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Abstract

Bayesian netw orks have becom e one o f  the m ost prevalent and useful form alism s for rep

resenting uncertain know ledge, and have been applied to problem s that involve both gen

erative data m odeling and discrim inative pattern classification. The problem  o f learning 

Bayesian netw orks from  data em bodies tw o key sub problem s: structure optim ization— that 

is, determ ining the directed acyclic graph defining the m odel; and param eter estim ation—  

determ ining the conditional probability  distributions to be associated w ith each variable. 

This thesis investigates both the challenges o f  learning structures and param eters from  data. 

The m ain contributions o f  this thesis include: (1) a novel convex optim ization algorithm  

for B ayesian netw ork structure learning; (2) a new globally regularized risk m inim ization 

approach for gene regulatory netw ork induction; (3) a new discrim inative m odel selection 

criterion for score-based structure learning o f  Bayesian netw ork classifiers; (4) a novel m ax

im um  m argin discrim inative param eter estim ation algorithm  for learning B ayesian netw ork 

classifiers; and (5) a novel convex optim ization algorithm  fo r B ayesian netw ork param eter 

learning w ith hidden variables.
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Chapter 1

Introduction

W e are living in an age w here com plex data objects are routinely collected and analyzed. 

T he various com ponents o f a com plex data object, such as a text or video, are correlated. 

Even in the real world, observations o f different variables are often dependent. For exam ple, 

if  it is raining, the grass w ill be wet; if  there is a fire, a fire alarm  w ill ring. Generally 

speaking, the relationship betw een events is usually m ore com plicated than ju st a a one 

to one direct causal relationship: the grass is also w et w hen the sprinkler is on; w hen the 

fire alarm  is broken, it w ill not ring even when there is a fire, and so on. Therefore, the 

dependencies betw een observation variables are full o f  uncertainty, and can appear in a 

probabilistic manner. The question is how to m odel the uncertain dependence relationships 

betw een variables. Furtherm ore, how can one discover these dependence relationships, or 

their independence, from  w hat we have: the data. These are critical issues for data analysis 

and m achine learning.

A s a com bination o f probability  theory and graph theory, Bayesian netw orks appear to 

be a suitable fram ew ork for tackling these problem s. A  B ayesian netw ork is a probabilistic 

graphical m odel that encodes a jo in t probability distribution over a set o f  random  variables 

using a directed acyclic graph associated w ith a set o f conditional probabilistic param e

ters. Specifically, the probabilistic dependencies betw een variables are asserted through 

the conditional independence assum ptions encoded by the directed edges, and num erical 

uncertainties are specified by the local conditional probability param eters.

A s an im portant tool fo r know ledge representation and reasoning under uncertainty, 

B ayesian netw orks possess several benefits [47], First, B ayesian netw orks facilitate the 

translation o f expert know ledge into a probabilistic representation, and can conveniently 

incorporate prior dom ain know ledge into the learning process using Bayesian statistical 

techniques. Second, B ayesian netw orks provide unique sem antic clarity and understand-

1
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ability by hum ans. In m any situations, a Bayesian netw ork can be given a causal inter

pretation. U sers are m ore likely to gain further insights from  Bayesian networks. Third, 

Bayesian netw orks allow one to learn and represent cause-effect relationships that are use

ful for gaining better understanding about a problem  dom ain and its structure. For exam ple, 

w ith a Bayesian netw ork, it is easy to determ ine the relevant features for m aking classifica

tion decisions, and identify the dependences am ong the various features. Fourth, Bayesian 

netw orks can easily handle noisy and incom plete data. In m any applications, the data used 

for learning cannot be fully observed: either feature values are random ly m issing from  

instances or hidden variables exist. Bayesian netw orks, w ith their dependence encoded 

structures, offer a natural way to fill in the m issing data or handle the learning issues in 

such cases.

As a result, Bayesian netw orks have becom e one o f the m ost prevalent and useful for

m alism s for representing uncertain know ledge [71]. They have been w idely used for m od

eling know ledge in bioinform atics, m edicine, engineering, im age processing and decision 

support system s. Recently, they have also been used to address discrim inative classification 

problem s in these dom ains.

A lthough B ayesian netw orks are useful, they are typically expensive or im practical to 

obtain from  experts for m ost problem  dom ains, w hereas data is often cheap to obtain. The 

availability o f  data has led to a grow ing research interest in learning B ayesian networks 

from  data.

Learning a B ayesian netw ork from  data is a challenging problem  and has been well 

studied. The general learning task involves tw o sub-issues: structure learning— determ ining 

a directed acyclic graph over a set o f random  variables specifying the conditional indepen

dence properties; and param eter estim ation— determ ining the conditional probability d is

tributions associated w ith each variable. Learning B ayesian netw ork structure has been 

proved to  be an N P-hard problem  when a consistent scoring criterion is used [16]. C urrent 

heuristic algorithm s have yet to  robustly yield satisfactory solutions in practice, and gen

erally suffer from  local optim a. Furtherm ore, new learning challenges for both structure 

optim ization and param eter estim ation are posed when B ayesian netw orks are used for d is

crim inative classification, w here the goal is different from  that o f  m odeling the underlying 

jo in t distribution. Therefore, B ayesian netw ork learning rem ains a critical research issue 

and new learning techniques are still needed.

This thesis investigates the problem  o f learning Bayesian networks, both their structure 

and param eters, for generative data m odeling as well as discrim inative pattern classification.

2
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The main contributions o f  this thesis are the follow ing.

First, I present a novel relaxed convex optim ization approach for Bayesian netw ork 

structure learning from  data. The convex approach I propose introduces feature indicator 

variables to optim ize the structure by searching through a space of features. U nlike tradi

tional heuristic search m ethods that suffer from  local optim a, the proposed convex approach 

can converge to an approxim ated global optim a. M oreover, the form ulated optim ization is 

polynom ial in both the size o f the training data and the num ber of variables, and therefore 

avoids an N P-hard com putational problem  for general B ayesian network structure learning.

Second, using the feature selection idea developed above, I present a new globally reg

ularized risk m inim ization approach for inferring gene regulatory netw ork structure from  

gene expression profile data. U nlike the typical gene regulatory netw ork identification 

m ethods, w hich either deal w ith each gene individually or deal w ith a group o f genes using 

a single prototype, m y new approach is able to encourage the genes w ith sim ilar profiles to 

share regulators by in troducing global feature selection variables, w hile perm itting individ

ual differences by using an L I regularizer on local w eights.

Third, since B ayesian netw orks have becom e popular for use as classifiers, I propose 

tw o discrim inative m odel selection criteria that are specifically directed at optim izing clas

sification perform ance. U nlike standard generative m odel selection criteria, w hich m easure 

the quality o f  the structure for m odeling the underlying jo in t distribution, the proposed d is

crim inative criteria  m easure the generalization classification perform ance o f the structure, 

consistent w ith the goal o f  learning classifiers. A  com prehensive em pirical com parison be

tween the proposed discrim inative criteria and standard generative criteria provides a useful 

reference for future research on discrim inative structure learning.

Fourth, besides discrim inative structure learning, I also present a discrim inative param 

eter estim ation approach that extends the popular m axim um  m argin criterion to B ayesian 

networks. The resulting m axim um  m argin B ayesian netw ork learning technique com bines 

the advantages o f  discrim inative SV M s with the ability o f  Bayesian netw orks to encode 

p rior causal know ledge. This approach can also be nicely extended to the m ultiple class 

variable case, providing for exam ple a discrim inative technique for training directed hidden 

M arkov m odels.

Finally, beyond ju st considering com plete data, I present a novel convex relaxation o f  a 

standard form  o f E M  algorithm  to address the problem  o f param eter estim ation in the p res

ence of hidden variables. Standard (Yiterbi) E M  algorithm s only converge to a local optim a, 

while any attem pt to overcom e this shortcom ing in the case o f  hidden variables by naively

3
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convexifying the problem  fails, because the sym m etry over configurations o f hidden vari

able values leads to vacuous results. To bypass this problem , I form ulate the optim ization 

in term s o f equivalence relations over the hidden variable values rather than distributions 

over the values them selves. This approach m akes new progress towards achieving global 

EM  approxim ations.

The rem ainder o f the thesis is structured as follows: C hapter 2 introduces background 

on learning B ayesian netw orks from  data. Chapter 3 then presents the convex structure 

learning approach I propose. C hapter 4 presents a globally regularized m inim ization m ethod 

to infer the gene regulatory netw ork structure from  tim e series expression data. C hapter 5 

proposes new discrim inative m odel selection criteria and provides a com prehensive em 

pirical study o f various discrim inative and generative criteria for selecting good structures 

for Bayesian netw ork classifiers. C hapter 6 presents a new m axim um  m argin param eter 

estim ation technique for learning B ayesian netw ork classifiers. Chapter 7 presents a novel 

convexification o f Viterbi EM  for learning B ayesian netw ork param eters in the presence of 

hidden variables. Finally, C hapter 8 concludes the thesis work.

4
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Chapter 2

Background

In this chapter, I introduce the general background for Bayesian netw orks. I first intro

duce the B ayesian netw ork representation and its properties in Section 2.1. Then I discuss 

the learning issues that arise w ith B ayesian  netw orks in Section 2.2. Finally, Section 2.3 

presents alternative param eterizations o f  B ayesian  netw orks that I exploit later in the thesis.

2.1 Bayesian Networks

A  B ayesian netw ork (BN) is a directed probabilistic graphical m odel that typically has tw o 

key com ponents: a graph structure Q and an associated set o f param eters 6. The graph 

structure Q is specified by a directed acyclic graph (DAG) w here each node represents a 

random  variable and the directed edges represent statistical dependencies or cause-effect 

relationships betw een the variables. A lternatively, the edges could also be interpreted as 

specifying conditional independence assum ptions. A  Bayesian netw ork is usually  taken as 

an I-m ap o f the underlying distribution. T hat is, every conditional independence im plied 

in the graph is satisfied by the underlying distribution [71]. The conditional independence 

properties specified by directed graphs are defined by the concept o f  d-separation.

Definition 2.1 Suppose A , B  and C  are non-intersecting sets o f  nodes in the graph. We 

say A  is d-separated from B  by C, written A 1 L B \C , i f  every path from any node in set A  

to any node in set B  satisfies either one o f  the following two conditions:

1. there is a node R  on the path without two incoming directed edges and R  is in C,

2. there is a node R  on the path with two incoming directed edges, but neither R, nor 

any descendants o f  R  is in C.

A good way to  explain d-separation in a directed graph is through a reachability algorithm  

known as the Bayes Ball algorithm ; for details see [51, 67].

5
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Figure 2.1: A  sim ple B ayesian  netw ork adopted from  [67]

The conditional independence properties can also be equivalently captured by the M arkov 

properties o f directed graphical m odels [62], The global M arkov property is the sam e as 

d-separation; the local M arkov property says that a node A  is independent o f  all its non

descendants given its parents; the pairw ise M arkov property says that a node A  is indepen

dent o f a node B  given all its non-descendants and B  is not a descendant or parent o f A. It 

can be shown that all these definitions are equivalent [62],

A ccording to the conditional independence properties encoded by the edges, the jo in t 

distribution represented by a Bayesian netw ork can be factored into products o f  local func

tions, each o f  w hich is a local conditional probability  associated w ith a local variable (node). 

For exam ple, given a Bayesian netw ork that represents a jo in t distribution over a set o f ran

dom  variables X  =  (X ] ,  X 2, . . . ,X n ), the jo in t probability can be com pactly represented in 

a factored form  according to the graph structure by

n

= n p f e i x ^ ) )
i = i

w here P (x j \^ .nQ')) is the conditional probability  o f X j  taking value x j  given its parent 

configuration

The variables in a Bayesian netw ork can be continuous or discrete. This thesis m ostly 

focuses on the discrete case. In this case, the local conditional probabilities associated with 

each variable can be encoded as entries in a conditional probability table (CPT). These 

com prise the param eters o f a Bayesian netw ork in the standard param eterization. (I will 

discuss alternative param eterizations below.) For each variable X j ,  let a  denote the set

6
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of possible values o f Xj, and let b  denote the set o f values for its parent configuration 

x ^ ) .  Then the C PT for variable X j  stores the entries {0jab, V a ,b } , w here these param e

ters Ojab = P { x j  =  a |x w(j) =  b )  m ust obey the sim ple nonnegativity constraints 0 /n^ > 0 

for all a, b  and also the local normalization constraints 9jab =  1 f ° r every b .

Figure 2.1 depicts a sim ple B ayesian netw ork adopted from  [67], showing a directed 

graphical structure and the associated CPTs.

Bayesian netw orks are one o f  the m ost prevalent and useful form alism s for represent

ing uncertain know ledge [71]. A long w ith M arkov netw orks, they share the advantage o f 

providing a sound probabilistic foundation for inference and learning, and can represent 

com plex distributions com pactly. However, Bayesian netw orks offer a distinct advantage in 

interpretability, since each param eter can be interpreted in isolation as a conditional prob

ability assertion over a subset o f variables in the dom ain. They also offer com putational 

benefits over M arkov netw orks, by perm itting m ore efficient param eter estim ation for ex

ample.

2.2 Learning Bayesian Networks

B ayesian netw orks have been w idely used either for generative data m odeling or for dis

crim inative data classification. S ince m anually specifying the com plete structure and pa

ram eters for a Bayesian netw ork is often either difficult or im possible in practice, learning 

B ayesian netw orks from  data is an im portant problem . Learning a B ayesian netw ork from  

data, therefore, involves tw o key problem s: estim ating the param eters o f  the m odel, and 

m ore interestingly, inferring the structure o f the network. I first introduce the param eter 

learning problem  for a given B ayesian netw ork structure, and then discuss the structure 

learning problem .

2.2.1 Param eter Learning

For a given structure Q, traditional param eter learning m ethods estim ate the param eters by 

m axim izing the jo in t likelihood o f data, w hich is usually referred to as generative parameter 

learning [36]. (I will drop the notation Q for the rem ainder o f this section on param eter 

learning, since the structure is assum ed fixed.) Recently, w ith Bayesian netw orks becom ing 

widely used as classifiers, som e algorithm s have been proposed to learn the param eters 

by m axim izing conditional likelihood o f the class variable given the observed evidence 

variables. These m ethods are referred to as discriminative parameter learning [39, 98, 99].

7
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Generative Parameter Learning

Given a set o f training data D , com prised o f a set o f independent and identically distributed 

instances [x1; . . . ;  x ,v], w here all com ponents are observed, generative param eter learning 

m ethods estim ate the param eters o f a B ayesian netw ork either by directly m axim izing the 

jo in t likelihood o f training data, o r by com puting the posterior over param eters 6  given a 

prior distribution P (6 ) .

The first m ethod is called m axim um  likelihood (M L) estim ation. U sing the conditional 

independence assum ptions encoded in the structure, the jo in t log likelihood o f training data 

can be factored in the follow ing way

N  n

log P (D \6 )  =  EE log P (x*  1 x ^ , 0 )

= E E > » « ( n ^ “ ' " urb>)
i = 1 j = l  \  ab  /

=  'y  '  if1 ja b  log $jab 
j a b

w here # j ah is the count o f  instances that satisfy the configuration [xj — a, x ny) =  b ]; that 

is # j a b  =  J 2 i L i  l ( x i.= a ,x i ( }= b ) ’ w l>e r e  !(■) denotes the indicator function. B y m axim izing 

log P (D \8 )  w ith  respect to  the local norm alization constraints using standard Lagrange 

m ultipliers, one can obtain a closed form  solution

n _  # ja b  
“ja b  ~  n

# j b

w here # j b  =  # j ab- It is easy to see that these estim ated param eters satisfy a param eter 

independence property: the estim ate for 9j is independent o f By for j  /  j 1; the estim ate for 

OjYj is independent o f  the estim ate for 9 ^  for b  /  b '.

The second generative m ethod is called m axim um  a posteriori estim ation (M AP). As 

m entioned in previous section, one o f the benefits o f  B ayesian netw orks is the convenience 

o f  incorporating prior dom ain know ledge. Prior know ledge can often be used to effectively 

avoid overfitting, especially w hen one has lim ited training data. Given a prior density P (0 )  

over param eters 0, one learns the param eters to m axim ize the posterior

log P (0 \D )  = log m p P ^ e)-

This is equivalent to m axim izing lo g (P (0 )P (D \8 ) )  since P [D )  is invariant w ith respect 

to 0.
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One usually assum es that the param eters in a Bayesian netw ork satisfy two param eter 

independence assum ptions [48]: the global param eter independence assum ption and the lo

cal param eter independence assum ption. The global param eter independence assum ption 

states that the param eters associated with different variables in a network structure are inde

pendent. T hat is, 6 j  and Oy are independent for j  /  j ' .  The local param eter independence 

assum ption asserts that the param eters associated w ith the sam e variable but different parent 

configurations are independent. T hat is, Oj^  and 0 ^  are independent for b  /  b '.  Taken 

together, these tw o param eter independence assum ptions im ply that the prior P {6 )  satisfies

J'b

Typically P (6 jb )  is assum ed to  have aD irich le t distribution

Div{Qjh\cKja=lbi •••> C*ja—\Vals(xj)\h)

w here o ]ab denotes the D irichlet priors. Thus after observing the training data, the posterior 

distribution o f  6 ^  w ill still have a D irichlet distribution

P{@jh\D} = jb \^ija=lh T  i£ja=lbi 0(ja=\Vals(xj)\b "b 4f1ja=\Vals{xj)\b)

and one can sim ply obtain the M A P param eters from  this posterior distribution

N ote again that the sam e param eter independence properties hold in the posterior as in the 

prior. This is a consequence o f  the param eter independence property holding in both the 

prior and the m axim um  likelihood estim ation.

An alternative approach to both M L and M A P estim ation is the B ayesian learning ap

proach. Instead o f obtaining a single set o f m axim um  likelihood param eters from  the pos

terior distribution, one explores all param eter possib ilities by ju st keeping the posterior 

param eter distribution for later use. T hat is, one explicitly m aintains the posterior

w here T is the gam m a function.

For the sim ple com plete data case, w hether using M L  or M A P for param eter estim ation, 

one obtains sim ple closed form  solutions as show n above. B ut when the data is incom plete, 

that is, the values o f  som e variables are not observed in som e instances, the param eter

P (0 )  = l [ P ( 0 j h )

p(o\D)=nnr(aJh+#3h)ii
j = 1 b a

n Q^jab^ffijab 1
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learning problem  becom es m uch harder because the log likelihood function cannot be fac

tored to estim ate the param eters for each variable independently. W hen a variable is always 

unobserved in the training data, one refers to it as a hidden variable.

The EM  (Expectation M axim ization) algorithm  [26] is a classical algorithm  that is 

w idely used for Bayesian netw ork learning with incom plete data [36, 47, 61]. Let X  be 

the observed variables and Y  be the hidden variables in a given learning scenario. Then the 

standard EM  algorithm  estim ates the param eters 0  by m axim izing the m arginal likelihood 

o f the observed data, log P ( x |0 ) .  The basic algorithm  can be derived as follows. First, note 

that the m arginal log likelihood can be low er bounded in a general way [68]

for any conditional distribution q. Thus one can conveniently low er bound the m arginal log 

likelihood by a sim ple expectation (w ith respect to  an arbitrary distribution q) o f  a function 

o f  the com plete data log likelihood.

The E M  algorithm  exploits this low er bound to indirectly m axim ize ( ( 0 ;x )  by instead 

m axim izing £.(q, 0 ) iteratively. EM  w orks by alternately m axim izing C(q. 0 ) w ith respect 

to q and 0  in tw o alternating steps

easy to show that the m axim um  o f the E -step is obtained w hen q ( k 'r >̂ (y  |x ) =  P ( y  |x , 0 ^ ) ,

y

The M -step is called the maximization step. It m axim izes <jf(fc+1) (y |x )  log P ( x ,  y |0 )  

w ith respect to 0  after the E-step.

Z (0 ;x ) =  lo g P ( x |0 )

=  i o g E p (x ^ i 0 )
y

(by Jensen’s inequality)

C (q ,0 )

E -step : =  a r g m a x £ ( g ,  0 ^ )
Q

M -step : 0 ( fc+1) =  a r g m a x £ ( ( ^ fc+1\  0)
0

(2 .2)

The E-step m axim izes C(q, d (k>) w ith respect to q, and is called the expectation step. It is

which causes C(q,  0 ^ )  to be equal to its upper bound

Z(0(fc);x )  =  £ { q , e {k)) =  ^ P ( y | x , 0 ^ ) l o g P ( x | 0 (fc))

10
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The EM  algorithm  is intuitive and easy to im plem ent. It is very effective for learning 

directed graphical m odels w ith incom plete data. However, it suffers from  a m ajor draw back 

o f non-convexity (local m axim a). I w ill address this issue in Chapter 7.

Discriminative Parameter Learning

Since B ayesian netw orks have w idely been used for discrim inative classification tasks, it 

has been realized that the standard generative param eter learning m ethods are not the best 

way to train them  for classification. T he w eakness o f generative learning fo r classification 

problem s is that it optim izes a criterion, such as m axim um  likelihood or M AP, that is not 

consistent w ith classification perform ance [33]. In recent years, researchers considered a 

new discrim inative approach for supervised param eter learning that instead takes condi

tional likelihood as the optim ization criterion [39, 75, 83, 98, 99]. For classification, one 

variable Y  is typically denoted as the class variable and all the other variables X  are con

sidered to  be evidence variables. M ore generally, one can have m ore than one class variable 

Y  [1, 19, 88]. Thus the discrim inative m axim um  conditional likelihood (M C L) param eter 

estim ation w ould train param eters by m axim izing the follow ing log likelihood

J ^ l o g P ( j / ' |x * , 0 )
i

H ere I first assum e the training data is com plete. It is then easy to see the difference betw een 

jo in t likelihood and conditional likelihood by decom posing the jo in t log likelihood

log P ( x ,  y\0) =  log -P (y |x , 0)  +  log P ( x |0 )

N ote that the first term  log P (y  |x , 6)  represents the conditional likelihood, w hile the second 

term  log P ( x |0 )  has nothing to do w ith classification. The conditional likelihood term  can 

be further expressed as

log P ( y |x ,  6)  =  log E ^ l _

P (y \x * (Y ) ,o )  U je c (Y )  e )— | qct ----------------------------------- i-- '-------------------------------
E , /  p ( y ' \ ^ ( Y ) , 0 )  r ije c '(Y ) p (x j \ x n ( j ) ,y ' ,d )

w here C ( Y )  represents the indices o f the child variables o f Y .  One can see that the con

ditional likelihood is only affected by the variables that fall in the M arkov B lanket o f the 

class variable w here the concept o f M arkov B lanket is defined as follows.

Definition 2.2 For a variable Y  in a Bayesian network Q, its Markov Blanket is defined 

as the union o f  the variables that are either Y ’s direct parents, or direct children, or share 

a common child variable with Y  according to Q.

1 1
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In the Q-closecl case [3], w here the true generative Bayesian netw ork structure Q is 

given and the data generating distribution can be represented with this Q, m axim izing the 

jo in t likelihood o f data is a consistent m ethod o f estim ating the jo in t distribution o f vari

ables; that is, the jo in t distribution given by the m axim um  likelihood param eters converges 

to the generating distribution. Thus the conditional distribution o f the class variable w ith the 

m axim um  likelihood param eters will also converge to the true conditional distribution. But 

in the Q-open case— this is the typical case one encounters in m ost classification tasks— one 

does not have the true structure o f the underlying generative m odel. In this case, m axim iz

ing the jo in t distribution with respect to the structure is not consistent w ith m axim izing 

conditional distribution on the class variable anym ore. M oreover, it has been shown [75] 

that m axim izing the conditional likelihood can converge to a better distribution (that has 

low er expected conditional logloss) than m axim izing jo in t likelihood in this case.

A lthough generative param eter learning given com plete data is quite easy, it is difficult 

to find the global m axim um  when using the discrim inative conditional likelihood criterion 

for general B ayesian networks. It has been proved that it is N P-hard to  find the param eters 

for a fixed B ayesian netw ork structure that m axim ize the conditional likelihood o f a given 

sam ple o f incom plete data [39]. W hether this rem ains true for com plete data is an open 

problem .

In [39], a gradient ascent m ethod E L R  was proposed to optim ize the conditional likeli

hood function for general B ayesian netw orks. E L R  can deal w ith incom plete data w ithout 

additional com putational cost, since it can fill in the m issing values as a by-product o f the 

inference algorithm  needed to com pute the term s in the gradient. B esides this approach, 

a discrim inative E M  algorithm , w hich m axim izes the conditional likelihood o f the hidden 

values in the M  step, has also been used addressing the discrim inative learning problem  

w ith incom plete data [78].

A lthough conditional likelihood is an effective training criterion for classification prob

lem s, it is not the only possible discrim inative criterion. O ther training criteria m ight be just 

as effective and have further advantages. In particular, in C hapter 6 I investigate the use of 

a large m argin criterion for training B ayesian netw orks for classification.

2.2.2 Structure Learning

In many application dom ains, the underlying B ayesian netw ork structure Q is not provided 

and one needs to learn the structure itse lf from  training data. In fact, identifying the under

lying cause-effect Bayesian netw ork structures is particularly useful in som e fields, such as

12
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biology, m edicine, and physics. Therefore, Bayesian netw ork structure learning is an im 

portant and relevant research topic. A lthough param eter estim ation from  com plete data is 

a generally well understood problem  that perm its effective algorithm ic approaches, struc

ture learning, on the other hand, is a m uch m ore challenging problem . For simplicity, I 

only consider structure learning given com plete data in this thesis. Generally speaking, 

the many proposed structure learning approaches to date fall into one o f the tw o groups: 

constraint-based (or dependency analysis based) and score-based.

Constraint-based Structure Learning

Since a B ayesian netw ork structure encodes conditional independence assum ptions am ong 

a set of variables, the netw ork structure can be inferred if  one can discover these conditional 

independence properties from  the data. This insight leads to the group o f constraint-based 

learning approaches.

One notable such algorithm  is the SGS m ethod [86], w hich detects the conditional 

independencies by determ ining d-separation. It starts from  a com plete undirected graph, 

and then tests each pair o f  variables and rem oves the edge betw een them  if  they are d- 

separated by a subset o f the rem aining variables. Finally, the graph is oriented according 

to  the d-separation and acyclicity properties. This is done by first exam ining all triples o f 

variables A, B and C such that there are edges A  — B ,  B  — C,  but not A  — C. I f  there is 

no subset that includes B that can d-separate A  and C, then the directionality o f A  — B  and 

B  — C  is A  —> B  <— C. Then all rem aining paths such as A  —>■ B  — C  are oriented as 

A  —► B  —> C; edges A  — B  are oriented as A  —> B  if  there is a directed path from  A  to B. 

