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ABSTRACT .

Spectral analysis provides péwerful techniques for the
appréiimate linear analysis of the input-output relatibns of a system ;
When a system is subjected to a stochastic , band-limijed driving
function estimates of the frequency response function , the coherence
function and the information transmission rate may be obtained from
consistent spectral and cross- spectral estimates .

One problem in applying spectral amalysis to a primary sensory
neurone is that the response of the neurone is a spike train . A
method of obtaining regular , alias-free samples of a spike train
with an arbitrary sampling rate has been developed . Using a package
for consistent spectral and cross-spectral estimation the frequency
response functions , coherence functions and information transmission
rates of two insect mechanoreceptors have been estimated . Both
these receptors have frequency response functions indicating a high-
pass filter characteristic , and a coherence function which is never
greater than 0.5 . The low coherence function indicates that the
response of the receptor is noisy and nonlinear , and so the frequency
response function is not an accurate characterization of the input-

output characteristics of the receptors .



CHAPTER 1 .

CHAPTER

CHAPTER

CHAPTER

2 .

2.1

3.9

3.10

TABLE OF CONTENIS .

INTRODUCTION .

LINEAR SYSTEMS THEORY .

Definition of a linear system .

Appiication to linear , noise-free systems .
Application to linear systems with intrinsic noise .
Application to nonlinear systems with intrimsic
noise .

ANALYTICAL TECHNIQUES .

Hardware .

Time domain processing of spike trains .
Methods'of spectral estimation .

Sampling a continuous signal .

Sampling a spike train .

The Discrete and Fast Fourier Transforms .

Consistent spectral estimation by the direct method .

Consistent cross-spectral estimation by the direct
method .

Consistent estimation of the coherence function .
Consistent estimation of the frequency response
functién .

Software for spectral estimation .

THE COCKROACH TACTILE SPINE .

Introduction .

Methods .

page

11

14

16

16

18

20

25

26

29

36

37

41

42

45

45

46



page

4.3 Results . 48
4.4 Discussion . 65
CHAPTER 5 . THE FEMORAL CHORDOTONAL ORGAN OF THE LOCUST . 71
5.1 Introduction . 71
5.2 Methods . 73
5.3 Results . 74
5.4 Discussion . 88
CHAPTER 6 . DISCUSSION . - . : 92

REFERENCES . 96



Figure

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

LIST OF FIGURES .

Principal information flow-paths of data processing
system .

Diagram of example histogram defining the parameters
of section 3.2 . |

Fourier Transform of rectangﬁlar lag window .

Ideal , rectangular low-pass filter and its impulse
response .

Flow chart of principal computation routes of spectral
analysis packége . |

Cycle histograms of the response of a tactile spine to
a 0.05 hz. rectangular driving function of two different
amplitudes.

Cycle histogram of the respomse of a tactile:spine to
a 1 hz. sinusoidal driving function and a plot of the
harmonié Fourier cééfficiénts of the histogram ;
Amplitude of thé fundemental and the first barmoéic

of cycle histograms of the response of the tactile spine
to 1 hz. sinusoidal driving functions of increasing
amplitude .

Cycle hzstograms of the response of the tactile spine
to 5 hz. 2nd 20 hz. sinusoidal dr1v1ng functions

showing phase locking .

page

17

19

23

28

44

49

51

53

55



Figure page
4.5 Bode plot of the frequency response function of

the tactile spine obtained by using sinusoidal

driving functions . 56
4.6 Cycle histograms of the response of a tactile

spine to sinusoidal driving functions with and

without a stochastic , band-limited auxillary signal . 59
4.7 Bode plot of the frequency response function .

obtained by using sinusoidal driving functions

with & stochastic , band-limited auxillary signal . 60
4.8 Estimat2s of the inmput , output , and real and

imaginary parts of the cross-spectra when the tactile

spine is stimulated by a stochastic , band-limited

driving function . 62
4.9 Bode plots of the frequency response functionm ,

and the coherence function , of the tactile spine

estimated by using a stochastic , band-limited

driving function ; " 63
4.10 Estimate of the céherence function of a Germanium

diode . 66
4.11 Estimates of the coherence function of a model

neurone with a zero carrier rate and a carrier rate

of 100 impulses/second . 68



Figure ' page
5:1 Interspike interval histograms df twé t&nic units

from the femoral chordétﬁnal ;rgan of the locust : 75
5.2 Estimate of the p§wer spectrum of the tonic unit

of Figure 5.1b 78
5.3 Cycle histograms of the response of a phasic unit

from the chordotonal organ to sinuscidal Qriving

functionsv. 80
5.4 Estimates of the input , output and cross-spectra

when the chordotonal organ was excited by a

stochastic , band-limited driving function . 81

5.5 Estimates of the frequency response function of

two chordotonal organ units . . 83
5.6 Sensitivity of four chordotonal organ units . 84
5.7 Bode plot of transfer function of equation 5.6 85

5.8 Coherence function of four chordotonal organ
units . . 87
5.9 Estimates of the coherence function of a chordotonal

organ unit at three different imput zmplitudes . 89



CHAPTER 1 .
INTRODUCTION .

Following Pringle and Wilson's (1952 ) use of linear systems
theory to characterize the input-output relations of an insect
mechanoreceptor linear syétems theory has been used to investigate
the signal transfer characteristics of a large number of single
neurones . It has been applied to receptors ( Chapman and Smith,

1963 ; Borsellino, Poppele and Terzuolo, 1965 ; Brown and Stein, 1966 ;
Pinter, 1966 ; Houk and Simon, 1967 ; Dodge, Knight and Toyoda, 1968 ;
Matthews and Stein, 1969a; Poppele and Bowman, 1970 ; Knight, Toyoda
and Dodge, 1970 ; Pearson and Holden; 1970 ; Holden and French, 1971a ,
1971b ) , higher order sensory neuromes ( Spekreijse, 1969 ; Maffei,
Cervetto and Fiorentini, 1970 ; Melville Jones and Milsum, 1970 ) ,
neuro-muscular effectors ( Partridge, 1965 ; McKean et al. , 1970 ) ,
and synapses ( Bagiwara and Morita, 1962 ; Watanabe, 1968 ) . Some

of these , and other examples , are reviewed in the Neurosciences
Research Program Bulletin on 'Neural Coding' ( Perkel and Bullock,

1968 ) and the Brainerd conference on 'Systems Analysis in Neuro-
physiology' ( Terzuolo, 1969 ) . Linear systems theory provides a
powerful body of techniques for investigating the input-output
relations of linear systems , and can also be used as a general
approach to the approximate anzlysis of nonlinear systems .

In spite of its widespread application in the study of single



units in the nervous system there are probiems in treating a neuronal
element as a system with a clearly defined input function x(t) ,
or set of input functions , and a éléarly defined output y(t) . For
a primary sensory neurone , the input is a continuous time varying
function which may also vary spatially , and the output may be a
continuous function , as in photo-receptors ( Arden, 1969 ) or a crab
mechanoreceptor ( Bush and Roberts, 1968 ) , but is generally a spike
train . For a central neurone ; the input may be taken as a large
number of spike trains ,_and the output as a sinéle spike train . For
a neuro-muscular effector , the input is a spike train , or number
of spike trains , and the output is a continuous function ( say
tension ) . Thus-in most cases one or more of the signals is a spike
train . Although a recorded spike train is a continuous band-limited
signal , since the duraticm of an action potential is short compared
to the mean inter-spike interval , and action potentials are generally
all-or none , it is usual to treat a spike train as a series of
identical events . An exception to this is given in Gestri, Maffel
and Petracihi ( 1967 ) and Barbi and Petracchi (1971) .

If all action potentials in a spike train are taken as equivalent
events there are two ways in which a spike train may be treated :

i). a continuous function may be generated from the spike train
( Terzuolo, 1970 ) . This may be the averaged interval between
spikes , the rate of spikes averaged over some time or number of
spikes , or an estimate of the probability deasity of spikes relative
to some time marker ( the cycle or post-stimulus time histogram ).

Alternatively , unaveraged , discontinuous functions may be generated .



ii). the spike train can bé considered as a realization of a
stochastic point process ( Moore, Perkel and Segundo, 1966 ; Stein,
1970 ) or as a series of unit impulses or Dirac delta functions
( French and Holden, 19712 ; Knox, 1969 )

When a suitable form of describing the spike train has been
chosen linear systems theory can be used to derive a relationship
between the input signal and the output signal . Such an approach
is purely descriptive - the neuronal element is treated as a 'black
box' and a mathematical model is formulated which attempts to
describe the input-output relations of the black box . However , such
a quantitative description is of value in its own right , and may
be used as a basis for either dissecting the black box into possibie
components ( see , for eiample , Terzuolo et al. , 1968 ) or for
building models of simple neuronal networks .

A variety of methods , both in the time domain and in the
frequency domain , are available for obtaining a quantitative
description of the imput-output relations of a system . These methods
are reviewed in Chaptér 2 and their implementation discussed in
Chapter 3 . In later chapters some of thess methods are applied

to two sensory receptors., the tactile spine of the cockroach and the

chordotonal organ of the locust .



CHAPTER 2 .

LINEAR SYSTEMS THEORY .

2.1. Definition of 2 linear system .

A linear transformation from a vector space Z1 to a vector space

22 is a function A which provides a one-to-one associatica with

each vector z in Z1 with a vector A(z) in Z2 such that:

A(zl) f A(ZZ)

and 2.1

Aaz) aA(2)

for all vectors z in Zl and all scalars a . If the vector space

Z1 contains all possible input functions z to a system and the
vector space Z2 contains all possible responses of the system then
the system is linear if and only if equation 2.1 is valid for all
input functions z and all responmses A(z) . This is a statement of
the principle of superposition . If the principle of superposition

holds for only some of the possible imputs , and not for other inputs ,

then the system is not linear .

2.2. Application to linmear , noise-free systems .

For a linear noise-free system with 2 single input or driving
function x(t) and 2 single output or response y(t) the output is

related to the input by the convolution integral :



() = 75 x(1) glt,t) dt 2.2

and if the system is also time invariant a function g(t) exists
such that
y(t) - 1 i(%).g(t 1) dt 2.3
“where g(t) is the weightiﬁg function of the system .
Treatment of equation 2.3 is greatly simplified if it is examined
in the s domain , where s is a complei variable . This may be
achieved by use of the Laplace Tranform ( Samith, 1966 ) . The Laplace

Transform is a linear transform and is defined by :

L.T. {y(t)} = Y(s)
2.4
_ ® -st
= IO y e dt
and its inverse is given by
-1 - 1 jctHj= ts ]
L.T. ~ {¥(s)} = 21 Ic_j° Y(s) e ds 2.5

where ¢ is a constant which must be defined to ensure comvergence

in this contour integration . Thus y(t) and Y(s) form a Laplace

Transform pair

y(t) <« Y(s)

In practice it is generally not necessary to evaluate the forward



and inverse transforms as they are available in tables for most
commonly encountered functions .
The most useful properties of the Laplace Transform are:

a) Linearity

k y(t) «—  k Y(s)
y(t) + £(¢) «> Y(s) + F(s)
b) Time tramslation

y(t -1t) e—TSY(s)

¢) Real convolution
f; y(t-1) £(x) <«  Y(s)F(s)

Application of the convolution preperty to the Laplace Transform

of equation 2.3 yields
Y(s) = G(s) X(s) 2.6

When the input function x(t) is a2 unit impulse or Dirac delta function
§(t) such that
f: 8 () dt = 1
2.7

é(t) = 0,t # 0



the Laplace Transform of x(t) is unity and so equation 2.6 now gives
Y(s) = G(s)

Thus the Laplace Transform of the response to a unit impulse is the
Laplace Transform of the weighting function g(t) of the system .This
is the transfer function , G(s) , of the system which is only defined
for a linear , time invariant and noise-free system . The transfer
function completely characterizes the input-output relations of the
system .

