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,‘esonant lnteractlon between radlatlon and two-».

» : 3, w1th appllcatlon to the 1nteractlon between ;fd‘
"-29;cm.1 phonons and exc1ted Cr3fllons 1n optlcally pumped ;’E
tl“ruby;_ls studled v1a the Helsenberg equatlons of motloﬁ'for_;'
ffjthe system. As a flrst example the spontaneous decay of a.
}hfs1ngle two-leVel state 19 StUdled Next a set of rate _nliéixi
lffequatlons, rlgorously valld for low densrtles of two level o
3fstates, 1s derlved from the Helsenberg equatlons.; The rate.
ffﬁequatlons show that in the case of far-from-equlllbrlum |
ﬁ'%lnltlal condltlons the system relaxes rapldly to an lnter—ﬁo:;b
kh-medlate quasx equlllbrlum w1th the den31ty of electronlc |
'ilstates 1n the upper leVel lncrea51ng w1th the den51ty N*'of

thwo-level states, i. e Cr3+ lons 1n the case of optlcally f

;bepumped ruby, llke N % for large N o It lS shown that

”jspatlal dlfoSlOn 1s 1neffect1ve as an escape mechanlsm for R

}the phonons for large N o Thus the subsequent decay of the
2 .

”bsystem 1s controlled by spectral dlffuslon of the,phonons

"haway from the resonance frequency due to repeated absorp-"b
7;t10n and emlssion by the two—level states, w1th accompany-'l
d“lng rearrangement of the phonon and electronlc energles ln :

jthe coupled mode.. Therhhonon spectrum 1n31de the exctted
 }reg1on of the ruby crysta1 (w1th dlameter b 1s shawn“godﬁ'
fdsuffer self-reversal and to broaden with tlme to a f1na1 jh:"
width Pr°p°rti°nal tO (N"b);5 The effects of the lnhomo- r;_;
'2geneous broadenlng of the resonance, due to possible o

_.".

';:f?f”f.':
q



’:ftlon of the electron-phonon .ystem are also brlefly

"fexamlned Flnally som@gexact solutlons of the Helsenberg

fsuggested
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(CHAPTER 1 i e

s

INTRODUCTION

: 1.1 General survey

'The 1nteractlon of radlatlon in resonance w1th a)sys-,
'.tem’of two-level atoms haS‘long been a subject of nnterest.f
thesonance radlatlon refers to that part of the spectrum
that 1s emltted by an atom in an electronlc tranSLtlon from
,some exc1ted state to the ground state or a metastable.
fstate. 1f most of the atoms of the system are in the ground.
:fstate (or the metastable state) then thls radlatlon is
i»hlghly absorbable and w111 very llkely be absorbed by |
: another atom after traversrng a short dlstance, thus exclt-
llng.that atom. ThlS situation is. :eferred to as the . ‘
N ‘trapplng of the resonance radlatlon.‘ By a random walk"
o/

'process of em1331on and subsequent absorptlon by dlfferent

atoms the. radlatlon eventually reaches the boundary of the

'fsystem and is lost lnto the bath.v- ~&? S ' ' h%

~

If a phonon rather than a photon is emltted in the

i i

electronlc tran51tion, the resonance radlatlon trapplng is
referred to as the phonon bottleneck In thlsﬂcase theﬁs.'
‘.decay of the two=level‘atoms leadS”to a transfer“of energy
to a narrbw band of phonon modes:near the resonance fre-

. quency V! which in turn. dellver thlS energy to the thermal

bath of the surroundlng crystal. If the rate of decay of



_‘.the atoms is slower than'the\rate ofhdelivery of‘energy'to
athe bath by the phonons, then the phonon modes near . reson—ﬂi
ance act as a reserv01r i.e. they are almost ‘always empty -
i and can absorb all the energy emltted by the decaylng\abmns.
" We may say that the phonon modes are at the bath tempera— '
ture-of 0 K‘ﬂ Thus the ex01ted two-level atoms can decay
bunhlndered with thelr spontaneous decay rate l/T : On the ‘
other»hand‘ if. the rate of dellvery of . energy to the bath |

‘by the phonons, due to multlple absorptlon and emrssron, is

:slower than the rate of decay of the atoms, then the phonond”

- modes near resonance w111 become effectlvely full Before

fanother atom can decay, 1t must walt for some of the phononv
'};modes near resonance to- empty thelr energy to the bath
VBecause of thls phonon bottleneck the effectlve decay time
T of the system 1s prolonged | | :

| : At flrst glance 1t mlght appear that 31nce phonons =
7are bosons an unllmlted number can be put 1n any mode SO
that the two-levei atoms should always be able to decay

ffreely However statlstlcal con51deratlons show that ‘the

| phonons and atoms reach a qua51-equ111br1um with the frac- |

tlon of bhonon modes near resonance that are occupled nevery»

: exceedlng the fraction of two—level atoms that are- exc1ted..
ZWe may say.that Lhe phonon modes near resonance, as mea- '
}1 sured by the occupat10n1numbers, heat up to the.temperature A
of"the‘twoélevel-atoms’and no higher. v. ‘
Thehearliest erperimentshon the‘trapping of resonance

radiation-were done on the optical resonance lines of

;e



mercury and‘sodiuq1Vapor under~low pressurel; For example
Webb? in 1924 and %Smansky3 in 1927“§Eﬁdied‘the trapping of

the 2537 & photon emitted in the 63p1-+615 ground state

_\tran51tlon of the meréury atom. . They observed that the
'1ltrapped radlatlon decaved in times. of the order TS 10~4sec"
‘rr(Whlch is lO3 times longer than the llfetlme Tl 10-7sec
of the 63Pl state), and that T increased with the den51ty
of mercury atoms in the ground state for small N as one -
would expect However at the 1argest_densrt1es N* they
.found that T actually decreased very slowly w1th N* Thls
rather surprlslng result was attrlbuted elther to pressure
hbroadenlng or . to the more . frequent colllslons at hlgher ’
:‘pressures caus1ng non—radlatlve trans1t10ns from the radlat-".

3

‘}nrngg63P state to the metastable 6 P, state 6»218\volts

L
‘"lower" In the former case, colllslons w1th the radlatlng
'atom cut off the radlatlng wavetraln, thus 1ncrea51ng the j‘
'natural llnew1dth (hence the name pressure broadenlng) and‘
effectlvely reduc1ng the 11fet1me Tl of the exc1ted state |
| and presumably also the decay tlme T\~of the system 1ln"g
the latter case, a competlng process 51mply reduces the
trnumber‘of atoms 1n»the.rad1at1ng 63Pl state 7 A51de‘from '

' these faétors one must take 1nto account ‘the’ hyperflne

,structure of the 2537 ﬁ line, the Doppler broadenlng of the

' *llne due to thermal motlon of the gas molecules, and a host

of em1531on and absorptlon processes 1nduced by atomlc
colllslons.‘ Thus we see‘that optlcalaexperlments on gases

~are very 'unclean' i.e. there are many complicating factors

TN
\



‘that nake interpretatidn_of.the,experimentalfresults diffiF
'cult. 'We”shail'see'shortly that'many of these'probiems can
f'be ellmlnated by d01ng 31m11ar experlments on magnetlc‘
1mpur1ty ‘doped crystals at low temperatures.-'* |
The flrst theoretlcal treatments of resonance radla—

~ tion trapplng were g1Ven by K. T Compton4'1n 1922 .and E.

Mllne5 in 1926 ‘in connectlon w1th the transm1551on of llght 

' in"the atmospheres-of starsf They assumed that the radla—

A

“tion quanta propagated from atom to atom by a. type of
\
.random walk Thus the den51ty of exc1ted atoms N2 could
- be descrlbed by the dlffu51on equatlon .

N, (rt) )
———~a—t—'—‘— S'V N (r t) oo R (l..l‘)u.'

_,With_diffusion constanta:;». -f‘jﬂf:f_' | A

- where A is the mean-free-path of the quanta, and
i AN E o . DTN,
G = /2 R ¢ )
nTl +E e e e T

’1s the average velocxty of the quanta taklng 1nto account.T
. S
the time of the COlllSlon 1 e. the exc1ted state llfetlme

.vT as well as the propagatlon tlme between colllslons Tph

1
}In the case of photons one cam- QbVlously neglect Tph in

,comparlson to Tl , The treatment of Compton and Mllne how—t
‘ever d1d not take 1nto account the fact that the mean-free-

= path of the quanta is not constant but hlghly frequency



a

, deoendent. The mean—free-path of radlatlon on resonance is

: very short whereas that of. radlatlon far . from resonance is

very long and llmltEd only by the dlmenSLOn b of the con-

}talner Thus the meanlng of A in Eq. (1.3) is unclear.

+ In 1947 Holsteln6 derlved an 1ntegral transport

: equatlon descrlblng the tlme decay of the denslty of

3exc1ted atoms N (r t) taklng into account the frequency ;

dependence_of the“mean:free—path,\namely

N (r,t) "N""(r R A N T Rl

}%t = Id3r Jd“-;+%ff4f(v)e.' : > av) o -

% : ‘A I dm|r-r' |
R ¢ 0

-fThe flrst term on the rlght hand srde of (l 4) descrlbes
'athe spontaneous decay of exc1ted atoms at posrtlon r 1n

'tlme-T "The second term descrlbes the exc1tat10n of atoms O

1’

v,tat pos1tlon r due to radlatlon comlng from other atoms rt.
'f_These atoms r decay in tlme Tl emlttlng radlatlon w1th

:f'spectrum f(v) We assume that f(v) 1s strongly peaked ;.j

§.

f:about the resonance frequency v and normallzed to unlty

(v) lr- |

. The radlatlon 1s attenuated by a factor e - due

';to absorptlons in travelllng from r! to x (here a(v)‘]/A(v)g'F

€
Lo "\

j:ls the frequency dependent absorptlon coeff1c1ent), and by

oa factor l/4w|r- |2 due to spherlcal spreadlng of the .ﬁ]iﬂ

" B

[photons outward from r' | The radlatlon reachrng p051tlon‘ j

' r lS then absorbed w1th probablllty a(v) Flnally we 1nteelhf
:'grate over all atoms r and all radlatlon frEquencres V. »
\fImp11c1t ‘in Eq. (1 4) is the assumptlon that the radlatlon

<}travels from. r' to r lnstantaneously i. e.‘th7 ph =0."

¥



dThus thlS equatlon 1s approprlate for photon but not phonon '
. radlatlon trapping. . : ‘
w0 Holsteln6 solved Eq (l 4) by assumlng.a solutlon"
_rexponentlally decaylng in tlme and u51ng a varlatlonal :
‘method to flnd»the assoc1ated tlme'constant Veklenko7'in"
.'1959 prOV1ded an. alternatlve solutlon of Eq. (1 4) whlch -
n'_made use of the so- called Ambartsamyan ttansformatlon.n in‘q-
:both cases the analys1s is- very compllcated and the results |
vhacannot ea511y be generallzed to arbltrary em15510n spectra |
f(v) ~,f,. 'f7*i S T |
v We w1sh now to present a novel and very 31mple solu-.‘
;tlon of Eq. (1 4) We can transform the 1ntegra1 equatlon
*(l 4) lnto a dlfferentlal equatlon8 by assumlng that N2 ;
htvnot too rapldly varylng 1n space so that we may make a »"1
:,-;QTaylor expan51on of N (r ,t) about N (r t).; Substltutlng
e \{c:;;-;'_.‘~?’ff A e
'[JN (r t)~N (r t)w-ih:-r )v N (r t)+-2 (r'-r )(r -z, )x
R ) vJ N (r tﬂ ‘ ”'}7.”5{ ;~;(1;s)¢f

g under the 1ntegral ln (l 4), we lmmedlately get the result
* where




&
,i1/3a (v)T averaged over the emission spectrum f(v) Eq.
’A(l 6) is Just the dlffus10n equatlon (l ‘1) w1th a now well-i'
deflned effectlve d1ffus1on constant.; Neglectlng factors

of order one we. may replace V2 by l/b ; where b is the

‘dlameter of the contalner and flnd the result that N2

'"'decays w1th time constant -

N

= 'Ti/Jd"‘——-f—(‘i— E R ¢ 61 )R
B B (0 -3 e
- As soon as the emlsSLOn spectrum f(v) is spec1fled (1. 8) .

can be 1ntegrated ( d(v) 1s proportlonal to f(v) 1n ther—iw

_mal equlllbrlum accordlng to Klrchoff s 1aw ) For exampleﬁe

ufpj 1f f(v) 1s a delta funct;on G(v-v ) or. a rectangular 11ne-1

f; shape,«then.‘
’Ts LN (a(\) )b) S R ¢ 0
'Zif.whlch 1s the usual result for materlal partlcles. dFor if‘p.J;? '

”f~pDoppler and dlsper51on 11neshapes we flnd that :;fs;

u; : — e : ;.
ThlS 1s true for all frequenc1es v for whlch d(v) >l/b. _g;,,

K

7h0n the other hand for those frequenc1es v far from resonance

“,afor whlch proportlonallty would 1mply that a(v) <l/b, we

tf must set a(v)-l/b 51nce for those frequencles the mean-

i free path A(v)~,l/d(v) is- llmlted by the sxze b of the
. — T
'ﬂcontalner.} Thls 1s not in contradlctlon of Klrchoff's law
: because these frequencxes do not come lnto thermal equlll--.'J

brlum due to the absence of c011131ons.,_"5'
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‘_respectlvely, in agreement w1th the results of Holsteln6

: and Veklenko7._

.';

Slnce we w1ll derlve an expre551on srmllar to (l 8)1n?

“'iChapter 5 we defer a. detalled dlscu851on of it: untll then.

For now we 51mply w1sh to remark that Holsteln and Veklenko -

did not try to. dlscover the phy31cal basrs of the dlfferent,

-«

: decay tlmes (l lO 11) and that Eq. (l 4) could not glve‘lf -

-l

. them any 1nformatlon on the radlatlon spectrum 1n51de the

contalner qr emerglng through the boundary of the contalner;‘

‘ We w1ll try to answer these questlons 1n Chapter 5.

‘A completely dlfferent seml-class1cal formulatlon of N
the trapplng PrOblem was’ glven by Jacobsen and Stevens
(1963) who were 1nterested 1n the effects of a crystal f..':*”

lattlce Of paramagnetlc Spln 1/2 atoms 1mmersed in‘a mag— S

A'netlc fleld on the propagatlon of " phonons 1n the crystal.r\:f"

Thelr system 1s descrlbed by the Hamlltonlan (we set = l)

th 2{[Asl+[2m 2(U )]+[g(U

n+1 Xn 1)S ]},(l lZ)i;};
where the sum over n 1s over all lattlce 51tes 1n the one-"

dimen510nal crystal"the flrst, second, and thlrd terms 1n ,'”

the square brackets are respectlvely the spln, ohonon and

'f spln-phonon 1nteractlon energles, P . U ; and S 1e_ _



Qrespectlvely the/momentum. dlsplacement,.and 1#h component.'

- of spln of the nth atom, and A ' K and g are respectlvely .
;‘fthe Zeeman Spllttlng of the spln energy levels in the

external fleld, the nearest nelghbor restorlng force, and
%the coupllng between the straln and the spln atdp051tlon n.i
vThe Helsenberg equatlons of motlon for P b U and S |

(31mllar to the ones we derlve 1n Chapter 2) can be com—-<~"
“blned to. glve a palr of wave equatlons for the dhsplacements .
‘tand splns,_namely _fh | . } |
x ), (e

.;nUn; K (L‘Inﬂjfun,_ld ',Z.Un)" _'gf(s;n+1"__.s-

s '*T_ sn-+(A + ) S gA.1Un+1:7Un_llS

| S (1.13p)

f Here Tl"T (g) is the phenomenolOQ1cally 1ntroduced 11fe-ﬁnA*‘

tlme of the spln agalnst phonon em1531on. Wlth no. lnter-_ﬁf

actlon (1 e. g O and hence Tl=;w), (l l3a) 1s the waveéf[f

-~

equatlon for the propagatlon of free phonons and (l 13b) ls-

the equatlon for an undémped harmonlc 050111ator of fre— hf

quency A } Wlth the 1nteractlon sw1tched on (g and Tl ;fx]c,id:

flnlte) the rlght hand 31de of Eqs. 0.13a,b) act as sourcesf,ygw

and 31nks’%or the phonons and SplnSuv The interactlon lsf;flf §

i non- llnear due mathematlcally to the factor (U lh Un-l-~n

and due phy31cally to the ex1stence of processes such as

stlmulated em1591on,-etc._ To solve Eqs..(l 13) we replace

S by the c- umber average <S > zn-1/2 for a normal popula-ff{g4

5, tlon (;;e.,few exc1ted atoms) or <S > ¥ +l/2 for an f:“:”



N

'fU and S both Vary llke e

I IR
S

flnverted populatlon (few unexc1ted atoms), and assume that

1(wt kna7 !

tlon'along the chain of the nth atom;, Thlsaylelds the

dlspersion.relation

.5,.15 the shlfted resonance frequency, and coj-a/K/m and

";gIn Flg l la‘ the SOlld curve representlng a normal popu—‘r,‘5“

h7::9r0up Velocrty of the coupled spln-phonon wave.. Thls ls”e?* B

:_c(w)r=m/k are respectlvely the speed of sound (phase
.VelOCltY) for zero and non-zero spln phonon coupllng. .An'”

'f;Flgure l l we have plotted the real and 1maglnary parts of”

-

“wfc /c(w)..G(w)-la(w), correspondlng respectlvely to the

‘jfdlsper31on and attenuatlon of phonons of frequency W.

”.ﬁflatlon (<s > <0) has negatlve slope 1n the reglon around

LY ot
.9- j'

:!pOSltlve slope asa)approaches A"lndlcates a decreaSLng |

1

'”:tlons the dashed curve of Flg.~l la 1nd1cates an 1ncrease o

e

%cln the group veloc1ty near the resonance frequencybeyond f

. where- na 1s the p051- B

20:'2" 2. 4g2 5— <5%> L
**mff¢2l~ c . _HyKZ__QZ_FZim"’, A'.ﬂ. .
‘Where»' B L B e
_ Alz = A2-.'+i—l- + 4‘9'2 —.-".<Szv>-~::_‘A,.2 ST ' (]_.15) '

';lwAf.lndlcatlng anomalous dlsper51on where a group veloc1ty ’f.ff

ﬂ"cannot be‘deflned Outsrde thls reglOn the{increa51ng /ftf g

*7ffh'due to. the delay by’a tlme'r of phonons every tlme they arefgf¥7
’fcaptured by normal atoms, the resonant phonons belng cap—’;sz}f

,Lgtured most often., On the other hand, for 1nverted POPula-ff*"~
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the phase velocrty 4 Thls however isin contradlctlon w1th

.a result by Sommerfeld10 who shows that 1t is not poss1ble
to propagate 51gnals at velocrtles greater than Cye " Fig..
r, N .
1. lb shows that for normal populatlons (SOlld llne) the

;attenuatlon a(m) of the phonons 1s a maxxmum near reson—-_~

vance, whereas for 1nverted populatlons (dashed llne) there f
. is actually an ampllflcatlon of _the phonons near resonance.

7A ThlS 1s completely analogous to ampllflcatlon by stlmulatedf

. a .
'em1551on in the laser andxhas been demonstrated experlmen-

R ftally by Tuckerll in 1961.~

Thus far the formulatlon of Jacobsen and Stevens ‘

"udescrlbes the attenuatloh and dlsper51on of 1ncom1ng plane s

i A

t-waves by a system of twc-lqyel atoms. However it 1s un— S

5';clear how to proceed and descrlbe the evolutlon of the

-:two level atom—phonon system from non-equrllbrlum condl—f

—T;tlons because of the anomalous dlsperSLQn near resonancejf

:ﬂﬁve1001ty Moreover thelr formulatlon supposes that the :;

fiparamagnetrc 1ons form a regular 1attlce whereas we are

B Jdlnterested ln the smtuatlon where the 1ons constltute

There are other ratg equatlon models of the phonon

'*Qf;bottleneck13 18 ‘but v1rtually w1thout exceptlon they '7537i3f7
"Iﬂiassume that the emlsglon f(v) 1s rectangular.n Thls lS an ‘

.rgiifunreallstlc assumptyyn and from Eqs. (l 9)’(1 11) we see

’3that the decay tlme T of the system depends cruc1ally .on

"fithe llneshape.;tf,"h

"l]{for whlch we cannot deflne a physrcally meanlngful group:{;fff,ﬁ

'dgytlmpurltles randomly dlstrlbuted throughout the crystal.x,y,‘;f:"



f"ffleld 1nto a 4A

'fffflevel by 0. 4 cﬁLl and the E state 1nto two so—called

'fffKramers doublets 2A and E separated by approxrmately 29cm

1.2 The Phonon Bottleneck in_ Ruby
In our dlscu551on of the experlments on, trapplng of

-woptlcal resonance radlatlon 1n gases ‘we mentloned that the

"experlmental results were dlfflcult to 1nterpret because ;:_“9.:

_of a varlety of effects such as colllslons of gas atoms,ai;l
'_etc.’ Many of these effects can be e11m1nated by studying

slnstead the trapplng of resonant phonons by paramagnetlc.
2—:2 2

1 N
ion’ 1mpur1t1es 1n crystals at low temperatures o because o

,'the 1ons are then not free to move and colllde. We w1ll

- be malnly lnterested 1n ruby, whlch 1Sfan A1203 crystal

fdoped wrth Cr3 1on lmpurltles, but our dlscu531on 1s :
happllcable to many other lmpurlty-doped crystals sucb/?s‘”"

ﬂﬂ_sapphlre whlch is Al2 3 doped w1th T13‘_1ons.;»l"zf

The relevant part of the electronlc energy 1eve1 dla_:r_i

19

| :Qyﬁfold orbltal degeneracy 1s spllt ln a cublc crystalllne h..

4 -4
2.

. 3figram for the Cr3+ 1on 1n ruby 15 sketched 1n Flg. 1 2.;~ Thej L,

wf;hffree 1on ground state 1s'4F w1th L 3 and S~—3/2 The seven—fff"

orbltal srnglet and the Tz and Tl trlp-f7"7”’

Rf,iflets Wthh are shown cross—hatched and are the maln absorp-ﬁﬁjml_

4¢wt10n bands of ruby The famous fluorescent 2E state arlses ff§4v

4,

‘ﬁ;;The presence of a. small trlgonal crystalllne fleld 1n com-bif:;

N

s The 2A and E states are metastable agalnst optlcal tran31—~’f'“'

VoL e - .3-4' AY
"ﬁtlons to the ground state w1th llfetlmes of approxlmately

'tﬁi}from the 2G level and lles below the Tl and 4T2 levels.a;y]f:fwﬁ

'iftfblnatlon wlth spln-orblt coupllng further spllts the 4A2 tf‘:“

’ -1
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4 msec for both.  The 23 state also decays to the E state

by the emission of 229 cm ™ phonon in'a lifetime T, of a.

few nanoseconds In‘ﬂhe phonon bottleneck experlments of

1nterest to us the 2A and the metastable E levels serve as

. the- upper and lower: levels of the two level atom system and

\the 29 cm -1 phonons serve as the resonant quanta In

Flgure l 2 we have also shown that each doublet is spllt in

- an external magnetic fleld

" Let us now descrlbe some of the experlments whlch

'have studled the bottlenecklng of the 29 cmvl phonons

resonant between the 2A and E levels of the Cr3+'ion in

ruby.‘ The most axmﬂete experlments were done by K.F. Renk :

\

20 22
ca

and G Paull 1977 In thelr experlments a cw#hgon

laser at 514 nm 1s used to optlcally pump a small cyllndrl—vk
~cal reglon w1th dlameter b=. 7+].mm (full w1dth of the

‘laser beam at- half 1ntensrty)‘and l cm lOng (length of

crystal) 1n31de a f cm ruby crystal (doplng .03 wtg Cr3

flmmersed in liquld Hellum at 2 K. Thls causes the exclta-»

4

. tlon of Cr3+ ions to the Tl-and 4T2 levels, and by radla—

ftlonless decay, the populatlon of the 2A and E levels in

’

‘establlshedsby the contlnuous actlsﬁﬁof the laser nearly |

~all of the ex01ted Cr

am :
3+ 1ons are 1n the E state because the

: llfetlme T1 of the 2A state 1s much shorter than the llfe— '

tlme of the metastable E staté and the thermal populatlon

of the 22 state is low at low crystal temperature. The o

3em1551on of R1 and R2 radlatlon (cf Flg.ll 2) can be used

).

l}approxlmately equal numbers. However in the éteady statei ; |

¢



as a weak probe for the measurement of the population of
the E and 2A states because: the 11fet1mes of these states
"agalnst optical trans1tlons to the ground state are‘nearly

1
. . S 3+ .y = . aas
volume containing the Cr ions in the E state is addi-

‘equal and so long compared to T,. The cylindrical excited

. tionally pumped with'the radiation“of a pulsed dye‘laser at’
,580 nm with a pulse length of 2~ 3 ns, a repetltlon rate of
30 Hz, and a power of 50 kW. The schematlc-arrangement of
the experiment is shown in Fig.'ﬂﬁ3a._lThis pulse leads to ™
an lnitial non-equilibrium population of the 23'1evel It
'leads ‘as well to a tlme dependent popnlatlon of the E level
'HWthh however is small compared to the permanent populatlon
N ‘of the E level, as eV1denced by the fact that the Rl
s1gnal remalns more or less unchanged, and that the R2 51g—l:
nal is small compared to . the Rl 51gnal;' The Rl and R2

' 31gnals are observed w1th nanosecond time“resolutlon using-

—

1’several tlme to—pulse—helght converters in parallel From
the ratlo of the tlme dependent R2 sxgnal to the tlme‘indef

‘ pendent Rl 51gnal one can obtaln the relatlve electronlc

d

: populatlon N (t)/N*-—R (t)/R (where N2 and N are the den—

is1t1es per cm3 of Cr3+ 1ons ln the 2A and E states respec—

s .

ftlvely) It is 1mportant to note that the laser pulse 14/,:

. weak enough that the condltlon N2<<:N* 1s always satlsfled

20'2% measured the

o

In. thelr experlments Paull and Renk
S

_-1nten51ty at the Rl and R2 llnes follow1ng the laser pulse '

for: varrous concentratlons N (i. e..for varlous lnten31t1es‘

: of the cw Argon laser) keeplng constant the total rnltlal

;-
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(b) Ekperimenfal arrangementfor.lowdens\%iesN*<l016‘cm-3.=§~

' .Flg l 3 Schematlc experlmental arrangement used by Paull .
' - and Renk20 2L ~for the. study of the phonon bottle-"”
. neck in ruby JAll slgnals enterlng and leav1ng the

i'ruby crystal are. transferred v1a llght plpes.‘



energy injected into the electronQphcnon system+ (i.e. the
,'dye laser pulse energy). o o _ |

| In Fig. l 4 w@ show typlcal decay curves that they
found for(the R2 SLgnal. The results shown are the counts
’accumulated after approximately lO pulses. -Infthe inset;
we’show the'initial fast'time behavior : We»see that after

the dye laser pulse reaches the sample, the 2A levels

become populated 1nstantaneously to .a peak- Value Rgeak in
the R2 51gnal Phonon em1531on sets 1n w1th1n the llfetlme

‘Tl of the ‘27 state leadlng to.a fast decay of R (t) 1n a

tlme of approx1mately 3-ns (the duratlon of the laser

vpulse) R (t) does not vanlsh ‘but rather falls to a value

e
Ry™.

absorbed in resonance by other Cr3+ 1ons ‘in the E state. As-

q 'because many of the phonons do not escape but are re-:

a result a quasi- statlonary state of the coupled electron-'
'rphonon system is establlshed, which we will henceforth
refer to as the qua51—equ111brlum ’The electrons and—
phonons are hot in- complete equlllbrlum, but ev1dently .
"always,close to. equlllbrlum as the coupled system slowly
decays away Some of the phonons decay anharmonlcally or
i?escape from the exc1tat10n reglon and are quCkly replen-

‘tlshed in 2A-*E transrtlons as, lndlcated by the slow decay

” fln the R2 sxgnal in a tlme T of the order of mlcroseconds.-

+In thls the51s the term electron system' refers to the '

't system of Cr3* 1ons in the E state (1n the cyllndrlcal ex01—'_

}:Atatlon reglon) Whlch can be exc1ted to the 2A 1evel by ab-*

;sorpt;on of a 29tcm l‘phOnon.



Rz.signal chunts)

] tlme t(us). ; '>’ ;_'@i1;=ea - \;w'.

