CANADIAN THESES ON MICROFICHE .
"
! 1.S.B.N g
_ _ . o o . Ly e,
THESES CANADIENNES SUR MICROFICHE
E National Library of Canada * Bibhothésque nahonale du Canada
Coliectiong Development Branch Direction du développament des collections
Canadian Theses on Service des ihijﬁ canadiennes
Microfiche Service sur microfiche
Ottawa, Canada
K1A ON4
NOTICE AVIS

The quality of thie microfiche is heavily dependent
upon the quality of the original thesis submitted for
microfilming. Every effort has been made to ensure
the highest quality of reproduction possible. i

If pages are missing, contact the university which
granted the degree.

Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authorization forms which
accompany this thesis.

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 :r, BRT/R

La qualité de cette microfiche dépend grandement de
la qualité de la thése soumise au microfilmage. Nous
avons tout fait pour assurer une qualité supérieure
de reproduction.

S'il manque des pages, veuillez communiquer
avec |'université qui a conféré le grade.

La qualité d’'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
dactylographiées a I'aide d'un ruban usé ou s I'univer-
sité nous a fait parvenir une photocopie de mauvaise
qualite.

Les documents™ qui font déja |'objet d’'un droit
d‘auteur (articles de revue, examens publiés, etc.] ne
sont pas microfilmés.

La reproduction, méme partielle, de ce microfilm
est saumise é la Loi canadienne sur le droit d’auteur,
SRC 1970, c. C-30. Veuillez prendre connaissance des
formules d’ autansatlcm qui accompagnent cette thése.

LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

Canada

National Library

of Canada du Canada _

- Canadian Theses Division

Ottawa. Canada
K1A ON4

56935

<

Bibliothdque nationale

Division des theses canadrenns

PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER

o Please print or type — Ecrire en lettres Fﬁ@ul;és ou dactylographier

Foi Name of Author — Nom complet de | auteur

CArDL. T OJCL

oM T

Date of Birth — Date de naissance

|)11 /55

Country of Birth — Lieu de n

CAs. A DA

Permanent Address — Résidence fixe

) DS REAAVE
TS AT e |

Titie of Thesis — Titre de la these +
D < } SV S R A

Q (\:1\‘(1«(?}\"12

3D W

t\“{ \ ("\,.\ o G _

University — Universite

\L\\‘\\ ye S xi \A

S8 AV be e Ya _

Degree tor which thesis was pressnted —Grade pour lequel cetts thass ful présentée }

MCLL+Q C 35‘ :DCJ [SEEN

il i

Year this degree conferred — Année d’ obtention de ce grade

L)9%2 -

Nams of Supefvisor — Nom du directeur de thase

Permission 1s hereby granted to the NATIONAL LIBRARY OF
CANADA to microfilm this thess and to lend or sall copies of
the film

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-
wise reproduced without the author's writian parmission.

De Waure Nac Y oo vl
2 . . .

= ‘]

(o

L autorisation est, par |a présente. accordée a la BIBLIOTHE-

E NATIONALE DU CANADA de microfimer cette thase ot de

préter ou de vendre des exemplaires du film

L'auteur se réserve ios autres droits de publication, ni ia thése

ni de iongs Sxtraits de celle-ci ne doivent dtre imprimés ou
autrement reproduits sans |'sutorisation écrite de |'autaur

{

Elgﬂ;‘ufi

e = rfﬂ/ '< ,

e T s

THE UNIVERSITY OF ALBERTA

i
\

Determining Minimal Planar Partitions for Graphs

by

@Carol Joyce Smith

hY

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF Master of Science

Computing Science .

EDMONTON, ALBERTA

SPRING, 1982

THE UNIVERSITY OF ALBERTA
E

FORM

-

NAME OF AUTHOR Carol Joyce Smith
TITLE OF THESIS Determining Minimal Planar Partitions
¢ for Graphs
DEGREE FOR WHICH THESIS WAS PR?SEHTEB Master of Science
YE;E THI1S DEGREE GRANTED 1982
permission is hereby granted to THE UNIVERSITY OF
+ ALBERTA LIBRARY to reproduce single copies of this
thesis and to lend ;r sel. such copies for praivate,
scholarly or scientific research purposes only.

The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may
be printed or otherwvise reﬁgcducgd without the author's
written permission. : 7 .

‘ (SIGNED) glf.ﬁgx..s:fif.f*% (”ra::}. A
. PERMANENT ADDRESS:

10466 2BA Avenue,

Edmonton, Alberta

T6J 436

DATED November 24, 1981

-

‘ [
- P o
THE UNIVERSITY OF ALBERTA

_ PACULTY OF GRADUATE STUDIES AND RESEARCH

L]

The undersigned certify that they have read, and
recommend to the Facultx of Graduate Studies and Resgarch,

for acceptance, a thesis entitled
Determining Minimal Planar Partitions for Graphs

submitted by Carol Joyce Smith in partial fulfilment of the
requirements for the degree of Master of Science.

*

| N

R

Supﬁrgiist) (ij;{é::;

Jv Moo

Date: November 24, 1981

Abstract .
»

Minimal Plang: partitiogs have been determined for the
' \
ass of complete graphs, most complete bipartite graphs,

]
et
]

nd the class of m-cubes. In addition, minimal planar

B

"3
(2l

§afﬁiticns whose subgraphs have vertex degrees of at most
four have been determined,for most complete graphs and all
complete bipartite graphs. However, there does not exist at
present a method for determining a min?mal planar partition
for an arbitrary graph in polynomial time. Edge pa:titianing
algorithms are one means of obtaining partial (approximate) i
solutions to this problem.

The purpose of this thesis is to examine the results)
obtained so iar-aﬁ-?iﬁimal planaf‘paftiti@ﬁs for the classes
of gr%%hﬁ meﬁtiaﬁed above, and to introduce three efficient
planaf‘edge partitioning algorithms that produce good L
approximations (in terms of size) to a minimal planar
partition for an arbitrary graph and achieve a balance

between their complexity and their performance.

iv

Acknowlédgments

I wish to thankgmy supervisor .Dr Wayne Jackson for his
help and encouragement and Lisagrigham and Dr Anne Brindle

for their persistence in readin tpe drafts of this thesis

and their many gelpful suggestians; My thanks also to Dr D.
J. Miller for introducing me to the areas of graph planarity
and graph thickness. I also wish to thank Sandra Taylor for
her work on the figures in this Ehésis.

Finally, my deepest appreciation to Ken who, in
addition to reading this thesis, put up with the long nights

and weekends spent on this work.

.
Table of Contents
Chapter d Page
1. Lntroductibn R I R L -
2. History of the Minimal Planar Partition Problem5
2.1 Graph Th@ckness _._,.i_.;;i._i..i......i..i...,...i;S
2.1.1 Upper and Lower Bounds S -
2.1.2 Coﬁplete Graph$, Ccmplete Bipartite Graphs,)
. and M-Cubes .;i;.,.....!....,..,_i.,........i.S
'2.1.3 Complete Graphs and Complete Elpartlte
Graphs with Degree Constrained Partitions ...12
2.2 The Construction of Minimal Planar Partitions16
2.2.1 Partitioning Complete Graphs S
g 2.2.2 Partitioning Complete Bipartite Graphs20
2.2.3 Partitioning Complete Graphs and Complete
B1part1te Graphs Into Degree Constrained o
Partitions _,!_.;..,..........i.....i-i.;...,24
3. Planarity Algorithms ..s....vnenencanoneenneenns e eaes 32
3.1 A Path Finding Planarity Algorithm P
3.1.1 A Special Ordering of the Adjacency Lists
OF G oo vvevssseonnesnonassnnssanenessssesnscns 33
3.1.2 The Embedding ProcedUreceeeecansssssasesdd
3.1.3 The Formation and u;e of BlockScccvnes ..50
3.1.4 A Correction to the Implementation of the
Embeddlng ProcedULre ..oeeeeennasesnnsennssssedl
3.2 A pg-tree Planarity Algorithm 1
3.2.1 An st-Numbering éf G vvvereenennncssoneraness9
3.2.2 The pg-tree Embedding Procedure S -1
4. Edge Partitioning Algorithms i essesaassesenr e80
4.1 The Spanning Tree Edge Partitioning Algorithm83

4.1.1 The Correctness of Algorithm 4.1.1 (STEP) ...

vi

:

’
3. .2 Analysis of sze Cgmp{exity P - 1
- 4.1.3 The STEP Algﬂrlthm Summary PRI - 1
4.2 The Path Finding Edge Partitioning AlgoritHm86
4.2.1 The Planar Graph Constructor P - X
4.2.2 The Correctness of Algorithm 4.2.1 (PFEP) ..,92
4.2.3 Analysis of Time Complexity PR
4.2.4 The PFEP Algorithm Summary A &
4.3 The pg-tree Edge Partition Algorithm101
4.3.1 The Planar Graph Constructor R I e

4.3.2 The Correctness of Algorithm 4.3.1 (PQEP) ..117

4.3.3 Analysis of Time Complexity _.if_i;_..i....g11§

4.3.4 The PQEP Algorithm Summary i eeaess 122

Algor1thms [R 124
5.1 The EXPErimentsceoeeeeoscscreanassscensererres 124
5.2 Performance Measure e e eiaaea e 125

5.3 Performance of the STEP, PFEP, ahd PQEP
Algorithms ..i,._..ig..ig.i;g.g;.ig....;_.,..g§.§;126

5.4 Resource Reguirements ;g.ig.:;;.-,;.aji.._g.._.i-.IBD

5.5 Characteristics of the Constructed Planar

Partitions .i;.;i.....ig..g..._.._ii.;,g.!ii._..._133

6. Summary and Conclusions PR .)
6.1 Summary_.gi.ig.-.;.-g,.ig.;i;..;ii.gi..g.i;..147
6.2 Conclusions PR £ 1Y
6.3 Further Research ii.i.i;ii_.li;i..;i;,gi_;-i!.-.ii152
References :.......;,_ii_i;!.....gg.i.-.g;i;___i!;.......154

Table' - Page

I Test Graphs ..;..,..g_..!.;;{..g..._ii,..‘,,;g.i!;. 126

11 The Number of Subgraphs t(G) in a Minimal Planar
partition of G and the Number of Subgraphs in the
Constructed Planar Partitionse.ceceeeeocanrens 127

111 Performance Measure PM of the STEP, PQEP, and PFEP
AlLGOTIithMS o ...userernneeaensancenanrevranansenes 130

!
1v Execution Time in Secondsoceerecennacneres 131
v Number of Edges in the Largest Planar Subgraph 134

'F-,f y 5
;
* List of Figures
Fiéufe - . Page
1. A Pl%ﬁaf Partition of K(6,7) ..iieernnnsnnscnnsssaas 16
2. Hr and Fhi.....:.......:.......Q,......,....... 19
3. The subgraph H7 of K18cveevisvecscsscosssaas 20
4. Partitioning K(m,p)ieeceireracnnsosoncannnans 23
5. Degree Constrained Partitioning of Kn 26

6. Degree Constrained Partitioning of K(4r+2,4r+2) 29

i

7. Degree Constrained Partitioning of K(m,4r+4) 31
8. Reacha: » VELtiC@Svveeeeessnaonnesssanssssssess 35
9. The Decomposition of a GrAPh . vvvrvvrivnnnnsenenssss 37
10. S and S' INterlacecoceeeennonvsecrassssaess 39
11. sUuUCcC ii_._.i.i;._...;gg._....?a;.;,,....igg.;...ai. 44
12. S is embedded before S’ sereeseens feeaa e B, 46
13. & and §' interlace if and only if § < w' L L..i.es... 48
14. An st-numbering of a8 Graphcceevevceensesss... 64
15, Real and Virtual Véftices ..gjl;._g_,...i;_,;..._iii 66
16. Embeddings and the Corresponding pg-trees 69

ix

17.

18.

1§§

ZDi

21,

22.

23.

24.

25.

30.

31!

33.

Leaf-nodes that can and cannot be made adjacent ;.f_ 72
;BLQEKEé and Ugblacked Nodes g,.i.,igj......;.i_._._gi74
The Férm of Tk aizef a bubble éass teeeaneaaasseanas 15
Transforming T3 ..i@..g,i._,.i..__.g_i.gigg.g,-igia..77
Deleting a Back Edge .,_.;.-.-__i;;;ggif;i;._..i.gi.iBQ
Loss of Interaction ,.g,.,.__-;;,;,.igig..;._,ig‘__;.EB
Tk nonplanar after a bubble pass s esessrenes 104
v
The Form of q!ﬂsdesrin a pg-tree et seaaeaseasass105
The. Form of an Unmatched p-node .i,.._;;!_i.i,ii,.g_1aé

A Possible Configuration for an Unmatched g-node ...108
Possible Configurations of the Children of xj108
&

Matchable Pertinent Groups of a g-node R R NV

Tk before and after deletion of leaf-nodes during
the Reduction Pass -_,._.;.,,..g_.,._.,-.g.;_.i,ii_.113

Embedding a Graph whose Vertices are not
st-Numbered g..g_.i_;...,..-..g.23_..i._-,.,ig_i...i120

Subgraphs Constructed b; PFEP +vvveeensnnasnnesessesl3d?
Subgraphs Constructed by PQEP I I K

Subgraphs Constructed by STEP vvverennnancnansacesss 144

Chapter 1

Introduction

This thesis examines the Jgroblem of determining a
minimal planar partition for a graph. The problem involves
partitiaﬁiﬁg_the edges of a%graph into the smallest number
of subgraphs such that each subgraph can be embedded in the

plane with no edges crossing. The minimal planar partition

problem or one closely related to it often occurs in

designing the layout of an integrated circuit [Fer 70
Rub 73, Han 75, Van 75, Lui 76}. The circuit is represented

]

as a graph, where the components and wires of the circuit

m

are the vertices and edges of the graph respectively. The
goal is to place the wires of the circuit on the minimum
number of boards 5uch that wires on the same board do not
Cross.

At present, the minimal planar partition problem is not
solvable in polynomial time for an arbitrary graph. In
addition, it is not known whether the problem is NP-complete
[Gar 79). However, it is known that the related problem of
nonplanar edge deletion is NP-complete [Lui 76]. The
nonplanar edge deletion problem involves determining the
mirimum pumber of edges whose deletion from a graph results
in a planar subgraph. | »

It is reasonable to assume that the minimal planar
partition problem is not in P and to look for algorithms

that obtain partial solutions to the problem in polynomial

:‘

time rather than an exact solution.

This thesis has two goals: (1) to design an efficient
aigorithm that produces a good approximate solution to
instances of the minimal planar partition problem, and (2)
to achieve a balance between the complexity of the algorithm’
and the quality of the approximation it produces, that igj
to find the point where any improvement in the performance
of the algorithm requires axdisprapértiﬁnatg increase in its
complexity. \

Theoretical results on the minimal planar partition
problem are surveyed in Chapter 2. The results surveyed deal
with the order of a minimal planar partition for a graph
(the thickness of a graph) and the construction of some

minimal planar partitions. Included are results from Tutte

—

[Tut1 63), Beiﬁgké and Harary [Bei 65 and-Beil 67], Beineke,
Harary, and Moon [Bei 64 and Be12 6€7), Alekseev and Goncakov
le 76), Kleinert [Hob 69}, and Bose and Prahbu [Bos 771.

e main result from Tutte is an upper bound on the
thickness of a graph. The papers by Beineke and Harary and

by Alekseev and Goncakov are concerned with minimal planar

partitions of complete graphs. The results from Beineke,
Harary, and Moon deal with minimal planar partitions of

nert's result [Hob 69]

=

complete bipartite graphs and Kle

Also included in the survey are the results from Bose
and Prahbu on minimal planar partitions of completé graphs
and complete bipartite graphs where the deqree of a vertex

[3

in any subgraph of the partition is restricted to be less
than or equal to some integer d. In particular, their
solution for the case d = 4 is examined in section 2.1.3 and
expanded on.

Chapter 3 is devoted to the gxamiﬁatiaﬁ of two linear
time(planarity algérithms:,tha;1§§ Hopcroft and&%arjan, and
that of Booth and Lueker. The path finding algorithm from
Hopcroft and Tarj;ﬁ (Hop 74) contains several minor errors
which have been noted in the literature [Deo 76) and one
major, subtle %g;ic error which is noted in section 3.1.4.
The pq-tree alé@rithm from Booth and Lueker [Boo 76] is an
0(n) version of an earlier vertex embedding algorithm
suggested by Lempel, Even, and Cederbaum [Lem %6). These two
algorithms are used iniéevelaping the planar edge
_partitioning ilgafﬁth@é described in Chapter 4.

Chapter 4 Examiﬂgs three new edge partitioning
algorithms that produce a planar partition of a graph. Two
of the algorithms proposed are based on the algorithms in
Chapter 3. Theifirst proposed algorithm is a spanning tree
edée partitioning (STEP) algorithm. To produce a planar
subgraph in a partition this algorithm starts with a
-spanning tree over the vertices of G and the edges of G not
yet partitiéheéi Edges are added one at a time to thgs
initial subgraph while maintaining its planarity. The second
algorithm, a path finding edge partitioning (PFEP)
algorithm, uses a modified version of the path finding

planarity algorithm of Chapter 3 to partition the edges of G

into a set of planatﬁsubgraéhsr The third proposed
algorithm, a pg-tree edge partitioning (PQEP) algorkthm, has
the same overall structure as the PFEP algorithm but makes
use of a modified version of the pg-tree planarity algorithm
of Chapter 3. Theoretical results for the new algorithms
include a proof of the correctness of each algo;ithm and an
upper bound on the time complexity of each algorithm.

" The value of the three new algorithms as heuristic
algorithms for the minimal planar partition problem is
assessed in Chapter 5. One performance measure is coﬁsidered
and experimental results from tests run on all three
algorithms are presented and compared. The algorithms are
also compared on the basis of their resource reguirements
(execution time) and the characteristi?s of the constructed
planar partitions (the number of edges in the largest
subgraph and the properties of each subgraph).

Chapter 6 summarizes the three new algorithms and their
experimental behavior, discusses the merits and drawbacks of

each, relates the goals of this thesis to what was

accomplished, and presents ideas for further research.

AN -

aw

Chapter 2
History of the Minimal Planar Partition Problem
This chapter surveys theoretical results on the minimal
planar partition problem. Results on the order of the

minimal planar partition for a graph (the thickness of a

=1

graph) are‘;resented first. Included in these results are
upper and lower bounds on a graph's thickness and the
thicknesses of the complete graphs, the complete bipartite
graphs, and the m-cubes. Alsoc examined are results on the
minimum size of planar partitions of complete graphs and
complete bipartite graphs where each subgraph in the
partition has vertices of degree less than or equal to four
(degree constrained partitions).

Then the methods used in constructing minimal planar
partitions and minimum size, degree'ccnstrainéd planar
partitions of some complete graphs and some complete
bipartite graphs are examined.

Let G = (V, E) rgpre§%ﬁt a simple, undirected graph
where V is the set of vertices of G and E is the set of
edges of G. Let n be the number of vertices in V iﬂjﬁﬂbt e
be the number of edges in E. Where necessary, the notation
v(G) and E(G) is used for V and E respectively to avoid

ambiguity.

Definition 2.1
A graph G is connected if every pair of vertices is
joined by a path. A maximal connected subgraph of G is

called a connected component of G.

Definition 2.2
A graph G is biconnected if every pair of vertices lies
on a cycle. A maximal biconnected subgraph of G is called a

biconnected component of G.

Definition 2.3

A planar embedding of a graph G is an embedding in a
plane (or on a surface of a sphere) of the vertices and
edges of G such that each vertex of G is at a different
location in the plane and two edges intersect only at their

common vertex if they have a vertex in common.

Definition 2.4
The regions defined by a planar embedding of a graph

are the faces of the planar embedding.

Definition 2.5
A graph G is planar if it has at least one planar

embedding, otherwise, G is nonplanar.

Definition 2.6 [Tut1 63]
A partition of order k of a graph G 1s the
decomposition of G into k subgraphs Hi, ' S j s k, such that

each Hi has at least one edge and any two subgraphs are edge

disjoint but not necessarily vertex disjoint.

Definition 2.7 [Tut? 63]
A partition is planar if each subgraph of the partition

is planar.

pefinition 2.8 [Tut! 63]

The thickness t(G) of a graph G is k if G possessesS a
planar partition of order k and G does not possess a planar
partition of order less than k.

The term minimal planar partition of G is used to refer

to

]

planar partition of G with order t(G). Note that G may
have more than one minimal planar partition.

The complete graph is denoted by Kn and is the graph
with n_vertices in which every pair of vertices is joined by
an edge. A graph G is bipartite if its set V of vertices can
be divided into two nonempty, disjoint subsets V, and vV,
such that every edge in E connects a vertex in V, to a

vertex in V,. Let m = |V,| and let p = |V,|. If each vertex

in V, is joined to every vertex in V,, then G is a complete
bipartite graph and is denoted by K(m,p). The m-cube [Har 69
and Bon 76], denoted by Qm, is a graph with 2##m vertices
and mzsi(m’{) edges. The vertices of Om are numbered from 0
to 2%xm . 1 with the numbers fepresenteé in their m-digit

binary form. An edge joins two vertices if and only if their

binary representations differ in exactly one digit.

Let [x] be the greatest integer less than or equal to a
real number x and let {x} be the smallest iﬁteggr greater

than or egual to x.
-

2.1 Graph Thickness

2.1.1 Upper and Lower Bounds

The results surveyed in this section pertain to upper
and lower bounds on the thickness of a graph. The lower
bound of Theorem 2.1.2 and other results mentioned later are

obtained using Euler's formula.

Theorem 2.1.1 (Euler's Formula) A connected planar graph
with n vertices, e edges, and f faces satisfies

n-e+ f = 2,

Theorem 2.1.2 The thickness t(G) of a graph with n vertices
and e edges satisfies
t(G) 2 e/(3n-6).
Proof: In a planar embedding of a graph, every face is
composed of at least three edges and every edge borders
on two faces. Therefore, 3f = 2e or f 5 2e/3. For a
planatr graph
n-2=e-f2ze~- 2e/3,
wvhich simplifies to
e s 3n - 6.

