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Abstract

The operations of the plant may deviate from the initial design due to the uncertain-

ties and changes in the several conditions as a result of market demand, operation

conditions, and safety regulations over time. To maintain productivity, safety, and

efficiency, operators should ensure the plant to be operating around its optimal point.

However, due to the changes in the operating conditions of the plant, the current op-

timal point may deviate from the one obtained during the initial design. Alongside

finding the optimal point, it is essential to find the optimal path that steers the plant

from the current operating conditions to the optimal operating point. Hence, auto-

mated self-optimization of the plants is gaining popularity in academia and industry.

One of the approaches that is in practice in plant optimization is optimizing the plant

with the aid of the model. Thus, developing a model that can mimic the plant with

the utmost accuracy is important. However, due to the possible differences between

the developed model and the plant (model-plant mismatch), the obtained optimal

point from the model may not be accurate. The main objective of this thesis is to de-

velop a general framework for optimization of a plant that can handle the model-plant

mismatch. A model-based optimization strategy is utilized to achieve this objective.

To develop a model that is robust to outliers, and can handle delays, missing data

in input and output, and also is simple to use in plant optimization, two extensions

of a generalized weighted probabilistic principal component regression method are

proposed in this thesis. In addition, the proposed model is able to deal with high-

dimensional plant datasets, multi-modal and/or nonlinear nature of the plants.

The high dimensionality, multi-modal nature of plants, missing data in input and
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output variables, and outliers are addressed simultaneously in Chapter 2, the mix-

ture robust semi-supervised probabilistic principal component regression model with

missing input data. The main challenge with the model developed in Chapter 2 is

to determine the optimal number of mixture components to be used while modeling.

In Chapter 3 entitled weighted semi-supervised probabilistic principal component re-

gression with missing input and delayed output variables, challenges like the delay

between each input and output variable and missing data are addressed. These exten-

sions are developed under the expectation maximization (EM) framework owing to

the fact that they can efficiently deal with hidden variables like missing data, delays,

and outliers. To account for the missing input and output data in these models, the

data imputation method and semi-supervised framework are utilized, respectively.

To deal with the presence of outliers, a combination of two Gaussian distributions is

used as a prior for the noise, and a model-free distribution is considered for the delay

variables. Finally, a strategy to update the range of delay in the variables is proposed

to help speeding up the convergence of the algorithm.

A combination of these two proposed algorithms is capable of making the most

use of all available information and address uncertainties that may occur in plants.

Therefore, by incorporating the proposed extensions of the PPCR model together, a

generalized weighted PPCR model is developed to describe the plant, which is able to

deal with different types of uncertainties while performing the plant optimization. To

account for the model-plant mismatch between the generalized weighted PPCR model

and the plant in addition to steering the solution closer to the plant’s optimal point, a

robust Gaussian process regression model is utilized. To increase the accuracy of the

generalized weighted PPCR model, a nonlinearity index is proposed that defines the

range of the data to be used while developing a model. The proposed algorithm builds

a local model around the current operating point and tries to find its optimal point

by solving the optimization problem, and then steer the plant to the obtained optimal

solution. By repeating these two steps, i.e. 1) building a local model and 2) steering

the plant to the obtained optimal point, the algorithm tries to gradually move the

plant from its initial operating point to the optimal point. Finally, the applicability

and performance of all the proposed methods are tested and demonstrated through
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several numerical, simulation, experimental, and industrial examples.
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Chapter 1

Introduction

1.1 Motivation

Processes are designed to operate optimally and safely; however, due to process dis-

turbances and changes in plant conditions, process operations frequently deviate from

the initial design. Thus, developing an online framework to optimize the plant along

with finding the optimal path for steering the plant from its current operating point

to the optimal point is desirable. Many methods have been developed for optimizing

the plants and finding the optimal condition of the processes [3, 4, 5]. Real-time

optimization (RTO) is one of the solutions. Extensive studies have been conducted

about the RTO that relies on a first principle model [6, 7]. The first principle model-

based RTO requires an in-depth understanding of the process through the governing

equations, which may not always be available. On the other hand, data-driven RTO

utilizes the available data to model the plant and is gaining popularity.

One of the main challenges with the data-driven models lies in its ability to

simultaneously deal with different uncertainties like outliers, missing data, and delay

alongside dealing with the nonlinearity and/or multi-modal nature of the plant [8, 9,

10]. In addition, in applications like RTO, the data-driven model should also be able

to deal with high-dimensional datasets. Due to the differences between the model and

the plant, the optimal solution obtained by solving the RTO will be different from the

true optimal point of the plant. Therefore, it is essential to consider the differences

termed as a model-plant mismatch, while solving the optimization problem, which is

one of the main objectives of the thesis. Further, the proposed framework should be

able to provide an optimal solution. Another objective of this thesis is to address the
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aforementioned challenges by developing an online data-driven modeling framework.

1.2 General literature review

Self-optimization aims to optimize the process and make process operations efficient

and profitable [11]. Optimizing a process can be performed based on the development

of a model, which is generally obtained through two different approaches, i) first

principle model-based optimization and ii) data-driven model-based optimization [12,

13]. In the first principle model-based optimization, the plant is modeled with the

help of deriving the governing equations from the fundamental laws, which needs

an in-depth understanding of the plant [14]. On the other hand, in data-driven

model-based optimization, a model is built based on the historical data. Therefore,

neural networks, being simple and efficient, are utilized as a data-driven model in [15].

Moreover, in [15], authors applied recurrent neural networks to solve the optimization

problem. However, their developed model is not able to consider data uncertainty

like missing data, outliers, and time delay. Recently, authors in [16] investigate the

application of derivative-free optimization in the data-driven optimization framework.

They compared the performance of different model-based methods on several chemical

engineering benchmarks. Authors in [17] proposed a time-varying extremum-seeking

control (ESC) approach for discrete-time systems that tries to find the local optimum

in convex functions through a model-free manner. One of the main drawbacks of

method is utilizing gradient information that requires a process knowledge. Hence,

in [18], authors proposed using GPR and Bayesian optimization to accelerate self-

optimization of ESC by utilizing an expected improvement (EI) acquisition function.

In all the aforementioned self-optimization methods, obtaining a model that can

handle various uncertainties like missing data in both input and output variables, out-

liers, and time-delay has not been considered. Further, the acquisition functions are

only considered in the objective function for improving the optimal solution, and ex-

ploring optimization constraints has not been addressed. In this thesis, a data-driven

self-optimization to handle various uncertainties in the presence of model-plant mis-

match is proposed that can reduce the possibility of getting into local optimal points.

The detailed literature review of data-driven modeling and data uncertainty will be

provided in Chapters 2 and 3. The detailed literature review of self-optimization

algorithm will be provided in Chapter 4.
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1.3 Thesis outline and contributions

The rest of this thesis is organized as follows:

In Chapter 2, the mixture robust semi-supervised probabilistic principal compo-

nent regression with missing input data is developed to deal with the high dimension-

ality in the plant datasets. The proposed method is able to tackle the multi-modal

nature of the process, scaled outliers with varying properties across different input

and output variables, and simultaneously handle the missing data in each input and

output variable. The method is developed based on the expectation maximization

(EM) algorithm owing to its ability to efficiently deal with hidden variables like miss-

ing data in input variables, latent variables, outliers, models. The EM algorithm

provides a maximum likelihood estimation of the parameters by iteratively updating

the estimated values of the hidden variables and the parameters of the model. The

proposed model enables each input and output variables to have scaled outliers with

different properties that are more common in industrial processes. Finally, a numeri-

cal and an experimental case study are provided that validate the performance of the

proposed method.

Although the proposed method in Chapter 2 is able to deal with outliers with

different properties, determining the number of the mixture components can be chal-

lenging. In addition, the problem of delays between input and output variables has

not been addressed in Chapter 2. Therefore, in Chapter 3, a weighted semi-supervised

probabilistic principal component regression model in the presence of missing input

and delayed output data is proposed. The proposed model provides an online model

based on the current query point by assigning weights to the historical data and uses

the most relevant data to develop the model. It also deals with time delay in each

output variable that is the most common uncertainty in the real processes and directly

affects the quality of the models. Moreover, the issue of missing data in input vari-

ables is handled through the data imputation method. This model is developed under

the framework of just-in-time learning, and the estimation of parameters is performed

through the use of the expectation maximization (EM) algorithm. In addition, the

EM algorithm allows model parameters to be estimated through the maximum a pos-

teriori (MAP) principle. An update strategy is developed for the range of the delay

terms to speed up the convergence of the EM algorithm and providing more accurate

estimates for the delays. To verify the applicability of the proposed method and its

performance, a numerical example and experimental example of the hybrid tank pilot

plant model are provided.
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In Chapter 4, a data-driven self-optimization of the plant operations in the pres-

ence of model-plant mismatch is proposed. It is an online data-driven framework for

plant optimization. A generalized weighted probabilistic principal component regres-

sion model that is the combination of the proposed models in Chapter 2 and Chapter 3

is used as a data-driven model while solving the optimization problem. This gener-

alized model is able to model nonlinear and/or multi-modal processes and can deal

with the different uncertainties that may occur in datasets like missing data in input

and output variables, outliers, and time delay. Due to the possible difference be-

tween the generalized weighted PPCR model and the plant (model-plant mismatch),

a penalty term in the robust Gaussian process regression model was introduced in

the optimization to account for the mismatch and correct the final solution of the

optimization problem. To overcome the most common challenge in the optimization

problem, i.e., stuck in local optimal points, exploration through the acquisition func-

tions that are commonly used in reinforcement learning and Bayesian optimization

is utilized. Finally, the accuracy of the online data-driven optimization is tested by

simulation and industrial examples.

In Chapter 5, a conclusion of the thesis and some possible future work for future

research is provided.

1.4 Publications

The following contributions are published or submitted for publications/presentations:

1. A. Memarian, S. K. Varanasi, B. Huang. ”Mixture robust semi-supervised

probabilistic principal component regression with missing input data”. Chemo-

metrics and Intelligent Laboratory Systems, vol. 214,p. 104315, 2021

2. A. Memarian, S. K. Varanasi, B. Huang. ”Soft sensor development in the pres-

ence of missing input and delayed output data through weighted semi-supervised

probabilistic principal component regression”. Submitted to IEEE Transactions

on Industrial Electronics”, 2021 (Chapter 3 - Short Version)

3. A. Memarian, S. K. Varanasi, B. Huang. ”Data-Driven Self-Optimization for

plant Operations”. Presented in Canadian Chemical Engineering Conference

2021, October 24-27, Montreal, Quebec, Canada, 2021 (Chapter 4 - Extended

abstract)
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4. A.Memarian, S. K. Varanasi, B. Huang. ”Data-driven self-optimization of pro-

cesses in the presence of the model-plant mismatch”. Submitted to 13th IFAC

Symposium on Dynamics and Control of Process Systems, (DYCOPS), June

14-27 2022, Busan, Republic of Korea, 2022 (Chapter 4 - Short Version)
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Chapter 2

Mixture robust semi-supervised
probabilistic principal component
regression with missing input data1

2.1 Introduction

Improving efficiency, profitability, and safety are the main objectives of industries [19,

20]. Monitoring and optimal control of processes are essential to achieving these

objectives, for which the availability of online measurements is necessary. Online

measurements are not always available for several reasons, such as unavailability of

measuring devices or measurements obtained only through offline laboratory analysis,

which can lead to delays or missing in data samples. A soft sensor is essential for

solving these challenges and providing frequent on-line predictions of quality variables.

The predictive models for soft sensors can be derived from either the first prin-

ciples or data-driven methods. Models derived from first principles use in-depth

knowledge of the process, which is not always available. Further, these models may

be computationally expensive for online predictions and may not be feasible as a soft

sensor model. On the other hand, data-driven models are developed directly from

the data and hence, complete understanding of the process is not essential. With the

collection of a large amount of data in process industries, data-driven soft sensors

are gaining popularity. Data-driven soft sensors can be modeled using different ap-

1A. Memarian, S. K. Varanasi, B. Huang. ”Mixture robust semi-supervised probabilistic prin-
cipal component regression with missing input data”. Chemometrics and Intelligent Laboratory
Systems, vol. 214,p. 104315, 2021
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proaches such as artificial neural networks (ANNs) [21, 22], support vector machines

(SVMs) [23], principal component analysis (PCA) and its regression model extension

(PCR) [24].

PCA is a linear modeling method that is mostly used for dimensionality reduc-

tion [25] by mapping data into its principal components, which are also called latent

variables. PCR is used to build a relationship between input and output variables

through regression after extracting the latent variables. Due to its deterministic na-

ture, PCA has some disadvantages, especially when dealing with missing data and

outliers, which are common in process industries. These issues are addressed by prob-

abilistic PCA (PPCA) [26, 27], which can only perform well on linear and unimodal

data. Most of the industrial processes, however, operate in multiple operating modes

where the mapping between system states and measurements is nonlinear, on the

whole. Hence, an extension of PPCA to model multiple modes, termed as a mix-

ture PPCA, has been developed [28, 9]. In the mixture PPCA model, a combination

of multiple linear models is considered to handle the issue of operating in multiple

modes [28, 29].

The problem of missing data while modeling can be handled using two ap-

proaches: 1) Neglecting and removing data corresponding to that sampling instant,

which can lead to the loss of information, 2) Imputation methods, wherein the missed

data is replaced with an estimate. Depending on the method of estimation, there exist

several imputation approaches such as mean substitution, regression imputation, and

the last observation carried forward (LOCF) [30, 31]. In the framework of a mixture

PPCR model, the problem of missing data in output is addressed in [9], wherein the

authors developed a mixture semi-supervised PPCR (MSSPPCR) model, which is

further extended for the missing data in both inputs and outputs in [8]. In such a

framework, the entire dataset is divided into the labeled and unlabeled parts; thereby,

a semi-supervised learning strategy is employed. However, the MSSPPCR model de-

veloped in [9, 8] cannot handle outliers in the data, which is another critical factor

that affect the accuracy of the soft sensor.

Outliers in a dataset are those measurements that deviate from the rest of the

data [32], which usually occur due to hardware failure, operator’s incorrect recording

and transmission issues [33]. Several methods exist in literature wherein, different

choices of noise distributions are considered to make the regression robust to out-

liers [34]. For instance, the authors in [10, 33, 35] considered a mixture of Gaussian

distributions for noise measurements. The authors in [36, 37, 38, 39, 40] used stu-
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dent’s t-distribution and in [24, 41, 42], Laplace distribution is considered for dealing

with outliers. In the framework of MSSPPCR model, the problem of outliers in data

is considered in [43], wherein a student’s t-distribution is considered for all the vari-

ables. Although this framework effectively handles the outliers, the main drawback

comes with the assumption that all input and output variables have the same proper-

ties regarding outliers. In most of the process industries, outliers might occur in each

of the input and output variables with different properties. Therefore, it can lead

to information loss when an assumption that all variables being affected by outliers

having the same properties while modeling. Hence, it is essential to develop a mixture

PPCR model which can simultaneously handle different properties of outliers for each

input and output variables, and can also handle their missing data.

This chapter proposes a mixture robust semi-supervised PPCR (MRSSPPCR)

model with missing input data in the presence of outliers with different outlier prop-

erties among different variables. The proposed approach can handle the multi-modal

nature of the data and efficiently handle the missing data in input and output variables

along with the outliers. The significance of this chapter comes with the fact of provid-

ing flexibility to each input or output variable to have its own outlier properties while

simultaneously dealing with missing data problem. Since some of the variables are not

observed directly, the approaches like maximum likelihood estimation and maximum-

a-posteriori are not tractable [44, 45]. Therefore, Expectation-Maximization (EM)

algorithm is utilized owing to the fact that it can approach a maximum likelihood

estimation and the estimated values of the missing data can be iteratively updated

while updating the parameters of the model [10]. However, the main challenge of

this method is its possible convergence to a local optimum. Therefore, Monte Carlo

simulations i.e., initialization of algorithm with different values is followed for a better

convergence [33].

The remainder of the chapter is organized as follows. In Section 2.2, preliminaries

about the PPCR and its extension named MSSPPCR are provided. In Section 2.3,

a detailed description of the proposed method is presented. The accuracy of the

proposed method is demonstrated through a simulated and an experimental case

study in Section 2.4. Finally, the conclusions are drawn in Section 2.5.
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2.2 Preliminaries

2.2.1 PPCR model

In this section, the details of PPCR model are presented by considering X ∈ Rm×n

and Y ∈ Rr×n to be the input and output datasets, respectively, where n represents

the total number of samples, and m and r denote the number of input and output

variables, respectively. The PPCR model is derived based on the following generative

model.

xi = Pti + ei (2.1)

yi = Cti + fi (2.2)

where, xi ∈ Rm×1 and yi ∈ Rr×1 denote the input and output data at ith sampling

instant of the datasetsX and Y , respectively. P ∈ Rm×q andC ∈ Rr×q are weighting

matrices. ti ∈ Rq×1 is a vector of latent variables, and ei ∈ Rm×1 and fi ∈ Rr×1 are

measurement noises of input and output, respectively.

In PPCR, the latent variables and noise measurements of inputs and outputs

are assumed to be independent and identically distributed (i.i.d) with Gaussian dis-

tribution, i.e., ti ∼ N (0, I), where I is the identity matrix, ei ∼ N (0, σ2
xI) and

fi ∼ N (0, σ2
yI) where σ2

x and σ2
y represent the corresponding noise variances. In

such a model, the objective is to estimate the parameters, i.e., {P ,C, σ2
x, σ

2
y} by

maximizing the likelihood function:

L(X,Y | θ) = log p(X,Y | P ,C, σ2
x, σ

2
y) =

n∑
i=1

log p(xi,yi | P ,C, σ2
x, σ

2
y) (2.3)

where

p(xi,yi | P ,C, σ2
x, σ

2
y) =

∫
p(xi | ti,P , σ2

x)p(yi | ti,C, σ2
y)p(ti)dti (2.4)

An illustration of the PPCR model is shown in Fig. 2.1. The parameters of the PPCR

model can be estimated by using the EM algorithm and a detailed description of the

algorithm is given in [28].

2.2.2 MSSPPCR model

In a MSSPPCR model, a total of K individual sub-models are incorporated. In each

sub-model (denoted by a variable k), a semi-supervised PPCR with n1 labeled and
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Figure 2.1: Illustration of the PPCR model
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Figure 2.2: Illustration of the MSSPPCR model

n2 unlabeled data is used. It is to be noted that all the sub-models are independent,

and their parameters are different, as shown in Fig. 2.2.

