a set of five most popular subjects Subk fitting 〈 -, relationX ,

objectk〉

from the WpKG.

– Audit the instantiated prompt and make changes if necessary.

• For each extracted triple 〈subjecti, relationX , objecti〉:

– Put subjecti and relationX into the question template and append

to the prompt.

– Put the prompt to the language model to initiate the text genera-

tion.

– Extract the five new objects ObjLM from the generated text.

– Add five new triples 〈subjecti, relationX , -〉 with objects from ObjLM
to WpKG.

– Put relationX and objecti into the question template and append to

the prompt.

– Put the prompt to the language model to initiate the text genera-

tion.

– Extract the five new subjects SubLM from the generated text.

– Add five new triples 〈-, relationi, objectX〉 with subjects from SubLM
to WpKG.

As it is described above, the process of asking GPT-3 involves the instanti-

ation of prompt templates. For the simple triples case, the prompt templates

for asking for both objects and subjects are shown in Table 5.1. Following the

aforementioned process, it can be seen that the prompts are filled out with

facts/information obtained originally from WpKG, and the same initialization

is used for prompting GPT-3 for all other objects or subjects obtained from

the randomly selected relationXs. Depending on the predicate relationX , dif-

ferent variations of the prompt templates are created to result in meaningful

questions and answers.
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Table 5.1: Sample template for simple triple.

SIMPLE_TEMPLATE_A for 〈subject〉

prompt: Answer with five items separated with comma.
Q: What is 〈relationX〉 〈objectk〉? Name five.
A: elements of Subk
Q: What is 〈relationX〉 〈objecti〉? Name five.

SIMPLE_TEMPLATE_B for 〈object〉

prompt: Answer with five items separated with comma.
Q: What 〈subjectk〉 can be 〈relationX〉? Name five.
A: elements of Objk
Q: What 〈subjecti〉 can be 〈relationX〉? Name five.

The templates from Table 5.1 are used with five different relations: behind,

in, has, on, and watching. The instantiated prompt templates, together with

the results of querying GPT-3 for the relation on, are shown in Table 5.2 for

extracting subjects, and in Table 5.3 for extracting objects.

It can be seen that, for example, selecting objectA = plate, we obtain the

following triples: 〈food, on, plate〉, 〈drink, on, plate〉, 〈utensils, on, plate〉,

〈napkin, on, plate〉, and 〈tablecloth, on, plate〉, Table 5.2. Similarly selecting

subjectA = hair, we obtain the triples such as 〈hair, on, head〉, 〈hair, on, beard〉,

〈hair, on, eyebrows〉, 〈hair, on, eyelashes〉, and 〈hair, on, pubic〉 (Table 5.3).

Another example, this time in a graphical form, that shows an expansion of the

triple 〈window, on, building〉 is illustrated in Figure 5.3. Besides the original

triple, the figure includes its extension on both subject and object sides.
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Table 5.2: Query and results for 〈-, on, -〉 for subject.

user: Answer with five items separated with comma.
Q: What is on building? Name five.
A: letter, door, sign, leaf, light.

Q: What is 〈relationA〉 〈objectA〉? Name five.

where: relationA = on
objectA = { building, sign, man, plate, head }

GPT-3:
building: subjectA ∈ {letter, door, sign, leaf, light}
sign: subjectA ∈ {words, letters, numbers, shapes, colors}
man: subjectA ∈ {shirt, pants, belt, shoes, socks}
plate: subjectA ∈ {food, drink, utensils, napkin, tablecloth}
head: subjectA ∈ {hair, hat, ear, eyebrow, eyelash }

Table 5.3: Query and results for 〈-, on, -〉 for object.

user: Answer with five items separated with comma.
Q: What window can be on? Name five.
A: pole, car, bus, house, tree.

Q: What 〈subjectB〉 can be 〈relationB〉? Name five.

where: subjectB = { window, letter, hat, food, hair }
relationB = on

GPT-3:
window: objectB ∈ {pole, car, bus, house, tree}
letter: objectB ∈ {A, B, C, D, E }
hat: objectB ∈ {baseball, cowboy, graduation, party, winter}
food: objectB ∈ {apple, banana, orange, pear, grape}
hair: objectB ∈ {head, beard, eyebrows, eyelashes, pubic}

Of course, not all obtained subjects and objects are correct, especially in

the case of asking for objects. For example, triples generated for the subject

letter, Table 5.3, are quite inferior. A human-wise evaluation was performed;

see Section 5.6.3 for details.

In the prompts, we chose the What question word, as it is generic enough

to result in diverse types of results. However, a more fine-tuned selection of

the question word may result in more relevant results, as suggested in [76].
71



buildingwindow on

buildingwindow on

tree
house

bus

car

pole

on
on

on

on on

letter

door

sign

leaf
light

on
on

on

on
on

   (a)

   (b)

Figure 5.3: Expanded WpKG—simple triples: original triple (a); and after its
extension (b).

We utilized the largest GPT-3 model, with 175 billion parameters, for the

experiments. We started with a softmax temperature of 0.0 to obtain more

deterministic results. However, we observed that the model sometimes shies

away from generating text with this temperature setting and immediately

generates an end token. To fix the problem, we increased the temperature to

0.7 and then to 1.0 to increase the chances for a good response.

5.5.2 Fuzzy Triples with Linguistic Terms

The remarkable abilities of GPT-3 can be utilized to extract subjects and

objects when the triples need to be labeled with the degrees of the plausibility

of their occurrence. Triples with such information can be added to the WpKG

when the prompt, and its question-and-answer parts, used to query GPT-3

are constructed/designed in a specific way. The prompt templates presented

in the previous section have to be modified.

To invoke responses from GPT-3 that give a quantifiable assessment of

relation strength, the prompts should be more verbal to contextualize interac-

tion with the model. The experiments with multiple approaches have led to

the prompts that are the same, even if GPT-3 is asked to provide facts related

to a variety of topics.

Due to the fact that two degrees of relation strength are considered, two
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prompts are designed and used: one for generating triples that represent high

likeliness and one for building triples that are of low likeliness. Both of them

are shown in Table 5.4. A quick look at them indicates that the prompts refer

to quite different domains/topics—the questions are related to window and

number. Yet, they work very well with the relations we use as examples—the

same as for the simple triples in Section 5.5.1.

Another interesting ‘feature’ of these prompts is the very little need for

instantiation. Only the last questions, QS for subjects and QO for objects,

Table 5.4, are initialized to reflect the relations of interest.

As an example of using the prompt templates, the results for a relationX =

relationY=on are included. Please note that different question templates are

developed to fit various types of relations. The obtained subjects and objects

are in Tables 5.5 and 5.6 for the linguistic terms most likely and less likely,

respectively.

Again, not all obtained subjects and objects are correct. For example, triples

〈hat, (most likely) on, -〉, Table 5.5, or 〈hat, ( less likely) on, person〉, 〈food,

( less likely) on, stove〉, Table 5.6, are quite inferior. As before, there is also

a graphical representation in Figure 5.4 of the addition of new triples with the

relation on that have building as their object. It can be seen that the most

likely subjects are quite reasonable, while the less likely subjects are a bit odd.

A human-wise evaluation is performed; see Section 5.6.3 for details.

For the most likely case, the softmax temperature starts at 0.0 and in-

creases to 0.7 and 1.0, in the case that no text is generated. For the less

likely case, we observe better results if the initial temperature is set to 0.7

and increases to 1.0 if needed.
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Table 5.4: Template for fuzzy triple with linguistic terms.