Therefore, any planar subgraph of G has at most 3n - 6

edges and t(G) 2 e/(3n - 6).

Theorem 2.1.3 (Tutte [Tut! 63]) Let G be a graph of
thickness t(G). Let G' be formed from G by deleting
eithe% a single edge or a single vertex with all its
incident edges. Then the thickness of G' is either t(G)
or t(G)=1.

Proof: Let the thickness of G' be k., Since G' is a subgraph.
of G, k S t(G). Since a planar partition for G of order

fi*l can be formed by adding one subgraph of the deleted

elements to G', t(G) s k+1, Thus t(6)-1 £ k < t(G).

Corollary 2.1.4 Let G be any graph with m < n vertices, then

4

2.1.2 Complete Graphs, Complete Bipartite Graphs, and

t{(G) s t(Kn).

M-Cubes

Interest in the thicknesses of complete graphs was
kindled about 1962 when Battle, Harary, and Kodama [Bat 62]
and Tutte [Tut2 63] proved that t(K9) = 3. The thicknesses
of five out of every six complete graphs were established in
1965 by Beineke and Harary [Bei 65 and Beil 67]. Their work
was extended by Alekseev and Goncakov [Ale 76] (and
independently by Vasak [Vas 76]) to include all complete

graphs. f

10

Theorem 2.1.5 Por a complete graph Kn,
t(kn) 2 [(n+7)/6].
Proof: t(Kn) 2 e/(3n - 6) by Theorem 2.1.2.
Since the number of edges e in Kn is n(n-1)/2,

t(Kn) 2 n(n - 1)/(én - 12)

2 [(n + 7)/6). .

Theorem 2.1.6 [Bei 65 and Beil 67) For n » 4(mod 6), and
n =+ 9,

t(Kn) = [(n+7)/6].

Theorem 2.1.7 [Ale 76] The thickness of Kn for n # 9, 10 is
t(kn) = [(n+7)/6],
and,

t(K9) = t(K10) = 3.

The proof of Theorem 2.1.6 iﬁvalveé using Theorem 2.1.5 and
constructing a planar partition of order [(n+7)/6] for Kn,
when n # 4(mod 6) and n # 9. The construction of the planar
partitibn is explained in detail in section 2.2.1. By
modifying the construction fechnique from Beineke [Beil 67]
slightly, Alekseev and Goncakov [Ale 76) were able to
construct a planar partition of order [(n+7)/6] for graphs
Kn, n = 4(mod 6), n 2 22, thereby establishing Theorem
2.1.7.

Thickness results for the bipartite graphs first
appeared in a paper by Beineke, Harary, and Moon [Bei 641

and then in more detail in a paper by Beineke [Bei2 67]. The

11

main results are illustfated by the following four theorems.

#

Theorem 2.1.8 If G is bipartite, then

Proof: For a bipartite graph G each face has at least four

edges and therefore, by Theorem 2.1.1, any planar

t(G) = {e/(2n - 4)1}.

subgraph of G will have at most 2n -

then that

t(G) %J{e/(in - 4)}.

%
4 edges. It follows

Theorem 2.1.9 The thickness of K(m,p) satisfies

{mp/(2m+2p-4)} $ t(K(m,p)) s {m/2},

for 2 < m 5 p.

Proof: The graphs K(1,p) and K(2,p) are planar and K(m,p)

is isomorphic to K(p,m) so we only have to consider

complete bipartite graphs for which 2 < m s p.

1. t(K(m,p)) 2 {mp/(2m+2p-4)} follows from Theorem 2.1.8.

parts., First, a planar partition of order s 1is

constructed for K(2s,p) by making s copies of K(2,p),

thereby proving the conjecture for even values of m.

2. The proof that t(K(m,p)) s {m/2} is actomplished in two

Then, since t(K(2s-1,p)) s t(K(2s,p)) by Theorem 2.1.3,

it follows that t(K(m,p)) < {m/2} for all values

Theorem 2.1.10 If m

I

t(K(m,p))
f m is odd and

t(K(m,p))

is even and p >

P

m/2.
> (m=-1)(m-2),

(m+1)/2.

(m-2

then

)*/2, then

of m.

%
)

Theorem 2.1.11 The thickness of K(m,p), for m S p is
t(K(m,p)) = {mp/(2m+2p-4)1}, .
except possibly when m and p are both odd and there
exists an integer k such that

p = [2k(m-2)/(m-2k)].

The proof of Theorem 2.1.1!1 involves using Theorem 2.1.9 and
constructing a planar partition of order {mp/(2m+2p-4)} for
K(m,p) with m and p as given in the statement of the
theorem. The constructien of a planar partition for K(m,p)
1s descrxbed in section 2.2.2.

A final result on the thicknesses of complete bipartlte
graphs, which is stated by Beineke without proof in
[Bei2 67]), is that

t(K(4r-3,4r+1)) = r, for r 2 4.

The final result on graph thickness that is surveyed

here is the result on the thicknesses of m-cubes as

determined by Kleinert [Hob 69].

Theorem 2.1.12 The thickness of an m-cube Qm is

t(Qm) = 1 + [m/4]).

2.1.3 Complete Graphs and Complete Bipartite Graphs with
Degree Constrained Partitions

Bose and Prabhu {Bos 77] studied the minimum sizes of
planar partitions of graphs (thicknesses of graphs) where
the degree of each vertex d(v) in the subgraphs of the

planar partition is constrained to be less than or equal to

e e e e WAL T W T e T Ty m T T — - -

13

some value d. In particular, the problem is studied for the
case d = 4 and is solved for most complete graphs and
complete bipartite graphs. It is conjectured in their paper
that the thickness of the complete bipartite graph, Ki{m,p),
for m = 4r+2, p = 4r+3, r 2 1, is

t(K(m,p)) = [(m+5)/4]+1. 9
It is shown in this section that this conjecture is false
and that, for m = 4r+2, p = 4r+3, r 2 1,

t(K(m,p)) = [(m+5)/4].
With the above result, the degree constrained thickness

problem is solved for all complete bipartite graphs.

Theorem 2.1.13 Suppose n > 5 and n # 4p+1, where p is an
integer and p 2 3. Then the thickness of the complete
graph Kn, in the degree constrained case, where d = 4,
1is given by .

t(Kn) = [(n+3)/4].

The proof of this theorem is accomplished in part by the

construction of a planar partition of order {(n+3)/4) for Kn

where each s%%graph in the planar partition has vertices

with degree d(v) < 4. An outline of this construction is

given in section 2.2.3.

Theorem 2.1.14 The thickness of the complete bipartite graph
K(m,p), in the degree constrained case, vhere d = 4 and
m s p, is: -
(a) t(K(m,p)) = [(m+5)/4], if m = p
(b) t(K(m,p)) = [(p+3)/4]), if m £ p-2

(¢) t(K(m,p)) = [(m+5)/4], if m = p-1

Proof:

(a)

(b)

t(K(m,p)) = [(m+5)/4], if m = p.
First a planar partition of order r+1 is constructed
for K(4r+2,4r+2), for any positive integer r,
establishing

t(K(4r+2,4r+2)) s r+1, (1)
This construction is shown in more detail in section
2.2.3. Next, since {%/y} = [(x+y-1)/y],

t(K(m,m)) 2 {m?/(4m-4)}

= f(m*+4m-4-1)/(4m-4)]

[(m+5)/4]. (2)

By (1) and (2), t(K(4r+2,4r+2)) = r+1.
Sincé t(K(4r-1,4r-1)) 2z r+1 by (2) and
t(K(4r-1,4r-1)) s t(K(4r,4r)) s t(K(4r+1,4r+1)) s
t(K(4r+2,4r+2)) = r+1, it follows that

t(K(m,m)) = [(m+5)/4] for all m.
t(K(myp)) = [(p+3)/4), if m < p-2.
The proof involves the construction of a planar
partition of order r+1, for p = 4r+4, r a positive
integer, and m < 4r+2, The construction is outlined
section Z.2.3 and establishes that

t(K(m,4r+4)) s r+1.

‘Since t(K(m,4r+4)) 2 {m(4r+4)/(4m)} = r+1 (a degree

constrained planar subgraph can contain
e < min(4m, 2m+2p-4) edges), it follows that

t(K(m,4r+4)) = r+1. In addition, since

14

in

15

t(K(m,4r+1)) 2 {m(4r+1)/(4m)} = r+1 and
t{K(m,4r+1)) = t(K{(m,4r+2)) s t(K(m,4r+3)) =
t(K(m,4r+4)), it follows that

t(K(m,p)) = [(p+*3)/4], for m s p-2.

t(K(m,p)) ((m+5)/4], if m = p-1.

Proof: t(K(m,m)) < t(K(m,m+1)) < t(K(m+1,m+1)) or,

[(m+5)/4) 5 t(K(m,m+1)) < [(m+6)/4]) by part (a). (3)
i) For m = 4r-1, r 2 1,
t(K(4r-1,4r)) = r+1 from (3),
ii) For m = 4r, r 2 1,
Y
t(K(4r,4r+1)) = r+1 from (3),

iii) For m = 4r+1, r 2 1,

t(K(4r+1,4r+2)) = r+1 from (3), and

iv) For m = 4r+2, r 2 1,
[]

t(K(4r+2,4cr+3)) = c+1.

This is established as follows:

—
w

r+1 5 t(K(4r+2,4r+3)) < r+2 by (3).

2. Although it is conjectured that
t(K(4r+2,4r+3)) = r£+2 [Bos 77], it is easy to
show that the conjecture is false. For |
example, if r = 1, then K(4r+2,4r+3) = K(6,7)

and t(K(6,7)) 2, not 3, as shown in Figure

>

1. Now, from part (a),
t(K(4r+2,4r+2)) = r+1, and,
from part (b),
t(K(4r+2,4r+4)) = r+1,

Therefore, r+1 = t(K(4r+2,4r+2)) s

16

H1

,\ Figure 1. A Planar Partition of K(6,7)

t(K(4r+2,4r+3)) < t(KR(4r+2,4r+4)) = r+1, and
hence
t(R(4r+2,4r+3)) = r+1,
From i, ii, iii, and iv above, it follows that

t(K(m,m+1)) = [(m+5)/4], for all m.

2.2 The Construction of Minimal Planar Partitions

The methods used to construct minimal planar partitions
and minimum size, degree constrained planar partitions of
complete graphs and complete bipartité graphs are examined
in this section. There are two reasons for this examination.
The first reason is to unify the construction methods used
to produce the different partitions. The second reason is to
indicate the structure of the partitions and to indicate

vhat is involved in determining a partition.

2.2.1 Partitioning Complete Graphs

Beineke and Harary [Bei 65] and Beineke [Beil 67]
construct planar partitions for some complete graphs as part
of the proof of Theorem 2.1.6. This section examines the
construction of a planar partition, of order k+1, for a
complete graph Kn, where n = 6k, k 2 1. Let the vertices of
Kn be numbered from 1 to n. The construction technique shown
here -is the one descr{bed in [Beil 67]..The planar partition
constructed fo: Kn is obtained from a k by k array A defined
as:

ACi,j3) = {((-1)exi)s[i/2] + ((-1)ss9)s[j/2)}(mod k),

for 1 £ 1,j S k.

Every integer between 1 and k appears exactly once in every

row and column of A.

Example 2.2.1 For k = 3, n = 18,
A= 312
12 3

2 31

The construction of the planar partition for Kn also
requires the following function g. For any two integers r
"and s, r,s < k, let j be the column of A where A(1,3) = r,
and let i be the row in column j where A(i,j) = s. Then,

q(r,s) = (-1)*x(1+min(i,j)).

The subgraphs Hr of the planar partition for Kn, r =.1,

2, ..., k, are constructed as follows. Each subgraph Hr has

the n vertices of Kn. The general form of Hr is illustrated

18

in Figure 2(a). Each of the subgraphs Fh of Hr, h = 1, 2,

6, has the general form shown in Figure 2(b). Fh has

k-1 interior vertices, three exterior vertices, 3k-3
interior edges, and three exterior edges. The exterior

vertices and edges.of Fh are the vertices and edges in Hr

in Figure 2(a)). The labels on the k-1 interior vertices of
each Fh in Hr are determined using the function q and the
entries in the column j of A for which A(1,3) = r,
Let s = A(i,3), thEﬁbthE label on the (i-1)'st interior
vertex of Fh, i = 2, 3, ..., k, h =1, 2, ..., 6, is

1. h+6(s-1), if ql(r,s) = +1,
2. (h+1)+6(s-1), if g(r,s) = -1 and h is odd,

-1

3. (h-1)+6(s-1), if g(r,s) , and h is even.

Another subgraph HR+1 is necessary to complete the planar
7paftitiéﬂ of Kn. The subgraph Hk+7 contains the n vertices
VQE Kn and the 3k edges (1+t,2+t), (3+t,4+t), (5+t,6+t), féf
t = 6(r-1), r = 1, 2, ..., k. The set (H1, H2, ..., Hk+1) is
a planar partition of Kn, for n = 6k. It is minimal because
t (K6k) 2 k+1 by Theorem 2.1.5. Figure 3 shows a planar
embedding of the subgraph H! of K1B constructed using the
array A from example 2.2.1.

b

1ft

t = 6(r=1)
(a) The General Form of Hr

h+t

X+t e — S— — e i % y+t
x = (h-1)(mod 6), if h is odd
(h+1)(mod 6), otherwise’
y = (h+3)(med 6)

(b) The General Form of Fh

Figure 2. Hr and Fh

19

20

Figure 3. The subgraph H7 of K18

2.2.2 Partitioning Complete Bipartite Graphs
The proof of Theorem 2.1.11 depends on the construction

of planar partitions for certain complete bipartite graphs
K(m,p). The construction outlined in this section appears in
the paper by Beineke [Beil 67]. Let k and m be integers
satisfying k < m/2. Let g be a function defined by

g(m,k) = [ik(m-z)/(méik)]!
1f p is chosen as the largest even integer not exceeding
g(m,k), then

{mp/(2m+2p-4)} = k.
Therefore, if a planar partition of order k is constructed
for K(m,é), it follows that

t(K(m,p)) £ {mp/(2m+2p-4)}

for certain values of m and p.

21

With respect to the construction of a partition of
order k, let s be an integer, s = p/2 (p even), and let the
vertices of K(m,p) be numbered from 1 to m+p with the
vertices of the first vertex set numbered from 1 to m, and
the vertices of the second vertex set numbered from m+1 to
m+p.

To construct a planar partition for K(m,p), an s by k
array A is used. The elements A(i,j) are variable length
vectors. To form A first an s by k array>2 is constructed,
where

C(i,j) = {(i+jIm/k} - {(i+j-1)m/k}.

C(i,j) is the length of the element A(i,j). The element
A(1,1) is

A(1,1) = (1, 2, ..., C(Y,1)).
The remaining elements of A are defined inéuctivélyi For any
row i of A, i £ i s s, the entries of element A(i,]),
1 < 3 S k, are consecutive integers (modulo m). The first
entry of A(i,j) is consecutive (modulo m) with the last
entry of A(i,j-1). For any column j of A, 1 5 j S k, the
first entry of A(i,j) is equal to the second-to-last entry

of A(i-1,3), 2 £ i S k.

Example 2.2.2 Let m=8‘and k=3, thenGp=18 aﬁd
C= 323
2 3 3
3 32

3 23

22

2 33
332
323
2 33
332
A= 123 4 5 6 78
3 2 3 4 56 7 81
2 3 4 56 7 « 8 1
345 6 7 8 12
4 5 6 7 8 12 3
4 56 7 81 2 3
56 7 8 1 2 3 4
6 7 8 12 345
6 78 123 4 5

The entries of each element A(i,j) are integers between 1
and m, and represent the vertices in the first vartex set of
K(m,p). The row numbers 1, 2, ..., s of A represent the
vertices in the second vertex set of K(m,p) where row i
represents vertices m+i and h+s+i. For .j = 1, 2 ,..., K,
each subgraph Hj has the following planar embedding. The
vertices of Hj are the vertices of K(m,p) and are placed on
a sphere as depicted in Figure 4(a), where,t is the first
ent?y of A(H,j). Each column j of A, 1 5 3 £k, specifies
which edges of K(m,p) are in Hj. The vertices represented in

A(i,j), 1 s i s s, (from the first vertex set) are adjacent

(i) Upper Hemisphere (ii) Lower Hemisphere
(a) The Position of the Vertices on the Sphere

(iii) H1 (iv) H2 (v) H3

(b) The Upper Hemisphere of each subgraph for K(8,18)

J
Figure 4. Partitioning K(m,p)

to the vertices m+i and m+i+s (from the second vertex set)

in Hj. Each edge of HJ is drawn on tqe surface of the sphere

using the line of shortest length between its two endpoints.

Figure 4(b) shows the upper hemisphere of each subgraph HJ

for K(B,18), 1 s j S 3. The subgraphs are constructed using

the array A defined in example 2.2.2.

The array A has the following properties:

1. Each integer between 1 and m appears once and only once
in each row of A; This means that each vertex 1, 2, voes
m is connected to each vertex m*1, m+2, ..., m*p once
and only once. Thus, A represents all the edges of
K(m,p).

2. Only the last two entries of any element A(i,]j) appear
in elements below A(i,j) in column j. This property
énSurgs that the subgraph whose edges are specified by

column j is planar.

2.2.3 Partitioning Complete Graphs and Complete éipartita
Graphs Into Degree Constrained Partitions

The proof of Theorem 2.1.13 is accomplished in part by
the construction of a degree constrained planar partition of
order p for a complete graph Kn, where n = 4p, and p is a
positive integer. The subgraphs Hk in the partition,
1 £ k € p, have vertices of degree d(v) s 4. Although Bose
and Prabhu do not construct the planar subgraphs using an

array it is done here to achieve consistency.

25

For n = 4p, a 2p by 2p array A is defined és:
A(1,3) = 3,
A(i,3) = (j=i+1, j-i+2) (mod 4p),

for 1 < j S 2p, and 2 < 1 S 2p.

E;a-ple 2.2.3 For n=12, p=3, A is a -6 by 6 array

. A= 2 3 4 5 6
121 12 23 34 45 5 6
' 1112 12 1 12 23 34 45
10 11 1112 121 12 2 3 3 4
, 910 10 11 11 12 12 1 12 23

8 9 9 10 10 11 1112 121 12 -

~

Let the vertices of Kn be numbered from 1 to n. Each
subgraph Hk, k = 1, 2, ..., p, has the same vertices as Kn.
In the planar embedding of Hk, the vertices are arranged on
the sphere as illustrated in Figure 5(a). Both column k and
column 2p+1-k of A are used in the construction of Hk. The
only edges in Hk are those edges between vertex k+i and each
entry in A(i;k), and those edges between vertex (2p+1-k)+i
and each entry of A(i,2p+1-k) for i = 1, 2, ..., 2p. The
planar embedding of Hk has the edges represented by column k
of A drawn on the upper half of the sphere and the edges
represented by ¢olumn 2p+1-k drawn on the lower half of the
sphere using the line of shortest distance between
zxggdpoints. The embedding of H2, for p=3, projected onto the

plane, is shown in Figure 5(b).

k+2p+2
k+2p+1

(a) The Position of the Vertices on the Sphere Ear'Hk

O
{o

(b) The subgraph HZ2 of K12

Figure 5. Degree Constrained Partitioning of Kn

26

v

To prove that t(K(m,p)) = [(m+5)/4]), where m = p
(Theorem 2.1.14 part(a)), a planar partition of order r+1
constructed for K(4r+2,4r+2), for r 251_ Again, an array

used to construct the planar partition. Let the vertices

the first vertex set of K(4r+2,4r+2) be numbered

consecutively from ! to 4r+2, and the vertices in the second

vertex set. from 4r+3 to 8r+4. The subgraphs H1, H2,

ee., Hr+1 in the planar partition are constructed using a

(2r+1) by (r+1) array A where each element of A is a 1-tuple

or 2-tuple of integers between 1 and 2r+1 defined as

follows:

a. A(1,1) = (1), 5 7

b. A(1,j) = (s, s+1), vhere s = §%2j (mod 2r+1) aﬁéx
| 2 S 3j s+,

c. A(i,3) = (i—2j+2) (mod 2r+1), when j = (i+1)/2, crz

j = (i+2)/2, 2 S i,3 S 2r+},

d. A(i,j) = (s, s+1), where s = i-2j+1 (mod 2r+1), for

5 (i+1)/2 or j » (i+2)/2, 2 S i,j S 2r+1.

Example 2.2.4 For r=1, 4:*2 = &,

A= 1 2 3
12 3 ’
2 3 1

The planar embedding of each subgraph Hj, j = 1, 2, ...,
r+1, is symmetric about both the veqti:al and horizontal

axes of the plane. The position of each vertex of

28

K(4r+2,4r+2) in the planar embedding of Hj is shown in
Figure 6(a), where t is the first entry of A(1,3). All the
vertices to the left of the vertical axis are between 1 and
2r+1 and all the vertices to the right are between 2r+2 and
4r+2. Note that the vertices along the vertical axis are
positioned independent of j vhiie the position of each
vertex along the horizontal axis depends on j. The edges of
Hj are represented by column j of A where the i'th row of A
corresponds to the vertices 4r+2ti and 8r+5-i. If s is an
entry of A(i1,3), then the edges'L;r*z*i, 5),

(4r+2+i, 4r+3-s), (8r+5-i, s), and (8r+5-1, 4r+3-s) are 'in
Hj. Figure 6(b) illustrates the embedding of the subgraphs
H1 and H3 in the plﬁpar partition for K(6,6). The subgraphs
are constructed using the array A from example 2.2.4.