The SGS algorithm  requires an exponential num ber o f  d-separation tests in the num ber o f 

variables, and is infeasible for large networks. A nother algorithm  presented in [86], called 

PC , addresses this problem  by rem oving edges d-separated by size zero subsets first, and 

then by size one subsets, and so on. Furtherm ore, the subsets are lim ited to the variables 

adjacent to the ordered variables under consideration.

O ther constraint-based algorithm s perform  in a sim ilar fashion, though they m ight con

duct the conditional independence test in different ways. For exam ple, [13, 18] use condi

tional m utual inform ation tests.

The difficulty w ith constraint-based approaches is that reliably identifying the condi

tional independence properties and optim izing the netw ork structure are both challenging 

problem s [64].

13
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Score-based Structure Learning

A much m ore com m on approach for structure learning is the score-based m ethod, w here 

one first poses a criterion by w hich a candidate B ayesian netw ork structure can be evaluated 

on a given data set, and then conducts a heuristic search for a Bayesian netw ork structure 

that optim izes the score. Since a com plex netw ork structure is always able to fit training 

data better than a sim pler structure, the key issue is to develop a reasonable m odel selec

tion criterion that appropriately balances m odel com plexity w ith the goodness o f fit to the 

training data; hence avoiding overfitting.

One well established m odel selection criterion is Minimum Description Length (M D L) 

[34, 57, 73, 92], The M D L  principle is based on the idea that the best m odel is the one that 

m inim izes the sum  o f the description length o f the m odel and the description length o f the 

training data given the m odel, m easured in bits. Specifically, the M D L  criterion is usually 

given by

MDL(G, D )  = -  log P(D \G , 0) +  (2.3)

w here N  is the num ber o f training instances, and 6  is the m axim um  likelihood param eters 

for the given structure Q. H ere k(G) denotes the num ber o f  free param eters in the candidate 

B ayesian netw ork defined by G

n
k (G) = ^ 2 < l j (rj  -  ^) (2-4)

3 =1

w here r3 — \V a ls (x 3)\ is the num ber o f values o f the variable X 3, and q3 is the num ber o f 

parent configurations o f  the j t h  variable X 3 such that q3 =  rifc s 7r(j) IV a ls (xk ) \ .  The first 

term  in (2.3) is the negative o f  the loglikelihood o f the training data, w hich approxim ates 

the description length o f the training data [21, 34], The second term  in (2.3) is the descrip

tion length o f the CPTs, that is, the param eters. (Note that the description length for the 

graph structure is om itted here since it is m uch sm aller than the description length o f the 

param eters.) A ccording to the M D L  principle, one therefore should search for the structure 

that m inim izes (2.3).

A nother popular m odel selection criterion for B ayesian netw ork m odel selection is a 

Bayesian scoring m etric, developed in [20] that eventually led to the Bayesian Dirichlet 

likelihood equivalent (BD e) score o f [48]. The BD e score m easures the m arginal likelihood 

o f the training data over the param eter distributions for the candidate netw ork structure. It

14
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is written as

B D e (5 ’ D|=nn n r±2i ^
where T  is the gam m a function. In this case, structure learning am ounts to searching for 

the network structure that m axim izes this score. U sing an asym ptotic approxim ation to F 

in (2.5), one can obtain a criterion know n as Bayesian Information Criterion (BIC) [81]

B IC(g,  D )  =  log P (D \g ,  9) -  fe(g^ ° SiV (2.6)

which turns out to be exactly the negative o f the M D L  criterion. In addition to B IC , another 

approxim ation o f B D e is the Akaike’s Information Criterion (AIC) [9], w hich has an even 

sim pler regularization term

A IC (g, D )  =  log P (D \Q , 9) -  k(G).  (2.7)

D espite their superficial differences, A IC, M D L/B IC  and B D e are all asym ptotically equiv

alent. O ne advantage these criteria have is that they can be decom posed into separated term s 

associated w ith each local variable according to the structure, and therefore are efficiently 

recom putable given local changes to the structure.

Besides the criteria introduced above, Cross-V alidation has also been used for m odel 

selection in Bayesian netw ork structure learning [92],

O nce a m odel selection criterion is defined, the learning task reduces to conducting a 

search in structure space to find the structure that optim izes the criterion. This is, however, 

an intractable optim ization problem . The problem  o f finding the best Bayesian netw ork 

am ong all netw orks w here each variable has at m ost k  parents is N P-com plete for k  >  1, 

using B D e score [15]. In fact, recently it has been show n that optim izing Bayesian netw ork 

structure is N P-hard for k  > 3, in the large sam ple lim it, for all consistent scoring criteria, 

including M D L/B IC , A IC  and B D e [16].

Due to the inherent intractability o f structure optim ization, the literature on B ayesian 

netw ork structure learning has been dom inated by heuristic algorithm s for searching the 

space o f individual netw orks. O ne popular heuristic search strategy, also one o f the sim 

plest, is greedy hill clim bing. It starts from  the given initial netw ork structure (an em pty 

netw ork or a random  netw ork) and then repeatedly applies to the current structure the local 

operation (adding an edge, deleting an edge and reversing an edge) that leads to the best 

model selection score. The search procedure term inates w hen a local optim a is reached, 

that is, no local m odification o f the current structure im proves the m odel selection score.
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A s with all other greedy local search approaches, hill clim bing can and usually does get 

stuck in a local optim um . One sim ple way to escape local optim a is to use random  restarts. 

N evertheless, [48] show s that hill clim bing is quite effective for learning Bayesian netw orks 

in practice. B esides greedy local search with or w ithout random  restarts, heuristic search 

algorithm s for structure learning also include sim ulated annealing and genetic algorithm s 

[31, 38, 60, 66],

Furtherm ore, it has been recently observed that searching the space o f variable orderings 

can be m ore effective than searching the space o f  netw ork structures [60, 90], since the 

space o f orderings is m uch smaller. These variable order search approaches exploit the 

fundam ental insight o f  [10, 20] that, for a fixed variable order, the optim al netw ork (of 

bounded in-degree) and param eters can be com puted in polynom ial tim e (but exponential 

in the in-degree bound).

In C hapter 3 , 1 explore an alternative structure search approach that is based on form u

lating convex, continuous relaxations o f a standard score-based optim ization in the feature 

space follow ing the M D L  principle. Furtherm ore, in C hapter 5, I explore discrim inative 

structure scoring criteria for learning B ayesian netw orks for classification.

2.3 Alternative Exponential Representations

B eyond the standard B ayesian netw ork param eterization based on CPTs described above, 

in this thesis, I w ill m ake use o f alternative, equally expressive param eterizations that m ake 

m any o f the derivations sim pler and allow som e new techniques to be developed. These 

alternative param eterizations can be easily derived as sim ple transform ations o f  the standard 

C PT  param eters 6.

First, since this thesis focuses on discrete B ayesian netw orks, a sim ple observation is 

that the jo in t probability  in (2.1) can be rew ritten in an equivalent exponential form  as

jab

Then by introducing a set o f new variables uj to  replace 6, the jo in t probability in (2.8) can 

be further represented in a form  o f exponential m odel

(2.8)

(2.9)

using the substitution

L^jah lo 0jofo (2 . 10)
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w here </>(x) denotes the feature vector

0 ( x )  =  ( . . . l (Xj=a,Xw(j)=b)...)T (2.11)

over j ,  a , b . The key aspect of this exponential form  is that it expresses the jo in t probability 

p (x )  as a convex function o f the param eters u>, w hich would seem  to suggest convenient op

tim ization problem s. However, B ayesian netw orks also require the im position o f additional 

norm alization constraints over each variable

=  1 for all j ,  b  (2.12)
a

U nfortunately, these constraints are nonlinear and thus introduces difficulties for deriving 

convex techniques. N evertheless, this new representation using u  still provides a conve

nient w ay to derive a novel convex optim ization technique for m axim um  m argin param eter 

learning in C hapter 6 o f  this thesis.

The param eterization in term s o f u  is not the only representation that proves to  be 

useful. A  standard reparam eterization that rem oves the norm alization constraints in (2.12) 

is to introduce another set o f variables w  to replace 6, instead o f using u>, via the definition

@jah =  ^  (2.13)
H a' e 3a b

In this way, the local norm alizations can be im plicitly encoded in the representation. U sing 

the w  param eterization, the jo in t probability  in (2.8) can be re-expressed in  a standard 

exponential form  that offers m any advantages over the traditional C PT based representation 

in the later techniques derived in this thesis

P (x ) =  exp |w J f y i x j ^ U ) )  ~ ^ ( w A x 7r(i)) j (2.14)

where

^ ( w U x ^(j)) =  l°g ( ^ 6XP ( W7<£j(a >X7r(j ) ) ) J

H ere A (y v j , ) is the log norm alization constant for the j th  conditional probability  d is

tribution; c f) j (x j ,xnQ')) denotes the feature vector ( . . . l ( ^ _ ajX = b) ...)T over a , b ;  and w j

denotes the local param eter vector ( ...u ;ja b ...)T over a ,b .  Thus, together <f>j and w .; spec

ify the local conditional probability distribution P (x j \x .n^ )  and allow the traditional C PT 

param eter entries to be efficiently recovered by

0jah =  e x p ( w j (jijia, b )  -  A(\V j,  b ) )
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One key aspect o f this general exponential form  is that it expresses log P ( x )  as a con

cave function o f the param eters w , w hich will lead to convenient optim ization problem s 

later in this thesis. A nother im portant advantage o f the exponential form , however, is that 

it allows a sparse representation o f the conditional distributions. That is, one can represent 

P(xj\'x.n(j)) given a subset o f features from  the set o f possibilities { l ( Xj= a,x„(i)=b) : a e  

Vals(xj), b  e  Vals(xn(j))}. In general, this allow s one to represent P ( x j |x„ .y)) com pactly 

even if  the num ber o f parent variables is large. Such a sparse feature representation o f a 

C PT  is sim ilar to exploiting context specific independence [7] or local structure [34], In 

fact, these com pact representations can be recovered as a special case. The size o f  a feature 

based representation for a C PT is never larger than the traditional table based representation, 

and can be arbitrarily smaller.

In Chapter 3 , 1 show that this feature based representation is particularly advantageous 

from  the perspective o f learning a B ayesian netw ork from  data, since it nicely reduces the 

problem  o f structure learning, largely, to identifying the features used to define the m odel.
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Chapter 3

Convex Structure Learning

3.1 Introduction

B ayesian netw orks are one o f  the m ost prevalent and useful form alism s for representing 

uncertain know ledge and com plex distributions. However, one o f  the greatest challenges 

in constructing a Bayesian netw ork representation is determ ining the graphical structure 

o f  the netw ork that specifies the conditional independence assum ptions being m ade about 

the dom ain. Effective tools for learning B ayesian netw ork structures from  observed data 

are therefore im portant, particularly  in dom ains w here prior know ledge about conditional 

independencies is lim ited. A s introduced in C hapter 2, learning the structure o f  a Bayesian 

netw ork from  data poses a significantly hard com putational problem , since one m ust cope 

w ith a com binatorial search over the space o f possible structures. The tw o groups o f  struc

ture learning approaches (constraint-based and score-based approaches) proposed in the 

literature have yet to provide a com pletely satisfactory solution so far.

In this chapter I propose an alternative approach to the problem  o f learning a Bayesian 

netw ork m odel from  data. M y idea is based on the general exponential representation of 

Bayesian netw orks shown in (2.14). U sing this feature based representation, one can conve

niently form ulate the structure learning problem  for B ayesian netw orks as a com binatorial 

integer optim ization problem . M y idea is then to follow the strategy from  com binatorial op

tim ization, where, w hen faced w ith an intractable integer program m ing problem , one first 

form ulates a convex relaxation that can be solved efficiently, and then rounds the “soft” 

solution to obtain an approxim ate “hard” solution to the original problem . In this approach, 

the problem  o f learning a B ayesian  netw ork from  data can be decom posed into three p rob

lem s: learning a set o f  features, learning a variable ordering, and learning a corresponding 

set o f param eters. That is, the proposed approach tackles all three subproblem s sim ulta

neously. H ere, I propose an efficient relaxation o f the B ayesian netw ork structure learning
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problem  that solves for the structural features that determ ine the graph, the variable order

ing that determ ines the edge orientation, and the model param eters all in a single, com pact 

optim ization. In this chapter, first, I show that, given a fixed variable order, the m axim um  

likelihood structure and param eters can be found in polynom ial tim e and space using a 

sparse exponential fam ily representation, w ithout any restriction on the num ber o f parents 

for any variable. Second, given a fixed variable order, I show how feature selection based on 

the m inim um  description length principle can be addressed sim ultaneously w ith param eter 

optim ization. Finally, to  optim ize the order, I introduce a com pact m atrix representation 

o f total orderings that allow s a sem idefinite relaxation. I evaluate the overall technique 

on natural and synthetic data sets, and find that convex relaxation is a very prom ising ap

proach to this problem , even though the underlying search problem  is inherently discrete. 

A  prelim inary version o f  this w ork w as published in [42],

3.2 Parameter Estimation

B efore introducing the new structure learning approach, I first establish som e prelim inary 

results that w ill be needed later. The first and sim plest subproblem  is estim ating the param 

eters w  given a fixed variable ordering 7r and feature set 0 .

G iven com plete training data D  =  [x1; . . . ;  x 'v ] and taking the general exponential 

representation (2.14), the negative loglikelihood loss can be expressed

Since A (w y, b j )  is a convex function o f w.; [96], this leads to a convex m inim ization prob

lem  for w j. However, since overfitting is always a concern, it is advantageous to m inim ize 

the regularized loglikelihood loss

L (w )

J2 lA (w J> b f )  -  w 7
i,bj

w here 0 bj =  b y), and

(3.1)
a

L (w ) CI M I2 +  L (w )2
(3.2)
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Here 0 is a regularization param eter. N ote that the w eights that m inim ize L ( w ) correspond 

to a M AP estim ate o f w , w ith prior w  ~  A/’( 0 ,01).

The objective (3.2) decom poses as an independent sum  over j ,  so the m inim ization o f 

each individual objective can be considered separately. To reduce the notational burden, 

denote the j th  com ponent o f L ( w ) by

^ ( u ) =  ^ I IU H2 +  ^ ( U’ b ) -  u T ^ b
b

(3.3)

w here u  corresponds to w j.

A lthough L (u )  is a convex m inim ization objective, it turns out that to derive the results 

below I w ill need to w ork w ith the dual. The dual is derived by form ulating a tight concave 

lower bound on Z (u ) ,  w hich can then be m axim ized to recover an equivalent result to L (u ) . 

First, consider the log norm alization function A (u , b )  defined in (3.1). It is known that this 

is a convex function o f  u  [96] and furtherm ore it is closed; that is, its epigraph

epi{A(-,  b ) )  =  {(i, u) : t > A (u , b )}

is a closed set. (I w ill exploit these properties below.) To derive a dual optim ization prob

lem, consider the Fenchel conjugate function o f A ,  given by the definition

A * ( V b M  =  su p  u T /xb - T ( u , b )  (3.4)
U

By this definition, (3.4), it is clear that A* is convex, since it is a pointw ise suprem um  o f 

linear function o f  n h [8, Section 3.2.3]. A n additional property I will use below  is that any 

conjugate function is also closed [74, Theorem  12.2]. It is also well know n [96, T heorem  

2] that

A * ( n hJ b )  =  (  l f ^ h e  M h  (3.5)
[ oo otherw ise

where

and

M h =  { n  : 3 P  such that E P [0a b (x ) |b ]  =  /xab}

H{PPb) = -^P M b(a) log iW a)
a

For a discrete random  variable, w hich I am  assum ing in this chapter, the set A 4 b is a 

bounded closed set (in fact, a polytope [96, Proposition 7]), hence M.  =  J |b  is also 

closed and bounded.
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The key property that the conjugate function provides is that it establishes a concave 

lower bound. In fact, since 2 l(u , b )  is a closed convex function in u  [6 , T heorem  4.2.1] it 

can be shown that

A ( u ,b )  =  su p  u T / i b - 4 ’ ( p b ,b )
Mb

T hat is, the conjugate o f the conjugate function is the original function. U sing this fact, one 

obtains

Finally, the jo in t function G  has the strong m inm ax property, w hich allows the order o f  the 

m inim ization and m axim ization to be reversed. This follow s from  the follow ing general 

result from  convex analysis.

T h e o re m  3.1 (Strong M inmax Property) Consider a jo in t function f ( x , y )  defined over 

x  6  X  and y  €  Y . Assume (1) f ( - , y )  is a closed and convex fo r  all y  £  Y ;  (2) f ( x ,  •) is 

closed and concave fo r  all x  e  X ;  (3) s u p y(£y  f ( x ,  y)  < oo f o r  all x  €  X ;  and (4) f ( - , y )  

has bounded level sets { x  : / (x. y) < t )  fo r  all y  G Y . Then

and the solution value is finite.

Proof: This theorem  is ju s t a specialization o f a standard result in convex analysis; specif

ically [74, C orollary 37.3.2] and [6 , Page 95]. |

To apply this result to the current case, one need only verify that G  satisfies the hy

potheses o f  the theorem .

P ro p o s itio n  3.1 The function G defined in (3.7) satisfies the conditions o f  Theorem 3.1. 

Proof: G(-,  p )  is clearly closed and convex in u  for each p  e  M \  similarly, G (u , •) is

closed and concave in p. for each u , since A*  is convex and closed; hence G  satisfies the 

first two conditions. To verify the third condition, note that s u p ^ gyv4  G (u , p )  < oo for all

in f L ( u ) (3.6)
U

in f ^ | | u | | 2  +  ^ # b su p  u T p h -  A * ( p h , b )  -  u T </>bU 2 V MbGAtb

=  in f su p  G ( u , p )  
u

w here

G { u , p )  =  f | | u | | 2  +  J >  - A * ( p h , b )  - u T ( 0 b -  p h ) (3.7)

in f  su p  f ( x , y )  =  su p  in f  f ( x , y )  
x^ X  y€Y y ^ Y x^ x
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u  since M  is a bounded, closed set and - 2 l* (jzb ,b )  =  FT(PMb) <  oo. Finally, for any 

/x e  M , the level sets for G(-,fj.) are clearly bounded because o f the | |u | | 2  term . |

H ence the order o f the m inim ization and m axim ization in (3.6) can be reversed to yield

in f  L ( u )

=  su p  in f ^ | | u | | 2  +  Y ] # b  -  u T (<£b -  f i h )
»eM  u 2  b

Taking the derivative o f the inner objective w ith respect to u  yields 

V u =  0 u  -  ^ 2  # b {4>b ~  V b) =  0

b

(3.8)

so that

(3.9)

and therefore

in f  L ( u )
U

=  s u p - ^ # b A *( f ib , b ) - ^ # b ( ^ b  -  /*b)

=  su p  ^ # b # ( P Mb)
1

20 # b ( ^ b “  ^ b ) (3.10)

Thus the dual to the m inim um  regularized loglikelihood loss problem  is a regularized con

cave m axim um  entropy problem . G iven a solution pi* to the dual p roblem  (3.10) a corre

sponding prim al solution u* can be easily recovered using (3.9).

For im plem entation, the prim al problem  is m ore convenient than the dual because it is 

unconstrained. In m y im plem entation below I used a N ew ton m ethod to efficiently solve 

(3.3). The dual form ulation is required to establish m y theoretical results below, however.

3.3 Strategy

O f course, the m ain goal o f this chapter is not to perform  param eter estim ation, but to learn 

the structure o f a Bayesian netw ork m odel from  data. The exponential fam ily represen

tation and m axim um  entropy fram ew ork introduced above offer a new perspective on this 

problem . R ather than scoring a Bayesian netw ork and perform ing a discrete search in struc

ture space, m y goal will be to form ulate a polynom ial tim e approach that addresses each of
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the three subproblem s— feature generation (and selection), param eter estim ation, and vari

able ordering— in a jo in t convex optim ization that uses reasonable convex relaxations o f the 

discrete subproblem s when necessary.

I pursue the follow ing strategy. First, I generate a sufficient set o f features that allows 

one to express any m axim um  likelihood solution exactly. The first result below  shows that 

in fact this can be achieved in polynom ial tim e and space given a fixed variable ordering. 

Second, I then select a subset o f the generated features using the m inim um  description 

length principle [57, 73], The m ain result here is that, using the m axim um  entropy estim a

tion fram ew ork developed above, M D L  feature selection and param eter optim ization can 

be perform ed sim ultaneously in a novel convex relaxation. Finally, I include variable or

dering in the fram ew ork by extending the previous optim ization form ulation to also search 

over variable orders. Thus the third m ain result is that a search over variable orders can be 

efficiently encoded by a com pact set o f  sem idefinite constraints on a m atrix representation 

o f  the ordering. Overall, this approach allows one to form ulate a relaxed form  o f the entire 

B ayesian netw ork learning problem  w ithin a polynom ial convex optim ization fram ew ork.

3.4 Feature Generation

T he first result is that, given a fixed variable order, a set o f features sufficient to represent 

any m axim um  likelihood B ayesian netw ork can be found in polynom ial tim e and is polyno- 

m ially large. This result holds w ithout restriction on the num ber o f parents o f  any variable. 

In  fact, the result is straightforw ard, but relies heavily on the sparse feature representa

tion. The key idea is that one can use linear dependence o f  feature responses on augm ented 

training data to identify key features and elim inate other features from  consideration.

First, note that since the conditional probabilities are locally defined and the variable 

ordering is known, one can solve the feature generation problem  for each variable X j  in

dependently. Next, assum e that the variable indices are sorted according to the ordering so 

that the set o f  possible parents o f  X j  is { X i , . . . ,  X j  _ t }. Let cr(j) =  { 1 , . . . ,  j  — 1} denote 

the set o f  indices for the ancestors o f j  under the ordering. Then given a set o f com plete 

training data (row vectors) represented in a N  x n  data m atrix, D  — [ x 1; . . .  ; x ,v], only the 

first j  colum ns o f D  are relevant for X j .

To identify a sufficient set o f  features, it suffices to consider a locally augm ented data 

m atrix w here I copy each ancestor configuration, V} =  \Vals(xj)\  tim es and replace

x lj  with each o f its possible values. That is, the first j  — 1 colum ns o f D j  are copied Vj
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tim es and stacked, w ith each copy receiving a different value for X j  in the j th  colum n. Call 

the resulting m atrix Dj', so if  D j  is N  x  j  then D j is (N V j ) x j .

P ro p o s itio n  3.2 For any two exponential form  representations 0 , ,  w t and  0 2. w '2 ; 

i f  W j”0 i ( a ,  x ^  . )̂ =  w j 0 2 (a , x ^ ) / o r  all i =  1 , . . . ,  iV and  all a €  Vals(xj),  

then P i  (x j |x ^ ( j) ) =  P 2  (xj- |x ^ ( j) ) fo r  all i =  1 , . . .  , N .

Proof: F irst note that the assum ption im plies that

-'4l(Wl>Xa(j)) =  log J ^ eXP ( W & l f a K u ) ) )
a

=  l o g j ^ e x p  ( w j 0 2 ( a , x ; ( j) ) )
a

=  A 2 (w 2 , x Jcr(i)) f o r a l l i .

Therefore one m ust also have

- l o g P i ( x ; | x ^ ( j) ) =  A 1( w 1,x ^ (j)) - w 7 0 1( a ,x ^ (j.) )

=  A 2 (w 2 , x ; w ) -  w j 0 2 ( a ,x ^ (j.) )

=  - l 0 g-P 2 ( ^ K ( j ) )

I

Thus if  one set o f  features 0 : spans another set 0 2  on the augm ented data m atrix D j 

for each variable X j ,  then the optim al m axim um likelihood param eter estim ate for 0 j  on 

D  has to be at least as good as the best m axim um  likelihood param eter estim ate for 0 2; that 

is, L ( w \ ,  <f>x,D) < L ( w ^ , 0 2,£>).

O f course, there are m any possible features to consider. There is a unique feature <f>jah 

corresponding to an indicator function f j ai , ( x j , x p^ )  =  l ( Xj=a,xp0 )=b) f ° r each particular 

subset o f  ancestor variables, p( j )  C  a( j ) ,  and each particular value a for x :) and value b  for 

~x.p{j). N evertheless, it is a trivial observation that the m axim um  rank o f any possible span 

o f the feature response vectors on the augm ented training set D j  is bounded by N V j , since 

this is the length o f each feature response vector on D j . Therefore, there m ust exist a set of 

no m ore than N V j  features that allow s the exponential form  representation to achieve the 

m axim um  likelihood score o f  any B ayesian netw ork on the training data D j.

To find this set o f features in polynom ial tim e I exploit the fact that every com pound
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feature <pja b can be decom posed as a product o f features defined on shorter patterns

< P j a b ( x j  j X / 5 ( j ) )

=  1 (^ = 0 ,xp(j)=b) (3-11)

=  l ( x . , - = a ) l ( x p i ( j ) = 6 i )  • • • l ( x P f c ( j ) = b fc)

=  (t)j a { x j ) (t)p 1{j )bi  ( x p i ( j ) )  ■ ■ ' (l)P k U ) b k ( X P k U ))

N aturally one would like to build a span consisting o f the shortest possible feature patterns, 

since this would result in a sim pler Bayesian netw ork representation. Define the length of 

4>jah to be the num ber o f variables in its definition (3.11). Then we have the follow ing 

proposition.

Proposition 3.3 I f  a compound feature 0 jab  is spanned by a set o f  shorter features, then 

f j a b  can be eliminated without affecting the maximum likelihood solution.

Proof: A ssum e (f)j„.b =  Wf<Pf on Dj  for som e set o f shorter feature patterns /  €  F.  

