
Nonlinear Robust Optimal Design and Operation of Effluent Treatment

Systems

by

Sanjula Kammammettu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

PROCESS CONTROL

Department of Chemical and Materials Engineering

University of Alberta

➞ Sanjula Kammammettu, 2019



Abstract

The optimal design and operation of effluent treatment system networks poses a sig-

nificant challenge in the present time, with the imposition of stricter environmental

regulations and an increased demand for resources exacerbated by a diminishing re-

source pool. In practice, this problem presents an additional layer of complexity owing

to the presence of uncertainty in the operation of the system. This uncertainty may

come from a variety of sources, such as effluent flow rate, contaminant concentration,

and treatment unit removal efficiency. Therefore, the need to focus on developing a

stochastic optimization framework for the optimal design and operation of effluent

treatment systems has been well-recognized.

Robust and stochastic optimization techniques have been explored in the literature

for water network optimization under uncertainty. Robust optimization solves for

the worst case of uncertainty realized and presents a conservative solution to the

problem that would be valid for any realization of uncertainty it was solved for. In

contrast, stochastic optimization deals with uncertainty in an optimization problem

by assuming that the probability distribution of the uncertainty is known and seeks

to address the uncertainty through different techniques. Uncertainty in optimization

problems can be dealt with using a variety of techniques, such as scenario-based pro-

gramming, chance constrained programming, and the decision rule approach. This

thesis presents a study of the applicability of the decision rule approach - specifically,

the affine decision rule - in dealing with uncertainty in the optimal design and op-

eration of effluent treatment systems. The main aim of this thesis was to obtain i)

robust process design, and ii) robust operational policies, that is, a set of decision

rules for the operation of the effluent treatment system, which are easily applicable

for any realization of uncertainty that the problem has been modeled to handle.
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The thesis compared three approaches to modeling the nonlinear effluent treatment

system network under uncertainty. The first approach involved the use of McCormick

envelopes in developing a linear framework to which the affine decision rule formu-

lation was applied. The second approach employed first order Taylor series approx-

imation around the nominal process network to linearize the system, and the affine

decision rule was applied to this approximated model. The third approach used two-

stage nonlinear robust optimization of the model linearized around uncertainty, in

which the affine decision rule formulation was applied to the control variables. The

formerly intractable model was transformed into its tractable form using the affine

decision rule, and the finite, robust counterpart of the problem was modeled using the

property of strong duality in linear programming problems, for a defined uncertainty

set. The thesis applied these three approaches to the operation of a small water treat-

ment model [1]. The performance, advantages, and limitations of each approach were

then analyzed and contrasted. The two-stage nonlinear robust optimization approach

using the affine decision rule was found to offer superior performance over the other

approaches, and this approach was chosen to tackle a larger optimization problem

– the optimal design and operation of the effluent treatment and steam generation

system network for a SAGD reservoir [2].
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Chapter 1

Introduction

1.1 Motivation

The development of large-scale wastewater treatment procedures has been gaining

increasing attention since the era of industrialization. In the past, effluent treatment

mainly focussed on sewage treatment, and filtration techniques for water purification

to standards appropriate for human consumption and use. However, the advent of

industrialization also brought about various new technologies for the treatment of

effluents containing a more diverse profile of pollutants. In the early 1900s, new

technologies such as the activated sludge process emerged, leading to a period of

increased understanding of wastewater and its treatment. Simultaneously, modern

industrialization also brought about a need for regulation of, and standards imposed

on disposed effluent streams, to stay within environmental guidelines and norms.

Thus, this increased understanding and motivation to improve wastewater treatment

technology lead to the development of a number of procedures such as membrane

filtration, nanofiltration, and reverse osmosis, as well as bioreactors, and improved

physical treatment processes [3].

1.2 Introduction to effluent treatment

Present day effluent treatment is classified into a series of stages - primary, secondary,

and tertiary stages. Primary treatment comprises physical procedures to remove

contaminants such as oil and suspended solids, while secondary treatment consists of

biological and chemical treatments. Tertiary treatment techniques are generally used

for the treatment of residual contaminants [4]. Effluent is passed through a network

of treatments classified under these stages. A summary of the overall requirements

for an effluent treatment system is given as follows [3].
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❼ Optimal sequencing of treatment procedures

❼ Optimal distribution of flow rate, and thus, mass load of pollutants through the

treatments

❼ Flexibility to handle varying source flow rates and variation in pollutant loads

In the past, effluent treatment was conducted through a centralized approach. In cen-

tralized treatment, all effluent streams are mixed and treated in a common facility,

where the mixed stream is passed through all chosen treatment units. In contrast,

in the decentralized approach, different effluent streams are treated separately or

fractionally mixed. The decentralized approach offers more advantages than the cen-

tralized approach since the former reduces the amount of flow to be processed as

compared to the latter ([5], [6]), and most treatment unit operational costs increase

as a function of inflow [7]. Therefore, the need for a systematic design of an effluent

treatment network has been well-recognized and tackled by various authors in the

literature.

1.3 The “pooling” problem

The design of effluent treatment networks is a subset of the “pooling problem”. The

general pooling problem seeks the optimal solution to transporting entities across a

flow network from source nodes to destination nodes, at minimum cost, while meeting

imposed limitations and targets. It can be stated as follows - what is the optimal

solution to mixing materials from various source nodes, within a network of interme-

diate nodes (termed as pools), to satisfy the targets at the demand nodes [8]? Such

problems arise in a variety of applications; chief among these is the petrochemical

industry, wastewater treatment facilities, and chemical plants. A schematic of the

pooling problem is shown in Figure 1.1 [8].

The flow variables between the nodes, and the concentration variables at each node

in the pooling problem are decision variables to be optimized by the model. Hence,

the pooling problem contains bilinear terms, and is a special case of the non-convex

quadratic program with quadratic constraints (QCQP). The pooling problem has

been recognized to be NP-hard [9]. This problem has been solved for optimal solu-

tions using a variety of techniques. The pooling problem contains features from two

well-studied classes of problems in optimization - the network flow problem, and the

blending problem. When intermediate pools are unnecessary, the pooling problem
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Figure 1.1: Schematic representation of the pooling problem

tends to a general blending problem. It can, thus, be formulated as a mixed-integer

nonlinear programming problem (MINLP), in which the binary variables account

for the existence of flow streams between various nodes. The pooling problem has

mainly been formulated in two ways - the p formulation, and the q formulation [10].

The p formulation of the pooling problem utilizes flow and quality variables, whereas

the q formulation replaces the quality variables with flow proportions. It has been

documented that the q formulation performs better when utilized with branch-and-

bound algorithms, than the p formulation. Sahinidis and Tawarmalani (2005) [11]

added nonlinear constraints to this model to strengthen the lower bounding step in

the generic branch-and-bound algorithm, without adding further complexity to the

search process, and termed this formulation the pq formulation, It was proven that

the pq approach reduced the size of the branch-and-bound tree.

The pooling problem has been solved using a variety of local and global optimization

techniques. Haverly (1978) [12] solved the pooling problem using a linear program-

ming (LP) approach, in which all the quality variables were fixed to their anticipated

value and the resulting LP model was solved for flow variables. The quality of the

solution was, therefore, found to be heavily dependent on the initial guess provided.

The problem was also solved using successive linear programming (SLP), in which the

bilinear terms are replaced by their first order Taylor series expansion [13]. The first

global optimization approach for the pooling problem was developed by Floudast and

Visweswaran (1990) [14]. In this approach, the original non-convex nonlinear prob-

lem is decomposed into primal and relaxed dual subproblems. The approach utilizes
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the concepts of duality, and Lagrangian decomposition to obtain the global optimum.

Since this approach, most of the work towards global optimization of the pooling

problem has been focused on applying different relaxation techniques to the global

optimization framework, such as the piecewise linear relaxation technique adopted by

Gounaris, et al. (2009) [15].

1.4 Survey of methods for optimal design of de-

terministic water networks

The design of effluent treatment networks, in particular, has been studied in literature

using a number of techniques. A well-studied approach to this problem is the use of

pinch analysis. Pinch analysis is an engineering design technique that minimises the

energy consumption of a process using thermodynamic relations and constraints. El-

Halwagi and Manousiouthakis (1989) [16] have synthesised mass exchange networks

for single pollutants using pinch analysis, and extended the technique to multicompo-

nent networks. Wang and Smith (1994) [17] have developed the design of a wastew-

ater treatment network using graphical representations and techniques for streams

with a single pollutant, and treated the multi-component contaminant case as an

extension to the single-component case. Kuo and Smith (1997) [18] improved the

multi-component wastewater treatment network design problem statement developed

by Wang, et al. [17]. Other authors have also approached the problem of optimal

design of wastewater networks in the context of mathematical optimization. Hamad,

et al. (1996) [19] synthesized waste-interception networks to tackle gaseous as well

as liquid phase pollution in an integrated framework, by removal of contaminants

from intermediate plant streams, rather than terminal streams. They formulated the

problem as a mixed-integer nonlinear program (MINLP), and used graphical repre-

sentations to track the pollutant level through the process to determine the inter-

ception policies. Alva-Argaez, et al. (1998) [20] combined the inferences from pinch

analysis of combinatorial water networks, along with a recursive decomposed MILP

approach to optimize the superstructure. Savelski and Bagajewicz (2001) [21] pro-

posed a linear programming (LP) approach to optimally solving the design of effluent

treatment networks for a single contaminant based on previously developed neces-

sary conditions of optimality. They also proposed solving a series of mixed-integer

linear programs (MILP) to solve for different network alternatives. Jezowski, et al.

(2006) [22] proposed a sequential approach to the design of industrial effluent treat-

ment networks by developing an initial structure using pinch analysis and effluent

degradation insights, and further improving this structure through mathematical op-
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timization. Castro, et al. (2006) [23] developed a heuristic method for the optimal

design of wastewater treatment networks by generating multiple solutions using a

new linear formulation of the original model to be used as initial solutions for the

optimization of the original nonlinear model. Misener and Floudas (2010) [24] consid-

ered the wastewater network optimization as a pooling problem, and solved it using

quadratically constrained MINLP models to reduce the number of bilinear terms in

the model, in addition to introducing methods to tighten the relaxation. Galan and

Grossmann (1998) [1] solved the design of the nonlinear effluent treatment system

model, introduced by Wang and Smith [17] using a heuristic global optimization al-

gorithm. They used linear models obtained through the substitution of bilinear terms

with McCormick envelopes. They also proposed a solution strategy when the design

problem involves the selection of treatment units, in addition to optimization of the

design network. In this thesis, the superstructure used by Galan and Grossmann [1]

is used as the reference water treatment model. Furthermore, the use of the relaxed

LP formulation using McCormick envelopes is explored in Chapter 2 of the thesis. In

another publication [25], they evaluated a heuristic search procedure for the global

optimum through the successive relaxation of a relaxed linear formulation, and the

original nonlinear model, using numerous objective functions in the relaxed formula-

tion, for the design of a multicomponent case.

In addition to effluent treatment for safe disposal, the optimal design of effluent treat-

ment networks in the context of steam-assisted gravity drainage (SAGD) reservoirs

has been studied by Forshomi, et al. (2017) [2]. The SAGD reservoir has proven to

be an energy intensive process, with high water consumption [26]. In this work, the

authors discuss and explore the economic and environmental trade-offs that result

from generation of steam using treated effluent within a SAGD reservoir. The solu-

tion strategy employed in this work uses the approach detailed by Alva-Argaez, et al.

[20]. This model is used as a large-scale case study in Chapter 5 of this thesis.

1.5 Survey of methods for optimal design of water

networks under uncertainty

The techniques discussed above for the optimal design of effluent treatment networks

assumes that the problem is deterministic in nature, that is, all parameters in the

model are exactly known and are unaffected by perturbation of any kind. However,

studies strongly suggest that the operation of the effluent treatment network is af-

fected significantly by perturbations in various parameters such as source flow rate,

5



inlet concentrations, and treatment unit performance efficiency [27]. Figure 1.2 [28]

shows the variation in the removal efficiency of a reverse osmosis plant with respect

to six contaminants, over the course of one month. As evidenced from the plot, con-

siderable perturbations exist in the operation of an effluent treatment system, and

so, the deterministic optimal design of such networks is impractical.

Figure 1.2: Variation in the contaminant removal efficiency of a reverse osmosis unit
over a one-month period

Therefore, the synthesis of effluent treatment, or more generally, water networks

under uncertainty is a more practically applicable problem statement. Certain works

in literature have attempted to solve the water network optimization problem under

uncertainty. Halemane and Grossmann (1983) [29] proposed a rigorous mathematical

formulation for optimal process design under uncertainty. Antunes, et al. (2012)

[30] evaluated a robust optimization approach to the planning of regional wastewater

systems under discharge destination flow uncertainty, using and enhanced simulated

annealing algorithm. Koppol and Bagajewicz (2003) [31] addressed the optimal design

of effluent treatment network synthesis under contaminant load uncertainty. In this

work, they assumed that the contaminant mass load followed a bounded uniform

distribution, and solved the model for a set of discrete realizations of uncertainty. The

work also addresses the concept of financial risk management on the network cost.

Al-Redhwan, et al. (2005) [32] used a two-stage stochastic programming formulation

of the fixed-load water network model to solve for optimal design of the network under

mass load uncertainty. Karuppaiah and Grossmann (2008) [33] solved the problem in

a two-stage approach using McCormick’s envelopes for relaxation of the bilinear terms,

using a Lagrangian decomposition technique on the multiscenario model. Kang and
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Lansey (2013) [34] addressed the optimal design of wastewater infrastructure using

scenario-based robust optimization under uncertain water demand.

1.6 Optimization under uncertainty

The field of optimization under uncertainty was initiated by Dantzig [35]. This field

of optimization is called stochastic programming, where the underlying probability

distribution of uncertain parameters or variables is assumed to be known or can

be estimated. Another approach to optimization under uncertainty is called robust

optimization, initially put forward by Soyster [36]. The aim of robust optimization

is to find a solution that is optimal against the worst-case realization of uncertainty

for that set. In the following sections, a brief description of stochastic and robust

optimization techniques is detailed. Sahinidis (2004) [37] published a review of the

significant techniques developed, and in use, for optimization under uncertainty.

1.6.1 Adaptive/recourse stochastic programming

One method to deal with stochastic programs is the two-stage or recourse approach.

In this method, the decisions in the model are classified into two types - here-and-

now/first stage decisions, and wait-and-see/second stage decisions. The first stage

decisions occur before the realization of uncertainty, while the second stage decisions

occur after the uncertainty has been realized. The general form of the two-stage

recourse stochastic programming problem is given as follows, using the formulation

from Birge and Louveaux (1997) [38].

min
x,y(ξ)

c>x+ E[q(ξ)>y(ξ)]

subject to

Ax ≥ b

T (ξ)x+Wy(ξ) ≥ h(ξ)

x ≥ 0, y(ξ) ≥ 0

The objective of this optimization problem is to minimize the cost of the first stage

decisions (independent of uncertainty), plus the expected cost of the second stage

decisions (dependent on uncertainty). The first set of constraints contains only first

stage decision variables, while the second set of constraints is dependent on uncer-

tainty. This program is solved for a finite number of scenarios, denoted by K. This
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approach is also called scenario-based recourse programming. In this method, a finite

set (K) of realizations of uncertainty, termed as ’scenarios’, are generated [39]. The

optimization problem is then tasked with finding a solution that is optimal against

each scenario. The number of scenarios generated affects the computational effort

required to solve the model. Scenarios are normally generated by discretization, and

a positive weight (pk) is assigned to each scenario (k ∈ K). This weight pk depicts the

probability of occurrence of scenario k. However, as the dimension of the primitive

uncertainty vector increases, the total number of scenarios to be generated increases

exponentially, making the discretization approach unsuitable for scenario generation

[40]. In such cases, methods such as Monte Carlo sampling have proven useful for

scenario generation. In the most general case of recourse programming, scenarios are

obtained for each stage of the program, and can be depicted in the form of a “scenario

tree”, or “scenario fan” (Figure 1.3). The general recourse program formulation for

a two-stage program is given as follows.

min
x,yk

c>x+
KX
k=1

pkq
>
k yk

subject to

Ax ≥ b

Tkx+Wyk ≥ hk, k = 1, ..., K

x ≥ 0, yk ≥ 0, k = 1, ...K

Figure 1.3: Schematic representation of scenario formulation for multistage recourse
programming using the scenario tree (left) and scenario fan (right) formulations
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As the number of scenarios (K) increases, the size of the model increases, and it

becomes computationally intensive. Some approaches such as stochastic decomposi-

tion, Benders’ decomposition, etc. have been proposed to deal with such large-scale

stochastic problems. Acevedo and Pistikopoulos (1998) [41] presented a framework

to handle process synthesis under uncertainty using stochastic optimization.

1.6.2 Chance constrained programming

Stochastic programming problems can also be solved as chance constrained programs.

In this method, constraints are implemented with a specified confidence limit [42].

The magnitude of the confidence limit is inversely proportional to the probability of

violation of the constraint. The general formulation of the chance constrained model

is given below.

min
x

c>x

subject to

P A>(ξ)x ≥ b(ξ) ≥ 1− α

x ∈ X

In the above model, the probability that all constraints contained in the model are

jointly feasible must be above (1−α), where α ∈ [0, 1]. This type of problem is called

the joint chance constrained problem. A variation to this model can be made, where

the probability of violation of each constraint is individually provided with specific

values of α. Such problems are called individual chance constrained problems.

1.6.3 Static robust optimization

In situations where the probability distribution of the uncertain/random parameters

is known, stochastic programming techniques prove to be useful tools for optimization

under uncertainty. However, when the distribution information is unavailable, a more

conservative solution is desired, in order to obtain a solution that is feasible for all

realizations of uncertainty. Uncertainty in the optimization model is addressed by

solving the model for the worst case of uncertainty realizable, and this is termed as

static robust optimization. In this method, all decisions are to be made before the

realization of uncertainty. The general form of a linear optimization problem under

uncertainty is given as follows.
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min
x

c>x

subject to

Ax ≥ b

{c, A, b} ∈ U

In the above model, it is assumed that the cost coefficients, A, and b are affected by

uncertainty. The robust counterpart of this model is given as follows.

min
x

max
c∈U

c>x

subject to

max
{ai,bi∈Ui}

a>i x ≤ bi, ∀i

Using the static robust optimization technique, a conservative solution is found by

satisfying the constraints for the worst-case realization of uncertainty in the uncer-

tainty set defined, such that the solution may be feasible for all other realizations of

uncertainty.