The proof that t(K(m,p)) = [(p+*37/4] for m s p-2
(Theorem 2.1.14 part (b)) involves constructing a planar
partition of order [(p+3)/4] for K(m,p), where p = dr+4,

r 2, and m < 4r+2. Let the m vertices of the first vertex
set of K(m,4r+4) be nﬁﬁbered from 4r+5 to 4r+4+m, and let
the 4r+4 vertices of the second vertex set be numbered from
1 to 4r+4. Also, let s = {m/2} (the smallest integer gréater
than or equal to m/2). An s by (r+1) array A is constructed
and used to form the planar partition of K(m,4r+4). Each
element A(i,j) is a pair of consecutive integers between 1
and 2r+2. For 1 s i .S s, and 1 £ J S r+1,

A(i,j) = (h, h+1) (mod 2r+2), where h = i-2j+2.
~

4rt3
44+ 4

t6r + 2,
&r +3

e e 3 I 57 (43 &-1 - - - D et
art 4
&r 45

Br +3
fr +4

(a) The Vertices of HJj for K(4r+2,4r+2) in the Plane

(i) H1 ' (ii) H2

(b) A Planar Partition for K(6,6), with d(v) < 4

Figure 6. Degree Constrained partitioning of K(4r+2,4r+2)

Example 2.2.5 For r = 2, 4r+4 = 12, and m = 10

A=]2 56 34
23 61 45
34 12 5. 6
45 23 6
56 34 12

1, 2, ..., r+1, has the same vertices

Each subgraph Hj, j

as K(m,4r+4). In the planar embedding of Hj its vertices are

placed in the plane as depicted in Figure 7(a), where t is

(o]

the

irst entry in A(1,3j). The vertices numbered between 1
ané 2r+2 '‘are place above the horizontal axis and the
vertices numbered between 2r+3 and 4r+4 are placed below the
horizontal axis. Note that the position of the vertices on .
the horizontal éxfs is independant of j aﬁd the position of

the vertices on the vertical axis varies with j.

F

To form Hj, the j'th column of A, j i1, 2, ..., r+1,

is used. For i = 1, 2, ..., s, if A(l,3) (h, h+1), then

the edges (h, 4r+4+i), (h+1, 4r+4+i), (4r+5-h, 4r+4+i), and
(4c+5-(h+1), 4r+4+i) are i?fgj; and if m is even or i 2 2,
the@ the edges (h, 4f*5*m!éf, (h+1, 4r+5+m-i), (4r+5-h,
4r*5+m;i); and (4r+5-(h+1), 4r+5+m-i) are a;sc in HJ. 4
Pigure 7(b) shows the planar embedding of the subéraph H3'
fqr K(10,12) constructed using the array A from

example 2.2.5.

478 - e - - . Bc s 448 4?#:5*; . !”i”;é:léfﬁ-ﬂr!fti*h

4c +5-(£-1)

Y

4+ 5=(4+1)
4 +5-1

(a) The Vertices of Hj for K(m,4r+4) in the Plane

3

=

106

(b) The subgraph H3 for K(10,12), with d(v) < 4

Figufa 7. Degree Constrained Partitioning QE,K(D,QT*§§:*'¥‘

Chapter 3

Planarity Algorithms

Planarity algorithms determine wvhether or not a graph
is planar (of thic%ness one). Two such algorithms are
discussed in this chapter. The algorithms form the basis for
two of the edge partitioning alg@:ithms that are proposed in
Chapter 4. The first algorithm is a path finding algorithm
from Hopcroft and Tarjan [Hop 74], the second a pg-tree

algorithm from Booth and Lueker [Boo 76].

3.1 A Path Finding Planarity Algorithm

A forerunner of this planarity algorithm is described
in Auslander and Parter [Aus 61]. Their algorithm 1s
modified in Tarjan [Tar 71) to eliminate the possibility of
an infinite loop and obtain a linear run time. Tarjan's
version of the algorithm is put into a more concise form in
Hopcroft and Tarjan [Hop 74]. 1t is this concise form that
is described here.

Briefly, the algorithm determines whether a biconnected
graph G is of thickness one by embedding a cycle C of G in a
plane and, then attemptingvt@ embed the remaining portion of
G around C such that the embedding is planar. If G 1is
planar, thén, as a result of the Jordan Curve Theorem
[Tar 71), a planar embedding is possible starting with any

cycle of G. Using depth first traversal and a special

ordering of the adjacency lists of G, the algorithm
constructs a planar embedding of G (or decides that such an
embedding does not exist) in linear time and space. The time
écmplexity of the algorithm is O(e); however, only graphs
with e € 3n-6 need to be tested for planarity, yielding an -

O(n) time complexity.

3.1.1 A Special Ordering of the Adjacency Lists of G

A depth first traversal, [Tar 71], of the vertices-and
edges of an undirected, simple graph G with n vertices
enables the festfucturing_af G into a form more conducive to
planarity testing.

First, a depth first traversal of G can Ee used to
assign to each vertex v a preorder number g(v) (an integer
value between 1 and n) which is the traversal number of v.
Secondly, the edges of G can be classified (using the
terminology of Reingold, Nievergelt, and Deo [Rei 771) into
two types: tree edges and back edges. An edge (v,w) of G is
classified as a tree edge if w has not been visited prior to
the traversal of the edge. Otherwise, (v,w) is classified as
a back edge. A tree edge (v,w) has the property that
g(v) < g(w), and for a back edge (v,w), gl(v) > gl(w).
Finally, a degth first traversal of G can be used to direct

traversal of G to renumber each vertex v in V using g(v), to

classify each edge of G as a tree edge or a back edge, and

34
to direct each edge. In addition, for each vertex v, two
lowpoint values: LOWPT1(g(v)) and LOWPT2(g(v)) are
determined. These lowpoint values are the smallest and
second smallest values of g respectively that are assigned
to vertices reachable from v via a path traversed during the
depth first traversal. Figure 8 shows the LOWPT1 and LOWPT2
values for the vertices of a graph where each vertex Vv has
already been relabelled as g(v). The edges of the traversed
graph G are sorted into nondecreasing order by key, where '
the key for each edge is computed by the function b defined

Pl(v, w)] = 2%v if (v, w) is a back edge
= 2%LOWPT1(w) if (v, w) is a tree edge

and LOWPT2(w) 2 Vv

22LOWPT1(w) + 1 if (v, w) is a tree edge

and LOWPT2(w) < v.

Finally, ordered adjacency lists (with edges ordered in
nondecreasing values of b), are constructed from the sorted
edge list. Once the adjacency lists are constructed, an
embééding procedure determines the planarity of G by
attempting to systematically embed G in a plane. The
systematic embedding is performed via a depth first
traversal of the restructured graph G. The traversal
commences at vertex and uses the ordered adjacency lists

of G.

P i AR ——

35

—
%
[N]
o~
L
et
|
Lk

1. LOWPT1(3)
2. LOWPT1(4)
3. LOWPTI1(5)

L]
M
P \‘
|]

|y
gg
[S]
— p—
Y o
T v
nn
L L

~ Figure 8. Reachable Vertices

3.1.2 The Embedding Procedure
Assume that the vertices of G have been numbered via a
vdepth first traversal of G and that the edges of G are
directed and classified and the adjacency lists ordered as

described in the previous section.

Definition 3.1.1 : <
A cycle C of a graph G is a path of G such that «the

first vertex of the path is the same as the last vertex.
- '

paths and cycles in the embedding procedure are limited
to a sequence of tree edges and one back edge. A path from v

to w will be represented by p: v ~-=>¢% v.

36

Definition 3.1.2
A segment S of a cycle C is a connected subgraph of G
having no edges in common with C and consisting of either:
1. a single back edge with both vertices on C (a trivial
segment), or
2. one tree edge (s, v), with s on C and v not on C, plus
the directed tree rooted at v along with the set of back

edges emanating from the tree (a nontrivial segment).

If a cycle C is removed from G, the subgraph G - C is
the collection of segments induced by C. Every edge of G - C

belongs to one and only one such segment.

Definition 3.1.3
The vertices common to a cycle C and a segment S of C

are called the vertices of attachment of 5 (see Figure 9).

1t is advantageous to distiﬁgugsh two vertices of

attachment of a segment S from the others.

Definition 3.1.4
The highest numbered vertex of attachment of a segment
S is called the start vertex of § and the lowest numbered

vertex of attachment is called the finish vertex.

(b) G decomposed into a cycle C: 1=>2->3->4->5-->1 and
the segments induced by C.

s, is a nontrivial segment with vertices of ;
attachment {2,3,5) where 2 is the finish vertex, ant
§ is the start vertex.

S, is a trivial segment and the section t, for S, is
ty: 2->3->4.

Figure 9. The Decomposition of a Graph

38

Definition 3.1.5 (Even [Eve 79])

Two segments S and S' interlace if either

L]
’

1. There are four distinct vertices v, w, v', w

on C such
that v and w are vertices of attachment of S and v' and

A

w' are vertices of attachment of S' and the four

vertices appear in cyclic order Q, v', w, w' (as in
Figure 10(a)), or

2. S and S’ have three vertices of attachment in common (as
in Figure 10(b)).

’
If two interlacing segments are embedded on the same side of

C then they overlap. Two segments that do not interlace can
be embedded on the same side of C with no loss of planarity.

There are some important conceptual ideas underlying
Hopcroft and Tarjan's planarity algorithm. To construct a
planar embedding of G, a cycle C of G is determined. The
cycle C (containing vertex 1) is the first cycle traversed
during the depth first traversal of G. The const?uction
process consists of embedding C in a plane and then
systematically attempting tc embed each segment in the plane
in such a way that no two segmen&% overlap. If such an
embedding is not possible, then’ﬁ is nonplanar.

Given a segment S of C let t represent the section of -
tree edges of C between the finish vertex f and the start
vertex s of S, t: f ->* s, (see Figure 9). The process of
embedding each segment S with respect to C consists of

performing two planarity tests.

39

(b) Three common vertices

. Figure 10. S and S' Interlace

The first planarity test, under the assumption that
S UC is planar, checks for interlace between S and the
segments embedded before S. 1f tvo interlacing segments
S' and S" are found that interlace with S, then G is
nonplanar, otherwise, it is possible to embed S so that

it does not overlap with the previously embedded

\IUi

segments, Thus, if S U C is planar, then S UCU

{previously embedded segments} is planar.)

The second planarity test determines vhether S U C is
5

planar. This test is broken down into tvo parts:

{a) Testing the planarity of S U t (ignoring C - t), and

(b) Testing the planarity of (S U t) U (C - t).

ilg@rithm 3.1.1 and Algorithm 3.1.2 illustrate the
general flow of the planarity algorithm. The first algorithm
assumes that G is a biconnected graph and returns the value
PLANAR if G 1is planar and NONPLANAR otherwise. The second
algorithm assumes that G has the structure obtained from a
depth first traversal and has ordered adjacency lists, and
ﬁhét C is a cycle of G. The second algorithm returns the
value TRUE if G can be embedded in the plane, FALSE

otherwise.,

Algorithm 3.1.1 (PLANARITY(G))

1. Perform a depth first traversal of G; directing and
classifying the edges of G and renumbering its vertices,

2. Construct the specially ordered adjacency lists for G.

3. Determine the cycle C of G (by depth first traversal of
G starting at vertex 1) and embed C.

4. 1f EMBED(G,C), then return PLANAR.

§. Else, return NONPLANAR.

Algorithm 3.1.2 (EMBED(G,C))
1. For each segment S of C do
1.1 Generate a path p of § (by depth first traversal).
1.2 1f S passes the first planarity test, then
1.2.1 Embed p in the plane.
1.2.2 1f S is a nontrivial segmeﬁtﬂ then

1.2.2,1 Set C' = p U t.

41

Comment: Perform the second planarity test

1.2.2.2 1f ("EMBED(S U t, C')) or |
((SUt) UI(C-t) is nonplanar),
then return FALSE.

Comment: Otherwise S passes the second
planarity test and, in the recursive Eall
to EMBED, S ha een completey embedded.

1.3 Else, return FALSE. /jﬂ}b
Comment: S fails the first planarity test.

2. Return TRUE.

Because the second planarity test is performed by a
recursive call to the embedding procedure it is necessary to
break the test into the two parts shown. If the test were
not broken down, it would be possible, during the recursive
call, to infinitely decompose the graph S U C into the cycle
C and the segment S. .

Note that the second test need notALe performed for
trivial segments because S U C is always planar. For
nontrivial segments, on the other hand, both te5t§ must be
performed. Also note that the use of depth first traversal
to systematically embed the segments of G, means that each
segment is completely embedded before the embedding of a new
segment starts.

~ The embedding of a segment S of C commences with the
traversal of a path p of S. This first path p: s --># f

traversed in S always has the property that the vértices s

]

¢

and f are the start and finish vertices fespecﬁively of S.
Henceforth, the first path p of a segment S is referred to
as theiligding path of°S. Once p has been identified, the
first planarity test can be performed on S because, as 1is
shown later, only the leading path of S 1s required to
perform this test, If S passes the test, then p is embedded
in the plane and the procedure performs the second planarity
test on S. For convenience p is embedded on the inside of C
and all previously embedéedisegments are shifted about C as
required to maintain a planar embedding.

part (a), of the second planarity test is performed via
a re:ugsive éall to the embedding procedure with S U t as
input. Note that the subgraph 5 U t is already ﬂumbered,;
directed, and has the specially ordered adjacency lists
described in section 3.1.1. Therefore, the embedding
procedure can commence with the embedding of § U t without
the preprocessing which was required for G. In addition,
since a cycle C' comprised of t: f ->% s and the leading
path p: s -->* f of S is already embedded in the plane, the
embedding procedure only hés to embed the segments induced
by C' to determine whether S5 U t 1s planar. While the
segments of C' are being embedded the rest of G and, in
particular, the section C - t of the cycle C is ignored. 1f
each segment-can be embedded in the plane, then S U t is
planar, and part (b) of the second planarity test (testing
the planarity of (S U t) U (C - t)) is performed. In part

(b), the section of edges C - t is considered. Because of

L e —————a g 0 £ T T R S

43

the nature of the cycle C', the segments induced by C' in

<

the graph (S U't) U (C - t) are the segments induced by C’
in S U t plus the segment C - t (see Figure 11). Thus, if

C - t passes the two planarity tests, then (S U t) U (C - t)
is planar. Since ((C - t) UC' = C U p is planar), the
second test is trivially true. Thus the procedyge only has
to check for the existence of two segments of C' that
interlace with C - t and with each other (the first
planarity test). Since C - t interlaces with a segment if
and only if that segment has at least one vertex of
attachment v:'on t such that v # s or f, the segment C - t 1is
embeddable (and S U C is planar) if and only if all segments
of C' with vertices of attachment on t are embedded on the |
inside of C' or can be shifted (without overlap) to the
inside of C'.

The first planarity test on a segment S is by far the
most inﬁefesting of the two tests and potentially the most
difficult to perform. It is possible to efficiently
determine which embedded segments interlace with S partly
because of the order in which the segments are embedded (the
order imposed by depth first traversal and the ordered
aéjacency lists of G). The order in which segments are
embedded and the importance of that order are indicated in

the following lemmas and theorem.

44

g;
7/
4
! -
" -
i
\
\
A\ -
L]
B
~ I 3
x““—,.,,_ {2
™ :-.5""; . .
- ,‘_hi‘
C: 1 =>% 8 ==> 1
p: 6 -> 9 => 10 =-> 11 -> 3
t: 3 -> 4 -> 5 -> 6
C-t: 6 -> 7 -> 8 ==-> 1 ->2 ->3
cC': tUp

Lemma 3.1.1 Let S and S' be segments$ of the same cycle C,
let s' and f' be the start and finish vertices
respectively of S', and let s and f be the start and
finish vertices respectively of S.

(1) 1f S' is embedded before S, then s' 2 s. That is,
segments of a cycle are embedded in nonincreasing
order of their sta:ﬁ vertices.

(2) 1f s' = s, and £' < f, then S' is embedded before
S.

part (1) of Lemma 3.1.1 holds because G is traversed depth

45

first during the embedding process. Part (2) of the lemma
holds because of the ordering of the adjacency lists of G

and the depth first traversal of G.

Lemma 3.1.2 For all segments of a cyzlé C with the same
start vertex and the same finish vertex, segments with
only two vertices of attachment are embedded before
segments with more than two vertices of attachment (see
Figure 12).

Proof: Let S and S' be two segments of a cycle C with the
same start vertex s and the same finish vertex f.
Suppose that s and f are the only vertices of attachment
of S and suppose that S§' has at least one other vertex
of attachment w. Let p be the leading path of § with
(s, v) the first edge of p, and let p' be the leading
path of §' with first edge (s, v'). The edges of G are
sorted on their b values, and according to the
definition of b:

P[(s, v))] = 2#LOWPT1(v) = 2#f
and, since w is between s and f,

24LOWPT1(v') + 1 = 2#f + 1.

pl(s, v')]
Therefore, (s, v) precedes (s, v') in G's ordered
adjacency lists. Hence (s, v) is traversed before

= (s, v') and S is embedded before S'.

46

Figure 12. S is embedded before s'

Theorem 3.1.3 Let S and S' be two segments of a cycle C with
S' embedded before S. Let s be the start vertex of § and
f be its finish vertex. Let w' be the highest vertex of
attachment of S' for which w' < s. Then, § and §'
interlace if and only if w' exists and f < w',

Proof:

A. To prove the if statement, there are two cases to

consider.
Case 1. s' = &. (See Figure 13(a) and (b))

Since s' = s and §' is embedded before S, by Lemma
3.1.1, f' s f£. Also, since f < w', it follows that S’

must have at least three vertices of attachment.

a. I1f f' < f, then f' < f < w' <8 and therefore, § and

S' interlace.
b. I1f f' = f, then, by Lemma 3.1.2, S must have at

least three vertices of-attachment as well.

1) 1f S and S' have three vertices of attachment in

common they interlace by Definition 3.1.6.
2) 1f S and S' do not have three common vertices of
attachment there exists a vertex of attachment w

of S with w < s and w # w', Since w # w' either

the four vertices with cyclic order f, w', W, 5§
or the four vertices with cyclic order ', w,
w', s may be used depending on whether w > w' or
w < w' respectively, demonstrating that the
segments interlace.

Case 2. s' > s,(See Figure 13(c))

From the hypothesis and tﬁis condition it follows
that £ < w' < s < s' and therefore S and S§' interlace.
The proof that S and S' interlace only if w' exists and
f < w' is accomplished through the proof of the
contrapositive statement, that S and S' do not interlace
if w' does not exist or f 2z w'.

Case 1. If w' does not exist, then f' > s and the
vertices of attachment of S occur on the cy:lz-'
between the two consecutive vertices s' and f' of
S'. Thus S and §' do not interlace (see
Figure 13(d)).

Case 2. If f 2 w', let w" be a vertex of attachment of
S' such that w" > w' and there is no vertex of
attachment of S' between w' and w". By the

definition of w' it follows that w' < s < w" (see

Figure 13(e)). If £ 2 w', then w' < f < s < w",

48

fl

f

[
”

(@) £' z 8 (e) w' < f

Figure 13. S and S' interlace if and only if f < v’

Since all vertices of attachment of S are between f
and s it follows that S and §' do not interlace.
Thus, to determine if the segment S, for which the

first planarity test is being performed, interlaces with an
embedded segment S', only the start and finish vertices of
and the highest vertex of attachment w' of S§' for which w'
s is required. Therefore, only the leading path of § has to
be traversed before the first planarity test can be

performed on S.

S

=

49

The embedding procedure must perform two other
operations during the first planarity test in addition to
checking if S and any previously embedded segments
interlace:

(1) It must enéufe that S and all segments interlacing with
S do not overlap. This operation may require the
shifting of segments from one side of C to the other.

(2) It must determine all segments affected by a shift in
(1) and must ensure that they lie on the correct side of
C to maintain a planar embedding.

To perform these two operations efficiently, the embedding

procedure uses a data structure called a block.

Definition 3.1.6
Two segments of a cycle are said to interact if the

embedding of one determines the embedding of the other.

1f the segments S and S' interlace, then they interact by
the above definition. Also, if S interlaces with S', and §'
interlaces with §", then S and S" interact, even though S

does not interlace with S§".

Theorem 3.1.4 The relation interact is an eguivalence

relation over the set of embedded segments of a cycle C.

Definition 3.1.7
A block is an equivalence class of the felaticn'
interact over the set of embedded segments of a cycle. Each

element of a block is a segment. The segment is represented

50

by those vertices of attachment that are end vertices of
back edges (all vertices of attachment except the start

vertex) of the segment.

A block has two important properties.

1. Repositioning any segment represented in a block
.requires the repositioning of all segments represented
inAthat block but does not affect any segment not in
that block. -

2. After the planarity tests are performed on a segment,
and it is embedded, the segment becomes an element of a
unigue block.

3.1.3 The Formation and Use of Blocks

Blocks enable the embedding procedure to efficiently
perform both planarity tests on a segment S. Initially, the
leading path p: s -->s f of S is traversed and the first

planarity test is performed on S. If S interlaces with a

segment S' represented in a block, then S interacts with all

segments in that block, If S' must be shifted to embed §,
then all other segments represented in that block must also
be shifted. Most importantly though, shifting S' does not

affect the position of any segment represented in a

different block. Moreover, S fails the first planarity test

if and only if S interlaces with two segments in the same
block that interlace with each other. If S passes the first

planarity test, then p is embedded in the plane on the

51

inside of C and a new block is formed which represents the

union of the segment S and the blocks of segments that

interact with S,

I1f S is a nontrivial segment, then
test is performed. First, the planarity
The leading path p and the set of edges
with the edges of S U t - C-farming the

are embedded. A set of blocks is formed

the secéné planarity
of S Ut is checked.
t form a cycle C',

segments of C' which

during the embedding

of thege segments. The blocks in this set are the

equivalence classes of the relation interact for the

embedded segments of C'.

1f S Bt is planar, then the embedding procedure tests

whether (S U t) U (C - t) is planar. The procedure must

determine whether all the segments of C'

vertices of attachment on t, other than

in § U t with

s and f, can be

placed on the inside of C'. To accomplish this, each block

of C' is checked for two interlacing segments with vertices

of attachment v such that s > v > f. If

are found, then § U C is nonplanar.

two such segments

Let B represent the stack of blocks formed during the

L]

embedding process and let b = [bx, bz] represent a block on

B, where bx and bz are sets of vertices,

Eagh element of bx

is a vertex of attachment representing a segment embedded on

the inside of a cycle. Similarly, each element of bz is a

vertex of attachment representing a segment embedded on the

outside of the same cycle. '

L]

B - -

If a segment represented in bx is shifted to the
outside of the cycle, then all segments represented in bx
must be shifted to the outside and all segments represented
in bz must be shifted to the inside of the cycle, When a
recursive call is made to the embedding procedure to
complete the embedding of a segment S, an end!af—stack
marker is placed on top of the block stack to separate the
blocks created for the segments of C' from the blocks
created for the segments of C. The block just under the

end-of-stack .marker is the equivalence class for S on C.

