’ [preprint] Empirical Software Engineering manuscript No. EMSE-D-17-00197R2

What can Android mobile app developers do about the
energy consumption of machine learning?

Andrea McIntosh - Safwat Hassan -
Abram Hindle

Accepted on: 2018-05-10

Abstract Machine learning is a popular method of learning functions from
data to represent and to classify sensor inputs, multimedia, emails, and cal-
endar events. Smartphone applications have been integrating more and more
intelligence in the form of machine learning. Machine learning functionality
now appears on most smartphones as voice recognition, spell checking, word
disambiguation, face recognition, translation, spatial reasoning, and even natu-
ral language summarization. Excited app developers who want to use machine
learning on mobile devices face one serious constraint that they did not face
on desktop computers or cloud virtual machines: the end-user’s mobile de-
vice has limited battery life, thus computationally intensive tasks can harm
end users’ phone availability by draining batteries of their stored energy. Cur-
rently, there are few guidelines for developers who want to employ machine
learning on mobile devices yet are concerned about software energy consump-
tion of their applications. In this paper, we combine empirical measurements of
different machine learning algorithm implementations with complexity theory
to provide concrete and theoretically grounded recommendations to developers
who want to employ machine learning on smartphones. We conclude that some

Andrea McIntosh

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
E-mail: akmcintoQualberta.ca

Safwat Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University

Kingston, Ontario, Canada

E-mail: shassan@cs.queensu.ca

Abram Hindle

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada
E-mail: hindlel@ualberta.ca

2 Andrea McIntosh et al.

implementations of algorithms, such as J48, MLP, and SMO, do generally per-
form better than others in terms of energy consumption and accuracy, and that
energy consumption is well-correlated to algorithmic complexity. However, to
achieve optimal results a developer must consider their specific application as
many factors — dataset size, number of data attributes, whether the model
will require updating, etc. — affect which machine learning algorithm and
implementation will provide the best results.

1 Introduction

Imagine we are in a hot new start-up and your app, which will be deployed
to millions of phones, needs to take advantage of machine learning. Which
machine learning algorithms should we employ to avoid sapping the energy
of your customers’ phones? Should we use neural networks since they are so
popular, or should we stick to simpler models to save energy? In this work
we address the questions of “how energy efficient are these machine learning
algorithms?” and “which algorithms should we use on a mobile device?” Others
have asked these questions before [53].

Machine learning is growing in popularity. Google, in particular, has made
the results of machine learning available to the general public in terms of speech
recognition [72], translation [24], computer vision, and search. Many machine
learning implementations have been deployed to servers in the cloud or data
centers. But the popularity of mobile devices such as smartphones and tablets
are causing a push toward mobile-apps that employ machine learning. One of
the issues that mobile platforms face that servers and desktop computers do
not, is that mobile platforms tend to rely on batteries for power and when
the batteries are out of energy the mobile device is no longer available for
use. This is different from data-centers that have machines on racks that face
power limits and need constant cooling. Machine learning on mobile platforms
is often outsourced to the cloud, but the bandwidth to the cloud is quite
limited, so a lot of machine learning is pushed back to the mobile device itself.
Additionally, apps are expected to work offline, as network availability cannot
be guaranteed. Some apps engage in computer vision, others learn from the
textual and event-based data on the phone to schedule appointments [25], and
others link and organize documents [20].

If machine learning is pushed to mobile devices what should practitioners
do about the software energy consumption of machine learning on their mobile
devices? Surveys of developers and users have found that poor software energy
consumption performance can lead to negative app-store reviews and poor user
satisfaction [33,58,79]. In this work, we will empirically test, measure, and
detail the costs and trade-offs between machine learning performance of several
implementations and software energy consumption on Android smartphones.
We will show that there is no best algorithm implementation but there are a
wide range of trade-offs that one can make depending on the context that one
is operating within. Furthermore, not all energy consumption is CPU bound as

Title Suppressed Due to Excessive Length 3

some implementations of algorithms cost more in terms of memory-use than
others that in a memory constrained environment can induce more energy
consumption.

All of this is tempered by the rapid pace of development in mobile devices,
machine learning software, and specialized hardware development. This paper
focuses on classic machine learning algorithms and implementations, executed
in the context of the 1 version Android OS and on one brand and model of
an Android phone. While we focus on classic machine learning algorithms and
implementations, neural networks, deep learning, and stochastic gradient de-
scent optimization have taken over machine learning [13,24, 72]. New libraries
and services are constantly being released [27, 36, 37,72, 76]. Thus the pace
of new libraries, their adoption, and their distribution is rapidly increasing.
This is combined with the fact that newer versions of Android and iOS even
come with machine learning libraries out of the box [27,36]. This paper eval-
uates machine learning implementations on Android 4.2.2 but new versions of
the Android OS have switched from the DalvikVM to ART which can change
the performance profile of user-space code. Furthermore, the hardware of the
Galaxy Nexus phones is different than the hardware used in newer modern de-
vices, where changes in architectures, CPUs, buses, and memory, can all have
an effect on performance. Furthermore, there is a push to put more machine
learning related functionality on a chip to increase machine learning perfor-
mance, such as Apple’s A1l Bionic Chip with Neural Engine [10]. Thus our
measurements should be viewed as a snapshot and an initial recommendation
given a certain configuration as the state of machine learning rapidly changes.
It will still be up to a developer to profile and benchmark their machine learn-
ing choices on their own, given their own context. All of this should be taken
into account, but fundamentally developers should understand that mobile
machine learning is becoming more and more important but it does not come
for free in terms of energy consumption as different algorithms can behave
differently.

The contributions of this paper are:

— an empirical evaluation of the trade-offs that machine learning algorithms
and their implementations make between accuracy and software energy
consumption;

— concrete recommendations for choosing machine learning algorithm imple-
mentations for use on mobile platforms;

— an investigation of machine learning imports in the Google Play App Store;

— empirical testing and measurement of multiple machine learning contexts
that demonstrate “one size does not fit all”.

1.1 Motivation: machine learning on mobile platforms

Why should we bother with machine learning on mobile devices? Are not ma-
chine learning algorithms expensive and unfit for resource limited devices? We

4 Andrea McIntosh et al.

believe in many cases the appropriate algorithms with the proper configura-
tion and data can fit well on mobile platforms. There are many examples of
frameworks and applications of machine learning for even the Android ecosys-
tem.

Multiple frameworks exist that enable machine learning within mobile ap-
plications. As Android uses Java, any Java-based machine learning frame-
work can easily be integrated into an Android app. For our tests, we used the
Weka, [31] and Neuroph [69] frameworks. Google Brain team’s TensorFlow ma-
chine learning library [72] is also intended to be portable and work on mobile
and embedded devices.

As a demo for an Android application, TensorFlow provides example code
for an app that can classify what is being viewed in the phone’s camera frame
in real time. Similarly, the Google Translate mobile application can translate
words being viewed through a phone’s camera offline and in real-time using a
trained convolutional neural net [24].

There are numerous cases of machine learning being used in apps. “Smart
calendar” apps use machine learning to enhance calendar applications. Google
Calendar Goals automatically schedules time for user-set personal goals, such
as exercising three times a week, re-schedules these goals if a conflicting ap-
pointment is added, and learns the best times to schedule goals based on when
the user completes or defers a goal [25]. The Tempo app could pull and bundle
data related to calendar events from the user’s accounts — such as participant
contact information, directions to the location, associated documents — and
present them together in one organized entry [20].

Triposo is an app that provides travel recommendations and booking op-
tions to users. It uses machine learning to process websites and reviews, and
combines the results with user preferences to make personalized recommenda-
tions [74]. Weotta is an app that uses machine learning and natural language
processing to provide event and activity recommendations to user queries [77].

1.1.1 Ezxisting APIs and libraries

We employ Weka [31] and Neuroph [69] in this paper as they can be freely
included into any Android project that needs machine learning training and
evaluation. But there are currently numerous libraries and frameworks one
could use. Some come with the mobile operating systems, some are provided
by mobile vendors in SDKs, while others are remote machine learning services
that one can access over the network.

For neural networks and deep learning, Google has released Mobile Ten-
sorFlow [72]. TensorFlow is a deep learning framework used on the desktop
while Mobile TensorFlow relies on the Java native interface as it can generate
platform specific and independent binaries for deep learning. Google recently
(as of writing) released a wrapper for Android for neural network libraries like
TensorFlow called Neural Networks API [26].

Apple has released CoreML [36] for iOS. It has support for decision trees,
neural networks, matrix routines, GPU-accelerated operations, computer vi-

Title Suppressed Due to Excessive Length 5

sion routines, and Al path-finding routines. It also comes with utilities that
allow the conversion of 3rd party models into CoreML friendly models, en-
abling training on the desktop and deploying on mobile. CoreML enables both
training and evaluation locally on the mobile device.

Google Android comes with computer vision classifiers and detectors for
face detection, bar-code recognition, OCR/text detection out of the box [27].

OpenCV [56] is an i0S and Android compatible computer vision library
that provides numerous image manipulation routines and classifiers. One com-
mon classifier is the face detector that employs Haar Wavelets to search for
faces in an image in a hierarchical manner. OpenCV also comes with object
detectors as well.

Some mobile machine learning libraries or APIs are web services meant
to be remotely called from the device. The benefit is that the training and
evaluation are not local and the energy cost is not local. The disadvantage is
bandwidth, latency, and network traffic necessary to engage in a webservice—
all of which can induce energy consumption. Whether or not it is more energy
efficient to “outsource” the computation to a service in the cloud is not clear,
as it is context dependent, and would require empirical evaluation.

Wit.ai [37] is a machine learning web service with SDKs for iOS and An-
droid. Typically Wit.ai requests are sent to their web service and the evaluation
via an HTTP request and the result is returned via the corresponding HTTP
response. The SDKs provided wrap the HTTP requests for the native language
used on the mobile platform. Thus the energy cost of machine learning is not
born by the mobile device, but the network traffic of the request is.

Amazon AWS Machine Learning [76] provides SDKs for iOS and Android
to enable calling Amazon AWS ML from a mobile device remotely. The intent
is to train and evaluate completely in the cloud using Amazon AWS. This
delegates any energy consumption to the cloud and to the network peripheral
used by the mobile device.

Thus, machine learning is picking up in popularity on and off mobile devices
in the service of machine learning through a mobile device.

1.1.2 Empirical evidence of the use of machine learning in the Google Play
app Store

For a more thorough investigation on the use of machine learning in the Google
Play app store, we studied how machine learning libraries are used in the
most popular apps during 2016. We selected popular apps (using App Annie’s
report [8]) as these apps are used by a large number of users and we expect that
developers of these apps may use the latest technologies (e.g., face detection
and other machine learning technologies) to provide powerful features for their
users.

We examined apps across different app categories to mitigate any bias in
our results that may occur if we included only a single app category. App
Annie’s report contains top popular apps across 28 app categories (e.g., games

6 Andrea MclIntosh et al.

1) Collecting data

Google Play _)Select top Android 2,526 top apps Download APKs APKs for 2,170 Apps
Store apps for every app

2) Analyzing the usage of machine learning libraries
——
Step 1: Extract the List of imported
imported classes in every classes in every
APK APK
\/\
Step 3: Identify the used Analysis of the
machine learning libraries usage of machine
in every app learning libraries
Step 2: Identify the import List of the machine
keywords for machine learning import
learning libraries keywords
_/\
~ J

Fig. 1 Keyword App mining methodology.

and social categories). In our study, we selected the top 100 apps in every app
category (2,800 apps in total).

We used a Google Play crawler [7] to download the APKs for the studied
apps. Our crawler connects to the Google Play Store using the Samsung S3
device model. We used the Samsung S3 device as it was one of the most popular
devices when we started downloading the APKs [9].

We found that 214 apps were repeated across categories, 60 apps were
already removed from the store (in total we studied 2,526 apps). We observed
that the crawler was not able to download the APKs for 356 apps (out of the
2,526 apps) as these apps are not allowed for the used crawler device model
(i.e., Samsung S3 device model and SDK version 19). This resulted in 2,170
APKs for the studied 2,526 apps.

With these 2,170 APKs, we examined which libraries that are used in every
APK with the following approach that is also depicted in Figure 1

Step 1: Extract the imported classes in every APK. We identified the list of
the imported classes as follows.

— We converted every APK to a jar file using Dex2jar tool [1,2]. We encoun-
tered four apps where the APK to jar failed.

— We decompiled the classes in the generated jar into Java source code using
the Class File Reader (CFR) tool [12]. We encountered two apps where
the jar decompilation failed. In total, we encountered six apps (out of the
2,170 apps) where either the APK to jar failed or the jar decompilation
failed.