1.6.4 Decision rule-based optimization

In contrast to static robust optimization, in dynamic robust optimization, first stage

decisions are made without any knowledge of the realized uncertainty, while second

stage decisions are made after uncertainty has been realized. This adjustable opti-

mization approach has been applied to practical cases such as scheduling of industrial

chemical processes ([43], [44]). Ben-Tal, et al. [45] proposed an affinely adjustable

decision rule formulation for the recourse decisions in the robust model. In this ap-

proach, the second stage decision is assumed to be a linear function of uncertainty.

Given the general two-stage optimization problem under uncertainty,
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min
x,y(ξ)

c>x

subject to

Ax ≥ b

T (ξ)x+Wy(ξ) ≥ h(ξ), ∀ξ ∈ Ξ

the affine adjustable robust counterpart (AARC) is given as,

min
x,y0,y1

c>x

subject to

Ax ≥ b

T (ξ)x+W (y0 + y1ξ) ≥ h(ξ), ∀ξ ∈ Ξ

The AARC approach uses the linear decision rule to provide the user with the capac-

ity to make second stage decisions after uncertainty has been realized, in the form

of a linear policy, although no guarantee exists that the optimal solution follows a

linear policy. The procedure to obtain the adjustable affine robust counterpart to a

constraint in an optimization model under uncertainty has been detailed by Ben-Tal,

et al. [45]. This procedure is detailed below.

Let a general recourse decision z(ξ) be an affine function of uncertainty ξ, as follows.

z(ξ) = z0 + z1ξ (1.1)

Substituting the affine formulation of z(ξ), presented in Equation 1.1, into the con-

straints of the model yields a set of semi-infinite constraints, for every possible real-

ization of ξ, making the model intractable. In order to construct the finite, tractable

counterpart, the property of duality of linear programming problems is used. Ben-

Tal, et al. (2004) [45] developed the methodology to obtain the tractable, robust

counterpart to the uncertain inequality constraints resulting from reformulation of

the variables using the affine decision rule.

Consider the stochastic programming problem:
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min
x1,x2,z(ξ)

cx1x1 + cx2x2 + E[czz(ξ)]

subject to

x1 + z(ξ) ≥ D(ξ), ∀ξ ∈ Ξ

x2 + z(ξ) = a1, ∀ξ ∈ Ξ

x1, x2 ≥ 0

z(ξ) ≥ 0, ∀ξ ∈ Ξ

Applying the ADR to the problem using the following relations,

D(ξ) = ξD1 + (1− ξ)D2

z(ξ) = z0 + z1ξ

gives the semi-infinite intractable model,

min
x1,x2,z0,z1

cx1x1 + cx2x2 + cz(z
0 + z1E[ξ])

subject to

x1 + z0 + z1ξ ≥ ξD1 + (1− ξ)D2, ∀ξ ∈ Ξ

x2 + z0 + z1ξ = a1, ∀ξ ∈ Ξ

x1, x2 ≥ 0

z0 + z1ξ ≥ 0, ∀ξ ∈ Ξ

where D1 and D2 are the extreme points for the realization of ξ. The finite tractable

counterpart for each inequality constraint is obtained through the property of duality

of linear programming. The process of obtaining the finite tractable counterpart is

illustrated below for the first inequality constraint.

x1 + z0 + z1ξ ≥ ξD1 + (1− ξ)D2, ∀ξ ∈ Ξ

↓
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x1 + z0 + z1ξ ≥ ξD1 +D2 − ξD2, ∀ξ ∈ Ξ

↓

(x1 + z0 −D2) + ξ(z1 −D1 +D2) ≥ 0, ∀ξ ∈ Ξ

The primitive uncertainty ξ is considered, in the simplest case, to be a scalar value

with specified lower and upper limits, ξlow and ξhigh, respectively, as follows.

ξlow ≤ ξ ≤ ξhigh

The uncertainty set Ξ is specified in the form Aξ ≥ b, as follows.

1
−1

ξ ≥ ξlow

−ξhigh

It is to be noted that the same structure can be adopted even if the primitive un-

certainty ξ is a vector. In that case too, A and b are used to contain the lower and

upper limit specifications on each member of the vector ξ. When ξ is a vector, the

slope term z1 in the LDR formulation of the recourse variable, is a column vector of

the same dimensions as that of ξ.

Using the matrix formulation for Ξ specified above, the constraint (in the form of the

≥ inequality) is rewritten using the min operator, as follows,

(x1 + z0 −D2) +

min
ξ

ξ(z1 −D1 +D2)

subject to
Aξ ≥ b

 ≥ 0

The dual of the inner minimization problem is obtained as a max problem, as follows,

(x1 + z0 −D2) +

 max
λ≥0

(b>λ)

subject to
A>λ = z1 −D1 +D2

 ≥ 0
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where, the dimensions of λ are the same as those of b. The max operator is dropped

and the following counterpart is obtained.

(x1 + z0 −D2) + b>λ ≥ 0

A>λ = z1 −D1 +D2

λ ≥ 0

The final adjustable affine robust counterparts to all the inequality constraints in

the model are formulated using the approach detailed above. It is to be noted that

in the case of equality constraints involving ξ, the coefficients of ξ are equated to

0 to obtain the robust counterpart. Therefore, the final robust counterpart for the

stochastic programming model is given as follows.

min
x1,x2,z0,z1

cx1x1 + cx2x2 + cz(z
0 + z1E[ξ])

subject to

(x1 + z0 −D2) + b>λ ≥ 0

A>λ = z1 −D1 +D2

x2 + z0 − a1 = 0

z1 = 0

x1, x2 ≥ 0

z0 + b>λz ≥ 0

A>λz = z1

λ ≥ 0

1.7 Thesis structure

In this thesis, the linear decision rule (LDR) approach was applied in three different

ways. In Chapter 2, the water treatment model was first relaxed, using McCormick

envelopes, into the form of an LP, and the linear decision rule formulation was applied

to the recourse variables in the model. In Chapter 3, the model was linearized around

its nominal conditions using first order Taylor series approximation, and then, the

LDR formulation was applied to the recourse variables. In Chapter 4, the novel

nonlinear robust optimization approach developed by Yuan, et al. (2018) [46], was
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applied to the model. The same approach was applied to a large-scale case study, the

SAGD effluent treatment and steam generation network, in Chapter 5. A summary

is provided in Chapter 6, along with possible future work along similar lines to the

work in the thesis. The methods applied in this thesis were mainly formulated keeping

in mind industrial process wastewater treatment, with uncertain flow rates, and can

possibly be extended to dealing with uncertainty in treatment efficiencies as well as

contaminant concentrations.
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Chapter 2

Linear Stochastic Optimization
using McCormick Envelopes

In this chapter, the application of the McCormick relaxation technique to the small

water treatment NLP (nonlinear programming) model is discussed. The model de-

scription was obtained from a work by Grossmann, et al. [1] detailing a successive

solution procedure using McCormick relaxation of nonlinear deterministic models to

obtain global/near global optimum solutions on non-convex, nonlinear models. The

concept of relaxation of nonlinear models using McCormick envelopes is explained in

Section 2.1. Section 2.2 provides background on the small water treatment model

chosen as a case study in this thesis, and Section 2.3 presents its deterministic for-

mulation and discusses its solution. The relaxed LP formulation of the model is

presented in Section 2.4. The derivation and solution of the stochastic LDR-based

formulation of the relaxed LP model is presented and analyzed in Section 2.5. Section

2.6 presents concluding remarks.

2.1 Relaxation using McCormick Envelopes

Commonly-used NLP (nonlinear programming) solvers in GAMS, such as IPOPT

and CONOPT, do not guarantee a global optimum solution for non-convex models.

To address this shortcoming, Galan and Grossmann (1998) [1] suggested a four-step

approach to obtain a good upper bound on the global optimum of the NLP model.

This approach involves the successive solution of the relaxed LP formulation, with

the original non-convex nonlinear model. In this thesis, the relaxed LP model was

formulated from the NLP model using McCormick envelopes for the bilinear terms

in the model equations. The solution to this relaxed LP problem provided a lower

bound on the optimal solution of the original NLP. Using McCormick envelopes, each
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bilinear term in the model equation was substituted with a single new variable; this

new variable was then constrained using the upper and lower bounds on the original

variables in the bilinear term.

The use of duality to obtain the robust counterpart of inequality constraints is well

defined [45] only for constraints linear in uncertainty. Consider a general bilinear

term denoted by x · y. Accounting for the dependence of x and y on uncertainty (ξ),

the bilinear term is denoted by x(ξ) · y(ξ). When the variables are redefined using

the LDR formulation, constraints containing these bilinear terms become nonlinear

in uncertainty; specifically, in this case, they become quadratic in uncertainty. This

is illustrated below.

x(ξ) · y(ξ) = (x0 + x1ξ)(y0 + y1ξ)

= x0y0 + ξ(x1y0 + x0y1) + ξ2(x1y1)

Hence, there is a need to make a linear approximation of the constraints containing

bilinear terms, in order to apply the affine decision rule to solve a stochastic linear

optimization problem using LDR. This linear approximation can be performed by

relaxing the NLP model using McCormick envelopes to obtain the LP formulation.

Consider a general optimization problem as follows.

min
x,y

φ(x, y)

subject to

F (x, y) = 0

G(x, y) ≥ 0

x ≤ x ≤ x, y ≤ y ≤ y

Substituting the bilinear terms xy in F (x, y) and G(x, y) with w, the relaxed model

is given as follows.
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min
x,y,w

φ(x, y, w)

subject to

F (x, y, w) = 0

G(x, y, w) ≥ 0

w ≥ xy + xy − xy

w ≥ xy + xy − xy

w ≤ xy + xy − xy

w ≤ xy + xy − xy

x ≤ x ≤ x, y ≤ y ≤ y

Illustrative example The derivation of the relaxed LP formulation of a model

containing bilinear terms is illustrated in the following example. The original NLP

model is given as follows.

min
x,y

− xy − 2x

subject to

xy ≤ 12

0 ≤ x ≤ 6, 0 ≤ y ≤ 3

The relaxed LP formulation is given as follows.

min
x,y,w

− w − 2x

subject to

w ≤ 12

w ≥ 0

w ≥ 6y + 3x− 18

w ≤ 3x

w ≤ 6y

0 ≤ x ≤ 6, 0 ≤ y ≤ 3
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2.2 Overview of the small water treatment model

The small water treatment model used as a case study in this report considers two

process flow streams (s1 and s2) containing two contaminants (A and B), a set of two

treatment units (tu1 and tu2) and a final discharge stream. Each process stream is

equipped with a splitter and each treatment unit is equipped with a pre-mixer and

a post-splitter. The final discharge from each treatment unit is mixed, and disposed.

Target concentrations for each contaminant in the process streams is specified for the

final discharge stream. The objective of this optimization exercise was to minimize

the total flow through the treatment units. The superstructure and the general net-

work are shown in Figure 2.1.

Figure 2.1: Schematic representation of the small water treatment model

2.3 Deterministic formulation

The small water treatment model is described by a set of mass flow, and component

concentration balances over all the units in the model. The objective function is given

by Equation 2.3. Equations 2.2 - 2.6, and 2.7 - 2.10 describe the flow balances and

component balances respectively, and the concentration limits on the final stream are
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Table 2.1: Decision variables in the small water treatment model

Variable Description
Flow variables (tonne/hr)

Fs,tu Exit flow from splitter to treatment unit
F in
tu Inflow to treatment unit
F out
tu Outflow from treatment unit
F rec
tu,tu0 Recycle flow between treatment units
F exit
tu Exit flow from treatment unit to final mixer
F final Outflow from final mixer

Concentration variables (ppm)
Cin
tu,c Concentration of contaminant in inflow to treatment unit

Cout
tu,c Concentration of contaminant in outflow from treatment unit

Cfinal
c Concentration of contaminant in outflow from final mixer

Table 2.2: Auxiliary parameters in the small water treatment model [1]

Parameters (units)
Fs Source flow rate under nominal conditions (tonne/hr) 40

Cs,c Source flow contaminant concentration (ppm)

s1, A
s1, B
s2, A
s2, B

100
20
15
200

RRtu,c Treatment unit efficiency

tu1, A
tu1, B
tu2, A
tu2, B

0.95
0
0
0.976

Ctarget
c Target concentration for the final stream (ppm)

A
B

10
10

described by Equation 2.11. The sets of variables optimized in this model are listed

in Table 2.1, and the parameters used are listed in Table 2.2 [1].

min
X
tu

F in
tu (2.1)

subject to
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Fs =
X
tu

Fs,tu, ∀s ∈ S (2.2)X
s

Fs,tu +
X
tu0

F rec
tu0,tu = F in

tu , ∀tu ∈ TU (2.3)

F in
tu = F out

tu , ∀tu ∈ TU (2.4)

F out
tu =

X
tu0

F rec
tu,tu0 + F exit

tu , ∀tu ∈ TU (2.5)X
tu

F exit
tu = F final (2.6)X

s

Fs,tuCs,c +
X
tu0

F rec
tu0,tuC

out
tu0,c = Cin

tu,cF
in
tu , ∀tu ∈ TU, c ∈ C (2.7)

Cin
tu,cF

in
tu = Cout

tu,cF
out
tu + Cin

tu,cF
in
tuRRtu,c, ∀tu ∈ TU, c ∈ C (2.8)

F out
tu Cout

tu,c =
X
tu0

F rec
tu0,tuC

out
tu,c + F exit

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.9)X

tu

F exit
tu Cout

tu,c = Cfinal
c F final, ∀c ∈ C (2.10)

Cfinal
c ≤ Ctarget

c , ∀c ∈ C (2.11)

The deterministic model was solved at nominal conditions (Fs = 40 tonne/hr ∀s ∈ S)

on GAMS using the ANTIGONE NLP solver. The locally optimal objective magni-

tude was found to be 89.8361 tonne/hr, and the resulting optimal network is depicted

in Figure 2.2. It was observed that s1 was diverted entirely through tu1, and s2 en-

tirely through tu2. A recycle stream from tu1 to tu2 was also observed. The target

concentrations in the final stream were exactly met.
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Figure 2.2: Optimal solution for the deterministic formulation of the small water
treatment model

2.4 Relaxed LP formulation

Using the McCormick relaxation technique detailed in Section 2.1, the relaxed LP

formulation of the small water treatment model was derived. The bilinear terms in

Equations 2.7 - 2.10 were replaced by the variables W rec
tu0,tu,c,W

in
tu,c,W

out
tu,c,W

exit
tu,c and

W final
c . The lower and upper limits on the flow and concentration terms involved in

the bilinear terms were computed using the total source flow, and maximum source

contaminant concentration values, as depicted in Table 2.3.

min
X
tu

F in
tu (2.12)

subject to

Fs =
X
tu

Fs,tu, ∀s ∈ S (2.13)

X
tu

Fs,tu +
X
tu0

F rec
tu0,tu = F in

tu , ∀tu ∈ TU (2.14)

F in
tu = F out

tu , ∀tu ∈ TU (2.15)

F out
tu =

X
tu0

F rec
tu,tu0 + F exit

tu , ∀tu ∈ TU (2.16)

X
tu

F exit
tu = F final (2.17)
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X
s

Fs,tuCs,c +
X
tu0

W rec
tu0,tu,c = W in

tu,c, ∀tu ∈ TU, c ∈ C (2.18)

W rec
tu0,tu,c ≥ F rec

tu0,tuC
out
tu0,c + F rec

tu0,tuC
out
tu0,c − F rec

tu0,tuC
out
tu0,c, ∀tu, tu0 ∈ TU, c ∈ C (2.19a)

W rec
tu0,tu,c ≥ F rec

tu0,tuC
out
tu0,c + F rec

tu0,tuC
out
tu0,c − F rec

tu0,tuC
out
tu0,c, ∀tu, tu0 ∈ TU, c ∈ C (2.19b)

W rec
tu0,tu,c ≤ F rec

tu0,tuC
out
tu0,c + F rec

tu0,tuC
out
tu0,c − F

rec
tu0,tuC

out
tu0,c, ∀tu, tu0 ∈ TU, c ∈ C (2.19c)

W rec
tu0,tu,c ≤ F rec

tu0,tuC
out
tu0,c + F rec

tu0,tuC
out
tu0,c − F rec

tu0,tuC
out
tu0,c, ∀tu, tu0 ∈ TU, c ∈ C (2.19d)

W in
tu,c ≥ F in

tuC
in
tu,c + F in

tuC
in
tu,c − F in

tuC
in
tu,c, ∀tu ∈ TU, c ∈ C (2.20a)

W in
tu,c ≥ F in

tuC
in
tu,c + F in

tuC
in
tu,c − F in

tuC
in
tu,c, ∀tu ∈ TU, c ∈ C (2.20b)

W in
tu,c ≤ F in

tuC
in
tu,c + F in

tuC
in
tu,c − F in

tuC
in
tu,c, ∀tu ∈ TU, c ∈ C (2.20c)

W in
tu,c ≤ F in

tuC
in
tu,c + F in

tuC
in
tu,c − F in

tuC
in
tu,c, ∀tu ∈ TU, c ∈ C (2.20d)

W in
tu,c = W out

tu,c +W in
tu,cRRtu,c, ∀tu ∈ TU, c ∈ C (2.21)

W out
tu,c =

X
tu0

W rec
tu0,tu,c +W exit

tu,c , ∀tu ∈ TU, c ∈ C (2.22)

W out
tu,c ≥ F out

tu Cout
tu,c + F out

tu Cout
tu,c − F out

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.23a)

W out
tu,c ≥ F out

tu Cout
tu,c + F out

tu Cout
tu,c − F out

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.23b)

W out
tu,c ≤ F out

tu Cout
tu,c + F out

tu Cout
tu,c − F out

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.23c)

W out
tu,c ≤ F out

tu Cout
tu,c + F out

tu Cout
tu,c − F out

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.23d)X

tu

W exit
tu,c = W final

c , ∀c ∈ C (2.24)

W exit
tu,c ≥ F exit

tu Cout
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.25a)

W exit
tu,c ≥ F exit

tu Cout
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.25b)

W exit
tu,c ≤ F exit

tu Cout
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.25c)

W exit
tu,c ≤ F exit

tu Cout
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (2.25d)

W final
c ≥ F finalCfinal

c + F finalCfinal
c − F finalCfinal

c , ∀c ∈ C (2.26a)

W final
c ≥ F finalCfinal

c + F finalCfinal
c − F finalCfinal

c , ∀c ∈ C (2.26b)
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W final
c ≤ F finalCfinal

c + F finalCfinal
c − F finalCfinal

c , ∀c ∈ C (2.26c)

W final
c ≤ F finalCfinal

c + F finalCfinal
c − F finalCfinal

c , ∀c ∈ C (2.26d)

Cfinal
c ≤ Ctarget

c , ∀c ∈ C (2.27)

Table 2.3: Bounding values for variables involved in bilinear terms in the McCormick
relaxation of the small water treatment model

Variable Lower limit Upper limit
F rec
tu0,tu 0

P
s Fs

F in
tu 0

P
s Fs

F out
tu 0

P
s Fs

F exit
tu 0

P
s Fs

F final 0
P

s Fs
Cin
tu,c 0 maxsCs,c

Cout
tu,c 0 maxsCs,c

Cfinal
c 0 maxsCs,c

The relaxed LP model was solved on GAMS using the CPLEX LP solver. The locally

optimal objective magnitude at nominal conditions was found to be 80.9836 tonne/hr,

and the resulting optimal network is shown in Figure 2.3.