In such a scenario, the model of MSSPPCR can be represented as

xi,k = Pkti,k + ei,k + µx,k, k = 1, 2, ..., K (2.5)

yj,k = Cktj,k + fj,k + µy,k, k = 1, 2, ..., K (2.6)

xi =


K∑
k=1

p1(k)xi,k 1≤ i ≤ n1

K∑
k=1

p2(k)xi,k n1 + 1 ≤ i ≤ n1 + n2

(2.7)

yj =
K∑
k=1

p1(k)yj,k 1≤ j ≤ n1 (2.8)

where, µx,k and µy,k are the mean of the input and output measurements in the kth

sub-model. In Eq. (2.7), p1(k) and p2(k) denote the mixing proportions of the kth

sub-model for the labeled and unlabeled data, respectively. Further, these mixing

10



proportions should have the following constraints.

K∑
k=1

p1(k) =
K∑
k=1

p2(k) = 1 (2.9)

In each sub-model, the nature of the parameters and the properties of latent

variables and noise measurements are identical with the PPCR model. The main ob-

jective is to find the optimal values of the parameters ({Pk,Ck, σ
2
x,k, σ

2
y,k,µx,k,µy,k})

by maximizing the following likelihood function.

L(X,Y | θ) = log p(X,Y | θ) = log p(X1,Y | θ) + log p(X2 | θ) (2.10)

X1 ∈ Rm×n1 represents the labeled input dataset, whose corresponding output, i.e.,

Y ∈ Rr×n1 is available; however, X2 ∈ Rm×n2 whose corresponding output is not

observed, is the unlabeled dataset in the current formulation. A detailed description

of this model and the algorithm for updating the parameters using the EM algorithm

is given in [9].

2.3 Development of the MRSSPPCR with missing

input data

In this section, a general MRSSPPCR model is developed by considering a Gaussian

scaled mixture noise for the input and output data that can identify outliers for each

input or output variable independently. Moreover, a semi-supervised learning is used

to cope with missing data in output variables and imputation of available input data

is used to deal with missing input data. A formulation of mixture model is utilized

to handle the multi-modal nature of the process. The parameters in the developed

model are estimated through an EM algorithm, and the steps involved in updating

the parameters are detailed in the rest of this section.

2.3.1 Model Formulation

For developing the proposed MRSSPPCR model, the following assumptions are made.

As a result of changes in set points and/or process drifts, different operating modes

appear in a process. The number of modes can sometimes be known from the op-

erator’s knowledge. However, in most scenarios, it is an unknown parameter and is

required to be defined. One such algorithm for identification of modes is provided

in [46]. In the current work, an assumption of number of modes to be given/known is
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made i.e., the model is assumed to have K operating modes, where K is known/given.

The dimension of latent variable in each mode is denoted as q. In such a model, the

total number of samples is n, wherein n1 samples are labeled, and the remaining

n−n1(= n2) samples are unlabeled. Finally, the input variables are assumed to have

missing values completely at random (MCAR) [47]. The input dataset at time instant

i can be partitioned into two sub-vectors as xTi = [xTi,o,x
T
i,m]. It can be noted that

due to the assumption of data being missing completely at random, the dimensions

of xi,o and xi,m may vary at each time instant.

The generative model for MRSSPPCR will be the same as the one given in

Eqs. (2.5)-(2.8). To make the model robust to outliers, the noise is assumed to

follow a mixture of Gaussian distributions with two components in each mode. One

component of this distribution has a mean and variance that correspond to the normal

data and the second component has the same mean but with a larger variance to

account for the outliers in the data. Further, the variance of outliers is inflated with

respect to the variance of the normal noise by an inflation factor, (ρ−1), which is

reflected in a diagonal matrix with all values being constrained within ρ ∈ (0, 1]. It

can be noted that the inflation factor is considered in the form of a matrix, instead of a

single scalar value as considered in [48], indicating different variables can have different

outlier properties. Therefore, ρx,kjj denotes the outlier level of the jth variable i.e.,

the jth diagonal element of the matrix ρx,k, where j = 1, 2, ...,m. This modification

is considered owing to the fact that the former provides an advantage of dealing with

outliers of different variances in different variables. Thus, the distribution of input

and output noise in each mode in Eqs. (2.5) and (2.6) will be as follows

ei,k ∼ (1− δx,k)N (0, σ2
x,kI) + δx,kN (0,ρ−1

x,kσ
2
x,kI) (2.11)

fi,k ∼ (1− δy,k)N (0, σ2
y,kI) + δy,kN (0,ρ−1

y,kσ
2
y,kI) (2.12)

To differentiate between the outlier data from a normal data, two binary indi-

cators, qxi,k and qyi,k , are introduced for input and output variables in each mode,

respectively. The property of this binary indicator is such that when qxi,k = 1, the

input data noise (ei,k) corresponds to the distribution of normal data, i.e., N (0, σ2
x,kI)

and when qxi,k = min(ρx,kjj), the input data noise corresponds to the distribution of

outlier data, i.e., N (0,ρ−1
x,kσ

2
x,kI). A similar definition holds for qyi,k . To denote such

binary indicator when the inflation factor is a scalar, the authors in [48] utilized a

Bernoulli distribution. Inspired by the idea of [48], a Bernoulli distribution for the

12



case when inflation factor is a matrix is provided as follows.

p(qxi,k | ρx,k, δx,k) = δ

[
1−
(∏m

j=1

qxi,k
−ρx,kjj

1−qxi,k ρx,kjj

)]
x,k × (1− δx,k)

[∏m
j=1

qxi,k
−ρx,kjj

1−qxi,k ρx,kjj

]
(2.13)

p(qyi,k | ρy,k, δy,k) = δ

[
1−
(∏r

j=1

qyi,k
−ρy,kjj

1−qyi,k ρy,kjj

)]
y,k × (1− δy,k)

[∏r
j=1

qyi,k
−ρy,kjj

1−qyi,k ρy,kjj

]
(2.14)

where, m and r denote the number of input and output variables, respectively. In

Eqs. (2.13) and (2.14), δx,k and δy,k denote the probability by which the input (xi)

and output observation (yi) follow second component of the distribution, i.e., the

probability of an observation is an outlier. The hidden variables in the MRSSPPCR

model are {X, {ti,k}ni=1, {qxi,k}ni=1, {qyi,k}
n1
i=1, and K} and the parameters are as

follows.

θ = {Pk,Ck, σ
2
x,k, σ

2
y,k,µx,k,µy,k, δy,k, δx,k,ρx,k,ρy,k,p1(k),p2(k)}

Since the EM algorithm can deal with missing data alongside the hidden variables

when used for parameter estimation, it is utilized in the current work. The first step

is to build a Q− function, i.e., the expectation of the complete data log-likelihood.

Since the complete data consists of observed and hidden variables, the resultant Q−
function has two components and is given as

Q =

EX,Tk,Qx,k,Qy,k,K|Xo,Y ,θold [log p(X1,Y ,Tk, Qx,k, Qy,k, k | θ) + log p(X2,Tk, Qx,k, Qy,k, k | θ)]

(2.15)

Since the noise in input and output variables, latent variables, and input and output

sample indicators are assumed to be independent and identically distributed (i.i.d),

the terms in the Q− function can be written as

Q = EX,Tk,Qx,k,Qy,k,K|Xo,Y ,θold

([
n1∑
i=1

log p(xi | ti,k, qxi,k , qyi,k , k,θ) +

n1∑
i=1

log p(yi | ti,k, qxi,k , qyi,k , k,θ)

+

n1∑
i=1

log p(ti,k | k,θ) +

n1∑
i=1

log p(qxi,k | k,θ) +

n1∑
i=1

log p(qyi,k | k,θ) +

n1∑
i=1

logp1(k)

]

+

[
n∑

i=n1+1

log p(xi | ti,k, qxi,k , qyi,k , k,θ) +
n∑

i=n1+1

log p(ti,k | k,θ) +
n∑

i=n1+1

log p(qxi,k | k,θ)

+
n∑

i=n1+1

log p(qyi,k | k,θ) +
n∑

i=n1+1

logp2(k)

])

, Q1 +Q2 +Q3 +Q4 +Q5 +Q
′

1 +Q
′

2 +Q
′

3 +Q
′

4︸ ︷︷ ︸
E(L1)

+ Q6︸︷︷︸
E(L2)

+

E(L3)︷︸︸︷
Q
′

5

(2.16)
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where Qi, i = 1, 2, · · · , 6, represent the terms belonging to the labeled part, and

Q
′
i, i = 1, 2, · · · , 5, represent the terms belonging to unlabeled part. Since the last

two terms in Eq. (2.16), Q6 and Q
′
5, are independent of the hidden variables, they

can be derived separately by incorporating the constraints given in Eq. (2.9). To

derive the posterior probabilities of p1(k) and p2(k), it is essential to determine the

posterior probabilities of p(k | xi,o,yi,θold), p(xi,o,yi | k,θold) for labeled dataset

and p(k | xi,o,θold), p(xi,o | k,θold) for unlabeled dataset. These terms are estimated

using the Bayes rule as follows:

For the labeled part,

p(k | xi,o,yi,θold) =
p(xi,o,yi | k,θold)× p(k | θold)

p(xi,o,yi | θold)
(2.17)

p(xi,o,yi | k,θold) ∼ N
([
µx,k,o
µy,k

]
,

[
Pk,oP

T
k,o + σ2

x,k,oIo Pk,oC
T
k

CkP
T
k,o CkC

T
k + σ2

y,kI

])
(2.18)

and for the unlabeled part,

p(k | xi,o,θold) =
p(xi,o | k,θold)× p(k | θold)

p(xi,o | θold)
(2.19)

p(xi,o | k,θold) ∼ N
(
µx,k,o,Pk,oP

T
k,o + σ2

x,k,oIo
)

(2.20)

Now the posterior probabilities for mixing proportions are as follows.

p1(k) =
1

n1

×
n1∑
i=1

p(k | xi,o,yi,θold)

p2(k) =
1

n− n1

×
n∑

i=n1+1

p(k | xi,o,θold)
(2.21)

A detailed derivation of Eq. (2.21) is given in appendix A. To calculate E(L1) in
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Eq. (2.16), the terms given in Eqs. (2.22)-(2.26) are essential.

p(ti,k | k,θ) ∼ N (0, I) (2.22)

p(qxi,k | k,θ) ∼ B(1, 1− δx,k) (2.23)

p(qyi,k | k,θ) ∼ B(1, 1− δy,k) (2.24)

p(xi | ti,k, qxi,k , qyi,k , k,θ) ∼


N (Pkti,k + µx,k, σ

2
x,kI) qxi,k = 1 qyi,k = 1

N (Pkti,k + µx,k,ρ
−1
x,kσ

2
x,kI) qxi,k = ρ qyi,k = 1

N (Pkti,k + µx,k, σ
2
x,kI) qxi,k = 1 qyi,k = ρ

N (Pkti,k + µx,k,ρ
−1
x,kσ

2
x,kI) qxi,k = ρ qyi,k = ρ

(2.25)

p(yi | ti,k, qxi,k , qyi,k , k,θ) ∼


N (Ckti,k + µy,k, σ

2
y,kI) qxi,k = 1 qyi,k = 1

N (Ckti,k + µy,k,ρ
−1
y,kσ

2
y,kI) qxi,k = 1 qyi,k = ρ

N (Ckti,k + µy,k, σ
2
y,kI) qxi,k = ρ qyi,k = 1

N (Ckti,k + µy,k,ρ
−1
y,kσ

2
y,kI) qxi,k = ρ qyi,k = ρ

(2.26)

Since 36 terms arise while expanding the expression, the detailed expression for E(L1)

is provided in appendix B. The parameters are estimated from the derived Q −
function (Eq. (2.16)) by taking derivatives in the maximization step and are given

as follows

Pk :
∂(Q1 +Q

′
1)

∂Pk
= 0

Ck :
∂(Q2)

∂Ck

= 0

σ2
x,k :

∂(Q1 +Q
′
1)

∂σ2
x,k

= 0

σ2
y,k :

∂(Q2)

∂σ2
y,k

= 0

µx,k :
∂(Q1 +Q

′
1)

∂µx,k
= 0

µy,k :
∂(Q2)

∂µy,k
= 0

δx,k :
∂(Q4 +Q

′
3)

∂δx,k
= 0

δy,k :
∂(Q5 +Q

′
4)

∂δy,k
= 0

ρx,k :
∂(Q1 +Q

′
1)

∂ρx,k
= 0

ρy,k :
∂(Q2)

∂ρy,k
= 0

(2.27)
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Derivatives in Eq. (2.27) are estimated by using expressions given in appendix B

and the update of the parameters are as follows (Eqs. (2.28)-(2.37)).

The weighting matrices Pk and Ck can be updated as given in Eqs. (2.28) and

(2.29), respectively.

Pkj =

[
n1∑
i=1

(p(k | xi,o,yi,θold)[(2(E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ
old)j − µx,kj)P1,1E

T
1,1)+

(2(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ
old)j − µx,kj)ρx,kjjPρ,1ET

ρ,1)+

(2(E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ
old)j − µx,kj)P1,ρE

T
1,ρ)+

(2(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ
old)j − µx,kj)ρx,kjjPρ,ρET

ρ,ρ)])+
n∑

i=n1+1

(p(k | xi,o,θold)[2(E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ
old)− µx,kj)j − P

′

1,1E
′T
1,1+

2(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ
old)− µx,kj)j − ρx,kjjP

′

ρ,1E
′T
ρ,1+

2(E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ
old)− µx,kj)j − P

′

1,ρE
′T
1,ρ+

2(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ
old)− µx,kj)j − ρx,kjjP

′

ρ,ρE
′T
ρ,ρ])

]
×[

n1∑
i=1

p(k | xi,o,yi,θold)(P1,1(E1,1(ti,kt
T
i,k)− E1,1E

T
1,1 + (E1,1(ti,kt

T
i,k)− E1,1E

T
1,1)T + 2E1,1E

T
1,1)

+ P1,ρ(E1,ρ(ti,kt
T
i,k)− E1,ρE

T
1,ρ + (E1,ρ(ti,kt

T
i,k)− E1,ρE

T
1,ρ)

T + 2E1,ρE
T
1,ρ)+

ρx,kjjPρ,1(Eρ,1(ti,kt
T
i,k)− Eρ,1ET

ρ,1 + (Eρ,1(ti,kt
T
i,k)− Eρ,1ET

ρ,1)T + 2Eρ,1E
T
ρ,1)+

ρx,kjjPρ,ρ(Eρ,ρ(ti,kt
T
i,k)− Eρ,ρET

ρ,ρ + (Eρ,ρ(ti,kt
T
i,k)− Eρ,ρET

ρ,ρ)
T + 2Eρ,ρE

T
ρ,ρ))+

n∑
i=n1+1

p(k | xi,o,θold)(P
′

1,1(E
′

1,1(ti,kt
T
i,k)− E

′

1,1E
′T
1,1 + (E

′

1,1(ti,kt
T
i,k)− E

′

1,1E
′T
1,1)T + 2E

′

1,1E
′T
1,1)

+ P
′

1,ρ(E
′

1,ρ(ti,kt
T
i,k)− E

′

1,ρE
′T
1,ρ + (E

′

1,ρ(ti,kt
T
i,k)− E

′

1,ρE
′T
1,ρ)

T + 2E
′

1,ρE
′T
1,ρ)+

ρx,kjjP
′

ρ,1(E
′

ρ,1(ti,kt
T
i,k)− E

′

ρ,1E
′T
ρ,1 + (E

′

ρ,1(ti,kt
T
i,k)− E

′

ρ,1E
′T
ρ,1)T + 2E

′

ρ,1E
′T
ρ,1)+

ρx,kjjP
′

ρ,ρ(E
′

ρ,ρ(ti,kt
T
i,k)− E

′

ρ,ρE
′T
ρ,ρ + (E

′

ρ,ρ(ti,kt
T
i,k)− E

′

ρ,ρE
′T
ρ,ρ)

T + 2E
′

ρ,ρE
′T
ρ,ρ))

]−1

(2.28)

where j = 1, 2, ...,m, Pkj is the jth row of Pk and ρx,kjj is the jth row and jth column

element of diagonal matrix ρx,k. µx,kj and E(...)j are jth element of µx,k and E(...),

respectively.
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Ckj =

[
n1∑
i=1

2(yij − µy,kj)[p(k | xi,yi,θold)(P1,1E
T
1,1 + Pρ,1E

T
ρ,1 + ρy,kjjP1,ρE

T
1,ρ + ρy,kjjPρ,ρE

T
ρ,ρ)]

]
×[

n1∑
i=1

p(k | xi,yi,θold)(P1,1(E1,1(ti,kt
T
i,k)− E1,1E

T
1,1 + (E1,1(ti,kt

T
i,k)− E1,1E

T
1,1)T + (2E1,1E

T
1,1))

+ Pρ,1(Eρ,1(ti,kt
T
i,k)− Eρ,1ET

ρ,1 + (Eρ,1(ti,kt
T
i,k)− Eρ,1ET

ρ,1)T + (2Eρ,1E
T
ρ,1))+

ρy,kjjP1,ρ(E1,ρ(ti,kt
T
i,k)− E1,ρE

T
1,ρ + (E1,ρ(ti,kt

T
i,k)− E1,ρE

T
1,ρ)

T + (2E1,ρE
T
1,ρ))+

ρy,kjjPρ,ρ(Eρ,ρ(ti,kt
T
i,k)− Eρ,ρET

ρ,ρ + (Eρ,ρ(ti,kt
T
i,k)− Eρ,ρET

ρ,ρ)
T + (2Eρ,ρE

T
ρ,ρ)))

]−1

(2.29)

where j = 1, 2, ..., r, Ckj is the jth row of Ck and ρy,kjj is the jth row and jth col-

umn element of diagonal matrix ρy,k. µy,kj and yij are jth element of µy,k and yi,

respectively.

The update equations for the covariances of input and output variables are given

in Eqs. (2.30) and (2.31), respectively.