FUZZY_TEMPLATE_X for the linguistic term most likely

prompt:
Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written

on different things for information.
Therefore, train, sidewalk, track, street, building.

QS: What is most likely〈relationX〉 〈objectX〉? Name five.
QO: What does/is 〈subjectX〉 most likely be/- 〈relationX〉? Name five.

FUZZY_TEMPLATE_Y for the linguistic term less likely

prompt:
Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through.

Therefore, hat, drawer, vase, basket, box.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written

on different things for information.
Therefore, window, people, rock, tree, jacket.

QS: What is less likely〈relationY 〉 〈objectY 〉? Name five.
QO: What does/is 〈subjectY 〉 less likely be/- 〈relationY 〉? Name five.
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Figure 5.4: Expanded WpKG—triples with linguistic terms.
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Table 5.5: Query and results for 〈-, most likely on, -〉 for object.

user:
Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What 〈subjectX〉 can most likely be 〈relationX〉? Name five.

where:
subjectX = { window, letter, hat, food, hair }
relationX = on
GPT-3:

window: objectX ∈ {train, building, house, car, bus}
letter: objectX ∈ {train, sidewalk, track, street, building}
hat: objectX ∈ {baseball cap, fedora, beanie, cowboy hat, sun hat}
food: objectX ∈ {apple, banana, orange, grape, strawberry}
hair: objectX ∈{person, animal, doll, toy, statue}

5.5.3 Fuzzy Triples with Novel User-Provided Relations

The last scenario focuses on the generation of new triples that contain novel

relations provided by a user. It means the user gives relations that do not exist

in the initial vision-based knowledge graph. We selected three novel relations:

used for, made of, and has property. We opted for triples with linguistic terms

and their respective prompts instead of the simple triples scenario, as more

information about triples is obtained. The prompt templates used here are

included in Table 5.4.

The results obtained for a subjectX=arm and the user provided relationX ∈

{used for, made of, has property} are included in Table 5.7 for the fuzzy term

most likely, and in Table 5.8 for the fuzzy term less likely. Graphically,

the generated triples for subjectX = shoe are in Figure 5.5. As in the previous

cases, not all triples—constructed based on the obtained sets of objects—are
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Table 5.6: Query and results for 〈-, less likely on, -〉 for object.

user: Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What 〈subjectY 〉 can less likely be 〈relationY 〉?
Name five.

where: subjectY = { window, letter, hat, food, hair }
relationY = on

GPT-3:
window: objectY ∈ {number, people, rock, tree, jacket}
letter: objectY ∈ {number, people, rock, tree, jacket}
hat: objectY ∈ {window, book, cat, person, wall}
food: objectY ∈ {sink, counter, stove, refrigerator, table}
hair : objectY ∈ {shoulder, leg, foot, arm, hand}

satisfactory. The human evaluation results are presented in Section 5.6.3.
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Table 5.7: Query and results for 〈-, (most likely) used for/made of/has
property, -〉 for object.

user:
Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What is 〈subjectX〉 most likely 〈relationX〉? Name five.

where:
subjectX = arm
relationX ∈ {used for, made of, has property}
GPT-3:
used for: objectX ∈ {lifting, carrying, pushing, pulling, holding}
made of: objectX ∈ {human, animal, plastic, metal, wood}
has property: objectX ∈ {to move, to bend, to be strong, to be flexible, to grip}
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Table 5.8: Query and results for 〈-, ( less likely) used for, -〉 for object.

user:
Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What is 〈subjectY 〉 less likely 〈relationY 〉? Name five.

where:
subjectX = arm
relationX ∈ {used for, made of, has property}
GPT-3:
used for: objectX ∈ {hat, drawer, vase, basket, box}
made of: objectX ∈ {metal, plastic, glass, wood, fabric}
has property: objectX ∈ {number, window, glass, bottle, box}
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Figure 5.5: Expanded WpKG–fuzzy triples with shoe as their subject and user-
provided relations has_property, made_of, used_for.
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5.6 Discussion

The presented method for expanding existing commonsense knowledge graphs

represents an example of a new approach to constructing knowledge graphs in

a specific domain using very large language models and prompts. It can be

said that these techniques are in their infancy; therefore, there are a number

of aspects that need to be investigated regarding the approach itself as well as

evaluation of the obtained results.

5.6.1 Vision-Based Commonsense Graph

Similar to how toddlers learn about their environment, our approach is based

on two steps. First, we generate commonsense knowledge using vision models

and then expand it using language models.

The evaluation of the weighted commonsense knowledge graph generated us-

ing only visual data is presented in Table 5.9 from our previous work [2], [66].

Three different approaches for determining the weights (strengths) of relations

are proposed and evaluated. Depending on the weighting mechanism, the accu-

racy of the generated commonsense triples ranges from 87.6% to 93%. Among

these, the DPbM (detection probability-based method) correlates highly with

human commonsense, while other methods still show good results.

Table 5.9: Human evaluation of the three weighting mechanisms defined in
[2]. Three reviewers were given top 100 triples from each restaurant and class-
room contextual commonsense knowledge graphs (total of 600 evaluations per
method). Alpha is Krippendorff’s Alpha [57] measuring consensus among eval-
uators.

Weighing
Schema

Accept Reject N/A Accu-
racy (%)

Alpha

DPbM 560 22 18 93.0 0.78
ROM 526 60 14 87.6 0.63
WOM 538 51 11 89.7 0.72
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5.6.2 Preliminary Experiments with Language Models

The high accuracy obtained using automatic vision-based weighted common-

sense knowledge generation does come with some specific challenges of its own.

For example, the concept and relation vocabulary is limited only to the dic-

tionary provided to the underlying models during the supervised training of

the vision models. Adding a new vocabulary requires several time-consuming

and costly tasks. They include human annotation on images to label objects

and relations between them and then the fine-tuning of models for object de-

tection and scene graph generation. Even if we accept the time and cost of

adding a new vocabulary, it is shown in [55] that there is a bias toward the

most common relationship type. It prevents the process from effectively going

beyond specific vocabulary.

To address the issue of limited vocabulary, we have investigated using lan-

guage models to extend the initial vision-based commonsense knowledge graph.

We opted to use very large language models, such as GPT-3, for two main rea-

sons. One is their capability to offer new concepts beyond the known ones with

acceptable precision. The other reason is the flexibility and time/cost saving

of using prompts instead of fine-tuning, which usually requires large amounts

of costly human-annotated data.

Our experimental results support the overfitting statement explained in

[77], [78] stating that training on specific data reduces performance on novel

data. We initially experimented with comparing one-shot-prompted 175-billion-

parameter unsupervised-trained GPT-3 versus variations of smaller language

models fine-tuned on an initial 5000-triple vision-based commonsense knowl-

edge graph. Although the GPT-3 result accuracy was lower than a fine-tuned

language model, the novelty of the vocabulary offered was much better. GPT-

3 with 175 billion parameters predicted 15 times more vocabulary than the

RoBERTa-large model with 355 million parameters.
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5.6.3 Evaluation of Commonsense Knowledge Graph

To the best of our knowledge, there is limited benchmark data or a well-

established method suitable for evaluating constructed commonsense knowl-

edge graphs, especially when there are mostly novel generated concepts. There

are benchmarks introduced in works such as [81], but are more related to

knowledge base completion rather than expansion to new concepts. For mostly

novel concepts, human evaluation of the results seems to be the preferred

method, mainly in generative model scenarios, as performed in [61].

