University of Alberta

LEARNING BAYESIAN NETWORKS FROM DATA: STRUCTURE OPTIMIZATION AND
PARAMETER ESTIMATION

by

Yuhong Guo @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Department of Computing Science

Edmonton, Alberta
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
ISBN: 978-0-494-32972-6
Our file Notre référence
ISBN: 978-0-494-32972-6
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian Conformément a la loi canadienne

Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Bayesian networks have become one of the most prevalent and useful formalisms for rep-
resenting uncertain knowledge, and have been applied to problems that involve both gen-
erative data modeling and discriminative pattern classification. The problem of learning
Bayesian networks from data embodies two key sub problems: structure optimization—that
is, determining the directed acyclic graph defining the model; and parameter estimation—
determining the conditional probability distributions to be associated with each variable.
This thesis investigates both the challenges of learning structures and parameters from data.
The main contributions of this thesis include: (1) a novel convex optimization algorithm
for Bayesian network structure learning; (2) a new globally regularized risk minimization
approach for gene regulatory network induction; (3) a new discriminative model selection
criterion for score-based structure learning of Bayesian network classifiers; (4) a novel max-
imum margin discriminative parameter estimation algorithm for learning Bayesian network
classifiers; and (5) a novel convex optimization algorithm for Bayesian network parameter

learning with hidden variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

My deepest gratitude goes to my supervisors, Dr. Dale Schuurmans and Dr. Russell Greiner.
Without their wise guidance, constant support, unvarying encouragement and assistance, 1
could not have completed this thesis. I would also like to thank my committee, Dr. Robert
Holte, Dr. Peter Hooper and Dr. Kevin Murphy, for spending time reading the thesis and

providing helpful comments and suggestions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction

2 Background

2.1
22

23

Bayesian Networks oo
Leamning Bayesian Networks
2.2.1 Parameter Learningo
222 Structure Learningo
Alternative Exponential Representations

3 Convex Structure Learning

3.1
32
33

W W W W W
O~ ON W

Introduction e
Parameter Estimation
Strategy e
Feature Generation v v vt i e e e
Feature Selection
Variable Ordering
Experimental Evaluation
Conclusion s,

4 Gene Regulatory Network Induction
4

42
43

44

4.5

Introduction
Background
Methodo
43.1 Linear Modeling
4.3.2 Coping with Time Lags via Time Shifting
4.3.3 Feature Selection via L1 Regularized Risk Minimization
4.3.4 Regulation Sharing via Globally Regularized Risk Minimization . .
4.3.5 Optimization Procedure
ExperimentsandResults
44.1 Experiments on SyntheticData.
442 ExperimentsonRealData
Conclusion L

5 Discriminative Model Selection

5.1
52
53
54

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Introduction
Bayesian Network Classifiers,
Discriminative Model Selection Criteria
Empirical Studies 0oL
54.1 Experimental Setup
542 Results L
Conclusion

6 Maximum Margin Bayesian Networks

6.1 Introduction
6.2 Maximum Margin Bayesian Networks

6.2.1 Maximum Margin Training Criteria

6.2.2 Convex Relaxation
6.3 Training Algorithm
6.4 Bayesian Networks with Exact Solutions
6.5 Experimental Results
6.6 Multivariate Extensiono oL oL
6.7 Multivariate Experimental Results
6.8 Conclusion e

7 Parameter Estimation with Hidden Variables

7.1 Introduction
72 EMVariants e e
7.3 A Cautionary Result for Convexifying EM
74 ConvexEM

7.4.1 Logistic Regression on Equivalence Relations

7.42 Convex Relaxationof EM
7.5 Experimental Results
7.6 Conclusion e

8 Conclusions
Bibliography

A Feature Generation Example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

e
(O8] Do —

Logloss results for synthetic experiments given the correct variable order
Logloss results for experiments on UCI data sets given a random variable
order L
Logloss results for synthetic experiments, comparing methods that learn
both structure andorder Lo o Lo
Logloss results on UCI data sets, comparing methods that learn both struc-
tureandorderol

Average comparison results for the synthetic experiments
Experimental results on synthetic Bayesian networks

Experimental results on UCI datasets
Experimental results on real-world Bayesian networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

4.2

0O ~1 O\ B ot —

PR QARARRAR LU L L
[o BN No NI, I SN UL I S N

—\O

~
—

A simple Bayesian network adopted from [67] 6
Feature generation procedure L. 27
Synthetic Bayesian networks 1-3 (from lefttoright) 33

Results on synthetic data. Rows denote target genes in the synthetic exper-
iment. Columns denote candidate regulators (transcription factors). Sub-
figure 1: local prediction output. Subfigure 2: prototype prediction output.
Subfigure 3: global prediction output. Subfigure 4: ground truth regulatory
relationships. Subfigure 5: expression level data used asinput. 47
Results on the subset of the real gene expression data from [17], restricted to
genes where TF-based regulation information is known or can be inferred
from other sources [84, 50]. Rows denote target genes. Columns denote
candidate regulators (transcription factors). Subfigure 1: local prediction
output. Subfigure 2: prototype prediction output. Subfigure 3: global pre-
diction output. Subfigure 4: ground truth regulatory relationships. Subfig-

ure 5: expression level dataused asinput.o 50
An example for Bayesian network classifier 54
Candidate structure generation procedure 58
Sequence of structures; (d) is the original structure 58
Comparison under context ML+1SS 0oL, 60
Comparison under context ML4+5CV oL 60
Comparison under context MCL+1SS 62
Comparison under context MCL+5CV 62
Comparison for BV’s performance under the four contexts 63
Bayesian networks that satisfy the renormalization condition 73
A Bayesian network that does not satisfy the renormalization condition . . 74
Two Bayesian networks where the class variable Y is shaded in each of them 74
Average error results for Figure 63 (top) 75
Average error results for Figure 6.3 (bottom) 76
Average error comparison between MMBN and MMMN on UCI data sets . 77
Average error comparison between MMBN and MCL on UCl datasets . . . 77
Average error results for MMBN and MMMN on synthetic networks with

multiple class variables Lo oo oo 80
Structure of the protein secondary structure prediction model 81
Average error results for MMBN and MMMN on protein secondary struc-

ture prediction Ll 81
Synthetic Bayesian networks 1-3 Lo 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

We are living in an age where complex data objects are routinely collected and analyzed.
The various components of a complex data object, such as a text or video, are correlated.
Even in the real world, observations of different variables are often dependent. For example,
if it is raining, the grass will be wet; if there is a fire, a fire alarm will ring. Generally
speaking, the relationship between events is usually more complicated than just a a one
to one direct causal relationship: the grass is also wet when the sprinkler is on; when the
fire alarm is broken, it will not ring even when there is a fire, and so on. Therefore, the
dependencies between observation variables are full of uncertainty, and can appear in a
probabilistic manner. The question is how to model the uncertain dependence relationships
between variables. Furthermore, how can one discover these dependence relationships, or
their independence, from what we have: the data. These are critical issues for data analysis
and machine learning.

As a combination of probability theory and graph theory, Bayesian networks appear to
be a suitable framework for tackling these problems. A Bayesian network is a probabilistic
graphical model that encodes a joint probability distribution over a set of random variables
using a directed acyclic graph associated with a set of conditional probabilistic parame-
ters. Specifically, the probabilistic dependencies between variables are asserted through
the conditional independence assumptions encoded by the directed edges, and numerical
uncertainties are specified by the local conditional probability parameters.

As an important tool for knowledge representation and reasoning under uncertainty,
Bayesian networks possess several benefits [47]. First, Bayesian networks facilitate the
translation of expert knowledge into a probabilistic representation, and can conveniently
incorporate prior domain knowledge into the learning process using Bayesian statistical

techniques. Second, Bayesian networks provide unique semantic clarity and understand-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ability by humans. In many situations, a Bayesian network can be given a causal inter-
pretation. Users are more likely to gain further insights from Bayesian networks. Third,
Bayesian networks allow one to learn and represent cause-effect relationships that are use-
ful for gaining better understanding about a problem domain and its structure. For example,
with a Bayesian network, it is easy to determine the relevant features for making classifica-
tion decisions, and identify the dependences among the various features. Fourth, Bayesian
networks can easily handle noisy and incomplete data. In many applications, the data used
for learning cannot be fully observed: either feature values are randomly missing from
instances or hidden variables exist. Bayesian networks, with their dependence encoded
structures, offer a natural way to fill in the missing data or handle the learning issues in
such cases.

As a result, Bayesian networks have become one of the most prevalent and useful for-
malisms for representing uncertain knowledge [71]. They have been widely used for mod-
eling knowledge in bioinformatics, medicine, engineering, image processing and decision
support systems. Recently, they have also been used to address discriminative classification
problems in these domains.

Although Bayesian networks are useful, they are typically expensive or impractical to
obtain from experts for most problem domains, whereas data is often cheap to obtain. The
availability of data has led to a growing research interest in learning Bayesian networks
from data.

Learning a Bayesian network from data is a challenging problem and has been well
studied. The general learning task involves two sub-issues: structure learning—determining
a directed acyclic graph over a set of random variables specifying the conditional indepen-
dence properties; and parameter estimation—determining the conditional probability dis-
tributions associated with each variable. Learning Bayesian network structure has been
proved to be an NP-hard problem when a consistent scoring criterion is used [16]. Current
heuristic algorithms have yet to robustly yield satisfactory solutions in practice, and gen-
erally suffer from local optima. Furthermore, new learning challenges for both structure
optimization and parameter estimation are posed when Bayesian networks are used for dis-
criminative classification, where the goal is different from that of modeling the underlying
joint distribution. Therefore, Bayesian network learning remains a critical research issue
and new learning techniques are still needed.

This thesis investigates the problem of learning Bayesian networks, both their structure

and parameters, for generative data modeling as well as discriminative pattern classification.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The main contributions of this thesis are the following.

First, I present a novel relaxed convex optimization approach for Bayesian network
structure learning from data. The convex approach I propose introduces feature indicator
variables to optimize the structure by searching through a space of features. Unlike tradi-
tional heuristic search methods that suffer from local optima, the proposed convex approach
can converge to an approximated global optima. Moreover, the formulated optimization is
polynomial in both the size of the training data and the number of variables, and therefore
avoids an NP-hard computational problem for general Bayesian network structure learning.

Second, using the feature selection idea developed above, I present a new globally reg-
ularized risk minimization approach for inferring gene regulatory network structure from
gene expression profile data. Unlike the typical gene regulatory network identification
methods, which either deal with each gene individually or deal with a group of genes using
a single prototype, my new approach is able to encourage the genes with similar profiles to
share regulators by introducing global feature selection variables, while permitting individ-
ual differences by using an L1 regularizer on local weights.

Third, since Bayesian networks have become popular for use as classifiers, [propose
two discriminative model selection criteria that are specifically directed at optimizing clas-
sification performance. Unlike standard generative model selection criteria, which measure
the quality of the structure for modeling the underlying joint distribution, the proposed dis-
criminative criteria measure the generalization classification performance of the structure,
consistent with the goal of learning classifiers. A comprehensive empirical comparison be-
tween the proposed discriminative criteria and standard generative criteria provides a useful
reference for future research on discriminative structure learning.

Fourth, besides discriminative structure learning, I also present a discriminative param-
eter estimation approach that extends the popular maximum margin criterion to Bayesian
networks. The resulting maximum margin Bayesian network learning technique combines
the advantages of discriminative SVMs with the ability of Bayesian networks to encode
prior causal knowledge. This approach can also be nicely extended to the multiple class
variable case, providing for example a discriminative technique for training directed hidden
Markov models.

Finally, beyond just considering complete data, I present a novel convex relaxation of a
standard form of EM algorithm to address the problem of parameter estimation in the pres-
ence of hidden variables. Standard (Viterbi) EM algorithms only converge to a local optima,

while any attempt to overcome this shortcoming in the case of hidden variables by naively

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convexifying the problem fails, because the symmetry over configurations of hidden vari-
able values leads to vacuous results. To bypass this problem, I formulate the optimization
in terms of equivalence relations over the hidden variable values rather than distributions
over the values themselves. This approach makes new progress towards achieving global
EM approximations.

The remainder of the thesis is structured as follows: Chapter 2 introduces background
on learning Bayesian networks from data. Chapter 3 then presents the convex structure
learning approach [propose. Chapter 4 presents a globally regularized minimization method
to infer the gene regulatory network structure from time series expression data. Chapter 5
proposes new discriminative model selection criteria and provides a comprehensive em-
pirical study of various discriminative and generative criteria for selecting good structures
for Bayesian network classifiers. Chapter 6 presents a new maximum margin parameter
estimation technique for learning Bayesian network classifiers. Chapter 7 presents a novel
convexification of Viterbi EM for learning Bayesian network parameters in the presence of

hidden variables. Finally, Chapter 8 concludes the thesis work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

In this chapter, I introduce the general background for Bayesian networks. I first intro-
duce the Bayesian network representation and its properties in Section 2.1. Then I discuss
the learning issues that arise with Bayesian networks in Section 2.2. Finally, Section 2.3

presents alternative parameterizations of Bayesian networks that I exploit later in the thesis.

2.1 Bayesian Networks

A Bayesian network (BN) is a directed probabilistic graphical model that typically has two
key components: a graph structure G and an associated set of parameters 8. The graph
structure G is specified by a directed acyclic graph (DAG) where each node represents a
random variable and the directed edges represent statistical dependencies or cause-effect
relationships between the variables. Alternatively, the edges could also be interpreted as
specifying conditional independence assumptions. A Bayesian network is usually taken as
an I-map of the underlying distribution. That is, every conditional independence implied
in the graph is satisfied by the underlying distribution [71]. The conditional independence
properties specified by directed graphs are defined by the concept of d-separation.

Definition 2.1 Suppose A, B and C are non-intersecting sets of nodes in the graph. We
say A is d-separated from B by C, written A1L B|C, if every path from any node in set A

to any node in set B satisfies either one of the following two conditions:

1. there is a node R on the path without two incoming directed edges and R is in C,

2. there is a node R on the path with two incoming directed edges, but neither R, nor

any descendants of R is in C.

A good way to explain d-separation in a directed graph is through a reachability algorithm

known as the Bayes Ball algorithm; for details see [51, 67].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P(C=F) P(C=T)
0.5 0.5

C | P(S=F IC) P(S=TIC) C | P(R=F IC) P(R=TIC)
F| 05 0.5 @ @ F ‘ 0.8 0.2
T 0.9 0.1 T 0.2 0.8

S R | P(W=FIS,R) P(W=TIS,R)
F F 10 0.0
TF 0.1 0.9
FT 0.1 0.9
TT 0.01 0.99

Figure 2.1: A simple Bayesian network adopted from [67]

The conditional independence properties can also be equivalently captured by the Markov
properties of directed graphical models [62]. The global Markov property is the same as
d-separation; the local Markov property says that a node A is independent of all its non-
descendants given its parents; the pairwise Markov property says that a node A is indepen-
dent of a node B given all its non-descendants and B is not a descendant or parent of A. It
can be shown that all these definitions are equivalent [62].

According to the conditional independence properties encoded by the edges, the joint
distribution represented by a Bayesian network can be factored into products of local func-
tions, each of which is a local conditional probability associated with a local variable (node).
For example, given a Bayesian network that represents a joint distribution over a set of ran-
dom variables X = (X3, X9, ..., Xy,), the joint probability can be compactly represented in

a factored form according to the graph structure by
7
P(x) = [[P(z;xx()) Q2.1)
j=1

where P(z;|x.(;)) is the conditional probability of X; taking value z; given its parent
configuration X (;).

The variables in a Bayesian network can be continuous or discrete. This thesis mostly
focuses on the discrete case. In this case, the local conditional probabilities associated with
each variable can be encoded as entries in a conditional probability table (CPT). These
comprise the parameters of a Bayesian network in the standard parameterization. (I will

discuss alternative parameterizations below.) For each variable X ;, let a denote the set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of possible values of z;, and let b denote the set of values for its parent configuration
Xq(;)- Then the CPT for variable X ; stores the entries {f4b, Ya, b}, where these parame-
ters 0,5 = P(x; = a|x;(;) = b) must obey the simple nonnegativity constraints 6, > 0
for all a, b and also the local normalization constraints ., ;45 = 1 for every b.

Figure 2.1 depicts a simple Bayesian network adopted from [67], showing a directed
graphical structure and the associated CPTs.

Bayesian networks are one of the most prevalent and useful formalisms for represent-
ing uncertain knowledge [71]. Along with Markov networks, they share the advantage of
providing a sound probabilistic foundation for inference and learning, and can represent
complex distributions compactly. However, Bayesian networks offer a distinct advantage in
interpretability, since each parameter can be interpreted in isolation as a conditional prob-
ability assertion over a subset of variables in the domain. They also offer computational
benefits over Markov networks, by permitting more efficient parameter estimation for ex-

ample.

2.2 Learning Bayesian Networks

Bayesian networks have been widely used either for generative data modeling or for dis-
criminative data classification. Since manually specifying the complete structure and pa-
rameters for a Bayesian network is often either difficult or impossible in practice, learning
Bayesian networks from data is an important problem. Learning a Bayesian network from
data, therefore, involves two key problems: estimating the parameters of the model, and
more interestingly, inferring the structure of the network. I first introduce the parameter
learning problem for a given Bayesian network structure, and then discuss the structure

learning problem.

2.2.1 Parameter Learning

For a given structure G, traditional parameter learning methods estimate the parameters by
maximizing the joint likelihood of data, which is usually referred to as generative parameter
learning [36]. (I will drop the notation G for the remainder of this section on parameter
iearning, since the structure is assumed fixed.) Recently, with Bayesian networks becoming
widely used as classifiers, some algorithms have been proposed to learn the parameters
by maximizing conditional likelihood of the class variable given the observed evidence

variables. These methods are referred to as discriminative parameter learning [39, 98, 99].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Generative Parameter Learning

Given a set of training data [J, comprised of a set of independent and identically distributed

1.
-

.;x], where all components are observed, generative parameter learning

instances [x
methods estimate the parameters of a Bayesian network either by directly maximizing the
joint likelihood of training data, or by computing the posterior over parameters 8 given a
prior distribution P(8).

The first method is called maximum likelihood (ML) estimation. Using the conditional
independence assumptions encoded in the structure, the joint log likelihood of training data

can be factored in the following way

N n
log P(D|0) = > > log P(z}xL,,,0)

i=1 j=1

N n Vaizaxi, =b)
Z Z log <H ejab] ")
ab

i=1 j=1

= Z #jab log ojab
jab
where # j,p, is the count of instances that satisfy the configuration [z; = q, Xr(j) = b]; that
is #jab = Zf\i 11 (gizg xt ,=b)’ where 1.y denotes the indicator function. By maximizing
I (g
log P(D|@) with respect to the local normalization constraints using standard Lagrange

multipliers, one can obtain a closed form solution

where # b =), #jab- Itis easy to see that these estimated parameters satisfy a parameter
independence property: the estimate for éj is independent of éj/ for j # j'; the estimate for
éjb is independent of the estimate for éjb/ forb # b’

The second generative method is called maximum a posteriori estimation (MAP). As
mentioned in previous section, one of the benefits of Bayesian networks is the convenience
of incorporating prior domain knowledge. Prior knowledge can often be used to effectively
avoid overfitting, especially when one has limited training data. Given a prior density P ()
over parameters 6, one learns the parameters to maximize the posterior

P(6)P(D|6)

log P(6|D) = log P(D)

This is equivalent to maximizing log(P(8)P(D|@)) since P(D) is invariant with respect
to 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One usually assumes that the parameters in a Bayesian network satisfy two parameter
independence assumptions [48]: the global parameter independence assumption and the lo-
cal parameter independence assumption. The global parameter independence assumption
states that the parameters associated with different variables in a network structure are inde-
pendent. That is, 8; and 8 are independent for j # j'. The local parameter independence
assumption asserts that the parameters associated with the same variable but different parent
configurations are independent. That is, 8, and 6, are independent for b # b’. Taken

together, these two parameter independence assumptions imply that the prior P(8) satisfies
P0) =[] PO
jb
Typically P(@;p) is assumed to have a Dirichlet distribution

Di?’(@jb lajazlba) aja:|Vals(xj)Ib)

where 41, denotes the Dirichlet priors. Thus after observing the training data, the posterior

distribution of 61, will still have a Dirichlet distribution

P(0jb|D) = Dir(0;b|ajo=1b + #ja=1b, -, Yja=|Vals(z;)|b + H#ja=|Vals(z;)|b)

and one can simply obtain the MAP parameters from this posterior distribution

5 _ %ab + #jab

jab = ajb + #jb
Note again that the same parameter independence properties hold in the posterior as in the
prior. This is a consequence of the parameter independence property holding in both the
prior and the maximum likelihood estimation.

An alternative approach to both ML and MAP estimation is the Bayesian learning ap-

proach. Instead of obtaining a single set of maximum likelihood parameters from the pos-
terior distribution, one explores all parameter possibilities by just keeping the posterior

parameter distribution for later use. That is, one explicitly maintains the posterior

jab
Qjab + #jab)

POID) = TT [Tlem + #m) []

]:l b a

eajab+#jab_1

where I' is the gamma function.
For the simple complete data case, whether using ML or MAP for parameter estimation,
one obtains simple closed form solutions as shown above. But when the data is incomplete,

that is, the values of some variables are not observed in some instances, the parameter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

learning problem becomes much harder because the log likelihood function cannot be fac-
tored to estimate the parameters for each variable independently. When a variable is always
unobserved in the training data, one refers to it as a hidden variable.

The EM (Expectation Maximization) algorithm [26] is a classical algorithm that is
widely used for Bayesian network learning with incomplete data [36, 47, 61]. Let X be
the observed variables and Y be the hidden variables in a given learning scenario. Then the
standard EM algorithm estimates the parameters @ by maximizing the marginal likelihood
of the observed data, log P(x|@). The basic algorithm can be derived as follows. First, note

that the marginal log likelihood can be lower bounded in a general way [68]

1(6;x) = logP(x|6)
= logZny|0)

- T 520

> Z q(ylx) log o« ’|Y|)) (by Jensen’s inequality)

= L(q79)

for any conditional distribution g. Thus one can conveniently lower bound the marginal log
likelihood by a simple expectation (with respect to an arbitrary distribution ¢) of a function
of the complete data log likelihood.

The EM algorithm exploits this lower bound to indirectly maximize [(6;x) by instead
maximizing £(q, @) iteratively. EM works by alternately maximizing £(q, 8) with respect

to ¢ and @ in two alternating steps

q(k+1)

E-step: = arg max L(q, 8%)
q

M-step: 0%+ = arg max Lg%tV g) (2.2)
The E-step maximizes £(g, B(k)) with respect to q, and is called the expectation step. It is

easy to show that the maximum of the E-step is obtained when ¢**V) (y|x) = P(y|x, 8)),

which causes £(g, %)) to be equal to its upper bound 1(8%); x)

UO™:x) = £(q,0™) = > Plylx,0®) log P(x|6™)
y

The M-step is called the maximization step. It maximizes g D (y|x) log P(x,y|0)

with respect to 6 after the E-step.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The EM algorithm is intuitive and easy to implement. It is very effective for learning
directed graphical models with incomplete data. However, it suffers from a major drawback

of non-convexity (local maxima). I will address this issue in Chapter 7.

Discriminative Parameter Learning

Since Bayesian networks have widely been used for discriminative classification tasks, it
has been realized that the standard generative parameter learning methods are not the best
way to train them for classification. The weakness of generative learning for classification
problems is that it optimizes a criterion, such as maximum likelihood or MAP, that is not
consistent with classification performance [33]. In recent years, researchers considered a
new discriminative approach for supervised parameter learning that instead takes condi-
tional likelihood as the optimization criterion [39, 75, 83, 98, 99]. For classification, one
variable Y is typically denoted as the class variable and all the other variables X are con-
sidered to be evidence variables. More generally, one can have more than one class variable
Y [1, 19, 88]. Thus the discriminative maximum conditional likelihood (MCL) parameter

estimation would train parameters by maximizing the following log likelihood
> log P(y'[x",6)

Here I first assume the training data is complete. It is then easy to see the difference between

joint likelihood and conditional likelihood by decomposing the joint log likelihood
log P(x,y|6) = log P(y|x, @) + log P(x|6)

Note that the first term log P(y|x, @) represents the conditional likelihood, while the second
term log P(x|@) has nothing to do with classification. The conditional likelihood term can
be further expressed as

P(x,y|0)
>y P(x,y'10)
o8 P(ylxrv), 0) [Liecoy P(®5 %), ¥, 0)

>y PWxrvy,) [jecw) Pl@iXag), v, 0)

where C(Y") represents the indices of the child variables of Y. One can see that the con-

log P(y|x,8) = log

= 1

ditional likelihood is only affected by the variables that fall in the Markov Blanket of the

class variable where the concept of Markov Blanket is defined as follows.