An alternative representation of the transfer function is the
frequency response function G(f) given by

j2nft

G(£) = f‘; g(t) e e 2.8

where in place of the Laplace Transform we are using the one—sidgd
Fourier Transform .

The frequency response function is complex and in engineering
contexts its magnitude is generally plotted as the dimensionless
ratio gain in dB. . However , although this convention is often used
in neurophysiology ( e.g. : Poppele and Bowman, 1970 ) it is
inappropriate when the input and output signals do not have the same

dimensions .

When the input x(t) to the system is a realization of a stationmary
stochastic process one can define the autocovariance function pxx(t)

of x(t) as ( Jenkins and Watts, 196 ; Llee, 1967 )



p- (1) . Llm %; fET ={t) x( t 41 )dt 2.5

and the autocovariance function pyy(r) of the response y(t) as

() = Mo z ITT y(t) y( t 4t )dt

Pyy S s 2T

and the forward cross—covariance pxy(r) from the input to the output
p. (=) = 3T I-T x(t) y( t 4t )dt 2.10

These covariance functions are the mathematical expectation of the
product of the values which the stationary random processes assume
at instants separated by 7. i.e. for the autocovariance function of

x(t) where x(t) is a realization of an ergodic process.
= E t
P (T { x(t) x(t 4+t )}

They are related to the corresponding correlation functions Yxx(r) ,

Yyy(T) , and ny(r) where ¢ is the standard deviation by

@ = ge @

) 2
vyy(r) = o oyy(t) 2.11
vxy(r) = %05 oxy(r)

The autocovariances and autocorrelation functions are even functions

of v , the cross—covariance and cross-correlation are generally



odd functions of T.

From the Wiener~Khinchine relation { Lee, 1967 ; Thomas, 1969 )
one can obtain the power spectra of the input and the output and the
cross-power spectrum from the Fourier Transforms of the corresponding
input , output and cross-covariance functions .

The Fourier Transform F(f) of a function f(t) is defined by :

FE) = [7 £(r) 3P g 2.12
and the inverse transform by
£(t) = %ﬂ 2 () 2 e 2.13

where j = /-1.
Thus the input power spectrum Sxx(f) > the output power spectrum

syy(f) and the cross-power spectrum Sxy(f) are given by:

s_©) = 17 o () &34
Syy(f) = 7 pyy(t) e-jZﬂfT dt 2.14
Sxy(f) = J': oxy(r) e-JZﬂfT dt

Note that Sxx(f) and syy(f) are real , even functions while sxy(f)
is complex and odd . Sxy(f) is often considered in terms of its

real part , the real- valued even co-spectrum ny(f) and its



10 .

imaginary part , the real-valued odd quad-spectrum Qxy(f) vhere

5y () € ® - 3 ® | 2.15

or alternmatively

c (£)
X

g sxy(f) + syx(f)

il Sxy(f) - Syx(f) ]

0O
where syx(f) is the backward cross-spectrum .

These speétra are two-sided , that is they are défined for
negative as well as positive frequencies . Although two-sided
spectra simplify the anmalysis , in most applicatioms negative
frequencies do not have a physical interpretation , and so from the
two-sided spectré one can obtain one-sided spectra defined oaly
for positive frequencies by folding the two-sideé spectrum over

the zero frequency axis so that the onme sided spectrum is given

by
stx(f) D<£f< =
R__(f) = 2.16
XX

0 £f<0
Since the cross-spectrum is odd, to obtain its one-sided spectrum
the two-sided spectrum has to be folded over both axes .
From either the one or two-sided spectra one can obtain the

frequency response function from the following relatioms :

Szz(f) 2.17

G(£)
s (D)
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or
s__(£)
6(£) - vy 2.18
s_ (£)
and
2
syy(f) = |6 |7 5,0 2.19

Note that the frequency response function G(f) can be interpreted as
a complex linear regression coefficient for obtaining y(t) from x(t)

( Benignus, 1969a).

2.3. Application to linear systems with intrinsic noise .

1f the response y(t) of the system is contaminated by additive
intrinsic noise then equation 2.3 does not hold and a transfer function

may not be defined . The response will be given by
y(t) = IS x(1) h(t -t) dr+ n(t) 2.20

where n(t) is that part of the output due to the intrinsic noise and
h(t) is the weighting function of the linear system .
In this case a describing function may be defined whose frequency

response function H(f) is given by

H(E) SR It 4, 2.21

Note that the describing function does not completely characterize

the input-output relations of the system , it provides the best ("in
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the sense of minimum mean squared deviatioﬁs 5 linear model for the
system .

If the input signal to the system is a realization of a broad-
band stochastic process one can define the coefficient of coherence
( Tick, 1963 ; Enochson and Goodman, 1965 ; Bendat and Piersol, 1966 ;

Benignus, 196%b ) by

s, © [
Xy 5 (6.5, (£) > 0
¥ (£) S (£)+ Sy (£) 2.22
L o, ENGEMGES)

Alternative definitions of coherence have been proposed . Wiener

(1930 ) defined a coefficient of coherency as

Sxy(f)

y(£)

1/2
[ 5, (£).5, (D)]

and this is a complex function which is not invariant when the x(t)
and y(t) are subjected tc linear transformations . Foster and
Guinzy ( 1967 ) arnd Hinich and Clay ( 1968 ) define the coefficient
of coherence Y(f) as the positive square root of the right hand side
of equation 2.22 , which although it is a real number and is invariant
when the x(t) and y(t) are subjected to linear transformations has
been described ( Tukey, 1967 ) as'an unlikely quantity’'.

The definition of equation 2.22 has been used because of its
analogy with the coefficieat of determination ( the square of the

correlation coefficient ) between two randcm variables . The coherence
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function. is a normalized measure of the linearity of the relation

between x(t) and y(t) and since the spectral matrix

S (f) S__(f)
S(f) = = yx
S oy () Sy ()

is non-negative definite ( Koopmans, 1964 )
Is. ()}% < S__(£). S._(£)
Xy N xx yy

and so

0¢ Y2(E) ¢ 1 2.23

yz(f) represents that proportion of Syy(f) which may be accounted for
by linear regression onto Sxx(f) ,and (1 - Yz(f) ) represents that
proportion which cannot be accounted for by linear regression . In
this case this is the proportion of syy(f) due to Snn(f) , where
Snn(f) is the power spectrum of the noise n(t) .

From equation 2.20 it can be shown that ( Amos and Koopmans, 1963 )

Yz(f) ) 2.24
1+ Sm(f) :

2
S o (E) |B(£) |

From this expression Stein and French ( 1970 ) have obtained a relation-
ship between the coherence function and the information transeission
rate of the system . Shannon ( 1948 ) derives the chamnel capacity

in bits/second of a2 noisy channel for continuous signals as
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W
c =/g log, (1 + s () ) df 2.25 -
Snn(f)

tthara
weana W

wn

ss(f) is the signal spectrum and Snn(f) the noise spectrum , both
of which are band-limited to W . From equation 2.24 and 2.25 the

rate of information transmission is approximately I bits/second where

Im-}‘w

b olog, (1-+vX(0)) 2.26

An important property of the coherence function is its invariance
under linear operations ( Koopmans, 1964 ) . This means that the
physical systems used to measure x(t) and y(t) will not influence
the value of the coherence function if the measuring systems are

linear.

2.4. Application to nonlinear systems with intrinsic noise .

For a zero memory nonlinearity, that is , one whose output at
a given time depends only on the input at the same time , Booton
( 1952 ) has shown that for a given input function x(t) there is
an equivalent quasi-linear element Keq(f) su?h that the mean squared
difference between the response of the nonlinear element and the
response of the quasi-linear element is minimized . Thus analagous
to equation 2.20 the response of the nonlinear system is related to

the input by

y() = fz x(t) k(t -t ) dr + R(t) 2.27
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where N(t) is due to the nonlinear terms in the response and to any
intrinsic noise : |

In this case the describing function K(f) may be defined by
equations similar to those of section 2.3 , and the coherence
function provides a measure of that part of Syy(f) which is linearly
dependent on Sxx(f) and (1 - yz(f) ) provides a measure of that
part of Syy(f) which is due either to nonlinear transformation of

Sxx(f) or to intrinsic noise .

Equation 2,27 is not a general representation of the response
of a nonlinearity.. A more general representation of the response

of a nonlinear system is :

y(t) = ¢l f; x(t) k(t - 1) dt + n(t)]

where n(t) is a noise term and ¢[*] is a nonlinear operator. However,

this general approach is not very tractable.
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CHAPTER 3.

ANALYTICAL TECHNIQUES.

3.1. Hardware.

All experimental data ( analog signals and spike trains ) was

recorded on a four channel FM tape recorder ( Thérmionic T 3000 )
for subsequent analysis on 2 Digital Equipment Corporationm LAB-8
computer. The computer configuration used consisted of:

l); an 8/1 centFal processor with 4 K of core memory and an
e&tended arithmetic element KE 8/1

2). an AX08 Laboratory Peripheral with four pﬁlse inputs, a
four channel multiplexed analog-to-digital convertor ( ADC ), a
crYstalﬂand an RC clock and a storage display oscilloscope

3). a DF 32 magnetic disc unit and controller, with 32 X twelve
bit words of storage

4). a digital input buffer capable of accepting ten pulse train
inputs simultaneously.

The principal flow paths of the data processing systeam are given

in Figure 3.1. Since the pulse outputs (0> +5V ) from the pulse
height analyzér units ( Stein, 1968a) are incompatible with the pulse
input sockets of the AX08, which require 0 + -3V , the digital imput
buffer was used for all spike train inputs via the pulse height analyzer.
A further advantage of using the digital input buffer is that it operates
in interupt mode , and so the processor caa perform data processing

operations while accepting data. The ADC accepts voltages in the range
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: PULSE
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Figure 3.1 . Principal information flow-paths of data processing

system .
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+ 1.024 V full scale., and operates by successive approximation to
nine bits . Since the output from the Thermionic tape recorder is
limited to + 1 V the analog signals could be fed directly to the ADC .

Data output from the system was either via the storage oscillo-

scope by photography or via the teletype .

3.2. Time domain processing of spike trainms.

All time domain proéessing of spike trains was accomplished using
the PULSE and FNEW-PULSE programs ( French, 1970 ) . PULSE is a general
purpose histogramming program which éécepts two pulse trains . It comstructs
a histogram with 2 variable delay ( 0 to 0.4095 seconds ) , a variable
number N of bins ( 1 to 128 ) of bin width B.100 useconds , a variable
number of events/sweep and a variable number of sweeps. These terms are
defined in Figure 3.2 .

FNEW-PULSE provides a means of accessing the stored histogram by
the higher level interpretive language FOCAL . This permits fitting the
histogram by an appropriate curve.