Figure 2.3: Optimal solution for the relaxed LP formulation of the small water treat-
ment model
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2.5 Robust counterpart of the stochastic LDR for-

mulation using the relaxed LP model

The general optimization problem under uncertainty can be solved by a variety of

methods. A survey of these methods is presented in Section 1.6 of this thesis. The

aim of this thesis was the application of a specific stochastic programming solution

technique - the class of decision rule-based methods - to obtain an adaptive solution to

the general nonlinear model. The simplest configuration of these decision rule-based

methods utilizes the affine decision rule, usually referred to as the linear decision

rule (LDR). The procedure to obtain the adjustable affine robust counterpart of a

constraint linear in uncertainty is detailed in Section 1.6.4.

The LDR formulation was applied to the flow, concentration and bilinear substitute

variables (W ). In this problem, the source flow Fs was assumed to be the uncertain

parameter, depending on primitive uncertainty ξ as follows,

Fs(ξ) = ξF 1
s + (1− ξ)F 2

s , ∀s ∈ S

where F 1
s and F 2

s were taken to be the extreme points for the realizations of Fs. For

all LDR-based formulations involving the small water treatment model in this thesis,

the source flow was assumed to vary between 25 tonne/hr (F 1
s ) and 55 tonne/hr (F 2

s ).

The tractable robust counterpart to the stochastic problem using the affine decision

rule was modeled as follows, using the relaxed LP formulation in Section 2.4, for

different ranges of uncertainty ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1]. In this model, γ and α

refer to the dual variables associated with the McCormick envelope constraints and

non-negativity constraints respectively, while λc refers to the dual variables associ-

ated with the target concentration constraints. The sets of decision rule parameters

optimized by this model are depicted by F 0 and F 1 for flow variables, C0 and C1 for

concentration variables, and W 0 and W 1 for substitute variables.

min
X
tu

F in,0
tu + F in,1

tu E[ξ] (2.28)

subject to

F 2
s −

X
tu

F 0
s,tu = 0, s ∈ S (2.29a)

F 1
s − F 2

s −
X
tu

F 1
s,tu = 0, s ∈ S (2.29b)
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X
s

F 0
s,tu +

X
tu0

F rec,0
tu0,tu − F

in,0
tu = 0, tu ∈ TU (2.30a)X

s

F 1
s,tu +

X
tu0

F rec,1
tu0,tu − F

in,1
tu = 0, tu ∈ TU (2.30b)

F in,0
tu − F out,0

tu = 0, tu ∈ TU (2.31a)

F in,1
tu − F out,1

tu = 0, tu ∈ TU (2.31b)

F out,0
tu −

X
tu0

F rec,0
tu,tu0 − F

exit,0
tu = 0, tu ∈ TU (2.32a)

F out,1
tu −

X
tu0

F rec,1
tu,tu0 − F

exit,1
tu = 0, tu ∈ TU (2.32b)

X
tu

F exit,0
tu − F final,0 = 0 (2.33a)X

tu

F exit,1
tu − F final,1 = 0 (2.33b)

X
s

F 0
s,tuCs,c +

X
tu0

W rec,0
tu0,tu,c −W

in,0
tu,c = 0, tu ∈ TU, c ∈ C (2.34a)X

s

F 1
s,tuCs,c +

X
tu0

W rec,1
tu0,tu,c −W

in,1
tu,c = 0, tu ∈ TU, c ∈ C (2.34b)

W in,0
tu,c (1−RRtu,c)−W out,0

tu,c = 0, tu ∈ TU, c ∈ C (2.35a)

W in,1
tu,c (1−RRtu,c)−W out,1

tu,c = 0, tu ∈ TU, c ∈ C (2.35b)

W out,0
tu,c −

X
tu0

W rec,0
tu,tu0,c −W

exit,0
tu,c = 0, tu ∈ TU, c ∈ C (2.36a)

W out,1
tu,c −

X
tu0

W rec,1
tu,tu0,c −W

exit,1
tu,c = 0, tu ∈ TU, c ∈ C (2.36b)

X
tu

W exit,0
tu,c −W final,0

c = 0, c ∈ C (2.37a)X
tu

W exit,1
tu,c −W final,1

c = 0, c ∈ C (2.37b)

(Ctarget
c − Cfinal,0

c ) + b>λc ≥ 0, c ∈ C (2.38a)

A>λc + Cfinal,1
c = 0, c ∈ C (2.38b)

W rec,0
tu0,tu,c + F rec

tu0,tuC
out
tu,c − F rec

tu0,tuC
out,0
tu,c

− Cout
tu,cF

rec,0
tu0,tu + b>γll,1tu0,tu,c ≥ 0, tu0, tu ∈ TU, c ∈ C (2.39a)

A>γll,1tu0,tu,c = W rec,1
tu0,tu,c − F

rec
tu0,tuC

out,1
tu,c − Cout

tu,cF
rec,1
tu0,tu, tu0, tu ∈ TU, c ∈ C (2.39b)
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W in,0
tu,c + F in

tuC
in
tu,c − F in

tuC
in,0
tu,c − Cin

tu,cF
in,0
tu + b>γll,2tu,c ≥ 0, tu ∈ TU, c ∈ C (2.40a)

A>γll,2tu,c = W in,1
tu,c − F in

tuC
in,1
tu,c − Cin

tu,cF
in,1
tu , tu ∈ TU, c ∈ C (2.40b)

W out,0
tu,c + F out

tu Cout
tu,c − F out

tu Cout,0
tu,c − Cout

tu,cF
out,0
tu + b>γll,3tu,c ≥ 0, tu ∈ TU, c ∈ C (2.41a)

A>γll,3tu,c = W out,1
tu,c − F out

tu Cout,1
tu,c − Cout

tu,cF
out,1
tu , tu ∈ TU, c ∈ C (2.41b)

W exit,0
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout,0
tu,c

− Cout
tu,cF

exit,0
tu + b>γll,4tu,c ≥ 0, tu ∈ TU, c ∈ C (2.42a)

A>γll,4tu,c = W exit,1
tu,c − F exit

tu Cout,1
tu,c − Cout

tu,cF
exit,1
tu , tu ∈ TU, c ∈ C (2.42b)

W final,0
c + F finalCfinal

c − F finalCfinal,0
c − Cfinal

c F final,0 + b>γll,5c ≥ 0, c ∈ C
(2.43a)

A>γll,5c = W final,1
c − F finalCfinal,1

c − Cfinal
c F final,1, c ∈ C (2.43b)

W rec,0
tu0,tu,c + F rec

tu0,tuC
out
tu,c − F rec

tu0,tuC
out,0
tu,c

− Cout
tu,cF

rec,0
tu0,tu + b>γuu,1tu0,tu,c ≥ 0, tu0, tu ∈ TU, c ∈ C (2.44a)

A>γuu,1tu0,tu,c = W rec,1
tu0,tu,c − F rec

tu0,tuC
out,1
tu,c − Cout

tu,cF
rec,1
tu0,tu, tu0, tu ∈ TU, c ∈ C (2.44b)

W in,0
tu,c + F in

tuC
in
tu,c − F in

tuC
in,0
tu,c − Cin

tu,cF
in,0
tu + b>γuu,2tu,c ≥ 0, tu ∈ TU, c ∈ C (2.45a)

A>γuu,2tu,c = W in,1
tu,c − F in

tuC
in,1
tu,c − Cin

tu,cF
in,1
tu , tu ∈ TU, c ∈ C (2.45b)

W out,0
tu,c + F out

tu Cout
tu,c − F out

tu Cout,0
tu,c − Cout

tu,cF
out,0
tu + b>γuu,3tu,c ≥ 0, tu ∈ TU, c ∈ C

(2.46a)

A>γuu,3tu,c = W out,1
tu,c − F out

tu Cout,1
tu,c − Cout

tu,cF
out,1
tu , tu ∈ TU, c ∈ C (2.46b)

W exit,0
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout,0
tu,c − Cout

tu,cF
exit,0
tu + b>γuu,4tu,c ≥ 0, tu ∈ TU, c ∈ C

(2.47a)

A>γuu,4tu,c = W exit,1
tu,c − F exit

tu Cout,1
tu,c − Cout

tu,cF
exit,1
tu , tu ∈ TU, c ∈ C (2.47b)

W final,0
c + F finalCfinal

c − F finalCfinal,0
c − Cfinal

c F final,0 + b>γuu,5c ≥ 0, c ∈ C
(2.48a)

A>γuu,5c = W final,1
c − F finalCfinal,1

c − Cfinal
c F final,1, c ∈ C (2.48b)

W rec,0
tu0,tu,c + F rec

tu0,tuC
out
tu,c − F rec

tu0,tuC
out,0
tu,c − Cout

tu,cF
rec,0
tu0,tu

+ b>γlu,1tu0,tu,c ≤ 0, tu0, tu ∈ TU, c ∈ C (2.49a)

A>γlu,1tu0,tu,c = W rec,1
tu0,tu,c − F

rec
tu0,tuC

out,1
tu,c − Cout

tu,cF
rec,1
tu0,tu, tu0, tu ∈ TU, c ∈ C (2.49b)
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W in,0
tu,c + F in

tuC
in
tu,c − F in

tuC
in,0
tu,c − Cin

tu,cF
in,0
tu + b>γlu,2tu,c ≤ 0, tu ∈ TU, c ∈ C (2.50a)

A>γlu,2tu,c = W in,1
tu,c − F in

tuC
in,1
tu,c − Cin

tu,cF
in,1
tu , tu ∈ TU, c ∈ C (2.50b)

W out,0
tu,c + F out

tu Cout
tu,c − F out

tu Cout,0
tu,c − Cout

tu,cF
out,0
tu + b>γlu,3tu,c ≤ 0, tu ∈ TU, c ∈ C (2.51a)

A>γlu,3tu,c = W out,1
tu,c − F out

tu Cout,1
tu,c − Cout

tu,cF
out,1
tu , tu ∈ TU, c ∈ C (2.51b)

W exit,0
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout,0
tu,c − Cout

tu,cF
exit,0
tu + b>γlu,4tu,c ≤ 0, tu ∈ TU, c ∈ C

(2.52a)

A>γlu,4tu,c = W exit,1
tu,c − F exit

tu Cout,1
tu,c − Cout

tu,cF
exit,1
tu , tu ∈ TU, c ∈ C (2.52b)

W final,0
c + F finalCfinal

c − F finalCfinal,0
c − Cfinal

c F final,0 + b>γlu,5c ≤ 0, c ∈ C
(2.53a)

A>γlu,5c = W final,1
c − F finalCfinal,1

c − Cfinal
c F final,1, c ∈ C (2.53b)

W rec,0
tu0,tu,c + F rec

tu0,tuC
out
tu,c − F rec

tu0,tuC
out,0
tu,c − Cout

tu,cF
rec,0
tu0,tu

+ b>γul,1tu0,tu,c ≤ 0, tu0, tu ∈ TU, c ∈ C (2.54a)

A>γul,1tu0,tu,c = W rec,1
tu0,tu,c − F rec

tu0,tuC
out,1
tu,c − Cout

tu,cF
rec,1
tu0,tu, tu0, tu ∈ TU, c ∈ C (2.54b)

W in,0
tu,c + F in

tuC
in
tu,c − F in

tuC
in,0
tu,c − Cin

tu,cF
in,0
tu + b>γul,2tu,c ≤ 0, tu ∈ TU, c ∈ C (2.55a)

A>γul,2tu,c = W in,1
tu,c − F in

tuC
in,1
tu,c − Cin

tu,cF
in,1
tu , tu ∈ TU, c ∈ C (2.55b)

W out,0
tu,c + F out

tu Cout
tu,c − F out

tu Cout,0
tu,c − Cout

tu,cF
out,0
tu + b>γul,3tu,c ≤ 0, tu ∈ TU, c ∈ C (2.56a)

A>γul,3tu,c = W out,1
tu,c − F out

tu Cout,1
tu,c − Cout

tu,cF
out,1
tu , tu ∈ TU, c ∈ C (2.56b)

W exit,0
tu,c + F exit

tu Cout
tu,c − F exit

tu Cout,0
tu,c − Cout

tu,cF
exit,0
tu + b>γul,4tu,c ≤ 0, tu ∈ TU, c ∈ C

(2.57a)

A>γul,4tu,c = W exit,1
tu,c − F exit

tu Cout,1
tu,c − Cout

tu,cF
exit,1
tu , tu ∈ TU, c ∈ C (2.57b)

W final,0
c + F finalCfinal

c − F finalCfinal,0
c − Cfinal

c F final,0 + b>γul,5c ≤ 0, c ∈ C
(2.58a)

A>γul,5c = W final,1
c − F finalCfinal,1

c − Cfinal
c F final,1, c ∈ C (2.58b)

F 0
s,tu + b>α

Fs,tu
s,tu ≥ 0, s ∈ S, tu ∈ TU (2.59a)

A>α
Fs,tu
s,tu = F 1

s,tu, s ∈ S, tu ∈ TU (2.59b)

F rec,0
tu0,tu + b>α

F rec
tu0,tu
tu0,tu ≥ 0, tu0, tu ∈ TU (2.60a)

A>α
F rec
tu0,tu
tu0,tu = F rec,1

tu0,tu, tu0, tu ∈ TU (2.60b)
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F in,0
tu + b>α

F intu
tu ≥ 0, tu ∈ TU (2.61a)

A>α
F intu
tu = F in,1

tu , tu ∈ TU (2.61b)

F out,0
tu + b>α

F outtu
tu ≥ 0, tu ∈ TU (2.62a)

A>α
F outtu
tu = F out,1

tu , tu ∈ TU (2.62b)

F exit,0
tu + b>α

F exittu
tu ≥ 0, tu ∈ TU (2.63a)

A>α
F exittu
tu = F exit,1

tu , tu ∈ TU (2.63b)

F final,0 + b>αF
final ≥ 0 (2.64a)

A>αF
final

= F final,1 (2.64b)

Cin,0
tu,c + b>α

Cintu,c
tu,c ≥ 0, tu ∈ TU, c ∈ C (2.65a)

A>α
Cintu,c
tu,c = Cin,1

tu,c , tu ∈ TU, c ∈ C (2.65b)

Cout,0
tu,c + b>α

Couttu,c

tu,c ≥ 0, tu ∈ TU, c ∈ C (2.66a)

A>α
Couttu,c

tu,c = Cout,1
tu,c , tu ∈ TU, c ∈ C (2.66b)

Cfinal,0
c + b>αC

final
c

c ≥ 0, c ∈ C (2.67a)

A>αC
final
c

c = Cfinal,1
c , c ∈ C (2.67b)

W rec,0
tu0,tu,c + b>α

W rec
tu0,tu,c

tu0,tu,c ≥ 0, tu0, tu ∈ TU, c ∈ C (2.68a)

A>α
W rec
tu0,tu,c

tu0,tu,c = W rec,1
tu0,tu,c, tu0, tu ∈ TU, c ∈ C (2.68b)

W in,0
tu,c + b>α

W in
tu,c

tu,c ≥ 0, tu ∈ TU, c ∈ C (2.69a)

A>α
W in
tu,c

tu,c = W in,1
tu,c , tu ∈ TU, c ∈ C (2.69b)

W out,0
tu,c + b>α

W out
tu,c

tu,c ≥ 0, tu ∈ TU, c ∈ C (2.70a)

A>α
W out
tu,c

tu,c = W out,1
tu,c , tu ∈ TU, c ∈ C (2.70b)

W exit,0
tu,c + b>α

W exit
tu,c

tu,c ≥ 0, tu ∈ TU, c ∈ C (2.71a)

A>α
W exit
tu,c

tu,c = W exit,1
tu,c , tu ∈ TU, c ∈ C (2.71b)

W final,0
c + b>αW

final
c

c ≥ 0, c ∈ C (2.72a)

A>αW
final
c

c = W final,1
c , c ∈ C (2.72b)

The stochastic model using the LDR formulation on the relaxed LP model was solved

using the CPLEX LP solver, and the locally optimal objective magnitude for E[ξ] =
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0.5 was found to be 80 tonne/hr. The resulting optimal network is depicted for

ξ = 0.53, using the LDR solution for ξ ∈ [0.4, 0.6] in Figure 2.4 and ξ ∈ [0, 1]

in Figure 2.5. The optimal decision rule parameters for the variables in the model

are given in Table 2.4. It was observed that the solution satisfied all flow balance

equations in the model. However, neither the solution to the relaxed LP formulation

nor the stochastic LDR model satisfied the original component balances in the model.

It was inferred that the violation of component balances occurred as a consequence

of replacing the bilinear terms with the new variables, and solving the model to

satisfy these modified equations. In other words, the bilinear terms were merely

replaced by the new variables, but no equivalence had been established between the

entities. Therefore, the relaxed solution was deemed infeasible due to component

balance violations throughout the model. This infeasibility was found to propagate

into the stochastic LDR model as well, and hence, the optimal decision rules obtained

from the stochastic LDR model were deemed infeasible.

