
University of Alberta

S e m i - A u t o m a t e d G a m e p l a y A n a l y s i s f o r R o l e - P l a y i n g G a m e s

by

Jonathan Newton

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree o f Master of Science

Department of Com puting Science

Edmonton, Alberta
Fall 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-09246-7
Our file Notre reference
ISBN: 0-494-09246-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

This thesis presents a tool, the Game Analyzer, which tests video games rapidly and pro

vides useful feedback about the gam e’s behavior to the game developer, who can then make

adjustments to the game as desired. W ith the help of user-defined abstract states and ac

tions, the Game Analyzer builds a state-transition model for a user-defined scenario within

the game. This state-transition model defines the set of possible policies (gam eplay strate

gies). The Gam e Analyzer then evaluates a large sample of the policies. These results

can then be m anipulated and visualized to help the game developer fine tune the scenar

ios played in the game and the game engine itself. This research was applied mainly to

Role-Playing Games but could be applied to other domains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Game G e n r e s .. 2

1.1.1 Role-Playing G a m e s .. 2
1.1.2 Other Genres o f G a m e s ... 4

1.2 Overview of the A p p r o a c h .. 4
1.3 Research C o n trib u tio n s ... 5
1.4 Thesis Overview .. 5

2 The Workings of the Game Analyzer 7
2.1 P o l i c i e s .. 7

2.1.1 Incom plete P o lic ie s .. 8
2.2 Scenario D e s c r ip t io n ... 8

2.2.1 Example Scenario : The Troll and the O g r e ... 8
2.3 Game A n a ly z e r ... 10
2.4 The Interface L a y e r .. 12

2.4.1 The A bstrac tio n ... 12
2.4.2 The Action Definition T a b l e ... 14

2.5 Using the Game A n a ly ze r.. 14
2.5.1 Defining a s c e n a r io .. 15
2.5.2 Creating the Action Definition T a b le ... 15
2.5.3 Adding Hooks to the Game Engine ... 16
2.5.4 Implementing the Interface L a y e r .. 17

3 Inside the Game Analyzer 19
3.1 The Model B u i l d e r .. 19
3.2 The Choice/Chance T r e e .. 20

3.2.1 A CCTree Building E x a m p le ... 22
3.3 The Policy E v a lu a to r ... 26

3.3.1 Policy E x tra c tio n ... 27
3.3.2 Policy Extraction A lg o r i th m ... 29
3.3.3 An Example of Policy Extraction .. 29
3.3.4 S a m p l in g .. 32
3.3.5 Policy E v a lu a tio n ... 33
3.3.6 Policy E x p a n s io n ... 33

3.4 Output F i l e s ... 36
3.5 Summary ... 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Experiments 39
4.1 Experimental S e t u p .. 39
4.2 Answers from the Game A n a ly z e r .. 40

4.2.1 Example Scenario: Surrounded .. 40
4.2.2 How Long Will this Scenario Last? ... 44
4.2.3 How M uch Damage Will the Hero Take? .. 44
4.2.4 How M uch Difference is there Between Different P o lic ie s? 45
4.2.5 W hat Happens if Certain Parameters of the Scenario are Changed? . 46
4.2.6 How Good is a Particular Subset of P o l i c i e s ? .. 46
4.2.7 W hich Policies Yield the Best/W orst R e s u lts ? 47
4.2.8 W hich Policies Yield Sim ilar R e s u lts ? ... 47

4.3 Test S c e n a rio s ... 49
4.3.1 Scenario: The T J u n c tio n .. 49
4.3.2 Scenario: The M aze ... 52
4.3.3 Scenario: C o rn e re d ... 54
4.3.4 Scenario: Cornered by T ro lls ... 56
4.3.5 Scenario: The H a llw a y .. 58
4.3.6 Scenario: James B o n d .. 60
4.3.7 Scenario: RTS .. 61

4.4 Evaluating the Game A n a ly z e r .. 63

5 Related Work 65
5.1 Semi-Automated Gameplay A n a ly s is ... 65
5.2 Markov Decision P ro c e s s .. 66
5.3 Partially Observable M arkov Decision P ro c e s s ... 67
5.4 Reinforcem ent Learning .. 68
5.5 Statistical Software T e s tin g ... 69
5.6 Other Software Testing M e th o d s .. 70
5.7 Heuristic S e a rc h .. 70

6 Conclusion 71
6.1 Summary .. 71
6.2 Limitations .. 72
6.3 On the Road to Neverwinter N ights ... 73
6.4 Concluding S ta tem en t... 74

A Policy Estimation 75

Bibliography 77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Game Analyzer A lg o r i th m .. 11
2.2 Interface Layer Algorithm ... 12
2.3 Actor Definitions for “The Troll and the Ogre” . Columns represent the

following information: HP = hit points, AC = armor class, TH = bonus to
hit, BD = base damage, RD = random damage, W S = weapon speed, W R =
weapon range, X and Y = starting location X and Y coordinates..................... 16

2.4 M ap for “The Troll and the Ogre” . * represents a wall at that location. . . . 16
2.5 Action Definition T a b le .. 17

3.1 Model Builder A lg o rith m .. 19
3.2 Policy Execution Algorithm ... 27
3.3 Complete P o lic y ... 28
3.4 Leaf P o l i c y ' .. 28
3.5 Policy Definition F i l e ... 37
3.6 Results F i l e .. 37

A .l Number of Policies Estimation A lg o r i th m ... 75
A.2 Estimate Reduction A lg o r i th m .. 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Scenario: The Troll and the O g r e .. 9
2.2 Overview o f the Game A n a ly z e r .. 10
2.3 The Overall Process for Using the Game A n a ly ze r... 15

3.1 Extremely Unlikely Event .. 20
3.2 An Exam ple C C T r e e ... 21
3.3 The Starting N o d e .. 22
3.4 Adding a Chance N o d e .. 23
3.5 Adding a Choice N o d e .. 23
3.6 Completing the B r a n c h ... 24
3.7 Completing a Second B r a n c h ... 24
3.8 New Result from a Chance N o d e .. 25
3.9 The Complete CCTree ... 26
3.10 Sample P o l ic y ... 30
3.11 Partial Policies ... 30
3.12 Choice Node Policy List .. 31
3.13 All Choice Node Lists ... 31
3.14 Chance Node Combined P o lic ie s .. 32
3.15 Unlikely E v e n t s .. 34
3.16 Incomplete P o l ic y .. 36
3.17 Updated CCTree .. 36
3.18 Overview of the Game A n a ly z e r .. 38

4.1 Exam ple Scenario: S u rro u n d ed .. 41
4.2 Scenario: Surrounded - R e s u lts .. 42
4.3 Scenario: Surrounded M odified - R e su lts .. 43
4.4 Scenario: Surrounded without Continuous Weapon Switching - Results . . 44
4.5 Scenario: Surrounded - Results of Goblin P o lic y ... 45
4.6 Scenario: Surrounded - Results of Ogre P o lic y ... 46
4.7 Scenario: Cornered by Trolls (Section 4 .3 .4) ... 47
4.8 Scenario: Surrounded - Troll with Club C om parison ... 48
4.9 Scenario: T Junction ... 50
4.10 Scenario: The T Junction - R e s u l ts ... 51
4.11 Scenario: The T Junction M odified - R e s u lts ... 51
4.12 Scenario: The M a z e .. 52
4.13 Scenario: The M aze - R e su lts ... 53
4.14 Scenario: The M aze - S a m p le d .. 53
4.15 Scenario: C o r n e r e d ... 54
4.16 Scenario: Cornered - R e s u l t s ... 55
4.17 Scenario: Cornered by T r o l l s .. 56
4.18 Scenario: Cornered by Trolls - R e s u l t s .. 57
4.19 Scenario: Cornered by Clones - R e s u l t s ... 58
4.20 Scenario: The H a l lw a y .. 58
4.21 Scenario: The Hallway - R e s u l t s ... 59
4.22 Scenario: James B o n d .. 60
4.23 Scenario: James Bond - Results ... 61
4.24 Scenario: RTS - R e su lts .. 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Games have been around for a very long time. They are an important part of every culture

and almost everyone plays some sort of game. M any games have been recreated on the

computer. Com puter games allow a person to play a m ulti-player game alone with the

com puter’s artificial intelligence taking the place of all other players.

The com puter game industry is now a m ulti-billion dollar industry worldwide. Com

puter game companies are highly competitive and are on the forefront o f cutting-edge tech

nology. It is the computer game industry that pushes computer manufacturers to develop

new hardware. New games are produced with the expectation that the next generation of

graphics cards and CPUs will be able to run them smoothly.

The goal of this research is to help game developers create new and exciting video

games. Video games combine cutting-edge graphics, music and sounds with advanced

algorithms, scripts, artificial intelligence and graphical user interface design. This means

that video games are the combined effort of many different people in many different fields.

Techniques used to create video games keep changing as the technology advances.

Unfortunately in this world of continuously advancing technologies some things get left

behind and always stay the same. One of these things is how game developers test video

games. Game testers, game programmers and game developers interact and try to improve

their game. They balance the gam e’s difficulty level and play time. If the game is too hard,

people quit and they never buy the sequel. If the game is too easy, people find it boring. If

the game is too short, people feel cheated out o f their money. And if the game is too long,

people get bored and move on. These factors affect gam e sales not only of the current title

but of future titles from the same company. If a game company is reputed to produce bad

games, people will stop buying games from this company.

To help game developers create video games this research will concentrate on helping

game developers test their game in a more efficient manner. Testing video games is a

challenging task since each game is different and each developer has different game analysis

requirements. Since it would be difficult for a com puter program to learn the style and

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

preference of each designer, a testing suite should be versatile in order to cater to each

individual designer.

The research in the thesis specifically considers testing of Role-Playing Games, a sub

set of com puter games, as a target genre. The Game Analyzer takes the role o f the human

player, automatically generating the inputs the human would normally generate, and mea

sures im portant outcome variables such as the time taken to complete the scenario. The

result o f this research, a tool called the Game Analyzer, can improve the performance of a

hum an game tester thousands of times over. A game tester armed with the Game Analyzer

can gather the results of thousands of hours of regular testing in minutes.

To speed up testing the Game Analyzer is applied to small isolated parts of a game,

called scenarios. The resulting data can be used to answer a wide variety of questions

about the scenario. The types of questions being answered by the Game Analyzer’s data

vary depending on the type of game being played. It should be noted that the emphasis

o f this research is placed on obtaining the data that can then be interpreted by the game

developer. The tools actually used to interpret the data are not the main focus and as such

only a primitive visualization tool was implemented. W ith this visualization tool and the

data provided by the Game Analyzer, many questions can be answered, but the data itself

contains the answer to many more questions.