In this work, the process applied to assess the quality of the constructed

commonsense knowledge graph is fully based on human evaluation using Ama-

zon MTurk annotators. Amazon Mechanical Turk https://www.mturk.com

(accessed on Aug. 12, 2022) (MTurk) is a crowd-sourcing marketplace that

provides, among multiple services, assistance in data annotation tasks. Three

sets of validation tasks are performed for simple triples (Section 5.5.1), fuzzy

triples (Section 5.5.2), and fuzzy triples with user-provided relations (Sec-

tion 5.5.3).

The evaluation results are shown in Table 5.10 for only the new triples

that did not exist in the original commonsense knowledge graph. As it can

be seen, the results are encouraging. To gain some insight into the evaluation

process and to better understand the evaluation results, it should be stressed

that MTurk controls who is involved in the evaluation task. To increase the

confidence in results, each triple is evaluated by three independent annotators.

To make the evaluation task easier and more intuitive for the annotators,

we generated sentences from triples. Based on each predicate, a manual pat-

tern is introduced. Once a sentence is generated using a fixed pattern, it

is passed through an off-the-shelf grammar correction module to fix obvious

errors. The sentences are then manually vetted to make sure they are gram-

matically correct and are based on the original triples.

In the description given, the annotators were asked to assume visual com-

monsense when encountering any of these statements. For example, in the case

of It is likely to see cloud behind cow., we asked them to imagine that they
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are in a field and they see cows. Then it makes sense to see clouds behind the

cows.

Some examples of the triples and their evaluation scores are presented:

• Shoe is used for running. –> Correct with 0.95 confidence.

• Shoe is not likely to be alive. –> Incorrect with 0.95 confidence.

• Shoe is not usually made of stone. –> Correct with 0.65 confidence.

As we can see in the examples, finding a well-understood and easy-to-

annotate verbalization of triples can affect the result. For example, in the

case of Shoe is not likely to be alive., the statement makes sense based on our

understanding; however, it was not the case with the three annotators.

Table 5.10: Results of human evaluation of generated triples. Overall, Likely
and Unlikely columns show the accuracies regarding total triples, most-likely
triples, and less-likely triples, respectively. N represents the number of triples
evaluated in each case.

Triple
Type

N Overall
Accuracy

Likely
Accuracy Unlikely

Accuracy

Simple 122 72.95% N/A N/A
with

Linguistic
Terms

287 67.94% 68.09% 67.81%

with New
Relations

148 72.97% 66.22% 79.73%

A few examples are analyzed under Table 5.11 to understand the obtained

results better. Triples without linguistic terms are called Simple. Triples with

Linguistic Terms contain two terms, most likely and less likely. Triples with

New Relations refer to triples with linguistic terms generated with predicates

that do not exist in the initial commonsense knowledge graph. For brevity,

the initial parts of the prompts are removed. Only the last part of the prompt

(question) is kept. The process of generating triples with Linguistic Terms

and with New Relation uses the chain-of-thought prompting methods, shown
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in Sections 5.5.2 and 5.5.3, while Simple triples are generated using a simple

question and answering prompting method, shown in Section 5.5.1.

The obtained results are compared with the results found in similar works.

TransOMCS paper [82] reports an overall accuracy of 56% while focusing on

the automatic mining of commonsense knowledge from linguistic graphs. The

results in TransOMCS are based on 100 randomly selected tuples from the

overall results set, which five Amazon mTurk workers evaluated. Another

comparable work focuses on symbolic knowledge distillation from large lan-

guage models, mostly about commonsense social relations, without relation-

ship weights [61]. This work reports a human-evaluated correctness percentage

of 73.3% when GPT-3 is used with prompts to complete a knowledge graph.

The reported value is close to the comparable case of Simple triples as shown

in Table 5.10. The approach used in [61] requires text completion for every

subject and predicate to generate each triple. On the other hand, our approach

uses prompts that generate N = 5 new concepts during a single run. It results

in roughly one-fifth of the cost when both methods use the same model.

To further demonstrate the scalability of the proposed method, we gen-

erated 1,905 triples with linguistic terms. Triples with 13 different predicate

types from our vision-based commonsense knowledge graph were used for the

generation purpose. There are 1,075 triples with the linguistic term less likely

and 830 with the term more likely.

All the triples were evaluated using three Amazon mTurk annotators on the

Amazon SageMaker platform. The human evaluations of more likely triples

resulted in higher accuracy of 72.15%, while the less likely triples resulted in

an accuracy of 62.1%. We only considered triples with at least 95% evaluation

confidence among the three annotators (662 triples). The evaluation of triples

with different predicate types and linguistic terms resulted in different accura-

cies, as shown in Figure 5.6. This scaling experiment shows that the generated

dataset size can expand from the initial hundreds of triples to thousands and

beyond.
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Figure 5.6: Human (mTurk) annotation accuracy of different predicate types
and linguistic terms.

5.7 Conclusion

There is a growing interest and a need for collecting and storing knowledge that

represents information about real-world scenarios and things and activities

of everyday life. That type of information—named commonsense—becomes

essential when one wants to build autonomous systems that exist around us

and assist us in daily duties.

The commonsense knowledge is present in different visual and verbal forms

and is learned via observations, experiences, and interaction with others.

A simple attempt to address extracting commonsense knowledge and rep-

resenting it as a graph is presented here. The previous work [66] showed

a method of analyzing images and constructing a commonsense knowledge

graph via the fusion of multiple scene graphs extracted from images.

This paper, perceived as a continuation of the work on images, presents a
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methodology for expanding existing commonsense graphs with facts retrieved

from language models. The development of very large language models opens

an opportunity to use them for multiple tasks involving retrieving pieces of

information and facts in various domains. This capability of the models was

utilized here to pull out commonsense information that is easily added to

the existing knowledge graphs. Specific prompts and their templates were

constructed to retrieve related information. This information was transformed

into triples and added to the commonsense graph. Three different types of

new triples were considered: simple ones, fuzzy ones with linguistic terms

describing degrees of their likeliness, and ones with specific relations provided

by the user.

A validation process of new triples was designed and executed—the Ama-

zon service called Mechanical Turk was utilized. The obtained evaluations

confirmed the usefulness of the proposed methodology for expanding com-

monsense graphs.

At the same time, more work is needed to construct prompts that improve

the correctness of retrieved information and create triples with more subtle

degrees of likeliness. Additionally, more investigation regarding the suitability

of different language models is mandated. In this paper, we used the chain-

of-thought prompting method [74]. While this prompting method leads to

good results, it seems interesting and important to investigate other prompt

methods, such as [83], to see if better and more accurate results are achievable.
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Table 5.11: Examples: two correct and one incorrect for each type of generated
triple. Correct parts of the response are in teal color, while the incorrect parts
are in red color.

Simple with Linguistic
Terms

with New Relations

Q: What is in room?
Name five.

Q: What is most likely
to be in bowl? Name
five.

Q: What is shoe most
likely used for? Name
five.

A: bed, table, chair,
lamp, computer.

A: Bowl is a container
and can hold differ-
ent things. There-
fore, rice, cereal, milk,
soup, fruit.