“7F1g J.4 The R2 Slgnal as a functlon of tlme Found by

"Paull et al20 at dlfferent concentratlons N* of

“exc1ted Cr3+-1ons 1n ‘the E state In the 1nset, -

‘an R, 31gnal (at N > 5 xlO16 : ) 1s plotted i

llnearly on a nanosecond t1me scale.
N Lo



From the R, signai.one‘can extract the relatiVe popu-
latlon N q/N of Jhe 23 level‘after the fast decay and the
decay tlme T of the slow decay. These gquantities are t
vplotted 1n Fig.- l Sa and b as functlons of the denslty N
of B 1evels. One. flnds that | | ,

% _ .15 =3

eq ; o 3constant for N. £ 10 cm T - ,' o o
’ ' - N* ~ for N* 2 1077 em T ;| .
and that k ‘ |
: _ constant for N .<,-10]‘5Mcm'-3 ,t _(1.17)_y'
Ts +h w .15 -3 . P
, . et ' for N* 2 1077 em ©

Eyidently the'phonon bottleneck“first appéars at a'density
"_.N*zlol-5 cmf3. At lower den51tles the phonons are not b
trapped and escape more or less freely w1th the balllstlc
Vfllght tlme whlle at hlgher den51t1es the phonons are

trapped for 1ncrea51ngly longer perlods of tlme.

N

For completeness 1t should be: p01nted out that for

. ' o e '
L low densxtles N* lle_c‘ 73 Renk and Paull used a heat :

.‘[

h»pulse to lnject the lnrtlal energy 1nto the electron—phononi e

system (see Flg l 3b) rather than a dye 1aser pulse.; The -

___heat pulse was produced by pa581ng a 100 ns pulse of elec_r:,,

'*5:tr1c current through a 1x1. mm2 fllm of Constantan evapor—'~; .

ated on- the surface of the ruby crystal.- It was estlmated

SR

:°'that a: Plancklan dlstrlbutlon of phonons 1s produced (w1th
'Mtemperature ~20 K), roughly half of whlch enter the ruby

crystal and half of whlch are lost to the hellum bath

B .‘}

o,
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14.’*«},“f}.‘” 1016 T 0 -5

N (cm 3)f»-_ j"clxz;faéll,,j-

= F1g.1 S(a) The quasx-equlllbrlum populatlon N2 /N . and (b)

_the slow decay tlme T of ‘the 2A states as functlons ,f -

v‘lof the concentratlon N* of Cr3+ 1ons in. the E state =
‘found by - Paull and Renkzoaz;. The . c1rc1es were obtauedf

20 _

' from optlcal ekcitation experiments® and the squares s

'54‘from heat pulse experlment521w1th excxtatlon reglon

dlameters b-;? mm and b=1.9 mm respectlvely.,t

i
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The advantage‘6f the heat pulse. method is its hlgh repetl-
tlon rate. (104 pulses per second vs. 30 pulses per second
for.the‘dye laser).: It 1s, however, unsultable at hlgher
| densitiest*-é_1016_c'-3 because the resonant phononS»are:
not able to penetrate well 1nto the 1nterlor of the exc1ta—
\ \tlon reglon due to- resonance scatterlng |
In another 51m11ar exper1ment22 Paull and Renk utll-'
'alzed a 51ngle cw- Argon laser to set up a- steady-state popu—
latlon of. exc1ted Cr3+ 1ons and phonons and found that Ngq 1
eq/N lncreased llnearly w1th the exc1tatlon reglon dla-\\ek[:
‘meter'b 3 ThlS 1nd1cates that the phonons escape spatlally:
~and - not by anharmonlc decay as had been prev1ously sques—'
d*Hted' In the anharmonlc decay hypothe51s the resonant‘_g
’phonons are so effectlvely trapoed that they decay ln tlmej'
. Tph 1nto two or more non—resonant phonons Whlch can then
jescape balllstlcally.“ Orbach and Vredevoe23 and Klemen524.
' have done theoretlcal calculatlons whlch 1nd1cate that
ph'-30 ns and 380 ns respectlvely for longltudlnal and |
' transverse phonons.v However Kaplyanskll et al 2? in. tlme—“j

:‘T

Of-fllght experlments found that the phonons propagated at_
:least 1l cm w1th llttle attenuatlon 1ndlcat1ng that L

‘ph >> 1 usec. Thus we conclude that we may neglect

ﬁih,anharmonlc decay of phonons 1n our analysxs.'

Lengfellner et al 26 studled the llneshape of thevt57

552A-*E tran81t10n by spllttlng the 2A and E levels 1n anF

s '“f-external magnetlc f1eld as shown ln Flg- l 2. In‘th61r';

'”A;lexperlments optical pumplng at low crystal temperature 157-‘



" results in the populatlon of the E state An infraredbyf

=%

laser at 29 7 cm ; (sllghtly greater energy than the

L]

| dlfference A- between the 2A and E states in zero magnetlc

fleld) is- used to 1llum1nate the crystal As the external

R, magnetlc‘fleld'ls 1ncreased from zero, the 2A and. E levelsz

' are both spllt (see Flg 1. 2) by 1ncrea51ng amounts and at

- two values of the magnetlc fleld R2 radlatlon 1s detected '

~1nd1catlng that E_, * 2A+; and then E_ 23_'-tran81tlons
LT o . 2 2 N 2.

have taken pla’be“ﬁThe\R2 s1gna1 as a functlon of the mag=

o netlc fleld has ‘a Lorentz llke llneform for both tran31—.

'tlons 1nd1cat1ng llfetlme broadenlng of the 2A level (half ”

wrdth Av.: 012 cm ) and hence a llfetlme T, (ZnAv N |

\jh 44 ns. HOWever ‘Rives and Meltzer13 have p01nted out thatw
4there may be a 51gn1f1cant contrlbutlon to the llnew1dth

hrfrom lnhomogeneous broadenlngTL 1mply1ng a longer llfetlme.

Geschwrnd et al 19 also performed an experlment whlch

‘ measured the 11fet1me Tl 1nd1rectly by observ1ng the tran51— s,f

N

tlon E+bf*E ;. At low temperatures the dlrect decay 1s very o
2

Jslow and ~the transrtlon takes place 1n two steps-vra the

'3+Random local stralns 1n the ruby crystal cause locally

7d1fferent crystalllne electrlc flelds and hence locally

.3d1fferent spllttlng between the 2A and E levels.. Macros—'fﬁ

‘1fjcop1cally one observes a Gau381an dlstrlbutlon of Lorent—

. z1ans 1 e. a Vorgt proflle ThlS smearlng is known as Q;gﬂ

"-1nhomogeneous broadenlng.
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L experlmentszj found that T -—2 8 ns and Rlves and Meltzer

24

so—called Orbach process:»§+b-+2§+p,and.ZK +E_ . (The
Raman process, in whlch the 1ntermediate state is v1rtual
"and may lle at any dlstance above the ground state below
the Debye frequency is a second-order process and not 1mpor—
- tant at these low temperatures) A theoretlcal-analysls.' ;

. shows that the relaXatlon tlme for the" E level_is:given -

RV

by_"‘:"

_L-.flip A/KT
Orbach 3y Tl el ‘ (1 18)
wahere'A==29'cm.l, T is the crystal temperature and Tillp
T is. the tlme for the spln-fllp transrtlon 2A E»%.? Com-
: +y 7 P- =

fllp-ls ns. -Theoryipre- o

parlson w1th experlment ylelds T
hdlcts that the non-fllp transrtlon is 50 tlmes faster orfi

non- fllp
1 p
'-2A level is l/T —1/Tfllp+1/'rn°n fllp 1/ 3 ns.__.‘,It_b ,

.3 ns so that the comblned decay rate of the

-should be mentloned that Kurnlt et al 1n phonon echo o
13

. l : .
1n tlme—resolved experlments srmllar to those of Pauli and

20, 21

‘Renk prev1ously descrlbed found that Tl-l l'ns; Thus

hfrwe conclude that there 1s some uncertalnty in. the value of

'V.the llfetlme Tl of the 2A state.,

. To conclude our survey of prnon bottleneck experr— »;36.'

v’ﬂwments 1n ruby we brlefly mentlon the results of two other i

groups RlVES and Meltzer12 13, as already mentloned

'“fperformed tlme—resolved experlments 51m11ar to those of

‘~V;However rather than measure the concentratlon N* of Cr

“rlipaull et al and found qualltatlvely 31m11ar results,,f;;;»lffﬁf

**ffrons ln the E state they used N as an adjustable parameter.nr;g;



' ;hus\it is difficult‘to make a quantitative comparisonlof':
| thélr experlments w1th theory Dl]khUlS et al. 14 18
.studled the steady state propertles of the bottleneck
- u31ng contlnuous pumplng to populate the E and 2A levels.,:
’They foundflseejflg:_l 6a) that the 1nten51ty R, varled
ﬂquadratically with Ry 1nd1cat1ng strong bottlenecklng of ’;
.the.optically generated 29 cm -1 phonons.. (We shall show -
later that a llnear dependence would 1nd1cate no bottle-“
necklng ) Furthermore they found that when an external
| magnetlc fleld 1s turned on the R2 1nten51ty and thus the
bottleneck is reduced fourfold as shown 1n Flg; 1. 6b.
Ev1dently thls is due to the 2A-*E tran51t1bn belng grad- -
ually Spllt 1nto 4 dlstlnct tran31tlons by the Zeeman;v‘
L effect (see Flg l 2) , The number of: phonon modes to be
bottlenecked thereby 1ncreases by a factor of 4 and the-
bottleneck decreases by a factor of 4. From the Gau551an7ﬂ
shape of the curves in Flg l 6b Dl]khUlS et al conclude
that the 2A-*E tran31tlon has a Gauss1an llneshape p0551bly
due to 1nhomogeneous broadenlng., Note that the llneshape i=-
;1s the broader the larger Rl 1 e. N ThlS 1ndrcates that
the phonon spectrum is broadened at large N* : The lnset of
Flg. l 6b glves the external fleld GH at whlch R /R (H 0)—'”""

0 5 (thls 1s a measure of the w1dth of the phonon spectrum)

't,,-VS- le.vu}b

| ThlS concludes the general 1ntroduct10n and survey
ts, of experlments on radlatlon trapplng and the phonon bottle-V“}fﬂ

neck 1n ruby :fﬂlfhf*
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llne found hy DljkhUlS et al l4»1n contlnuous‘~"

-experlments.. The . slope of 2 1nd1cates strong_r

he 1nten51ty ‘of the R2 llne, normallzed to. zero Ly
Eernal magnetlc fleld, v§- the magnetlc fleld for e



: ?f_w1th the results of the bottleneck experlments._.

1.3. A1m and Scope of the Present Investlgatlon

The objectlve of thlS 1nvest1gatlon 1s to present a\
‘theoretlcal analy51s and 1nterpretatlon of the phonon
| ‘bottleneck experlments in ruby, notably those done by G..
Paull et al 20 ?2 and Dljkhuls et al.l_4 }? which we_brlefly
descrlbed in §1 g | | | | o N _ |
We begln 1n Chapter 2 by studylng the electron— é
phOnon 1nteractlon aﬁﬂ der1v1ng a fleld theoretlcal
.Hamlltonlan descrlblng 1t After a survey of the solutlonsr*'
| to the 1nteractlon problem whlch have already been studled l
‘1n varlous approxlmatlons, we close the chapter by der1v1ng
' ;a set of llnear equatlons of motlon for a set of quantum
operatOrs descrlblng the system._; ; - , -

In Chapter 3 we study the Smelest case of a 31ngle

' atom 1nteract1ngv,

'th a phonon fleld : We study ln detall B
l the spontaneous decay oy the srngle two—level atom as an a
B example of the decay of an ;nstable quantum system. ;

In Chapter 4 we m-;_fs e tranSLtlon from quantum j
':Yi‘fleld equatlons to c st' rate equatlons 1n parallel

w1th W._Pau11 s fa”-us d~ -tlon of the master equatlon.;af'

ChaPter 5 constltutes the bulk of the the51s ln whlchli_“:f

vf we . solve the rate equatlons and/glve a detalled comparlson‘“

:1;{‘{Qfa In Chapter 6 we' try to 1mprove the rate equatlons by S

g01ng back to the quantum equatlons and extendlng them and;pFilpff

by presentlng some exact solutlons of them._ﬁfjj;iregsj_



P ftCHAPTERgZ

FIELD THEORETIC DESCRIPTION OF

o l ".'- '
LY | g A;* THE PHONON BOTTLENECK (I) '

1¢ :» We w1shvto present a - rlgorous theoretlcal analy815 of
the;phonon bottleneck 1n ruby, at each step of our argument,t
clearly statlng the assumptlons and approx1matlons necess—‘
ary to arrlve at ‘our conclu51ons._ Basxc to the understand-
: 1ng of the phonon bottleneck ls an understandlng of the y'

electron (or two level atom)-phonon 1nteract10n, whlch we' {y

“a;now dlscuss,j

2 l The Electron—Phonon Interactlon

: Let us begln by derxvxng a Hamlltonlan for our system.i
As far -as the Cr3+‘1ons are concerned we are 1nterested

only 1n electronlc tran51t10ns between the 2A and E states.fe

el
3 /

Tran51t10ns between these levels and the ground state or
the absorptlon bands are used only to monltor or to feed

the system and do not affect the dynamlcs of the bottle—“"'

fﬁ

neck, so they are 1gnored Thus we may approx1mate1y

.descrlbe>the Cr3+ 1on at p051t10n r as a two-level system
and use the vectors {é]& and (2}5 to represent the 1on lnf*f
NG sl o ' 3.v

N -.:',:
the 2A and E states reSpectlvely.h Let us }ntroduce the SR

Pau11 sp1n-l/2 Operatorsjfﬁg;ffﬁf;

i?;fi:"' 0 l ‘V'bf?:t;"O}fogﬁ“fﬂﬁ;;il“- 1 0 jﬁ;ﬁibereT;?;
rfS+m= [ ,"S=[- ,Sz=,%[ﬁ :,iitzllxnt

28
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-
which we define to act (only)on the_rth-ion, with commuta-

tion relations

- +
lSE,SE.]_ e-ZSrGrr. r . ‘
. % ) ~ v~ ‘ . , (2.2)
Ctem o2 e s
[Srvsr|]- ‘; SE 651" ‘
‘Then S: represents the excitation transition of the Eth
ion E-*Zi,'namely
0 l . ‘ ' .t Lo - . .
+ - - o - ‘ : : .
'f 1 r ”O,r : e L co
and sileaflyrsg represents theﬁﬁeqayk2§-+§;
.8 P o . ' o (2.4)
b o N ‘. " S o :

The levels 2R and E are separated in energy by the amount

A 29 cm l..hv where voe-874 GHz»' If we deflne the zero

of energy to lie halfway between the 2A and E levels thenv

i

| ASr is the energy operator for the- rth 1on, sxnce‘;'
'AS'Z[, = lA[ e LT (2.5)
e 2° 0 : S o o
r 2 ’ s w
..and . v ' - o ;b L
. B . ¢ N X ¥
0 0 h g
as? [] —-lA[ J . (2.6)
ol 1
- r xr

i.e. the eigenvalﬁes of Asi are the energies:of the uppef

o and,lower‘levelsi,4Thus the, Hamiltonian for the free et
{ ions is : S o

,:;;f!f’



where the sum is over all excited Cr3+ ions in the excita~ -

R A
NP

tlon region.

o

Let us now turn to the " 1att1ce We w1sh to analyze
: the v1bratlonal ‘energy of the lattlce in terms of the

excrtatlonépf phonons. The crystal symmetry of ruby is -

..rhombohedral28

' of A1203 Thus if we perform the usual normal mode analy-
' sis on the lattlce v1bratlons we flnd dlsper510n curves_j

(s)
D

~,

'The exact shape of the curvesand w1dth of the Brlllouln

® 31m11ar to the ones sketched in Fig. 2. la .A -

-zone will dependuonvthe:dlrectlon k that ‘we' choose. " For

'“any‘given directioh'kuthere are 3J2101=30 branches due to
' o . C (L) , (Tl)
-the 10 atoms per unlt cell. Of these, three ( — K

and 2" in Flg. 2 la denotlng the longltudlnal and two

L~

—transverse branches) are, acoustlc branches llnear in k for
v (0 .
‘k

~ ~

_branches. We approx1mhte the dlsper31on curves u51ng the

small k : The rest, denoted 4“01) ‘are optlcal

Debye model for the acoustlc branches and the Elnsteln ’
ymodel for the optlcal branches as shown in Flg 2 1b. The
Brlllouln zone is replaced by a sphere of equal volume SO
that its radius is k where - |

k3

D.ooq
6n2

’

and n is the density of unit cells 'per,cm3 in the ruby iy

. - (2.7)

w1th its unlt cell contalnlng two molecules

(2.8)

.30
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S
XY
i

crystal:’ The acoustic branches are renlaced bY‘straight
lines,with slopes (i.e. longltudlnal and transverse sound

vve1001t1es ) c Cp » and cT the same as the orlglnal

L
1 T2
curves near k 0, and the optical branches- by llnes w1th

' 'zero slope,(l e. wk==constant) The average sound veloc1ty

¢ in_the- Debye model lS defined by the" relatlon

rd

IH
S

.uﬁ%;- ;%~+ {2.9)
c ep .

0

Hw
ii—ﬂw

o]

L; cT:,‘and'cé‘fare‘averaged overvall_dlrections'in
1 T2 ' o

space because the Debye model is lSOtrOplC.' For ruby

"hc-: 7 ><l03 m/sec and k ® lOlO ]f'so that the Debye cutoff

where C

frequency 1s wD-A kD 10><A where A -Zﬂv ‘is the reson— -l

'ance frequency - Since,. ‘as we see in Flg. 2. lb, all the

optlcal modes.have frequenc1es mk > o_, only acoustlc and

D
no optlcal modes can be exc1ted 1n a 2A+E transrtlon.'
-Thus‘wekneedmonly consider the‘acoustrc_modes‘and write

“the free Hamiltonian for thesphonons as

T e e T r s an
f‘\th*=E.~i~“ B és) és)bés)’._k. (2.10) .
S T D'-” ""1 o T
-where k r—2nm /L ,1-—1 2,3 with m, an- 1nteger. b, " nd

~

(s) are the usual phonon creathn and annlhllatlon opera— o

-\'r .

,'tors satlsfylng the commutatlon relatlons

(s) st o | |
[b y ) =8, 8 s = S
< %k S .’S’S sst ' .21

[b ) (s )]

~ ~



Let us now study the Cr3 ‘1on-phonon 1nteract10n. In

the ruby crystal a small number of Al3 _ions are substltu-
_'ted by Cr-3 1bns., Their nearest nelghbors are 6 Oz'lOpS'
whlch form a dlstorted octahedron28 around the Cr3+ ion;>
'_ glv1ng rise to a cublc crystalllne electrlc fleld and a

weaker trlgonal fleld These static flelds, whose poten-

.‘btial we‘denote by'V . 1n conjunctlon w1th the spln-orblt

: coupllng give rise to the 29 cm -1 spllttlng of the 2A and'_
E levels shown 1n Fig. 1. 2 In- addlthn to this static

:fleld, v1brat10ns of the lattlce, through the charges of

the llgands (the 02 1ons), produce a modulatlng effect on

'i‘the crystalllne fleld and therefore on the energy levels off-

. the Cr3 lons. This causes electronlc transmtlons 1n the;
Crthion. “The total crystal fleld potentlal can bev

-eXpressed in powers of the straln a529

Vcrystalf_VO'+ Vl S 2

where V “as dlscussed above 1s already 1ncluded in #1on

5e = <8U (x)/axj> lS the dlrectlon—averaged straln due to

33

v'lattlce v1brat10ns at the 51te of the Cr3+ 1on (U(x) 1s ther_

A-crystal dlsplacement from equlllbrlum at p051t10n x) and .

l
3+
~of exc1tatlon of the Cr lonaiﬂ

v and V2 are coupllng parameters whlch depend on the leveli

Let us consxder a s;mple model of a monatomlc one- o

'v*dlmen51onal 1att1ce w1th 51tes‘1ndexed by the 1nteger n

r7{w1th a few Cr3+'1on 1mpur1t1es at 31tes n r._ Comblnlng

(2 7) and (2 10) (spec1allzed to a one—dlmen31onal lattlce)f d



”";moméﬁtum:aﬁd“displééeMQnthfxthé:n

with the first two terms éf'(2512) we get the Hamiltoniaﬂ_h

7
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BBy oy Ve o @am

10?“

_where

i
o~
B

n
-

#ion :

Hpn = L ogbby
‘and

'Vle :

I
2
~1
=)
La T
o+
—
=]
H
)
[—l
<
‘—l
H

"Héﬁely:is a cOupling constani;:Ur%i‘4Ur;l is pfoportibnal
th Jattice site andFVi:'r_'-is}fo,fnow~ )

to .the strain at the r
'unspecified. ‘In termS'of5the dne-dimeﬁéional phonon anni-
‘hilation operator

- (2mayN)%.n® o )

' fgnd‘itsfhgrmitéan’chjugé;é>b; 6 and Un'a;e_thgfquantLZed a

th

Cwrite | S
YWy mUply) T G (Be T e
_vhere SR e //
k-

ek
. N e
e

. - .

"lThé siﬁ§les£§foim ovf'V1

. th . 'a.. ‘ .“."v;'.
r~" ion-and-is  hermitian 1is:

r

A ¥

b, 4+ L (2a

Un)f’A»v  .“ ‘(2.}5);

fiétti¢3”51té),IWeLcén-_ﬁ:f

_ that can cause transitions of the -
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o+ - S . . '
V. =8 +8 =s8%. . | (2.18).

lr: 'r r- . r

' Wlth this form we flnally arrive at the Hamlltghlan for’
the electron phonon system in one dlmen31on
ikr o+ ikr}

CH =] as] o+ %tm b.b, + ng({srbke +b, S e

- ikr tn+ lkr
+_{Srbke o+ bksr . _})

Thls Hamlltonlan can be tr1v1ally extended to the general
case of a three-dlmen51onal latticeby.nuﬂudlng a summatlon
. over phonon branches i.e. by everywhere replac1ng % %

-vand gk-+gé )h s-L,,Tl, T, ; thus allow1ng for dlfferent

2"
: coupllng to. each branch : However since experlment does |

not g1ve us. these coupllngs we may as well 51mply choose'

d\.gthem all:equal;"

: 2. 2 Survey of Solutlons to the Electron-Phonon Interactlon'j:‘

(2.19)

iy

Problem ;faf

The Hamlltonlan (2 19) 1s a generallzatlon of a:

Hamlltonlan that was flrst studled 1n 1954 by D1cke3p,inf'

connectlon w1th the spontaneous em1551on of coherent radla—ﬂ?'f

"tlon, 1 e._ superradlance ,,1n a laser. Slnce then a very [

30'45

large body of llterature has appeared studylng the

Hamlltonlan under a varlety of condltlons in varlous appro—%f:

x1matlons and usxng various. methods.'[“gflt,ff'fax“

- An approx1matlon that is - almost unlversally made is i

the so—called rotatlng approx1mat10n in Whlch

"



_the second tefm in braces in (2.19), the anti-resonance’

term, proportional to-

r k k

. is dropped . The usual justlflcatlon is. that 1t does not

lead to first order processes that conserve energy (or

STb, e T 4 plgteTHE o 2.20)

36

“number of eXCltathnS) To see why 1t is called the antl- o

‘ .’resonance term and why it is negllglble, we use. the lnter—'

- actlon plcture where

_ioI(t)e [oI(t);Hbl_ .
iy (6> '=-ﬂ'.l’¢il(t)'> L

- where 0 and wl are any operator and State vector 1n the

. |_
1nteractlon plcture and 34 é&onf+ﬂphonon,and N Vle

Accordlng to (2 21) the resonance terms of ,q, vary llke

R ' ~1(A oy )t + ' .
b (t) S (t) . ]é0) S (0) ;e

)t g

+1(A w R
s, (O)b (0) P

s (t)b (t)— e ok
_ ‘and the antl—resonance terms llke C

tv -1(A+wk
e«: o S (O)b (0) ,v:' ks 8

”__‘gr‘g{pk(é)&

4 (At )t 7'"1'r7‘; :
e K S+(0)b (0,

s

| -»'»,,-_sr,‘tv’,-’?’k‘?’, |

Cand . ;I'f'e}g5 B - ¥ D)

oy



Slnce A and mk are'both defined positive, for'wk==A the"

resonance terms have an approx1mately statlonary phase,

A

whef%gs the anti- resonance terms have a rapldly varylng
-phase. Thus when we 1ntegrate (2 22), for {4 not too

strong, we get ‘a strongly resonant denomlnator for the

.‘former (ono 1/ '-A)) and antl resonant denomlnator for :

the latter (wIca l/(m +A)) Wthh we - can neglect in com-'

N

parlson ﬁicept for large tlmes.'

Swaln31 has studled the case of a 51ngle two- level

‘*atOm 1nteract1ng wrth a 51ngle photon (or phonon) mode of

’.frequency w‘
1

He', f/hnd that 1f 1n1t1ally the ‘atom lS exc1ted and there

w1th J#" ncludlng the antl resonance term

'bls no phonon present then the probablllty N (t) that the :

37

atom is exc1ted at tlme t- 1s glven in terms of a contlnued, :

S

‘fractrOn,:namely

v = L % aw et R
A |em g w=b- R R S
o ‘*_’1 29:. TR B

gVote that Wlth no coupllng g 0

2n1 “"A;ii;“*'

.1so that the atom never decays,:and that keeplng only the

;qyf,ggif:_;'}«h'f(?3?4)f"V”jnm

:iflrst approxrmant to the contlnued fractlon ln (2 24) glvesi;_fi
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N ‘ 1 o 4 e-iut 2 R
TNL(E) = s §5; o o (2.26)
TR e R
W=

which results in a'coSinusoldal’N (t) (as shown'in Fig. 3.1
of Chapter 3) We study (2 26) in. more detall in Chapter 3
‘where we find that it is the exact solutlon to the one atom—
:one phonon mode-problem w1thvno“ant1+resonance 1nteract1On.
_Let us 1nterpret these’ results .lEq. (2 25) shows that the
'&uncoupled atom behaves llke a harmonlc osc1llator of fre-
S'quency A. Coupllng the atom to another harmonlc osc1llator
bof frequency w (the phonon mode), causes a Shlft in the" Co

1frequenc1es of the two oscrllators (determlned&by the poles

o of the 1ntegrand of (2 26) ) and causes the energy of the -

'ﬂ_jfapprox1matlon whlch we Just dlscussed the approx1matlons

oupled osc1llators to be transferred back and forth 0031n-
»u501dally between them at the beat frequency (~ g)as for:
:any palr of coupled c1a551ca1 harmonlc osc;llators.”Flnally.f_ :
(2 24) shows that the lnclu51on of the antl resonance'
“ALterm for small tlmes 15 negllglble for small coupllng g but
'7:that for large tlmes 1t causes N (t) to 1ose ltS perfect o
.;perlod1c1ty because of the 1nf1n1te number of poles rn thevy

-flntegrand of (2 24)

Beyond the almost unlversally used rotatlng wave f7"”h

S

'fethat can be made depend on the condltlons of the system..s;tp?

iijor example when applylng the Hamlltonlan (2 19) to the

’fklaser, usually only one radlatlon mode on resonance 1s

fae'"con51dered Furthermore 1f the wavelength of the radlatlon REe
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is long compared to the dlmen51on of the contalner of the
two—level atoms, when we may also drop the phase factors-”'

+1kr '" -ikr i

nd e (2. 19) and get the Hamlltonlan studled

:'by Diéke?o, namely

g

o . '2}:: N . ST
H=Db'b + Z-ASr +g] (s _+s.b) . . -(2.27)
R e | .

r=1.

o

' Dicke‘considered ali N atoms'as“a singlefquantum‘system and . .

N applled ‘to lt the rules for the addltlon of angular momenta.,f

' vLet us deflne the operator

i

1 Rz, e (Rl) o (2.28)
od=xyy,z 'f L L T
“‘..leei Z S dv;i't”‘o ; ah‘:"gvdv: { e .(2,29)‘
o ' L @g : “ ’ ~ L . ’ S e . i . -
__fis’the 1th compOnent of the 'spln of the total atom system.
~_Then R2 has elgenvalues r(r+l) and the operator R has

FOE

telgenvalues m satlsfylng

,*swe-

:s}hrr and m are 1ntegra1 or half-lntegral accordlng to whether

v

,and unexcxted atoms respectlvely, then‘

S

'*‘th}T N+ +. N+é§

“:*»Vfdﬁﬁ* % (N f_ N ) e;ff;}g:»;ehfhjf,;tf };«;(ﬁxgzsé;"rf;

'V..and ris called the coordlnatlon number. ~Notehthatfthefhfif”';.