Title Suppressed Due to Excessive Length 7

— For the 2,164 apps where apps decompilation succeeded, we examined
classes within the app package name, by listing the import statements
for these classes. For example, for the “Smart calendar” app with package
name “com.google.android.calendar”, we listed all import statements for
all classes under the package ‘com.google.android.calendar’ and its sub-
packages. We examined the import statements for the classes under the
app package name, as these classes are most probably written by the de-
velopers of the app themselves.

— We made a database of the import statements and related them back to
the apps themselves.

Step 2: Identify the import keywords for machine learning libraries. We fash-
ioned a list of machine learning related keywords that we would expect to see
in import statements. These included:

— Weka and Weka relevant classes;

— Neuroph and Neuroph relevant classes;

— CoreML (Apple’s I0OS library) related namespaces;

Wit.ai, a ML service, related namespaces;

Amazon AWS Machine Learning related namespaces;

— Terminology from AI: gradient descent, heuristic search;
Terminology from ML: classifiers, detectors, etc.;

— Terminology from relevant computer vision: face detection.

Table 1 shows the list of the identified keywords along with reason and an
example for each keyword.

Step 8: Using the list of import statements in Table 1, we searched for these
import statements in every app. Then we manually removed all the imports
that were not machine learning relevant according to our manual determina-
tion. This means the removal of references to enumerations, deep-links, gesture
detection, WiFi detection, linear gradients, linear UI widgets, text direction
heuristics, etc.

Results: We have summarized the manually filtered matches in Table 1.

As shown in Table 1, a total of 4.3% of the studied apps, 92 unique apps
out of the 2,164 apps, have observable machine learning relevant imports. The
keywords in Table 1 may overlap thus the table shows the total unique number
of apps for which we observed evidence that developers use machine learning
libraries. None of the studied apps used Weka, Wit.ai, or CoreML. TensorFlow
was imported by 2 of the apps (0.01%). The most popular API seemed to be the
Android face detector API. This and the popularity of OpenCV implies that
images are the most common form of machine learning data being evaluated.
From the imports, it is not clear if any training was being executed within
the apps themselves. Internal validity is threatened by obfuscation—only 443
of 2,164 APKs (20%) are not obfuscated—and direct including of source code
which could hide many of the keywords we searched for. Thus, we have clearly
demonstrated that machine learning is present in the app store ecosystem.

Andrea McIntosh et al.

Table 1 Investigation of Machine Learning related imports in a variety of Android apps
from the Google Play Store. The keywords an not-exclusive, there is overlap between key-

words.

Import Package Keyword

Unique Apps

R: Reason E: Example

Total Unique Apps 92 Total Unique Apps with Machine Learning relevant
imports
R: Shake detectors (an accelerometer gesture) and
detector 57 Face Detectors
E: com.google.android.gms.vision.Detector
facedetect 38 R: Face d‘etecto? libraries
E: android.media.FaceDetector
R: Computer Vision library including OpenCV’s Ob-
opencv 13 ject Detector
E: org.opencv.objdetect.CascadeClassifier
R: Objects, Photos, Image Classifiers, Handwriting.
classif 9 E: com.google.android.libraries.handwriting.-
classifiers.b
R: Uses of an apache commons library for KMeans,
statistics, clustering, etc. used in Plenty of Fish and
org.apache.commons.math3 7 Snapchat
E: org.apache.commons.math3.stat.regression.-
SimpleRegression
R: Object, Photo, and Image Classifiers, etc.
classifier 6 E: com.google.android.libraries.vision.-
semanticlift.CoarseClassifier
R: Linear Regression and Simple Regression used by
. Plenty of Fish and others
regression 4 E: .
: org.apache.commons.math3.stat.regression.-
SimpleRegression
R: Linear regression
linear 2 E: com.zzkko.bussiness.tinder.component.-
LinearRegression
R: TensorFlow deep learning framework (1 JNI) in
tensor 2 Agzarlive App and imo.im app
E: org.tensorflow.safematch.ImageClassifier
R: Machine Learned models and Machine Transla-
. tion in apps like Etsy
machine 2 E: com.etsy.android.lib.models.apiv3.-
editable.MachinelLearnedTaxonomySuggestion
R: K-means clustering
kmeans 1 E: org.apache.commons.math3.ml.clustering.-
KMeansPlusPlusClusterer
R: A library that contains recognizers, face-
com.google.android.libraries.vision 1 detectors, and barcode scanr?ers . . L.
E: com.google.android.libraries.vision.-
semanticlift.CoarseClassifier
R.: Tensorflow deep learning found in Azarlive
tensorflow 1 e
E: org.tensorflow.safematch.Classifier
adam ai.wit autoencoder
bagging bayes c45
com.amazonaws .services.machinelearning
coreml decisiontree deep
discriminat forest genetic glm
gls gradient heuristic ibk j48 R: potential matches for Weka, Neuroph, CoreML,
learner linearmodel logistic 0 wit.ai or Amazon AWS machine learning services.

machinelearning mlmodel mlp
multiclass nadam naive neural
neuroph oner perceptron predictor
rbf reptrees ripper sdg svm
validation weka wit.ai zeror

But none found.

Title Suppressed Due to Excessive Length 9

2 Prior work

Prior work relevant to this paper include software energy measurement, mod-
elling, developer knowledge, optimization, and recommenders.

2.1 Software energy measurement

Software energy consumption is an up and coming field in software engineering
and computer engineering. With the popularity of mobile devices and apps,
more and more software engineering research is targeted to energy constrained
platforms.

Energy consumption recommendations and guidelines for developers are
popular avenues of research. Hasan et al. [32] and Pereira et al. [61] investigated
the energy profiles of Java collections to help developers manually choose the
right collection. Linares-Vasquez et al. [45] produced a methodology of finding
energy consuming libraries and APIs in Android applications. Li et al. [43]
discussed causes of energy consumption on Android.

Measuring software energy consumption is another avenue of research. We
used the GreenMiner [35] in this paper to measure software energy, but other
researchers such as Banerjee et al. [11] have made their own measurement
frameworks. We discuss GreenMiner’s configuration in more detail in Section
4.1.

2.2 Software energy estimation and modelling

A very popular area of research is the modelling of software energy consump-
tion. Pathak et al. [59,60] and Aggarwal et al. [4] used system-call based
models. Chowdhury et al. [19] used count based models. Nucci et al. [22] aug-
ment software based models with battery measurements provided by Android
APIs to achieve low error software energy estimates of running processes. Some
tools attempt to diagnose the actual cause of software energy consumption in
terms of the code [5].

2.3 Effect of software development on energy consumption

Others have investigated the impacts of different kind of software development
techniques, behaviours, and algorithms. Sahin et al. [66,67] investigated the
energy cost of obfuscation, finding it typically did not have a severe effect.
While many researchers have studied the energy consumption costs of GUI
colours on OLED displays, and how to optimize colour choice [6, 75]. Until
Agolli et al. [6], prior work in colour optimization ignored the original aesthet-
ics of the colour scheme of the app GUIs. Agolli et al. optimize GUI colours
while keeping them perceptually similar, retaining the original aesthetics of
the original colour choice.

10 Andrea MclIntosh et al.

Numerous empirical studies exist about different aspects of software de-
velopment juxtaposed against software energy consumption. Researchers such
as Rasmussen et al. [63], and Gui et al. [29,30] have investigated the cost
of advertisements on energy consumption. Chowdhury et al. [18] and Li et
al. [44] benchmarked HTTP related energy concerns. Many researchers have
suggested ranking and measuring apps by energy consumption [17,39,64].

2.4 Energy optimization

Many have investigated the impact of optimization and micro-optimization
of code with respect to various resources such as energy, memory consump-
tion, and CPU runtime [47,65,68]. Sahin et al. [65] found that many recom-
mended optimizations are meaningful in terms of benchmarking, but mean-
ingless when employed within real world apps as the optimization was simply
not run enough to have an effect. Linares-Vasquez et al. [47] found that opti-
mizations that freed unused resources did have an effect, but also found that
developers were relatively unsure of the effect of micro-optimizations. Selby
et al. [68] studied methods of having the compiler optimize code for energy-
consumption.

2.5 Developer knowledge of software energy consumption

Many researchers investigated what developers know about software energy,
that motivates this paper because most of the works conclude that developers
are woefully ill-equipped to address software energy consumption concerns.
Pinto et al. [62] and Malik et al. [50] sought questions developers were already
asking. Pang et al. [58] surveyed developers to see what they understood about
software energy consumption. Manotas et al. [51] went further and surveyed
numerous industrial developers. Linares-Vasquez et al. [47] found that devel-
opers were relatively unsure of how to reduce energy consumption and were
skeptical of the effect on energy consumption of micro-optimizations.

2.6 Recommenders

Recommenders quickly turn into optimizers that apply search techniques and
find solutions to software energy consumption concerns. SEEDS from Man-
otas et al. [52] attempts to find the most energy efficient Java collections to
use in a program particular context. GUI optimizations have also been ap-
proached using a search-based approach by Linares-Vasquez et al. [46]. Bruce
et al. [16] explicitly applied search-based software engineering techniques to
mutate existing source code into more energy efficient code. Saborido et al. [64]
use multi-objective heuristics to find optimal apps where energy consumption
is one dimension to optimize. Like Saborido et al., Jabbarvand et al. [39]

Title Suppressed Due to Excessive Length 11

discussed EcoDroid, a method of ranking Android Apps based on energy con-
sumption.

3 Machine learners and configuration

In this section, we describe the algorithms and the implementations of the
algorithms we employ. We also describe our choices in terms of parameters used
for machine learning algorithm implementations, as well as datasets chosen to
exercise these implementations.

3.1 Algorithms and implementations used

We tested eight machine learning algorithm implementations: Naive Bayes
(NB), J48 (Weka’s implementation of C4.5), Sequential Minimal Optimiza-
tion (SMO) which is a support vector machine, Logistic Regression (LogReg),
Random Forest (RF), k-Nearest Neighbour (IBk), ZeroR, and MultiLayer Per-
ceptron (MLP) which is a neural network. All algorithm implementations ex-
cept for MLP were from the Weka Java codebase. The MLP implementation, a
neural network, is from the Neuroph framework. We could not find a sustain-
able and reliable method of configuring and running a MLP within Weka that
would terminate in a reasonable time. These algorithms were chosen because
they are popular machine learners that implement a variety of classification
strategies.

ZeroR is a very simple classifier, that disregards any attribute information
and always predicts the majority class of the training set. As such, ZeroR can
provide the baseline accuracy for a dataset [78]. For a dataset with n training
instances, ZeroR will take O(n) time to build a classifier as it needs to check the
class value of each instance in order to find the most frequent class. However,
it takes virtually no time, constant time O(1), to classify.

Naive Bayes is a type of Bayesian network that uses the simplifying as-
sumptions that the predictive attributes are conditionally independent, and
that there are no hidden attributes that influence predictions. With these sim-
plifying assumptions, given a dataset with d attributes, n testing instances
and m training instances, the Naive Bayes classifier can perform training and
testing in O(dn) and O(dm) time respectively [40]. The Weka Naive Bayes
algorithm implementation used for these tests is not updatable (online), al-
though Weka also has an updateable implementation of Naive Bayes.

J48 is Weka’s implementation of the C4.5 decision tree algorithm [23].
For a dataset with d attributes and n testing instances, C4.5 training has an
algorithmic time complexity of O(nd?) [71]. To evaluate the tree, the height
of the tree is traversed, making the worst-case time complexity O(d).

SMO is an algorithm implemented in Weka for training a Support Vector
Machine (SVM) classifier, that breaks down the SVM quadratic program-
ming optimization to simplify implementation, speed up computation, and

12 Andrea McIntosh et al.

save memory [38] [70]. Platt found empirically that the training time of SMO
ranges from O(n) up to O(n*?) for n training instances [38]. For a dataset
with ¢ classes, the classification time is O(c) per instance [80]. In Weka’s im-
plementation, datasets are automatically processed to replace missing values,
normalize all attributes, and convert nominal attributes to binary ones.

Logistic Regression is a statistical machine learning algorithm. Weka’s im-
plementation uses logistic regression with the Quasi-Newton method, thus a
dataset with d attributes and n instances takes O(d?*n + nd) time per itera-
tion [54] to train. For a dataset with c classes, the classification time is O(c)
per instance [80] For our tests logistic regression was set to iterate until con-
vergence. Weka’s implementation of the algorithm is slightly modified from
the original Logistic Regression to handle instance weights.

Random Forest is an advanced tree classifier that grows multiple trees
and allows them to vote for the best class [15]. For a forest with L trees, n
instances, and d attributes, theoretically the random forest will be constructed
in O(Ln%d-log(n)) time, although practically the complexity is often closer to
O(Lnd - log(n)) [73]. It takes O(L - log(n)) time to classify an instance [3].