σ2
x,k =

[
n1∑
i=1

p(k | xi,o,yi,θold)[P1,1A1,1 + P1,ρA1,ρ + Pρ,1A
?
ρ,1 + Pρ,ρA

?
ρ,ρ]+

n∑
i=n1+1

p(k | xi,o,θold)[P
′

1,1A
′

1,1 + P
′

1,ρA
′

1,ρ + P
′

ρ,1A
′?
ρ,1 + P

′

ρ,ρA
′?
ρ,ρ]

]
× (mn)−1

(2.30)

σ2
y,k =

∑n1

i=1 p(k | xi,o,yi,θold)[P1,1B1,1 + Pρ,1Bρ,1 + ρy,kP1,ρB
?
1,ρ + ρy,kPρ,ρB

?
ρ,ρ]

r.n1

(2.31)

The definitions of A1,4, A?ρ,4, A
′

1,4 and A
′?
ρ,4 are given in appendix C.1, and the terms

B?,1 and B?
?,ρ are presented in appendix C.2.

Similarly, the update equations for the mean values of input and output variables

are given in Eqs. (2.32) and (2.33), respectively.

µx,kj =

(
n1∑
i=1

p(k | xi,o,yi,θold)([E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ
old)jP1,1+

ρx,kjjE(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ
old)jPρ,1 + E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ

old)jP1,ρ+

ρx,kjjE(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ
old)Pρ,ρ]− Pkj(P1,1E1,1 + P1,ρE1,ρ + ρx,kjjPρ,1Eρ,1 + ρx,kjjPρ,ρEρ,ρ))+

n∑
i=n1+1

p(k | xi,o,θold)([E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ
old)jP

′

1,1+

ρx,kjjE(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ
old)jP

′

ρ,1 + E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ
old)jP

′

1,ρ+

ρx,kjjE(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ
old)P

′

ρ,ρ]− Pkj(P
′

1,1E
′

1,1 + P
′

1,ρE
′

1,ρ + ρx,kjjP
′

ρ,1E
′

ρ,1 + ρx,kjjP
′

ρ,ρE
′

ρ,ρ)
)
×(

n1∑
i=1

p(k | xi,o,yi,θold)[P1,1 + P1,ρ + ρx,kjjPρ,1 + ρx,kjjPρ,ρ] +
n∑

i=n1+1

p(k | xi,o,θold)[P
′

1,1 + P
′

1,ρ + ρx,kjjP
′

ρ,1 + ρx,kjjP
′

ρ,ρ]

)−1

(2.32)

where j = 1, ...,m.
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µy,kj =

n1∑
i=1

p(k | xi,o,yi,θold)(yi,j(P1,1 + Pρ,1 + ρy,kjjP1,ρ + ρy,kjjPρ,ρ)

− Ck,j(P1,1E1,1 + Pρ,1Eρ,1 + ρy,kjjP1,ρE1,ρ + ρy,kjjPρ,ρEρ,ρ))

×

(
n1∑
i=1

p(k | xi,o,yi,θold)(P1,1 + Pρ,1 + ρy,kjjP1,ρ + ρy,kjjPρ,ρ)

)−1

(2.33)

where j = 1, 2, ..., r

The update equations for the probability of each measurement in input and

output data being an outlier are given in Eqs. (2.34) and (2.35), respectively.

δx,k =

∑n1

i=1 p(k | xi,o,yi,θold)[Pρ,1 + Pρ,ρ] +
∑n

i=n1+1 p(k | xi,o,θold)[P
′
ρ,1 + P

′
ρ,ρ]

n
(2.34)

δy,k =

∑n1

i=1 p(k | xi,yi,θold)(P1,ρ + Pρ,ρ)

n1

(2.35)

To analyze the distinction of noise variances between the regular and the outlier

data, the update equations for inflation matrices are essential and given in Eqs. (2.36)

and (2.37) for input and output data, respectively.

ρx,kj =

(
n1∑
i=1

p(k | xi,o,yi,θold)(Pρ,1 + Pρ,ρ) +
n∑

i=n1+1

p(k | xi,o,θold)(P
′

ρ,1 + P
′

ρ,ρ)

)
×

(
n1∑
i=1

p(k | xi,o,yi,θold)(Pρ,1Cρ,1j + Pρ,ρCρ,ρj)σ
−2
x,k +

n∑
i=n1

p(k | xi,o,θold)(Pρ,1C
′

ρ,1j
+ Pρ,ρC

′

ρ,ρj
)σ−2

x,k

)−1

(2.36)

ρy,k =

(
n1∑
i=1

p(k | xi,o,yi,θold)(P1,ρ + Pρ,ρ)

)(
n1∑
i=1

p(k | xi,o,yi,θold)(P1,ρ + Pρ,ρ)×D?,ρjσ
−2
y,k

)−1

(2.37)

where definitions of Cρ,4j and C
′

ρ,4j are given in appendix C.3 (Eqs. (C.7) and (C.8)),

and D?,ρj is defined in appendix C.4 (Eq. (C.9)).

Since EM is an iterative procedure in which the estimated parameters are used

to update the posterior probabilities, the above estimated parameters are used in

updating the posterior probabilities of p(ti,k | xi,o,yi, qxi,k , qyi,k , k,θold),
p(ti,k | xi,o, qxi,k , qyi,k , k,θold), p(qxi,k , qyi,k | xi,o,yi, k,θold), p(qxi,k , qyi,k | xi,o, k,θold),
p(xi,k | ti,k, qxi,k , qyi,k , k,xi,o,yi,θold) and p(xi,k | ti,k, qxi,k , qyi,k , k,xi,o,θold), that are

required in the Q − function as defined in Eqs. (B.2)-(B.10). Expressions for the

aforementioned posterior probabilities are derived using the Bayes rule and are given

as follows
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p(ti,k | xi,o,yi, qxi,k , qyi,k , k,θold) =
p(xi,o,yi|ti,k,qxi,k ,qyi,k ,k,θ

old)p(ti,k|qxi,k ,qyi,k ,k,θ
old)

p(xi,o,yi|qxi,k ,qyi,k ,k,θold)

(2.38)

p(ti,k | xi,o, qxi,k , qyi,k , k,θold) =
p(xi,o | ti,k, qxi,k , qyi,k , k,θold)p(ti,k | qxi,k , qyi,k , k,θold)

p(xi,o | qxi,k , qyi,k , k,θold)
(2.39)

By using Eqs. (2.25) and (2.26) in Eqs. (2.38) and (2.39) respectively, the terms

p(ti,k | xi,o,yi, qxi,k , qyi,k , k,θold) and p(ti,k | xi,o, qxi,k , qyi,k , k,θold) follow a Gaussian

distribution with means (denoted as E(·,·)) and variances (denoted as E(·,·)(ti,kt
T
i,k))

given below:

For the labeled dataset:

E1,1 = (P T
k,o(σ

2
x,kI)−1Pk,o + CT

k (σ2
y,kI)−1Ck + I)−1(P T

k,o(σ
2
x,kI)−1(xi,o − µx,k,o) +CT

k (σ2
y,kI)−1(yi − µy,k))

E1,1(ti,kt
T
i,k) = (P T

k,o(σ
2
x,kI)−1Pk,o + CT

k (σ2
y,kI)−1Ck + I)−1 + (E1,1E

T
1,1)

Eρ,1 = (P T
k,o(ρ

−1
x,kσ

2
x,kI)−1Pk,o + CT

k (σ2
y,kI)−1Ck + I)−1(P T

k,o(ρ
−1
x,kσ

2
x,kI)−1(xi,o − µx,k,o) +CT

k (σ2
y,kI)−1(yi − µy,k))

Eρ,1(ti,kt
T
i,k) = (P T

k,o(ρ
−1
x,kσ

2
x,kI)−1Pk,o + CT

k (σ2
y,kI)−1Ck + I)−1 + (Eρ,1E

T
ρ,1)

E1,ρ = (P T
k,o(σ

2
x,kI)−1Pk,o + CT

k (ρ−1
y,kσ

2
y,kI)−1Ck + I)−1(P T

k,o(σ
2
x,kI)−1(xi,o − µx,k,o) +CT

k (ρ−1
y,kσ

2
y,kI)−1(yi − µy,k))

E1,ρ(ti,kt
T
i,k) = (P T

k,o(σ
2
x,kI)−1Pk,o + CT

k (ρ−1
y,kσ

2
y,kI)−1Ck + I)−1 + (E1,ρE

T
1,ρ)

Eρ,ρ = (P T
k,o(ρ

−1
x,kσ

2
x,kI)−1Pk,o + CT

k (ρ−1
y,kσ

2
y,kI)−1Ck + I)−1 × (P T

k,o(ρ
−1
x,kσ

2
x,kI)−1(xi,o − µx,k,o) +CT

k (ρ−1
y,kσ

2
y,kI)−1(yi − µy,k))

Eρρ(ti,kt
T
i,k) = (P T

k,o(ρ
−1
x,kσ

2
x,kI)−1Pk,o + CT

k (ρ−1
y,kσ

2
y,kI)−1Ck + I)−1 + (Eρ,ρE

T
ρ,ρ)

(2.40)

and for the unlabeled dataset:

E
′

1,1 = (P T
k,o(σ

2
x,kI)−1Pk,o + I)−1(P T

k,o(σ
2
x,kI)−1(xi,o − µx,k,o))

E1,1(ti,kt
T
i,k) = (P T

k,o(σ
2
x,kI)−1Pk,o + I)−1 + (E1,1E

T
1,1)

E
′

ρ,1 = (P T
k,o(ρ

−1
x,kσ

2
x,kI)−1Pk,o + I)−1(P T

k,o(ρ
−1
x,kσ

2
x,kI)−1(xi,o − µx,k,o))

Eρ,1(ti,kt
T
i,k) = (P T

k,o(ρ
−1
x,kσ

2
x,kI)−1Pk,o + I)−1 + (Eρ,1E

T
ρ,1)

E
′

1,ρ = (P T
k,o(σ

2
x,kI)−1Pk,o + I)−1(P T

k,o(σ
2
x,kI)−1(xi,o − µx,k,o))

E1,ρ(ti,kt
T
i,k) = (P T

k,o(σ
2
x,kI)−1Pk,o + I)−1 + (E1,ρE

T
1,ρ)

E
′

ρ,ρ = (P T
k,o(ρ

−1
x,kσ

2
x,kI)−1Pk,o + I)−1(P T

k,o(ρ
−1
x,kσ

2
x,kI)−1(xi,o − µx,k,o))

Eρ,ρ(ti,kt
T
i,k) = (P T

k,o(ρ
−1
x,kσ

2
x,kI)−1Pk,o + I)−1 + (Eρ,ρE

T
ρ,ρ)

(2.41)

The posterior update for input and output indicators can be estimated using Eqs. (2.42)

and (2.43) with the aid of Eqs. (2.22)-(2.26).

p(qxi,k , qyi,k | xi,o,yi, k,θold) = p(xi,o,yi | qxi,k , qyi,k , k,θold)× p(qxi,k | k,θold)× p(qyi,k | k,θold)
(2.42)

p(qxi,k , qyi,k | xi,o, k,θold) = p(xi,o | qxi,k , qyi,k , k,θold)×p(qxi,k | k,θold)×p(qyi,k | k,θold)
(2.43)
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The update of the posterior probability related to hidden variable xi,k for the

labeled dataset can be derived as follows:

p(xi,k | ti,k, qxi,k , qyi,k , k,xi,o,yi,θold) =
p(ti,k | qxi,k , qyi,k , k,xi,o,xi,k,yi,θold)p(xi,k | qxi,k , qyi,k , k,xi,o,yi,θold)

p(ti,k | qxi,k , qyi,k , k,xi,o,yi,θold)

=
p(ti,k | qxi,k , qyi,k , k,xi,o, xi,m,yi,θold)p(xi,k | qxi,k , qyi,k , k,xi,o,yi,θold)

p(ti,k | qxi,k , qyi,k , k,xi,o,yi,θold)
(2.44)

Since xi,m is not available, the following assumption is made in order to make the

problem tractable:

p(ti,k | qxi,k , qyi,k , k,xi,o, xi,m,yi,θold) ≈ p(ti,k | qxi,k , qyi,k , k,xi,o,yi,θold) (2.45)

By substituting Eq. (2.45) in Eq. (2.44), an approximation of the following form is

obtained:

p(xi,k | ti,k, qxi,k , qyi,k , k,xi,o,yi,θold) ≈ p(xi,k | qxi,k , qyi,k , k,xi,o,yi,θold) (2.46)

Similarly, for the unlabeled dataset the posterior probability can be updated as

p(xi,k | ti,k, qxi,k , qyi,k , k,xi,o,θold) ≈ p(xi,k | qxi,k , qyi,k , k,xi,o,θold) (2.47)

Therefore, from Eqs. (2.46) and (2.47), it can be concluded that xi,k follows a Gaussian

distribution; hence the mean and covariance are required. The mean for the labeled

dataset can be derived as:

E(xi,k | qxi,k , qyi,k , k,xi,o,yi,θold) =

[
xi,o

E(xi,k,m | qxi,k , qyi,k , k,xi,o,yi,θold)

]
(2.48)

and for the unlabeled dataset:

E(xi,k | qxi,k , qyi,k , k,xi,o,θold) =

[
xi,o

E(xi,k,m | qxi,k , qyi,k , k,xi,o,θold)

]
(2.49)

The covariance of xi,k, for labeled dataset, can be derived as:

cov(xi,k,xi,k | qxi,k , qyi,k , k,xi,o,yi,θold) =

[
0 0
0 cov(xi,k,m,xi,k,m | qxi,k , qyi,k , k,xi,o,yi,θold)

]
(2.50)

and for the unlabeled dataset:

cov(xi,k,xi,k | qxi,k , qyi,k , k,xi,o,θold) =

[
0 0
0 cov(xi,k,m,xi,k,m | qxi,k , qyi,k , k,xi,o,θold)

]
(2.51)
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The expectation terms in Eqs. (2.48) and (2.49) have to be updated by using the

input model equation, and for the labeled dataset it is

E(xi,k,m | qxi,k , qyi,k , k,xi,o,yi,θold) = Pk,mE(ti,k | qxi,k , qyi,k , k,xi,o,yi,θold) + µx,k,m

(2.52)

and for the unlabeled dataset, it is

E(xi,k,m | qxi,k , qyi,k , k,xi,o,θold) = Pk,mE(ti,k | qxi,k , qyi,k , k,xi,o,θold) + µx,k,m (2.53)

where E(ti,k | qxi,k , qyi,k , k,xi,o,yi,θold) and E(ti,k | qxi,k , qyi,k , k,xi,o,θold) are derived

in Eqs. (2.40) and (2.41), respectively. To compute the covariances in Eqs. (2.50)

and (2.51), it is necessary to calculate cov(xi,k,m,xi,k,m | qxi,k , qyi,k , k,xi,o,yi,θold) and

cov(xi,k,m,xi,k,m | qxi,k , qyi,k , k,xi,o,θold). The derivations related to these terms are

provided in appendix C.5.

The parameters in Eqs. (2.28)-(2.37) are estimated again by using the updated

posterior probabilities given in Eqs. (2.38)-(2.47) and are repeated until the parame-

ters converge.

2.3.2 Online Predictions

For the soft sensor application, it is necessary to predict the variables online. To

perform the online predictions given a new data point (xnew), a weighted predicted

value of the output over all K modes is used and is given as

ŷnew =
K∑
k=1

p(k | xnew,θ)× ŷnewk (2.54)

where p(k | xnew,θ) is the posterior probability and ŷnewk is the predicted output in

each mode and is provided by using the generative model in Eq. (2.6). These terms

are given as

p(k | xnew,θ) =
p(xnew | k,θ)× p(k | θ)

p(xnew | θ)
(2.55)

ŷnewk = Ckt̂
new
k + µy,k (2.56)
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in which t̂newk is the expectation of the latent variable and is computed for each mode

as

t̂newk =E(tnewk | xnew, k,θ)

=
∑
qxk

∑
qyk

E(tnewk | xnew, qnewxk
, qnewyk

, k,θ)× p(qnewxk
| xnew, k,θ)× P (qnewyk

| xnew, k,θ)

=E(tnewk | xnew, qnewxk
= 1, qnewyk

= 1, k,θ)× p(qnewxk
= 1 | xnew, k,θ)× p(qnewyk

= 1 | xnew, k,θ)

+ E(tnewk | xnew, qnewxk
= ρ, qnewyk

= 1, k,θ)× p(qnewxk
= ρ | xnew, k,θ)× p(qnewyk

= 1 | xnew, k,θ)

+ E(tnewk | xnew, qnewxk
= 1, qnewyk

= ρ, k,θ)× p(qnewxk
= 1 | xnew, k,θ)× p(qnewyk

= ρ | xnew, k,θ)

+ E(tnewk | xnew, qnewxk
= ρ, qnewyk

= ρ, k,θ)× p(qnewxk
= ρ | xnew, k,θ)× p(qnewyk

= ρ | xnew, k,θ)

(2.57)

To evaluate the prediction performance, R-squared (R2) test and root mean

square error (RMSE) are commonly used and are also adopted here. Given a dataset

y and its prediction ŷ, the RMSE and R2 will be calculated according to

RMSE ,

√
‖y − ŷ‖2

2

n

R2 = 1− ‖y − ŷ‖2

‖y − ȳ‖2

where n is the total number of samples used and ȳ is the mean of the dataset y.

2.4 Case Studies

In this section, the performance of the proposed method is demonstrated by consid-

ering two case studies. A numerical example is considered as the first case study and

an experiment on a hybrid tank pilot plant system is considered as the second one to

demonstrate the practical applicability of the proposed method.

2.4.1 Numerical Example

The following model is used to generate the dataset.

xi,k = Pkti,k + ei,k + µx,k (2.58)

yi,k = Ckti,k + fi,k + µy,k (2.59)

A three-operating-mode problem with five input variables and one output vari-

able in each mode is considered. Therefore, the values of k will be either 1, 2, or 3,

and the weighting matrices Pk ∈ R5×3 and Ck ∈ R1×3 are selected randomly. The la-

tent variable in each operating mode (ti,k) follows a Gaussian distribution of N (0, I),
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and the values of µx,k and µy,k are set to zero. The input (ei,k) and output (fi,k)

measurement noises in each mode also follow Gaussian distribution with zero mean

and variance 0.05 and 0.35, respectively, i.e., in Eqs. (2.11) and (2.12), σ2
x,k = 0.05

and σ2
y,k = 0.35.

A total of 900 data samples (300 samples each mode) for each variable are gen-

erated as shown in Fig. 2.3. To study the effect of missing output data, 4/5th of

output data are removed randomly (approximately 240 output samples per mode).