Definition 2.2 For a variable Y in a Bayesian network G, its Markov Blanket is defined
as the union of the variables that are either Y ’s direct parents, or direct children, or share

a common child variable with Y according to G.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the G-closed case [3], where the true generative Bayesian network structure G is
given and the data generating distribution can be represented with this G, maximizing the
joint likelihood of data is a consistent method of estimating the joint distribution of vari-
ables; that is, the joint distribution given by the maximum likelihood parameters converges
to the generating distribution. Thus the conditional distribution of the class variable with the
maximum likelihood parameters will also converge to the true conditional distribution. But
in the G-open case—this is the typical case one encounters in most classification tasks—one
does not have the true structure of the underlying generative model. In this case, maximiz-
ing the joint distribution with respect to the structure is not consistent with maximizing
conditional distribution on the class variable anymore. Moreover, it has been shown [75]
that maximizing the conditional likelihood can converge to a better distribution (that has
lower expected conditional logloss) than maximizing joint likelihood in this case.

Although generative parameter learning given complete data is quite easy, it is difficult
to find the global maximum when using the discriminative conditional likelihood criterion
for general Bayesian networks. It has been proved that it is NP-hard to find the parameters
for a fixed Bayesian network structure that maximize the conditional likelihood of a given
sample of incomplete data {39]. Whether this remains true for complete data is an open
problem.

In [39], a gradient ascent method ELR was proposed to optimize the conditional likeli-
hood function for general Bayesian networks. ELR can deal with incomplete data without
additional computational cost, since it can fill in the missing values as a by-product of the
inference algorithm needed to compute the terms in the gradient. Besides this approach,
a discriminative EM algorithm, which maximizes the conditional likelihood of the hidden
values in the M step, has also been used addressing the discriminative learning problem
with incomplete data [78].

Although conditional likelihood is an effective training criterion for classification prob-
lems, it is not the only possible discriminative criterion. Other training criteria might be just
as effective and have further advantages. In particular, in Chapter 6 I investigate the use of

a large margin criterion for training Bayesian networks for classification.

2.2.2 Structure Learning

In many application domains, the underlying Bayesian network structure G is not provided
and one needs to learn the structure itself from training data. In fact, identifying the under-

lying cause-effect Bayesian network structures is particularly useful in some fields, such as

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

biology, medicine, and physics. Therefore, Bayesian network structure learning is an im-
portant and relevant research topic. Although parameter estimation from complete data is
a generally well understood problem that permits effective algorithmic approaches, struc-
ture learning, on the other hand, is a much more challenging problem. For simplicity, 1
only consider structure learning given complete data in this thesis. Generally speaking,
the many proposed structure learning approaches to date fall into one of the two groups:

constraint-based (or dependency analysis based) and score-based.

Constraint-based Structure Learning

Since a Bayesian network structure encodes conditional independence assumptions among
a set of variables, the network structure can be inferred if one can discover these conditional
independence properties from the data. This insight leads to the group of constraint-based
learning approaches.

One notable such algorithm is the SGS method [86], which detects the conditional
independencies by determining d-separation. It starts from a complete undirected graph,
and then tests each pair of variables and removes the edge between them if they are d-
separated by a subset of the remaining variables. Finally, the graph is oriented according
to the d-separation and acyclicity properties. This is done by first examining all triples of
variables A, B and C such that there are edges A — B, B — C, but not A — C. If there is
no subset that includes B that can d-separate A and C, then the directionality of A — B and
B - Cis A — B < C. Then all remaining paths such as A — B — C are oriented as
A — B — (C;edges A — B are oriented as A — B if there is a directed path from A to B.
The SGS algorithm requires an exponential number of d-separation tests in the number of
variables, and is infeasible for large networks. Another algorithm presented in [86], called
PC, addresses this problem by removing edges d-separated by size zero subsets first, and
then by size one subsets, and so on. Furthermore, the subsets are limited to the variables
adjacent to the ordered variables under consideration.

Other constraint-based algorithms perform in a similar tashion, though they might con-
duct the conditional independence test in different ways. For example, [13, 18] use condi-
tional mutual information tests.

The difficulty with constraint-based approaches is that reliably identifying the condi-
tional independence properties and optimizing the network structure are both challenging

problems [64].

i3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Score-based Structure Learning

A much more common approach for structure learning is the score-based method, where
one first poses a criterion by which a candidate Bayesian network structure can be evaluated
on a given data set, and then conducts a heuristic search for a Bayesian network structure
that optimizes the score. Since a complex network structure is always able to fit training
data better than a simpler structure, the key issue is to develop a reasonable model selec-
tion criterion that appropriately balances model complexity with the goodness of fit to the
training data; hence avoiding overfitting.

One well established model selection criterion is Minimum Description Length (MDL)
[34, 57,73, 92]. The MDL principle is based on the idea that the best model is the one that
minimizes the sum of the description length of the model and the description length of the
training data given the model, measured in bits. Specifically, the MDL criterion is usually
given by

k(G)log N

MDL(G, D) = —log P(D|G,0) + =

2.3)

where IV is the number of training instances, and € is the maximum likelihood parameters
for the given structure G. Here k(G) denotes the number of free parameters in the candidate

Bayesian network defined by G
n
k(G) = gi(r;— 1) 2.4)
j=1

where r; = |Vals(z;)| is the number of values of the variable X, and g; is the number of
parent configurations of the jth variable X; such that g; = [[c. ;) |Vals(zx)|- The first
term in (2.3) is the negative of the loglikelihood of the training data, which approximates
the description length of the training data [21, 34]. The second term in (2.3) is the descrip-
tion length of the CPTs, that is, the parameters. (Note that the description length for the
graph structure is omitted here since it is much smaller than the description length of the
parameters.) According to the MDL principle, one therefore should search for the structure
that minimizes (2.3).

Another popular model selection criterion for Bayesian network model selection is a
Bayesian scoring metric, developed in [20] that eventually led to the Bayesian Dirichlet
likelihood equivalent (BDe) score of [48]. The BDe score measures the marginal likelihood

of the training data over the parameter distributions for the candidate network structure. It

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1S written as

i=1b a]b + #]b) Xjab

where [is the gamma function. In this case, structure learning amounts to searching for
the network structure that maximizes this score. Using an asymptotic approximation to [’
in (2.5), one can obtain a criterion known as Bayesian Information Criterion (BIC) [81]

k(G)log N

BIC(G, D) = log P(D|G,0) — 5

(2.6)

which turns out to be exactly the negative of the MDL criterion. In addition to BIC, another
approximation of BDe is the Akaike’s Information Criterion (AIC) [9], which has an even

simpler regularization term
AIC(G, D) = log P(D|G,8) — k(G). @7

Despite their superficial differences, AIC, MDL/BIC and BDe are all asymptotically equiv-
alent. One advantage these criteria have is that they can be decomposed into separated terms
associated with each local variable according to the structure, and therefore are efficiently
recomputable given local changes to the structure.

Besides the criteria introduced above, Cross-Validation has also been used for model
selection in Bayesian network structure learning [92].

Once a model selection criterion is defined, the learning task reduces to conducting a
search in structure space to find the structure that optimizes the criterion. This is, however,
an intractable optimization problem. The problem of finding the best Bayesian network
among all networks where each variable has at most k£ parents is NP-complete for £ > 1,
using BDe score [15]. In fact, recently it has been shown that optimizing Bayesian network
structure is NP-hard for k > 3, in the large sample limit, for all consistent scoring criteria,
including MDL/BIC, AIC and BDe [16].

Due to the inherent intractability of structure optimization, the literature on Bayesian
network structure learning has been dominated by heuristic algorithms for searching the
space of individual networks. One popular heuristic search strategy, also one of the sim-
plest, is greedy hill climbing. It starts from the given initial network structure (an empty
network or a random network) and then repeatedly applies to the current structure the local
operation (adding an edge, deleting an edge and reversing an edge) that leads to the best
model selection score. The search procedure terminates when a local optima is reached,

that is, no local modification of the current structure improves the model selection score.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As with all other greedy local search approaches, hill climbing can and usually does get
stuck in a local optimum. One simple way to escape local optima is to use random restarts.
Nevertheless, [48] shows that hill climbing is quite effective for learning Bayesian networks
in practice. Besides greedy local search with or without random restarts, heuristic search
algorithms for structure learning also include simulated annealing and genetic algorithms
[31, 38, 60, 66].

Furthermore, it has been recently observed that searching the space of variable orderings
can be more effective than searching the space of network structures [60, 90], since the
space of orderings is much smaller. These variable order search approaches exploit the
fundamental insight of [10, 20] that, for a fixed variable order, the optimal network (of
bounded in-degree) and parameters can be computed in polynomial time (but exponential
in the in-degree bound).

In Chapter 3, I explore an alternative structure search approach that is based on formu-
lating convex, continuous relaxations of a standard score-based optimization in the feature
space following the MDL principle. Furthermore, in Chapter 5, T explore discriminative

structure scoring criteria for learning Bayesian networks for classification.

2.3 Alternative Exponential Representations

Beyond the standard Bayesian network parameterization based on CPTs described above,
in this thesis, I will make use of alternative, equally expressive parameterizations that make
many of the derivations simpler and allow some new techniques to be developed. These
alternative parameterizations can be easily derived as simple transformations of the standard
CPT parameters 6.

First, since this thesis focuses on discrete Bayesian networks, a simple observation is

that the joint probability in (2.1) can be rewritten in an equivalent exponential form as
P(x) = exp (Z 1 mapmn sy by I ajab) 2.8)
jab
Then by introducing a set of new variables w to replace 8, the joint probability in (2.8) can

be further represented in a form of exponential model

P(x) = exp (wT¢(x)) (2.9)
using the substitution
Wjgb = Injap (2.10)
16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where ¢(x) denotes the feature vector

D(X) = (- Lix;—am,(jy=b)-r) | (2.11)

(5)
over j,a,b. The key aspect of this exponential form is that it expresses the joint probability
p(x) as a convex function of the parameters w, which would seem to suggest convenient op-
timization problems. However, Bayesian networks also require the imposition of additional

normalization constraints over each variable

D e = 1forall j,b (2.12)
a

Unfortunately, these constraints are nonlinear and thus introduces difficulties for deriving
convex techniques. Nevertheless, this new representation using w still provides a conve-
nient way to derive a novel convex optimization technique for maximum margin parameter
learning in Chapter 6 of this thesis.

The parameterization in terms of w is not the only representation that proves to be
useful. A standard reparameterization that removes the normalization constraints in (2.12)
is to introduce another set of variables w to replace 8, instead of using w, via the definition

ewjab

Gy = —————
Jjab Za’ eWja'b

(2.13)

In this way, the local normalizations can be implicitly encoded in the representation. Using
the w parameterization, the joint probability in (2.8) can be re-expressed in a standard
exponential form that offers many advantages over the traditional CPT based representation

in the later techniques derived in this thesis
P(x)=exp | [W;rd)j(xjaxw(j)) - A(Wjaxn'(j))] (2.14)
J

where

A(wj, Xp;)) = log <Zexp (ijd)j(a,xﬂ(j))))

Here A(w;,X(;)) is the log normalization constant for the jth conditional probability dis-
tribution; ¢;(z;, X (;)) denotes the feature vector (...1(,, :a,x,,(j):b)'--)T over a, b; and w
denotes the local parameter vector (...w jab...)T over a, b. Thus, together ¢; and w; spec-
ify the local conditional probability distribution P(x|x,(;)) and allow the traditional CPT

parameter entries to be efficiently recovered by
Bjab = exp(w; ¢;(a,b) — A(w;, b))

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One key aspect of this general exponential form is that it expresses log P(x) as a con-
cave function of the parameters w, which will lead to convenient optimization problems
later in this thesis. Another important advantage of the exponential form, however, is that
it allows a sparse representation of the conditional distributions. That is, one can represent
P(x;]xx(;)) given a subset of features from the set of possibilities { La;=ax,(;y=b) : @ €
Vals(z;), b € Vals(xr(;))}. In general, this allows one to represent P(zj|X(;)) compactly
even if the number of parent variables is large. Such a sparse feature representation of a
CPT is similar to exploiting context specific independence [7] or local structure [34]. In
fact, these compact representations can be recovered as a special case. The size of a feature
based representation for a CPT is never larger than the traditional table based representation,
and can be arbitrarily smaller.

In Chapter 3, I show that this feature based representation is particularly advantageous

from the perspective of learning a Bayesian network from data, since it nicely reduces the

problem of structure learning, largely, to identifying the features used to define the model.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Convex Structure Learning

3.1 Introduction

Bayesian networks are one of the most prevalent and useful formalisms for representing
uncertain knowledge and complex distributions. However, one of the greatest challenges
in constructing a Bayesian network representation is determining the graphical structure
of the network that specifies the conditional independence assumptions being made about
the domain. Effective tools for learning Bayesian network structures from observed data
are therefore important, particularly in domains where prior knowledge about conditional
independencies is limited. As introduced in Chapter 2, learning the structure of a Bayesian
network from data poses a significantly hard computational problem, since one must cope
with a combinatorial search over the space of possible structures. The two groups of struc-
ture learning approaches (constraint-based and score-based approaches) proposed in the
literature have yet to provide a completely satisfactory solution so far.

In this chapter I propose an alternative approach to the problem of learning a Bayesian
network model from data. My idea is based on the general exponential representation of
Bayesian networks shown in (2.14). Using this feature based representation, one can conve-
niently formulate the structure learning problem for Bayesian networks as a combinatorial
integer optimization problem. My idea is then to follow the strategy from combinatorial op-
timization, where, when faced with an intractable integer programming problem, one first
formulates a convex relaxation that can be solved efficiently, and then rounds the “soft”
solution to obtain an approximate “hard” solution to the original problem. In this approach,
the problem of learning a Bayesian network from data can be decomposed into three prob-
lems: learning a set of features, learning a variable ordering, and learning a corresponding
set of parameters. That is, the proposed approach tackles all three subproblems simulta-

neously. Here, I propose an efficient relaxation of the Bayesian network structure learning

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem that solves for the structural features that determine the graph, the variable order-
ing that determines the edge orientation, and the model parameters all in a single, compact
optimization. In this chapter, first, I show that, given a fixed variable order, the maximum
likelihood structure and parameters can be found in polynomial time and space using a
sparse exponential family representation, without any restriction on the number of parents
for any variable. Second, given a fixed variable order, I show how feature selection based on
the minimum description length principle can be addressed simultaneously with parameter
optimization. Finally, to optimize the order, I introduce a compact matrix representation
of total orderings that allows a semidefinite relaxation. I evaluate the overall technique
on natural and synthetic data sets, and find that convex relaxation is a very promising ap-
proach to this problem, even though the underlying search problem is inherently discrete.

A preliminary version of this work was published in [42].

3.2 Parameter Estimation

Before introducing the new structure learning approach, I first establish some preliminary
resuits that will be needed later. The first and simplest subproblem is estimating the param-
eters w given a fixed variable ordering 7 and feature set ¢.

Given complete training data D = [x!;...;x"V] and taking the general exponential

representation (2.14), the negative loglikelihood loss can be expressed
Lw) = 3 [Alwy,x) = wl by (ahxs)]

1,7
= > #b, [A(Wj’bj) - W;ra’bj]
7bj

where q_bb] => #iﬁj—qu(aj,bj), and

aj Fjb;
A(w;,b;) = log Z exp (ijq.’)(a, bj)> 3.1)

Since A(w;, b;) is a convex function of w; [96}, this leads to a convex minimization prob-
lem for w;. However, since overfitting is always a concern, it is advantageous to minimize

the regularized loglikelihood loss

Ew) = SIwlP + Lw) 62)

> !;-HWJ'HQ +) #ib, [A(Wj)bj) - W]T<7>bj}
b

J

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here 3 is a regularization parameter. Note that the weights that minimize L(w) correspond
to a MAP estimate of w, with prior w ~ A (0, 51).

The objective (3.2) decomposes as an independent sum over j, so the minimization of
each individual objective can be considered separately. To reduce the notational burden,

denote the jth component of L(w) by
L(w) = §uu||2 + 3 #b [Aub) — u' gy (33)
b

where u corresponds to w .

Although f/(u) is a convex minimization objective, it turns out that to derive the results
below I will need to work with the dual. The dual is derived by formulating a tight concave
lower bound on L (u), which can then be maximized to recover an equivalent result to L(u).
First, consider the log normalization function A(u, b) defined in (3.1). It is known that this

is a convex function of u [96] and furthermore it is closed; that is, its epigraph
epi(A(-,b)) = {(t,u) : t > A(u,b)}

is a closed set. (I will exploit these properties below.) To derive a dual optimization prob-

lem, consider the Fenchel conjugate function of A, given by the definition
A*(py,b) = sup u' gy, — A(u, b) (3.4)
u

By this definition, (3.4), it is clear that A* is convex, since it is a pointwise supremum of
linear function of py, [8, Section 3.2.3]. An additional property I will use below is that any

conjugate function is also closed [74, Theorem 12.2]. It is also well known [96, Theorem

2] that
. [=H(P,,) if m, € My
A", b) = { o0 otherwise 3.5)
where
My = {p : 3P such that Ep [¢ab(x)|b] = tab }
and

H(Pu,) == Pup(a)log Pup(a)

For a discrete random variable, which I am assuming in this chapter, the set My, is a
bounded closed set (in fact, a polytope [96, Proposition 7]), hence M = [], My, is also

closed and bounded.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The key property that the conjugate function provides is that it establishes a concave
lower bound. In fact, since A(u,b) is a closed convex function in u [6, Theorem 4.2.1] it
can be shown that

A(u7 b) = Sup uTu’b - A*(u’ba b)
Hyp

That is, the conjugate of the conjugate function is the original function. Using this fact, one

obtains
inf L(u) (3.6)
= inf gllU“? + #b [sup u' py, — A*(py,, b) — UT@b}
" b M EMyp
= inf sup G(u,p)
v opemM
where
Glu) = Shull + 3 # [A% n b) — 0T (B~ 1) 6
b

Finally, the joint function G has the strong minmax property, which allows the order of the
minimization and maximization to be reversed. This follows from the following general

result from convex analysis.

Theorem 3.1 (Strong Minmax Property) Consider a joint function f(z,vy) defined over
z € Xandy €Y. Assume (1) f(-,y) is a closed and convex forall y € Y; (2) f(z,-) is
closed and concave for all x € X; (3) sup,cy f(z,y) < oo forallz € X; and (4) f(-,gj)
has bounded level sets {x : f(x,y) <t} forally € Y. Then

inf s ,y) = sup inf f(x,

Anf sup f(z,y) sup Inf f(z,y)
and the solution value is finite.
Proof: This theorem is just a specialization of a standard result in convex analysis; specif-
ically [74, Corollary 37.3.2] and [6, Page 95]. |

To apply this result to the current case, one need only verify that G satisfies the hy-

potheses of the theorem.

Proposition 3.1 The function G defined in (3.7) satisfies the conditions of Theorem 3.1.
Proof: G(-,) is clearly closed and convex in u for each p € M; similarly, G(u,) is
closed and concave in pu for each u, since A* is convex and closed; hence G satisfies the

first two conditions. To verify the third condition, note that sup ,c 14 G(u, p) < oo for all

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u since M is a bounded, closed set and —A*(uy,, b) = H(P,,) < oo. Finally, for any
p € M, the level sets for G(-, 1) are clearly bounded because of the ||ul|? term. |j

Hence the order of the minimization and maximization in (3.6) can be reversed to yield
inf L(u)
u

= sup inf g—IIuH2 + Z #p [—A*(ub,b) —u' (¢, — Nb)] (3.8)
uem Y b

Taking the derivative of the inner objective with respect to u yields
Vu = 5U—Z#b(&’b—ﬂb) =0
b
so that
wip) = =Y #b (P — mp) (3.9)
and therefore

inf L(u)
2

Z #b (b — 1)

, 1
= sup _Z#bA (u’bvb) Y
b b

peEM 2ﬁ

2

= sup Y #bH(P,, (3.10)

L
pneEM b Qﬁ

Z #b (Pp — p)

Thus the dual to the minimum regularized loglikelihood loss problem is a regularized con-
cave maximum entropy problem. Given a solution p* to the dual problem (3.10) a corre-
sponding primal solution u* can be easily recovered using (3.9).

For implementation, the primal problem is more convenient than the dual because it is
unconstrained. In my implementation below I used a Newton method to efficiently solve

(3.3). The dual formulation is required to establish my theoretical results below, however.

3.3 Strategy

Of course, the main goal of this chapter is not to perform parameter estimation, but to learn
the structure of a Bayesian network model from data. The exponential family represen-
tation and maximum entropy framework introduced above offer a new perspective on this
problem. Rather than scoring a Bayesian network and performing a discrete search in struc-

ture space, my goal will be to formulate a polynomial time approach that addresses each of

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the three subproblems—feature generation (and selection), parameter estimation, and vari-
able ordering—in a joint convex optimization that uses reasonable convex relaxations of the
discrete subproblems when necessary.

I pursue the following strategy. First, I generate a sufficient set of features that allows
one to express any maximum likelihood solution exactly. The first result below shows that
in fact this can be achieved in polynomial time and space given a fixed variable ordering.
Second, I then select a subset of the generated features using the minimum description
length principle [57, 73]. The main result here is that, using the maximum entropy estima-
tion framework developed above, MDL feature selection and parameter optimization can
be performed simultaneously in a novel convex relaxation. Finally, I include variable or-
dering in the framework by extending the previous optimization formulation to also search
over variable orders. Thus the third main result is that a search over variable orders can be
efficiently encoded by a compact set of semidefinite constraints on a matrix representation
of the ordering. Overall, this approach allows one to formulate a relaxed form of the entire

Bayesian network learning problem within a polynomial convex optimization framework.

3.4 Feature Generation

The first result is that, given a fixed variable order, a set of features sufficient to represent
any maximum likelihood Bayesian network can be found in polynomial time and is polyno-
mially large. This result holds without restriction on the number of parents of any variable.
In fact, the result is straightforward, but relies heavily on the sparse feature representa-
tion. The key idea is that one can use linear dependence of feature responses on augmented
training data to identify key features and eliminate other features from consideration.

First, note that since the conditional probabilities are locally defined and the variable
ordering is known, one can solve the feature generation problem for each variable X ; in-
dependently. Next, assume that the variable indices are sorted according to the ordering so
that the set of possible parents of X is {X1,...,X;_1}. Leto(j) = {1,...,7 — 1} denote
the set of indices for the ancestors of j under the ordering. Then given a set of complete
training data (row vectors) represented in a N x n data matrix, D = [x!;...;x"], only the
first j columns of D are relevant for X ;.

To identify a sufficient set of features, it suffices to consider a locally augmented data
i
a(5)
with each of its possible values. That is, the first 7 — 1 columns of D; are copied V;

matrix where I copy each ancestor configuration, x V; = |Vals(z;)| times and replace

i.

T

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times and stacked, with each copy receiving a different value for X ; in the jth column. Call

the resulting matrix l~)j; soif Djis N X j then [7]- is (NV;) x j.

Proposition 3.2 For any two exponential form representations ¢, wy and ¢q, Wo:
ifwquﬁl(a,xfj(j)) =w, ¢,(a, xg(j))for alli=1,...,N and all a € Vals(x;),
then Py (:c;»]xfj(j)) = P2($§-|xf7(j))f0r alli=1,...,N.

Proof: First note that the assumption implies that

Ai(wixp(;) = log} exp (W1T¢1(G»Xi(j)))

= log Z exp (W;¢2(G7X2(j))>
a

= Aa(wa,x} ;) forall i.
Therefore one must also have

—log P (xé-le,(j)) = A (Wl,Xf,(j)) - W1T¢1(G»Xf;(j))
= Ag(wa, Xp(;)) — Wy da(a, X))

= -—log Pg(:cg |xi,(j))

Thus if one set of features ¢, spans another set ¢, on the augmented data matrix ﬁj
for each variable X, then the optimal maximum likelihood parameter estimate for ¢, on
D has to be at least as good as the best maximum likelihood parameter estimate for ¢ ; that
is, L(WT, ¢17D) < L(Wzv ¢27D)'

Of course, there are many possible features to consider. There is a unique feature ¢ jq1,
corresponding to an indicator function ¢qb(%;, X,(j)) = L(z;=a,x,;=b) for each particular
subset of ancestor variables, p(j) C o(35), and each particular value o for z ; and value b for

x,(;). Nevertheless, it is a trivial observation that the maximum rank of any possible span

p()
of the feature response vectors on the augmented training set]jj is bounded by NVj, since
this is the length of each feature response vector on ﬁj. Therefore, there must exist a set of
no more than N'Vj features that allows the exponential form representation to achieve the
maximum likelihood score of any Bayesian network on the training data D).

To find this set of features in polynomial time I exploit the fact that every compound

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

feature ¢;q1, can be decomposed as a product of features defined on shorter patterns

Djab (5, %p(j))

—b) (3.11)

1 (z;=a,x

= I

p(3)
zy=a) Ly, y=b1) - Kz, 5 =b0)

= 35a(T1)Bp1 (5161 (Tp1 () - - - Ppr(yn (T (5))

Naturally one would like to build a span consisting of the shortest possible feature patterns,
since this would result in a simpler Bayesian network representation. Define the length of
$jab to be the number of variables in its definition (3.11). Then we have the following

proposition.

Proposition 3.3 If a compound feature ¢ ;q, is spanned by a set of shorter features, then
¢jab can be eliminated without affecting the maximum likelihood solution.