IBk is an instance-based learner algorithm implemented in Weka, that is
similar to the k-nearest neighbour algorithm [21]. For our tests, we classified
instances based on the nearest three neighbours (k = 3). IBk is lazy when
training, taking almost no time to create a model [57]. However, for a dataset
with d attributes and n instances, it takes O(nd) to classify an instance [21].

MLP (multi-layer-perceptron) is a neural network implementation. For our
tests, MLP used back-propagation learning and had only one hidden layer of
neurons. The number of hidden neurons was fixed at 15 and the number of
training epochs was fixed at 100. In general, for a dataset with n instances
and a neural network with a input neurons, b hidden neurons, and ¢ output
neurons, the network will take O(nabc) time to train per epoch [55]. It takes
O(a + b+ ¢) (the total number of nodes) time to classify an instance.

3.2 Parameters of implementations used

We describe the parameters in depth so that future researchers may replicate
these results with similar implementations of the algorithms, most parameters
were the default Weka parameters and were un-tuned. Neural network param-
eters were manually specified. Meta-heuristic search could be employed to tune
parameters but that would add many dimensions of complexity to this study.
We recognize that un-tuned parameters, and parameter tuning is not covered
by this current study is a definitely an open area of research for sustainability
of machine learning algorithms and their implementations.

Naive Bayes parameters as implemented by Weka were: useKernelEstimator
False (do not use a kernel estimator); useSupervisedDiscretization False
(do not convert numeric values to nominal values).

C4.5 parameters for Weka’s J48 implementation were: binarySplits False;
confidenceFactor 0.25 (for pruning); minNumObj 2 (minimum instances per

Title Suppressed Due to Excessive Length 13

leaf); reducedErrorPruning False; subtreeRaising True; unpruned False
(enables pruning); useLaplace Fulse (disable Laplacian smoothing).

SVM parameters for Weka’s SMO algorithm were: buildLogisticModels
False; ¢ 1.0 (complexity); epsilon 1.0e — 12; filterType “Normalize training
data”; kernel “PolyKernel” (polynomial kernel) with cacheSize 250007 and
exponent 1.0; toleranceParamter 0.001.

Logistic Regression Weka parameters were: maxIts —1; ridge 1.0e — 8
(Ridge value in log-likelihood).

Random Forest Weka parameters were: maxDepth 0 (unlimited depth);
numFeatures 0 (unlimited number of features per tree); numTrees 100 (num-
ber of trees generated); seed 1 (seed for random generator).

IBk parameters were: KNN 3 (3 neighbours); crossValidate False (dis-
able cross validation to set k); distanceWeighting “No distance weighting”;
meanSquared False (use mean absolute error); nearestNeighborSearchAlgorithm
“LinearNNSearch” (linear scan); windowSize 0 (unlimited number of training
examples).

MLP parameters used for the neuroph library were manually chosen: layers
3 (input, hidden, output); hidden layer neurons 15; learning rate 0.2 (fast and
coarse); epochs 100 (constant number of epochs); activation function sigmoid.
These parameters build an MLP with 1 hidden layer that can be trained
relatively quickly on a mobile device, even on networks with 2000 inputs.

3.3 Datasets used

We used seven existing datasets to test the machine-learning algorithm im-
plementations. The datasets chosen were of different sizes and datatypes, and
represented different classification problems. We used a commit topic classifica-
tion dataset (PGSQL) [34], the MNIST number classification dataset [42], and
five datasets from the UCI archive [48] (Mushroom, Adult, Waveform, Spam-
base, and Pendigits). MNIST and Pendigits are image classification problems;
PGSQL and Spambase are text classification problems; Adult and Waveform
are numeric classification problems; and Mushroom is categorical classification.

We chose these datasets as they are standard workloads in machine-learning
literature, and because we believe them to be representative of classification
problems that may be posed to an app. For example, the MNIST and Pendigits
datasets are similar to the image classification done by Google Translate [24]
and mobile Tensorflow [72], and text classification problems, such as PGSQL
and Spambase, are similar to common mobile classification problems such as
spam filtering. Examples of datasets actually used by mobile applications are
not clearly available, and would be difficult to test.

Weka is designed to work with the ARFF file format. A version of the
MNIST dataset already converted to the ARFF format was obtained [49] and
used for the tests. The other datasets were converted to ARFF files using the
Weka, Explorer’s conversion capabilities. Due to memory limitations, for our
tests the size of the MNIST dataset was reduced to 5000 randomly selected

14 Andrea McIntosh et al.

Table 2 Size and type of datasets used in energy tests.

[Dataset | Description | Attributes [Instances | Classes |
MNIST Image classifier — Integer attributes 785 5000 10
PGSQL Text classification — Binary categorical attributes 2000 400 2

Mushroom Classification — Categorical attributes 23 8124 2

Adult Classification — Categorical, integer attributes 15 32561 2
Spambase Text classification — Integer, real attributes 58 4601 2
Waveform Numeric classification — Real attributes 22 5000 3
Pendigits Image classifier — Integer attributes 17 10992 10

instances. The size of the PGSQL dataset was also reduced from 640 instances
with 23008 attributes to 400 instances with 2000 attributes, one of which was
the class. The datasets are summarized in Table 2.

The MLP implementation we used from the Neuroph framework required
datasets in CSV format. It also requires that numeric attributes be normalized
to values between 0 and 1, nominal attributes and classes be represented as
one-hot binary inputs, and instances with missing attribute or class values be
removed beforehand. This processing and conversion to CSV was done using
the Weka Explorer. As a result of converting categorical attributes to one-
hot binary attributes, the number of input neurons for the Mushroom dataset
became 111, and 104 for the Adult dataset.

A mirror of our datasets can be found at this url: https://archive.org/
details/mnist_test_reduced_5k.

4 Methodology and measurements

In this section, we describe how we setup benchmarks for the machine learning
algorithm implementations and datasets. We also describe how we measured
the energy consumption of the machine learning benchmarks.

4.1 Energy measurement with GreenMiner

Energy and power measurements were collected using the GreenMiner energy-
measurement framework. This framework uses hardware-instrumented An-
droid smartphones to physically measure the energy consumption and power
use of apps running on the phones [35]. Each GreenMiner client includes a
Raspberry Pi for data-collection; a Galaxy Nexus running Android 4.2.2; and
a INA219 current sensor for energy measurement. The INA219 measures both
voltage and current. It uses a shunt (a low resistance calibrated resistor) to
measure the current via a mild voltage drop across the shunt. This system of
external measurement of energy does not induce instrumentation overheads ex-
cept in the script to run the tests and send input commands. In total there are
four GreenMiner clients that test runs are distributed between them. This re-
duces the effects of device-specific abnormalities when averaging over a batch.

https://archive.org/details/mnist_test_reduced_5k
https://archive.org/details/mnist_test_reduced_5k

Title Suppressed Due to Excessive Length 15

m TestResults = Add Tests | Browse Testsand APKs = Manage Queue = Status = Graphing About

weka_android_NB_Spam_CV10:weka_android weka_ver, 8
—

Part of batch -NB-CV-Spam-Batch-1'

Version: weka_ver_8
Ran from Mon, 27 Jun 2016 17:16 to Mon, 27 Jun 2016 17:17 (87s) @
Ran on Device 'D' on Host 'RaspberryPi-D'

weka_android.weka_ver_8.weka_android_NB_Spam_CV10.D.. -NB-CV-Spam-Batch-1.20160627T1717Z

5~

Watts

%}
T

) o o
1% (Y 84§ & g d

£
v

d
' h

0 10 20 30 40 50 60 70 80

Seconds

jouless per component

name

Waitfor wattog
ISImI App

Read data e
[l Training

[Pertom vaiidation

[

revision

joules

Fig. 2 Example of a GreenMiner profile for a test run of 10-fold cross validation on Naive
Bayes with the Spambase dataset.

The GreenMiner framework automatically runs submitted tests and up-
loads the results to a central web-service. Before each test is run, the ap-
plication APK (Android package) is installed on the phone, required data is
uploaded onto the SD card, and phone settings such as screen brightness, and
screen timeout are set as required. After each test the application is unin-
stalled, the data is deleted from the SD card, settings are restored to previous
values, and data generated during the tests such as log-files are pulled from
the phones to be uploaded to the web service and then deleted from the phone,
so that the next test can begin with a clean environment. Tests run for a set
duration, and testers can split the test’s energy measurements into partitions
of varying duration to capture the energy and power use of different phases of
app execution. Such a phase could be reading the data or training the model.

The GreenMiner measures and reports information about the test run in-
cluding energy use, power use, and runtimes for both the entire test duration
and over each tester-specified partition. An example of an energy profile for
a cross-validated Naive Bayes test displayed on GreenMiner’s web interface is
shown in Figure 2.

16 Andrea MclIntosh et al.

Newer versions of Android were not used because 4.2.2 was the last official
release for the Galaxy Nexus phones. To use newer versions we would have to
install non-standard firmware. Furthermore, to use multiple versions we would
have to modify the Green Miner software to re-flash the phones between ver-
sions of tests. This could be quite valuable but is expensive in terms of time
to develop and run. Support for multiple OS versions and OS re-flashing is
currently unavailable within the Green Miner. Not using a newer version of
Android could be an issue because of changes to the Android runtime. Android
4.2.2 uses DalvikVM and newer versions of Android use the Android Runtime
(ART) [41]. Konradsson [41] compared DalvikVM and ART performance and
found they differed somewhat in terms of memory use, garbage collection,
start-up time, 10 time, and other aspects. Typically ART was had better
CPU performance but it depended on the test. ART often changes user-space
app performance as it can pre-compile apps rather than just in time compila-
tion like DalvikVM—ART can combine both in hybrid-on-device compilation.
Other issues with OS versions can arise from the change in APIs meant to
access resources, to the adoption of energy aware APIs. Thus performance of
user-space apps on newer Android OSes could be somewhat different than on
DalvikVM.

4.1.1 How do measurements of Energy and Power translate into battery life?

In this section, we explore how energy, measured as joules (J), or power, mea-
sured as watts (W), translate to to the end user: battery time. The factory
battery that comes with a Galaxy Nexus is a 1800mah 3.7 V battery. Typi-
cally you get 4.2 to 4.3V from the battery when full and get above 3.6V near
empty. A new battery promises 1800mah at 3.7V which is about 23976J (e.g.,
3.7V - 1.8Ah - 3600s). Older batteries decay, often rapidly and offer far less
energy for use because their voltage dips below 3.7V sooner. Mobile devices
typically cannot operate on lower voltages or drain the battery to OV and 0J.
Furthermore, the only way to actually know how much energy is in a battery
is to use and consume it, which means that any measurement you see reported
on your mobile phone is actually an estimate of energy left by the battery
circuitry and your phone’s power systems.

In this section, we make the following assumptions: your battery is new
and has not been recharged numerous times; your battery is fully charged.
Batteries change in charge profile over time and should generally not be used
as sources of energy for energy measurement testing because they change over
time, act differently at different temperatures and their behaviour changes on
each recharge. We have also based our loads on observations from numerous
runs on the GreenMiner. Typically these Galaxy Nexus phones are running at
0.1W idle with screen off, with screen on and idle and with screen brightness
at the same conditions we tested at they are at 0.7 W, and finally when they
are under heavy load (many cores at 100% CPU combined with network and
disk I/0) they are at 1.8W—it can be more if you use the cellular network at
the same time.

Title Suppressed Due to Excessive Length 17

Table 3 Conversion of Joules to Galaxy Nexus Battery Time. Assuming a 1800mah battery
(at 3.7V a maximum of 23976J = 3.7V - 1.8 Ah - 3600s).

6 Time 6 Time 6 Time

Cost in Joules | with screen off | with screen on | under heavy use
(0.1W) (0.7W) (1.8W)

Idle/Load Watts 0.1W 0.7 W 1.8 W

1J 2.70 s 0.39 s 0.15 s

10J 27.03 s 3.86 s 1.50 s

50 J 135.14 s 19.31 s 7.51s

100 J 270.27 s 38.61 s 15.02 s

500 J 1351.35 s 193.05 s 75.08 s

1000 J 2 702.70 s 386.10 s 150.15 s

5000 J 13 513.51 s 1 930.50 s 750.75 s

10000 J 27 027.03 s 3 861.00 s 1 501.50 s

Before we convert joules or watts to battery time/life we must understand
that the battery time/life depends on the load it is under. This means there is
no single true measurement or estimate for cost in battery life. If your phone
is mostly idle and you do some machine learning work at 0.1W for 100 seconds
(10.0J) the change in battery life is more significant than if you do the same
task when your phone is working heavily (1.8W). The difference in battery
time between 1.8W and 1.9W (1.5 s) is not as stark as the difference between
0.1 W to 0.2W (27 s). Table 3 shows the difference in seconds of battery life
time for different tasks under different conditions.