1.1 Game Genres

The Game Analyzer was made to help test Role-Playing Games but it is general enough

to be adapted to other types of games. This section describes some of the types of video

games that exist today.

1.1.1 R ole-P laying G am es

Role-Playing Games (RPGs) are quite new when com pared to games like chess and go.

RPGs take their roots from table top war games and the book “The Lord of the Rings”.

These two elements found themselves together in the late 1960’s and early 1970’s when

Dungeons and Dragons was born.

W ith the pen and paper version of RPGs, there are several players and one Game Master.

The Game M aster guides his fellow players in an adventure through strange and fantastic

lands. The players each control a single hero through the story laid out by the Game Master.

These heroes are described on a piece of paper. A hero has a set o f numbers describing his

strengths and weaknesses as well as a number of hit points. Each time a hero is hit, damage

is subtracted from his hit points. W hen his hit points reach zero, the hero dies. Actions are

done simply by describing what the hero is doing. There is an infinity o f actions available

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to the player, but a few specific actions are governed by dice. If a player wanted to swim

across a lake or pick up a stone, the Game M aster could simply indicate that his action was

successful. But if the player wanted to strike a goblin with his axe, dice would be rolled to

determ ine the success of such an action.

Com puter RPGs, like most com puter games, eliminate the need for other players. These

RPGs are mostly single player games where the Game M aster and the other players are

replaced by the computer. This setup greatly limits the number of actions a player can

choose from. Since computers cannot improvise, a scenario that was not programmed to

allow a player to swim across the river would not let the player choose that action. Dice are

also replaced by the computer. W hen a player performs an action which would normally

entail the rolling of dice, the com puter generates random numbers and displays these dice

rolls for the player and acts upon their results.

A typical computer RPG can be divided into small scenarios. Between each scenario

the player is free to do things such as heal his wounds, buy weapons and armor, or a variety

of other actions. An example of such a scenario would be as follows. The hero is spending

the night in a castle when it is attacked by goblins. The hero runs to the great hall and

discovers two goblins trying to detach a golden statue from the wall. Once the encounter

with the two goblins is done the hero will no longer be in direct peril and could spend some

time doing any number of other things such as going to his room to rest. Since the hero

is given much liberty as to how to proceed the scenario will be considered concluded after

this encounter.

Many questions about such scenarios can be answered by the data from the Game An

alyzer. It will be shown that the data provided by the Game Analyzer can answ er questions

like:

• How long will this scenario last?

• How much damage will the hero take?

• How much difference is there between different ways of playing the scenario?

• W hat happens if certain parameters o f the scenario are changed?

• How good is a particular subset o f policies?

• Which policies yield the best/worst results?

• Which policies yield sim ilar results?

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.2 Other Genres of Games

Real-Time Strategy (RTS) Games are closer to table top war games than RPGs. The player

controls a group of units in the construction of a base and the destruction of his opponents.

As the name suggests this game runs in real-time as opposed to turn based games like chess.

RTS games are not the main focus of my work but are included to show the diversity of the

Game Analyzer.

First Person Shooter (FPS) Games are games where the player controls a single charac

ter from the ’’first person” point o f view. The ’’first person” view can be described as looking

through the character’s eyes. In these games the player must make his way through scenar

ios while shooting at opponents. These games are mostly based on reflexes and hand-eye

coordination but there are some games of this type that rely on stealth aspects. The stealth

aspect of this type of gam e is tested in the experiments in this thesis.

Other genres o f games exist but the Game Analyzer has not been tested on these games.

1.2 Overview of the Approach

The Game Analyzer is a semi-automated game testing device. For the Game Analyzer to

test a specific game the user must link the Game Analyzer to the game itself. The user

must first implement an interface layer based on the interface specifications provided by the

Game Analyzer. Then additional work may be needed on the game engine itself to allow

the interface layer to provide information to the Game Analyzer. Once this is completed

the Game Analyzer will be able to control the game through the interface layer and extract

any pertinent information. The user must then create scenarios for the Game Analyzer to

analyze and define state and action abstractions to facilitate game controls for the Game

Analyzer.

Once this is done the Gam e Analyzer will be ready to play the game. The user can then

select scenarios in the game and the Game Analyzer will test them. The Gam e Analyzer

will play each scenario repeatedly to collect data about the game. The data collected can be

anything about the game the user desires. W hile playing the game, the Game Analyzer will

try all combination o f actions possible including the stupidest sequences of actions as well

as the best. This will give the developers a view of every play style for their game and not

just the play style of the few game testers they employ.

Using the Game A nalyzer is a one person operation. A single game tester could set up

the scenario in a m atter o f hours and then feed it to the Game Analyzer to test it. The Game

Analyzer would then condense hours of testing into a few minutes. The visualization tool

used in this docum ent is only an example of what could be done using the data generated

by the Game Analyzer. The data could be used in clustering algorithms, statistical calcu-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lations, prediction m odels and more advanced visualization tools. These visualizations and

computations can then be used by the game developer to fine tune his game.

1.3 Research Contributions

• This research provides a novel approach to automated software testing.

- This research is meant to provide output that helps the game designer decide

how to tune or adjust the program.

- The state representation used is non-M arkovian and can therefore differentiate

between identical states based on their past history.

• This research culm inated in a generic system that can be used in a variety of computer

games.

- The research in this docum ent is based on Role-Playing Games but the system

can be adapted to other types of games.

- The system can provide output based on any parameters that can be measured

in the video game being tested.

- The system can accumulate data on any num ber of parameters.

• This docum ent provides results on realistic experiments.

- The experim ents were run on a simple game engine which implements the com

bat rules o f the Advanced Dungeons and Dragons Role-Playing Game.

- The scenarios presented appear in some games currently on the market.

1.4 Thesis Overview

In Chapter 2 the Gam e Analyzer and all of its components are explained in detail includ

ing algorithms and data structures used in the Game Analyzer. Chapter 4 explains how

the Game A nalyzer was tested, presents the results o f applying the Game Analyzer to var

ious scenarios and evaluates the overall functionality of the Game Analyzer. In Chapter 5

work related to this research is discussed. Finally Chapter 6 presents the limitations o f the

research and reviews its achievements.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

The Workings of the Game Analyzer

Balancing a game is a challenging task. This research do not propose to solve this problem

automatically but merely to help developers with this task. The way this is currently done

involves play testing the game repeatedly and tweaking certain game parameters to modify

the game slightly. The approach of this research is to automate a portion of this process.

Instead of having a person evaluate a scenario after playing it a few times the computer

automatically plays the part of the human in the scenario thousands of times and the person

can then evaluate these results.

2.1 Policies

In playing a scenario, the human player, or the Game Analyzer playing the part of the

human, will be faced with numerous decisions about which action to take in various cir

cumstances. A policy represents a specific set o f action choices.

Formally, A policy is a collection of state-action pairs. A state is a set of observations

about the world. In the RPG example where the hero finds the goblins the state could

contain information about the health of the goblins and the hero, the location of everyone

in the room as well as what weapons everyone is using. In a policy there is a single action

selected for each possible state. Using this policy the com puter knows exactly which action

to perform in any given state.

In principle, the results obtained from the Game Analyzer should represent the set of

all possible policies. The number of policies in a policy space with X states and Y actions

could be as large as Y x . Returning to the RPG exam ple described previously assume that

by keeping track of the location and health o f all the participants there are 100 possible

states. This is not an overly large num ber o f states since keeping track of a single monster

on a 10x10 grid would yield 100 possible states. Assuming that at each state the hero

has a choice o f two actions on average, this exam ple has a possibility of 100 states and on

average 2 actions available from each state. This means that there are 2100 possible policies,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a num ber greater than 10'30. For any non-trivial scenario, the policy space will be extremely

large, and therefore, in practice, it must be sampled or abstracted to be very small.

2.1.1 Incomplete Policies

To reduce the policy space incomplete policies were developed. Throughout the document

any reference made to policies is actually referring to incomplete policies. These policies

are incomplete since they do not contain an action for every possible state. They only

contain state-action pairs for the states which are reachable. In the previous RPG example

if the hero chooses to turn around and leave the room before the goblins saw him, he would

never reach a state where he is fighting these goblins. Therefore any policy which opts to

run away from the goblins at the start state does not need a state-action pair for any of the

states involving combat.

2.2 Scenario Description

All the scenarios in this thesis use a generic Role-Playing Game (RPG) game engine. Most

of the scenarios are set in a fantasy world. The following format will be used to describe all

the scenarios including those in Chapter 4.

Actors:

The actors section describes who takes part in the scenario. Also described is the

scripted behavior of com puter controlled opponents as well as the actions available to the

hero.

Setup:

The setup portion of the scenario description indicates how the scenario begins. It will

also describe what causes the hero to choose a new action.

End States:

The end states portion of the scenario description lists the possible end states for the

scenario.

Abstract State Variables:

Abstract state variables are binary variables that summarize key aspects o f the current

game state. See Section 2.4.1 for more discussion.

2.2.1 Example Scenario : The Troll and the Ogre

Actors:

• The hero can attack an adjacent monster or he can move to a m onster of his choice if

he is not currently adjacent to a monster.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The troll has large claws with which he can attack the hero. The troll will always

move toward the hero and attack him when possible.

• The ogre has a giant axe which deals massive damage. The ogre will always move

toward the hero and attack him when possible.

Setup:

In this scenario the hero, the troll and the ogre are in an empty room . The hero is closer

to the ogre but it is possible to dash by the ogre to reach the troll. Once the hero chooses

an action he cannot choose a new action until a change of state occurs. The state changes

when the hero becom es adjacent to a new monster or when a m onster dies. This setup can

be seen in Figure 2 .1.1

End States:

1) Both the troll and the ogre are dead.

2) The hero is dead.

Abstract State Variables:

Hero is alive, Troll is alive, Ogre is alive, Troll is in range, Ogre is in range.

Figure 2.1: Scenario: The Troll and the Ogre

'The screenshots used throughout the document are created with the Aurora toolset and Neverwinter Nights
© Bioware Inc.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3 Game Analyzer

The result o f this research is a Game Analyzer which plays out user-defined scenarios re

peatedly. From a set o f predefined actions the Game A nalyzer discovers and evaluates many

of the possible policies. The Analyzer then displays results, as specified by the user, meant

to help evaluate the balance and challenge of the game. The Game Analyzer is made up

of two parts, the model builder and the policy evaluator, and interacts with several other

software components: the simulator, the interface layer, and the visualization tool. Each of

these parts plays an essential role in the creation of the final output. The diagram presented

in Figure 2.2 shows the composition of the Game Analyzer and is briefly described in this

section. A detailed description of each part will be given in Chapter 3.