A cycle histogram may be built up when the spike train is the
response to a periodic driving function . Such a histogram results when
the trigger pulse is synchronized to the driving function and the product
N.B is set to the period of the driving function , and the number of
events/sweep is large. A cycle histogram is an estimate of the probability
density of spikes as a function of the phase of the periodic driving
function .

An iﬁterspike interval histogram may be built up when the number of
evénts/sweep is one-and the spike train is serving 2¢ the trigger pulse .

1¢ the number of events/sweep is large az auto-correlogran is formed .
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Figure 3.2 . Diagram of example histogram defining the parameters

of section 3.2 .
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-~

3.3. Methods of spectral estimationm.

The power spectra defined by equations 2.14. are obtained
from time functions f(t) where - <t < +» . In practice only a finite

realization
f(t) 0OgtgT
0 T<0,t>T

£p(0) 3.1

is available and so in place of the power spectra one can define an
estimate of the power spectrum , the sample spectrum ( Jenkins and Watts,
1968 ) . Thus in place of equation 2.14a the sample spectrum is given by :

a - T -j2nfr
8 () I Pm) e

dt 3.2
where pxx(r) is a sample auto-covariance function given by:

- 1T
pxx(T) = 57 I g x(t) x(t +1) dt | 3.3

An alternative definition of Sxx(f) may be given by:

gxx(f) = %-fg xT(t) e_jZWEtdt fg xT(t') e jz“ft'dt'
S R R <103
T ) - X3
1
= I | xT(f)l 2 3.4

vhere XT(f) is the Fourier Transform of xr(c) and X;(f) is its complex
conjugate.
There are 2 variety of methods available for obtaining the saaple

spectrun sxx(f) and these methods may be considered in three groups :
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1) Blackman-Tukey methods
2) Direct methods
3) Auto-regressive methods.
An alternative classification of available methods is given in Parzen ( 1968 ).
The Blackman-Tukey , o? jndirect , methods follow from equations 3.1
and 3.2 ( Blackman and Tukey, 1958 ; Jenkins and Watts, 1968 ) . In order
to obtain an estimate of the spectrum from xT(t) , the auto-covariance

function p(1) is estimated By :

- %-Ig-lr‘ XT(T) xT(t + |t])de,0 < |<] <
Pl = : 3.5
0 l'rl > T

This estimate of the auto-covariance function is only considered up to a
alag T = W where W << T . Thus the auto-covariance function estimate

has been multiplied by a function wr(r) given by :

[t swe<t
3.6

v (1)
r 0 [z] > w

Alternatively , the auto-covariance estimate has been viewed through a
rectangular lag window of width 2W. Since muitiplication in the time
domain is equivalent to convolution in the frequency domain this means
that the spectral estimate gx;(f) :hag beeg convolved with‘wr(f)

where Wr(f) js the Fourier Transform of wtf;) given by :

MR . sin2=fW
Wr(f) = ZW{Z:EV } . g f& 3.7
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and so the spectral estimate is given from equation 3.2 as :
- ® T oA

f = - .
s () ;. W) s (f-g)dg 3.8

gxx(f) is a smoothed spectral estimate since the effect of the convolution
of gxx(f) with Wr(f) is to spread the component at a freqﬁency f over
(sin2nfW)/2nfW for - o <f < » ,This spreadiﬁg of the component at f
to other frequencies is called leakage from the frequency f. The decay
of the leakage away from the frequency f is shown in Figure 3.3 . gxx(f)
is an unbiased estimator of Sxx(f) if Sxx(f) is a slowly varying function
of f£. However, if the spectrum Sxx(f) cgntains large fluctuations there
will be considerab}e leakage and hence gxx(fi will be a biased estimator .
This bias may be reduced by quadratic modification , in which lag windows
other than wr(y) are used . A desirable property of these lag windows
is that their spectral equivalents should have lower and faster decaying
§ide lobes than Wr(f) . One-result of using the rectangular lag window
is that the variance of Sxx(g) is 2W/T that of gxx(f) ; since W << T
this reduction in va;iance is considerzble , and since 2W/T tends to
zero as T tends to infinity gxx(f) is a coqsistent estimator of sxx(f) .
The Blackman-Tukey approach has been extended to the estimation of
cross-spectra ( Jenkins and Watts, 1968 ) and has been eitensively
modified , notably in the c?oice of the optimal lag window ( Akaike, 1962 ) .
Discussion of the statisticél properties of the application of the
Blackman-Tukey approach to estimation of open-loop frequency response
functions have been given ( Jenkins, 1963 ; Akaike and Yamanouchi, 1962 ;
Akaike, 1964 ) .

The direct method of spectral estimation follows from equation 3.4 ,
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Figure 3.3 .

Fourier Transform of rectangular lag window .
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and it has only become computationally efficient since the rediscovery
of the Fast Fourier Transform algorithm by Cooley and Tukey ( 1965 ),
which provides an economical method for computing the Discrete Fourier
Transform . This metho& was applied for the estimation of all spectra
and so will be described in greater detail in subsequent sections of
this chapter .

Recently Akaike ( 1969, i970 ) and Parzen ( 1968 ) have argued in

favour of estimating Sxx(f) by autoregressive decomposition . Samples

x(n) of the time series are assumed to have the form :

x(n) = b c_ e(n-1)
p=0 P
where ¢ = 1 and the e(n)'s are completely uncorrelated . With this

assumption x(n) can be approximated by

e

P
x(n) e(n) + T a - x(n-m)-

=1 P>

and if x{(n) is a realization of a weakly stationary process this approximation
is stable and can be made as accurate as desired by increasing p . The
magnitude of p can be estimated from the auto-covariance function estimate .
From estimates of the auto-regressive coefficients ap’m an auto-regressive
estimator of the normalized sample spectrum may be obtained . It has been
claimed ( Gersch, 1970 ) that this method gives smoother spectra which

are more readily interpretable than spectral estimates obtained by the
Blackman- Tukey meth;d or the direct method , and that this methed is more

objective. Eowever, this method has as vet found little application . It

appears to be better suited for the estimation of the spectra of noisy
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signals than for estimating spectra of random signals and spike trainms

in order to estimate frequency resonse functions or coherence functions .

3.4. Sampling a cbntinuous signal .

The computation of estimates of Sxx(f) on a digital computer implies
that in place of the continuous parameter process'{ x(t) , —=< t < ®}
one must use a discrete parameter process'{ X(At)(n) :n=0, 1, #2... }

which may be formed by setting

x(At)(n) = x(nAt)

choice of At follows from the Nyquist sampling theorem ( Nyquist, 1928 ;

Landau, 1967 ) . If x(t) is a signal of finite energy bandlimited to B hz.
i.e.

{ sin 2%B(t - k/2B )

x(t) 278 — W28 ) )

1}
&MB

3.9
2
with £ la.k | <o

then x(t) can only be recovered error-free from xcﬁt)(n) if

1/At > 2B

Half the sampling rate , 1/ 28t , is called the Nyquist or folding
frequency fN. If x(t) has a spectrum sxx(f) , then it can be shown
( Blackeman and Tukey, 1958 ) that sxxA(f) , the spectrum of x(at)(n) is .

given by

sm(f) = s (B + I, [ s (2 -f) + Sn(Zka-}-f) ]

3.10
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Thus if there is any power in Sx%(f) for £ > fN this power will
alias as power at frequencies f < fN . The only method of preventing
such aliasing when taking regular s%mplés is to choose At such that
fN > all fi where sxx(fi) # 0 . This may be simply achieved by
filtering x=(t) before sampling , and choosing an appropriate At. When
At is such that the regular samples are alias-free , recovery of x(t)

from x (n) is stable , that is , small errors such as quantizing

(at)
errors ( Gold and Rader, 1969 ) in the samples x(At)(n) give small errors
in the recovered x(t) and hence in estimates of Sxx(f) .

A variety of methods for alias-free sampling of a stochastic process
have been proposed in which the sampling times ti are random ( Beutler,
1970 ) . When the sampling times form a Poisson process , or are
obtained by random deletions from a regular process ,alias-free sampling

can be achieved at mean sampling rates less than the Nyquist rate .

However such techniques are not readily implementable .

3.5. Sampling a spike train.

A recorded spike train is a band-limited signal of finite energy as
defined by equation 3.9 , but since the duration of action potentials
is of the order of milli seconds regular alias-free samples would have to
have an excessively high sampling rate . A variety of methods have been
proposed for sampling a spike train , and these have been criticized
elsevhere ( French and Holden, 1971a) together with a full description
of a new method for obtaining alias-free samples of a2 spike trainm .

In the method used to obtain alias-free regular samples of a spike
train the spike train is treated as a stochastic point process . Bartlett

( 1963 ) has defined the periodograa (see section 3.7 ) of a stochastic
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point process as the Fourier Transform of dn(t) , where dn(t) is

the differential of the cumulative distribution function n(t) . n(t)

of any point process is a staircase function : with jump
discontinuities of unity height at the occurance times of the events ;
Thus dn(t) is a series of unit impulses or Dirac delta fuuctiéns

at the occurance times ti of the events ; An alternative justification
for treating a'spike train as a series of unit impulses is givén'

by Nelsen ( 1964 ) . Thus treatment of a spiké train as a stocﬁastic '
point process is identical to treatment as a series of unit impulses

given by

oy () = To(t- t; ) 3.11
i=1

in order to estimate the periodogram .

The spectrum of a series of unit impulses e#tends to an.
arbitrarily high frequency, SO syy(f) >0  for 0<f< = ; and
so unless the impulse train is filtered aliasing will be unavoidable ;
Among the advantages of digital filters over analog filters is that a
digital filter can have an impulse response which e#ists for
negative times . Figure 3.4 shows the filter characteristics of an

ideal , rectangular low pass filter , and its impulse response ,

which is given by

g(t) = fN [ sin(Zﬂfxt) ]/27ch A
3.12

- <t < @

Such a filter may only be generated digitally .
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Figure 3.4 . TIdeal, rectangular low-pass filter and its impulse

respoase .
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Thus the series of delta functions of equation 3.11 may be
digitally filtered by convolving each unit impulse with g(t) .
Implementation of this techmique maylge considered conceptually as
a sequence :

i). y(¢) 0<t<T
yp(8) = o 1

ii). each unit impulse at £ is convolved with g(t) to give a

function y'(t) for =gt

iii).
'(t 0<t< T
yp(e) = y' ()
0 t>T
iv).
T inS = t
Y (ae) "™ yp (ndt)

Thus the result is equispaced samples of the digitally filtered train
of unit impulses , and where fN = 1/24t these samples are alias-
free . Details of practical aspects of the implementation of this

technique are given in French and Holden (1972 ).