30% of input samples are also considered to be missing at random locations. Fur-

ther, to demonstrate the robustness in identification with outliers in data, 5% and

25% of the entire dataset are replaced respectively with data that follow Gaussian

distribution of zero mean and variances (0.2, 0.15, 0.05, 0.1, 0.05) as diagonal entries

and 0.7 for output data, respectively i.e., the third and the fifth input variables are

not contaminated with outliers since the replaced data have the same variance as the

normal data.

A comparative study among the proposed method, MSSPPCR [8] and traditional

MRSSPPCR [43] is made by showing the training and validation results under various

scenarios shown in Tables 2.1 and 2.2. Further, the prediction performance of the

proposed method is shown in Fig. 2.4.

Table 2.1: RMSE and R2 values under various missing inputs and outliers with
sampling ratio of 1/5 for training set

Missing Percentage No missing input 30%

Outliers
Proposed Model MSSPPCR[8] MRSSPPCR[43] Proposed Model MSSPPCR[8] MRSSPPCR[43]

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No outlier 5.7301 0.9346 5.7422 0.9348 5.7331 0.9339 5.7828 0.9267 5.7647 0.9282 6.0152 0.8926
5% 5.7749 0.9289 5.9962 0.8974 5.7784 0.9302 5.7627 0.9009 6.1332 0.8493 6.0571 0.8853
25% 5.8413 0.9210 6.4891 0.7698 5.9031 0.9078 6.0410 0.8967 6.8419 0.7166 6.2875 0.8433

Table 2.2: RMSE and R2 values under various missing inputs and outliers with
sampling ratio of 1/5 for online validation set

Missing Percentage No missing input 30%

Outliers
Proposed Model MSSPPCR[8] MRSSPPCR[43] Proposed Model MSSPPCR[8] MRSSPPCR[43]

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No outlier 5.8321 0.9194 5.8320 0.9196 5.8318 0.9196 5.8331 0.9172 5.8327 0.9173 5.9982 0.8417
5% 5.8913 0.9176 5.9276 0.8349 5.8908 0.9179 6.0243 0.8995 6.1471 0.8035 6.0986 0.8262
25% 6.1482 0.8969 6.9074 0.6982 6.2033 0.8710 6.2775 0.8846 7.0524 0.6874 6.7868 0.7936

From the results reported in Fig. 2.4 and from Table 2.2, it can be noted that the

prediction of the proposed method is more accurate and also robust to different levels
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Figure 2.3: Generated data for numerical example

of outliers and missing data compared with the MSSPPCR and traditional MRSSP-

PCR methods. Further, due to the introduction of flattening ratio in the formulation,

the variances of outliers in the data can also be inferred. For example, in the case

with 25% of outliers and no missing data in the input, the flattening ratio of input

and output data is estimated as ρx,k = diag(0.2114, 0.3458, 0.9425, 0.6471, 0.9123)
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Figure 2.4: Online prediction performance of the proposed method on the numerical
data with 25% outliers and no missing input.

and ρy,k = 0.4512, respectively. From these results, it can be inferred that a value

close to 1 for the third and the fifth input variables implies that these input variables

have no outliers which is consistent with the real situation. The computation time of

the proposed method with 4 CPU, Intel(R) Core(TM) i7 Processor, 2.60 GHz for the

25



case when a 30% of data is missing and outlier percentage is 25%, is approximately

39 seconds. For the case of MRSSPPCR [43] and MSSPPCR [46] the computational

time is approximately 31 and 29 seconds, respectively. Though the proposed method

is slightly more time consuming (≈ 8 to 9 seconds more when compared to the exist-

ing methods in all the cases), the proposed method is better over the other methods

in terms of its robustness and more accuracy.

2.4.2 Experimental case study: Hybrid tank pilot plant sys-
tem

A hybrid tank pilot plant system, as shown in Fig. 2.5, is utilized for demonstrating

the practical applicability of the proposed method.

a. Model description

A hybrid tank system consists of three cylindrical tanks connected by six valves,

namely V1-V4, V6, and V8, and a container at the bottom of these three tanks to

collect the tanks’ outflow. Three level-sensors, namely LT1-LT3, are used to measure

the level in each of these tanks. The tanks are connected to the container through

three valves, namely V5, V7, and V9. Two similar pumps are also connected to this

container to send the water into Tanks 1 and 3, and the flowrate of these streams is

considered as manipulated variables. The level in Tank 2 is regarded as the variable

that is of importance.

Figure 2.5: Schematic of the Hybrid Tank Pilot Plant
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The process operates in different operating conditions depending on the consid-

ered range of inlet flowrate to Tanks 1 and 3. In the current case study, two different

operating points are considered by manipulating the inlet flowrates of Tanks 1 and

3 around 4.75 and 5.15 for the first operating point, termed as a low-level operating

point. For the second operating point, termed as a high-level operating point, the

flowrates are manipulated to be around 6.15 and 6.00, respectively. Since the valves

V1 and V2 are kept open throughout the experiment, the significant difference in op-

erating conditions arises when the level in the tanks exceeds the position of these

valves. Different process modes can be generated by changing the valves V3 and V4

from open to close. In such a case, an overflow might arise when the system is oper-

ated at a high-level operating point, which is considered to be the abnormal process

mode. Therefore, two different modes (abnormal and normal process modes) will be

present in the system.

The input and output data for the considered operating conditions are shown in

Figures 2.6(a) and 2.6(b), respectively [49]. The data consist of almost 3000 samples,

of which 1800 samples that correspond to the first period of the signal shown in

Fig. 2.6 are used for training the model, and 1200 samples of the remaining data are

used for validation. To demonstrate the efficacy of the proposed method for modeling

with outliers in data, noise generated from N (0, 25σ2I) and N (0, 30σ2I), where σ is

the variance, is added to the first input variable data and output variable data at

random locations, respectively.

b. Identification and validation results

The proposed method is implemented on different outlier levels and with different

amounts of missing data in the inputs. It is also assumed that 4/5th of output data

is missed completely at random. A comparison in terms of the RMSE values and

the R2 is made between the proposed method and the MSSPPCR method presented

in [8] and MRSSPPCR proposed in [43]. The results with training and validation

datasets are shown in Tables 2.3 and 2.4. To further demonstrate the performance of

the proposed method, a scenario where the input and output data have 30% and 80%

missing values, respectively with a 15% of outliers in the data is considered. A com-

parison of the prediction performance of the proposed method with the MSSPPCR

and MRSSPPCR is shown in Fig. 2.7.

From the comparison presented in Table 2.4 and Fig. 2.7, it can be concluded

that the proposed method is able to identify the model more accurately compared
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Figure 2.6: Collected data for experimental example

to the MSSPPCR method presented in [8] and MRSSPPCR presented in [43]. This

improvement can be attributed to the fact that the proposed method can deal with

different level of outliers in different variables and simultaneously considers missing

data in both the input and output variables. Regarding the computational cost, a

trend similar to the numerical case study is also observed in the experimental case

study.
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Table 2.3: RMSE and R2 values under various missing inputs and outliers with
sampling ratio of 1/5 for training set

Missing Percentage No missing input 30%

Outliers
Proposed Model MSSPPCR[8] MRSSPPCR[43] Proposed Model MSSPPCR[8] MRSSPPCR[43]

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No outlier 9.3162 0.9015 9.3162 0.9014 9.3108 0.9018 9.3249 0.8945 9.3391 0.8951 9.3384 0.8574
5% 9.3310 0.8913 9.5921 0.8445 9.3257 0.8936 9.3847 0.8748 9.7143 0.8186 9.6058 0.8263
15% 9.6823 0.8642 9.8771 0.7427 9.7855 0.8462 9.7956 0.8281 10.0107 0.6797 10.3546 0.7596

Table 2.4: RMSE and R2 values under various missing inputs and outliers with
sampling ratio of 1/5 for online validation set

Missing Percentage No missing input 30%

Outliers
Proposed Model MSSPPCR[8] MRSSPPCR[43] Proposed Model MSSPPCR[8] MRSSPPCR[43]

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No outlier 9.8718 0.8249 9.8823 0.8236 9.8524 0.8261 10.0228 0.8058 10.1012 0.8108 10.4852 0.7538
5% 10.1738 0.8172 10.4317 0.7491 10.1442 0.8203 10.3149 0.7863 10.5394 0.7107 10.5973 0.6985
15% 10.4890 0.7694 10.8146 0.6624 10.5758 0.7513 10.7489 0.7437 10.3218 0.5759 10.0913 0.6684

2.5 Conclusion

In this chapter, a new mixture robust semi-supervised PPCR (MRSSPPCR) model

with missing input data is developed. The proposed approach can handle the multi-

modal nature of the process. It can efficiently handle the missing input and output

data and have the flexibility of handling different nature of outliers among different

variables. Since outliers can appear in different variables with different statistical

properties, the proposed approach will provide more practical results over the ex-

isting methods since no existing methods have considered this practical issue. The

estimated values of the missing data can be iteratively updated while updating the

parameters of the model. The robustness and performance of the proposed method

are demonstrated on different scenarios through a numerical and an experimental

study.
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Figure 2.7: Prediction performance on industrial data with 15% outliers and 30%
missing input
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Chapter 3

Weighted semi-supervised
probabilistic principal component
regression with missing input and
delayed output data1

3.1 Introduction

The mixture robust semi-supervised probabilistic principal component regression (MRSSP-

PCR) model developed in Chapter 2, extends the PPCR model to handle uncertainties

like missing data in input and output variables, outliers with different properties, and

dealing with mixture-modal/nonlinear nature of the plants. However, it is not able to

identify the presence of time-delays between each input variable and output variables.

In addition, determination of the number of mixture components in industries can be

challenging. The MRSSPPCR model uses the information of all the available data

in dataset to develop the model which increases the computational effort. Hence, in

this chapter, a weighted semi-supervised probabilistic principal component regression

(WSSPPCR) model is proposed to address the aforementioned challenges.

Inspired by the ideas of locally weighted learning [50, 51] and just-in-time learn-

ing [52, 53] techniques, a weighted PPCR (WPPCR) model is proposed in [54]. The

advantage of the WPPCR model lies in its adaptability by providing an efficient

1A. Memarian, S. K. Varanasi, B. Huang. ”Soft sensor development in the presence of missing
input and delayed output data through weighted semi-supervised probabilistic principal component
regression”. Submitted to IEEE Transactions on Industrial Electronics”, 2021 (Chapter 3 - Short
Version)
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model based on selecting a subset of the training data that is relevant to the current

operating conditions of the process without the need for determining the number of

mixture components. To achieve this, weights are assigned to the training samples

based on the Euclidean distance between the current operating point and the training

data. The authors in [55] proposed a locally semi-supervised weighted PPCR model

to account for the missing data in output variables.

It has to be noted that alongside the outliers and missing data, the efficiency

of the soft sensor also depends on the time-delay between the input and output

variables. Depending on the time required for lab analysis, the input and the output

variables may not be sampled at the same time, and the output often falls behind the

input [56]. Therefore, it is important to account for the time-delay while building a

soft sensor. The determination of time-delay can be either from the understanding

of the process mechanism [57] or data-driven methods. The former typically uses the

process information and first principle models to determine the time-delay, while the

latter, i.e. data-driven methods, rely only on the process data. To identify time-delay

directly from the data, methods like Pearson correlation coefficient (CC) [58], fuzzy

curve analysis (FCA) [59], the mutual information (MI) [60, 61] are utilized. In the

design of a soft sensor, the authors in [62] proposed an algorithm called a weighted

relevance vector machine model based on dynamic time-delay estimation (DTDE-

WRVM) that is capable of estimating the dynamic time-delay. However, it uses two

separate steps in the determination of time-delays and the modeling, respectively.

Clearly, the accuracy of one step will greatly impact the other. Hence, it is desirable

to develop a soft sensor that can handle the estimation of time-delay and missing

data simultaneously.

In view of aforementioned points, this chapter proposes a weighted semi-supervised

probabilistic principal component regression with missing input data and delayed out-

put data. The proposed approach can model non-linear and/or multi-modal processes.

The significance of the chapter follows with its ability to provide flexibility to each

input variable to have their own time-delay while simultaneously considering missing

data in both input and output.

The rest of the chapter is organized as follows. In Section 3.2, a detailed descrip-

tion of the proposed algorithm is presented. The accuracy of the proposed algorithm

is demonstrated through a simulated and an experimental case study in Section 3.3.

The conclusions are drawn in Section 3.4.
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3.2 Weighted semi-supervised probabilistic princi-

pal component regression with missing input

and delayed output data

In this section, the proposed algorithm of the weighted semi-supervised probabilistic

principal component regression model (WSSPPCR) with missing data in both input

and output along with time delays is presented. The proposed approach utilizes

the techniques of semi-supervised learning to handle missing data, and also provides

flexibility for each input variable to have its own distinguished delay. Further, due to

the use of a just-in-time learning strategy, the proposed algorithm is able to model

nonlinear and multi-modal processes. The details are provided in the rest of the

section.

3.2.1 Model Description

In this section, the details on the WSSPPCR model are presented by considering

X ∈ Rm×n and Y ∈ Rr×n to be the datasets of the input and output variables,

respectively. The total number of samples is denoted as n, and the number of input

and output variables is denoted as m and r, respectively. In such a setting, n1 samples

are labeled (observed data), represented by the set O. The remaining n−n1 samples

are unlabeled (missing) and are represented by the set M . It is also assumed that

input variables have missing values completely at random (MCAR) [47]. Let the

variable λ denote the time-delay and the matrix Xλ represent the modified input

dataset wherein, the delay for each input variable is accounted for, the generative

model of the WSSPPCR can be represented as

xiλ = Pti + ei + µx, i = 1, 2, · · · , n (3.1)

yj = Ctj + fj + µy, j = 1, 2, · · · , n1 (3.2)

where, xiλ ∈ Rm×1 and yi ∈ Rr×1 denote the input and output data at ith sampling

instant of the datasets Xλ and Y , respectively i.e.,

xiλ =


x1i−λ1
x2i−λ2

...
xmi−λm

 (3.3)

where λ1, λ2, · · · , λm are the time-delays corresponding to the first, second,..., mth

input variables, respectively. P ∈ Rm×q and C ∈ Rr×q are the weighting matrices
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and ti ∈ Rq×1 is a vector of latent variables. The variables ei ∈ Rm×1 and fi ∈ Rr×1

denote the measurement noise in input and output, respectively, which are assumed

to follow a Gaussian distribution as given in Eqs. (3.4)-(3.6). The mean values of the

input and output variables are denoted with µx and µy, respectively.

ti ∼ N (0, I) (3.4)

ei ∼ N (0, σ2
xI) (3.5)

fi ∼ N (0, σ2
yI) (3.6)

It is further assumed that the delay of each input variable (λz∀z = 1, · · · ,m)

has an upper and a lower bound. These limits can be assigned based on the process

knowledge, or a trivial value of zero is considered as a lower bound, and a large value

is considered for the upper bound. Thus, the range of each input delay is defined as:

dz1 ≤ λz ≤ dz2 z = 1, ...,m (3.7)

It has to be noted that the range of the delay considered can be updated and

optimized through the updating equation provided in Eq. (3.34) in Section 3.2.3 and

this type of updating helps in faster convergence and better results. In such a setting,

the objective is to estimate the parameters given in θ = {P ,C, σ2
x, σ

2
y,µx,µy} along

with the hidden or latent variables i.e., {Xλ, {ti,k}ni=1,Γ} where, Γ = {λ1, λ2, · · · , λm}
is the vector of all input delays.

3.2.2 Weight Assignment

Since most of the industrial processes are non-linear and/or multi-modal, the devel-

opment of a single-PPCR model using the information of complete data set is not

practical. Thus, to improve the accuracy in modeling, weights are assigned to all

the data points in such a way that relevant data points are selected for modeling.

Therefore, similar to the work in [54], a weighted log-likelihood function is used in

the development of the model. The weights, wi used in the Q − function (given in

Eq. (3.10)) are calculated using Eq. (3.8).

wi = exp(
−d2

i

φ
) (3.8)

where, φ is a tuning parameter that is defined based on a trial and error and it controls

the distribution of the weights as shown in Fig. 3.1 i.e., it controls the range of the
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data that are used while building a model. di is the Euclidean distance and is chosen

as [63]

di =
√

(xi − xq)Tψold(xi − xq) (3.9)

In Eq. (3.9), ψ := diag
[
C(P TP + σ2

xI)−1P T
]

represents the parameter that intensi-

fies the importance of each input variable to the output variable and xq is the query

point around which the model needs to be developed.
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Figure 3.1: Weight assignment based on the tuning parameter φ.

3.2.3 Parameter estimation through EM algorithm

In the case of missing data and/or in the presence of latent variables, the likelihood

function is not tractable [44, 45]. Therefore, the approaches like maximum likelihood

estimation and/or maximum-a-posteriori are difficult to use for the estimation of

parameters and in such scenarios, Expectation-Maximization (EM) algorithm is an

efficient choice. EM algorithm consists of two steps, the expectation (E) step, and

the maximization (M) step.