Simulator

Interface Layer

Model
Builder

Policy
Evaluator

" ~ ~ 7

Set of
Possible
Policies

(CCTree)

Evaluation
Of all

Policies
Output Data

Game Analyzer

Figure 2.2: Overview of the Game Analyzer

The Simulator is the actual game engine, modified to hook up with the Interface Layer.

It is provided by the game developers and used by the Game Analyzer as a black box. To

speed up the analysis the graphics and time delays are disabled leaving a streamlined engine

on which to run scenarios.

The Interface Layer is meant to ease com m unications between the rest of the Game

Analyzer and the Simulator. Since no two games are exactly alike a wide variety of Sim ula

tors can be expected. The Interface Layer provides all the necessary functions to bridge the

gap between the Sim ulator and both the Model Builder and the Policy Evaluator. It is used

to convert the raw data from the simulator to a more m anageable form as well as provide

control over the simulations. Research on interfaces between game simulators and artificial

intelligence systems is currently being done in projects such as TIELT[7]. Unlike TIELT

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the main focus of my work is not the interface layer.

The purpose of the Model Builder is to build the set o f policies that can be evaluated

for the scenario that is currently being analyzed. The Model Builder, using the Simulator,

plays the scenario repeatedly and discovers the policies available to the player. This set

of policies is represented by a data structure called a Choice/Chance Tree (CCTree). As

the simulation progresses the M odel Builder builds up the CCTree by storing each new

policy in the CCTree. Once the M odel Builder ceases to find new policies the CCTree is

considered complete and the M odel Builder hands off the CCTree to the Policy Evaluator.

The Policy Evaluator uses the set o f policies obtained from the Model Builder to pro

duce a data set to be reviewed by the user. Each policy is executed a number of times to

measure the effects o f the inherent randomness of most computer games. The execution

of a policy could fail if a state that was not seen by the Model Builder is reached. In such

a case the Game Analyzer returns to the M odel Builder to expand the CCTree. Once all

policies have been executed in this fashion the data gathering is complete. The resulting

performance summary is stored in files. The m easurem ents collected in the performance

summary are specified by the game developer.

The output files contain a list o f all the policies that have been evaluated. Each policy

is associated with the data gathered for the policy during policy evaluation. These files can

then be used to produce visualizations or further calculations that help the game designer

assess the scenario. To demonstrate the usefulness of the data a visualization tool was

created. The tool displays the average results for each policy. The pseudocode for the

Game Analyzer is shown in Table 2.1.

Use the M odel Builder to build the CCTree
W hile the CCTree is not fully evaluated do

Select a Policy to evaluate
Use the Policy Evaluator to evaluate the Policy
If the evaluation fails

Use the M odel Builder to expand the CCTree at the failing Policy
End If (Evaluation fails)

End W hile
Create the Policy List and Results Files

Table 2.1: Game Analyzer Algorithm

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 The Interface Layer

Purpose: To facilitate comm unications betw een the Game Analyzer and the Simulator.

Inputs: Abstract Actions or Control Commands

Outputs: Abstract States, Outcome Data, Scenario Complete Signal

Workings:

The Interface Layer converts data from the simulator into a form which can be used by

the rest of the Game Analyzer and to control the scenarios on the simulator. It is also used

to generate state abstractions, retrieve the outcom e data from the simulator and determine

if the scenario has ended or not. The interface layer queries and controls the simulator to

achieve these goals. The interface layer m ust create the state abstractions from the real

state in the simulator. The algorithm for the Interface Layer is provided in Table 2.2. This

algorithm is applied when the Interface Layer receives an abstract action to execute. The

Interface Layer can also execute control com m ands such as resetting the scenario to its

initial state.

Convert abstract action into a sequence o f real actions
W hile the abstract state does not change

Apply one step o f the sequence of real actions
If the sequence is ended then restart from the beginning
Accumulate perform ance data
Convert the resulting real state into its abstract state

End While
Return the accum ulated perform ance data

and the new abstract state

Table 2.2: Interface Layer Algorithm

2.4.1 The Abstraction

To minimize the size of the policy space, the developer defines abstract states and actions

for the Game Analyzer to use. An abstract action is a sequence of actions that can be

performed in a given state. The actions are considered abstract because in most cases they

will lead to a series of real actions which will be executed by the sim ulator to produce the

desired action.To clarify abstract actions and abstract states the scenario in Section 2.2 will

be used as an example.

Abstract actions are normally easy to define; they are something the hero should be

able to do during a short scenario. M aking the actions abstract, together with the fact that

the hero can only choose a new action when the abstract state changes, elim inates many

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

redundancies. Consider the following sequence: The hero first takes a step toward the troll

and then a step toward the ogre followed by five steps toward the troll, finally reaching the

troll. This sequence does not really differ from any other sequence o f events that would lead

the hero to the same resulting abstract state. Therefore by limiting actions to be executed

by the simulator until a change of abstract state happens, micro management is eliminated.

Eliminating micro management reduces the search space thus enabling more complicated

scenarios to be analyzed.

Now that a set of abstract actions is defined the abstract state needs to be defined. Ab

stract states consist of binary variables that represent the validity of a set of statements. The

abstract state differs from the real state since it contains very limited information. The real

state keeps track o f all sorts of details that are irrelevant to the abstract state. Details ex

cluded from the abstract states are things like the exact locations of the actors. The abstract

state keeps track of wether the actors are within each others w eapons’ ranges instead of

their exact locations. Another example is the actual life points o f the actors; the real state

tracks these exactly but the abstract state considers only two values for life points, alive or

dead.

In the scenario actions will be executed until a change of abstract state occurs. The

state abstraction needs to be defined with this in mind. Some abstract actions might yield

a change of state directly while others will last for a longer period of time. A sample

action that would change the state immediately m ight be changing weapons. An action like

attacking the troll will not usually produce a change o f state immediately. The hero will

fight the troll until the state changes. The state may change as a direct result o f the hero’s

actions or it might change because of the passage of time. In the example the hero might

kill the troll which would result in a change of state or the ogre m ight becom e adjacent to

the hero also resulting in a change of state.

The abstract state should be represented by a binary variables that define which abstract

actions can be used in the state. In the example a variable representing the statement “I am

next to the troll” could be used. If the variable is true then the action “attack the troll” can

be used, if the variable is false then that action is unavailable. O ther statem ents can deny

the use of some actions. For example “The troll is dead” would deny the action “attack

the troll” when the variable is true. Statements that deny actions normally take precedence.

Thus if the hero is next to a dead goblin, he should be denied the use o f the action “attack the

goblin”. A third type of statement can be used to prompt a change o f action. The statement

“I am almost dead” could be used to help guide the hero but does not in itself allow or

deny any action. W hen all these true or false variables are combined the state abstraction is

obtained. The Interface Layer can now obtain the answers to all these statem ents from the

simulator and provide an abstract state.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Choosing the right level of state abstraction is a very important task. If the abstrac

tion is too fine-grained, there will be an exponential blowup in the num ber of policies. On

the other hand if the abstraction is too coarse-grained too many details will be abstracted

out and important policies could be missed. It is easiest to start off with a coarse-grained

abstraction that gives the Game Analyzer access to basic actions such as moving and attack

ing. This abstraction includes information about the hero and the monsters. The abstraction

can then be expanded to include other information such as available spells, items or inter

esting waypoint locations. The abstraction can also be tuned to test particular aspects of the

scenario. The abstraction could be coarse-grained to provide a feel for the range of possible

outcomes or it could be fine-grained to analyze a distinct style o f play.

2.4.2 The Action Definition Table

The Action Definition Table is used by the Interface Layer to convert abstract actions to

sim ulator actions. The table is created by the designer of the scenario and lists which

actions can be done and in which set of states they are allowed. The table is then used by

the Interface Layer to relay the set o f abstract actions currently allowed.

W hen an Abstract Action is received to be executed the Interface Layer uses the Action

Definition Table to translate the abstract action into a series of sim ulator commands and

controls the simulator accordingly.

2.5 Using the Game Analyzer

This section describes the overall process for using the Gam e Analyzer is used. This dis

cussion will cover the software needed to use the Game Analyzer and the work that needs

to be done by human participants in the process. Since Game Analyzer is completely game

independent it will be considered as a black box for this discussion.

The overall process for using the Game Analyzer is shown in Figure 2.3. Since the

Gam e Analyzer is semi-automated this process includes people who perform essential tasks.

A group of programmers construct the game engine including the hooks needed for the

Gam e Analyzer. The game designer then defines a scenario and the relevant action defi

nition table. M ore programmers implement the Interface Layer with the guidance of this

game designer. The Game Analyzer tests this scenario and produces output files. The out

put files are read by a visualization tool and displayed. A game tester then analyzes the

data using the viewer and reports his findings to the game designer. The game designer can

then apply changes to the scenario and action definition table or instruct the programmers

to modify the Interface Layer or the game engine itself.

Three things must be created for the current implementation of the Game Analyzer to

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Visualization
Tool

G am e Analyzer

Interface Layer

Simulator

I Output Data
Files

Program m ers V . .

Figure 2.3: The Overall Process for Using the Game Analyzer

be used with a new game engine: the Interface Layer, the action definition table and the

scenario. These will now be described in detail.

2.5.1 Defining a scenario

The scenario is created using the tools available for the particular game engine and should be

in a format that is easy to load into the game engine. In Neverwinter Nights, for example, the

scenario would be created using the Aurora Toolset, and would be in the format of a saved

game. The scenario file for the game engine used in this docum ent contains information

about the monsters, the hero and the room. The details about the monsters include their

location in the room, their hit points, what weapon they are using and their skill with that

weapon. The details about the hero are almost indentical to that of the monsters, the only

difference being that the hero might have more than one weapon. The details about the

room include the size of the room, the location o f walls and the location of any points of

interest.

The scenario file for “The Troll and the Ogre” consists of the actor definitions shown in

Table 2.3 and the map shown in Table 2.4.

2.5.2 Creating the Action Definition Table

The Action Definition Table contains information indicating the conditions that must be true

for an action to be permitted in a given abstract state. In “The Troll and the Ogre” a state

has 5 binary variables; The hero is alive (HA), the troll is alive (TA), the ogre is alive (OA),

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Name HP AC TH BD RD WS WR X Y

Hero 140 13 5 0 10 6 1 2 4
Troll 20 10 2 1 5 8 1 5 1
Ogre 45 8 2 4 6 3 1 1 1

Table 2.3: Actor Definitions for “The Troll and the Ogre” . Columns represent the following
information: HP = hit points, AC = armor class, TH = bonus to hit, BD = base damage, RD
= random damage, W S = weapon speed, W R = weapon range, X and Y = starting location
X and Y coordinates.