Definition 3.1.8

Let p: s -->% f be a path and let p': s' -->% f' be the
first path (traversed during the embedding process) having s
as one of its vertices. The path p is called a normal path

if ¢ f: and p is called a special path if f* = £, If p is

¢ . , oL
a special path, then p is said to be attached to p .

Note that if p is a special path attached to p', then p
is a path in the segment S° with leading path p'. The path p
is traversed during the testing of the planarity of §' U t’
and f }s the finish vertex of some segment S” in §' U t'.
Normally f would be placed in the equivalence class for S",
however, since p is’a special path, f is not placed in that
block [Hop 74]. I ; |

It is important to note that once the second planarity

test is completed for a segment 5 all the vertices of

attachment of S except (1) its finish vertex if its leading

path is special, and (2) its start vertex are placed in the
equivalence class for S.

Algorithm 3.1.3 outlines the steps involved in the
first planarity test, The algorithm uses Theorem 3.1.3 to
determine if the segment S being tested interlaces with any
previously embedded segment. For the algorithm to use the
theorem, vertices are deleted from the blocks so that the
largest vertex w' in each block is less than the start
vertex s of S (blocks containing only vertices w' 2z s are
deleted from B). The deletions occur when the vertex s is
visited prior to the traversal of the leading path

p: s -->* f of S.

Algorithm 3.1.3 (The First Planarity Test)

f. Set b

[bx, bz) = [@®, O], INTERLACE = true, and let
p: s -->% f be the 1;ading path of S.
2. wWhile (the top block b' = [bx', bz'] on B is not an
end-of-stack marker) and INTERLACE do
2.1 Let x be the 1a£gest vertex in bx' and let z be the
largest vertex in bz'. Let S' be the segment
represented by x and let S" be the segment
represented by z, then §' and §" interlace.
Comment: Test whether S is embeddable with respect to
the segments in tpe block b'.
2.2 1f x > f and z > £, then return FAI'SE.
Comment: S' and S" interlace with S by Theorem

3.1.3 so S fails the first planarity test

and G is nonplanar.
2.3 Else, if x > f and z < f, then

Comment: S and S' interlace but S and S" do not.

' Since S is to be embedded on the inside of C
the segments represented in bx' are shifted
to the outside 'of C and the segments

* represented in bz' are shifted to the
inside.
2.3.1 bx = bz' U bx,
2.3.2 bz = bx' U bz,
: 2.3.3 delete b’ from B,
2.4 Else, if x’s f and z > f, then

Comment: S and S§' do not interlace but S and S§"
do. No shifting is required because with §
embedded on the inside of C, S and S§" will
lie on opposite sides of C.

2.4.1 bx = bx' U bx,

2.4.2 bz = bz' U bz,

2.4.3 delete b' from B.

2.5 Else, INTERLACE = false,

- Comment: x s f and z s f, 80 S does not interlace
with either §' or §". No shifting is
required and no more segments interlace with
S.

Comment: S can be embedded on the inside of C and the block

b contains all available vertices of attachment for all

segments interacting with S,

3. If p is a normal path (not special), then set

bx = bx U {f}. .
4. 1f S is a nontrivial segment, then

4.1 Place b on the block stack.

4.2 Place an end-of-stack marker on top of b on B.
5. Else, Comment: S is a trivial segment.

1f b » [0, O), then make b the top block on B.
6. Return TRUE. ’
1f § is a nontrivial segment, then, after Algorithm
3.1.3 is performed, the planarity of § U C must be verified.
First the planarity of S U t is checked, requiring a
recursive call to the embedding procedure. An end-of-stack
marker (step 4.2 of Algorithm 3.1.3) is already on the block
stack for the call.
Once the planarity of § U t is ascertained the

planarity of (S U t) U (C -t) =8UC is checked. If
($ Ut) U (C - t) is planar, then the topmost end-of-stack
marker is removedsfrom the block stack and all the vertices
of attachment of S are placed in the block b' just under the
marker (b' is the equivalence class for S). The verification
of the planarity of (S U t) U (C - t) and the collection of
the vertices of attachment of § into one block can be
accomplished simultaneously because only vertices of § on t
are required in both cases. Algorithm 3.1.4 performs the two.
operations. Before the algorithm is performed vertices v 2 s

are removed from the blocks above the topmost end-of-stack

56

marker. Blocks containing only vertices v 2 s are removed

from B. Thus the blocks remaining on B above the topmost

end-of‘stack marker contain only vertices v on t such that

s > v > §f.

Algorithm 3.1.4 (Part (b) of the Second Planarity Test)

1.

2.

Set b = [bx, bz] = [0, 0O].

Wwhile the top block b' = [bx', bz'] on B is not an

end-of-stack marker do

Let x' be the smallest vertexX of bx' and let z' be

the smallest vertex of bz'.

‘1f x' > f and z' > f, then return FALSE.

Comment: S U C is nonplanar. That is, theltwc
segments represented by x' and z' interlace
with C - t and with each other.

Else, if x' > f and z' s f, then

2.3.1 bx = bx' U bx (note that bz' = @ in this
case),

2.3.2 delete b' from B..

Else, if x' s f and z' > f, then

2.4.1 bx = bz' U bx (note that bx' = @ in this
case),

2.4.2 delete b' from B.

Comment: S U C is planar.

3.

Delete the end-of-stack marker from B.

Comment: Combine b with the top block b' of B (the block

formed when the leading path p of S vas embedéeé):

4. Set bx = bx' U bx.
5. Set bz = bz',
6. Delete b' from B.)
I1If b » {0, @), then make b the top block on B.

8. Return TRUE.

If the block formed by Algorithm 3.1.3 for S remains on
B, then Algorithm 3.1.4 will successfully funbza completion
provided S U C is planar.
3.1.4 A Correction to the Implementation of the Embedding
Procedure

In the PATHFINDER implementation of the embedding
procedure [Hop 74), each block b is an ordered pair (x, y),
where x and y are pointers to a vertex stack. The entries x
and y p@iﬁt to the smallest vertex of attachment of the
block fepfegentiﬁg a segment or segments embedded on the
iqgide and outside of a cycle respectively. A zero placed on
the vertex stack serves as the end-of-stack marker for the
block stack. If there are no edges in the block on the
inside (outside) of the cycle, then x (y) is assigned the
value 0. However, a block (0, 0) is created if a segment is
not constrained by any segments previously embedded and the
leading path of the segment is a special path. Thus, tmi
pair (0, 0) serves as the block for a segment. The erroneous

code in Hopcroft and Tarjan's algorithm is

While (x, y) on B has
((STACK(x) 2 v) or (x = 0)) and

((STACK(y) 2 v) or (y = 0))

do delete (x, y) from B;

This code allows the block (0, 0) for a segment S to be
deleted from the block sta:k.pficr to the end of the
recursive call made to embed S, thus steps 4, 5, and 6 of
Algorithm 3.1.4 will not execute correctly once S has been
embedded. Since (0, 0) should not be deleted before the end

of the recursive call correct code is:

While (x, y) on B has

(((STACK(x) =2 v) and

’ (STACK(y) 2 v)) or
((STACK(x) = v) and)
(y = 0)) or v -
((x = 0) and
(STACK(y) 2 v))

do delete (x, y) from B;

3.2 A pg-tree Planarity Algorithm
The pg-tree planarity algorithm from Booth and Lueker

[Boo 76) is an 0(n) versiom (in time and space, where
e < 3n-6) of a vertex embedding algorithm from Lempel, Even,
and Cederbaum [Lem 67]. It accepts as input a biconnected

graph G. First, the vertices of G are given a special

)

59

numbering, then -the numbered vertices are visited in

ascending order by an embedding procedure.

3.2.1 An §i-Nu-bering of G
The first step of the planarity algorithm renumbers the
vertices of the biconnected graph G using a special

numbering, called an st-numbering.

Definition 3.2.1
An st-numbering is an integer valued function f defined
on the vertices of G = (V, E), where |V| = n, as follows:
‘(1) Take any edge (s, t) in G and let
f(s) = 1, and
f(t) = n.
(2) For any vertex v in V, 1 = f(v) S n.
(3) For any vertices v and w in V, if v # w, then f(v) #
f(w).
(4) For any vertex v in Vv, if v # s or t, there exist
vertices u and w adjacent to v such téat

fF(u) < f(v) < E(w). -

Lempel, Even, and Cederbaum [Lem 67] prove that an
st-numbering can be obtained for any biconnected graph G.
Ev$n and Tarjan (Eve 76) developed a linear éime (0(e))
algorithm for computing an st-numbering using depth first
traversal. Given an edge (s,t) in G , a depth first spgﬁning

tree of G is found with (t,s) the first edge of the tree,

The vertices of G are numbered in preorder from 1 to n, with

t receiving the number 1 and s receiving the number 2. In
addition, for each vertex with preorder number v, the
smallest preorder numbered vertex, LOW(v), reachable from v,
is computed and all edges not 1in the depth first spanning
tree are labelled as back edges. In the remainder of this
section, the label v refers to the preorder number of a
vertex and f(v) refers to the st-number of that vertex.

A second depth first traversal of G is performed, to
assign each vertex an st-number. First the vertices 1 and 2
are marked "old"-and placed on a vertex stack with vertex 2
placed on top of vertex 1. Old vertices are vertices which
are or were at one time on the vertex stack. Vertices which

have never been on the stack are new" vertices. The vertex
stack, during the course of the st-numbering procedure,
contains vertices which have not been assigned st-numbers.
The vertex 2 is the first vertex to receive an st-number and
so receives the st-number.1. Every other vertex v of G is
assigned an st-number in the followinq way. When v reaches
the top of the vertex stack, it is removed from the stack,
and all unexplored paths from v to an 0ld vertex u are
traversed in an effort to obtain new vertices to add to the
stack. The paths traversed have the form p =
(v,wl,w2,...,wk,u), where k > 0, u is an old vertex, and w1,
w2, ..., wk are new vertices. First, paths p'=
(v,wl,w2,...,%wk,u) are explored where (v,w1) is a tree edge

and u = LOW(w1) = LOW(w2) = ... = LOW(wk). The new vertices

of p are marked old and added to the vertex stack in order

61

wk, wk-1, ..., wl. Next, paths p = (v,w1,v2,...,vk,u)_are
explored where (v,w1) is a back edge and the remaining edges
of p are tree edges on the tree path from v to wl, Again,
the new vertices of p are marked old and added to the vertex
stack 1n ordef wk, wk-1, ..., wi. After all paths from v are
explored, v is assigned the next consecutive st-number. The
process of path exploration 1s repeated for each top vertex
on the vertex stack until the stack 1s empty.

The paths explored by the st-numbering procedure have
certain properties that are essential to the correct
assignment of an st-numbering f. Let p = (v,wl,...,wk,u) be
any path explored by the st-numbering procedure, then
(1) p is a simple path, that is, v # U,

| Proof:

(i) 1f (v,wl) is a tree edge, then u = LOW(w1) and
u < v because G is biconnected and v is never
vertex 1. '

(ii) 1f (v,w1) is a back edge, then (wk,u) is a tree
edge and v # U because all tree edges from v are
explored before any back edges are.

(2) v and u of the path p are old vertices and all the other
vertices of p are new.

(3) The last vertex u of p has not been assigned an
st-number at the time p is explored.

Proof: Assume that the vertex u has already been

assigned an st-number f(u). Then, the edge (u,wk) would

already have been traversed and wk would not be a new

62

vertex, a contradiction.

st-numbering f to the vertices of G.
Proof:

1. All the vertices v of G receive an st-number f(v)

because G is cénnecteél
2. Each vertex is assigned a unique number because a vertex
is placed on the vertex stack only once (when its new),
3. f(2) = 1 because 2 is the first vertex to receive an
st-number. The preorder number of the vertex s is 2,
thus vertex s receives st-number 1.
4. f(1) =n
Proof: I1f f(1) < n, then some vertices of G have not
been on any paths explored before 1 reaches the top of
the vertex stack. But, that would mean that 1 is an
articulation point in G, a contradiction. The preorder
number of the vertex t is 1, thus vertex t receives
st-number n.
5. For any vertex v # 2 or 1, there exist vertices u and ;
éaéjacent to v such that f(u) < f(v) < f(w)i !
Proof: When v receives an st-number f(v), it is an old
vertex. The vertex v becomes old when a path p is .
explored with v as an interior vertex, Thus v haégﬁf;, ¢

. At oL T

vertices u and w on either side of it in the path Sééh:

-~

that w is placed on the vertex stack (or was on the

vertex stack) before v, and u is placed on the stack

63

after v, or u is the vertex being assigned an st-number
when p is explored. As a result, u is assigned an
st-number f(u) before v so f(u) < f(v), and w is

assigned an st-number f(w) after v so f(v) < f(w).

Once the vertices of G have been assigned st-numbers

(see Figqure 14), each vertex is relabelled using its

st-number, and each edge is directed frém its lower

st-numbered vertex to its higher st-numbered vertex. If G is
an st-numbered graph, let Vk be a subset of V with

Vk = {1, 2, ..., k} and Gk = (Vk, EK), where EK is the set

of all edges of G with both vertices in Vk [Eve 79]. If G is

planar, then so is Gk. Let "G be a planar embedding of G and
let "Gk be the induced planar embedding of Gk. The following
are tfue;

(1) The vertex with st-number 1! is the only source in the
graph, that is, it is the only vertex having no directed
edges entering it.

(2) The vertex with st-number n is the only sink in the
graph, that is, it is the only vertex having no directed’
edges leaving it.

(3) Gk is connected.

"
w
g}
m
O
el

(4) all the vertices and edges of G - Gk lie in one
“Gk.
Proof: All the vertices of G - Gk have st-numbers
greater than k and there is only one sink vertex n in

-G. Since G is connected and n is the only sink of G,

64

5% S
. G An st-Numbered version
of G
5\\~ Figure 14. An st-numbering of a Graph

there is a directed path between any vertex v in G - Gk
and the vertex n. If the vertices of G - Gk lay in two
or more faces of "Gk there would be at least one edge
crossing from one face of "Gk to another face
contradicting the fact that "G is a planar embedding of

G.

3.2.2 The pq-tree Embedding Procedure
Henceforth, assume that G is an st-numbered, directed

graph and that the vertices of G are labelled with their

planar embedding of G. First, vertex | is visited and all
its incident edges (edges of the form (1,3) w%th j > 1) are
placed in the plane. The ®dges, called virtual edges, are
directed downwards (éar expediency) from vertex 1. Vertex !

is a real vertex and all the vertices j > 1 in the plane are

virtual vertices [Eve 79].

Definition 3.2.2
A real vertex is a uniquely numbered vertex in the

plane which has been visited by the embedding procedure.

Definition 3.2.3
A virtual vertex is a vertex in the plane which has not
been visited by the embedding procedure. There may be many

virtual copies of the same vertex in the plane.

Definition 3.2.4

A virtual edge is an edge in the plane that has one
real vertex and one virtual vertex as endpdints. A virtual
edge becomes a real edge when the virtual vertex becomes

real.

After vertex 1 and all the edges emanating from it are
placed in the plane, the procedure attempts to merge all
virtual vertices numbered 2. The virtual copies of any
vertex can be merged if they are adjacent or can be made
adjacent on the periphery of the embedding. I1f the virtual
copies cannét be made adjacent, then G is nonplanar and the
procedure halts. If the virtual copies of vertex 2 are
merged, then a single vertex 2,is created and made real, the
edges of the form (j,2) with j < 2, become real edges, and
edges of the form (2,j) with j > 2, are added to the plane
as virtual edges and directed upwards from 2 to j. The
merging process is repeated for vertex numbers 3, 4, ...,

n-1 (see'Figure 15). If all the merging attempts are

66

{
(a) Vertices 1 and 2 (b) Vertex 3 is ?1!1teé
haVe been visited and made real

Figure 15. Real and Virtual Vertices

successful then G is planar.

Let WK be the set of all virtual vertices and let Fk be
the set of all virtual edges lying in the plane after the
creation of the real vertex numbered k, 1 s k < n-1. Vk and
Gk as defined before correspond to the real portions of the

embedding. Then

Wk = {j: j is a virtual vertex in the embedding,
j > k}, and
Fk = {(i,j): i s k (i is in Vky, and
j > k (j is in Hkﬁ)}.i : .

. o , .) .
Let "Bk be the embedding in the plane after the creation of

the real vertex numbered k. Then Bk = Gk U (Wk, Fk) and "Bk
is the planar embedding of Bk. If G is planar, then, by
property 4 of the st-numbering, all vertices and edges of

G - GK are located in one face of any planar embedding of
Gk. In particular, there is a planar embedding of Gk where
the vertices and edggs of G - Gk are in its outer face. If G

is nonplanar, then for some k this will not be true. Now,

-

67

-BK contains a planar embedding of Gk where all the vertices
and edges of G - Gk (represented by (Wk, Fk)) are in its
outer face. If the virtual copies of a vertex k could not be
made adjacent on the periphery of the embedding but were
merged nevertheless, then all the vertices and edges of

G - Gk would not lie in one face of the embedding df Gk -
implying that G is nonplanar.

The embedding procedure usesla pg-tree data structure,
developed by Booth [Boo 76], to achieve a linear run time
for the embedding procedure. A pq-tree is comprised 5% three
types of nodes: leaf-nodes, p-nodes, and g-nodes. The
rleafsnades represent the virtual edges and the p-nodes and
‘qfnedes represent the real sections of the embedding.
Definition 3.2.5
1. A leaf-node is a terminal node in the tree,

2. A p-node is an interior node that has at least two
Zhgldeﬂ-
3. A g-node is an interior node that has at least three

children. .

The p-nodes and g-nodes-are distinguished by ordering
restriction imposed on their children and by the
transformations allowed on their children. The children of a
p-node are not ordered and any permutation of the ¢hildren
i's permigsible. The children of a g-node have a strict
left-to-right order and only a reflection of that order is

allowed. The children of a g-node are chained in a sibling

o
[a]

chain because of their ordering. The two children at either

end of the chain are called endmost chi{?gen, while the

other children are referred to as interig; children.
The embedding "Bk is represented by a pg-tree Tk as
follows:

1. The leaf-nodes of Tk are in one-to-one correspondence
with the edges in FKk.

2. A p-node in TK represents either a real vertex in Gk or
a connected component of Gk which has virtual edges
emanating from at most two vertices. t

3. A g-node in Tk represents a connegted component of GK

which has virtual edges emanating from three or more

vertices.
.

In the figures depicting paq-trees, a circle represents a
p-node, a rectangle represents a g-node, a square represents
a 1eaf-nodé, and a triangle represents any type of node and
the subtree below that node. The relaffonship getweeg "Bk
and Tk is illustrated in Fiqure 16. Henceforth, the
embedding procedure is described in terms of the pg-trees
Tk. The correspond -G embeddings "Bk are only mEHEiaﬁed when
necessary. |
Let Sk+1 be the set of leaf-nodes in Tk ccr;espenéing‘

to the virtual edges in FKk with virtual vertex k+1.

\M\
sy

Figure 16.

69
r,
*) .
T1:
02 0.3 0.4 0.5 .
(a)
[1]
T3:
(2.3
] 0.4) (1,5)
(3]
(2.8) , .
(3,4) (3.6)
(b)
(1]
T4: (234] /
(2.6) (3.6)
(48) (4.8
(c)

Embeddings and the Corresponding pg-trees

70

Definition 3.2.6
An element of Sk+7 is called a pcrtincnttlojf-node of

Tk.

Definition 3.2.7
A pertinent node of Tk is a node which has at least one

pertinent leaf-node as a descendant.

.

For example, in Figure 16(b) S4 =*{(3,4), (1,4)]}, the
leaf-nodes (3,4), and (1,4) are pertinent leaf-nodes in T3,
and the nodes (3,4), (1,4), (3), [(2,3), and [1] are the
pertinent nodes of TJ3.

There is one mogification operation M(T,x) that is
performed on a node x and its children in the pq-tree T.
M(T,x) is performed in two parts.

(1) An attempt is made to match x and its children to a
template pattern.
(2) 1f a match is found, then x and its children are

modified using a corresponding template replacement.

The possible teﬁplate patterns and their corresponding
template replacements are described in Booth and Lﬁeker
[Boo 76].

1f G is planar, then for each iteration k+1 of the
embedding procedure, k = 1, 2, ..., n-2, (vertex k+1 of G is
visited) e?ther all the peftinent leaf-nodes of Tk are next
to each other on its periphery, or Tk can be transformed by

modification operations, so that all the pertinent v

+
leaf-nodes are adjacent (see Figure 17(a)). If G is

nonplanar, then during some iteration of the procedure there

.u
W
]
—

ways at least one nonpertinent leaf-node between two
pertinent leaf-nodes (see Figure 17(b)) regardless of the
transformations applied to Tk.

Thus merging virtual verEi:es numbered k+1 in Bk is
possible only if the nodes of Sk+! can be next to each other
on the periphery of Tk. Note that a nonpertinent leaf-node
lying between two pertinent leaf-nodes represents a posSsible
cross-over of edges in an embedding of G. }E the pg-tree can
be transicsmeé to eliminate these possible cross-overs and
no new cross-overs are formed, then G may be planar. If it
is not possible to eliminate all the cross-overs, then, by
property 4 of the st-numbering, a planar embedding of G

Note that if the vertices of G do not have an
st-numbering, then the inability to eliminate all possible
cross-overs would not necessarily mean that G is nonplanar
as will be shown in section 4.4.2. An st-numberiné of the
vertices of G also means that as each vertex k+1 iézvisited,
for consecutive values of k, Sk+] ¢ O; that is, there is at
least one virtual vertex numbered k+1 in BK and Bk+] is

connected. Therefore, for all k, 1 5 k 5 n-2, Tk+1 is a

single tree.