Proof: Assume ¢jon = D Fwrdy on Dj for some set of shorter feature patterns f € F.
Here F' denotes the feature set. Then any extended feature that uses ¢ ;41 can be spanned
by features based on shorter patterns. In particular, if ¢jcq = @jabPq; - - - g, OD Dj, then
we must also have ¢jca = Dy wrdsdg, - .- Pg, ON Dj, where the feature patterns in the
second expansion are strictly shorter than the first. |

This leads to a polynomial time algorithm for generating a set of shortest features with
maximum span on Dj; see Figure 3.1. To establish that this procedure does indeed run in
polynomial time, consider the lattice of feature patterns. The lattice is searched from short-
est patterns to longest. Once a pattern is pruned, no extension of it will ever be considered
(and correctness will be preserved by Proposition 3.3). However, for each increase in rank,
at most Zi;% Vals(z,) features are added, while the maximum rank of the feature response
matrix is NV;. Note that the procedure in Figure 3.1 can generate more than NV features,
but still no more than a polynomial number in total. When extending a current feature, the
procedure considers all possible singleton extensions in parallel, rather than sequentially, to
mitigate the effects of an arbitrary inspection order. Appendix A provides a simple example
to illustrate this generation procedure.

One drawback of this procedure is that it can generate a large number of parents for X ;,
even though the representation remains polynomially large. In fact, this feature generation
process is guaranteed to overfit the data, in the sense that it yields a representation that can
achieve the maximum likelihood of any Bayesian network. Clearly, some sort of feature

selection process is required to yield a reasonable model, which I next consider.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature generation procedure for x; on augmented ﬁj:
2O = {4, : a € Vals(x;)}
for k = 1,2, ... (while rank increased)
k) — ¢
for each ¢ € kD
Y — {(bb[gbf 0 e Vars(f),bg S Vals(xg)}
if rank (Uzgk ORY \I!) > rank (Uégk <I>(Z)>
k) — o) o

Figure 3.1: Feature generation procedure

3.5 Feature Selection

I base the feature selection strategy on the minimum description length principle [34, 57,
73]. Here I continue to assume a fixed variable ordering is given. The idea is to start with
a large set of sufficient features ¢ = (..., @ ab, - - .)T generated by the procedure outlined
above. To perform feature selection in this large set, I augment the exponential represen-
tation with feature selection variables n. That is, for each feature ¢4, I establish a cor-
responding selector variable 741 € {0, 1}, in addition to the corresponding weight w jqp,.
Let N; = diag(n;) be the diagonal matrix of selector values corresponding to variable X ;.

One can then write
- ﬂ _
Liw,m) = > | SIwill + 32 #s, [Aw;, N5, ;) = w] Ny |
j b;

where
A(wj,Nj,b;) = logZexp(wg—de)j(a,bj))
a

Thus if 7741, = 1 then the feature ¢;q, is selected, otherwise it is dropped.
The idea is to solve for the set of features selection variables 7 and parameters w that
minimize the total description length of the data and the Bayesian network model (in expo-

nential form). This can be formulated as a joint optimization

log N ~
min ¢'n+ 222 1Ty + min L(w,n) (3.12)
ne{0,1}171 2 w
Here the last term is the cost of encoding the training data D = [x!;...;x"] using the

optimal parameters w for the network structure specified by n. This uses a standard result
from information theory [21, 34] that an optimal code for data D given a model P(x) has

length — >, log P(x"). (Although here I alter this principle slightly to use the regularized

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

loss L rather than the plain loglikelihood loss L. This simplifies the derivation below, but
one could set the regularization parameter 3 to be arbitrarily small to approximate the plain
loglikelihood.)

The first term in (3.12) measures the length of the description for an exponential family
representation for the Bayesian network structure specified by 7. In particular, for each

feature ¢;,1, selected by indicator 7, the description length cost is fixed to be

cjab = [bllogn + log|Vals(a)| + > _ log |Vals(by)|
l

where the first term is the cost of encoding the list of variables in feature ¢ j,1,, and the
remaining terms are the cost of encoding the specific values for these variables.

The second term in (3.12) is the cost of encoding each weight parameter w ;,1,, where
the precision is chosen in the manner discussed in [34]. The notation 1 refers to the vector
of all 1s.

Now I would like to solve for the structure 77 and parameters w that minimize the total
description cost (3.12). Unfortunately, this is a combinatorial optimization problem over the
discrete vector 1, and even more problematic: even if 17 were relaxed, the MDL objective
(3.12) is not jointly convex in 77 and w. Fortunately, the dual form of the regularized loss
allows one to re-express this problem as a convex minimization over n, ignoring the integer
constraints.

Using the fact that (3.10) is equivalent to (3.6), an equivalent optimization problem to
(3.12) can be obtained, but now using maximum entropy instead of loglikelihood loss

log

_ N 1
min ¢'n+ —5 179+ max S #ib, H (Pu,,) 8T N N;5; |(3.13)
i \ b,

- 359

ne{0,1}1F1
7

where §; = ij #bj(&)bj — Wp,)- Note that, thus far, I have assumed that 7 € {0, 1}F]
and therefore NV]T N; = Nj, since 77]2'ab = 7)jab- This allows me to rewrite (3.13) as
min
ne{0,1}17]

where

log N
gm=cn+—=—1"n+max> [> #5 HP,,)-
2 HEM ; b J

7

1
-ﬁajzvjéj (3.14)

Crucially, g(n7) is a pointwise maximum of linear functions of 7, and is therefore convex

[8].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, by combining regularized maximum entropy parameter estimation with the de-
scription length penalty, I can obtain a natural convex relaxation of the minimum description
length principle simply by relaxing the structure indicator variables to be soft indicators in
the interval [0, 1]. Remarkably, this formulation allows one to simultaneously optimize the
(soft) structure and parameters in a polynomial size convex optimization problem.

To solve this problem in practice, I use a quasi-Newton method, BFGS {70] with back-
tracking line search to efficiently minimize g(n). BFGS progressively approximates the
Hessian matrix by accumulating gradient information Vg(n) at successive n points. For-
tunately, g(n7) and Vg¢(n) are both computable by solving the inner concave maximization
on p (which in fact is equivalent to solving the primal minimization problem on w). In

particular, g(n) is given by (3.14), and

log N 1 .2
Vg(n) = e+ —3 1—%;@)

such that 67 = ij #b, (&)bj — uﬁj) and u;j = Ep%j [qﬁb]. (z)|b;] for the optimal
inner solution p* (or w*). Here, ((5;)‘2 denotes componentwise squaring of 6;.

3.6 Variable Ordering

The final step is to consider variable ordering as part of the optimization process. Once
again, one can relax the problem of solving for the optimal ordering, while performing
feature selection and parameter optimization simultaneously. The basic approach is as fol-
lows. Since no order is given, I first generate features for each variable X; assuming all
other variables are potential parents. Then, as in the previous section, feature selection vari-
ablesm = (...,njs,...)" are introduced where 7, ; corresponds to the feature with pattern
f and child variable j. Finally, model complexity is reduced by minimizing the description
length criterion.

As before, I begin by assuming the feature selection variables are {0,1} valued. The
issue now 1is that constraints need to be added to the 1 variables to ensure that a valid
Bayesian network structure is obtained. For example, since activating a feature ¢ ;5 for one
variable means that the remaining variables in the pattern f must be parents of j, no feature
pattern f can be activated for more than one variable j it contains. This can be encoded

locally for each feature pattern by the constraints

Y omyy < 1 forall f (3.15)
i€l

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In fact, the local constraints are simple linear inequalities that pose little additional burden
on the optimization. Unfortunately, ensuring consistency locally within a feature pattern f
is easy, but ensuring consistency globally benween feature patterns f and h is more difficult.

}7™ matrix S that encodes

To enforce global consistency, I introduce an auxiliary {0, 1
a total ordering on the variables. In particular, let S;; = 1 denote the case that 4 precedes
7 in the ordering, and let S;; = 0 denotes that ¢ follows j. For a {0, 1}-valued matrix S to

encode a total ordering it has to satisfy three properties

antisymmetric: Sij=1—Sjforalli # j (3.16)
transitive: Sij + Sjk < Si + 1 for all distinct 7, j, k

reflexive: Sy = 1forall¢

(The diagonal of S is not terribly important, but I set it to 1 for convenience.) The feature

selection variables can then be forced to respect a global ordering via the constraints

Thus, using {0, 1}-valued variables n and .S, local and global consistency can be en-
forced by linear constraints. This can further yield an obvious convex formulation for the
entire problem by relaxing the integer variables to be continuous

ne[o,l]lFrlI}ég[o,l]an g(m) subject to (3.15), (3.16) and (3.17)

One remaining problem with the formulation is that it requires a large, cubic number of
constraints in (3.16) to encode the transitivity property. To reduce the space requirement, I
exploit the following relationship between total orderings and matrices that encode equiv-
alence relations. Let 7" denote a strictly upper triangular matrix with all 1s above the main

diagonal, and let I denote the identity matrix.

Proposition 3.4 Consider a {0,1}-valued, strictly upper triangular matrix U such that
M=I+U+U"and N =TI+ (T -U)+ (T —U)" are both equivalence relations.
Then S = I + U + (T — U) T must encode a total ordering.

Proof: Assume M and [V are equivalence relation matrices defined by U as above. That is,
in addition to reflexivity and symmetry, which are obvious from their construction, M and
N are also transitive. The key part of this proof is to show that this implies S is transitive
as well: If M and N are transitive, it then follows that for all 4, 7, k, such that ¢ # j§, j # k
and ¢ # k, that S;; A Sj; = Sj;. The argument is shown by cases over the six possible

orderings of i, 7, k.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 1. If i < j < k, then S;; = M,;;, Sjp = My, and Sy = M;,. Therefore
Sij NSk = Sip M Myj A My = M.

Case 2: If i < kK < j, then Sjp = Nj. Ski = Ny, and Sj; = Nj;. Therefore
Sij A\ Sjk = Sig iff 2835V =S5 V Sip iff Sji V 2S5 V S ff Nj; V 2Ny V =N iff
Nji A Nii = Ny

Case 3: If k£ < i < j, then Si; = My, Sij = M;;, and Sp; = My;. Therefore
Sij N Sjk = Sik Mf 2835 V =S V Sig iff 2S;5 V Sgj V =Sk iff ~ M5 V My V - My iff
My N My; = My;.

Case 4: If £ < j < 1, then S;; = Ny, Sjp = Nji, and Sy = Ny Therefore
Sij N Sk = Sge iff Nij A Nji = Nig.

Case 5: If j < k < i, then S = Mg, Ski = My, and Sj; = Mj;. Therefore
Sij A Sjk = Sik iff 7Sy V =S V Sy iff S5 V S V Sk iff My V = Mg V ~ My iff
M N My; = Mj;.

Case 6: If j < i < k, then S; = Ny, S;; = Njj, and Sg; = Ng;. Therefore
Sij N Sjk = Sip ff 2S;5 V =Sk V Sy iff =555 V Sk V Sy iff 2 Nj; V Nij V =Ny iff
Nii A Nij = N

Since S satisfies the reflexivity and antisymmetry properties by construction, this ends
the proof. |

Given this result, it is therefore possible to enforce the total ordering encoded in S by

only imposing a quadratic number of constraints:

S=I+U+(T-U)7
I+U+U" =DD"
E-U-U"=ccCT (3.18)
D1 =1 C1=1

where D and C are both additional square {0, 1}-valued matrix variables, and E denotes the
matrix of all 1s. Unfortunately, the two quadratic constraints in (3.18) are not convex, but
they can be approximated by the semidefinite relaxations I+U+U T > DDT and E—U —
U' > CCT, which can further lead to equivalent linear matrix inequality constraints [58,

Schur Complement Lemma]

I+U+U" D

(5T 7)) =

E-U-UT C

(Frer”) =
31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Here again one can then obtain a convex optimization problem by relaxing the {0, 1} valued
variables to [0, 1] and using the semidefinite constraints. The implementation only requires
a small modification to the BFGS strategy of the previous section, where the quasi-Newton
step now needs to respect these additional constraints. To solve the constrained convex
optimization problem I used a simple barrier method [8], with a log barrier function for the
linear inequality constraints (3.15) and (3.17), plus a log determinant barrier to enforce the
semidefinite constraints in (3.18).

The result is the first comprehensive Bayesian network technique I am aware of that
solves for an approximate variable ordering, feature set, and optimal parameters in a joint,
polynomial, convex optimization. Interestingly, the experimental results below suggest that
this approach can produce competitive results.

One final issue to deal with is rounding a “soft” solution produced by the above convex
optimization, to produce a variable ordering and a hard set of features that define a proper
Bayesian network. I do not as yet have any approximation guarantees for any rounding ap-
proach I have developed so far. In my experiments below, I simply used a greedy rounding
scheme that successively checks the largest non-integer 7 variable, determines whether it is
possible for it to be set to 1 without violating any consistency constraints, and if so, rounds
the variable greedily to O or 1 depending on which value yields the smallest value in the
MDL objective (3.12) (keeping the current optimal Bayesian network parameters fixed).
This is sufficient to yield reasonable results, although I would still like to investigate more

sophisticated rounding approaches in the future.

3.7 Experimental Evaluation

To evaluate the proposed Bayesian network structure learning approach, I conducted a set
of experiments on both synthetic and real data and compared the results to those obtained
by standard greedy heuristic search techniques. To measure performance of the different
learning techniques, I measured the logloss (that is, the negative loglikelihood loss) they
obtained on held out test data after training. To isolate the effects of the different approxi-
mation stages, I conducted two sets of experiments: in the first set the variable ordering was
held fixed, while in the second I used the relaxed ordering search of Section 3.6. In each
case, for the greedy search algorithms, I considered both BDe and BIC scores.

Fixed order experiments For the fixed order experiments, I first considered three

different artificial network structures, shown in Figure 3.2, each instantiated with random

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ojo] °U

Figure 3.2: Synthetic Bayesian networks 1-3 (from left to right)

Table 3.1: Logloss results for synthetic experiments given the correct variable order

Data Set Convex BIC BDe

Synthetic 1 448 457 4.53
Synthetic2 | 5.34 543 539
Synthetic 3 5.16 527 5.18

CPT entries. For each experiment, I used an independent training and hold-out test sam-
ples generated from the synthetic network to determine the regularization parameter for the
fixed order convex technique. With the chosen regularization parameter, I then repeatedly
generated independent training and test samples and evaluated the logloss on test samples
for each Bayesian network learned on the training data using different approaches. Here I
compared the results of the convex relaxation algorithm described in Section 3.5 to the fixed
order K2 search algorithm of [20], guided with both the standard BDe and BIC criteria. All
algorithms were given the correct variable ordering in these synthetic experiments.

Table 3.1 shows the comparison results with training sample size 50 and test sample
size 1000. The results are average logloss over 10 repeated runs. One can see that the
convex technique outperforms the greedy K2 search procedures, using both the BDe and
BIC scores. However, the run time for the convex relaxation procedure (including rounding)
was 10, 25 and 30 seconds respectively, while the K2 algorithm only required 0.05 seconds
on these problems.

I then conducted experiments on several UCI datasets: Breast, Cleve, Corral, Diabetes,
Glass2, Heart, Mofn and Pima. For each dataset, I randomly split the data into training/test
partition, and used the training set for Bayesian network learning and test set for perfor-
mance evaluation. Each algorithm was run with the same fixed variable order, where in this

case the order was just chosen randomly. Once again, for the convex relaxation technique, I

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Logloss results for experiments on UCI data sets given a random variable order

Data Set | Convex BIC BDe

Breast 5.03 547 529
Cleve 8.72 891 9.00
Corral 4.61 4.67 4.51

Diabetes 5.51 562 5.59
Glass2 3.35 3.58 340

Heart 879 889 896
Mofn 764 767 7.84
Pima 530 535 536

Table 3.3: Logloss results for synthetic experiments, comparing methods that learn both
structure and order

Data Set Convex BIC BDe

Synthetic 1 449 457 451
Synthetic2 | 534 543 535
Synthetic 3 516 527 521

used one preliminary training/test split to set the regularization parameter. Table 3.2 shows
the logloss obtained on the test set, training on a disjoint training set of size 50, for each
of the learning methods. Still, the results are averages over 10 repeated runs. The results
show that the convex approach holds an advantage over the K2 greedy search techniques,
for both the standard BDe and BIC scores. However, again, the run times of the convex
relaxation approach are greater than the K2 algorithms, requiring from 10-100 times more
time to produce the final results.

Although these results are not necessarily comprehensive, they suggest that the ability
to avoid local minima in a discrete structure search can lead to good solutions. The major
disadvantages of the approach developed so far is that it runs slower than heuristic greedy
search and requires regularization parameter to be set, whereas the BDe and BIC scores are
parameter free.

Learning variable ordering Next, I repeated the previous experiments using the com-
bined structure and order optimization algorithm of Section 3.6. Here I compared the ap-

proach to a standard score-based greedy heuristic search that uses the standard edge addi-

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4: Logloss results on UCI data sets, comparing methods that learn both structure
and order

Data Set | Convex BIC BDe

Breast 5.26 523 5.25
Cleve 8.60 8.84 9.13
Corral 4.71 456 4.54
Diabetes 5.58 5.61 5.62
Glass2 3.49 3.58 340

Heart 8.59 8.87 9.10
Mofn 7.57 771 8.01
Pima 5.38 534 539

tion, deletion and reversal operators. Again I considered both the BDe and BIC criteria in
the heuristic search. Each greedy search was started from an empty network and restarted 4
times when reaching a local minimum, by randomly adding and deleting edges. However,
other than not imposing a variable ordering, the algorithms were run exactly as described
above for the fixed order case.

Table 3.3 shows the results obtained by the convex relaxation technique versus the
greedy search algorithms on the synthetic problems. The convex approach shows a modest
improvement over the greedy search methods. However, once again, the convex relaxation
procedure runs about 100 times slower. Interestingly, the solution quality is close to the
fixed order case. Only a slight benefit was achieved from having the correct variable order-
ing.

Table 3.4 compares the results on the UCI datasets. Here the quality of the outcome
is mixed. The convex relaxation procedure obtains the best solution quality on 4 out of
8 data sets, while the greedy heuristic search using BDe obtains the best results on 2 out
of 8, and BIC obtains the best results on 2 out of 8. More interestingly, comparing these
results to the fixed order technique, which just uses a random variable ordering, shows that
the fixed order approach (with convex relaxation) still obtains the best results on 4 out of 8
data sets. This outcome seems to suggest that the relaxed ordering constraints imposed in
Section 3.6 might not be sufficiently tight to ensure a good solution. Improving the quality

of the relaxed ordering constraints remains an important question for future research.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.8 Conclusion

In this chapter, I have presented what I feel is an interesting new approach to learning
Bayesian network structure from data. I first presented a relaxed convex structure learning
approach for given fixed variable order, and then extended it to a general technique that
simultaneously searches for variable order, parameter settings, and features in a joint convex
optimization. The convex approach in either the fixed variable order or order learning case
showed promising experimental results on both synthetic networks and real UCI datasets, in
comparison with standard score-based greedy heuristic search methods. I feel that the new
technique introduced here might open the way to a new class of algorithms for learning
Bayesian networks. An interesting question is whether this class of global optimization

techniques is able to achieve guaranteed approximation quality.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Gene Regulatory Network Induction

4.1 Introduction

Learning the structure of a gene regulatory network from time-series gene expression data
is a significant challenge. It requires the identification of the cause-effect relationships
between genes. Most approaches proposed in the literature to date attempt to predict the
regulators of each target gene individually, but fail to share regulatory information between
related genes. In this chapter, I propose a new globally regularized risk minimization ap-
proach to address this gene regulatory network induction problem. This new approach is
motivated by the convex Bayesian network structure learning technique presented in Chap-
ter 3. The idea is to introduce global feature selection variables to select common regulators
for a group of genes with similar expression profiles. Here the feature selection variable
controlled structure learning approach is extended to address continuous data by using a
linear regression framework.

Specifically, 1 propose to first cluster genes according to their time-series expression
profiles—identifying related groups of genes. Then I use the globally regularized risk min-
imization technique to identify the regulation structure for each gene, while encouraging
the genes in the same cluster to share common regulators by exploiting the assumption
that genes with similar expression patterns are likely to be co-regulated. The experimental
results suggest that the proposed approach is more effective at identifying important tran-
scription factor based regulatory mechanisms than the standard independent approach and
a prototype based approach.

This chapter is organized as follows. First, I introduce the background knowledge and
related work for gene regulatory network learning in Section 4.2 . Section 4.3 then presents
the proposed globally regularized risk minimization approach and the preprocessing details.

Experiments and results on both synthetic data and real cell cycle yeast gene expression data

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are presented in Section 4.4 . This work was published in [44].

4.2 Background

Genes and their products do not work independently in the cell. Rather, they are jointly
regulated in a coordinated fashion, both internally and externally, to achieve proper cell
function. One of the key mechanisms of gene regulation takes place at the mRNA tran-
scription level. With the emergence of high-throughput microarray techniques, the mRNA
expression levels of thousands of genes can be measured simultaneously. Using computa-
tional techniques to learn gene regulatory networks from high-throughput time-series gene
expression data has been an active area of research in recent years. The goal of such re-
search is to discover the causal control relationships between genes, which would offer a
fundamental understanding of how biological processes are coordinated in the cell.

A variety of computational approaches have been proposed in the literature to model
gene regulatory networks from expression data. Many approaches have been based on the
use of linear models to express dependence between time series profiles. For example, [27]
studied a straightforward linear model for this purpose; [11] and [25] investigated linear
differential equations for gene regulatory network modeling. All of these approaches suffer
from risks of over-fitting, however, since they fit a number of parameters that is proportional
to the size of the data itself. To counter the risk of over-fitting, other linear approaches have
taken advantage of sparseness of the regulatory relationship between genes; that is, that
any one gene is regulated by a small subset of the other genes. [24] have proposed to use
Akaike’s Information Criterion (AIC) to determine the nonzero coefficients in the linear
system. Similarly, {63] used L1 regularization to conduct feature selection on the linear
parent set.

Another popular approach to learning gene regulatory network structure is to exploit
various forms of standard (dynamic) Bayesian network structure learning methods, since
Bayesian networks can encode cause-effect relationships among a set of variables. Dynamic
Bayesian networks in particular are a natural extension of Bayesian networks to modeling
time-series data. As I have introduced in Chapter 2, learning the structure of a Bayesian
network from data generally requires one of two approaches to be followed: a score-
based approach—where a heuristic search is performed through the space of causal network
structures to identify the most likely structure explaining the data—and a constraint-based

approach—where conditional independence tests are used to determine whether a direct

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

causal relationship should be postulated between two variables. Many variants of these
techniques have been applied to gene regulatory network learning, including search-based
approaches [46, 97, 100], information-theoretic approaches [12], parameter-tying based ap-
proaches [82], and conventional dynamic Bayesian network learning approaches [2, 101].

Although these previous techniques have achieved some promising results, the funda-
mental limitation of the amount of data available relative to the large number of parame-
ters estimated (e.g. distinct parameters used to predict the expression level of each gene
given other genes) severely constrains their effectiveness. This difficulty is inherent to the
task: orders of magnitude more expression data would be required for naive estimation
approaches devoid of background knowledge and biologically relevant assumptions to suc-
ceed on this problem.

One common shortcoming in the current literature, whether using linear modeling or
Bayesian network structure learning, is that nearly all proposed approaches attempt to de-
termine the regulation structure for each target gene independently. Yet it is well known
that genes that share the same expression pattern are likely to be involved in the same reg-
ulatory process, and therefore share the same (or at least a similar) set of regulators [28].
The main question I investigate is how to exploit biologically significant knowledge about
co-regulation to improve the inference of the underlying gene regulatory network from ex-
pression data. Although a few previous investigators, such as [94], have proposed to group
genes with similar expression profiles in a single prototypical “gene”, and then model the
relations between prototypical genes instead of modeling the genes individually, this is a
somewhat oversimplified approach that ultimately ignores the individual differences be-
tween genes in the same group, and puts a particular high requirement on the clustering
step.

Instead, in this chapter, I propose a novel approach for predicting the regulators for a
given group of genes with similar mRNA expression patterns, by minimizing a globally
shared regularized prediction risk that encourages similar genes to share regulators. The
models I learn, however, are otherwise standard linear models. The novelty of the approach
is to first cluster the genes based on their time series expression profiles, and then minimize
a loss determined on a set of global indicator variables associated with the common set of
possible regulatory variables. The approach does not learn an identical regulation structure
for the genes in each cluster, but does encourage them to adopt similar structures. I evaluate
the performance of this approach on both synthetic data and the cell cycle time-series gene

expression data of [17]. My synthetic results show that this approach is able to learn the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

correct structure far more effectively than standard approaches that do not take into account
co-regulation knowledge. My results on the cell cycle data of Cho et al. [17] suggests
this approach can identify the important transcription factors in the cell cycle genes more

accurately by exploiting the co-regulation knowledge.