It is easier to characterize the difference in battery life for energy mea-
surements because they are a fixed cost. For power measurements (watts W)
we have to make some assumptions about how long the task runs. Typically
we’ll assume that you run this task constantly. There are use-cases where this
makes sense such as mobile sensors, computer vision, or some kind of contin-
uous job task. Table 4 assumes you have a fixed load (idle, or screen on, or
some heavy background task) and you have added an additional load from a
machine learner, it assumes you want to do as much work as you can before
the battery runs down and thus the table estimates entire battery lifetime for
the fixed load and your added workload.

Thus because battery life estimates are just estimates and depend on con-
text (base load and battery and phone) we present energy consumption (J)
and power (W) for the rest of the paper because those are the actual measure-
ments. You may use these tables (Table 3 and Table 4) to convert from the
reported values to Galaxy Nexus battery life.

4.2 Measurement process

Figure 3 shows the overall process for designing our empirical study and col-
lecting energy consumption measurements and power measurements. To test
machine learning algorithm implementations on the GreenMiner phones, two
Android apps were created. An app was created to run Weka machine learn-

18 Andrea MclIntosh et al.

Table 4 Conversion of Watts (W) to Galaxy Nexus Battery Time under continuous load. In
this scenario you never quit running the default load plus the induced load until the battery
runs out. Assuming a 1800mah battery (at 3.7V a maximum of 23976J = 3.7V -1.8Ah-3600s).

Total time Total time Total time
Cost in Watts | with screen off | with screen on | under heavy use
(0.1W) (0.7W) (1.8W)
Idle/Load Watts 0.1W 0.7 W 1.8 W
0.00 W 66.60 h 9.51 h 3.70 h
0.10 W 33.30 h 8.33 h 3.51 h
0.25 W 19.03 h 7.01 h 3.25h
0.50 W 11.10 h 5.55 h 2.90 h
0.75 W 7.84 h 459 h 2.61 h
1.00 W 6.05 h 3.92 h 2.38 h
1.256 W 493 h 3.42 h 2.18 h
1.50 W 4.16 h 3.03 h 2.02 h
1.75 W 3.60 h 2.72 h 1.88 h
2.00 W 3.17h 247 h 1.75 h
2.25 W 2.83 h 2.26 h 1.64 h

ing algorithm implementations, based on an existing modification of the Weka
codebase that can run on Android.'A second app was created to test a Mul-
tiLayer Perceptron neural net algorithm, using the Neuroph framework. Both
apps ran the same datasets.

Tests of the different algorithm implementations and datasets were writ-
ten as Android InstrumentationTestCases, with the phases of evaluating an
algorithm’s implementation (reading data, training the model, validating the
model) written as separate tests. The different tests were initiated by pressing
buttons, and data was transferred between different test methods via a sin-
gleton object. To keep the screen energy consumption of the apps constant,
the screens were almost completely black, with some small grey text on the
buttons for debugging purposes. Both the Weka and the Neuroph apps had
exactly the same user interface.

The tests were very simple and single threaded, they did no UI work, and
had logging statements and assertions. The tests called Weka and Neuroph
respectively and delegated all the work to Weka and Neuroph. Data was stored
as an ARFF file for Weka and CSV for Neuroph. Each dataset was loaded using
the respective libraries I/O routines via BufferedReader from the external
storage. Reading datasets was timed such that once the dataset was in memory
the reading energy would not be counted. Once the dataset was loaded, the
training and evaluation or the cross-fold validation would begin. Weka handled
10-fold validation within the library while Neuroph was provided with a 10-fold
validation implementation. An implementation of 50/50 split was created for
both Neuroph and Weka applications. When either app trained or evaluated it
was the respective library’s responsibility. The test app lets one choose what
implementation to test, then buttons 1) to read the data, 2) to train on 50%
of the data, 3) to evaluate on 50% of the data, 4) train on all training data (for

1 Weka for Android https://github.com/rjmarsan/Weka-for-Android

https://github.com/rjmarsan/Weka-for-Android

Title Suppressed Due to Excessive Length 19

a 0

1) Design the empirical study

Step 3: Develop 2 test-
cases: 1 50/50% split and
1 10-fold

32 test-cases that
cover 8 algorithms

Step 1: Select machine 8 popular machine
learning algorithms learning algorithms

Step 2: Select machine
learning datasets

Ll

2 Mobile apps that
implement 8
algorithms on 7

datasets

Step 4: Develop 2 mobile
apps that implement the
selected machine learning

algorithms

2) Collect data by running every test-case out of the 32 test-cases

Aggregate %»{ Analyze collected data

Execute test and
measure performance
(energy etc.)

Initialize the testing

. Measurements
device

Energy Profiling

Repeat 10 times for every app Results

. J

Fig. 3 The overall process for designing our empirical study and collecting energy con-
sumption measurements and power measurements.

timing and debugging) and 5) to engage in cross-fold validation. The Green
Miner test was scripted to run 50/50 split training and testing separately by
pressing UI buttons. Where as 10-fold cross validation was a single operation
via 1 UI button. By using the UI to prompt testing it allows the Green Miner
to segment the timeseries of energy measurements based on task.

Tests were created for eight different machine learning algorithm imple-
mentations to evaluate seven different datasets. Separate tests methods were
written to perform two different types of evaluation. For each algorithm im-
plementation two tests were written to train on 50% of the data and then
test on the other 50%. Two more tests were written to train and test on the
whole dataset using 10-fold cross validation. Each train/test evaluation pair
ran separately on the GreenMiner.

The 50% evaluation was chosen so we could provide a balance between
training and testing. This allows for tests to be partitioned/segmented and
analyzed for their training and testing energy consumption. Furthermore, it
means that train and test will be receive the same number of instances to
make them comparable. Whereas 10-fold cross validation does far more train-
ing work than evaluation work. 10-fold cross validation will train 10 times on
90% of the data, where 50% evaluation will train 1 time on 50% of the data.
This means that the total cross-folds validation includes a lot more training

20 Andrea MclIntosh et al.

time and instances than evaluations, where as 50% evaluation is a balance be-
tween training and evaluation. 50% results should be interpreted as a balanced
evaluation comparing training and testing performance. 10-fold cross valida-
tion tests model training with more subsets and larger amounts of training
data and is less focused on evaluation performance.

We chose to test training as well because in many cases mobile devices will
be used in scenarios where privacy is a concern, such as health information
(EMG, sensors, fitness, and images of the body), this means that some models
will have to be trained locally on information from the user themselves. Others
[13,28] have provided motivation for machine learning training and evaluation
client-side to avoid privacy issues. Training on a mobile device is also useful
because it does not need network access or a 3rd party service.

Each test method was invoked in turn by pressing a button on the app’s
interface once the previous method had completed. The GreenMiner frame-
work cannot automatically detect when a test method has completed, because
it runs uninstrumented, so in order to invoke the next method initial timing
test runs were performed to determine appropriate delays to add to the Green-
Miner scripts. Each algorithm-dataset-validation combination ran at least 10
times on the GreenMiner so that their results could be averaged and to allow
for enough statistical power to determine an effect. Some combinations, such
as random forest on the MNIST dataset with cross validation, ran out of mem-
ory when evaluating on the phones, and so are not included in our results. A
classifier might not operate in certain contexts, but might be appropriate for
others. The choice of a classifier might depend on the size of the instances and
the number of instances so it is up to developers to investigate and balance
these aspects.

The GreenMiner collects the energy consumption measurements and power
measurements of each test method. The results of all successful test runs were
compiled and compared. For comparisons, the training and testing phases of
50% split evaluation are combined, and are compared against the energy for
cross-validating with 10-folds, that includes training and testing each fold. En-
ergy consumption measurements are compared to determine which algorithm
implementations will require the most or least energy to evaluate on each
dataset. Power usages are compared to determine if some algorithm and their
implementations are more energy-hungry, independent of how long it takes
them to evaluate.

The machine learner performance, the accuracy, of the Weka algorithm
implementations was gathered from the Weka 3.8 desktop application, based
on performing 10-fold cross validation. The total root-mean-squared errors
(RMSE) of the MLP algorithm were gathered from NeurophStudio. The av-
erage accuracies of an algorithm’s implementation over all datasets were com-
pared to determine which algorithm implementations were generally the most
or least accurate. The accuracy for Logistic Regression could not be calculated
for the MNIST dataset because both of the mobile Weka implementation and
the desktop Weka application ran out of memory.

Title Suppressed Due to Excessive Length 21

Statistical significance testing was executed using a Student’s ¢-test as en-
ergy measurement data typically is normally distributed. Anders-Darling tests
confirmed normality in the great majority of cases. Thus we opt to apply para-
metric statistics such as ANOVA and t-test due to efficient estimates and sta-
tistical power gained from using test appropriate for the measurements. For
cases (batches of measurements) that were not normal according to Anders-
Darling tests we applied the same parametric tests. We assume that if we
had executed more measurements in these minority cases that Anders-Darling
would report that there was a lack of evidence that the underlying distribu-
tion was not normal. We addressed multiple hypotheses and comparisons by
applying Bonferroni correction with an initial alpha («) of 0.05.

5 Energy profiling results

We profiled the energy and power use of eight machine learning algorithms,
and compared how they varied with datasets of different sizes. We asked three
research questions:

RQ1: Can we identify the best performing algorithm implementation in
terms of energy?

RQ2: Can we identify the best performing algorithm implementation in
terms of power?

RQ3: Can we identify the best performing algorithm implementation in
terms of accuracy?

5.1 RQ1: Can we identify the best performing algorithm implementation in
terms of energy?

This RQ deals with the efficiency of an entire run of machine learning from
start to finish. This analysis is best for tasks that are limited in scope or work,
such as classifying an email as spam or not. There is a start and end to the
training or learning. Tasks that are continuous are more suited to analyzing
their power use.

Which algorithm’s implementations are more energy efficient? Figure 4
shows the energy used to train and test the algorithm implementation on a
50% split of each dataset. Figure 5 shows the energy used to perform 10-fold
cross validation on the algorithm implementations for each dataset. Note that
some algorithm implementations could not be evaluated on some datasets, and
so not all algorithm-dataset combinations are shown in the figures.

Generally, energy consumption increases with increasing dataset size, how-
ever these increases typically do not strictly follow a clear trend. One reason
for deviations could be related to memory cache; spikes in energy consumption
could be due to the memory cache exhaustion for that particular dataset.

Figure 4 shows that other than ZeroR, Naive Bayes and J48 tend to have
the lowest energy consumption for 50%-split. SMO also has good energy per-
formance for most datasets except for the Adult dataset. Figure 5 shows that

22 Andrea McIntosh et al.

Energy Used Training and Testing Algorithms with 50%-Split

20000 -

15000 -

10000 -
test

| &
[a8
[smo
5000- I cooreg
ZeroR
B e«
B wee
[Re

Energy (J)

KNIRT

Adult MNIST ~ Mush Pen PGSQL Spam Wave
Dataset

Fig. 4 Energy consumption to train and test on 50% split.

Naive Bayes consistently consumes the least energy for cross validation, and
J48 is one of the highest energy users for smaller dataset sizes, but one of the
lower energy consumers for larger datasets.

The overall rankings of the algorithm implementations’ energy use were
determined by assigning a rank value to each algorithm implementation for
each dataset, with 1 using the least energy and 8 using the most. The rankings
for each dataset were then summed, and divided by the number of datasets.
Table 5 shows that ZeroR always uses the least amount of energy, followed
by Naive Bayes and J48. There were some deviations in the rankings of each
algorithm implementation on a dataset between cross-validation and 50% split.
The order of average rankings for each evaluation method had high correlation
of 0.93.

The energy use of the algorithm implementations were compared using an
ANOVA to determine if the energy differences are statistically significant for
an alpha (a) of 0.05. For the combined training and testing energies of 50%

Title Suppressed Due to Excessive Length 23

Energy Used Performing Cross Validation on Algorithms

20000 -
15000 -
10000 -
test
W
[a8
5 [smo
& 5000- B Loores
8 ZeroR
w

| D
B wee
[Re

Adult MNIST ~ Mush Pen PGSQL Spam Wave
Dataset

Fig. 5 Energy consumption to perform 10-fold cross validation.

split, ANOVA reported a p-value of 5.69¢~'°. For the combined training and
testing energies of cross validation, ANOVA reported a p-value of less than
2¢716, It can be concluded that the energy use differences between algorithm
implementations are significant.

Figure 6 compares the average energy used to train and the average en-
ergy used to evaluate each algorithm implementation over all datasets with
50% split. Lazy algorithms such as IBk were the most efficient for training,
followed by Naive Bayes. For evaluation, other than ZeroR J48 was quite ef-
ficient in terms of energy at classifying data. Naive Bayes performed well for
both training and evaluating.

24 Andrea McIntosh et al.

Table 5 Average ranking of each algorithm implemention from lowest to highest energy
consumption.