~?feiener9Y of the atom system 1s 3

7°;N ‘is even or odd If N and N are the number of exc1ted [*:m

Cean



. _tabulate

(2.33)

T O (2.35)

'where I» someuébnStant These results are convenlently Ny

g..2. 2, where .we -show the states |r m>, o

- thelr degenera01es and thelr energles (the helght 1n the

1d1agram) o Let us 1nterpret these results.v By settlng
_]V l and rEme= 1/2 ln (2 35), it 1s ev1dent that I is the
:f'radlatlon rate of a 31ngle exelted atom._ If r= m-i%mh i e.ﬁ;-
:hf;lf all N atoms are 1n1t1ally exc1ted then S L
AT S e el

"_:whlch 1s just N tlmes the rate for a 51ng1e atom., The prO-ff Fx

ti;portlonallty to N 1nd1cates Incoherent em1351on by the
’wjatoms., If r-%re and m= O,.1 e. 1f half the atoms are ‘h?:
exc1ted, then '

Crs=fsgwen o ean
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’ r‘=§.,.2 'f‘\.».:v
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'degenerate'-

Ne=nr

S

'

Energy level dlagram Qf an N—atom gas xh the chke_.;gi

,_geu?ated by energy A
: »;1nd1cated The atom system energy 1s E A(m+

l

"*model, each atom hav1ng two energy 1evels separ-zm”'
Spontaneous radlatlon rates are'f'""

N)

>?;Taken from Refere

|

nce 30.-_,
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;Wthh for large N 1s proportlonal to N2 ThlS 1ndlcates
*hcoherent spontaneous em1551on. chke calls thlS the o
superradlant' state;jﬁ | '

' Radlatlon trapplng emerges naturally in thls form-h
'_alism. Suppose‘that exactly one atom of the gas 1s | |
'1n1t1ally exc1ted Then the gas—radlates 1n1t1ally at }‘
the normal 1ncoherent rate but after a short tlme ceases,"

-w1th the probablllty of: the photon belng emltted belng only
re ,

'f"l/N}V ThlS follows from Flg. 2. 2-‘ The assumed 1n1t1al

- state w1th m—-§w+1 is an equal superp031tlon of the 51ngle;_l'
!state w1th r'*N/Z and the N l degenerate states w1th r-;;'

- —-1. The latter N-l states cannot decay and thus the pro—i» "i.

”"bablllty of radlatlon trapplng 1s gﬁil, (ThlS 1s exactly P

o analogous to the famous case of hellum 1n whlch 1nter—7f""""

»5ffcomb1nat10n between the trlplet system (orthohellum) and ~;5"

-~

_the 31nglet system (parahellum) 1s not allowed by the

'f_selectlon rules so that e. g.,there 1s no. 23s-+1ls tranSL-ﬁ{}auilf

.”fgtlon) By fleld theoretlc methods 1n Chapter 6 we w1ll

~£w

"f;]flnd that the trapplng result Just found 1s exact._‘:o?:;_. R

‘“iﬁjelectron-phonon 1nteractlon.: Scharf

Y
Let us now dlscuss some other work done on the

32 studféd the Drcke‘;fmfffi'
jljmodel and found that the mean photon number shogsd osc11-{ﬂf";

vf”latory behav1or glven by elllptlc functlons.t Prakash and‘h;g;lffl

E Y

:rfffChandra33 wrote the chke Hamlltonlan ln the so-called

lfﬂthoson representatlon by replac1ng
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81 S
. (2.38)
At + :
(az 1%1)

U g .
lx,m> - lnl,n > T ' o

A, =
2 a

. N“_‘

2

where n15=r-m and’n2==r+m‘.qre the number of excitations,

1

.and a :apd a, are boson operators,which'ann;hilate an' exci-
' tation in the lower and upper levels respectively. Simpli-

flcatlonslresult if we have a highly exc1ted assembly of

."atoms because»then n, is large and the a,

can be treated cla551cally. Slmllarly if'n

or upper mode
1 is. large the

a,- mode can be treated cla551cally and lf n; =® n2'>>'l
(superradlat1Ve_condltloh) then bothxmodes can be treated '
elassieally. .v -

‘Mallory34'made'computer studies of the evblutidﬁ,of :
the'density operator of a sjstemicohtainimg a small'nhmberf.
- “of atoms and found osc1llatlons in the photon fleld SLlear

to those of Scharf32

35 36 also studled varlous aspects

BOnlfac1o et al.
‘}of the chke laser ‘model.

-All the authors mentloned so far assumed the presence
wof bnly asslngle':adlatlon mode and neglected the spatlal

dependeuoe~of4the system. As we know from the resdlts of

~'Holsteih (Eqs. (1. 9)~(l ll)), the existence of a phonon

E J_band and the size of the system is crucial to a anntlta-

o

tive descrlptlon of the phonon bottleneck. Also, Tn light -

i

~



’

- of our dlscu351on after Eq. (2. 26), it seems - likely that

the osc1llatlons in the models of Scharf and Mallory are
artlfacts of the single mode assumption. '
Leonardi and Persico37—39 studied.the Hamiltonian
(1.12) of Jacobsen and Stevens9 ln connection with. the
relaxatlon of an 1nverted system of paramagnetlc splns

1nteract1ng with a phonon fleld.‘ However, as we. already :

mentioned in §1. 2 thlS model assumes that there ‘is a spln

on each lattlce site and therefore is not an approprlate

descrlptlon of the phonon bottleneck in ruby.

»

Flnally we should. note that a number of authors have

derlved and solved macroscoplc and klnetlc equatlons des—

‘crlblng systems obeylng the chke Hamlltonlan (2 27) or the

A

full Hamlltonlan (2.19) . For example Walgraef40 derived a

klnetlc equation for the photon den81ty matrlx of a monomode

[\

re

laser within the framework of the Prlgoglne—Ré51b01s theory

of -non- equlllbrlum statlstlcal mechanlcs. Grlnberg and .

ngmatullln4l.and Bukhbindervet al'42 derlved klnetlc equa-'

. tlons for the relaxatlon of a paramagnetlc spln system

us1ng Zubarev S method of the nonequlllbrlum statlsélcal
operator. And D' Yakonov and Perel'43, u51ng a. Feynmann

dlagram perturbatlon method derlved k1net1c equatlons for

44

the time evolutlon of the den51ty matrlx of an excxted atom -

when there is diffusion of resonance radlatlon. 'In case .
the den51ty matrlx is dlagonal thelr equatlon reduces to

that of Holsteln (Eq. 1 4)



In this eq{ation the summation over k imp

~‘éommutation relations (2.2) and (2

In this survey we have seen several qualltatlve fea-

tures of the phonon bottleneck. Examples were Dicke's

radiation trapplng due to the selection rule agalnst 1nter-

combination of states of different total spln r, and

45

Jacobsen and Steven's anbmalous_dispersion of phonons near -

resonance. The only quantitative theory however is. that of |

Holstein and it is only,apprdpriate to photon diffusion.

description‘of the phonon bottleneck from first principles.

2.3 Linear Equations of Motion for the Electron-Phonon
sttem"
Let us begln by wrltlng down the Hamlltonlan (2. 19)

(we set h=1), namely :

'wv_ g o b kr 4 cikr
H=] A.Srfg w b, b +Iz: }{ ?]S(b}SSEe | +S£b}5e ~) . (2.39)

icitly includes a

ver the 3 types of acousti modes. ,Using~the'

¢

summation
R

1) we can 1mmed1ately

| ators.bk’ S;'iand‘sil namel,.   ; Lo
.o : - -ikr
.‘l.b}-S = [b]S: K ] = mlfb}j' + L g]S Ee """ l‘
lé = [S_ \ﬂ'] A -2 z | Szb ei]'s.r tz 40) |
S S k‘{s G
Z _ (o2 ;v | # _ikr * +__ —ikr.
i8” [SS,M -%g (Srbke ~‘~—ka ~~) .

Thus 'in the next section we begin to derive a quantitative

: wrlte down the Helsenberg equa fons of motion for the oper-{f



\}z

It is easy to show that. the number of exc1tatlons in the

G

+_
system is constant, i.e. % bk k-+f SE r==constantr Inte—
grating Egs. (2.40) formally we get
gt u" iker Tlo (et |
= . ~ - 1 s | . > ]
bk(tf e b, (0) -igy Ze [ dt s .(t')
~ . ~ ~ T =
~ 0
: , : : ..t
- . ipt - I ik-r -
sT(t) =e X4t sT(0) +2i Jge rdt'em(tt) Z(t )b(t') ,
r : r k J :
~ LR k = 0 =
| 3 B o
- | el ] ty:
S (t)-—S (0) -1 Egk(e .(dt SE(t-)bk(t )
k | 0 T B
| —1}5rt‘ : | .
e -7 [aernf e €. e
o )

These equations can be solved by iteration.‘

46

Let us. flrst flnd the solutlon in flrst order pertur-_'

.,batlon theory. Keeprng terms up‘to order 92 we flnd that

(2) (3)
(t)s by + 5 .9159k' ‘(t)

s (t) (1)(t)S +3 g
K

~

k.
AR C2.(4) 5~ (5
X bkbk's .“Z kAk ptSpSpr ¥ _Z K Ik Ak k k'
| kir' ~ Sfxh 2% kk! o~ oSS ~ -

~

‘"?H N
ithv

-~

\ where all operatdrs on the rlght hand s1de are evaluated at

14

(1)

,tlme t= 0 and A (t), 1}-1,...,5Aare some»functlons of

tlme.'-The probabilitde:ft)-that the rth atom is excited

at time 't is given by

qur



e o
NE(t) = <l|S£(t)S£(t)|1> ' | o (2.43)

- : ) L AN o g — ‘
where |i> is thé state of the system at time t=0. After
o L )

‘some algebra we find that to order‘gz

N;(t)==N;(O) g ; K t){N (O)n?h(O) N;(O)(lebnﬁh(O))}‘; |
, ~ ' (2.44)
~ where | ‘ .
nﬁhkf) = silb;(tibk(t)]1> TN (2.45)
, : . | A
is the number of phonons in mode k at time t and -
- : smz(A 2wk-t) : . : | ,
B (t) 2 —x— “k SRTRE (2.46)

T (== )

'We wish to 901nt out several featurs of the perturbatlon solu- v

tlon. For small tlmes 11m Fk(t) = t2 so that 1f‘there are
t'+0 a~

no phonons 1n1t1ally present, the exc1ted atom decays llke

(2.47). -

~

N*(t)'= N (t—O)(l Z
T _ k

,,z‘:x'w

.We note that 1n1t1a11y the atom does not decay exponen-

P

- tlally, rather 1t beglns w1th zZeéro slope.‘ Indeed in the

“?case of ae}lngle phonon mode the factor 1= g2t2 ls the ﬁ

' .ebeglnnlng of the serles expan31on for the c051nu501dal

'1evolutlon of the exclted atom found by Swa1n31 Notlce e h E

:also that F (t—-0)==t2 1s lndependent of k i.e. any phonon‘

~

Qregardless of 1ts energy can be emltted by the atom
v;lnltlally in accord w1th the energy-tlme uncertalnty f§ :

| relatlon AEAt > A However as tlme proqresses F (t) _ t;'t
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becomes more peaked around mk A. Let us now assume that

the phonon modes form a contlnuum SO that we can replace

€

}172 — JD((») do , ((2.48)

| Vhere 6(m)<ﬂu is the'density»of phononAmodesper cm3 in the
frequency lnterval dw'about'w‘and Q is, the volume of the
crystal.. Then in‘the*limit'of veryrlaroe times .
llml‘-F (t) = 2o - 0) . | (2.49)
t-oo k : ; - ' .
expre331ng the fact that for large tlmes energy is con? ‘
served. Plugglng (2.48, 49) 1nto_12 44) we find that the
probability that'the atom ls'exc1ted,at time t is |

oo +_.‘ : . V'ph .; +i~ . ph h;-T'ilf .
-‘_Nr(t) —135-(0) +I“t,.{b_1£~.,(0)_n‘A ‘(O)A-NS‘('O')‘ (1+n37(0)) o (2.50) .
?Where Te—
T =,z'ﬁl§i paYe " | 4,4(2.'51‘)_

ig the spontaneous decay rate 1n agreement w1th Ferm1 s
B

golden rU1e-z The three terms 1n~braces represent the : Q

’;tfjexc1tatlon by 1n1t1ally present phonons of the atom 1n

- the lower level,spontaneous decay, and stlmulated decay
»by phonons of the atom 1n the upper level reSpectlvely. 3

.\.
S

It is 1nterest1ng to note that in- thermal equlllbrlum

»e"where all occupatlon numbers must be constant, Eq (2'50).';_\\f
yields | R o '.» : | : .';, .
‘Xh w, <1 + nph) - R

IH -«
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| Comblnlng thlS with the fact that at temperature T, the
‘number of atoms in the + and + states are given by N+ =
exp (-~ E /kT) and N, = exp( E+/kT), Wlth E+ E, = A, we get.

the Planck dlstrlbutlon for the phonons, namely

Pho_ 1 L I C (2.53)

Perturbation theorythas‘the shortcoming that,althought
1t glves ‘the decay rate of an ex01ted atom, 1t does not glve :
.dlrectly the spectrum of" phonons that is emitted. ~ For
.example, Eq. (2. 50) claims that only a phonon of energy
exactly‘mk-A can 1nteract w1th a two level atom. But we
, know from the uncertalnty relatlon that actually a band of
lel 27 g2 D(A)Q can ~interact with

‘the-atom. For thls reason we w1sh to 1terate Eqs- (2 41)

phonons of w1dth Aw =

to all orders. To fa0111tate thlS we represent the equa—’
.tlons plctorlally., For now, forget the phase factors,
'7summatlons and tlme 1ntegratlons, and focus attentlon on
anthe power of the coupllng g and the order of the non—‘
commutlng operators._ We . wrlte symbolllcally
ST < sT(0) 4 gsE(eb(e) o (2.

st - sPugst b +pT sy .

' :'whichlwe:represent,pictoriallyfasf,'



&

(2.55a)

b(t) = '

.. (2.55b)

- Wn
|}
T
lH<

~and T - L " | /ZZ

S, (2.55¢)

wn
N
— .
~—
tt

S S | : gg\ e
Here the dots represent operators at time t=0 e.g.

b

open circles represent operators at finite.times_é,g,;

bty L qas

_ﬁertical lines;répfeﬁént%éddition,'g.g,“ S

fQéﬁdfhbrithﬁal”linéév;epresgnffmultiplicatiOQ,fé,gQ -'

B &2

& =pt=0); N LT - (2.56) ﬂ

50



The diagrams are read from top to bottom (iﬁ;ascend;ng

powers of qg). The order Erom Ieft to riéht is important
since the operators 1n general do not commute ‘To iterate
. S
(2 41) plctorlally we 51mply plug the dlagram for

q

: operator q 1nto @°. For example 1terat1ng s (t) several

tlmes ‘we get the perturbatlon tree shown if Flg. 2. 3.

51

/ The open 01rcles at the ends of the branches 1Hchate that n

riwe have to 1terate ad 1nf1n1t1m To- regaln the flrst order

) ‘
perturbatlon result we cut off the 'tree at the g level»
and multlply'out the branches tolget

W

8T (t)

|to order 92

- Re- lnsertlng all the summatlons and tlme dependencres we

'fagaln get exactly Eq. (2 42).

lenearlzlng Approx1mat10n

- Let us now make the lmportant assumptlon that there

are very few ex01tat10ns present 1n the system, i.e.

k k> + Z<s S > << Z<S s'a g :‘w“»-rc i,'_ni: (?Htl)

o

o 5 +98 b+g (s bb+b s + 52 s ) (2. 60)-

”fwhere <...> =<1|...fi>; .Indeed, let us assume that there o

s :

’hnh turbatlon tree, Flg. 2. 3, by the tree f{fﬁt'

'”~hls Just a 51ng1e excitatlon 1n1t1ally present 1n the Sys-tfr.'
: e :

17‘_tem.; Then 1t 1s easy to see that we may replace the per- L






‘\é\ \ \
AN
) v\
§
8T (t)en (2.62)
i
; " -
v
A ; : ,

i.e. weveverywherevreplacefsz(t)-+sz(0);'because’from the

53

other'terms of‘Sz(t) (see Eqn (2 55c)) there W1ll come con-

'trlbutlons to S (t)|1> w1th at least two annlhllatlon
s operators actlng on a state l1> (w1th only one ex01tatlon
';hpresent), and these w1ll vanlsh Furthermore any term
.t of the serles for S (t) represented by (2 62) actlng on

‘ state |1>Hhas the form -

z S i
r,olosee Sy F°?bk§9%|%>
’ ‘~l‘ "“ ‘ ) '~n - - e . . - . .
"Sr.‘o?‘f°i_sr-(Q)Srp(Q’flP 4

'Z‘Whlch er&her have the value ( l/2) I0> or vanlsh dependlng

;on whether or not state |1> has a phonon present in. mode k o

fffor the rth atom exc1ted. We may summarlze thls by saylng

gf;that lf the state I1> has Just a 31ngle excrtatlon present, *p”f

'5fthen we. may everywhere replace 52 (t) _-1/2 We expect thlS

'V(to be approx1mate1y valld also for a small number of ex01-f-;

ittatlons present.' Wlth thls replacement Eqs. (2 40)become



[

. - : - —ik.r
J.bk = wkbk + ]Z: g}SSre ~ o~
' T . (2.64)
. - +ik.r . '
lS = Z\ ~‘~ .
T < }5 ]S kS .
<

‘Whereas Egs. (2,40) were non-linear in the number of opera-
‘tors, these equati§nS are linear and thus exclude processes

‘such as stimulated emission.
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CHAPTER 3

SPONTANEOUS DECAY OF A SINGLE TWO- LEVEL ATOM AND _

THE GENERAL THEORY OF THE DECAY OF UNSTABLE QUANTUM SYSTEMS

Let us ﬁlrst study the 31mp1e case of the lnteractlon

: 1

'of a 51ngle atom w1th a phonon fleld 'In thls case'Eqs.

(2.64). reduqe to

.:_lbk = b, + g.k s ’ E"

?
4

{3.1):

\.Q
-
?T

,,§A ~ o~
where the~opetétotsfs and S refer to the 51ng1e atom.
4These equatlons can be uncoupled by the use of (one-51ded)b
’ ~

;_Fourler transforms.' Defxne the Fourler transforms ofS (t),~

:Eand b (t) to bé‘

~

e

AT 2 AT 2 [arsmeint |y

.>#$k‘¥)g7;&}9kft)]IEE[dtbk(txgh-?wifﬁ;;E:_

S R RIS W ERTARN F
7w1th 1nverse transformsiff' 'Yf}sw- ” v.‘?gfﬂ:_é.:f"
».«-'-S'_'fi(t;') [d (x)] 51- p ax 4 (x) eEy o

- 'lll
e lll'-

;-.:

RS T

o

m
*Sﬂk'

dek(x)e ﬂ3i:»:iij

:*.gwhere the integratlon contour-é encloses the lower half— g

”Cffplane as shown':-‘fffrffg"j f:uffv”SJSff""

el

'.55{ i

TJoe AR - . S
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x:plane-

(3.3)

‘The Fourier trahéfé%%s of Egs.: (3.1) are

BT A o
b (0 + 23T, . (e

"B, (x) ="
nE v"_: X‘- E X : X k

. v, T ,‘.gk
N T 5 5 (0)+]§x T Py

R

]

(x) | _1}.15(3;4b)m

: Usihg (Qida), 47 (%) can be~wr1tten‘in~closed form as .

T = —2 7{1 sT(0) + ng}—(—_‘-'-—————} L G

;Expandlng the denomlnatorvln‘a blnomlal serles about‘#;-A
‘glves the’ same serles that would result from the 51mp1e ‘“7
’JT 1teratlon ofaEqs. (3 4a,b). The atom-phonon system may beh i.'
r,‘;vlewed as a 31ngle osc1ldator&pf frequency A (the atom) o

':coupled to a: set of N harmohlc oscallators of frequenc1es'f¥i;

(the phonons) The coupllng shlfts these N+1erequenc1es

'-fsllghtly to new vaues glven by thegbositlons of the poles

'“Thfofzé (x) There are two qulte dlfferent cases dependlng

t¥¥yfon whether the phonon modes are discrete or form a J .},.;Lﬁ;‘?i‘

mataucontlnuum AfFT';eﬂ;;ﬂijmT'"

"&3 l Decay of a Two-Level Atom 1n a- F1n1te Crystal ;;{ff“

In a crystal of f1n1te extent it 18 well known that 7h'>'”

“'there are a f1n1te number of dlscrete phonon modes.. It is 1117‘“

e



easy to show in this case that»S—(t)xend heuce the proba-
biiity N, (t) of the atom being exc1ted at time 't has some
‘sort of perlodlc behavior. To.be\epe01f1cfassume that at
time t=0 the atom is excited and tuefe are no phouons
‘present. bropping therefore the~second‘term in brecee,we
-cen Write (3.5) as | | “ |
isfto) in b{-mk)S_ZOX | .
A7 (x) =~ =k —, (3.6)

| 9 det(xi-f)
Xx=- A- Ex—m
K

k

where 1 is the identity matrix, and M is the matrix
: . ° ' b ’ . ! : '

‘ ' BET
B S e

1 ]

n g, Vw, - 0 : ' o
B AR U | C@E
¢ < — . '

‘° gN : 0 mN 5 g
b‘, o &
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It is well known that the N+1 elgenvalues of the symmetrlcf 3

matrlx M, whlch we denote ml,w re o VN+i are real. - Thus o

1nvert1ng the Fourler transferm we flnd that the probabxhxy

N (t) that the atom 1s ex01ted at time t is given by’

-kat 2

S B N (t) = |s™ (t)ll>l2 , z Ak-e . - - :(3,3)A

PR

which "is gbvidusly perlodlc (Ak k-l 2,...,N+1 are some time

'1ndependent coefflclents)

o
:

let us look Ln detall at the case of coupllng to a

single phonon mode whose frequency we denote wl 'In this

“y



case the poies'of

47 (x) = —287(0) — C . (3.9)
X - 4 - ;1?5— ' =

are shifted to positions
A-+m -a) — ' . | |
/( - ¢ . - (3.10)

We find that the probablllty N+Ct)\that the g%om is .excited

‘ A ' . . .
at time t is given by : ‘k§a

2 A - .

N, (t) =1~ g 51n2 / g & (3.11).
A-w 2 9 A

. ( -

)+g

which is sketched in Flg. 3.1~for various values of‘ml.

Je N

nFlg 3. 1. The probablllty N (t) that a’ two—level atom, couj
" pled with strength g to a 51ng1e phonon mode of
frequency wl, is exc1ted at time t; for varlous

L values of Wy - IR o



'We note several features: ﬁk
(l)> ‘The time evolution of the excited atom .is periodic
and similar to the behavior of a pair o{*glassical ooupled
-pendﬁlums. Recall that Swa1n31, Scharf32; and Mallory34

‘ also found 51mllar periodic time evolution in the case of
coupllng to a'51ngle mode.

(2) According to Eq. (3 10), 1f ml_z A, the coupling
spllts the degenerate frequenc1es of the two oscillators
by an amount = g.

(3) As-Shown»in:Fig. 3.1 only modesAWithin a distance
Ao = gvof_A interact,sﬁrohgly'with the atSm.‘

(4) The atom-'decayS' in'tlﬁe T, = 1/g. Thus we have ah

’hhqertaintxilfélatioh;Am-Ti x 1. ;

(Sl .Expanding (3!11) in a"pOWer series for small-times
we find- \ | |

N =gt e, o (3a2)

whiqh is jUSt ehe;;esult (2.47) of first order perturbation
‘theory | ¥ |

. With thls experlence let us now con31der the case of

. coupl;ng of the two-level atom to a finite but large number
of phonon modes.; ThlS case can be solved exactly if we

assume a perfect one- dlmen51onal N lattlce—31te crystal

with constant goupling 9 =9 for all k. Then the N phonon

modes have frequ"cies given by w0y = c|k| where k =27n/Na
is the wavenumber, a is the interatomic spacing and n is an

integer in the ra ge ~N/2 ¢ n g N/2. lSince mk==w_kvwe have
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N/2 distinct evenly spabéd‘phonon energy levels in the

interval 0 <.

frequency

‘present, the amplltude é (x) is glven by

$ %) = —2

iS (0)
o gN.
g -4 + S N/Z(X)
. where :
' N/2 ,
(x) = f L L
N/2 k2 - Nx _ :
. } = n - 5?0—- L
d . ':.‘f D

The series Iy/2 (%) can be represented in

: digdmmarqr wffungtionés

’relations47:

b0 = L0 r

T e
| ) | ! N_l l
W(g%N) - w‘#) =;k£0 XK
L _ e ‘I:j«.\,\: /
W(lfx)iﬁiW(x) + T cot mx , -

lim (w(x+N) - 1n N) =0 .

; which satisfies

Wy S mD,'where mD=#cn/a,is the'Debye cﬁtoff

Thus in this case, w1th no phonons 1n1t1ally

. (3.13)

terms of ‘the

the foilowing ‘

Yoo (3.15)

N+oo
) ‘Using thesé formulas,wevcén wri;g the series IN/Z(x) as
B _. N, . Nx Nx
. ®p D

(2%, o <o orxva

‘n % ’ i - for x<0 or x._oD
") Yp X TNX S
1n = -v‘cotimg-, for 0<):<wD 3(3f16)




The approximation-ln (3?16)'becomes exact as the number of
‘phonon modes N‘tﬁ; From the discussion after (3.7) we know
that for anyhfinite number N of phonon modes the poles of
J'(x) are‘real - We flnd the poles graphlcally by looklng
~.for the p01nts of lntersectlon of the functions f (x)-—x A

2N

and f (x) = N/Z(X) w1th X real as shown in Flg. 3.2

'Notlce that the N/2 dlstlnct phonon frequenc1es and the one
atom frequency have been shlfted in such a way that N/2 1
‘of the poles (denoted wl,mz,...,mN/z l) occupy interstitial
'p051tlons that 1nterlace the 'old' uncoupled system phonon
poles and the two remalnlng endpoint poles (denoted mo'
N/2) have been shlfted out of the phonon spectrum 0 <x<:mD
The poles to the left/rlght of frequency A have been A
shlfted to the left/rlght, w1th the poles near A being :

shlfted the most, 1nd1cat1ng max1ma1 coupllng to those'

oo

j_v'modes. The p051tlons of ‘the poles can be expressed as .

L Wy = wD(—ﬁ—+ N On),_ nv—‘l_,Z,.,“..,.:2 ',l' : (3.17)

‘where'the.amount of shift o5f0f the nth”pole is_givenuby_

R - A *‘g“‘D 1“‘—1;@—) R

0"-cot : — - Lo (3.18)

nv e 2 _ R A .
TWp

as can'be'seen in Fig. 3.2 from the faot_that‘the nth
bcotangent ourve is raised/lowered‘towards the right/left .

.by.thefamount‘
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“9°N 1, N i - (3.19)

. Now that we have found the positions of the boles we can
invért‘the FourierftranSform using the following integra-

tion contour e I ' ¢

~and find that

¥

1 % ax e 1xt g™ ()

s (t) 7L 25
: x—A+9-——I
’ “p

=§T (0) X 5} — -~
| 1‘*2“‘[ L
D 251n2( Zmn) ".Qn-(-"‘,’ R
L

N/Z(X)

N

C -Jwe_rmot' kN   ”:féJl9N/2t JV>;u' S ’ "”' o
o e ‘_+._,\5f fv.'§5Q  —— ¥ o (3020)
1 +—9N 5, dN s S

el aat

-Plugglng (3 17) and (3 18) lnto (3 20), taklng N large,vand

;u51ng the fact that

A R

‘H;SlnzCOt ;Xf¥ ;;l‘fi‘ j7f S @

" we can write §7(t) as
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: 5-1 D -iw't
ey - 2 o1 N. ¢t e
S. (ta)=S.(0b) z e . .‘¢n+ . 7
. &kzl : v o » l.+w (wg Ijm')
_ 5 (op - 0
-1 ! t
R VA - |
ot 5T ' o (3.22)
1+ g N »
(e~ w n)
“N/2'%p 7 Oyy2
where
Ln = — = .5 N ——— - (3.23)

. ‘ 5 =-n S22
[Zg.w - A+ E—— ln(2 )| o+ (EE—E)
tNoD “p - Yp

¢

:“Notlce the- follow1ng features of (3 22) and (3»23).
(l) In the exponent of (3 22) the Shlft c.,of the poles .

for large N is negllglble and has been dropped because of

'«

’ ﬁthe way the "new' polesllnterlacexthe"old' polesf(see Frg,,;'

AB’Z).t -
-[KZYL: The coeff1c1ent i, generally is- approxlmately a.
| Lorent21an of w1dth 2ng N/w centered about frequency

A 2 A - IN, 2 R I AP
’.A‘ _‘A‘ mD‘ln( n ) NA R
: : : Gl in e s=m

'TIt 1s not a perfect Lorentzran because of the logarlthm

'-f'gterm but lf ‘the coupllng g lS small then thlS term should

’ ..not be too lmportant

(3) Conversely, the 1ast two terms of (3 22),'1 e. the

,contrlbutlons to s’ (t): from the outlylng poles m and mN/é

‘

'_fw1ll shortly be shown to be 1mportant only when x, 1s>not,-'
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approximately a Lo:entziang
Lettﬁs illustrate'Eq.-(3,22) with an example where -
Ln.}s}aqurentzian and the out;ying poles giveaa-negligible‘

~contribution, namely suppose that

"In Flg 3. 3 we have sketched x and the correspondlng pro—

bablllty N (t) -IS (t)[1>l that the atom is exc1ted at

'

tlme t .
f
i
AR -
R S B '
Tl Lo mE
R I U
R P
1 pe=STE 2
i | X mD; '
BV R Dt R |
;- "f‘rk} é
. AR
pr
M"nlll%LLYw

N_/—z') PRI Q”’c ’: '»A' ,wD : w“’
LI SEER P

:t Fig. 5;3 (a) The llneshape j and (b) the correspondlng proba—: 

b111ty Ny (t) that the atom is exc1ted at tlme t.