3.6. The Discrete and Fast Fourier Transforms .

The sampling methods of sections 3.4 and 3.5 generate from
xT(t) and yT(t) a series of N numbers , xT(At)(n) and yT(At)(n) for
a=0,1, ...N-1 . The Fourier Transform of such sets of numbers may
not be defined . However , 2 discrete set of numbers may be

associated with a time function
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. N-1
x'(t) = I x(nat) &(t - nAt)
n=0

whose Fourier Transform is given by

X = I a
N-1 .
= ¢  x(nat) e-JZKEAt 3.13

This method of obtaining the Fourier Transform of x(nAt) provides
a means of defining the Discrete Fourier Transform of a set of N

numbers x(a) , 0 =0, 1, .... N-1 as

N-1 _
X (m) = z x(n) e §2mmm/N 3.14
=0
and the inverse transform by
N-1 .
x(n) = -i-"- T X(m) ermm/N 3.15
n=0

Thus the sequences x(n) and X(m) which form 2 Discrete Fourier Transform
pair are periodic , with a period X . This may be visualized by
considering x(n) and X(2) to be defined at integer points on a circle

of circumference X ( Cooley,lewis and Velcﬁ, 1969 ; Gold and Rader,

1969 ) . Thus the Discrete Fourier Transform is not simply a discrete
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analog of the Fourier Transform , but has some properties of its
own . .

The Fast Fourier Transform , rediscovered by Cooley and Tukey
( 1965 ) , is an algoritim for the efficient evaluation of the Discrete
Fourier Transform similar to that described by Danielson and Lanczos
( 1942 ) . The evaluation of equation 3.14 requires Nz complex
multiplications and divisions , and so until thé rediscovery of the
Fast Fourier Transform the indirect method of estimating spectra was
computationally more efficient than the direct method when N was
large . There are two kinds of Fast Fourier Transform algorithm ,
decimation in time ( Cooley and Tukey , 1965 ) and decimation in
frequency ( Gentleman and Sande, 1966 ) . Both of these algorithms
result in the reduction in the number of operations needed to compute
an N point transform from N2 to N logZN when N is an integral power
of 2 . As well as the saving in computing time it has been claimed
that the Fast Fourier Transform is more accurate than the Discrete
Fourier Transform since the smaller number of operations produce

fewer round-off errors ( Wienstein, 1969 ) .

3.7. Consistent spectral estimation by the direct method .

If x(a) : n= 0; 1, ..., N-1 are X alias-free samples of x(t)
taken at regular intervals At from a record of length T = Nit
application of equation 3.14 gives the Fourier coefficients of

x(nAt) , X(@Af) . These Fourier coefficients are complex and so

X@E) = A+ 3B
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where the index Af has been omitted for ciarity in subsequent
equations. The Fourier coefficients occur at equally spaced points
with a frequency resolution of 1/NAt .

An estimate of the spectrum , the periodogram Ixx(mAf) is given
by

X(mAf) X*(mAf)
N

Ixx(mAf)

- | Xmag)] 2

N

1 2 2
N[Am + B ] 3.16

The periodogram is purely real and as it is an even function only

[ N/z ] + 1 vaiues are distinct . It is not a good estimate of the
spectrum Sxx(f) since it is biased and is not consistent . The bias
occurs since the time series has been viewed through a rectangular
data window of width T , and so the coefficients have been convolved
with T [ sin 7fT ]/ 7fT , and so the periodogram is given by

® sin =f'T 2
I (mAf) = [ T i S (f-f') df' 3.1i7
xx ‘ ~ _ p'e'd

«£T

where T [ sin #f'T/ #f'T ]2 is the Bartlett spectral window.

In the case where x(t) is a2 spike train which does not have a
constant interspike imterval Sxx(o) >> sxx(f #0 ), and so this
convolution will produce massive leakage from the DC component . This
DC leakage is often 2 problez and so is always eliminated by generating
from x(a) :n=0,1, .. ,N-1 2 series with 2 zero mean and hence

i
no DC component .
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However , there will still be bias if the spectrum Sxx(f) is
not smooth . This bias due to leskage may be reduced by linear
modification of ghe Fourier coefficients - a simple and widespread
method is Hanning , in which the Fourier coefficients are convolved

with - 1/4 , + 1/2 and -1/4 so that

By =12 [ A +4)]
A =-UOA L +W/DA -(UBA L, 3.18

Aprm V2 DA, + 4,1

and similarly for the Bm . Convolution of the Fourier coefficients
with these Hanning weights is equivalent to viewing the time samples

through a cosine bell wh(n) given by

1}

1 [1-cos2m ]

v (n) :
N-1

A disadvantage of linear modification is that it results in a
decrease in frequency resolution with only a small decrease in
variance . Quadratic modification , convolving ( Amz + Bm2 ) ?ich
an apparently suitable spectral window , has little effect on
lezkage ( Bingham, Godfrey and Tukey , 1967 ; Sloane, 1969 ) but
does permit the trading of 2 decrease in frequency resolution for
a decrease in variance .

Obtaining a zero-mean series and Hanning can reduce bias due to

leakage , but the linearly modified periodogram is not a coasistent

estipator of the spectrum . If x(n) are samples from 2 Xormal process ,
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since the Fourier Transform is a linear transformation A.m and Bm
will be Normally distributed and so Ixx(mAf) will have a chi-~
squared distribution with two degrees of freedom . If x(n) are
samples from a process which does not have a Normal distributién but
N is large then from the Central LimiF Theoreﬁ A.m and Bm will have
approximately Normal distributions and so Ixx(mAf) will have
approximately a chi—squafed distribution witﬁ two degrees of freedom .
The expected value of Ixx(mAf) is

E {1 (mf)} = 7 T sinnf'T, S (£-f') df' 3.19
XX - |\ XX

(22

and the variance is approximately Six(f) .

1f
N~-1 .
H(m) - () 2N 3.20
n=0
where wh(n) is the Banning window then the expécted value of the
linearly modified periodogram Ixx(mAf) is
- 2 E{ X(@?} 2
E {I (maf)} I Wm) - 3,21
xx N
and the variance
~ 2 2
Var { I_ (msD)} - LB x@? [ v@? 1 3.22

N2

hence 2

Var {in(mf)} - E {ixx(mf)}
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as in the case of the ummodified periodogram ( Jenkins and Watts, 1968 ) .
The variance of the modified periodogram ixx(mAf) may be reduced

by averaging M periodogram estimates from non-overlapping records

of length T . The variance of the averaged modified periodogram ixx(mAf)

is now approximately

2
S ()

e 10

and the averaged , modified periodogram has approximately a chi-
squared distribution with 2M degrees of freedom . A further decrease
in variance to 55% can be achieved by having the record segments
overlap by T/2 ( Welch, 1967 ) . If the resolution of ixx(mAf) is
unnecessarily fine a further reduction in variance can be achieved
by averaging adjacent frequency components ( Jomes, 1965 ) .

When k is the number of effective degrees of freedom of the
averaged estimate of the modified periodogram Jenkins and Watts have

shown that 100( 1 - a)Z confidence limits for the estimate are given

by
kI (mpf) kI (mbf)
XX
xx < Sxx(mAf) <
zk( 1-a/2) zk(u/Z)

where zk( 1 - a/2) and zk(a/2) are the af2 and 1 - a/2 points on
the cumulative chi-squared distribution with k degrees of freedom as

given in Bendat and Piersol ( 1966 ) .
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3.8. Consistent cross-spectral estimation by the direct method .

The sample cross-spectrum is defined by

]

1
5, (6) 7 KO 10

3.24

- T A - 3BO 1 1A +58(0 ]

where [ Ak(f) + jBx(f) ] and [ Ay(f) + jBy(f) ] are the Fourier

Transforms of xT(t) and yT(t) . Estimation of the cross-spectrum by -

the cross-periodogram Ixy(mAf) is analogous to the estimation of
sxx(f) by Ixx(mAf) : the record is broken into subrecords of length
T , and for each subrecord %-X%(mAf) YTGmAf) is evaluated from

linearly modified Fourier coefficients , and periodograms from different

-

subrecords are averaged to form Ixy(mAf) .

-~

Ixy(mAf) can be considered either in terms of its magnitude and

phase -
7 - " jP__(mAf)
Ixy(mAf) ny(mAf) e’ xy 3.?5
where
M (mbf - I (mAf
. (@80) | 1, @) |
and X
z 4 M T (mAf)
P (maf) = tan e
Xy .
RE I mAf
xy( )

or in terms of its real and imaginmary parts , which zre estimates of
the co- and quad-spectrum .
If Ixy(mbf) is the average of M cross-periodogram estimates which

have not been subject to linear modification then the variance
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~

of ny(mAf) is given by Hinich and Clay ( 1968 ) as

-

Var{ ﬁxy(mAf)}

1 _ 2
B Se® SO [ 1+ ]

and

-~

Var{ f>xy (mAf) } 1

Y2 ()

R

[ -1]

Thus the variance of the cross-spectrum estimate is dependent on the

coherence function.

3.9. Consistent estimation of the coherence function .

If the coherence function defined by equation 2.22 is estimated -~

from the linearly' modified but unaveraged periodograms by

. 2
1T (® |
xy 3.26

YA () _ =
Ixx(f) Iyy(f)

it will be identical with unity everywhere except when ixx(f).iyy(f)
is zero since if (a2 + 3jb ) , ( a'+ jb') are the Fourier coefficients

of xT(t) and yT(t)

) | L2-ib) (a"+4b') 2
| 1,0 T
I (). 1 () (a-3b)Ca+ib) (a'-jb")(a'+Hp')
xx Yy
T T
= 1.

Thus equation 3.26 is 2 useless estimator of Yz(f) , and it is
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analogous to estimating the correlation coefficient from a single
observation pair .
A widely used estimator of the coherence function is

- 2
~2 | ?xy(f) |-
Y (B) 3.27

[}

but this is a biased estimator . Enochson and Goodman ( 1965 ) have
shown that estimates of the coherence function are positively biased
and that this bias is a function of the effective degrees of freedom
of the estimate and the true coherence , and have given curves of a

bias correction factor when the true coherence is greater than 0.4 .
Benignus ( 1969b) used Monte Carlo methods to investigate this bias

and produced an empirical family of curves relating the bias to the

effective degrees of freedom of the estimate and the true coherence

for all values of coherence between zero and one . These curves

were fitted by a least squares procedure and the estimate of bias

B [yz(f) ] is given by

-~ - 1 ~
BIYAO ] = p (1-7® ) 3.28

and so that the corrected estimate of coherence is givean by

-~

Y2 - Y - BIY®]

-

The residual error betueen_yz(f) and Yz(f) was less than 0.01 for

all estimates with k> 8 .
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Tick ( 1967 ) has proposed an alternative family of estimators
for Yz(f) . In place of just averaging the linearly modified
periodograms he proposes that coherence function estimates obtained
from averaged modified periodograms should themselves be averaged .
This estimate is more biased when the true phase between the two
signals is changing slowly , but is less biased when the true phase
is changing rapidly-. In Monte Carlo studies , where the true
coherence is known , the number of periodograms averaged to be used
to form a coherence function estimate , and the number of coherence
function estimates to be averaged can be optimized to form an accurate
estimate . However , when the true coherence is unknown this rmethod
is not very useful but does suggest that there is no optimal method
for estimating an unknown coherence function .

Benignus ( 19693) discqssed the estimation of the coherence
function by use of the Fast Fourier Transform , and favours an
estimator produced by both averaging a set of periodograms and
averaging over frequency segments within the periodograms . When
averaging over frequency segments the adjacent components are not
independent if the coefficients have been linearly modified , and so
care must be taken in evaluating the effective degrees of freedom k .