X/Y 0 1 2 3 4 5 6

0 * * * * * * *

1 * *

2 * *

3 * *

4 * * * * * *

Table 2.4: M ap for “The Troll and the Ogre”. * represents a wall at that location.

the troll is in range (TR), the ogre is in range (OR). These binary variables can be seen in

Table 2.5 where 1 means this variable must be true for this action to be allowed, 0 means

that the variable m ust be false for the action to be allowed, and * means that this variable

can be either true or false. The possible actions available to the hero are m oving towards

the troll (MT), moving towards the ogre (M O), attacking the troll (AT) and attacking the

ogre (AO). The “M T” row in Table 2.5 indicates that the action of moving towards the troll

should be allowed if the hero is alive, the troll is alive, and the hero is not in range of the

troll. There is one special action, the end game (EG) action. This action is used to specify

the conditions under which the scenario is considered finished. In this scenario there are

two end game conditions, the last two rows in Table 2.5. It is possible for any action to

have multiple conditions. If any one o f the multiple conditions for an action is true then that

action is allowed.

2.5.3 Adding Hooks to the Game Engine

For the Interface Layer to be able to communicate with the game engine hooks m ust be

added to the game engine. These hooks enable the Interface Layer to control the game

engine and collect inform ation from the game engine. Since the Interface Layer is game

dependent, the details o f the hooks vary from game to game. The hooks needed for the

current implementation of the Interface Layer are the following:

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Action HA TA OA TR OR

M T 1 1 * 0 *

M O 1 * 1 * 0
AT 1 1 * 1 *

AO 1 * 1 * 1
EG 0 * * * *

EG 1 0 0 * *

Table 2.5: Action Definition Table

LoadS avedGame(String SavedGame)
The game engine finds the saved game file named SavedGame and loads it into
memory.

Pause()
This is used to pause the game so that the simulation does not continue while
the Interface Layer or Game Analyzer are executing.

GetCurrentState()
Returns a vector containing all the state variables needed to calculate the ab-
stract state.__
GetOutcome()
Returns a vector containing all the game engine variables the game developer
wants to evaluate.__

Attack(Object M onster)
Directs the hero to strike a blow with the currently equipped weapon at the
target Monster.

MoveTo(int x, int y)
Directs the hero to move towards location (x,y) on the map.

Equip(Object W eapon)
Directs the hero to equip this particular Weapon.

2.5.4 Implementing the Interface Layer

The Interface Layer is m eant to facilitate communication between the game engine and

the Game Analyzer. The Interface Layer must im plem ent specific methods that are called

by the Game A nalyzer and route these method calls to the underlying game engine. The

methods used in the current Interface Layer implementation are the following:
init(String ADT, String Scenario)
This method initializes the Interface Layer and loads the Action Definition
Table into m em ory and records the Scenario file name. The specific file names
are passed in as com m and line arguments when invoking the Game Analyzer.

resetGame()
This method calls the LoadSavedGame hook in the game engine with the sce
nario file name to load the scenario file.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getStateO
This method obtains a vector of state variables from the GetCurrentState hook
and converts this information into an abstract state. This method then returns
the current abstract state. Abstract states are represented as integers in the
Game Analyzer.

getStartState()
This method returns the abstract start state for the scenario. The start state is
com puted when the scenario is loaded for the first time.

getActionDefTableO
This method returns the action definition table for use by the Game Analyzer.

isEndState(int someState)
The method returns true if som eState is an end state. The Interface Layer
com pares the abstract state defined by someState to the end game conditions
defined in the Action Definition Table to determine if it is an end state or not.

isGameOver()
This method calls isEndState passing in the result of getStateO as a parameter.
The result indicates if the current state of the game engine is an end state.

executeAction(int actionNumber)
This method converts the abstract action represented by actionNum ber to an
action sequence. This sequence is then executed repeatedly until a change of
state occurs. The Game Analyzer assigns a unique integer to each abstract
action. Each abstract action has a predefined action sequence hardcoded into
the Interface Layer using the Attack, MoveTo and Equip hooks.

getNumStates()
This returns the number of possible states, typically 2stateLength.
getOutcom e Variables!)
This method returns the vector of outcom e variables for the current execution
o f the scenario obtained using the GetOutcome hook. These variables will be
used to produce the final output of the Game Analyzer.

getPrintState(int state)
This method returns a descriptive text identifying the current state. The de
scriptive text is used to facilitate analysis of the policies. The text is a concate
nation of the descriptors for the state variables in Table 2.5.

getPrintAction(int state, int action)
This method returns a descriptive text identifying the action. The descriptive
text is used to facilitate analysis o f the policies. The text is the action descrip
tors in Table 2.5.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Inside the Game Analyzer

This chapter gives a detailed description o f the Game A nalyzer’s parts and their algorithms.

3.1 The Model Builder

Purpose: To create a model of the policy space to obtain the set o f possible policies.

Inputs: Abstract States, Outcome Data, Scenario Complete Signal

Output: Choice/Chance Tree (Representing the Policy Space)

Workings:

Shown below is the generalized pseudo-code of the Model Builder. The Choice/Chance

Tree (CCTree) is a data structure used to store the policy space. A state transition is an “Ab

stract State —> Abstract Action - > New Abstract State” triplet. The CCTree is considered

incomplete if the state transitions have not been explored fully. The CCTree will be ex

plained in more detail later.

W hile the Choice/Chance Tree is incomplete
Get the Interface Layer to reset the scenario
W hile the Scenario Com plete Signal is not received

Choose next action
Get the Interface Layer to execute the action
Add Abstract State obtained from Interface Layer to CCTree

End W hile
End W hile

Table 3.1: M odel Builder Algorithm

The Model Builder does two tasks. First it will build the CCTree used to evaluate the

scenario and second it will expand that tree as needed by the Policy Evaluator. W hen the

Model Builder first constructs the CCTree it tries to expand it as much as possible. The

Model Builder will continue to expand the CCTree until it has reached every leaf node in

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0f ^ — -
Visits: 120

Figure 3.1: Extremely Unlikely Event

the tree a minimum num ber of tim es (the default number of times is 3). The actual number

of times it will visit each leaf node can be set by the developer. It is possible for the M odel

Builder to ignore some leaf nodes that do not meet the required number of visits if these

leaf nodes are on a branch that is deem ed extremely unlikely (by default the threshold is set

to 1%). For example, in both parts o f Figure 3.1 all the ovals are leaf nodes, children o f the

black square node. The num ber below a node indicates how many times it has been visited.

Leaf node 3 has been visited once in both diagrams. In diagram (B) leaf node 3 represents

aproximately 5% of the visits and is a viable node. In diagram (A) leaf node 3 accounts

for less than 1% of the visits, is below the threshold and is labeled as an extremely unlikely

event. The threshold at which a branch is deemed extremely unlikely can be adjusted by

the developer. Once the M odel Builder considers the CCTree complete, it sends it off to the

Policy Evaluator. W hile evaluating the CCTree the Policy Evaluator might discover new

situations in the scenario. If the new situation is important enough, the Policy Evaluator

will instruct the M odel Builder to expand the tree (see Section 3.3.6).

The task of building the CCTree will be explained here. The second task of expand

ing the CCTree at the request o f the Policy Evaluator will be explained after the Policy

Evaluator.

3.2 The Choice/Chance Tree

The Choice/Chance Tree (CCTree) stores the abstract states encountered while executing

the scenario. The series of abstract states accumulated and the transitions between these

states become the policy space.

The CCTree is a tree data structure with special characteristics. The odd depth nodes

are called choice nodes since the game analyzer gets to choose a particular action at these

nodes. The even depth nodes are called chance nodes. The action selected at the choice

node is executed by the game engine. The chance nodes represent this execution and the

resulting state of this execution is added to the tree. From this resulting state, the game

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analyzer decides upon another action. Because the scenarios are typically probabilistic there

are multiple possible resulting states. These m ultiple resulting states are all children of the

same chance node. Figure 3.2 is the tree built by the Model Builder for the sample scenario

“The Troll and the Ogre”. The ovals represent choice nodes and are labeled with their state.

The small squares are chance nodes. Notice that some chance nodes have multiple children

representing the m ultiple possible resulting abstract states. The figure will be discussed in

more detail in the next section.

L Start
MT MO

T O
AO .AT

(T x OT x O T O x T O
AO ■AO .ATAO,

T O xJ) ((T x O x),Tx Ox Tx Ox T xO Tx Ox TxO
AO, AO,

(Tx Ox :) f Tx OxTx Ox Tx Ox

Choice Node

C hance Node

Leaf Node

Figure 3.2: An Exam ple CCTree

Each choice node is an abstract state in which certain possible actions can be done. The

abstract state itself represents a wide range of real states. The abstract state generated from

the real state contains all the information needed for the CCTree and the node created from

the abstract state becom es a perm anent part o f the CCTree.

The chance nodes on the other hand do not store any information from the simulation.

They are simply a connection between an action taken and all the states resulting from

taking this action. The chance nodes are meant to represent the randomness that can occur

from taking an action. With the existence of chance nodes the action “move to the troll” can

be executed from a choice node and the result is a single chance node. The chance event

then happens and the chance node selects from its children the correct choice node resulting

from this chance event.

Since the CCTree stores only abstract states and not actual states the scenario cannot

start from a random node, it must start from the initial state. Each path through the CCTree

is the result o f one or more executions of the scenario from start to finish.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 A CCTree Building Example

The sample scenario “The Troll and the O gre” will be used to demonstrate how to build a

CCTree.

To build a CCTree the Model Builder starts with an empty tree. The root node is gen

erated using the abstract state o f the start position for the scenario. For the examples that

follow the abstract state stored in the choice nodes will be represented by the following

symbols:

T will indicate that the hero is adjacent to the Troll

O will indicate that the hero is adjacent to the Ogre

Tx will indicate that the Troll is dead

Ox will indicate that the Ogre is dead

At the start o f the scenario neither o f the monsters are dead or adjacent to the hero.

Therefore the start state shall simply be labeled “Start” . The Model Builder then consults

the Action Definition Table in the Interface Layer to obtain a list of possible actions from

this start state. The edges leading out from choice nodes will be labeled with the abstract

action taken. In the scenario the hero has a choice of four actions:

M T will indicate the action “M ove to the troll”

M O will indicate the action “M ove to the ogre”

AT will indicate the action “Attack the troll”

OT will indicate the action “Attack the ogre”

The hero’s actions are limited by not allowing an attack to be attempted if the monster

is not in range and not allowing him to move if a m onster is in range.

(Start

Figure 3.3: The Starting Node

To start the scenario the simulator is reset to the starting conditions shown in Figure 3.3

and the Model Builder selects an action. In the example the Model Builder will opt to move

the hero toward the troll.

The M odel Builder creates and adds a chance node as a child to the root node. This

chance node is now attached to the action “Move toward troll” in Figure 3.4 and each time

this action is taken from the start state this node will be reached.