H ere F  denotes the feature set. Then any extended feature that uses 0 ]nh  can be spanned 

by features based on shorter patterns. In particular, if  0 ]C<\ =  f j a b f g i  ■ ■ ■ f g k ° n Dj ,  then 

w e m ust also have cj>jC li =  wf<pj0 gi . . .  <figk on Dj ,  w here the feature patterns in the 

second expansion are strictly shorter than the first. |

This leads to  a polynom ial tim e algorithm  for generating a set o f  shortest features w ith 

m axim um  span on Dj]  see Figure 3.1. To establish that this procedure does indeed run in 

polynom ial tim e, consider the lattice o f  feature patterns. The lattice is searched from  short

est patterns to longest. O nce a pattern is pruned, no extension o f it w ill ever be considered 

(and correctness w ill be preserved by Proposition 3.3). However, for each increase in rank, 

at m ost i ^d ls(x f) features are added, w hile the m axim um  rank o f the feature response 

m atrix is N V j .  N ote that the procedure in Figure 3.1 can generate m ore than N V j  features, 

but still no m ore than a polynom ial num ber in total. W hen extending a current feature, the 

procedure considers all possible singleton extensions in parallel, rather than sequentially, to 

m itigate the effects o f an arbitrary inspection order. A ppendix A  provides a sim ple exam ple 

to illustrate this generation procedure.

O ne draw back o f  this procedure is that it can generate a large num ber o f parents for X j , 

even though the representation rem ains polynom ially large. In fact, this feature generation 

process is guaranteed to overfit the data, in the sense that it yields a representation that can 

achieve the m axim um  likelihood o f any Bayesian network. Clearly, som e sort o f feature 

selection process is required to yield a reasonable m odel, w hich I next consider.
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Feature generation procedure fo r  x 3 on augmented D j:
<J>(°) =  { f a : a E Vals{xj)}
for k =  1 , 2 , . . .  (w hile rank increased)

<f>(fc) 4 -  0  

for each <£>/ E

'F <- {0b€0 /  : f  £  Vars( f ) ,be E  Vals(xe) j

if  rank ( | J £< fc U )  >  rank (
$(*;) <_ u  \p

F igure 3.1: Feature generation procedure

3.5 Feature Selection

I base the feature selection strategy on the m inim um  description length principle [34, 57, 

73]. Here I continue to assum e a fixed variable ordering is given. The idea is to start with 

a large set o f  sufficient features f> =  ( . . . ,  4>jab, ■ ■ )T generated by the procedure outlined 

above. To perform  feature selection in this large set, I augm ent the exponential represen

tation w ith feature selection variables rj. That is, for each feature cbjah I establish a cor

responding selector variable rjja^ E {0 ,1} , in addition to the corresponding w eight w J0^.  

L et Nj  =  d iag( 7 7 j )  be the diagonal m atrix o f selector values corresponding to variable X j .  

O ne can then w rite

H w,r ? )  =  (  f l l w j l l 2  +  5 Z # ^
i V ^

w here

A ( w j , N j , b j ) =  log ^  ex p  ( w j  Nj ( f ) j {a , b j ) j
a

Thus if  r/jab =  1 then the feature 4>](,h is selected, otherw ise it is dropped.

The idea is to  solve for the set o f features selection variables rj and param eters w  that 

m inim ize the total description length o f the data and the B ayesian netw ork m odel (in expo

nential form ). This can be form ulated as a jo in t optim ization

T lOg JV T
m in  c rj-\------------ 1 rj +  m in  L ( w ,  rj) (3.12)

t,<E{0, 1)1̂ 1 2 w

H ere the last term  is the cost o f encoding the training data D  =  [x 1; ...: x iV] using the 

optim al param eters w  for the netw ork structure specified by rj. This uses a standard result 

from  inform ation theory [21, 34] that an optim al code for data D  given a m odel -P (x) has 

length — log P ( x !). (A lthough here I alter this principle slightly to  use the regularized
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loss L  rather than the plain loglikelihood loss L.  This sim plifies the derivation below, but 

one could set the regularization param eter (3 to be arbitrarily sm all to approxim ate the plain 

loglikelihood.)

The first term  in (3.12) m easures the length o f the description for an exponential fam ily 

representation for the Bayesian netw ork structure specified by 7 7 . In particular, for each 

feature 4>jab selected by indicator rjjab the description length cost is fixed to be

Cj ab  =  |b | lo g n  +  log \Vals(a)\ +  log \Vals(b()\
l

w here the first term  is the cost o f encoding the list o f variables in feature (f)jab,  and the 

rem aining term s are the cost o f encoding the specific values for these variables.

The second term  in (3.12) is the cost o f encoding each w eight param eter w j ab , w here 

the precision is chosen in the m anner discussed in [34]. The notation 1 refers to the vector 

o f  all Is.

N ow  I w ould like to solve for the structure 7 7  and param eters w  that m inim ize the total 

description cost (3.12). Unfortunately, this is a com binatorial optim ization problem  over the 

discrete vector 7 7 , and even m ore problem atic: even if  7 7  w ere relaxed, the M D L  objective

(3.12) is not jo in tly  convex in 7 7  and w . Fortunately, the dual form  o f the regularized loss 

allows one to re-express this problem  as a convex m inim ization over 7 7 , ignoring the integer 

constraints.

U sing the fact that (3.10) is equivalent to (3.6), an equivalent optim ization problem  to

(3.12) can be obtained, but now using m axim um  entropy instead of loglikelihood loss

c T ’f + ^ lT”+ ^ (i  ̂* ibrH (F^ ‘ ] ”
w here S j =  # b j ( 0 b j  — P b , )■ N ote that, thus far, I have assum ed that 7 7  e  { 0 , 1 } ^ ,  

and therefore N j  N j — N j,  since rj2]nh =  r/ja b. This allow s m e to rew rite (3.13) as

m in  <7 ( 7 7 )
T?e{o,i}i^i

w here

77(77) =  c T 77 +  1T77 ( P M b j ) -  ± 6]Njdjj ( 3 . 14)

Crucially, 7 7 ( 7 7 ) is a pointw ise m axim um  o f linear functions o f 7 7 , and is therefore convex 

[8].
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Thus, by com bining regularized m axim um  entropy param eter estim ation w ith the de

scription length penalty, I can obtain a natural convex relaxation o f the m inim um  description 

length principle sim ply by relaxing the structure indicator variables to be soft indicators in 

the interval [0,1]. Rem arkably, this form ulation allow s one to sim ultaneously optim ize the 

(soft) structure and param eters in a polynom ial size convex optim ization problem .

To solve this problem  in practice, I use a quasi-N ew ton m ethod, B FG S [70] w ith back

tracking line search to efficiently m inim ize g(rj).  B FG S progressively approxim ates the 

Hessian m atrix by accum ulating gradient inform ation Vg(rj )  at successive r\ points. For

tunately, g(rj) and Vyfry) are both com putable by solving the inner concave m axim ization 

on fx (w hich in fact is equivalent to solving the prim al m inim ization problem  on w ). In 

particular, g(rf) is given by (3.14), and

v s ( l) ) =  c +  ! 5 f i - T y > P 2
j

such that 5* =  E b ,  ( ^ b ,  -  Mb,)  and ^ b ,  =  for the optim al

inner solution /z* (or w *). Here, (d*) 2 denotes com ponentw ise squaring o f 5*.

3.6 Variable Ordering

The final step is to consider variable ordering as part o f  the optim ization process. Once 

again, one can relax the problem  o f solving for the optim al ordering, w hile perform ing 

feature selection and param eter optim ization sim ultaneously. The basic approach is as fo l

lows. Since no order is given, I first generate features for each variable X j  assum ing all 

other variables are potential parents. Then, as in  the previous section, feature selection vari

ables r) =  ( . . . ,  r j j f , . .  . )T are introduced w here rjjf  corresponds to the feature w ith pattern 

/  and child  variable j .  Finally, model com plexity is reduced by m inim izing the description 

length criterion.

As before, I begin by assum ing the feature selection variables are {0 ,1 }  valued. The 

issue now  is that constraints need to be added to the 7 7  variables to ensure that a valid 

Bayesian netw ork structure is obtained. For exam ple, since activating a feature <f>jf for one 

variable m eans that the rem aining variables in the pattern /  m ust be parents o f  j , no feature 

pattern /  can be activated for m ore than one variable j  it contains. This can be encoded 

locally fo r each feature pattern by the constraints

<  1  for a l l /  (3.15)
ie/
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In fact, the local constraints are sim ple linear inequalities that pose little additional burden 

on the optim ization. U nfortunately, ensuring consistency locally w ithin a feature pattern /  

is easy, but ensuring consistency globally between feature patterns /  and h  is m ore difficult.

To enforce global consistency, I introduce an auxiliary {0, l } nxri m atrix S  that encodes 

a total ordering on the variables. In particular, let S ,:) — 1 denote the case that i precedes 

j  in the ordering, and let S ij  =  0 denotes that i follows j .  For a {0, l} -valued  m atrix S  to 

encode a total ordering it has to satisfy three properties

antisym m etric: S tJ =  1 — S ;)l for all i f  j  (3.16)

transitive: S tJ +  S jk  <  S tk +  1 for all d istinct i , j ,  k

reflexive: S u =  1  for all i

(The diagonal o f S  is not terribly im portant, but I set it to  1 fo r convenience.) The feature

selection variables can then be forced to respect a global ordering via the constraints

rjjf < for all j ,  f , i €  f ,  i ^ j  (3.17)

Thus, using {0, l} -valued  variables 7 7  and S ,  local and global consistency can be en

forced by linear constraints. This can further yield an obvious convex form ulation for the 

entire problem  by relaxing the integer variables to be continuous

m in  g(rj)  subject to (3.15), (3.16) and (3.17)
rjelopi^hSe^i^x"

O ne rem aining problem  w ith the form ulation is that it requires a large, cubic num ber of 

constraints in (3.16) to encode the transitivity property. To reduce the space requirem ent, I 

exploit the follow ing relationship betw een total orderings and m atrices that encode equiv

alence relations. Let T  denote a strictly upper triangular m atrix  w ith all Is  above the m ain 

diagonal, and let I  denote the identity matrix.

P ro p o s itio n  3.4 Consider a { 0 , 1 }-valued, strictly upper triangular matrix U such that 

M  — I  +  U  +  U T and N  = I  +  (T  — U) +  (T  — U )T are both equivalence relations. 

Then S  = I  + U + (T  — U ) ] must encode a total ordering.

Proof: A ssum e M  and N  are equivalence relation m atrices defined by U  as above. T hat is, 

in addition to reflexivity and sym m etry, w hich are obvious from  their construction, M  and 

N  are also transitive. The key part o f  this p roo f is to show that this im plies S  is transitive 

as well: I f  M  and N  are transitive, it then follows that for all i , j ,  k,  such that i f  j ,  j  f  k 

and i ^  k,  that S rj A 5j/,: => 5',/,.. The argum ent is shown by cases over the six possible 

orderings o f i, j ,  k.
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Case 1: If i <  j  <  k, then S tJ =  M l v  S jk =  M j k, and S ik =  M lk. Therefore 

Sij  A S j k => S ik iff M jj A M jk  => M ik.

Case 2: If i <  k <  j , then Sjk =  N ]k, S kl — N kl , and ,S'r, =  N Jt. Therefore

A Sjk => Sik iff "'Sij V V Sik iff Sji V -iSjk V ~̂ Ski iff Nj{ V ~^Njk V ->Nki iff 

Njk A Nkl => A/jj.

Case 3: If k <  i < j ,  then S ki =  M kl, Stl =  M y, and 5 ^  =  M k] . Therefore

Sij A => 5,^ iff - 'S ij  V V S ik iff ->Sij V V ->5^ iff -<My V V ~^Mki iff 

M kl A Mjj => M kj.

Case 4: If /;: <  j  <  i, then S ,:J = N,:I. Sjk = N j k , and S ik = N ik. Therefore

Sij A Sjk  => Sik iff N ij  A N jk  =>■ iVjjfc.

Case 5: If  j  <  k <  i, then S jk =  M j k, S ki =  M ku and S :jl =  Mji .  Therefore

Sij  A Sjk Sik iff - 'S ^  V ~>Sjk v  Sik iff S ji V -iSjfc V - 'Ski iff M ji V ~>Mjk V iff

Mjfc A Mki => Mji.
Case 6: I f  j  <  i < k, then S kl — Nku Si;/ — N tJ, and S k] =  N k] . Therefore

S ij A S jk => Sik iff - 'S ij  V - 'S jk  V Sik  iff - 'S ij  V S'fcj V -iSfcj iff -liVjj V iVfcj  V -liVfej iff

Ŷfci A N ij  => N kj-

Since S’ satisfies the reflexivity and antisym m etry properties by construction, this ends 

the proof. |

G iven this result, it is therefore possible to enforce the total ordering encoded in S  by 

only im posing a quadratic num ber o f  constraints:

w here D  and C  are both additional square { 0 ,1 } -valued m atrix variables, and E  denotes the 

m atrix o f all Is. Unfortunately, the tw o quadratic constraints in (3.18) are not convex, but

U T y  C C T , which can further lead to  equivalent linear m atrix inequality constraints [58, 

Schur C om plem ent Lem m a]

S  = I  + U  +  (T  -  U ) T 

I  + U + U T = D D t

E  — U — U T =  C C T (3.18)

D  1 =  1, C l  =  1

they can be approxim ated by the sem idefinite relaxations I +  U + U T A D D J  and E  — U
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H ere again one can then obtain a convex optim ization problem  by relaxing the {0 ,1}  valued 

variables to [0,1] and using the sem idefinite constraints. The im plem entation only requires 

a small m odification to the B FG S strategy o f the previous section, w here the quasi-N ew ton 

step now needs to respect these additional constraints. To solve the constrained convex 

optim ization problem  I used a sim ple barrier m ethod [8 ], w ith a log barrier function for the 

linear inequality constraints (3.15) and (3.17), plus a log determ inant barrier to enforce the 

sem idefinite constraints in (3.18).

The result is the first com prehensive Bayesian netw ork technique I am  aware o f that 

solves for an approxim ate variable ordering, feature set, and optim al param eters in a joint, 

polynom ial, convex optim ization. Interestingly, the experim ental results below suggest that 

this approach can produce com petitive results.

One final issue to deal w ith is rounding a “soft” solution produced by the above convex 

optim ization, to produce a variable ordering and a hard set o f features that define a proper 

Bayesian network. I do not as yet have any approxim ation guarantees for any rounding ap

proach I have developed so far. In m y experim ents below, I sim ply used a greedy rounding 

schem e that successively checks the largest non-integer rj variable, determ ines w hether it is 

possible for it to be set to 1  w ithout violating any consistency constraints, and if  so, rounds 

the variable greedily to 0  or 1  depending on w hich value yields the sm allest value in the 

M D L objective (3.12) (keeping the current optim al B ayesian netw ork param eters fixed). 

This is sufficient to yield reasonable results, although I would still like to investigate m ore 

sophisticated rounding approaches in the future.

3.7 Experimental Evaluation

To evaluate the proposed B ayesian netw ork structure learning approach, I conducted a set 

o f experim ents on both synthetic and real data and com pared the results to those obtained 

by standard greedy heuristic search techniques. To m easure perform ance o f the different 

learning techniques, I m easured the logloss (that is, the negative loglikelihood loss) they 

obtained on held out test data after training. To isolate the effects o f the different approxi

mation stages, I conducted tw o sets o f  experim ents: in the first set the variable ordering was 

held fixed, w hile in the second I used the relaxed ordering search o f Section 3.6. In each 

case, for the greedy search algorithm s, I considered both B D e and B IC  scores.

F ixed  o rd e r  e x p e rim e n ts  For the fixed order experim ents, I first considered three 

different artificial netw ork structures, shown in Figure 3.2, each instantiated w ith random
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Figure 3.2: Synthetic Bayesian netw orks 1-3 (from  left to right)

Table 3.1: L ogloss results for synthetic experim ents given the correct variable order

D ata Set Convex BIC BD e

Synthetic 1 4.48 4.57 4.53
Synthetic 2 5.34 5.43 5.39
Synthetic 3 5.16 5.27 5.18

C PT  entries. For each experim ent, I used an independent training and hold-out test sam 

ples generated from  the synthetic netw ork to determ ine the regularization param eter fo r the 

fixed order convex technique. W ith the chosen regularization param eter, I then repeatedly 

generated independent training and test sam ples and evaluated the logloss on test sam ples 

for each B ayesian netw ork learned on the training data using different approaches. H ere I 

com pared the results o f  the convex relaxation algorithm  described in Section 3.5 to  the fixed 

order K2 search algorithm  o f [20], guided with both the standard B D e and BIC criteria. A ll 

algorithm s w ere given the correct variable ordering in  these synthetic experim ents.

Table 3.1 shows the com parison results w ith training sam ple size 50 and test sam ple 

size 1000. The results are average logloss over 10 repeated runs. O ne can see that the 

convex technique outperform s the greedy K2 search procedures, using both the B D e and 

B IC  scores. However, the run tim e for the convex relaxation procedure (including rounding) 

w as 10, 25 and 30 seconds respectively, while the K 2 algorithm  only required 0.05 seconds 

on these problem s.

I then conducted experim ents on several U C I datasets: B reast, Cleve, Corral, D iabetes, 

G lass2, H eart, M ofn and Pim a. For each dataset, I random ly split the data into training/test 

partition, and used the training set for Bayesian netw ork learning and test set for perfor

m ance evaluation. Each algorithm  was run with the sam e fixed variable order, w here in this 

case the order was just chosen randomly. Once again, for the convex relaxation technique, I
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Table 3.2: Logloss results for experim ents on U C I data sets given a random  variable order

D ata Set Convex BIC BD e

Breast 5.03 5.47 5.29
Cleve 8.72 8.91 9.00
Corral 4.61 4.67 4.51
D iabetes 5.51 5.62 5.59
Glass2 3.35 3.58 3.40
Heart 8.79 8.89 8.96
M ofn 7.64 7.67 7.84
Pim a 5.30 5.35 5.36

Table 3.3: L ogloss results for synthetic experim ents, com paring m ethods that learn both 
structure and order

D ata Set Convex BIC B D e

Synthetic 1 4.49 4.57 4.51
Synthetic 2 5.34 5.43 5.35
Synthetic 3 5.16 5.27 5.21

used one prelim inary  training/test split to set the regularization param eter. Table 3.2 shows 

the logloss obtained on the test set, training on a disjoint training set o f size 50, for each 

o f the learning m ethods. Still, the results are averages over 10 repeated runs. The results 

show that the convex approach holds an advantage over the K 2 greedy search techniques, 

for both the standard B D e and BIC  scores. However, again, the run tim es o f the convex 

relaxation approach are greater than the K 2 algorithm s, requiring from  10-100 tim es m ore 

tim e to produce the final results.

A lthough these results are not necessarily com prehensive, they suggest that the ability 

to avoid local m inim a in a discrete structure search can lead to good solutions. The m ajor 

disadvantages o f  the approach developed so far is that it runs slower than heuristic greedy 

search and requires regularization param eter to be set, w hereas the B D e and BIC  scores are 

param eter free.

L e a rn in g  v a r ia b le  o rd e r in g  N ext, I repeated the previous experim ents using the com 

bined structure and order optim ization algorithm  o f Section 3.6. H ere I com pared the ap

proach to a standard score-based greedy heuristic search that uses the standard edge addi-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.4: Logloss results on UCI data sets, com paring m ethods that learn both structure
and order

D ata Set Convex BIC BDe

Breast 5.26 5.23 5.25
Cleve 8.60 8.84 9.13
Corral 4.71 4.56 4.54
Diabetes 5.58 5.61 5.62
G lass2 3.49 3.58 3.40
H eart 8.59 8.87 9.10
M ofn 7.57 7.71 8 . 0 1

Pim a 5.38 5.34 5.39

tion, deletion and reversal operators. A gain I considered both the B D e and B IC  criteria in 

the heuristic search. Each greedy search w as started from  an em pty netw ork and restarted 4 

tim es w hen reaching a local m inim um , by random ly adding and deleting edges. However, 

other than not im posing a variable ordering, the algorithm s were run exactly as described 

above for the fixed order case.

Table 3.3 show s the results obtained by the convex relaxation technique versus the 

greedy search algorithm s on the synthetic problem s. The convex approach show s a m odest 

im provem ent over the greedy search m ethods. However, once again, the convex relaxation 

procedure runs about 100 tim es slower. Interestingly, the solution quality is close to the 

fixed order case. Only a slight benefit w as achieved from  having the correct variable order

ing.

Table 3.4 com pares the results on the U C I datasets. H ere the quality o f  the outcom e 

is m ixed. T he convex relaxation procedure obtains the best solution quality on 4 out o f 

8  data sets, w hile the greedy heuristic search using B D e obtains the best results on 2 out 

o f  8 , and B IC  obtains the best results on 2 out o f 8 . M ore interestingly, com paring these 

results to the fixed order technique, w hich ju s t uses a random  variable ordering, show s that 

the fixed order approach (with convex relaxation) still obtains the best results on 4 out o f 8  

data sets. This outcom e seems to suggest that the relaxed ordering constraints im posed in 

Section 3.6 m ight not be sufficiently tight to ensure a good solution. Im proving the quality 

o f the relaxed ordering constraints rem ains an im portant question for future research.
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3.8 Conclusion

In this chapter, I have presented w hat I feel is an interesting new approach to learning 

B ayesian netw ork structure from  data. I first presented a relaxed convex structure learning 

approach for given fixed variable order, and then extended it to a general technique that 

sim ultaneously searches for variable order, param eter settings, and features in a jo in t convex 

optim ization. The convex approach in either the fixed variable order or order learning case 

show ed prom ising experim ental results on both synthetic networks and real U C I datasets, in 

com parison w ith standard score-based greedy heuristic search m ethods. I feel that the new 

technique introduced here m ight open the way to a new class of algorithm s for learning 

B ayesian netw orks. A n interesting question is w hether this class o f global optim ization 

techniques is able to achieve guaranteed approxim ation quality.
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Chapter 4

Gene Regulatory Network Induction

4.1 Introduction

Learning the structure o f a gene regulatory netw ork from  tim e-series gene expression data 

is a significant challenge. It requires the identification o f the cause-effect relationships 

betw een genes. M ost approaches proposed in the literature to  date attem pt to predict the 

regulators o f each target gene individually, but fail to share regulatory inform ation betw een 

related genes. In this chapter, I propose a new globally regularized risk  m inim ization ap

proach to  address this gene regulatory netw ork induction problem . This new approach is 

m otivated by the convex B ayesian netw ork structure learning technique presented in C hap

ter 3. The idea is to introduce global feature selection variables to select com m on regulators 

for a group o f  genes w ith sim ilar expression profiles. H ere the feature selection variable 

controlled structure learning approach is extended to address continuous data by using a 

linear regression fram ework.

Specifically, I propose to first cluster genes according to their tim e-series expression 

profiles— identifying related groups o f  genes. Then I use the globally regularized risk m in

im ization technique to identify the regulation structure fo r each gene, w hile encouraging 

the genes in the sam e cluster to share com m on regulators by exploiting the assum ption 

that genes w ith sim ilar expression patterns are likely to be co-regulated. The experim ental 

results suggest that the proposed approach is m ore effective at identifying im portant tran

scription factor based regulatory m echanism s than the standard independent approach and 

a prototype based approach.

This chapter is organized as follows. First, I introduce the background know ledge and 

related w ork for gene regulatory netw ork learning in Section 4.2 . Section 4.3 then presents 

the proposed globally regularized risk m inim ization approach and the preprocessing details. 

Experim ents and results on both synthetic data and real cell cycle yeast gene expression data
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are presented in Section 4.4 . This w ork was published in [44].

4.2 Background

Genes and their products do not w ork independently in the cell. Rather, they are jo intly  

regulated in a coordinated fashion, both internally and externally, to achieve proper cell 

function. O ne of the key m echanism s o f gene regulation takes place at the m RN A  tran

scription level. W ith the em ergence o f  high-throughput m icroarray techniques, the m RN A  

expression levels o f thousands o f genes can be m easured sim ultaneously. U sing com puta

tional techniques to learn gene regulatory netw orks from  high-throughput tim e-series gene 

expression data has been an active area o f research in recent years. The goal o f  such re

search is to discover the causal control relationships betw een genes, w hich w ould offer a 

fundam ental understanding o f how biological processes are coordinated in the cell.

A variety o f com putational approaches have been proposed in the literature to m odel 

gene regulatory netw orks from  expression data. M any approaches have been based on the 

use of linear m odels to express dependence betw een tim e series profiles. For exam ple, [27] 

studied a straightforw ard linear m odel for this purpose; [11] and [25] investigated linear 

differential equations for gene regulatory netw ork m odeling. A ll o f these approaches suffer 

from  risks o f over-fitting, however, since they fit a num ber o f  param eters that is proportional 

to the size o f the data itself. To counter the risk o f over-fitting, other linear approaches have 

taken advantage o f  sparseness o f  the regulatory relationship betw een genes; that is, that 

any one gene is regulated by a sm all subset o f the other genes. [24] have proposed to  use 

A kaike’s Inform ation C riterion (AIC) to determ ine the nonzero coefficients in the linear 

system. Sim ilarly, [63] used L I  regularization to  conduct feature selection on the linear 

parent set.

A nother popular approach to learning gene regulatory netw ork structure is to exploit 

various form s o f standard (dynam ic) Bayesian netw ork structure learning m ethods, since 

Bayesian netw orks can encode cause-effect relationships am ong a set o f variables. Dynamic 

Bayesian netw orks in particular are a natural extension o f  Bayesian netw orks to m odeling 

tim e-series data. As I have introduced in C hapter 2, learning the structure o f a Bayesian 

netw ork from  data generally requires one o f tw o approaches to be followed: a score- 

based approach— w here a heuristic search is perform ed through the space o f causal netw ork 

structures to identify the m ost likely structure explaining the data— and a constraint-based 

approach— w here conditional independence tests are used to determ ine w hether a direct
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causal relationship should be postulated betw een tw o variables. M any variants o f  these 

techniques have been applied to gene regulatory netw ork learning, including search-based 

approaches [46, 97, 100], inform ation-theoretic approaches [12], param eter-tying based ap

proaches [82], and conventional dynam ic B ayesian netw ork learning approaches [2, 101].

A lthough these previous techniques have achieved som e prom ising results, the funda

mental lim itation o f  the am ount o f data available relative to the large num ber o f param e

ters estim ated (e.g. distinct param eters used to predict the expression level o f each gene 

given other genes) severely constrains their effectiveness. This difficulty is inherent to  the 

task: orders o f m agnitude m ore expression data w ould be required for naive estim ation 

approaches devoid o f background know ledge and biologically  relevant assum ptions to suc

ceed on this problem .

O ne com m on shortcom ing in the current literature, w hether using linear m odeling or 

B ayesian netw ork structure learning, is that nearly all proposed approaches attem pt to de

term ine the regulation structure for each target gene independently. Yet it is well know n 

that genes that share the sam e expression pattern are likely to be involved in the sam e reg

ulatory process, and therefore share the sam e (or at least a sim ilar) set o f  regulators [28]. 