Sorted Rank Sorted Rank
Algorithm | 50% | Algorithm | 10-CV
ZeroR 1 ZeroR 1
NB 2.57 NB 2
J48 3.57 J48 3.86
SMO 3.86 SMO 4.43
LogReg 5.43 LogReg 5
MLP 6.29 IBk 5.29
1Bk 6.57 RF 7.14
RF 6.71 MLP 7.29

Average Training vs. Testing Energy for Algorithms with 50%—Split

4000 -

3000 -

2000 -
= Phase
B 1000- Il =
[}
c Test
[11]

_[llsl)

1Bk J48 LogReg MLP NB RF SMO ZeroR
Algorithm

Fig. 6 Comparison of average energy use training and testing algorithms with 50% split.

Title Suppressed Due to Excessive Length 25

Table 6 Average ranking of each algorithm implementation from lowest to highest power
use.

Sorted Rank Sorted Rank
Algorithm | 50% | Algorithm | 10-CV
ZeroR 1.43 ZeroR 1.14
NB 3.14 NB 2.86
MLP 3.57 LogReg 3.71
J48 4.43 J48 4.29
SMO 4.71 MLP 5
IBk 5.86 1Bk 5.71
RF 6.14 SMO 6.29
LogReg 6.71 RF 7

5.2 RQ2: Can we identify the best performing algorithm implementation in
terms of power?

This RQ focuses on the immediate performance of machine learning and not
the entire task. Analysis via power is relevant because some algorithms could
be parallelizable and deployed to multiple cores. These algorithms could use
more power than non-parallel algorithms. Power can be important especially
if you are running the task continuously, such as classifying images coming
from the web-cam, or classifying audio snippets from the microphone. These
tasks take as long as the user is using the app in question. Hence, developers
of apps that run machine learning algorithms for a long time should consider
selecting algorithms that are efficient in their power usage.

Figure 7 shows the average power use to train and test the algorithm im-
plementation on a 50% split of each dataset. Figure 8 shows the average power
use of each algorithm implementation performing 10-fold cross validation. Note
that some algorithm implementations could not be evaluated on some datasets,
and so not all algorithm-dataset combinations are shown in the figures.

Figures 7 and 8 show that the power use of all algorithm implementations
are similar. Table 6 shows the average rankings for the algorithm implemen-
tations are less evenly-spread between 1 and 8, indicating that the rank of
an algorithm implementation’s power use varies more from dataset to dataset.
Additionally, the rankings of algorithm implementation between 50% split and
cross validation are not as well-correlated as the energy rankings, with a Spear-
man’s rank correlation p value of 0.62. However, overall the algorithm imple-
mentations’ power rankings are similar to the energy rankings, with ZeroR
and Naive Bayes consistently having the lowest power consumption.

The power use of the algorithm implementations were compared using
ANOVA to determine if the power use differences are statistically significant
for an alpha of 0.05. For the average training and testing power use of both
50% split and cross validation, ANOVA reported p-values of less than 2e~16.
It can be concluded that the differences in power use between algorithm im-
plementations are significant.

26 Andrea MclIntosh et al.

Power Use Training and Testing Algorithms with 50%—Split

2.0-

B\
=7

s B3 smo
- LogReg
E ZeroR
B8 Bk

' B B3 mp

iy INTLE N ".'ﬁ

Power (W)
&
—Em—o
o}

Adult MNIST Mush Pen PGSQL Spam Wave
Dataset

Fig. 7 Power consumption to train and test with 50% split.

5.3 RQ3: Can we identify the best performing algorithm implementation in
terms of accuracy?

Algorithmic accuracy is determined based on the percentage of correctly classi-
fied instances and on the kappa statistic. Kappa measures agreement between
prediction and the true class. As different algorithm implementations some-
times had the same accuracy for a dataset, rather than ranking algorithmic
accuracy for each dataset — which would result in ties — the average accuracy
of each dataset was calculated. As the accuracy for Logistic Regression could
not be calculated for the MNIST dataset, the average for Logistic Regression
was taken over only 6 values, while the other algorithm implementations were
calculated over 7. Table 7 shows the algorithm implementations ordered in
terms of both measures of accuracy.

Weka outputs predicted classes, and also provided a calculation of the root
mean squared error (RMSE) of the predictions. Neuroph outputs the proba-

Title Suppressed Due to Excessive Length 27

Power Use Performing Cross Validation on Algorithms
2.25-

2.00-

- I test
Ll 2
* ! - B3 smo

3
3
'
°
o

- LogReg

E ZeroR

. . - B3 Bk
B3 mp

. ? ° é =G

Power (W)

1.25- °

Adult MNIST Mush Pen PGSQL Spam Wave
Dataset

Fig. 8 Power consumption to perform 10-fold cross validation.

bilities of each class. These probabilities were normalized using softmax, and
the highest normalized probability was taken as the predicted class. Then the
accuracies and kappa statistics for MLP on each dataset were computed in
R. The total RMSE of MLP on each dataset was obtained from NeurophStu-
dio. The average RMSE of each algorithm implementation over all datasets is
included in Table 7.

Table 7 shows the most accurate Weka algorithm implementations are Ran-
dom Forest and SMO; their percentage of correctly classified instances are
very close, with Random Forest being about 0.2% higher. Yet SMO had a
slightly better kappa statistic implying its classifications are more balanced.
Overall, MLP is clearly the most accurate algorithm implementation. It has
significantly higher average classification accuracy and kappa statistic than
the next-best algorithm implementation, and the lowest RMSE.

28 Andrea MclIntosh et al.

Table 7 Average algorithm implementation accuracies ordered based on percentage of
correctly classified instances, kappa statistic, and Root Mean Squared Error using Cross-
Validation.

Rank by Accuracy Rank by Kappa Rank by RMSE
Algorithm ‘ % Correct Algorithm Kappa Algorithm RMSE
Most MLP 95.66% MLP 0.9293 MLP 0.08
Random Forest 90.32% SMO 0.7488 | Random Forest 0.21
SMO 90.13% | Random Forest | 0.7211 1Bk 0.21
1Bk 88.32% 1Bk 0.7194 LogReg 0.25
LogReg 87.08% LogReg 0.7087 J48 0.25
J48 85.73% J48 0.6911 SMO 0.29
Naive Bayes 81.97% Naive Bayes 0.6332 Naive Bayes 0.32
Least ZeroR 46.36% ZeroR 0.0000 ZeroR 0.41

Table 8 Spearman rank correlation p value for 50% split energy use and CPU use between
algorithms classifying a dataset.

User | System Idle IO Wait | Number of | Context

Dataset Time Time Time Time Interrupts | Switches | Processes
Adult 1.00 0.57 1.00 0.07 0.96 0.79 0.85
MNIST 1.00 0.61 1.00 0.04 0.96 0.82 0.93
Mushroom 1.00 0.76 0.90 0.52 0.95 0.86 0.64
Pendigits 0.98 0.36 1.00 0.57 0.95 0.74 0.83
PGSQL 1.00 0.19 0.98 0.17 0.76 0.12 0.81
Spambase 1.00 0.00 0.98 0.45 0.79 0.07 0.50
Waveform 1.00 0.14 0.93 0.19 0.67 0.33 0.95

6 Causes of energy differences
6.1 Is energy use related to the CPU usage of an algorithm’s implementation?

Before and after running a test, the phone’s /proc/stat file is collected to
gather information about the phone’s CPU time and processes. The difference
between the two measurements is used to determine the CPU time and resource
usage of a test. These results are compared to determine how an algorithm
implementation’s CPU usage is related to its energy usage.

When comparing the results from 50%-split tests, energy use was strongly
correlated to user time and idle time for all datasets. Table 8 shows that
energy consumption was not strongly correlated to system time usage or 10
wait time for most datasets. Energy was strongly correlated to the number of
interrupts for most datasets, except for PGSQL and Waveform, where it was
only moderately correlated. For other CPU use measurements, the strength of
correlation to energy usage varied widely between datasets. The results were
similar for cross-validation.

In general, the correlations between energy use and CPU use were stronger
for cross validation. It should be noted that the Adult and MNIST datasets
could not be evaluated by many algorithm implementations on the phones be-

Title Suppressed Due to Excessive Length 29

cause they ran out of memory. Thus, there are fewer energy results to compare
for these datasets.

For the 10-fold results, energy use was strongly correlated to user time,
idle time, and number of processes. The number of interrupts was also well-
correlated to energy use for all datasets. IO wait time was not strongly corre-
lated to energy use, and, excluding the Adult and MNIST values, system time
was generally not strongly correlated to energy use for any dataset.

The number of processes did not significantly increase between 50% split
evaluation compared to cross validation. On average, over all datasets and
algorithm implementations, only 1.2 times as many processes were created for
cross validation as compared to 50% split. In contrast, on average, 10-fold
evaluation used 7.0 times more idle time, and 10.5 times as much user time.

6.2 Is energy use related to the memory use of an algorithm’s
implementation?

Android’s Dalvik VM automatically logs information about heap use and
garbage collection (GC). These logs were collected for the algorithm implemen-
tations and datasets using Android’s logcat tool. These logs have the number
of kilobytes allocated for and used on the heap, the number of times the app’s
heap size was grown, the number of concurrent GCs performed when the heap
grows too large, the number of GCs performed when the heap is too full to
allocate required memory, and the total time taken to perform these GCs,
could be parsed and compared.

Logistic Regression and Random Forest used the most memory on the heap
and performed the most concurrent garbage collections. Overall, they are the
most inefficient in terms of memory use. It should also be noted that Random
Forest’s performance was most affected by memory, as five datasets could not
be evaluated with 10-fold cross validation on the phones as they ran out of
memory or had a stack overflow occur. Excluding both MLP and ZeroR, Naive
Bayes, J48, and IBk performed the fewest garbage collections to make space
for allocations, grew their heap the fewest number of times, and used the least
amount of heap space. Random Forest and Logistic Regression were both large
energy users, while Naive Bayes and J48 were the lowest energy users, so for
these algorithm implementations their memory use seems related to their en-
ergy use. However, IBk was one of the most memory-efficient in terms of space
used for the instances and classifier, but the second-highest energy consumer,
so memory use alone cannot account for energy efficiency. Additionally, MLP,
which was implemented with the Neuroph framework rather than Weka, was
very memory efficient (heap) despite being the highest energy user with cross
validation. Excluding ZeroR, MLP used and allocated the least amount of
heap space, and grew its heap the fewest number of times. However, it per-
formed the third-most GCs, so it may be reducing its memory requirements
by performing more frequent memory clean-ups.

30 Andrea MclIntosh et al.

Table 9 Spearman’s rank correlation p value for 10-fold energy use and memory use between
Weka-implemented algorithm classifying a dataset.

GC GC
GC Conc. GC Alloc Alloc-
Dataset | Conc. | (ms) | Alloc | (ms) | Grow | Used | ated
Adult 0.40 0.70 0.90 0.90 0.87 0.70 0.90
MNIST 0.50 0.50 1.00 1.00 1.00 1.00 1.00
Mush 0.75 0.75 0.64 0.64 0.26 0.96 0.96
Pen 0.68 0.68 0.79 0.82 0.71 0.86 0.86
PGSQL 0.71 0.71 0.77 0.83 0.06 0.66 0.66
Spam 0.49 0.49 0.49 0.60 0.60 0.60 0.60
Wave 0.14 0.31 0.60 0.60 0.60 0.60 0.66

The memory use of the Weka-implemented algorithms, not MLP, was com-
pared to energy use, and the Spearman’s correlation p estimates of this com-
parison are shown in Table 9. Table 9 shows that energy use is not consistently
well-correlated to memory use. Generally energy use was most strongly cor-
related to the maximum heap space used in a test and the maximum heap
space allocated in a test. Spambase and Waveform datasets generally showed
weak correlations between their energy and memory use. MLP memory us-
age was similarly correlated. The relationship between memory and energy
usage on mobile devices is likely complex. Our data shows that using large
amounts of memory increases energy use, but strategies to decrease memory
requirements, such as an aggressive garbage collection policy, may also cause
increased strains and delays in the application which also increases energy
use, as with Neuroph’s MLP implementation. Additionally, developers must
be concerned with their application’s memory usage beyond its impact on en-
ergy consumption, as mobile devices often have limited storage compared to
desktop computers or servers.

The lesson learned is that more or less memory use does not guarantee
a particular behaviour in terms of energy consumption. Yet using memory in
such a way that incurs garbage collection incurs overhead in terms of CPU use.
The significance of GC overhead depends on the algorithm and implementation
itself.

6.3 Is energy use related to the methods called by an algorithm’s
implementation?

Method traces for algorithm implementations with different datasets were gen-
erated using Android’s Dalvik Debug Monitor Server (DDMS) and dmtrace-
dump tools. The method traces were generated by sampling every millisecond.
The methods called by each algorithm implementation are compared, and the
total number of CPU cycles and total number of method calls made are cor-
related to energy use.