In E-step, the expectation of the weighted log-likelihood, i.e. Q − function, is

calculated. Due to the presence of observed and missed values, the weighted log-
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likelihood comprises of two parts as provided in Eq. (3.10)

Q = EXλ,T ,Γ|Xoλ
,Y ,θold

[∑
i∈O

wi log p(xiλ ,yi, ti,Γ | θ) +
∑
i∈M

wi log p(xiλ , ti,Γ | θ)

]
(3.10)

Since noise in input and output variables, delays, and latent variables are assumed to

be independent and identically distributed (i.i.d), the terms in Q− function can be

expanded as:

Q =
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,yi,θold)EXλ,T |Xoλ
,Y ,Γ=J,θold(wi log p(xiλ | ti, λ1 = j1, · · · , λm = jm,θ))

+
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,yi,θold)EXλ,T |Xoλ
,Y ,Γ=J ,θold(wi log p(yi | ti, λ1 = j1, ..., λm = jm,θ))

+
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,yi,θold)EXλ,T |Xoλ
,Y ,Γ=J ,θold(wi log p(ti | θ))

+
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,yi,θold)× wi × [log p(λ1 = j1) + · · ·+ log p(λm = jm)]

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,θold)EXλ,T |Xoλ
,Γ=J ,θold(wi log p(xiλ | ti, λ1 = j1, · · · , λm = jm,θ))

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xiλ ,θold)EXλ,T |Xoλ
,Γ=J ,θold(wi log p(ti | θ))

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(Γ = J | xioλ ,θ
old)× wi × [log p(λ1 = j1) + · · ·+ log p(λm = jm)]

= Q1 +Q2 +Q3 +Q4 +Q
′

1 +Q
′

2 +Q
′

3

(3.11)

where Qi∀i ∈ 1, 2, 3, 4 denotes the terms corresponding to the observed data or la-

beled measurements and Q
′
i∀i ∈ 1, 2, 3 denotes the terms corresponding to missing

or unlabeled data. To expand the terms in Q− function, the distributions given in

Eqs. (3.12)-(3.14) are used.

p(xiλ | ti, λ1, · · · , λm,θ) ∼ N (Pti + µx, σ
2
xI) (3.12)

p(yi | ti, λ1, · · · , λm,θ) ∼ N (Cti + µy, σ
2
yI) (3.13)

p(ti | θ) ∼ N (0, I) (3.14)

Now, to calculate the terms of EXλ,T |Xoλ
,Y ,Γ=J,θold(.) and EXλ,T |Xoλ

,Γ=J,θold(.) in

Eq. (3.11), the posterior probabilities (derived using Bayes rule) given in Eqs. (3.15)-

(3.30) are needed.
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For labeled data:

p(ti | xioλ ,yi, λ1, · · · , λm,θold) =
p(xioλ

|ti,λ1,··· ,λm,θold)p(yi|ti,λ1,··· ,λm,θold)p(ti|λ1,··· ,λm,θold)

p(xioλ
,yi|λ1,··· ,λm,θold)

(3.15)

From Eqs. (3.12)-(3.14), it can be observed that Eq. (3.15) follows a Gaussian distri-

bution. Thus, the mean, and the variance are defined by following a similar approach

as detailed in [26] and is given in Eq. (3.16).

E(tit
T
i | xioλ ,yi, λ1, ..., λm,θ

old) = ξ + E(ti | xioλ ,yi, λ1, ..., λm,θ
old)× E(ti | xioλ ,yi, λ1, ..., λm,θ

old)T

E(ti | xioλ ,yi, λ1, ..., λm,θ
old) = ξ × (σ−2

x,oP
T
o (xioλ − µx,o) + σ−2

y C
T (yi − µy))

(3.16)

where ξ = (σ−2
x,oP

T
o Po + σ−2

y C
TC + I)−1.

Similarly for the unlabeled data,

p(ti | xioλ , λ1, · · · , λm,θold) =
p(xioλ | ti, λ1, · · · , λm,θold)p(ti | λ1, · · · , λm,θold)

p(xioλ | λ1, · · · , λm,θold)
(3.17)

and the mean and variance for Eq. (3.17) are provided by Eq. (3.18).

E(tit
T
i | xioλ , λ1, ..., λm,θ

old) = ξ
′
+ E(ti | xioλ , λ1, ..., λm,θ

old)× E(ti | xioλ , λ1, ..., λm,θ
old)T

E(ti | xioλ , λ1, ..., λm,θ
old) = ξ

′ × (σ−2
x,oP

T
o (xioλ − µx,o))

(3.18)

where ξ
′
= (σ−2

x,oP
T
o Po + I)−1.

Alongside these expressions, the posterior probability of the hidden variable xiλ for

both labeled and unlabeled data is essential and is given by Eqs. (3.19) and (3.22)

respectively.

p(xiλ | ti, λ1, · · · , λm,xioλ ,yi,θ
old) =

p(ti | λ1, · · · , λm,xiλ ,xioλ ,yi,θ
old)p(xiλ | λ1, · · · , λm,xioλ ,yi,θ

old)

p(ti | λ1, · · · , λm,xioλ ,yi,θ
old)

=
p(ti | λ1, · · · , λm,ximλ ,xioλ ,yi,θ

old)p(xiλ | λ1, · · · , λm,xioλ ,yi,θ
old)

p(ti | λ1, · · · , λm,xioλ ,yi,θ
old)

(3.19)

Since ximλ is not measurable, the following approximation is considered to make the

problem tractable.

p(ti | λ1, · · · , λm,xioλ ,ximλ ,yi,θ
old) ≈ p(ti | λ1, · · · , λm,xioλ ,yi,θ

old) (3.20)

By substituting Eq. (3.20) in Eq. (3.19), the following approximation can be obtained:

p(xiλ | ti, λ1, · · · , λm,xioλ ,yi,θ
old) ≈ p(xiλ | λ1, · · · , λm,xioλ ,yi,θ

old) (3.21)
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Similarly, the approximation of the posterior probability of xiλ for unlabeled data is

given as follows:

p(xiλ | ti, λ1, · · · , λm,xioλ ,θ
old) ≈ p(xiλ | λ1, · · · , λm,xioλ ,θ

old) (3.22)

The sufficient statistics of Eqs. (3.21) and (3.22) i.e, the mean values and covariances,

can be obtained by combining the distributions of both observed and missing input

variables as suggested in [64]. Thus, for the labeled data the mean value can be

obtained as:

E(xiλ | λ1, · · · , λm,xioλ ,yi,θ
old) =

[
xioλ

E(ximλ | λ1, · · · , λm,xioλ ,yi,θ
old)

]
(3.23)

For the unlabeled data, the mean value is

E(xiλ | λ1, · · · , λm,xioλ ,θ
old) =

[
xioλ

E(ximλ | λ1, · · · , λm,xioλ ,θ
old)

]
(3.24)

The expectation terms in the right hand side of the Eqs. (3.23) and (3.24) can be

calculated through the input model equation stated in Eq. (3.2) and for the labeled

data, the mean value is as follows:

E(ximλ | λ1, · · · , λm,xioλ ,yi,θ
old) = PmE(ti | λ1, · · · , λm,xioλ ,yi,θ

old) + µx,m

(3.25)

For the unlabeled data, the expectation term is calculated as:

E(ximλ | λ1, · · · , λm,xioλ ,θ
old) = PmE(ti | λ1, · · · , λm,xioλ ,θ

old) + µx,m (3.26)

The covariance of xiλ for labeled data can be obtained as:

cov(xiλ ,xiλ | λ1, · · · , λm,xioλ ,yi,θ
old) =

[
0 0
0 cov(ximλ ,ximλ | λ1, · · · , λm,xioλ ,yi,θ

old)

]
(3.27)

and for the unlabeled data,

cov(xiλ ,xiλ | λ1, · · · , λm,xioλ ,θ
old) =

[
0 0
0 cov(ximλ ,ximλ | λ1, · · · , λm,xioλ ,θ

old)

]
(3.28)

where,

cov(ximλ ,ximλ | λ1, · · · , λm,xioλ ,yi,θ
old) = Pm[E(tit

T
i | λ1, · · · , λm,xioλ ,yi,θ

old)

− E(ti | λ1, · · · , λm,xioλ ,yi,θ
old)E(ti | λ1, · · · , λm,xioλ ,yi,θ

old)T ]P T
m + σ2

x,mI+

E(ximλ | λ1, · · · , λm,xioλ ,yi,θ
old)E(ximλ | λ1, · · · , λm,xioλ ,yi,θ

old)T

(3.29)
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and

cov(ximλ ,ximλ | λ1, · · · , λm,xioλ ,θ
old) = Pm[E(tit

T
i | λ1, · · · , λm,xioλ ,θ

old)

− E(ti | λ1, · · · , λm,xioλ ,θ
old)E(ti | λ1, · · · , λm,xioλ ,θ

old)T ]P T
m + σ2

x,mI+

E(ximλ | λ1, · · · , λm,xioλ ,θ
old)E(ximλ | λ1, · · · , λm,xioλ ,θ

old)T

(3.30)

Finally, the posterior probabilities of variables’ delay for labeled and unlabeled data

are given in Eqs. (3.31) and (3.32), respectively.

Go = p(Γ = J | xioλ ,yi,θ
old) =

p(xioλ ,yi | Γ = J ,θold)× p(Γ = J | θold)∑d12
j1=d11

· · ·
∑dm2

jm=dm1
p(xioλ ,yi | Γ = J ,θold)× p(Γ = J | θold)

=

∏
i∈O p(xioλ ,yi | Γ = J ,θold)× p(Γ = J | θold)∑d12

j1=d11
...
∑dm2

jm=dm1

∏
i∈O p(xioλ ,yi | Γ = J ,θold)× p(Γ = J | θold)

(3.31)

where, p(Γ = J | θold) = p(λ1 = j1 | θold)× · · · × p(λm = jm | θold), and

p(xioλ ,yi | Γ = J ,θold) ∼ N
([
µx,o
µy

]
,

[
PoP

T
o + σ2

x,oIo PoC
T

CP T
o CCT + σ2

yI

])
Similarly,

Gm = p(Γ = J | xioλ ,θ
old) =

p(xioλ | Γ = J ,θold)× p(Γ = J | θold)∑d12
j1=d11

· · ·
∑dm2

jm=dm1
p(xioλ | Γ = J ,θold)× p(Γ = J | θold)

=

∏
i∈M p(xioλ | Γ = J ,θold)× p(Γ = J | θold)∑d12

j1=d11
...
∑dm2

jm=dm1

∏
i∈M p(xioλ | Γ = J ,θold)× p(Γ = J | θold)

(3.32)

where p(Γ = J | θold) = p(λ1 = j1 | θold)× · · · × p(λm = jm | θold) and

p(xioλ | Γ = J ,θold) ∼ N
(
µx,o,PoP

T
o + σ2

x,oIo
)

The final step is to provide the prior probability of p(λz = jz | θold). In the absence

of prior knowledge, the simplest and efficient choice is to assume that the initial

probabilities follow a uniform distribution and then update the probabilities through

Eq. (3.33).

p(λz = L) =

∑
Gz,L
o +

∑
Gz,L
m∑

Go +
∑
Gm

(3.33)

where 1 ≤ z ≤ m and dz1 ≤ L ≤ dz2, and Gz,L
o and Gz,L

m denote the zth delay variable

has value L where Go and Gm are defined in Eqs. (3.31) and (3.32), respectively.

Unlike the existing methods, the probability value defined in Eq. (3.33) is updated at

every iteration for faster convergence and better accuracy in the proposed algorithm.
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In most cases, it is not feasible to obtain efficient bounds on the initial limits

of delays and one typically considers a wide range of delay. Thus, a strategy of

updating this range of delays is proposed in this chapter. In the proposed approach,

the starting and the end values of the range for each input delay are modified based

on their difference from the most probable delay in the current iteration. In other

words, the search starts from the beginning and the end of the range simultaneously,

and each candidate delay value will be removed until the criterion given in Eq. (3.34),

is met.

p(λz = dz1) or p(λz = dz2) ≥ Υ×max p(λz) (3.34)

In Eq. (3.34), Υ ∈ [0, 1) is the tuning parameter that controls the range of removal

of delays, i.e. when Υ = 0, then the delays in the initial range will remain the same

throughout, and when Υ = 1, the most probable delay will only be present. It has to

be noted that this idea of updating the range is only applicable to the case of a fixed

delay in each input. In the case when the criterion in Eq. (3.34) is met, the search is

stopped, and the range of delay will be updated from d1 = dnew1 to d2 = dnew2 as shown

in Fig. 3.2. This step of updating the delay range will help in faster convergence.

Figure 3.2: Search algorithm representation

After calculating all the terms in Q− function (Eq. (3.11)), the parameters are

estimated by taking derivatives in the maximization step and are given as follows:

P :
∂(Q1 +Q

′
1)

∂P
= 0 µx :

∂(Q1 +Q
′
1)

∂µx
= 0 σ2

x :
∂(Q1 +Q

′
1)

∂σ2
x

= 0

C :
∂(Q2)

∂C
= 0 µy :

∂(Q2)

∂µy
= 0 σ2

y :
∂(Q2)

∂σ2
y

= 0

and the updating equations for the parameters are given in Eqs. (3.35)- (3.40)

The weighting matrices P and C are updated based on Eqs. (3.35) and (3.36), re-
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spectively.

P new = [
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

× (2(E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)− µx)E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old)T )

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
)

× (2(E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)− µx)E(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ

old)T )]

× [
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)(B)

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
)(B

′
)]−1

(3.35)

where

A = E(tit
T
i | xioλ ,yi, λ1 = j1, · · · , λm = jm,θ

old)− E(ti | xioλ ,yi, λ1 = j1, · · · , λm = jm,θ
old)E(ti | xioλ ,yi, λ1 = j1, · · · , λm = jm,θ

old)T

A
′
= E(tit

T
i | xioλ , λ1 = j1, · · · , λm = jm,θ

old)− E(ti | xioλ , λ1 = j1, · · · , λm = jm,θ
old)E(ti | xioλ , λ1 = j1, · · · , λm = jm,θ

old)T

B = A+ AT + 2E(ti | xioλ ,yi, λ1 = j1, · · · , λm = jm,θ
old)E(ti | xioλ ,yi, λ1 = j1, · · · , λm = jm,θ

old)T

B
′

= A
′
+ A

′T + 2E(ti | xioλ , λ1 = j1, · · · , λm = jm,θ
old)E(ti | xioλ , λ1 = j1, · · · , λm = jm,θ

old)T

Cnew =

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

×(2(yi − µy)E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)T )

]
×

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)(B)

−1

(3.36)

Similarly, the update equations for input and output covariances are provided in
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Eqs. (3.37) and (3.38), respectively.

σ2new
x =

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)(Sx)

∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
)(S

′

x)


×

m× (
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
))

−1

(3.37)

where

Sx = (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)− µx)T (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old)− µx)

− E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)TP T (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old)− µx)

− (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)− µx)TPE(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old) + tr(P TP (A))

+ E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)TP TPE(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old)

S
′

x = (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)− µx)T (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ

old)− µx)

− E(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)TP T (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ

old)− µx)

− (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)− µx)TPE(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ

old) + tr(P TP (A
′
))

+ E(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)TP TPE(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ

old)

and:

σ2new
y =

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)(Sy)


×

r × (
∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
))

−1

(3.38)

where

Sy = (yi − µy)T (yi − µy)− E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)TCT (yi − µy)

− (yi − µy)TCE(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old) + tr(CTC(A))

+ E(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ
old)TCTCE(ti | λ1 = j1, · · · , λm = jm,xioλ ,yi,θ

old)

Finally, the updating equations for the input and output mean are derived in Eqs (3.39)
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and (3.40), respectively.

µnewx =

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

×(E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)− PE(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ

old))

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
)

× (E(xiλ | λ1 = j1, · · · , λm = jm,xioλ ,θ
old)− PE(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ

old))
]

×

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

+
∑
i∈M

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,θ
old) · · · p(λm = jm | xioλ ,θ

old)× exp(
−d2

i

φ
)

−1

(3.39)

µnewy =

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

×(yi −CE(ti | λ1 = j1, · · · , λm = jm,xioλ ,θ
old))

]

×

∑
i∈O

d12∑
j1=d11

· · ·
dm2∑

jm=dm1

p(λ1 = j1 | xioλ ,yi,θ
old) · · · p(λm = jm | xioλ ,yi,θ

old)× exp(
−d2

i

φ
)

−1

(3.40)

The parameters in Eqs. (3.35)-(3.40) are estimated in an iterative manner by

using the updated posterior probabilities given in Eqs. (3.12)-(3.32) till the estimates

converge.

3.2.4 Online Predictions

For the application of soft sensor, it is necessary to predict the variables online. The

term given in Eq. (3.41) is used to perform the online predictions given a new data

point, xq.

ŷnew = Ct̂new + µy (3.41)

Now, to estimate t̂new in Eq. (3.41), the posterior probability of the latent variable

given the input information (new data point) is required. This posterior probability

is given as

p (tnew | xq) =
p (tnew) p (xq | tnew)

p (xq)
(3.42)
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From Eq. (3.42), it can be observed that the latent variable follows a Gaussian dis-

tribution and hence t̂new is estimated by the mean value of the distribution as,

t̂new = E(tnew | xq) = (σ−2
x P

TP + I)(σ−2
x P

T (xq − µx)) (3.43)

The predictions of the quality variables i.e., ŷnew is obtained by substituting Eq. (3.43)

in Eq. (3.41).

3.3 Case Studies

In this section, the performance of the proposed algorithm is demonstrated by consid-

ering a numerical example, first. An experiment on a hybrid tank pilot plant system

is performed to demonstrate the practical applicability of the proposed algorithm.

3.3.1 Numerical Example

A two-operating-mode problem with 6 input variables and one output variable as

given in Eq. (3.44) is considered.

mode 1 : xi ∼ N (0, σ1) i = 1, 2, 3

mode 2 : xi ∼ N (0, σ2) + 1.2 i = 1, 2, 3

x4 = x2
1 x5 = sin(x2 + 1) x6 = cos(x3 + 1)

y = x2
1 + exp(x2/3) + sin(x3)

(3.44)

where σ1 is 0.1 and σ2 is 0.3 [54]. After generating the data using Eq. (3.44), the

input variables 1 to 6 are shifted artificially by {4, 2, 1, 5, 3, 2} samples respectively

to account for the delay factor. A total of 400 samples (200 samples for each mode)

are generated, of which, 300 samples are used for training, and 100 samples are used

for validation. The trend of the input variables and the output variable is presented

in Fig. 3.3.

While developing a weighted PPCR model, the number of relevant samples is

chosen as 20, and the dimension of the latent variable is determined as 3 by doing cross

validation analysis [10]. To demonstrate the superiority of the proposed algorithm, a

comparative study is performed with the cross correlation (CC) analysis [65], which is

one of the most prominent methods in identifying time-delays and also with a regular

PPCR method [66]. Though CC analysis is one of the prominent methods, it is

well known that the performance of this method degrades in the presence of missing

and/or high noises [67]. The results of the comparative study in the presence of
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Figure 3.3: Generated data for numerical example.

different amount of missing data are provided in Table 3.1 which are the mean values

after a hundred iterations with different initialization, and the prediction results for

the case of 15% missing in input and 30% missing in output are shown through a

scatter plot in Fig. 3.4. The modes of the estimated values of the time-delays with

the proposed algorithm are {4, 2, 1, 5, 3, 2}.
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Table 3.1: RMSE and R2 values under various missing inputs and outputs data

No missing input 15%

Proposed Model PPCR PPCR+CC Proposed Model PPCR PPCR+CC

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

No missing output 0.2831 0.9415 0.9924 0.4231 0.3072 0.9342 0.2543 0.9406 1.003 0.403 0.4642 0.9222
5% 0.2842 0.9399 1.0970 0.3942 0.6788 0.8990 0.2973 0.9379 1.1438 0.3869 0.6822 0.8978
30% 0.3095 0.9351 1.283 0.3641 0.7236 0.8804 0.3442 0.9245 1.5270 0.3257 0.8729 0.8664

From the results presented in Table 3.1 and Fig. 3.4, it can be concluded that

the proposed algorithm is able to provide better performance and more accurate

estimations compared to the traditional methods due to its ability in handling noise,

missing data and identifying time-delays.