The main question I investigate is how  to exploit biologically  significant know ledge about 

co-regulation to  im prove the inference o f the underlying gene regulatory netw ork from  ex

pression data. A lthough a few previous investigators, such as [94], have proposed to group 

genes w ith sim ilar expression profiles in a single prototypical “gene” , and then m odel the 

relations betw een prototypical genes instead o f m odeling the genes individually, this is a 

som ew hat oversim plified approach that ultim ately ignores the individual differences be

tween genes in the sam e group, and puts a particular high requirem ent on the clustering 

step.

Instead, in this chapter, I propose a novel approach for predicting the regulators for a 

given group o f genes w ith sim ilar m R N A  expression patterns, by m inim izing a globally 

shared regularized prediction risk that encourages sim ilar genes to share regulators. The 

models I learn, however, are otherw ise standard linear m odels. The novelty o f the approach 

is to first cluster the genes based on their tim e series expression profiles, and then m inim ize 

a loss determ ined on a set o f global indicator variables associated w ith the com m on set o f 

possible regulatory variables. The approach does not learn an identical regulation structure 

for the genes in each cluster, but does encourage them  to adopt sim ilar structures. I evaluate 

the perform ance o f this approach on both synthetic data and the cell cycle tim e-series gene 

expression data o f [17]. M y synthetic results show that this approach is able to learn the
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correct structure far m ore effectively than standard approaches that do not take into account 

co-regulation knowledge. M y results on the cell cycle data o f Cho et al. [17] suggests 

this approach can identify the im portant transcription factors in the cell cycle genes m ore 

accurately by exploiting the co-regulation know ledge.

4.3 Method

The core o f the proposed m ethod is based on using linear regression to infer the expression 

level o f  each target gene from  the expression levels o f  a set o f potential regulator genes. 

However, even though linear prediction provides a sim ple and elegant foundation for m od

eling tim e series expression data, it cannot be applied naively. A t least three significant 

issues need to be addressed before reasonable results can be achieved in this dom ain. First, 

tim e lags exist in the regulatory pathw ays controlling gene expression. These tim e lags vary 

betw een pathw ays and rem ain generally unknow n a priori [101]. Second, the num ber o f 

param eters required by a sim ple linear m odel (one param eter for each target-regulator com 

bination) is far too m any to  be estim ated reliably from  available tim e series gene expression 

data. Som e sort o f  effective feature selection m echanism  m ust be em ployed [63], Third, 

genes that serve related or synchronized functions tend to share com m on regulatory m ech

anism s. T hat is, related genes tend to  share com m on regulators, and this know ledge m ust 

be exploited som ehow  to im prove the quality o f the regulation networks that are inferred. 

Failure to take into account any o f these issues causes the linear prediction (or any other) 

approach to perform  poorly.

I take into account all three o f  the above issues and m odify the linear prediction ap

proach to infer gene regulatory netw orks from  tim e series expression data. T he first tw o 

issues have been handled in varying ways in existing research— although I propose par

ticularly sim ple w ays to handle them  in this chapter. The third issue com prises the main 

observation I m ake, and m otivates the use o f a novel form  o f global risk  m inim ization that is 

able to share regulatory inform ation betw een sim ilar genes w hile sim ultaneously allowing 

individual differences.

4.3.1 L inear M odeling

First, to establish the basic linear prediction approach consider a n n x t  m atrix  Y  o f  tim e 

series gene expression data, w here each colum n corresponds to the expression levels o f  a 

single gene m easured over a series o f n  tim e points; hence, Y  stores the expression profiles 

for t  genes. For each gene, I would like to identify w hich other genes m easured in Y
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are likely to be regulators. The fundam ental hypothesis is that the expression levels of 

a regulator gene should be predictive o f the expression levels for a regulated target gene, 

possibly subject to tim e lag and the presence o f co-regulators or absence o f  inhibitors. To 

m itigate the effect o f m easurem ent errors and outliers in the expression data, I generally 

assum e the colum ns o f  Y  have been rescaled to values betw een 0 and 1, and thus I am only 

searching for explanations o f relative increases or decreases in expression level.

A straightforw ard linear prediction approach proceeds as follows. A ssum e for a target 

expression profile y j  given by an n  x 1  colum n vector from  Y ,  one has a set o f  candidate 

regulator profiles stored in an n  x k  m atrix  X j  consisting o f k  distinct colum ns selected 

from  Y .  (I w ill discuss below how such a set o f  candidate profiles m ight be inferred for a 

given target y j .)  The quality o f this set o f  candidate regulators can be assessed by how well 

their expression levels predict the expression levels o f the target, w hich can be determ ined 

by solving for the com bination weights o f  the regulator profiles that best reconstruct the 

target profile

m in  \ \Xj -Wj - y j W l  (4.1)

H ere the k  x  1 vector o f com bination w eights w  j  describes how the expression levels o f  the 

regulator genes in X j  interact to best explain the target expression levels y j ,  and the quality 

o f  the fit can be assessed by the residual error in (4.1).

4.3.2 C oping w ith Tim e Lags via Tim e Shifting

U nfortunately, the naive linear m odeling approach (4.1) suffers from  the three m ajor draw 

backs m entioned above. The first problem  is that it does not account for any tim e lag 

betw een the expression o f a regulating gene and the expression o f its dow nstream  target. 

In fact, the naive approach (4.1) im plicitly assum es that regulation occurs instantaneously, 

and therefore perform s quite poorly at identifying any regulatory relationship that exhibits 

delayed effects. To cope w ith this shortcom ing, I m odify the approach to first take into 

account any potential tim e lag betw een the expression o f a regulator and its dow nstream  

target. In particular, for each candidate regulator m easured in X j , given by an n  x 1 vector 

X y, I first com pute an optim al shift back in tim e that best aligns x tj individually w ith the 

target y j

=  arg  m in  J x ^ l ,  . . . ,n  -  s) -  y j { s  + 1, . . . ,n ) \\l  (4.2)

(Note that the shifts only allow tim e lags forw ard in tim e from  the expression o f  the regu

lator to the expression o f the target.) R epeating this for each candidate regulator profile in
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X j ,  yields a series o f optim al tim e lags. I can then reform ulate the expression m atrix X , 

for the candidate regulators by applying the optimal shift to each colum n, and truncating 

the colum ns to a com m on length based on the m axim um  shift, obtaining an (n  — s max) x k  

tim e-lag aligned m atrix 4>j. The target expression profile y 7  is then also truncated to a 

corresponding (n  -  s max) x 1 vector y ;;. where y :) = y 3 {smax, . . . , n) .  The quality o f the 

candidate regulators can then be assessed by the m ore appropriate aligned reconstruction

m in  ||$yW j -  f j \ \ l  (4.3)

4.3.3 Feature Selection via L I  R egularized Risk M inim ization

A lthough the m odified linear approach (4.3) appropriately handles tim e lags betw een reg

ulator and target expression patterns, it still suffers from  a m ajor drawback: the set o f 

candidate regulators for a given gene is usually very large (e.g. the com plete set o f  rem ain

ing genes), w hile the num ber o f tim e points sam pled in a tim e series experim ent is usually 

quite sm all (on the order o f 20 to 30). Therefore a large set o f com bination w eights w  j 

need to be inferred from  a lim ited am ount o f data. M oreover, only a tiny fraction o f  the 

candidate regulators are expected to be true regulators for any given gene, m eaning that, 

ideally, m ost o f the w eights should be set to 0 to  indicate non-regulation. The bottom  line 

is that som e sort o f effective form  o f feature selection is required for this problem . F rom  a 

large set o f candidate regulator expression profiles, m ost need to  be discarded, and a small 

num ber retained to provide a good explanation o f the target expression profile.

It is w ell know n in the m achine learning literature [69] that regularizing w ith the L I 

norm , rather than the m ore conventional L2 norm , is very effective fo r feature selection. In 

this approach, one adds a penalty to the risk  (the reconstruction objective) w hich encourages 

sm all values for w j :

m in  ~  yy 1 1 1  +  a llw jl l i  (4 -4)Wj

w here a  is a param eter that trades o ff the influence o f the risk w ith the regularizer. Crucially, 

this regularizer encourages m any o f the w eights to becom e exactly zero in the solution. To 

see why, note that the regularization term  is non-differentiable at zero, but any m ovem ent of 

a w eight from  zero im m ediately creates a derivative of m agnitude a  encouraging m ovem ent 

back to zero. Thus, if the m agnitude o f  the derivative o f the risk is not greater than a , then 

the w eight w ill rem ain at zero. These intuitions lead to an efficient optim ization procedure 

known as grafting [85].
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4.3.4 R egulation Sharing via G lobally Regularized Risk M inim ization

Sim ply solving the m inim ization problem  in (4.4) provides no advantage over the ap

proaches proposed in the literature however, since it does not address the problem  o f facing 

a shortage o f data w hile trying to m ake inferences about a large num ber o f genes. To m it

igate this problem  I propose to share regulatory inform ation across sets o f target genes. 

Given the hypothesis that genes w ith sim ilar expression patterns are usually co-regulated 

and involved in the sam e functional process, I propose to first cluster the target genes based 

on their expression patterns. (This clustering can be perform ed in m any different ways. 

In my im plem entation below  I sim ply used a straightforw ard K -m eans m ethod based on 

squared Euclidean distances.) Then, for each cluster, the goal is to identify a set o f  reg

ulators that is shared am ong the entire set o f genes in the cluster, w hile still allow ing for 

differences am ong the regulation o f  individual genes. A chieving this type o f inform ation 

sharing in the context o f regularized linear m odeling (4.4) however, requires som e novel 

technical developm ents.

In C hapter 3 , 1 developed a novel convex Bayesian netw ork structure learning approach 

based on introducing a set o f auxiliary indicator variables to control global feature selection. 

A dapting this idea to the current context, I propose to use a global regularization schem e on 

auxiliary global feature selection variables to  help identify the com m on candidate regulators 

am ong a group o f target genes w ith sim ilar expression profiles. G iven that there is much 

m ore data available fo r sets o f  sim ilar genes, as opposed to individual genes, the hope is 

that the com m on regulators can be m ore accurately identified.

Specifically, given a set o f  target genes Y  =  { y i , . . . , y m }, I w ould like to  identify a 

com m on set o f regulators from  the set o f candidates X  — { x i ,  . . . , x ; } .  D efine a set o f 

indicator variables rj =  {r/ i , ..., r/i} T , corresponding to the candidate set X  =  { x i ,..., x / } ,  

such that each rji €  { 0 ,1 }  indicates w hether a regulator X t is selected as an active regulator. 

L et N  =  d iag (r 7 ). Then, one can form  a globally regularized version o f  the m inim ization 

problem  (4.4) by introducing the feature selection variables r] and adding a new global 

regularization term  on these variables

m in  m in  (H^iVwj- — yj-Hl +  a | | w j | | i )  +  Au T 77 (4.5)
ne{o,i}  .

w here u  is a positive w eight vector that allows one to incorporate prior know ledge about the 

im portance o f each global feature. A lthough I sim ply set this vector to 1 in m y later exper

im ents, it w ill be very useful to set u  corresponding to prior know ledges w henever they are 

available. N ote that the global regularization term  A u T 7 7  is in fact an LO norm  regularizer
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that will autom atically force a sparse solution that selects only a small set o f global features 

for the set o f  target genes in a cluster. N evertheless, the local L I norm  regularizer, a | | w j | | i ,  

will still m ake individual choices o f regulators for each specific target gene; choosing these 

regulators from  the globally selected features identified by 7 7 . Therefore, if  the target genes 

in a cluster share som e com m on regulators, the global feature selection process w ill be very 

helpful to pick them  out, w hile the ability to individually m odel the regulation o f  each gene 

has not been dim inished.

4.3,5 Optimization Procedure

Equation (4.5) encodes a min-min integer optim ization problem . Unfortunately, integer 

optim ization problem s o f this form  are generally N P-hard. To attem pt to solve the problem  

efficiently, I first relax it into an optim ization over continuous variables, by relaxing each 

rji G {0 ,1 }  to be continuous p, G [0,1]. This leads to solve the follow ing relaxed min-min 

optim ization:

m in  m in  E  ( | |$ iV w j -  yjWl  +  a | | w j | | i )  +  A uT 77
77 j

subject to  0  <  7 7  <  1 (4.6)

In fact, this form ulation has relaxed the original L0 norm  regularizer over 7 7  into a L I norm  

regularizer. In this w ay I m aintain feature selection ability, while gaining com putational 

efficiency.

However, this relaxed optim ization problem  (4.6) is still non-convex, since the objective 

function is not jo in tly  convex in both w  and 7 7 . In the im plem entation below, I conduct the 

optim ization in tw o alternating steps to obtain a local optim al solution: m inim ization over 

w , and m inim ization over 7 7 . Each w  m inim ization step is sim ply a least squares regression 

w ith L I norm  regularization, w hich can be im plem ented as a quadratic program  [8 ], o r by 

using a fast grafting algorithm  [85]. For the 7 7  m inim ization step, I use a quasi-N ew ton 

BFG S m ethod to perform  the optim ization [4].

4.4 Experiments and Results

To evaluate the proposed approach, I conducted experim ents on both synthetic and real cell 

cycle data. In particular, I com pared the proposed global regularization approach to the stan

dard independent local prediction approach, and a prototype based linear regression m ethod 

adapted from  [94]. The adapted prototype based m ethod first clusters the genes based on
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their expression profiles. (In the experim ents below, I use the same clustering results for 

both the proposed global regularization approach and the prototype based approach.) Then, 

for each cluster, it identifies the com m on regulators for the genes by treating them  as one 

target gene

Synthetic experim ents are useful to gauge the potential effectiveness o f the approach 

under controlled conditions w here the ground truth is available. Once the intuitive behavior 

o f the technique is understood, I then apply the m ethod to  inferring the structure o f  the 

regulatory netw ork o f the yeast cell cycle.

In my experim ents, I assum e all transcription regulations work through activators, in 

stead o f  inhibitors; that is, I assum e the w  param eters are nonnegative in the linear regres

sions. A lso, to keep the w  param eters from  becom ing too small and causing a threshold 

selection problem , I included an additional constraint | |w j | | i  >  1 in all the three linear 

regression algorithm s.

4.4.1 Experiments on Synthetic Data

For the synthetic experim ents, I set up a sm all system  to sim ulate a cell cycle process 

controlled by a sm all num ber o f critical transcription factors (TFs). I defined 10 TFs that 

regulated the expression levels o f 212 genes in 4 phases o f  a synthetic cell cycle. These 

10 TFs w ere divided into 4 regulatory groups, w ith 3, 2, 3, and 2 TFs in each group re

spectively. Each group o f TFs was associated w ith a specific phase o f the cell cycle, and 

regulated the expressions o f 53 genes, as w ell as the TFs in the next phase o f the cycle. 

In my sim ulation setting, I assum ed that one gene (including the TFs them selves) can be 

regulated by either one T F  or a com bination o f tw o TFs. I generated the expression data 

by first sim ulating ideal expression levels for the TFs in a selected phase for tw o com plete 

cell cycles, totaling 16 tim e steps. Then I generated the expression profile for each gene (or 

TF) in the next phase by a 2 tim e step delayed response from  the com bination (“and”) o f m  

( m  < 2) random ly selected TFs in the current phase, plus G aussian noise. R epeating this 

procedure for all the phases in the cycle in turn, I generated synthetic tim e-series profiles 

for the entire set o f T Fs and genes.

B oth the proposed global regularization approach and the prototype based m ethod re

quire the genes to first be clustered based on their expression profiles. A lthough the num ber 

o f clusters used has a m inor effect on the perform ance o f both algorithm s, the sensitivity

m m
W

(4.7)

j
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to the cluster num ber was not significant provided that the cluster num ber is not extrem e 

(neither extrem ely big nor extrem ely sm all). For my synthetic experim ents, I sim ply choose 

to use 10 as the num ber o f clusters.

Subfigure 5 in Figure 4.1 (rightm ost subfigure) shows the expression profiles for the 

genes and TFs after their profiles have been clustered into 10 groups. I then learn the 

regulators for the genes in each group, using the globally regularized linear regression to 

encourage genes in the sam e group to share parents. I com pared the results o f  the global 

approach to both the standard local approach o f learning the parent regulators for each gene 

separately, and the prototype based approach o f forcing all the genes in one group to have 

the exactly sam e set o f parents. The com parison algorithm s serve as controls at the two 

opposite extrem es. I used the sam e L I regularized m ethod for parent selection in all o f the 

algorithm s. A fter obtaining the w  param eters from  each algorithm , all the parents indicated 

by w  >  10-5  are determ ined as predicted regulators for the corresponding genes. For a 

fair com parison, the regularization param eters (a  and A) w ere chosen to yield the highest 

F -m easure values in each case.

Subfigures 1-3 in Figure 4.1 show the regulator prediction results for the three algo

rithm s respectively; com paring them  w ith the true regulation inform ation in subfigure 4. 

The x-axis for each subfigure indicates the candidate TFs from  w hich a subset is selected as 

the set o f regulators for each gene. The y-axis for each subfigure indexes the individual tar

get genes. E ach row  plots the predicted regulators for each gene based on the corresponding 

w  param eters for that gene. A  w hite cell denotes a large w eight (w y  >  10- 5 ) connecting a 

T F  j  to a target gene i in the estim ated linear m odel, indicating that j  is inferred to regulate 

i, w hile a b lack  cell denotes a small w eight (Wij < 10- 5 ), indicating that j  is not inferred 

to  regulate i.

The table in Figure 4.1 com pares the perform ance o f the three algorithm s. T he pre

cision score m easures true positive predictions (tp ) divided by true positives plus false 

positive predictions (f p ). That is, precision =  t p / ( t p  +  f p ) .  Similarly, recall score is 

m easured in term s o f the num ber o f false negative predictions ( f n) ,  and is given by recall 

— t p / ( t p  +  f n )- F-measure is a standard com bination o f both precision (p) and recall (r), 

given by F-measure = 2 p r / ( p  + r).  The accuracy score m easures the proportion o f the 

correct predictions. T hat is, accuracy — (tp  +  tn )  /  (tp  + tn  +  f p  +  f n ) . H ere the results 

show that the global regularization approach greatly outperform s both the local regulariza

tion and prototype based m ethods w ith respect to both accuracy and F-m easure. The local 

prediction m ethod is not able to effectively identify the true regulators due to the noise in
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Local Predict Prototype Predict G lobal Predict Known TF Regs Expression

2 4 6 8  10 2 4 6 8  10 2 4 6 8  10 2 4 6 8  10 5 10 15
TF Index TF Index TF Index TF Index Time

Performance Local Prototype Global
comparison regularization m ethod regularization
accuracy (%) 57.6 47.2 73.0
precision (%) 21.4 18.1 29.9
recall (%) 71.5 74.6 63.8
F-m easure 32.9 29.1 40.8

Figure 4.1: Results on synthetic data. Row s denote target genes in the synthetic experim ent. 
C olum ns denote candidate regulators (transcription factors). Subfigure 1: local prediction 
output. Subfigure 2: prototype prediction output. Subfigure 3: global prediction output. 
Subfigure 4: ground truth regulatory relationships. Subfigure 5: expression level data used 
as input.
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Table 4.1: Average com parison results for the synthetic experim ents

Performance Local Prototype Global
comparison regularization m ethod regularization

accuracy (%) 56.1 ±  0.4 47.3 ±  1.1 70.6 ±  0.4
precision (%) 19.7 ±  0.2 18.5 ± 0 . 4 26.2 ±  0.9
recall (%) 63.3 ±  1.2 74.3 ±  1.4 52.0 ±  2.6
F-m easure 30.0 ±  0.3 29.6 ±  0.5 34.8 ±  1.4

the data and the lim ited num ber o f tim e points. The prototype based m ethod also has dif

ficulty identifying correct regulatory relationships, and tends to choose too m any parents 

for each gene. The reason for this is clear however. Since the prototype m ethod is forced 

to choose a single set o f  regulators for controlling a large set o f genes, it naturally chooses 

the union o f the prospective regulators for each gene, leading to  subsequently low precision 

and accuracy. Thus, the prototype approach depends heavily on having a m ore refined and 

accurate set o f clusters from  w hich it can m ake accurate regulatory inferences, but an ac

curate clustering is very hard to achieve in practice. Figure 4.1 shows, on the other hand, 

that the global regularization approach can effectively rem ove irrelevant candidate TFs by 

sharing co-regulation inform ation w ithin a group, w hile sim ultaneously reducing the num 

ber o f spurious regulators being inferred by allow ing individual differences betw een genes 

in  a given cluster. The overall result is a m ore accurate (albeit far from  perfect) recovery o f 

the underlying regulatory structure.

N ote that the results in Figure 4.1 are obtained on one set o f generated profiles using the 

param eters that yield the highest F-m easure values. To see the significance o f this com pari

son, I then conducted experim ents in a m ore realistic, supervised m anner. F irst I use one set 

o f generated profiles to choose the param eters that optim ize the F-m easure values for each 

algorithm . Then I reran the experim ents 10 tim es using different profiles generated from  

the synthetic setting, w hile keeping the chosen param eters fixed. The average com parison 

results and the standard derivations are shown in Table 4.1. These results suggest that the 

proposed global regularization approach is relatively m ore sensitive to the param eters than 

the other tw o approaches. N evertheless, the proposed approach m aintains a significantly 

better F-m easure value.

The m ain question that rem ains is w hether the higher quality inference on this synthetic 

m odel leads to im proved results on real gene expression data, which I consider next.
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4.4.2 Experiments on Real Data

Gene expression m icroarray data for the yeast cell cycle typically contains m ore than 6000 

genes, while only a subset o f these genes are cell cycle regulated. It is know n there are 

9 im portant transcription factors (TFs) that regulate the cell cycle process [84], namely: 

SW I4, SW I6, M PB 1, FK H 1, FK H 2, N D D 1, M C M 1 ,  ACE2 and SW I5. Since a lot o f gene 

regulatory relationships have already been identified for yeast, this m odel is com m only used 

to evaluate learning approaches that attem pt to infer gene regulatory netw orks from  data. 

H ere I use Cho et al. ’s data [17], and focus on the task o f identifying the subset o f  regulators 

from  the 9 candidate TFs, for each yeast gene that is cell cycle regulated. To clearly evaluate 

the proposed approach, I chose a subset o f 267 cell cycle regulated genes from  the Cho et 

al. data [17], w hile I could obtain confirm ed regulatory relationships from  the previous 

literature [84, 50], o r could obtain potential regulation relationships from  existing binding 

data [84] for 127 genes am ong them . I rescaled the expression data to values betw een 0 

and 1, and then clustered the genes into 15 clusters using K -m eans. (In the im ages shown 

in F igure 4.2, the genes are grouped vertically into the clusters. The num ber o f  clusters is 

chosen by using visual judgm ent to achieve a sm ooth clustering effect.) Finally, I tested 

the algorithm s on each cluster. A s in the synthetic experim ents, after obtaining the w  

param eters from  each algorithm , all the parents indicated by w  >  1 0 -5  are determ ined as 

predicted regulators for the corresponding genes. For a fair com parison, the regularization 

param eters (a  and A) w ere chosen to yield the highest F-m easure values in each case.

Since the regulatory m echanism s are still not know n for a portion o f the 267 genes, I 

therefore can only evaluate the results over the 127 genes for w hich regulatory relation

ships are presum ed known. F igure 4.2 shows the prediction results on 127 genes for all the 

three algorithm s: locally regularized prediction, prototype based prediction, and globally 

regularized prediction. H ere, again, a w hite cell denotes a large w eight {wtj  > 10 5) c o n 

necting a T F  j  to a target gene i in  the estim ated linear m odel, indicating that j  is inferred 

to  regulate i, and a black cell denotes a sm all w eight (wVj < 10~5), indicating that j  is not 

inferred to regulate i. T herefore the im ages com pare the perform ance o f the three m ethods 

on inferring regulators from  am ong the 9 candidate TFs, and shows how they related to 

the know n TF-based regulatory relationships. These results show that the globally regu

larized approach can im prove the quality o f both the standard locally regularized approach 

and the prototype based approach adapted from  [94]. A s in the synthetic case, the globally 

regularized approach has the ability to share regulatory inform ation betw een genes w ithin
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Local Predict Prototype Predict G lobal Predict Known TF Regs Expression
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TF Index

5 10 15 
Time

Performance Local Prototype Global
comparison regularization m ethod regularization
accuracy (%) 57.8 55.4 73.9
precision (% ) 22.3 21.2 35.7
recall (% ) 47.5 48.0 43.4
F-m easure 30.4 29.4 39.2

Figure 4.2: Results on the subset o f the real gene expression data from  [17], restricted 
to genes w here TF-based regulation inform ation is know n or can be inferred from  other 
sources [84, 50]. R ow s denote target genes. C olum ns denote candidate regulators (tran
scription factors). Subfigure 1: local prediction output. Subfigure 2: prototype prediction 
output. Subfigure 3: global prediction output. Subfigure 4: ground truth regulatory rela
tionships. Subfigure 5: expression level data used as input.
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a cluster, leading to better noise robustness than the local approach. H ere too, the global 

technique also overcom es the problem  o f being overly dependent on clustering quality, like 

the prototype approach, by allowing regulation differences w ith a cluster. For exam ple, in 

Figure 4.2, in the group o f genes indexed betw een 42-58, one can see that a large set o f  the 

errors produced by the standard independent approach (subfigure 1) have been corrected by 

sharing parent inform ation throughout the cluster (subfigure 3). The global regularizer cor

rectly recognizes that this set o f la te-G l genes is regulated by a subset o f SW I4/SW I6 and 

M B P1/SW I6. A lthough som e local errors rem ain in this region (and elsew here), clearly 

the overall quality o f the parent prediction has been im proved substantially in the global 

m ethod. For these genes, the prototype based m ethod (subfigure 2) recognizes tw o addi

tional parents, perhaps due to noise.

Overall, the prediction quality achieved by these m ethods on this data is still som e

w hat lim ited, but has im proved rem arkably over the past few  years, and in som e sense is 

rem arkable given the noise exhibited in the expression profiles (subfigure 5).