"
L2

72

:
[1] [1]
(2] —) ’ [2] -
(1,9 (1,39 ; (1,9 (1,3)
2,4 7(2)5) (2,9) (2,35 (2,9 (2,5)

By permuting the leaf-nodes of [2], the leaf-nodes (1,3)
and (2,3) can be made adjacent.

y (a) A Transformation of a pg-tree ,

(1]

e (. L

(2,8) (3,9 (4,9
No allowable transformations of the pq-iree will make
the leaf-node (1,7) adjacent to the leaf-node (3,7).

(b) G ig nonplanar

rigure 17. Leaf-nodes that can and cannot be made adjacent

—~

73

Definition 3.2.8

The minimal pertinent subtree, Pk, of the pg-tree TK is
the smallest subtree of Tk such that Pk is made up of only
pertinent nodes and all pertinent leaf-nodes of Tk are

leaf-nodes of Pk.

On the k+1'st .iteration of the embedding procedure the
attempt to make the nodes of Sk+! adjacent on the periphery
of Tk involves two passes through fki A first pass, a bubble
pass, is performed to identify the minimal subtree PK of Tk
and, during the second pass, a reduction pass, the nodes of
Pk are traversed and a modification operation is performed
on each traversed node in an attempt to ma¥ all the
pertinent leaf-nodes of Tk adjacent.

The bubble pass, for the k+1'st iteration, is performed
by traversing nodes of Tk from the pertinent leaf-nodes up.
Only nodes known to be in Pk are traversed during this pass.
The traversed nodes are classified into two types, blocked
nodes, and unblocked nodes. A node is classified as blocked
if it is an interior child of a g-node and both of its
adjacent siblings are blotked or have not been traversed. It
is classified as unblocked otherwise (if its parent is a
p-node, or it is an endmost child of a g-node, or it is an
interior child %E a g-node with an unblocked adjacent
sibling) (see Figure 18). A blocked node becomes unblocked

if one of its adjacent siblings becomes unblocked.

74

@% $§$
(a) Blocked Nodes (b) Unblocked Nodes

£

Figure 18. Blocked and Unblocked Nodes

Definition 3.2.9
A block of nodes is a maximum chain of adjacent blocked

siblings.

A node must be identified as part of Pk before it can
be traversed. All the pertinent leaf-nodes are part of Pk. A
p-node or a g-node is part of Pk if it is the parent of an
unblocked node. When the root of Pk is identified then the
bubble pass halts.

Following the bubble pass, the nodes of Tk can be

jrouped as illustrated in Figure 19. The node rt in

Q

Figure 19 is the root of Tk. b!, b2, ..., bh are blocks of
Tk, where h 2 0. Let Rbi be the set of pertinent leaf-nodes
whose ancestors are the blocked nodes in b/, 1 = 1, 2, ...,
h, and let Ru = Sk+1 - (Rb1 U ... U Rbh). RU is the set of
pertinent leaf-nodes whose ancestors are only unblocked
nodes. If |Ru| = 0 and h 2 2, or |Ru| > 0 and h 2 1, then G
is nonplanar and the embedding procedure halts. The presence

of a block bi, i > 0, indicates that there are pertinent

75

A=
gmm; Tk A

Figure 19. The Form of Tk after a bubble pass

leaf-nodes which are surrounded by nonpertinent leaf-nodes.
If there exist. pertinent leaf-nodes other than those in RDI/,
then all the pertinent leaf-nodes cannot be made adjacent,

! and |Ru| = 0, then the

so G is nonplanar. If h = 0, or h
reduction pass is performed.

The reduction pass is an attempt to reduce TK to a tree
in which all the pertinent leaf-nodes are adjacent. Let m be
the number of nodes in Pk. The reduction pass involves a
bottom up traversal of Pk. A node as traversed only if all
of its pertinent children have bgen traversed. The pertinent
leaf-nodes are traversed first. Let x/, 1s i s m, be the
i'th node traversed in Pk. The reduction of Tk is performed
by creating a succession of trees TK(O), Tk(1), Tk(2),
T™k(3), ..., Tkim), where Tk(QO) = Tk and each tree Tk(/) is
the tree formed by the modification operation M(Tk(i=1),x1)
performed vhen x/ is traversed, for 1 < i s m,

Let Rx/ be the set of pertinent leaf-nodes in the

subtree belovw x/. The operation M(Tk(f-1),xi), while

maintaining the ordering restrictions xj imposes on its
éhildren, permutes the leaf-nodes below xi in. an attempt to
make the leaf-nodes of Rxi adjacent. If no template pattern
is found which accomplishes this, then the graph G 1is
nonplanar. If all the nodes in Pk are visited and matched to
a template pattern, then all the pertinent leaf-nodes of Tk
are adjacent in Tk(m). Figure 20 illustrates the
transformations from T3 to T3(5) for the graph K(3,3). The

shaded square nodes in Figure 20 are pertinent leaf-nodes.

Definition 3.2.10
During the reduction pass, a node is labelled as full
if either
a. the node is a pertinent leaf-node, or

b. all of the children of the node are full nodes.

In Tkim) eqther all the bertinent leaf-nodes are descendants
of one full node, or ali the pertinent leaf-nodes are
descendants of adjacent full nodes having the same parent.
The full nodes of Tk(m) are replaced by a single p-node
representing the real pertex numbefe§ k+1, Then, leaf-nodes
representing edges directed from vertex k+1 to a higher
numbered vertex are made children of the new p-node. The
resulting tree is Tk+17. | | '

The complete embedding procedure is shown in’AlgeriEhh
3.2.1. The algorithm accepts as inpué a biconnected,

st-numbered graph G and returns the value TRUE if G is

planar, FALSE otherwise.

s (1] (1] (1]
2] [2] (2]
CKY) G4 O,& G4 G
3 (3] (3] (3]
€X)) 2,
: -
G,4) GO Ge (3,9 (3,0
(a) P3 (b) T3 = T3(0) (c) T3(1)
\ [1] [1]
(2) (2]
(1,9 0, G e
(3]) (3]
(2 - 2,9 7
G0 G0 GO G0
(d) 13(2) (e) T3(3)
B (1]
J(z,3) J12,3)
G449 0,0 0,0
N \ N
G Geo @9 GOGOLG
() T3(&) | (g) T3(5)
‘Leaf-nodes in S4 = {(3,4), (1,4)} must be made
adjacent.
Figure 20. Transforming Té
\
; ‘)

Algorithm 3.2.1 (The pg-tree Embedding Procedure)

1i

Form T1 by creating a p-node representing vertex 1 of

G.

For each edge emanating from vertex 1 create a leaf-node

to represent that edge and make the leaf-node a child of

the p-node.
2. For k=1, 2, ..., n-2 do

2.1 Set Sk+1 = {all leaf-nodes representing edges with
virtual vertex k+1}.

Comment: Merge all virtual vertices labelled k+1 by
making all pertinent leaf-nodes of Tk adjacent.

2.2 Perform a bubble pass on Tk. Let h be the number of
blocks in Tk, and let Ru be the set of pertinent
leaf-nodes whose ancestors are all unblocked nodes.

2.3 If (hﬁa 2) or ((h = 1) and (|Ru| > 0)), then return
FALSE.

Comment: The pertinent leaf-nodes of Tk cannot be
made adjacent hence G is nonplanar.

Comment: Othervise, perform a reduction pass on Tk

using PK. o

2.4 Let m be the number of nodes in Pk,

2.5 Set Tk(O) = Tk. ’

2.6 For i =1, 2, ..., mdo

' 2.6.1 let xigbe the i'th node of Pk traversed,

Comment: Perform M(Tk(/-1), xi).
2.6.2 compare each template pattern with x/ and
its children until a match is found or all

the patterns are exhausted,

79

2.6.3 if a match is found, then modify x/ and its
children using the corresponding template
replacement, creating Tk(i),

2.6.4 else, return FALSE.

2.7 Replace all full nodes in Tkim) with a p-node
representing the real vertex numbered k+1.

2.8 For each edge (k+1,j), where j > k+1, create a
leaf-node representing‘the edge and make the
leaf-node a child of the p-node created for the

real vertex numbered k+1. The tree Tk+1 is formed.

3, Return TRUE. Comment: G is planar.

Some minor bookkeeping operations have been omitted
from the procedure which are worthy of mention. In
particular, step 2.8 of Algorithm 3.2.1 includes a check
that Tk+1 is a proper pg-tree. A pg-tree is proper if the
p-nodes and g-nodes of the tree have the properties of
Definition 3.2.5. That is, any node that has only one child
is deleted from the tree and any g-node with only two
children is replaced by a p-node. These operations ensure
that the trees Tk, for 1 S k S n-1, are as compact as
possible and that the difference between p-nodes and g=ﬁaées

is maintained.

Chapter 4

Edge Partitioning Algorithms

Edge partitioning algorithms separate the set of edges
E of a graph G = (V, E) into k disjoint, nonempty subsets
E(Hi), ' s i S k. The algorithms stuéiéd in this chapter
produce a planar partition of G. Edge partitioning
algorithms are examined because of their potential use as
heuristic algorithms for determining a minimal planar
partition of a graph.

The three algorithms described in this chapter are new.
The algorithms are (1) a Spanning Tree Edge Partitioning
(STEP) algorithm, (2) a Path Findylg Edge Partitioning 3

(PFEP) aldorithm, and (3) a pg-t Edge Partitioning (PQEP)

algorithm. .

Previous work on edge partitioning algorithms includes
an algorithm from Fisher and Wing [Fis 66]. They present a
planarity algorithm and discuss its modification to form an
algorithm which identifies a planar subgraph of a graph. The
planarity algorithm uses the incidence matrix of a graph as
the main data structure. It operates on the same pringciple
as the path finding algorithm described in section 3.1; 1t
finds a cycle C in the graph G,ydecomposes G into C and the
segments induced by C, and then determines the planarity of
G by attempting to embed each segment in a plane.

The segment embedding proceeds as follows. First, the

segments are partitioned into sets. One arbitrary segment is

80

81

fﬂpced in the set BO while the other segments of C are

.placed in a Set R of segments remaining to be partitioned.

éor i 2 1, Bi is the set of all segments that interlace with

B/i-1 and B/ is formed as follows:

1. Bji is initialized to the empty set 0.

2. Rtemp is initializéd to O,'where Rtemp is the set Df\

segments that could not be placed in Bi. LY

3. For each segment S in R do

. 3.1 I1f S interlaces with at leaét one gegment in Bi-1
and é does not interlace with any segment already
wn Bji, then place S in Bi.

3.2 If S interlaces with a segment in‘BiET and S
interlaces with a segm;nt in,Bi,lthen the
‘partitioning procedure fails.”Deéiire G nonplanar
and halt. -
3.3 If S does not inte;lace with any segment in B/-7,
then place S in Rtemp. B Y
.4. 1f Bi = @ (no segment in R interlac®s with any segment
in B/-1), then.start a new series BO’, BI’, ... with an
arbitrary segment of R' = Rgemp placed in BO’.
5. If Rtemp = @, then the partitioning procedure has
succeeded in partitioning the segments of cC.

6. Else, R = Rtemp and repdat the process from step 1 for

i= 31+ 1.

. | wy

82
i

It is interesting to note that ch series
(BO, B!, ...), (BO’, B1’, ...), and so on, is equivalent to
a block in the*path finding algorithm. In the embedding of
G, the segment in BO is embedded on the inside of the cycle
C and the segments in B/, 1 2 1, are embedded on the
opposite side of C from the segments in Bi-T.

I1f the partitioning procedure succeeds, then, for each
segment S, the planarity of (S U C) is checked. If S
comprises (1) a single edge or (2) multiple edges going to a
single vertex not on C, then S U C is planar and the segment
does not have to be decomposed [Fis 66]. 1f, on the other
hand, S is made up of (3) a connected subgraph (more than
one vertex) plus the edges attached to C, then the plaparity
of S U C must be checked. This §s done by finding a cycle c'
in § UC (C' » C) and partitioning each of the segments in
S U C induced by C'. The decomposition process stops when
all the segmemts induced by a cycle are of type (1) or (2)
above.

The modified algorithm, to find a planar subgraph of a
nonplanar graph, proceeds as follows: If the partitioning
procedure fails when %ryihg,tc place a segment S into a set
Bi, then S has edges removed from it (edges incident with a
vertex of C) one at a time, until the remaining segment S§'

%

no longer interlaces with a segment in B/ and S' sti1ll

%

interlaces v:th a segment in Bj-7. Then S' 1is placed in BT/,

During the edge deletion process, 1f S' céasesthQnterlace

with any segment in B/-7, then the deletion process stops

and $' is placed in Rtemp. °

The test performed on the modified algorithm
[Fis 66) using the graph K9 does not indicate how
algorithm performs. The modified algorithm is not
be worth further attention because it operates on
principle as the path finding algorithm described

3.1 which is a more efficient algorithm.

4.1 The Spanning Tree Edge Partitioning Algorithm

83

in
well the
deemed to

the same

in section

The Spanning Tree Edge Partitioning (STEP) algorithm

produces a planar partition for a graph G = (V, E) as shown

in Algorithm 4.1.1.

Algorithm 4.1.1 (STEP)
1. Set j = 0, V(H) = Vv, and E(H) = E.
2. While H is “312}‘ﬁaf do
2.1 Set i =3 + 1, and Hj = (v, @),
2.2 Set D:; Q.
Eaﬁnanéz Construct a planar subgraph Hj of H.
2.7 For each connected component Cj of H,
i =1, 2, ..., r, do

anspanning tree of C/.

X
K
n
n

"
it
[]

LV
ko
"
["1\
"
e
w
N

= {(v,w): (v,w) is an edge of C/ - F}.

2 3.3 wWhile (S « @ and (|E(F)| < 3|V(CH)]| - 6) do

2.3.3.1 Set S = §.- {(v,w)} for some edge

L5y]

(v,w) in

2.3.3,2 Set E(F)

E(F) U {(v,w)}.

84

2.3.3.3 1f F is nonplanar, then E(F) = E(F)

{(v,w)} and D = D U {(v,w)]}.
2.3.4 1f S« @, then D =D US.
2.3.5 Set E(HJj) = E(Hj) U E(F)
2.4 Set E(H) = D.
3. Set j = 3 *.1, V(Hj) = v, and E(Hj) = E(H).

4. The set {H!, H2, ..., Hq} is a planar partition of G,

where g j.

The STEP algorithm creates a depth first spanning tree
and determines the planarity of a graph using the corrected
version of the path finding planarity algorithm from Chapter
3. |
§.1.1 The Correctness of Algorithm 4.1.1 (STEP)

Theorem 4.1.1 Each subgraph HJ in the partition
{H1, H2, ..., Hql constructed by Algorithm 4.1.1 (sTEP)
is planar. g)

Proof: For each subgraph F of a connected component °
Ci of H, an edge is.addeé to F only if the resqlting
subgraph is planar. Thus F is alway planar. Since each.
subgraph Hj is the union of the planar subgraphs F of
the connected components of H, each HJ is plénaf, for

jéé Q. Hg is obviously planar.

v]
(341

4.1.2 Analysis of Time Complexity
1f G is planar then the time complexity of the STEP
algorithm is equal to the time complexity of the algorithm

used to determine the planarity of G, which s 0(n).

‘ 1f G is nonplanar tgén the time complextiy of the STE%

algorithm is as follows: '

1. Constructing the first planar subgraph reqguires testing
at most e-n+1 edges in step 2.3. For each edge tested,
0(n) time is required to determine the planarity of F.
Thus the time complexity is at most O(ne) to construct
the first subgraph of G.

2. For each planar subgraph HJ constructed (except tﬁe last
when the graph is planar) the time complexity is
0O(njsej), where nj is the number of vertices and ej the
number of edges in Hj, and O(njsej) is O(ne) in the
worst case. '

3. Since there are g subgraphs in the part1t1cn apd q is
0(n), an upper bound on the time complexity is O(n'e)
(or 0(n*) for e of size 0(n?)).

4.1.3 The STEP Algorithm Summary

The Spanning Tree Edge Partitioning (SiFP) algorithm
separates the set of edges of a graph G into disjoint
subsets producing a planar partition of G. Ea:h subgraph in
the partition is formed by adding edges to an initial
sﬁanning tree (or spanning forest if the graph is not

connected). Each subgraph is planar by Theorem 4.1.1. In

86

addition: each subgraph Hj is maximally planar in the sense
that any edge of H - Hj added to Hj would result in a
nonplanar sSUbgraph. An(hpper bound on the time complextiy of
:the STEP algoiithm is O(n’e)i? »
g + %

4.2 The Path Finding Edge P;rtitioning Algorithm

The*Path Finding Edge Partitioning (PFEP) Algorithm,
4.2.1, produces a planar partition of a graph G = (V, E)
using a modified version of the path finding algorithm
described in section 3.1. The algorithm éroduces a plang:
subgraph of the set of edges remaining to be partiti@nedxéné
this is done repeatedly until all the edges of G are g

partitioned.

7

Alq;rithn 4.2.1 (PFEP)
1. Set j = 0, V(H) = V and E(H) = E.
2. Wbile E(H) = @ do
5.1 Set j = j + 1 and Hj = (v, Q).
°Co—ent: Construct a planar subgraph Hj of H.
2.2 For each biconnected component Bf of H,
i =1, 2, ..., r, do
2.2.1 1Input Bi to a planar graph constructor tﬁ;t
outputs a planar subgraph Bj’ of Bi (if B/
is planar then Bf’ = Bi) and a ser” of edges
Di = E(Bj) - E(Bi’).
2.2.2 E(HJj) = E(Hj) U E(Bi’).

2.3 Seé E(H) = DI UD2 U ... U Dr.

r 4 =
3. The set {Hf, H2, ..., Hg)} is a planar partition of G,
yhere g = 3. '

4.2.1 The, Planar Graph Constructor

The planar graph constructor in step 2.2.1 of Algafithﬁ
4.2.1 is a modified version of the path finding planarity
algorithm described in section 3.1. The modifications t¢ the
planarity algorithm cause edges éa be deleted from the input
graph whenever the gra§h is determined to be nonplanar.
' Let G be the graph input to the planar grapﬁ -
constructor and let C be the initial cycle of G traversed by
the maéified‘embedding procedure. The modified prgiedufe
maintains, for each vertex in a block, a list of all the

back edges represented by that vertex. A vertex X in a block

represents the back edge (v,x) of a path p in a segment and

Y

also reéiesents the back edges of all the special paths

attached \to p.

The modified procedure performs the first planarity
test on a segment S of C in two parts. First, vwithout
actually shifting any previously embedded segments, it
determines whether S is embeddable. Secondly, if S is
embeddable, then it shifts segments and forms the block b
for S. 1f S is not embeddable, then it deletes all the back
eéges from thewsegment so that the remaining edges of S can
be embedded. Note that the deletion of eégeé from S during

.

the planarity test of S U t is handled recursively and

separate processing is pot required.

]
E ""'
1£f SUC is deterflined to be nonplanar during part(b)

of the seézﬁé plamarity test, then back edges are again
del;ted from S. S U C is determined to be nonplanar whenever
a block b' = [bx', bz'] is found which contains iﬁtef%éiiﬁg
‘sggments with vertices of attachment on t (see Figure 21).
Thé back edges chosen for éeletlaﬁ Eram S are all those back
edges from either:

1. {(v,x): x is in bx' and x represents (v,x)}, or

2. {(v,z): z is in bz' and z represents (v,z)}.

The choice is made so that the fewest edges are deleted.
After the back edges have b#en deleted from S the procedure
continues w1th‘the planarity test of S U C.

The two algorithms of the modified embedding procedure

are given below.

Algorithm 4.2.2 (The First Planarity Test)
1. Set INTERLACE = true, EMBEDDABLE = true, and let
p: s -->% f be the leading path of S.
2. While (the top block b' = [bx', bz'} on B is not an
end-&f-stack marker) and EMBEDDABLE and INTERLACE do
2.1 Let x be the largest vertex in bx' and let z be the
largest vertex in bz’'.)
Comment: Test whetﬁer S is embeddable with respect to
the segments in the block b':
2.2 1f x > t and z > f, then EMBEDDABLE = false.
Comment: S' and S" interlace with S, and § is not

embeddable.

L

89

The back edge (v,w) will be deleted and §' shifted

" to the inside of C'.

Figure 21, Deleting a Back Edge

L]
M
L]
—
Q
La |

Else, if (x > f and z
(x s f and z > f), then

remove the top block from B and save it.

Comment: There may still be more constraints on S.

Else, INTERLACE = false.

Comment: x S f and z < f 'so § does not interlace

with either §' or S§° and S is embeddable.

Restore the blocks deleted from B during step 2.

1f (-EMBEDDABLE), then delete all the back edges from S

and embed all the treé edges of S.

Else, Comment: S is embeddable.

5.1
5.2

Set INTERLACE = true, and b = [bx, bz] = [0, Q]

While (the top block b' = [bx', bz') on B is not an
NI |

end-of-stack marker) and INTERLACE do

5.2.1 Let x be the largest vertex in bx' and let

be the largest vertex in bz'.
5.2.2 If x > f and z s f, then

5.2.2.7 bx = bz' U bx, N

535;2.3 delete the top block from B.
5.2.3 Else,-if x s f and z > £, then
5231 ibx’ = bx' U bx,
® 5;2;3.2: bz = bz’ ? bz,
5.2.3.3 delete the top block from B.
5.2.4 Else, INTERLACE = false.
Comment: x < f and z £ f and no more

segments interlace with S.

Comment: p is embedded on the inside of C and the block

b contains all vertices of attachment for all

segments S' interacting with S,

1f p is a normal path, then

5.3.1 bx = bx U {(f,p)]

5.3.2 BE(p) = {(v,f)}, where (v,f) is the back
edge of p and BE(p) is the list of back
edges represented by the vertex f.

Else, Comment: p is a special path.

5.4.1 let p' be the normal path to which p is

attached,

5.4.2 BE(p') = BE(p') U {(v,f)}, where (v,f) is

the back edge of p.

»

5.5‘ If S is a nontrivial segment, then
» 5.5.1 place b on the block stack,
5.5.2 place an end-of-stack marker on top of b on

e the stack. .)
5.6 élse, Comment: S is a trivial segment.’

if b » [0, @], then make b the fop block on B.