3.3.2 Experimental study: Hybrid tank pilot plant system

A hybrid tank pilot plant system, as shown in Fig. 3.5, is considered for demonstrating

the practical applicability of the proposed algorithm. A hybrid tank system consists

of three cylindrical tanks connected by six valves, namely V1-V4, V6, and V8, and a

container at the bottom of these three tanks to collect the tanks’ outflow. Three

level-sensors, namely LT1, LT2 and LT3, are used to measure the level in each of these

tanks. The tanks are connected to the container through three valves, namely V5, V7,

and V9. Two similar pumps are also connected to this container to send the water

into Tanks 1 and 3, and the flowrate of these streams is considered as manipulated

variables. The level in Tank 2 is regarded as the variable that is of interest. A more

detailed explanation of this hybrid tank pilot plant system can be found in [68, 49].

To account for the multi-modal nature of processes, two different operating re-

gions are considered by manipulating the inlet flowrates of Tanks 1 and 3 around

4.75 and 5.15 for the first operating region that is called normal operating mode and

around 6.15 and 6 for the second operating point that is called the abnormal operat-

ing mode, respectively, where the phenomena of overflow might arise. The input and

output data for the mentioned operating condition are shown in Figures 3.6(a) and

3.6(b), respectively. The data consist of nearly 1100 samples, of which 600 samples

are used for training the model, and 500 samples are used for validation. To demon-

strate the efficacy of the proposed algorithm for modeling with time-delay in data, an

artificial time-delay of 6 is introduced to the left flowrate, and the right flowrate has

the time-delay of 2. A comparative study is made among the proposed algorithm,

PPCR, and PPCR with the help of CC to identify the delays before modeling where

10% of input variables and 45% of the output variable are missed. The mean values
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Figure 3.4: Online prediction performance of the proposed algorithm on the numerical
data with delayed and 15% missing input data and 30% missing in output.

after 100 different initializations are provided in Table 3.2, and the estimated values

are visualized in Fig. 3.7.
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Figure 3.5: Schematic of the Hybrid Tank Pilot Plant

Table 3.2: RMSE and R2 values of three different algorithms when 10% of input
variables and 45% of output variable are missed

proposed algorithm PPCR PPCR+CC

R2 0.8427 0.4476 0.7125
RMSE 1.1271 2.8515 1.5246

From the comparison provided in Table 3.2 and Fig. 3.7, it can be concluded that

the proposed algorithm is able to deal with the presence of constant but different time-

delay for each input variable while building the PPCR model. Moreover, the proposed

algorithm is able to provide more accurate model compared to the other algorithms

in the presence of missing values in input and output variables. In addition, the mode

of the estimated time-delays are {5, 2} for the left and the right flowrate, respectively

that is very close to the original values, {6, 2}.

3.4 Conclusion

In this chapter, a weighted semi-supervised PPCR (WSSPPCR) model with missing

input and delayed output data for modeling non-linear and/or multi-modal processes

is developed. The proposed algorithm can deal with missing input and output data

with the help of data imputation and semi-supervised learning, respectively. It can

also efficiently cope with the existence of time-delays between each input and out-
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Figure 3.6: Collected data for experimental example.

put variable. Further, to optimize the time-delay range for each input variable and

speed up the modeling process with less computational effort, a searching approach is

proposed. The performance of the proposed algorithm is demonstrated through a nu-

merical example and an experimental study. From the comparative studies between

the proposed algorithm, regular PPCR, and PPCR with CC analysis for the delay, it
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can be observed that the proposed algorithm has a better performance compared to

all the competing methods.
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Chapter 4

Data-driven self-optimization of
process in the presence of the
model-plant mismatch1,2

4.1 Introduction

Increasing productivity, safety, and efficiency have always been the main objectives of

industrial plants. The objective of plant optimization is to reduce or abolish resource

wastage and bottlenecks while accomplishing the objective of the plant and meeting all

plant constraints, including operational, economic, and safety. Due to the reduction

in the availability of the raw materials [69], the increase in the market demand for

the products because of escalation in the number of the world’s population [70],

and the environmental concerns like global warming as a result of the emission of

the greenhouse gases (GHG) [71], plant optimization has gained more popularity,

recently. One of the approaches to do plant optimization is optimizing through the

model.

Plant optimization can be performed based on the development of a model, which

is generally obtained through two different approaches, i) first principle model-based

optimization and ii) data-driven model-based optimization [12, 13]. In the first prin-

1A. Memarian, S. K. Varanasi, B. Huang. ”Data-Driven Self-Optimization for plant Operations”.
Presented in Canadian Chemical Engineering Conference 2021, October 24-27, Montreal, Quebec,
Canada, 2021 (Chapter 4 - Extended abstract)

2A.Memarian, S. K. Varanasi, B. Huang. ”Data-driven self-optimization of processes in the pres-
ence of the model-plant mismatch”. Submitted to 13th IFAC Symposium on Dynamics and Control
of Process Systems, (DYCOPS), June 14-27 2022, Busan, Republic of Korea, 2022 (Chapter 4 -
Short Version)
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ciple model-based optimization, the plant is modeled with the help of deriving the

governing equations from the fundamental laws, which needs an in-depth understand-

ing of the plant [14]. On the other hand, in data-driven model-based optimization, a

model is built based on the historical data. The closer the developed model is to the

plant, the more accurate optimal point can be obtained by solving the optimization

problem [72]. However, due to the differences between the model and plant (model-

plant mismatch) and the disturbances that may occur during the data collection, the

optimal point obtained by solving the optimization problem can be different from the

true plant’s optimal point [73].

To account for the model-plant mismatch in process optimization, the scheme

of modifier adaptation is proposed in [74, 75, 76, 77]. In this scheme, the error be-

tween the developed model and the plant is incorporated in the objective function

while performing the optimization by using the information and measurements col-

lected from the plant. The authors in [74] provided a theorem that demonstrates

the equivalence of KKT conditions of the plant and the model with the inclusion of

the modifier adapters. They suggested the use of gradients of the objective function

and constraints calculated from plant measurements as a functional form of modifier

adapter. Although the calculation of gradients from noisy plant measurements can be

challenging, it is demonstrated to be a reasonably reliable and effective approach [78].

To overcome the challenges with the calculation of gradients, several methods such

as nested modifier adapters [79], recursive modifier adapters [80], and derivative-free

modifier adapters [81] are proposed. Recently, the authors in [73] proposed using

Gaussian process regression (GPR) as a modifier adapter. In this work, the histor-

ical data and real measurements obtained from the plant are used to train the GP;

thereby a nonlinear model on the modeling error that accounts for the model-plant

mismatch is obtained. The authors in [77] proposed a trust-region framework and

the Gaussian process modifier adapters to control the optimization region and to

avoid the possibility of violation of constraints. However, the convergence to a local

optimal is still a challenging problem in all the aforementioned methods. One of

the approaches to overcome this challenge is considering uncertainty in solving the

optimization problem [82].

With the fast pace of development in the field of reinforcement learning [83, 84,

85], the concept of self-reflective objective is gaining popularity. In this concept, the

accuracy and reliability of the optimization problem are improved by consideration

of uncertainty. Although many studies have focused on increasing the accuracy of
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the scheme of modifier adaptation, the potential of reinforcement learning has not

been studied extensively in the modifier adaptation and optimization problems in

general. One of the concepts that can help to increase the accuracy of the opti-

mization is acquisition functions that are used in Bayesian optimization and provide

the balance between exploration(trying something new) and exploitation(keep doing

what has been done) [82]. In all the aforementioned studies, the modifier adaptation

scheme is used along with the first principle models, which essentially requires an

in-depth understanding of the process and hence, is not always feasible. In addition

to finding the optimal point, an efficient way to steer the process to the optimal point

is of paramount importance. Trust-region-based Real-time optimization (RTO) is

one of the solutions finding an efficient way to the optimal point [86]. However, the

application of the data-driven RTO has not been well studied [87, 88].

In view of the aforementioned points, a novel self-optimization algorithm is de-

veloped in this work that can find both the plant optimal point and the efficient way

to shift from the current operating condition to the determined optimal point. The

proposed algorithm considers a generalized weighted PPCR model due to its ability

to deal with missing data in both input and output variables, outliers, and time-

delays [68, 89]. Since weighted PPCR is a linear model, and the plant is nonlinear in

general, a non-linearity index is used to help the local data-driven model to determine

its accuracy based on the plant operating point. The proposed non-linearity index

measures the mismatch between the locally weighted PPCR model and the nonlinear

GPR model. Then, this non-linearity index is used in determining the trust range of

the generalized weighted PPCR model; thereby, an increase in the accuracy of the

model is obtained. In addition, the GPR is used as a modifier adapter to account

for the model-plant mismatch. Finally, the concept of acquisition functions is used in

optimization problem to study the significance of exploration.

The remainder of this chapter provides a brief overview on modifier adaptation,

Gaussian process regression, and acquisition function in section 4.2. The proposed

method of the data-driven self-optimization in the presence of the model-plant mis-

match and the study of acquisition functions for exploration is detailed in section 4.3.

The efficiency of the algorithm is illustrated through a simulation case study on a

deethanizer column and an industrial application to show its applicability and feasi-

bility in section 4.4, and the conclusions are drawn in section 4.5.
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4.2 Preliminaries

This section provides details regarding the modifier adaptation scheme, Gaussian

process regression model, and acquisition functions.

4.2.1 Model-plant mismatch

To find the optimal point of a steady-state plant, the following optimization problem

needs to be solved.

min
u
Gp

0(u) := g0(u, yp(u))

s.t. Gp
i (u) := gi(u, y

p(u)) ≤ 0, i = 1, · · · , ng
(4.1)

where Gp
0 is the objective function of the plant where the superscript ”p” denotes

the plant, and Gp
i , ∀i = 1, · · · , ng are the constraints that should be satisfied while

solving the optimization problem, with ng denoting the total number of constraints

in the optimization problem.

Finding a mapping between input and output variables to describe the plant

with a greater accuracy can be challenging and is not always possible due to the

complexity of the process and lack of in-depth understanding of the operations [77].

Therefore, the mapping between input and output variables is modeled with the help

of data-driven models in this chapter, and the model-based optimization problem is

defined in Eq. (4.2).

min
u
G0(u) := g0(u, y(u, θ))

s.t. Gi(u) := gi(u, y(u, θ)) ≤ 0, i = 1, · · · , ng
(4.2)

The term y(u, θ) in Eq. (4.2) represents the mapping between input and output

variables, and θ is the parameters of the model.

The model-plant mismatch is frequently observed while developing a model.

Hence, the optimal point of Eq. (4.1) is usually different from the one found from

the modified optimization problem in Eq. (4.2), as shown in Fig. 4.1. Hence, the

authors in [74] proposed using the modifier adaptation scheme for both objective and

constraints to account for the model-plant mismatch.

4.2.2 Gaussian process regression

Gaussian process regression (GPR) is a non-parametric modeling approach that is

first proposed in [90]. The assumption in GP regression is that any function can be
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Figure 4.1: model-plant mismatch effect on optimization

modeled using a combination of multivariate Gaussian distributions in the presence

of noisy measurements through a varying number of parameters. This model requires

the mean function and the covariance function, where its representation is provided

in Eq. (4.3) and Fig.4.2.

f(u, y(u, θ)) ∼ GP(m(u), K(u, u
′
)) (4.3)

In Eq. (4.3), m(u) is the mean function and a constant mean value function is used

in the current chapter. The K(u, u
′
) is the covariance function calculated based on

different positive definite kernel matrices. There are different choices, like Squared

Exponential Kernel, Rational Quadratic Kernel, Periodic Kernel, Locally Periodic

Kernel, Linear Kernel [91]. In Eq. (4.4), the derivations of the squared exponential

kernel and rotational quadratic kernel, which are among the most popular kernel

matrices, are provided [91]. In this work, the squared exponential kernel is considered

because it can be utilized for most functions and has fewer parameters.

KSE(u, u
′
) := σ2 exp(−1

2
(u− u′)TΛ(u− u′))

KRQ(u, u
′
) := σ2

(
1 +

1

2α
(u− u′)TΛ(u− u′)

)−α (4.4)

One of the challenges with the industrial datasets is the presence of the outliers

that may affect the accuracy of the model in Eq. (4.3). The authors in [92] proposed
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a robust GP regression that can efficiently handle outliers. This method is utilized

in the proposed optimization.
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(a) GP regression with clean data
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Figure 4.2: Mean prediction with the prediction interval by 2 standard deviation from
the mean.

4.2.3 Acquisition functions

Acquisition functions are mathematical equations that account for the exploration of

the parameter space in an algorithm in addition to the exploitation. They use the
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predicted mean and predicted variance generated by the Gaussian process regression

model. Exploitation consists of searching the limited parameter space and hoping for

improving the in-hand solution. However, exploration pushes the search area to a

larger space to find better solutions towards the unexplored regions.

There are different types of acquisition functions proposed in the literature.

Among the proposed acquisition functions, expected improvement [93], lower or up-

per confidence bound [94], probability of improvement [95], entropy search [96] are

the most commonly used. Among the mentioned acquisition functions, lower confi-

dence bound (LCB) is the most common function used in the literature due to its

simplicity [97]. LCB tries to consider both the exploitation (GP’s mean) and the ex-

ploration (GP’s variance) at the same time to improve the solution of optimization by

considering the uncertainty to minimize the regret and loss while using the Bayesian

optimization. In Eq. (4.5), the LCB acquisition function is presented.

ALCB[µ, σ](u) := µf (u)− βσ(u) (4.5)

where µ is the estimated mean, and σ is the estimated uncertainty term. β ∈ [0,∞)

is the exploration tuning parameter. Most acquisition functions have an exploration

parameter that defines how much exploration is desired and needs to be tuned to

obtain the best solution. By setting β = 0, it is dictated that no exploration will be

added to the optimization problem.

4.3 Data-driven self-optimization of processes in

the presence of the model-plant mismatch

In this section, the data-driven self-optimization of processes in the presence of the

model-plant mismatch is presented. The proposed approach utilizes a generalized

weighted PPCR model that can handle the missing data in both input and out-

put variables, time-delay, and outliers in data. Moreover, due to its weighted local

model property, it can efficiently handle the nonlinearity and/or multi-modal nature

of plants [68, 89]. A robust Gaussian process regression model is used to account

for the model-plant mismatch between the weighted PPCR model and the plant. To

balance the exploitation and exploration terms in the optimization problem, the lower

confidence bound is used as an acquisition function both in the objective and con-

straint functions in this chapter. The details are provided in the rest of this section.
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4.3.1 Generalized weighted PPCR model formulation

The most important step while solving an optimization problem is to build a suit-

able model that can describe the plant with sufficient accuracy. Hence, data-driven

modeling is one of the approaches that can help. In the proposed self-optimization al-

gorithm, a generalized weighted PPCR model is used as a data-driven model to mimic

the plant that is described in [68, 89]. The generalized weighted PPCR model is one

of the simplest models yet effective in dealing with different possible uncertainties in

the plant’s datasets.

The generative equation for the generalized weighted PPCR model is presented

in Eq. (4.6).
xiλ = Pti + ei + µx, i = 1, 2, · · · , n

yj = Ctj + fj + µy, j = 1, 2, · · · , n1

(4.6)

where, xiλ ∈ Rm×1 and yi ∈ Rr×1 denote the input and output data, respectively, i.e.

xiλ =


x1i−λ1
x2i−λ2

...
xmi−λm

 (4.7)

where λ1, λ2, · · · , λm are the time-delays for the m input variables, respectively. P ∈
Rm×q and C ∈ Rr×q are the weighting matrices, and ti ∈ Rq×1 is a vector of latent

variables. The variables ei ∈ Rm×1 and fi ∈ Rr×1 denote the measurement noise in

input and output, respectively, which are assumed to follow a mixture of two Gaussian

distributions given in Eqs. (4.9) and (4.10) to account for outliers and regular noises.

The mean values of the input and output variables are denoted with µx and µy,

respectively.

ti ∼ N (0, I) (4.8)

ei ∼ (1− δx)N (0, σ2
xI) + δxN (0,ρ−1

x σ2
xI) (4.9)

fi ∼ (1− δy)N (0, σ2
yI) + δyN (0,ρ−1

y σ2
yI) (4.10)

Due to the nonlinear and/or multi-modal nature of the plants, developing a single

PPCR model to capture the entire plant is not suitable. Thus, to improve the ac-

curacy in modeling, exponential weights are calculated based on Euclidean distance

assigned to pick the most relevant data points for building the model. The weights

are calculated based on Eq. (4.11).

wi = exp(
−d2

i

φ
) (4.11)

58



where φ is a tuning parameter that defines how the weights are spread across the

neighborhood of the testing data to develop the weighted PPCR model, and di is

the Euclidean distance. The detailed introduction of the weighted PPCR model

can be found in [89]. The model is developed under the framework of expectation

maximization (EM) algorithm. The parameters are estimated from the Q−function
presented in Eq. (4.12).

Q =

EXλ,T ,Qx,Qy ,Γ|Xoλ
,Y ,θold

[∑
i∈O

wi log p(xiλ ,yi, ti, Qx, Qy,Γ | θ) +
∑
i∈M

wi log p(xiλ , ti, Qx, Qy,Γ | θ)

]
(4.12)

The Q − function presented in Eq. (4.12) is solved by incorporating the equations

derived in Chapter 2 and Chapter 3. In the rest of this chapter, the generalized

weighted PPCR model is denoted as GPPCR.

4.3.2 Data-driven self-optimization algorithm formulation

Since the plant conditions change over time, the historical data that is used to build

the model may not be able to accurately describe the current condition of the plant.

Therefore, a model-plant mismatch exists between the weighted PPCR model built

from the historical data and the current condition of the plant. To account for

this model-plant mismatch, the authors in [73] proposed to use the Gaussian process

regression (GPR). The objective of this GPR model is to build a model by considering

the differences between the values of the objective function that are calculated from

the plant (real-time measurements) and the estimation from the weighted PPCR

model. A similar approach is also followed for the constraints, and the resultant set

of equations are shown in Eq. (4.13).