Figure 2.4: Optimal solution for the stochastic relaxed LDR formulation of the relaxed
small water treatment model for ξ ∈ [0.4, 0.6] at ξ∗ = 0.53
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Figure 2.5: Optimal solution for the stochastic relaxed LDR formulation of the relaxed
small water treatment model for ξ ∈ [0, 1] at ξ∗ = 0.53
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Table 2.4: Decision rule parameters for the variables in the stochastic LDR formula-
tion of the relaxed small water treatment model

ξ ∈ [0.4, 0.6] ξ ∈ [0, 1]
Fs1,tu1 54.4192 - 35.0254ξ 55 - 30ξ
Fs1,tu2 0.5808 + 5.0254ξ
Fs2,tu1 -0.9698 + 3.5025ξ 2.459ξ
Fs2,tu2 55.9698 - 33.5025ξ 55 - 32.459ξ
F in
tu1

53.4494 - 31.5228ξ 55 - 27.541ξ
F in
tu2

56.5506 - 28.4772ξ 56.3525 - 33.8115ξ
F out
tu1

53.4494 - 31.5228ξ 55 - 27.541ξ
F out
tu2

56.5506 - 28.4772ξ 56.3525 - 33.8115ξ
F rec
tu1,tu2

0.541 - 0.541ξ
F rec
tu2,tu2

0.8115 - 0.8115ξ
F exit
tu1

53.4494 - 31.5228ξ 54.459 - 27ξ
F exit
tu2

56.5506 - 28.4772ξ 55.541 - 33ξ
F final 110 - 60ξ 110 - 60ξ
Cin
tu1,A

112.2122 - 31.3636ξ 100 - 1.9001ξ
Cout
tu1,A

1.8397 2.5
Cin
tu1,B

133.8762 110 + 49.0909ξ
Cout
tu1,B

8.1311 10
Cin
tu2,A

67.106 56.7623 + 25.8197ξ
Cout
tu2,A

8.1603 7.9918 - 4.918ξ
Cin
tu2,B

219.7602 200
Cout
tu2,B

1.8689 2.459 - 1.4754ξ

Cfinal
A 10.6273 - 1.5682ξ 10

Cfinal
B 10.576 - 1.44ξ 10

W in
tu1,A

5427.3684 - 3450ξ 5500 - 2963.1148ξ
W out
tu1,A

271.3684 - 172.5ξ 275 - 148.1557ξ
W in
tu1,B

894.4262 1100 - 108.1967ξ
W out
tu1,B

894.4262 1100 - 108.1967ξ
W in
tu2,A

897.6316 879.0984 - 540.9836ξ
W out
tu2,A

897.6136 879.0984 - 540.9836ξ
W in
tu2,B

11205.5738 - 6600ξ 11270.4918 - 6762.2951ξ
W out
tu2,B

268.9338 - 158.4ξ 270.4918 - 162.2951ξ
W rec
tu1,tu2,A

54.0984 - 54.0984ξ
W rec
tu1,tu2,B

108.1967 - 108.1967ξ
W rec
tu2,tu2,B

162.2951 - 162.2951ξ
W exit
tu1,A

271.3684 - 172.5ξ 220.9016 - 94.0574ξ
W exit
tu1,B

894.4262 991.8033
W exit
tu2,A

897.6316 879.0984 - 540.9836ξ
W exit
tu2,B

268.9338 - 158.4ξ 108.1967

W final
A 1169 - 172.5ξ 1100 - 635.041ξ

W final
B 1163.36 - 158.4ξ 1100
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2.6 Concluding remarks

This chapter presented the application of the affine decision rule-based stochastic op-

timization method on the relaxed LP formulation of the small water treatment model.

The usage of McCormick envelopes for relaxation of a nonlinear model was discussed

in Section 2.1, and its application on the small water treatment model was depicted

in Section 2.4. The stochastic LDR-based formulation of the relaxed model under

uncertainty was depicted in 2.5. It was observed that, due to inadequate lineariza-

tion of the NLP model using McCormick envelopes, the decision rules obtained for

the model variables lead to violation of the component balance constraints, thereby

rendering the decision rules/policies infeasible for practical application.
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Chapter 3

Linear Stochastic Optimization
using Taylor Series Approximation

In this chapter, the application of the Taylor series approximation to the small water

treatment NLP model is discussed. The model is linearized around the set of nominal

operating conditions, using first order Taylor series approximation. Section 3.1 pro-

vides a brief background on linearization of functions using Taylor series, and Section

3.2 presents the solution of the linearized model. The derivation and solution of the

stochastic LDR-based formulation of the relaxed LP model is presented and analyzed

in Section 3.3.

3.1 Linearization using Taylor Series approxima-

tion

The Taylor series expansion of a function f(x, y) may be defined as an approximation

of the function using an infinite sum of terms or a polynomial. In most applications,

taking only a finite number of terms into account proves sufficient to approximate

the function; the higher the number of terms in the polynomial approximation, the

smaller the error between the actual function and the approximation.

A Taylor series approximation of a function is constructed around a specific value of

the function; this point is be denoted by (x∗, y∗). As one moves away from (x∗, y∗),

the approximation of the function f(x, y) is expected to get worse. The Taylor series

of a function f(x, y) around a value (x∗, y∗) is given in Equation 3.1.
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f(x, y) = f(x∗, y∗) + (x− x∗)∂f
∂x (x∗,y∗)

+ (y − y∗)∂f
∂y (x∗,y∗)

+
(x− x∗)2

2!

∂2f

∂x2
(x∗,y∗)

+
(y − y∗)2

2!

∂2f

∂y2
(x∗,y∗)

+ ...+
(x− x∗)n

n!

∂nf

∂xn (x∗,y∗)

+
(y − y∗)n

n!

∂nf

∂yn (x∗,y∗)

(3.1)

In the deterministic formulation of the small water treatment model, the presence of

bilinear terms in the component balance equations (2.7 - 2.10) makes the optimization

exercise a nonlinear program (NLP). A linear approximation of the bilinear terms can

be performed using first order Taylor series approximation around the set of nominal

operating conditions, i.e, the operating values of the variables at ξ∗.

Let F (ξ) · C(ξ) be a bilinear term occurring in the small water treatment model. It

can be approximated using first order Taylor series expansion, as follows.

F (ξ) · C(ξ) ≈ F (ξ∗)C(ξ∗) + [F (ξ)− F (ξ∗)]
∂

∂F
(F (ξ) · C(ξ))

ξ∗

+[C(ξ)− C(ξ∗)]
∂

∂C
(F (ξ) · C(ξ))

ξ∗

F (ξ) · C(ξ) ≈ F (ξ∗)C(ξ∗) + [F (ξ)− F (ξ∗)]C(ξ∗) + [C(ξ)− C(ξ∗)]F (ξ∗)

F (ξ) · C(ξ) ≈ F (ξ)C(ξ∗) + C(ξ)F (ξ∗)− F (ξ∗)C(ξ∗)

Applying the LDR formulation to the variables, the bilinear term can be further

reformulated as follows:

F (ξ) · C(ξ) ≈ (F 0 + F 1ξ)C(ξ∗) + (C0 + C1ξ)F (ξ∗)− F (ξ∗)C(ξ∗)

F (ξ) · C(ξ) ≈ [F 0C(ξ∗) + C0F (ξ∗)− F (ξ∗)C(ξ∗)] + ξ[F 1C(ξ∗) + C1F (ξ∗)] (3.2)

The bilinear terms in the stochastic formulation of the model described in Section

2.3 were replaced using the approximation in Equation 3.2. The robust counterpart

to the equality constraints was obtained by equating the coefficients of ξ to zero,

while the counterpart to the inequality constraints was obtained using the technique

detailed in Section 1.6.4.

In this chapter, the application of first order Taylor series approximation to obtain the

linear counterpart of the component balances was studied in the context of obtaining

the optimal solution and checking for feasibility, as well as its performance against

the NLP solution.
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3.2 Linearized formulation of the model

The first order Taylor series approximation was initially applied to the bilinear terms

in the deterministic formulation of the small water treatment model given in Section

2.2. The model was linearized around the set of operating values of the variables at the

nominal condition. These operating values were obtained from the optimal solution of

the deterministic model corresponding to ξ∗ = 0.5. The nominal operating conditions

around which the model was linearized are given in Table 3.1.

min
X
tu

F in
tu (3.3)

subject to

Fs =
X
tu

Fs,tu, ∀s ∈ S (3.4)

X
s

Fs,tu +
X
tu0

F rec
tu0,tu = F in

tu , ∀tu ∈ TU (3.5)

F in
tu = F out

tu , ∀tu ∈ TU (3.6)

F out
tu =

X
tu0

F rec
tu,tu0 + F exit

tu , ∀tu ∈ TU (3.7)

X
tu

F exit
tu = F final (3.8)

X
s

Fs,tuCs,c +
X
tu0

F rec
tu0,tuC

out∗

tu,c + F rec∗

tu0,tuC
out
tu,c − F rec∗

tu0,tuC
out∗

tu,c

= F in
tuC

in∗

tu,c + F in∗

tu Cin
tu,c − F in∗

tu Cin∗

tu,c, ∀tu ∈ TU, c ∈ C (3.9)

[F in
tuC

in∗

tu,c + F in∗

tu Cin
tu,c − F in∗

tu Cin∗

tu,c](1−RRtu,c)

= F out
tu Cout∗

tu,c + F out∗

tu Cout
tu,c − F out∗

tu Cout∗

tu,c , ∀tu ∈ TU, c ∈ C (3.10)

F out
tu Cout∗

tu,c + F out∗

tu Cout
tu,c − F out∗

tu Cout∗

tu,c =
X
tu0

F rec
tu0,tuC

out∗

tu,c + F rec∗

tu0,tuC
out
tu,c − F rec∗

tu0,tuC
out∗

tu,c

+ F exit
tu Cout∗

tu,c + F exit∗

tu Cout
tu,c − F exit∗

tu Cout∗

tu,c , ∀tu ∈ TU, c ∈ C (3.11)X
tu

F exit
tu Cout∗

tu,c + F exit∗

tu Cout
tu,c − F exit∗

tu Cout∗

tu,c

= F finalCfinal∗

c + F final∗Cfinal
c − F final∗Cfinal∗

c , ∀c ∈ C (3.12)

Cfinal
c ≤ Ctarget

c , ∀c ∈ C (3.13)
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Table 3.1: Operating conditions for first order Taylor series approximation of the
small water treatment model

Flow variables (tonne/hr) Value
F ∗
s1,tu1

40
F ∗
s2,tu2

40
F in∗
tu1

40
F in∗
tu2

49.8361
F out∗
tu1

40
F out∗
tu2

49.8361
F rec∗
tu1,tu2

9.8361
F exit∗
tu1

30.1639
F exit∗
tu2

49.8361
F final∗ 80
Concentration variables (ppm) Value
Cin∗
tu1,A

100
Cin∗
tu1,B

20
Cin∗
tu2,A

13.0263
Cin∗
tu2,B

164.4737
Cout∗
tu1,A

5
Cout∗
tu1,B

20
Cout∗
tu2,A

13.0263
Cout∗
tu2,B

3.9474

Cfinal∗

A 10

Cfinal∗

B 10

The linearized model was solved on GAMS using the CPLEX LP solver. The optimal

objective magnitude was found to be 116.6767 tonne/hr, and the resulting optimal

network for the linearized model is depicted in Figure 3.1.
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Figure 3.1: Optimal solution for the linearized formulation of the small water treat-
ment model

3.3 Robust counterpart of the stochastic LDR for-

mulation of the linearized model

The robust counterpart of the stochastic linearized formulation of the small water

treatment model in Section 3.2 was obtained using the techniques detailed in Section

1.6.4. In this problem, the source flow Fs was assumed to be the uncertain parameter,

depending on primitive uncertainty ξ, as follows,

Fs(ξ) = ξF 1
s + (1− ξ)F 2

s , ∀s ∈ S

where F 1
s and F 2

s were taken to be the extreme points for the realizations of Fs. The

source flow was assumed to vary between 25 tonne/hr (F 1
s ) and 55 tonne/hr (F 2

s ).

Then, the finite tractable counterpart to the stochastic programming problem using

the affine decision rule was modeled as follows, using the linearized model in Section

3.2, for different ranges of uncertainty. In this model, the variables λc and α refer to

the dual variables resulting from the robust counterpart of the concentration target

constraint, and the non-negativity constraints, respectively. The sets of decision rule
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parameters optimized by this model are grouped into F 0 and F 1 for flow variables,

and C0 and C1 for concentration variables.

min
X
tu

F in,0
tu + F in,1

tu E[ξ] (3.14)

subject to

F 2
s −

X
tu

F 0
s,tu = 0, s ∈ S (3.15a)

F 1
s − F 2

s −
X
tu

F 1
s,tu = 0, s ∈ S (3.15b)

X
s

F 0
s,tu +

X
tu0

F rec,0
tu0,tu − F

in,0
tu = 0, tu ∈ TU (3.16a)X

s

F 1
s,tu +

X
tu0

F rec,1
tu0,tu − F

in,1
tu = 0, tu ∈ TU (3.16b)

F in,0
tu − F out,0

tu = 0, tu ∈ TU (3.17a)

F in,1
tu − F out,1

tu = 0, tu ∈ TU (3.17b)

F out,0
tu −

X
tu0

F rec,0
tu,tu0 − F

exit,0
tu = 0, tu ∈ TU (3.18a)

F out,1
tu −

X
tu0

F rec,1
tu,tu0 − F

exit,1
tu = 0, tu ∈ TU (3.18b)

X
tu

F exit,0
tu − F final,0 = 0 (3.19a)X

tu

F exit,1
tu − F final,1 = 0 (3.19b)

(
X
s

F 0
s,tuCs,c)− (

X
tu0

F rec∗

tu0,tuC
out∗

tu,c ) + F in∗

tu Cin∗

tu,c + (
X
tu0

F rec,0
tu0,tuC

out∗

tu,c

+ Cout,0
tu,c F

rec∗

tu0,tu)− F
in,0
tu Cin∗

tu,c − F in∗

tu Cin,0
tu,c = 0, ∀tu ∈ TU, c ∈ C (3.20a)

(
X
s

F 1
s,tuCs,c) + (

X
tu0

F rec,1
tu0,tuC

out∗

tu,c + F rec∗

tu0,tuC
out,1
tu,c )

− F in,1
tu Cin∗

tu,c − F in∗

tu Cin,1
tu,c = 0, ∀tu ∈ TU, c ∈ C (3.20b)

F out∗

tu Cout∗

tu,c − F
out,0
tu Cout∗

tu,c − F out∗

tu Cout,0
tu,c − (1−RRtu,c)(F

in∗

tu Cin∗

tu,c + F in,0
tu Cin∗

tu,c

+ F in∗

tu Cin,0
tu,c ) = 0, ∀tu ∈ TU, c ∈ C (3.21a)

(1−RRtu,c)(F
in,1
tu Cin∗

tu,c + F in∗

tu Cin,1
tu,c )− F out,1

tu Cout∗

tu,c

− F out∗

tu Cout,1
tu,c = 0, ∀tu ∈ TU, c ∈ C (3.21b)
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(
X
tu0

F rec∗

tu,tu0C
out∗

tu,c ) + F exit∗

tu Cout∗

tu,c − F out∗

tu Cout∗

tu,c + F out,0
tu Cout∗

tu,c + F out∗

tu Cout,0
tu,c

−(
X
tu0

F rec,0
tu,tu0C

out∗

tu,c −F rec∗

tu,tu0C
out,0
tu,c )−F exit,0

tu Cout∗

tu,c −F exit∗

tu Cout,0
tu,c = 0, ∀tu ∈ TU, c ∈ C

(3.22a)

F out,1
tu Cout∗

tu,c + F out∗

tu Cout,1
tu,c − (

X
tu0

F rec,1
tu,tu0C

out∗

tu,c

− F rec∗

tu,tu0C
out,1
tu,c )− F exit,1

tu Cout∗

tu,c − F exit∗

tu Cout,1
tu,c = 0, ∀tu ∈ TU, c ∈ C (3.22b)

F final∗Cfinal∗

c − (
X
tu

F exit∗

tu Cout∗

tu,c ) + (
X
tu

F exit,0
tu Cout∗

tu,c

+ F exit∗

tu Cout,0
tu,c )− F final,0Cfinal∗

c − F final∗Cfinal,0
c = 0, ∀c ∈ C (3.23a)

(
X
tu

F exit,1
tu Cout∗

tu,c +F exit∗

tu Cout,1
tu,c )−F final,1Cfinal∗

c −F final∗Cfinal,1
c = 0, ∀c ∈ C (3.23b)

(Ctarget
c − Cfinal,0

c ) + b>λc ≥ 0, c ∈ C (3.24a)

A>λc + Cfinal,1
c = 0, c ∈ C (3.24b)

F 0
s,tu + b>αFs,tu ≥ 0, s ∈ S, tu ∈ TU (3.25a)

A>αFs,tu = F 1
s,tu, s ∈ S, tu ∈ TU (3.25b)

F rec,0
tu0,tu + b>αF rec

tu0,tu
≥ 0, tu0, tu ∈ TU (3.26a)

A>αF rec
tu0,tu

= F rec,1
tu0,tu, tu0, tu ∈ TU (3.26b)

F in,0
tu + b>αF intu ≥ 0, tu ∈ TU (3.27a)

A>αF intu = F in,1
tu , tu ∈ TU (3.27b)

F out,0
tu + b>αF outtu

≥ 0, tu ∈ TU (3.28a)

A>αF outtu
= F out,1

tu , tu ∈ TU (3.28b)

F exit,0
tu + b>αF exittu

≥ 0, tu ∈ TU (3.29a)

A>αF exittu
= F exit,1

tu , tu ∈ TU (3.29b)

F final,0 + b>αF final ≥ 0 (3.30a)

A>αF final = F final,1 (3.30b)

Cin,0
tu,c + b>αCintu,c ≥ 0, tu ∈ TU, c ∈ C (3.31a)

A>αCintu,c = Cin,1
tu,c , tu ∈ TU, c ∈ C (3.31b)
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Cout,0
tu,c + b>αCouttu,c

≥ 0, tu ∈ TU, c ∈ C (3.32a)

A>αCouttu,c
= Cout,1

tu,c , tu ∈ TU, c ∈ C (3.32b)

Cfinal,0
c + b>αCfinalc

≥ 0, c ∈ C (3.33a)

A>αCfinalc
= Cfinal,1

c , c ∈ C (3.33b)

The linear stochastic LDR model was initially solved using the nominal operating

conditions at ξ∗ = 0.5 obtained by the solving the deterministic NLP model at ξ∗,

for the range ξ ∈ [0.4, 0.6]. The solver returned model infeasibility errors, and so the

range was reduced to ξ ∈ [0.45, 0.55]. The optimal solution for E[ξ] = 0.5 was found

to be 111.0975 tonne/hr. An example of the resulting optimal network is depicted

for ξ = 0.53, using the LDR solution for ξ ∈ [0.45, 0.55] in Figure 3.2. The optimal

decision rule parameters for the variables in the model are given in Table 3.2.