6. Return TRUE.

Algorithm 4.2.3 (Part (b) of the Second Planarity Test)
. Set b = [bx, bq] = [©, O], and 4 = O, where d wi}ll. be
the set of edges deleted from S.
2. While the top block b' = [bx', bz') on‘h is not an
end-of-stack marker do
2.1 Let x' be the smallest vertex of bx: and let z' be
the smallest vertex of bz'.
2.2 If x' > f and z' > f, then
Comment: S U C is nonplanar. L
2.2.1 Let dx' be the set of bac{~ggges represented
by the vet;ices in bx' and leg dz' be the
set of back ®dges represented by the
vertices in bz',
2.2.2 If |dx'] < |dz'|, then
2.2.2.17 bx' = @,
2.2.2.2 d=d U dx"'.
-~ 2.2.3 Else,
2,231 bz’ =@,
2.2.3.2 d = d U dz'.

oy

. "
2.3 E{se, if x' > f and z' s f, then
2.3.1 bx = bx' ‘U bx (note that bz' = @ in this
case), '!
2.3.2 delete b' from B;
2.4 Else, if x' < f and z' > f, then
2.4.1 bx = bz' U bx (note that bx' = @ in this

-ase),

™
n

2.4.2 delete b' from B.

3. Delete the end-of-stack marker from B.
Comment: Combine b with the top block b' of B (the block

formed when the leading path p of S was embedded).
-4. Set bx = bx' U bx. ol "
5. Set bz = bz'.
6. Delete b' from B.
7. I1f b » [0, 0] then make b the top block on B.

8. Return TRUE. ‘ §

4.2.2 The Correctness of Algorithm 4.2.1 (PFEP)

In the following discussion let G be the g:éﬁh input to
the planar graph constructor, let C be the initial cycle of
G traversed by the modified embedding ptocedure, and let C
have m segments S7, S2, ..., Sm, where Sk is the k'th
segment of C tested for embeddability. Let dk be the set of
~ eages deleted from Sk, let Sk’ be the portion of Sk
embedded, and let Gk be the portion of G embedded after éhe

S1°

first k segments of C are tested, that is, GO = C, GI

UC<GOUSI’, G2 =Gl US2’, ..., Gm = Gm-1 U Sm’. The

=3

subgraph Gm is the graph output by the planar graph
constructor in step 2.2.1 of PFEP.

*

Lemma 4.2.1 1f the segment Si; 151 5 m, iﬁterla:es with
a previously embedded segment Sj’, 'y < i, then Algorithm

v 4.2.2 will detect the interlace.

Proof: Let S/ be the segment vhich is to embedded and
let s/ be its start vertex. The blocks of B checked in
Algorithm 4.2.2 only contain ?értices of attachment w
representing back edges still in the graph such that w <
si; Therefore, Theorem 3.1.3 still applies to Sj so the
algorithm can correctly determine if Si interlaces with

any previously embedded segments.

Lemma 4.2.2 1f two segments S/’ and Sj’ of C interlace,

j < i, and Si’ is embedded on the inside of C, then
there is a block b = [bx, bz] on B that reéfesents the
interaction, and Sj’ is represented in bz.

proof: Since j < i, Sj’ is embedded first, and is
represented in some block b' on B. After th? leading
path p: s -->* f of S/ is generated Algorithm 4.2.2 is
performed. By Lemma 4.2.1 above, all segments Sj’ that
i;terlase with Si are determined. If Si’ and SJ’
interlace, then Sj’ U t is‘nct a tree, Therefcég. Si
must have passed the first planarity test with p
embedded on the inside of C and each segment Sj’
interlacing with Si embedded on the outside of C and

represented in a single block b. The segment Si’

94
resulting from the deletion of edges from S/ will not
interlace with any segment that did not interlace with
Si. Therefore, the block b (or some block containing b)
‘;EprSEﬁts the iﬁtefacticn between Si’ and the segments
with which it interlaces and if Si’ is embedded on the

. inside of C, then any interlacing segmeéts are embedded

on the outside of C.

Lemma 4.2.3 If a segment Sj, 1 S i S m, passes the first

planarity test, then S/ can be embedded so that it does
not overlap with any segment Sj’ of C, j < i, and so
that the segments Sj’ do not overlap. S

Proof: If any segment Sj inter .azes with two segments that
interlace with eagh other, then from Lemma 4.2.1 and
Lemma 4.2.2, it follows that the interaction will be
detected. Therefore, if S/ passes the first planarity
test, then S/ can be embedded with respect to the

segments previously embedded,

Lemma 4.2.4 Given a nontrivial segment S, assume that the
subgraph S° U t (S° a subgraph of S) returned from the
recursive call to the embedding procedure is planar. If
d is the set of 5ack edges deleted from S° in
Algorithm 4.2.3, then (S8° - d) U C is planar.

Proof: For each block g' = [bx', bz'] formed during the

recursive call to embed S°, either C - t can be embedded

with the segments represented in b' or C - t interlaces
eg

- with at least one ment S' represented in bx' and at

gs

least one segment S" represented in bz'. Removing all |
the back edges represented in bx' or bz' means that

C - t no longer iﬁzerlace§ with the affected segments
and that the segments remaining in b' that interlace
with C - ¢t éé not -interlace with éach other, Since
Algorithm 4.2.3 operates on all the blocks formed during
the recursive call, C - t can be embedded with respect
to all the segments in (§° - d) U t, which means that

(s° - d) U C is planar.

Theorem 4.2.5 For any graph G\énput to the planar graph

S

constructor, the subgraph Gm output by the constructor

is planar.

Proof: To show that Gm is planar it is shown that each
subgraph Gji, 0 s i s m, is planar.

I For i = 0, GO = C which is planar.

11 Assume that for all i < k, Gi is planar.

111 Consider GK. Gk-1 is planar by II. To show that Gk is
planar, we must show that the two planarity tests hold

for SK’. There are two cases to consider, either dk = O,

or dk = Q.

(1) 1f dk = O, then Sk passed both planarity tests so
it follows from Lemma 4.2.3 and Lemma 4.2.4 that GK
is planar.

(2) 1f dk = @, then there are a number of subcases to
consider:

(i) 1t edges are deleted from Sk during the

96

1

L]
"

st planarity test, then al}] the back
edges of Sk are deleted leaving a segment
Sk* which is composed of all the tree edges
of Sk. Since Sk’ U t is a Jt:fus’i Gk =

Gk-1 U Sk’ is planar. Since Sk’ goes not
segments and uill'nat interlace with any
segments yet to be embedded, the blcck§
currently on the block stack are correct and
no new block is required. .

(ii) Testing the planarity of Sk U t requires a

recursive call to the modified embedding
procedure with Sk U t as input. Assume for
the moment that the subgraph Sk° U t (the

subgraph returned from the recursive call)

\ is planar.
(iii) When the planarity of (Sk°® U t) U (C = t) is

tested, let d be the set of back edges
deleted from Sk°, then, by Lemma 4.2.4,

(Sk® - @ U C) is planar. Let Sk’ = Sk° - d.
Since Lemma 4.2.3 holds for Sk and Sk’, it ~
follows that Sk’ passes the two planarity

tests so Gk is planar.

. For part (ii), notice that at the lowest level of

trecursion, all the segments are trivial and only
(i) or (iii) occurs, hence the subgraph returned

from the lowest recursive call is planar and part

s

(ii) follows. Therefore, GK is planar.

From the preceding, it follows that G/ is planar,
*for 0 S i € m. Therefore, the subgreph Gm output from
the planar graph constructor in ste§ 2.2.1 of Algorithm

4.2.1 is plan

:ri

\m\

Theorem 4.2.6 Each subgraph Hj of the partition
{H1, H2, ..., Hq} constructed by Algorithm 4;2.1 (PFEP)
is planar.

Proof: Each subgraph Bj’ constructed in step 2.2.1

v of Algorithm 4.2.1 is planar by Theorem 4.2.5. Since any

subgraph HJ, of the partition, 1 3 j $ q, is the union
of those planar subgraphs Bi’ of the biconnected
components Bi of the graph H, 1 = i sr, it fellows that
Hj is planar. -

i .
Unfortunately, a segment S/ may be embeddable but be

daéiared unembeddable. If 5/ is declared unembeddable, then
it interlaces with two segments SJj’ and Sk’, j < k < i,
represented in the same block and embedded on opposite sides
of C. In the origtnal embedding procedure, this meant that
Sj’ and Sk’ interlaced. In the modified procedure, although
Sj’ interlaces with Sk, SJ{ and Sk’ may not interlace thus
S/ may in fact be embeddable. Fortunately, the*éréblém only
arises if (1) Sk has the same start and finish vertices as
sj and (2) Sk’ only has two vertices of-attachment, Since
Sj’ interlaces with Sk, they both must have three vertices

of attachment. Since Sk’ only has two vertices of

aktachment, Lemma 3.1.2 no longer applies and Sk’ does not
interlace with Sj’. However, the two segments are still
represented in a single bi@ck as if they interlaced (see
Figure 22).
»
This incorrect representation can only occur between
segments that have the same start and finish vertices

because of the following lemma.: ‘

Lemma 4.2.7 For any segment Sf, 1 S i < m, let f be its
finish vertex. Either Si’ has f as its finish vertex or
Sji’ has only one vertex of attachment (there are no ba§k°
edges in Si’).

Proof: Given any segment Sj with leading path p: s -~># E;

if Si passes the first planarity test, then a block b s

ormed representing the interactions between Si and

e]

segments Sj’, j < i, and p is embedded. When
Algcfithmié.zij is performed for Si, the back edge of p
is not involved in the testing as it is not part éé a
segment in Si U tj. Therefore, the back e&gE of p is not
deleted and f remains as a vertex of attachment of si’.
1f Si fails the first planarity test, then Sj’ has no
back edges and therefore, s is the only vertex of

ol

attachment of Si’.,

Note that the back edge of p may be deleted at a higher
level in the recursion. However, at that point, Si has

ceased to be a segment.

99
. I1f the back edge (v,w) is deleted, then S and S§' no

longer interlace.

Figqure 22. Loss of Interaction

“§:2.3 Analysis of Time Complexity

The modified embedding procedure examines each edge of
G once, and performs only a linear number of block stack
apé:atiengg Therefore, the modified procedure has a time
complexity of O(e). Since the numbgzhﬁtﬂsubgraphs in the
planar partition is 0(n), the time complexity of Algorithm
4.2.1 is 0(ne) (or 0(n’) for & of size 0(n?)).

]

4.2.4 The PFEP Algorithm Summary
The Path Finding Edge Partitioning (PFEP) algorithm
constructs a planar partition of a graph G. Each subgraph in

the partition is formed using a modified version of the path

100

finding planarity algorithm from section 3.1. The algorithm
accepts a.bi:@ﬁﬂecteé graph as input and deletes edges from
it until the remaining subgraph if planar. The only
modifications made to the alg@fitﬁﬁf as described in section
3.1, are modifications that cause the deletion of edges from
the region of the graph being embedded when the graph is
declared nonplanar. If the graph is declared nonplanar
‘during the embedding of some segment S/, then the only edges
;onsidered for deletion are edges from Si. No backtracking
(deletion of edges from segments already embeded) or
11109k8head (examining the ramifications of deleting a

particular edge) is employed in deciding which edges to
delete.

The modifications are de;igﬂed to minimize the extra

processing time required while deleting as few edges as

planar graph constructor may not be maximally planar for two
reasons. First, a graph could be declared ncnplanéf when it
is in fact planar, as explained in section 4.2.2. Second,
the deletion of edges in Algorithm 4,2.3 from a segment Si
may make unnecessary the deletions made during the planarity

test of Si U ti.

101

4.3 The péitrez Edge Partition Algorithm 4 _

The pqg-tree Edge Partitioning (PQEP) Algorithm, 4.3.1, v
produces a planar partition of a graph G = (V, E) using a
modified version of the pg-tree planarity algorithm. The
pg-tree algorithm determines whether or not a graph is

planar. Its modified version produces a planar subgraph of a

nonplanar graph.

Algorithm 4.3.1 (PQEP)
1. Set j = 0, V(H) = V, and E(H) = E.
2. While E(H) » O do
2.1 Set j = 3 +' 1 and Hj = (V, Q)
Comment: Construct a planar subgraph Hj of H.
2.2 For each biconnected component Bi of H,
i=1,2, ..., r, do .
2.2.1 1Input Bi to a élanér graph constructor that
outputs a planar subgraph Bj’ of Bj (if Bj

is planar then Bj’ = Bf) and a set of edges
Di = E(Bf) - E(Bi’).
2.2.2 E(HJj) = E(Hj) U E(Bi’).
2.3 Set E(H) = DI UD2U ... U Dr.

3. The set {H!, H2,> ..., Hg} is a planar partition of G,

wvhere g = j.

4.3.1 The Planar Graph Constructor

The planar graph constructor used to produce a subgraph
Bi’ of a biconnected component Bf of H, 1 S i s r in step
2.2.1 of Algorithm 4.3.1 is a modified veggion of the
pg-tree planarity algorithm from Booth and. Lueker [Boo 76]
described in section 3.2. The embedding procedure was
modified so that a planar subgrah is produced if the input
graph 1s nonplanar. The modifications cause the deletion of
edges from the input graph whenever the graph 1is ﬁanplanéfi

Let G be the graph input to the planar graph
constructor, let n be the number of vertices of G, and let
Gn be the subgraph of G output by the constructor. If G is
declared nonplanar during the k+1'st iteration of the
embedding procedure, then the edges chosen for deletion are
chosen from the edges represented in Sk+] (edges withiaﬂe
endpoint numbered k+1) such that the remaining edges
represented in Sk+] can be merged and the virtual edges in
the resulting planar embgdding lie in the same (outer) face.
The deletion pf edges can occur in the modified procedure
following the bubble pass and/or during the reduction pass.
A nonplanar declaration following the bubble pass of the
k+1'st iteration, means that thiPCigie two or more sets of
pertinent nodes separated by nonpertinent nodes in the
pq-tree Tk. For the embedding process to continue only one
group can be allowed to remain. Let the sets of pertinént
nodes be u, bl, b2, ..., bh, where u is the set of nodes

that have no blocked nodes as ancestors and bi, 1 £ i s h,

e T —— — — ——

103

is a block (see Figure 23). The group of pertinent nodes
chosen to remain is the one with the largest number of
descendant pertinent leaf-nodes. Let Ru be the set of
pertinent leaf-nodes which are descendants of the nodes in
u, and let Rbj be the similar set for bi, 1 s i < h. The set
of pertinent nodes chosen to remain in Tk is the set x such
that

|Rx| = max{|Ru|, |RDT|, ..., |Rbh|}.

All the pertinent leaf-nodes not in Rx are deleted from TK
and the resulting tree is made proper (to maintain the
differences between p-nodes and g-nodes) forming a new tree
Tk. In addition, the elements in Sk+?! are replaced by the
elements in Rx. Then a bubble pass is performed on the new
Tk obtaining the mininal pertinent subtree PK.

A nonplanar declaration during the reduction pass of
the k+1'st iteration means that a node and its children
cannot be matched to any femplate pattern. In this éase. the
modified embedding procedure deletes pertinent leaf-nodes
from the pg-tree until a template pattern matches the node
and and its modified children. The minimum number of
pertinent leaf-nodes are deleted from the tree. Let PK have
m nodes and let xi (the i'th node traversed during the pass)
be the node for which M(Tk(i-1), xi) fails. The nodes xJ] of
Pk are labelled during the second step of M(Tk(Jj-T1), xJ),

1 £ j S m. They are labelled as full, singly partial, or
doubly partial depending on the arrangement and labels of

their children.

104

€4 51552

Definition 4.3.1
A node is labelled as partial if it is a g-node having

full and empty children.

Definition 4.3.2
A singly, partial node is a partial node whose full
#

(as in Figure 24(a)).

Definition 4.3.3

A doubly, partial node is a part/ial node vhose full
children are adjacent and surrounded by empty children (as
in Figure 24(b)). For a node to be labelled doubly partial

it must be the root of the pertinent subtree.

Note that if a g-node has a partial child, then that child
is merged with the g-node during the template replacement

process before the node is labelled (as shown in

i

105

(a) A Singly Partial (b) A Doubly Parti
g-node) g-node

al

TeF5 5L LALLKS

tggl
(c) Merging a Partial Child

Figure 24. The Form of g-nodes in a pg-tree

Figure 24(c)).

The node x/ for which M(Tki{ =1}, xi) fails is e

p-node or a g-node since a leaf-node is always match
template pattern.

(1) 1f x/ is a p-node, then Tk(i-7) has the form sho

Figqure 25, where xm is the root of Pk and Rt is

of pertinent leaf-nodes that are not descendants
Rt is empty if i = m and nonempty otherwise. The
px1, px2, ..., pxh, vhere h 2 2, are the partial
children of x/i. Let Rpx7, Rpx2, ..., Rpxh be the
pertinent leaf-nodes that are descendants of the

respective partial nodes.

ither a

ed to a

wn in

the set

sets of

106

Figure 25. The Form of an Unmatched p-node

Pertinent leaf-nodes are deleted from Tk(j-1)

forming the tree TK(/-7)’, such that M(Tk(f-1)", xI) is

successful. The deletion of pertinent leaf-nodes

modifies the children of x/ and/or makes x/ the root of

PKk. The steps involved are shown in Algorithm 4.3.2,

vhere rk+1 is the set of pertinent leaf-nodes deleted

during the k+1'st reduction pass.

Algorithm 4.3.2

1.

Determine the partial children p! and p2 of x| such
that Rp! is the largest and Rp2 is the second |
largest of RpxT7, Rpx2, ..., Rpxh.

Set 1d = {pertinent leaf-nodes that are descendants
of all the partial children of x/ except p! and p2}.

Delete all the elements of 14 from Tk(/-1).

Set Sk+1 Sk+1 - 1d.

Set rk+l rk+1 U 14.

1t (|Rt] < |Rp7|) and (|Rt} < |Rp2]), then

(2)

9.

107

‘6.1 Delete the elements of Rt from Tk(/-1) forming

Tk(j-1)’, and make xi the root of Pk.

6.2 Sk+1 = Sk+1 - Rt.

. 6.3 rk+! = rk+1 U Rt.

Else, if |Rp?| s |Rp2{, then

‘7.1 Delete the elements of RpJ from Tk(i-1) forming

Tk(i-1)".
7.2 Sk+1 = Sk+1 - Rpl.

7.3 rk+1 = rk+! U Rpl.

Else,

\
8.1 Delete Rp2 from Tk(i-1) forming\¥W1i~1D’.-

8.2 Sk+1 = Sk+1 - Rp2.
8.3 rk+! = rk+1 U Rp2.
Perform M(Tk(i-1)’, xi) forming Tk(i). .\\

If xi is a g-node, then the arrangement of the children

of xi is similar to that shown in Fiqure 26, where xm is

the root of Pk and Rt is the set of pertinent leaf-nodes

that are not descendants of xi. Rt is empty if i = m and

nonempty otherwvise. >

Definition 4.3.4

A g-group is a maximal group of adjacent children

of a g-node such that all the nodes in the group are

©

pertinent.

’

The node xi has cettain characteristics. First, x |

has at least one empty child or one partial child,~

-

T . . - W ——_— e e

N

108

xml\
e YOY=mpyN==

A Possible Configuration for an Unmatched g-

Figure 26. node

)
[l

\o

i\ o

- a
ACS A A S A

(a) i # m (b)

xi ’ B

Arss A AC]

(c) (d)
x| .
Ll L s
(e) Two g-groups
Figure 27. Possible Configurations of the Children of x/
N\
'\
Hﬁ

. 109

second at most one end child is empty, and third xi has
at most two g-groups. The first*chéracteriszic of x/ is
a result of the failure of M(Tk(i-1), xi4 and the second
and third characteristics are a direct result of the
bubble pass. Figure 27 shows some examples of the

arrangement of the children of xi.

Definition 4.3.5

A gsp-group is a maximal group of adjacent,
peftineﬁt children of a g-node such that if it were the
only gfoup of pertinent children, then the node would be
matched and labelled singly;paftiali A gsp-group of a
node x consists of the pertinent children of x starting
£rcm.éne endmost full or partial child up to the first
partial child or first empty child and including that

T
child if it/is pactial (see Figure 28(a)).

pefinition 4.3.6

A qdp-group is a maximal group of adjacent,
pertinent children of a g-node such that if it were the
_cnly group of pertinent children, then the‘ﬁade would be
matched and labelled doubly partial. A gdp-group of %
node x Ecnsisﬁs of the pertinent children of x starting
from the first full child after an empty child or from a
partial child up to the next partial child or or empty
child and including that child if it is partial (see

Figure 28(b)). S ‘\\‘

e Geema em v e veam - -

110

Ast— A A

(a) A qsp-g%iup of a g-node x

Il

(b) A qdp-group of a g-node x

Figure 28. Matchable Pertinent Groups of a g-node

The steps involved in modifying the children of x/
to form a proper tree Tk(/-1)’ such that M(Tk(i-1)’, xI)
succeeds and in ﬁhe process deleting the minimum number
of pertinent beaf-nodes are shown in Algorithm 4.3.3,
Let rk+! be the set of pertinent leaf-nodes deleted

during the k+1'st reduction pass.

Algorithm 4.3.3

1. Find the gdp-group of x/ with the largest number of
pertinent leaf-nodes as descendants. Let RJp be the
set of pertinent leaf-nodes of this group.

2. Find the gsp-group of x/ with the largest number of

pertinent leaf-nodes as descendants. Let RSp be the

set of pertinent leaf-nodes of this group.

3. 1t |Rt| + |Rsp| < |Rdp|, then
3.1 Delete all the pertinent leaf-nodes not in Rdp
from Tk(j-1) forming Tk(i-1)’, and make xi the
root of Pk. _ ' =

3.2 rk+l rk+1 U (Sk+1 - Rdp).

3.3 Sk+1 = Rdp.
4. Edee, ’
4.1 7Delete all the pertinent leaf-nodes not in (Rsp
U Rt) from Tk(i-1) forming Tk(i-1)".
4.2 rk+! = rk+1 U (Sk+1 - (Rsp U Rt)).
4.3 Sk+1 = Rsp U Rt.