δGi = GP
i −GPPCR

i ∼ GP(µδGi ,σ
2
δGi

), i = 0, · · · , ng (4.13)

where ng is the total number of constraints.

Hence, the optimization problem in Eq. (??) can be modified and is given in

Eq. (4.14)

uk+1∗ ∈ arg min
u∈U

[GPPCR
0 + µkδG0

](u)

s.t. [GPPCR
i + µkδGi ](u) ≤ 0, i = 1, · · · , ng

(4.14)

where µkδGi is the estimated mean of the GP regression that accounts for the term of

model-plant mismatch in iteration k. The mean values used in Eq. (4.14) are those
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values that are estimated from Eq. (4.13) which approximates the model-plant mis-

match and correct the objective function and constraints in the optimization problem.

As discussed in section 4.3.1, the amount of data points relevant to the current

operating condition is determined by tuning the parameter φ i.e., by decreasing φ,

fewer data points will contribute to the model construction. If the current operating

point is in a highly nonlinear region, building the weighted PPCR model might not

have a sufficient accuracy. Thus, by decreasing the parameter φ, less number of

data points will receive significant weights for the corresponding data points to be

effectively utilized; hence, a generalized weighted PPCR model in a smaller region

will be built. On the other hand, when the weighted PPCR model approximates the

nonlinear plant very well, we can increase area and have more data with sufficient

weight while developing a model. Hence, a non-linearity index is proposed to define

the range of data to be effectively used, and based on the index, the parameter φ

can be tuned. The non-linearity index calculates the performance ratio between the

nonlinear model (GP regression model) built from the historical data and the linear

weighted PPCR model, as can be seen in Eq. (4.15).

ρk+1 :=
GGP

0 (uk)−GGP
0 (uk+1∗)

[GPPCR
0 + µkδG0

](uk)− [GPPCR
0 + µkδG0

](uk+1∗)
(4.15)

After calculating the non-linearity index from Eq. (4.15), similar to the concept

of trust-region optimization [77], three different thresholds are determined to tune

φ. These three thresholds are 0 < η1 ≤ η2 < η3 ≤ 1. The shrinking and expansion

actions to change φ are 0 < t1 < 1 < t2 where t1 and t2 are shrinking and expansion

values, respectively. It has to be noted that these parameters should be tuned before

starting the algorithm [77].

The size of the weighted PPCR model is updated based on the following steps:

1. If GP
i (uk+1∗) > 0 for some i = 1, · · · , ng or ρk+1 < η2 then φ := t1 × φ

2. Else if ρk+1 > η3 then φ := min{t2 × φ, φmax}

3. Else φ := φ

where φmax is the maximum allowable value that φ can take. Based on the value of

ρ, the decision will be made on whether to repeat the optimization, or the obtained

optimal point can be used as the operating point for the next iteration. The decision
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criterion is as following:

1. If GP
i (uk+1∗) > 0 for some i = 1, · · · , ng or ρk+1 < η1 then uk+1 := uk

2. Else uk+1 := uk+1∗

Based on the aforementioned steps, the number of effective points, which need

to be accounted for the optimization, will be changed and adjusted based on the

performance of the previous iteration. The steps of the proposed algorithm is provided

in Algorithm 1.

Algorithm 1: Data-driven self-optimization algorithm

Input: historical data (input and output); initial (query) point, xq;
maximum value for φmax and an initial value for φ; non-linearity threshold
parameters 0 < η1 ≤ η2 < η3 ≤ 1; expansion and shrinking parameters t1
and t2; objective and ng constraint functions of the optimization problem

Repeat: for k = 0, 1, · · ·
1: Build the generalized weighted PPCR model for the given xq and the

historical data
2: Train GP regression modifiers based on the weighted PPCR estimates and

the real-time measurements of the plant
3: Solve the modified optimization problem provided in Eq. (4.14) and obtain
uk+1

4: Calculate the non-linearity index ρk+1

5: Update the value of φ based on the value of ρk+1

6: Based on the developed criterion decide to accept the new operating point
or to repeat the optimization problem in step 3.

7: xq ← uk+1 or xq ← uk based on the previous step’s result

One of the drawbacks of algorithm 1 is that the solution obtained from the

optimization problem can get into the local optimum. To circumvent this problem

and letting the optimization explore more locations, the acquisition function from

the theory of reinforcement learning and Bayesian optimization is used. The authors

in [82] proposed using the acquisition functions in objective function. However, in

our proposed method, acquisition functions are used both in objective and constraint

functions. Therefore, the LCB acquisition function is used [97] and the modified

optimization problem is given in Eq. (4.16):

uk+1∗ ∈ arg min
u∈U

[GPPCR
0 + µkδG0

− βσ2
δG0

](u)

s.t. [GPPCR
i + µkδGi − βσ

2
δGi

](u) ≤ 0, i = 1, · · · , ng
(4.16)
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In Eq. (4.16), the variances estimated from the GPR in Eq. (4.13) are used to take

the optimization search to a newer area and may therefore escape the local optimum

points. The negative sign before β is consistent with the optimization problem as

the goal is to minimize the objective function. Introducing the LCB acquisition

function in the constraints helps to relax these functions while solving the optimization

problem. However, if it is needed to tighten the constraints, the UCB acquisition

function can be used. With the introduction of acquisition functions, the optimization

problem provided in Eq. (4.16) is solved in the step 3 of Algorithm 1, and the rest of

the steps remain the same.

4.4 Case Studies

In this section, the performance of the proposed algorithm is demonstrated by a sim-

ulation of a deethanizer column through the Aspen HYSYS V.9 [1]. An industrial

example on the zinc roasting unit is also used to demonstrate the practical applica-

bility of the proposed method.

4.4.1 Simulation Example: Deethanizer column

The deethanizer column is a continuous operating distillation column used for ex-

tracting ethane as a distillate from a mixed feed that contains light hydrocarbons.

Deethanizer column is one of the most important units in refineries and is usually

located ahead of other units in the plant.

In Fig. 4.3, a principle of the deethanizer column is demonstrated. The objective

of the deethanizer column in the refinery plants is to separate C3+ components from

the upstream feed.

Figure 4.3: The schematic of the deethanizer plant [1]
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The main objective of optimization is to minimize the operational cost of the

unit, which depends on the energy consumption in the reboilers, the condensers and

the pumps. To minimize the energy consumption, the temperature and the feed rate

of the input stream needs to be regulated. Hence, the objective function is defined

as:
minTfeed,Ffeed Qreb +Qcond +Qpump

S.T. :

f(Qreb, Qcond, Qpump, Fbottom, XEthane,bottom, Tfeed, Ffeed) = 0

T feed ∈ [15, 30]

F feed ∈ [8000, 11000]

F bottom < 2× 105[kg/h]

Xethane,bottom < 0.05

(4.17)

where Ffeed and Fbottom are the flow rate of the feed and bottom product, respectively.

Tfeed is the feed’s temperature, and Xethane,bottom is the molar fraction of the ethane

in the bottom product. Qreb, Qcond, and Qpump are the terms corresponding to the

energy consumption of the reboiler, condenser, and pump, respectively. f(.) = 0 is

the PPCR model that relates input and output variables to each other. The first

two constraints i.e., Tfeed, Ffeed which are defined in Eq. (4.17) are the operational

constraints, and the Fbottom and Xethane,bottom are the planning constraints. In such a

setting, 15% of the input and 35% of the output variables are assumed to be missed,

and 10% of the data is replaced with outliers.

By solving the optimization of Eq. (4.17) with the optimization module of Aspen

HYSYS, the minimum energy consumption is 1.082×108[W ] and the decision variables

are found to be Tfeed = 16.3 and Ffeed = 10485. The operating region and the actual

solution to the optimization of Eq. (4.17) are presented in Fig. 4.4

To demonstrate the efficacy of the proposed method in steering the plant to

its optimal point, two different initializations (current operating points, COPs) are

considered. In Fig. 4.5(a), the locations of these COPs are shown in Fig. 4.5(b), where

the path and the final solution obtained by the proposed method for each COP are

provided.

Based on the results demonstrated in Fig. 4.5, the proposed algorithm is able to

find the optimal path and solution, and steer the plant to the desired point. It is well

known that the amount of signal to noise ratio (SNR) can affect the performance of

63



Figure 4.4: Operating region and optimal point of the deethanizer problem

the algorithm. To study the effect of measurement noise on the proposed algorithm,

eight different noise levels are considered for this study whose optimal points are

shown with 4. Two different initial operating points are considered for this study

which are similar in all the noise levels. As it can be seen from Figure 4.6(a), solu-

tions corresponding to noisy data (low SNR) are getting trapped in local optimum

points instead of getting close to the true optimum. To obtain a possible better

solution through the discovery of the new path by searching through a wider opti-

mization region, the exploration described in Eq. (4.16) is applied, and the results

are demonstrated in Figure 4.6(b).

From the results of Fig. 4.6, it can be concluded that with the inclusion of

exploration in the optimization as explained in Eq. (4.16), helps in better convergence

to the actual optimal point, and avoid being trapped in the local optimum points.

4.4.2 Industrial case study: Zinc roasting unit

One of the minerals that have vast application in different industries is zinc. One of the

applications of zinc is galvanizing other materials like iron and aluminum to prevent

rusting. The galvanized steel is used as the main material for car bodies, street lamps,

safety barriers beside the roads, and suspension bridges. Moreover, zinc can be used

to produce die-castings which are essential for electrical and automobile industries.

Zinc is also one of the components used in alloy productions. In addition, zinc oxide

can be used in rubber, pharmaceuticals, paints, textiles, and soap manufacturers [98].

One of the processes to produce zinc or zinc oxide is the roasting unit that is shown
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(a) Locations of COP 1 and COP 2

(b) Optimal path and solution from the proposed algorithm

Figure 4.5: Initial points and the solutions obtained by the proposed data-driven
self-optimization algorithm

in Fig. 4.7. In this unit, zinc sulfide feed turn into zinc oxide at high temperatures

which contains impurity. The reactions that take place in the fluidized-bed roaster

are provided in Eq. (4.18):

2 ZnS + 3 O2
4−−→ 2 ZnO + 2 SO2

2 SO2 + O2
4−−→ 2 SO3

(4.18)
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(a) Data-driven self-optimization algorithm without exploration

16 18 20 22 24 26 28 30
Feed Temperature [°C]

8000

8500

9000

9500

10000

10500

11000

Fe
ed
 F
lo
wr
at
e 
[K
gm

ol
/h
r]

Plant minimum

COP 1

(b) Data-driven self-optimization algorithm with with exploration

Figure 4.6: Study the effect of exploration in the optimization problem. Solutions
to the optimization problem with 8 different noise levels (shown with 4) without
exploration (Figure 4.6(a)) and with exploration (Figure 4.6(b))

The fluidized-bed roaster is operating below the atmospheric pressure and at temper-

atures around 1000°C [99]. Providing greater capacity, better sulfur removal capabil-

ity, and lower cost for maintenance is the advantage of the fluidized-bed roaster [100].

After the fluidized-bed roaster, products are sent to the leaching plant to leach zinc

oxide out of zinc.
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Figure 4.7: The schematic of the zinc roasting unit [2]

The objective of the optimization is to maximize the feed rate coming from

the warehouse, along with minimizing the required amount of oxygen for roasting

operation in the fluidized bed while keeping the other variables within the limits. Such

a process consists of 5 inputs (MVs) and 8 outputs (CVs) as described in Table 4.1.

A total of 1100 data points are collected from the plant and the normalized values of

all the variables are shown in Fig. 4.8, and the optimization problem is defined as:

min
allMV ′s

− FeedRate+ 1.2× λ

S.T. :

Li ≤ vari ≤ Hi ;∀i

yj = f(u) ∀j , u ∈MV

(4.19)

where Li is the lower and Hi is the upper bound, and λ is the required amount of

oxygen for roasting operation in the fluidized-bed roaster. vari represents input and

output variables.

The self-optimization algorithm is tested on two different initializations, and the

obtained results are shown in Fig 4.9. From the results shown in Fig. 4.9, it can be

concluded that the proposed method is attempting to maximize the feed rate and

minimizing the oxygen demand while simultaneously satisfying all other constraints.

Though the results provided in Fig. 4.9 are satisfactory, there is room for further

improvement as the feed rate is not at its upper bound. Thus the acquisition func-

tion is applied to investigate the possibilities of further improvement in the result of

optimization. The results obtained are shown in Fig. 4.10. As it can be observed
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Figure 4.8: Historical data of the zinc roasting unit.

from Fig 4.10, the acquisition function helps to improve the optimization and steer

the plant to a higher feed rate, and the algorithm reduces the possibility of getting

trapped in the local optimum.
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Figure 4.9: Optimizing the zinc roasting unit and finding the optimal path from two
different initializations
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Figure 4.10: Zinc roasting unit optimization with the help of acquisition function

4.5 Conclusion

In this work, a data-driven self-optimization of the process in the presence of model-

plant mismatch is proposed to find the plant optimum along with the optimal path to

reach the obtained point. The objective of the proposed algorithm is to automate the

procedure of finding optimal operating points of a process. It models the plant with

a generalized weighted PPCR model and the Gaussian process regression model is

utilized to compensate the model-plant mismatch. A non-linearity index is proposed

to adjust the weighted PPCR model to ensure its accuracy at a sufficient level. Finally,

to make a balance between exploitation and exploration, acquisition function is used

in the optimization. The performance of the proposed algorithm is demonstrated

on the simulated deethanizer column and an industrial zinc roasting unit. Based on

the results obtained from the case studies, it can be concluded that the proposed

algorithm is able to move the plant towards the plant’s optimal point.
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Table 4.1: Process variables description
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Chapter 5

Conclusions

In this chapter, summaries of the thesis are provided in section 5.1, and some possible

future research is discussed in section 5.2.

5.1 Summary

The main objective of this thesis is to introduce an online framework for plant opti-

mization and finding the optimal path for steering the plant to the optimal operating

point. Most of the available works rely on the first-principle models to describe the

plant and solve the optimization problem, which needs an in-depth understanding

of the process. Hence, a data-driven self-optimization algorithm in the presence of

the model-plant mismatch, outliers, delays, and missing data in both input and out-

put variables is proposed in this thesis. This algorithm is developed by utilizing a

generalized weighted probabilistic principal component regression (PPCR) model. It

attempts to model the plant by using the plant datasets that contain different types

of uncertainties like outliers, missing data in input and output variables, and delays

between the variables.

Chapter 1 provides the motivation and challenges in process optimization and

modeling of the industrial processes. An overview of contributions of the thesis pre-

sented.

In Chapter 2, modeling of the plant through the incorporation of a mixture

robust semi-supervised probabilistic principal component regression (MRSSPPCR)

model is proposed. This approach can address the high dimensionality of the pro-

cess alongside the multi-modal nature of the processes. The main advantage of the
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proposed approach lies in its ability to deal with outliers in each input and output

variable with different properties. Further, due to the sensor failure or delays in mea-

suring process variables, some measurements may be missing at times. The problem

of missing data in the input variables is addressed by the data imputation methods

when the data is missing completely at random (MCAR). For output variables, the

issue of missing data is addressed with the help of the semi-supervised learning. The

proposed model is developed through the expectation maximization (EM) algorithm

to estimate model parameters in the presence of hidden variables like missing data in

input variables, hidden operating modes, and outliers statistics. The significance of

this chapter is to develop a reliable model that can deal with different uncertainties

in the data. To demonstrate the prediction performance of the proposed model, a nu-

merical example and an experimental example on the hybrid tank pilot plant system

are provided where an improvement compared to the previously available models is

observed in both cases.

In Chapter 3, a weighted semi-supervised probabilistic principal component re-

gression with missing input and delayed output data is proposed to address the non-

linear nature of the processes, taking care of data high dimensionality. The proposed

model is able to deal with the time-delay between each input variable and output vari-

able. In addition, the model is robust to the missing data in both input and output

variables while an assumption of MCAR is considered. By utilizing the just-in-time

learning and locally weighted modeling, the proposed model is able to provide an

online local model based on the query points. Euclidean distance-based weights are

assigned to the process datasets such that only the most relevant data information is

utilized while developing a model. Similar to the previous chapter, the expectation

maximization (EM) algorithm is utilized for the development of a model. The EM

algorithm enables the model to identify time-delays, impute missing data in input

variables, and estimate the hidden variables of the PPCR model. In order to improve

the convergence of the PPCR model, an updating strategy for the delay ranges is

proposed, which can reduce the range of the considered delay for some/all of the

variables at each iteration. In contrary to the previous works that consider a fixed-

distribution for time-delay variables while developing a model, in the proposed model,

a free-distribution model is considered that gives more flexibility for each time-delay

to act independently. Finally, the model accuracy is demonstrated through a numer-

ical example and experimental study on the hybrid tank pilot plant system, and the

results are compared with the other methods, demonstrating the superiority of the

proposed method.
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In Chapter 4, a data-driven self-optimization in the presence of the plant-model

mismatch, is proposed which is an online data-driven approach for process optimiza-

tion. A combination of the modeling methods in Chapter 2 and Chapter 3 namely the

generalized weighted probabilistic principal component regression (PPCR) model, is

used to model the process. To account for the plant-model mismatch, a robust Gaus-

sian process regression model is used. A nonlinearity index is proposed to determine

the extent of nonlinearity in the process and adjust the generalized weighted PPCR

model accordingly. To increase the possibility of finding the optimal solution, the

acquisition function from reinforcement learning is used to make the exploration in

optimization process and obtain a trade off between exploitation and exploration.

The applicability of the proposed algorithm is demonstrated through an example on

the deethanizer column simulated through the Aspen HYSYS software. Finally, an

industrial zinc roasting unit is considered to demonstrate the practical applicability

of the proposed method.

5.2 Future Work

In Chapter 2, a MRSSPPCR model is proposed that deals with outliers with different

properties along with missing data in input and output variables. In the proposed

model, scaled outliers are studied, and a mixture of two Gaussian models is used to

differentiate the regular noise from outliers. Scaled outliers have a different variance

from the rest of the data, whereas location outliers represent a common problem

such as a jammed instrument which have different mean values. Considering the

location outliers with the scaled outliers can be a future work. Moreover, instead

of the mixture of two Gaussian distributions, a Laplace distribution or student’s

t distribution can be used. For missing data in input and output variables, the

assumption of missing completely at random (MCAR) is considered. The other types

of missing data like missing at random (MAR) or missing not at random (MNAR)

can be explored. In addition, the variational Bayesian (VB) algorithm can be used

instead of the expectation maximization (EM) algorithm where the VB provides a

measure for the amount of uncertainty in the parameters.