Goodman ( 1957 ) has derived a distribution function for the
positive square root of the coherence function between two Gaussian
processes , and this has been tabulated by Amos and Koopmans ( 1963 ) .
Using Monte Carlo methods Foster and Guinzy ( 1967 ) have shown that
this distribution is applicable to non-Gauésién processes if the
spectra sxx(f) , syy(f) and sxy(f) are reasonably szooth , and by

using a Bayesian approach ( Good, 1965 ) have obtained z =maximum
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1ikelihood estimator for the coherence funétién :+ however , when

k is large this estimator does not differ significantly from ;z(f) .
Enochson and Goodman ( 1965 ) have shown that the sampling

distribution of the Fisher Z-transform ( Kaplan ; 1962 ) of the

positive square root of the coherence function estimate is approximately

Gaussian with a variance given by

-

var { Z o) T -

N

vhem 0.4 < YA€) < 0.95 and k > 20.

-

Hinich and Clay ( 1968 ) have given the variance of /&2(f) as

1 2 2
F L 1= ®]

o

var { A }

and so the variance of the coherence function estimate depends on the

value of the true coherence . !

-~

Approximate confidence limits for Yz(f) are given by

a(f) + n{ 1 -a/2} ©3.29

/ k

wher m {1 - a/2} is the 1 - c/2 point on the cumulative unit Normal

distribution function and

-~
.

L))

U(f) = tanh

which is assumed ( by appezling to the Central Limit theorez ) to have
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a Normal distribution ( Bendat and Piersol, 1966 ) .

3.10. Consistent estimation of the frequency response function .

The frequency response function G(f) defined by equations 2.16 -

2.18 may be estimated from

-

R 1_(£)
G, (E) = Xy 3.30
Ixx(f)
or 2
I (f
R y),()
Gz(f) = 3.31
I (f)
yx
Note that
Gl(f) -2
— = Y ()
€, )

and so these two estimates will only be the same if the coherence
function is one . Bendat ( 1962 ) has argued that él(f) should be
used to estimate G(f) when the output is contaminated with noise ,
and &z(f) should be used when the input measurement system introduces
noise . él(f) was used to estimate G(f) sincg the coherence function
was never one.

é(f) is complex , and confidence limits for its magnitudel C‘;(f) I

and phase lg(f) are given by Jenkins and Watts ( 1968 ) as
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. ., T2 1/2
2 B R € ‘
e | |1 2 4, Bt - 3.32
Y (£)
and .
-2
/ G(f) % |sin T2 EZ,k-Z{l <} —— 3.33

)

where f2 k-2 is the 1 -4 point on the cumulative Fisher's F
3
distribution with 2 degrees of freedor and k - 2 degrees of freedom .

The variance of | G(f) | and /G(f) are given by

var{ | G(&) | } n &) (1 _ 1
% Y%(f)
and
- 1 1
var { [/ G(f)} v % U . -1]
Y \1)

and so for low values of coherence the variance is high .

3.11. Software for spectral estimation .

The input signals were sampled using SAP-1 (11) ( French and
Holden, 1972 ) and the Fourier coefficients obtained by SAP-3 which
utilizes a time decimation Fast Fourier Transform algorithm ( French
and Holden, 1971b ) . Hanned spectral estimates were obtained from
the Fourier coefficients and averaged by SAP-9 ( French, 1971 ) and
estimates of the spéctra , frequency response functions , coherence

function and information traasmission rate and their confidence
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limits were generated by FOCAL programs accessing the stored spectral
estimates by SAP—4 ( French and Holden, 1971b ) .

A flow chart showing the principal computational routes is
given in Figuré‘é}s . A full discussion of computational aspects of
spectral estimation by the Fast Fourier Transform are given in

Cooley, Lewis and Welch ( 1967 ) and Brumbach (1968 ) .
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CHAPTER 4 .

THE COCKROACH TACTILE SPINE .

4.1. Introduction .

Pringle and Wilson ( 1952 ) utilized linear systems theory to
obtain a quantitative model for the input-output relations of the
large tactile spine on the dorsal surface of the femur of the meta-
thoracic leg of the cockroach , Periplaneta americané . Sinusoidal
and rectangular wave driving functions were applied to the receptor ,
and a "transfer function' relating the input tension to the rate
of sensory spike discharge was obtained . This receptor has been
studjed using a wide variety of techniques (Chapman and Smith , 1963 ;
Crowe, 1967 ; Pearson and Holden, 1970 ; Holden and French, 1971a ,
1971b ; French, Holden and Stein, 1972 ) and thusS it pr;vides a very
convenient preparation for the development and comparison of different
techniques of analysis .

Pringle and Wilson took the rate of sensory spikes as the output
from the receptor , and fitted the response to a square wave tension
driving function by the linear sum of three decaying exponential
functions . This would give a frequency response function which would
have in phase modulation at low frequencies , and an increasing
sensitivity and phase lead passing through local maxima with increasing
frequency . However , a range of sinusoidal driving functions adequate

to test this model was not available .
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Chapman and Smith ( 1963 ) re-examined the preparation using
similar driving functions , and fitted the rectangular wave response
by a power function decay ; The frequency response function predicted
from this response has a constant phase lead and the sensitivity
increases as a power of the forcing frequency . This frequency
response function was supported by the use of sinusoidal driving
functions with frequencies from 0.1 to 10hz. .

Crowe (196f7) ;émé;red the response predicted by both models in
response to ramp‘driving functions with the experimentally observed
response , and his results tended to support Pringle and Wilson's
model .

This lack of agreement suggests that the frequency response
function of this receptor should be estimated using a nuﬁber of
techniques and the results compared . If the system is non-linear
an estimate of the frequency response function based on one kind of
driving function may not necessarily predict the response to other

driving functions .

4.2. Methods .

All experiments were performed on the single large tactile spine
located on the dorsal surface of the end of the femur of either
metathoracic leg of adult cockroaches , Periplaneta zmericana . The leg
was cut through at the coxa , and the cut surface covered with Vaseline
to prevent drying‘. The leg was mounted on the armature of a Pye-Ling
vibration generator ( three ohm input impedance , model V47 ) by two
insect pins on a piece of cork , and the pins served és recording

electrodes . This sizple recording method is effective because of
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the high resistance of the narrow femur and since each spine is
innervated by a singie a#on ( Chapman and Nichols, 1969 ) .

The vibration generator was driven by the output from a force
servo control unit via a power amplifier ( for‘impedance matching ) .
The feedback transducer to the servo was the differential output
from two Endevco Laboratories Pixie 8101 force tramnsducers . The diff-
erential  output was taken in order to compensate for temperature
depen&ent DC shifts.. The transducers respond linearly up to 40 gms.-wt. ,
however , the addition of a lever extension limited this ramge to 5
gns.-wt. . The extension of the force transducer was held against the
spine . The command signal to the servo could be :

i). the output from a Hewlett-Packard 3300A function generator
which had passed through a calibrated amplitude and offset control unit
ii). the output from a band-limited white noise gemerator |

1ii). any linear sum of (i) and (ii) above . .
The amplified action potentials , the output from the force
transducer and reference markers were recorded on a Thermionic Products
T3000 FM tape recorder for subsequent processing on the LAB-8 computer .
Estimates of the frequency response function were obtained by
subjecting the tension'servo which stimulated thé receptor to
a) deterministic driving functions (sinusoids and rectangular waves )
b) sinusoidal driving funcéions added to a band-limited white

noise auxiliar;’signal
c) band-limited white noise .

Cycle histograms of the response to deterministic simusoidal
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driving functions were fitted using a least mean squares procedure

( Sokolnikoff and Redheffer; 1958 ) ; Vhen band-limited white noise
was the driving function the input : output and crﬁss—spectra were
estimated . The algorithms and programming methods used have been
described elsewhere ( French, 1970 ; French and Holden, 1971a ; 1971b ;

1972 ) .

4.3. Results .

The cycle histograms in response to 2 0.05 hz. rectangular wave
driving function of two different amplitudes are shown in Figure 4.1.
These histograms could not be fitted by a single decaying exponential
function . The best-fitting ( in the sense of least mean squared
deviation ) exponential decayed slower than the histogram in the
first second and faster than the histogram in the last few seconds .
The histogram could be fitted by the sum of several exponentials
using a method of successive approximations ; however this was not
reproducible . A log-log plot of the histogram ( insert on Figure 4.1 )
could be fitted by a straight line , with a slope of 0.82 + 0.03
and a-linear correlation coefficient of 0.80 + 0.01 for fourteen
different spines . This implies that the histogram may be fitted

by a power function decay of the form
y(t) = bt 4.1
where y(t) is the number of spikes/second and k is a constant given

by the slope of the log-log plot . Although minimizing mea2n squared

error on 2 log-log plot does not necessarily minimize mean squared



Figure 4.1 .

Cycle histograns of the response of a2 tactile spine
to a 0.05 hz. rectangular driving function of two

different amplitudes . Inserts show log-log plots .

49



50

error on the linear plot of the histogram the computed curve fits the
hi;togram well .

This step response is similar to that given by Chapman and Smith
( 1963 ) for the decay of instantaneous spike rate . The describing

function predicted from such a step response is given by

H(E) - pr(l-k) £ k2 4.2

where T is the gamma function defined by '

" ux -1 e ¢ du‘ 4.3

]
-

r (x)

This describing function has a constant phase advance of kw/2 radians
and the sensitivity of the receptor increasing as the kth power of
the driving frequency .

The cycle histogram of the response :A a one hz. sinusoidal
driving function is not a sinusoid - Figure 4.2 shows it to be a
clipped , distorted sinusoid . Hence the‘relation between the tension
driving function and the cycle histogram is nonlinear . This may be
further illustrated by plotting the Fourier coefficients of the cycle
histogram . A linear system would only have a significant component
at the driving frequency ( a2ssuming that there was no output in
the absence of an input ) . In fact there is considerable harmonic

distortion , for where harmonic distortion is defined by
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Figure 4.2 . Cycle his;ogram of the response of a2 tactile spine
to a 1 hz. sinrusoidal driving function and a plot

of the harmonic Fourier coefficients of the histogran .
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where a and bn are the real and imaginary Fourier coefficients at
a frequency n times the driving frequency , the harmonic distortion
is always greater than one . The presence of appreciable first
(n=2) and third (n = 4 ) harmonics in Figure 4.2 is compatible
with a major nonlinearity being that of rectificationm .

However , the amplitude of the component at the fundemental , and
the amplitude of the harmonics , increase linearly with the amplitude
of the sinusoidal driving function at this frequency . This linear
relationship , shown in Figure 4.3 , is compatible with Crowe's ( 1967 j
observation that the maximum instantaneous rate of action potentials
was linearly related to the peak to peak tension of the driving
function at several low frequencies of sinusoidal driving functions .
Figure 4.3 is similar to that observed with an electronic neuronal
analog ( French and Stein, 1970b ) in the range of input amplitudes
which produce rectification ( Stein, French and Holden, 1972 ) . This
linear relationship provides a justificaéion for estimating the
frequency response function by fitting the cycle histograms in response
to sinusoidal driving functions by the best-fitting sine wave with a
frequency equal to the frequeacy of the driving function . The

amplitude of the best-fitting sine isJ [ ai + bi

] , a measure of
the power at the driving frequency , not the peak to peak amplitude

which has been widely used ( Borsellino, Poppele and Terzuolo , 1965 ;
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Melvill Jones and Milsum, 1970 ) . A plot of the logarithm of the
amplitude ; and the phase of the fitted sine curve both as a function
of thé logarithm of the driving frequency form a Bode plot which
characterizes the frequency response function of the receptor ( D'Azzo
and Houpis ; 1966 ) .