4.3 Method

The core of the proposed method is based on using linear regression to infer the expression
level of each target gene from the expression levels of a set of potential regulator genes.
However, even though linear prediction provides a simple and elegant foundation for mod-
eling time series expression data, it cannot be applied naively. At least three significant
issues need to be addressed before reasonable results can be achieved in this domain. First,
time lags exist in the regulatory pathways controlling gene expression. These time lags vary
between pathways and remain generally unknown a priori {101]. Second, the number of
parameters required by a simple linear model (one parameter for each target-regulator com-
bination) is far too many to be estimated reliably from available time series gene expression
data. Some sort of effective feature selection mechanism must be employed [63]. Third,
genes that serve related or synchronized functions tend to share common regulatory mech-
anisms. That is, related genes tend to share common regulators, and this knowledge must
be exploited somehow to improve the quality of the regulation networks that are inferred.
Failure to take into account any of these issues causes the linear prediction (or any other)
approach to perform poorly.

I take into account all three of the above issues and modify the linear prediction ap-
proach to infer gene regulatory networks from time series expression data. The first two
issues have been handled in varying ways in existing research—although I propose par-
ticularly simple ways to handle them in this chapter. The third issue comprises the main
observation I make, and motivates the use of a novel form of global risk minimization that is
able to share regulatory information between similar genes while simultaneously allowing

individual differences.

4.3.1 Linear Modeling

First, to establish the basic linear prediction approach consider an 7 x ¢ matrix Y of time
series gene expression data, where each column corresponds to the expression levels of a
single gene measured over a series of n time points; hence, Y stores the expression profiles

for t genes. For each gene, I would like to identify which other genes measured in Y

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are likely to be regulators. The fundamental hypothesis is that the expression levels of
a regulator gene should be predictive of the expression levels for a regulated target gene,
possibly subject to time lag and the presence of co-regulators or absence of inhibitors. To
mitigate the effect of measurement errors and outliers in the expression data, I generally
assume the columns of Y have been rescaled to values between 0 and 1, and thus I am only
searching for explanations of relative increases or decreases in expression level.

A straightforward linear prediction approach proceeds as follows. Assume for a target
expression profile y; given by an n x 1 column vector from Y, one has a set of candidate
regulator profiles stored in an n X k matrix X; consisting of k distinct columns selected
from Y. (I will discuss below how such a set of candidate profiles might be inferred for a
given target y;.) The quality of this set of candidate regulators can be assessed by how well
their expression levels predict the expression levels of the target, which can be determined
by solving for the combination weights of the regulator profiles that best reconstruct the

target profile
min || X;w; ~ y;lf3 4.1)
wj

Here the k& x 1 vector of combination weights w ; describes how the expression levels of the
regulator genes in X; interact to best explain the target expression levels y ;, and the quality

of the fit can be assessed by the residual error in (4.1).

4.3.2 Coping with Time Lags via Time Shifting

Unfortunately, the naive linear modeling approach (4.1) suffers from the three major draw-
backs mentioned above. The first problem is that it does not account for any time lag
between the expression of a regulating gene and the expression of its downstream target.
In fact, the naive approach (4.1) implicitly assumes that regulation occurs instantaneously,
and therefore performs quite poorly at identifying any regulatory relationship that exhibits
delayed effects. To cope with this shortcoming, I modify the approach to first take into
account any potential time lag between the expression of a regulator and its downstream
target. In particular, for each candidate regulator measured in X ;, given by an n x 1 vector
X;j, I first compute an optimal shift back in time that best aligns x;; individually with the
target y

sy = arg se{%’l}gﬁ} [Ixi;(1,....n —s) —y;(s + 1, .yn)|3 4.2)
(Note that the shifts only allow time lags forward in time from the expression of the regu-

lator to the expression of the target.) Repeating this for each candidate regulator profile in

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X, yields a series of optimal time lags. I can then reformulate the expression matrix X
for the candidate regulators by applying the optimal shift to each column, and truncating
the columns to a common length based on the maximum shift, obtaining an (n — $ymaz) X k
time-lag aligned matrix ®;. The target expression profile y; is then also truncated to a
corresponding (1 — Smaz) X 1 vector y;, where ¥; = y;(Smaz, ---, 7). The quality of the

candidate regulators can then be assessed by the more appropriate aligned reconstruction
min || ®;w; — ;3 (4.3)
W

4.3.3 Feature Selection via .1 Regularized Risk Minimization

Although the modified linear approach (4.3) appropriately handles time lags between reg-
ulator and target expression patterns, it still suffers from a major drawback: the set of
candidate regulators for a given gene is usually very large (e.g. the complete set of remain-
ing genes), while the number of time points sampled in a time series experiment is usually
quite small (on the order of 20 to 30). Therefore a large set of combination weights w ;
need to be inferred from a limited amount of data. Moreover, only a tiny fraction of the
candidate regulators are expected to be true regulators for any given gene, meaning that,
ideally, most of the weights should be set to 0 to indicate non-regulation. The bottom line
is that some sort of effective form of feature selection is required for this problem. From a
large set of candidate regulator expression profiles, most need to be discarded, and a small
number retained to provide a good explanation of the target expression profile.

It is well known in the machine learning literature [69] that regularizing with the L1
norm, rather than the more conventional L2 norm, is very effective for feature selection. In
this approach, one adds a penalty to the risk (the reconstruction objective) which encourages
small values for w:

min |®;w; — y~j||g + al|w;lh (4.4)

wj

where « is a parameter that trades off the influence of the risk with the regularizer. Crucially,
this regularizer encourages many of the weights to become exactly zero in the solution. To
see why, note that the regularization term is non-differentiable at zero, but any movement of
a weight from zero immediately creates a derivative of magnitude a encouraging movement
back to zero. Thus, if the magnitude of the derivative of the risk is not greater than «, then
the weight will remain at zero. These intuitions lead to an efficient optimization procedure

known as grafting [85].

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.4 Regulation Sharing via Globally Regularized Risk Minimization

Simply solving the minimization problem in (4.4) provides no advantage over the ap-
proaches proposed in the literature however, since it does not address the problem of facing
a shortage of data while trying to make inferences about a large number of genes. To mit-
igate this problem I propose to share regulatory information across sets of target genes.
Given the hypothesis that genes with similar expression patterns are usually co-regulated
and involved in the same functional process, I propose to first cluster the target genes based
on their expression patterns. (This clustering can be performed in many different ways.
In my implementation below I simply used a straightforward K-means method based on
squared Euclidean distances.) Then, for each cluster, the goal is to identify a set of reg-
ulators that is shared among the entire set of genes in the cluster, while still allowing for
differences among the regulation of individual genes. Achieving this type of information
sharing in the context of regularized linear modeling (4.4) however, requires some novel
technical developments.

In Chapter 3, I developed a novel convex Bayesian network structure learning approach
based on introducing a set of auxiliary indicator variables to control global feature selection.
Adapting this idea to the current context, I propose to use a global regularization scheme on
auxiliary global feature selection variables to help identify the common candidate regulators
among a group of target genes with similar expression profiles. Given that there is much
more data available for sets of similar genes, as opposed to individual genes, the hope is
that the common regulators can be more accurately identified.

Specifically, given a set of target genes Y = {y1,...,y¥m}, I would like to identify a
common set of regulators from the set of candidates X = {xj,...,x;}. Define a set of
indicator variables 17 = {n1,...,m;} ', corresponding to the candidate set X = {x1,...,x;},
such that each 7; € {0, 1} indicates whether a regulator X is selected as an active regulator.
Let N = diag(n). Then, one can form a globally regularized version of the minimization
problem (4.4) by introducing the feature selection variables 77 and adding a new global

regularization term on these variables

min min (||<I>ij — y}-H% + a||Wj||1) + /\uTn (4.5)
ne{01} w ;

where u is a positive weight vector that allows one to incorporate prior knowledge about the
importance of each global feature. Although I simply set this vector to 1 in my later exper-
iments, it will be very useful to set u corresponding to prior knowledges whenever they are

available. Note that the global regularization term Au ' 7 is in fact an LO norm regularizer

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that will automatically force a sparse solution that selects only a small set of global features
for the set of target genes in a cluster. Nevertheless, the local L1 norm regularizer, a||w |1,
will still make individual choices of regulators for each specific target gene; choosing these
regulators from the globally selected features identified by 7. Therefore, if the target genes
in a cluster share some common regulators, the global feature selection process will be very
helpful to pick them out, while the ability to individually model the regulation of each gene

has not been diminished.

4.3.5 Optimization Procedure

Equation (4.5) encodes a min-min integer optimization problem. Unfortunately, integer
optimization problems of this form are generally NP-hard. To attempt to solve the problem
efficiently, I first relax it into an optimization over continuous variables, by relaxing each
n; € {0,1} to be continuous n; € [0, 1]. This leads to solve the following relaxed min-min
optimization:

min min > (IeNw; — ¥5ll3 + allwslli) + Au'n

J
subject to 0<n<l1 4.6)

In fact, this formulation has relaxed the original LO norm regularizer over 7) into a L1 norm
regularizer. In this way I maintain feature selection ability, while gaining computational
efficiency.

However, this relaxed optimization problem (4.6) is still non-convex, since the objective
function is not jointly convex in both w and 7. In the implementation below, I conduct the
optimization in two alternating steps to obtain a local optimal solution: minimization over
w, and minimization over 1. Each w minimization step is simply a least squares regression
with L1 norm regularization, which can be implemented as a quadratic program [8], or by
using a fast grafting algorithm [85]. For the 17 minimization step, I use a quasi-Newton

BFGS method to perform the optimization [4].

4.4 Experiments and Results

To evaluate the proposed approach, I conducted experiments on both synthetic and real cell
cycle data. In particular, I compared the proposed global regularization approach to the stan-
dard independent local prediction approach, and a prototype based linear regression method

adapted from [94]. The adapted prototype based method first clusters the genes based on

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their expression profiles. (In the experiments below, I use the same clustering results for
both the proposed global regularization approach and the prototype based approach.) Then,
for each cluster, it identifies the common regulators for the genes by treating them as one

target gene

min Y |@w -y} + allwlh 4.7
i

Synthetic experiments are useful to gauge the potential effectiveness of the approach
under controlled conditions where the ground truth is available. Once the intuitive behavior
of the technique is understood, I then apply the method to inferring the structure of the
regulatory network of the yeast cell cycle.

In my experiments, I assume all transcription regulations work through activators, in-
stead of inhibitors; that is, I assume the w parameters are nonnegative in the linear regres-
sions. Also, to keep the w parameters from becoming too small and causing a threshold
selection problem, I included an additional constraint ||w;|l; > 1 in all the three linear

regression algorithms.

4.4.1 Experiments on Synthetic Data

For the synthetic experiments, I set up a small system to simulate a cell cycle process
controlled by a small number of critical transcription factors (TFs). I defined 10 TFs that
regulated the expression levels of 212 genes in 4 phases of a synthetic cell cycle. These
10 TFs were divided into 4 regulatory groups, with 3, 2, 3, and 2 TFs in each group re-
spectively. Each group of TFs was associated with a specific phase of the cell cycle, and
regulated the expressions of 53 genes, as well as the TFs in the next phase of the cycle.
In my simulation setting, I assumed that one gene (including the TFs themselves) can be
regulated by either one TF or a combination of two TFs. I generated the expression data
by first simulating ideal expression levels for the TFs in a selected phase for two complete
cell cycles, totaling 16 time steps. Then I generated the expression profile for each gene (or
TF) in the next phase by a 2 time step delayed response from the combination (“and”) of m
(m < 2) randomly selected TFs in the current phase, plus Gaussian noise. Repeating this
procedure for all the phases in the cycle in turn, I generated synthetic time-series profiles
for the entire set of TFs and genes.

Both the proposed global regularization approach and the prototype based method re-
quire the genes to first be clustered based on their expression profiles. Although the number

of clusters used has a minor effect on the performance of both algorithms, the sensitivity

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the cluster number was not significant provided that the cluster number is not extreme
(neither extremely big nor extremely small). For my synthetic experiments, I simply choose
to use 10 as the number of clusters.

Subfigure 5 in Figure 4.1 (rightmost subfigure) shows the expression profiles for the
genes and TFs after their profiles have been clustered into 10 groups. I then learn the
regulators for the genes in each group, using the globally regularized linear regression to
encourage genes in the same group to share parents. I compared the results of the global
approach to both the standard local approach of learning the parent regulators for each gene
separately, and the prototype based approach of forcing all the genes in one group to have
the exactly same set of parents. The comparison algorithms serve as controls at the two
opposite extremes. I used the same L1 regularized method for parent selection in all of the
algorithms. After obtaining the w parameters from each algorithm, all the parents indicated
by w > 1075 are determined as predicted regulators for the corresponding genes. For a
fair comparison, the regularization parameters (o and A) were chosen to yield the highest
F-measure values in each case.

Subfigures 1-3 in Figure 4.1 show the regulator prediction results for the three algo-
rithms respectively; comparing them with the true regulation information in subfigure 4.
The x-axis for each subfigure indicates the candidate TFs from which a subset is selected as
the set of regulators for each gene. The y-axis for each subfigure indexes the individual tar-
get genes. Each row plots the predicted regulators for each gene based on the corresponding
w parameters for that gene. A white cell denotes a large weight (w;; > 10~5) connecting a
TF j to atarget gene i in the estimated linear model, indicating that j is inferred to regulate
i, while a black cell denotes a small weight (w;; < 1079), indicating that 7 is not inferred
to regulate 7.

The table in Figure 4.1 compares the performance of the three algorithms. The pre-
cision score measures true positive predictions (¢p) divided by true positives plus false
positive predictions (fp). That is, precision = tp/(tp + fp). Similarly, recall score is
measured in terms of the number of false negative predictions (fn), and is given by recall
= tp/(tp + fn). F-measure is a standard combination of both precision (p) and recall (r),
given by F-measure = 2p r/(p + r). The accuracy score measures the proportion of the
correct predictions. That is, accuracy = (tp + tn)/(tp + tn + fp + fn). Here the results
show that the global regularization approach greatly outperforms both the local regulariza-
tion and prototype based methods with respect to both accuracy and F-measure. The local

prediction method is not able to effectively identify the true regulators due to the noise in

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local Predict Prototype Predict Global Predict

YR

L=
;E_:.

X
[9]
ko)
£
o
c
@
(0]

246810 246810

TF Index TF Index TF Index TF Index Time
Performance Local Prototype Global
comparison | regularization method regularization
accuracy (%) 57.6 472 73.0
precision (%) 214 18.1 29.9
recall (%) 71.5 74.6 63.8
F-measure 329 29.1 40.8

Figure 4.1: Results on synthetic data. Rows denote target genes in the synthetic experiment.
Columns denote candidate regulators (transcription factors). Subfigure 1: local prediction
output. Subfigure 2: prototype prediction output. Subfigure 3: global prediction output.
Subfigure 4: ground truth regulatory relationships. Subfigure 5: expression level data used
as input.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 4.1: Average comparison results for the synthetic experiments

Performance Local Prototype Global
comparison | regularization method regularization

accuracy (%) 56.1 £ 04 473+ 1.1 70.6 £ 04
precision (%) 197 £ 0.2 18.5+04 262+ 09
recall (%) 633+12 743+ 1.4 520426
F-measure 30003 29.6 £ 0.5 348+ 1.4

the data and the limited number of time points. The prototype based method also has dif-
ficulty identifying correct regulatory relationships, and tends to choose too many parents
for each gene. The reason for this is clear however. Since the prototype method is forced
to choose a single set of regulators for controlling a large set of genes, it naturally chooses
the union of the prospective regulators for each gene, leading to subsequently low precision
and accuracy. Thus, the prototype approach depends heavily on having a more refined and
accurate set of clusters from which it can make accurate regulatory inferences, but an ac-
curate clustering is very hard to achieve in practice. Figure 4.1 shows, on the other hand,
that the global regularization approach can effectively remove irrelevant candidate TFs by
sharing co-regulation information within a group, while simultaneously reducing the num-
ber of spurious regulators being inferred by allowing individual differences between genes
in a given cluster. The overall result is a more accurate (albeit far from perfect) recovery of
the underlying regulatory structure.

Note that the results in Figure 4.1 are obtained on one set of generated profiles using the
parameters that yield the highest F-measure values. To see the significance of this compari-
son, I then conducted experiments in a more realistic, supervised manner. First I use one set
of generated profiles to choose the parameters that optimize the F-measure values for each
algorithm. Then I reran the experiments 10 times using different profiles generated from
the synthetic setting, while keeping the chosen parameters fixed. The average comparison
results and the standard derivations are shown in Table 4.1. These results suggest that the
proposed global regularization approach is relatively more sensitive to the parameters than
the other two approaches. Nevertheless, the proposed approach maintains a significantly
better F-measure value.

The main question that remains is whether the higher quality inference on this synthetic

model leads to improved results on real gene expression data, which I consider next.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2 Experiments on Real Data

Gene expression microarray data for the yeast cell cycle typically contains more than 6000
genes, while only a subset of these genes are cell cycle regulated. It is known there are
9 important transcription factors (TFs) that regulate the cell cycle process [84], namely:
SWI4, SWI6, MPB1, FKHI1, FKH2, NDD1, MCM1, ACE2 and SWIS5. Since a lot of gene
regulatory relationships have already been identified for yeast, this model is commonly used
to evaluate learning approaches that attempt to infer gene regulatory networks from data.
Here 1 use Cho et al. ’s data [17], and focus on the task of identifying the subset of regulators
from the 9 candidate TFs, for each yeast gene that is cell cycle regulated. To clearly evaluate
the proposed approach, I chose a subset of 267 cell cycle regulated genes from the Cho et
al. data [17], while I could obtain confirmed regulatory relationships from the previous
literature [84, 50], or could obtain potential regulation relationships from existing binding
data [84] for 127 genes among them. I rescaled the expression data to values between 0
and 1, and then clustered the genes into 15 clusters using K-means. (In the images shown
in Figure 4.2, the genes are grouped vertically into the clusters. The number of clusters is
chosen by using visual judgment to achieve a smooth clustering effect.) Finally, I tested
the algorithms on each cluster. As in the synthetic experiments, after obtaining the w
parameters from each algorithm, all the parents indicated by w > 10~° are determined as
predicted regulators for the corresponding genes. For a fair comparison, the regularization
parameters (« and M) were chosen to yield the highest F-measure values in each case.
Since the regulatory mechanisms are still not known for a portion of the 267 genes, 1
therefore can only evaluate the results over the 127 genes for which regulatory relation-
ships are presumed known. Figure 4.2 shows the prediction results on 127 genes for all the
three algorithms: locally regularized prediction, prototype based prediction, and globally
regularized prediction. Here, again, a white cell denotes a large weight (w;; > 1075) con-
necting a TF j to a target gene ¢ in the estimated linear model, indicating that j is inferred
to regulate 7, and a black cell denotes a small weight (w;; < 1075), indicating that j is not
inferred to regulate i. Therefore the images compare the performance of the three methods
on inferring regulators from among the 9 candidate TFs, and shows how they related to
the known TF-based regulatory relationships. These results show that the globally regu-
larized approach can improve the quality of both the standard locally regularized approach
and the prototype based approach adapted from [94]. As in the synthetic case, the globally

regularized approach has the ability to share regulatory information between genes within

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local Predict Prototype Predict Global Predict Known TF Regs Expression

Gene Index

III . IIFII- mmi

2 468 2468 2468 2468

TF Index TF Index TF Index TF Index Time
Performance Local Prototype Global
comparison | regularization method regularization
accuracy (%) 57.8 554 73.9
precision (%) 223 21.2 35.7
recall (%) 47.5 48.0 434
F-measure 304 294 392

Figure 4.2: Results on the subset of the real gene expression data from [17], restricted
to genes where TF-based regulation information is known or can be inferred from other
sources [84, 50]. Rows denote target genes. Columns denote candidate regulators (tran-
scription factors). Subfigure 1: local prediction output. Subfigure 2: prototype prediction
output. Subfigure 3: global prediction output. Subfigure 4: ground truth regulatory rela-
tionships. Subfigure 5: expression level data used as input.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a cluster, leading to better noise robustness than the local approach. Here too, the global
technique also overcomes the problem of being overly dependent on clustering quality, like
the prototype approach, by allowing regulation differences with a cluster. For example, in
Figure 4.2, in the group of genes indexed between 42-58, one can see that a large set of the
errors produced by the standard independent approach (subfigure 1) have been corrected by
sharing parent information throughout the cluster (subfigure 3). The global regularizer cor-
rectly recognizes that this set of late-G1 genes is regulated by a subset of SWI4/SWI6 and
MBP1/SWI6. Although some local errors remain in this region (and elsewhere), clearly
the overall quality of the parent prediction has been improved substantially in the global
method. For these genes, the prototype based method (subfigure 2) recognizes two addi-
tional parents, perhaps due to noise.

Overall, the prediction quality achieved by these methods on this data is still some-
what limited, but has improved remarkably over the past few years, and in some sense is

remarkable given the noise exhibited in the expression profiles (subfigure 5).

4.5 Conclusion

In this chapter, I have proposed a new globally regularized risk minimization approach for
learning regulatory networks from gene expression data, which extends the feature selection
variable controlled structure learning idea presented in Chapter 3 to deal with continuous
data directly. Exploiting the assumption that genes with similar expression patterns are
likely to be co-regulated, the proposed approach first clusters the genes, and then learns
the regulatory relationships by encouraging genes with similar expression patterns to share
regulators. The experimental results on both synthetic data and real cell cycle data show
that this new approach is more effective at identifying important (transcription factor based)
regulatory mechanisms than the standard independent approach, and a prototype based ap-
proach.

Thus far, I have considered using only gene expression data in the learning process.
Further prediction improvements are likely to come from incorporating further sources of
biologically relevant data, such as binding information [84], or other forms of prior knowl-
edge beyond the co-regulation assumption made here. These informations can be nicely

incorporated into the global risk minimization approach by using the u parameter vector.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Discriminative Model Selection

5.1 Introduction

While Bayesian networks have often been used for modeling a joint probability distribution
over a set of variables, they have also recently been widely used to address discrimina-
tive classification tasks. This has motivated a growing body of work on learning effective
Bayesian network classifiers from data [49].

Learning Bayesian network classifiers poses the challenging problem of discrimina-
tive structure learning, in addition to parameter estimation. This is not a trivial challenge.
For example, one can typically improve classification performance on training data by in-
creasing the complexity of the model, which, however, can lead to inferior generalization
performance on unseen test data. Although one can still use the generative score-based
or constraint-based structure learning methods (discussed in chapters 2 and 3) to identify
structures for Bayesian network classifiers, this is not an optimal approach because these
methods optimize a goal that is different from discriminative classification. To clarify this
issue, consider the classification task over a set of variables X4, ..., X,,, Y, where Y is the
class variable. Here, the class label for an instance x is determined only by the condi-
tional model P(y|x), which is different from the joint distribution P(x,y) that previous
generative Bayesian network learning methods aim to identify.

Realizing that classification poses a distinct problem for Bayesian network structure
learning, many researchers have investigated this issue. This dates back (at least) to naive
Bayes classifiers [29], and has continued with various approaches that include feature se-
lection [59], and alternative structures [14, 33], where [33] has also explicitly stated the dis-
crepancy between obtaining good predictive accuracy and a good generative MDL score.
[54] compared several model selection criteria (unsupervised/supervised marginal likeli-

hood, supervised prequential likelihood, cross validation) on a restricted subset of Bayesian

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

network structures. [40] presented an algorithm for discriminatively learning Bayesian net-
works that used the conditional likelihood of the class variable given the evidence variables
as the model selection criterion.

In this chapter, I investigate score-based approaches for the problem of learning struc-
tures for Bayesian network classifiers. Instead of using the generative MDL/BIC and BDe
scores to control the heuristic search process, I propose two novel discriminative model
selection criteria, Conditional Bayesian Information Criterion (CBIC) and Bias?+ Variance
(BV), which aim to identify the model with the best generalization classification perfor-
mance. This is the first main contribution of this chapter.

To evaluate the proposed discriminative criteria, I conduct a series of controlled exper-
iments to compare them with the classical MDL/BIC and BDe criteria and the straightfor-
ward discriminative Conditional Likelihood (CL) criterion on the task of learning structures
for Bayesian network classifiers. The experiments are designed to provide a comprehen-
sive comparison between these model selection criteria across various situations: (1) using
generative or discriminative methods for parameter estimation; (2) using the whole training
set for both parameter estimation and criteria computation or dealing with these two tasks
in a cross validation manner; (3) conducting experiments with a set of true data generation
structures whose Markov Blanket complexities around the class variable have a range of
values. Since most of the criteria considered are asymptotically correct, I only investigate
the practically useful case of learning Bayesian network classifiers with small training sets.
Since the goal is to better understand the quality of the criteria themselves, independent of
the underlying search algorithm, I use the same heuristic search procedure for all of them.
In particular, I follow a standard framework for evaluating model selection criteria [52, 92]
that considers only a set of small models so that each model can be evaluated. This com-
prehensive empirical study constitutes the second main contribution of this chapter.

The rest of this chapter is structured as follows. Section 5.2 provides the framework for
discriminative structure learning. Section 5.3 presents the proposed discriminative model
selection criteria. The empirical study is reported in Section 5.4. This work was originally

published in [41].