A: Shoe is used to pro-
tect feet. Therefore,
running, walking, hik-
ing, climbing, dancing.

Q: What does face
have? Name five.

Q: Where is flower less
likely in? Name five.

Q: What property
does sidewalk most
likely have? Name
five.

A: eyes, nose, mouth,
ears, chin.

A: Flower is a nat-
ural thing and needs
soil, water and sun-
light to grow. There-
fore, sink, oven, book,
pencil, phone.

A: Sidewalk is a
path for pedestrians.
Therefore, it is usually
level, made of con-
crete, has a curb, is
smooth, and is wide.

Q: What food can be
on? Name five.

Q: What hat can most
likely be on? Name
five.

Q: What property
does arm less likely
have? Name five.

A: apple, banana, or-
ange, pear, grape.

A: Hat is worn on
the head and can be
made of different ma-
terials. Therefore,
baseball cap, fedora,
beanie, cowboy hat,
sun hat.

A: Arm is a body
part and usually has
skin, muscle, bone,
and hair. There-
fore, number, window,
glass, bottle, box.
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Chapter 6

Super-Prompting: Utilizing
Model-Independent Contextual
Data to Reduce Data Annotation
Required in Visual Commonsense
Tasks

6.1 Introduction

Human annotation is time-consuming and is also a financial burden for research

groups, startups, and companies. To put it in context, almost $240,000 has

been spent on the annotation of the Visual Commonsense Reasoning in Time

(VisualCOMET) dataset and this figure only includes the payment to crowd-

workers from Amazon Mechanical Turk [84]. The real financial burden can

be much higher when including the time value of the staff involved in the

annotation process.

Although large pre-trained language models, such as GPT-3 transformer

[85], are impressive at multi-task few-shot learning, their huge size can be pro-

hibitive for different scenarios, including on-device applications. Fine-tuning

still plays an important role in achieving the state of the art, even with a rela-

tively smaller model. As an example, the two current leading models1 (better

than human baseline) on SuperGLUE task [86] are fine-tuned variants of T5

[87] and DeBERTa [88] language models, while GPT-3 is at 14th place.
1https://super.gluebenchmark.com/leaderboard
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Our goal is to devise a model-independent process that could improve re-

sults based on fine-tuning with much less annotated training data.

6.2 Related Work

Several recent works have focused on improving fine-tuning methods in lan-

guage models, such as [89], [90], [91], and [92]. The focus has been put mostly

on optimization and regularization, but not on using less data for fine-tuning.

The results from those studies are complementary to our work.

Some previous efforts have been put on prompt-based fine-tuning to im-

prove classification or regression tasks in natural language processing (NLP).

[93] and [94] convert textual inputs into cloze-style questions with a task de-

scription. [95] studies smaller language models for few-shot learning capability

by using automatically-generated prompts for fine-tuning and by incorporating

demonstrations into context.

On another topic, a group of recent research studies, including [96], [97]

and [98], aim at task-dependent added parameters to adapt models to different

tasks. This way, one does not need to re-train a complete model to fine-tune

it to a specific task but only needs to re-train a fraction of parameters.

There is a recent body of work that utilizes inherent knowledge of language

models combined with fine-tuning on specialized large-scale training datasets

to infer different commonsense and causal scenarios. [14] uses generative lan-

guage models to expand on ATOMIC [10] and ConceptNet [9] commonsense

knowledge graphs. [48] introduces an updated knowledge graph similar to

ATOMIC and uses BART [99] encoder-decoder model to generate new knowl-

edge. [100] uses generative language models to expand on an introduced knowl-

edge base of causal mini-story explanations.

Given the success of prompt-based fine-tuning and in-context learning in

classification and regression tasks, we are motivated to assess similar principles

in the context of commonsense generation using generative language models,

which are fine-tuned on a commonsense knowledge graph.
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6.3 Dataset

For this paper, we have selected a multi-modal commonsense knowledge graph

for fine-tuning. The Visual Commonsense Reasoning in Time (VisualCOMET)

dataset [84] consists of 1.4 million commonsense inferences over 59,356 images

and 139,377 specific events at present. The dataset has human-annotated

inferences regarding three different aspects: the intention of the person men-

tioned, the possible events that could happen next, and the possible preceding

events. The inferences are made based on a single image. The annotators

have access to short clips before and after the event, which are not part of

the dataset. Each image is also annotated with event and place descriptions.

There is a total amount of 1,465,704 commonsense inferences.

The images are sourced from the VCR dataset [101]. The images usually

have a complex visual scene with multiple people and activities present. This

dataset includes automatically-detected object bounding boxes and people are

annotated with numerical tags.

6.4 Method

In this work, we focus on using generative language models and analyze how

prompt-based fine-tuning and in-context learning could help to reduce the size

of the data required for fine-tuning training.

As seen in Fig. 6.1, there are several scenarios where extra context could

help lead the generative language model to a correct answer, but lack of cor-

rect understanding about the scene and the event text can result in incorrect

results. Extra human annotations, focused on these shortcomings, could im-

prove the results, but that comes with extra time and money expenditure.

We propose using the underutilized context already present in text and

image, then transforming them to a form that is usable by most transformer

models, which is a sequence. We analyze if this kind of addition helps the

language model achieve better results in the case of limited annotated data

available.

Assuming the added context text is represented with c and its tokenized
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version with {c}, we can represent the context with {c} = {wc1, wc2, ...wcq},

where wci represents each token created from tokenization of the context c.

This context is merged with tokenized versions of event and place, which are

represented as: {e} = {we1, we2, ...wen} and {p} = {wp1, w
p
2, ...w

p
m}, respectively.

Using the merged versions of event and place texts with context, the updated

sequence-to-sequence loss can be written as:

L =−
n∑
i=1

logP (wei |we<i, v))−
m∑
i=1

logP (wpi |w
p
<i, e, v))

−
q∑
i=1

logP (wci |wc<i, p, e, v))

−
l∑

i=1

logP (wrhi|wrh<i, c, p, e, v) (6.1)

where v represents visual features, including overall images and person-specific

boxes, r represents inference prompts, which could be intent, before and after,

and w∗<i represents past tokens for each case.

6.5 Experiments

The goal of the experiments is to see how much we could reduce the annotated

data and still achieve results comparable to a case where the full human-

annotated data is used. We tried different contextual data, which did not

require extra annotations, such as captions, facial expressions, and related

concepts.

As shown in Fig. 6.1, we can intuitively see that some extra context could

potentially help the language model to reach a more logical deduction of in-

tention, past, and future events.

For each scenario, the VisualCOMET dataset provides several human an-

notations for comparison, each showing intent of a person, what could hap-

pen next, and what happened before. The experiments are evaluated using

BLEU [102], METEOR [103] and CIDEr [104] automatic metrics to compare

the generated texts for different scenarios of before, intent and after with the

human-annotated texts.
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(a) Event: Person-4 is
sitting on the couch with
her legs over the arm.
Place: In a living room
Annotated Intent
Inferences:
1) be comfortable
2) get cozy
A Predicted Intent:
Show boredom
Missing context:
Happy facial expression

(b) Event: Person-2 is
taking a tiny spoon and
scooping up a heap of
caviar.
Place: In a dining room
Annotated Intent
Inferences:
1) live luxuriously
2) enjoy a delicious treat
A Predicted Intent:
keep everything neat
Missing context:
Caviar is a luxury edible.