4.5 Conclusion

In this chapter, I have proposed a new globally regularized risk  m inim ization approach for 

learning regulatory netw orks from  gene expression data, w hich extends the feature selection 

variable controlled structure learning idea presented in C hapter 3 to deal w ith continuous 

data directly. Exploiting the assum ption that genes w ith sim ilar expression patterns are 

likely to  be co-regulated, the proposed approach first clusters the genes, and then leam s 

the regulatory relationships by encouraging genes w ith sim ilar expression patterns to share 

regulators. The experim ental results on both synthetic data and real cell cycle data show 

that this new approach is m ore effective at identifying im portant (transcription factor based) 

regulatory m echanism s than the standard independent approach, and a prototype based ap

proach.

Thus far, I have considered using only gene expression data in the learning process. 

Further prediction im provem ents are likely to com e from  incorporating further sources o f 

biologically relevant data, such as binding inform ation [84], or other form s o f prior know l

edge beyond the co-regulation assum ption m ade here. These inform ations can be nicely 

incorporated into the global risk m inim ization approach by using the u  param eter vector.
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Chapter 5

Discriminative Model Selection

5.1 Introduction

W hile B ayesian  netw orks have often been used for m odeling a jo in t probability distribution 

over a set o f  variables, they have also recently been widely used to  address d iscrim ina

tive classification tasks. This has m otivated a grow ing body o f work on learning effective 

Bayesian netw ork classifiers from  data [49].

Learning B ayesian netw ork classifiers poses the challenging problem  o f discrim ina

tive structure learning, in addition to param eter estim ation. This is not a trivial challenge. 

For exam ple, one can typically im prove classification perform ance on training data by in

creasing the com plexity  o f the m odel, w hich, however, can lead to inferior generalization 

perform ance on unseen test data. A lthough one can still use the generative score-based 

or constraint-based structure learning m ethods (discussed in chapters 2 and 3) to  identify 

structures for B ayesian  netw ork classifiers, this is not an optim al approach because these 

m ethods optim ize a goal that is different from  discrim inative classification. To clarify  this 

issue, consider the classification task over a set o f  variables X \ , ..., X n , Y ,  w here Y  is the 

class variable. H ere, the class label for an instance x  is determ ined only by the condi

tional m odel P ( y |x ) , w hich is different from  the jo in t distribution P ( x ,  y)  that previous 

generative B ayesian netw ork learning m ethods aim  to identify.

Realizing that classification poses a distinct problem  for Bayesian netw ork structure 

learning, m any researchers have investigated this issue. This dates back (at least) to  naive 

Bayes classifiers [29], and has continued w ith various approaches that include feature se

lection [59], and alternative structures [14, 33], w here [33] has also explicitly stated the d is

crepancy betw een obtaining good predictive accuracy and a good generative M D L  score. 

[54] com pared several m odel selection criteria (unsupervised/supervised m arginal likeli

hood, supervised prequential likelihood, cross validation) on a restricted subset o f  Bayesian
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netw ork structures. [40] presented an algorithm  for discrim inatively learning B ayesian net

works that used the conditional likelihood o f the class variable given the evidence variables 

as the m odel selection criterion.

In this chapter, I investigate score-based approaches for the problem  o f learning struc

tures for B ayesian netw ork classifiers. Instead o f  using the generative M D L /B IC  and BDe 

scores to control the heuristic search process, I propose two novel discrim inative model 

selection criteria, Conditional Bayesian Information Criterion (CBIC) and Bias2+ Variance 

(BV), w hich aim  to identify the m odel w ith the best generalization classification perfor

m ance. This is the first m ain contribution o f  this chapter.

To evaluate the proposed discrim inative criteria, I conduct a series o f  controlled exper

im ents to com pare them  w ith the classical M D L /B IC  and B D e criteria and the straightfor

ward discrim inative Conditional Likelihood (CL) criterion on the task o f learning structures 

for B ayesian netw ork classifiers. The experim ents are designed to provide a com prehen

sive com parison betw een these m odel selection criteria across various situations: ( 1 ) using 

generative or discrim inative m ethods for param eter estim ation; (2 ) using the w hole training 

set for both param eter estim ation and criteria com putation or dealing w ith these tw o tasks 

in a cross validation m anner; (3) conducting experim ents w ith a set o f true data generation 

structures w hose M arkov B lanket com plexities around the class variable have a range o f 

values. S ince m ost o f  the criteria considered are asym ptotically correct, I only investigate 

the practically useful case o f learning B ayesian netw ork classifiers w ith sm all training sets. 

Since the goal is to better understand the quality o f the criteria them selves, independent o f 

the underlying search algorithm , I use the sam e heuristic search procedure for all o f  them. 

In particular, I follow  a standard fram ew ork for evaluating m odel selection criteria  [52, 92] 

that considers only a set o f small m odels so that each m odel can be evaluated. This com 

prehensive em pirical study constitutes the second m ain contribution o f this chapter.

The rest o f this chapter is structured as follows. Section 5.2 provides the fram ew ork for 

discrim inative structure learning. Section 5.3 presents the proposed discrim inative m odel 

selection criteria. The em pirical study is reported in Section 5.4. This w ork was originally 

published in [41].

5.2 Bayesian Network Classifiers

Classification is one of the m ost im portant tasks addressed in m achine learning. Solv

ing a classification problem  requires building a classification m odel over a set o f  variables
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Figure 5.1: A n exam ple for B ayesian netw ork classifier

X \ ,  . . . ,X n , Y ,  w here Y  denotes the class variable, and then using the m odel to answ er 

queries o f the form  w hat is value o f Y  given X  =  x ?  Because they encode uncertainty 

and provide a probabilistic foundation for m odeling and inference, B ayesian netw orks are 

a natural m odel for answ ering such queries through sound probabilistic reasoning.

R ecall that a B ayesian netw ork encodes a jo in t distribution over a set o f  variables using 

an acyclic graph structure Q that is associated w ith a set o f param eters 8. W hen used as a 

classifier, the natural way to use a B ayesian netw ork is to assign the m ost likely value of 

y  given x . Specifically, for a given structure Q and param eters 8, the classification rule is 

given by

To determ ine the conditional probabilities, and hence the classification, it turns out that 

not all the variables in the B ayesian netw ork are relevant. In fact, only the variables that 

fall into the M arkov B lanket o f  the class variable Y  affect the inference (the concept o f 

M arkov B lanket is introduced in D efinition 2.2). Essentially the M arkov B lanket identifies 

the sm allest set o f variables that shield the target Y  from  the rest o f  the netw ork. To clar

ify this, see F igure 5.1, w hich show s an exam ple for B ayesian netw ork classifier. In this 

exam ple, the only variable that is not in the M arkov B lanket o f Y  is X \ , and therefore this 

variable is irrelevant to the classification o f Y .

A good B ayesian netw ork classifier is one that produces accurate classifications. Typi

cally, a B ayesian netw ork classifier (Q , 8)  is evaluated in term s o f the m isclassification error 

it obtains on unseen test data

Therefore the goal o f learning is to obtain a Bayesian netw ork that m inim izes this score 

w ith respect to the true underlying distribution P ( x ,y ) .  W hile one does not know this

=  a rg m a x  P (y \x . ,Q ,d )  
y

(5.1)

(5.2)
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distribution a priori, a set o f test data S  =  [x 1?/1; . . . ;  x T yT] can be draw n from  P ( x ,  y) to 

help evaluate Bayesian netw ork m odels through the evaluation

N ote that although the goal o f this chapter is to identify the optim al structure for a

requires the param eters to be estim ated, since the evaluation o f each candidate structure is 

usually established on the param eters. Therefore, the param eter estim ation strategy m ust 

also be considered. O ne strategy w ould be to use the standard generative m axim um  like

lihood param eter estim ation (M L). The other, however, would be to use discrim inative pa

ram eter learning. In particular, one can use the m axim um  conditional likelihood param eter 

estim ation (M CL) discussed in Section 2.2.1 o f Chapter 2. In m y im plem entation, I used the 

E L R  algorithm  proposed in [39] to  perform  discrim inative param eter training. This ELR 

algorithm  learns the param eters by m axim izing the conditional likelihood o f the training 

data using a sim ple gradient-ascent procedure.

5.3 Discriminative Model Selection Criteria

G iven the difference betw een the goals o f learning a generative B ayesian netw ork m odel 

versus learning a discrim inative B ayesian netw ork classifier, I propose tw o new discrim i

native m odel selection criteria to guide the heuristic structure search— aim ing to  find the 

structure w ith the best generalization perform ance w ith respect to m isclassification error.

The first criterion I propose is a discrim inative variant o f the standard B IC /M D L  cri

terion. N ote that the standard BIC  score, see Equation (2.6), consists o f tw o term s: a log 

likelihood term  on the training data and a penalty term  for m odel com plexity. These two 

term s are used to balance the tradeoff betw een fit to the training data and m odel complexity. 

N ote however, w hen using a B ayesian netw ork for classification, one is concerned w ith the 

conditional likelihood o f the target labels y  given the x  values, instead o f  the jo in t likelihood 

o f the entire instances. Furtherm ore, m any variables in the Bayesian netw ork m ight not be 

relevant for classification if  they do not belong to the M arkov B lanket o f Y ,  as discussed 

above. Therefore the standard m odel com plexity term  in the BIC  score does not reflect the 

true com plexity o f the classifier. Taking these tw o observations into consideration, I p ro 

pose a discrim inative m easure for scoring Bayesian netw ork structures for classification, 

based on extending the standard BIC score. The new score I propose, Conditional Bayesian

(5.3)

Bayesian netw ork classifier given com plete training data D  =  [x 1?/1; . . .  ; n N y N ], it first
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Information Criterion (CBIC), is defined as follows

CBIC(C/, D ) = Y J ^ g P { y i \ ^ \ Q , 0 )  -  k M b {G ,Y )  log N  (5 4 )

i= i

w here the first term  is the conditional likelihood o f labels on the training data; the second 

term  m easures the com plexity o f  the conditional m odel w here k M B (G ,Y )  is defined as 

the num ber o f free param eters in the substructure o f G that falls into the M arkov B lanket 

o f  the variable Y .  By m odifying BIC  in this way to take into account only the relevant 

structural com plexity o f the classification m odel, the goal is to achieve a m ore accurate 

tradeoff betw een conditional data fitness and classifier complexity.

The second discrim inative criterion I propose is m otivated by a m ore general view  o f 

the classification task. R ipley [72] proves that the expected mean-square-error o f a classi

fier corresponds to an additive com bination o f Bias2 and Variance. Thus if  one can m easure 

both the bias and variance for all conditional distributions P ( y |x )  encoded in a candidate 

Bayesian netw ork (G, 6),  then the generalization classification perform ance o f that can

didate can be m easured using  a Bias2+Variance (BV) criterion. H ere, I define the BV 

criterion as follow s

1 N 2  

bv(£/, d ) = - Y ,  ( H y l \*-1) -  P ( y > \Q ,  0)) +  v ^ r  <?, e )) (5.5)
2 =  1

where, as before, 6  denotes the param eters trained on the training set D  by either m axi

m um  likelihood estim ation or m axim um  conditional likelihood estim ation. The first term  

in the BV criterion is the square o f  bias for a conditional distribution P { y l \"x.1, Q, &) en

coded in the candidate B ayesian network, w here the m ean fo r this conditional distribution 

is approxim ated using the em pirical conditional distribution P ( y l \yii) on the training data. 

The em pirical conditional distribution is defined as

p (9 |x ) = / i* f  if  x  — x '  for som e f €  { 1 . . .  JV} ( J 6 )
I undefined otherw ise

w here # XiV =  E i l i  l(x«=x,y»=y) and # x  =  E i l i  ^ x ^ x ) -  The second term  o f the BV

criterion m easures the variance o f the conditional distribution P ( y |x , Q. 6).  H ere, I adopt

the variance estim ate proposed in [93], w hich is derived from  a Bayesian perspective

V a r ( P ( y \ x , g , 6 ) )  (5.7)

E a  [p (a > b > y lx > G, o)  -  p ( t / |x ,  g , o )P (a ,  b |x ,  g , e )}2 

-  [P (b , y |x , g,  6) -  P ( 2/ |x , g,  0 ) P ( b |x ,  a ,  6)}2E   ----
j b  a i b  ^
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w here # j b  and a jb  denote the em pirical and prior counts for [ x ^  =  b] respectively, as 

introduced in Section 2.2.1 o f Chapter 2.

Given these tw o discrim inative structure scoring criteria, the main question is how they 

perform  at learning B ayesian netw ork classifiers. To answ er this, I conducted a series o f 

experim ents com paring them  to standard generative criteria and a straightforw ard d iscrim 

inative Conditional Likelihood  (CL) criterion

N
CL( g , D)  =  ^ l o g P ( y l | x \ £ , 0 )  (5.8)

i = l

5.4 Empirical Studies

This section reports on an em pirical study that com pares the tw o proposed discrim inative 

model selection criteria to standard generative B IC /M D L  and B D e criteria, and to a sim ple 

discrim inative CL criterion, on the task  o f identifying the best Bayesian netw ork m odel for 

classification. To attem pt to provide a reasonably com prehensive study, I set up experim ents 

across a range o f contexts.

First, since the com putation o f m odel selection criteria requires param eter estim ation, 

I conducted two types o f  com parisons, one using generative m axim um  likelihood param 

eter estim ation (M L) and the other using discrim inative m axim um  conditional likelihood 

estim ation (M CL).

Second, there is an issue o f  how to use the training data for the com bination o f  the p a 

ram eter estim ation and criterion com putation. O ne approach is to use the entire training set 

for both tasks— I denote this approach as 1SS (1 single set). The other approach addresses 

these tw o tasks in a cross validation like m anner, by splitting the training set into tw o sub

sets, and then using one subset for param eter estim ation and the other subset for criterion 

com putation. I denote this alternative approach as C V  (cross validation). In m y experi

m ents, I used 5CV  (5 fold cross validation) in particular. T hat is, the training set is first 

divided into 5 equal-sized subsets, then the follow ing process is repeated for each o f the 5 

subsets: use the o ther 4 subsets for param eter estim ation and then com pute the criterion on 

the chosen subset. Finally, the candidate structure is scored w ith the average o f the 5 scores 

com puted.

Third, for each different com bination o f param eter estim ation technique (M L vs M CL) 

and data using strategy (1SS vs 5CV), I study the perform ance of each criterion w ith respect 

to underlying true B ayesian netw ork structures w ith various M arkov B lanket com plexities.
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Procedure fo r  generating sequence o f  structures:
Given a B ayesian netw ork structure Ql , used to generate training and test data, I 
generate a sequence o f candidate structures w ith decreasing/increasing com plexities 
as follows:

1. Starting from  the original structure Ql , sequentially delete one random ly selected 
edge from  the M arkov B lanket o f the class variable, to generate a series o f  
structures w hose class variable has decreasing M arkov B lanket size.

2. S tarting from  the original structure Qf , sequentially add one random  edge into the 
M arkov B lanket o f the class variable, w hile respecting to the acyclicity, to  generate 
a series o f  structures w hose class variable has increasing M arkov B lanket size.

Figure 5.2: Candidate structure generation procedure

VS) VS)
( m)

© .. ©
X3

X2 XI X2 XI X2XI XI

X3 X3 X3 X3'

(f)(c) (e)(a) (b)

F igure 5.3: Sequence o f structures; (d) is the original structure

Section 5.4.1 first describes the detailed experim ental set up and evaluation m ethod 

used. Then Section 5.4.2 presents the experim ental com parison of the two proposed m odel 

selection criteria  against the standard criteria in each particular context.

5.4.1 E xperim ental Setup

The goal o f  the experim ental design is to a ttem pt to  investigate the perform ance o f the var

ious m odel selection criteria independent o f  the heuristic search procedure. Therefore, I 

used a set o f  candidate Bayesian netw ork structures generated by perturbing a given tar

get structure— the structure o f the B ayesian netw ork used to generate the train ing and test 

data— to approxim ate the structure search space. D etails for the structure generation proce

dure are given in Figure 5.2. The procedure uses basic operators (adding/deleting an edge) 

to approxim ate the standard structure search process. U sing this procedure, a sequence o f 

candidate structures w ith a range o f M arkov B lanket com plexities (w ith respect to the class 

variable) can be generated. Figure 5.3 shows an exam ple o f candidate structure sequence, 

w here Y  is the class variable, and structure in (d) is the starting point— the original data 

generation structure.

In particular, I run each experim ent as follow s. First, a Bayesian netw ork structure 

Qf is constructed w hose , Y )  is w ithin a specified range. Second, Ql is used to
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generate the candidate structure sequence. Third, param eters 6 1 are chosen random ly for 

the Bayesian netw ork m odel (Gt , 9 t ), w hich is then used to generate the training set D  and 

test set S.  Finally, given a set o f training data and an approxim ated structure space, each 

criterion c is used to select its best structure Qc from  the candidate structure set.

One final issue to address is how to evaluate the perform ance o f each m odel selection 

criterion. H ere, I m easure the perform ance o f each criterion c by its Relative Model Selec

tion Error (RM SE), w hich is defined as

RMSE(c) =  errS f c * 'P )  (5'9)e r r s (G*,0  )

where er r s (G ° , 9°) is the test m isclassification error on S  o f  the Bayesian netw ork chosen 

by criterion c, w hile (G* ,0*)  is the B ayesian netw ork chosen from  the candidate structure 

sequence that has the sm allest test error on S.  N ote that 6 '  and 9* are param eters trained 

on D  for structure Gc and G* respectively, according to the specific setting discussed at the 

beginning o f  the Section 5.4.

Since accurate structure selection is m ost challenging, and m ore relevant, w hen given 

lim ited training data, I focus on using sm all training sizes below.

5.4.2 Results

N ow  I present the results achieved under various experim ental contexts. T he results re 

ported in this section are all obtained using training sets o f  size 50 and test sets o f size 

1000.

Using Maximum Likelihood Parameter Estimation

First, I consider the context o f using generative m axim um  likelihood param eter estim a

tion (M L) and 1SS m anipulation o f  the training set— dealing with param eter estim ation 

and criteria com putation on the entire training set. To evaluate the different criteria w ith 

respect to M arkov B lanket com plexity, I random ly generated six groups o f  B ayesian  net

w ork structures on 7 variables w ith varying M arkov B lanket com plexities w ith respect to 

the class variables. Each group includes 30 structures w ith M arkov B lanket com plexities 

on the sam e level. Each structure is used for data generation and structure search space 

construction as described in Section 5.4.1. Then each criterion c can be used to  select the 

best structure from  each structure sequence. The perform ance o f each criterion is evaluated 

using the R M SE  m easure.
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Figure 5.4: C om parison under context M L+1SS
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Figure 5.5: C om parison under context M L+5CV

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.4 shows the results for the M L+1SS set up. H ere the y-axis indicates the six 

groups in the order o f increasing M arkov B lanket com plexities regarding the data genera

tion Bayesian netw orks. The figure show s that the proposed B V  criterion perform s the best 

in m ost cases, w ith the o ther discrim inative criterion CL and the generative B D e criterion 

behaving sim ilarly to BV. However, one can notice that C L and BD e dem onstrate inferior 

perform ance when the M arkov B lanket com plexity is low, w hereas their perform ance is 

sim ilar to BV w hen the M arkov B lanket com plexity is high. This outcom e reflects the fact 

that CL usually prefers com plex structures, w hile B D e also tends to overfit for sm all training 

sets. The other tw o criteria, B IC  and the proposed discrim inative variant C B IC , however, 

both perform  m uch w orse across alm ost the entire range o f M arkov B lanket com plexities, 

except the sm allest com plexity case. This suggests that BIC and CBIC overpunish com plex 

m odels on sm all training sets, particularly  CBIC w hich puts relatively less em phasis on the 

data likelihood term  com paring to BIC.

Second, I repeated the previous experim ents except that, instead o f  using 1SS, I used 

5CV  (5 fold cross validation) to m anage the data for param eter estim ation and criterion 

com putation. F igure 5.5 shows that sim ilar results are obtained to before, except now the 

BV  and CL criteria overperform  all the other criteria across the entire range o f M arkov 

B lanket com plexities, w hile B V  is slightly better than CL. This suggests the 5 fold cross 

validation technique effectively overcom es the overfitting problem  o f CL. B IC  and CBIC 

still perform  m uch worse. N ote that the B D e criterion does not m ake sense in the 5CV  

setting, since it integrates param eter estim ation and score com putation together. Therefore 

I sim ply com puted the B D e score on the training partition used for the criterion com putation 

in this setting. This m eans that a sm aller dataset is used for B D e com putation than in the 

1SS case, w hich explains w hy B D e has inferior perform ance to BV and C L in this case.

Using Maximum Conditional Likelihood Parameter Estimation

Since the ultim ate goal in this chapter is learning a good Bayesian netw ork classifier, it is 

natural to consider m axim um  conditional likelihood param eter estim ation (M CL) instead 

o f the generative param eter estim ation technique used above. I repeated the previous tw o 

sets o f experim ents, using M C L  instead o f M L  param eter estim ation.

Figures 5.6 and 5.7 show the results for the two data m anipulation strategies, 1SS and 

5CV, respectively. N ote that B D e criterion is not shown here since it does not have a con

ditional variant. O therw ise, the com parative results achieved here are quite sim ilar to the 

ones reported above for M L  param eter estim ation. Once again, BIC  and CBIC perform
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Figure 5.6: C om parison under context M CL+1SS
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Figure 5.7: C om parison under context M C L+5C V
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Figure 5.8: C om parison for B V ’s perform ance under the four contexts

m uch w orse than BV and C L, except for the sm allest com plexity case in the 1SS context. 

In the 5CV context, however, both B V  and C L criteria perform  substantially better than 

B IC  and CB IC  across the entire range o f M arkov B lanket com plexities. This is reasonable 

since M C L  param eter estim ation cannot overcom e the over-penalization problem  o f BIC  

and CBIC. In both contexts, the proposed discrim inative BV criterion perform s best at all 

but the sm allest com plexity level.

O verall, these experim ental results suggest that the discrim inative BV criterion is a 

reasonable choice for learning the structure for B ayesian  netw ork classifiers using score- 

based structure search approach.

Comparing Parameter Estimation Regimes

The results presented so far provide the relative m odel selection error for each m odel selec

tion criterion in fixed contexts. They suggest that the discrim inative BV criterion is the best 

choice overall in each fixed context. These w ithin-context com parisons, however, can not 

tell us under w hich specific context BV perform s best.

I thus answ er this question by com paring the BV criterion across the four contexts. I use 

the direct m odel selection error— test error e rrs{Q BV\ 0 B V ) as the perform ance m easure 

w here (GB V , 0 B V ) denotes the m odel picked by criterion B V .

Figure 5.8 suggests that the perform ance o f the B V  criterion with respect to the M arkov 

B lanket com plexity is sim ilar in all four contexts. C om paring the perform ance o f BV 

w ith respect to each o f  the four contexts suggests an ordering M L+5C V  >  M C L+5C V  

>  M L+1SS >  M C L+1SS, w here “ > ” denotes “better than” . Therefore, for BV, using
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m axim um  conditional likelihood param eter estim ation is not helpful, and in fact leads to 

w orse perform ance than using m axim um  likelihood param eter estim ation. H owever, 5CV 

is always helpful using both M L and M C L  param eter estim ation, relative to the 1SS data 

m anipulation strategy. This reflects the ability o f 5CV  to help recognize the generalization 

perform ance o f  a candidate structure. Thus one can conclude that the BV criterion with 

M L param eter estim ation and 5CV data m anipulation is the m ost advantageous technique 

overall for score-based structure learning o f  B ayesian netw ork classifiers.

5.5 Conclusion

In this chapter, I proposed two new discrim inative m odel selection criteria, B V  and CBIC, 

directed at the problem  o f learning structures for B ayesian netw ork classifiers. CB IC  is a 

discrim inative variant o f the standard BIC  score, w hereas B V  is derived from  a standard de

com position o f the expected m ean-square-error for classification. I conducted an em pirical 

study that com pared these tw o proposed criteria to the standard generative B IC  and BD e 

criteria, and a sim ple discrim inative C L  criterion. This com parison was conducted in four 

contexts: M L +1SS, M L+5CV, M C L+1SS and M CL+5CV. The results suggest the B V  crite

rion I proposed outperform s the other criteria across each context and m ost M arkov B lanket 

com plexities. A  further study o f B V  across contexts reveals that M L+5C V  is the best set

ting for BV. By contrast, the proposed CB IC  suffers from  the problem  o f over-penalization 

and dem onstrate poor perform ance. I feel this investigation can provide a useful reference 

in the study o f discrim inative Bayesian netw ork structure learning.
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Chapter 6

Maximum Margin Bayesian 
Networks

6.1 Introduction

W hen training probability  m odels for classification tasks, it is often recom m ended that the 

m odel param eters should be optim ized under a discrim inative training criterion such as con

ditional likelihood [33, 55, 56]. In this chapter, I investigate the problem  o f discrim inative 

param eter learning for Bayesian netw ork classifiers assum ing given fixed structures. B ut 

instead o f  conditional likelihood, here I consider applying the m axim um  m argin m ethod

ology to B ayesian  netw orks to form ulate a novel m axim um  m argin param eter estim ation 

approach, w hich can also be extended into the case o f m ultiple class variables.

M axim um  m argin training is one o f  the m ost popular discrim inative learning strategies 

available. Recently, it has been observed that M arkov netw orks (undirected graphical m od

els) can be efficiently trained to m axim ize the m argin, even sim ultaneously, over a set of 

class variables [1, 8 8 , 89, 91]. These training algorithm s have adopted the Euclidean nor

m alization constraint o f support vector m achines (SV M s), w hich can be accom m odated in 

their fram ew orks because they rely on an undirected graphical m odel representation that al

lows a single arbitrary norm alization. However, unlike M arkov netw ork m odels, B ayesian 

netw orks require additional norm alization constraints to be satisfied; nam ely that the lo

cal clique potentials represent conditional probability  distributions. These constraints are 

very different from  the standard Euclidean norm alization constraints o f SV M s. D eveloping 

o f m axim um  m argin m ethodology for B ayesian netw orks under these local norm alization 

constraints is m uch harder than for M arkov netw orks. N evertheless, Bayesian netw orks do 

not preclude the possibility o f learning large m argin classifiers. M y goal in this chapter is to 

exploit the benefits o f  large m argin training, w hile still being able to represent the learned
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classifier as a Bayesian network. For the purpose o f deriving the m axim um  m argin training 

technique for B ayesian networks, I adopt the exponential Bayesian netw ork representation 

introduced in (2.9), by substituting 6  w ith u  using the logarithm ic transform ation (2.10).