5. Perform M(Tk(i-1)’, xi) forming Tk(i).

Note that the deletion of pertinent leaf-nodes during
the k+1'st reduction pass does not require changing the
minimal pertinent subtree Pk. Pk is used only to determine
which nodes are traversed and their traversal order. Either
xi becomes the root of Pk and no more nodes are traversed or
the only nodes that would be deleted from Pk are children of
xi and they have already been traversed. Thus the nodes
rémaining to be traversed and their traversal order is not
changed by any deletions made during the reduction pass.

The deletion of pertinent leaf-nodes from Tk(/-7),

1 £1i € m-1, does not require restarting the reduction pass.
The pass can be allowed to run to completion and any ensuing
deletion of pertinent leaf-nodes is valid, that is, the

o+

deletiénsﬂwculd have occurred even if the pass were
restafted after each set of deletions. If M(Tk(i-1), xi)
fails, and i = m, or x/ is made the root of Pk, then the
reduction pass is finished after M(Tk(i-1)’, xi) is
performed so there are no further deletions and the
reduction pass is finished. Otherwise, all the pertinent
leaf-nodes deleted from Tk(ji-1) are descendants of xj. If
pertinent leaf-nodes are deleted from a child y of xi, then
all pertinent leaf-nodes are deleted from y making y -an
empty node. When xj is matched¥o a template pattern, it is
labelled as partial or is replaced by a node which is
labelled as partial. The template matching of the parent of
xi (if any) depends only on the label of x/ and itsfpcsitian
relative to its siblings. The deletion of descendant nodes
éfgxiidaes ﬁ@t‘affgct its position relative to its siblings.
I1f the reduction pass were restarted, then x/ (or the node
,replacing it after the modification operation) would still
be labelled as partial because the pertinent children of x?
would have the .same labels and relative positions in the
pg-tree as they have in Tk(i-71)’., Since the deletion of
descenéaﬁtfﬁaées of xi does not affect the matching of xi's
parent, future matchings and deletions, performed during the
reduction pass, are valid.

Unfortunately, the deletion of pertinent leaf-nodes
affects template cperétiéns that occurred previously in the
reduction pass and hence affects the form of Tk+7] (see

Figure 29). If pertinent leaf-nodes are deleted from the

113

x5

£ x3 - x4

xi

(a) Tk(i) before x4 is visited

= U 7 ;774 N 77” E§§§§ '7. 7i]
= , . x4

(b) After the reduction of x4: x5 is visited requiring
the deletion pf x1

- — L
— AN [B |x2
—— _ - -

(¢) After the deletion of x! and the reduction of x5

Figure 29. TK before and after deletion of leaf-nodes
during the Reduction Pass

114

(d) Tk’ after x1 is deleted from Tk

xZ

&

x2

(£) After the reduction of x5

Figure 29. Tk before and after deletion of leaf-nodes
during the Reduction Pass

¥

115

subtree rooted at a node y, then template operations that
had been performed on that subtree are no longer necessary
and any modifications made to that subtree which resulted in
a change in the order of the remaining leaf-nodes or a
change'jn the transformations allowed on those nbdes should
be undone. Since we really want the pg-tree for the
remaining set of pertinent leaf-nodes, the reduction pass
must be performed again. Let Tk’ be the tree resulting from
deleting the nodes of rk+! from Tk such that Tk’ is a proper
pg-tree and let Pk’ be the minimal pertinent subtree with m'
nodes that results from the deletion from Pk of all nodes
that are no longer pertinent. Then the second reduction pa§§§5
of the k+1'st iteration is performed on Tk’ using Pk’.
Algorithm 4.3.4 outlines the steps performed in the
modified embedding procedure to obtain a planar subgraph Gn
of the st-numbered, biconnected input graph G with n
vertices. The set dk+! is the set of pertinent leaf-nodes
deleted during the k+1'st iteration and rk+1 ig the set of

pertinent leaf-nodes deleted during the first reduction pass

of the k+1'st iteration.

Algorithm 4.3.4
1. Form T1 by creating a p-node representing the vertex of
G with st-number 1. For each edge emanating from vertex
1 create a leaf-node to represent that edge and make the
leaf-node a child of the p-node.

2. For k=1, 2, ..., n-2 do

A Ty S~ - v

116

2.1 Set Sk+! = {all leaf-nodes representing edges with
virtual vertex k+1}.

Comment: Merge all virtual vertices labelled k+1 by

making all pertinent leaf-nodes of Tk adjacent.

2.2 Perform a bubble pass on Tk. Let h be the numbe; of
blocks in Tk and let Ru be the set of pertinent
leaf-nodes whose ancestors are all unblocked nodes.

2.3 1f (h 2 2) or ((h = 1) and |Ru| > 0), then
Comment: The pertinent leaf-nodes of Tk cannot be

made adjacent.

2.3.1 find the set Rx for which |Rx| = max(|Ru|,
|IRDT|, ..., |[RDAhI|),

2.3.2 delete all pertinent leaf-nodes from Sk+f
and Tk not in Rx (delete the corresponding
edges from G) forming a new tree Tk,

2.3.3 set dk+1 = Sk+1 - Rx,

2.3.4 set Sk+1 = Rx,

2.3.5 perform a bubble pass on Tk.

2.4 Form a temporary copy Ck of the portion of Tk
required during the reduction pass.

5 5 perform a reduction pass on Ck using Pk and obtain
rk+1. .

2.6 Remove the leaf-ﬁodes in rk+1 from Tk forming TK’
and a modified minimal pertinent subtree PK’ with
m' nodes.

2.7 Set Ak+1 = dk+1 U rk+1.

2.8 Perform a reduction pass on Tk’ using Pk’ and

2‘9

Comment :

return TK'(m’).

Replace all full nodes in:Tk’(mf) with a p-node
representing the real vertex numbered k+1.

For each edge (k+1,j), where j > k+1, create a
leaf-node representing the edge and make the
leaf-node a child of the p-node created in step
2.9. The tree Tk+! is formed (the corresponding
subgraph Gk+1, with the edges of Gk and the edges
corresponding to the leaf-nodes of Sk+1 - rk+1, is
embedded in the plane and has all the edges of Fk+]
i@ its outer face),

The subgraph Gn-1 corresponding to Tn-1 is embedded

in the plane and all the edges of Fn have higher

endpoint n and are in the outer face of the embedding.

("]

éx"z) = i 3 .
Merge the virtual vertices numbered n in the embedding,

creating the real vertex n. Gn is the resulting graph.

4., Set D

[

= {edges represented by 471 U d2 U ... U dn-1}.

.3.2 The Correctness of Algorithm 4.3.1 (PQEP)

In the following discussion let G be the graph input to

the planar graph constructor of Algorithm 4.3.1, let 4% be

the set of leaf-nodes deleted from Tk-71 during the k'th

iteration of step 2 of Algorithm 4.3.4 and let ek be the set

of edges

cqrresponding to the leaf-nodes of dk. Also, let Gk

be the portion of G that has been embedded.after the k'th

iteration of step 2 is complete; that is, Gk = (Vk, EK’),

where EK’

= Ek - el - e2 - ... - ek,

118

4

Theorem 4.3.1 For any biconnected graph G with n vertices

input to the planar graph constructor, the subgraph Gn

output by the constructor is planar.

Proof: The proof that Gn is planar is performed by showing

that each of the subgraphs Gk, 1 < k < n, formed by

Algorithm 4.3.4 is planar.

(1)

(2)

5

(3)

For k = 1, the subgraph G/ is made up of the real
vertex 1 which i1s planar. In addition, all the
edges of F2 are in the outer face of the embedding
of G7.

For k

(3

j, assume that the subgraph Gk 1s planar
and that all the edges of Fk lie in the outer face

of the embedding of Gk.

Fér k = j+1, since Gj is planar, all the edges of
Fj lie in the outer face of the embedding of GJj and
Tj is the pg-tree representation of Bj = Gj U

(Wj, Fj). AMfter step 2 of Algorithm 4.3.3 is
performed for k = j+1, the leaf-nodes in

Sj+1 - dj+1 are adjacent in the résulting pg-tree
Tj’(m’). Therefore, Gj+1 is planar and the edges of
Fj+1 lie in the outer face of the embedding of

Gj+1.

-By (1), (2), and (B)Qab@ve, and the principle of

induction, if follows that the subgraph Gk is planar for

1 £ k S n. Thus Gn is planar.

Theorem 4.3.2 Each subgraph HJj of the partition
{H1, H2, ..., Hg} constructed by Algorithm 4.3.] (PQEP)
1s planar.

Proof: Each subgraph Bj’ constructed in step 2.2.1 of
Algorithm 4.3.1 is planar by Theorem 4;3.;2%Since any
subgraph Hj of the partition, 1 S j € q, is the union of
the planar subgraphs B/’ of the biconnected components

Bi of H, 1 s i € r, it follows that HJ is planar.

Unfertunagely, there is no gquarantee that, during step
2 of Algorithm 4.3.3, the subgraph Gk-71 of G = (v, E) and

hence the graph with edge set E - el - ... - ek still
possesses an st-numbering of its vertices V, For this
reason, after the first deletion of edges from G, it is
possible that the remaining graph is planar when the
modified embedding procedure declares it ncnélanar, That is,
the modified embedding procedure may only be detecting a
possible erassﬁéver rather than any unavoidable cross-over
pecause of the lack of an st-numbering (see Figure 30). Thus

the procedure may be deleting more edges from G than it 'is

really necessary to delete.

4.3.3 Analysis of Time Complexity

The planar graph constructor examines each edge of the
input graph Bi once and performs a constant number of
operations for each edge. Thus, to obtain a planar subgraph

Hj of H, requires 0(E(H)) operations or approximately Of(e)

-~

Figure 30.

[1]

2}
(1,5) | (3]

(2,5@,0260Q Dy
(3.4X3.5)(3,6) ‘4 5

(b) T3
. [1] \
(1,5) — =2 Lo

2,902,027 S (2]

. (24)(3,4)

(3,5)(3,8
(d) T3(4)
Embedding a Graph whose Vertices are not
" st-Numbered

120

121

[1]
.]
Q1.5) (3,4
(2,9)Q,6X2,7) (4] (3]
@,s) (4,7 3,50 (5,8
(e) T4
[1]
2)
0,82 DIERA
b) - ~ 4

2,5)02,6)@,7) N\

™= >
3.5 (,6) @5) @471
(g) T4(6)

(h) The node [3,4]) is visited next and cannot be
matched to a template implying that G is nonplanar.

Figure 30. Embedding a Graph vhose Vertices are not
st-Numbered

]

operations, where e is the number of edges in the graph G.
Since the order of the constructed planar partition is 0(n),
the time complexity of the algorithm is 0(ne) (or at most

0(n®) since e < n').

4.3.4 The PQEP Algorithm Summary

The pg-tree Edge Partitioning (PQEP) algorithm

ng a planar

partitions the set of edges of a graph G produc

=T

partition of G. Each subgraph in the pattitiandis the union '
of the planar subgraphs Bi’ of the ﬂgcahﬂected ccmpcﬂgﬁts Bj

of H, i = 1, 2, ..., r. Bi’ is pf@éuced by a planar graph
colstructor which is a modified version cfxgﬁe pg-tree
planarity algorithm from section 3.2. The constructor

produces a planar graph by deleting edges from the input

graph whenever the graph is declared nonplanar. Edges chosen
for deletion are taken from the portion of the graph being
embedded when nonplanarity is declared. If the graph is
declared nonplanar when merging the virtual vertices k+1,

then the edges chosen for deletion come from the set of

o]

edges with virtual vertex k+1. Edges to real vertices and
edges to virtual vertices not yet visited are not considered
for deletion.

An attempt was made to have the c@nstchtcf delete the
fewest number of edges required for the embedding process to
continue. The combination of minimum edge delg;ian and local

edge deletion was employed in an attempt to efficiently

produce planar subgraphs of as large a size as possible,

123

Although the subgraphs constructed by the PQEP
algorithm are planar, they are not alvays maximally. planar
for two reasons., First, as mentioned at the end of
section 4.3.2, once édges are deleted from a biconnected
graph, the graph may no longer be stﬁnumDEEed; Therefore, it
may be declared nonplanar wvhen it ie iﬁ fact planar.

Secondly, it may not be possible to make the pertinent

¥
leaf-nodes of the retained group adjacent thus requiring
~

more edge deletions. This may result in a greater number of
total edge deletions than if a smaller group had been

retained initially.

Chapter 5

Experimental Analysis of the STEP, PFEP, and PQEP Algorithms

The Spanning Tree Edge Partitioning (STEP) algorithm,
path Finding Edge Partitioning (PPEP) algorithm, and pq-tree
Edge Partitioning (PQEP) algorithm are described in Chapter
4. Each one partitions the edges of a graph to produce a
planar partition. This chapter compares these algorithms as

heuristics for the minimal planar partition problem. Three

comparisons are made. The first is based on the guality of

the solution obtained as measured by how close the order of
the constructed partition approximates the thickness of the
graph. The second comparison 1is based on the resource
requirements (execution time) of each. Finally, the
characteristics of the constructed partitions are examined
and compared to obtain some idea of each algorithm's

usefulness as an aid in the design of circuit layouts.

5.1 The Experiments

The three algorithms were programmed in ALGOLW [sit 72)
and run on an AMDANHL V8 uﬁée; the MTS Operating System.

Execution times ~ere meésured using CPU time. CPU time
is measured in units of 1/60 seconds and is the time since
the program started exection. The difference in CPU time
before the construction of a partition a%é CPU time after
the partition's formation is taken as the execution time.

-_—

The graphs used in the experiments are shown in Table
1. A graph labelled G(n,p!,p2,...,pj) has n vertices and 1is.
the union of the j planar subgraphs HpT, Hp2, ..., HpJ of '
the minimal planar partition for Kn described in section
2.2.1. For example, the graph G(30,2,4) has 30 vertices and
is the union of tge subgraphs H2 and H4 of the minimal
planar partition for K30.

The graphs listed in Table I were chosen because the

thickness, t(G), of each one is known. The complete graphs

Kn, complete bipartite graphs K(m,p), and m-cubes Qm provide

data on the behavior of the algorithms on regular graphs
including reqular dense graphs (a large number of edges per
vertex} and regular sparse graphs. The graphs of thevfarm
G(n,p',...,pP3) proéide data on the a{?arithms' behavior on
irreqular degree graphs? both sparse irregular (for smaller

values of j) and dense irregular.

5.2 Performance Measure -
The performance measure used to assess how well the
STEP algorithm, the PFEP algorithm, and the PQEP algorithm
perform as heuristic algorithms for the minimal planar
problem is:
(1) For a graph G, with thickness t(G), let q be the number
of subgraphs in the planar partition constructed by one
of the algorithms. Then PM = g - t(G) is a measure of

the performance of the algorithm.

126
Table I Test Graphs

Regular Irregular
K9 G(30,1,5)
K11 . G(30,2,4) \
K16 "~ G(30,1,3,5)
K17 : G(30,2,3,4)
K30 G(30,1,2,4,5)
K40 G(30,1,2,3,4,5)
K60 .

G(42,3,6)
K(11,11) G(42,2,3,5,7)
K(14,14) G(42,1,2,3,4,5,6,7)
K(16,16)
K(20,20) G(300,1,9) .
K(27,27) G(300,10,31)
K(30,20)

G(600,20,55)
Q5
Q9

If PM is small, then the algorithm is considered to
obtain a good approximation to the minimal planar partition
]

for the graph. }
grap a

5.3 Performance of the STEP, PFEP, and PQEP Algorithms

) Table 11 shows the thickness, t(G), of each graph G
used and the number of subgraphs, STEP(G), PQEP(G), and
PFEP(G), in the constructed planar partitions. The blank
entries in the table correspond to tests that were not run
on the STEP algorithm be:ausé of the prohibitive amount of
execution time those tests would have required. From the
data in Table 11 it appears that the three algorithms

a

le 11 The Number of Subgraphs t{(G) in a Minimal Planar

Partition of G and the Number of Subgraphs in the
Constructed Planar Partitions

G t(G) STEP(G) PQEP(G) PFEP(G)
K9 3 3 3 3
K11 3 3 3 3
K16 . 3 5 5 4
K17 4 5 5 5
K30 6 8 8 8
K40 7 10 11
K&0 - 11 15 16
K(11,11) 4 4 4 4
K(14,14) 4 5 5 .5
K(16,16) .5 6 6 6
K(20,20) 6 7 7
K(27,27) 8 10 10
K(30,20) 7 g ' 9
QS - 2 2 2 2
Q9 3 4 4
G(30,1,5) 2 3 4 4
G(30,2,4) 2 4 4 4
G(30,1,3,5) 3 5 5 6
G(30,2,3,4) 3 5 5 5
G(30,1,2,4,5) 4 7 6 6
G(30,1,2,3,4,5) 5 8 8 8
G(42,3,6) 2 4 4 4
G(42,2,3,5,7) 4 6 7
G(42,1,2,3,4,5,6,7) 7 10 11
G(300,1,9) 2 , 5 6
G(300,10,31) 2 4 4 5
G(600,20,55) 2 .. 5 5

ol

128

produce approximately the same size partition for a graph.
The constructed partitions are of order g < {e/n} for any
graph tested. The algorithms appear to perform best when
degérmiﬁing a partition for a regular graph. In that case,
the order of the partition is approximately {e/n}/2,and
closer to the actﬁal thickness of the graph.
For the complete graphs tested, the algorithms

construct partitions of order

g s {e/(2n-2)} = {n/4} = [(n+3)/4].
Since the thickness of Kn is [(n+7)/6] for n # 9, 10, the
per formance measure for the complete graphs is
PM = [(n+3)/4] - [(n+7)/6] or PM < {t(G)/2}. The algorithms’
performance on the complete bipartite graphs and the m-cubes
is even better with PM < {t(G)/4}. The algorithms have the
most difficulty when constructing a planar partition for the
phs. The order of the consfructed

sparse irregular

partition for th

graphs is very close to {e/n]-while the
actual thickness i,lmu:h less than {e/n}. The number of
edges in the irregular graphs G, listed in Table II, 1is
{t(G)(3n-6)/n} = 3t(G) -

e = t(G)(3n-6). Therefore, {e/n}
{Gt(G)/n}n Since t(G) < [(n+7)/6]), {6t(G)/n} s {(n+7)/n} =
2, fof n=2 7, it follows that 3t(G)-2 s {e/n} < 3t(G)-1 for
the irregular graphs. Thus the order of the constructed
partitians for the sparse irregular graphs is within Zt(Gf'
of the order of their minimal planar partition. For the

denser irregular graphs, the performance measures for all

three algorithms improve and approach the performance

129

measures .for the complete graphs. For example, for
G(42,1,2,3,4,5,6,7), PM is approximately {t(G)/2} for the
three algorithms. Table 111 shows the performance measure,
PM, of the algorithms for the regular graphs and irregular
graphs ﬁsed in the tests. |
Although no algorithm per formed markedly better than
any of the others, the PQEP algorithm outperformed the PFEP
algorithm on the larger complete graphs tested (K40, and
K60) and on some of the irreqular graphs (6(30,1,3,5),
G(300,10,31)). The slight performance differences between
the algorithms may be the result of the different way each
one orders and traverses the vertices and edges of a graph.
In addition, for each algorithm, the order in which the
vertices and edges of a graph are processed appears to
affect the performance of that algafgthm performs. For
example, for the PFEP algorithm, the constructed partition
for G(30,1,3,5) contains six planar subgraphs while the
partition for G(30,2,3,4) contains only five., For the PQEP
algorithm, the constructed partition for G(300,1,9) is of
order five while the constructed partition for G(300,10,31)
is only of order four. The STEP algorithm exhibits the same
behavior. For example, the partition it canstrucés for
G(30,1,5) has three subgraphs and its partition for
G(30,2,4) has four subgraphs. In each of these cases, the
different order in which the vertices and edges of the graph
are processed affects the size of thé constructed partition.

In general, the algorithms perform best on the reqular

iy B G AN e S i

130

Table 111 Performance Measure PM of the STEP, PQEP, and
PFEP Algorithms

Graphs STEP PQEP PFEP
Regular Complete {t(G)/2} {t(G)/2} ({t(G)/2}
Regular nof Complete (t(G)/a} {t(G)/4} {t(G)/4}
Irregular Sparse 2t (G) ' 2t (G) 2t (G)

graphs tested, where the initial processing order of the

vertices is of no consequence.

5.4 Resource Reguirements

The resource requirement considered is the execution
time required to obtain a planar partition for a graph. To
partition a graph G = (V, E), where |V| = n and |E| = e, the
time complexity, in the worst case,'is O(ne) for the PFEP
and PQEP algorithms and 0O(n’e) for the STEP algorithm. Table
IV shows the actual execution time required by the
algorithms to obtain a partition for each test graph. The
blank entries in the'second column of Table IV correspond to
tests not run on the STEP algorithm. As can be seen from the
entries above the blank ones the execution time would have
been prohibitively large for those tests. As such, those
runs were deemed infeasible.