Once the chance node is built the sim ulator is commanded to move the hero toward the

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.4: Adding a Chance Node

troll. M eanwhile the troll and ogre follow their own logic and move toward the hero. The

hero and monsters will continue to move toward each other until the Interface Layer signals

a change in abstract state. At this time only three things can cause a change in abstract state:

the hero comes in range of the troll (toward whom he is moving), the hero comes in range

of the ogre, or the hero comes in range of both simultaneously. In the example it is assumed

that the hero comes in range of both the troll and the ogre simultaneously.

Once the Interface Layer detects a change in abstract state the simulation is paused. The

Model Builder proceeds to generate a choice node from the abstract state supplied by the

Interface Layer. The new choice node is added as a child to the chance node in Figure 3.5

and the cycle begins anew.

(’ s ta r t ')

j a r "
___ MO

(t o)
A T>~<A O

Figure 3.5: A dding a Choice Node

The Model Builder consults the action list, picks one, adds a chance node and the sim

ulation takes over until a change in abstract state is detected. This process is repeated until

an end of scenario abstract state is reached. In the example it is assumed that the following

events occur. The hero moves toward the troll and encounters both monsters simultane

ously. The hero attacks the troll and continues until the troll dies. The hero now opts to kill

the ogre and succeeds. An end of scenario state has been reached, the hero has conquered

the monsters and can make his way to the exit. The resulting branch is shown in Figure 3.6.

After reaching an end of scenario state, the M odel Builder creates a choice node from

the end of scenario abstract state and adds it to the chance node. This choice node has no

actions listed since it is an end of scenario node and is therefore considered a leaf node.

The Model Builder then returns to the root node and the simulator is reset to the start

state. The scenario restarts again with the M odel Builder making different choices until it

has taken all the actions available at the root node once. The tree in Figure 3.7 shows one

complete path for each action available at the start state.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v S tart j
MT MO

Figure 3.6: Com pleting the Branch

Start
MT MO

,AO

(TO
fAO

TxOTx Ox
AO,

Tx Ox),

Figure 3.7: Completing a Second Branch

So far each chance node in the tree has only been visited once, but now to fill out the

deeper levels of the tree some actions have to be repeated. Looking at the example tree, it

can be seen that when the hero moves toward the troll, the left branch is followed and the

left chance node is selected. Currently the only resulting state of this chance node brings

the hero in contact with both monsters. Once the hero is in this situation he can do two

actions; kill the troll or kill the ogre. The action “kill the troll” has already been explored

at this point but the action “kill the ogre” has not. To explore this action the simulator must

be reset and start from the root node. This is because the real state of the world was not

saved at this node. To explore the action the same abstract state must be reached. From the

root node the hero must move toward the troll to fill out the unexplored actions below. The

simulator starts moving the hero toward the troll but it is possible for the resulting state to

be different this time.

Assuming that instead of reaching both monsters the hero instead simply meets the troll.

The Model Builder takes this new state and generates a choice node. The new choice node

is then added to the chance node from which it resulted as seen in Figure 3.8.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MT MO

TAO

T xO '
AO,

T xOTx Ox
AO,

Figure 3.8: New Result from a Chance Node

The Model Builder continues to run simulations. For each new sim ulation the Model

Builder systematically makes different choices at the choice nodes. The process is repeated

until each leaf node is visited X times (the default is 3). To guide the choices made by

the M odel Builder each choice node records if all leaf nodes below it have been visited

enough for each o f the available actions. W hen all actions from a choice node have been

visited enough to satisfy all leaf nodes below it, the choice node inform s its parent that it is

satisfied. W hen all choice nodes below a chance node are satisfied the chance node informs

its parent choice node that it is satisfied. Once the root node is satisfied, each leaf node has

been visited X times and the CCTree is deemed complete. In the exam ple the completed

CCTree is shown in Figure 3.9.

Unlikely events and cycles in the CCTree could cause the M odel Builder to run count

less trials to obtain a complete tree. An unlikely event is an event that occurs at a chance

node less than X% o f the time (the default is 1%) and is ignored when determ ining if the

tree is complete. A cycle is a sequence of states that keep being repeated. The shortest

cycle would be to take action 1 in state A which leads to state B and to take action 3 in

state B which leads to state A. The M odel Builder would be stuck in such a loop until an

exterior force applies a change of state such as a monster arriving next to the hero. The

M odel Builder aborts cycles and considers them complete since they have an action for all

states encountered. The Policy Evaluator will deal with cycles in Section 3.3. Even with

these time-reducing techniques the M odel Builder could take an excessive am ount o f time

to build the model if the abstraction is too fine-grained. The abstraction m ust be modified

to reduce the state space in this case.

Notice that there are duplicate abstract states in the CCTree. For exam ple state TO

occurs three times. These states are not merged because the underlying real states depend

on the entire history o f the scenario and not only on the current state (See Section 5.2).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(S tart)
MT MO

T O
AO ■AO

T O OxT O x
AO .AO ,ATAO,

Tx Ox Tx Ox
AO, ■AT AO,

T xO x Tx OxTx Ox

Choice Node

C hance Node

Leaf Node

Figure 3.9: The Complete CCTree

3.3 The Policy Evaluator

Purpose: The Policy Evaluator evaluates all policies for the given scenario and obtains the

outcome data for each policy.

Inputs: CCTree

Outputs: Policy List, Policy Results

Workings:

The Policy Evaluator has two tasks. The first task is to extract all, or a sample of, the

policies represented by the CCTree. The first task is explained in detail in Section 3.3.1.

Once the policies are extracted the second task of the Policy Evaluator is to evaluate each

policy in turn. To evaluate a policy the Policy Evaluator executes the policy enough times

to generate a significant num ber of trial samples. The results of each trial is stored in an

array associated with the policy. The pseudo-code for executing a policy is in Table 3.2.

Note that policies, including those with cycles, will be executed until a predetermined time

limit is reached. This can result in a state that has never been seen before since the Model

Builder aborted the cycle early. A cycle that results in a new state being encountered will

invoke the Model Builder and this cycle will no longer be aborted by the Model Builder.

Once both tasks are com plete the Policy Evaluator returns the array of data accumulated for

each policy to the Gam e Analyzer.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Get the Interface Layer to reset the scenario
W hile the scenario is not over and the time limit has not been reached

Select the action for the current state according to the current policy
If there is no action selected

(this is a state never seen before for this policy)
If the node is above threshold for unlikely events

Abort the evaluation and invoke the Model Builder
Else

Pick the first available action
End If (there is no action)
Get the Interface Layer to execute the action

End W hile (the scenario is not over)
Store the results of the execution in the array
Return execution results

Table 3.2: Policy Execution Algorithm

3.3.1 Policy Extraction

To extract policies the Policy Evaluator uses leaf policies and partial policies. Policies, leaf

policies and partial policies are defined here. The algorithm for policy extraction can be

found in Section 3.3.2.

A policy defines a single action for every given state. Note that a policy which defines

an action for all states is unnecessary. It may be the case that a certain state can never be

reached with a given policy. Consider the example used previously in Figure 3.9 reprinted

here for convenience.

MT MO

T O
A O .AT ■AO

T O T O T O xT x O T O x
AOAOAO,

T O xTx Ox Tx O x T x O

AO,

(Tx O x j) ((T x O x Tx O xTx O x '

An example of a complete policy is seen in Table 3.3.

Taking the example above, the policy at the start state is to move toward the ogre which

leads down the right branch, the state “T ” where the hero is adjacent only to the troll will

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In State Action Identifier Abstract Action

Start M O Move to the ogre
0 AO Attack the ogre
T O AT Attack the troll
T O x AT Attack the troll
T x O AO Attack the ogre

Table 3.3: Com plete Policy

never be encountered. This means that all policies that take the action “move toward ogre”

at the start state will never need to specify an action for the state “T” .

A policy will therefore be considered com plete if it defines an action for every state that

can be reached when following the policy. In the example above the policy is com plete even

if no action is defined for the state “T” since the action defined for the start state is “move

toward ogre”. Since policies define actions for specific states they control which action

will be taken at a choice node o f the CCTree. AH other branches of this choice node can

be ignored when creating the policy. Chance nodes behave differently. All branches from

a chance node must be considered when building the policy since the branch that will be

followed during any given sim ulation cannot be predicted. The policy must have an action

for any resulting state from the chance node.

Leaf Policies

W hen a path is traced from the start node to a leaf node many choice nodes are crossed.

The combination o f all actions taken to reach that particular leaf node is considered a leaf

policy. In the previous example if the left action was always taken, the resulting leaf policy

is shown in Table 3.4.

In State Action Identifier Abstract Action

Start MT Move to the troll
T O AT Attack the troll
T x O AO Attack the ogre

Table 3.4: Leaf Policy

This leaf policy leads to the leftm ost leaf node assuming that the chance nodes cooper

ate. Therefore this is considered the leaf policy of the leftmost leaf node.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Partial Policies

A partial policy is a policy that does not have actions for all reachable states. For a choice or

chance node a partial policy is a policy which is complete for states between this node and

all leaf nodes under this node. In addition the partial policy, like a leaf policy, contains all

actions taken to reach this node. During policy extraction (Section 3.3.2) the partial policies

get combined gradually until they becom e complete policies at the start node.

3.3.2 Policy Extraction Algorithm

The first task done by the Policy Evaluator is extracting policies. As seen previously, a

policy does not contain an action for every state, instead it contains an action for each

reachable state. Since this is the case, it is impossible to enumerate all policies or generate

policies at random w ithout exploring the CCtree.

To extract the policies from the CCTree, start by first assigning leaf policies to all the

leaf nodes. Once each leaf node has a leaf policy recursively back them up through the

levels of the tree. A t a choice node the partial policies are obtained from each child and

put together in a list. A t a chance node the partial policies from each child are stored in

a separate list. These lists are then combined to produce the list o f partial policies for

the chance node. Since the outcom e of a chance node is unknown, each policy for the

chance node must contain a partial policy for each branch of the chance node. This is

accomplished by com bining one partial policy of each branch together to form a single

partial policy. This process is illustrated in Section 3.3.3. Repeat this process for all possible

combinations of partial policies. Once this process is complete, a tentative list of partial

policies is obtained. This list m ust be examined and any duplicates removed. With the

duplicates removed the final list o f partial policies is complete for this chance node. The

partial policies will continue to be backed up recursively.

3.3.3 An Example of Policy Extraction

To illustrate policy extraction a small portion of a hypothetical CCTree will be used. Each

partial policy will be represented as an array containing actions and indexed by state. For

example the partial policy in Figure 3.10 means that action A will be taken in state 1, action

C will be taken in state 3, action B will be taken in state 4 and state 2 and 5 have no action

assigned in this partial policy.