5.2 Bayesian Network Classifiers

Classification is one of the most important tasks addressed in machine learning. Solv-

ing a classification problem requires building a classification model over a set of variables

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1: An example for Bayesian network classifier

X1,...X,,Y, where Y denotes the class variable, and then using the model to answer
queries of the form what is value of Y given X = x? Because they encode uncertainty
and provide a probabilistic foundation for modeling and inference, Bayesian networks are
a natural model for answering such queries through sound probabilistic reasoning.

Recall that a Bayesian network encodes a joint distribution over a set of variables using
an acyclic graph structure G that is associated with a set of parameters 8. When used as a
classifier, the natural way to use a Bayesian network is to assign the most likely value of
y given x. Specifically, for a given structure G and parameters 6, the classification rule is

given by
Y(g.6)(x) = argmax P(y|x,G,) 5.1
Yy

To determine the conditional probabilities, and hence the classification, it turns out that
not all the variables in the Bayesian network are relevant. In fact, only the variables that
fall into the Markov Blanket of the class variable Y affect the inference (the concept of
Markov Blanket is introduced in Definition 2.2). Essentially the Markov Blanket identifies
the smallest set of variables that shield the target Y from the rest of the network. To clar-
ify this, see Figure 5.1, which shows an example for Bayesian network classifier. In this
example, the only variable that is not in the Markov Blanket of Y is X, and therefore this
variable is irrelevant to the classification of Y.

A good Bayesian network classifier is one that produces accurate classifications. Typi-
cally, a Bayesian network classifier (G, 8) is evaluated in terms of the misclassification error

it obtains on unseen test data

err(G,0) = Epxy) [1((5.2)

i)

Therefore the goal of learning is to obtain a Bayesian network that minimizes this score

with respect to the true underlying distribution P(x,y). While one does not know this

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distribution a priori, a set of test data S = [x'y';...;xTy?] can be drawn from P(x,y) to

help evaluate Bayesian network models through the evaluation

T
1
errg(G,0) = = Lo, . (5.3)
T z_; (vi#v, 0,6))

Note that although the goal of this chapter is to identify the optimal structure for a
Bayesian network classifier given complete training data D = [x'y';...;xNy"], it first
requires the parameters to be estimated, since the evaluation of each candidate structure is
usually established on the parameters. Therefore, the parameter estimation strategy must
also be considered. One strategy would be to use the standard generative maximum like-
lihood parameter estimation (ML). The other, however, would be to use discriminative pa-
rameter learning. In particular, one can use the maximum conditional likelihood parameter
estimation (MCL) discussed in Section 2.2.1 of Chapter 2. In my implementation, I used the
ELR algorithm proposed in [39] to perform discriminative parameter training. This ELR
algorithm learns the parameters by maximizing the conditional likelihood of the training

data using a simple gradient-ascent procedure.

5.3 Discriminative Model Selection Criteria

Given the difference between the goals of learning a generative Bayesian network model
versus learning a discriminative Bayesian network classifier, I propose two new discrimi-
native model selection criteria to guide the heuristic structure search—aiming to find the
structure with the best generalization performance with respect to misclassification error.
The first criterion I propose is a discriminative variant of the standard BIC/MDL cri-
terion. Note that the standard BIC score, see Equation (2.6), consists of two terms: a log
likelihood term on the training data and a penalty term for model complexity. These two
terms are used to balance the tradeoff between fit to the training data and model complexity.
Note however, when using a Bayesian network for classification, one is concerned with the
conditional likelihood of the target labels y given the x values, instead of the joint likelihood
of the entire instances. Furthermore, many variables in the Bayesian network might not be
relevant for classification if they do not belong to the Markov Blanket of Y, as discussed
above. Therefore the standard model complexity term in the BIC score does not reflect the
true complexity of the classifier. Taking these two observations into consideration, I pro-
pose a discriminative measure for scoring Bayesian network structures for classification,

based on extending the standard BIC score. The new score I propose, Conditional Bayesian

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Information Criterion (CBIC), is defined as follows

kvp(G,Y)log N

2 5.4)

CBIC(G, D) = Zlogpylx G.0)—
1=1

where the first term is the conditional likelihood of labels on the training data; the second
term measures the complexity of the conditional model where kp;p(G,Y) is defined as
the number of free parameters in the substructure of G that falls into the Markov Blanket
of the variable Y. By modifying BIC in this way to take into account only the relevant
structural complexity of the classification model, the goal is to achieve a more accurate
tradeoff between conditional data fitness and classifier complexity.

The second discriminative criterion I propose is motivated by a more general view of
the classification task. Ripley {72] proves that the expected mean-square-error of a classi-
fier corresponds to an additive combination of Bias? and Variance. Thus if one can measure
both the bias and variance for all conditional distributions P(y|x) encoded in a candidate
Bayesian network (G, @), then the generalization classification performance of that can-
didate can be measured using a Bias?+Variance (BV) criterion. Here, I define the BV

criterion as follows

N
VG,0) = + 3 (Pi) - P1.6,0)) + Var (PG/1x,6,0) 59)

i=1
where, as before, 8 denotes the parameters trained on the training set D by either maxi-
mum likelihood estimation or maximum conditional likelihood estimation. The first term
in the BV criterion is the square of bias for a conditional distribution P(y|x%,G,8) en-
coded in the candidate Bayesian network, where the mean for this conditional distribution
is approximated using the empirical conditional distribution P(y'|x*) on the training data.

The empirical conditional distribution is defined as

R H#x, : N} :
Plylx) = o ifx =x"forsomei € {1... N} (5.6)
undefined otherwise

where #x y = ZZ 1 Ltz yizy) aNd #x = Zfil I(xi=x)- The second term of the BV
criterion measures the variance of the conditional distribution P(y|x,G,8). Here, I adopt

the variance estimate proposed in [93], which is derived from a Bayesian perspective

Var (P(y|x,6,8)) (5.7)
Yo7 [P(a,b,ylx,G,6) — P(y|x.G,0)P(a, blx, G, 6)]*
[P(ylx7g70) - (ylxvg79)P(b'X7g79)}2

1
B %;#ijrajb-H

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where # 1, and o1, denote the empirical and prior counts for [xﬂ(j) = b] respectively, as
introduced in Section 2.2.1 of Chapter 2.

Given these two discriminative structure scoring criteria, the main question is how they
perform at learning Bayesian network classifiers. To answer this, I conducted a series of
experiments comparing them to standard generative criteria and a straightforward discrim-

inative Conditional Likelihood (CL) criterion

N
CL(G,D) = Y log P(y'|x*,G,6) (5.8)

=1
5.4 Empirical Studies

This section reports on an empirical study that compares the two proposed discriminative
model selection criteria to standard generative BIC/MDL and BDe criteria, and to a simple
discriminative CL criterion, on the task of identifying the best Bayesian network model for
classification. To attempt to provide a reasonably comprehensive study, I set up experiments
across a range of contexts.

First, since the computation of model selection criteria requires parameter estimation,
I conducted two types of comparisons, one using generative maximum likelihood param-
eter estimation (ML) and the other using discriminative maximum conditional likelihood
estimation (MCL).

Second, there is an issue of how to use the training data for the combination of the pa-
rameter estimation and criterion computation. One approach is to use the entire training set
for both tasks—I denote this approach as 1SS (1 single set). The other approach addresses
these two tasks in a cross validation like manner, by splitting the training set into two sub-
sets, and then using one subset for parameter estimation and the other subset for criterion
computation. [denote this alternative approach as CV (cross validation). In my experi-
ments, I used 5CV (5 fold cross validation) in particular. That is, the training set is first
divided into 5 equal-sized subsets, then the following process is repeated for each of the 5
subsets: use the other 4 subsets for parameter estimation and then compute the criterion on
the chosen subset. Finally, the candidate structure is scored with the average of the 5 scores
computed.

Third, for each different combination of parameter estimation technique (ML vs MCL)
and data using strategy (1SS vs SCV), I study the performance of each criterion with respect

to underlying true Bayesian network structures with various Markov Blanket complexities.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure for generating sequence of structures:

Given a Bayesian network structure § t used to generate training and test data, I
generate a sequence of candidate structures with decreasing/increasing complexities
as follows:

1. Starting from the original structure G, sequentially delete one randomly selected
edge from the Markov Blanket of the class variable, to generate a series of
structures whose class variable has decreasing Markov Blanket size.

2. Starting from the original structure G, sequentially add one random edge into the
Markov Blanket of the class variable, while respecting to the acyclicity, to generate
a series of structures whose class variable has increasing Markov Blanket size.

Figure 5.2: Candidate structure generation procedure

® CRIFCRIRCRIR:
®_e|le]e||e]e||lee||l@Te||@]
® SHIRCHIRE

@) (b) © <+ [d — @ (f)

Figure 5.3: Sequence of structures; (d) is the original structure

Section 5.4.1 first describes the detailed experimental set up and evaluation method
used. Then Section 5.4.2 presents the experimental comparison of the two proposed model

selection criteria against the standard criteria in each particular context.

5.4.1 Experimental Setup

The goal of the experimental design is to attempt to investigate the performance of the var-
ious model selection criteria independent of the heuristic search procedure. Therefore, 1
used a set of candidate Bayesian network structures generated by perturbing a given tar-
get structure—the structure of the Bayesian network used to generate the training and test
data—to approximate the structure search space. Details for the structure generation proce-
dure are given in Figure 5.2. The procedure uses basic operators (adding/deleting an edge)
to approximate the standard structure search process. Using this procedure, a sequence of
candidate structures with a range of Markov Blanket complexities (with respect to the class
variable) can be generated. Figure 5.3 shows an example of candidate structure sequence,
where Y is the class variable, and structure in (d) is the starting point—the original data
generation structure.

In particular, I run each experiment as follows. First, a Bayesian network structure

Gt is constructed whose kj;p(G',Y) is within a specified range. Second, G! is used to

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

generate the candidate structure sequence. Third, parameters @' are chosen randomly for
the Bayesian network model (G¢, 8"), which is then used to generate the training set D and
test set S. Finally, given a set of training data and an approximated structure space, each
criterion c is used to select its best structure G¢ from the candidate structure set.

One final issue to address is how to evaluate the performance of each model selection
criterion. Here, I measure the performance of each criterion c by its Relative Model Selec-
tion Error (RMSE), which is defined as

errs(Ge, 6°)

RMSE(c) = _

(5.9)

where errg(G©, 8°) is the test misclassification error on S of the Bayesian network chosen
by criterion ¢, while (G*, 8") is the Bayesian network chosen from the candidate structure
sequence that has the smallest test error on S. Note that 8¢ and 0* are parameters trained
on D for structure G¢ and G* respectively, according to the specific setting discussed at the
beginning of the Section 5.4.

Since accurate structure selection is most challenging, and more relevant, when given

limited training data, I focus on using small training sizes below.

5.4.2 Results

Now I present the results achieved under various experimental contexts. The results re-
ported in this section are all obtained using training sets of size 50 and test sets of size

1000.

Using Maximum Likelihood Parameter Estimation

First, I consider the context of using generative maximum likelihood parameter estima-
tion (ML) and 1SS manipulation of the training set—dealing with parameter estimation
and criteria computation on the entire training set. To evaluate the different criteria with
respect to Markov Blanket complexity, I randomly generated six groups of Bayesian net-
work structures on 7 variables with varying Markov Blanket complexities with respect to
the class variables. Each group includes 30 structures with Markov Blanket complexities
on the same level. Each structure is used for data generation and structure search space
construction as described in Section 5.4.1. Then each criterion c can be used to select the
best structure from each structure sequence. The performance of each criterion is evaluated

using the RMSE measure.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

BV —o—

Relative Model Selection Error

MB Complexity

Figure 5.4: Comparison under context ML+1SS

24

22

Relative Model Selection Error

N
o

-
<
1

3 4 5 6
MB Complexity

Figure 5.5: Comparison under context ML+5CV

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4 shows the results for the ML+1SS set up. Here the y-axis indicates the six
groups in the order of increasing Markov Blanket complexities regarding the data genera-
tion Bayesian networks. The figure shows that the proposed BV criterion performs the best
in most cases, with the other discriminative criterion CL and the generative BDe criterion
behaving similarly to BV. However, one can notice that CL and BDe demonstrate inferior
performance when the Markov Blanket complexity is low, whereas their performance is
similar to BV when the Markov Blanket complexity is high. This outcome reflects the fact
that CL usually prefers complex structures, while BDe also tends to overfit for small training
sets. The other two criteria, BIC and the proposed discriminative variant CBIC, however,
both perform much worse across almost the entire range of Markov Blanket complexities,
except the smallest complexity case. This suggests that BIC and CBIC overpunish complex
models on small training sets, particularly CBIC which puts relatively less emphasis on the
data likelihood term comparing to BIC.

Second, I repeated the previous experiments except that, instead of using 1SS, I used
SCV (5 fold cross validation) to manage the data for parameter estimation and criterion
computation. Figure 5.5 shows that similar results are obtained to before, except now the
BV and CL criteria overperform all the other criteria across the entire range of Markov
Blanket complexities, while BV is slightly better than CL. This suggests the 5 fold cross
validation technique effectively overcomes the overfitting problem of CL.. BIC and CBIC
still perform much worse. Note that the BDe criterion does not make sense in the SCV
setting, since it integrates parameter estimation and score computation together. Therefore
I simply computed the BDe score on the training partition used for the criterion computation
in this setting. This means that a smaller dataset is used for BDe computation than in the

1SS case, which explains why BDe has inferior performance to BV and CL in this case.

Using Maximum Conditional Likelihood Parameter Estimation

Since the ultimate goal in this chapter is learning a good Bayesian network classifier, it is
natural to consider maximum conditional likelihood parameter estimation (MCL) instead
of the generative parameter estimation technique used above. I repeated the previous two
sets of experiments, using MCL instead of ML parameter estimation.

Figures 5.6 and 5.7 show the results for the two data manipulation strategies, 1SS and
5CV, respectively. Note that BDe criterion is not shown here since it does not have a con-
ditional variant. Otherwise, the comparative results achieved here are quite similar to the

ones reported above for ML parameter estimation. Once again, BIC and CBIC perform

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Relative Model Selection Error

MB Complexity

Figure 5.6: Comparison under context MCL+1SS

26 T
BV ——

Relative Model Selection Error

w [

1 2 3 4
MB Complexity

Figure 5.7: Comparison under context MCL+5CV

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.3

BV-ML-1SS —B— '

BV-ML-5CV —e—

BV-MCL-1SS —&—
- BV-MCL-5CV —v—
g
@ 0254
R 3
3
5 b
w
2
2 0.2
=

0.15 1 1 . 1
| 2 3 4 5 6

MB Complexity

Figure 5.8: Comparison for BV’s performance under the four contexts

much worse than BV and CL, except for the smallest complexity case in the 1SS context.
In the 5CV context, however, both BV and CL criteria perform substantially better than
BIC and CBIC across the entire range of Markov Blanket complexities. This is reasonable
since MCL parameter estimation cannot overcome the over-penalization problem of BIC
and CBIC. In both contexts, the proposed discriminative BV criterion performs best at all
but the smallest complexity level.

Overall, these experimental results suggest that the discriminative BV criterion is a
reasonable choice for learning the structure for Bayesian network classifiers using score-

based structure search approach.

Comparing Parameter Estimation Regimes

The results presented so far provide the relative model selection error for each model selec-
tion criterion in fixed contexts. They suggest that the discriminative BV criterion is the best
choice overall in each fixed context. These within-context comparisons, however, can not
tell us under which specific context BV performs best.

I thus answer this question by comparing the BV criterion across the four contexts. I use
the direct model selection error—test error errg(G2Y, 08 V) as the performance measure
where (GPY,8BY") denotes the model picked by criterion BV

Figure 5.8 suggests that the performance of the BV criterion with respect to the Markov
Blanket complexity is similar in all four contexts. Comparing the performance of BV
with respect to each of the four contexts suggests an ordering ML+5CV > MCL+5CV
> ML+1SS > MCL+I1SS, where “>” denotes “better than”. Therefore, for BV, using

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

maximum conditional likelihood parameter estimation is not helpful, and in fact leads to
worse performance than using maximum likelihood parameter estimation. However, 5CV
is always helpful using both ML and MCL parameter estimation, relative to the 1SS data
manipulation strategy. This reflects the ability of SCV to help recognize the generalization
performance of a candidate structure. Thus one can conclude that the BV criterion with
ML parameter estimation and SCV data manipulation is the most advantageous technique

overall for score-based structure learning of Bayesian network classifiers.

5.5 Conclusion

In this chapter, I proposed two new discriminative model selection criteria, BV and CBIC,
directed at the problem of learning structures for Bayesian network classifiers. CBIC is a
discriminative variant of the standard BIC score, whereas BV is derived from a standard de-
composition of the expected mean-square-error for classification. I conducted an empirical
study that compared these two proposed criteria to the standard generative BIC and BDe
criteria, and a simple discriminative CL criterion. This comparison was conducted in four
contexts: ML+1SS, ML+5CV, MCL+1SS and MCL+5CV. The results suggest the BV crite-
rion I proposed outperforms the other criteria across each context and most Markov Blanket
complexities. A further study of BV across contexts reveals that ML+5CYV is the best set-
ting for BV. By contrast, the proposed CBIC suffers from the problem of over-penalization
and demonstrate poor performance. I feel this investigation can provide a useful reference

in the study of discriminative Bayesian network structure learning.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Maximum Margin Bayesian
Networks

6.1 Introduction

When training probability models for classification tasks, it is often recommended that the
model parameters should be optimized under a discriminative training criterion such as con-
ditional likelihood [33, 55, 56]. In this chapter, I investigate the problem of discriminative
parameter learning for Bayesian network classifiers assuming given fixed structures. But
instead of conditional likelihood, here I consider applying the maximum margin method-
ology to Bayesian networks to formulate a novel maximum margin parameter estimation
approach, which can also be extended into the case of multiple class variables.

Maximum margin training is one of the most popular discriminative learning strategies
available. Recently, it has been observed that Markov networks (undirected graphical mod-
els) can be efficiently trained to maximize the margin, even simultaneously, over a set of
class variables [1, 88, 89, 91]. These training algorithms have adopted the Euclidean nor-
malization constraint of support vector machines (SVMs), which can be accommodated in
their frameworks because they rely on an undirected graphical model representation that al-
lows a single arbitrary normalization. However, unlike Markov network models, Bayesian
networks require additional normalization constraints to be satisfied; namely that the lo-
cal clique potentials represent conditional probability distributions. These constraints are
very different from the standard Euclidean normalization constraints of SVMs. Developing
of maximum margin methodology for Bayesian networks under these local normalization
constraints is much harder than for Markov networks. Nevertheless, Bayesian networks do
not preclude the possibility of learning large margin classifiers. My goal in this chapter is to

exploit the benefits of large margin training, while still being able to represent the learned

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classifier as a Bayesian network. For the purpose of deriving the maximum margin training
technique for Bayesian networks, I adopt the exponential Bayesian network representation
introduced in (2.9), by substituting 6 with w using the logarithmic transformation (2.10).

There are several motivations for attempting to maintain a Bayesian network represen-
tation, even when performing large margin training. First, the classification model being
learned could be a fragment of a much larger probabilistic causal model. In this case, main-
taining a Bayesian network representation could allow one to integrate the learned model
with a pre-existing background model without additional effort. Second, the normalization
constraints asserted by a directed graphical structure capture nonparametric causal knowl-
edge about the domain. Therefore, respecting these constraints allows one to exploit the
advantages of Bayesian networks for capturing intuitive causal structure. Note that remov-
ing the normalization constraints would turn the Bayesian network into a Markov network,
and this would unavoidably remove the causal knowledge that was originally encoded by
the local normalization constraints.

To understand both the prospects and limitations of learning maximum margin Bayesian
network classifiers, I proceed as follows. First, 1 investigate the notion of classification
margin for Bayesian network classifiers in Section 6.2.1, and relate this to the common
conditional likelihood criterion of graphical models. I then present a convex relaxation in
Section 6.2.2 that can be used to derive an effective training algorithm in Section 6.3. Sec-
tion 6.4 shows this algorithm solves a range of problems exactly and otherwise provides
an effective heuristic for finding approximate solutions. In Section 6.5, I then present ex-
perimental results which show that the causal information in Bayesian networks can help
achieve effective generalization performance when the directed graphical structure captures
relevant causal knowledge. Finally, I extend the approach to deal with multiple class vari-
ables in Section 6.6 and present further experimental results in Section 6.7. This work was

originally published in [45].

6.2 Maximum Margin Bayesian Networks

The goal of this section is to derive a convex maximum margin formulation for discrimina-
tive Bayesian network parameter training. Towards this goal, I first formulate a maximum
margin training criterion within the Bayesian network framework, and then obtain a convex

optimization formulation from it by relaxing the nonlinear equality constraints.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.1 Maximum Margin Training Criteria

[initially assume there is a single class variable Y taking on values y € {1...,V}. (I will
extend this to multiple class variables in Section 6.6 below.) As introduced in Section 5.2,
one usually makes predictions through conditional probabilities by y* = argmax, P(y|x),
while the conditional probabilities of y depend only on variables that are within the Markov
Blanket of variable Y in the Bayesian network. Thus I will restrict my attention to the
classification relevant subset of variables henceforth.

As discussed previously in this thesis, there are two parameter estimation methods that
are often used to train Bayesian network parameters: a generative maximum likelihood
(ML) parameter estimation and a discriminative maximum conditional likelihood (MCL)
parameter estimation. Here, instead I investigate an alternative objective criterion based on
the large margin criteria of SVMs. In particular, I adopt the multiclass margin definition of
[22]. In the current context, given training data D = [x'y!;...;x™yV], this objective can

be cast maximizing the minimum conditional likelihood ratio (MCLR)

N Py,)
MCLR(6) = minmin —>——"—2
(6) = mipmi Bl 0)

which can be turned into a margin form by taking the logarithms of both sides
N o .
log MCLR(6) = mi{l Ir;éin log P(x*,y'|0) — log P(x*, y|0) (6.1)
=1 yFy
Thus my goal is to find a set of parameters 8 that maximizes the minimum margin between
the target class label against the best alternative under the probability model. (I introduce
slack variables to obtain a soft margin version of the criterion later.)

To see the connection to SVMs more clearly, note that one can substitute the exponential

form of P(x, y|w) given in (2.9) into the MCLR objective, to obtain
logMCLR(w) = I}li;{lgr’r;lél;} [d)(xi,yi) — d)(xi,y)]Tw
N
= 1111:1{1;161;} Al y)w 6.2)
where A(i,y) = [@(x',y') — ¢(x%,)], and ¢(x, y) is defined in Section 2.3. Here the
row vector A(i,y) plays the role of the feature vector for training example 4 and class label
y. Therefore I can write the entire set of feature vectors as a matrix A of size (NV) x ||,
where |¢| denotes the number of features.
Thus, starting with the training objective (6.1), through a change of parameters, I am

led to a training problem that can be cast as a conventional maximum margin problem

max oy subjectto Aw >4, |wl| <1 (6.3)
Y

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where 5(,;_’9) = L(yzys)» SO d is a vector of length NV. Note here I have added the normal-
ization constraint |Jw|| < 1. Obviously some form of normalization is necessary to avoid
making Aw large in a trivial manner just by making w large. Euclidean normalization
happens to yield a weight vector that maximizes the Euclidean margin [80]. The resulting
constrained optimization problem corresponds to the standard version of multiclass SVMs
proposed in [22] (ignoring slacks), here expressed over features determined by the Bayesian
network.

In fact, this connection between probabilistic and large margin classifiers is one of the
main observations of [1, 88], which then proceed to use standard SVM training criteria over
these features. Note however that the solution weight vector for (6.3) cannot be substituted
into the Bayesian network representation, because it will not satisfy the proper normaliza-
tion constraints (2.12); namely that) _e“seb = 1 for all j, b. The previous techniques of
[1, 88] were able to proceed by using an undirected graphical model which could accom-
modate unnormalized weights in the potential function. However, for Bayesian networks
this is not sufficient, and it is usually hard to represent the same classifier in the original
Bayesian network structure.

The alternative approach I consider, therefore, is to maximize the same objective, but

subject to constraints that preserve the representability as a Bayesian network

ax subject to Aw > 74, “ieb =1 VJ, b 6.4
max 7y j >y ;e j 6.4)

Unfortunately, these natural constraints on w are nonlinear and this yields a difficult op-
timization problem. Attempts to reformulate the problem according to standard transfor-
mations also fail. For example, although using 8 parameters instead of w can change the
local normalization constraints into linear constraints, it creates difficulty in the margin con-
straints A In(@) > ~4. The standard trick of removing the normalization constraints via the
alternative transformation (2.13), which uses the w parameters, also does not work in this
case, since it creates terms of the form 3.1 A¢ja by (1Y) [Wjab — log 3, €*5¢®], which
cause the optimization to be neither convex nor concave in w. Thus, if one hopes to solve
the maximum margin Bayesian network training problem exactly, a more subtle approach

is required.

6.2.2 Convex Relaxation

Although solving for the maximum margin Bayestan network parameters appears to be

a hard problem, it is still possible to derive a practical training algorithm that solves the

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem for a range of graph topologies, and otherwise provides a useful foundation for ap-
proaches that seek local maxima. The main idea is to try to exploit convexity in the problem
as much as possible, and identify situations where the solutions to a convex subproblem can
be maintained.