In Chapter 3, a weighted semi-supervised probabilistic principal component re-

gression (PPCR) is proposed. In the proposed model, the presence of the constant

time-delay is studied in the process datasets. In future work, the time-varying time-

delay can be investigated in the framework of the PPCR model. Moreover, the Kull-

back–Leibler (KL) divergence can be replaced instead of Euclidean distance-based
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weight assignment as Euclidean distance measures the distance point by point, it is

not robust to uncertainties. On the other hand, KL divergence is known to be a

better metric for measuring the distance that is used to find the similarity between

two different distributions and can possibly be robust to uncertainties.

In Chapter 4, an online data-driven optimization framework is proposed that

considers a steady-state model as its main model. The drawback of the static RTO

implementation is the steady-state wait time that delays the model adaptation [101].

In future work, this linear static model can be replaced with a dynamic model to

consider transitions between operating modes in addition to steady-state. For the ex-

ploration of the proposed optimization algorithm, the lower confidence bound (LCB)

acquisition function is used in both optimization objective function and constraints.

However, the study of the other types of the acquisition functions like the probability

of improvement, entropy search, and expected improvement is worthy to study, and

comparing these functions together can be an interesting direction. Further, exten-

sion to the Gaussian process regression model to deal with the missing data and delay

can be considered in future works.
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Appendix A

Mixing Proportions

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold) log p(k | θ) + λ

(
K∑
k=1

p(k | θ)− 1

)
= E(L2) = Q6 (A.1)

∂E(L2)

∂p(k | θ)
= 0 =⇒

n1∑
i=1

p(k | xi,o,yi,θold) + λ
K∑
k=1

p(k | θ) = 0 =⇒ λ = −n1 (A.2)

n∑
i=n1+1

K∑
k=1

p(k | xi,o,θold) log p(k | θ) + λ

(
K∑
k=1

p(k | θ)− 1

)
= E(L3) = Q

′

5 (A.3)

∂E(L3)

∂p(k | θ)
= 0 =⇒

n∑
i=n1+1

p(k | xi,o,θold)+λ
K∑
k=1

p(k | θ) = 0 =⇒ λ = −(n−n1) (A.4)
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Appendix B

Q-function Terms

The variables given below are used to simplify the notations while defining terms in
Q− function.

P?,4 = p(qxi,k = ? | xi,o,yi, k,θold)× p(qyi,k = 4 | xi,o,yi, k,θold)
P
′

?,4 = p(qxi,k = ? | xi,o, k,θold)× p(qyi,k = 4 | xi,o, k,θold)
E?,4 = E(ti,k | xi,o,yi, qxi,k = ?, qyi,k = 4, k,θold)
E
′

?,4 = E(ti,k | xi,o, qxi,k = ?, qyi,k = 4, k,θold)
E?,4(ti,k, t

T
i,k) = E(ti,kt

T
i,k | xi,o,yi, qxi,k = ?, qyi,k = 4, k,θold)

E
′

?,4(ti,k, t
T
i,k) = E(ti,kt

T
i,k | xi,o, qxi,k = ?, qyi,k = 4, k,θold)

(B.1)

where ? and 4 can be either 1 or ρ. The expressions for Q− function are as follows
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Q1 =

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)P1,1[
−1

2
log(2mπm × |σ2

x,kI|)−
1

2
σ−2
x,k((E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)T

× (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ
old)− µx,k)− ET

1,1P
T
k (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)
− (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)TPkE1,1 + tr(P T
k Pk(E1,1(ti,kt

T
i,k)− E1,1E

T
1,1)) + ET

1,1P
T
k PkE1,1)]+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)Pρ,1[
−1

2
log(2mπm × |ρ−1

x,kσ
2
x,kI|)−

1

2
σ−2
x,k((E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)T×

ρx,k(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ
old)− µx,k)− ET

ρ,1P
T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)−
(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,yi,θ

old)− µx,k)Tρx,kPkEρ,1 + ρx,ktr(P
T
k Pk(Eρ,1(ti,kt

T
i,k)− Eρ,1ET

1ρ,1))+

ET
ρ,1P

T
k ρx,kPkEρ,1)]

+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)P1,ρ[
−1

2
log((2π)m × |σ2

x,kI|)−
1

2
σ−2
x,k((E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)T

× (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ
old)− µx,k)− ET

1,ρP
T
k (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)
− (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)TPkE1,ρ + tr(P T
k Pk(E1,ρ(ti,kt

T
i,k)− E1,ρE

T
1,ρ)) + ET

1,ρP
T
k PkE1,ρ)]+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)Pρ,ρ[
−1

2
log((2π)m × |ρ−1

x,kσ
2
x,kI|)−

1

2
σ−2
x,k((E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)T×

ρx,k(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ
old)− µx,k)− ET

ρ,ρP
T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)−
(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,yi,θ

old)− µx,k)Tρx,kPkEρ,ρ + ρx,ktr(P
T
k Pk(Eρ,ρ(ti,kt

T
i,k)− Eρ,ρET

ρ,ρ))+

ET
ρ,ρP

T
k ρx,kPkEρ,ρ)]

(B.2)

Q4 =

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× P1,1 × [log(1− δx,k)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× Pρ,1 × [log(δx,k)]

+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× P1,ρ × [log(1− δx,k)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× Pρ,ρ × [log(δx,k)]

(B.3)

Q
′

3 =
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

1,1 × [log(1− δx,k)] +
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

ρ,1 × [log(δx,k)]

+
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

1,ρ × [log(1− δx,k)] +
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

ρ,ρ × [log(δx,k)]

(B.4)

Q5 =

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× P1,1 × [log(1− δy,k)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× Pρ,1 × [log(1− δy,k)]

+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× P1,ρ × [log(δy,k)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)× Pρ,ρ × [log(δy,k)]

(B.5)

Q
′

4 =
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

1,1 × [log(1− δy,k)] +
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

ρ,1 × [log(1− δy,k)]

+
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

1,ρ × [log(δy,k)] +
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)× P
′

ρ,ρ × [log(δy,k)]

(B.6)
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Q
′

1 =
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

1,1[
−1

2
log((2π)m × |σ2

x,kI|)−
1

2
σ−2
x,k((E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ

old)− µx,k)T

× (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ
old)− µx,k)− E

′T
1,1P

T
k (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ

old)− µx,k)
− (E(xi,k | qxi,k = 1, qyi,k = 1, k,xi,o,θ

old)− µx,k)TPkE
′

1,1 + tr(P T
k Pk(E

′

1,1(ti,kt
T
i,k)− E

′

1,1E
′T
1,1)) + E

′T
1,1P

T
k PkE

′

1,1)]+

n∑
i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

ρ,1[
−1

2
log((2π)m × |ρ−1

x,kσ
2
x,kI|)−

1

2
σ−2
x,k((E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ

old)− µx,k)T

× ρx,k × (E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ
old)− µx,k)− E

′T
ρ,1P

T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ

old)− µx,k)−
(E(xi,k | qxi,k = ρ, qyi,k = 1, k,xi,o,θ

old)− µx,k)Tρx,kPkE
′

ρ,1 + ρx,ktr(P
T
k Pk(E

′

ρ,1(ti,kt
T
i,k)− E

′

ρ,1E
′T
ρ,1)) + E

′T
ρ,1P

T
k ρx,kPkE

′

ρ,1)]+

n∑
i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

1,ρ[
−1

2
log((2π)m × |σ2

x,kI|)−
1

2
σ−2
x,k((E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ

old)− µx,k)T

× (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ
old)− µx,k)− E

′T
1,ρP

T
k (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ

old)− µx,k)
− (E(xi,k | qxi,k = 1, qyi,k = ρ, k,xi,o,θ

old)− µx,k)TPkE
′

1,ρ + tr(P T
k Pk(E

′

1,ρ(ti,kt
T
i,k)− E

′

1,ρE
′T
1,ρ)) + E

′T
1,ρP

T
k PkE

′

1,ρ)]+

n∑
i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

ρ,ρ[
−1

2
log((2π)m × |ρ−1

x,kσ
2
x,kI|)−

1

2
σ−2
x,k((E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ

old)− µx,k)T

× ρx,k × (E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ
old)− µx,k)− E

′T
ρ,ρP

T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ

old)− µx,k)−
(E(xi,k | qxi,k = ρ, qyi,k = ρ, k,xi,o,θ

old)− µx,k)Tρx,kPkE
′

ρ,ρ + ρx,ktr(P
T
k Pk(E

′

ρ,ρ(ti,kt
T
i,k)− E

′

ρ,ρE
′T
ρ,ρ))+

E
′T
ρ,ρP

T
k ρx,kPkE

′

ρ,ρ)]

(B.7)

Q2 =

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)P1,1 × [
−1

2
log((2π)r|σ2

y,kI|)−
1

2
σ−2
y,k((yi − µy,k)

T (yi − µy,k)− ET
1,1C

T
k (yi − µy,k)−

(yi − µy,k)TCkE1,1 + tr(CT
k Ck(E1,1(ti,kt

T
i,k)− E1,1E1,1T )) + ET

1,1C
T
k CkE1,1)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)Pρ,1

× [
−1

2
log((2π)r|σ2

y,kI|)−
1

2
σ−2
y,k((yi − µy,k)

T (yi − µy,k)− ET
ρ,1C

T
k (yi − µy,k)− (yi − µy,k)TCkEρ,1+

tr(CT
k Ck(Eρ,1(ti,kt

T
i,k)− Eρ,1Eρ,1T )) + ET

ρ,1C
T
k CkEρ,1)] +

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)P1,ρ × [
−1

2
log((2π)r|ρ−1

y,kσ
2
y,kI|)

− 1

2
σ−2
y,k((yi − µy,k)

Tρy,k(yi − µy,k)− ET
1,ρC

T
k ρy,k(yi − µy,k)− (yi − µy,k)Tρy,kCkE1,ρ+

ρy,ktr(C
T
k Ck(E1,ρ(ti,kt

T
i,k)− E1,ρE1,ρT )) + ET

1,ρC
T
k ρy,kCkE1,ρ)]+

n1∑
i=1

K∑
k=1

p(k | xi,o,yi,θold)Pρ,ρ × [
−1

2
log((2π)r|ρ−1

y,kσ
2
y,kI|)−

1

2
σ−2
y,k((yi − µy,k)

Tρy,k(yi − µy,k)−

ET
ρ,ρC

T
k ρy,k(yi − µy,k)− (yi − µy,k)Tρy,kCkEρ,ρ + ρy,ktr(C

T
k Ck(Eρ,ρ(ti,kt

T
i,k)− Eρ,ρEρ,ρT )) + ET

ρ,ρC
T
k ρy,kCkEρ,ρ)]
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log((2π)q|I|)− 1
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T
1,1) + ET
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+
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(tr(Eρ,1(ti,kt

T
i,k)− Eρ,1ET
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+
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k=1

p(k | xi,o,yi,θold)P1,ρ × [
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2
log((2π)q|I|)− 1

2
(tr(E1,ρ(ti,kt

T
i,k)− E1,ρE

T
1,ρ) + ET

1,ρE1,ρ)]
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i=1

K∑
k=1

p(k | xi,o,yi,θold)Pρ,ρ × [
−1
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log((2π)q|I|)− 1

2
(tr(Eρ,ρ(ti,kt

T
i,k)− Eρ,ρET

ρ,ρ) + ET
ρ,ρEρ,ρ)]

(B.9)
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′

1,1 × [
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1,1(ti,kt
T
i,k)− E
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′T
1,1) + E

′T
1,1E

′

1,1)]

+
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

ρ,1 × [
−1

2
log((2π)q|I|)− 1

2
(tr(E

′

ρ,1(ti,kt
T
i,k)− E

′

ρ,1E
′T
ρ,1) + E

′T
ρ,1E

′

ρ,1)]

+
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

1,ρ × [
−1

2
log((2π)q|I|)− 1

2
(tr(E

′

1,ρ(ti,kt
T
i,k)− E

′

1,ρE
′T
1,ρ) + E

′T
1,ρE

′

1,ρ)]

+
n∑

i=n1+1

K∑
k=1

p(k | xi,o,θold)P
′

ρ,ρ × [
−1

2
log((2π)q|I|)− 1

2
(tr(E

′

ρ,ρ(ti,kt
T
i,k)− E

′

ρ,ρE
′T
ρ,ρ) + E

′T
ρ,ρE

′

ρ,ρ)]

(B.10)
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Appendix C

Definitions and covariance
computation

C.1 σ2
x,k’s Terms Definitions

A1,4 = (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)− µx,k)T (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)− µx,k)−
ET

1,4P
T
k (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)− µx,k)− (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)− µx,k)TPkE1,4

+ tr(P T
k Pk(E1,4(ti,kt

T
i,k)− E1,4E

T
1,4)) + ET

1,4P
T
k PkE1,4 + tr(cov(xi,k,xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold))

(C.1)
A
′

1,4 = (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,θold)− µx,k)T (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,θold)− µx,k)
− E ′T1,4P T

k (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,θold)− µx,k)− (E(xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,θold)− µx,k)TPkE
′

1,4

+ tr(P T
k Pk(E

′

1,4(ti,kt
T
i,k)− E

′

1,4E
′T
1,4)) + E

′T
1,4P

T
k PkE

′

1,4 + tr(cov(xi,k,xi,k | qxi,k = 1, qyi,k = 4, k,xi,o,θold))
(C.2)

A
′?
ρ,4 = (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)− µx,k)Tρx,k(E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)− µx,k)−

E
′T
ρ,4P

T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)− µx,k)− (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)− µx,k)Tρx,kPkE

′

ρ,4

+ tr(P T
k ρx,kPk(E

′

ρ!(ti,kt
T
i,k)− E

′

ρ,4E
′T
ρ,4)) + E

′T
ρ,4P

T
k ρx,kPkE

′

ρ,4 + tr(cov(xi,k,xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold))
(C.3)

A?ρ,4 = (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)− µx,k)Tρx,k(E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)− µx,k)−
ET
ρ,4P

T
k ρx,k(E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)− µx,k)− (E(xi,k | qxi,k = ρ, qyi,k =,4, k,xi,o,yi,θold)− µx,k)Tρx,kPk × Eρ,4

+ tr(P T
k ρx,kPk(Eρ,4(ti,kt

T
i,k)− Eρ,4ET

ρ,4)) + ET
ρ,,4P

T
k ρx,kPkEρ,4 + tr(cov(xi,k,xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold))

(C.4)

C.2 σ2
y,k’s Terms Definitions

B?,1 = (yi − µy,k)T (yi − µy,k)− ET
?,1C

T
k (yi − µy,k)− (yi − µy,k)TCkE?,1

+ tr(CT
k Ck(E?,1(ti,kt

T
i,k)− E?,1ET

?,1)) + ET
?,1C

T
k CkE?,1

(C.5)
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B?,ρ = (yi − µy,k)Tρy,k(yi − µy,k)− ET
?,ρC

T
k ρy,k(yi − µy,k)− (yi − µy,k)Tρy,kCkE?,ρ

+ tr(CT
k ρy,kCk(E?,ρ(ti,kt

T
i,k)− E?,ρET

?,ρ)) + ET
?,ρC

T
k ρy,kCkE?,ρ

(C.6)

C.3 ρx,kj’s Terms Definitions

Cρ,4j = (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)j − µx,kj)T (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)j − µx,kj)−
ET
ρ,4P

T
kj

(E(xi,k | qxi,kρ, qyi,k = 4, k,xi,o,yi,θold)j − µx,kj)− E(xi,k | qxi,kρ, qyi,k = 4, k,xi,o,yi,θold)j − µx,kj)TPkjEρ,4
+ tr(P T

kj
Pkj(Eρ,4(ti,kt

T
i,k)− Eρ,4ET

ρ,4)) + ET
ρ,4P

T
kj
PkjEρ,4 + (cov(xi,k,xi,k | qxi,kρ, qyi,k = 4, k,xi,o,yi,θold))jj

(C.7)

C
′

ρ,4j = (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)j − µx,kj)T (E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)j − µx,kj)−
E
′T
ρ,4P

T
kj(E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)j − µx,kj)− E(xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)j − µx,kj)TPkjE

′

ρ,4

+ tr(P T
kj
Pkj(E

′

ρ,4(ti,kt
T
i,k)− E

′

ρ,4E
′T
ρ,4)) + E

′T
ρ,4P

T
kj
PkjE

′

ρ,4 + (cov(xi,k,xi,k | qxi,k = ρ, qyi,k = 4, k,xi,o,θold))jj
(C.8)

where j=1,..., m.

C.4 ρy,kj’s Terms Definitions

D?,ρj = (yi,j − µy,kj)T (yi,j − µy,kj)− ET
?,ρC

T
k,j(yi,j − µy,kj)− (yi,j − µy,kj)TCk,jE?,ρ

+ tr(CT
k,jCk,j(E?,ρ(ti,kt

T
i,k)− E?,ρET

?,ρ)) + ET
?,ρC

T
k,jCk,jE?,ρ

(C.9)
where j=1,..., r.

C.5 Covariance Calculations

For labeled dataset:

cov(xi,k,m,xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold) = Pk,m[E1,4(ti,kt
T
i,k)− E1,4E

T
1,4]P T

k,m + σ2
x,k,mI

+E(xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)E(xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,yi,θold)T

(C.10)
cov(xi,k,m,xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold) = Pk,m[Eρ,4(ti,kt

T
i,k)− Eρ,4ET

ρ,4]P T
k,m + ρ−1

x,k,mσ
2
x,k,mI

+E(xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)E(xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,yi,θold)T

(C.11)
And for unlabeled dataset:

cov(xi,k,m,xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,θold) = Pk,m[E
′

1,4(ti,kt
T
i,k)− E

′

1,4E
′T
1,4]P T

k,m + σ2
x,k,mI

+E
′
(xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,θold)E

′
(xi,k,m | qxi,k = 1, qyi,k = 4, k,xi,o,θold)T

(C.12)
cov(xi,k,m,xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,θold) = Pk,m[E

′

ρ,4(ti,kt
T
i,k)− E

′

ρ,4E
′T
ρ,4]P T

k,m + ρ−1
x,k,mσ

2
x,k,mI

+E
′
(xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)E

′
(xi,k,m | qxi,k = ρ, qyi,k = 4, k,xi,o,θold)T

(C.13)
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