The total number of method calls is strongly correlated to the energy use of
each algorithm implementation on a dataset, with algorithm implementations

Title Suppressed Due to Excessive Length 31

making more method calls using more energy. All datasets had p estimates of
0.9 or better. Similarly, the number of CPU cycles elapsed during execution
also had a p estimate of 0.9 or better for all datasets when correlated to energy
use.

Additionally, algorithm implementations that used more energy, such as
MLP or Random Forest, called costly methods many times. For the applicable
datasets Random Forest was able to perform cross validation to completion
on, the method invoked the most number of times by the algorithm imple-
mentation was Weka’s QuickSort. QuickSort is already O(nlogn) in average
time and O(n?) worst case. Naive Bayes and J48 also invoked QuickSort, but
significantly fewer times per dataset: Random Forest called QuickSort 9 to
41 times as often as often as J48 did, and 69 to 83 times as often as Naive
Bayes. QuickSort was never used on the Mushroom dataset with any algo-
rithm implementation as it only has categorical attributes. MLP called meth-
ods to update weights with backpropagation calculations the most. Logistic
regression, another high energy-user, frequently calls methods to evaluate the
model’s gradient vector and to perform exponentiation.

6.3.1 Time spent within API calls

If we analyze calls that were not made to Neuroph or Weka, potential APT calls,
we find that java.lang.System.arraycopy is quite popular among all test
runs, using as much user time as java.util.ArrayList.add. java.util.-
Arraylist.get was also a big consumer of time. Neuroph makes use of their
own lists and many of those calls appear as well, but those are not 3rd party
APIs. Through profiling we find java.lang.Daemons$GCDaemon.requestGC is
called much but not directly from the source code. Streams and IO are used
by calls such as java.io.BufferedInputStream.read but take up 1 order of
magnitude less than time than ArrayList add calls and 3 orders of magnitude
less time than ArrayList get calls. dalvik.system.VMRuntime.concurrentGC
accounted for half as much time as ArrayList get calls. requestGC calls from
the garbage collector used nearly as much time as ArrayList add calls.

Other popular Java API calls were: java.lang.Math.log for logarithms;
java.lang.0Object.wait which waited on threads (but didn’t actually con-
sume CPU as it was waiting on work to be done); java.lang.Double.isNaN
which tested double values if there were not a number; java.lang.String.-
equals for string equality; java.lang.System.identityHashCode the origi-
nal Java hashCode() or an object; and java.lang.reflect.Array.newInstance.
Most API calls were to collections, string calls, memory/GC, array copies,
threading, mathematical utilities, and some file I/O routines. This makes sense
as the machine learning tasks are primarily CPU and memory bound with
some need for loading datasets from files. Potential optimizations could be in
reducing GC use by memory optimizations such as free lists; could be reducing
the need for NaN checks via provable NaN free double manipulation pipelines;
optimizing or memoizing the logarithm function; and string interning to avoid
expensive String equals calls.

32 Andrea MclIntosh et al.

Table 10 Spearman correlation p estimate between algorithmic complexity with constant
factors and energy consumption when training models.
[[PGSQL [MNIST [Mush | Adult | Wave | Spam [Pen |

50% 0.81 0.96 0.83 0.96 0.90 0.93 | 0.93
10-CV 0.86 1.00 0.83 1.00 0.89 0.89 | 0.98

6.4 Is energy use related to algorithmic complexity?

To determine the correlation between algorithmic complexity and energy us-
age, the relevant statistics of each dataset, including number of attributes,
and number of instances, were substituted into the algorithmic time complex-
ity formulas for training each learner. For IBk, which has a constant time
complexity of O(1) for training, the cost was set to the constant 100000 for
each dataset as its time should be independent of dataset size—this assumes
it does not need another representation of the input data as Weka typically
claims training took 0 seconds anyway for IBk. For SMO a time complexity
of O(n?) was assumed, which was empirically determined to have a time com-
plexity between O(n) up to O(n??) for n training instances [38]. The p values
for the Spearman correlations between these computed numeric complexities
and the energy required to train each algorithm implementation on a dataset
are shown in Table 10. The curves of these complexity functions were tuned
by a single coefficient for best fit.

Table 10 clearly shows that the big-O models of complexity, given the
parameters provided, do mostly fit the real-world implementations. Thus in
this study the complexity of an algorithm and the energy consumption of its
implementation under test are rank correlated.

6.5 Analysis

Hasan et al. [32] found that the power use of different collection classes was
similar, and that energy consumption seemed to increase at the same rate
as program runtimes, indicating that programs that use more energy do so
because they do more work in the extra time it takes them to run. Our results
agree with this.

While the energy consumptions of different algorithm implementations
could differ significantly, the algorithm implementations tended to have simi-
lar power use. This is likely because the processes are primarily CPU bound.
We found that energy use was positively correlated to both runtime complex-
ity, and the user and idle CPU time taken by an algorithm’s implementation.
Further, energy use was positively correlated to the number of methods called
by an algorithm implementation during execution, indicating that algorithm
implementations that use more energy to evaluate a dataset both take longer
and call more methods, thus doing more work. Algorithm implementations
and datasets that invoked garbage collection more typically took longer and
consumed more energy.

Title Suppressed Due to Excessive Length 33

7 Evaluating machine learning choices on mobile devices

In this section, we provide guidance to app developers who seek to use ma-
chine learning within their mobile-apps. Developers should decide if they need
to train machine learners or if they can simply share a trained model with
their mobile-app. Developers should also consider the effect that the number
of attributes have on energy consumption. Furthermore, developers should
consider how much energy consumption they are willing to allow for versus
the accuracy or agreement they want to achieve.

7.1 What are the best algorithm implementations to use for models that do
not need updating?

Some applications may only require a static, pre-trained model that does not
require updating. This classifiers will be trained and shipped with the appli-
cation when it is downloaded. For example, the Google Translate application
uses a convolutional neural net that was trained on a carefully selected dataset,
and then deployed in the application [24]. In such a situation, it may be best
to select an algorithm implementation that has a high training energy cost
since it only needs to be paid once, and not even necessarily on the phone, but
has low classifying costs and errors.

J48, SMO, Logistic Regression, and MLP all have significantly higher train-
ing costs than classifying and evaluating costs (implementation energy con-
sumption) and in terms of complexity. Thus, these algorithm implementations
would be ideal for implementations where the model could be trained ahead
of time, and not updated after release for classification in the application. J48,
Logistic Regression and MLP are Pareto optimal choices, but SMO is close,
based on our limited evaluation, depicted in Figure 9.

7.2 What are the best algorithm implementations to use for models that
need updating?

We did not explicitly test algorithms for updating because most of the al-
gorithms tested did not have updateable implementations. Updateable algo-
rithms are referred to as online algorithms or “online-learning” [14]. These
algorithms can be run piece by piece, updating themselves. The opposite,
an offline algorithm is given all of its inputs at once and produces a result,
whereas online algorithms can be continuous. In machine learning an online
learner is a learner that can learn piece by piece, one or more examples at
a time. Online algorithms are interesting in the mobile context because they
can respond to change and can even defer training costs till later. Naive Bayes
is online capable because given a labelled document, token counts associated
with the label are easy to increment and save. IBk’s lazy learning is online
because one may just add training instances to a collection to be evaluated

34 Andrea MclIntosh et al.

later. MLPs and neural networks can be online since the network can always
be trained or updated with more instances at anytime [14]. Typically MLPs
require an optimizer, such as stochastic gradient descent, to search for weights
that match the new data, the optimizer can optimize the neural network’s
weights to label the new examples correctly. For the neural network libraries,
i0S’s CoreML [36] and Tensorflow-lite as of writing did not enable on-device
training for neural networks, but Tensorflow Mobile did [72]—typically these
libraries relied on pre-trained networks distributed to the apps themselves. If
the model must be trained or re-trained on the phone, Naive Bayes is the best
algorithm to use to limit energy use, as it has the lowest energy use overall and
has the same time complexity for training as for classifying [8]. The IBk clas-
sifier is trivial to update, making updating fast and low-energy, but it is slow
and energy-intensive to classify and it is one of the worst energy consumers
for classification. While we did not measure small updates to MLPs, gradient
descent and back propagation are expensive so update costs to MLPs can be
prohibitive in terms of runtime.

7.3 What are the best algorithm implementations to use to minimize energy
consumption?

Excluding ZeroR, Naive Bayes used the least amount of energy on average
for training and testing. J48 was also energy efficient, being the next-lowest
energy user on average, after Naive Bayes. Thus, Naive Bayes and J48 are the
best algorithm implementations tested to use for applications trying to reduce
energy use. For 50% split training and testing Naive Bayes was the lowest
energy consumer on average, but was the second-lowest energy consumer for
some datasets. For cross-validation, Naive Bayes was the lowest energy con-
sumer across all datasets. This suggests that Naive Bayes’ energy performance
will scale well.

Naive Bayes is recommended over J48 in terms of energy use if the model
must be trained as well as evaluated by the app. If the model can be pre-
trained, J48 will likely use less energy and be faster to validate than Naive
Bayes, but Naive Bayes can train models faster and with less energy than J48.

7.4 What are the best algorithms implementations to use to maximize
accuracy?

Of the Weka implemented algorithms, Random Forest and SMO were the best
classifiers overall, with Random Forest having the highest average accuracy
and SMO having the highest average kappa statistic, making these the best
algorithm implementations to use to obtain correct results. Random Forest
was also the highest average energy user on 50% split datasets, and the sec-
ond highest for 10-fold evaluation. SMO was less energy-hungry overall and
dominated RF.

Title Suppressed Due to Excessive Length 35

MLP had the highest average accuracy overall, with an average classifi-
cation accuracy of over 95% and an average kappa of over 0.92. On some
datasets it was able to achieve RMSEs smaller than 0.0001, suggesting poten-
tial overfitting. MLP could likely achieve even higher accuracies if optimized.
To standardize the tests, all our MLP networks had the same number of hidden
neurons (15), learning rate (0.2), and fixed number of training epochs (100)
regardless of input size or type. Tuning these parameters for each dataset
could improve prediction accuracies. For example, the Spambase dataset had
the highest error, with a classification total mean square error of 0.37 with
the test parameters, but using a learning rate of 0.1 and 1000 training epochs,
the total mean square error could be reduced to 0.31. However, tuning these
parameters could also affect energy consumption of the network.

7.5 What are the best algorithm implementations for datasets with many
attributes?

Energy consumption is strongly-correlated to algorithmic time complexity.
Thus, it is not surprising that the algorithm implementations with the lowest
energy use on datasets with large numbers of attributes (PGSQL, MNIST,
Spambase) also have algorithmic complexities that have a low dependence on
the number of attributes. SMO had low energy use on the PGSQL and Spam-
base datasets, especially with 50% split evaluation. Naive Bayes, which has
a linear dependence on the number of attributes, also performs well on these
datasets.

7.6 What algorithm implementations dominate in terms of energy versus
accuracy?

Figure 9 shows a clear dominating Pareto front of machine learners that are
“optimal” in classification/evaluation energy consumption or in accuracy mea-
sured in Kappa score. Clear dominators in order of Kappa score versus energy
are ZeroR, J48, Logistic Regression and MLP. These candidates make sense
because they are effectively conditional statements such as J48, small functions
such as logistic regression, or numerous small functions combined such as the
neurons of a feed-forward MLP, that are all quick to evaluate. For training,
ZeroR, IBk and MLP dominate as IBk’s lazy training beats Naive Bayes. Ig-
noring IBk, the training dominators are in order of Kappa are: ZeroR, Naive
Bayes, J48, logistic regression, RF, and MLP.

8 Threats to validity

Construct validity is threatened by our choice of experiments, machine learn-
ing algorithms, algorithm implementations, platforms tested, hardware, and
data sets. We tried to control for attribution errors by having a constrained

36 Andrea MclIntosh et al.

Kappa Accuracy And Testing Energy Use of Algorithms with 50%—Split

1Bk
L]
1000-
NB
[]
=
>
=g
[0}
C
w
RF
197 SMO MLP
[]
LogReg
[]
J48
ZeroR
0.00 0.25 0.50 0.75

Kappa

Fig. 9 Scatterplot of energy consumption during classification (not training) versus Kappa.

environment that was very similar for every run. Construct validity is also
threatened in terms of the effect on end-users, without applications found in
the wild, and benchmarked with different learners under different workloads
it isn’t clear if any choice in ML classifier will have an impact. Furthermore,
construct validity is threatened by the perceived realism of choices made from
libraries, datasets, training regime, since freely available observations about
data and inputs were not available at the time of writing.

Internal validity is threatened by selection bias of datasets and algorithms,
as well the use of two machine learning frameworks. The consistency of the
measuring framework could affect internal validity.