Figure 3.2: Optimal solution for the stochastic LDR formulation of the linearized
small water treatment model for ξ ∈ [0.45, 0.55] at ξ∗ = 0.53
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Table 3.2: Decision rule parameters for the variables in the stochastic LDR formula-
tion of the linearized small water treatment model

ξ ∈ [0.45, 0.55]
Fs1,tu1 31.3114 - 23.4576ξ
Fs1,tu2 23.6886 - 6.5424ξ
Fs2,tu1 10.5396
Fs2,tu2 44.4604 - 30ξ
F in
tu1

-67.4283 + 219.3854ξ
F in
tu2

-102.445 + 342.5664ξ
F out
tu1

-67.4283 + 219.3854ξ
F out
tu2

-102.445 + 342.5664ξ
F rec
tu1,tu1

-108.9038 + 242.0084ξ
F rec
tu2,tu1

-0.3756 + 0.8346ξ
F rec
tu2,tu2

-170.599 + 379.1088ξ
F exit
tu1

41.4754 - 22.623ξ
F exit
tu2

68.5246 - 37.377ξ
F final 110 - 60ξ
Cin
tu1,A

337.1417 - 576.7521ξ
Cin
tu1,B

67.4283
Cin
tu2,A

53.5574 - 12.6059ξ
Cin
tu2,B

676.2301 - 1223.5622ξ
Cout
tu1,A

0
Cout
tu1,B

0
Cout
tu2,A

0
Cout
tu2,B

0

Cfinal
A 0

Cfinal
B 0

It was observed that the solution satisfied all flow balance equations in the model.

However, neither the solution to the linearized LP formulation nor to the stochastic

LDR model satisfied the original component balances in the model. It was inferred

that the violation of component balances occurred as a consequence of inadequate

linearization, and solving the model to satisfy these modified equations. Therefore,

the linearized solution was deemed infeasible due to component balance violations

throughout the model. This infeasibility was found to propagate into the stochastic

LDR model as well, and hence, the optimal decision rules obtained from the stochastic

LDR model were deemed infeasible.
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3.4 Concluding remarks

This chapter presented the application of the affine decision rule-based stochastic op-

timization method on the linearized formulation of the small water treatment model.

The usage of first order Taylor series approximation for the linearization of a nonlinear

model around its nominal conditions was discussed in Section 3.1, and its applica-

tion on the small water treatment model was depicted in Section 3.2. The stochastic

LDR-based formulation of the linearized model under uncertainty was depicted in

Section 3.3. It was observed that, due to inadequate linearization of the NLP model

around nominal conditions, the decision rules obtained for the model variables lead

to violation of the component balance constraints, thereby rendering the decision

rules/policies infeasible for practical application. Furthermore, it was observed that

the stochastic LDR model itself was only feasible for a very small range of ξ. It

can, therefore, be inferred that, even if the model was modified such that flow and

component balance violations were no longer violated, linearization around multiple

conditions might be necessary to obtain decision rules for the entire range of uncer-

tainty defined.
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Chapter 4

Nonlinear Robust Optimization
using the Affine Decision Rule

In this chapter, the application of the nonlinear robust optimization technique, using

the affine decision rule, developed by Yuan, et al. [46], was evaluated on the small

water treatment model. Chapters 2 and 3 present the solution to the stochastic LDR

formulation of the small water treatment model linearized using McCormick relax-

ation, and first order Taylor series approximation, respectively. These approaches

were sequential in nature - first, the relaxed LP/linearized model were formulated;

then, the stochastic LDR-based models were developed. The method explored in this

chapter follows a different solution procedure, in which the affine adjustable robust

counterpart has been directly derived for a general MINLP model. This method is

discussed in Section 4.1, and the derived nonlinear robust counterpart of the model

is presented in Section 4.2. The improved solution to the model is also discussed in

the same section.

4.1 Nonlinear robust process optimization frame-

work

Yuan, et al. (2018) [46] proposed a novel nonlinear robust optimization framework

to tackle nonlinear process design problems containing uncertain parameters. This

framework involves linearization of the model with respect to uncertainty, around

multiple realizations of the same, and presents an iterative algorithm to tackle the

problem.

First, the general optimization problem under uncertainty is classified into three cate-

gories. In problems belonging to the first category, the uncertain parameters are only
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assumed to be involved in the inequality constraints of the model. Typically, process

design problems that contain only static decisions belong to this category. For such

problems, no equality constraints exist, and so, the robust counterpart to the inequal-

ity constraints are obtained by directly applying the approach detailed in Section 1.6.4

[45], on the linearized constraints. For the second category of problems, the model

is assumed to contain both static design, as well as state variables linked by a set

of equality and inequality constraints. Due to the presence of equality constraints in

the model, the robust counterpart is not directly derived; rather, the design variables

are assumed to be first-stage/fixed decisions, while the state variables are assumed to

be second-stage/recourse variables. The state variables are substituted by functions

of uncertainty and design variables, applying the Implicit Function Theorem to the

equality constraints. The robust counterpart to the inequality constraints is obtained

in a similar manner to problems of the first category. The third category of problems

covers the general optimization problem containing design, state, as well as control

variables. In such problems, the design variables are assumed to be fixed decisions

taken before uncertainty is realized; however, both state and control variables are

assumed to be dependent on the realization of uncertainty. Furthermore, the control

variables are assumed to be affinely adjustable to uncertainty, and this assumption is

reflected in the reformulation of the control variables in the model using the affine de-

cision rule (LDR). Applying the LDR formulation to the control variables reduces the

nature of the problem to the second category, and the adjustable robust counterpart

to the original nonlinear problem is obtained.

The general optimization problem is given as:

min
u,y(ξ),z(ξ)

φ(u, y, z)

subject to

F (ξ, u, y(ξ), z(ξ)) = 0

G(ξ, u, y(ξ), z(ξ)) ≤ 0

Using the developed nonlinear robust optimization approach, the control variables

z(ξ), present in both equality and inequality constraints, are first reformulated as

follows.

z(ξ) = z0 + z1ξ

45



Each equality constraint (contained in F (ξ, u, y(ξ), z(ξ))) is robustly reformulated

using implicit derivatives of the equality function with respect to uncertainty, state

variables and control variables, denoted by Fξ, Fy and Fz respectively, as well as

derivatives of the state and control variables with respect to ξ, given as yξ and

z1, respectively. Each inequality constraint (contained in G(ξ, u, y(ξ), z(ξ))) is ini-

tially linearized using first order Taylor series approximation around a specific real-

ization of uncertainty (ξ). The resulting linearized inequality constraint, containing a

first-order partial derivative of the inequality function with respect to ξ, denoted by

∇ξG(ξ, u, y(ξ), z(ξ)), is robustly reformulated. All derivatives involved in this robust

counterpart are evaluated at ξ∗.

The robust counterpart of this nonlinear optimization problem is thus given as follows.

In the following model, the inequality constraint is still semi-infinite in nature, and

therefore, its robust counterpart must be derived using duality.

min
u,y(ξ),z(ξ)

φ(u, y, z)

subject to

F (ξ∗, u, y(ξ∗), z(ξ∗)) = 0

Fyyξ + Fzz
1 + Fξ = 0

[G(ξ∗, u, y(ξ∗), z(ξ∗))− ξ∗∇ξG(ξ∗, u, y(ξ∗), z(ξ∗))] + ξ[∇ξG(ξ∗, u, y(ξ∗), z(ξ∗))] ≤ 0

Illustrative example

The derivation of the affine adjustable robust counterpart of the general optimization

problem containing design, state, and control variables is illustrated in the following

example.

min
u,y(ξ),z(ξ)

φ(u, y, z)

subject to

a1y1(ξ) + a2y2(ξ) + cz(ξ) = 0

y1(ξ) + z(ξ) ≤ uy2(ξ)

Applying the affine decision rule formulation to z(ξ), the problem is redefined as

follows.
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min
u,y1(ξ),y2(ξ),z(ξ)

φ(u, y, z)

subject to

a1y1(ξ) + a2y2(ξ) + c(z0 + z1ξ) = 0

y1(ξ) + (z0 + z1ξ)− uy2(ξ) ≤ 0

The equality constraints are reformulated using the following derivatives,

Fy1 = a1, Fy2 = a2, Fz = c

to give,

a1y1(ξ∗) + a2y2(ξ∗) + c(z0 + z1ξ∗) = 0

a1y1ξ + a2y2ξ + cz1 = 0

The inequality constraints are linearized with respect to uncertainty, as follows,

y1(ξ∗) + (z0 + z1ξ∗)− uy2(ξ∗) + (ξ − ξ∗)∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗
≤ 0, ∀ξ ∈ Ξ

y1(ξ∗) + (z0 + z1ξ∗)− uy2(ξ∗)− ξ∗∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

+ ξ∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗
≤ 0, ∀ξ ∈ Ξ

Using the technique described in Section 1.6.4,

− y1(ξ∗)− (z0 + z1ξ∗) + uy2(ξ∗) + ξ∗∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

+

min
ξ

ξ∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

subject to
Aξ ≥ b

 ≥ 0

− y1(ξ∗)− (z0 + z1ξ∗) + uy2(ξ∗) + ξ∗∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

+


max
λ≥0

(b>λ)

subject to

A>λ = ∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

 ≥ 0
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to give,

−y1(ξ∗)− (z0 + z1ξ∗) + uy2(ξ∗) + ξ∗∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

+ b>λ ≥ 0

A>λ = ∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

The final robust counterpart to this illustrative nonlinear problem is, thus, given as,

min
u,y(ξ),z(ξ)

φ(u, y, z)

subject to

a1y1(ξ∗) + a2y2(ξ∗) + c(z0 + z1ξ∗) = 0

a1y1ξ + a2y2ξ + cz1 = 0

− y1(ξ∗)− (z0 + z1ξ∗) + uy2(ξ∗) + ξ∗∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

+ b>λ ≥ 0

A>λ = ∇ξy1(ξ) + z(ξ)− uy2(ξ)
ξ∗

λ ≥ 0

The authors [46] contrasted the original nonlinear model with the robust counterpart

with respect to problem size, and made the following observations. The number of

equality constraints increases two-fold since a single equality constraint is robustly

reformulated into two constraints, and the robust counterpart to original inequality

constraints involves a new equality constraint. This also leads to an increase in the

number of variables due to the present of implicit derivatives, as well as first order

derivative terms for the original inequalities. The number of inequalities remains the

same in the robust counterpart, as in the original model. However, new dual variables

(λ) of the size of b are introduced in the stochastic LDR model, for every inequality

constraint. Therefore, the robust counterpart of the stochastic LDR model always

contains a larger set of constraints, as well as variables, than the original model. The

significant increase in the size of the variables set is not quite evident in the case of

the small water treatment model; however, this increase is very apparent in the case

of the SAGD model, explored further in Chapter 5.
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4.2 Robust counterpart of nonlinear LDR-based

formulation of the small water treatment model

The uncertainty in model (Section 2.2) was sourced from source flow (Fs(ξ)) and as a

result, all the state and control variables in the model were assumed to be dependent

on uncertainty. In this problem, the source flow Fs was assumed to be the uncertain

parameter, depending on primitive uncertainty ξ, as follows,

Fs(ξ) = ξF 1
s + (1− ξ)F 2

s , ∀s ∈ S

where F 1
s and F 2

s were taken to be the extreme points for the realizations of Fs. The

source flow was assumed to vary between 25 tonne/hr (F 1
s ) and 55 tonne/hr (F 2

s ).

The variables present in the model were classified into state and control variables

and presented in Table 4.1. The control variables were reformulated using the affine

decision rule, as follows:

Fs,tu(ξ) = F 0
s,tu + F 1

s,tuξ, ∀s ∈ S, tu ∈ TU, ξ ∈ Ξ

F rec
tu,tu0(ξ) = F rec,0

tu,tu0 + F rec,1
tu,tu0ξ, ∀tu, tu0 ∈ TU, ξ ∈ Ξ

F exit
tu (ξ) = F exit,0

tu + F exit,1
tu ξ, ∀tu ∈ TU, ξ ∈ Ξ

Table 4.1: Classification of state and control variables in the small water treatment
model

State variables y(ξ) Control variables z(ξ)
F in
tu Fs,tu

F out
tu F exit

tu

Cin
tu,c F rec

tu0,tu

Cout
tu,c

F final

Cfinal
c

The stochastic LDR model linearized around ξ∗ = 0.5 was developed using the deter-

ministic formulation of the model in Section 2.2. The implicit derivatives of the state

variables (m(ξ)) are denoted by ym. The dual variables associated with the robust

counterparts of the concentration limits and non-negativity constraints are denoted

by αg, where g represents the inequality constraint that the dual is derived for, and λ,

respectively. The decision rule parameters for the control variables that are optimized
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by this model are grouped into F 0 and F 1. The same set of design variables, as in the

deterministic formulation, are optimized by the nonlinear robust model, in addition

to the state variables.

min
X
tu

F in
tu (ξ∗) (4.1)

subject to

F 2
s + ξ∗(F 1

s − F 2
s )−

X
tu

F 0
s,tu + F 1

s,tuξ
∗ = 0, ∀s ∈ S (4.2a)

(F 1
s − F 2

s )−
X
tu

F 1
s,tu = 0, ∀s ∈ S (4.2b)

X
s

F 0
s,tu + F 1

s,tuξ
∗ +

X
tu0

F rec,0
tu0,tu + F rec,1

tu0,tuξ
∗ − F in

tu (ξ∗) = 0, ∀tu ∈ TU (4.3a)

X
s

F 1
s,tu +

X
tu0

F rec,1
tu0,tu − yF intu = 0, ∀tu ∈ TU (4.3b)

F in
tu (ξ∗)− F out

tu (ξ∗) = 0, tu ∈ TU (4.4a)

yF intu − yF outtu
= 0, ∀tu ∈ TU (4.4b)

F out
tu (ξ∗)−

X
tu0

F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗ − (F exit,0

tu + F exit,1
tu ξ∗) = 0, ∀tu ∈ TU (4.5a)

yF outtu
−

X
tu0

F rec,1
tu,tu0 − F

exit,1
tu = 0, ∀tu ∈ TU (4.5b)

X
tu

F exit,0
tu + F exit,1

tu ξ∗ − F final(ξ∗) = 0 (4.6a)

X
tu

F exit,1
tu − yF final = 0 (4.6b)

X
s

(F 0
s,tu + F 1

s,tuξ
∗)Cs,c +

X
tu0

(F rec,0
tu0,tu + F rec,1

tu0,tuξ
∗)Cout

tu0,c(ξ
∗)

− F in
tu (ξ∗)Cin

tu,c(ξ
∗) = 0, ∀tu ∈ TU, c ∈ C (4.7a)

X
s

F 1
s,tuCs,c +

X
tu0

Cout
tu0,c(ξ

∗)F rec,1
tu0,tu + (F rec,0

tu0,tu + F rec,1
tu0,tuξ

∗)yCout
tu0,c

− (Cin
tu,c(ξ

∗)yF intu + F in
tu (ξ∗)yCintu,c) = 0, ∀tu ∈ TU, c ∈ C (4.7b)
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F in
tu (ξ∗)Cin

tu,c(ξ
∗)[1−RRtu,c]− F out

tu (ξ∗)Cout
tu,c(ξ

∗) = 0, ∀tu ∈ TU, c ∈ C (4.8a)

[1−RRtu,c](C
in
tu,c(ξ

∗)yF intu + F in
tu (ξ∗)yCintu,c)

− (Cout
tu,c(ξ

∗)yF outtu
+ F out

tu (ξ∗)yCouttu,c
) = 0, ∀tu ∈ TU, c ∈ C (4.8b)

F out
tu (ξ∗)Cout

tu,c(ξ
∗)−

X
tu0

(F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗)Cout

tu,c(ξ
∗)

− (F exit,0
tu + F exit,1

tu ξ∗)Cout
tu,c(ξ

∗) = 0, ∀tu ∈ TU, c ∈ C (4.9a)

(Cout
tu,c(ξ

∗)yF outtu
+ F out

tu (ξ∗)yCouttu,c
)−

X
tu0

Cout
tu,c(ξ

∗)F rec,1
tu,tu0 + (F rec,0

tu,tu0 + F rec,1
tu,tu0ξ

∗)yCouttu,c

− (Cout
tu,c(ξ

∗)F exit,1
tu )− (F exit,0

tu + F exit,1
tu ξ∗)yCouttu,c

= 0, ∀tu ∈ TU, c ∈ C (4.9b)

X
tu

(F exit,0
tu + F exit,1

tu ξ∗)Cout
tu,c(ξ

∗) − (F final(ξ∗)Cfinal
c (ξ∗)) = 0, ∀c ∈ C (4.10a)

X
tu

Cout
tu,c(ξ

∗)F exit,1
tu +

X
tu

(F exit,0
tu + F exit,1

tu ξ∗)yCouttu,c

− (Cfinal
c (ξ∗)yF final + F final(ξ∗)yCfinalc

) = 0, ∀c ∈ C (4.10b)

ξ∗∇Cfinalc
− (Cfinal

c (ξ∗)− Ctarget
c ) + b>λc ≥ 0 (4.11a)

A>λc +∇Cfinalc
= 0 (4.11b)

λc ≥ 0 (4.11c)

F 0
s,tu + b>αFs,tu ≥ 0, s ∈ S, tu ∈ TU (4.12a)

A>αFs,tu = F 1
s,tu, s ∈ S, tu ∈ TU (4.12b)

F rec,0
tu,tu0 + b>αF rec

tu,tu0
≥ 0, tu, tu0 ∈ TU (4.13a)

A>αF rec
tu,tu0

= F rec,1
tu,tu0 , tu, tu0 ∈ TU (4.13b)

F exit,0
tu + b>αF exittu

≥ 0, tu ∈ TU (4.14a)

A>αF exittu
= F exit,1

tu , tu ∈ TU (4.14b)

The nonlinear robust LDR model was derived around the nominal condition, i.e.,

ξ∗ = 0.5, where the objective function was minimized for ξ∗. The model was de-

rived for different ranges of uncertainty, ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1]. The model was

solved in GAMS using the ANTIGONE NLP solver, using a pre-solving step with the
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IPOPT NLP solver, to facilitate a quicker solution. The locally optimal objective at

ξ∗ = 0.5 was found to be 89.8361 for both ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1]. An example

for the resulting network flows is depicted for ξ = 0.53, using the LDR solutions for

ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1], in Figures 4.1 and 4.2 respectively. The evolution of the

optimal objective and computed concentration profiles for Cfinal
c for both ranges of

uncertainty are shown in Figure 4.3. The optimal decision rule parameters for the

control variables in the model are given in Table 4.2.