First note that the objective and the margin constraints in (6.4) are linear in w. Unfor-
tunately, the normalization constraints are nonlinear equalities on w, which eliminates the
convexity of the problem. However, my basic observation is that the problem can be made
convex simply by relaxing these equality constraints to inequality constraints, thus yielding

a simple relaxation

)

) S Wiab < .
r(r‘ljaic ~v subjectto Aw > ~é, ;e jeb <1 V4, b 6.5)

The solution to this problem will of course be subnormalized. The key fact about the relaxed
problem (6.5), however, is that it is convex in w and this will permit effective algorithmic
approaches [8]. Note that the inequality form of the norm constraints in (6.3) and (6.5) is
not vacuous; In either case, reducing the magnitude of the weights only has the effect of
reducing the inner products in the margin constraints (Aw), which can only yield a smaller
margin . The maximization objective naturally forces the weight magnitudes overall to
become as large as possible, subject to the normalization constraints.

It is interesting to compare the two convex optimization problems (6.3) and (6.5), which
correspond to maximum margin Markov networks and Bayesian networks respectively.
These problems have identical objectives and margin constraints on w, but differ only in
the normalization constraints—one global constraint for Markov networks versus multiple
local constraints for Bayesian networks. The solutions to the two problems will obviously
be different. Intuitively, the Bayesian network constraints might regularize the weights
more comprehensively in the sense that each local CPT is constrained to have identical
maximum influence, whereas a Markov network could concentrate its weight in a single

local function.

Soft Margin Formulation

Before tackling real problems I need to introduce slack variables, since it is obviously not
practical to use a hard margin formulation on real data. To this end, I consider the standard

soft margin formulation of SVMs

1
1312 §||w||2 +CE"1 subjectto Aw > 8§ —S¢ (6.6)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where ¢ are the slack variables; 1 denotes the vector of all 1 entries; S is an (NV) x N
sparse matrix with nonzero entries S((¢,y),¢) = 1 (which enforces the constraint that
A, y)w > b, — & for all 4,y); and C' is a parameter that controls the slack effect [22].
Note that £ > 0 is already implied in (6.6), because A(7,y') = 0 and §(4,y*) = 0 for all 4.
For my purpose, I need to state this objective explicitly in terms of the margin . It can be

shown that (6.6) is equivalent to the following [58]

1

min ~— + Cce' subject to Aw > (8 — S¢),
wrg 2y

720, fwf <1 6.7)

Thus, by replacing the Euclidean normalization constraint with the Bayesian network sub-

normalization constraints, I obtain

1
3152 2t Ce™1 subjectto Aw > (8 — S¢),

20, Y ,e%® <1Vjb (6.8)
The two problems, (6.7) and (6.8), specify the soft margin formulations of maximum margin
Markov networks and Bayesian networks respectively. Unfortunately, neither formulation
is convex because the quadratic term y(d — S&) is non-convex in the optimization variables
~ and £ [8]. For Markov networks one can simply convert (6.7) back to (6.6) and thus con-
vexify the problem. It is of course no surprise that optimization problems can be converted
between convex and non-convex formulations without affecting the optimal solution. For
Bayesian networks I instead solve the following problem with alternative slack variables €

and controlling parameter B

. 1 T .
_ > —
min % +Be'l subject to Aw > vyd — Se,

720, Y €t <1 Vb (6.9)
a

This new formulation (6.9) is convex and equivalent to (6.8), and thus yields a convex

version of the soft margin training problem for Bayesian networks.

Proposition 6.1 Assuming v > 0, (w,~, €) is an optimal point for C in (6.8) if and only if
(w,~, €) is an optimal point for B in (6.9) with € = v£ and B = C/~.

So if one chooses an optimal regularization parameter B for (6.9), then the optimal
solution (w,) will be preserved, while the slacks € can be recovered by £ = ¢/~.

I now proceed to develop algorithmic approaches for solving the convex training prob-
lem (6.9), with the goal of ultimately comparing maximum margin Markov networks trained

under (6.6) versus Bayesian networks trained under (6.9).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Training Algorithm
To solve (6.9) first consider the Lagrangian

L(w,y,e,m,A,v)
= 1/(2®)+ Be'1+ 7" (76 — Se — Aw)

+> Ajp (Z Wiab 1) — vy (6.10)
ib a

The saddle point condition gives us an equivalent problem to (6.9)

crgl}ynegl)e‘u; L(w,7v,e,m,A,v) subjectton, A, v >0 6.11)
Unfortunately, this Lagrangian is not nearly as convenient as the one for the SVM formu-
lation (6.6), and a closed form solution for the dual is not readily obtainable in this case.
For example, one cannot easily eliminate the primal variables from this problem: taking the

partial derivative with respect to w1, yields

oL
Ow 'jab

= Np e — T Ay (6.12)

where A jq1, denotes the jab column of A. The difficulty with (6.12) is that one cannot set
this derivative to zero because nTAjab can be negative (A has negative entries). Never-
theless, the problem remains convex.

Rather than use a Lagrangian approach to solve this problem, I instead consider a stan-
dard barrier approach. In fact, barrier methods are among the most effective techniques
for solving convex constrained optimization problems [8, 95]. In this approach one simply

replaces the constraints with log barrier functions

1 .
Sre e Tl
— 1Y log (AGG, y)w — vy + €)
(4,y)

,uZlog (1 — Zé"jw)
J.b a

plog(y) (6.13)

In general, it can be shown that for convex inequality constraints, the resulting uncon-
strained objective (6.13) is also convex, while the solution to (6.13) converges to (6.9) as
p — 0 [8]. In the standard path following technique, an outer loop is used to solve a

sequence of unconstrained optimization problems for a sequence of decreasing p values,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where the optimal solution (w, -y, €) obtained from one loop iteration is used as the starting
point of the next iteration. The parameter y is initially set to a reasonable value to ensure
numerical stability, and then successively reduced to sharpen the barriers until a small value
of 1 is reached. For each fixed 4, the inner optimization problem is usually solved using a
second order method to ensure fast convergence. Here, for the inner optimization loop, I im-
plemented a Newton descent method based on computing the gradient and Hessian of (6.13)
with respect to (w, 7, €). I found that 7 outer iterations with M) = 1, p*+1) = ;) /10,
and fewer than 20 inner Newton iterations were required to obtain accurate solutions. In
principle, the runtime of a barrier iteration method is not dramatically slower than solv-
ing a quadratic program [8]. However, my Matlab implementation is currently an order of
magnitude slower than the quadratic program solver (CPLEX) I used for maximum margin
Markov networks. The largest runtimes for my barrier training in the experiments below

are a few minutes, versus a few seconds for CPLEX.

6.4 Bayesian Networks with Exact Solutions

Before presenting experiments, I first consider when the solutions to the relaxed problem
(6.9) correspond to the solutions to the exact problem; i.e., satisfying local normalizations:
Y g €“ieb = 1 forall j,b. The main concern is that the solutions obtained to (6.9) may
not be representable in a Bayesian network because the parameters w are subnormalized,
not normalized. This leaves us with the question of determining when these subnormalized
solutions can be equivalently converted into properly normalized Bayesian networks.

It turns out that a range of network topologies admit a simple procedure for renormaliz-
ing the local parameters so that they become proper CPTs, without affecting the conditional
probability of y given x. In fact, this observation has been previously made by [98, 99]. 1
present a simpler view here. In fact, it is easy to characterize a sufficient condition for an

unnormalized Bayesian network classifier to be renormalized to preserve P(y|x).

Proposition 6.2 An unnormalized directed graphical model, defined on the Markov Blan-
ket of the class variable Y, can be renormalized to preserve the decision function P(y|x) if

for each child variable of Y, its parents are fully connected.

The intuition behind this result is fairly straightforward. Let local function f(z, Xn(j))
denote the unnormalized parameter for configuration with child value x; and parent val-
ues X, (;)- This local function can always be normalized by dividing a factor p(x(;)) =

> . f(@. Xz () for each x.(;). The renormalization does not affect the classification as

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Q= @
v

Figure 6.1: Bayesian networks that satisfy the renormalization condition

long as there is another local function f(xg, X)) where X, ;) € {Tk,Xx(x)} that can be
multiplied by the same factor. Since the functions and variables follow an acyclic ordering
in a Bayesian network, child variables can be sequentially renormalized bottom up without
affecting previous normalizations. Finally, the renormalization procedure reaches the lo-
cal function for Y variable which can be directly normalized without finding another local
function to counterbalance the normalization factor. To clarify this, assume the adjusted
local function for Y is f'(y, X (y)) after renormalizations of the functions associated with
the children of Y. Then the prediction probability is written as
F'@ %e) ey P(@51%a(5):9)

2oy P %) Hjeowy P(@ilxa), v)

P(y|x) = (6.14)

where C(Y") represents the indices of the child variables of Y. Then renormalizing function
F' (Y, Xx(vy) to P(ylxx(y)) only causes the same factor p(Xx(y)) = >, f'(y,Xx(j)) to be
divided from both the numerator and the denominator in (6.14), and therefore does not
affect the prediction function. Figure 6.1 shows two simple Bayesian network examples
that satisfy the renormalization condition.

The renormalization strategy only fails if, at any stage, the parent variable set x ;) is
not contained in another single local function, but is instead split between separate local
functions, as in Figure 6.2. In this case, there would be no way to coordinate the compensa-
tion for p(x,(;)) (without adding a new local function over x(;)). Thus, in the end, one is
left with an intuitive sufficient condition for renormalizing a Bayesian network: any graph
can be normalized without affecting P(y|x) if the child variables of Y can be eliminated
without adding any new edges. In these cases, one can recover a normalized model while
maintaining the optimality of the solution to (6.9).

Note that the renormalization procedure can be applied to any set of parameters defin-
ing the decision rule P(y|x) in a network structure satisfying Proposition 6.2, even if the
parameters were produced by a Markov network training procedure. However, this does
not imply that the resulting model P(y|x) from Markov network training is optimal under

the Bayesian network criterion (6.9).

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2: A Bayesian network that does not satisfy the renormalization condition

Figure 6.3: Two Bayesian networks where the class variable Y is shaded in each of them

6.5 Experimental Results

To evaluate the utility of learning maximum margin Bayesian networks, I conducted some
simple experiments on both real and synthetic data sets. In the synthetic experiments, I
first constructed the Bayesian network structure and parameters, and then used it to gen-
erate training and test data. The goal of the synthetic experiments is to run a controlled
comparison of maximum margin Bayesian networks versus Markov networks in causal
domains where one can obtain the correct Bayesian network structures. 1 experimented
with several network topologies and parameterizations, and compared maximum margin
Bayesian networks (MMBN) trained according to (6.9) against maximum margin Markov
networks (MMMN) trained according to (6.6), and also against maximum conditional like-
lihood (MCL) trained with a gradient descent method. The results reported here are average
misclassification errors on test data over 100 repetitions. For each method, on each model,
the regularization parameters, B and C respectively, were first optimized on one pair of
training and test sample sets and then fixed for the duration of the experiment.

The synthetic experiments were conducted on the networks shown in Figure 6.3. Here
I fixed a network structure and then defined the generative model by selecting parameters
from a skewed distribution. I used a parameter 3 to control the skewness of the conditional
distributions of each child, where a value of # = 1 makes each child a deterministic function

of the parents, and 3 = 0.5 gives each child a uniform distribution, rendering them effec-

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Training Size = 5

0.5
0.4 -
5 g
o 0.3} -7
5 -z
© g
?;‘, 0.2r v
= -7 MCL
R R ZMMMN
Y OMMBN
g . . . s - ,
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 10
057
04r¢
8
o 0.3
[0
jo]
©
o 0.2}
>
< - -
- ~~MCL
0.1 TMMMN
OMMBN
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 20
057
:MCL
04t FMMMN
= oMMBN
<
w 0.3f
L]
(o]
©
¢ 0.2}
>
L4
0.1 v
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 30
057
MCL
04k v MMMN
5 ©OMMBN
e
w 0.3f
[<}]
(o]
©
o 02
>
<
0.1

n L)

0.8 0.75 0.7 0.65 0.6
beta

Figure 6.4: Average error results for Figure 6.3 (top)

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Training Size =5

05
0.4
s
0.3
[
o
T
o 0.2¢
>
4
MCL
0.1 T MMMN
©MMBN
0 — 1 : 2 1 J
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 10
°
i}
= TMMMN
o 0.2t OMMBN
z
01t
0 L A L 1. 1)
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 20
8
ui
44}
g
@ 0.2¢ 7 SMMBN
<
01}
0 . L L n n s
0.9 0.85 0.8 0.75 0.7 0.65 0.6
beta
Training Size = 30
057
S
w
4]
(o]
©
[
>
3
MCL
0.1 7 MMMN
OMMBN
0 e 1 e L 1 r
0.9 0.85 0.8 0.75 0.7 0.65 0.6

beta

Figure 6.5: Average error results for Figure 6.3 (bottom)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.7

0.6} e
505 *
LLJ -
[
S 0.4/ .
Qo * /%
é A,
= 0.3 . Y4
> 0.2+ L

0.1F =«

GO 0.2 0.4 0.6

MMBN Average Error

Figure 6.6: Average error comparison between MMBN and MMMN on UCI data sets

MCL Average Error
o o © o o o
N w B wn [+ ~
*
* k)
*
»*
*
*

(=}

—
*
*

¥

(o)

0 0.2 0.4 0.6
MMBN Average Error

Figure 6.7: Average error comparison between MMBN and MCL on UCI data sets

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tively independent of their parents. Figure 6.4 shows the comparison of the three strategies,
MMBN, MMMN, and MCL for the first network topology shown in Figure 6.3. This net-
work topology satisfies the condition of Proposition 6.2, and therefore MMBN computes a
globally optimal solution in this case. Here one can see that for a range of generative models
defined by & and several training sample sizes, MMBN demonstrates a systematic advan-
tage over both MMMN and MCL, although MCL is clearly stronger than MMMN in this
case. Figure 6.5 shows the same comparison using the second network topology from Fig-
ure 6.3. This network no longer satisfies the condition of Proposition 6.2, and therefore the
training algorithm is no longer guaranteed to produce an optimal normalized solution (only
an optimal subnormalized solution). Nevertheless, one can see that MMBN holds a slight
advantage over MMMN in this case, while MCL is slightly better here. MMBN appears to
have an advantage in cases where it is exact (for structures satisfying Proposition 6.2), but
the advantage is diminished a lot in the subnormalized case.

For a real world comparison, I also experimented with real data from the UCI reposi-
tory. Specifically, I used 17 data sets: Australian*, Breast, Chess, Cleve, Diabetes*, Flare*,
Glass, Glass2*, Heart, Hepatitis*, Iris*, Lymphography, Mofn*, Pima*, Vehicle*, Vote, and
Waveform. For each data set, I formulated a Bayesian network topology that was intended
to capture the causal structure of the domain, but in this case there was no guarantee that the
presumed structure was correct. The network structures I used were automatically gener-
ated using the “PowerConstructor” technique discussed in [14]. These networks are much
larger and cannot be easily visualized here. Nevertheless, in 9 of the 17 cases the network
topologies satisfied the condition of Proposition 6.2 (marked * above). For each data set
I considered 5 different training sample sizes, N =10, 20, 30, 40, 50. For each N, I run
experiments on the random training/test splits. The results are averages over 5 repetitions
with disjoint training sets when it was possible. Interestingly, Figure 6.6 shows that MMBN
obtains an overall advantage over MMMN. Moreover, MMBN also shows a slight overall

advantage over MCL on these data sets; see Figure 6.7.

6.6 Multivariate Extension

In this section, I consider extending the proposed maximum margin Bayesian networks
to deal with structured classification problems with multiple connected class variable, fol-
fowing the key extension of [1, 19, 88]. In this setting, one observes training data D =

[xlyl, CxNyN] as before, however, now the targets y! are vectors of values for cor-

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

related class variables. The first main issue is to adapt the training criterion (6.9) to this
multivariate prediction case. Following [88], I scale the margin between a target class vec-
tor y* and an alternative vector y proportional to the number of misclassifications, which is

to set

Oiy) = Zl(y};#yk) (6.15)
k

This immediately yields multivariate versions of the training problems (6.6) and (6.9).

The primary difficulty in dealing with the multivariate form of these problems is coping
with the exponential number of constraints in Aw > vd — Se. That is, one now has to
assert A(i,y)w > 7d(;) — €; for all training examples i, over all possible label vectors y.
Such a constraint set is too large to handle explicitly, and an approach must be developed
for handling them implicitly.

One of the key results in [88] is showing that, for maximum margin Markov networks
(6.6), the constrained optimization problem can be factored and re-expressed in terms of

“marginal” Lagrange multipliers Uiy jap) = > where y ;.1 denotes the sub-

Y\Yjab H(0¥)
configuration of y that matches the local function 7 on pattern ab. This allows a compact
reformulation of an equivalent convex problem that can be solved efficiently as a compact
quadratic program [88]. Unfortunately, this approach does not work readily in my current
case because the Lagrangian (6.10) does not permit a simple closed form expression of the
dual. Thus I have to follow a log-barrier approach to solve the problem (6.13). However,
a direct factorization approach is not readily available for reducing the exponential sum
in >,y log (A(i,y)w — ¥0,y) + €). Nevertheless the constraint generation strategy of
[1] can be usefully applied in this case.

To solve (6.9) in the multivariate case I implemented a cutting plane method, where
initially only a small subset of constraints in Aw > yd — Se were considered. Given
a current set of constraints, a solution (w,~, €) was computed using the barrier method
outlined above. Then for each training example (x*,y*) one new labeling y was generated

to maximize the degree of constraint violation
argmax o y) — € — A(l, y)w
y
= argmax exp <’y§(i7y) + p(x', y)Tw) (6.16)
y

This is in fact an inference problem that can be solved by conventional methods. For ex-
ample, if Y forms a Markov chain, then the most violated constraint can be generated by a

Viterbi algorithm run on the probability model defined by (6.16).

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.07

0.065¢

0.06¢

0.055¢

0.05f

Average Error

0.045¢

0.04¢

0.035¢

0.03 20
Training Sample Size

Figure 6.8: Average error results for MMBN and MMMN on synthetic networks with mul-
tiple class variables

Once the new constraints have been generated, they are added to the problem and the
solution (w, -y, €) is re-computed using the barrier method. In my experiments I found this
constraint generation scheme was quite effective, requiring at most 10 to 50 generation

iterations before solving the problem.

6.7 Multivariate Experimental Results

I implemented this approach and tested it on both synthetic and real data using HMM mod-
els for classification, where the class variables Y play the role of the hidden state sequence,
and the input variables X play the role of the observations. Generally I considered models of
the form depicted in Figure 6.9, where each Y variable has multiple (disjoint) X -children.
In my synthetic experiment, I sampled (x,y) from a sequence of length 5 (5 Y variables
with 4 X-children each, for a total of 20 X variables). I then used a generative model
based on the same skewed parameters used in the synthetic single class variable experi-
ments above; here with 3 = 0.85. The results reported here were averages on 20 repetitions
and for 3 different training sizes (10, 20 and 50) respectively. Figure 6.8 shows that MMBN
again outperforms MMMN and MCL in controlled experiments where the correct Bayesian
network structure is known.

I also conducted an experiment on a protein secondary structure database [23]. Here the
goal is to predict the sequence of secondary structure labels given an observed amino acid

sequence. Figure 6.9 shows the prediction model I used. Basically, the secondary structure

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.9: Structure of the protein secondary structure prediction model

0.7

Average Error
[en]
(45

0.35¢

0.3

50 100
Training Sample Size

Figure 6.10: Average error results for MMBN and MMMN on protein secondary structure
prediction

tag yj for a location k in the amino acid sequence is predicted based on a sliding window
of 7 amino acid observations, as well as the neighboring secondary structure tags. I trained
on a subset of the data and tested on 1000 sampled subsequences disjoint from the training
data. The experiment was repeated 20 times to obtain the average for each different training
size of 30, 50 and 100. Figure 6.10 shows that MMBN performs better than both MMMN
and MCL on this data set.

6.8 Conclusion

In this chapter, I have investigated the interesting issue for learning Bayesian network
classifiers: whether a Bayesian network representation can be combined with discrimi-
native training based on the maximum margin criterion of SVMs. I have found that train-
ing Bayesian networks under the maximum margin criterion is a nontrivial computational
problem—harder than the standard quadratic program of SVM training. Nevertheless, I

still developed a reasonable training algorithm that optimizes the margin exactly in special

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cases, and provides a reasonable heuristic in general cases. I also extended the proposed
maximum margin Bayesian network method to address the structured classification prob-
lems with multiple class variables. My experimental results for both single class variable
and multivariate classifications show that there might be an advantage to respecting the
causal model constraints embodied by a Bayesian network, if indeed these constraints were
present during the data generation. In this sense, maximum margin Bayesian networks offer

a new way to add prior knowledge to SVMs.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Parameter Estimation with Hidden
Variables

7.1 Introduction

The previous chapters of this thesis investigated Bayesian network learning assuming that
the given training data was complete. In this chapter, I consider the problem of learning
Bayesian network parameters in the presence of hidden variables. Hidden variables are
variables whose values are not observed in the training data and yet remain part of the joint
probability model we are estimating. The existence of hidden variables usually occurs for
two practical reasons. One is when some variables encode derived or predicted concepts that
are not readily observed in real world data, yet nevertheless remain important. For example,
a disease classification variable is often important to infer in a medical Bayesian network
model, but is not directly observable. The second reason is when auxiliary variables are
deliberately introduced into the model to simplify the explanation of the observed data. For
example, hidden variables can be introduced to reduce the complexity of the structure and
therefore simplify the learning process for a given set of training data [32].

Learning Bayesian networks in the presence of hidden variables has been widely stud-
ied [5, 30, 32, 35, 76]. So far, the most common approach considered in this scenario
is to adopt expectation maximization (EM) algorithm. Few algorithms are better known in
machine learning and statistics than EM. One reason is that EM solves a common problem—
learning from incomplete data—that occurs in almost every area of applied statistics. Equally
well known to the algorithm itself, however, is the fact that EM suffers from shortcom-
ings. Here it is important to distinguish between the EM algorithm (essentially a coordinate
descent procedure [68]) and the objective it optimizes. Only one problem is due to the

algorithm itself: since it is a simple coordinate descent, EM suffers from slow (linear) con-

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vergence and therefore can require a large number of iterations to reach a solution. Standard
optimization algorithms such as quasi-Newton methods can, in principle, require exponen-
tially fewer iterations to achieve the same accuracy (once close enough to a well behaved
solution) [8, 70]. Nevertheless, EM converges quickly in many circumstances [77, 87]. The
main problems attributed to EM are not problems with the algorithm itself, but instead are
properties of the objective it optimizes. In particular, the standard objective and its variants
tackled by EM are not convex in any standard probability model. Non-convexity immedi-
ately creates the risk of local minima, which unfortunately is not just a theoretical concern:
EM often does not produce very good results in practice, and can sometimes fail to improve
significantly upon initial parameter settings [65]. For example, the field of unsupervised
grammar induction [53] has been unsuccessful in its attempts to use EM for decades and is
still unable to infer useful syntactic models of natural language from raw unlabeled text.
In this chapter, I present a novel convex approach to EM training that addresses the
problem of learning Bayesian network parameters with hidden variables. This approach
is based on formulating a convex relaxation of a particular variant of the EM algorithm—
Viterbi EM. As in previous chapters, the goal of this convexification is to remove local
minima from the training objective in an attempt to overcome one of the main shortcom-
ings of EM algorithms. However, achieving an effective convex relaxation is nontrivial
due to some technical barriers in this case. After introducing the standard variants of EM
training in Section 7.2, I first show in Section 7.3 that any convex relaxation of the stan-
dard EM must produce trivial results if it maintains any dependence on the values of hidden
variables. Although this result suggests that any convex relaxation of EM cannot succeed,
I subsequently show in Section 7.4.1 that the problem can be overcome by deriving an
equivalent parameter estimation formulation in terms of the equivalence relations over the
values of the hidden variables, rather than the missing values themselves. Based on this
new formulation, I then formulate a convex Viterbi EM formulation for Bayesian network
parameter estimation in Section 7.4.2. The main technical contribution of this chapter is a
reformulation of standard estimation principles for exponential conditional models in terms
of equivalence relations on variable values, rather than the variable values themselves. Al-
though this chapter only focuses on the hidden variable case, the technique I developed
remains extendable to the general missing value case. This work has been accepted for

publication [43].

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 EM Variants

Before proceeding, it is important to first clarify the precise EM variant that I address in this
chapter. In fact, there are many EM variants that optimize different criteria. Let z = (x,y)
denote a complete observation, where x refers to the observed part of the data and y refers
to the unobserved part; and let w refer to the parameters of the underlying probability
model, P(x,y|w). Joint and conditional EM algorithms are naive “self-supervised” train-
ing procedures that alternate between optimizing the values of the missing variables and

optimizing the parameters of the model

joint EM: y*+1) = arg max P(x, y|w*)) (7.1
y

w D = arg max P(x, y*+1 |w)

conditional EM: y**tY = arg max P(y|x, w*)) (7.2)
y

k+1

w* D) = arg max P(y()|x,w)

The joint version of EM (7.1) is also often referred to as Viterbi EM, and is sometimes
proposed as a computationally convenient approximation to the standard EM algorithm
(2.2) [79]. Both joint EM and conditional EM are clearly coordinate descent procedures
that make monotonic progress in their objectives, P(x, y|w) and P(y|x, w). Moreover, the
criteria being optimized are in fact well motivated objectives for unsupervised training. The
primary problem with these iterations is not that they optimize approximate or unjustified
criteria, but rather that they rapidly get stuck in poor local maxima due to the extreme
updates made on y.