(c) Event: Person-1 is
sitting down staring at
someone angrily.
Place: In a dining room
Annotated After In-
ferences:
1) choose not to express
her anger verbally
2) look down in front of
her
3) slam the table
4) walk out of the restau-
rant
A Predicted After:
Fight
Missing context: Ob-
jects in a dining room
and its location.

Figure 6.1: Predictions based on the fine-tuned language model introduced in
[84]. Each example shows a piece of missing contextual information that could
be utilized.

91



Method BLEU-2 METEOR CIDEr
GPT-2 [84] 13.81 10.85 15.37
Concept Word (NVP) 17.25 12.17 19.79
Concept Word (VP) 17.17 12.28 19.34
Concept Sent. (NVP) 14.92 11.25 16.9

Table 6.1: Effects of adding relevant concepts. Results are shown at the fourth
epoch using almost 25,000 (22%) of the available annotated data. NVP: No
Validation Prompt. VP: Validation Prompt.

We tried two different methods of adding relevant concepts. One method

is based on converting relevant concept graphs into a readable sentence and

the other method is based on only prepending concept words to the target

sentence. In either method, the text is scanned for concepts, and the related

concepts are extracted based on a commonsense knowledge graph such as in

[9], [66]. Although sentence-based inputs perform well, they require a longer

input width that may not be available given the language model. To sort

relevant concepts, crowd-based scores or frequency scores are used based on the

specific knowledge graph used. These triples are then converted to text with

some hand-designed rules. An example of this process is shown in Fig. 6.2a.

Table 6.1 shows three of the top-performing models with added conceptual

contexts. They are compared with the original data, which does not have

any added context. Evaluation is done on a validation dataset with a size of

a hundred. Concept words added in this specific scenario are connected via

HasProperty and PartOf predicates. Concept sentences use the HasProperty

predicate. Adding similar information during inference time does not result

in much improvement in this specific case. More comparisons can be found in

the Appendix.

As seen in Fig. 6.1a, lack of the model’s attention to some visual cues,

such as facial expressions, could also result in errors of judgment. To fix

this issue, we trained a ResNet [105] model on FER2013 [106] dataset with

almost 70% accuracy. The dataset consists of human face images and emotion

labels of angry, disgust, fear, happy, neutral, sad, and surprise. Only the

emotion of people mentioned in the event text is processed. The results are
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Method BLEU-2 METEOR CIDEr
GPT-2 [84] 13.81 10.85 15.37
FE (NVP) 14.45 11.27 15.7
FE (VP) 15.11 11.23 16.03

Table 6.2: Effects of adding information about facial expressions. Results
are shown at the fourth epoch using almost 25,000 (22%) of the available
annotated data. NVP: No Validation Prompt. VP: Validation Prompt. FE:
Facial Expressions.

Method BLEU-2 METEOR CIDEr
GPT-2 [84] 13.81 10.85 15.37
Caption (NVP) 14.08 10.78 15.63
Caption (VP) 16.49 11.85 18.8

Table 6.3: Effects of adding image captions. Results are shown at the fourth
epoch using almost 25,000 (22%) of the available annotated data. NVP: No
Validation Prompt. VP: Validation Prompt.

then prepended to the event text. An example of this process is shown in

Fig. 6.2b. Table 6.2 shows effects of adding facial expressions as a context

in the final performance of the model. Contrary to relevant concepts, adding

facial expressions during inference time improves the results. Evaluation is

done on a validation data size of a hundred.

Another type of automatically-generated context that we experimented

with is image captioning. The idea is that some of the image dynamics

may have been missed, even though image features are fed into the GPT-2

model. Adding generated captions proves to be effective as shown in Table

6.3. Meshed-Memory transformer model [107] with beam search decoding is

used for image captioning. The process of adding these captions is illustrated

in Fig. 6.2c.

A mixture of different contextual information is shown to be more effective

than individual ones. A combination of concept words, image captions, and

facial expressions of relevant individuals in the image achieve the best result

compared to other experiments. As seen in Table 6.4, this combination can

achieve comparable results to full-data finetuning by only using 35%-40% of
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Method Inference Data Data Size BLEU-2 METEOR CIDEr
GPT-2 [84] N/A 111,796 (100%) 18.05 13.21 22.72
CW + C + FE C + CW + FE 39,000 ( 35%) 18.38 12.97 22.65
CW + C + FE C + CW + FE 45,000 ( 40%) 18.58 13.01 22.97

Table 6.4: Analyzing the effect of combining multiple contextual data. All
models are finetuned for five epochs. Contexts are added based on the order
shown. CW: Concept Words. C: Captions. FE: Facial Expressions.

1 is seated in front of a stage with her 
feet up on the chair next to her

Extract Noun 
Concepts

Stage, Chair

Extract 
Concepts and 
convert to text
(HasProperty)

Stage has property elevated 
above surrounding ground area. 
Chair has property soft or hard. 

(a) Process of adding relevant
concepts.

Facial 
Expression 
Recognition

4 is sitting on the couch with 
her legs over the arm 

4 is happy

(b) Process of adding facial ex-
pressions.

Meshed-Memory 
Transformer

a man talking on a cell phone next 
to another man 

1 is foreman holding a rail while smirking 
and making plans on the phone

(c) Process of adding image cap-
tions.

Figure 6.2: The process of extracting and adding prompts shown through
examples.

the annotated data. This results in less human time spent doing annotations

and can potentially reduce costs and completion times of projects. Results of

other experiments are included in the Appendix.

To reduce the effects of other variables in these experiments, we have lim-

ited ourselves to only train the final models for five epochs. The decoding

method and hyperparameters are also kept constant throughout the experi-

ments. We use nucleus sampling [80] with p = 0.9 to generate five sentences

for each scenario of intent, before and after. The finetuning was run on two

NVIDIA RTX GPUs with 24 GB memory each. For the case with all concept

words, captions, and facial expression contexts, the fine-tuning time is around

1.5 hours per epoch while using mixed precision.
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6.5.1 Prompt Selection Details

Experimentation results using different types of training and inference prompts

are included in this section. The model used in the experiments is GPT-2 as

described in [84].

The best types of prompts are chosen to be combined. The experiments

show that the order in which prompts are added can affect the final results.

The vision-based inference prompts seem to better affect the final metric

results when compared to the text-based inference prompts. This could be

due to the lack of enough visual attention paid during the decoding process.

Future work could involve developing a multimodal model that makes better

use of visual contexts not only during the training phase, but also the inference

time.

The quality of the annotated data can have an impact on the training

model. We do not hand-select the annotated data based on quality and this

may result in variability in final results when training with different data sizes.

It can be a good practice to assess the quality of the annotated data and

prompts based on the final goal of the model.

6.6 Conclusion

In this work, we analyzed the effects of automatically-generated contexts in

multimodal transformer models used in a commonsensical task. These prompts

can help us reduce the human annotation needed in the task by as much as

60%-65% and still, achieve comparable results to when the whole human-

annotated dataset is used. These findings result in time and cost savings for

future multimodal data annotation projects.