There are a number of observations that can be made

regarding the execution times shown in Table IV, First, the

131

Table 1V Execution Time in Seconds

']
oy
[|
™
o
S
‘ ™
b+
T
"y
™
"

K9 0.10 0.07 0.01
K11 0.22 0.10 0.03
K16 ’ 1.05 0.30 0.12
K17 1.35 0.35 0.13
K30 , 15.20 1.82 0.67
K40 - 4.23 1.52
K60 13.40 5.08

K(11,11) 1.98 0.28 0.10
K(14,14) 5.10 0.53 0.20Q
K(16,16) 8.60 0.75 0.30
K(20,20) - 1.37 0.53
K(27,27) 3.10 1.23
K(30,20) 2.43 - 0.93

G(30,1,5) 3.43 0.33 0.12
G(30,2,4) 3.30 0.32 0.13
G () 8.03 0.63 0.27
) 7.75 0.63 0.25
,5) 13.90 1.03 0.43
,4,5) 21.60 1.68 0.62
G(42,3,6) 6.40 0.45 0.20
G(42,2,3,5,7) 1.47 0.62
G(42,1,2,3,4,5,6,7) 4.42 1.70

G(300,1,9) ' 4.03 1.70
G(300,10,31) N 3.47 1.63

G(600,20,55) 8.33 3.57

e W s, A T SO s e s 1 - s - e — — ——~ ——

STEP algorithm requires the longest time to produce a
partition, and the PFEP algorithm reqguires the shortest

time. Second, the ratio of the execution times for the PQEP

algorithm and the PFEP algorithm is constant as suggested by
their time complexities (both O(ne)). The PQEP algorithm
requires two to three times longer to obtain a partition
than the PFEP algqrithm. For example, the PQEP algorithm
requires 2.8 times longer than the PFEP algorithm to produce
a partition for K(11,11) and 2 times longer to produce a
partition for Q5. The different sizes of the constructed
partitions and the number of edges left to partition after
each subgraph is constructed may be responsible for the
observed fluctuation in the execution time ratio. That is,
if the PQEP algorithm constructs a partition of smaller size
thaﬁ'the PFEP algorithm, then the execution time ratio is
closer to 2::1, as is the case for G(300,10,3%), and if the
partition size is the same but the PFEP algorithm has less
edges to deal with after each subgraph is constructed, then

the execution time ratio 1is closer to J::1, as for

3
i h

G(30,1,5).

The third observation is that the executidn time ratios
of the STEP algorithm and gpé?gther two algorithms varies as
the size (number of vertices and edges) of the graph varies,

_as suggested by their time complexities.

¢ e R m SsEmwmE eSS

133

5.5 Characteristics of the Constructed Planar Partitions

If the algorithms are used as aids in the design of
circuit layouts, then each subgraph in a constructed
partition serves as a pattern for a layer (board) of the
circuit being designed. In that case, the characteristics of
each sgbgfaph and of the partition as a whole are important.
1f a géal of the layout is to place as many wires as
possible on one layer [Hig 73 and Lui 76], then a
partitioning scheme that consistently achieves such optimal
wire packing is more useful than one that does not.
Constraints on wire density and wire length on a board may
affect the usefulness of a partition as well. In addition,
if there are any constraints on the number of boards on
which a given component can appear [Rub 73], then a
partition which cannot satisfy the constraints is not
useful. .

Following are samz characteristics of the planar
subgraphs and partitions constructed jby the algorithms.
Table V lists the maximum number of edges in a planar
subgraph of the test graphs [Lui 76) and, for each
algorithm, the number of edges placed in the largest
constructed planar subgraph for each graph. The blank
entries in the table correspond to tests that were not run
on the STEP algorithm because of the prohibitive amount of
execution time those tests would have reguired.

For the regular graphs shown in Table V, the largest

[.
planar subgraph of the constructed partitions is usually the

134

Table V Number of Edges in the Largest Planar Subgraph

MNE - the maximum number of edges in a planar subgraph

of G.

G MNE STEP PQEP PFEP
K9 ' 21 21 21 21
K11 ~ 27 27 27 27
K16 . | 42 42 42 42
K17 | 45 45 45 45

" K30 . 84 84 84. B4
K40 ' 114 114 114
K60 B | 174 : 174 174
K(11,11) | 40 40 40 40
K(14,14) 52 52 52 52
K(16,16) _ 60 60 60 60
K(20,20) 76 76 76
K(27.27) 104 104 104
K(30,20) 96 96 87
Q5 60 60 .. 60 60
Q9 1020 892 1020
G(30,1,5) 84 76 64 74
G(30,2,4) 84 63 71 64
G(30,1,3,5) 84 80 76 76
G(30,2,3,4) 84 72 78 7%
G(30,1.,2,4,5) 84 81 80 83
G(30,1,2,3,4,5) 84 84 83 84
G(42,3,6) 120 85 96 90
G(42,2,3,5,7) 120 ‘ 108 113
G(42.1.,2,3,4,5,6,7) 120 119 120
G(300,1,9) : 894 630 661

G(300,10,31) 894 ' 679 71%
G(600,20,55) 1794 1232 1444

B s e e SR - N —

135

same size as the maximum planar’ subgraph for that graph.
This means that the algorithms have achieved to some degree
the desired property of creating subgraphs containing as .
many edges as possible (the algorithms delete as few edges
as possible). This is especially important for the PFEP and
PQEP algorithms, where the maximality of the constructed
subgraphs cannot be guaranteed (section 4.2.2 and section
4.3.2). A planar subgraph of maximum size is constructed for
all regular graphs partitioned by the PFEP and STEP
algorithms and for all complete graphs and complete
bipartite graphs partitioned by the PQEP algorithm.

Also, for each algorithm, if the subgraphs in a
constructed partition are produced in order HTY, H2, ..., Hg,
then |E(H!)| 2 |E(R2)| 2 ... 2 |[E(HQ)|. Again, it appears
that the algorithms are deleting as few edges as possible
from a nonplanar grabh.

Each subgraph constructed by the STEP algorithm is
maximally planar with respect to the edges that remain to be
partitioned when the subgraph is constructed. The subgraphs
constructed by the other two algorithms cannot be guaréﬁteed
to be maximally pianar. Nevertheless, for the PFEP
algorithm, it appears that the subgraphs are maximally
planar or nearly so. There are two justification for this
claim. First, as Table V shows, for reqular graphs, the
largest planar subgraph is the maximuh size possible.
Secondly, when a subgraph constructed by the PFEP algorithm

was input to a maximization procedure, at most three edges

136

were addeg\to the subgraph implying that the subgraph is
nearly maximally planar.

When the PFEP algorithm was run with a maximization
procedure one observation made was that the size of the
constructed partition is the same as the size of the

partition constructed when the PFEP algorithm is run alone.

«a

This implies thét, regardless of maximization, the sizes of
the partitions constructed by the algorithm are the smallest
po;sible for this type of algorithm.

Figure 31(a), (b), and (c) illustrate the subgraphs
produced b¥ the PFEP algorithm, Each subgraph B/ input to
the PFEP algo;ithm'sxplaﬁaf graph constructor has all of the
edges of one of its vertices placed.in Bi’. This occurs for
the vertex numbered 1 in the directed version of Bj. Thus,
for graphs with vertices of large regular degree k, the
subgraphs constructed by the PFEP algorithm are
characterized by at least one vertex of degree k. In
addition, when.this occurs, the remaining vertices are of

small degree (degree 3, 4, or 5) as illustrated by

.Figute 31(a) and (b). Each subgraph Bi’ produced by the PQEP

algorithm's planar graph constructor has two vertices with
all of their incident edges from Bji. If B/ has n vertices,
then the vertex with st-number n has all its incident edges
placed in B/’ and very often the vertex‘vith st-number 2 has
all its incident edges placed in B/’ as well. This means
that, for large regular or nearly regular graphs, the

subgraphs produced by the PQEP algorithm; have at least two

() H1 of K11

'f'!igﬂrj“!¥?-“9§§gtqphl Constructed by PFEP_

=

15

(b) H2 of K16

138

Figuza 31. Subgraphs Constructed byingﬁ: i ,

Figure

31.

(c) H2 of G(30,1,5)

Subgraphs Constructed by PFEP

139

140

vertices of large degree and the remaining vertices of small
‘degree as shown in Figure 32(a), (b), and (c). The STEP
algorithm also tends to construct subgraphs that have at
least one vertex of higher degree than the rest of the
vertices as illustrated by Figure 33(a), (b), and (c). This
tendency is a result of the orde#*in which the edges
remaining to be partitioned (the edges in §) are processed
in step 2.2.3.1 of Algorithm 4.2.1. A change in the
processing order of the edges may result in the construction
of planar subgraphs of almost regular degree. Subgraphs
haying one or more vertices of large degree may not be very
uSqul as patterns for circuit layouts because of such
problems as wire density and wire rength. On the other hand,
because at least one vertex has edges in axsubgraph Hj and
does not have any edges in a subgraéﬁ‘Hi, 15 3 <1isgq, any
constraints on the number of boards on which a module can

appear may be satisfied by the paftitiéﬁsf

141

(a) HI of K11

- Figure 32. Subgraphs Constructed by PQEP -

. 142

(b) H2 of K16

- Figure 32. ‘_ufsubgraphs Constructed by -PQSP’) v

. \.(144

(a) HT of K11

Figure 33. Subgraphs Constructed by STEP '

145

(b) H2 of K16 -~

rigure 33. ‘Subgraphs Constructed by STEP

146

= 30

' -

-(¢) H2 of G(30,1,5)

Figure 33. Subgraphs Constructed by STEP

Chapter 6

Summary and Conclusions

The survey in Chapter 2 examines the thickness results
and minimal planar partitions for complete graphs and
complete bipartite graphs, thickness results for m-cubes,
and minimum size planar partitions with degree constrained
subgraphs for the complete graphs and the complete bipartite
graphs. ;

Two linear time planarity algorithms, a path finding
algorithm and a pg-tree alé@rithm, are examined in Chapter 3
and a logic error that appeared in an earlier description of
the path finding algorithm is corrected.

Chapter 4 contains a description of three new planar
edge partitioning algorithms. The algorithms partition the
edges of a graph G = (v, E),inéa nonempty, planar, disjoint
subsets. A common feature of each algorithm is that each one
produces a single planar partition for a graph and makes no
attempt to imgrcve on the partitiéﬁ through iteration.

The first new algorithm described, the Spanning Tree
Edge Partitioning (STEP) algorithm differs from the other
two in its approach to constructing each subgraph of the.
partition for a graph G. It starts with a spanning tree

(spanning forest) of the unpertitioned graph H as an initial

_ 148

approximation to a maximally planar subgraph of H. Next, for
each edge in H but not in the tree, the STEP algorithm
checks if the edge can be added to the subgraph under
construction (maintaining planarity) in an attempt to
improve on the first approximation (increase the number of
edges in the subgraph). After all remaining edges of H are
tested, the constructed subgraph is accepted as a member of
the planar pargitisn.
Finding Edge Partitioning (PFEP) algorithm and the pg-tree
Edge Partitioning (PQEE) algorithm, construct a planar
partition for G using modified versions of planarity
algorithms. Each one constructs a planar subgraph by
repeatedly deleting edges from the unpartitioned graph until
the resulting subgraph is planar. The PFEP alg@rithﬁ uses a
modified version of the path finding planarity algorithm
described in section 3.1 and the PQEP algorithm uses a
modified version of the pg-tree algorithm described in
section 3.2. The embedding procedure of each planarity
algorithm was modified so that it would return a planar
subgraph of the input graph. Modifications we;e introduced
that result in the deletion of a small number of edges from
the input graph to efficiently produce a planar subgraph.
Proofs that the three algorithms produce planar
subgraphs are given in Chapter 4. The STEP algorithm
produces méximally planar subgraphs while the subgraphs

produced by the PFEP algorithm and the PQEP algorithm are

149

not guaranteed to be maximmlly planar. Upper Bounds on the
time complexities of the algorithms are obtained: O(n’e)-for
the STEP algorithm, and O(ne) for the PFEP and the PQEP
algorithms,

Chapter 5 examines the value of the new algorithms as
heuristic algorithms for the minimal plan;r partition
‘problem. The implemented algorithms were run on graphs for
which the order of the minimal planar partition (thickness)
is known.

The algorithms obtain good approximations for all
graphs tested. They produce the best approximations (the
performance measure PM is t(G)/4) for the regular sparse
graphs and the poorest approximations (PM = 2t (G)) for #he
irreqular sparse graphs tested.

The three algorithms are also compared on the basis of
their execution times and the characteristics of their
constructed partitions. The ratio of execution times of the
PQEP algorithm and the PFEP algorithm is constant with the
PFEP algorithm two to three times faster than the PQEP
algorithm, The-ratio of execution times of the STEP
algorithm and the PFEP algorithm varies, as expected, as the
size of the input graph varies. The PFEP algorithm is 0(n)
times faster than ‘the STEP algorithm. ‘

| One characteristic of the constructed partitions for
the complete graphs and the complete bipartite graphs is
that the largest subgraph is of maximum planar size. Also,

the STEP algorithm and the PFEP algorithm construct a

150

subgraph of maximum planar size for the m-cubes. The
subgraphs constructed by the STEP algorithm are always
maximally planar and those constructed by the PFEP and PQEP
algorithms are maximally planar or nearly so. The STEP
algorithm has a tendency to construct subgraphs with one or
two vertices of larger degree than the rest, the PFEP
algorithm produces subgraphs with at least one vertex of
larger degree, and the PQEP algorithm produces subgraphs

with at least two vertices of larger degree.

6.2 Conclusions e

The first goal of this thesis, that of designing an
efficient algorithm that produces a good approximation to a
minimal planar partition for a graph, was achieved. Three
efficient heuristic algorithms were designed.

The PFEP algorithm is the best algorithm of the three
because it requires less time than the other two to produce
planar partitions of the same order. The STEP algorithm
requires much more execution time (0(n) more time) than the
PFEP algorithm and this is the major drawback to its use.

It may be more desirable to use the PQEP algorithm when
partitioning large complete graphs or irregular graphs since
the ;190tithm produces partitions with one less subgraph
than the PFEP algorithm proquces for those test graphs.

The second goal, the desired balance between-the,

complexity of an algorithm and the quality of the

151

approximation it produces, has also been achieved. Any
consistent decrease in the sizes of the constructed
(improvement in the approximation) partitions would probably
require one or both of the following: an iteration scheme to
improve éﬁ.the initial partition, or, in the planar graph
constructors of the PFEP and PQEP algorithms, the
introduction of lookahead or backtracking to make a more
informed éesisiaq about which edges to delete.

It may be fiasible to use the algorithms in the design
of circuit layouts. ngy produce good approximations to
minimal planar partitions and the PFEP and PQEP algorithms
do so efficiently. If a goal of the layout is to have each
board contain as many wires as possible, then these
algorithms may be useful in placing tge wires on the boards.
The PFEP and the STEP algorithms may be more useful than the
PQEP algorithm as they consistently produce larger
subgraphs. Because the algorithms produce subgraphs with at
least one vertex of large degree (and the remaining vertices
of small degree), the density of wires around the large
degree vertices may become too large for the circuit. The
PFEP algorithm-is the most useful in this case because each
éenst:uctgd subgraph has only one vertex of large degree.
The other two algorithms produce subgraphs withbtwo or mafé
vertices of large degree. However, since the PQEP algorithm
partitions a graph, so that at least two vertices in one
subgraph do not have edges in any subgraph produced later

on, the algorithm may be useful in circuit layouts where

=

there are constraints on the ﬁugﬁer of boards on which a
module may appear.

One major attribute of the STEP algorithm is its
flexibility in producing subgraphs. Because edges are added
to a subgraph one at a time, any violation of wire density
(degree) constraints or wire length constraints could be
checked before an edge is placed in the subgraph. With the
PFEP and PQEP algorithms, constraint violation checking must
occur after the subgraph is produced. Thus for constraints
of this nature the PFEé and PQEP algafiﬁhmsxafe less
effective in designing a good layout for a circuit on a

small number of boards.

6.3 Further Research

There are questions to be answered concerning the
minimal planar partition problem for an arbitrary graph:

1. 1s the problem of determining a minimal planar partition
for an arbitrary graph NPicémélete?

2. If the problem is not NP-complete, then what is a method
for solving the problem in polynomial time?

Some questiéﬁs +that remain concerning Fisher and Wing's
algorithm [Fis 66], outlined in Chapter 4, and the three new
algorithms include: N
'. How well does Figsher and Wing's algorithm perform and

how does it compare with the STEP, PFEP, and PQEP

algorithms?

153

Does the ordering of the vertices (by vertex degree)
affect the ;ize of the partitions produced by the i
algorithms and, if so, does the optimal ordering vary
with the class of graph being partitioned (as occurs
with graph coloring algorithms)? ‘

Do the PFEP and PQEP algorithms produce subgraphs that
are far from maximal size for some graphs?

Is it possible to use the edge partitioning algorithms

proposed in this thesis to aid in the design of circuit
—_—

layouts? How useful are they if there exist constraints
on wire density on a board, wire routing and length, the
placement/éf modules, and the number of boards on which
each module is represented?

The tests performed on the proposed algorithms are not
complete and more testing is required to determine their

performance measures with greater accuracy. It may be

the case that, for irregular graphs, the limit of 2t(G)

~for the performance measures is too-small.

\

[Ale

[Aus

[Bat

[Beil

[Bei2 67)

[Bei

[Bei

[Bon

[Boo

76]

61]

(v 43
L)
Nt

67])

65)

64]

76]

76)

References

Alekseev, V. B., and Goncakov, V. S. "Thickness of
An Arbitrary Complete Graph." Math USSR SBORNIK,
30(2):187-202, 1976. .

Auslander, L., Parter, S. V. "On Imbedding Graphs
in the Sphere.” Journal of Mathematics and
Mechanics, 10(3):517-523, 1961,

3
Battle, J., Harary, F., and Kodama, Y. "Every
Planar Graph with Nine Points has a Non-planar
Complement .” Bulletin of the American Mathematical
Society, 68:569-571, 1962.

Beineke, L. W. "The Decomposition of Complete
Graphs into Planar Subgraphs.” Graph Theory and
Theorectical Physics. Edited by F. Harary. New
York: Academic Press, 1967, pp 139-153,

-==-----, "Complete Bipartite Graphs: 7 7
Decomposition into Planar Subgraphs.” A Seminar 1in

" Graph Theory. Edited by F. Harary. New York: Holt,

Reinhart, and Winston, 1967, pp 42-53.

---=---=--., and Harary, F. "The Thickness of the
Complete Graph." Canadian Journal of Mathematics,
17:850-859, 1965. s

-=---=---,, Harary, F., and Moon, J. W. "On the
Thickness of the Complete Bipartite Graph.”
Proceedings of the Cambridge Philosophical
Society, 60:1-5, 196%. _

Bondy, J. A., and Murty, U. S. R. Graph Theory
with Applications. London: The MacMillan Press
Ltd., 1976, 263 pages.

.]
Booth, K. S., and Luekér, G. S. "Testing for
Consecutive Ones Property, Interval Graphs, and
Graph Planarity Using Pg-tree Algorithms." Journal
of Computer and System Sciences, 13(3):335-379,
197¢. -

[Bos

[Deo

[Eve

[Eve

[Fer

[Fis

[Gar

[{Han

[Har

[Hig

[Hob

771

76}

79)

76)

70)

66]

79}

75)

69)

73]

691

Bose, N. K., and Prabhu, K. A. "Thickness of
Graphs with Degree Constrained Vertices." IEEE
Transactions on Circuits and Systems,
CSA-24(4):184-190, 1977.

Deo, N. "Note on Hopcroft and Tarjan Planarity
Algorithm." Journal of the ACM, 23:74-75, 1976.

Even, S. Graph Algorithms. Maryland: Computer
Science Press, Inc., 1979, 249 pages.

-------- ., and Tarjan, R. E. "Computing an
st-Numbering." Theoretical Computer Science,
2:339-344, 1976. ‘

£
Ferrari, D., and Mezzalira, L. "A Computer-Aided
Approach to Integrated Circuit Layout Design.”
Computer Aided Design, 2:19-23, 1970.

Fisher, G. J., and Wing, O. "Computer Recognition
and Extraction of Planar Graphs from the Incidence
Matrix." 1EEE Transactions on Circuit Theory,
CT-13:154-163, 1966.

L3

Garey, M. R., and Johnson, D. S. Computers and
Intractability A Guide to the Theory of
NP-Completeness. San Francisco: W. H. Freeman and
Company, 1979, 340 pages.

Hanan, M. "Layout, Interconnection, and
Placement."” Networks, 5:85-88, 1975,

Harary, F. Graph Theory. Massachusetts:
Addison-Wesley Publishing Company, 1969, 274

pages. .

Hightower, D. W. "The Interconnection Problem = A
Tutorial." Proceedings of the Tenth Annual Design
Automation Workshop, Portland, Oregon, pp 1-21,
June 1973.

Hobbs, A. M. "A Survey of Thickness." Recent
Progress in Combinatorics. Edited By W. T. Tutte.
New York: Academic Press, Inc., 1969, pp 255-264.

[Hop

[Lem

[Lin

(Lui

[Rei

[Rub

[Sit

[Tar

[Tut1

[Tut2 63]

[van

74)

66]

75])

761

771

73]

72]

71]

63)

75])

156

Hopcroft, J. E., and Tarjan, R. E. "Efficient
Planarity Testing."” Journal of the ACM,
21:549-568, 1974.

Lempel, A., Even, S., and Cederbaum, I. "An
Algorithm for Planarity Testing of Graphs." Theory
of Graphs: International Symposium Rome 1966.
Edited by P. Rosenstiehl. New York: Gordon and
Breach, 1967, pp 215-232.

Lin, S., "Heuristic Programming as an Aid to
Network Design.” Networks, 5:33-43, 1975,

Lui, P. "Analysis of Nonplanar Graphs." Ph D
dissertation, Stevens Institute of Technology,
1976, 108 pages.

Reingold, E. M., Nievergelt, J., and Deo, N.
Combinatorial Algorithms: Theory and Practice. New
Jersey: Prentice-Hall Inc., 1977, 433 pages.

Rubin, F. "Assigning Wires to Layers of a Printed
Circuit Board." Proceedings of the Tenth Annual
Design Automation Workshop, Portland, Oregon, pp
22-32, June 1973,)

Sites, R. L. ALGOL W Reference Manual
STAN-CS-71-230, Computer Science Department,
Stanford University, February 1972, 141 pages.

Tarjan, R. E. "An Efficient Planarity Algorithm.”
Ph D dissertation, Stanford University, November
1971, 154 pages.

Tutte, W. T. "The Thickness of a Graph." Indag.
Math., 25:567-577, 1963,

-------- . "On the Non-biplanar Character of the
Complete 9-Graph." Canadian Mathematical Bulletin,
6(3):319-330, 1963.

Van Cleemput, W. "Mathematical Models and
Algorithms for the Circuit Layout Problem.” Ph D
dissertation, University of Waterloo, 1975,

[vas 76]

Vasak, J. M. "The Thickness of the Complete
Graph." Ph.D dissertation, University of Illinois,
1976, 70 pages.