There are several m otivations for attem pting to m aintain a Bayesian netw ork represen

tation, even w hen perform ing large m argin training. First, the classification m odel being 

learned could be a fragm ent o f a m uch larger probabilistic causal m odel. In this case, m ain

taining a B ayesian netw ork representation could allow one to integrate the learned model 

with a pre-existing background m odel w ithout additional effort. Second, the norm alization 

constraints asserted by a directed graphical structure capture nonparam etric causal know l

edge about the dom ain. Therefore, respecting these constraints allows one to exploit the 

advantages o f  Bayesian netw orks for capturing intuitive causal structure. N ote that rem ov

ing the norm alization constraints w ould turn the Bayesian netw ork into a M arkov network, 

and this w ould unavoidably rem ove the causal know ledge that was originally encoded by 

the local norm alization constraints.

To understand both the prospects and lim itations o f  learning m axim um  m argin B ayesian 

netw ork classifiers, I proceed as follow s. First, I investigate the notion o f  classification 

margin for B ayesian netw ork classifiers in Section 6.2.1, and relate this to  the com m on 

conditional likelihood criterion o f graphical m odels. I then present a convex relaxation in 

Section 6.2.2 that can be used to  derive an effective training algorithm  in Section 6.3. Sec

tion 6.4 show s this algorithm  solves a range o f  problem s exactly and otherw ise provides 

an effective heuristic for finding approxim ate solutions. In Section 6.5, I then present ex

perim ental results w hich show that the causal inform ation in Bayesian netw orks can help 

achieve effective generalization perform ance w hen the directed graphical structure captures 

relevant causal knowledge. Finally, I extend the approach to deal w ith m ultiple class vari

ables in Section 6 . 6  and present further experim ental results in Section 6.7. This w ork was 

originally published in [45],

6.2 Maximum Margin Bayesian Networks

T he goal o f this section is to derive a convex m axim um  margin form ulation for d iscrim ina

tive B ayesian netw ork param eter training. Towards this goal, I first form ulate a m axim um  

m argin training criterion w ithin the B ayesian netw ork fram ew ork, and then obtain a convex 

optim ization form ulation from  it by relaxing the nonlinear equality constraints.
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6.2.1 M axim um  M argin Training Criteria

I initially assum e there is a single class variable Y  taking on values y  6 { 1 . V } .  (I will 

extend this to m ultiple class variables in Section 6 . 6  below.) A s introduced in Section 5.2, 

one usually m akes predictions through conditional probabilities by y* =  a rg m a x (/ P ( y |x ) , 

while the conditional probabilities o f y  depend only on variables that are w ithin the M arkov 

B lanket o f  variable Y  in the B ayesian netw ork. Thus I w ill restrict my attention to the 

classification relevant subset o f variables henceforth.

As discussed previously in this thesis, there are tw o param eter estim ation m ethods that 

are often used to train Bayesian netw ork param eters: a generative m axim um  likelihood 

(M L) param eter estim ation and a discrim inative m axim um  conditional likelihood (M CL) 

param eter estim ation. H ere, instead I investigate an alternative objective criterion based on 

the large m argin criteria o f  SVM s. In particular, I adopt the m ulticlass m argin definition o f 

[22]. In the current context, given training data D  =  [xLy1; . . . ;  x ;Vy ;V], this objective can 

be cast m axim izing the m inim um  conditional likelihood ratio (M CLR)

N  P L / l x *  6 )
M C L R (0) =  m in m in  'i = lŷ yi P ( j , | x * , 0 )

w hich can be turned into a m argin form  by taking the logarithm s o f both sides

N
lo g M C L R (0 ) =  m in m in  l o g P ( x l ,y J|0 ) -  l o g P ( x \ y |0 )  (6.1)

t = 1 yjtyi
Thus m y goal is to find a set o f param eters 0  that maximizes the m inim um  m argin betw een 

the target class label against the best alternative under the probability m odel. (I introduce 

slack variables to obtain a soft m argin version o f the criterion later.)

To see the connection to SV M s m ore clearly, note that one can substitute the exponential

form  o f P ( x ,  y\ui) given in (2.9) into the M C L R  objective, to obtain

N  . . "T
logM C LR (co) =  m in m in  [<^(xl , y 1) — 0 ( x * ,y)] u;

1 = 1 y^tyi
N

=  m in m in  A ( i , y ) u  (6 .2 )
i=1 j/tV

w here A ( i ,y )  =  [<p{x\yl) — < />(x\y)]T , and <f>(x.,y) is defined in Section 2.3. H ere the 

row  vector A ( i , y)  plays the role o f the feature vector for training exam ple i and class label 

y. Therefore I can w rite the entire set o f  feature vectors as a m atrix A  o f size ( N V )  x |</>|, 

w here \(f>\ denotes the num ber o f  features.

Thus, starting w ith the training objective (6.1), through a change o f  param eters, I am 

led to a training problem  that can be cast as a conventional m axim um  m argin problem

m a x  7  subject to Aco >  7 <5, ||cu|| <  1 (6.3)
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where 5 ^ ^  =  so <5 is a vector o f length N V .  N ote here I have added the norm al

ization constraint ||u;|| <  1. O bviously som e form  o f norm alization is necessary to avoid 

m aking A u  large in a trivial m anner ju s t by m aking u  large. Euclidean norm alization 

happens to yield a w eight vector that m axim izes the Euclidean m argin [80], The resulting 

constrained optim ization problem  corresponds to the standard version o f m ulticlass SVM s 

proposed in [22] (ignoring slacks), here expressed over features determ ined by the Bayesian 

network.

In fact, this connection betw een probabilistic and large m argin classifiers is one o f the 

m ain observations o f [I , 8 8 ], w hich then proceed to use standard SV M  training criteria over 

these features. N ote how ever that the solution w eight vector for (6.3) cannot be substituted 

into the Bayesian netw ork representation, because it will not satisfy the proper norm aliza

tion constraints (2.12); nam ely that ]T a ewi ah =  1 for all j ,  b . The previous techniques o f  

[ 1 , 8 8 ] w ere able to proceed by using an undirected graphical m odel w hich could accom 

m odate unnorm alized w eights in the potential function. However, for B ayesian netw orks 

this is not sufficient, and it is usually  hard to represent the sam e classifier in the original 

B ayesian netw ork structure.

The alternative approach I consider, therefore, is to m axim ize the sam e objective, but 

subject to constraints that preserve the representability as a B ayesian netw ork

m a x  7  subject to  Au> >  y d , eUJjab =  1  V j, b  (6.4)
CJ,7 '

a

Unfortunately, these natural constraints on u  are nonlinear and this yields a difficult op

tim ization problem . A ttem pts to reform ulate the problem  according to standard transfor

m ations also fail. For exam ple, although using 6  param eters instead o f  u> can change the 

local norm alization constraints into linear constraints, it creates difficulty in the m argin con

straints A  ln (0 )  >  y d . The standard trick o f rem oving the norm alization constraints via the 

alternative transform ation (2.13), w hich uses the w  param eters, also does not w ork in this 

case, since it creates term s o f the form  Yljab ^ (j ,a ,b)(*> v) \w jab — log Yha' eu';'"/b ], which 

cause the optim ization to be neither convex nor concave in w . Thus, if  one hopes to solve 

the m axim um  m argin B ayesian  netw ork training problem  exactly, a m ore subtle approach 

is required.

6.2.2 Convex R elaxation

A lthough solving for the m axim um  m argin Bayesian netw ork param eters appears to be 

a hard problem , it is still possible to  derive a practical training algorithm  that solves the
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problem  for a range o f  graph topologies, and otherw ise provides a useful foundation for ap

proaches that seek local m axim a. The m ain idea is to try to exploit convexity in the problem  

as m uch as possible, and identify situations w here the solutions to a convex subproblem  can 

be m aintained.

First note that the objective and the m argin constraints in (6.4) are linear in u .  U nfor

tunately, the norm alization constraints are nonlinear equalities on u , w hich elim inates the 

convexity o f the problem . However, my basic observation is that the problem  can be m ade 

convex sim ply by relaxing these equality constraints to inequality constraints, thus yielding 

a sim ple relaxation

The solution to this problem  w ill o f course be subnorm alized. The key fact about the relaxed 

problem  (6.5), however, is that it is convex in u  and this w ill perm it effective algorithm ic 

approaches [8 ]. N ote that the inequality form  o f the norm  constraints in (6.3) and (6.5) is 

not vacuous: In either case, reducing the m agnitude o f  the weights only has the effect o f 

reducing the inner products in the m argin constraints (A w ), w hich can only yield a sm aller 

m argin 7 . The m axim ization objective naturally forces the w eight m agnitudes overall to 

becom e as large as possible, subject to  the norm alization constraints.

It is interesting to com pare the tw o convex optim ization problem s (6.3) and (6.5), w hich 

correspond to m axim um  m argin M arkov netw orks and B ayesian netw orks respectively. 

These problem s have identical objectives and m argin constraints on u>, but differ only in 

the norm alization constraints— one global constraint for M arkov netw orks versus m ultiple 

local constraints for B ayesian netw orks. The solutions to the two problem s will obviously 

be different. Intuitively, the B ayesian netw ork constraints m ight regularize the weights 

m ore com prehensively in the sense that each local C PT  is constrained to have identical 

m axim um  influence, w hereas a M arkov netw ork could concentrate its w eight in a single 

local function.

Soft Margin Formulation

B efore tackling real problem s I need to introduce slack variables, since it is obviously not 

practical to use a hard m argin form ulation on real data. To this end, I consider the standard 

soft margin form ulation o f  SV M s

m a x  7  subject to A lu > 7 S (6.5)
a

1  u 0 T
m in  -  a; +  C £  1 subject to A u  >  S  — 
uj,£ 2  “

(6 .6)
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w here £ are the slack variables; 1 denotes the vector o f all 1 entries; S  is an ( N V )  x N

sparse m atrix w ith nonzero entries S ( ( i , y ) , i )  =  1 (which enforces the constraint that

A ( i , y ) u  > — & for all i, y)\  and C  is a param eter that controls the slack effect [2 2 ],

N ote that £ >  0 is already im plied in (6 .6 ), because A (i, y l ) =  0  and 5(i, y l ) =  0 for all i. 

For my purpose, I need to state this objective explicitly in term s of the m argin 7 . It can be 

shown that (6 .6 ) is equivalent to the follow ing [58]

m in  —̂  +  C f l  subject to A w  >  7 (6 -  S£) ,
u;,7 ,£ 2 7 ^

7  >  0, ||u;|| <  1 (6.7)

Thus, by replacing the Euclidean norm alization constraint w ith the B ayesian netw ork sub

norm alization constraints, I obtain

m in  — .  +  C f l  subject to A oj >  7 (6 — S£) ,
UJ,7,^

7  >  0, E a e^ ab ^  1 V7’b  (6 -8)

The two problem s, (6.7) and (6 .8 ), specify the soft m argin form ulations o f m axim um  m argin 

M arkov netw orks and B ayesian networks respectively. Unfortunately, neither form ulation 

is convex because the quadratic term  j(<5 — S £ )  is non-convex in the optim ization variables 

7  and £ [8 ], For M arkov netw orks one can sim ply convert (6.7) back to (6 .6 ) and thus con- 

vexify the problem . It is o f  course no surprise that optim ization problem s can be converted 

betw een convex and non-convex form ulations w ithout affecting the optim al solution. For 

Bayesian netw orks I instead solve the follow ing problem  w ith alternative slack variables e 

and controlling param eter B

m in  — 7  +  i?£ T 1  subject to Aco >  7 5 — Se,
OJ, 7,6 2 7

7  >  0, <  1 V j, b  (6.9)
a

This new form ulation (6.9) is convex and equivalent to (6 .8 ), and thus yields a convex 

version o f the soft m argin training problem  for B ayesian  networks.

P ro p o sitio n  6.1 Assuming 7  >  0, (u ,  7 , £) is an optimal point fo r  C  in (6.8) i f  and only i f  

(u), 7 , e) is an optimal point fo r  B  in (6.9) with e =  7 ^  and B  =  C / 7 .

So if  one chooses an optim al regularization param eter B  for (6.9), then the optim al 

solution (u ,  7 ) w ill be preserved, w hile the slacks £ can be recovered by £ =  e / 7 .

I now proceed to  develop algorithm ic approaches for solving the convex training prob

lem  (6.9), w ith the goal o f ultim ately com paring m axim um  m argin M arkov netw orks trained 

under (6 .6 ) versus B ayesian networks trained under (6.9).
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6.3 Training Algorithm

To solve (6.9) first consider the Lagrangian

e, T7 , A, u)

=  l / ( 2 7 2) +  H e T l  +  r]T ('yd — S e  -  A w )

+  Y  (  Y l  eWjah -  1  ) -  1/7 (6 . 1 0 )
j ,b  V a  /

The saddle point condition gives us an equivalent problem  to (6.9)

m in  m a x  L(u>, 7 , e, ry, A, iz) subject to rj, A, >  0 (6.11)

Unfortunately, this Lagrangian is not nearly as convenient as the one for the SV M  form u

lation ( 6 .6 ), and a closed form  solution for the dual is not readily obtainable in  this case. 

For exam ple, one cannot easily elim inate the prim al variables from  this problem : taking the 

partial derivative w ith respect to uJjab  yields

8 L
 --------- =  Ayb eWja]° -  rjT A jah ( 6 . 1 2 )
O W ja b

w here A J0b denotes the j a b  colum n o f A . The difficulty w ith (6.12) is that one cannot set

this derivative to zero because 7 7 T A j„ b  can be negative (A  has negative entries). N ever

theless, the problem  rem ains convex.

R ather than use a Lagrangian approach to solve this problem , I instead consider a stan

dard barrier approach. In fact, barrier m ethods are am ong the m ost effective techniques 

for solving convex constrained optim ization problem s [8 , 95]. In  this approach one sim ply 

replaces the constraints w ith log barrier functions

m in  +  i? e T l
27

-  ^ J ^ l o g  (A(i ,y)u  -7 < * (»,y) +  u )
(by)

-  F  Y l lo® ( X — Y j e^ “b )
j, b  a

-  n  lo g (7 ) (6.13)

In general, it can be shown that for convex inequality constraints, the resulting uncon

strained objective (6.13) is also convex, w hile the solution to (6.13) converges to (6.9) as 

jjj —> 0 [8 ]. In the standard path follow ing technique, an outer loop is used to solve a 

sequence o f unconstrained optim ization problem s for a sequence o f  decreasing //, values,
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w here the optim al solution (u>, 7 , e) obtained from  one loop iteration is used as the starting 

point o f  the next iteration. The param eter p  is initially set to a reasonable value to  ensure 

num erical stability, and then successively reduced to sharpen the barriers until a sm all value 

o f //. is reached. For each fixed p,  the inner optim ization problem  is usually solved using a 

second order m ethod to ensure fast convergence. H ere, for the inner optim ization loop, I im 

plem ented a New ton descent m ethod based on com puting the gradient and H essian o f (6.13) 

with respect to  (0 7 7 , e). I found that 7 outer iterations with p ^  =  1, =  p ^ /1 0 ,

and few er than 20 inner N ew ton iterations w ere required to obtain accurate solutions. In 

principle, the runtim e o f a barrier iteration m ethod is not dram atically slow er than solv

ing a quadratic program  [8 ]. However, m y M atlab im plem entation is currently an order of 

m agnitude slow er than the quadratic program  solver (CPLEX ) I used for m axim um  m argin 

M arkov netw orks. The largest runtim es for m y barrier training in the experim ents below 

are a few m inutes, versus a few seconds for C PLEX .

6.4 Bayesian Networks with Exact Solutions

Before presenting experim ents, I first consider w hen the solutions to the relaxed problem  

(6 .9 ) correspond to the solutions to the exact problem ; i.e., satisfying local norm alizations: 

S o  eU)jab =  1, for all j ,  b . The m ain concern is that the solutions obtained to (6.9) may 

not be representable in a Bayesian netw ork because the param eters ut are subnorm alized, 

not norm alized. This leaves us w ith the question o f determ ining when these subnorm alized 

solutions can be equivalently converted into properly norm alized B ayesian networks.

It turns out that a range o f netw ork topologies adm it a sim ple procedure for renorm aliz

ing the local param eters so that they becom e proper CPTs, w ithout affecting the conditional 

probability o f y  given x . In fact, this observation has been previously m ade by [98, 99]. I 

present a sim pler view here. In fact, it is easy to characterize a sufficient condition for an 

unnorm alized B ayesian netw ork classifier to be renorm alized to preserve P ( y  |x ) .

P ro p o s itio n  6.2 An unnormalized directed graphical model, defined on the Markov Blan

ket o f  the class variable Y ,  can be renormalized to preserve the decision function P ( y  |x ) i f  

fo r  each child variable o f Y ,  its parents are fully connected.

The intuition behind this result is fairly straightforw ard. Let local function f ( x j , ^ . 7T̂ p) 

denote the unnorm alized param eter for configuration with child value x 3 and parent val

ues 'it.-n(j)- This local function can alw ays be norm alized by dividing a factor pfx-^d))  =

f ( x ,  x^q-)) for each x ^ q ) . The renorm alization does not affect the classification as
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Figure 6.1: B ayesian netw orks that satisfy the renorm alization condition

long as there is another local function f ( x k ,  x ^ ) )  w here C that can be

m ultiplied by the sam e factor. Since the functions and variables follow  an acyclic ordering 

in a Bayesian network, child variables can be sequentially renorm alized bottom  up w ithout 

affecting previous norm alizations. Finally, the renorm alization procedure reaches the lo

cal function for Y  variable w hich can be directly norm alized w ithout finding another local 

function to counterbalance the norm alization factor. To clarify this, assum e the adjusted 

local function for Y  is f ' ( y ,  ^n(Y)  ') after renorm alizations o f the functions associated with 

the children o f  Y .  Then the prediction probability  is w ritten as

f,(y,x*(Y))njec(Y)p(xi\x«u)>y)
p { y  x )  -  ^ — 7TT-,------------ rq=F-----------------------  a  ( 6 -1 4 )

/  ( y >7T(Y)) lljec(y) p i x M - K { j ) , y ‘ )

w here C ( Y )  represents the indices o f the child variables o f  Y .  Then renorm alizing function 

/ '( ? /:  x 7r(y)) to P ( j / |x w(y)) only causes the sam e factor p ( x 7r(y)) =  be

divided from  both the num erator and the denom inator in (6.14), and therefore does not 

affect the prediction function. F igure 6.1 shows tw o sim ple Bayesian netw ork exam ples 

that satisfy the renorm alization condition.

The renorm alization strategy only fails if, at any stage, the parent variable set x ^  is 

not contained in another single local function, but is instead split betw een separate local 

functions, as in Figure 6.2. In this case, there w ould be no way to coordinate the com pensa

tion for p ( x w(j)) (w ithout adding a new local function over x ^ - ) ) .  Thus, in the end, one is 

left with an intuitive sufficient condition for renorm alizing a Bayesian network: any graph 

can be norm alized w ithout affecting P ( y  |x ) if  the child variables o f  Y  can be elim inated 

w ithout adding any new edges. In these cases, one can recover a norm alized m odel w hile 

m aintaining the optim ality o f the solution to (6.9).

N ote that the renorm alization procedure can be applied to any set o f param eters defin

ing the decision rule P ( y  |x )  in a netw ork structure satisfying Proposition 6.2, even if  the 

param eters w ere produced by a M arkov netw ork training procedure. However, this does 

not imply that the resulting m odel P ( y  |x )  from  M arkov netw ork training is optim al under 

the Bayesian netw ork criterion (6.9).
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Figure 6.2: A Bayesian netw ork that does not satisfy the renorm alization condition

Figure 6.3: Two B ayesian netw orks w here the class variable Y  is shaded in each o f them

6.5 Experimental Results

To evaluate the utility o f learning m axim um  m argin B ayesian netw orks, I conducted some 

sim ple experim ents on both real and synthetic data sets. In the synthetic experim ents, I 

first constructed the B ayesian netw ork structure and param eters, and then used it to gen

erate training and test data. The goal o f the synthetic experim ents is to ran  a controlled 

com parison o f m axim um  m argin B ayesian netw orks versus M arkov netw orks in causal 

dom ains w here one can obtain the correct Bayesian netw ork structures. I experim ented 

w ith several netw ork topologies and param eterizations, and com pared m axim um  m argin 

B ayesian netw orks (M M BN ) trained according to (6.9) against m axim um  m argin M arkov 

netw orks (M M M N ) trained according to  (6 .6 ), and also against m axim um  conditional like

lihood (M CL) trained w ith a gradient descent m ethod. The results reported here are average 

m isclassification errors on test data over 100 repetitions. For each m ethod, on each m odel, 

the regularization param eters, B  and C  respectively, w ere first optim ized on one pair o f 

training and test sam ple sets and then fixed for the duration o f the experim ent.

The synthetic experim ents w ere conducted on the netw orks shown in Figure 6.3. Here 

I fixed a netw ork structure and then defined the generative m odel by selecting param eters 

from  a skewed distribution. I used a param eter (3 to control the skewness o f the conditional 

distributions o f each child, w here a value o f (3 =  1 m akes each child a determ inistic function 

o f the parents, and (3 =  0.5 gives each child a uniform  distribution, rendering them  effec-
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tively independent o f their parents. F igure 6.4 shows the com parison o f the three strategies, 

M M BN , M M M N , and M C L for the first netw ork topology shown in Figure 6.3. This net

w ork topology satisfies the condition o f Proposition 6.2, and therefore M M B N  com putes a 

globally optim al solution in this case. H ere one can see that for a range o f generative m odels 

defined by 3  and several training sam ple sizes, M M B N  dem onstrates a system atic advan

tage over both M M M N  and M C L, although M C L  is clearly stronger than M M M N  in this 

case. F igure 6.5 shows the sam e com parison using the second netw ork topology from  F ig

ure 6.3. This netw ork no longer satisfies the condition o f Proposition 6.2, and therefore the 

training algorithm  is no longer guaranteed to produce an optim al norm alized solution (only 

an optim al subnorm alized solution). N evertheless, one can see that M M B N  holds a slight 

advantage over M M M N  in this case, w hile M C L  is slightly better here. M M B N  appears to 

have an advantage in cases w here it is exact (for structures satisfying Proposition  6.2), but 

the advantage is dim inished a lot in the subnorm alized case.

For a real w orld com parison, I also experim ented with real data from  the U C I reposi

tory. Specifically, I used 17 data sets: A ustralian*, Breast, Chess, C leve, D iabetes*, Flare*, 

G lass, G lass2*, H eart, Hepatitis*, Iris*, Lym phography, M ofn*, Pima*, Vehicle*, Vote, and 

W aveform. For each data set, I form ulated a B ayesian netw ork topology that was intended 

to capture the causal structure o f the dom ain, but in this case there w as no guarantee that the 

presum ed structure was correct. The netw ork structures I used w ere autom atically  gener

ated using the “Pow erC onstructor” technique discussed in [14], These netw orks are m uch 

larger and cannot be easily visualized here. N evertheless, in 9 o f the 17 cases the netw ork 

topologies satisfied the condition o f P roposition 6.2 (m arked * above). For each data set 

I considered 5 different training sam ple sizes, N  = 1 0 , 20, 30, 40, 50. For each N ,  I run 

experim ents on the random  training/test splits. The results are averages over 5 repetitions 

w ith disjoint training sets when it was possible. Interestingly, Figure 6 . 6  show s that M M B N  

obtains an overall advantage over M M M N . M oreover, M M B N  also show s a slight overall 

advantage over M C L  on these data sets; see Figure 6.7.

6.6 Multivariate Extension

In this section, I consider extending the proposed m axim um  m argin B ayesian netw orks 

to deal w ith structured classification problem s w ith m ultiple connected class variable, fol

lowing the key extension o f [1, 19, 8 8 ]. In this setting, one observes training data D  =  

[x 1 y 1, . . .  . x A’y ‘V] as before, however, now the targets y 1 are vectors o f values for cor-
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related class variables. The first m ain issue is to adapt the training criterion (6.9) to this 

m ultivariate prediction case. Follow ing [8 8 ], I scale the m argin betw een a target class vec

tor y l and an alternative vector y  proportional to the num ber o f m isclassifications, which is 

to set

% ,y) =  ^Ls^iy i^yk)  (6.15)
k

This im m ediately yields m ultivariate versions o f the training problem s (6 .6 ) and (6.9).

The prim ary difficulty in dealing w ith the m ultivariate form  o f these problem s is coping 

w ith the exponential num ber o f constraints in A u  >  7 <5 — Se.  T hat is, one now has to 

assert A  (i, y ) to  >  7<5(i,y ) — e* for all training exam ples i, over all possible label vectors y . 

Such a constraint set is too large to handle explicitly, and an approach m ust be developed 

for handling them  implicitly.

One o f the key results in [8 8 ] is showing that, for m axim um  m argin M arkov netw orks

(6 .6 ), the constrained optim ization problem  can be factored and re-expressed in term s o f 

“m arginal” Lagrange m ultipliers ct(i,yJIlb) =  Z ]y \ yjab /'(z,y )» w here y J0b denotes the sub

configuration o f y  that m atches the local function j  on pattern a b . This allow s a com pact 

reform ulation o f an equivalent convex problem  that can be solved efficiently as a com pact 

quadratic program  [8 8 ]. U nfortunately, this approach does not w ork readily in m y current 

case because the Lagrangian (6.10) does not perm it a sim ple closed form  expression o f the 

dual. Thus I have to follow  a log-barrier approach to solve the problem  (6.13). However, 

a direct factorization approach is not readily available for reducing the exponential sum  

in y) l°g  ( A ( i ,y ) w  — T^(i,y ) +  7 ) • N evertheless the constraint generation strategy o f

[ 1  ] can be usefully applied in this case.

To solve (6.9) in the m ultivariate case I im plem ented a cutting p lane m ethod, w here 

initially only a small subset o f constraints in A tu  >  j S  — S e  w ere considered. Given 

a current set o f constraints, a solution (u>,y,e)  was com puted using the barrier m ethod 

outlined above. Then for each training exam ple ( x 1, y !) one new labeling y  was generated 

to m axim ize the degree o f  constraint violation

a rg m a x  7 <%,y) -  e, -  A ( i ,y ) u ;  
y

=  a rg m a x  ex p  ( 7 % ^ )  +  y ) T u ;) (6.16)

This is in fact an inference problem  that can be solved by conventional m ethods. For ex

am ple, if  Y  form s a M arkov chain, then the m ost violated constraint can be generated by a

Viterbi algorithm  run on the probability m odel defined by (6.16).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.07

0.065

0.06

2 0.055 
iii

g> 0.05
CO
o£ 0.045 

0.04 

0.035 

0.03

Training Sample Size

Figure 6 .8 : Average error results fo r M M B N  and M M M N  on synthetic netw orks w ith m ul
tiple class variables

Once the new constraints have been generated, they are added to the problem  and the 

solution (u ; , 7 , e) is re-com puted using the barrier m ethod. In my experim ents I found this 

constraint generation schem e was quite effective, requiring at m ost 10 to 50 generation 

iterations before solving the problem .