As future work, it is interesting to find a lower bound for data annotation

reduction without affecting the final result of a model. It is also useful to find a

method to automatically find and apply the best contextual data for different

tasks and models.
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Training Prompt Inference Prompt Training Data Size BLEU-2 METEOR CIDEr
None None 111,796 (100%) 17.94 13.14 22.71
None None 25,000 ( 22%) 13.81 10.85 15.37

CS (AtLocation) None 25,000 ( 22%) 12.26 10.42 15.09
CS (AtLocation) + Place None 25,000 ( 22%) 14.3 11.08 14.66

CS (CapableOf) None 25,000 ( 22%) 12.65 10.6 15.9
CS (CapableOf) + Place None 25,000 ( 22%) 14.78 11.16 15.1

CS (HasA) None 25,000 ( 22%) 12.73 10.65 15.83
CS (HasA) + Place None 25,000 ( 22%) 14.58 11.15 15
CS (HasProperty) None 25,000 ( 22%) 12.25 10.5 15.52

CS (HasProperty) + Place None 25,000 ( 22%) 15.25 11.38 16.3
CS (IsA) None 25,000 ( 22%) 12.73 10.41 15.73

CS (IsA) + Place None 25,000 ( 22%) 14.04 11.03 14.32
CS (PartOf) None 25,000 ( 22%) 12.65 10.51 15.71

CS (PartOf) + Place None 25,000 ( 22%) 14.26 11.19 14.64
FE None 25,000 ( 22%) 14.45 11.27 15.7
FE FE 25,000 ( 22%) 15.11 11.23 16.03

CW (PartOf + HasProperty) None 25,000 ( 22%) 17.25 12.17 19.79
CW (PartOf + HasProperty) CW (PartOf + HasProperty) 25,000 ( 22%) 17.17 12.28 19.34

C None 25,000 ( 22%) 14.08 10.78 15.63
C C 25,000 ( 22%) 16.49 11.85 18.8

C + FE C + FE 25,000 ( 22%) 16.75 12.19 19.16
CW + C + FE None 25,000 ( 22%) 12.6 10.18 14.57
CW + C + FE CW + C + FE 25,000 ( 22%) 17.4 11.97 20.03
CW + C + FE CW + FE 39,000 ( 35%) 16.57 12.32 19.68
CW + C + FE C + FE 39,000 ( 35%) 16.71 12.27 19.01
CW + C + FE CW + C + FE 39,000 ( 35%) 16.75 12.4 19.86
CW + C + FE CW + C + FE + Syns 39,000 ( 35%) 16.7 12.43 19.94

CW + C + FE + PCW CW + C + FE + PCW 39,000 ( 35%) 17.74 12.73 20.52
CW + C + FE C + CW + FE 39,000 ( 35%) 17.34 12.45 20.11
CW + C + FE CW + C + FE 45,000 ( 40%) 17.46 12.84 21.56
CW + C + FE C + CW + FE 45,000 ( 40%) 17.66 12.95 21.41

Table 6.5: Experimentation results of using different training and inference
prompts. The model used is GPT-2 [84]. Results are shown at epoch four
and evaluated on validation data of size 100. Prompts are added based on the
order shown. CW: Concept Words. C: Captions. FE: Facial Expressions. CS:
Concept Sentences. Syns: Synonyms. PCW: Place Concept Words.
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Chapter 7

Negated Complementary
Commonsense using Large
Language Models

7.1 Introduction

The larger the language models (LLMs) become, the better they demonstrate

new, outstanding capabilities. For example, one is conducting a conversation

about commonsense scenarios. However, our interaction with LLMs has led us

to observe that the models tend to emphasize the normal flow of events and

seem to struggle with questions involving a negated form of verbs, such as not

or cannot. An example of that is in Figure 7.1. Therefore, in this paper, we

focus on demonstrating the issue and then suggest an approach to remedy the

problem.

To better clarify the problem statement, we start with an example and

then formalize it using elements of the set theory. Let us look at the scenario

in Figure 7.1; the standard question is “Who PersonX can be?”. The answer

to this question is Santa Claus. The answer to the negated complementary

question – “Who PersonX cannot be?” – should be all valid answers which

are not the answer to the standard (can be) question. A valid answer fits the

scenario described. In this case, we ask about a person, so a non-person cannot

be a valid answer. To better illustrate the concept of a negated complementary

question, we refer to the basic notion of the complement of a set, Figure 7.2.

Furthermore, we define a set of correct answers to a negated complementary,
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GPT-3

PersonX is wearing red and 
white clothes and is going 
down a stranger’s home’s 
chimney.

Who PersonX cannot be?

Santa Claus

PersonX is not Santa Claus.

PersonX cannot be Santa Claus.

Santa Claus

Santa Claus

Instructions

Examples

Logic

GPT-3

Santa Claus

Santa Claus

Burglar

Burglar

Burglar

✅

✅

✅

❌

❌

Post
Process Burglar

Burglar ✅

✅

Burglar ✅

❌

❌

❌

➕

⚠ 

⚠ 

Figure 7.1: An example of a large language model (GPT-3) generating negated
commonsense. Five responses per query are demonstrated. The applied pre-
processing and post-processing can improve the performance of the models
in negated commonsense cases. Non-specific answers, such as not Santa, are
considered incorrect.

Equation 7.1.

NC = V ∩ A′ = {x | x ∈ V ∧ x /∈ A} (7.1)

where NC represents answers to the negated complementary question, V is

the set of all valid answers, A is the set of correct answers to the standard

question, and A′ is the complement of A under the universal set of all answers

(U).

We focus our efforts on commonsensical questions as the uncertainty of

results depends on the context and experiences of people answering the ques-

tions. As defined in [62], commonsense is a collection of world models repre-

senting what is likely, plausible, or impossible. In light of that, our goal is to

assess the ability of LLMs to answer plausible questions that could be refuted

or accepted in a given context.

Given their pre-training nature, we hypothesize that LLMs have an inher-

ent bias towards likely scenarios, which are the most repeated in the common

text. Most of the text available on the web contains information supporting

answers to ‘positive’ questions, like, how to do things or where to go, not to
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U

NC A

V

Figure 7.2: Venn diagram of answer sets: U is the universal set of answers;
V is the set of all valid answers that includes two sets – correct answers to
a standard question A, and correct answers to its negated complementary
version NC .

questions such as how things could not be done or where not to go. It results

in an imbalance of the training datasets due to the sparsity of plausible or

impossible scenarios. In this paper, we demonstrate that LLMs have difficulty

answering negated complementary questions, which results in responses repre-

senting plausible, but not impossible, answers. Although LLMs are shown to

have this shortcoming, we claim that enough instructions and examples, espe-

cially showing reasoning processes, can guide the LLMs into the right path to

answer negated complementary questions with commonsense context.

Our contributions are as follows. (1) We present an analysis exposing the

shortcomings of LLMs when it comes to negated complementary questions in

commonsensical scenarios. (2) We propose a novel methodology to improve the

performance of the GPT-3 model when negated complementary questions are

asked; compare the results with the results obtained using conventional meth-

ods. Our code, human-evaluation process, and data will be publicly available.

7.2 Related Work

Language models with transformer architectures have revolutionized the nat-

ural language processing landscape in recent years [12], [108]. It is shown that

improved performance and new capabilities emerge when scaling up the size of

language models [11], [85], although more is needed in challenging tasks, such

as commonsense [109].
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A body of research focuses on analyzing and extracting commonsense from

language models [3], [48], [110], [111]. Authors of [112] focus on implica-

tions of negated statements and contradictions, where in a commonsense triple

relationship (head-relation-tail), the head is either contradicted or logically

negated. Comparably this paper focuses on negating relations instead of the

head, as explained in Section 7.4.