The cycle histograms in response to sinusoidal driving functions
at higher frequencies exhibit phase locking - the action potentials
are entrained to séecific phases of the driving function . Figure 4.4
shows the cycle histograms in response to sinusoidal driving functions
at 5hz. and 20 hz. . At Shz. there is a strong tendency for there to
be five spikes/cycle occuring at phases fixed relative to the driving
function , and at 20 hz. there is one-to-omne phase locking . Phase
locking has been‘observed in a variety of sensory neurones ( Kiang et
al. , 1965 ; Matthews and Stein, 1969a) and in simple neuronal models
( Rescigno et al. , 1969 ; Stein, French and Holden, 1972 ) . For
frequencies where one-to-one entrainment occurs the amplitude of the
fitted sine curve will be twice the driving frequency .

A Bode plot of the frequency response function obtained by
using sinusoidal driving functions is given in Figure 4.5 , znd 1is
compared with the frequency response function predicted from the step
responsé‘of Figure 4.1 by equation 4.2 . The agreement between the
predicted curve ( solid line ) and the data points is good up to
10hz. , above which the slope of the semsitivity curve obtained by
the sine-fit method is less than that predicted from the step
response . This is to be expected as phase locking occurs at frequencies
above 10 hz. .

Thus the use of deterministic input signals shows two kinds of



Figure 4.4 .
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Cycle histograms of the response of the tactile spine
to S hz. and 20 hz. sinusoidal driving fuactions showing

phase locking .
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nonlinearity when the cycle histogram is taken as the output -
rectification at all frequencies and phase locking at high frequencies .
From the cycle histogram in response to sinusoidal driving functiéns
the harmonic distortion can be measured , howeverthis is nbt a good
estimate of the linearity of the system as ﬁo consideration is taken

of nonharmonic distortion . Bayly ( 1968 ) has shown that even in
the case of a perfect or linear voltage to rate convertor there is
appreciable nonharmonic distortion even with small input signals .

Such nonharmonic terms may not be recovered from the cycle histogram ,
as for a driving function with a period T the cycle histogram is

viewed through a spectral window of shape sin (7fT)/7fT as illustrated
in Figure 3.3 when T = 2W . This leakage from the coefficients will
bias estimates of coefficients at all other frequencies except the
harmonics . Estimates of the coefficients at the fundemental and the
harmonics will not be biased by lezkage from nonharmonic coefficients
as building up a cycle histogram has the effect of averaging out any
coefficients which do not have a constant phase relation with the
driving function . :

Rectification occurs in the cycle histogram since there is no
carrier rate of spikes which can be modulated . Rectification can
also occur when there is a carrier rate but the driving function has
a large amplitude ( Melvill Jones and Milsum, 1970 ; Stein, French
and Holden, 1972 ) . If there is a carrier rate , rectification and
its concomitant distortions can be avoided by use of small iaput
signals , and so in this case rectification is a smooth static
nonlinearity . However , for the case of a zero carrier rate

reduction of the input amplitude does not lead to a reduction in the
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harmonic content of the response ; and so in this case rectification is
an essential or 'hard' nonlinearity . Spekreljse and Oostlngs ( 1969 )
have shown th;t the relatlve harmoglc content may be reduced by the
addition to the driving function of an au;iliary signal which is not
correlated with the driving function and then averaéiné the response ;
This method of linearization by the use of an auiiliary signal can be
used to determine the order of nonlinear elements in a system and has
been applied to the analysis of visually evoked responses in man
( van der Tweel and Spekreijse, 1969 ) , retinal ganglion cell activity
( Spekreijse , 1969 ) and insect mechanoreceptors ( Pearson and Hol&en,
1970 ) .

Cycle histograms of the response of the receptor to sinusoidal
driving functions added to band-limited white noise as an auxiliary
signal are compared in Figure 4.6 with the cycle histograms in response
to sinusoidal driving functions . The histograms with the auxiliary
signal appear sinusoidal and show neither the rectification nor the
phase locking apparent at the same driving frequency when there is no
auxiliary signal . The auxiliary signal , which is not correlated
with the driving function , may be considered to provide a random
carrieg rate of spike discharge which is modulated by the driving
function . A Bode plot obtained by fitting cycle histograms of the
response to sinusoidal driving functions in the presence of an
auxiliary signal is given in Figure 4.7 . The solid lines are the
frequency response curve predicted from the step response of Figure
4.1 . The data points agree with the predicted frequency response
function over a wider range of frequencies than do the points of

Figure 4.5 . This is because the auxiliary signal has broken the phase
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Figure 4.6 . Cycle histograms of the response of a tactile spine to
sinusoidal driving functions with and without a stochastic,

band-limited auxiH ary signal .
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locked pattern to give a response which when averaged is smoothly
modulated :

Although use of the auxiliary signal has e%tended the range
over which the linear model of equation 4.2 applies it does not give
any measure of how accurately the model fits thelsystem .

Figure 4.8 shows estimates of the spectra of the tension driving
function ( input spectrum ) , the sensory spike train ( output spectrum ),
and the real ( co;spectrum ) and imaginary ( quad-spectrum ) parts of
the forward cross-spectrum estimated by methods described in chapter
3. They are the avegage of 50 spéctral estimates , each obtained
from 2.56 seconds of data sampled at S5Smsec. intervals . Thus each
spectral estimate has approximately 100 degreqs of freedom . The input
spectrum shows the cut-off characteristics of the filter used to prevent
aliasing when the teﬁsion record was sampled .

From these spectral estimates use of equations 3.27 , 3.28 and
3.29 provide an estimate of the coherence function and its confidence
limits and equations 3.30 , 3.32 and 3.33 provide an estimate of the
frequency response function and its confidence limits . These estﬁmates
for two receptors are shown in Figure 4.9 .

The extremely low level of the coherence function indicates that
the system is nonlinear , and so although the frequency response
functions obtained by using different input stimuli ( sine waves ,
rectangular waves , sine waves with auxillary functions and band-
linited white noise ) are 2ll of the same form the frequency response
function is not a good characterization of the input-output relatioms

of the receptor .
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Estimates of the input , output , and real and
imaginary parts of the cross-spectrum when the tactile

spine is stimulated by 2 stochastic , band-limited

driving function .
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It has been shown analytically that the coherence function of
a perfect or linear voltégé t; rété cgnvertér can be close to one
at frequencies much le#s th;n éﬁé é;r;iér rate ( Stein, Frepch and
Holden, 1972 ) . Similar résﬁlts have been obtained using a neuronal
model of the leaky integrator type ( French and Stein, 1970 ; French
and Holden, 1971c ; Stein, Frénéh and Holden, 1972 ) . Thus the low
value of the coherence function of the spine cannot be entirely due
to the threshold properties éf thé sénsory neurone .

95% confidence limits hévé béen drawn around the estimates of
the frequency response fuﬁéti;n t Thése c@nfidence limits depend on
the value of the coherence function ( see section 3.10 ) and since
the coherence is low they are very wide . The narrowing of the
confidence limits at high frequencies is in part due to the increage
in the coherence function at higher frequencies and is also in part
due to the plotting algorithm used . Since the frequency axis of
a Bode plot is logarithmic , in order to have the plotted points
approximately equally separated data points at higher frequencies
result from wider frequency segment averaging than points at lower
frequencies , and so have a higher number of effective degrees of
freedom .

From equation 2.26 the information transmission rate for -
continuous signals band=limited to 50hz. can be estimated from the
coherence function estimates as 6.5 + 1.2 bits/second for ten

preparations .
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4.4, Discuséion .

The low levél éf thé t;herenéé fuﬁctiéﬁ-means that the frequency
response function ; however i£ i; éstimétéd ; is not a good charact-
erization of the input-output rélétions of the receptor . Bendat
and Piersol ( 1966 ) give three péssible cases for a coherence
function of a gystem being léss than one :

a). the system is ﬁonliné;r '

b). the system is subject té unobserved inputs which are not
correlated with the driving fuﬁcti;n

c). the system has an intrinsic noise source .
These three cases can occur in any c&mbination .

Since the receptor is silent in the absence of mechanical
stimulation of the tactile spine there is no reason to assume that
the low coherence of the receptor can be attributed to unobserved
inputs . Thus fhe low coherence can be ascribed to the intrimsic
stochastic properties of the receptor and to nonlinearites .

The stochastic properties ofléhe sensory spike train may not
be readily quantified as in the absence of a stimulus there is no
sensory activity and in the presence of aumaintained , constant
stimulus the spike train adapts and so is non-stationary .

A possible cause of the low cohereance is rectification due to
the absence of a carrier rate . Figure 4.10 is a plot of the
coherence function of a perfect rectifier estimated by passing band-
limited white noise through a Germanium diode . At no frequency is
the coherence function greater tham 0.75 . Thus rectification alone

cannot account for the observed values ¢f the coherence function of
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Figure 4.10 .

Estimate of the coherence function of a Germanium diode .
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the tactile spine .

One unusual aspect of rect1f1cat10n of a pulse train due to the
absence of a carrier rate is that the addltlon of a DC or low frequency
signal incoherent with the 1nput dr1v1ng function can increase the
coherence at all frequencies . Flgure 4.11 shows the coherence
function of a model neurone ( French and Steln, 1970 ) estimated
with no bias on the 1ntegretor and so a zero carrier rate and with
a bias on the integrator producung a carrier rate of 100 impulses/sec. .
The coherence function was estimeted by subjecting the model neurone ‘
to band-limited white noise whlch in both cases had an 1nput signal
root mean squared power of 0 25 volts T he time constant of the
leaky integrator was 10 msecs. : The addition of a DC inmput to the
integrator. has jncreased the cohérence at all frequencies , and SO
has increased the information transmiseion rate estimated by equation’
2.26 by 307% ; In 2 linear system the addition of any signal uncorrelated
with the input would cause a decrease in the coherence of the systeﬁ .
at some frequencies and would not increase the coherence at any
frequencies .