6.7 Multivariate Experimental Results

I im plem ented this approach and tested it on both synthetic and real data using H M M  m od

els for classification, w here the class variables Y  play the role o f  the hidden state sequence, 

and the input variables X  play the role o f  the observations. G enerally I considered m odels o f 

the form  depicted in F igure 6.9, w here each Y  variable has m ultiple (disjoint) X -children . 

In my synthetic experim ent, I sam pled ( x ,  y )  from  a sequence o f  length 5 (5 Y  variables 

w ith 4 X -ch ild ren  each, for a total o f 20 X  variables). I then used a generative m odel 

based on the sam e skew ed param eters used in the synthetic single class variable experi

m ents above; here w ith (3 =  0.85. The results reported here w ere averages on 20 repetitions 

and for 3 different training sizes (10, 20 and 50) respectively. Figure 6 . 8  shows that M M B N  

again outperform s M M M N  and M C L  in controlled experim ents w here the correct Bayesian 

netw ork structure is known.

I also conducted an experim ent on a protein secondary structure database [23], H ere the 

goal is to predict the sequence o f secondary structure labels given an observed am ino acid 

sequence. F igure 6.9 show s the prediction m odel I used. Basically, the secondary structure

80

■ M M B N  
B lM M M N  
□  MCL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-►

Figure 6.9: Structure o f the protein secondary structure prediction model

0.7

0.65

0.6

2 0.55
L U

8, 0.5
(0
o5
^  0.45 

0.4 

0.35 

0.3

■  MMBN 
■ M M M N  
□  MCL

Training Sample Size

Figure 6.10: Average error results for M M B N  and M M M N  on protein secondary structure 
prediction

tag y j; for a location k  in the am ino acid sequence is predicted based on a sliding window 

o f 7 am ino acid observations, as well as the neighboring secondary structure tags. I trained 

on a subset o f the data and tested on 1 0 0 0  sam pled subsequences disjoint from  the training 

data. The experim ent w as repeated 20 tim es to obtain the average for each different training 

size of 30, 50 and 100. F igure 6.10 shows that M M B N  perform s better than both M M M N  

and M C L on this data set.

6.8 Conclusion

In this chapter, I have investigated the interesting issue for learning Bayesian netw ork 

classifiers: w hether a B ayesian netw ork representation can be com bined w ith d iscrim i

native training based on the m axim um  m argin criterion o f  SVM s. I have found that train

ing Bayesian netw orks under the m axim um  m argin criterion is a nontrivial com putational 

problem — harder than the standard quadratic program  o f SV M  training. N evertheless, I 

still developed a reasonable training algorithm  that optim izes the m argin exactly in special
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cases, and provides a reasonable heuristic in general cases. I also extended the proposed 

m axim um  m argin B ayesian netw ork m ethod to address the structured classification prob

lems w ith m ultiple class variables. M y experim ental results for both single class variable 

and m ultivariate classifications show that there m ight be an advantage to respecting the 

causal m odel constraints em bodied by a B ayesian netw ork, if  indeed these constraints w ere 

present during the data generation. In this sense, m axim um  m argin Bayesian netw orks offer 

a new way to add prior know ledge to SVM s.
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Chapter 7

Parameter Estimation with Hidden 
Variables

7.1 Introduction

The previous chapters o f  this thesis investigated B ayesian netw ork learning assum ing that 

the given training data was com plete. In this chapter, I consider the problem  o f learning 

Bayesian netw ork param eters in the presence o f  hidden variables. H idden variables are 

variables w hose values are not observed in the training data and yet rem ain part o f  the jo in t 

probability m odel we are estim ating. The existence o f hidden variables usually occurs for 

tw o practical reasons. O ne is w hen som e variables encode derived or predicted concepts that 

are not readily  observed in real world data, yet nevertheless rem ain im portant. For exam ple, 

a disease classification variable is often im portant to infer in a m edical B ayesian netw ork 

model, but is not directly observable. The second reason is when auxiliary variables are 

deliberately introduced into the m odel to sim plify the explanation o f  the observed data. For 

exam ple, hidden variables can be introduced to reduce the com plexity o f the structure and 

therefore sim plify the learning process for a given set o f training data [32],

Learning B ayesian netw orks in the presence o f hidden variables has been w idely stud

ied [5, 30, 32, 35, 76]. So far, the m ost com m on approach considered in this scenario 

is to adopt expectation maximization (EM ) algorithm . Few  algorithm s are better know n in 

m achine learning and statistics than EM . O ne reason is that E M  solves a com m on p ro b lem - 

learning from  incom plete d a ta -tha t occurs in alm ost every area o f applied statistics. Equally 

w ell know n to the algorithm  itself, however, is the fact that EM suffers from  shortcom 

ings. H ere it is im portant to distinguish betw een the EM  algorithm  (essentially a coordinate 

descent procedure [6 8 ]) and the objective it optim izes. Only one problem  is due to the 

algorithm  itself: since it is a sim ple coordinate descent, EM  suffers from  slow (linear) con-
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vergence and therefore can require a large num ber o f iterations to reach a solution. Standard 

optim ization algorithm s such as quasi-N ew ton m ethods can, in principle, require exponen

tially few er iterations to achieve the sam e accuracy (once close enough to a w ell behaved 

solution) [8 , 70]. N evertheless, EM  converges quickly in many circum stances [77, 87], The 

m ain problem s attributed to EM  are not problem s w ith the algorithm  itself, but instead are 

properties o f  the objective it optim izes. In particular, the standard objective and its variants 

tackled by EM  are not convex in any standard probability model. N on-convexity im m edi

ately creates the risk  o f  local m inim a, w hich unfortunately is not just a theoretical concern: 

EM  often does not produce very good results in practice, and can som etim es fail to  im prove 

significantly upon initial param eter settings [65]. For exam ple, the field o f unsupervised 

gram m ar induction [53] has been unsuccessful in its attem pts to use EM  for decades and is 

still unable to infer useful syntactic m odels o f  natural language from  raw  unlabeled text.

In this chapter, I present a novel convex approach to EM  training that addresses the 

problem  o f learning B ayesian netw ork param eters w ith hidden variables. This approach 

is based on form ulating a convex relaxation o f  a particular variant o f  the EM  algorithm —  

V iterbi EM . A s in previous chapters, the goal o f  this convexification is to rem ove local 

m inim a from  the training objective in an attem pt to overcom e one o f the m ain shortcom 

ings o f  E M  algorithm s. However, achieving an effective convex relaxation is nontrivial 

due to som e technical barriers in this case. A fter introducing the standard variants o f  EM  

training in Section 7.2, I first show in Section 7.3 that any convex relaxation o f  the stan

dard E M  m ust produce trivial results if  it m aintains any dependence on the values o f hidden 

variables. A lthough this result suggests that any convex relaxation o f E M  cannot succeed, 

I subsequently show in Section 7.4.1 that the problem  can be overcom e by deriving an 

equivalent param eter estim ation form ulation in term s o f the equivalence relations over the 

values o f  the hidden variables, rather than the m issing values them selves. B ased on this 

new form ulation, I then form ulate a convex V iterbi EM  form ulation for B ayesian netw ork 

param eter estim ation in Section 7.4.2. The m ain technical contribution o f  this chapter is a 

reform ulation o f  standard estim ation principles for exponential conditional m odels in term s 

o f equivalence relations on variable values, rather than the variable values them selves. A l

though this chapter only focuses on the hidden variable case, the technique I developed 

rem ains extendable to the general m issing value case. This w ork has been accepted for 

publication [43],
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7.2 EM Variants

Before proceeding, it is im portant to first clarify the precise EM  variant that I address in this 

chapter. In fact, there are m any EM  variants that optim ize different criteria. Let z =  (x , y )  

denote a com plete observation, w here x  refers to the observed part o f the data and y  refers 

to the unobserved part; and let w  refer to the param eters o f the underlying probability 

model, P ( x ,y |w ) .  Joint and conditional EM  algorithm s are naive “self-supervised” train

ing procedures that alternate betw een optim izing the values o f the m issing variables and 

optim izing the param eters o f the m odel

jo in tE M : y^fc+1) =  a rg  m a x  P ( x ,  y | w ^ )  (7.1)
y

w (fc+l) _  a rg  m a x P ( x ,  y ( fc+1) |w )
W

conditional EM : y ( fc+!) =  a r g m a x P ( y |x , w ^ )  (7.2)
y

w (fc+l) _  a rg m a x P ( y ( fe+ 1) |X; w )
W

The jo in t version o f  E M  (7.1) is also often referred to as Viterbi EM , and is som etim es 

proposed as a com putationally convenient approxim ation to the standard EM  algorithm

(2.2) [79]. B oth jo in t EM  and conditional E M  are clearly coordinate descent procedures 

that m ake m onotonic progress in their objectives, -P(x, y  |w ) and P ( y  |x , w ). M oreover, the 

criteria being optim ized are in fact w ell m otivated objectives for unsupervised training. The 

prim ary problem  with these iterations is not that they optim ize approxim ate or unjustified 

criteria, but rather that they rapidly get stuck in  poor local m axim a due to  the extrem e 

updates m ade on y .

By far, the m ore com m on form  o f EM , contributing the very nam e expectation-m axi- 

m ization, is given by the fam iliar update (2.2). A lthough it is not im m ediately obvious w hat 

the standard EM  iteration (2.2) optim izes, it has long been know n that it m onotonically 

im proves the marginal likelihood P ( x |w )  [26]. Therefore, I refer to  the standard EM  

algorithm  as marginal EM . [6 8 ] later show ed that the E -step could be generalized to

m a x ] T q y log ( P ( x , y | w ^ ) / q y )  
y y

Due to the softer q y update, the standard EM  update does not converge as rapidly to a 

local m axim um  as the jo in t and conditional variants; however, as a result, it tends to find 

better local m axim a. M arginal EM  has subsequently becom e the dom inant form  o f EM
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algorithm  in the literature. N evertheless, none o f the training criteria are jo intly  convex in 

the optim ization variables, thus these iterations are only guaranteed to find local m axim a.

Independent o f the updates, the three training criteria are not equivalent nor equally well 

m otivated. In fact, for m ost applications one is m ore interested in acquiring an accurate 

conditional P ( y |x ,  w ) , rather than optim izing the m arginal P ( x  w ). O f the three training 

criteria therefore (joint, conditional and m arginal), m arginal likelihood appears to be the 

least relevant to learning predictive m odels. In this chapter, I will focus on m axim izing 

jo in t likelihood, since it incorporates aspects o f both m arginal and conditional training. I 

w ill also prim arily consider the hidden variable case and assum e a fixed set o f  random  

variables Y j , ..., Yi is always unobserved, and a fixed set o f  variables X (  f ] , . . . ,  X n is always 

observed.

7.3 A Cautionary Result for Convexifying EM

A s stated, I w ill focus on convexifying the jo in t EM  objective. A ssum e we are given training 

data [z1; ...; z 'v ], w here z* =  ( x \  y*) such that x l denotes the observed com ponents and 

and y l denotes the unobserved com ponents. The goal in this chapter w ill be to develop a 

jo intly  convex relaxation to the m inim ization problem

m in m in  — log P ( x l , y J |w ) (7.3)
y w

i

w here y  takes only discrete assignm ents.

Thus one obvious issue one m ust face is to relax the discrete constraints on the assign

m ent y . However, the challenge is deeper than this. T he difficulty dw ells in the com plete 

sym m etry property that holds betw een configurations o f  values for the hidden variables. In 

particular, for any optim al solution (y , w )  there m ust be at least another, equivalent solu

tion (y ',  w ') ,  corresponding to a perm utation of the hidden variable values, that achieves 

the same objective value. F or exam ple, suppose there is only one hidden variable w ith do

m ain { 1 , - 1 } .  Then one can assign y '  to be a perm utation o f y  by replacing all the Is  

in y  w ith — 1  and all the —Is  w ith 1 , and correspondingly assign w ' to be a rearrange

m ent o f the w eights in w , w ithout affecting the optim ality o f the solution. U nfortunately, 

this form  o f solution sym m etry has devastating consequences for any convex relaxation. 

A ssum e one attem pts to use any jo in tly  convex relaxation / ( q y , w )  o f the standard jo in t 

likelihood objective (7.3), w here the the m issing variable assignm ent y  has been relaxed 

into a continuous probabilistic assignm ent q y (like standard EM).
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Lemma 7.1 If f  is strictly convex and invariant to permutations o f unobserved variable 

values, then the global minimum o f  f ,  (q y ,w * ), must assign equal probabilities to the 

different y  configurations; that is, q* must be uniform.

Proof: A ssum e (q y , w )  is a global m inim um  o f  /  but q y is not uniform . T hen  there

m ust be  som e perm utation o f  the hidden values, II, such that the alternative (q ^ ,  w ')  =  

( I I (q y ), I I (w ) )  satisfies q ^  f  q y . B y  the perm utation invariance o f / ,  th is im plies / ( q y , w )  

=  /(q ^ ,,  w ') .  T hen  b y  the strict convexity o f  / ,  one has /  ( a ( q y , w )  +  ( l - o ; ) ( q ^ w /)) 

<  a / ( q y , w )  +  ( 1  -  a ) f ( q ry , w ')  =  / ( q y , w ) , for 0  <  a  <  1 , contradicting the global 

optim ality  o f  / ( q y , w ) . |

Therefore, any convex relaxation o f  (7.3) that uses a distribution q y over h idden values 

and does no t m ake arbitrary distinctions can never do anything but produce a un iform  dis

tribution  over the  hidden variable values. This trivialization is perhaps the  m ain  reason w hy 

standard E M  objectives have not been previously convexified. (Note tha t standard coord i

nate descent algorithm s sim ply break  the sym m etry arbitrarily and descend into som e local 

solution.) This negative result seem s to  im ply  that no useful convex relaxation o f  E M  is p o s

sible in  the hidden variable case. However, m y  key observation is that a convex relaxation  

expressed in  term s o f  an equivalence relation over the  hidden values can avoid this sym m e

try  breaking problem . In  particular, equivalence relations exactly collapse the unresolvable 

sym m etries in  this context, w hile still representing useful structure over the hidden assign

m ents. Representations based on equivalence relations are a useful too l for unsupervised 

learning that has largely been overlooked in  the current literatures. M y goal in  this chapter, 

therefore, is to  reform ulate the  jo in t E M  training objective to  use only equivalence relations 

on hidden variable values, and subsequently develop a relaxed convex form ulation.

7.4 Convex EM

In  this section, I  w ill derive a convex relaxation o f  the  jo in t E M  to address the param eter 

estim ation issue for B ayesian netw orks w ith hidden variables. In this context, I assum e a 

B ayesian netw ork  defines the  jo in t probability  distribution over a set o f  random  variables 

Z  =  (X , Y ) ,  w here X  denotes the observed variables and Y  denotes the hidden variables. 

G iven a set o f  train ing data w ith only  X  observed [x 1; . . . ; x w], m y goal is to  tra in  the 

B ayesian  netw ork  param eters to  m axim ize the jo in t data likelihood (7.3).

The derivation in  th is chapter is based  on the exponential representation (2.14) in tro 

duced in  C hapter 2. In  particular, using this representation, the  jo in t likelihood objective
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lo g .P ( x \y * )  can be w ritten as

^ l o g P ( z l |w) =  w j ^ - ( 4 , z ; (i)) -  A(WjX o-)) (7-4)
i  j  i

w here d>AzA z *, A  denotes a vector o f features evaluated on the value o f the child  variable
w  v J?’ n \ 3 ) '

Z j  and its parent variables for instance i, such that <f>j(zlp z 1̂ )  =  ( . . . 1  (^i =a>zi  ̂,}= b )• • -)T - 

A regularized version o f the jo in t EM  optim ization problem  (7.3) can then be form ulated as

myinmjn E (E - w7 + fw7wi 

= myin E (E ’ <U)) - w7̂  (4 > <U))) + f w7wi (7-5)
since the regularized likelihood decom poses into an independent sum over the local param 

eters w j  for each local variable Zj .

As discussed in the previous section, a direct convexification o f (7.5) based only on 

relaxing the discrete assignm ent y  can only obtain vacuous uniform  solutions. Instead one 

m ust derive an equivalent form ulation in term s o f  equivalence relations over the assign

m ents to hidden variables, instead o f the hidden variable assignm ents them selves. This 

requires a fundam ental reform ulation o f the optim ization problem  (7.5).

To derive the reform ulation, initially it w ill be easier to w ork with an individual term  in

(7.5) corresponding to an arbitrary local variable Z j

mn (e <o)) - w7<t>M’ < u )^ + f'w7 < 7-6)
N ote that this objective still depends on y  since z 1 =  ( x \  y !). Also this regularized form  

of the objective corresponds to the m axim um  a posteriori (M A P) param eter estim ation w ith 

Gaussian priors on the param eters. G iven com plete data, solving this local param eter esti

mation am ounts to  solving a logistic regression problem . In fact, (7.6) was the sam e form  

as the regularized logistic regression form  (3.3) in C hapter 3.

7.4.1 L ogistic R egression on Equivalence R elations

A key subproblem  is reform ulating each o f the local logistic regression problem s (7.6) to 

drop the dependence on hidden variable assignm ents y ,  and instead develop a form  that can 

be expressed strictly in term s of equivalence relations over hidden variable assignm ents.

To sim plify the notation, consider one o f the local logistic regression problem s (7.6) 

and drop the subscript j .  To further sim plify the notation, I also use a m atrix notation to
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rew rite the the j th  local param eter optim ization problem  as follows

m in  (  A (W , $ j :) )  -  tr(<f>VFFT ) +  ^ t r ( W 'W )  (7.7)
i

w here W  £ 1RF x V , $  €  {0, l } N x F , and Y  £  {0, l } iVxl/, such that N  is the num ber of 

training instances, V  is the num ber o f possible values for the child variable, and F  is the 

num ber o f possible configurations fo r the parent variables. Here, the notation <h,: denotes 

the ith row vector in a m atrix $  such that d>,j = <fj{z\ zf) for the ?th training instance and 

/ th feature. The log norm alization factor is given by

A ( W ,$ r )  =  l o g ^ e x p ( $ i:VKla ) (7.8)
a

w here l a denotes a sparse vector w ith a single 1 in position a. To explain this notation, note 

that Y  and $  are indicator m atrices that have a single 1 in each row, w here Y  indicates the 

value o f  the child variable, and $  indicates the specific configuration o f the parent values, 

respectively; i.e. Y  1 =  1 and $ 1  =  1, w here 1 denotes the vector o f  all Is . This m atrix 

notation greatly stream lines the presentation below.

The first step in reform ulating (7.7) in term s o f  equivalence relations is to derive its dual. 

T he derivation follow s the sam e step as deriving the dual (3.10) o f the logistic regression

(3.3) in C hapter 3.

Lemma 7.2 A n equivalent optimization problem to (7.7) is

m jix  — tr(Q  log 0 T ) -  tr ^ ( F  — 0 ) T <f>$T (Y  — 0 ) ^  (7.9)

subject to 0  >  0 , 0 1  =  1

Proof: The p roo f follow s the sam e argum ent given in C hapter 3. I outline the steps here to 

m ake the derivation clear in the new notation. The dual optim ization problem  is derived by 

first considering the Fenchel conjugate function o f A (W , given by

A*(U i, $ i:) =  su p  t r ( U j W )  -  A (W ., $ i:) 
w

(7.10)

A  m ore convenient representation o f the conjugate function can be obtained by solving the 

optim ization (7.10). F rom  (7.8), it is not hard to show that

V w A ( W ,$ i:) = Ea $ T 1 T^ i : a
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for some row vector © l: such that 0 , : >  0 and 0 , : 1 =  1. Setting the derivation o f the left 

side of (7.10) w ith respect to W  to zero then yields

G  'If : 0> (7.11)

Thus, from  [96, Theorem  2] as in (3.5), one obtains

©f: log ©7 if Ut 6 M^i:

w here Q l: is given by (7 .1 1 ). Since A (W , d>j:) is a closed convex function, it follow s [6 , 

Theorem  4.2.1] that the conjugate o f  the conjugate is the original function, and therefore

A ( W ^ r . ) =  sup t r (0 lT $ i:W O -0 i: lo g © lT (7.12)
©i;e5i

w here Si denotes the probability sim plex

St =  {© i: : 0 i: >  0 ,© i:l  =  1 }

Substituting (7.12) into (7.7) yields

in f  ( j ^ ( W 7 $ i:) )  -tr(< f> W YT ) + ^ t r ( W T W )
w  ’ ' - ' J  '  '  2

i r {Kyi: s \>{: vv  )  —  Kyi: l o g  Kyi: i —  i r ^  vv  i  )  - + -in f  (  V  su p  tr(© (T $ j .W )  -  ©j. lo g © ,! )  -  tr (<f>WYT ) + ^ t r { W T W )

in f  su p  —tr(©  log 0 T ) +  t r ( $ f Y 0 T ) -  t r (<f>WYT ) +  ^ t r ( W T W )  
w  q &s  2

in f  su p  G (W ,Q )  
w  Qes

w here

G ( W ,0 )  =  —t r ( 0  log 0 T ) -  t r ( ( y  -  0 ) T $ tY )  +  | t r { W T W )

and *S =  »Si- It is easy to verify that S  is closed and bounded and subsequently that G  

satisfies the conditions o f Theorem  3.1 (Strong M inm ax Property) in C hapter 3. Therefore, 

it follow s that

in f  su p  G (W , ©) 
W ©6 S

=  su p  in f —t r ( 0  log © 1 ) — tr((Y  — ©) 1 & W ) +  ^ -tr (W T W )  (7.13) 
e s s  w  2

T he inner optim ization can be solved by setting

V F = i $ T ( Y - © )  (7.14)
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Substituting this into (7.13) yields the result. |

Interestingly, deriving the dual has already achieved part o f  the desired result: the par

ent configurations now only enter the problem  through the kernel m atrix K  =  (M )T . For 

Bayesian netw orks this kernel m atrix is in fact an equivalence relation betw een parent con

figurations. To see this, note that $  is a {0 ,1 }  indicator m atrix with a single 1 in each row, 

im plying that Km — 1 if (I>,: =  4>/:, and Km — 0 otherw ise. It is then straightforw ard to 

verify that K  satisfies the reflexivity, sym m etry and transitivity properties, and therefore en

codes an equivalence relation. B ut m ore im portantly, K  can be re-expressed as a function of 

the individual equivalence relations on each o f the parent variables. Let Y p G { 0 ,1 } iVx V’J 

indicate the values o f a parent variable Z p for the training instances. T hat is, Y ?  is a 1 x  Vp 

sparse row vector w ith a single 1 indicating the value o f variable Z p in instance i. Then 

M p = Y pY pT defines an equivalence relation over the assignm ents to variable Z p, since 

=  1 if Y p =  Y l  and M p( =  0 otherw ise. It is not hard to see that the equivalence 

relation over com plete parent configurations, K  =  <M>T , is equal to the com ponentw ise 

(H adam ard) product o f  the individual equivalence relations for each parent variable. That 

is, K  — =  M 1  o M 2 o • • • o M p, since Km  =  1 iff — 1 and M?e =  1 and ...

M f,  =  1.

U nfortunately, the dual problem  (7.9) is still expressed in term s o f  the indicator m atrix 

Y  over the child variable values. T he training problem  still has to be reform ulated in term s 

o f  the equivalence relation m atrix M  = Y Y T . Towards this goal, consider an alternative 

dual param eterization Q e  1RN xN  such that Cl >  0, U 1  =  1 , and

fiy = 0

N ote that 0  e  ]RN x V , for V  < N ,  and therefore Q is larger than 0 .  N evertheless, if  Y  is 

full rank (U ), then in fact the tw o dual param eterizations, 0  and Cl, are equivalent. To see 

this, note that if  Cl >  0 and Q l  =  1, then setting 0  =  Q Y  im plies 0  >  0 and 0 1  =  1, 

since Y  G { 0 ,1 } iYx v and Y  1 =  1. Similarly, since Y  is full rank, for every 0  such that 

0  >  0 and 0 1  =  1, there exists som e Q such that Q > 0 and 111 =  1 and f IY  =  0 .  I f  Y  

is not full rank, there m ust be som e child value that never occurs in the training set. Then 

the num ber o f effective values for child variable can be reduced while Y  is sim ultaneously 

reduced until Y  becom es full rank again w ithout affecting the objective (7.7). Therefore 

one can relate the prim al param eters to this larger set o f dual param eters by replacing (7.14) 

w ith the relation

1 U = I $ T ( / - U ) y  (7.15)
p
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Even though 0  is larger than 0 ,  they can only express the sam e realizable set o f param eters 

W  through the equations (7.14) and (7.15). To sim plify the notation, let

Q =  I  - n

Therefore Q < I ,  Q1  =  0, and

W  = r Q Y  (7.16)

By first deriving the reform ulation (7.9) given in L em m a 7.2 and then m aking the substitu

tion (7.16), one can show that an equivalent optim ization problem  to (7.7) is given by

m m  ( ^ ( Q , $ l:) )  - ^ t r ( K Q M )  + ^ t i ( Q J K Q M )  (7.17)
i

subject to Q < I ,  Q1  =  0

w here K  =  T T 1  and M  — Y Y T are equivalence relations on the parent configurations 

and child values respectively. The form ulation (7.17) is now alm ost com pletely expressed 

in term s o f equivalence relations over the data, except for one subtle problem : the log 

norm alization factor

A (Q , $ i:) =  log exP ^

still directly depends on the label indicator m atrix Y . The next key technical lem m a is 

that this log norm alization factor can be re-expressed to depend on the equivalence relation 

m atrix M  alone.