Table 4.2: Decision rule parameters for the control variables in the nonlinear robust
LDR formulation of the small water treatment model

ξ ∈ [0.4, 0.6] ξ ∈ [0, 1]
Fs1,tu1 55 - 30ξ 55 - 30ξ
Fs2,tu2 55 - 30ξ 55 - 30ξ
F rec
tu1,tu2

14.3621 - 9.0521ξ 9.9226 - 0.1731ξ
F exit
tu1

40.6379 - 20.9479ξ 45.0774 - 29.8269ξ
F exit
tu2

69.3621 - 39.0521ξ 64.9226 - 30.1731ξ

Figure 4.1: Optimal solution for the nonlinear robust LDR formulation of the small
water treatment model for ξ ∈ [0.4, 0.6] at ξ∗ = 0.53
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Figure 4.2: Optimal solution for the nonlinear robust LDR formulation of the small
water treatment model for ξ ∈ [0, 1] at ξ∗ = 0.53

Figure 4.3: Evolution of optimal objective using LDR models (left), and computed
concentration profile for contaminant B (right)

The first observation made using the decision rules for both ranges of uncertainty

was that the solution was feasible with respect to flow rate and component balances.

However, it was also observed that when the nonlinear robust LDR model was solved

for either range of uncertainty, the computed concentration profiles for Cfinal
B violated

the target (10 ppm). The profiles were also observed to be monotonically decreasing

in nature. The cause for violation of the target was inferred to be the approximated

nature of the linearized model. The model was re-solved for a stricter target of 9.5
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ppm on Ctarget
B , and the solution was found to be robustly feasible with no target vio-

lation. However, this heuristic method of re-solving the model for stricter targets was

found to lead to overly conservative solutions. To deal with this issue, an alternative

scheme was proposed. The original NLP target concentration inequality constraints

(Equation 2.11) (and as a result, the balance equations 2.2 - 2.10) were enforced at

the terminal points of the uncertainty set (ξlow and ξhigh) considered in the model.

The modified model is given as follows.

min [Equation 4.1]

subject to

[Equations 4.2a - 4.14b]

XF 1
s + (1−X)F 2

s =
X
tu

F 0
s,tu + F 1

s,tuX, ∀s ∈ S,X ∈ {ξlow, ξhigh} (4.15)

X
tu

F 0
s,tu+F 1

s,tuX+
X
tu0

F rec,0
tu0,tu+F rec,1

tu0,tuX = F in
tu,X , ∀tu ∈ TU,X ∈ {ξlow, ξhigh} (4.16)

F in
tu,X = F out

tu,X , ∀tu ∈ TU,X ∈ {ξlow, ξhigh} (4.17)

F out
tu,X =

X
tu0

F rec,0
tu,tu0 + F rec,1

tu,tu0X

+ F exit,0
tu + F exit,1

tu X , ∀tu ∈ TU,X ∈ {ξlow, ξhigh} (4.18)

X
tu

F exit,0
tu + F exit,1

tu X = F final
X , X ∈ {ξlow, ξhigh} (4.19)

X
s

(F 0
s,tu + F 1

s,tuX)Cs,c +
X
tu0

(F rec,0
tu,tu0 + F rec,1

tu,tu0X)Cout
tu0,c,X

= Cin
tu,c,XF

in
tu,X , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (4.20)

Cin
tu,c,XF

in
tu,X = Cout

tu,c,XF
out
tu,X + Cin

tu,c,XF
in
tu,XRRtu,c,

∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (4.21)

F out
tu,XC

out
tu,c,X =

X
tu0

(F rec,0
tu,tu0 + F rec,1

tu,tu0X)Cout
tu,c,X

+ (F exit,0
tu + F exit,1

tu X)Cout
tu,c,X , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (4.22)X

tu

(F exit,0
tu + F exit,1

tu X)Cout
tu,c = Cfinal

c,X F final
X , ∀c ∈ C,X ∈ {ξlow, ξhigh} (4.23)
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Cfinal
c,X ≤ Ctarget

c , ∀c ∈ C,X ∈ {ξlow, ξhigh} (4.24)

Solving this modified model gave a robustly feasible solution with an optimal objective

value of 99.9107 tonne/hr at ξ∗ = 0.5, for both ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1]. It

was observed that the solution to the modified model provided a feasible solution

for the entire range of uncertainty, with no target violations, nor violation of flow

and component balances. An example for the resulting network is depicted for ξ =

0.53, using the LDR solution for ξ ∈ [0.4, 0.6] in Figure 4.4. The evolution of the

optimal objective, and the computed concentration profiles for Cfinal
B for both ranges

of uncertainty are shown in Figure 4.5. The optimal decision rule parameters for the

control variable in the modified LDR model are given in Table 4.3.

Table 4.3: Decision rule parameters for the control variables in the modified nonlinear
robust LDR formulation of the small water treatment model

ξ ∈ [0.4, 0.6] ξ ∈ [0, 1]
Fs1,tu1 52.8871 - 28.8475ξ 52.8871 - 28.8475ξ
Fs1,tu2 2.1129 - 1.1525ξ 2.1129 - 1.1525ξ
Fs2,tu2 55 - 30ξ 55 - 30ξ
F rec
tu1,tu2

13.6886 - 7.4665ξ 13.6886 - 7.4665ξ
F rec
tu2,tu1

13.6886 - 7.4665ξ 13.6886 - 7.4665ξ
F exit
tu1

52.8871 - 28.8475ξ 52.8871 - 28.8475ξ
F exit
tu2

57.1129 - 31.1525ξ 57.1129 - 31.1525ξ

Figure 4.4: Optimal solution for the modified nonlinear robust LDR formulation of
the small water treatment model for ξ ∈ [0.4, 0.6] at ξ∗ = 0.53
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Figure 4.5: Evolution of optimal objective using modified LDR models (left), and
computed concentration profile for contaminant B (right)

4.3 Concluding remarks

This chapter presented the application of the two-stage nonlinear robust optimization

technique developed by Yuan, et al. [46] on the small water treatment model. The

nonlinear robust optimization technique was detailed and illustrated in Section 4.1,

and its application on the small water treatment model was depicted in Section 4.2.

The defining feature of this technique compared to the techniques used in Chapters

2 and 3, was that the decision rules obtained for the control variables did not lead

to the violation of the component balance constraints. However, using these decision

rules, violations of the final target concentration were observed, and so, an alternative

scheme was proposed to tackle this violation. Using the solution from the modified

robust LDR model, it was observed that the decision rules successfully provided feasi-

ble solutions with respect to both target concentrations, as well flow and component

balances, for the entire range of uncertainty.
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Chapter 5

Nonlinear Robust Optimization of
the SAGD Effluent Treatment
System

In this chapter, the application of the nonlinear robust optimization technique, using

the affine decision rule, developed by Yuan, et al. [46], was evaluated on the SAGD

effluent treatment and steam generation network. Section 5.1 provides background

on SAGD operations, and Section 5.2 presents the deterministic formulation of the

SAGD model, and discusses its optimal solution. The derivation and solution of the

nonlinear robust counterpart of the SAGD model under steam demand uncertainty

is presented in Section 5.3. The proposed model reformulation, and algorithm for

an improved solution are discussed in Section 5.4, and the results for the same are

discussed in Section 5.5.

5.1 Overview of SAGD operations

The Steam Assisted Gravity Drainage (SAGD) process [47] is a method of oil recov-

ery that is used for production of bitumen and heavy crude oils [48]. In this process,

pairs of horizontal wells are drilled into the oil reservoir. The top well is known as

the injection well, while the bottom well is termed as the production well. Steam

generated at the surface is directed into the injection well, and serves to heat the

oil and lower its viscosity. The bitumen or crude oil, now with reduced viscosity,

is produced from the bottom well. The production output from this process is an

emulsion of oil, water, sand and clay. This emulsion is passed to the central process-

ing facility and goes through the stages of oil/water separation, effluent treatment,

and steam generation. The overall superstructure for the SAGD effluent treatment

and steam generation system, with all possible flow streams, is depicted in Figure 5.1.
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Figure 5.1: Superstructure of the SAGD effluent treatment and steam generation
network

The main objective of the effluent treatment process in SAGD operations is to treat

the produced water (PW ) from the bitumen emulsion to meet the boiler feed require-

ments, while generating steam to meet the demand from the reservoir. The process

is, therefore, to be optimized such that water is recycled as much as possible in the

process, and to cut down on the makeup water requirements. The main target in the

process is the boiler feed water concentration level for each contaminant; however,

there are limits imposed on inlet contaminant concentration to each treatment unit in

the process. Therefore, the aim of optimization of this model is to obtain an optimal

network design, feasible for all realizations of uncertainty in the chosen range, with

respect to target concentration limits under cost optimization.

The SAGD model used in this chapter considers three streams, grouped into set S -

produced water (PW ), makeup water (MUW ), and boiler blowdown (BBD). The
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major contaminants found in the produced water stream are oil (O), silica (Si), metal

ions measured in terms of total hardness (TH), and total suspended solids (TSS).

The variables used in the model are given in Table 5.1. The general concentration

of these contaminants in all three water streams is given in Table 5.2 [2]. Several

treatment options are available to handle the task of treating these streams as per

the specified targets; seven such treatment units, grouped into set TU , are chosen in

this superstructure - skim tank (ST ), induced gas flotation unit (IGF ), oil removal

filter (ORF ), hydrocyclone (HCY ), lime softening unit (LS), evaporator (EVAP),

and weak acid cation exchanger (WAC ). The contaminant removal efficiencies for

each treatment unit are listed in Table 5.3 [2].

The treated streams are passed into one or more steam generation units, grouped

into set SGU - heat recovery steam generator (HRSG), drum boiler (DB), and once-

through steam generator (OTSG). Once-through steam generators typically produce

75-80% quality steam; the water that is left over from steam generation in this unit

is supplied back to the treatment process as the boiler blowdown stream [2]. Drum

boilers produce nearly 100% quality steam, whereas heat-recovery steam generation

units can be used as internal power sources in the model; the use of these units comes

at the expense of higher capital costs and electricity usage. The steam generated

is passed into the injection well (WI) at the reservoir. It is worthwhile to mention

that although in this thesis the objective is to minimize total cost of treatment as a

function of flow rates, an optimization model solving for both flow-rate and energy

consumption minimization can be solved. In this chapter, the source flow variable

cost, as well as fixed and variable costs associated with each treatment unit in TU are

assumed to be affine functions of stream flow (Fs) and treatment unit inflow (F in
tu )

rates, respectively.

5.2 Deterministic formulation

The SAGD model is described as a set of mass flow, and component concentration

balances over all the units in the model, as well as upper and lower limits on all

flow rates, in addition to auxiliary constraints. Equations 5.2 - 5.2 and 5.18 - 5.26

describe the flow rate balances and limits, respectively. The component balances and

limits are specified by Equations 5.2 - 5.2 and 5.2 - 5.2, respectively. The remaining

equations in the model enforce additional constraints and logical connections, and

compute costs involved in the model. The sets of variables optimized in this model

are given in Table 5.1. The input and operational parameters in the model are given
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in Tables 5.2 and 5.3. The cost function parameters are listed in Tables 5.4 and 5.5.

The maximum allowable inlet concentration to the treatment units (Cmax
tu,c ), target

inlet concentrations to the steam generation units (Ctarget
sgu,c ), and other parameters

used in the model are listed in Table 5.6 [2].

min
X
s

costs +
X
tu

costtu (5.1)

subject to

Fs =
X
tu

Fs,tu, ∀s ∈ S (5.2)

X
s

Fs,tu +
X
tu0

F rec
tu0,tu = F in

tu , ∀tu ∈ TU (5.3)

F in
tu = F out

tu + F loss
tu , ∀tu ∈ TU (5.4)

F out
tu =

X
tu0

F rec
tu,tu0 +

X
sgu

F exit
tu,sgu, ∀tu ∈ TU (5.5)

F in
sgu =

X
tu

F exit
tu,sgu, ∀sgu ∈ SGU (5.6)

F in
sgu = F out

sgu , ∀sgu ∈ SGU (5.7)X
sgu

F out
sgu = F in

WI (5.8)

F in
WI = Demandsteam (5.9)

F in
HRSG = F out

HRSG + F bbd,rec
HRSG (5.10a)

F in
DB = F out

DB + F bbd,rec
DB (5.10b)

βbbdF
in
OTSG = F out

OTSG (5.10c)

(1− βbbd)F in
OTSG = F bbd,rec

OTSG (5.10d)

FPW = βemulF in
WI (5.11a)

FMUW = (1− βemul)F in
WI +

X
tu

F loss
tu (5.11b)

FBBD =
X
sgu

F bbd,rec
sgu (5.11c)
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X
s

Bs,tu +
X
tu0

Btu0,tu ≤ NSmax, ∀tu ∈ TU (5.12)

Btu,tu0 +Btu0,tu ≤ 1, ∀tu, tu0 ∈ TU (5.13)

Boundup =
X
s

Fs (5.14)

Bin
tu = Bout

tu , ∀tu ∈ TU (5.15)

Bin
sgu = Bout

sgu, ∀sgu ∈ SGU (5.16)

Bbbd,rec
OTSG = Bin

OTSG (5.17)

Fs,tu ≤ Bs,tuBound
up, ∀s ∈ S, tu ∈ TU (5.18a)

Fs,tu ≥ Bs,tuBound
low, ∀s ∈ S, tu ∈ TU (5.18b)

F rec
tu,tu0 ≤ Btu,tu0Bound

up, ∀tu, tu0 ∈ TU (5.19a)

F rec
tu,tu0 ≥ Btu,tu0Bound

low, ∀tu, tu0 ∈ TU (5.19b)

F in
tu ≤ Bin

tuBound
up, ∀tu ∈ TU (5.20a)

F in
tu ≥ Bin

tuBound
low, ∀tu ∈ TU (5.20b)

F out
tu ≤ Bout

tu Bound
up, ∀tu ∈ TU (5.21a)

F out
tu ≥ Bout

tu Bound
low, ∀tu ∈ TU (5.21b)

F exit
tu,sgu ≤ Bexit

tu,sguBound
up, ∀tu ∈ TU, sgu ∈ SGU (5.22a)

F exit
tu,sgu ≥ Bexit

tu,sguBound
low, ∀tu ∈ TU, sgu ∈ SGU (5.22b)

F in
sgu ≤ Bin

sguBound
up, ∀sgu ∈ SGU (5.23a)

F in
sgu ≥ Bin

sguBound
low, ∀sgu ∈ SGU (5.23b)

F out
sgu ≤ Bout

sguBound
up, ∀sgu ∈ SGU (5.24a)

F out
sgu ≥ Bout

sguBound
low, ∀sgu ∈ SGU (5.24b)

F bbd,rec
sgu ≤ Bbbd,rec

sgu Boundup, ∀sgu ∈ SGU (5.25a)

F bbd,rec
sgu ≥ Bbbd,rec

sgu Boundlow, ∀sgu ∈ SGU (5.25b)
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F in
WI ≤ Bin

proBound
up (5.26a)

F in
WI ≥ Bin

WIBound
up (5.26b)X

s

Fs,tuCs,c +
X
tu0

F rec
tu0,tuC

out
tu0,c = F in

tuC
in
tu,c, ∀tu ∈ TU, c ∈ C (5.27)

(1−RRtu,c)F
in
tuC

in
tu,c = F out

tu Cout
tu,c, ∀tu ∈ TU, c ∈ C (5.28)

F out
tu Cout

tu,c =
X
sgu

F exit
tu,sguC

out
tu,c +

X
tu0

F rec
tu,tu0C

out
tu,c, ∀tu ∈ TU, c ∈ C (5.29)

X
tu

F exit
tu,sguC

out
tu,c = F in

sguC
in
sgu,c, ∀sgu ∈ SGU, c ∈ C (5.30)

Cin
tu,c ≤ Cmax

tu,c , ∀tu ∈ TU, c ∈ C (5.31)

Cin
sgu,c ≤ Ctarget

sgu,c , ∀sgu ∈ SGU, c ∈ C (5.32)

costs = costfixs +HY (costvars ), ∀s ∈ S (5.33)

costtu = (afixtu F
in
tu + bfixtu ) +HY (avartu F

in
tu + bvartu ), ∀tu ∈ TU (5.34)

Table 5.1: Decision variables in the SAGD model

Variable Description Associated design variable
Flow variables (tonne/hr)

Fs Source flow

Fs,tu
Exit flow from source splitter to
treatment unit

Bs,tu

F in
tu Inflow to treatment unit Bin

tu

F out
tu Outflow from treatment unit Bout

tu

F rec
tu,tu0 Recycle flow between treatment units Brec

tu,tu0

F exit
tu,sgu

Exit flow from treatment unit to
steam generation units

Bexit
tu,sgu

F in
sgu Inflow to steam generation unit Bin

sgu

F out
sgu Outflow from steam generation unit Bout

sgu

F bbd,rec
sgu

Recycle flow from steam generation unit
to source flow as boiler blowdown

Bbbd,rec
sgu

F in
WI Steam inflow for well injection Bin

WI

Concentration variables (ppm)