Figure 3.11 shows partial policies obtained at a certain stage of policy extraction. This

will be the starting point for this example. The choice node labeled with the number one

must now combine the partial policies from its children. The partial policies the children

passed up must be different because a different choice was made for each branch. In this

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 J 3 4 5
[a T I c T b T

Figure 3.10: Sample Policy

LeafLeaf

Leaf Leaf L eaf) Leaf

Figure 3.11: Partial Policies

case the choice node was selecting an action for state one since the choice node was labeled

by its state, one. To com bine the partial policies at a choice node they are simply added to

a list as seen in Figure 3.12 essentially creating the union of the two lists.

At this stage the choice node would pass this list up to its chance node parent. The

chance node would also obtain the lists from its other children. The resulting lists are

shown in Figure 3.13.

At a chance node the sets of policies from the children are combined by taking their

cross product. This is necessary because each policy of the chance node must specify

actions for every reachable state under all its children. Start by taking the first partial policy

of the first child (state 1), in this case A**B* and com bine it with the first partial policy

of the second child (state 3) **ABA. To com bine two partial policies com pare each action

taken in each state, if they match then continue, if one is a blank then take the action from

the other, but if they don’t match then discard the entire combined policy. In the example

A«#B» combined with »»ABA gives A*ABA. Once the two partial policies are combined

the resulting partial policy would be com bined with the first partial policy of the next child

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B -

Leaff L e a f/

Leaf Leaf

Figure 3.12: Choice Node Policy List

aT b 1
bTbA fg

(T e a T)L Leaf

LeafLeaf

Figure 3.13: All Choice Node Lists

and this process would continue until the partial policy is combined with a partial policy

from each child. In the example there are no m ore children and the resulting partial policy

is A*ABA. This will be the first partial policy in the set of possible partial policies for

this chance node. The next partial policy o f the first child is then combined with the first

partial policy of the second. In the example B**BA is com bined with **ABA. The resulting

partial policy is B*ABA. The partial policies are combined in this fashion trying all possible

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

combinations. In the example when the third partial policy of the first child is combined

with the first partial policy of the second child a problem arises. The two partial policies are

B**BB and «*ABA. These partial policies disagree on the last state. The first partial policy

selects action B where the second partial policy selects action A. This conflict cannot be

resolved and the policy is discarded. Once all the partial policies are combined and those

that do not combine are discarded the list shown in Figure 3.14 is obtained.

Al i IBI

A A B A
B A B A
A A B B
B A B B
A B B
B B B A
B B B B

c

/
L e a fy

£

L 5 J)
./ \

IB B A
JB B B

.

(L e a f) (L eafj
i

A B A B A
B B A A B B
B B B B B

A B A
A B BU

L ea f) ("Leahs

Figure 3.14: Chance Node Combined Policies

Once the partial policies are backed up all the way to the start node a complete list of

policies for the tree is obtained. This list can then be used to evaluate the scenario.

3.3.4 Sampling

The policy space defined by the CCTree can quickly become very large, too large to extract

in its entirety. Due to limited resources the com puter may not be able to hold the set of

policies explicitly in memory at one time. To evaluate policies from such large policy

spaces a sample of the policies is taken. Since the Game Analyzer holds no prejudice on

how to play a given game each policy in the space is equally likely. Therefore sampling

from a uniform distribution over the policy space would be the appropriate thing to do.

Round Robin Sampling

This is the sampling method currently used in the Game Analyzer. It is a non-random

sampling method that simulates sampling over a uniform distribution.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The sampler starts from the start state with a blank policy. At a choice node (like the

start state) the sam pler selects an action, fills in the current policy with the action selected

at the current state and recursively follows down that branch of the CCTree. The sampler

selects an action by looking through the list of possible actions for the current state in the

order they are listed. W hen considering an action the sampler calculates the percentage

of tim es it already sampled this action compared to the number o f times it has sampled

any action in this state. From the information stored in the node, the sam pler retrieves the

estim ated percentage of policies that take this action at this state. The calculation of this

estimate is discussed in Appendix A. Once the sampler has calculated these numbers it

compares them. If the percentage o f samples is smaller than the percentage of policies then

this action is under-sampled and should be sampled again; otherwise the sampler will move

on to the next action.

At a chance node, the sam pler recursively follows down each branch in turn. Since each

choice node fills in part of the policy the chance node sends the resulting policy from one

branch into the next branch. This prevents choice nodes with duplicate states from choosing

different actions. If the current policy has an action already selected for the choice node’s

state then that choice node will automatically select that action.

Using the Round Robin Sam pling method reflects the true policy distribution reasonably

accurately. The results o f sampling will be demonstrated in Section 4.3.2.

3.3.5 Policy Evaluation

The set of policies extracted from the CCTree is evaluated to produce the output for the

developers. Each policy in fact represents a strategy to be used to play through the scenario.

For each state encountered the policy currently being used should have an action selected.

Because of the random ness in the games evaluated, not all trials using the same policy

will result in the same end state. In other words, when a single trial is executed only one

branch of each chance node encountered is explored. The policy contains information for

all branches of every chance node encountered. To test the policy thoroughly multiple trials

must be executed for the same policy. The number of trials actually run is a fixed number for

each policy and is set by the developer. At the end of each trial the resulting data requested

by the developer is stored in an array associated with the policy. Once the Policy Evaluator

evaluates all policies w ithout discovering any unlikely events the data is stored to file and

can be visualized.

3.3.6 Policy Expansion

Since the Policy Evaluator is running a much larger num ber of trials than the M odel Builder

it is possible for the Policy Evaluator to encounter a chance event that was not seen by the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

\

0 f ^ ----- ;
Visits: -|20 120

Extremely Unlikely Event Unlikely Event

Figure 3.15: Unlikely Events

Model Builder. This event will be detected because the resulting state from the choice node

will not match any o f its likely children in the CCTree. These occurrences can be sorted

into three groups:

• the state is an end state. Resolve by adding a leaf node to the CCTree and connecting

it to the chance node.

• the state is not an end state and is below the threshold. These are called extremely

unlikely events.

• the state is not an end state and was an extremely unlikely event but this visit pushes

it above the threshold. This state is now called an unlikely event.

The probability o f extremely unlikely events occurring is so small that there is no need

to explore this portion o f the CCTree in detail. Their com bined outcome does not signifi

cantly affect the end result o f the evaluation. The event will be explored whenever it occurs

but the policy down that branch will take default actions. If an extremely unlikely event

keeps reoccurring and passes the theshold for being considered extremely unlikely, it be

comes an unlikely event that should be explored in depth. For example, in Figure 3.15 the

rightmost leaf in (A) is an extremely unlikely event because it has occured fewer than 1 %
of the time. W hen it occurs again (B) it exceeds the 1% threshold and becom es labeled an

unlikely event.

When an extremely unlikely event becomes an unlikely event, the Policy Evaluator will

instruct the M odel Builder that the model is incomplete, and the Model Builder will expand

this section of the CCTree. Once the expansion is completed, the Policy Evaluator will

extract the new policies from the expanded CCTree and continue with the evaluation. W hen

instructing the M odel Builder the Policy Evaluator will create an incomplete policy to direct

the Model Builder to the chance node that generates the unlikely event. The incomplete

policy will contain only actions for the states that lead directly to the offending chance

node. The M odel Builder will then use this policy to com plete the CCTree.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following example illustrates how the incomplete policy is used to expand the CC-

Tree. In the previous tree building example the hero faced a troll and an ogre. The CCTree

in Figure 3.9 (reprinted here for convenience) was considered complete and sent to be eval

uated. Consider the following. From the start node if the hero chooses to move toward the

troll, corresponding to the left branch of the CCTree, a chance node is encountered. Assum

ing the result of the chance node is to encounter the troll alone, state T is the resulting state.

Now the only action is to attack the troll and the two resulting states from this chance node

are TO, where the ogre reaches the hero before he kills the troll, and TxO, where the ogre

reaches the hero as he kills the troll. From this chance node it is unlikely but possible that

a third state is encountered where the hero kills the troll while the ogre still has not reached

him, state Tx. Since state Tx is highly unlikely the Model Builder may have considered

the tree complete before ever seeing this state. If this state is encountered often enough the

Policy Evaluator will direct the Model Builder to expand that region of the CCTree.

The incomplete policy produced indicates how to get to the offending chance node. The

Policy Evaluator traces its steps backwards from the offending chance node and creates an

incomplete policy that can only lead to this node. In the example the policy would be, at

the Start node “move toward troll” and from state T “attack the troll” . The rest of the policy

would be blank. The policy is depicted w ith bold arrows in Figure 3.16.

Even though the chance node cannot be forced down the path to state T, any trial which

does not lead to state T can be aborted and therefore the expansion of the CCTree is sped

up. After the unlikely event has been observed this section of the CCTree is built following

the algorithm discussed earlier in Section 3.2.1. In the example the CCTree obtained is

shown in Figure 3.17.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'y S tart)
MT MO

T O
AO

T OT xO T O x
AOAO,

T xOTx Ox (Tx Ox
AO,

T xO x Tx Ox

Figure 3.16: Incomplete Policy

Start
MT MO

T O
AO

T OT xO T O x
AO ■AO

TOx
" S at

Tx Ox T xOTx Ox
AO,

Tx Ox),Tx Ox Tx Ox

Figure 3.17: Updated CCTree

3.4 Output Files

The files created by the Game Analyzer contain the data gathered for each policy as well

as a definition of the policy. For example, consider the policy in Table 3.3 for “The Troll

and the Ogre” scenario, and suppose the developer is only interested in the average time it

takes for a human to play the scenario. The policy definition file in Table 3.5 contains all

the information that uniquely identifies the policy and the results file in Table 3.6 contains

the associated results. This example only shows a single entry but in reality there is an entry

for all the policies that have been evaluated.

3.5 Summary

This chapter has covered the entire function of the Game Analyzer. The parts shown in

Figure 2.2 (reprinted as Figure 3.18) have been explained in detail. The Model Builder first

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

States
Policy # Start T O T O T O x Tx O

20 M O AO AT AT AO

Table 3.5: Policy Definition File

Policy # Average Run Time

20 24.3

Table 3.6: Results File

builds a model of the policy space. Using this model the Policy Evaluator extracts policies

and executes them. The data resulting from executing the policies is stored in files for the

game developer to visualize at his leisure. These results contain information specified by

the game developer to help him fine tune his game.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S i m u l a t o r

Interface Layer

Model
Builder

;

Policy
Evaluator

/
Set of / Evaluation

Possible / Of all
Policies Policies

(CCTree)

Game Analyzer

r~
Output Data

Figure 3.18: Overview of the Gam e Analyzer

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Experiments

This chapter presents the results of applying the Game Analyzer to various scenarios and

evaluates the overall functionality of the Game Analyzer. Section 4.1 explains how the

scenarios are created. Section 4.2 and Section 4.3 demonstrate the pow er o f the Game

A nalyzer and discuss the results obtained from applying it to various scenarios. Finally

Section 4.4 evaluates the performance of the Game Analyzer.