Lemma 7.3

A(Q,  $ i : )  =  log Y2, exP -  log 1 t M :̂  (7.18)

Proof: The m ain observation I exploit is that an equivalence relation over value indicators, 

defined by M  — Y Y  '', m ust consist o f colum ns that are copied from  Y .  That is, for all 

£, M-f =  Y:a w here a is the child variable value for instance L  Therefore 1 T M j  is the 

num ber o f instances that have the sam e child value as instance £. Let y(£) denote the child 

variable value for instance i .  O ne then can derive
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lo§E E tt\r,exp(^Kt-QMi
a t . y { t ) —a

A ( Q ,$ i:) =  log^]expU<f>l:<f>TQYl
a '

= log ̂  exp ^ j j K i:Q Y :a

1 T M .j '-'M' \ f3

= loe E r n ^ exp( ^ - :<3M:<

= log ̂  exp ( J j K i:Q M :e -  loglTM:̂  |

Substituting (7.18) into (7.17) successfully achieves the goal o f reform ulating the orig

inal problem  (7.7) strictly in term s o f equivalence relations over the hidden variable values. 

This reform ation gives an equivalent result to the original training problem  (7.7), but by 

elim inating Y ,  it is no longer subject to the triviality outcom e established by L em m a 7.1 

in Section 7.3. However, the final goal o f effectively convexifying the jo in t EM  has not 

been accom plished yet. N ote it is easy to see the objective o f (7.17) is not jo in tly  convex in 

M  and Q  (or K  and Q), w hich m eans (7.17) is non-convex in M  (or K ).  N evertheless, a 

convex form  in M  (or K )  can be obtained by taking the dual o f (7.17).

To derive the dual, first consider the Fenchel conjugate o f  A (Q ,

L em m a 7.4

A ( Q ,$ i:) =  m a x  \ k i:QM AJ. -  A i: lo g k j  -  A* lo g ( M l)  (7.19)
A i : > 0 ,  A i ; l = l  p

Proof: Let Y ie =  ^ K i:Q M :( -  log l TM:f, thus A ( Q ,$ i:) =  log£]£exp(T )̂ by

L em m a 7.3. Then the Fenchel conjugate o f A (Q , <!>,.) is defined by

A*(U i, <f>i:) =  su p  t r{ U jQ )  -  A (Q , $ i:) (7.20)
Q

T he m axim um  o f the left side o f (7.20) is achieved by setting its gradient w ith respect to Q 

to zero, yielding

V , -  E  v 7 XP(T/ t  , =  0

w hich im plies

Ui = e a4 ^ ^  <7-2i>
e P  
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where A u  =  ^ e M r u , ) - and A*: -  O- ^ 1  =  L  Thus E f ' exP (T ^ ')  =  ^ a '^ '*  and 

A ( Q ,$ V) = T n  ~~ lo g A ^  for all L  Substituting (7.21) back into (7.20), one obtains 

tr((/,;TQ) =  Yle ^ n \K i-Q M -e  and therefore

A * (U i,$ i:) = u ( ^ K i:Q M l t - A ( Q , ^ i:)^

=  y~] A ;i ( —K j:Q M :e - T j e  +  log A g  
e ^

= Aj; lOg(Ml) + Aj; log A,T

Since A (Q , $ j :) is a closed convex function, it follow s [6 ] that the conjugate o f the conju

gate of A  is the original function, hence

A ( Q ,$ i:) =  m ax  t r (U jQ )  -  A*{UU $ V)
Ai:>0,Ai;l = l

=  m a x  —K i Q M A j. — A,- log A j  — Aj- lo g ( M l)
Ai;>0,Ai:l = l  p

I

This L em m a then allow s m e to derive the m ain result o f  this section.

Theorem 7.1 An equivalent optimization problem to (7.7) is

^  m a x  —rr(A lo g  A t ) — l T A lo g ( M l)  — ~  A )T K ( I  — A )M )  (7.22)

where K  = M 1 o • • ■ o M p fo r  parent variables Z \ , . . . .  Z v .
Proof: It has already been established above that (7.17) is equivalent to (7.7). By substi

tuting (7.19) into (7.17), one then obtains that (7.17) is equivalent to

m in  ( m a x  ^-K i-Q M A j. — Aj- log A.I — Aj. lo g ( M l)  |
Q<I,Q1=0 1 Y A>:>0.Ai;l = l  P J

- i t r  (K Q M ) +  ^ t r  (Q T K Q M )

m in  m a x  G (Q .A )  
Q < I,Q  1= 0  A>0,A1=1

w here

G (Q , A) =  —tr(A  log A ) — 1  A lo g ( M l)  (7.23)

( ( /  -  A ) t K Q M )  +  - L t r (Q r K Q M )

H ere the feasible regions are closed and bounded, and also that G  satisfies the conditions o f 

Theorem  3.1 (Strong M inm ax Property). Therefore, it follow s that

m in  m a x  G (Q , A)
Q<I,Q  1=0  A>0,A1=1

=  m ax  m in  G (Q ,A )  (7.24)
A > o ,A i= i  Q < i,Q i = o
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Taking the gradient o f  G  defined in (7.23) with respect to Q  yields

V q G (Q ,A )  =  I k { Q - ( I - A ) ] M

N ote that setting Q = I  — A forces the gradient to zero and also satisfies the constraints over 

Q, since A >  0 and A1 =  1. Therefore Q = I  — A is a solution to  the inner m inim ization 

in (7.24). M aking this substitution in (7.24) yields (7.22). (Note A happens to be sam e as 

the dual param eter Q introduced before.) |

T heorem  7.1 gives my key result. The dual form ulation (7.22) is equivalent to the 

original logistic regression problem  (7.7). However, it is now expressed strictly in term s 

o f  equivalence relations over the parent configurations (K )  and child values (M ). That 

is, the value indicators, and Y ,  have been successfully elim inated from  the form ulation. 

Furtherm ore, (7.22) is a pointw ise m axim um  function o f M  (or K )  and is therefore convex 

in M  (or K ,  but not both jo in tly ; see below) [8 ], w hich w ill allow m e to  derive a convenient 

convex relaxation o f the jo in t EM  training problem  below.

7.4.2 Convex R elaxation of EM

By exploiting T heorem  7 .1 ,1 can now re-express the regularized form  o f jo in t E M  objective

(7.5) strictly in term s o f equivalence relations over the hidden variable values

“ iny Z 1̂ 1 1 5 1  > < 0 ) )  -  w 7 <t>j (z) > < u ) ) +  f  w 7 ( 7-25)
3 3 i

=  m in  ^ m a x  — tr(Ay log A j )  — l TAj lo g (lV F l)  (7.26)
{M 1  j  3

subject to A j >  0 , Ay 1  =  1 , for all j

M h = Y hY hT , Y h e  { 0 , l } iVxyh,Y ,ll  =  1 , for all h  (7.27)

w here h  ranges over the hidden variables, and K j  =  M J 1  o • • • o  M ]p for the parent variables 

Z j i , . . . ,  Z jp o f  Z j .

N ote that (7.5) is equivalent to (7.25), hence equivalent to (7.26); that is, no approxi

m ation has been introduced to this point. The objective o f (7.26) is concave in each A j  and 

convex in each M h individually (a m axim um  o f convex functions is convex [8 ]). T here

fore, (7.26) appears as though it m ight adm it an efficient algorithm ic solution. However, 

one difficulty in solving the resulting optim ization problem  is the constraints im posed in 

(7.27). These constraints are not convex. Therefore, to obtain a convex form ulation som e
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form  o f relaxation appears to be required. One natural convex relaxation is suggested by 

the following.

L e m m a  7.5 The constraints (7.27) are equivalent to: M h 6  { 0 ,1 } ,v x v , d ia g (M h) =  1, 

M h = M h r , M h t  0, ra n k(M h) = Vh.

Thus a natural convex relaxation o f (7.27) can be obtained by relaxing the discreteness 

constraint and dropping the non-convex rank constraint, yielding

M h €  [0, l ] iVxAr,d ia g (M /l) =  1 , M h = M h T , M h y  0 (7.28)

O ptim izing the exact objective in (7.26) subject to the relaxed convex constraints (7.28) 

provides the foundation for convexifying jo in t EM . N ote that since (7.26) and (7.28) are 

expressed solely in term s o f equivalence relations, and do not depend on the specific values 

o f  hidden variables in any way, this form ulation is not subject to the triviality result of 

L em m a 7.1.

However, there are still som e details left to  consider. First, if  there is only a single 

hidden variable then (7.26) is convex w ith respect to the single m atrix variable M h. This 

result im m ediately provides a convex jo in t E M  training algorithm  for various applications, 

such as naive B ayes for classification, for exam ple. Second, if  there are m ultip le hidden 

variables that are separated from  each other (none are neighbors, nor share a com m on child) 

then the form ulation (7.26) rem ains convex and can be directly applied. O n the other hand, 

if  hidden variables are connected in  any way, either by sharing a parent-child  relationship 

or having a com m on child, then (7.26) is no longer jo in tly  convex because the trace term  is 

no longer linear in the m atrix  variables { M h}. In this case, one can restore convexity by 

further relaxing the problem . To illustrate, if  there are m ultiple hidden parents Z P l, . . . ,  Z Pk 

for a given child, then the com bined equivalence relation M Pl o • • • o M Pk is a H adam ard 

product o f the individual m atrices. A  convex form ulation can be recovered by introducing 

an auxiliary m atrix  variable M  to replace M pl o • • • o M Pk in (7.26) and adding the set of 

linear constraints M u  <  M fe for p  e  {p i, M lf  >  +  • • • +  — k  +  1 to

approxim ate the com ponentw ise ‘an d ’. However, w hen a child variable and one o f  its parent 

variables are both hidden, a m ore com plex relaxation has to be developed (I leave this as part 

o f  future work). To conduct experim ents, I im plem ented a barrier approach for m inim izing 

(7.26) subject to (7.28) based on B FG S (B royden-Fletcher-G oldfarb-Shanno) optim ization 

m ethod [70]. See [8 ] for a detailed description o f  the standard barrier optim ization, which 

is also described in C hapter 6  o f this thesis. For the problem  here, I used log barriers for the 

linear inequality  constraints and log-determ inant barriers for the sem idefinite constraints.
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R ecovering  th e  M odel P a ra m e te rs  O nce the relaxed equivalence relation m atrices 

{ M h}  have been obtained, the param eters o f the underlying probability m odel need to be 

recovered. At an optim al solution to (7.26), one not only obtains { M h },  but also the as

sociated set o f dual param eters {Aj}. Therefore, one can recover the prim al param eters 

W j  from  the dual param eters A j using the relationship W ] =  ( /  — A j ) Y 3 established

above, w hich only requires availability o f a label assignm ent m atrix Y 3. For observed vari

ables, Y 3 is known, and therefore the m odel param eters can be im m ediately recovered. For 

hidden variables, we first need to com pute a rank Vh factorization o f M h. Let S  =  T E 1/ 2 

w here T  and E are the top Vh eigenvector and eigenvalue m atrices o f the centered m atrix 

H M hH .  One typical way to recover Y h from  S  is to run k-m eans on the rows o f S  and 

construct the indicator m atrix. A m ore elegant approach would be to  use a random ized 

rounding schem e [37], w hich also produces a determ inistic Y h, but provides som e guaran

tees about how well Y hY hT approxim ates M h.

7.5 Experimental Results

A n im portant question to ask is w hether the relaxed, convex objective (7.26) is in fact over

relaxed, and w hether im portant structure in the original objective (7.25) has been lost as a 

result. To investigate this question, I conducted a set o f  experim ents to evaluate the proposed 

convex approach com pared to the standard jo in t E M  algorithm , and to supervised training 

on fully observed data. W henever possible, I also com pared w ith the golden standard true 

model. M y experim ents are conducted using both synthetic Bayesian netw orks and real 

w orld netw orks, w hile evaluating the trained m odels by the logloss (negative loglikelihood) 

they produced on the fully observed training data and testing data. A ll the results reported in 

this chapter are averaged over 10 repetitions. The test size fo r the experim ents is 1000, and 

the training size is 100. For a fair com parison, I used 10 random  restarts for the standard 

jo in t EM  algorithm  to help avoid poor local optim a.

For the synthetic experim ents, I constructed three B ayesian netw orks, show n in F ig

ure 7.1: BN1 is a three layer netw ork w ith 9 variables, w here the tw o nodes in the m iddle 

layer are picked as hidden variables; BN 2 is a netw ork with 6  variables and 6  edges, w here a 

node w ith 2 parents and 2 children is picked as hidden variable; BN3 is a naive B ayes model 

w ith 8  variables, w here the parent node is selected as the hidden variable. The param eters 

are generated in a discrim inative way to produce m odels w ith apparent causal relations 

betw een the connected variables. I then conducted experim ents on these three synthetic
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BN1 BN 2

BN3

Figure 7.1: Synthetic Bayesian netw orks 1-3

Table 7.1: E xperim ental results on synthetic B ayesian networks

G olden Standard 
Train Logloss

Fully Supervised 
Train Logloss

Joint EM  
Train Logloss

Convex EM  
Train Logloss

BN1 7.52 ±  0.06 7.23 ±  0.06 11.29 ± 0 .4 4 8.96 ±  0.24
BN2 4.34 ±  0.04 4.24 ±  0.04 6.06 ±  0 . 2 0 5.23 ± 0 .1 8
BN3 5.09 ±  0.02 4.93 ±  0.02 7.81 ± 0 .3 5 6.23 ± 0 .1 8

Test Logloss Test Logloss Test Logloss Test Logloss

BN1 7.48 ±  0.01 7.90 ±  0.04 11.73 ± 0 .3 8 9.16 ± 0 .2 1
BN2 4.37 ±  0.01 4.50 ±  0.03 6.48 ±  0.23 5.48 ± 0 .1 9
BN3 5.10 ± 0 .0 1 5.32 ±  0.05 8.18 ± 0 .3 3 6.41 ± 0 .1 4
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networks. The results are reported in Table 7.1. One can see that the convex relaxation 

was successful at preserving structure in the EM  objective, and in fact, generally perform ed 

m uch better than the standard jo in t EM  algorithm , particularly  in the case (B N 1) w here 

there was tw o hidden variables. N ot surprisingly, supervised training on the com plete data 

perform ed better than the EM  m ethods, but generally dem onstrated a larger gap betw een 

training and test losses than the EM  m ethods.

In addition to these three synthetic B ayesian netw orks, I also ran experim ents using 

some U C I data sets. H ere I used naive B ayes as the m odel structure, and set the class 

variable to be hidden. The U C I results are reported in Table 7.2. The results I obtained 

in this case are mixed: the convex EM  algorithm  perform ed better than the jo in t E M  on 

four data sets— A ustralian, D iabetes, F lare and Pim a— w hile w orse on the o ther four data 

sets— Breast, C leve, C rx and H eart. O ne has to adm it that it is possible for the jo in t EM  

to converge to a better solution in som e cases. Further investigation needs to be conducted 

with respect to w hat aspects o f  the problem  are responsible for the w eak approxim ation 

given by the convex E M  in such cases.

Finally, I conducted additional experim ents on three real world Bayesian netw orks: 

A larm , C ancer and A sian (dow nloaded from  http://w w w .norsys.com /netw orklibrary.htm l). 

I selected one w ell connected node from  each m odel to serve as the hidden variable, and 

generated data by sam pling from  the m odels. Table 7.3 shows the experim ental results for 

these three B ayesian networks. H ere one can see that the convex E M  relaxation perform ed 

w ell on the C ancer and A larm  netw orks, though the advantage is very small for the A larm  

network. Since I only selected one hidden variable from  the 37 variables in A larm , it is 

understandable that any potential advantage for the convex approach m ight not be large. 

M uch w eaker results are obtained on the A sian netw ork however. The reason rem ains to  be 

further investigated.

7.6 Conclusion

In this chapter, I have presented a novel convex relaxation o f the standard jo in t EM  (Viterbi 

EM ) algorithm  for B ayesian netw ork param eter estim ation in the presence o f hidden vari

ables. This convex EM  approach was facilitated by a novel reform ulation o f logistic re

gression that refers only to equivalence relation inform ation on the hidden variable values, 

and thereby allow s one to avoid the sym m etry breaking problem  that blocks naive con- 

vexification strategies from  working. Experim ental results, that com pared this convex EM
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Table 7.2: Experim ental results on U C I data sets

Fully Supervised 
Train Logloss

Joint EM  
Train Logloss

Convex EM  
Train Logloss

A ustralian 10.32 ±  0.07 12.83 ± 0 .2 1 11.92 ± 0 .2 3
B reast 4.70 ± 0 .1 0 4.86 ± 0 .1 3 6.06 ±  0.28
Cleve 8.17 ± 0 .0 8 8.64 ± 0 .1 4 9.03 ±  0.21
Crx 11.35 ± 0 .0 7 13.35 ± 0 .4 0 13.45 ±  0.19
D iabetes 5.23 ±  0.04 6.70 ±  0.27 6.51 ± 0 .3 5
Flare 5.96 ±  0.06 11.79 ± 0 .2 6 7.36 ±  0.37
H eart 8.11 ± 0 .0 5 8.56 ± 0 .1 1 8.93 ± 0 .1 5
Pim a 5.07 ±  0.03 6.74 ±  0.34 5.81 ± 0 .0 7

Test Logloss Test Logloss Test Logloss

A ustralian 11.05 ± 0 .0 4 13.57 ±  0.09 12.34 ±  0.22
B reast 4.92 ±  0.03 5.02 ±  0.04 6.30 ±  0.27
Cleve 8.51 ±  0.05 9.05 ± 0 .1 4 9.15 ± 0 .1 4
Crx 12.18 ± 0 .0 5 13.72 ±  0.29 13.91 ±  0.23
D iabetes 5.53 ±  0.04 7.07 ±  0.23 6.50 ±  0.28
Flare 6.46 ±  0.04 1 2 . 1 1  ± 0 . 2 0 7.82 ±  0.44
H eart 8.48 ±  0.03 8.91 ±  0.07 9.09 ± 0 .1 4
Pim a 5.32 ±  0.03 6.93 ±  0.21 6.03 ±  0.09

Table 7.3: Experim ental results on real-w orld Bayesian netw orks

G olden Standard 
Train Logloss

Fully Supervised 
Train Logloss

Joint EM  
Train Logloss

Convex EM  
Train Logloss

Cancer
A larm
A sian

2.23 ±  0.05 
11.14 ±  0.18

2.24 ±  0.06

2.18 ± 0 .0 5  
10.23 ± 0 .1 6  
2.17 ± 0 .0 5

3.90 ± 0 .3 1  
11.94 ± 0 .3 2  
2.21 ±  0.05

2.98 ± 0 .1 9  
11.74 ± 0 .2 5  

2 .7 0 ±  0.14

Test Logloss Test Logloss Test Logloss Test Logloss

C ancer
A larm
Asian

2.24 ±  0.01 
10.93 ±  0.06 

2 . 2 2  ±  0 . 0 1

2 .3 1 ±  0 . 0 2  

12.30 ± 0 .0 6  
2.33 ±  0.02

3.94 ±  0.29 
13.75 ± 0 .1 7  
2.36 ±  0.03

3.06 ± 0 .1 6  
13.62 ±  0 . 2 0  

2.78 ± 0 .1 2
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relaxation to the standard jo in t EM  algorithm , on both synthetic and real world Bayesian 

networks, show this novel convex technique can perform  m ore effectively than jo in t EM  in 

som e circum stances. However, some weak results also existed, suggesting w eaker approx

im ation qualities in those cases. The reason rem ains to be investigated.
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Chapter 8

Conclusions

In this thesis, I have investigated a few challenging problem s for learning B ayesian net

works from  data. Specifically, I presented five pieces o f  w ork m otivated tow ard achiev

ing better data m odeling and pattern classification with Bayesian netw orks under various 

contexts: generative m odeling, discrim inative classification, and learning w ith hidden vari

ables. In particular, I have exploited several convex optim ization techniques to address the 

B ayesian netw ork learning issues by first form ulating a natural optim ization problem  and 

then relaxing it to a convex form  w henever it is possible.

First, I presented a novel convex relaxation for generative Bayesian netw ork structure 

learning. This approach sim ultaneously searches over variable orders, structure and pa

ram eters in a jo in t convex optim ization by introducing a set o f auxiliary feature selection 

variables. C om pared to standard score-based heuristic search m ethods, w hich suffer from  

local optim a, this convex approach suggests a new  class o f algorithm s for learning B ayesian 

netw orks that ultim ately m ight lead to  guaranteed approxim ation quality. B eyond achiev

ing approxim ation guarantees and algorithm ic im provem ents, other significant directions 

for future research include considering the problem  o f structure learning in the presence 

o f m issing data o r hidden variables, and attem pting to extend the current analysis to B D e 

scores.

Second, follow ing the idea o f selection variable controlled structure learning, I then 

presented a globally regularized risk  m inim ization m ethod for inferring gene regulatory 

netw ork structure from  tim e series expression data. This m ethod form ulates structure in

ference as a feature selection problem . Exploiting the assum ption that genes w ith sim ilar 

expression patterns are likely to be co-regulated, the proposed approach learns the regula

tory relationships using global feature selection to encourage genes w ith sim ilar expression 

patterns to share regulators, while local feature selection is controlled by L I regularization,
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which allows individual differences. This fram ew ork also provides an opportunity to in

corporate additional background know ledge, w hich can be considered in the future. Given 

that this approach appears to be an effective feature selection strategy, one future research 

direction is to  extend this technique to  o ther bioinform atics problem s.

Third, considering that Bayesian netw orks have been popularly applied as classification 

tools, I presented two new discrim inative m odel selection criteria (BV and C B IC ) to guide 

the structure learning for B ayesian netw ork classifiers w ith the goal o f identifying the struc

ture with the best classification perform ance. I conducted a com prehensive em pirical study 

to com pare the proposed discrim inative criteria w ith standard criteria in various contexts. 

The proposed BV criterion turns out to perform  best across m ost contexts. This w ork pro

vides a useful reference for studying the discrim inative Bayesian netw ork structure learning 

problem  in the future.

Fourth, I presented a discrim inative m axim um  m argin approach for B ayesian netw ork 

classifier param eter estim ation. This approach extends the m ost popular m axim um  m argin 

criterion o f SV M s to the classification setting using B ayesian networks. A lthough w ithin 

this fram ew ork, m axim um  m argin training is a hard com putational problem , I still devised a 

reasonable convex relaxation to solve it m ore efficiently. The em pirical study suggests that 

m axim um  m argin Bayesian netw orks can be m ore effective for classification than m axi

m um  m argin M arkov networks, w hen the B ayesian netw ork structure encodes the causal 

inform ation in the underlying dom ain. In this sense, m axim um  m argin B ayesian netw orks 

offer a new w ay to add prior know ledge to SVM s. The m ain directions for future research 

are to im prove the training procedure and explore the possibility o f  using kernels in the 

local feature representation.

Finally, instead o f considering com plete training data, I presented a novel convex Viterbi 

EM  algorithm  for param eter estim ation w ith hidden variables. To illustrate the challenges 

involved in effectively convexifying V iterbi EM , I showed that naive convexifications can 

only lead to vacuous results, due to the sym m etry property o f the configurations for hidden 

variables. Thus, I reform ulated the V iterbi E M  optim ization problem  in term s o f equiv

alence relations over the hidden variable values instead o f the hidden values them selves, 

w hich allow s one to avoid the sym m etry breaking problem  that blocks naive convexifica- 

tion strategies from  w orking. I then relaxed the objective to obtain a convex optim ization 

problem . M y prelim inary results suggest this convex relaxation of E M  obtains reasonable 

results in com parison to the standard V iterbi EM  algorithm . So far, this w ork has not ad

dressed the com plicated case w here the child variable and at least one parent variable are
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both hidden. D eriving a reasonable convex relaxation in such case rem ains part o f future 

work. A nother further research direction is to investigate the approxim ation quality o f the 

convex relaxation. Extending the current w ork to deal w ith G aussian m ixture m odels is also 

one part o f the future research.

M ost o f the w ork in this thesis focused on discrete data. Therefore extending the pro

posed techniques to continuous data is a general direction fo r future research.

O verall, this thesis provides a broad study on learning Bayesian netw orks for generative 

data m odeling and discrim inative data classification. It presented novel B ayesian network 

learning approaches, often by exploring convex optim ization techniques. This thesis en

riches the literature on B ayesian netw ork learning, and also provides som e useful tools for 

application fields such as bioinform atics.
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Appendix A

Feature Generation Example

H ere I use a sim ple exam ple to illustrate the feature generation procedure show ed in F ig

ure 3.1. C onsider the feature generation problem  for variable A 3  w ith { X i , X 2} as the 

potential parent set. A ssum e that the value dom ains for these three variables are all {1, 2}, 

and the relevant colum ns (corresponding to the three variables) o f training data D  for this 

problem  is given by

D 3 =
1  1  1  

1 2 2

The augm ented m atrix D A can then be obtained by duplicating the rows o f  the first tw o 

colum ns o f  D 3 and setting the third colum n values by enum erating the possible values of 

X 3— each copy o f the data taking a different value

D* =

1  1  1  

1  2  1  

1  1  2  

1 2 2

Then, the features are generated as follows.

First, <1>(0) is constructed to include all the singleton features, i.e., -0'1 =  {<f>(x3  =

1), 0 (2 : 3  =  2)}. The response m atrix for on Z>s is given by

/ ( $ ( ° ) )  =

1  0  

1  0  

0  1  

0  1

w here rank(/(<f>(°))) =  2 .

Next, consider features w ith one parent variable involved. First, let =  0. Then 

consider the one-step extended feature set for each feature in For 4>{x3 =  1), its one- 

step extended feature set is 'F =  { 4>(x\ = 1 , 2 : 3  =  1 ), 0 (2 : 1  = 2 , 2 : 3  =  1 ), <j){x2 =  1 , 2 : 3  =
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I),<p(x2 — 2 , X'i =  1 )}  w ith response m atrix

m  =

1 0  1 0  

1 0  0 1 
0 0 0 0 
0 0 0 0

Since r a n k ( / ( $ ^  U U '&)) =  3 >  rank(/(<&(0) U =  2, the extension feature set 

'k  w ould b e  generated: U \k. Similarly, the one-step extension feature set for

(j)(x3 =  2) is ^  =  {<f)(x 1  =  1,033 =  2),0(o3i =  2, 033 =  2),0(a3 2  = l , Xs  =  2), <j)(X2 =  

2, X 3 = 2)} w ith response m atrix

m  =

0 0 0 0 
0 0 0 0 
1 0  1 0  

1 0  0 1

Since now  rank(/(4>(°) U ^ 1) U \k)) =  4 >  rank(/(<f>(°) U ^ 1))) =  3, this new  set 41 w ould 

be generated as well: U \k.

To this point, the  rank  o f  the response m atrix  has reached the m axim um  num ber, 4—  

the  num ber o f  row s o f  D^. Thus the feature generation process can b e  stopped, w ithout 

considering further extensions.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