7.3 Commonsense Data

The commonsense dataset used in this paper is the ATOMIC-2020 dataset [48].

It includes general purpose commonsense knowledge, divided into three main

categories – physical, event-centered, and social commonsense. The ATOMIC

2020 dataset is licensed under CC-BY and we use it according to the license.

In our experiments, ten relation types are selected from the twenty-three

relations from the ATOMIC-2020 dataset. These ten relation types showed

worse performance in our initial evaluation of negated complementary ques-

tions. The relations are: xWant, xReact, oWant, CapableOf, Desires, Hin-

deredBy, isBefore, isAfter, AtLocation, HasSubEvent.

The dataset is formatted in a triple style. Each atomic piece of data con-

tains 〈head− relation− tail〉. For example, 〈a curved yellow fruit (head)−

CanBe (relation)− banana (tail)〉.

7.4 Methodology

We propose a pipeline system to improve the performance on negated comple-

mentary commonsense questions. The pipeline consists of an input prompting

technique and a post-processing module. The input prompt adds relevant

context and logic in the form of chain-of-thought prompting [74] to improve

the LLM performance. The post-processing module selects the outputs with

a higher chance of correctness and filters out the rest.
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a curved
yellow 
fruit

can
be

cannot
be

negate

verbalize

verbalize

What can be 
a curved yellow fruit?

What cannot be 
a curved yellow fruit?

Figure 7.3: The process to automatically generate negated complementary
questions from dataset triples. The head and relation nodes are used to form
a question.

7.4.1 Generating Negated Complementary Questions

As described in Section 7.3, the used dataset is in the format of triples. To

form a standard question, we use the head and the relation nodes and leave

out the tail to be answered. By standard, we mean utilizing the head, relation,

and tail, without any modifications. Assuming a triple, a curved yellow fruit

(head), CanBe (relation), banana (tail), the standard question is What can

be a curved yellow fruit?. The negated complementary question is formed by

negating the relation and verbalizing the resulting triple in question format:

What cannot be a curved yellow fruit? A valid answer to the standard question

is banana, and a reasonable response to the negated complementary question

is apple. The process is visualized in Figure 7.3. For the complete list of triple

verbalizations, please see Appendix 7.5.4.
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PersonX accepts PersonY's invitation. As a result, what PersonY does not feel? 
Name three.Q:

Phrasing standard questionA:

Standard question reasoning

Standard question answer

1.

2.

3.
4.

5.

Negation logic

Negated complementary answer

Let's first answer what PersonY feels if PersonX 
accepts PersonY's invitation.

By Accepting PersonX's invitation, PersonY 
intends to attend PersonX's event.

Therefore, PersonY feels happy and appreciated.

To answer "does not", you need to negate 
the feeling of happiness and appreciation. 

The answers are: sad; alone; rejected.

Figure 7.4: Chain-of-thought steps for each answer. The process is to answer
the standard question first and then lead the model to answer the negated
complementary version.

7.4.2 Prompting Technique

The proposed methodology to improve the performance of LLMs relies on

building an adequate prompt. It starts with a general introduction of what

negations are and emphasizes a need to pay special attention to the word Not.

The chain-of-thought prompt in each answer has five sections in sequence:

1) phrasing standard question; 2) standard question reasoning, 3) standard

question answer; 4) negation logic, and 5) negated complementary question

answer. The steps are visualized in Figure 7.4. For a fair comparison, we used

the same number of five question/answer examples in the prompts. We also

used the same questions for all prompts.

7.4.3 Post Processing

Inspired by [113], we feed the question and answer pair back to the GPT-3

model and ask if it considers a question/answer pair correct. The prompt has

instructions for assessing an answer and includes five sample questions/answer

pairs. Interestingly, this extra step can improve the results by almost one

percent. To better understand the effect of this step, please refer to Table 7.2.
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7.5 Experiments

Experiments are conducted on each type of relation mentioned in Section 7.3.

A hundred data points (triples) are sampled randomly from the dataset. The

head and relation from each triple are verbalized and fed into the GPT-3 model

(text-davinci-002 ). The goal is to predict the tail for two forms of questions:

(1) standard question; (2) negated complementary question. For each question,

three responses are requested from the model. They are then parsed, and the

answers (tails) are automatically extracted. Therefore, three possible tails are

obtained for each head and relation, which results in 600 total answers per

method.

In social commonsense scenarios, PersonX and PersonY are used in place

of gender-specific pronouns to make the questions and answers gender-neutral.

The experiments are done using the GPT-3 model [85] with version text-

davinci-002, which has 175 billion parameters. The temperature is set to

0.7, and in case of no answer, it is increased to 1.0. The maximum length

of the output is set between 100 and 150 tokens, depending on the method.

The presence and frequency penalties are set to 0. GPT-3 is commercially

available, and we have used it within its intended usage and terms of service.

7.5.1 Human Evaluations

We use Amazon mTurk evaluations via AWS SageMaker to evaluate the re-

sults. Each answer is written in a sentence format and given to nine different

annotators for assessment. Instructions and examples are provided with each

question to assist the annotators better. The options to choose from are: (1)

Makes sense; (2) Sometimes makes sense; (3) Does not make sense or incor-

rect; (4) The first part and the second part are not related; or not enough

information to judge; (5) Unfamiliar to me to judge. The first two options

are considered correct, the second two are considered incorrect, and the last

is considered unfamiliar. To measure inter-rater reliability, we use Krippen-

dorff’s alpha and make sure the value is above acceptable amounts (minimum

0.667) [57]. The evaluators were paid based on AWS guidelines.
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Method Standard Negated Complementary
Few-shot 88.7% 78.7%
Ours 88.1% 89.8%

Table 7.1: Our method compared with the few-shot method when applied to
ATOMIC-2020 dataset.

7.5.2 Results

As seen in Table 7.1, our method outperforms the few-shot method by more

than eleven percentage points when answering negated complementary ques-

tions. The few-shot method includes five different questions in the prompt with

their answers without chain-of-thought prompting. The performance of our

method can mainly be attributed to the specific chain-of-thought prompting

with negation logic description, Figure 7.4. More information about the main

contributing factors is in Section 7.5.3. Although chain-of-thought prompt-

ing seems to help the negated complementary questions, it adversely affects

answers to the standard questions. Please note that the chain-of-thought

prompt for the standard questions does not include negation logic, and a post-

processing technique similar to negated complementary questions is performed.

7.5.3 Ablation Studies

To gain insight into the importance of elements of our method, we perform an

ablation study, Table 7.2. As we can see, adding standard question reasoning

(step 2 of Figure 7.4) results in more than 7% improvement in the results.

Adding the thought process explaining the negation logic (steps 1, 3, and 4

of Figure 7.4) adds another 3% performance improvement. Finally, the post-

processing (Section 7.4.3) is responsible for about 1% improvement in the

results.

7.5.4 Verbalizations

The questions are verbalized from triples using pre-defined formats. Table 7.3

summarizes the verbalizations organized by relation types. The question tem-

plate formats are inspired by the sentence format used in [48].
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Method Neg. Comp.
Ours 89.8%
Ours-wo-pp 89.0%
Ours-wo-nl-pp 86.0%
Few-shot 78.7%

Table 7.2: Ablation study of the method: Ours-wo-pp is ours without post-
processing; Ours-wo-nl-pp is ours without negation logic and post-processing.