'Notlce that N+(t) is perlodlc w1th perlod Tp-L/c
where L is the length of the crystal and c is the
speed of sound o o
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Notice that'N+(t) decays.in a time Tl==mD/(2n§2N),.which
is just the inverse of the halfwidth Aw of the lineshape
i In.
Notlce also that N (t) 1s periodic w1th perlod L/c, where

.Thus Tl and Aw obey the uncertainty relation TlAw==l;

L is the slze of the crystal and c is the speed of sound
ThlS perlod 1s Just the tlme that it takes a phonon to

traverse the crystal and re—exc1te the atom. Mathematl-

,,,jcally the system 1s perlodlc because S (t) (Eq. (3. 22)) is

(¢}

;glven by a dlscrete Fourler serles rather than a contlnuous
Fourler transform (Notlce that the perfect perlod1c1ty of
N (t) is due to’ the approx1matlon that the poles are un-
shifted and unlformly spaced In reallty due to the ShlftS
o, we expect N (t) to be almost perlodlc 2 - In the next

sectlon we show that as. the size of the crystal L-*m the

B atom 31mp1y decays and is never re~exc1ted

LY .
. v

" 3.2 Decay of an- Atom 1n an Inflnlte Crystalf

» To solve thlS problem we ‘can elther 81mply let theA

t_ number of phonon modes N go to 1nf1n1ty 1n the flnite crys-v

‘”1tal result (3. 22) or con51der the crystal to be of 1nf1n1te |
‘Textent from the outset | | ‘ | | |

‘d.f In the former case the serles 1n‘(3 22) can then be .

1‘Lreplaced by an 1ntegra1 so that the amplltude S (t)

'Cf'becomes
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0, : o
sT(t) =s7(0){| dwe iOt 2 I/2r -
_ o ‘ L T wD-m‘Zb T 2
0 ‘w -4+ 5= 1In m )‘ +-(§)
._'v ? ‘—- .. . .
o . 1wotu le/Zt _ o % o
: e e v 2
+ — . 7 (3.24)
L - Tap , Ty L _
_‘!_ + " — l+ ‘ ; - ,l - -
Zﬂwo(mD-jmo) | znmN/Z‘QDfin/z)'
 where : _
r=4<98 S S (3.25)
. va C , 3 RET .
'-~now deflnes the strength of the coupllng.,
| The other route is to replace (3 13) and (3 14) by :
' the amplltude o | | o
Fwe—ATO g
e ) R A, . -
LT do : :
% A~+‘§?fj W~ X
B 0 : : P

f‘where the phonon modes are assumed from the outset to be

"jcontlnuous S0 that

0)

:2}ﬂ S (t) -‘El—?fch(e-l*t f£ :> ,S ' f;‘f ﬁ7‘(3;27)

(
: ; (D
T 21r

Ww=-X

F;-The 1ntegra1 1n the denomlnator of (3 27) results 1“
fh‘branch p01nts at x = 0 and x “D Whlch we can connect bY a

qlbranch cut Thls branch cut ev1dent11 replaces the dls-ﬁff

“ffcrete set of phonon poles w osa) SwD Of the flnlte case°"'h [

| It 1s easy to show that the two outlylng poles remaln.;,f:j;,:V"h



Thus to integrate (3.27) we may use the contour

On ¢, we let x+*x+iec and on 6, we let x»x-ie where

Y2

,e-vof and,x“ie now a real number. Then using the fact that
Ctim, = =Plideseg ., (329,
et X =1 % o R y o

ot

o, x=6 " w.y . .
dw- . - dw - «: : ‘ ‘
_*ii§+.J- w=-x*ie | ’J W =~X +Jiw§(w‘ x).\ v ;

jin ‘forﬂx}me 1or»_x¢<o,
= :1 ;
s .,(‘OD.',-X' - : R
S i TR

*Comblnlng the contrlbutlons from {3 and.‘é i%ht@‘a SLngle
i‘tlntegral and evaluatlng 63 and 1§°,for the outlylng poles

1;as in’ the flnlte case we, get ]ust the result (3 24)

v_.p

Eq.f 1.24) 1s the exact amplltude that an lnltlally

"-vexc1ted two—level atom 18 Stlll exc1ted at tlme t, when the ?717

ﬁfatom is coupled arbltrarlly strongly but equally to all

'nf,phonon modes of a perfect 1nf1n1te monatomlc one-dlmen51onal

7.?'1att1ce obeylnd the dlsper51on relatxon mkﬁ-clkl j Let us.

}5f study (3 24) in. detall..

6 ) (% ___4 ) <g>.__. complex' - (3.28)
x-plane S
. - “p N/2 _ -

68



The‘lineshape

. . ”fi"'-wz —7 . . . (3.31)
(0w - A +'§%'1n‘,D ) + (g) '

L) =

15‘to a flrst approxlmatlon a Lorentzlan of w1dth r cen~
'tered about frequency w'~A. ThlS is a good approx1matlon
‘as long as the llneshape is narrow and well w1th1n the

phonon band 0 <w< mD This is clear because the factor
. Eéj - - V o - | .
1n D -
T o

'whlch makes aﬁ(m) non-Lorent21an becomes large only when

.b; If the llneshape has already fallen off\

at these frequenc1es then thlS term is negllglble and.Z(m)'

;1s approx1mately Lorentzxan.. Flg. 3 4a shows ‘an example_‘

o

h'where <£(m) lS almost Lorentzlan and hence leads to‘almost 7

exponentlal decay If the coupllng P 1s large, then the :j

’yllneshape 1s broad and the outlylng modes mo and wN/z_also jj,“

become exc1ted to some extent An example of thls is- shown S

\

?rln Flg. 3 4b To understand the t1me evolutlon in thlS

'jcase we must use some results from Fourler 1ntegral theory.,;f,j

:_ﬁng we Fourler transform some glven 11neshape.L(m): then

;Qm,ﬂthe 1nterlor of that llneshape glves contrlbutlons whlch

g4 decay 1n tlme faster than any power of—tfs The_endpolnts

ﬁ.j me'b (of the 11neshape glve contrlbutlons that decay like

a0 o et /e

lhnon-decaylng contrzbutlons.. -52_"%fi;ff"”

f And simple poles, of course, glve



'Thegwlneshapes and correspondlng decays of an exc1-[}f;f
"3m<ted two-level atom under varlous conditlons-f(a) F—f{i]u
d 05“b'_A-<-5@b llneshape is narrow and well wlthln[f“ -
1phonon band- 0 <w<w S
;n7 shape 13 'so wide that both outlylng modes W, ‘end Lo
ay N/Z’ also become exc1ted..(c) T=. 06wD, A 1. OSwDiTTTiV
“*The two—level &tom frequency A 11es above the

D (b)r—.GwD, A=, SmD. line--

-‘_diphonon band so only le mode and upper: edge of thef;e7f
_ fffphonon band become excited.- (The number above the o
' ”agoutlying pole is the amplitude of that mode ) .nx?b.ﬁ



R0
[N
B

)

Thus in Figq. 3 4b there are three types of decay: (1) an
exponentlal type decay due to the 1nter10r of the llne—
shape, (2) a slower power-law decay w1th‘95c1llatlons due
to the frequency w beatlng agalnst On and mN/Z’ and
frequenc?es moland ©w=0 beatlng against pe and (3) beat-
flng of the outlylng modes mo and mN/Z agalnst each other
.with no decay. S ,.' c | ‘d s
A third p0551b1e srtuatlon occurs‘when A 11es out—

51de the phonon band O<w<w Then the atom is unllkely-

D f
to decay if the coupling P is not too strong An example
is- shown. in Flg 3.4c where A = 1. OScu is just above the'
. bhonon band _We see that the 1solated mode wN/Z is. hlghly
excxted and the upper edge of the phonon band is only

0 sllghtly exc1ted., The contrlbutlon to N (t) from the out~

lylng pole glves the probablllty that the -atom does not

*

71

decay The sllght osclllatlon in N (t) 1s due to ‘the beat-

. 1ng of the mode m (Whlch decays like l/t) agalnst the

B ,) .

1solated mode mN/Q at beat trequency wb t'f(wN/2 m )/2‘
n /25 '

-Let us dlscuss the sxgnlflance of the outlylng poles

at mo and mN/égt We have seen that these poles allow fOr

the pOSSlblllty that the atom does ndt decay when the atom

o

J,frequency A lles out31de the phonon band To be spec1f1c

) '-assume)that A > W Then from Flg 3.2 we see that e z.O,l
o % ) ‘

and wN/2 is- glven by ‘the solutlon of theeequation,

:‘uA X A_m . . - . ’ . ,
- L 1n(—’12—.—-) F A---—ln( =2 ., (.22)
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Thus the mode- wN/Z can be 1dent1fled Wlth the uncoupled
'\atom mode A but Shlfted sllghtly ' Because the. frequency
,kmé/é lles out51de the phonon band, its correspondlng waue— ’
lnumber is 1mag1nary, SO’ wN/2 represents a mode localized
1n space In field theory language the two—level atom
1surrounds 1tself w1th a local cloud of v1rtual phonons -
kwhlch shift sllghtly the - atom S energy A. Because mN/2 is
“h a: 51ngle 1solated mode out51de the phonon band, it does not
‘decay |

When A lles 1n51de the phonon band 0 < w < @py then
as we see 'in Flg 3. 2 the two outlylng poles move very
close to the endp01nts of the phonon ‘band and lose their-
significance as_non-decaylng modes. _Eq. (3 24) also shows

that their amplitude'then beédmes’Small. A band of phonon

modes near frequency A' becomes exq;ted with a Lorentzlan- ’

llke amplltude : L o«
L(w) = —ar ., (3.33)
(w=4")" + (5) . .
 where o ) \ Y
' - o w. = A . ,
) v ‘._ I_ D= - . ‘ | ; ;
M- arln S, ‘ (3.34)

(Here in the argument of the logarlthm we have. replacedawA)
and the energy of the excxted atom goes 1rrever31bly and
»completely 1nto the 1nf1n1te number of degrees of freedom

of the phonon contlnuum



i
Three Dimensional Crystal

For completeness 1et.us study the case of»a)general
3-dimensional crystal Although the analysis for a
finite 3-D- crystal cannot be done analytlcally, the analy-
sis for an 1nf1n1te 3-D crystal follows that for an
1nf1n1te 1-D crystal with the only change belng that the
phonon den51ty of states is dlfferent Thus the Fourler

transform of S(t), namely

o

s 280 (3.35)
-A -y 9 . St
X A g X~ o
becomes -
$7(x) = —— 28 (0) -, (3.36)
k- b+ oo Dl
I . ‘O
where we have replaced'
1. o | IR
ﬁ-X — J D(w)dw . | (3.37)
k 0‘ , :

' D(wfdm:is-the (for now unspecifled) phonon density of
states per unlt volume, and Q is the volume of the crystal

'As in the l—D case ef (x) has branch p01nts at x=0 and

X = =Wp..
have under-theuassumption’that'A lies well inside the

v phohon band.)‘ Thus we may Fourler transform gf (x) uSLng

the contour shown.

(We ignore any isolated outlying poles which it may

73
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complexv
- - % plane’

0{’5 ®p

(3.38)

—

Along this contour we decompose the 1ntegrand in the deno-
’ mlnator of (3 36) 1nto¢pr1nc1pal and 1mag1nary parts
according to Eq. (3.29). Comblnlng the contribUtions from

lt-él and 62 into a single_integral we get . ‘ A:

&

W : o
- » T D . : .
57 (t) =--2—1,;«J dxe™H ¥ (g7 (x +ie) +d 7 (x - i€)}, (3.39)
' ' 0 : ' : ‘ L ‘

where
$ (xtie) = is—‘o’ — ., o T30 L
‘ ‘ x-4"(x) ¢ »I(X) S
with}
A T - dw D(w) @ o ; :
- and - : e |
I (%) =’2ng21'>('x) Qo (3.-42)

: Slnce only a narrow range of frequencies near X= A (whlch

we assume is 1n51de the phonon band) is 1mportant in; (3 39)

.'A i

we . may to a first approxlmaﬁion replace A (x)-*A (A)

and P(x)-*P(A) -P and extend the llmlts of . 1ntegratlon from

I R g o .

—» to ®, Thus we get - o o U S
[ s =L sf_(o) j -dxe' «ﬂ- s (O)e”“‘ 2 (3.43)

T J —m(x-A',) +("’)



‘ﬂtonlan tﬂf J¥ w+$+ namely wrth an ion in the upper

W

so that

Ny te) = <i|st(0sT(e) 1> = N (0) e E C(3.44)
i.e. the"exclted'atom~decays'at rate I = ZhgzD(A)Q which'is
the sSame rate (2.51) found“bynflrst order perturbation

theory. | S ' "

3. 3 Notes on the General TheoAx,of Decay of Unstablé "\

Ouantum Systems . " . .,'. . e ?

»
kN

 We wish to present a short summary of ‘the results that

’ we found in §§3 1 and 3.2.0on the decay of an excrted 1on in

the context of the theory of dlSSlpatlon ln quantum mech-

\ i

;anlcs. At some tlme t< 0 we prepare the electron-phonon~

-.system 1n a statlonary elgenstate of the uncoupled Hamll—.

N

~.

kllevel and no phonons present At tlme t= 0 we sw1tch on IS

rthe electron-phonon 1nteractlon (Hamlltonlan ii) e Slnce
the initial state is no longer an elgenstate of the total
Hamiltonlan li Ji +J# the system evolves accordlng to the.s»
total Hamlltonlan to some new state. We are rnterested rn v:
the probablllty that the system remalns'in the\initial_
%state, . e. that the atom is st111 exc1ted. | | ‘

. We found that there were many analogles with the
classrcal theory of coupled harmonrc osc1llators.. For f~
'example in the case of an 1n1t1ally exclted two-level atom
"coupled to a flnite number of dlscrete phonon modes,‘we f .

-found that the energy of the decaylng atom lS transferred

-

. to the flnlte number of phonon modes and, 1n a flnlte tlme;



Q[ylnltlally llke

O‘r“
is transferred back to the atom. Thls tlme is just the
tlme it takes for a phonon to trans1t the crystal. 4,

¥

Phenomena similar to this. have been observed in - sp1n fllpr"
exper1ments48. In the ‘case of a contlnuum of‘phonon modesi
(1nf1n1te crystal) the‘exc1ted atom 51mp1y decays and is
never re~exc1ted because ‘in thlS case the energy 1s |
]transferred to an lnflnlte number of degrees of freedom.
o The decay of the two -level atom 1s for the mcst part
: exponentlal (assumlng that A is. well 1nslde the phonon con-
.tlnuum) | Thls 1s 1ndlcat1ve of a system that does not‘
'.depend on . 1ts prev1ous hlstory, 1 e. w1th no memory.: How-

ver, v1a perturbatlon theoryﬁ}we found the result (for |

‘fflnlte and 1nf1n1te crystaIS) that the exc1ted atom decays

_11’. .

S DR P S e e
< N*",F) =N, (0) (1 - Z'gk t‘.2»-),_' P T

k;c ,
Iil e. 'w1th.zero slope. Thls 1s a very general result49 in 'f
»quantum mechanlcs and assumes only that the energy in thev
' A1n1t1al state is flnlte.' On the other haﬁd for very large
‘tlmes N+(t) must always exhlblt a power law decay bal/t |

due to the sharp cutoff of the Lorent21an by the f1n1te

: fextent of the phonon band as explalned after Eq. (3 31)

* In fhe rest of the thesis we. W111 1gnore these dev= we

”'1atlons from exponentlal decay and assume that S (t) can ;‘J

: be approxxmated by (3 43)
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X We would llke to p01nt out that our theory and
44
results are very 51mllar to those of Welsskopf and ngner

en the theory of spontaneous decay. For atomlc and nuclear

50

."systems Razavy and Henley have s1m11arly obtalned exact ‘ '5?

:solutlons for the Y decay of splnless bound partlcles.

'Also, Senltzky45 ‘has studled varlous models for the decay

of harmonlc osc1llators or- two-level atoms due to gener—

N

allzed loss mechanlsms.



'CHAPTER 4
y |

‘ - " DERIVATION OF PHENOMENOLOGICAL RATE EQUATIONS

FOR THE PHONON BOTTLENECK

4, 1 Derlvatlon‘ : | S R

Now that we have studled the 1nteract10n of the
phonon fleld w1th a 51ngle two—leVel atom, 1et us proceed
‘to the general case of the 1nteractlon of the field with

' many atoms._ We begln by rewrltlng the llnearlzed, coupled .
a‘?equatlons of motlon (2 64) for the phonons and atoms,

'namely

b =aby + 1 gSpae T (1)
=as]+ Jgpettr 41

| ;;57

:~_ To recapltulate bk is’ the annlhllatlon operator for a .

A . : .‘4.

phonon of momentum k and S 1s the 1ower1ng 0perator for

~

. the atom at 51te r.. We are’ 1nterested in evaluatlng quan—“

. .>

) tltleS such as the probablllty that the rth atom 1s exc1ted.»,t

at tlme t, namely

e dlgegen e
and the number of phonons in mode k at time t, namely’
"'vﬁphtti-%'<i¥5§!fibg*t>li€,» 2 fff;,;:,**~;;(4,3y e

-~ . b . : s

|1> denotes the inltial state of the system at tlme t 0.;"

To solve Eqs (4 l) we agaln use the method of Fourler f'”
* ! e ‘». Lo T N

v
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transforms. We define the Fourier'transforms of bk(t) and
s_(t) as | : | _ T

T B (x) = 3[b ()] ] | ) A
L | C S (4.4)
-&[S;(t)] o I C

11

{iN

ERC

»respectlvely (see Eqs (3.2, 3) for detalls),_and Fourier

bltransform Egs. (4. 1) to)get

, '\‘ ’lbk(o)"\g" ~ik.r', ' -
‘?’S(X)_x,.—wk '+X-m JX: '*‘5r'('X) ,., (.4},‘-5;)..

7
-

~
~ ~

~ISr(0)v'f o 1k r .

b i g iket o S -  ‘e
,‘JE(lX) = x._-A"+. vy }}é | @B (x) o (4.5b.).

“We have dropped the subscrlpt k on- the coupllng gk assumlng 'a

‘_that the coupllng 1s approxxmately constant over the range

. v

’}of frequencles of 1mportance near resonance We ellmlnate-

;1’B*(x) from’Eq.‘(4 Sb) for J (x) by breaklng the summatlon'f

| _ »"-—ik r' ::—;k r S f-;k 5 S P | '.
e T T4, ‘X"“?’~ ~J (x)+ Zne.’m.Jra(x).(4 6) %ﬁ

fe'n e~

"f and plugglng (. 5a) lnto (4 Sb) Thus'E§?7(4?55’fi$1ﬁ5fb*}3ff;
f'ureplaced by ' | | o S
:;sr(or Ciker b )

ér%ﬂ' ;_




Let us discuss this'equation. Notlce that the first term
on the rlght hand 51de of (4 7) depends only on the rth ~
katom and the thlrd term depends on all atoms but the.rth
atom. From our studles of Chapter 3 we know that the
flrst term on the rlght hand 51de of - (4 7) descrlbes the

' spontaneous decay of the rth

atom (1f 1t is 1n1t1ally

"texc1ted). Slmllarly, the second term»on:the right hand
j51de depends on the 1n1t1ally present phonons, and it p
‘ev1dently descrlbes the ex01tatlon of the (unexc1ted) rth

,atom'by these phonons. Flnally, by 1terat1ng (4 7) we see

'fdthat the thlrd term descrlbes the 1nd1rect exc1tatlon of

atom r by phonons comlng from other atoms r (whlch elther -
{”were themselves orlglnally exc1ted at txme t=0or became
'exclted by yet other atoms) ' The 1mp11c1t '1ntegral' |
'a?equatlon (4 7) 1s of course very dlfflcult to solve exactly‘
;except 1n spec1al cases.f We shall cons1der these cases 1n

557Chapter 6

y{ For now we 31mp1y derlve from Eqs._fp;f

"fa set of rate equatlons descrlbrng the number of excited

Bl

'”'atoms and the number of phonons present 1n the coupled

.;_system To do thls %e %maayne at at some lnstant of

;-‘tlme, call lt t 0 3%he sy'tem xé 1n some elgenstate [1>
e \( ",) R e 'S :
4?of the uncoupled Hamlltonlan, w1th several spec1f1ed

-f:exclted atoms and phonons present we solve Eqs._(4 Sa)f}'
: ) f .

fand (4 7) and flnd the state of the system a‘short tlme

”3fAt later. Slnce the t1me t 0 is arbltrary, we can now

",repeat the argument w1th t At Contlnulng in a stepw1seﬁp{j,h‘



. r

’ mWe can fi’nd Athe co‘mp;e_t'e‘ time evol'ntioh of the
””systemai R | l N |
| ivFrom'our‘work*of_Chapter'B,iwe actdallyﬁknow how .to
vfind the time ewolution of the rth atom due to the first
'term on the rlght hand side of (4.7) (the spontaneous decay
:term) for all tlmes, not juSt a short time At. ‘We shall

'Asee shortly that thlS“lS also true for the second (exc1--

tatlon by phonons) term.f The trouble comes from the thlrd

"‘ term because 1t makes Eq. (4. 7) non—local in space ‘and’ tlme

It Says that what happens to the rth

: ¢
ron what happened to the other atoms at p01nts r of the

-

;system at all prevrous tlmes. However if, we choose ‘the
tlme-step At for the rate equatlons shorter than the tlme
St.= |r-r I/c that 1t takes for a phonon to travel from atom
“r “to atom r then thls term cannot contrlbute to J (x) at
'tlme At and we may drop 1t. Thus we may replace (4 7) by

hh.the equatlon

s (0) iker 1bk(o)

L | | ‘
"x+l€) s 9 .Z S S (4 8)
el x'—A',"'-f-'z,'; TRt xwk 4.

r_,l o

'"'In Eq.x(4 8) we have used the 31mpler expre531on (3 40)

"v,‘w1th A (x) +A' and I‘(x) +I‘ for the propagator' :‘ J (x) of

~'a 31ngle atom 1n a phonoh fleld (T ==1/P 1s the-llfe-f'fi

81

atom at tlme t depends )

)

-

'/;tlme of a 51ngle atom ) Eq. (4 85 1s now a local equatlon.,(V

It says that the probablllty amplltude for the rth atom :»

‘*_belng exc1ted depends only on whether or not the rth_atom ,ﬁ]ff

S
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@

. was 1n1t1ally excited and on what phonons were 1n1t1ally

present near that atom _ Thus 1t cannot descrlbe the

l’"h

»dgtfdlffu51on of- exc1tatlons. (We w1ll remedy thlS shortcom-

&dplng’presently ) In keeplng w1th'thls»restr1ctlon we
‘assume for now that the system is Spatlally unlform
We proceed and derlve first the rate equatlon for

the phonons. Plugglng Eq.:(4 8) for'g (%) 1nto Eq (4 5a)

e
1(wk A )t 2Tl
e

‘ for Bk(x) and Fourler transformlng we flnd that - 7

Y “>~-1m t | L : '
F“’b (ty=e _k {b <0)+g 2 e ‘~‘ tsZ (0) — T

.'3;. ‘ lk-e = e Ly TR
s 5 .“‘.“‘ :, - (w Al +§"I"I s wlf- Af +_£__ ‘ | .

~

7 &

Let us’ deflne the followrng quant1t1es._t-
.lwh,-‘ ;

‘u{fhv volume of the optlcally exc1ted reglon contaln—'rv o

ﬁf‘}lhc.the two-level atoms,vf' L o T

-&?-1>£c N‘ 21 1d the total den81ty per cm3 of two level
atoms;»;;'1j§tiﬁﬁ5;rfﬁf1'tdﬁﬁfx “Hfidf | - .
3 of

N (t) jE% ;<1ls (t)S (t)|1> 1s the. den91ty per cm
ex01ted atoms; T h = | e - 'h“ S
| D(w)cm» is’ the den31ty of phonQn modes per cm3 ; if3;17~ﬁ
1

frequency 1nterva1 dm (recall that ﬁ'z fD(m ) dm )

shall henceforth assume that D(m)” D(A ) for all frequen- :
- S . e .@;;ZH
'U*c1es near resonance.__g_f : ‘

i
- l.g\““-m b
e



(o )aw = <i|p] (6)b, (t)|1> D(u) du, is‘ihe"

~

; den31ty of phonons per cm3 1n frequency lnterval dmk

'rfrequency 1nterval dm at tlme t, namely%a"’r

- ‘where ‘~j*.‘;ﬂ;"Lr_‘ ~“f~.:.¢«i¢;;§;,
: Fl(‘”'t)= ‘1 tey =2
Cana El e \‘

o Tplet) = g

'd

-

g- D(A)Q 5 du is the Lorent21an'

f(w)Adm =
“’-A‘)+(§TI)

emission spectrum of ah atom, normalized to' unity, i.e.
em ‘ . . y

'Jf(m)am‘= 1. . R |
o B S ‘ :
Us1ng these deflnltlons we can derlve from Eq. (4 9) .

»the rate of change of the Qen31ty of phonons per cm3 in

d

P .
)

—t/Tl t/ZT1 A ""f-w”

'.f152¢~-"

1(w-A )t t/ZTi

I
ale
l
+

Vi“

H are rates hav1ng the unlts sec ;;r The fIrSt term on the

h"f spectrum of phonons due to the decay of 1n1t1ally excxted

'ajfhof the phonons 1n1t1allY presenty

1

5.5 L . : BRER

5ef_phonons are actually tlme— as well as frequency-dependent

ERRNE TR R

-
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h(m t)dm = f(m)dm N (O)F (w t) f(w)dm-—(—qn h(m\O)°° Eir:,g

Note that the em1551on and absorptlen rates of the j;E[

e

L R .
(m t) z;fnni (4 10)3"_:

cos(m-A )t) 7*')j&4;115}7f?1

i'ff:rlght hand 31de of (4 10) represents the production of a e,.”v,..

’.lhtatoms. The second term‘%epresents the resonance absorptlon:f,j_”



fﬁ on too flne a scale to be observable, and one sees only

PR R o R S . o o
o o ) o L ' o o

4 For example at tlme t= ‘0 the phonon productljy/’ate due
to decaylng atoms 1s o ' | o

o which 15 frequency 1ndependent becauseathe frequency

| 21an f(w) Thus phonons of all frequenc1es are produ ed o

at the same rate for tlme t 0 in: accordance w1th \

: 1,

Helsenberg s uncertalnty relatlon AE At h.: Notlce also

» B k N PR S

that the rate actually vanlshes at t 0.; e

For flnlte tlmes t>'0 P (m t) 1s a rapldly varylng

: functlon of frequency.' Experlmentally thxs varlatlon lse

r (m t) averaged over the entlre em13310n spectrum.;‘if\We |
. ‘13 e g Lt . . \.

perform thls average we flnd that '1%“.f”ff?&f .