4.1 Experimental Setup

The experiments were done using a toy version of a Role-Playing Game (RPG). The game

was based on Dungeons and Dragons to simulate games like Baldur’s Gate and Neverwinter

N ights.1 Only the m ost basic of functions have been implemented in the simulator. Even

though the simulator is limited, some of the scenarios used can be found in real games.

In all the scenarios used here the player would control a single hero. Therefore the Game

Analyzer will control this hero throughout the scenario. Since the Game Analyzer controls

the hero as a player would, the Game Analyzer will use the set of allowable actions for the

hero as defined by the game in question. The hero’s opponents in these scenarios will have

a deterministic scripted behavior. As mentioned previously, the Game A nalyzer does not

require that the opponents be deterministic but it is the case in these scenarios.

In the sim ulator each character is using a weapon and wears armor. Each character can

strike at an opponent in the range of their weapon. To strike someone the striking character

rolls a twenty-sided die and adds his skill with the weapon then compares the result with

the armor of his intended victim. If the result is higher than the armor value the strike

succeeds. If the strike succeeded then damage is dealt to the victim. Each weapon has a

base damage value and a random damage value. A die is rolled to determ ine the random

damage (the number of sides on this die depends on the weapon) and the base damage value

is added to the result. To decide who strikes first each character rolls a ten-sided die and

‘Baldur’s Gate and Neverwinter Nights are video games developed by Bioware Inc.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

adds their weapon speed (the lower the weapon speed, the faster the weapon) to it. Then

each character does their action in turn starting from the lowest result.

4.2 Answers from the Game Analyzer

This scenario will be used as a working exam ple throughout this section.

4.2.1 Example Scenario: Surrounded

Actors:
• The hero has a choice of two weapons and can change weapons every time he is

given a choice of actions. The first weapon is a short sword which deals low variance

damage. The second weapon is a heavy axe which deals high variance damage. The

sword’s average damage is slightly lower than the axe’s. The hero can attack any

monster as long as he is within his w eapon’s range of that monster. The hero can

move to any m onster as long as he is not within his w eapon’s range of that monster

or any other monster.

• The armored ogre w ielding a twig is hard to hit, has many hit points and deals in

significant amounts of damage. The ogre will always move towards and attack the

hero.

• The naked goblin with the giant axe is easy to hit, has very few hit points and deals

large amounts of damage. The goblin will always move towards and attack the hero.

• The troll is average in every respect. The troll will always move towards and attack

the hero.

Setup:

The three monsters are placed at the same distance from the hero but in different direc

tions. Therefore moving towards one m onster moves the hero away from the others. W hen

the hero chooses to move towards a monster, he will not have a choice of actions until a

change of abstract state occurs. Once the hero is in range of a monster and chooses to at

tack it, the hero will not have a choice of actions until a change of abstract state occurs. The

abstract state changes when a monster dies or when a m onster comes within weapons range

of the hero. This setup can be seen in Figure 4.1.

End States:

All three monsters are dead or the hero dies.

Abstract State Variables:

Hero is alive, Troll is alive, Ogre is alive, Goblin is alive, Troll is in range, Ogre is in

range, Goblin is in range.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.1: Exam ple Scenario: Surrounded

In Chapter 1 it was stated that the Game A nalyzer could help answer many questions.

The Game A nalyzer itself does not fully answer the questions. It provides the raw data

that can be used to answer those questions. The graphical results seen below are produced

with a prototype visualization tool. The visualization tool used throughout this docum ent is

primitive. The focus o f this research is to gather the data that will help the game developers

analyze their game and not the visualization of this data. The data gathered is so rich that

even with this primitive visualization tool many useful observations can be made. A more

powerful tool could be made to explore the data produced by the Game Analyzer in greater

depth and answer many m ore questions. Hence the discussion will also include answers

which cannot be provided by the visualization tool but can be provided by the data from the

Game Analyzer.

The raw data collected in these scenarios will always be the final damage the hero has

suffered and the tim e in seconds it would take a human player to complete the scenario. The

data to collect is selected by the developer and does not have to be only two items. These

particular two items were selected because they can be easily plotted and answer m ost of

the questions.

The output for the example scenario from the visualization tool is shown in Figure 4.2.

The Y axis represents the total tim e in seconds it would take a human player to com plete

the scenario and the X axis represents the total dam age the hero took. Each dot represents

the average result for a specific policy. The visualization tool has options to select policies

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200

180

160-

140-

Tim e
1 2 0 -

100-

80 - j;

60 - S. | S!

40 . : : s : : : : s : s :s s s s s s s : s s s s ! ! ! ! ' :

20 J 1-------1-------1------ •-------------- 1-1------ 1-------1-------1-------.—
10 20 30 40 50 60 70 80 90 1 00 110 12 0 1 30 14 0 150

D a m a g e

Figure 4.2: Scenario: Surrounded - Results

with a menu. Currently all policies are selected but the selection m enu will be used in

future examples to highlight certain policies. The vertical line along the right hand side

is the amount o f hit points the hero had when starting the scenario. For the test scenarios

this will always be 140 to simplify graph interpretations. Any policy with an average result

over the line ends with the hero dead almost all the tim e.2 In Figure 4.2 the results are

divided into two large groups. The first group is the two large clouds taking less than 60

seconds to com plete the scenario. These are policies in which the hero succeeds in killing

the monsters and takes anywhere from 20 to 120 damage. The second group of policies is

the vertical cloud near the 140 damage line. Typically, these are policies in which the hero

spends his time alternating between weapons while getting beat down by the monsters.

The sequence of actions in which the hero continuously swaps weapons is allowed by the

game. The Game Analyzer examines all legal sequences of actions, including sequences

like swapping weapons continuously. Since most human players would not use a sequence

of actions which always leads to the death of the hero these policies will be disregarded

while answering m ost o f the questions in this chapter.

Eliminating the policies where the hero continuously swaps weapons while getting beat

down by monsters from the policy space is not entirely trivial. The action definition table

could be modified to permit changing weapons only when not in combat. The graph result-

2It is possible for the hero to suffer more than 140 damage. For example, if he has already suffered 139
damage and he receives a blow for 9 damage the end result will be 148 damage.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ing from this change can be seen in Figure 4.3. This change is very limiting to the hero. The

hero can no longer swap weapons between killing m onsters if the second monster reaches

him before he has finished killing the first. Since the hero can only swap weapons while

out of combat if he is never out of combat he can never change weapons. It may be the case

that it is preferable to change weapons while in com bat since some weapons may be better

suited against different monsters. In this particular scenario selecting a single weapon and

fighting all the monsters with it is an effective way to play. The policies shown in Figure 4.3

are among the policies that minimize time and damage in Figure 4.2 but do not include the

optimal policy.

2 0 0 -

180 -

160 -

140 -

T im e
1 2 0 -

1 0 0 -

80 •

60 -

20 J --------------------- .------ 1-------------- 1----------------------------- 1-1--------------1--------------1--------------1--------------1--------------
10 20 30 40 50 60 70 80 90 10 0 1 10 1 20 1 30 140 1 50

D a m a g e

Figure 4.3: Scenario: Surrounded M odified - Results

Another modification could be to take into account previous actions and not let the

hero change weapons twice in a row. The problem with this modification is that the state

description would have to be expanded to include inform ation about the past. The simplest

change would be to add a statement “the hero changed weapons last round” to the state.

This would prevent the hero from changing weapons tw ice in a row. The result of this

change can be seen in Figure 4.4. Even though Figure 4.4 looks less populated, each dot in

the graph represents many more policies than in Figure 4.2. To implement this change the

abstract state has to be enlarged which doubles the total num ber of possible abstract states.

With this increase in the number of abstract states the num ber of policies is also increased.

But the removal of all the policies in which the hero swaps weapons continuously balances

out the increase in most cases. Therefore this is a viable solution. The only problem that

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arises from this solution is that in some scenarios waiting is a good policy and swapping

weapons simulated waiting.

In most of the scenarios the modified abstract state will be used to remove the weapon

swapping problem. In scenarios that benefit from a policy that involves waiting the original

abstract state will be used.

200

180 -

160 -

140 -

T im e
1 2 0 -

1 0 0 -

80 -

60 -

40 * ..V

20 J-------------- .------- ,-------------- 1----------- 1--------------- 1------------ 1----------------- 1--------------1------- 1----------------- 1-------- .------------- »----------- •----------1---------------
10 20 30 40 50 60 70 80 90 10 0 11 0 120 130 140 150

D a m a g e

Figure 4.4: Scenario: Surrounded without Continuous Weapon Switching - Results

4.2.2 How Long Will this Scenario Last?

One consideration that is often im portant in designing a scenario is the time it will take

a human to play the scenario. Scenarios that take too long become bothersom e to some

players and they might give up on the game. But in some circumstances, such as a big

battle versus a dragon, the scenario should have a longer duration. Therefore the game

designer would often want to know how long the scenario would last. The answer to this

question can be easily extracted from the output. Looking at the output in Figure 4.4 it can

be seen that on average the scenario will last 40 to 60 seconds.

4.2.3 How Much Damage Will the Hero Take?

Another consideration that is important in the scenario design is how much damage the hero

will take. If the scenario is part of a sequence o f scenarios with no rest in between then the

hero should be able to survive the entire sequence if he is skillful. This question is similar

to the previous question since both these questions are directed at the axes. Unfortunately

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the damage is not as clear cut as the time. Two large groups of policies cover a sizable

portion of the damage range. The first group covers approximately 20 to 55 damage and

the second group covers approxim ately 65 to 115 damage. All policies fall in one o f these

groups. This means that in this scenario a player can avoid taking damage by using skill or

experience.

4.2.4 How Much Difference is there Between Different Policies?

The previous question illustrates the difference in the policies quite clearly. One group of

policies will yield 20 to 55 dam age while another group will yield 65 to 115 damage. These

differences can be further illustrated by dealing with a subset of the policies. Figure 4.5

shows the same graph as in Figure 4.4 but this time only the policies where the hero starts

by moving to and killing the naked goblin with the giant axe are in black and all other

policies are in light grey. The black policies are in the first group and therefore reduce the

damage the hero suffers. A skilled player would select one of these policies.

2 Q 0 j

180 -

160 -

140-

T im e I120

1 0 0 -

S O . i

60 •

20 J-------------- 1------------- ---------------■--------------1-------------- -------------- 1------------1-----------------1----------- 1-----------------.------------- .------------■--------------- 1------------- .----------------
10 20 30 40 50 60 70 8 0 90 100 110 120 130 140 150

D a m a g e

Figure 4.5: Scenario: Surrounded - Results of Goblin Policy

If on the other hand the hero were to start by moving to and killing the armored ogre

wielding a twig the resulting policies would be those in black in Figure 4.6. The hero suffers

more damage from these policies as they are in the second group. An unskilled player might

select such a policy and face a grim outcome.