Cin
tu,c

Concentration of contaminant in inflow
to treatment unit

Cout
tu,c

Concentration of contaminant in outflow
from treatment unit

Cin
sgu,c

Concentration of contaminant in inflow
to steam generation unit
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Table 5.2: Source water contaminant concentration (Cs,c in ppm) in the SAGD model

O Si TH TSS
PW 2000 350 20 50
MUW 0 15 150 0
BBD 10 150 1 1

Table 5.3: Treatment unit efficiency (RRtu,c) in the SAGD model

O Si TH TSS
ST 0.9 0 0 0.5
IGF 0.9 0 0 0.7
ORF 0.91 0 0 0.95
HCY 0.93 0 0 0
LS 0 0.9 0.5 0

EVAP 0.99 0.99 0.99 0.99
WAC 0 0 0.99 0

Table 5.4: Cost parameters for source water in the SAGD model

PW MUW BBD
costfixs Fixed cost 0 0 0
costvars Variable cost 0 1.59× 10−6 0

Table 5.5: Cost parameters for treatment units in the SAGD model

Parameters
(×10−6) ST IGF ORF HCY LS EVAP WAC

afixtu 2989.5 1906.7 1248.9 3000 9705.5 28723 1550.9

bfixtu 0 12292 −401.99 50000 −860733 12926 −317.74
avartu 109.26 432.94 0 1 5388 15529 494.23
bvartu 0 23585 0 1 −479602 10626 −31.142
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Table 5.6: Auxiliary parameters in the SAGD model

Parameters (units)
Boundlow Lower bound on flow (tonne/hr) 10

NSmax
Maxiumum number of streams
allowed into treatment units

9

βemul Bitumen emulsion separation ratio 0.95
βbbd Steam conversion efficiency of OTSG 0.8
HY Number of hours of operation of the plant (hr/yr) 8322

Demandsteam
Steam demand from the well injection
site at nominal conditions (tonne/hr)

625

Cmax
tu,c

Maximum allowable inlet
concentration for all
treatment units (ppm)

O
Si
TH
TSS

2500
400
400
100

Ctarget
sgu,c

Target inlet concentration
for all steam generation
units (ppm)

O
Si
TH
TSS

10
150
1
1

The deterministic model was solved on GAMS consecutively using the BARON

MINLP solver [49], with the IPOPT NLP solver specification. The locally opti-

mal objective magnitude at ξ∗ = 0.5 was found to be 16110.5367, and the resulting

optimal network is depicted in Figure 5.2. The solution selected only the HRSG unit

for steam generation, and therefore, the BBD stream did not factor in this solution.
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Figure 5.2: Optimal solution for the deterministic formulation of the SAGD model

5.3 Robust counterpart of nonlinear LDR-based

formulation of SAGD model

The nonlinear robust optimization technique, discussed in Chapter 4 was applied to

the SAGD model in Section 5.2 in a similar manner. In this model, the uncertainty

was sourced from steam demand (Demandsteam(ξ)), and as a result, all the flow

and concentration variables involved in the model were found to be dependent on

uncertainty. In this problem, the uncertain steam demand (Demandsteam(ξ)) was

modeled as follows,

Demandsteam(ξ) = ξDemandlow + (1− ξ)Demandhigh

where Demandlow and Demandhigh were taken to be the extreme points for the real-

izations of Demandsteam. The source flow was assumed to vary between 500 tonne/hr

(Demandlow) and 750 tonne/hr (Demandhigh).

Using the technique detailed in 4.1, the decision variables in the SAGD model were

classified into decision, state and control variables, as shown in Table 5.7. The un-

certain steam demand was modeled, as follows:

Demandsteam(ξ) = ξDemandlow + (1− ξ)Demandhigh (5.35)
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The control variables in the model were reformulated using the affine decision rule,

as follows:

Fs,tu(ξ) = F 0
s,tu + F 1

s,tuξ, ∀s ∈ S, tu ∈ TU, ξ ∈ Ξ (5.36)

F rec
tu,tu0(ξ) = F rec,0

tu,tu0 + F rec,1
tu,tu0ξ, ∀tu, tu0 ∈ TU, ξ ∈ Ξ (5.37)

F exit
tu,sgu(ξ) = F exit,0

tu,sgu + F exit,1
tu,sguξ, ∀tu ∈ TU, ξ ∈ Ξ (5.38)

The implicit derivatives of the state variables (m(ξ)) are denoted by ym, while the

first-order partial derivatives, with respect to uncertainty, of the inequality functions

of flow limits are denoted by ∇m. The dual variables associated with the robust

counterparts of the flow and concentration limits, and non-negativity constraints, are

denoted by αg, where g represents the inequality constraint that the dual is derived

for. The decision rule parameters for the control variables that are optimized by this

model are grouped into F 0 and F 1.

Table 5.7: Classification of variables in the nonlinear robust formulation of the SAGD
model

Design variables State variables Control variables
Bs,tu Fs(ξ) Fs,tu(ξ)
Bin
tu F in

tu (ξ) F rec
tu,tu0(ξ)

Bout
tu F out

tu (ξ) F exit
tu,sgu(ξ)

Brec
tu,tu0 F in

sgu(ξ)
Bexit
tu,sgu F out

sgu(ξ)
Bin
sgu F bbd,rec

sgu (ξ)
Bout
sgu F in

WI(ξ)
Bbbd,rec
sgu Boundup(ξ)
Bin
WI Cin

tu,c(ξ)
Cout
tu,c(ξ)

Cin
sgu,c(ξ)

min
X
s

costs +
X
tu

costtu (5.39)

subject to

Fs(ξ
∗)−

X
tu

F 0
s,tu + F 1

s,tuξ
∗ = 0, ∀s ∈ S yFs −

X
tu

F 1
s,tu = 0, ∀s ∈ S

(5.40a)
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X
s

F 0
s,tu + F 1

s,tuξ
∗ +

X
tu

F rec,0
tu0,tu + F rec,1

tu0,tuξ
∗ − F in

tu (ξ∗) = 0, ∀tu ∈ TU

(5.41a)X
tu0

F rec,1
tu0,tu +

X
s

F 1
s,tu − yF intu = 0, ∀tu ∈ TU (5.41b)

F in
tu (ξ∗)− F out

tu (ξ∗)− F loss
tu = 0, ∀tu ∈ TU (5.42a)

yF intu − yF outtu
= 0, ∀tu ∈ TU (5.42b)

F out
tu (ξ∗)−

X
tu0

F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗ −

X
sgu

F exit,0
tu,sgu + F exit,1

tu,sguξ
∗ = 0, ∀tu ∈ TU

(5.43a)

yF outtu
−

X
tu0

F rec,1
tu,tu0 −

X
sgu

F exit,1
tu,sgu = 0, ∀tu ∈ TU (5.43b)

F in
sgu(ξ

∗)−
X
tu

F exit,0
tu,sgu + F exit,1

tu,sguξ
∗ = 0, ∀sgu ∈ SGU (5.44a)

yF insgu −
X
tu

F exit,1
tu,sgu = 0, ∀sgu ∈ SGU (5.44b)

F in
HRSG(ξ∗)− F out

HRSG(ξ∗)− F bbd,rec
HRSG (ξ∗) = 0 (5.45a)

yF inHRSG − yF outHRSG
− yF bbd,recHRSG

= 0 (5.45b)

F in
DB(ξ∗)− F out

DB(ξ∗)− F bbd,rec
DB (ξ∗) = 0 (5.46a)

yF inDB − yF outDB
− yF bbd,recDB

= 0 (5.46b)

βbbdF
in
OTSG(ξ∗)− F out

OTSG(ξ∗) = 0 (5.47a)

βbbdyF inOTSG − yF outOTSG
= 0 (5.47b)

(1− βbbd)F in
OTSG(ξ∗)− F bbd,rec

OTSG (ξ∗) = 0 (5.48a)

βbbdyF inOTSG − yF bbd,recOTSG
= 0 (5.48b)

X
sgu

F out
sgu(ξ∗) − F in

WI(ξ
∗) = 0, ∀sgu ∈ SGU (5.49a)

yF outsgu
− yF inWI

= 0, ∀sgu ∈ SGU (5.49b)

X
sgu

F out
sgu − F in

WI(ξ
∗) = 0 (5.50a)X

sgu

yF outsgu
− yF inWI

= 0 (5.50b)
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FPW (ξ∗)− βemulF in
WI(ξ

∗) = 0 (5.51a)

yFPW − βemulyF inWI
= 0 (5.51b)

FMUW (ξ∗) = (1− βemul)F in
WI(ξ

∗) +
X
tu

F loss
tu = 0 (5.52a)

yFMUW
− (1− βemul)yF inMUW

= 0 (5.52b)

FBBD(ξ∗)−
X
sgu

F bbd,rec
sgu (ξ∗) = 0 (5.53a)

yFBBD −
X
sgu

yF bbd,recsgu
= 0 (5.53b)

X
s

Bs,tu +
X
tu0

Btu0,tu ≤ NSmax, ∀tu ∈ TU (5.54)

Btu,tu0 +Btu0,tu ≤ 1, ∀tu, tu0 ∈ TU (5.55)

Bin
tu = Bout

tu , ∀tu ∈ TU (5.56)

Bin
sgu = Bout

sgu, ∀sgu ∈ SGU (5.57)

Bbbd,rec
OTSG = Bin

OTSG (5.58)

− F 0
s,tu + F 1

s,tuξ
∗ −Bs,tuBound

up + (ξ∗∇Fs,tu)

+ b>γFs,tu ≥ 0, ∀s ∈ S, tu ∈ TU (5.59a)

A>γFs,tu +∇Fs,tu = 0, ∀s ∈ S, tu ∈ TU (5.59b)

F 0
s,tu + F 1

s,tuξ
∗ −Bs,tuBound

up + (ξ∗∇Fs,tu)

+ b>γFs,tu ≥ 0, ∀s ∈ S, tu ∈ TU (5.59c)

A>γFs,tu +∇Fs,tu = 0, ∀s ∈ S, tu ∈ TU (5.59d)

− F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗ −Brec

tu,tu0Bound
up

+ (ξ∗∇F rec
tu,tu0

) + b>γF rec
tu,tu0

≥ 0, ∀tu, tu0 ∈ TU (5.60a)

A>γF rec
tu,tu0

+∇F rec
tu,tu0

= 0, ∀tu, tu0 ∈ TU (5.60b)

F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗ −Brec

tu,tu0Bound
up

+ (ξ∗∇F rec
tu,tu0

) + b>γF rec
tu,tu0

≥ 0, ∀tu, tu0 ∈ TU (5.60c)
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A>γF rec
tu,tu0

+∇F rec
tu,tu0

= 0, ∀tu, tu0 ∈ TU (5.60d)

− F in
tu (ξ∗)−Bin

tuBound
up + (ξ∗∇F intu

) + b>γF intu ≥ 0, ∀tu ∈ TU (5.61a)

A>γF intu +∇F intu
= 0, ∀tu ∈ TU (5.61b)

F in
tu (ξ∗)−Bin

tuBound
up + (ξ∗∇F intu

) + b>γF intu ≥ 0, ∀tu ∈ TU (5.61c)

A>γF intu +∇F intu
= 0, ∀tu ∈ TU (5.61d)

− F out
tu (ξ∗)−Bout

tu Bound
up + (ξ∗∇F outtu

) + b>γF outtu
≥ 0, ∀tu ∈ TU (5.62a)

A>γF outtu
+∇F outtu

= 0, ∀tu ∈ TU (5.62b)

F out
tu (ξ∗)−Bout

tu Bound
up + (ξ∗∇F outtu

) + b>γF outtu
≥ 0, ∀tu ∈ TU (5.62c)

A>γF outtu
+∇F outtu

= 0, ∀tu ∈ TU (5.62d)

− F exit,0
tu,sgu + F exit,1

tu,sguξ
∗ −Bexit

tu,sguBound
up + (ξ∗∇F exittu,sgu

)+

b>γF exittu,sgu
≥ 0, ∀tu ∈ TU, sgu ∈ SGU (5.63a)

A>γF exittu,sgu
+∇F exittu,sgu

= 0, ∀tu ∈ TU, sgu ∈ SGU (5.63b)

F exit,0
tu,sgu + F exit,1

tu,sguξ
∗ −Bexit

tu,sguBound
up + (ξ∗∇F exittu,sgu

)+

b>γF exittu,sgu
≥ 0, ∀tu ∈ TU, sgu ∈ SGU (5.63c)

A>γF exittu,sgu
+∇F exittu,sgu

= 0, ∀tu ∈ TU, sgu ∈ SGU (5.63d)

− F in
sgu(ξ

∗)−Bin
sguBound

up + (ξ∗∇F insgu
) + b>γF insgu ≥ 0, ∀sgu ∈ SGU (5.64a)

A>γF insgu +∇F insgu
= 0, ∀sgu ∈ SGU (5.64b)

F in
sgu(ξ

∗)−Bin
sguBound

up + (ξ∗∇F insgu
) + b>γF insgu ≥ 0, ∀sgu ∈ SGU (5.64c)

A>γF insgu +∇F insgu
= 0, ∀sgu ∈ SGU (5.64d)

− F out
sgu(ξ∗)−Bout

sguBound
up + (ξ∗∇F outsgu

) + b>γF outsgu
≥ 0, ∀sgu ∈ SGU (5.65a)

A>γF outsgu
+∇F outsgu

= 0, ∀sgu ∈ SGU (5.65b)

F out
sgu(ξ∗)−Bout

sguBound
up + (ξ∗∇F outsgu

) + b>γF outsgu
≥ 0, ∀sgu ∈ SGU (5.65c)

A>γF outsgu
+∇F outsgu

= 0, ∀sgu ∈ SGU (5.65d)
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− F bbd,rec
sgu (ξ∗)−Bbbd,rec

sgu Boundup

+ (ξ∗∇F bbd,recsgu
) + b>γF bbd,recsgu

≥ 0, ∀sgu ∈ SGU (5.66a)

A>γF bbd,recsgu
+∇F bbd,recsgu

= 0, ∀sgu ∈ SGU (5.66b)

F bbd,rec
sgu (ξ∗)−Bbbd,rec

sgu Boundup

+ (ξ∗∇F bbd,recsgu
) + b>γF bbd,recsgu

≥ 0, ∀sgu ∈ SGU (5.66c)

A>γF bbd,recsgu
+∇F bbd,recsgu

= 0, ∀sgu ∈ SGU (5.66d)

− F in
WI(ξ

∗)−Bin
WIBound

up + (ξ∗∇F inWI
) + b>γF inWI

≥ 0 (5.67a)

A>γF inWI
+∇F inWI

= 0 (5.67b)

− F in
WI(ξ

∗)−Bin
WIBound

up + (ξ∗∇F inWI
) + b>γF inWI

≥ 0 (5.67c)

A>γF inWI
+∇F inWI

= 0 (5.67d)

X
s

(F 0
s,tu + F 1

s,tuξ
∗)Cs,c +

X
tu0

(F rec,0
tu0,tu + F rec,1

tu0,tuξ
∗)Cout

tu,c(ξ
∗)

− F in
tu (ξ∗)Cin

tu,c(ξ
∗) = 0, ∀tu ∈ TU, c ∈ C (5.68a)

X
s

F 1
s,tuCs,c +

X
tu0

F rec,1
tu0,tuC

out
tu,c(ξ

∗)− (F in
tu (ξ∗)yCintu,c + Cin

tu,c(ξ
∗)yF intu )+X

tu0

(F rec,0
tu0,tu + F rec,1

tu0,tuξ
∗)yCouttu,c

= 0, ∀tu ∈ TU, c ∈ C (5.68b)

(1−RRtu,c)F
in
tu (ξ∗)Cin

tu,c(ξ
∗)− F out

tu (ξ∗)Cout
tu,c(ξ

∗) = 0, ∀tu ∈ TU, c ∈ C (5.69a)

(1−RRtu,c)(F
in
tu (ξ∗)yCintu,c + Cin

tu,c(ξ
∗)yF intu )

− (F out
tu (ξ∗)yCouttu,c

+ Cout
tu,c(ξ

∗)yF outtu
) = 0, ∀tu ∈ TU, c ∈ C (5.69b)

F out
tu (ξ∗)Cout

tu,c(ξ
∗)−

X
sgu

Cout
tu,c(ξ

∗)(F exit,0
tu,sgu + F exit,1

tu,sguξ
∗)

−
X
tu0

Cout
tu,c(ξ

∗)(F rec,0
tu,tu0 + F rec,1

tu,tu0ξ
∗) , ∀tu ∈ TU, c ∈ C (5.70a)
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F out
tu (ξ∗)yCouttu,c

+ Cout
tu,c(ξ

∗)yF outtu
−

X
sgu

yCouttu,c
(F exit,0

tu,sgu + F exit,1
tu,sguξ

∗)

−
X
tu0

yCouttu,c
(F rec,0

tu,tu0 + F rec,1
tu,tu0ξ

∗) −
X
sgu

F exit,1
tu,sguC

out
tu,c(ξ

∗)

−
X
tu0

F rec,1
tu,tu0C

out
tu,c(ξ

∗) = 0, ∀tu ∈ TU, c ∈ C (5.70b)

X
tu

Cout
tu,c(ξ

∗)(F exit,0
tu,sgu + F exit,1

tu,sguξ
∗) − F in

sgu(ξ
∗)Cin

sgu,c(ξ
∗) = 0,

∀sgu ∈ SGU, c ∈ C (5.71a)

X
tu

yCouttu,c
(F exit,0

tu,sgu + F exit,1
tu,sguξ

∗) + F exit,1
tu,sguC

out
tu,c(ξ

∗) −

(yCinsgu,cF
in
sgu(ξ

∗) + yF insguC
in
sgu,c(ξ

∗)) = 0, ∀sgu ∈ SGU, c ∈ C (5.71b)

ξ∗∇Cintu,c
− (Cin

tu,c(ξ
∗)− Cmax

tu,c ) + b>λCintu,c ≥ 0, ∀tu ∈ TU, c ∈ C (5.72a)

A>λCintu,c +∇Cintu,c
= 0, ∀tu ∈ TU, c ∈ C (5.72b)

ξ∗∇Cinsgu,c
− (Cin

sgu,c(ξ
∗)− Ctarget

sgu,c ) + b>λCinsgu,c ≥ 0, ∀sgu ∈ SGU, c ∈ C (5.73a)

A>λCinsgu,c +∇Cinsgu,c
= 0, ∀sgu ∈ SGU, c ∈ C (5.73b)

F in
WI(ξ

∗)− ξ∗Demandlow − (1− ξ∗)Demandhigh = 0 (5.74a)

yF inWI
− (Demandlow −Demandhigh) = 0 (5.74b)

F 0
s,tu + b>αFs,tu ≥ 0, s ∈ S, tu ∈ TU (5.75a)

A>αFs,tu = F 1
s,tu, s ∈ S, tu ∈ TU (5.75b)

F rec,0
tu,tu0 + b>αF rec

tu,tu0
≥ 0, tu, tu0 ∈ TU (5.76a)

A>αF rec
tu,tu0

= F rec,1
tu,tu0 , tu, tu0 ∈ TU (5.76b)

F exit,0
tu,sgu + b>αF exittu,sgu

≥ 0, tu ∈ TU, sgu ∈ SGU (5.77a)

A>αF exittu
= F exit,1

tu , tu ∈ TU, sgu ∈ SGU (5.77b)

costs = costfixs +HY (costvars Fs(ξ
∗)), ∀s ∈ S (5.78)

costtu = (afixtu F
in
tu (ξ∗) + bfixtu ) +HY (avartu F

in
tu (ξ∗) + bvartu ), ∀tu ∈ TU (5.79)

The nonlinear robust LDR model was derived around the nominal condition, i.e.,

ξ∗ = 0.5, where the objective function was minimized for ξ∗. The model was derived
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for different ranges of uncertainty, ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1], and was solved in two

stages. In the first stage, the decision and state variables were fixed using the locally

optimal deterministic solution obtained in Section 5.2, using the BARON MINLP

solver [49], with the IPOPT NLP solver specification. In the second stage, the model

was re-solved after relaxing the bounds on the decision and state variables, using the

ANTIGONE MINLP solver. The model was found to retain the deterministic deci-

sion and state variable solution for the nominal condition, and the locally optimal

objective at ξ∗ = 0.5 was found to be 16110.5367 for both ranges. An example of the

resulting network is depicted for ξ = 0.53, using the LDR solution for ξ ∈ [0.4, 0.6]

and ξ ∈ [0, 1], in Figures 5.3 and 5.4, and the computed concentration profiles for

Cin
sgu,c for both ranges of uncertainty are shown in Figure 5.5. The optimal decision

rule parameter for the control variables in the model are given in Table 5.8.