;,Ayf--t/T g T

jf(m)r (m t)dm

1 »<F (m t)> 57
. 175 ff(m)dm A
e e

TN

spontaneous decay.z For 1arger times <P (m,
slmply because the supply of exc1ted atomé L ;;;\¢;;J;

the decay proceede “To. av01d the latter, we replace 1n the ffff

rate equatIOnf;*ﬁ:fﬂﬁF.QRVF

i I‘ (m t) -—-» l/T

3 f°¥atlm?5»Ff?'?i~



- T . - DR}
e . . . . r . . ~

‘Similar- arguments show that thlS ho&ds also for r, (wy t),

\

namely

T, (m £)>- ~-_.;L/r_[- e A . (4.16)

N

' for times t \-Tl.i Thus we flnd that over’ the coarse gralned

& tlme scale of or&er Tl the rate of change of the phonon

denS1ty at tlme t 0 1s glven by »W\Q'j- i" v _
- R (t=0) e n(u,=0)
i (m t—-O) -f(m)dm 2 - ) do No—.Bh '~ 7
dt A D(A ) » T
. , | .[l-," | . ‘;l

~

‘ To derlve the rate equatlon for the denS1ty of exc1-

ted atoms we 51mply use the fact that ‘the system Hamllton—"

1an conserves the number of exc1tatlons Ve t §'
| "Z‘s*(t)s'(t‘) '+‘? vbf(vt)b’(t_).=cons‘tan't"- o (4.18)
PR SR S D 4 | S NG T

~or different;atihggv N - RS

dt z . de
W1th Eq (4 17) this 1mp11es that A '
N (t—O) |

T

d
dt

N (t 0\\:—
) \
- \,
“ To thlS pornt we have tac1tly assumegwgpatlal
unlformlty ) The phonons were non-local planekwaves‘, .
extendrng over the crystal and we replaced a Z<S S > by
r ~ ~.

‘_the average denslty N2 Let us’ now ‘assume that phonons .

't&arefabsorbed or emltted locally at the p031t10n of the

85

* ' ' R
Idm(f(m)BTKHTErJ n hﬁ! t= 0) - (4.20)
1 A
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atom where the 1nteract1pn takes place and allow a small
L9

'amount of spatlal non unlformlty 1n the quantltles nph and _

' NZV" Then Eqs, (4. 17) and (4d20) are still locally valid.
~W1th the follow1ng modlflcatlon thqy are valld‘iyerywhere.

JWe add a phenomenologlcal dlffu51on term «31&)‘V2r1 (r W, t)
' TN

to the rlght hand side of the phonon equatlon because the
y A

phonons tend to_dlffuse*from reglons of hlgh to reglons of
low phonon"density. For the frequency dependent diffusion

vh\constant S%m) we choose the cla551ca1 expressxon“§4 Co 5;
" A((u)c c o TR o

¥

~ where A(w) is the mean—freefpath,’. -
1 Nt

a.(cu) ® Kla)r %.D(‘A')ch flay o a2

is the absorptlon coeffxcxent per cm. of phonons of ancular<

T~

frequency W, and- c is the”average_speed of sound
\v‘ -\ -
./’

/ If we now assume that these equatlons-are valldjfor’-

all t1mes we get the equatlons 1n'the finalhfornfd

SN L Nz(g,t)" Lk |
5— h(r o, t)jw-—f(m)dw T, nph(f,mft)dwcﬁm)c_ | ".;ff\
D o+ %(m) v2 n, (re,tyde -, S
1 : | E P T S . Tk" S ' /1‘
. . NZ(g.t) v RS S
at 2(r t) - Jdm nph(f,m,t) Q‘ﬂﬂ ¢ .. (4.23)

1
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4.2 Comparison with Pauli's Derivation of the Master

-

\‘EQUatlon» . S .“Q
‘It is 1nstruct1ve to compare the assumptlons that &y
.» (’; ] N

went 1nto our derlvatlon of the rate equatlons (4 17) and

87

(4 20) w1th those that went 1nto the derlvatlon of Paullks: :

v._master equation or- Boltzmann s equatlon51 52

In‘all cases an 1mportant assumptlon is the ex1stence
‘of dlstlngu15hable tlme scales,van idea flrst 1ntroduced
by Bogollubov53, The flrst characterlstlc tlme Tl 1s the:'
order of the duratlon of the 1nteractlon of a phonon w1th
a\ﬁr 1on.' For tlmes %E:T- we sav that in our rate.equ-
tlons‘the rates F (m t) and F (w t) change very rapldly
_and a detalled quantum descrlptlon of the system 1s needed.

In the klnetlc reglme, i. e. for tlmes t:>Tl the- rapld

varlatlons of F (m t) and F (w t) can be averaged out .

.’leadlng to the klnetlc Eqs. (4 17) and (4. 20) .The.second C

[

"dcharacterlstlc tlme ls the mean- free tlme

V- S

Eh "‘%’/?--;a——w S L e

o

L _ v ' _ S 3
_between 1nteract10ns of the resonant phonons w1th Cr*° 1ons..

. For tlmes t >> T2 the resonant phonons w1ll have 1nteracted

"w1th the Cr3 .ions several tlmes and reached a local equll—:‘_u

" brium. Thus 1n thlS hydrodynamlc reglme Eqs. (4 l7) and

4. 20) are locally valld, and lt is. Suff1Clent to add a

hydrodynamlc dlffu31on term to get a set of equatlons (4 23)

“‘whlch are globally valid.



: ,,our rate equatlons.

V.In the case of the Boltzmann equation, the assump- |

e, v e o
tion that T1 << T2 means that it 1s restrlcted’to the

: AL . . .
'description of a'ﬁllute gas. In our case, u31ng Eq (4.24),

| we see that 1t means that the den51ty of Cr3f ions 1n the

state must be less than the den51ty of phonon modes on '

_ resonance, ice.:
'N*<D,(_A) Awo o . . (4.25)

"where»Am =$l/T is the halfwrdth of the resonance. This

+

88

restrlcts us. to rather low - densxtles N <. lO16 mf3r However

.y31nce the Boltzmann equatlon works well at much hlgher den-»

v51t1es than one would suspect, we' hope the same holds for

S ) R
. o ) .C .
- . N - .

To derlve the Boltzmann equatlon a second assumptlon
1s requlred namely the Stosszahlansatz, i -e. the assump- :

tlon that each colllslon destroys ‘the correlatlons that

%

’}have built up between the two collldlng partlcles durﬂhg

\

gthe t1me since the last colllslon. ThlS allows a dynamlcal

- descrlptlon of the system in terms of the one partlcle '

»,'dlstrlbutlon functlon‘f alone, whlch 1ntroduces 1rrever—'

» 31b111ty In our case and -in the case of Paull s master o

L3

iy

| equatlon the Stosszahlansatz allows a descrlptlon of the_‘_f_'

"'Tsystem in steps of: t1me At where Tl< At<T2 f In each t1me
step the system beglns in an elgenstate of the uncoupled
Hamlltonlan w1thout any or;elatlons (e g. in our system

; only the number of ex01ted atoms ‘and phonons 1s spec1fled.

)



v
T u51ng flrst order perturbatlon theory In our caSe 1t

q"system.lAf”

| allows us to drop the non—local térm ln (4 7) - In both

- Thrs is a frequent cr1t1c1sm of Pau11 s derlvatlon of the d‘

aiich01ce T <At<:T2 allows one to flnd the tran31tlon rates

1

n\‘ )'.'\‘

“cases the result 1s a set of flrst order dlfferentlal

‘ equatlons whlch descrlbe the 1rreverslble evolutlon of the

Y

Q}l\

These parallels between the master equatlon and the

<

f{-‘bottleneck equatlons are summarlzed ln Table 4 l

‘ e

In conclus1on we emphasrze that the bottleneck equa-'fwhf

tlons (4 23) are valid for den51t1es N* low enough that the f;f

lilcondrtlon T '<T (N*) holds.a At hlgher den51t1es where

l

S T (N*)<T1 we expect that we must 1nclude the non—local

‘*\?flterm of (4 7) 1n the rate equatlons, y1eld1ng & new effec-

o,

tlve llfetlme Tl of a. local cooperatlve group of two level

'master equatlon ) In the case of the master equatlon, the w"

'\\'

‘\_.

PR
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JTQdescrlbes the 1ncrease 1n the phonon den51ty at p031t10n r

-

- SOLU,'.I‘ION'S'- oF ! HE RA‘{I‘E ' 'EQUATI‘O:N’SJ

C e

5.1 The Solutlon and Comparlson Wlth Experlment o

N

In thlS chapter we solve the rate equatlons (4 23)

’.descrlblng the tlme evolutlon of the coupled System Of

h phonons and atomlc two—level states of exc1ted Cr3+ 1ons. 7;/'

f‘We begln by rewrltlng Eqs._(4 23) 1n a notatlon more 1n
vllne Wlth preV1ous works on - the phonon bottleneck namely

N (r t)

2
~_\‘. 'Tl"

5?_ "é‘h(r v, t)dv*f(\))d\) h(r v, t) av oc(\))c’A""'
N (r t)

’,ﬁleb

e
at

2 t_’ | ¥ f"“ "sh .‘,rf":?';t.’:‘?‘-‘-V’Li‘?’;fr Lo IR

B oaw) Ve, (saa)

(r v t)dv 1s the den51ty of phonons per cm3 1n frequency 'jf;'

—1nterval dv about v-m/2w and at p051tlonrr, and N (r t) _j;i

'fls the densrty of Cr3; 1ons per cm3 1n the ZA state at

3

v"p051tlon r.' The flrst term on the rlght hand sxde of (5 la)

B and frequency v due to decays of Cr3+ 1ons 1n the 2A state f7”7

——

:1at pos1t10n x occurrlng at the rate l/T Due to.these. S

B

i;decays a spectrum f(v) of phonons 1s produced Wegassumef,ﬁf_.t

is. a Lorentz1anf o

(for now) that thlS spect' ; B
“f(v)\v= i vh-v VR RN :‘-1.*{5hkfh"( (5.2) |
R SRR




"~(2ﬂAv7)fl; We regard Tl as the 51ng1e adjustable parameter

]:of the theory

with'fuli—WidtheatshaimeaXimum Av centered about the

I

resonance frequency \V }-A/Zn and normallzed to unlty fThé‘

lifetime T of the Cr3 1on agalnst phonon ‘emission 13 T

1. 1°

T

PR w/

The second term descrlbes the absorptlon of phonons

tlon rate a(v)c per second is peaked at the resonance j?

frequency. We assume that the absorptlon coeffrcxent a(v)

D

A

c*wr 2 -
| l + (Av /2 o

*,pHere D(v)dv 1s the den31ty of phonon modes per cm3 1n the

m..

.r'hY atoms in the E state. The frequency-dependent absorp- 7‘;

: per cm is proportlonal to the em1551on spectrum and glven g ' '

:ruby crystal in frequency 1nterval dv whlch we assume to be RO S

hathe Debye spectrum

. D(\))d\) 47r\)2d\) (..__ + __) 1271'\)3 d\) ﬂ
= 6 4 X 105 cm/SeC, .“. = ll 3 X 10 cm/sec and C = 7 l X 10

’».'

"fffcm/sec are the tranSVerse, 1ongitud1nal and average sound

"hfveloc1t1es respectivelY of. ruby

“fhbé D(v)-—Av

f'of phonon mode?uper cm™

18

spectrum 1s Justlfled because vo §{ﬁvb. The quantlty
D.v ) ZAU ‘is a measure of the den51ty

3

\ atlng atom, :xAnc,z 1s the w1dth of a rectangular spectrum

¥ B

Our use of the Debye ftdn

"on speaklng terms" w1th the decay-‘f



w1th the same area and helght as the LorentZLan (5. 2) The )

vprefactor 1n (5 3) is flxed by the condltlon that29

Ja(v)dy = - (5.5)
oWe' understand the expre551on for a(v) as fOllOWS

-Accordlng to equlpartltlon 6f energy a quantum of energy
‘ h_b added to. the atom—phonon system 1s as llkely to exc1te ]V
one of the- N atoms as one of the D phonons that are all

N at approx1mately the same energy hv ,and are all approx1—

"hfmately equally coupled to the N* atoms Thus 1f the llfe-u“

'hi a phonon of’frequency v must be T

tlme of an exc1ted atom 1s Tl seconds then the llfetlme of -

lx (D /N ). seconds.:_ﬁ o

~Slnce thls phonon travels w1th veloc1ty c, 1ts mean—free—* ;wf;“.b

‘“Path is’ A(V )==l/a(v”t-D ch/N . The absorptlon a(v) perle;f"'

’.cm of a phonon of any frequency v 1s reduced from a(v ) bei

",yjust the Lorentz factor i_.V* .5f Edfdi}d
‘ -

| Hence we get Bq. (5.3). For ruby we have D(v) =7.9x107
7;Fsec/cm3.}v,;d3‘yﬁ*ffw jﬁ;}j?;tffﬁzvfimf"y" :fhg"di":
The thlrd term descrlbes the decrease 1n den31ty of

d5:phonons at p051t10n x by dlffu31on of phonons away from

;ﬂprSLtlon r and eventually out of the excrtatlon reglon. -

= The frequency dependent dlffu51on coefflclent(ﬁ(v) 1s -

o I |
*kfmlnlmum on resonance and 1ncreases as lv -v. | 1ncreases.'
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We taﬁe <ﬁ(v) to be glven by the standard klnetlc theory

express1on '}77 o
. » | “ . . i . . L - . \
‘&(v)_' =3 A(v) c = By (5 6)
where A(v) 1s the mean-free—path and C is, the average fl;§.

phonbn ve1001ty Eqs._(S 1a D) together 1mp11c1tly take:

1nto account the fact that the tlme taken to traverse a’

o \mean—free path 1s the sum’ of the tlme between COlllSlOnS

‘and ‘the tlme T; of the c011151on 1tself (Note that 8(v)

actuallyllncreases w1thout bound as lv -y |+m but thlS J!

pathology w1ll be remedled shortly ) “‘_ E

Flnally we 1mpose the restrlctlon that N (t) << N

for all tlmes so that we can neglect reductlons 1n N due
L to exc1tatlons as well as neglect stlmulated em1551on Also
!=1f we neglect the contlnuous,‘slow generatlon and loss oﬁ 1ons_’i -
.ifg:ln the 2A and E states due‘to optlcal pumplng and Rl and Ry
whdhz radlatlon Notlng that the llfetlme of a longltudlnal
phonon agalnst anharmonlc decay 1s ~2 us and that of a
transverse phonon even longer by orders of magnltudel8 2;{,jf¥‘“
we neglect anharmonlc phonon decay We defer untll 55, 2 )

the p0551bllity that the spectrum f(v) may be replaéed by

an 1nhomogeneously broadened V01gt proflle

ff §pat1al Dependence of Solutlonsf ‘ E
kf_? Eqs.;(S la b) are coupled flrst order, llnear, homo-sff.'
geneous dlfferentlal equatlons and can be solved as follows..gf""

We group together the phonon source and 31nk terms as 3



>

Nz(r t) - O
:fxﬁphfffvit)khxa(v)q v (547

w

S(F,v,t)dv = f(v) dv -4
T Q-~fﬂ SRR
and'writeiEq.‘(S,la) asjf i

f,w o

';t—: ph(r,\) t) dv— S(r v, t) +08(\)) V n (r v t) d\J . ('.5;."‘8‘)"

We try a separatlon of varlables solutlon of Eq. (5 8) of |

BN

' the form '3:f - 3[f h/df .

1t

npn (TN AV Sy (it VR S L (5.0)
ana R
R o . L SRS

| VU S N

NpE ) PR (s
R e R R ]
”“rsoﬂahat~*;,‘/4;.;-

S(r{y,t)dv = S(v t)R(r) wl *i'{""(S:gc)'

. /

‘f That nph and Nz'must have the same spatlal dependence can :h'e])‘

”_-;ﬂ be seen frOm Eq._(S lb) and 1s essentlally due to the homo-

“5f genelty of Eqs (5 la) and (5. 1b)

e

‘,/

‘1%t substltutlng Eqs (5.9)_;nto Eq.'(5;8)¢gives‘us'theb;
bff two equatlons "”d.; d*_ - i :

Lo iy

5fwherehK2 1s the separatlon constant - If we assume that the

,"\.,. .

o, t’dV"KZ» O 5,08 80,0 , (5200

“}5d}};ﬁ:;?~{fkﬁ.ft;n:”}?fj:;t;KaAVx;f%f»

'?’VZR(:)ltszR(f)3%d5~}'ff}}rﬂ'{ﬁrk;d;Tﬂ§;7.§bgg(5.lob)ffff“'

S exc1tat10n reglon (deflned by the pumplng laser beam) is ;f~75-f'

. an i f'"”f§~5§11nder of radlus r b/2 (and that we there-fi"
| an e M

fore have cylindrlcal symmetry) then the solutlons of



o S

(5 10b) are the zeroth order Bessel functlons R(r) i,_‘*
: + V"‘-.\.

: J (K'? ). The boundary condltlon that N2 (and therefore
h) vadlsh at the edge oﬂ/the cyllnder r b/2 requlres»:

Mhthat the separatlon constant K takes Qn only the valuessg}

Sy

'Here;xi is,the‘i#h’zero of Jd(x).‘ The'generalnsolutiongoﬁ

S e
Eq;'(5.8)“iS.then

o - dk - S e

ph(r 'V, t)dvy—lgl c. J (K‘ -x). nph.w t) dv (512)

2 where the C s are constants prescrlbed by the 1n1t1al
,K. O

"ffcondltlons and nph(v t)dv 1s the solutlon of Eq (5 lOa)
. : Kq .
jw1th K“K The mode npi 1s the only mode exc1ted to any

apprec1able extent 1f the 1n1t1al condltlon of a. spatlally

_.unlform laser pulse obtalns. Furthermore,,by 1nspectlon of

(5 lOa) we can see that npijls the mode w1th the slow-f_,
V}est decay rate and therefore the one of prlmary concern to |
d;fn_ It 1s 1nterest1ng to note that Kl‘ls rather lnsen81—7r:

ﬁytlve to the precxse geometry of the exc1tatlon2reglon.y,, .

‘a+0f cour\é'there are phonons out31de the exc1tatlon reglon

hi'but they can no 1onger be scattered back 1nto the reglon lff?*"“”x

*fto part1c1pate 1n the electron-phonon 1nteractlon.' There- o

'};fore we can take npﬁF-O for rf>b/2



S

‘“972“
L ’ 9 ) )
For 1nstance 1f the reglon 1s a cube of edge b then Ky ;f . *.,Q

] B e

1U1ﬂ,

Time Dependence'ofvsolutions'
Tt ‘Let us now obtain the tlme dependent factors of the '

hi

< . L .
2 K o . . W o

“y'densltlesi namely np (v,t)dv (henceforth we let the Kl

superscrlpt) and N (t) They are the solutlons of the

coupied*drfferentlal equatlons
' Tvnph‘yfﬁjf?iq‘v’c R

'"d

h(v t)dv-—f(v)dv

. o

— t (\)) (\) t) d\) _ ‘ ‘(.5‘1133). ‘ fi‘“;

-

N(t)
Nz(t) :’?_1T#

;wnere=:;°>;f,~*

ty ) = ¢ a8(v)} -1 ; ":'_;f,.-:'_, S san
',g.gw_;; 7“ = ';~, ﬁ;c"m**t.wae_ﬁf‘f Lt

1s the dlffu51on tlme of phonons of frequency v.; We have

noted already that (5 14) must break down forlv-v:l large j;g';

R

x*fufhenough that thé mean—free-path is 1onger than b because

"why{thennS(V) >> bc and t (v) >> b/c ThlS 1s unacceptable

ﬁfﬁf;rbecause the mlnlmum tlme requlred for a’ phonon of any fre-PQ"rf'

17pff1quency to leave the exc1tat10n reglon 1s the balllstlc

o

Yorae.



eséabe time_tb=;b/c+. ‘Thus.we'replaée f5.l4) by“the gen- 3

| ‘ co , . /
eralized escape time S / e

C

tg (v) tb + ty (v) = -+}8(v) (4;8) : (5,15)

Thenhfdr.$4v) >}‘bc,we‘have»t x tb Q/c and for.@{v)<< bc
L we have t'"zta: 'Sdlvihé Eqs. (5 13) by the method of
-3fLaplace transforms we flnd that -

R (t) =.2_1_§ sEStN &) . L s.eb)

4

»;‘where»nph(v;s) and Nz(s);vgiﬁen=byfthe'Laplaéé'trathorms,‘
of Eq. (5.13), are PR
o S Y

£(V) L oin
Tl*,NZ(S)}

{néh(v,t#O) +.

(vs); —— —,  (5.17a)

ph T B
| s +a(e + ey

. with

g T

| | " a(v)c -
- {N (t-—0)+ fdvn h(\) t= 0)‘s+a(\))c+1ft oy}
' NZ(S) = = ; . L :

R T

Aol

(5.17b)
: -

1.
radJ.us r and length L >>r is approxlmately <2,>— r 2 éln —Lﬁ-l)

"In our case r = .35 mm and L 10 mm so that <L> =»2r'? b.-

The average balllstlc path 1ength <2> 1n81de a cyllnder o£

.98,

o
i



where

99

' ©° s + -t——ré)— _ . ‘\\~ » |
- )(s) = VJ-dvf(v_)_ ‘ 2 - \\ (5.17c) .

1 ]
Sfd(\))c +;E-e—(\7)- ‘ >

General Features of Solutlons'

The contour-& encloses the various poles and branch .

tcms of' n h(v s) and N (s) whlch are located 1n the half—

h_plane Re{s} <0 Let us’ begln by studylng the srngularl—

0

Lhtles of N (s) 1n the 51mplest case when there are no

g -

‘:Q»phonons 1n1t1a11y present._ If We replace the 1ntegratlon

~:Tover v 1n Z(s) in the denomlnator of N (s) by a summatlon

7over the phonon modes, ‘we . can 1ocate the 51ngular1t1es

. -

,The pole at. s-s

'“.graphlcally by’flndlng the values of s for whach -T S'-E(s).‘

rAs we see 1n Flg.,S l, Z(s) has a pole due to each phonon =

'mode 1ncluded 1n the sum, and the poles lle spaced in the

range ER g s < ~—c/b where ‘

R v
o [(,b 11 ] =
I S e +,_____§ a(v T R e e

R

: the qulckest to dlsappear due malnly to resonant absorp—

ctlon. The pole at s -c/b~1s\due to phonons far-from—‘

resonance whlch dlsappear relatlvely slowly v1a balllstlc

}fllght Coupllng the atom-phonon system causes these poles
Ato Shlft to new posrtlons determlned by the roots of the

.equatlon =Ty Z(s) The graph1ca1 solutlon shows,that':

€

all but twO‘of'the'roots are-located-in the_fhterval" v\dd

1s due to the resonance phonons whxch are
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‘sﬁ ¢ s £ -¢/b and are shifted only a small'amount. One
pole,.whose p051t1qn we have labelled s-( T ) . has' been
‘ sthted to the left of -T; -1

1
(5 16b) yields the 1n1t1al fast decay in tlme Ti S_Tl of -

and when 1nserted 1nto Eq.

the coupled-atomephonon‘systemt The other pole whose posi-

tion we.have labelled s::-Tw;: has'beenhshifted into the Ay -

'l‘lnterval —c/b <s'<0 and represents the flnal slow decay in

tlme T ‘of. the coupled system The poles 1n the 1nterval
-sts s.s c/b, when 1nserted into Eq. (5. 16b) yleld the
'rlntermediate decay We should p01nt out that Flg 5 l as
drawn descrlbes the 51tuatlon for den51t1es N* = lO14 lol5
3 for ruby . As noted 1n the . 1ntroductlon, at 1ower ._:\
‘Lden31t1es the phonons escape balllstlcally,\a(v )b << 1

and the 1nterval SR‘< 5. < —c/b becomes narr er than Fig. .

',5.1 suggests. On the other hand for den51t1es N > D =x-

"o
'10;5_cm'3 the resonant phonon llfetlme is. less than the o
‘72A state llfetlme Tl’ and T 1 actually lles 1n51de “the

l .
“,1nterval sRN< s <‘—c/b ’

Let us - now go back to the contlnuum llmit of Z(s)

‘f and replace the summatlon over phonon modes by the orlglnal

"'lntegral A detalled calculatlon shows that the two poles

: located at s’ = (- T ) -1 and s-—-T ;rremaln but the ‘set of

. poles ln the 1nte““I Sp <5< -C/b 1s replaced by a

brandh cut connectlng branch p01nts at s-*s and s-—-c/b

‘R -
.
" Thus the only change 1n the ‘above . descrlptlon is the

‘rather mlnor change that a dlscrete set of 1ntermed1ate



decay rates is replaced by a continuous one. ‘Indeed we
find that the time evolutlon of the den51ty N of atoms
" 'in the 2A state, w1th no phonons 1n1tlally present using

Eq. (5 16b), 1s glven by

nw oy o *tfis) +Re
= R, e ° + f dse s)-+R e"
zlt 05 1 T - | ,

; ‘,SR

-t/T : S
- ® (5.19)

wheretﬁ(s) is the-discohtinhity aéross»the branch_cut,

L(s) = lim l{ el SN S } (5.20)

ex0+ 2T s+ 2 J(s+ie) s+ [(s - ie)

o

and Rl’ R are the re51dues of N, (s /N (t 0) at’ the poles

s==~l/Tl, s-——l/T respectlvely,zl e,

R =— L |- L (5.21)
S l+_____§‘(s) e . . Co .

?.1

Rlv,

s=-t , S=m
a Tl - },TS

’A_These_quantitiesldffeourSe'6hey‘the,normalizetidn condi- . s

1tioh" ' L .
s o :_C/b

R R+ ‘J“l(s)_?'q'sz =1 . a2

-

Z:tSolutlons of the Rate Equatlons h

102 -

COSR e e

Frg 5 2 shows a typlcal example Of the tlme evolu-’a“‘

irtlon of the exc1ted atom densxty N, (t), glven by Eq (5 19), S

'_=show1ng the fast 1n1t1a1,:1ntermed1ate, and slow f1na1

“decay. . Also;shown are the}total_phononvden51ty Nph(t) =
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Idvnph(u t),‘and the total denSity’of excitations
N (t)+Np (t) in ‘the reglon | o |

Let us now look at the flnal slow decay of the
system 1n detall., We recall that 1ts decay time 1s T =

‘.—l/s where s lles 1n the 1nterval -c/b <s-<0 and satlsfles

,the equatlon _ :
SR . 5\‘ Lt | | : i
where .
PS (v) '=f«f\ a{v)c : J.‘ ' < B - - (5 .24)

_ PR
_ dlv)c +‘E;I;T

'h‘In general Eq. (5'23) must-beV numerlcally and these

’im-results are shown 1n Flg‘ 5. 3 Here we plot T vs N*/D S

,'for varlous values of T c/b Note that D ’ and thus the
lghorlzontal scale, depends on the tlme Tl of a partlcular R
hd3curve becauSe of the relatlon | |

Ve R *

: ‘ D(v) 5 2. 0 xlO Seé/cm3y; _

-fnglg 5 3 clearly shows that there are two den51ty reglmes.‘"'

"rw1th qulte dlfferent physmcal processes governlng the

fdecay of the system 1n each.’<As we w1ll see in detall ‘

-’,7below, for low den51t1es the system decays 1n tlme T

L - o
b /c (l + a(v )b), whlch 1s the balllstlc or free fllght =

';tlme plus the resonant phonon dlffu31on tlme.v'Because for‘*

‘“large a(v )b (1 e. large probablllty of phonon scatterlng)

oo
LNk



R

‘]f;_ ‘} :.”and 21 (see also Flg. 1. 5) plOtted asgumlng D =10 ey
SO " 73. Curve CD b/c-150 ns, Curve QD b/€> 100 ns.e‘.'