By far, the more common form of EM, contributing the very name expectation—maxi-
mization, is given by the familiar update (2.2). Although it is not immediately obvious what
the standard EM iteration (2.2) optimizes, it has long been known that it monotonically
improves the marginal likelihood P(x|w) [26]. Therefore, I refer to the standard EM

algorithm as marginal EM. [68] later showed that the E-step could be generalized to
max 3 gy log (P(x, yiw®)/qy)
M
y

Due to the softer q, update, the standard EM update does not converge as rapidly to a
local maximum as the joint and conditional variants; however, as a result, it tends to find

better local maxima. Marginal EM has subsequently become the dominant form of EM

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm in the literature. Nevertheless, none of the training criteria are jointly convex in
the optimization variables, thus these iterations are only guaranteed to find local maxima.
Independent of the updates, the three training criteria are not equivalent nor equally well
motivated. In fact, for most applications one is more interested in acquiring an accurate
conditional P(y|x,w), rather than optimizing the marginal P(x|w). Of the three training
criteria therefore (joint, conditional and marginal), marginal likelihood appears to be the
least relevant to learning predictive models. In this chapter, I will focus on maximizing
Jjoint likelihood, since it incorporates aspects of both marginal and conditional training. I
will also primarily consider the hidden variable case and assume a fixed set of random
variables Y7, ..., Y7 is always unobserved, and a fixed set of variables X4, ..., X, is always

observed.

7.3 A Cautionary Result for Convexifying EM

As stated, I will focus on convexifying the joint EM objective. Assume we are given training
data [z!;...; 2], where z' = (x',y%) such that x* denotes the observed components and
and y* denotes the unobserved components. The goal in this chapter will be to develop a
jointly convex relaxation to the minimization problem

minmin - log P(x’,y|w) (7.3)

Yy w
1

where y takes only discrete assignments.

Thus one obvious issue one must face is to relax the discrete constraints on the assign-
ment y. However, the challenge is deeper than this. The difficulty dwells in the complete
symmetry property that holds between configurations of values for the hidden variables. In
particular, for any optimal solution (y, w) there must be at least another, equivalent solu-
tion (y’,w’), corresponding to a permutation of the hidden variable values, that achieves
the same objective value. For example, suppose there is only one hidden variable with do-
main {1,—1}. Then one can assign y’ to be a permutation of y by replacing all the 1s
in y with —1 and all the —1s with 1, and correspondingly assign w’ to be a rearrange-
ment of the weights in w, without affecting the optimality of the solution. Unfortunately,
this form of solution symmetry has devastating consequences for any convex relaxation.
Assume one attempts to use any jointly convex relaxation f(qy,w) of the standard joint
likelihood objective (7.3), where the the missing variable assignment y has been relaxed

into a continuous probabilistic assignment qy (like standard EM).

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 7.1 If f is stricily convex and invariant to permutations of unobserved variable
values, then the global minimum of f, (qy,w™), must assign equal probabilities to the

different y configurations; that is, qy must be uniform.

Proof: Assume (qy,w) is a global minimum of f but qy is not uniform. Then there
must be some permutation of the hidden values, II, such that the alternative (qg,,w') =
(I1(qy), IL(w)) satisfies q}, # qy. By the permutation invariance of f, this implies f(qy, w)
= f(d},, w"). Then by the strict convexity of f, one has f (a(ay, W) + (1 — @)(q}, "))
< af(qy,w) + (1 — a)f(qy,w') = f(qy,w), for 0 < a < 1, contradicting the global
optimality of f(qy,w). i

Therefore, any convex relaxation of (7.3) that uses a distribution q, over hidden values
and does not make arbitrary distinctions can never do anything but produce a uniform dis-
tribution over the hidden variable values. This trivialization is perhaps the main reason why
standard EM objectives have not been previously convexified. (Note that standard coordi-
nate descent algorithms simply break the symmetry arbifrarily and descend into some local
solution.) This negative result seems to imply that no useful convex relaxation of EM is pos-
sible in the hidden variable case. However, my key observation is that a convex relaxation
expressed in terms of an equivalence relation over the hidden values can avoid this symme-
try breaking problem. In particular, equivalence relations exactly collapse the unresolvable
symmetries in this context, while still representing useful structure over the hidden assign-
ments. Representations based on equivalence relations are a useful tool for unsupervised
learning that has largely been overlooked in the current literatures. My goal in this chapter,
therefore, is to reformulate the joint EM training objective to use only equivalence relations

on hidden variable values, and subsequently develop a relaxed convex formulation.

7.4 Convex EM

In this section, I will derive a convex relaxation of the joint EM to address the parameter
estimation issue for Bayesian networks with hidden variables. In this context, I assume a
Bayesian network defines the joint probability distribution over a set of random variables
Z = (X,Y), where X denotes the observed variables and Y denotes the hidden variables.
Given a set of training data with only X observed [x!;...;x"], my goal is to train the
Bayesian network parameters to maximize the joint data likelihood (7.3).

The derivation in this chapter is based on the exponential representation (2.14) intro-

duced in Chapter 2. In particular, using this representation, the joint likelihood objective

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. log P(x‘,y*") can be written as
Z log P(z'|w) = Z Z w;d)j(zé,zi(j)) — A(wj,z;(j)) (7.4)
i joi

where ¢; (z;», z;(j)) denotes a vector of features evaluated on the value of the child variable
. - . . - y y _ T
Z; and its parent variables for instance 7, such that ¢]-(/,;,z:r(j)) = (...1(2;-_ :a,z;(j):b)"') .

A regularized version of the joint EM optimization problem (7.3) can then be formulated as
o ;) g
mjnmin 3 (Z Alw;. 7igy)) =) ¢j<z;,z;<j>>> +gww)
g i

: . i i i B
= min E min (E A(wj,zw(j))—w]Td)j(zj,zﬂ(j))) +—2—w;rwj (7.5)
- 7
j

i
since the regularized likelihood decomposes into an independent sum over the local param-
eters w; for each local variable Z;.

As discussed in the previous section, a direct convexification of (7.5) based only on
relaxing the discrete assignment y can only obtain vacuous uniform solutions. Instead one
must derive an equivalent formulation in terms of equivalence relations over the assign-
ments to hidden variables, instead of the hidden variable assignments themselves. This
requires a fundamental reformulation of the optimization problem (7.5).

To derive the reformulation, initially it will be easier to work with an individual term in

(7.5) corresponding to an arbitrary local variable Z;

| i) L8
l’Ivlvljn (Z A(wj, zhy) — ij¢j(z;-,z:T(j))> + §ijwj (7.6)

i
Note that this objective still depends on y since z' = (x’,y*). Also this regularized form
of the objective corresponds to the maximum a posteriori (MAP) parameter estimation with
Gaussian priors on the parameters. Given complete data, solving this local parameter esti-
mation amounts to solving a logistic regression problem. In fact, (7.6) was the same form

as the regularized logistic regression form (3.3) in Chapter 3.

7.4.1 Logistic Regression on Equivalence Relations

A key subproblem is reformulating each of the local logistic regression problems (7.6) to

drop the dependence on hidden variable assignments y, and instead develop a form that can

be expressed strictly in terms of equivalence relations over hidden variable assignments.
To simplify the notation, consider one of the local logistic regression problems (7.6)

and drop the subscript j. To further simplify the notation, I also use a matrix notation to

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rewrite the the jth local parameter optimization problem as follows

min (Z AW, <I>,-:)) —w(@WYT) + gtr(WTW) 7.7

where W € RF*V, @ € {0,1}V*F, and Y € {0,1}V*V, such that N is the number of
training instances, V' is the number of possible values for the child variable, and £ is the
number of possible configurations for the parent variables. Here, the notation ®;. denotes
the ith row vector in a matrix ® such that ®;; = ¢ f(zi, z!) for the ith training instance and

fth feature. The log normalization factor is given by
AW, ;) =log > exp (€. W1,) (7.8)

where 1, denotes a sparse vector with a single 1 in position a. To explain this notation, note
that Y and ® are indicator matrices that have a single 1 in each row, where Y indicates the
value of the child variable, and @ indicates the specific configuration of the parent values,
respectively; i.e. Y1 = 1 and &1 = 1, where 1 denotes the vector of all 1s. This matrix
notation greatly streamlines the presentation below.

The first step in reformulating (7.7) in terms of equivalence relations is to derive its dual.
The derivation follows the same step as deriving the dual (3.10) of the logistic regression

(3.3) in Chapter 3.

Lemma 7.2 An equivalent optimization problem to (7.7) is

_ Ty _ L —oyea (Y —
max #(@log®T) ~ 551 ((Y e)ToaT (Y e)) (7.9)
subjectto © >0, O1=1

Proof: The proof follows the same argument given in Chapter 3. I outline the steps here to
make the derivation clear in the new notation. The dual optimization problem is derived by

first considering the Fenchel conjugate function of A(W, ®,.), given by
A*(U;, ®;.) = sup (U, W) — AW, ®;.) (7.10)
w

A more convenient representation of the conjugate function can be obtained by solving the

optimization (7.10). From (7.8), it is not hard to show that

Vw AW, ®;.)

I

E. [cbiT 1}]
= /6,

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for some row vector ©;. such that ©;. > 0 and ©;.1 = 1. Setting the derivation of the left

side of (7.10) with respect to W to zero then yields

U, =0, (7.11)

1

Thus, from [96, Theorem 2] as in (3.5), one obtains

A (U,) = 0;. log @I ifU; € Mg,
IR o0 otherwise

where ©;. is given by (7.11). Since A(W, ®;.) is a closed convex function, it follows [6,

Theorem 4.2.1] that the conjugate of the conjugate is the original function, and therefore
AW, ®;.) = sup tr(@iT}I)i;W) — 0;. log @lT (7.12)
0,€S;
where S; denotes the probability simplex
Si=1{6::0:2>0,0:1=1}
Substituting (7.12) into (7.7) yields

in <ZA(W, <I>z-:)> —w(@WYT) + gtr(WTW)

_ TE- W) — O, T\ _ ™ BT
= inf (Z sup (O] @, W) — ;. log@l:) wr(@WY) + Ser(WTW)

0.8,
= i‘I/‘l/f glég ~tr(©log®") + r(dWOT) —r(dWY ") + gtr(WTW)
= iélvf glég G(W,0)
where
G(W,0) = —tr(@log© 1) — u((Y —©)TdW) + gtr(WTW)

and S = [[, S;. It is easy to verify that S is closed and bounded and subsequently that G
satisfies the conditions of Theorem 3.1 (Strong Minmax Property) in Chapter 3. Therefore,

1t follows that

inf sup G(W, 0)

W oes
= supinf —tr(©log®") —tr((Y —0) " dW) + étr(WTW) (7.13)
Qes W 2

The inner optimization can be solved by setting

W = %(I)T(Y -0) (7.14)

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Substituting this into (7.13) yields the result. |

Interestingly, deriving the dual has already achieved part of the desired result: the par-
ent configurations now only enter the problem through the kernel matrix K = ®® ". For
Bayesian networks this kernel matrix is in fact an equivalence relation between parent con-
figurations. To see this, note that ® is a {0, 1} indicator matrix with a single 1 in each row,
implying that K;y = 1 if ®;. = &, and K;; = 0 otherwise. It is then straightforward to
verify that K satisfies the reflexivity, symmetry and transitivity properties, and therefore en-
codes an equivalence relation. But more importantly, K can be re-expressed as a function of
the individual equivalence relations on each of the parent variables. Let Y? € {0,1}V*Ve
indicate the values of a parent variable Z,, for the training instances. Thatis, Y/ isa 1 x V,
sparse row vector with a single 1 indicating the value of variable Z,, in instance i. Then
MP = YPYPT defines an equivalence relation over the assignments to variable Z,, since
M}, = 1if Y = Y and M], = 0 otherwise. It is not hard to see that the equivalence
relation over complete parent configurations, K = ®®7, is equal to the componentwise
(Hadamard) product of the individual equivalence relations for each parent variable. That
is, K =®®" = M'oM?0--- 0o MP, since K;y = 1iff M, = 1 and M% = 1 and ...
MP =1,

Unfortunately, the dual problem (7.9) is still expressed in terms of the indicator matrix
Y over the child variable values. The training problem still has to be reformulated in terms
of the equivalence relation matrix M = Y'Y ". Towards this goal, consider an alternative

dual parameterization € RY*Y such that @ > 0, Q1 = 1, and
QY =0

Note that © € IRN*V, for V < N, and therefore () is larger than ©. Nevertheless, if Y is
full rank (V'), then in fact the two dual parameterizations, © and 2, are equivalent. To see
this, note that if 2 > 0 and Q1 = 1, then setting © = QY implies © > 0 and ©1 = 1,
since Y € {0,1}Y*V and Y1 = 1. Similarly, since Y is full rank, for every © such that
© > 0 and ©1 = 1, there exists some Q suchthat 2 > 0and Q21 =1and QY = O.If Y
is not full rank, there must be some child value that never occurs in the training set. Then
the number of effective values for child variable can be reduced while Y is simultaneously
reduced until Y becomes full rank again without affecting the objective (7.7). Therefore
one can relate the primal parameters to this larger set of dual parameters by replacing (7.14)

with the relation

W= %@T(I - Q)Y (7.15)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even though €2 is larger than O, they can only express the same realizable set of parameters

W through the equations (7.14) and (7.15). To simplify the notation, let

Q=1-0Q
Therefore Q < I, Q1 = 0, and
LT
W = B(I) QY (7.16)

By first deriving the reformulation (7.9) given in Lemma 7.2 and then making the substitu-
tion (7.16), one can show that an equivalent optimization problem to (7.7) is given by
1 1
min AQ®:)) - Zu(KQM) + —w(QTKQM) (.17
i (;@) = GU(KQM) + 55u(QTKQM)
subjectto Q <I, Q1 =0

where K = ®®' and M = YY" are equivalence relations on the parent configurations
and child values respectively. The formulation (7.17) is now almost completely expressed
in terms of equivalence relations over the data, except for one subtle problem: the log

normalization factor
1
A(Q. ;) = 1o Y exp (5:87QV1,

still directly depends on the label indicator matrix Y. The next key technical lemma is
that this log normalization factor can be re-expressed to depend on the equivalence relation

matrix M alone.

Lemma 7.3

A(Q7 (I)z) = IOg Z €xp (%Ki:Qsz - IOg 1T1w:€> (718)
/4

Proof: The main observation I exploit is that an equivalence relation over value indicators,
defined by M = YY", must consist of columns that are copied from Y. That is, for all
¢, M, = Y., where a is the child variable value for instance ¢. Therefore 1 M, is the
number of instances that have the same child value as instance ¢. Let y(¢) denote the child

variable value for instance £. One then can derive

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AQ,®;) = logZexp< .0 QY1,)
= logZexp(K. QY>
1
= log) > 1TM exp (#Q:QM@)

a fy(f)=a
= IOgZIT—meXP <BK1‘:QM:£>

= logZexp< KQMg—longMg)l

Substituting (7.18) into (7.17) successfully achieves the goal of reformulating the orig-
inal problem (7.7) strictly in terms of equivalence relations over the hidden variable values.
This reformation gives an equivalent result to the original training problem (7.7), but by
eliminating Y, it is no longer subject to the triviality outcome established by Lemma 7.1
in Section 7.3. However, the final goal of effectively convexifying the joint EM has not
been accomplished yet. Note it is easy to see the objective of (7.17) is not jointly convex in
M and @ (or K and (), which means (7.17) is non-convex in M (or K). Nevertheless, a
convex form in M (or K) can be obtained by taking the dual of (7.17).

To derive the dual, first consider the Fenchel conjugate of A(Q, ®;.).

Lemma 7.4

_ 1 T T
A(Q, D) = Ai:zg}?\flzl BKz:QMAi: —Ajlog A — Ay log(M1) (7.19)

Proof: Let T, = %Ki;QM:g ~ log 1T M., thus A(Q,®;.) = log Y_rexp(Yye) by
Lemma 7.3. Then the Fenchel conjugate of A(Q, ®;.) is defined by
A (Ui, @i.) = sup u(U;' Q) — A(Q, ::) (7.20)
Q

The maximum of the left side of (7.20) is achieved by setting its gradient with respect to

to zero, yielding

Z exp(Tie) _KTMT 0
Z[/exp Zf’)

which implies

1
> AMBKJ M (7.21)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where Ay = ﬁ%’ and A;; > 0.A;1 = 1. Thus >, exp(Tip) = exr;\(iz“) and

A(Q,®;.) = Ty — log Ay for all £. Substituting (7.21) back into (7.20), one obtains
tr(U] Q) = 3=y Aie 5 Ki: QM. and therefore

AX(U;, @) = ZAM< K;.QM,— (Q@i:))

ZAM(K QM. — ze+logAie>

A log(M1) + A log A;

Since A(Q, ®;.) is a closed convex function, it follows [6] that the conjugate of the conju-

gate of A is the original function, hence

) = TQ) - A*(U;, &
AQ) = | max u(UQ)~ A (U; @)

L T T
= -K;. ;. L — A,
A %xl 13 QMA;. — A log A, — Ay log(M1)

This Lemma then allows me to derive the main result of this section.

Theorem 7.1 An equivalent optimization problem to (7.7) is

_ Ty 17 - TR -
AZ%T/a\')l(:l tr(Alog A’) — 1" Alog(M1) 2ﬂtr((I N K(I-MNM) (722

where K = M o --- o MP for parent variables Z1, ..., Zy.
Proof: 1t has already been established above that (7.17) is equivalent to (7.7). By substi-

tuting (7.19) into (7.17), one then obtains that (7.17) is equivalent to

1
i > ZK;. I — A T — A
Qgrlr,léri:() < P Aizz%’}/zg:(].:]. ,6 QMAl Az. log A’L' AL 10g(M1)>

—%tr(KQM) —tr(QTKQM)

2B
- Q<IQ1 0 A>OA1 1 (Q A)
where
G(Q,N) = —tr(AlogAT) - 1TAlog(M1) (7.23)

—Btr((I A)TKQM)-f— tr(QTKQM)

Here the feasible regions are closed and bounded, and also that G satisfies the conditions of

Theorem 3.1 (Strong Minmax Property). Therefore, it follows that

1 G A
Q<I.Q1-0 AZ0A1-1 (@ 4)

T ASOAI=1 Q<IQi=0 ¢@n) (7.:24)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Taking the gradient of G defined in (7.23) with respect to () yields

VaC(Q.A) = ZKIQ — (T~ MM

/

Note that setting () = I — A forces the gradient to zero and also satisfies the constraints over
Q, since A > 0 and A1 = 1. Therefore () = I — A is a solution to the inner minimization
in (7.24). Making this substitution in (7.24) yields (7.22). (Note A happens to be same as
the dual parameter 2 introduced before.) ||

Theorem 7.1 gives my key result. The dual formulation (7.22) is equivalent to the
original logistic regression problem (7.7). However, it is now expressed strictly in terms
of equivalence relations over the parent configurations (K) and child values (M). That
is, the value indicators, ® and Y, have been successfully eliminated from the formulation.
Furthermore, (7.22) is a pointwise maximum function of M (or K) and is therefore convex
in M (or K, but not both jointly; see below) [8], which will allow me to derive a convenient

convex relaxation of the joint EM training problem below.

7.4.2 Convex Relaxation of EM

By exploiting Theorem 7.1, I can now re-express the regularized form of joint EM objective

(7.5) strictly in terms of equivalence relations over the hidden variable values

min min Z A(wj,z;(j)) - ijd)j(z;-,zir(j)) + gw;rwj (7.25)

{v*} 7 Wi
— ; _ : ™ 1AL J
= {H]\lll'lll} j n}\zj,x tr(AjlogA;) — 1 Ajlog(M71) (7.26)

1 - :
~55" (7= 857 EG (1 = Az M7)
subject to A; > 0,A;1 = 1,forall j

MM = YhYRT yh e (0,1}VV YA =1 forallh (7.27)

where h ranges over the hidden variables, and K; = M J10. .0 M7 for the parent variables
Zijys ey Lj, Of Zj.

Note that (7.5) is equivalent to (7.25), hence equivalent to (7.26); that is, no approxi-
mation has been introduced to this point. The objective of (7.26) is concave in each A ; and
convex in each M" individually (a maximum of convex functions is convex [8]). There-
fore, (7.26) appears as though it might admit an efficient algorithmic solution. However,
one difficulty in solving the resulting optimization problem is the constraints imposed in

(7.27). These constraints are not convex. Therefore, to obtain a convex formulation some

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

form of relaxation appears to be required. One natural convex relaxation is suggested by

the following.

Lemma 7.5 The constraints (7.27) are equivalent to: M" € {0,1}N*V | diag(M") = 1,
MM = MM, M" = 0, rank(M") = V.

Thus a natural convex relaxation of (7.27) can be obtained by relaxing the discreteness

constraint and dropping the non-convex rank constraint, yielding
M" € [0,1]VY diag(M") = 1, M" = M*T M -0 (7.28)

Optimizing the exact objective in (7.26) subject to the relaxed convex constraints (7.28)
provides the foundation for convexifying joint EM. Note that since (7.26) and (7.28) are
expressed solely in terms of equivalence relations, and do not depend on the specific values
of hidden variables in any way, this formulation is not subject to the triviality result of
Lemma 7.1.

However, there are still some details left to consider. First, if there is only a single
hidden variable then (7.26) is convex with respect to the single matrix variable M k. This
result immediately provides a convex joint EM training algorithm for various applications,
such as naive Bayes for classification, for example. Second, if there are multiple hidden
variables that are separated from each other (none are neighbors, nor share a common child)
then the formulation (7.26) remains convex and can be directly applied. On the other hand,
if hidden variables are connected in any way, either by sharing a parent-child relationship
or having a common child, then (7.26) is no longer jointly convex because the trace term is
no longer linear in the matrix variables {M"}. In this case, one can restore convexity by
further relaxing the problem. To illustrate, if there are multiple hidden parents Z,, , ..., Z,,
for a given child, then the combined equivalence relation MP! o --- o MP* is a Hadamard
product of the individual matrices. A convex formulation can be recovered by introducing
an auxiliary matrix variable M to replace M?! o - -- o MP* in (7.26) and adding the set of
linear constraints M, < MY, forp € {p1,....px} M > M+ + MIF—k+1to
approximate the componentwise ‘and’. However, when a child variable and one of its parent
variables are both hidden, a more complex relaxation has to be developed (I leave this as part
of future work). To conduct experiments, I implemented a barrier approach for minimizing
(7.26) subject to (7.28) based on BFGS (Broyden-Fletcher-Goldfarb-Shanno) optimization
method [70]. See [8] for a detailed description of the standard barrier optimization, which
is also described in Chapter 6 of this thesis. For the problem here, I used log barriers for the

linear inequality constraints and log-determinant barriers for the semidefinite constraints.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recovering the Model Parameters Once the relaxed equivalence relation matrices
{M h} have been obtained, the parameters of the underlying probability model need to be
recovered. At an optimal solution to (7.26), one not only obtains { M h}, but also the as-
sociated set of dual parameters {A;}. Therefore, one can recover the primal parameters
W; from the dual parameters A ; using the relationship W; = %@;(I — A;)Y7 established
above, which only requires availability of a label assignment matrix Y7. For observed vari-
ables, Y7 is known, and therefore the model parameters can be immediately recovered. For
hidden variables, we first need to compute a rank V}, factorization of M". Let S = Tx1/2
where T and ¥ are the top V), eigenvector and eigenvalue matrices of the centered matrix
HM"H. One typical way to recover Y from S is to run k-means on the rows of S and
construct the indicator matrix. A more elegant approach would be to use a randomized
rounding scheme [37], which also produces a deterministic Y, but provides some guaran-

tees about how well YAYhT approximates M".

7.5 Experimental Results

An important question to ask is whether the relaxed, convex objective (7.26) is in fact over-
relaxed, and whether important structure in the original objective (7.25) has been lost as a
result. To investigate this question, I conducted a set of experiments to evaluate the proposed
convex approach compared to the standard joint EM algorithm, and to supervised training
on fully observed data. Whenever possible, I also compared with the golden standard true
model. My experiments are conducted using both synthetic Bayesian networks and real
world networks, while evaluating the trained models by the logloss (negative loglikelihood)
they produced on the fully observed training data and testing data. All the results reported in
this chapter are averaged over 10 repetitions. The test size for the experiments is 1000, and
the training size is 100. For a fair comparison, I used 10 random restarts for the standard
joint EM algorithm to help avoid poor local optima.