It was observed that when the nonlinear robust LDR model was solved for either

range of uncertainty, the computed concentration profiles for Cin
HRSG,c violated the

targets (Table 5.6). The profiles were observed to be monotonically decreasing in

nature. It was inferred that the violation of the target occurs as a result of using an

approximate linearized model, and therefore, the decision rules obtained were deemed

unsuitable for the operation of the system.

Table 5.8: Decision rule parameters for the control variables in the nonlinear robust
LDR formulation of the SAGD model

ξ ∈ [0.4, 0.6] ξ ∈ [0, 1]
FPW,ST 233.8294 - 237.5ξ 230.1587 - 230.1587ξ
FPW,IGF 115.0794 116.9147 - 3.6706ξ
FPW,HCY 265.0836 265.0836 - 2.2737ξ
FPW,LS 98.5076 100.343 - 3.6706ξ
FMUW,WAC 37.5 - 12.5ξ 37.5 - 12.5ξ
F rec
ST,ORF 478.125 - 237.5ξ 474.4544 - 230.1587ξ
F rec
IGF,ORF 234.375 238.0456 - 7.3413ξ
F rec
ORF,WAC 554.5391 + 6.25ξ 666.5197 - 217.7113ξ
F rec
HCY,LS 265.0836 265.0836
F rec
LS,ST 244.2956 244.296
F rec
LS,IGF 119.2956 121.131 - 3.6706ξ
F exit
ORF,HRSG 157.9609 45.9803 - 19.7887ξ
F exit
WAC,HRSG 592.0391 704.0197 - 230.2113ξ
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Figure 5.3: Optimal solution for the nonlinear robust LDR formulation of the SAGD
model for ξ ∈ [0.4, 0.6] at ξ∗ = 0.53

Figure 5.4: Optimal solution for the nonlinear robust LDR formulation of the SAGD
model for ξ ∈ [0, 1] at ξ∗ = 0.53
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Figure 5.5: Computed concentration profiles of contaminants in inflow to the HRSG
using the decision rules from nonlinear robust LDR models for ξ ∈ [0.4, 0.6] (left),
and ξ ∈ [0, 1] (right)

5.4 Proposed algorithm for improved solution to

LDR model

In order to address the violation in target resulting from the linearization of the model

around uncertainty, the following two-step approach was adopted.

Step 1 : Obtaining a feasible solution to the model

(i) Beginning with the original targets Ctarget
sgu,c , pre-solve the deterministic model, fol-

lowed by the robust LDR model.

(ii) Iteratively solve step 1(i) for increasingly stricter targets until a set of feasible

decision rules is obtained.

Step 2 : Improving the nonlinear robust LDR model

(i) Use the set of feasible decision rules from step 1(ii) as a starting solution for the

improved LDR model (enforcing additional constraints at terminal points of uncer-

tainty) to obtain improved decision rules.
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Figure 5.6: Flow representation of the improved nonlinear robust LDR model solution
procedure

5.5 Robust counterpart of improved nonlinear LDR-

based formulation of SAGD model

The solution procedure illustrated in Figure 5.6 was applied on the SAGD model.

The deterministic model was solved for stricter targets - 8, 142, 0.6 and 0.85 ppm

for ξ ∈ [0.4, 0.6], and 8.8, 117, 0.72, 0.72 pm for ξ ∈ [0, 1] for O, Si, TH and TSS

respectively - using fixed steam generation unit connections from the deterministic

solution in Section 5.2. The model was solved on GAMS consecutively using the

BARON MINLP solver [49], with the IPOPT NLP solver specification. The locally

optimal objective magnitude at ξ∗ = 0.5 was found to be 17183.1551 for ξ ∈ [0.4, 0.6]

and 19707.43 for ξ ∈ [0, 1].

The nonlinear robust LDR model in Section 5.3 was re-solved for the same stricter tar-

gets for both ranges of uncertainty, ξ ∈ [0.4, 0.6] and ξ ∈ [0, 1], using the same solver

configuration, and the new deterministic solution. The resulting optimal solution was

found to be feasible, with no violation of Cin
sgu,c. This solution was used to solve the

modified nonlinear robust LDR model. The model in Section 5.3 was improved by

adding terminal enforcement constraints, i.e., by enforcing the target concentration
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limits at the terminal realizations of uncertainty considered in the model. To formu-

late this improved model, the constraints given by Equations 5.2 - 5.2, 5.2, 5.2 - 5.11,

5.2 - 5.2, 5.2 and 5.2 were added to the model structure in Section 5.3, specific to

each terminal realization of uncertainty. The modified LDR model is given as follows.

min [Equation 5.39]

subject to

[Equations 5.40a - 5.79]

Fs,X =
X
tu

F 0
s,tu + F 1

s,tuX , ∀s ∈ S,X ∈ {ξlow, ξhigh} (5.80)

X
tu

F 0
s,tu + F 1

s,tuX +
X
tu0

F rec,0
tu0,tu + F rec,1

tu0,tuX = F in
tu,X ,

∀tu ∈ TU,X ∈ {ξlow, ξhigh} (5.81)

F in
tu,X = F out

tu,X + F loss
tu , ∀tu ∈ TU,X ∈ {ξlow, ξhigh} (5.82)

F out
tu,X =

X
tu0

F rec,0
tu0,tu + F rec,1

tu0,tuX +
X
sgu

F exit,0
tu,sgu + F exit,1

tu,sguX ,

∀tu ∈ TU,X ∈ {ξlow, ξhigh} (5.83)

F in
sgu,X =

X
sgu

F exit,0
tu,sgu + F exit,1

tu,sguX , ∀sgu ∈ SGU,X ∈ {ξlow, ξhigh} (5.84)

F in
sgu,X = F out

sgu,X , ∀sgu ∈ SGU,X ∈ {ξlow, ξhigh} (5.85)X
sgu

F out
sgu,X = F in

WI,X , X ∈ {ξlow, ξhigh} (5.86)

F in
WI,X = XDemandlow + (1−X)Demandhigh, ∀X ∈ {ξlow, ξhigh} (5.87)

F in
HRSG,X = F out

HRSG,X + F bbd,rec
HRSG , ∀X ∈ {ξlow, ξhigh} (5.88a)

F in
DB,X = F out

DB,X + F bbd,rec
DB,X , ∀X ∈ {ξlow, ξhigh} (5.88b)

βbbdF
in
OTSG,X = F out

OTSG,X , ∀X ∈ {ξlow, ξhigh} (5.88c)

(1− βbbd)F in
OTSG,X = F bbd,rec

OTSG,X , ∀X ∈ {ξlow, ξhigh} (5.88d)

FPW,X = βemulF in
WI,X , ∀X ∈ {ξlow, ξhigh} (5.89a)
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FMUW,X = (1− βemul)F in
WI,X +

X
tu

F loss
tu , ∀X ∈ {ξlow, ξhigh} (5.89b)

FBBD,X =
X
sgu

F bbd,rec
sgu,X , ∀X ∈ {ξlow, ξhigh} (5.89c)

BoundupX =
X
s

Fs,X , ∀X ∈ {ξlow, ξhigh} (5.90)

X
s

(F 0
s,tu + F 1

s,tuX)Cs,c +
X
tu0

(F rec,0
tu0,tu + F rec,1

tu0,tuX)Cout
tu0,c,X

= F in
tu,XC

in
tu,c,X , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (5.91)

(1−RRtu,c)F
in
tu,XC

in
tu,c,X = F out

tu,XC
out
tu,c,X , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (5.92)

F out
tu,XC

out
tu,c,X =

X
sgu

(F exit,0
tu,sgu + F exit,1

tu,sguX)Cout
tu,c,X

+
X
tu0

(F rec,0
tu0,tu + F rec,1

tu0,tuX)Cout
tu,c,X , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (5.93)

X
tu

(F exit,0
tu,sgu + F exit,1

tu,sguX)Cout
tu,c,X = F in

sgu,XC
in
sgu,c,X ,

∀sgu ∈ SGU, c ∈ C,X ∈ {ξlow, ξhigh} (5.94)

Cin
tu,c,X ≤ Cmax

tu,c , ∀tu ∈ TU, c ∈ C,X ∈ {ξlow, ξhigh} (5.95)

Cin
sgu,c,X ≤ Ctarget

sgu,c , ∀sgu ∈ SGU, c ∈ C,X ∈ {ξlow, ξhigh} (5.96)

This model was solved for the original targets, in two stages using the same solver

configuration as Section 5.3. The locally optimal objective magnitude at ξ∗ = 0.5 was

found to be 16011.7631 for ξ ∈ [0.4, 0.6] and 16589.5105 for ξ ∈ [0, 1]. An example of

the resulting network is depicted for ξ = 0.53, using the LDR solution for ξ ∈ [0.4, 0.6]

in Figures 5.7 and 5.8, and the computed concentration profiles for Cin
sgu,c for both

ranges of uncertainty are shown in Figure 5.9. The optimal decision rule parameters

for the control variables in the modified LDR model are given in Table 5.9.

Comparative plots of the evolution of the optimal objective magnitude profile, over the

different ranges of uncertainty using the nonlinear robust LDR for original constraints,

contrasted with the profiles obtained using the modified robust LDR model, using the

approach detailed in Section 4.2, are illustrated in Figure 5.10. From the plots, it is

evident that the solution of the modified nonlinear robust LDR-based model provided

a feasible solution over the entire range of uncertainty considered in the model. The
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proposed algorithm, using the nonlinear robust optimization scheme with the affine

decision rule, proved to give a feasible solution over the entire range of uncertainty,

adjustable to its realization.

Table 5.9: Decision rule parameters for the control variables in the modified nonlinear
robust LDR formulation of the SAGD model

ξ ∈ [0.4, 0.6] ξ ∈ [0, 1]
FPW,ORF 712.5 - 237.5ξ FPW,ORF 276.1905 - 92.0635ξ
FMUW,WAC 37.5 - 12.5ξ FPW,LS 436.3095 - 145.4365ξ
F rec
ST,IGF 183.9488 - 82.8976ξ FMUW,WAC 37.5 - 12.5ξ
F rec
ST,WAC 395.0619 F rec

IGF,WAC 328.7037 - 109.5679ξ
F rec
IGF,WAC 236.6627 - 168.3254ξ F rec

ORF,IGF 372.0068 - 124.0023ξ
F rec
ORF,ST 228.8408 - 37.3641ξ F rec

ORF,WAC 340.4932 - 113.4977ξ
F rec
ORF,HCY 446.3095 - 145.4365ξ F rec

LS,ORF 436.3095 - 145.4365ξ
F rec
ORF,WAC 37.3497 - 54.6994ξ F rec

WAC,ST 706.6969 - 235.5656ξ
F rec
HCY,ST 10 F exit

ST,HRSG 706.6969 - 235.5656ξ
F rec
HCY,LS 436.3095 - 145.4365ξ F exit

IGF,HRSG 43.3031 - 14.4344ξ
F rec
LS,ST 383.5956 - 60.0087ξ
F rec
LS,IGF 52.7139 - 85.4278ξ
F exit
ST,HRSG 43.4257 - 14.4752ξ
F exit
WAC,HRSG 706.5743 - 235.5248ξ

Figure 5.7: Optimal solution for the modified nonlinear robust LDR formulation of
the SAGD model for ξ ∈ [0.4, 0.6] at ξ∗ = 0.53
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Figure 5.8: Optimal solution for the modified nonlinear robust LDR formulation of
the SAGD model for ξ ∈ [0, 1] at ξ∗ = 0.53

Figure 5.9: Computed concentration profiles of contaminants in inflow to the HRSG
using the decision rules from modified nonlinear robust LDR models for ξ ∈ [0.4, 0.6]
(left), and ξ ∈ [0, 1] (right)

79



Figure 5.10: A comparative evolution of the optimal objective magnitude profile using
the nonlinear robust model for original targets (left) and the modified robust model
(right)

5.6 Concluding remarks

This chapter presented the application of the two-stage nonlinear robust optimization

technique developed by Yuan, et al. [46] on the SAGD effluent treatment and steam

generation network. Since the SAGD model was formulated as a large-scale MINLP

problem, the model needed to be initialized with a feasible solution at each stage.

As in the case of the small water treatment model, when the robust LDR model was

solved, violations in the target concentration for the steam generation units were ob-

served. Therefore, an alternative algorithm, similar to the scheme proposed for the

small water treatment model, was developed for the SAGD MINLP model. Using

the solution from the modified LDR model, it was observed that the decision rules

successfully provided feasible solutions with respect to target concentrations, as well

as flow and component balances, for the entire range of uncertainty.
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Chapter 6

Summary and Future Work

6.1 Summary

In this thesis, the application of different variants of decision-rule based optimization

for the optimal design and operation of effluent treatment systems was evaluated.

Two case studies were chosen for analysis - a small water treatment model, and the

effluent treatment-cum-steam generation model for a SAGD reservoir. All prelimi-

nary evaluations were conducted for the simple water treatment model. Initially, due

to the bilinear nature of certain constraints in the models, the need to obtain linear

models for the purpose of obtaining a robust counterpart was recognized. The first

method of linearization utilized McCormick bounding envelopes to obtain the relaxed

formulation of the original nonlinear model. The solution obtained through solving

the relaxed LP model under uncertainty, using the affine decision rule formulation,

proved to be infeasible due to violation of component balance constraints throughout

the network. The second method of linearization used the optimal solution obtained

at the nominal conditions to linearize the bilinear terms in the NLP model, using

first order Taylor series approximation. The solution obtained through solving the

linearized model under uncertainty, too, proved to be infeasible due to similar com-

ponent balance violations, due to inadequate linearization.

In order to address the issues of infeasibility due to improper linearization, the non-

linear robust optimal design procedure, developed by Yuan, et al. (2018) [46] was

applied on the model. The solution obtained through this technique provided a fea-

sible solution for all ranges of uncertainty considered in the model, through a set of

decision rules for all control variables. This technique was further applied to a larger

case study - the effluent treatment system for the SAGD model. An algorithm to im-

prove the performance of the nonlinear robust optimization technqiue, was proposed
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to obtain a better feasible solution. The final set of decision rules obtained for the

control variables offered a feasible solution for all realizations of uncertainty consid-

ered in the model. Thus, the application of two-stage nonlinear robust optimization

using the affine decision rule was evaluated successfully, on a simple case study, as

well as a larger, practical example.

6.2 Future work

Based on the work done in this thesis, the following potential avenues have been

identified, for future work.

Dealing with multiple sources of uncertainty

In this thesis, only a single source of primitive uncertainty ξ was considered - in the

case of the small water treatment model, the primitive uncertainty affected source

flow Fs(ξ), and in the case of the SAGD model, it affected the steam demand from

the reservoir Demandsteam(ξ). In practice, however, uncertainty in the model is ex-

pected to arise from additional sources such as contaminant concentration, treatment

unit removal efficiency, and other such parameters. The application of the proposed

methods in the thesis to a model affected by multiple sources of uncertainty could be

a potential future work.

Dealing with uncorrelated uncertainty

In this thesis, all the source flows in the small water treatment model were assumed

to be affected by the same primitive uncertainty ξ, thus giving rise to correlation.

Potential future work can be done to assess the application of the methods developed

in this thesis for uncorrelated source flows, to analyze the changes in the solution.

Different formulations of the uncertainty set

In this thesis, the uncertainty set was defined using lower and upper bounds, as de-

scribed in Section 1.6.4. The application of the methods developed in this thesis to

other uncertainty set formulations such as box sets, ellipsoidal sets, etc. can be eval-

uated in the future. Another avenue of interest is the use of data-driven optimization

- this class of optimization leverages machine learning techniques using process data,

to obtain information about the uncertainty set probability distribution.
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Developing an algorithm for global optimum search

In this thesis, all the decision rules obtained through the solution of the stochas-

tic LDR formulations of small water treatment model as well as the SAGD model

pertained to the local optimal solution. In the future, an algorithm for the global

optimum search can be developed.
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