7.5.5 Human Evaluation Instructions

The following instructions are given to each human evaluator to better under-

stand and respond to the task:

Based on your own commonsense, choose one of the five options. Examples

are provided in the description. IMPORTANT: Please note the CANNOT, DO

Not, and other negated cases.

Instruction notes: Based on your own commonsense, choose one of the five

options. Examples are provided in the description.

IMPORTANT: Please note the CANNOT, DO Not, and other negated

cases.

1. Instead of names, PersonX and PersonY are used to be gender-neutral.

2. Please ignore grammatical errors and focus on commonsense.

3. If a response is vague, such as not fireman, or if a random word does not

fit the scenario, please choose 4 (not enough information).

Added to the instructions, we also provided some examples to clarify the

task better:

Unfamiliar to me to judge: PersonX discovers a new planet. The planet

is in the Alpha Centauri system.

First part and second part are not related! Or not enough infor-

mation to judge: PersonX rides a bike. Elephants are not birds. (Although

the second part is correct, it is not related to the first part)

Makes sense: It is NOT likely to see an elephant on the table.

Does not make sense: It is likely to see an elephant on the table.
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Relation Question
xWant [head]. What does PersonX want to do?

[head]. What does PersonX not want to do?
xReact [head]. What does PersonX feel about it?

[head]. What does PersonX not feel about it?
oWant [head]. What does PersonY want to do?

[head]. What does PersonY not want to do?
CapableOf What is [head] capable of?

What is [head] not capable of?
Desires What does [head] desire to do?

What does [head] not desire to do?
HinderedBy [head]. What can hinder/obstruct it?

[head]. What cannot hinder/obstruct it?
isBefore [head]. What happens before it?

[head]. What does not happen before it?
isAfter [head]. What happens after it?

[head]. What does not happen after it?
AtLocation Where is the [head] located?

Where is the [head] not located?
HasSubEvent [head]. What will you do while: [head]?

[head]. What you will not do while: [head]

Table 7.3: Question templates for each relation type. The first row for each
relation shows the standard question format, and the second row shows the
negated complementary format. [head] refers to the head in a triple.
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The answers are written in a text format to make it easier for human

evaluators. Here is an example:. Here is an example:

PersonX sends PersonY to the showers. PersonX will not be amused.

7.5.6 ChatGPT

The experiments of this paper were done using text-davinci-002 version of

GPT-3. The new version of GPT-3 with reinforcement learning from human

feedback (RLHF) is introduced and is called ChatGPT. Out of curiosity, we

did limited experiments with ChatGPT to see if the problem of negated com-

plementary questions persists. Here are a few answers from ChatGPT to the

question shown in Figure 7.1:

Q: PersonX is wearing red and white clothes and is going down a stranger’s

home’s chimney. Who PersonX cannot be?

A: It is likely that PersonX is not Santa Claus, as he is commonly depicted

wearing red and white clothes and going down chimneys.

As we can see, the model answers with not Santa Claus and then describes

Santa Clause. Asking the same question again, we get the following answer:

A: PersonX cannot be a real person as it is impossible for someone to

physically fit into a chimney. The scenario you described is likely referencing a

fictional character, such as Santa Claus, who is often depicted as wearing red

and white clothes and entering homes through chimneys on Christmas Eve to

deliver presents to children.

In this answer, there is a good start of context; however, somewhere within

the text, the model forgets about the cannot word and again describes Santa

Claus. For the third time, we ask the same question and we get the following

answer:

A: It is likely that PersonX is Santa Claus, a fictional figure who is often

depicted wearing red and white clothes and delivering presents to children

through the chimneys of houses.

The sentence is technically correct, but it is not what we asked for, which

is who cannot be. Therefore, we can consider the last answer incorrect as well.

Given the limited interaction with ChatGPT, it seems that the negated
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complementary task issue persists and needs further investigation in the new

version as well.

7.6 Conclusion

In this paper, we demonstrate how simple changes in question formats, which

can be trivial for humans, can be challenging for large language models (LLMs).

We specifically focus on negated complementary questions in a commonsense

context, which is constructed by negating a relation in a commonsense triple.

Given the vast amount of knowledge embedded in LLMs, we show that by ap-

propriate guidance, the models could perform well on negated complementary

tasks. Our method results in more than eleven percent improvement compared

to the vanilla few-shot method. Given the widespread usage of LLMs and their

growth rate, we believe focusing on and solving the model’s weaknesses is im-

perative. As future work, negated complementary task can be further analyzed

in different formats, such as sentence instead of a question, and also different

contexts, e.g., new datasets.
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Chapter 8

Conclusion

8.1 Contributions

In this thesis, we explored different aspects of commonsense understanding,

generation, and reasoning by utilizing deep learning models.

We developed methodologies to autogenerate commonsense knowledge graphs

using vision models inspired by how toddlers gain world understanding before

lingual development (Chapter 3). As context can affect the meaning of a

concept, we further expanded the vision-based commonsense knowledge graph

generation methodologies to recognize the contextual importance and meaning

of concepts. We also demonstrated how this contextual understanding could

be used for commonsense reasoning (Chapter 4).

Similar to how toddlers build on top of their visual understanding of the

world with lingual data, we used language models to expand vision-based

commonsense knowledge graphs. Using language models and their inherent

concept mappings in an n-dimensional space, we can expand beyond the known

concepts in visual models to new concepts and novel relations between them

(Chapter 5).

Commonsense knowledge is inherently uncertain and context-dependent

given the group of people exposed and the occurrence’s frequency, time, and

location. We kept this understanding in mind throughout all of our research.

Wherever possible, the generated commonsense relationships are associated

with predicted uncertainty weights and context.

During our research, we understood the necessity of human involvement in
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commonsense research in data annotation and evaluation steps. However, this

essential human involvement comes at a relatively high monetary and time

cost. The methods introduced in Chapters 3, 4 and 5 alleviate the time and

cost complexities by introducing autogeneration methodologies, which require

minimal new human annotations. In cases where we need extensive human an-

notations, we introduced a prompting technique to reduce the data annotation

required in visual commonsense tasks (Chapter 6).

Recent literature shows novel capabilities emerge with scale in language

models [114]. Some of these capabilities, such as commonsensical understand-

ing, are non-existent or weak in smaller language models. Given this insight,

we utilized large language models to expand vision-based commonsense knowl-

edge graphs. These experiments showed that large language models have weak-

nesses in commonsense understanding, despite the excellent improvements.

Specifically, we focused on commonsensical questions with negated forms of

verbs and coined the term negated complementary questions. Although these

commonsense questions can be trivial for humans, they can throw the models

off guard. We introduced a methodology to improve large language models in

these scenarios with minimal computation overhead (Chapter 7).

8.2 Future Work

Given our research and understanding, we envision larger models, such as large

language models, to play an essential role in our collective future. Therefore, it

is vital to understand better and mitigate the shortcomings. Commonsense is

not limited to knowledge and thus should be evaluated in reasoning and action

levels. In edge scenarios, such as in-field limited-connection automated robots,

usage of on-device large models have hardware limitations. Therefore, it is also

important to think of methodologies to expand the commonsensical abilities

of smaller models. On another point, although new capabilities emerge with

scaling up language models, they are inherently limited to the text they are

trained on. Therefore, a human-level commonsense understanding of the world

requires conjunction with more data modalities, such as vision.
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