For the synthetic experiments, I constructed three Bayesian networks, shown in Fig-
ure 7.1: BN is a three layer network with 9 variables, where the two nodes in the middle
layer are picked as hidden variables; BN2 is a network with 6 variables and 6 edges, where a
node with 2 parents and 2 children is picked as hidden variable; BN3 is a naive Bayes model
with 8 variables, where the parent node is selected as the hidden variable. The parameters
are generated in a discriminative way to produce models with apparent causal relations

between the connected variables. I then conducted experiments on these three synthetic

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BN3

Figure 7.1: Synthetic Bayesian networks 1-3

Table 7.1: Experimental results on synthetic Bayesian networks

Golden Standard Fully Supervised Joint EM Convex EM

Train Logloss Train Logloss Train Logloss Train Logloss

BN1 7.52 £ 0.06 723+£0.06 11.29+£044 8.96 + 0.24

BN2 434 £ 0.04 424 £ 0.04 6.06 £ 0.20 523+0.18

BN3 5.09 £ 0.02 493 £0.02 7.81 £0.35 6.23 + 0.18

Test Logloss Test Logloss Test Logloss Test Logloss

BN1 7.48 + 0.01 790+0.04 11.73 £0.38 9.16 + 0.21

BN2 437 £ 0.01 4.50 £ 0.03 6.48 £0.23 5.48 +0.19

BN3 5.10 +£ 0.01 532 +£0.05 8.18 £ 0.33 641 +0.14
98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

networks. The results are reported in Table 7.1. One can see that the convex relaxation
was successful at preserving structure in the EM objective, and in fact, generally performed
much better than the standard joint EM algorithm, particularly in the case (BN1) where
there was two hidden variables. Not surprisingly, supervised training on the complete data
performed better than the EM methods, but generally demonstrated a larger gap between
training and test losses than the EM methods.

In addition to these three synthetic Bayesian networks, I also ran experiments using
some UCI data sets. Here I used naive Bayes as the model structure, and set the class
variable to be hidden. The UCI results are reported in Table 7.2. The results I obtained
in this case are mixed: the convex EM algorithm performed better than the joint EM on
four data sets—Australian, Diabetes, Flare and Pima—while worse on the other four data
sets—Breast, Cleve, Crx and Heart. One has to admit that it is possible for the joint EM
to converge to a better solution in some cases. Further investigation needs to be conducted
with respect to what aspects of the problem are responsible for the weak approximation
given by the convex EM in such cases.

Finally, I conducted additional experiments on three real world Bayesian networks:
Alarm, Cancer and Asian (downloaded from http://www.norsys.com/networklibrary.html).
I selected one well connected node from each model to serve as the hidden variable, and
generated data by sampling from the models. Table 7.3 shows the experimental results for
these three Bayesian networks. Here one can see that the convex EM relaxation performed
well on the Cancer and Alarm networks, though the advantage is very small for the Alarm
network. Since I only selected one hidden variable from the 37 variables in Alarm, it is
understandable that any potential advantage for the convex approach might not be large.
Much weaker results are obtained on the Asian network however. The reason remains to be

further investigated.

7.6 Conclusion

In this chapter, I have presented a novel convex relaxation of the standard joint EM (Viterbi
EM) algorithm for Bayesian network parameter estimation in the presence of hidden vari-
ables. This convex EM approach was facilitated by a novel reformulation of logistic re-
gression that refers only to equivalence relation information on the hidden variable values,
and thereby allows one to avoid the symmetry breaking problem that blocks naive con-

vexification strategies from working. Experimental results, that compared this convex EM

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.norsys.com/networklibrary.html

Table 7.2: Experimental results on UCI data sets

Fully Supervised

Train Logloss

Joint EM
Train Logloss

Convex EM
Train Logloss

Australian 1032 £ 0.07 1283 +021 11.92+0.23
Breast 470 £ 0.10 4.86 £0.13 6.06 + 0.28
Cleve 8.17 £ 0.08 8.64 +0.14 9.03 +0.21
Crx 1135+ 0.07 1335+£040 1345+0.19
Diabetes 523 +0.04 6.70 £ 0.27 6.51 +0.35
Flare 596 +0.06 11.79 & 0.26 7.36 + 0.37
Heart 8.11 £0.05 8.56 £ 0.11 893 +0.15
Pima 5.07 £ 0.03 6.74 + 0.34 5.81 £ 0.07

Test Logloss Test Logloss Test Logloss
Australian 11.05+0.04 1357 £0.09 1234 £0.22
Breast 4.92 + 0.03 5.02+£0.04 6.30 £ 0.27
Cleve 8.51 +£0.05 9.05 +£0.14 9.15+£0.14
Crx 1218 £ 0.05 1372+ 029 1391+£0.23
Diabetes 553 +0.04 7.07 £0.23 6.50 + 0.28
Flare 6.46 +£0.04 12.11 £0.20 7.82 +£0.44
Heart 8.48 £ 0.03 8.91 £ 0.07 9.09 £ 0.14
Pima 532 £0.03 6.93 + 0.21 6.03 + 0.09

Table 7.3: Experimental results on real-world Bayesian networks

Golden Standard Fully Supervised

Joint EM

Convex EM

Train Logloss

Train Logloss

Train Logloss

Train Logloss

Cancer 223+ 0.05 2.18 £ 0.05 3.90 £ 0.31 298 £0.19
Alarm 11.14 £ 0.18 1023 £0.16 1194 +£0.32 11.74 £0.25
Asian 224 + 0.06 217 £ 0.05 221 £0.05 2.70+ 0.14

Test Logloss Test Logloss Test Logloss Test Logloss
Cancer 224 +£0.01 231+ 0.02 3.94 £ 0.29 3.06 £ 0.16
Alarm 10.93 £+ 0.06 1230 £0.06 13.75+0.17 13.62 £0.20
Asian 222+ 0.01 233+0.02 2.36 £0.03 278 £0.12

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relaxation to the standard joint EM algorithm, on both synthetic and real world Bayesian
networks, show this novel convex technique can perform more effectively than joint EM in
some circumstances. However, some weak results also existed, suggesting weaker approx-

imation qualities in those cases. The reason remains to be investigated.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusions

In this thesis, I have investigated a few challenging problems for learning Bayesian net-
works from data. Specifically, I presented five pieces of work motivated toward achiev-
ing better data modeling and pattern classification with Bayesian networks under various
contexts: generative modeling, discriminative classification, and learning with hidden vari-
ables. In particular, I have exploited several convex optimization techniques to address the
Bayesian network learning issues by first formulating a natural optimization problem and
then relaxing it to a convex form whenever it is possible.

First, I presented a novel convex relaxation for generative Bayesian network structure
learning. This approach simultaneously searches over variable orders, structure and pa-
rameters in a joint convex optimization by introducing a set of auxiliary feature selection
variables. Compared to standard score-based heuristic search methods, which suffer from
local optima, this convex approach suggests a new class of algorithms for learning Bayesian
networks that ultimately might lead to guaranteed approximation quality. Beyond achiev-
ing approximation guarantees and algorithmic improvements, other significant directions
for future research include considering the problem of structure learning in the presence
of missing data or hidden variables, and attempting to extend the current analysis to BDe
scores.

Second, following the idea of selection variable controlled structure learning, I then
presented a globally regularized risk minimization method for inferring gene regulatory
network structure from time series expression data. This method formulates structure in-
ference as a feature selection problem. Exploiting the assumption that genes with similar
expression patterns are likely to be co-regulated, the proposed approach learns the regula-
tory relationships using global feature selection to encourage genes with similar expression

patterns to share regulators, while local feature selection is controlled by L1 regularization,

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which allows individual differences. This framework also provides an opportunity to in-
corporate additional background knowledge, which can be considered in the future. Given
that this approach appears to be an effective feature selection strategy, one future research
direction is to extend this technique to other bioinformatics problems.

Third, considering that Bayesian networks have been popularly applied as classification
tools, I presented two new discriminative model selection criteria (BV and CBIC) to guide
the structure learning for Bayesian network classifiers with the goal of identifying the struc-
ture with the best classification performance. I conducted a comprehensive empirical study
to compare the proposed discriminative criteria with standard criteria in various contexts.
The proposed BV criterion turns out to perform best across most contexts. This work pro-
vides a useful reference for studying the discriminative Bayesian network structure learning
problem in the future.

Fourth, I presented a discriminative maximum margin approach for Bayesian network
classifier parameter estimation. This approach extends the most popular maximum margin
criterion of SVMs to the classification setting using Bayesian networks. Although within
this framework, maximum margin training is a hard computational problem, I still devised a
reasonable convex relaxation to solve it more efficiently. The empirical study suggests that
maximum margin Bayesian networks can be more effective for classification than maxi-
mum margin Markov networks, when the Bayesian network structure encodes the causal
information in the underlying domain. In this sense, maximum margin Bayesian networks
offer a new way to add prior knowledge to SVMs. The main directions for future research
are to improve the training procedure and explore the possibility of using kernels in the
local feature representation.

Finally, instead of considering complete training data, I presented a novel convex Viterbi
EM algorithm for parameter estimation with hidden variables. To illustrate the challenges
involved in effectively convexifying Viterbi EM, I showed that naive convexifications can
only lead to vacuous results, due to the symmetry property of the configurations for hidden
variables. Thus, I reformulated the Viterbi EM optimization problem in terms of equiv-
alence relations over the hidden variable values instead of the hidden values themselves,
which allows one to avoid the symmetry breaking problem that blocks naive convexifica-
tion strategies from working. I then relaxed the objective to obtain a convex optimization
problem. My preliminary results suggest this convex relaxation of EM obtains reasonable
results in comparison to the standard Viterbi EM algorithm. So far, this work has not ad-

dressed the complicated case where the child variable and at least one parent variable are

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both hidden. Deriving a reasonable convex relaxation in such case remains part of future
work. Another further research direction is to investigate the approximation quality of the
convex relaxation. Extending the current work to deal with Gaussian mixture models is also
one part of the future research.

Most of the work in this thesis focused on discrete data. Therefore extending the pro-
posed techniques to continuous data is a general direction for future research.

Overall, this thesis provides a broad study on learning Bayesian networks for generative
data modeling and discriminative data classification. It presented novel Bayesian network
learning approaches, often by exploring convex optimization techniques. This thesis en-
riches the literature on Bayesian network learning, and also provides some useful tools for

application fields such as bioinformatics.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector ma-
chines. In Proceedings of the Twentieth International Conference on Machine Learn-
ing, 2003.

[2] A. Bernard and A. Hartemink. Informative structure priors: Joint learning of dy-

namic regulatory networks from multiple types of data. Pacific Symposium on Bio-
computing, pages 459-470, 2005.

[3] J. Bernardo and A. Smith. Bayesian Theory. Wiley, 1994.
[4] D. Bertsekas. Nonlinear Optimization. Athena Scientific, 1995.

[51 J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29:213-244, 1997.

[6] J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization: Theory and
Examples. Springer, 2000.

{7] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific indepen-
dence in Bayesian networks. In Proceedings of the Twelfth Conference on Uncer-
tainty in Artificial Intelligence, 1996.

[8] S.Boyd and L. Vandenberghe. Convex Optimization. Cambridge U. Press, 2004.

[9] H. Bozdogan. Model selection and Akaike’s Information Criterion (AIC): The gen-
eral theory and its analytical extensions. Psychometrica, 52, 1987.

[10] W.Buntine. Theory refinement on Bayesian networks. In Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelligence, 1991.

[11] K. Chen, T. Wang, H. Tseng, C. Huang, and C. Kao. A stochastic differential
equation model for quantifying transcriptional regulatory network in Saccharomyces
cerevisiae. Bioinformatics, 21:2883-2890, 2005.

[12] X. Chen, G. Anantha, and X. Wang. An effective structure learning method for
constructing gene networks. Bioinformatics, 22:1367-1374, 2006.

[13] J. Cheng, D. Bell, and W. Liu. An algorithm for Bayesian belief network construction
from data. In Artificial Intelligence and Statistics, 1997.

[14] J. Cheng and R. Greiner. Comparing Bayesian network classifiers. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999.

{151 M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and
H. Lenz, editors, Learning from Data: Artificial Intelligence and Statistics, volume 5.
Springer, 1996.

[16] M. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian
networks is NP-hard. In Proceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence, 2003.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[17] R. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. Wolfs-
berg, A. Gabrielian, D. Landsman, D. Lockhart, and R. Davis. A genome-wide
transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2:65-73, 1998.

[18] C. Chow and C. Liu. Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.

[19] M. Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2002.

[20] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9, 1992.

[21] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[22] K. Crammer and Y. Singer. On the algorithmic interpretation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2, 2001.

[23] J. Cuff and G. Barton. Evaluation and improvement of multiple sequence methods for
protein secondary structure prediction. Proteins: Structure, Function and Genetics,
34:508-519, 1999.

[24] M. De Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano. Inferring gene
regulatory networks from time-ordered gene expression data of bacillussubtilis using
differential equations. Pacific Symposium on Biocomputing, pages 17-28, 2003.

[25] H.De Jong, J. Gouze, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Qualitative
simulation of genetic regulatory networks using piecewise-linear models. Bulletin
Mathematical Biology, 66:301-340, 2004.

[26] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38,
1977.

[27] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA
expression levels during CNS development and injury. Pacific Symposium on Bio-
computing, pages 41-52, 1999.

[28] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Genetic network inference:
From co-expression clustering to reverse engineering. Bioinformatics, 16:707-726,
2000.

[29] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

[30] G. Elidan and N. Friedman. Learning hidden variable networks: The information
bottleneck approach. Journal of Machine Learning Research, 6, 2005.

{31] G. Elidan, M. Ninio, N. Friedman, and D. Schuurmans. Data perturbation for escap-
ing local maxima in learning. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence, 2002.

{32] N. Friedman. Learning belief networks in the presence of missing values and hidden
variables. In Proceedings of the Fourteenth International Conference on Machine
Learning, 1997.

[33] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29:131-163, 1997.

{34] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure.
In M. Jordan, editor, Learning in Graphical Models, pages 421-459. MIT Press,
1999.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[35] D. Geiger, D. Heckerman, and C. Meek. Asymptotic model selection for directed
networks with hidden variables. Technical Report MSR-TR-96-07, Microsoft Re-
search, 1996.

[36] Z. Ghahramani. Graphical Models: Parameter Learning. The Handbook of Brain
Theory and Neural Networks (2nd edition), 2002.

[37] M. Goemans and D. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115-1145, 1995.

[38] A. Goldenberg and A. Moore. Tractable learning of large Bayes net structure from
sparse data. In Proceedings of the Twenty-First International Conference on Machine
Learning, 2004.

{39] R. Greiner and W. Zhou. Structural extension to logistic regression: Discriminant
parameter learning of belief net classifiers. In Proceedings of the Eighteenth Annual
National Conference on Artificial Intelligence, 2002.

[40] D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximiz-
ing conditional likelihood. In Proceedings of the Twenty-First International Confer-
ence on Machine Learning, 2004.

[41] Y. Guo and R. Greiner. Discriminative model selection for belief net structures. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, 2005.

{42] Y. Guo and D. Schuurmans. Convex structure learning for Bayesian networks: Poly-
nomial feature selection and approximate ordering. In Proceedings of the Twenty-
Second Conference on Uncertainty in Artificial Intelligence, 2006.

[43] Y. Guo and D. Schuurmans. Convex relaxations of latent variable training. In Ad-
vances in Neural Information Processing Systems 20, 2007.

[44] Y. Guo and D. Schuurmans. Learning gene regulatory networks via globally reg-
ularized risk minimization. In Proceedings of the Fifth Annual RECOMB Satellite
Workshop on Comparative Genomics, 2007.

[45] Y. Guo, D. Wilkinson, and D. Schuurmans. Maximum margin Bayesian networks. In

Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence,
2005.

[46] A. Hartemink, D. Gifford, T. Jaakkola, and R. Young. Using graphical models and
genomic expression data to statistically validate models of genetic regulatory net-
works. Pacific Symposium on Biocomputing, pages 422-433, 2001.

[47] D. Heckerman. A tutorial on learning with Bayesian networks. In M. Jordan, editor,
Learning in Graphical Models, pages 301-354. MIT Press, 1999.

[48] D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 9, 1995.

[49] I. Inza, P. Larranaga, J. Lozano, and J. Pena. Special issue of machine learning
journal: Probabilistic graphical models for classification. Machine Learning, 59,
2005.

[50] V.lyer, C. Horak, C. Scafe, D. Botstein, M. Snyder, and P. Brown. Genomic binding
sites of the yeast cell-cycle transcription factors SBF and MBF. Nature, 409:533-8,
2001.

[51] M. Jordan. An introduction to probabilistic graphical models. Textbook in prepara-
tion, 2003.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[52] M. Kearns, Y. Mansour, A. Ng, and D. Ron. An experimental and theoretical com-
parison of model selection method. Machine Learning, 27, 1997.

[53] D. Klein and C. Manning. Corpus-based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of the Forty-Second Annual Meeting
of the Association for Computational Linguistics, 2004.

[54] P. Kontkanen, P. Myllymiki, T. Silander, and H. Tirri. On supervised selection of
Bayesian networks. In Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, 1999.

[55] J. Lafferty, Y. Liu, and X. Zhu. Kernel conditional random fields: Representation,
clique selection, and semi-supervised learning. In Proceedings of the Twenty-First
International Conference on Machine Learning, 2004,

[56] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the Eighteenth
International Conference on Machine Learning, 2001.

{57] W.Lam and F. Bacchus. Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence, 10(4), 1994.

[58] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan. Learning the ker-
nel matrix with semidefinite programming. Journal of Machine Learning Research,
5, 2004.

[59] P.Langley and S. Sage. Induction of selective Bayesian classifiers. In Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelligence, 1994.

[60] P. Larranaga, C. Kuijpers, R. Murga, and Y. Yurramendi. Learning Bayesian net-
work structures by searching for the best ordering with genetic algorithms. /EEE
Transactions on Systems, Man, and Cybernetics, 26(4):487-493, 1996.

[61] S. Lauritzen. The EM algorithm for graphical association models with missing data.
Computational Statistics and Data Analysis, 19(2):191-201, 1995.

[62] S. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

[63] F. Liand Y. Yang. Recovering genetic regulatory networks from micro-array data
and location analysis data. Genome Informatics, 15:131-140, 2004.

[64] D. Margaritis. Learning Bayesian Network Model Structure from Data. PhD thesis,
CMU, CS, 2003.

{65] B. Merialdo. Tagging English text with a probabilistic model. Computational Lin-
guistics, 20(2):155-171, 1994.

[66] A. Moore and W. Wong. Optimal reinsertion: A new search operator for acceler-
ated and more accurate Bayesian network structure learning. In Proceedings of the
Twentieth International Conference on Machine Learning, 2003.

[67] K. Murphy. A brief introduction to graphical models and Bayesian networks.
http://www.ai.mit.edu/ murphyk/Bayes/bnintro.html, 1998.

[68] R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse,
and other variants. In M. Jordan, editor, Learning in Graphical Models, pages 355—
368. MIT Press, 1999.

[69] A. Ng. Feature selection, L1 vs L2 regularization, and rotational invariance. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, 2004.

[70] J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ai.mit.edur

[71] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[721 B. Ripley. Pattern Recognition and Neural Networks. Cambridge University, 1996.

{73] J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society, Series
B, 49, 1987.

[74] R. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.

[75] T. Roos, H. Wettig, P. Griinwald, P. Myllyméki, and H. Tirri. On discriminative
Bayesian network classifiers and logistic regression. Machine Learning, 2004.

[76] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilistic
networks with hidden variables. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, 1995.

[77] R. Salakhutdinov, S. Roweis, and Z. Ghahramani. Optimization with EM and
expectation-conjugate-gradient. In Proceedings of the Twentieth International Con-
ference on Machine Learning, 2003.

{78} J. Salojarvi, K. Puolamaki, and S. Kaski. Expectation maximization algorithms for
conditional likelihoods. In Proceedings of the Twenty-Second International Confer-
ence on Machine Learning, 2005.

[79] T. Sato and Y. Kameya. A Viterbi-like algorithm and EM learning for statistical
abduction. In Notes for UAI-00 Workshop on Fusion of Domain Knowledge with
Data for Decision Support, 2000.

[80] B. Schoelkopf and A. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

[81] G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461-464,
1978.

[82] E.Segal, D.Pe’er, A. Regev, D. Koller, and N. Friedman. Learning module networks.
Journal of Machine Learning Research, 6:557-588, 2005.

[83] B. Shen, X. Su, R. Greiner, P. Musilek, and C. Cheng. Discriminative parameter
learning of general Bayesian network classifiers. In Proceedings of the Fifteenth
IEEFE International Conference on Tools with Artificial Intelligence, 2003.

{84} 1. Simon, J. Barnett, N. Hannett, C. Harbison, N. Rinaldi, T. Volkert, J. Wyrick,
J. Zeitlinger, D. Gifford, T. Jaakkola, and R. Young. Serial regulation of transcrip-
tional regulators in the yeast cell cycle. Cell, 106:697-708, 2001.

[85] P. Simon, L. Kevin, and T. James. Grafting: Fast, incremental feature selection by
gradient descent in function space. Journal of Machine Learning Research, 3:1333—
1356, 2003.

[86] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT
Press, 2000.

[87] N. Srebro, G. Shakhnarovich, and S. Roweis. An investigation of computational and
informational limits in gaussian mixture clustering. In Proceedings of the Twenty-
Third International Conference on Machine Learning, 2006.

{88} B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances
in Neural Information Processing Systems 16, 2003.

[89] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In
Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, 2004.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[90] M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm
for learning Bayesian networks. In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, 2005.

[91] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In Proceedings of the
Twenty-First International Conference on Machine Learning, 2004.

[92] T. Van Allen and R. Greiner. Model selection criteria for leaming belief nets. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning, 2000.

[93] T. Van Allen, R. Greiner, and P. Hooper. Bayesian error-bars for belief net inference.
In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelli-
gence, 2001.

[94] E. van Someren, L. Wessels, and M. Reinders. Linear modeling of genetic networks
from experimental data. In Proceedings of the International Conference on Intelli-
gent Systems for Molecular Biology, pages 355-366, 2000.

[95] R. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer, 1996.

[96] M. Wainwright and M. Jordan. Graphical models, exponential families, and varia-
tional inference. Technical Report TR-649, UC Berkeley, Dept. Statistics, 2003.

[97] S. Wang. Reconstructing genetic networks from time ordered gene expression data
using Bayesian method with global search algorithm. Journal of Biocinformatics and
Computational Biology, 2:441-458, 2004.

[98] H. Wettig, P. Griinwald, T. Roos, P. Myllyméki, and H. Tirri. On supervised learning
of Bayesian network parameters. Technical Report HIIT 2002-1, Helsinki Institute
for Information Technology, 2002.

[99] H. Wettig, P. Griinwald, T. Roos, P. Myllymiki, and H. Tirri. When discriminative
learning of Bayesian network parameters is easy. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, 2003.

[100] J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis. Advances to Bayesian net-
work inference for generating causal networks from observational biological data.
Bioinformatics, 20:3594-3603, 2004.

[101] M. Zou and S. Conzen. A new dynamic Bayesian network (DBN) approach for iden-
tifying gene regulatory networks from time course microarray data. Bioinformatics,
21:71-79, 2005.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Feature Generation Example

Here I use a simple example to illustrate the feature generation procedure showed in Fig-
ure 3.1. Consider the feature generation problem for variable X3 with {X;, Xo} as the
potential parent set. Assume that the value domains for these three variables are all {1, 2},
and the relevant columns (corresponding to the three variables) of training data D for this

problem is given by

111
Ds = [12 2]
The augmented matrix Ds can then be obtained by duplicating the rows of the first two

columns of D3 and setting the third column values by enumerating the possible values of

X3—each copy of the data taking a different value

Ds =

— = = =
DN = DN =
NN =

Then, the features are generated as follows.
First, ®(© is constructed to include all the singleton features, ie., ®© = {¢(z3 =
1), ¢(x3 = 2)}. The response matrix for &© on Dj is given by
0
109y =

O O =
— = O

where rank(7(®(0)) = 2.
Next, consider features with one parent variable involved. First, let &) = (. Then
consider the one-step extended feature set for each feature in &), For ¢(z3 = 1), its one-

step extended feature setis ¥ = {¢p(z1 = L, z3 = 1), 9(x1 = 2,23 = 1), ¢(z2 = 1,23 =

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1), ¢(x2 = 2,23 = 1)} with response matrix

I(¥) =

(= =l
oo o O
SO O
(==l -

Since rank (7 (@@ U ®® UT)) = 3 > rank(J(®® U ®(1)) = 2, the extension feature set
¥ would be generated: (V) = &) U ¥, Similarly, the one-step extension feature set for
P(zs =2)is ¥ = {@(z1 = L33 = 2),¢(m1 = 2,33 = 2),¢(x2 = 1,25 = 2), (22 =

2, 23 = 2)} with response matrix

0000
0000
M= 17910
1001

Since now rank (I (& UdM) UT)) = 4 > rank(I($@ USMD)) = 3, this new set ¥ would
be generated as well: 1) = &) U ¥,

To this point, the rank of the response matrix has reached the maximum number, 4—
the number of rows of D3. Thus the feature generation process can be stopped, without

considering further extensions.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