2 100 p——p - —

ST

‘ \,{"\\\;/ .;'

11l

L

04 0 _j'xo_-Z 101 o i,'lo‘ '-'102 0% 0t 0

Flg. 5. 3 Solld llnes. Theoretlcal flnal slow decay tlme T
' _.}5{1as a functlon of the den31ty N /D for. varlous
\a 7f-va1ues of T, c/b, from Eq, (5. 23) Note ‘that the

'e:forder of 11nes 1s reversed at low den51t1es.f‘f

 Dashed line: Experlmental results ‘from Refs..20

105

15:5-»



' futlmes found by Paull et a

klfbest flt to’ the theoretlcal curve

"thls would suggest that T babz we may call thls the

, spatlally dlffu51ve reglme., However the flgure shows that;

“,beglnnlng already when a(v )b x l, T hardly 1ncreases as
'dwe 1ncrease N* by orders of magnltude, 1nd1cat1ng a-

= process competlng\Wlth}spatlaladlffu51on. In the hlgh

d

"density regime a(v fb >>'l thfs process; which we»call

pectral dlffu31on and or whlch we w1ll flnd that T

:1nates.. We also show the. decay
20, 21

”;T /Q(V )b, completely d

(see Flg 1. 5) for two |

'-.'dlfferent exc1tatron reglon dlameters b. For these two

-3

”rexperlmental curves D x 10 was found to glve the

: so that T1 20 ns

‘We shall say more about thlS rather large 11ﬂ#nme 1n §5 3.;‘

';Decay Tlme T 1n Case N* << Do
,,t;: For the llmltlng case N << D we can actually flnd

*fT analytlcally as’ follows.. We assume that the absorptlon
o

106

”ffprobablllty a(v )b “1b cT; << l and that the dlameter b of0 e
o _ 1. -

E fthe exc1tatlon reglon 1s so large that 'I‘l << b/c. In thlS

ﬁ"'yballlstlc reglme we cannot speak of true dlfqulon and We :;ﬁj

‘,tfreplace the dlffu31on tlme (5 l4) by

R DA

:]whlch is the balllstlc tlme multlplled by the (small)

sf;_probablllty of the phonon belng absorbed and scattered in’

H.thlS tlme. Keeplng the flrst three terms of the blnomlal

j'expan51on of the rec1procal escape tlme

ey ,= 2w <525>



N
Ll gm0
‘A'qu.l(5}24) beccQ9£;*_' L - }'
o ,. S "oi(v'-)b,"
fﬁ?f#“v o e S g T1

'.f'Ps'w) =

Vo2 [ (v 572
(—-7—) +{» +. - — TU—v 2
(S-—+l)(l+ (5—7—))

o ’ (5 27)

N

and the 1ntegrand of Eq (5123) can he Written asta-Sum cf

5

-t

.'”gthatvK (5 23) becomes

a(v )b

| N g )
-‘I‘ s=1 -—-———-——-————+‘ ' ----—---.4. R \-b.._kg.lzg)j

S

2(s.9+1) : 4<s—+1)
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“fpowers of Lorent21ans These can be lntegrated exactly ‘so ~d;‘

;hlslnce the rlght hand 51de of Eq (5 28) varles very rapld-l?

"7ﬁ y for s-Q—c/b (see Flg. 5 l) and the left hand 51de 1s
’ﬁ‘relatlvely constant, we replace the left hand 51de by

r‘f‘—Tls ~;'I' c/b and flnd the solutlon of Eq (5 28) to be

\

a(v ab S

. C
2=

2(1 - T )

T - : ) P A N o E ._":‘,

l b ff~'”““lfﬂfi,r'ﬁ7f75ﬁf'i?53§,f"'"

_ The final s_l_'o'iv' qec‘ay'? f't__ime | :r_s, for N* /,_D; ‘<< 1 is therefore = =

R

vl

. ‘.:?S = .""

)

2(1 _le

”1fThus we get the reasonable result that the system decays:
l

‘5 <1.-"+ —+ ) S sk

,"lﬂln a tlme T tb-+ t (v ), whlch is the t1me an- average“f” :1f¥
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“_phonon, namely'a;pth§h a half-width'frcm_resonanCe would "/"

. escape in.

-Decay Tlme T in Case N* >>'Db h \}>

‘In thlS more 1nterest1ng case we assume that the
absorptlon probablllty a(v )b >> 1 so we are well w1th1n

" the dlffu31ve reglme.- Slnce l/t (v) << c/b and we demand

~

”3that ]sl <c/b, we ‘can approx1mate (5 24),by

\)',-. \J\.
.0

18vo/2

RERCIOR)- I

‘ 1 w_heq ,_'q’.(\).),c >% —>

0 when 50 (v )c S st i Ya '(?\)O)b, .

- where

;:;iThlS is just the decay tlme found b Holsteln6 ahdffﬁleiﬂ~¥”
//\ FR R L

'i11Veklenko7 by rather more complicated argumehts._ Eq. (5 33)

'3;13 a very 1nterest1ng result. It says that the flnal slow

’1”decay has absolutely nothlnq to do w1th spatlal dlffu31on.llfld_";



process.

L3

Indeed approx1matlon (5 31) requlres only that the absorp—“

5l'tlon probablllty a(v )b >>1.and would have held just as.
“well had we chosen the dlffu51on tlme tg (v)-—O (Of course
.‘we must stlll have the total escape t1me t (v) > b/c ).
-In other words when a(vé)b_>>:l.:spat1al dlfoSlOH 1s soA
1slow and 1neffect1ve as an escape mechanlsm that, as we
v:shall see in detall below, the phonons use a shortcut -

";namely spectral d1ffus1on By thls we mean the follow1ng

Iy
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Exc1ted atoms in the ex01tatlon reglon decay in tlme’i

e

'”Ti emlttlng a Lorent21an spectrum of phonons Those v
’Qphonons 1n the w1ngs of the Lorent21an satlsfylng -
».:a(v)b < l (1 e a fractlon f 2/(n/a(v )b)) escape
fiunhlndered The rest are absorbed ln tlmes t << Tl and |
‘»:subsequently re—emltted agaln 1n a Lorent21an spectrum |

;-R,The process repeats 1tself agaln and agaln untll all the L

phonons have escaped "through the w1ngs" of the spectrum;

'h?gFrom thls 51mple argument Eq (5 33) follows 1mmed1atelylﬁ_

b',[Although some spatlal dlffu51on obv1ously takes place f*°:

}concurrently, we see that 1t plays a secondary roler‘

}f@uPhonon Spectrum‘?

' ”h To prove these assertlons let us now look at the

:5jf1s glven by (5 16a) w1!h (5 l7) In general these equa-vh

',.

:f;:tlme evolutlon of the phonons. We recall that n (v t)dvff?ff5ﬁiﬁ

,r;htlons must be solved numerlcally and some typlcal results,&f77'

. ;are shown ln Flg 5 4 where we assume that there are no ,.c'"
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Fig. 5.4. Time evolution of the phonon spectrum. nph( vty e
. for case N*/D =4 and b/(cTy) =3. Note thatas .

. tv= the spectrun is approwimately rectangular '

. with width 8v_= Ya(v_Jb Av_.




b"f the center to the w1ngs and whlch decays away unlformly

111

reo R | o ST e
. phononsZlnitiallyﬁpresent and that the'absorption probabie
'llty a(v )b is large We see ‘that for'very small tlmes
) some of the exc1ted atoms decay and emlt a Lorentzaan
spectrum of—phonons =Soon the resonant phonons are
‘absorbed by other atoms cau51ng self-reversal of the
spectrum Slnce only the off-resonant phonons ex1st for
' :an apprec1able amount of tlme before they too are absorbed,
:4 the spectrum broadens and flattens ' The spectrum contlnues
"frto broaden untll tlme t b/c By thlS tlme the far-from- -
| 'resonance phonons are escaplng balllsthally and those
71§now empty modes can be re occupled by other phonons whose):'

1beXCItatl°n energy Comes from phonons lost from the mlddlep e

'yof the spectrum Thus a steady state is establlshed w1th:"3:“

:“1:a phonon spectrum Wthh is contlnually lOSlng energy fromp”U.jfr?

rw1th a- 51ngle decay tlme T
Thls slow decay of the phonon spectrum can be |
5%fder1ved analytrcally. From Eq. (5 l7a) we have that
. ; : | P T o ) B “,
SRR SR .j‘V'.' fua'fﬁlN (s)?: ;rvj.'~7 e
(v s)d\) -'*D(\))d\) . alve I Lo T (5.34)
p._, S s +a(v)c + T T e

L : . SRR BN S i
'f:The factor (s-tu(v)c ¥ t (v)) has a pole whlch lles 1n

(f.\'

”*fthe 1nterval sR<:s'<-c/b (see dlSCuSSlon before Eq (5 18))

o]f?and the factor N (s) of course has poles at s-—l/T and

f‘;_s--l/T and a branch cut 1n the 1nterva1 sR<:S< 'C/b

‘?"3The flnal slow decay therefore 1s glven by the re51due °f i}tn]

o
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nph(v,s)dv at the "siowfpole" s = —1/T~. We find that

) | S N, (t= 0) o~ -t/TS
an Ppn (VRIAV=DO)Av-_ ) A ISV

o L )

ks
.

ﬁThus the flnal broadened phonon spectrum, (v)dv,
l/T )

o, 7 does not change shape but decays unlformly in tlme T as
. s !
we asserted

Recall that for large den51t1es N*'>> D the spectral

S shape P

»

l/ (v) is glven by the approx1matlon (5. 31), i e.
s

it is qulte flat and has breadth Av ;‘/aiﬁéib‘ Avo;“ -The,'

,1n (S 24) whlch lS relatlvely 1mportant nea _the
shoulders" of the spectrum.f* S L 4 _
" For low denSJ.tles N* <<'D_ Egs. (5.27) and (5.29)

N R
. glve the phonon spectrum

'r 2.

15 e .
RV S e { 20 IR -
T (—*~7r4 + {1 ‘; Vg2 } -
_1+ (-7—r

whose half—w1dth appears to be increased from the intrin-

31c Lorentzran em1831on spectrum.by'g”ﬁﬁ%tor-'(1+——u(v )b).

‘but whlch_ls*equal to the orlglnal Lorent21an in the far

w1ngs%
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' Quasi—Equilibrium PopulatiOns;

Flnally let us look at the qua51—equ111br1um popula—
‘vtions of the two~- levej{states and the phonons. We now
’generallze and assume that the 1n1t1al laser pulse ex01tes ;
. both. phonons and Cr3+.1ons 1n the 23 state; Then Eqs.

,(5 16) and (5. 17) ‘become . for the flnal slow decay

"Nz(tl' f;Nz(eq)- . -t/Ts

— = £ . e 8 L (5:37a)
N* - N* S , : :
e B = , (5.3M0)
N e ' o pa. 20 : N ' _ L
S ;Nf'f_id“'P—l/?g‘“)D‘”)'
" and. | A N |
- ) g e . ;(5.37c)::§

o(*?dv 1" -l/T TR

L ‘Evaluatlng the relatlve 2A state populatlon 1n the llmlt

.lN* << D_ we get ‘

N, (eq) N (t= 0)-+2nph(1 T1 %l % a(v‘lb-f..a)~‘ s S
* = c 5 - Y, _ (5’.‘38a)v"‘ '
where
CaPh s T ‘t=o§ - » s 38b)
"o~ 770 2 "ph'io’ S R

is the den51ty of 1n1t1a11y injected phonons in the fre—

‘ quency 1nterva1 Av g »
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0

.Summing over phonons. in (5.37c) we get the total <

- phonon density

L

Nph(t} 2 .J nph(v,t)dv==2Dd(;—

(5.38c)
'The‘factorhof 2 invtront of ngh and D, in (5.38a) and
(5. 38c)~1s due to the folloW1n§ fact CIf a Cr3f ion
fabsorbs a phonon (Whlch 1t does accordlng to a Lorentz1an
~aof d;strlbutlon),.another phonon w111 be re—emltted with ‘f
certalnty On the other hand if a phonon is. emltted with
.a Lbrent21an dlstrlbutlon, then 1t subsequently __X.be
absorbed (agaln W1th a Lorent21an dlstrlbutlon) ‘ Slnce
A.the probablllty of the latter process 1nvolves the product
of two Lorent21ans, Wlth 1ntegral half that of a 51ngle
e‘Lorent21an, the phonon populatlon 1s“favored by a factor
'fof.2ff (Indeed:lf-we'replace the Lorent21ans f(v) andcd(v)\:'
by‘rectangular dlstrlbutlons the’ factors of 2 do not

happear.) ‘As one would expect, 1ncrea51ng the llfetlme Tl

= or,theuabsorptlon probab;llf

.d(»o)b,favors the 2Anstates |

00 0

v.intthe quasi-equilibrium.

- 1n Tthe”iimit »i* '>>{D. “B{. (5. 37b)\§becomes

“ 'fN:(eq) N (t= 0)-+n 3 V,t O)/a(v vAv R SRR
. ZN*.. =2 ph ¥ o 0.'~ie'(5-39a)A
SN _N. - -+D(,\’o)v'/a;("o),b Ayo DT el

AIn thlS case. all the 1n1t1ally 1n3ected phonons and phonon

modes in the broad 17terva1 /d(v 5 Av (1 e. those _



- (see Eq (5,38a)), Nz(eq)/N*‘ N (£=0) /(2D ) which is

varles llke N*

“_Paull et al

¢
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Satisfyihg the condition a(v)b > 1) participate in the
quasi-equilibrium; The total phonon population is |

£) = valo )5 Av DI 2' 5 (5.39p)
N h(t) o \)o : A\)0 D(\)o) T— ‘. L |

We solve’Eq. (5.37b) numerlcally and in Flg. 5.5

plot the qua51-equ111br1um populatlon N (eq)/N* Vs N*/D

-for various values of T c/b assumlng that no phonons are

1n1t1ally excited (nph(v,t—O)-—O). We see that for.N <<DO

1ndependent'of:N*. As N* 1ncreases, the phonon band in

e

'iQﬁaSi—equilibrium w1th«the atoms“broadens‘like Av =

'/d(v )b Av - so that 1n thlS reglme (see Eq (5'39a))

N (eq)/N* N (t 0)/(D /a(v )b ) which varles 11ke N* %.

| Flnally for N* >> D the N* term 1n the denomlnator of

(5. 39a) domlnates so that N (eq)/N* ¥ N2(t=0,/N* whlchlm
-1 ' |

R These calculatlons can be compared to experlments of

204 21 1f we note that in those experlments thev

O 3+ -

_1n1t1al laser pulse does exc1te phonons as. well as Cr

16 =3

~llons Indeed in thelr den51ty reglme 10 cm ° ‘éhN*_s

18

kh}lO cm -3 the approprlate curve, namely T c/b l/S behaves

"Nv(eq)/N?foo,N*‘-4'x f"o;' o e .h;-*(5.40)_f
in excellent agreement w1th thelr experlments assumlng

h(v t= O)Av -:»
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- 5.2 lnclusionIOf Inhbmogeneous Broadening’ " .
: { L

Until now we have assumed that the absorption . and

.
em1551on spectra are descrlbed by.a Lorentz1an proflle

tom

'centered about the resonance frequency \V }y However random 51
statlc stralns 1n the ruby crystal (or hlgher temperatures)l
;can cause the resonance frequency to dev1ate locally from .
L'véa_ ThlS results in so- called 1nhomogeneous broadenlng.
'-‘The central llmlt theorem tells us that for large stat1s~
“tlcs the dev1at10ns have a Gau351an welghtlng.‘ Thus_we» |
can replace the Lorent21an by the V01gt proflle e
- I @ 2 S
Cfy) = 2img = f ¥y sy
- R Ja ‘ o e

where.

n=2vinz —/—2 , . (5u42)
:and»( “ ‘ - B | -
‘a.=.—VIn 2 -, , o (5.43)

”AvG measures the amount of Gau351an smearlng of the orl-_ f/
) |

‘nfglnal Lorentzlan of w1dth Av l As before f(v) is entered

ﬂlabout Yo and normallzed to unlty Us1ng condltlon (5 5)

h_we can wrlte the absorptlon spectrum as

, a‘»("‘)”;b-:g;ff In ; AV, Ize 2 dy._z C o (sea) -
- Def daZinop?

- NOfe_fdr"Ay¢=¥01(Avdi?Q);if(y)risfpureﬂLorentizanﬂmf,
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- (Gaussian) . ,Most importantly, for finite Av'/Ay f(v)‘is
bapproxI;Zt;l;MGaussian near.v;svo and’ approx1mately the "
‘unbroadened Lorent21an in the w1ngs. “ | ‘ |
We can now : apply our method to the V01gt proflle.
:;.For example solv1ng Eqs. (5. 23) and (5 24) numerlcally for
mthe slow decay tlme T YlEldS the results shown in Flg.~'

5 .6a. Here we have plotted T vs N*/D (for T c/b 1/200)

for varlous values of Av /Av o " In all cases for small

N#/Do_we‘see_that e decay tlme T 1s smaller for the

| broadened‘thaﬁ or the unbroadened spectrum 51mply because -
Afthe broader the spectrum the smaller 1s the absorptlon |
“ofv o) - For somewhat“larger N*/D . Ty varles almost
i’illnearly w1th N*- We Wlll see. shortly that thls varlatlon
Idhls characterlstlc of a Gau351an absorptlon and em1551on

}5spectrum.. For very large N*/D only phonons 1n the far

”’ifw1ngs of the spectrum can escape -and at these frequenc1es v

umﬂthe spectrum is almost Lorent21an. Thus as before we flnd

F1n thlS reglme that the decay tlme varles as T e N*
ﬁ.Slnce experlmentally we do not flnd the llnear varlatlon S
hﬂof T w1th N* at 1ntermed1ate den51t1es we, conclude that .
frlnhomogeneous broadenlng is unlmportant for the 29 cm ;"“
;dphonon llne f:fhfh f'f.f_:;ﬁ,:f?f'f>h:7‘”f’t:v?;f'dzﬁf*

g As a flnal 31mple calculatlon let us flhd the decay
',tlme T for a pure Gau551an spectrum for large N*f' In thls_f .
c'case _vb_ Ry _:’;;e;g_ e » | - hh |
B ‘ 20 T T e e
a(v)b = Q(Vo)bi;nf"f;; s7~f”sj-;;iti7‘l .»(5543lf
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 .F1g;'5,55‘<a) Dashed llnes; 31ow decay time T vg»denulty;;;‘

}fN /D for varlous amounts of 1nhomogeneous

‘¥ﬁbroaden1ng.>Solld 11ne- pure Lorentzlan Av -40}'

G

_4a;gta1 scale,, G ‘is deflned in Eq. (5 46b) )
’Tjall curves T c/b 1/200 R :



- where

’~v‘ahd. S S . ‘;_ R L
‘ ;DGj— 2 ln 2 D(v)_

. so Egs. (5.31)-(5.33)‘bec0me5

LX)

';(5;46bj‘ -

1 [n] < /ln(OL_,.(\)o')b)"‘

. P (\)) fe : , .bfwhen_ - ’ ) (5.47) ‘. .

o _jﬂ.y/huawgﬁi"

—T s =
l /n

20 j,vﬂ, aoo=n" 1 R ,
. dne’ =

v »_aW )b’ /ln(a(v )b)

Jln(a(v By RN f_“ (5.48)

4;élw- o

Cand ¢

Except for constants of order unlty thlS is Just the result }fﬁf'

found by Holsteln6 and Veklenko for Gau851an spectra._ As »?ifgfi“

ln the Lorent21an case, Eq._(s 48) clearly shows that T ;fi»;m&
o depends on the area under the w1ngs of the: em1531on spec-fjpp?]%_*:
trum where phonons escape balllstlcally., Agaln spat1al L
dlffu510n 1s too slow and 1s thus 1rrelevant.- Note that

the radlcal varles SO . slowly that T varles almost llnearly

w1th N* as we asserted above in the dlscu531on of the V01gt
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: profile The exact result for all den31t1es for a pure f

Gau351an is shown In Flg. 5. 6b

i

5.3 Discussion‘

We have solved the .set of coupled rate equatlon (5 l)
3jdescr1b1ng the tlme evolutlon of a. system of two-level
",atoms and phonons resonant w1th them, paylng partlcularvy
attentlon to the condltlons obtalnlng durlng the flnal slow -
'decay, 1 e. durlng the phonon bottleneck |
} | One of our most 1mportant algebralc results 1s
,,hqus; (5 23),.(5 24) whlch glve a 51mp1e algorithm for

'lthe slow decay tlme T as a functlon of the concentratlon

Lt

N*- of scatterers for any llneshape Notlce that°for large
: ¢ : o

-~ N® these equatlons reduce to the formal solutlon (l 8) of i

‘.9 .
;Holsteln s 1ntegral equatlon.‘ Because for large N* the

“1phonons from the center of the llneshape are effectlvely
af;spatlally trapped, T depends on. the area under the w1ngs e'

of the llneshape where the phonons can escape balllstlcally._"

l‘

’“»The system decays v1a spectral dlffu51on w1th phonons'>' o

d;ffrom the center of the llne belng absorbed thelr energy :h
7f7redlstr1buted over the entlre llneshape on em1331on, and
f}+f1nally phonons from the w1ngs (obeylng a(v) b< l) escap—*'"

'"_1ng balllstlcally t Hence the system decay rate 1/T equalsi1,1”!7“

=the atomlc decay rate l/T tlmes the fractlon of the j;f-;fljy,i':‘

- emltted phonons that escape balllstlcally
Durlng the slow decay of the system a quaSl-'

:fequlllbrlum obtalnszp, characterlzed by the two—level



atoms and all'the”phonon modes obeying d(v)b >1 reaching

"a uniform population of valuedN {t)/N* "Thusﬂif‘.for

; example, q(v) is: Lorent21an the phonon populatlon 1n31de |

'-the exc1tatlon reglon is roughly rectangular w1th width
Av = Av, /div )b 64 N*?das 1n Flg. 5. 4

' Let us now spec1a11ée our dlscu551on to the 2A+>E

v'transltlon.of the-Cr3+;;on_1n ruby. ‘As,eVLdenced-by the_~

S - : T S PR L L
. experimentally observedhdependence T394,N*2_forvlarge.N*,

{the wings of the’2§-*ﬁ lineaare LorentiianiA There is
1nsuff1c1ent 1nhomogeneous broadenlng to a V01gt proflle
fflto result in a llnear dependence of T on N*

Our model applled to the phonon bottleneck in ruby

‘(w1th Lorent21an 1ntr1n51c em1s51on spectrum) reproduces w

| ﬁjthe follow1ng experlmental feature5°"

(l) the rapld 1n1t1a1 decay of the system in tlme

(2) the establlshment of a bottleneck w1th a qua31—f“~f .

":hequlllbrlum exc1ted atom populatlon N (eq)/N*
. N* R

'f(3)'the establlshment of a broadened (Av<4>N*%Av )

122 -

'ri)tflattened phonon populatlon whlch has been fy*-}"

14

i ffspllttlng experlments, and

efp(4);the subsequent decay of the qua31-equ111br1um 1n f,?5fh

v:f,ftlmes T 09 N*;5 for 1arge N* 7:fhj{"

‘dd_observed bY Dljkhuls et al ln cw Zeeman €1}2:":“”1



-123

N
To! obtaln quantltatlve agreement w1th the experl-

'.jments by Pau11 et al. 20 21, we must choosexthe 2A

V;llfetlme T ~ 20 ns, if we take. thelr estlmates

1
b at face value and take the den81ty of phonon states

| ‘D(v ) accordlng to Eq (5 4) If we assume that N* is

:[vactually underestlmated by a factor of 3 (whlch is w1th1n

the estlmated uncertalnty2 ) and that the Debye approx1ma-
’gtlon of D(v ) is overestlmated by a factor of 4, then a :‘

'fnllfetlme Tl-—5 ns glves good agreement w1th experlment.

- In any case our T1 is larger than the values in the lltera—

'~fture Lengfellner ét al. 26 and Geschwrnd et al 19 Tlﬁs,4
hs’ Rlves and Meltzerl3} T, = l 1 ns,~and Kurnlt et al. 27'

N

—2 8 ns, whlch we' note already dlffer by a factor of .
lch w1th the exceptlon of Rlves and Meltzer,‘

indlrect'estlmates: -(See Ref, l3 for a

.. crit] hese values )

and Meltzerl3 treat the phonon bottleneck also

oyia af equatlon approach ThlS model however pre—

»ectral or spat1a1 dlffu51on and assumes that the o

"y.system 'cays v1a phonon decay. They evaluated only the :-]Q;f“

me’ behav1or of the system and used the concentra—fffyfr

ﬁﬂftlon N and the anharmonlc phonon decay tlme Tph as free !grlﬁi

"fﬂfparameters.j Thelr best flt was obtalned w1th rpﬁ’-40 ns

15 18 20 22

%"‘,whlch is: far shorter than estlmates of 2 us prev1ously 5

lt d Furthermore thelr model cannot repro- 5J‘f;f

Tdduce the experlmentally found functlonal dependence of the



'uxdecay tlme Tl

124

qua51-equ111br1um populatlon N (eq)/N*'or the decay tlme §

3 Ts~as functlons of N*'

o

A second pOSSlble resolution of the llfetlme dlscre—v
'pancy 1s the follow1ng In a phenomenologlcal theory such :
.as ours, Tl is the effectlve tlme in whlch, due to the :

» decay of an atom, a free phonon is generated Now for

- N*:>D -éilols,c ,qﬁbe concentratlon 6f scatterers is so

,large that a second atom\has already reflected back a.
3 phonon before the flrst atom has flnlshed emlttlng that
tphonon _ Thus a cooperatlve effect can ex1st between the .

ddecaylng atom: and 1ts nelghbors, resultlng in an effectlve .
eff

>> Tl

"Thrsveffect w1ll,be explored,ln "
»fchapter 6 I;“'i w_ i‘i.:_ - ‘yi_i') o . \,'
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n_motlon (4 Sa) and (4 7) under the assumptlon that N"~ < 10°

CHAPTER 6

3 FIELD‘THEORETICrbESCRIPTION opaTHE'RHQNON*BOTTLENECK(;I)

In Chapter 5 we solved a set of coupled rate equa-

Sy

dntlons for the tlme evolutlon of the electron phonon system,','

These equatlons were derlved from the quantum equatlons of:
16

”,

cm SO that Tl<:T (N ), Ti and T2 belng the tlme of 1nter-f

ﬂiactlon and the tlme between 1nteractlons respectlvely of

’-.kthe resonant phonons w1th Cr3+ 1ons.b We have already

S (4 5a) and . 7)

.cooperatlve e

'hlncreased

'ects between a decaylng Cr3f 1on and 1ts
| .

fnelghborln unex01ted 1ons may ex1st, resultlng ln an'

.:-fectlve llfetlme Tl .. To. explore thlS and
\ B -

«other quantum effects not 1nc1uded 1n the rate equatlons

35
.

'th l General Descrlptlon
Let us begln by wrltlng down the Fourler transforms '
]t,fof the Helsenberg equatlons of mot10n'?4 Sa) and (4 7) for

guthe annlhllatlon operator b (t) of the Phonon mode of Wave_f,t

L~

fhpnumber k and the lowerlng operator S (t) of aéom n, namely

Nﬁal-lk r

o12s

vlndlcated that under the opp081te condltlons when T (N)<:Tl S .

.”‘3'we w15h to study in thlS chapter the full quantum eqhatlonSf,fh



126

| L% o, -ike(z-r,)
S (%) = "5 — + ? | L E'g?e —
0 xmae) L omEl g9k KT
- x-mg_ (n #n) B'X mk,
xd-, ) . (6.1b)

In these equations we have‘droppednterms containing the
- phonon Operator b (0), under the assumptlon that 1n1t1ally
‘at time. t-—O only~a srngle atom is excited and no phonons
are present. We assume that there are N two—level atoms
dat pOSlthnS rl,rz,...,EN Recall that the flrst term on
* the rlght hand 51de of (6 lb) descrlbes the spontaneous
ldecay of atom n and that the second term descrlbes the
llnfluence on atom n of the exc1tatlbns comlng from other
'datoms n' (To derlve the rate equatlons we dropped thlS
term ) We can solve (6 lb) formally by consrderlng it to .

be a matrix equatlon w1th 1nd1ces n,n" Deflne the N><N

| path matrlx (all matrlces in this the31s denoted by

carats) . r

o A3tom () Aph J(x) , “forn #n'

By pe (%) 2 . o
’ _ 10 ; : . , forn = n'-,

“where IR }'f"ﬁkép&

) atom(x) = 1l 5 o “ - _'(6.3)
o A X - A ~Z emrreg |
k * %

is (the Fourier tranéform of) the amplltude that an ini-

‘tially exclted atom 1s Stlll exc1ted, and

pe%g o 'f» . ;/_5\*

e



i ‘ 2 l,}f’ (rn-rn' ) . -
AL =T = C gy
' k X T ox . _ e

. 1s the amplltude that a phonon is emltted by atom n' and

_absorbed by atom n. . WeAcan wrlte (6.lb) as o
| ‘atom N o - .

J (x)~1A uos ©+ 7 B .wx)an.un . (6.5)
n'#Al T S

This matrix equation'cah.be formally'inverted to yield
S, (x) - ki‘-»§5;l-' 1A%EOM (1) g (0) . (6.6)

,Here 1is the unlt matrlx 1 J = 5ij’ 

‘tEq (6 6) has the follow1ng lnterpretatl n ' 18; (0)‘is the
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1 »
probablllty amplltude that atom nl is exc1ted at time t=0.

- (lFsP);l'nf,ls the-probablllty amplitude,that an excitation
o 27701 . e
leaves atom nl ‘and reaches atom n2 ' Aétom is then the

amplltude that atom n2 does not decay. The product of :
‘ these amplltudes glves (after a Fourler transform) the

amplltude that atom n, is excxted at tlme t. Eq. (6. 6)'
L

,.can be glven an 1nterest1n8 plctorlal representatlon..-f’
: : . LS : y : -
Denote o - EEE ‘§§.