Crowe ( 1967 ) has pointed out the similarity of the ramp response’
of the Factile spine to the ramp response of mammalian muscle spindle
secondary afferents . The coherence function of the amphibian muscle
spindle afferent has been estimated by a different technique ( Koles,
1970 ) and although the values of the coherence function of the
spindle are greater than those oé the tactile spine the coherence
function has the same general shape , that is , increasing at higher

frequencies . This contrasts with the cohereace function computed



68

1.0 5

{WITH AUXILIARY
DC INPUT

w
o 054
z
w
@
w
b
o
o
0 °
10 T100 1500

" HERTZ
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( Stein, French and'Holden,l972 ) or estimated ( French and Holden,
1971c ) for simple neuronal modéls , for which the coherence function
decreases wifh frequency . This increase in the coherence function
with frequency may be due to the processes underlying adaptation ;
The effect of adaptation ( produced by increasing the absolute
refractory period ) on the coherence functién of the model neurone
is to reduce the coherence at low frequencies while leaving the
coherence at high frequencies uneffected : This supports the idea
that adaptation gives a receptor 2 *high-pass’ filter characteristic .
Even though the frequency response function is not a good
characterization of the input-output relations of the tactile spine
the estimates obtained by using spectral analysis may be fitted
by the frequency response function of equation 4.2 . An expression
of this form , derived from the power function decay in response to
a step input function , has been used to model the input-output
relations of a wide range of receptors - the tactile spine of the
cockroach ( Chapman and Samith, 1963 ; Pearson and Holden, 1970)
the slowly adapting stretch receptor of the crayfish { Brown and
Stein, 1966 ) carotid body chemoreceptoré ( Landgren, 1952 ) and
abdominal stretch receptors in butterflies ( Weevers, 1966 ) . Various
physicai analogs have been proposed which give a power function
decay in response to a step inmput , and a simple abstract model 1is
a series of exponential decay processes which have different time
courses .
Chapman and Smith ( 1963 ) describe the power fuaction decay
as a fractional differentiation of the driving signal : Brown and

Stein ( 1966 ) point out that the power function provides a means of
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encoding information about the driving function and its first
derivative . However ; because éf the low coherence of the receptér ;
an alternative viéw would be té cénsider it as a detector éf any
sharp or sudden sudden stimulus - although the waveform of the
stimulus cannot be reliably recovered from the spike train the fact

that a transient had occured could be detected .
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" CHAPTER 5 .

THE FEMORAL CHORDOTONAL ORGAN OF THE LOCUST .

5.1 . Introduction.

Insect mechanoreceptors and proprioceptors have been divided into
five morphological groups : hair plates , campaniform sensilla ,-stretch
receptors , chordotonal organs and statocyst-like organs ( Dethier,
1963 ) . The chordotonal organs aré morphologically the most complex
kind of mechanoreceptor found in insects . A chordotonal organ
consists of a number of sensilla attéched to the body wall by a
iigament at the axonal end and by accessory cells at the dendritic
end . Each sensillum consists of a bipolar semnsory neurone and at
jeast two accessory cells . The dendrite of the sensory neurone is
enveloped by the two or mére accessory cells , and its termination
is enclosed by a scolopoid sheath .  In spite of extensive electro-
physiological and histological investigations of Crustacean chordo-
tonal organs ( Wiersma and Boettiger, 1959 ; Whitear, 1962 ;
Mendelson, 1963 ; Bush, 1965a , 1965b ) the significance of the
complex structﬁre of the chordotonal organ is unknown .

Simple , connective chordotonal organs ( Howse, 1968 ) in inmsects
have not been-iuvestigated in any great detail . Becht ( 1858 )
has described the effects of inmsecticides on cockroach chordotonal
organs , and Hubbard ( 1959 ) has published a prelininary study

of the femoral chordotonal organ of the locust .
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As part of a series of éiperimentsAinvestigating the role of
proprioceptive feedBaCR'duriﬁé p;stural and locomotor activity in
locusts Runion and Usherwo&d { 1966 ) and Usherw;od, Runion and
Campbell ( 1968 ) have described the histology of the femoral
chordotonal organ of the locust and have qualitatively investigated
its responses and refle# actions .

The femoral chordotonal organ is attached by ligaments to the
posterior wall of the femur and by an apodeme to a érotrusion on the
tibia near the femoro-tibial articulation . It is also attached by
ligaments to the apodemes of the extensor an@ flexor tibiae muscles .
Three groups of sensory cells have been described , comprising of a
total of 24 bipolar sensory neurones in the chordotonal organ . The
sensory axons from the chozdotonal organ are contained in metathoracic
nerve Nsbl [ terminology ;f Campbell, 1961 ] .

Recordings from the chordotonal organ nerve in response to
sinusoidal or ramp changes in the femoro-tibial angle showed that
there were both tonic and phasic units . It was not possible to
activate single units , but the summed tonic discharge was a linear
function of the femoro-tibial angle . The summed tonic discharge
adapted‘to within 90% of a steady level within one minute after a
step change in femoro-tibial angle .

Phasic units responded to sinusoidal movements of frequencies
from 0.1 to 170 hz. , some units responding to extension and others to
flexion . <Chordotonal semnsory activity during extension of the
tibiz caused reflex activation of the flexor tibize muscle , and during

flexion caused reflex activation of the slow axon in nerve 535 to
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the extensor tibiae muscle . Generally the response to extension

was greater than the response to flexion . With one hz. sinusoidal

stimulation the reflex response to the extensor muscle adapted .

5.2 . Methods .

In all experiments adult male locusts ( Schistocerca gregaria ) ;
which had been commercially obtained , were used ; The metathoracic
leg was cut through at the co&a ; and the cut surface covered with
Vaseline to prevent drying . The leg was mounted on a cork platform
so that the tibia was held in the vertical plane . The leg was held
rigidly by dental wax , plasticine or glue ( Eastman 9-10 adhesive ) ;
The tibia was cut 5 mm. from the femoro-tibial joint and tissue
inside the tibial stump macerated by a bluat probe . The femoro-
tibial joint was dissected so that the tibia was attached to the
femur only by the apodemes of the chordotonal organ and the flexor
and extensor tibiae muscles . The tibial stump was held horizontally
in a pair of screw forceps attached. to the armature of a vibration
generator ( Pye-Ling model V47 ) . A small section of the ventral
cuticle of the femur two cms. from the femoro-tibial joint was
removed and the underlying flexor tibiae muscle dissected away , and
NS picked up on bipolar silver electrodes . The femoro-tibial
joint and the recording electrodes were covered with Vaseline to
prevent drying . This minimal dissection avoids exposing the
chordotonal organ , as Usherwood, Runion and Cazmpbell ( 1968 ) have
observed that Vaseline or locust saline ( Hoyle, 1953 ) change the

responsiveness of the chordotonal organ .
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Movement of the femoro-tibial joint is limited to an angle of
170 degrees , which corresponds to a 1.9 mm; movement of the
apodeme of the chordotonal organ l All mﬁvéments of the tibia were
restricted within 1& 0:5 mm; of thé eétensign equiﬁalent to 90
degrees fleﬁiﬁn ; The vibration generator was driven by the éutput
from a length servo control unit via a power amplifier . The
feedback transducer to the servo was a Hewlett-Packard DC input;
DC output length transducer ( model 24DCDT 050 ) which had a linear
displacement range of i_0.0SO inches . The command signal to the
servo could be a ﬁC level added to

i). the output from a Hewlett-Packard 33004 function generator

ii). the outpug from a band-limited noisé generatér .

The closed loop frequency response function of the length servo
control system was flat up to 100 hz. .

The amplified action potentials , the output from the length
transducer and reference markers were recorded on a Thermionic
Products T3000 FM tape recorder for subsequent processing on the LAB-8

computer . Data anlysis was by methods described in chapters 3 and 4 .

5.3 . Results .

An interspike interval histogram of the discharge of a tonic
unit from the chordotonal organ is shown in Figure 5.la . Since an
increase in the length of the chordotonal organ , corresponding to
an increase in the femoro-tibial angle , causes recruitment of other
tonic units records in which 2 single tonic unit could be reliably
extracted by pulse height analysis could only be obtained with low

discherge rates . The unit of Figure 5.1a had a mean rate of 10.3
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Figure 5.1 . Interspike interval histograns of two tonic units from
the femoral chordotonal organ . Inserts show computed

Garma distributions .
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impulses/second and a coefficient of variation of the interspike
interval of 0.63 . Since the inter;pike interval histogram is
unimodal and positively skewéd it seems apprépriate to fit it by a
Gamma distribution ( Co% and Lewis: 1966 ) . The Gamma distribution
is defined by :

k Jk xk—l e—kx/u

£ (x) = [;] 5.1

r (k)

where p=E { x} and T (k) is the Gamma function of order k.
defined by equation 4.3 . The variance of this distribution is ﬁ2/k~
and the coefficient of variation is 1/Y/ k . Vhen k is one the

Gamma distribﬁtion reduces to the exponential distribution , and when
k tends to infinity the Gamma distribution tends to the Normal
distribution . Thus the Gamma distribution can encompass a wide

range of distributioms , however , it does not encompass any negatively
skewed , flat , sharply peaked or multimodal distributions .

k , the order of the Gamma distribution may be estimated from :

k ~ 5.2

where ¢ is the.standard deviation . TUse of equation 5.2 with

estimates of the mean and standard deviation of the histogram of
Figure 5.1a give the estimate of k as 2.7 . The insert of Figure
5.1a shows the computed Garma distrjbution of order 2.7.

This method of estimating k does not pfoduce the least mean

square error between k and k , especially as k < 10 ( Cox and
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Lewis, 1966) and so is not an efficient method of estimating k ( Bendat
and Piersol, 1966 ) . Cox and Lewis ( 1966 ) have shown that a

maximum liklihood estimator of k is given by the solution of

A

- o _ - _ X
1oge(k) - v (k) = loget 5 logeti 5.3
N
N
- z ti
- _ =1~
where t = 5.4
N
and Y (k) is the digamma function defined by
vy = & leg T (0 5.5

-~

dk

Some tonic units fired regularly : Figure 5.1b shows the
interspike interval histogram of such a unit , with a2 mean rate of
20.1 impulses/second and a coefficient of variation of 0.24 .

From equation 5.2 this would give an estimate of the order of the
distribution k = 17.3 . The computed Gamma distribution of order
17.3 is shown in th; insert of Figure 5.1b . The power spectrum
estimate of this spike train obtained from 50 non-overlapping samples
each of 5.12 seconds is given in Figure 5.2 . This spectrum is

typical of a high order Gamma distribution , showing
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the low and high frequency asymptotes and the overshoot at the mean
rate .

Cyﬁlé histograms of the reép;nse of a single unit to
sinusoidal driving functions are shéwn in Figure 5.3 ; In céntrast
to cycle histograms obtained from the tactile spine ; the histograms
obtained from the chordotonal organ do not show rectification at low
driving frequencies . This is because at a constant length the
receptor has a variable background discharge or carrier rate which
may be smoothly modulated by low frequency sinusoidal driving
functions . In the ccase of the tactile spine of the cockroach
rectification was proposed as a partial cause of the low coherence
function observed . Thus , if other factors were equal , one might
expect that the coherence function of the chordotonal organ would
be greater than the coherence function of the téctile spine .

Phase locking in response to siﬁusoidal driving functions occurs
at a frequency higher than that for the tactile spine . At 50 hz.
there is one-to-one entraimment .

Figure 5.4 shows estimates of the spectra of the input driving
function ( input spectrum ) , the output spike train of a single unit
( output spectrum ) , the real part ( co-spectrum ) and imaginary
part ( quad-spectrum ) of the cross-spectrum when the chordotonal
organ was excited by a stochastic , band—limited'driviug function .
These estimatés are the average of 50 sample estimates each from 5.12
seconds of data . All the estimates have been normalized to the
eleven bit accuracy of SAPA ( French and Holden; 19716 ) and so no

amplitude scale is given . Since there has been no frequency range
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averaging the estimates have approximately 100 degrees ci freedom .