External validity is threatened by the limited number of machine learning
algorithms, libraries, and implementations evaluated. The limited number of
datasets and their variation in terms of size and features is also an external
threat—datasets were not sampled, they were manually chosen for their rep-

Title Suppressed Due to Excessive Length 37

resentativeness of actual mobile ML problems. Furthermore, some classifiers
such as neural network MLPs and support vector machines such as SMO have
numerous parameters that can be tuned—we did not explore parameter tun-
ing thus some performance parameters in terms of both runtime and accuracy
could be affected. In the case of SMO different kernels can have drastically
different classification performance. Future study could focus on tuning spe-
cific classifiers in a multi-objective manner with energy, runtime, and accuracy.
We could apply more and furthermore we are limiting ourselves to only two
machine learning frameworks. Some frameworks could have better energy effi-
ciency or run-times. External validity is also threatened by the lack of variation
or exploration of different devices and different operating systems. Some plat-
forms have hardware specialized for machine learning [10] and thus are not
represented. We hope that a lot of the external validity can be addressed with
the theoretical run-time estimates provided by complexity estimates but we
recognize that different platforms and hardware will react somewhat differ-
ently. For instance later versions of Android transitioned from the DalvikVM
to the Android Runtime (ART) which has different performance compared to
DalvikVM [41]. ART also has different compilation models, such as ahead of
time, just in time, and hybrid, which could result in different performance as
well.

Thus the main limitations of this study are: the machine learning algo-
rithms and implementations chosen, the realism of the tasks evaluated, the
realism of the datasets and inputs used, the proportion of training to evalu-
ation measured, the use of a single kind of device (without machine learning
acceleration), the use of a single operating system (DalvikVM versus ART),
and the use of only 2 ML libraries.

9 Conclusions

We conclude that developers can make choices, based on their applications, to
reduce energy consumption effectively. It is important that developers recog-
nize that machine learning is not a free lunch in terms of energy consumption.
Their machine learning choices in terms of algorithm, implementation, OS,
and hardware may affect the energy consumption of their applications. The
rapid pace of machine learning hardware and software development is creat-
ing an ever changing landscape of performance trade-offs complicated by new
hardware and new operating systems more capable of mobile code optimiza-
tion (Android Run Time [41]). The results of our work should be viewed as a
snapshot limited to 1 Android OS version (4.2.2) and the DalvikVM runtime,
1 make and model of phone (Galaxy Nexus), and 2 machine learning libraries
(Weka and Neuroph) that implement classical machine learning algorithms. We
did not engage in deep learning. Currently we would not recommend train-
ing Neural Nets (MLP) on mobile devices, however evaluation with neural
networks on mobile devices is quite successful [24, 72].

38 Andrea MclIntosh et al.

We observed that many machine learning algorithm implementations cost
more to train than to evaluate. Often this cost can be offloaded by training
in the cloud — which we recommend for logistic regression, support vector
machines, and neural networks.

Depending on the context and the need for updates, a lazy trainer, such as
nearest neighbours, with expensive evaluation could make more sense than an
algorithm implementation with relatively good performance balance between
training and evaluation. One needs to balance how much evaluation versus
how much training one needs to do. Constant evaluation implies one needs a
cheap evaluator whereas constant updates and changing signals implies one
need an algorithm and implementation that is cheap to train, such as Naive
Bayes or nearest neighbours.

Thus our results show that given the limited context the dominating algo-
rithm implementations for only classification/evaluation include Neural Nets
(ML), Logistic Regression and J48. Support Vector Machines, Random For-
est, and Neural Nets (MLP) performed the best in terms of accuracy but
with poor energy efficiency for training. Naive Bayes was balanced and offered
good accuracy compared with its training energy efficiency but suffers from
high evaluation energy costs. Some algorithm implementations did not fare
very well for training such as Logistic Regression, which requires lots of mem-
ory and CPU but had middle-ground accuracy and cannot be updated easily.
Neural networks have superior accuracy but suffer from poor energy efficiency
in terms of both training and evaluation. Thus, mobile app developers need to
be aware of the trade-offs between different machine learning algorithms.

Future work would be to integrate smart search techniques to emulate the
SEEDS approach [52] of choosing machine learning algorithms and implemen-
tations given domain context and constraints. Thus, recommender systems
could be built that could analyze the problem and make the best suggestion
based upon empirical and theoretical constraints and measurements. Future
work can also include accounting for more neural-net architectures, different
hardware, different platforms, different OS versions, more library versions,
more learners, and more data-sets.

References

1. Dex2jar download - sourceforge.net. http://sourceforge.net/projects/dex2jar/.
(Last accessed: May 2018)

2. Release v2.1-20171001-lanchon - dexpatcher/dex2jar - github. https://github.com/
DexPatcher/dex2jar/releases/tag/v2.1-20171001-1lanchon. (Last accessed: May
2018

3. Abdl)llsalaum7 H., Skillicorn, D.B., Martin, P.: Classification using streaming random
forests. IEEE Transactions on Knowledge and Data Engineering 23(1), 22-36 (2011)

4. Aggarwal, K., Hindle, A., Stroulia., E.: Greenadvisor: A tool for analyzing the im-
pact of software evolution on energy consumption. In: International Conference
on Software Maintenance and Evolution (ICSME 2015), pp. 311-320 (2015). URL
http://softwareprocess.ca/pubs/aggarwal2015ICSME- greenadvisor.pdf

5. Aggarwal, K., Hindle, A., Stroulia, E.: Greenadvisor: A tool for analyzing the impact
of software evolution on energy consumption. In: 31st IEEE International Conference
on Software Maintenance and Evolution. IEEE Computer Society (2015)

http://sourceforge.net/projects/dex2jar/
https://github.com/DexPatcher/dex2jar/releases/tag/v2.1-20171001-lanchon
https://github.com/DexPatcher/dex2jar/releases/tag/v2.1-20171001-lanchon
http://softwareprocess.ca/pubs/aggarwal2015ICSME-greenadvisor.pdf

Title Suppressed Due to Excessive Length 39

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Agolli, T., Pollock, L., Clause, J.: Investigating decreasing energy usage in mobile apps
via indistinguishable color changes. In: 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), pp. 30-34 (2017). DOI
10.1109/MOBILESoft.2017.17

Akdeniz: Google Play Crawler. https://github.com/Akdeniz/google-play-crawler
(Last accessed: May 2018) (2013)

App Annie: App Annie. https://www.appannie.com/ (Last accessed: May 2018)
AppBrain: Top Android phones. http://www.appbrain.com/stats/top-android-
phones. (Last accessed: May 2018)

Apple Inc.: The future is here: iphone (2017). https://www.apple.com/newsroom/2017/
09/the-future-is-here-iphone-x/ (Retrieved April 2018)

Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy bugs
and hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 588-598. ACM (2014)
Benfield, L.: Cfr - another java decompiler. http://www.benf.org/other/cfr/. (Last
accessed: May 2018)

Bhattacharya, S., Lane, N.D.: Sparsification and separation of deep learning lay-
ers for constrained resource inference on wearables. In: Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM, SenSys ’16, pp.
176-189. ACM, New York, NY, USA (2016). DOI 10.1145/2994551.2994564. URL
http://doi.acm.org/10.1145/2994551.2994564

Bottou, L.: Online Algorithms and Stochastic Approximations. Cambridge University
Press (1998)

Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)

Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic im-
provement. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pp. 1327-1334. ACM, New York, NY, USA (2015). DOI
10.1145/2739480.2754752. URL http://doi.acm.org/10.1145/2739480.2754752
Chenlei, Z., Hindle, A., , German, D.M.: The impact of user choice on energy con-
sumption. IEEE Software pp. 69-75 (2014). URL http://softwareprocess.ca/pubs/
zhang2014IEEESoftware-user-choice.pdf

Chowdhury, S., Sapra, V., Hindle, A.: Client-side energy efficiency of http/2 for web
and mobile app developers. In: 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER 2016), pp. 529-540 (2016). DOI 10.
1109/SANER.2016.77. URL http://softwareprocess.ca/pubs/chowdhury2016SANER-
http2.pdf

Chowdhury, S.A., Hindle, A.: Greenoracle: Estimating software energy consumption
with energy measurement corpora. In: Proceedings of the 13th International Conference
on Mining Software Repositories, MSR ’16, pp. 49-60. ACM, New York, NY, USA
(2016). DOI 10.1145/2901739.2901763. URL http://doi.acm.org/10.1145/2901739.
2901763

Christina Bonnington: Your smartphone gains a mind of its own. Conde Nast http:
//www.wired.com/2013/07/ai-apps-trend/ (2013)

D. Aha and D. Kibler: Instance-based learning algorithms. Machine Learning 6, 37-66
(1991)

Di Nucci, D., Palomba, F., Prota, A., Panichella, A., Zaidman, A., De Lucia, A.:
Software-based energy profiling of android apps: Simple, efficient and reliable? In: Soft-
ware Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on, pp. 103-114. IEEE (2017)

E. Frank: Class j48. http://weka.sourceforge.net/doc.dev/weka/classifiers/
trees/J48.html (2016)

Good, O.: How google translate squeezes deep learning onto a phone. Google Research
Blog https://research.googleblog.com/2015/07/how-google-translate-squeezes-
deep.html (2015)

Google: Find time for your goals with google calendar. Google Blog https://
googleblog.blogspot.ca/2016/04/find-time-goals-google-calendar.html (2016)
Google: Neural networks api: Android developers (2017). https://developer.android.
com/ndk/guides/neuralnetworks/index.html (Last accessed: May 2018)

https://github.com/Akdeniz/google-play-crawler
https://www.appannie.com/
http://www.appbrain.com/stats/top-android-phones
http://www.appbrain.com/stats/top-android-phones
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
http://www.benf.org/other/cfr/
http://doi.acm.org/10.1145/2994551.2994564
http://doi.acm.org/10.1145/2739480.2754752
http://softwareprocess.ca/pubs/zhang2014IEEESoftware-user-choice.pdf
http://softwareprocess.ca/pubs/zhang2014IEEESoftware-user-choice.pdf
http://softwareprocess.ca/pubs/chowdhury2016SANER-http2.pdf
http://softwareprocess.ca/pubs/chowdhury2016SANER-http2.pdf
http://doi.acm.org/10.1145/2901739.2901763
http://doi.acm.org/10.1145/2901739.2901763
http://www.wired.com/2013/07/ai-apps-trend/
http://www.wired.com/2013/07/ai-apps-trend/
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
https://googleblog.blogspot.ca/2016/04/find-time-goals-google-calendar.html
https://googleblog.blogspot.ca/2016/04/find-time-goals-google-calendar.html
https://developer.android.com/ndk/guides/neuralnetworks/index.html
https://developer.android.com/ndk/guides/neuralnetworks/index.html

40

Andrea McIntosh et al.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Google: Mobile vision (2018). https://developers.google.com/vision/ (Last ac-
cessed: May 2018)

Greene, T.: Google brings on-device machine learning to mobile with tensorflow
lite (2017). https://thenextweb.com/artificial-intelligence/2017/11/15/google-
brings-on-device-machine-learning-to-mobile-with-tensorflow-lite/ (Retrieved
January 2018)

Gui, J., Li, D., Wan, M., Halfond, W.G.: Lightweight measurement and estimation of
mobile ad energy consumption. In: Green and Sustainable Software (GREENS), 2016
IEEE/ACM 5th International Workshop on, pp. 1-7. IEEE (2016)

Gui, J., Mcilroy, S., Nagappan, M., Halfond, W.G.J.: Truth in advertising: The hidden
cost of mobile ads for software developers. In: 37th IEEE/ACM International Conference
on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, pp.
100-110. IEEE (2015). DOI 10.1109/ICSE.2015.32. URL http://dx.doi.org/10.1109/
ICSE.2015.32

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka
data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10-18 (2009). DOI
10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/1656274.1656278
Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.: Energy profiles of java
collections classes. In: International Conference on Software Engineering (ICSE 2016),
pp. 225-236 (2016). DOI 10.1145/2884781.2884869. URL http://softwareprocess.
ca/pubs/hasan2016ICSE-Energy-Profiles-of-Java-Collections-Classes.pdf

Hern, Alex, a.: Smartphone now most popular way to browse internet — ofcom
report. https://www.theguardian.com/technology/2015/aug/06/smartphones-most-
popular-way-to-browse-internet-ofcom/ (2015). (last accessed: May 2018)

Hindle, A., Ernst, N.A., Godfrey, M.W., Mylopoulos, J.: Automated topic naming sup-
porting cross-project analysis of software maintenance activities. Journal of Empirical
Software Engineering 18(6), 1125-1155 (2013). URL http://softwareprocess.ca/
pubs/hindle2011EMSE-automated-topic-naming.pdf

Hindle, A., Wilson, A., Rasmussen, K., Barlow, E.J., Campbell, J., Romansky, S.:
Greenminer: a hardware based mining software repositories software energy con-
sumption framework. In: International Working Conference on Mining Software
Repositories (MSR 2014), pp. 12-21 (2014). URL http://softwareprocess.ca/pubs/
hindle2014MSR-greenminer.pdf