® = adtom AR B 'f‘« ©(6.7)

]

2'“1 o o

//é?*\g\ Rph \ B . k o - (6}8)



o R . | (6.9)
@/—\ c n2,nlv ) S
§

Then Eq. (6.6) can be represented pictorially as

o (%) ==is (0) {s_ .
n2 nl ) nl,n2

?j’
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TR 7 (6.10)

.where we have made the binomial expansion -

'<1-§>"1 i+t '.+"P,'.+_4-- Gy

| - | | %
' Ig*other words the amplltude that atom n2 becomes ex01ted

1s glven by the sum of the amplltudes over all pos31ble
paths by Whlch the exc1tatlons can go from atom nl to n2

Eqs} (6 9) and (6 10) show that P :htbls the amplltude

21.1

for an ex01tatlon to haVe exactly n 1nteractlons before’ '

arr1v1ng at atom nz; the emlSSlon from atom n, countlng as

the flrst 1nteractlon.

' Notlce that in (6. 10) an arrow representlng a phonon

cannot begln and end on the same atom (w1thout going



] Sy
A

through at least one other atom flrst- cf (6. 2))  The
reason 1s that those dlagrams would represent self—lnter—
‘actlons cau51ng the process of spontaneous decay, and they
have already been included in the amplltude Aatom to all
~orders.. This can be seen by denoting the amplltude of a’

free unCOupled atom by

- _ atom Sl R ? | f '
[ :_AO (X) = X""A ’ ‘ - ‘ (6.12)
~and expanding the amplitude A (x) (cf. (6.3)) about

A2EOM o get

2 | _ :
~ X =W :

_ @tk T Tk ® m, D+l n

Ay = L ] T Ty A3Em ) AP )™
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. - :@J.:' ."'O + @4.' +' v(6°l3)l

ib find_S-é(t)) i*e to 1nverse Fourler transform 3
th. (6.6), we note that J (x) can be expressed as some.
compllcated functlon of Aatgm(x) and Aph(x) ' Thus a 2(x)
d ‘must have a branch cut along the 1nterval 0 <x<:mD. '4

‘Assumlng thafﬁthe resonance frequency A lles well 1n51dev
| vthls 1nterval we ‘can 1gnore any poles along the real axis

\-

'Aout51de this 1nterval and evaluate S (t) u51ng the de—'”
’ : S n,

L i
\\

formed contour ’

. é%’\ — | complex A o
[5 —————  x-plane . (6.14)

‘This yields. o



- -1 ~ixt o i . .
Snz(t).;- ﬂj dx e | ’Jn (%) | o
_ - ) 2 | » e
’ , A S . .
1 (P -ixt[, atom,_ . A e
—llm-z————S (0) J dx e {A (x-ie) (1-P (x-ig))
™1 : ) . : NaN
e+0 Ty U ‘ 2’
- e,c.} _ (6.15)

h(6 15) is our fundamental equatlon glVlng the probablllty
: amplltude that atom n2 1s_exc1ted at time t glven~that :
~atom hl alone was exc1tea at'time t==04in the electron-b
-phononCSystem Our program now 1s to evaluate the ampll-

atom

tude A° and: the amplltude matrlx Aph whlch occur in the

1ntegrand of (6 15)

From Chapter 3 we know that the amplltude Aatom(x+le);

¢+

(where O <x < cuD
Aatom(x+l€) :- S ..1
X= A4 - g xtie-u )
- 1 ‘ .
Wi ;
2 D D(w)dw
x> A d é xtie-w
‘where
ey S e C o

hand,'

e+0 ) that the atom is exc1ted is glven byi

‘130
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r= 2wgz ap() . R @2.amp)

We recall that the densxty of phonon modes D(w)dm per unlt

{

volume in frequency interval dw is glven in one dlmen51on

by~-

A

Dlw)do = - du e - | (6.17¢c)
O ANRY) S : . ; .
(2 is the length of the crystal), and in 3 dimensions by

(0)dw - R L (617

. D(wde =] Disg)
S L s o

vwhefe'the‘deﬁsity of braﬂoh.s.is (see'Eq;‘(5.4))\
__///. 7 “ : . »’ V B
L S ."mz e o
C \,\ - : - V= . f,. . . R L . - o
e » E

( ),s-L Tl' Y is thevspeed:of SQuhd?Of;phonon brahchrs;“t

/

The. Phonon Amplltude Matrlx Ap (x) | S

e Let us now evaluate the amplltude A '~F(xii€).
k\u

: M(0<>c<w : e+0 ) that a phonon emltted by atom n' is

D

absorbed by atom n. We flrst do the 1 dlmen51onal case

~l+Dimensioné

,; ’In thlS case denotlng [r —r |¥g'
'T—-Zﬂg N/wD, we get -
2 lk (r “r

Skl D D
CBEM Lxeie) =] S8 htt X J

R EE A S WX ﬁ7
:‘i=_ ;;{003(55) [c ( D r)-Ci( r)]-51n(-—0

o vr)?1 e ;’iv.;co‘s_(i‘g%)}%,' R :"_*,(‘,6_.-18,)_7 7

[Sl( L) +Sl(
_ f\t_' o .h{ o ._  e : b€
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where Si(x) and Ci(x) are the sine and cosine integialsss'”'

B defined by

X  for x<<1

. (6;_19) -
T - COoS X
2 X

wn
~
el
) u .
Ot
@
-~
3
r‘-
o7
t
R

for x>>1 ,
.fand .

Gcos(t) -1 at

ci(x) =y +1n X + T

O X

:gln‘x - for x<< 1

 (6.20)

R sin x - -
B for x>>1 .

11

1
K—8

Q.
S o .
L L

‘-1-

0,

‘-f

R

-

:}‘In the llmltS of small and large separatlons lr - .| we

get respectlvely ”.

o wD—x" o Lo c S
(ln G-  F;ﬂ)v ?thhélpn-rn,}ggz jStha)j'

o 2 e ;fg-7 et <f°f,r?lrn'rhl|??§-‘?'?%b);“

- o|xf

3 Dlmen51ons ) f-’_y,i i',*_> %fff1,=~h;1fl |

: In the 3 dlmen31onal case we ‘use’ the geometry shown

below where . rn, is along the z-ax1s-n~

Sy



A

T | 133

6.22)

-In‘the5continuum limit we replace
2m

, W -
[ IV J,D.(s)__,(‘f’) [ o

1 : -
Jii(cos ), = (6.23)

L{WP% o

'D(s)(Q)__'2ﬂ2c3
- (s)

o

B 1s “the den51ty per cm3 of phonon modes of type s 1n the |
'11nterval dw, and c( i 1s the speed of sound of mode type s.
W{,;The phonon amplltude (6 4) becomes, after lntegratlng over.
e,_aph ,(x+1e) Zie* . Aph v (x 1€) S (6.25)
< “n,n' - s=L,T,,T n,n' ,(s) T
". e ff ;' l' 2 e e e e
'fPWhere the amplltude for phonons of type 1s 1s’3;7{_e ;” Fka
51n —r

_____<s>g. j.;»,am_u‘ o) ———EL

”tAph;t’” s
n;n';(s)‘xéle) .r 81 0o - x*‘la)

erfd ~3f,-5~e_{ R (6 26)

ﬁheretrgs[tn;rn{];fmkfte; ste'algebrafwe}finavthst ihethef?ﬂ
A ' e a L
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llmlt of small and large separatlons respectlvely thlS

amplitude becomes S '.,:_ ' ‘,./
o o
B (w) : ‘ o
~0g” ( J du (S)X tin D )(x)) . (6.27a)
0 - : .C o .
(s)

APR (xtie) ={ - BT
' ’ for r<<¢<—=-~
_ . X

'_An_,n",(-.S)‘ :
| S | '£i Xr P
S R ' (s) o SN

‘~—ng ()(x) ol N for r>> (s )

Xr

S T
Let us nake the usual approntnatlon that only fre—f'
‘\quen01es near resonance are 1mportant so that we may  'v‘ 
‘replace,x-*A everywhere except 1n the phases 1n the phonon '
5'ampl udes Aph ’ glven by (6 21) and (6 27) for 1- ‘and 3-
7».d1men310ns reénectlvely. Then we get for small separatlons E

-]r -r ,| <<c/A that.. (see (6 l7a b))

An,nr(x¢??)'T24 R *~2‘. o e (8B

'fln both .one . and three dlmen51ons,_and for large separatlons

'h|rn—rn,l = r>>c/A that |
‘ ‘ S R e X ; . .
Aph - _EL G T e

’Yj in: one dlmen81on,_and »
N v _ -3 g
1 a—(-;T X
r,\ua-“" B
S SRR SR (5) SN . .
. in three dimensions. - In Eqs. (6 28)-(6 30), A' and r are :
st . . _

i i
B An n ,(s)(x le’y

- given by (6.17a-e).



’ﬁ;vtrapplng (see Sectlon 2 20

Notlce the fOllOWlng features of (6 28)—(6 30) . We-firstv
suppose that |r —r';] >yc/A“‘A(A)/(2w),.1 e. that atoms n

and ' are separated by a dlstance large compared to a‘
resonance wavelength A(A) Then the phonon amplltude

ph ) Ir -rul',
.A .(x+ls) has the form of a plane wave ¢ e n n

'~1n 1- dlmen51on and of a spherlcal wave
ix - o
¢ 'L{r +rﬁ,1 1n 3~ dlmen51ons, propagatlng from

A(A)

Ve

atom’n’dto n. Next suppose that ]r —r N <<c/A- ,

S AN e. that atoms n and n' are separated by a dlstance less
N ,

v'than l..tlmes the resonance wavelength : Then the ampll-

2T
tude Aph ,(x) has the form of a v1rtual phonon cloud l

I

’,rather than a plane wave. ThlS is ev1denced by the fact -

‘that Aph .(x+1e) is. just the Shlft A' A-—7§ of ‘the R

135

”1*resonance frequency of a sxngle atom undergorng spontan—“ ;'

.eous decay Thus at these short dlstances the two atoms

' [hn and n' sit. in- the same phonon cloud and we expect that:

@ P

h‘pfthe evolutlon of the decaylng atom ls greatly affected by

,the second atom Indeed we wrll show presently that under

“ﬁiithese c1rcumstances we regaln chke s results on radlatlon o

Hav1ng evaluated the amplltude Aatom

'lftude matrlx Aph 1n both one and three dlmen31ons, we

'hllproceed and evaluate the matrlx quantlty (l P(x+1e))

o

and the ampll-};rfv

oyroccurrlng 1n the 1ntegrand of (6 15) In one dlmen51on tiu?

v

'ffwe get ir’juﬂ



( (x+1€))

l—‘)
w>f‘.

(6;31)

where the separation rlj’ Ir ~-r, l of atom 1 and atom 3 lS
: assumed 1arge enough that/the phonon amplltude has the

form of a plane wave y Note the follow1ng features. ‘For - .

freqhencres ngar from the resonance frequency A the off-‘

'adlagonal elements of (1 P) are: small and the blnomlal

"serles expan51on of (1 P) w111 converge falrly rapldly

:"Phy31ca11y th1s means that phonons far from resonance may .

- escape from the system after 1nteract1ng w1th only a few

'#.atoms._ Varlous authors56 have studled the 51mplest model

'vﬁ"fexc1ted atom (the srngle Part101e apprOXImatlon) Thls

nf”model glves a good descrlptlon of the w1ngs of the llne-7~5ff-;" -

136

“hfalof a. srngle atom perturblng the llneshape emltted bY an ‘nf:'>

'cffshape but breaks doﬁﬁinear resonance. Exactly on resonance _

ffﬁthe 13 element of 1 P 1s glven by
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with modulus one. Thus on,resonance'the'binomial expansion

TEt converge because all numbers of inter-
ga 57.- The only recourse then is to

» ons of (6 32), i. e. solutlons to all

3) of (l P(x+1e)) on resonance is” glven by

l" . .
cij

e Sy
ST (6.33)
r iy _ o
.Althoughlthrif atrlx element is 1nversely proportlonal to e
fthe'separati. rij of the atoms, and therefore 1s small for
s low den51t1es of Cr3+ 1ons, 1t is. compensated by the fact

'that the numbe

f atoms in a shell of radlus rlj.about

2

) atom[i is*pf ‘nal to r; j‘: Thus also 1n three dlmen- o

.'_siqﬁs;weféxﬁe the expan51on of (l P) ' to,drverge on
“resonance M_f
?] Besxdes the dlvergence problem, the expansxon of

Tfj(l P) does not conserve probablllty (l e. the number

:;j,of exc1tatlons or. energy of the system) 1f the serles 1s

~'scut off at any flnlte order.n For example Cuttlng the ‘jgf,fg

9ffser1es off at flrst order,»we get
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(1 -P(xtie)) s

(6.34)

Plugglng (6 34) for (l P) and (6 16) for Aatom,ihto

(6. 15) we flnd that the probablllty that atom j is exc1ted

at tlme t glven that atom i was exc1ted at tlme t 0 is

o B *

@ glven by

& el S e

N (t) :f,_'—<( ) |s (t)S (t)l( ) >:
to flrst j o A _.\
order” -+ .jﬂv»,i;_:f,, o Lx

ﬁ"u regardless of the number,N 2 of other atoms 1n the system.u_;f"ﬁl

“But thls lS nonsen51ca1 because 1f there are for example e
O V‘"“? .

-.;N atoms 1n the SYStem undet'condltlons 1dent1cal to those v”htih
“mof atom j then the probablllty that any partlcular one of e
R / e ,-:”"
‘i».them becomes exc1ted must be proportlonal to l/NJ



,_dEv1dently the hrgher order terms of the expansron of
(l;aﬁ)’l are essentlal in that they contrlbute probablllty
tamplltudes whlch lnterfere w1th the lowest order amplltude

*1n such a way that overall probablllty is conserved

6. 2 Exact Results :

We saw in Sectlon 6 l that a serles expan51on of

A A -

(1-P) % 1n powers of B cut off at any flnlte order dlver—:

ges as well as- glves lncorrect results Thus in thls
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sectlon we attempt to flnd (1 P) 1 exactly Thls can‘bec'”

done for several spec1al cases.

Two—Atom System in One Dlmen81on
Consxder the case of two two—lével atoms,-labelled l

7'and 2, separated by a dlstance rl ;:Ir" | >>vc/A, i.e.

':;large compared to the resonance wavelength. In thls case}

-t

lf4the phonon amplltude 1s a plane wave and we flnd that

where. oo T o T e T s

'.4;.17"x'\Afﬁ'5%:‘a"/"/;.'n";"ﬁﬁzif

o =R s e e (8.38)



we may also find it‘by expanding in poWers of P to give

(1-P)™ =1 + B + % 4 S
| [1 o} - [o p)  (p® o 0 p°
=l |+ o+ N +...
_Q 1) S p _0 ‘0 p S (p” 0
ordg;i (o) . (1).‘ (2) . (3) ... ’(6.39)

The probability that atom n (n=1,2) is excited at time t,

'given that atom 1 wés excited at time t=0, is given by
A .1 e 1
N (t) _<v(0)‘1'lsn‘(t)sn(t) ()2
S D - ’ . . ’
= 'J dx e lXtEn(x)lz . (6.40)

where 1 o

(i-—ﬁ(x+ie));ll : g o
I, 4 ~-C.C. . (6.41)
-t | -

P (x) = lim -1
o e+0  2mi

A

We cah coﬁpare the resul£s of the exact inversion and the
geries:expénsion’invéfsion of (1-§) by lobking at Figs.ll
6.1 and'6 2. Flg 6 la and b respectlvely show the ‘quan- i
/tltles F (x) and F (x) (whlch are proportlonal to the
ﬁFourler transforms of the amplltudes S (t) and s (t) of

the. two atoms) w1th the matrix (1 P) : calculated to
‘various orders. For example in Flgs. 6 la1 é 3 the series
a-pt "f '59 has béen cut off after the terms n’ 1,3,
and =« respgzglvely Figs. 6.2a and b then show rejpectlve—
' : 1y:the probabllltieslnl(t)vand Nz(t) ﬁhat the first



w order - o order

(a) . ()

G R h, JLn (b))

(al) ' . ) .(bl) o

Fig. 6.1. (al'2'3) The Fourier traﬂsform’of the probability
amplltude that the 1n1t1a11y exc1ted atom 1 isg -
still excited at tlme t, calculated to order 0 2,
and © in P r spectlvely, (b1 2, 3) The same ‘quanti-
vty for the 1n1t1a11y unexcited atom 2 to order 1,3

.and wrespectlvely. Parameters. b= .4wD, r= .Zm
~and rlé"ﬁo c/wD-~ s .



ayz o3 @mumHSOHmo

'3%33 pue T°9

.wﬂh 99g -
9Uy3 3O suroysuexly umHHSOh 9@sI8AUT 2y3} woxy

‘T°9 *b1g 3o mEmummav\m>auuwmmwu

\@mumOAGGA d ut muwvuo snoTIeA | :
‘3 mEa# 3e pa3Toxo mum Z pue T. mEOum umnu %uﬂﬂdnmnoum mna A m

cmn.ﬂfm
T 1
™/x . ) A . n...\- . A H.v
3 . 001 o .2 007 . o001 o
L 1 . —_— 3. 1< 1 2 1 ] z -
T ‘z
1 FY
aapio 7 I3pao R
<
1 © 1
[ . d
W7 [4 n/x Z
.- , q - €
? 00z oot 0 Y N 00T 001 ("e) :
1 t i 1 1 1 1 S 0 ¥
\ NS J/\ ) J
)z iz
2 T
aapio ¢
-, pa 3epae 2
) - 1
a ; : . ‘
-l . ) Gpy . (te)
0z oot | : T A r4 1
1 0. 1 —~r—1 o N L A %/\ 0
v A/\ : .
. .,r_
: v z
L £ .
1 B
. . . | avpao = T
12 z % fv@n .
Pic = @)K :
' 1 -




y
\

.and second atoms are excited at tim%,t, Calculated from
the correspondinglquantities F,(x) and F,(x) of Figs.6.la
and b;

Notice the following features. Eq. (6.39) shows that
only even (odd) powers of P in the expansion of (1-3)71
= s |
contribute to the probability amplitude for atom one (two).

th

Fig. 6.2a shows that to zero order in the expansion,

‘ atom 1 decays expdnentially and is never re—excited To
‘second order, atom 1 has a probablllty of belng re-excited

2r '
once mbre at tlme £ = ;2 ' whlch is Just the time it takes

a phonon to travel to atom 2 and back. Keeplng all orders

-1 ylelds the result that atom 1

- 2r I
~‘1s repeatedly re—exc1ted at tlmes t= J? Jn,-n==l,2,3,...

in the expan31on of (l P)

=as_the'phonon‘ls;repeatedly reflected between the two
'atomsJ' After each transit the probabilfty of'the atom

_.becomlng excited is less because the phonon has a flnlte

: probablllty of belng transmltted as well as reflected back. o

Notlce thaE*EHE“single pulse in. Flg. 6.2a, is higher
. than_ the same pulse of Flg. 6 2a Thls is an’ example-
»show1ng that the probablllty (of the flrst re- excxtatlon)h

,1s 1ncorrect when (l P) -1

is cut off after second order.:
: Ev1dently the hlgher order terms in the serles reduce the
probablllty as. we sald after (6 35) |

‘All’ features of Fig. 6. 2. can be understood in termsf

",of the Fourler transforms of the probablllty amplltudes

shown in Fig. 6 1. Let us dlscuss ‘the Fourier transforms

for atom 1 whlch are shown in Flg 6. la.~ To zeroth order



o

the transform is jUSt a Lorentzian leading to simple expo-
nential decay. To second order Egqs. (6.37) and (6.39)
show that the Lorent21an has an oscillation

ir/2 2 5 2ry,

ye® R  (6.42).

( :
- Av 4 AT
X AV + 5

added to‘it The envelope of the oscrllatlon is largest

on resonance and the maxrma occur at frequencies satisfy-

‘1ng the condltlon | o ‘ o i
1 i}—{’Z‘r' m.2n1n
o o] 12 = e =v1]
—x = 10C n=1,2,...0 ., - (6.43)
T, ‘ : ‘ ‘ _

5}

}(x)f

th peak 1n the spectrum occurs ‘at a wavelength

i;e. the n
‘such that exactly n wavelengths f1t 1n the’ dlstance 2r12
In other words a peak in the spectrum occurs when a stand—:.
,1ng wave is set up between atom l and 2 the helght of thei-
':,peak belng %he greatest for wavelengths hear resonance
31~F1nally 1nclud1ng all the hlgher numbers of phonon reflecf»g"
ttlons glves the splked spectrum of Flg 6 la3 Slmple'r -
‘ Fourler analy81s glves the result that the Spaclng between

E the peaks in: frequency space is 1nversely proportlonal to ,l

'the perlod of the system. Specxflcally the re~ex01tatlon .
, . _ , s



jﬁtlme Tl

"f51nce ruby 1s a. three—dlmen51onal system, the amplltude»h:h_ N

pulses of atom 1 shown in Fig. 6.2a3 occur at times

2Ty,

——'n=-—2-:n, nélﬂ,”.w. (645k

‘The'narrowness-of the‘spikes in Fig. 6.la3 ylelds the

large number”of re-excitation of'Fig 6.2a,.
An important case occurs when Tl> 2r12/c, i.e. when

the llfetlme T, of the decaylng atom 1s longer than the

1
tlme it takes: the emltted phonon to be reflected back to
the atom. Then the Lorent21an is. narrower than the spac—
1ng between the splkes, and the decay of the atom depends.b
cruc1ally on whether or not the Lorent21an overlaps w1th |
one of the splkes In the case that it does ‘not, the |
‘resultlng llneshape 1s approx1mately the orlglnal Lorent-
»z1an and the excited. atom decays in a time t =z Tl more.
or less unaffected by the second atom. However ln the
:'case that the Lorent21an does overlap thh one of the
';splkes, the resultlng llneshape is much narrower than the_’
"torxglnal Lorent21an~ Phy51cally thlS means that the reson—
:‘ant phonon has formed a strong standlng wave between the
'”m two atoms and the two-atom system decays very slowly 1n a

.Let us con31der whether or not thls phenomenon can \Aa"“

) \\,. v'
N

7ioccur in: 0ptlcally pumped ruby. 1t must be- noted that N

SN
\‘
TN

:yfor a phonon to be emltted by atom l and absorbed by atom:Z

- is glven by
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This is the same as the one-d1mensronal amplitude o
:(6"37) except that 1n this case the amplltude'

idecreases w1th the atom separatlon r12 Therefore for a

resonance to occur between two atoms 1n three dlmens1ons"
we have in addltlon to the former standlng wave condltlons

that rlz-—n /2 and r. ~<T c/2 the new condltlon that .

12
r12 < c/A i.e. that ‘the separatlon r12 is not much larger

”than a resonance wavelength _The wavelength of phonons

.resonant between the 2A and E levels 1n ruby is A R lO_Qﬂm

,Assumlng that the average drstance between nelghborlng Cr3+

N* l/

ions at a den51ty N* is <r, h> , we see that at a

den51ty N* z‘ldlscm_3, §r; n?. = A oo e. nearest nelghbors

, ,are on the average a reeonance wavelength apart., Thus at
-thls densrty we expect many Cr3+ ion: Palrs to satlsfy the)’lh

:tlstandlng wave condrtlons.i It should be p01nted out that a

tf’proper calculatlon would 1nvolve studyrng the rad1a1 dls-';ﬁ”“'

‘trlbutlon functlon for exc1ted Cr3+ 1ons 1n ruby.j The T

*rg_radlal dlstrlbutlon functlon n (rlz) is proportlonal to

:the probablllty that glven a Cr3, 1on 1s 1ocated at some
'-p051tlon rl a second ion 1s located a drstance rl2 from
."that»lon. ThlS functron would depend on how the crystal

‘~was grown, etc. In general nz(rlz) is a maximum: near



) S A (xﬁé)

© where

8

r12==$rn n.>e If we assume, as is the‘case JAn 11qu1dss7,
that this maximum is rather broad then even at den51t1es
| lower than N le lO18 cm‘3 we expect the standlng wave con;
_dltlon to be Satleled for: many ion palrs. Although more
study 1s requlred, we conclude that thlS phenomenon couldﬂ,

account for the long effectlve llfetlme Tlff noted 1n,the

rate equatlon analy51s of Chapter 5. - Q' : o ///

N Atoms,-Alldat”thefSame Position

Another case that can be solved exactly is the system

of N dlstlngu1shable atoms\\ll\\t the same’ p031tlon. In'
‘f practlce thlS would -occur 1f the atoms were more than a‘
:’deBroglle wavelength apart (1 e. dlstlngulshable) but less
than a resonance. radlatlon wavelength apart. .Thls is thec
'system studled by chke OA(see Section 2.2). It 15 easy

to verlfy that for thls case the 1nverse of the matrlx

!
*atdm

(l P(x+1e))

S
o

oo and v

is the matrix

147

fﬁ(6,46a)5“
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(6.472) .

iKY

Aatom(x+1€)(l P(x+1e))

',whereb

i
I
[y

- 1 S )
= b N —~— - Y (6.47)
X - A+ N(A-A'+ e IR S

-

4

X
o
o>

and ,

1

N
x - A+ N(A‘~A!u+5£9 B

(6.47¢)

fpluggingr(6.47a b,c) into (6. 15) we flnd that the probabl—.
llty that atom n is ex01ted at. tlme t glven that atom 1

.
. was exc1ted at tlme t= O ls

R .;l- L T
ng‘t)_f?(o?llsz‘t)sn‘t)J‘3’1> Ll
1

t'_:Ral a.q"‘}At l{ -}(A-N(A-A )t fNrt(zl

In N € ﬁ

| et ?,_°'f6r;t'\.01;~tfo:fnfé_1vf*_“‘

BRI TS

R 1";?‘2v,“1'?»5~'*“FWTL~73if_1,¥”rfi-“fvf”-_;’}f]?ftf]‘a:§5\%”!
|5 . fortse doratml. , (648 . )

~

*V'Jffkg-f.'”;for t ».«for all N-1 other étoﬁé;.rf'j

I P
S
A :

';(6 48) shows that the probablllty of non—decay of atom 1

'f?adecreases 1n1t1ally at the rate T of a- sxngle 1solated

. ‘atom but soon becomes flxed at the non-zero value oo
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N{(t+w) = (§~l)‘ ~Similarly the other N-1 atoms have a ~&$

’ probablllty l/N of becomlng exc1ted.‘ Hence the probabie

4

llty that a phonon is eventually emltted 1s only Np‘=;l/N.
| ThlS is 1n complete agreement with chke s results on ra- -~
dlatlon trapplng whlch we: presented in Sectlon 2 2
- Let us 1ook at the phonon spectrum that is emltted
_Plugglng (6 1a) and (6 6) lnto the Fourler transform for-
~.mula (3.3) we can write . |
o ST(0) ¢ _ N -lkr | .
b, (t) =—i—— dx e %Xt—ﬂ— z - R at°’“< )(1— P(x))
k ooo2mi ‘ L 1’
el A Y% n= . D
' G o : o : :
(6 49)
kwhere7{§ is: the contour (3 3a) around the lower half— R
_plane' In thlS equatlon, since all atoms are at the same
"‘p051t10n, we flnd that

B - T (x+1s)(l P(x+1e)) P »jff ff:‘

(6.50)

e Thus_doing,the3contour'integrationIWe7find_that

5  sjog 1,7.ff‘idkf"-1(A N(A-A')E -NTE/2
1W-bk(t) A (A A ir) (e " -e o e )»w;,
‘..F_o_,‘l R 7-‘;'7”'-’"K;Hzfliﬁfff*‘5'51)5]<nﬁ?'

PRI

-hsThe total number of phonons 1n the system at tlme t 1s

fa'glven by
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) \m.\iv A |
TR T ST §
Nph(t) a£<(0)l]bk(t)bk(t)l(o)l>
. =J . P/zv_r-. ‘N‘I; i {“ e NI’t_‘_2é-NI‘t/2 R
R (w=-A+N (A—A')) +(57) o -
R .7‘ cc‘s(cu”-A*N’(A-A')>~t}. - (6:52a)

By either expahding theiquantities:in braces for F 0 or !