Estimates of the freouoncy response functlou aod its confidence’
limits obtained by using equatlons 3 30 3 32 and 3 33 and of the
coherence function obtained by using equations 3 27 3 28 and 3 29
are shown in Figure 5.5 . Because of the low value of the coﬁerenco'
function the QSZ'confidence 1imits of the sensitivity curve are wide ,
but for frequencies less than 10 hz. the sensitivity is approximately
constant . Above 10 hz. the sensitivity increases . This simple
frequency response curve , jllustrated for four different units in

Figure 5.6 , is similar to that of a simple high pass filter whose

transfer function is given by

H(s) = (sT+1) 5.6

A Bode plot of this transfer function is shown in Figure 5.7 . The
corner frequency of the gain curve occurs at 1/T hz. , above which
the gain increases at + 6 dB | octave . The slope of the frequency
response curves of Figure 5.5 above 10 hz. is about 100 impulses/
second. mm / decade change in frequency . Since below 10 hz. the
sensitivity is approximately constant at 10 impulses/sec. mm. if

a sensitivity of 10 impulses/sec. mm. is taken as equivalent to a
gain of one the slope of the frequency response curve zbove 10 hz.
is equivalent to +20 dB / decade ,‘or +6 dB / octave . This arguement
is not strictly valid since the input and output do not have the
saze dimensions , and so a gain may not be defined ; however ;it

does support the simple frequency respoase function of equation 5.6 .
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Even though the 957 confidence limits are wide the phase advance
of the frequency response functlons of Flgure 5 5 do support the simple
frequency respongé funétlon of equatlon 5. 6 in that the phase advanées
monotonically from zero to + 90 degrees ; However because of the wide
confidence limits local ma#ima suggestive of other terms in the
frequency response function would not be detected .

Figure 5.8 shows estimates of the coherence function of f&ur
different units . The ccherence function is less than 0.5 at all
frequencies , and extremely low at frequencies less than 10 hz. These
coherence function curves have a similar shape to those for the
cockroach tactile spine ( Chapter 4 ) and the amphibian muscle spindle
) E_Koles, 1970 ) . The value of the coherence function is higher thaﬁ
that for the cockroach tactile spine , as was predicted from the
absence of rectification in the cycle histograms in respomse to
sinusoidal driving functions .

The arrows on the coherence function curves of Figure 5.8 mark
the mean firing rate of the unit . In experiments using an electronic
neural analog ( French and Stein, 1970 ) the coherence function drops
sharply before the mean firing rate or carrier rate and is low above
the car;ier rate ( French and Bolden, 1971c ; Stein, Freanch and
Holden, 1972 ) . This is not observed in the coherence function
estimates for the chordotonal organ . This can be explained as in
the case of the neural anlog the driving function modulated the carrier
rate , which was the mean firing rate . However , in the case of'the
chordotonal organ , the resting rate is variable , and the mean rate

is caused by the phasic response to the driving function , and so is



2%

-5

COHERENCGE

2%

o

Figure 5.8 . Coherence function of four chordotonal organ units .

87



88

not entirely analogous to a carrier rate .

The céherence function éf the electronic neural analog is a
fuﬁcti&n ;f the inpﬁt RMS power ( French and Holdén: 1971c ; Stein;
French and Holden; 1972 ) . Figure 5.9 shows coherence function
estimates for a single chordétonal organ unit at three difﬁerént RMS
power values of input length driving function . The estimates have
more than a hundred degrees of freedom . The coherence increases with
the input amplitude , especially at high frequencies . This contrasts
with the results from the electronic neural analog , in which the
increase in coherence with input amplitude was predominantly at
frequencies less than the carrier rate . This increase in coherence-
at high frequencies supports the idea that the receptor acts as a'
high pass filter .

The information transmission rate of chordotonal organ single
units calculated by equation 2.26 ranged from 8.75 to 27.7 bits/second .
Since the coherence function increases with input amplitude the

information transmission rate increases with the amplitude of the

driving function .

5.4 . Discussion .

The frequency response functions obtained by spectral analysis
indicate that although the coherence function is low , and so a linear
model is not an accurate characterization of the input-output relatioms
of the receptor , the best~-fitting linear model is very similar to
a simple lead filter whose transfer functioa is given by equation
5.6 and shown ia Figure 5.7 . A possible cause for this extremely

sinple transfer function might be the visco-elastic properties of the
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apédeme of the chérdotonal organ .,

The low coherence ;f cﬁordogonal organ single units at frequencies
below 10 hz. meéns that the waveform éf sléw changes of the femoro-
tibial angle may not be accurately recovered from the spike train of
a single unit by any linear operation . Changes in the femoro-
tibial angle at frequencies from 10 hz. to 50 hz. may only be
paréially recovered by a linear operation on a single spike train ;
The dependence of the coherence function on the amplitude of the
driving function means that more informatjon may be recovered by
a linear operation on the spike train about large amplitude
movements than about small amplitude movements .

Usherwood,Runion  and Campbell ( 1968 ) have reported that
destruction of the femoral chordotonal organs produce significant
changes in postural and locomotor behaviour . This has been used
to support the concept that proprioceptive feedback is very
important in the generation of normal postural and walking
behaviour . This concept implies’that the proprioceptors can
provide the céntral nervous system with detailed information about
position and movement , and that this information can be 'decoded'
or utilized by the central nervous system in the normal control
of movement . During walking and postural activity movements of the
femoro-tibial angle are slow , and occur at frequencies where the
coherence of single chordotonal organ units is very low . This low
coherence means that detailed proprioceptive information cannot be
recovered from the spike train of a chordotonal organ single unit

By any linear operation . Mountcastle ( 1967 ) has reviewed
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evidence that supporgs the hypothesis that the processing of sensory
information by the nervous system is by appro%imately linéar operations .
If the 'decodiné' §perati;ns pérférméd ;n the spike tréin 6f a single
chérdotoual organ unit are appro#imately linear then the single unit
cannot provide the central nervaus system with detailed proprioceptive
information . This could be used to argue against the importancé'of
proprioceptive feedback from the chordotonal orgaﬁ during the normal
control of postural and locomotor activity .

However , each femoral chordotonal organ contains about 24 bipolar
sensory neurones . If the central nervous system averaged the response
of all those chordotonal organ units which had the same properties
then the chordotonal organ might provide the central nervous system
with detailed proprioceptive information which could be recovered by
a linear operation .

This would be supported if the coherence between the length of
the chordotonal organ and the reflex motor discharge was greater
than the coherence between the lengté of the chordotonal organ and a
single unit . However , preliminary expefiments_with headless locusts
give a very low coherence between length of the chordotonal organ and
the reflex discharge in the slow axon of N3b to the extensor tibiae
muscle . This low coherence may be due to other inputs to the motor

neurone which might be removed by isolating the ganglion from 2ll

inputs apart from NS .
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CHAPTER 6 .

DISCUSSION .

All physical systems are nonlinear ; and sé if lineaf systems
theory is to be used to formulate an abstract model to describe thé
input-output relations of a physical system some measure of the
accuracy of the model is essential . When the physical system is a
sensory neurone which responds to a continuous driving function by
a train of action potentials there is considerable non-harmonic
distortion , and so harmonic distortion, however measured , is not
a good measure éf the linearity of the system . The coherence function ,
defined by equation 2.22 , provides a measure of the linearity of the
relation between the input and output which is sensitive to all kinds
of nonlinearities and to intrinsic noise f' The coherence function
can only be estimated by subjecting the system to a broad band driving
function , and using consistent , alias aad bias free spectral analysis .
If that part of the output which is linearly related to the input
driving function is considered to be the signal , and that part of
the output which is not linearly related to the input is considered to
be noise , then the coherence function is related to the signal-to-
noise ratio as shown in equation 2.24 . If the input driving
function is a sinusoid , which has a line spectrum , then the signal-
to-noise ratio will be infinite and so the coherence function will be
equal to one . Thus inputs which have line or very narrow band spectra ;

which are simple deterministic functions of time , cannot Be used to
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.

estimate the coherence function .

There are a variety of methods which may be used to estimate the

spectral dénsity matrix of section 2;3 ; The rediscéVéry of the
Fast Fourier Transform algorithm ( Cooley and Tukey: 1965 ) has made
the direct method of spectral estimation computationally economicél ,
and the development of alias-free sampling of stochastic point processes
with a regular sampling interval ( French and Holden; 1971a ; 1972 )
has permitted the use of the Fast Fourier Transform algorithm in the
estimation of the spectrum of a spike train [ wﬁen'the spike train is
treated as a realization of a stochastic point process or as a series
of unit impulses ] and of fhe cross-spectrum between two spike train§
or between a spike train and a continuous signal .

The direct method of spectral estimation has been implemented
on a small computer , and the consistency of the estimates has been
achieved by averaging spectral estimates from non-overlapping samples .
A better method of consistent spectral estimation would be to
average spectral estimates from sampies with a 507 overlap ( Welch,
1967 ) . However , implementation of this technique on a small
computer would necessitate a large , bulk storage device such as a
magnetic-tape unit in order to store the entire record and then
sequentially access overlapping segments . If such a storage device
were available it would permit the computation of spectral estimates
with the number of data points greater than the number of core memory

locations ( Brenner, 1969 ) .

Consistent spectral estimates provide 2 means of estimating the

frequency response function as well as the coherence function , and
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from the coherence f;nction and the number of degrees of freedom of
the épectrél estimates the éogfidénée limits ;f the freéuéncy respgnse
function can ge cgmputed . In both thé tactile spiné of the cockroach
and the chordotonal organ of the locust the sensitivity gf the
frequency response function increased at ﬁigher frequencies'; as
did the coherence . Thus the estimate of the frequency response function
was less stable at low frequencies than at high frequencies . If the
inpu; driving function had been shaped so that there was more power
present at low frequencies than at high frequencies the stability of
the frequency response function would have been more even .

From the coherence function estimate the information transmission
rate of the receptor could be estimated by use of equation 2.26 .
This is not an estimate of the information capacit§ of the receptor
as the information capacity is defined as th; maximum possible transmission
rate . This would only be achieved if the input driving function had
a spectrum so that most of the input power was at frequecies where
the coherence was highest . Previou; estimates of the information
transmission rate of receptors have been limited to quantifying the
ability of the receptor to transmit information about a steady level
( Werner and Mountcastle, 1965 ; Darian-Smith et al, 1968 ; Stein,
1968b ; Matthews and Stein, 1969b) . Thus the estimates obtained by
use of equation 2.26 for the tactile spine and the chordotonal organ
are higher than those reported for other receptors .

Since the nervous system is made up of a large number of neurones
it miéhc Bé érg{:éd that tﬁe dét.;_iléd ‘;.na'lzlvsis .of :ﬁ;e iz;pn;t;ﬁtpzit

relations of a single receptor does not help very much in understanding
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the functionipg of the nervous system . The spectral demsity matriﬁ
of section 2.3 may be generallzed for a system with an arbitrary
number of inputs and outputs . Thus the methods descrlbed in
Chapters 2 and 3 and applied in Chapters 4 and 5 can be generalized to
systems with several inputs and several outputs . The compleiity of
the system to be analyzed by these methods is only restricted by the
number of units which may be recorded and the size of the data processing
system . Thus when it is possible to record from a large number
of neurones simultaneously the methods of Chapters 2 and 3 could
provide a means of dealing with the large amount of data .

The driving function to the receptors studied was a function of
time only . However , many sensory systems respond to driving functionms
which are functions of spatial variables as well as of time . Spectral
analysis is readily generalized to include n-dimensional functions
and so the methods developed in this thesis can provide the

background to an approach to more complex aspects of sensory

information transmission .
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