Inc., A.: Core ml: Apple developer documentation (2017). https://developer.apple.
com/documentation/coreml (Last accessed: May 2018)

Inc., W.: Wit.ai: Natural language for developers (2018). https://wit.ai/ (Last ac-
cessed: May 2018)

J. Platt: Fast training of support vector machines using sequential minimal optimization.
In: B. Schoelkopf, C. Burges, A. Smola (eds.) Advances in Kernel Methods - Support
Vector Learning. MIT Press (1998). URL http://research.microsoft.com/~jplatt/
smo.html

Jabbarvand, R., Sadeghi, A., Garcia, J., Malek, S., Ammann, P.: Ecodroid: an approach
for energy-based ranking of android apps. In: Proceedings of the Fourth International
Workshop on Green and Sustainable Software, pp. 8-14. IEEE Press (2015)

John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338-345. Morgan
Kaufmann (1995)

Konradsson, T'.: Art and dalvik performance compared. Master’s thesis, UmeaUniversity
(2015). http://www8.cs.umu.se/education/examina/Rapporter/TobiasKonradsson.
pdf

LeCun, Y., Cortes, C., Burges, C.J.: The mnist database of handwritten digits. http:
//yann.lecun.com/exdb/mist/ (1998)

Li, D., Hao, S., Gui, J., Halfond, W.G.J.: An empirical study of the energy con-
sumption of android applications. In: 30th IEEE International Conference on Soft-
ware Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3,
2014, pp. 121-130. IEEE Computer Society (2014). DOI 10.1109/ICSME.2014.34. URL
http://dx.doi.org/10.1109/ICSME.2014.34

https://developers.google.com/vision/
https://thenextweb.com/artificial-intelligence/2017/11/15/google-brings-on-device-machine-learning-to-mobile-with-tensorflow-lite/
https://thenextweb.com/artificial-intelligence/2017/11/15/google-brings-on-device-machine-learning-to-mobile-with-tensorflow-lite/
http://dx.doi.org/10.1109/ICSE.2015.32
http://dx.doi.org/10.1109/ICSE.2015.32
http://doi.acm.org/10.1145/1656274.1656278
http://softwareprocess.ca/pubs/hasan2016ICSE-Energy-Profiles-of-Java-Collections-Classes.pdf
http://softwareprocess.ca/pubs/hasan2016ICSE-Energy-Profiles-of-Java-Collections-Classes.pdf
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom/
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom/
http://softwareprocess.ca/pubs/hindle2011EMSE-automated-topic-naming.pdf
http://softwareprocess.ca/pubs/hindle2011EMSE-automated-topic-naming.pdf
http://softwareprocess.ca/pubs/hindle2014MSR-greenminer.pdf
http://softwareprocess.ca/pubs/hindle2014MSR-greenminer.pdf
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://wit.ai/
http://research.microsoft.com/~jplatt/smo.html
http://research.microsoft.com/~jplatt/smo.html
http://www8.cs.umu.se/education/examina/Rapporter/TobiasKonradsson.pdf
http://www8.cs.umu.se/education/examina/Rapporter/TobiasKonradsson.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1109/ICSME.2014.34

Title Suppressed Due to Excessive Length 41

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Li, D., Lyu, Y., Gui, J., Halfond, W.G.J.: Automated energy optimization of http re-
quests for mobile applications. In: Proceedings of the 38th International Conference
on Software Engineering, ICSE ’16, pp. 249-260. ACM, New York, NY, USA (2016).
DOI 10.1145/2884781.2884867. URL http://doi.acm.org/10.1145/2884781.2884867
Linares-Vasquez, M., Bavota, G., Bernal-Cardenas, C., Oliveto, R., Di Penta, M., Poshy-
vanyk, D.: Mining energy-greedy api usage patterns in android apps: An empirical study.
In: Proceedings of the 11th Working Conference on Mining Software Repositories, MSR
2014, pp. 2-11. ACM, New York, NY, USA (2014). DOI 10.1145/2597073.2597085.
URL http://doi.acm.org/10.1145/2597073.2597085

Linares-Vasquez, M., Bavota, G., Cardenas, C.E.B., Oliveto, R., Di Penta, M., Poshy-
vanyk, D.: Optimizing energy consumption of guis in android apps: A multi-objective
approach. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2015, pp. 143-154. ACM, New York, NY, USA (2015).
DOI 10.1145/2786805.2786847. URL http://doi.acm.org/10.1145/2786805.2786847
Linares-Vasquez, M., Vendome, C., Tufano, M., Poshyvanyk, D.: How developers micro-
optimize android apps. Journal of Systems and Software 130, 1-23 (2017)

"M. Lichman": "UCI machine learning repository" ("2013"). URL "http://archive.
ics.uci.edu/ml"

Machine Learning Laboratory: Mnist arff files. http://axon.cs.byu.edu/data/mnist/
(2015)

Malik, H., Zhao, P., Godfrey, M.: Going green: An exploratory analysis of energy-
related questions. In: Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pp. 418-421. IEEE Press, Piscataway, NJ, USA (2015). URL
http://dl.acm.org/citation.cfm?id=2820518.2820576

Manotas, 1., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., Pollock, L.,
Clause, J.: An empirical study of practitioners’ perspectives on green software engi-
neering. In: Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, pp. 237-248. ACM, New York, NY, USA (2016). DOI 10.1145/2884781.
2884810. URL http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/
2884781.2884810

Manotas, I., Pollock, L., Clause, J.: Seeds: A software engineer’s energy-optimization
decision support framework. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 503-514. ACM, New York, NY, USA (2014).
DOIT 10.1145/2568225.2568297. URL http://doi.acm.org/10.1145/2568225.2568297
Matyunina, J.: How do i apply machine learning in an android app? (2017). https:
//www.quora.com/How-do-I-apply-machine-learning-in-an-android-app (Last ac-
cessed: May 2018)

Minka, Thomas P: A comparison of numerical optimizers for logistic re-
gression. Unpublished paper available at http://research.microsoft.com/en-
us/um/people/minka/papers/logreg/minka-logreg.pdf (2007)

Mizutani, Eiji and Dreyfus, Stuart E: On complexity analysis of supervised mlp-learning
for algorithmic comparisons. In: Neural Networks, vol. 1, pp. 347-352. IEEE (2001)
OpenCV Team: Android - opencv library. https://opencv.org/platforms/android/
(Last accessed: May 2018)

Padraig Cunningham and Sarah Jane Delaney: k-nearest neighbour classifiers. Tech.
Rep. UCD-CSI-2007-4, University College Dublin (2007). URL https://csiweb.ucd.
ie/files/UCD-CSI-2007-4.pdf

Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about
the energy consumption of software? IEEE Software pp. 83-89 (2015). URL http:
//softwareprocess.ca/pubs/pang2015IEEESoftware.pdf

Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones: A
first look at energy bugs in mobile devices. In: Proceedings of the 10th ACM Workshop
on Hot Topics in Networks, HotNets-X, pp. 5:1-5:6 (2011)

Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.M.: Fine-grained Power Modeling
for Smartphones Using System Call Tracing. In: EuroSys 11, pp. 153-168. Salzburg,
Austria (2011). DOI 10.1145/1966445.1966460. URL http://doi.acm.org/10.1145/
1966445 .1966460

http://doi.acm.org/10.1145/2884781.2884867
http://doi.acm.org/10.1145/2597073.2597085
http://doi.acm.org/10.1145/2786805.2786847
"http://archive.ics.uci.edu/ml"
"http://archive.ics.uci.edu/ml"
http://dl.acm.org/citation.cfm?id=2820518.2820576
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.2884810
http://doi.acm.org.login.ezproxy.library.ualberta.ca/10.1145/2884781.2884810
http://doi.acm.org/10.1145/2568225.2568297
https://www.quora.com/How-do-I-apply-machine-learning-in-an-android-app
https://www.quora.com/How-do-I-apply-machine-learning-in-an-android-app
https://opencv.org/platforms/android/
https://csiweb.ucd.ie/files/UCD-CSI-2007-4.pdf
https://csiweb.ucd.ie/files/UCD-CSI-2007-4.pdf
http://softwareprocess.ca/pubs/pang2015IEEESoftware.pdf
http://softwareprocess.ca/pubs/pang2015IEEESoftware.pdf
http://doi.acm.org/10.1145/1966445.1966460
http://doi.acm.org/10.1145/1966445.1966460

42

Andrea McIntosh et al.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

74.
75.

76.

7.
78.

79.

80.

Pereira, R., Couto, M., Saraiva, J.a., Cunha, J., Fernandes, J.a.P.: The influence of the
java collection framework on overall energy consumption. In: Proceedings of the 5th
International Workshop on Green and Sustainable Software, GREENS ’16, pp. 15-21
(2016)

Pinto, G., Castor, F., Liu, Y.D.: Mining Questions About Software Energy Con-
sumption. In: MSR 2014, pp. 22-31 (2014). DOI 10.1145/2597073.2597110. URL
http://doi.acm.org/10.1145/2597073.2597110

Rasmussen, K., Wilson, A., , Hindle, A.: Green mining: energy consumption of ad-
vertisement blocking methods. In: Proceedings of the 3rd International Workshop
on Green and Sustainable Software (GREENS 2014), pp. 38-45 (2014). URL http:
//softwareprocess.ca/pubs/rasmussen2014GREENS-adblock.pdf

Saborido, R., Beltrame, G., Khomh, F., Alba, E., Antoniol, G.: Optimizing user experi-
ence in choosing android applications. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 438-448 (2016).
DOI 10.1109/SANER.2016.64

Sahin, C., Pollock, L., Clause, J.: From benchmarks to real apps: Exploring the energy
impacts of performance-directed changes. Journal of Systems and Software 117, 307—
316 (2016)

Sahin, C., Tornquist, P., Mckenna, R., Pearson, Z., Clause, J.: How does code obfusca-
tion impact energy usage? In: ICSME, pp. 131-140. IEEE Computer Society (2014)
Sahin, C., Wan, M., Tornquist, P., McKenna, R., Pearson, Z., Halfond, W.G., Clause,
J.: How does code obfuscation impact energy usage? Journal of Software: Evolution
and Process 28(7), 565-588 (2016)

Selby, J.W.A.: Unconventional applications of compiler analysis. Ph.D. thesis, Univer-
sity of Waterloo (2011)

Sevarac, Z., Goloskokovic, 1., Tait, J., Carter-Greaves, L., Morgan, A., Steinhauer, V.:
Neuroph: Java neural network framework. http://neuroph.sourceforge.net/ (2016)
S.S. Keerthi and S.K. Shevade and C. Bhattacharyya and K.R.K. Murthy: Improve-
ments to platt’s smo algorithm for svm classifier design. Neural Computation 13(3),
637-649 (2001)

Su, Jiang and Zhang, Harry: A fast decision tree learning algorithm. In: American
Association for Artificial Intelligence, vol. 6, pp. 500-505 (2006)

TensorFlow: Mobile tensorflow. https://www.tensorflow.org/mobile.html (2016)
Tomita, T.M., Maggioni, M., Vogelstein, J.T.: Randomer forests. arXiv preprint
arXiv:1506.03410 (2015)

Triposo: Triposo. https://www.triposo.com/ (2016)

Wan, M., Jin, Y., Li, D., Gui, J., Mahajan, S., Halfond, W.G.: Detecting display energy
hotspots in android apps. Software Testing, Verification and Reliability 27(6) (2017)
Webservices, A.: Amazon aws machine learning (2018). https://aws.amazon.com/
machine-learning/ (Last accessed: May 2018)

Weotta: About weotta. http://www.weotta.com/about (2016)

Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques,
3 edn. Morgan Kaufmann (2011)

Woollaston, V.. Customers really want better battery life.
http://www.dailymail.co.uk/sciencetech /article-2715860/Mobile-phone-customers-
really-want-better-battery-life-waterproof-screens-poll-reveals.html (2015). (last
accessed: May 2018)

Yang, Y., Zhang, J., Kisiel, B.: A scalability analysis of classifiers in text categorization.
In: Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, pp. 96-103. ACM (2003)

http://doi.acm.org/10.1145/2597073.2597110
http://softwareprocess.ca/pubs/rasmussen2014GREENS-adblock.pdf
http://softwareprocess.ca/pubs/rasmussen2014GREENS-adblock.pdf
http://neuroph.sourceforge.net/
https://www.tensorflow.org/mobile.html
https://www.triposo.com/
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
http://www.weotta.com/about

	Introduction
	Prior work
	Machine learners and configuration
	Methodology and measurements
	Energy profiling results
	Causes of energy differences
	Evaluating machine learning choices on mobile devices
	Threats to validity
	Conclusions