-by 1ntegrat1ng over we ‘can wrlte (6 52a) in the- follow1ng

forms . :
3 I doz=t? © fort=0 (6.52b)
Jppf® =y L
B clh(i i -th g rt, . fQI‘t_: 0 (6’520)
N e )= 1 , B N
o L, fortse

'eEq. (6. 52b) shows that for tlme t= 0 a unlform spectrum of

1 phonons 1s emltted 1n agreement w1th the uncertalnty rela-

'e'tlon Aw At.zl '_(6 52b) 1s 1dentlcal to the result for
o \ ’
“the em1351on spectrum of a SLngle atom for tlme t 0 (see

f~d15cussxon of Eq (4 13)) (6 52c) shows that for flnlte s

'e‘but small tlmes the rate of phonon em1551on is P, agaln the e

'-3same result as for a SLngle lsolated atom.‘ Flnally (6 52a

"and d) together show that after a long tlme the N atom

”u_system has emltted a phonon w1th probablllty l/N, and that

'7”hthe phonon emlSSlon spectrum is. Lorent21ah w1th w1dth and

: _shlft N tlmes that of the Lorentzlan em1531on spectrum of ' ﬁ_s
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y
!.‘:

Pl

y

‘-islowly leaks away at the rate Im(r low). :

a single isolated atom. ThlS is an- extreme example of the
well—known phenomenon of pressure broadenlng, i.e. the
broadenlng of the em1551on spectrum of an atom due to the

perturbatlons of nearby atoms.

o

K . . LY
N Near.Atomsv

Hav1ng obtalned the exact solutlon to the problem of
N atoms at the same p051tlon, we can do perturbatlon theory
around that result and con51der the case where the N atoms
c/A where Max(r ) is the maxlmum separatlon of any two.
atoms ) |
| From‘a mathematlcal p01nt of view the radlatlon'

trapplng that occurred in the former exact case lS due to

. the pole at X = A ln the probablllty amplltudes (6 47b and

v) When the atoms are separated sllghtly We expect thls

pole to move sllghtly off the real ax1s to a new p051tlon

} T o
;c;“ —%%Qﬂ-w1th the consequence that the trapped radlatlon

*Uﬂ;jagb;Ana‘ziare respectlvely the zero-order matrlx (1 e. the

mer problem deflned in (6 46)) and the new

The dlfference between these matrlces
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f are only near each other. (By hear we ‘mean that Max(r J) <

Qr’

. .\}_

o :kLet us begln by deflnlng the matrlces,‘

s fyi”th;,f:(X)w[ T e
o x) = a- P(x)) L (6.54)
N R Aétom(X)~y.;,vv Gk me SRR

v -
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S

defines‘the'metrix-
(P (X) -P(X))

=APR () - APRGy (6.55)

E IS PSS
f:zxo '_.l = Eid'f

- f’l Z A+ (2 Z "";-5‘1-2'1“281 ¥ . (6.56)

It 1s convenlent to deflne the matrlx E, such that E J 'li}
for 511 1,3, and the quantlty B = A ~A" -+ﬁ§._ Then_wevmay"

. erte

,fZ l(x+1e)" atom(x+1e:)(1 P (X+l€)) o ,  {':

Tz Uoxmmew 0 (65D
and Eq. (6.56) bf‘c'émés«i .
ffllx%i;) Aatom(x+le)(l - P(x+1e))

___;E____
A+ NB

2o ese

B

":Y;aizz‘e = ATFNB 8+ O(E )’ - a ;:Mt;ei,.(6f59)h3i-
Jv3‘The Shlft of the pole from x = A to X = A-—;; lS descrlbed fffjffif;
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\ 1 ) A
'X"A*FLZ— x-A

(1- rﬁ +0(<r 12y . ) (6.60)

"Compating[(G.SB) to (6.60) we find afterfeome,algebra that

Tl (xtie) =23 (yuie) (1 - p(xtie)) L o
b By . o . 1]

.. - L -
= LS T +°  (6.61)

C Y. x=A+N(A-A + =) ,

~VX§ A+Q._%l_e o | 2

==
’_1 .

¥

where the shlft of the pole in the ij matrlx element 1s

fglven by

c ‘\ . l oL - o
¥, G4y ﬁ% | k)t 7 1 “k,0
. L ; ES _ . 16.62)

6- b"‘
By

with e, (x) evaluated at x = A.

| MTwo:Near Atoms
Con51der the Smelest non-tr1v1al example, namely :
. that. of two ‘near atoms 1n one dlmen51on, w1th atom 1 ini-

'tlally exc1ted and atom 2 1n1t1ally unexc1ted. ;In thlS

\‘

'7,case it is easy to show that 4¢'e;f f;gt' R

) ."‘( 12')

~,Re(€12 - r fEET’ -

Crppb
‘(forh%:zc <<l, where r

~
N

B

12 is the separatlon of the atoms) ”h_;ef‘,m

L,_and that o

A‘;iilf;-zeln zlr(

RGN

a??for all 13 (We 1gnore the real part of the Shlft P i3 ’ tr:t;{?_.,

i _.Comb:uung (6 64) mth (6 61) and (6 15) we fmd that the

.. -



probability‘that atom n, n=1,2, is excited at time t,

given that atom 1 was excited at time t =0, is given by

. : - Wp ' wo=1 2
Yy 1 ~-ixt
Nn(t) = |37 J dx e {2 (x-le) "'§nl(X+l€)}'
0
oy ine T t/2- 2
= (5. -y gist “slow’ 1 o -l(A Z(A-A )t -I‘tl ‘
R "1,n 2 ' _ tye )
{6.65a)
The slow decay rate for both atoms is ‘
| a2 e : |
p 12 ' ' : .
| Fslow . . “(6.65b)

These probabllltles are shown in Fig. 6 3a and b~ for two

El

dlfferent separatlons r12 of the atoms Note that the

decay«rate gl lncreases as tﬁs separatlon 1ncreases.

The 1nset of Fig. 6.3(a) shows the Fourler transform of

©

the probability amplltude for atom n, namely the quantlty

-1, . -1 . .
) W x=ig) - (x+ic) - . e
b, ln ¢ . (6.66).

2mi

' We see'that the former pole at x =A has become a narrow
resonance’, . "
"- . o )

N Randomly Distributed Near Atoms

- Suppose there are a large number N of two-lévél

atoms randomly distrlbuted in a one-dlmen51onal box 6f

‘ " length L, w1th only atom 1 1nitlally excited. It is easy‘
to show that the average square aistance ?r§2> between any. )

~ two atoms is given by - e
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g]’l(:<die)—q.c. o R
211 .
1-
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3 J
7
1 A , B ' Z—l»(i-—ie)-c c
27| () S SR 2,1
: : C - 2w
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. : | A 100 ‘ 150'“: . o _ wnt
(a) . : T R T

F1g.6 3 (a) The probabillt1es N (t) and Nz(t) that. atoms 1
and 2 are exc1ted ‘at time t. System parameters: A =
4w r 2mD, and ‘atom separatlon rl 2 c/m
(b) Same as. (a) with atom separatlon r1 2-—%c/m
‘The ‘inset of (a) shows the Fourier transform of the
probablllty amplltude for the two atoms.

e
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\ . N
2 2 ' g : C
~<;12§ = L°/6 . , : - (6.67)
;Thus from (6.63) : \
’ . 2 WYL
- I LA NS
<Imleg,)> = - & (3 . \ (6.68)

ﬂ;f we now assume that
. \

(e, for'ii#_j
ij = e | (6.69)
0 . for i = j, . :
.,we"findlthat‘
s . : : ‘ : -
——2-1 = - <g > Cor ' » ) < ’ (6.70) ‘

12
lfot all i,j.: Thus.the‘probability that atom 1 is éxcitéd
- at timé.t\jékj | |

| slow . o . (6.71a) .

123
o

N; ()
| 4\\ . .
where _ . ‘ ”
' L LA2~ | \ ' L
rslow ?» ( . N : ) (6.7lb)
‘The probablllty that any of the other N-1 atoms become_
excited is negllglble for large N. Let us now flnd the
'phonon spectrum that is emltted in this case. The den51ty .

ph(mk)dcuk of phonons emltted into frequency 1nterval dmk

ls.glven by
n (o t)day =B (o, )a< (1 |b+(t)b | (2 o> (6.72)
ph Uk’ T 0k T RO < R0 10y TRIB IRV T g) > -

» .where>bk(t) is \given by (6.49). To find b, (t) we must
| evaiuate the quantity (see Eq. (6.50)) |



N  -ikr_ ‘ A .
I e ®a?Miyiie) (1= (x+ie)) 111
n=1 ' ks ) n’ : 4
N "lkl‘:n Gn 1‘1%" ) : ‘]-ZN ‘ : . .
= ] e n. — + - ————r + (6173)
n=1, . rs. 'X-A+N(‘A—‘A"+}-—) ’
f 4‘ax*A+%%‘ S 277

In the previous. caée where all atoms were at the same

3

p031tlon, the contrlbutlon from the flrst term in braces

!

vanished Ldentlcally. However in the present case w1th N.

large, this term gives the'dominant cbntributibn.thhus
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neglecting the second term and using the expression (6.70) .

. . [
for Pij we find that (6.73) becomes

.Y

" T ]_ ro .
x -4+ 1 *iigi o

< R L (6.74)

where C is an undetermlned constant. Plugging (6.74) into ﬁ

pol

(6 49) we flnd that

-1wkt o
bk(t-rao)n = - P . S (.6.75)‘
o mk;,A + SloWw ' '

0

"The condltlon that a phonon is- emltted with certalnty as

e determlnes the constant ICI to be

— : . N

lc|? < fslow | | “ (6.76) .

r :
The’phonon épectrum émitted'af§er'19hg times is‘thus
. I‘slcw o ': -
n_, (0, t+e)do = —— 21 _ - S (6.77)
horm - 2 . Lsiow 2 ”
(w=8)" + (——)
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beyond the rangevof the'present phonon'hottleheck
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Let uSvparaphrase these:results. If a single atom of a
collectlon of N atoms randomly distributed along a length

L < c/hA lS 1n1t1ally excited, then thatnatom decays at the

4
rate » R

- L (T:A . | . (6.78)

I‘s(low T12

emitting a Lorentzian phonon spectrum (6.77T of width

sléw., This decay is indistinguishable from the decay of

a single isolated atom whose effectlve llfetlme is Tiff
l/I‘slow It is interesting to note that the. rate T slow 1S

1ndependent of the number of atoms N (for large N) 1n the
system. If we imagine that ‘the length L of the system is
Just the range of the virtual phonon cloud Surroundlng the:
exc1ted atom (i.e. the range for Wthh the near—fleld |

- form of the phonon amplitude (6.28) is Valld): namely

=c/b , r | o (6:79)
themiwe_find that

l"slow* 1z ' L (6s0)

ThlS result holds whenever the number N of atoms 1n the,
range (6. 79) is large compared to unlty.-' |
. Assumlng that these results hold also 1n the three-'

: 6 : ; , _
dlmen51ona1 ruby system where L = lQ_JE%%EEE x 10 7 cm, we

. 2% 10%°Hz . |
expect (6. 80) to obtaln for denSLtles of ex01ted Cr ions .
N* > 113 & lozocn13{ Unfortunately-these densities are

&
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- experiments in ruby. To our khoWledge this phenomenon

has not been looked for or observed in optical radiation

!

trapping experiments.



_ CHAPTER 7

. " CONCLUSION

We have studled the phenomenon of resonance radlatlon
trapping by a system of two- level states paylng partlcular
attention to the example of the bottlenecking of 29 cm&l '
bphonons by exciteder3+ ions’in*optically‘pumped ruby In
Chapter 2 we found the fleld theoretlc form of the electron-a
_phonon 1nteractlon 1n ruby, and in Chapter 3 we studled the
tlme evolutlon of a srngle two- levei state coupled to a
’phonon fleld ‘ Wlth thlS experlence we proceeded to solve
‘the problem of the tlme evolutlon of a system of many atoms-
'coupled to a phonon fleld by der1V1ng in Chapter 4 a set of
rate equatlons descrlblng the system. These equatlons were
‘shown to be valld for small numbers ot exc1tat10ns and at |
T low den51ty of two~level states. The former restrlctlon
allowed us to neglect stlmulated phonon em1531on and the
dlatter to neglect the quantum 1nterference effects due to
x:phonon reflectlons by nearby atoms. In other words an f

leleglron phonon 1nteractlon could be vlewed as a two—step
tjprocess w1th the phonon em1s51on by an atom 1ndependent of f
'h'the precedlng phonon absorptlon._ Wlth these 11m1tat10ns 1n B

i'mlnd we solved the rate equatlons in Chapter 5 and compared :

‘;the results w1th recent experlments on the phonon bottleneck'.f?»

:ln ruby. The rate equatlons were able to reproduce the

e followrng experlmental features-‘



¥ _ . - 161

(1) the rapid decay of the system in time tx Ty from
1ts non equllbrlum 1n1t1al condltlons R

(2) the establlshment of a bottleneck with a qua51-
equlllbrlum exc1ted atom populatlon N2 eq)/N w2 N* L, and

(3) the subsequent decay of the qua51-equ111br1um at
the rate l/T e l/T ch where f is the fractlon of the emlt-
ited phonon spectrum whlch is not resonantly reabsorbed. In

the case of ruby where the emlsslon spectrum is Lorentz1an we

had £ = 1//av)b. o RS

We saw. that the N* behav1or>of the qua51 equllbrlum
exc1ted atom populatlon was a consequence of the fact ‘that
all phonon modes ln the frequency band satlsfylng the condl—
‘-tlon a(v)b:>1 came lnto equlllbrlum w1th (1 e.nreached the

hsame populatlon as) the exc1ted atoms, and that thls band
-_had a w1dth Av /a(v )b MN*15 ‘ | N |

| The appendlx shows that thls broadened flattened
z:nspectrum eXlStlng 1n81de ‘the system 1s the same as the
"tfspectrum that would observed emerglng from the system.

| dh;To obtaln quantltatlve agreement w1th ‘the experlments R
‘fhby Pau11 et aL?Q 21 we had to choose the 23 state llfetlme L

‘fmTi z 20 ns 1n the rate equatlons, whlch is longer anHQE

B
order of magnltude, than most prévxous estlmates of Tl
jIn Chapter 6 we showed that thls 1arge2hfet1me could be due'

to a quantum 1nterference effect 1n whlch a standlng wave orv"

resonance 1s formed between the decaying atom and a’ nelgh- o

lborlng uneXClted atom. The duratlon of thls resonance then

.
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A
enters as the effectivevlifetime Tiff ‘of an exc1ted atom. in
the otherw1se classical rate equations.
In Chapter 6 we found another quantum effect whlch
occurs at denSLtles SO hlgh that there are several other

. -
"atoms w1th1n a resonance radlatlon wavelength, i.e. within

the v1rtual phonon. cloud of an exc1ted atom (N* > lO20 m'-3
in rhby) In thlS reglme the radlatlon, which 1s perfectly
ytrapped in chke s model, slowly leaks away in a time Tiff
12 Tl,,lndependent of the atom den31ty. o
Some of our assertlons could be tested experlmentally.'
For example the radlatlon 1eak1ng result of the precedlng |
_paragraph could be checked 1n 1mpur1ty-doped crystals such
as sapphlre Whlch have a longer resonance wavelength than
1ruby, ancifor Whlch the effect should therefore appear at a
1lower dens1ty N* Also no experlments to date have examlned”
-.the dependence of T on the 512e b of the exc1tat10n reglon.,
rWe predlct a b;5 dependence where a theory due to Pau11 ét al20

) predrcts that T 2 b3/2, and purely spatlal dlfoS1on 1mp11esf

'""thath,c,A:bz;‘""'_f (
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- APPENDIX
' ' S0
THE EMITTED PHONON SPECTRUM

Untll now we have not discussed the spectrum of
phonons that emerges from the excited reglon of the ruby
'crystal ' This spectrum can be ‘dérived from a simple
phenomenologlcal argument Suppose - that we have a unlform
3.dlstr1butlon of two-level atoms in the. upper energy level
along a one—dlmen51onal system of length b, as shown in
,:Flg A, l(a) Then each 1nf1n1tesxmal reglon of length dx
about x, 0 <x-<b,,oé?the system emits a spectrum A.a(v)dx
of phonons toward the observer located at x=0, where A is
- some. constant and a(v) is the frequency dependent absorp-
'~tlon coeff1c1ent (whlch 18 proportlonal to the em1531on

-

spectrum):‘IIn travelling to.the observer this emisslon is
attenuated by the factor e—d(v)x. Integratlng over the
'entlre system we flnd the spectrum P (v) arr1v1ng at X = 0
from all parts of the system, namely

b \,'. g S 23
P(v) =Aa(v) Idx e MIX _ a1~ “‘”’b) .. (A1)
-0 | T
LIfa(v)b << 1, i.e. if the system is 'transparent"
then P(v)==Aba(v), whlch is. Just the unattenuated emL351on )
' spectrum - On the other hand 1f a(v)b >> 1, i.e. if the~

" system is opaque then, as’ shown 1n FJ.g. A l(c), P(v) —A-

'iconstant over a broad band of frequenczes around resonance
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<{ [ 17 -
- observer I 11 R 1
' S Q X xX+dx b
(a)
_5—-a(vo)
: _ _ __.a(vo)‘
(V) 2
N —~b .,
o .
- AV T
- ° a(Wb=1 -~
(b) o
Py B >
a ! '
\,\Ai:i;,l) |
-1 1 ' — v
“"s : Vo 3 _
o FPE"“(Vo)b Avg —f

. . (for Lorentzian a(v))
(c) '

Fig.A.l (a) Geometry of the one-dimensional radiation
' trappiﬁg system of size b. (b) The absorption
~coefficient a(v). (c) The phonon spectrum P(v)
emerging from the-SYétem infcase a(v )b >> 1.
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satisfying a(v)b>1, and P(v)==Al>a(v) in the far wings
where a(v)b-<1 In case a(v) 1s a Lorent21an of w1dth Av
then the emerglng phonon spectrum 1s ‘broadened to width
/ERTT"'Av ‘and flattened similar to the phonon spectrum
~inside the exc1tatlon region shown in F1g 5.4, except for
the absence of the dip near resonance Thls self—reversal
of the. dlstrlbutlon in Flé 5.4 is due to the vanishing of
the density of Cr3 ions in the 2& state at the walls of

. ’ 3
the container. We can reproduce this by allow1ng the cons-

tanQQA_in Eq. (A.l) to have a spatlal dependence such as

that of the system of Chapter 5, namely (see Eq. (5,12))
| A(x) = Jo(-T;~lx-§4) . . . . | (A.2)

Thus we find‘that~in'the‘steady stete the phonon spectrum!
emerging from_the excitetion region,is the sane eS'that'
,f;nside}the,excitation:reéion. | | |

| | Some features of the.emitted phonon spectrum cantbe
foundevia quantum field theoretic nethods; Recallafron-
Chapter 6 (£qs. (6 la) and (6 6)) that the probablllty '
amplltude that a phonon of wavenumber k ex1sts in the sys-
o éik r | . - o
B (x) = 1~ 2 R (x) ' (A.3)

x- wk n-l

Y

tem'is given by

-

where'the'amplitude that atom n is excited is given by /

A

T .- {.' A 1 v ‘ - _
dap=d P(x)) - _a*‘°‘“(x)1s 0 . (A

\\J' .



L s
We have assumed that in the initial state l1>-]( ) o

atom m is excited and that no phonons are present From
our work of Chanter 6 we know that whenever the two- level
atoms are not all at the same positlon, thenxf (x) has a
branch cut’ along the real axis in the interval 0<<x<:<nD

and no poles. Hence its Fourier transform S (t) decays in
a finite time. Since we are 1nterested in the spectrum of
‘phonons ex1st1ng in the 1nf1n1te tlme limit (when\all the
‘phonons have escaped from the exc1tatlon reglon), we may |

. find bk(tefw)-by srmply.evaluatlng Bk(x) at the pole x==mk, ‘

"‘i.e.:, ‘. k ., c -
.N ‘ —J_k r e -1
by (t+w) =lim ) e ~ (1 P(m +1.e:)) at°‘“(m +1e)s ©) .

€*0 n=1 - n,m
' L,(A.S)

.\\.

' The number of phonons eventually emerging from the excita-

s s

~ tion region is'given’by
pr=£<1[‘bk(.t+°§) bk(tﬁ li> e

Let us now spec1allze to a one dlmens1onal contlnuum'

n

'system. Then (A.6) can be wrltten_‘
. o “D ' . o o | SR

.. where
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nm " .
2 , j;;H ’
. (A- 8) '«.v_ .

Here the flrst/second term in- braces represents phonons

1o,
=T A - ato '
+ 2 e © " (1 - Plu tie)) A m(m +ig)
n=1 k . k

emltted to the left/right. - Let us arrange the atoms in
the order shown below

’

- r | r e e .1'.' p ; . s . | r ‘- r M L .
‘ - A/<l }(2 — )It/: : )? L ,‘%\1 r : .(A.9)
atom: 1 2 .. m N L

..‘.'a N"ll

and ‘assume that the dlstance rlj b@tween atoms i and’ 3 ls_ o
‘ large, i.e. Tiy >>}c/A. Con51der the spectrum of phonons'f
| emltted.to~the rioht'by an 1nterlor atom m. Note that wefrf'
may formally 1nvert the matrlx (l P(w +1e)) occurrlng 1nf'
'(A 8), yleldlng ' |
o ‘x o | . o1 ,(mﬂ{ié} _ B ‘ tf ;j S
4 (l'iP(mk+ie)).. ’ ~ . . (a.10) o
PRI It det(l P(w +le)) N L

,where 6.5(m +ie)'is the cofactor matrlx formed by multlply—fh"

1ng (- l) i tlmes the matrlx formed by deletxng the ith row;_
and the jtq column of (l P(w +ie)) . Thus we can wrlte |

,~the second- term of (A 8) in the form

\.



h(w)d(ﬂ

A emltted to
* . p |the right
by atom m

x

det C' (w+ie)

Sy

 vnage o

. det E"(utie) =

atom

iw : :
(w+l€) N -=>r . 2

det(l P(a)+1€)) n=1

det(l-P (Lu +1e) )

W

Chm(m+1e)

' o (a.11a)
»  (a.11b)

det C'(wtie)

‘hthfrow;
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| NxN matrix oo

et c"(arue) ;o aan

(A 13)

- me matrxx,»i 8



and . Lo
: ! .“ ) . . : . o
L ale) = 22 = . | (A1)

“ 1
w = A+ —2—

Eq. (A lla) has the follOW1ng lnterpretatlon.
At t1me t=0 atom m is exc1ted | |

' Aatom is the probablllty amplltude for the non-decay

of this atom. . | | |
‘l/det(l'-b)‘=det(i#-P)‘ is the sum of the amplltudes
over all p0351b1e paths (traversed all numbers of tlmes)

L_for a phonon to be emltted and to eventually return to the‘

orlglnally exc1ted atom m.
-

I

v

"by atom m and absorbed by atom n, by traver51ng a 51mple

"non-repeatlngrpath from m to n. The product of the’ above '

B amplltudes glves the agnﬂltude that atom n is exc1ted.

;jn;the N’ atoms add ln phase to glve the amplltude for the'
}eexlstence of a phonon | : O | |

| Eqs.»(A 11b) and (A 12) show that by factor121ng

: det C' a dlfferent lnterpretatlon is possxble°'

det C" 1s the amplltude for a phonon to 1nteract

175

2,Chm ‘is then the amplltude for a phonon to be emltted p

:gnu‘Flnally the amplltudes for phonons to- be emltted by any of‘“" L

1w1th the m-l atoms to the left of atom m and to eventsalry,aa

"return to atom m. J?'.' “f .

|
PfThe'faCtor,[ A
- . . 8 »_a,‘ . j .

CF (&)
A (mA)+(

| 2 ' i | 'H:m L e
1l ‘N““? [ oog)’ pz} o @mas o
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is then the factor by whlch these phonons are attenuated
in travelllng the dlstance from atom m to the rlght to
atom N. |

To date it has provediimpossible to. evaluate

det(l P(m+le)) and det C"(w+1e) in closed form for all w.’

Rl

However 1f we approx1mate these quantltles by thelr values

far from resonance, namely

) v \ o . ) . A
det‘: (1 - P(m+99+ie)) = l_'fi

T - (A.16)
det C"(wrwiic) = 1,0 o | S
| det Clluwmie) =1 o
vthenth. (A.llb)'becomes |
n., (0)de L E T F (m) (A 179
. : ol § : Z
- ph 'm;Ariwght ;2 2 ((D—A )2 (g) S

s :

The attenuatlng factor F (m) and the spectrum

' ph(m)’m rlght emltted to the rlght by atom m are sketchedihff

nhln Flgs. A, 2(a b) respectlvely We see that the presence;\;

o ) & . o o ; R
. of N~m atoms between atom m and the surface of the exc1ta-:~l‘.1:*

'tlon reglon results 1n a 'hole of Wldth P/N-m ln the f'” ‘

"*acenter of the spectrum emltted by atom m.:’-

“If we assume that the one—dlmen91onal system 1s
)

‘unlformly exc1ted, i. e.-that each of the N atoms has a '

' tprobablllty 1/N of belng 1n1t1ally exc1ted, then'the ‘

N

bfaveraged em1881on spectrum is- glven by
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A Frh(“’)‘ 1
w
(a) N
.r
1-', unattenuated :
o o © . Lorentzian
ph | g
(b)
ROk —
S
T A'
”'*-f'_(c)jf . :
fFlg A.2 (a) The factor F (w) by Whlch phonons of frequencywtuf:i
S .vare attenuated 1n travg}llggyfrom atom m past N-m '
,atoms;to;the ri -handi: "
i _ e i :
Eq. (A. 15)) (b)~Thekphbnon speetrum n (m) m; rlght*

 emerg1ng from the rlghtfhand boundary of the system,"'

' .given’ that atom m was 1n1tlally exc1ted .(The llghtj{

fllne Ls the unattenuated Lerent21an em;tted by atom_‘ .
fm) (see Eq.,(A 17)).-(0) The phonsnzsggctrum <n h(m)>'

_,41]emerg1ng from the system assumlng ghat each two-level
| - atom has probablllty l/N of being 1n1taally exc1ted

L

(see Eq (A 18))
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N.
N ”r/é&“" 'm=lv- ‘
<n_, (@)de> = — F_(w) _ S
BT et oo mE
2 [ L ta= A 12 ] e ‘
R i l—( ) . S (A'lg)
Nml (w-A') +(~)2 - .

:’We see that the spectrum <nph(m)>, whlch 1s sketched ln'.

.'Flg.vA 2(c), lS flat and has Wldth /NIH. ‘ . |

| - In ‘this one—dlmenSLOnal system a resonant phonon‘

';undergoes exactly N absorptlons 1n traver81ng the system.f

_Thus 1t appro&lmates a three—dlmen51onal system in whlch !

| _.the absorptlon probablllty a(v )b N. Thus thlS spectrumf tf—.

R ”lS 31m11ar to- the one of w1dth /57—~7"F derlved in (A. l)

hby the elementary argument (However due to the rather :;f{

fdrastlc approxlmatlons (A 16) 1t 1s normallzed 1ncorrectly)
It 1s p0931ble, by“dolng the calculatlon on a compu-'p‘

" .:ter, to- flnd the spectrum <np (m)dw> emltted by a unlformly

,h:eexc1ted one-dlmen31onal system w1thout u31ng the approxr—v.i}j‘”

1;s:mations for det(l-P) and det c"\glven in- (A 16) The S

' s;results for systems of N 1 3 S, and 8 two-level atoms are:}if

-;shown 1n Flg. A. 3(a—d) Here a Monte~Carlo-type Calcula-if-“*~“

» jtlon was used P081tlons for the N atoms were chosen by L»;i,,[,i

a random number generator ﬁZB tlmes, each tlme the result—f]rngt’

o

'flng spectrum belng found The spectma of the 128 ensemble.;"
‘members were then averaged to produce the spectra of Flg.vfﬁ»’“’

mh 3 ) Also shown (llght llnes) are the approxlmate spectraf”’

N e o S ) ) s el
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(b) . -

Ve oo

ol E

e
e

Flg A 3(a—d) The exact phonon spectrum <n h(a))> emltted ff
j?from a unlformly excited N atom system' N 1 3, 5 8 -
‘ '-respect1ve1y. The lxght curves show <nph(w)> accord—4'

_*1ng to: the approx1mate formula (A 18) the the dlp

gﬁ1n the spectra on resonance.
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aCCOrding to Eq"(A.18) We see that thedapproxlmatlon
‘underestlmates the populatlon of phonons w1th frequenc1es
' w1th1n a dlstance /N f of resonance The splkes in the
spectra are due to long—llved resonances between varlous
atoms of some of the systems, and have not yet dlsappeared
-:1n the,aVeraglng process.' It is 1ntere9t1ng to note that

-the spectra have a hole at the resonance frequency ThlS"

w'“hole can be shown to be due to the fact that in a one-"

QidlmenSLOnal system, phonons exactly on resonance are o
:reflected backwards from an, unexc1ted two—level\atom w1th

'?100% certalnty. Slnce thls phenomenon occurs for\\Il\\

o phonons except those emltted outwards by the two end atoms ‘)'

: b
’fl and N, the hole has a, helght *%x-xthe helght of the .

. Lorlglnal Lorentz1an.~ Slnce 1n three dlmen81ons the reflec-

”»

t1v1ty of resonant phonons ls not 100%, hlS effect w1ll :
. £

RN, '.' e ‘1» AV

not be observed there.rfl