It is not always the case that different policies lead to significantly different outcomes.

Figure 4.7 shows the resulting graph of a scenario taken from Neverwinter Nights, which

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0 - j |

1 8 0 -

1 6 0 -

1 40-

T ime
1 2 0 -

1 0 0 -

80 -

60 ■

40 - ’

20 -I ,--------------.--------------1--------------1-------------- 1--------------!--------------1--------------■ 1-------1-------------- 1--------------1-------------
10 20 30 40 50 60 70 80 90 1 00 110 120 130 140 1 50

D a m a g e

Figure 4.6: Scenario: Surrounded - Results of Ogre Policy

will be discussed further in Section 4.3.4. Figure 4.7 indicates that there is no real difference

between the policies. Skill does not matter in such a scenario, all players would end up with

a similar experience. This might not have been obvious to the designer without using the

Game Analyzer.

4.2.5 What Happens if Certain Parameters of the Scenario are Changed?

This is easily answered by running the scenario a second time with the new parameters

and seeing what the output yields. As an example, if the troll is given a giant club which

doubles his damage output the resulting graph is that shown at the bottom of Figure 4.8.

When compared with Figure 4.4, reprinted in the top of Figure 4.8, it is easy to spot the

differences. The scenarios look sim ilar but as expected the hero takes more damage in the

new variation since the troll deals more damage. A nother notable difference is that the two

groups of policies are no longer as clearly separated as before. Since the troll now deals

much more damage, the order in which to kill the monsters is no longer as easy to discern.

4.2.6 How Good is a Particular Subset of Policies?

A subset of policies can be selected from the data provided by the Game Analyzer and dis

played with the visualization tool and the user can evaluate the resulting data. In Figure 4.6

the group of policies where the hero moves towards the ogre and kills it first is highlighted.

The selected policies are in black and all other policies are displayed in light grey. The data

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0 - :

100- |

160-

1 40-

T im e
1 2 0 -

ioo - j

80 -

60 -

40

20 -I .--------------1-------------- .-------------- -------------- 1--------------1--------------1--------------1--------------1-------------- .--------------,-------------- 1--------------■--------------
10 20 30 40 50 60 70 8 0 90 1 00 110 1 20 130 140 150

D a m a g e

Figure 4.7: Scenario: Cornered by Trolls (Section 4.3.4)

obtained by the Game Analyzer includes the results from each separate execution of each

policy. With this data the mean, the variance and so on can be calculated.

4.2.7 Which Policies Yield the Best/Worst Results?

By looking at the graphs produced by the visualization tool the policies of interest can easily

be isolated. The best policies are found on the left side o f the graph where the hero takes

the least amount of damage. In the case of best time the bottom policies would be selected

since they are the fastest. If both time and damage are considered then only the bottom left

policies would be selected. In any case, the goal is to select a region of interesting policies

and find out which policies are there. Using the data provided by the Game Analyzer it

is possible to select a region of interest and obtain the related policies. These policies can

be compared to identify any similar traits. As an example, the best policy in Figure 4.4

involves killing the goblin, the troll and then the ogre. One thing to note is that the hero

always uses the second weapon to kill the goblin in the best policies. Using these results

the game designer could assess if changes need to be made to the scenario.

4.2.8 Which Policies Yield Similar Results?

With the visualization tool the user can click on a single dot and get all the policies which

currently yield that result. Even though the visualization tool only displays averages, the

data provided by the Game Analyzer is much richer. This data contains the time and damage

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. * : _ .t; .■

10 20 30 40 50 60 70 80 90 1 00 11 0 120 130 14
D a m a g e

D a m a g e

Figure 4.8: Scenario: Surrounded - Troll with Club Comparison

for every run of every policy. Therefore using the data provided by the Game Analyzer it

is possible to use clustering algorithms or other software to obtain an accurate grouping of

policies which yield similar results.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 Test Scenarios

In this section many test scenarios will be described along with their results. In all test

scenarios the following are always true unless otherwise specified. The hero has a choice of

two weapons and can change weapons every time he is given a choice of actions. The hero

can attack any monster as long as he is within weapons range of that monster. The hero can

move to any monster as long as he is not within weapons range of that monster or any other

monster. Also the scenario ends when all monsters are dead or the hero dies.

All the scenarios also share common abstract state observations. The abstract state

keeps track of the deaths of the hero and any monsters described in the scenario. The

abstract state also includes if any of the monsters are within range o f the hero’s weapons.

The abstract state also notes which weapon the hero is currently using.

4.3.1 Scenario: The T Junction

Actors:

• The hero can move down the third branch of the hallway any time he is given a choice

of actions.

• The two trolls are identical in every respect. They will move towards the hero and

attack him.

Setup:

The two trolls are placed at either end of a long hallway. The hero is placed between the

trolls in the hallway such that he is at a T junction in the hallway. The third branch of the

hallway is only one person wide. If the hero chooses to go down the hallway he can create a

bottleneck for the trolls and force them to fight him one at a time. W hen the hero chooses to

move towards a monster, he will not have a choice of actions until a change of state occurs.

Once the hero is in range of a monster and chooses to attack it, the hero will not have a

choice of actions until a change of state occurs. The state changes when a m onster dies or

when a monster comes within weapons range of the hero. The scenario starting point can

be seen in Figure 4.9.

Additional Abstract State Variables:

The hero is currently in the small branch of the hallway.

This scenario was created in an attempt to predict the outcome as a game designer

normally does. In this discussion “I” refers to the author playing the role o f the game

designer. By creating the bottleneck for the trolls I expected a big difference between a

good policy and a bad policy. I was expecting all policies that started by heading down

the bottleneck to be in the upper left area of the graph thus taking longer to execute since

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.9: Scenario: T Junction

the hero runs down a hallway and waits for the trolls but taking less dam age since he faces

them one at a time. I was also expecting those policies that did not use the bottleneck to be

in the lower right area, taking less time and more damage. I was surprised by the results in

Figure 4.10. Waiting for the trolls to come down the small hallway is an important part of

the scenario therefore the here is allowed to swap weapons continuously in this scenario but

all the policies that do not waste an inordinate amount of time are in the circlular group in

the bottom left. These include both the policies that use the bottleneck and those that do not.

The policies using the bottleneck are in the upper left portion o f the circle and those that do

not are in the lower right portion. But this was not the graph I wanted. The Game Analyzer

indicated that there was not much difference between the bottleneck and just running to one

troll and then the other.

I applied modifications to the scenario and repeated the test using the Game Analyzer

until I achieved the results I expected from the scenario. I modified the shape of the hallway

and the distance between the hero and the trolls. After a few iterations the scenario behaved

as I had intended. The whole process took approximately one hour and I obtained the results

in Figure 4.11. There is a clear separation between the upper left potion of the circle and

the lower right portion. In the upper left portion the hero is using the bottleneck and in the

lower right he is not.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0 - . *

180 - „

160 -

140- . . . : ' :1 ’

T im e ”
120- . . I; '

100- .. •■.!!"«

80 "

20 4-------- 1-------- 1-------- .-------- 1-------- 1-------- 1-------- »-------- 1-------- .-------- 1-------- 1-------- 1------------
10 20 30 40 50 60 70 80 90 1 00 11 0 1 20 130 140

D a m a g e

Figure 4.10: Scenario: The T Junction - Results

2 0 0 - 1

180-

160 - . * *

140-

Tim e ’
1 2 0 -

100- >

so - ;

60 "

20 J ---------------- 1-.------------ .------ ------------------------1- 1-----
10 20 30 40 50 60 70 80 90 1U0 110 12 0 1 30 140

D a m a g e

Figure 4.11: Scenario: The T Junction M odified - Results

51

150

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Scenario: The Maze

Actors:

• The hero is exactly as in the standard description.

• The three trolls are all identical. They will move towards the hero and attack him.

Setup:

The trolls and the hero are placed about a small maze. The trolls as well as the hero

magically know the location of everyone in the maze. W hen the hero chooses to move

towards a troll, he will not have a choice of actions until a change of state occurs. Once the

hero is in range of a troll and chooses to attack it, the hero will not have a choice of actions

until a change of state occurs. The state changes when a troll dies or when a troll comes

within weapons range of the hero. This setup can be seen in Figure 4.12.

Figure 4.12: Scenario: The M aze

This scenario was created to test the sampling method used. Having a m aze with m on

sters strewn about it results in many policies. The Game Evaluator was executed with

different sampling thresholds to see if a small sample was representative of the larger pic

ture. In Figure 4.13 there are 58,216 policies giving the results a thick slanted “V” shaped

look. In Figure 4.14 only 581 policies were sampled, a 99% reduction. Even with this

reduction the resulting graph closely resembles the one shown in Figure 4.13. The only real

difference being that it is not a com pletely fleshed out “V ” but the skeleton is there.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These results show that with a 99% reduction in the number of policies sampled the

Game Analyzer still produces useful data. The reduced set o f policies demonstrates the

range of different policies and their tendencies. The information about the scenario obtained

from the small set of policies is similar to that obtained from the large set.

120-t

i oo ̂ ^

80 - _ :{

40 '.

20 J----- -------------- -1--.----- --------1----1---------- 1 i----- 1----- 1--- ------
to 20 30 40 50 60 70 80 90 100 110 120 130 140 150

D am age

Figure 4.13: Scenario: The M aze - Results

200-

ISO

>60-,

140-

120-

100-

SO - m m '

10 -j

20--1------- 1------- ---------- .----- -------- ---------- p------------ -------- -------- -------- -------- 1-------- 1-------------
10 20 30 40 50 60 70 SO 90 100 110 120 130 140 150

D am age

Figure 4.14: Scenario: The M aze - Sampled

Unfortunately the small set o f policies does not always capture the extremities of the

policy space. In Figure 4.14 the optimal policies are not present. There are eight policies

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that result in less than 23 dam age in Figure 4.13, and none of these are captured after

reducing the sampling one hundred-fold. This is not entirely surprising since the odds of

selecting one of the above mentioned eight policies are quite slim even with a perfectly

uniform distribution o f samples over the 58,216 policies.

4.3.3 Scenario: Cornered

Actors:

• The hero can attack any m onster but cannot move.

• The armored ogre wielding a twig is hard to hit, has m any hit points and deals in

significant amounts of damage. The ogre will always attack the hero.

• The naked goblin with the giant axe is easy to hit, has very few hit points and deals

large amounts of damage. The goblin will always attack the hero

• The troll is average in every respect. The troll will always attack the hero.

Setup:

The scenario starts with the hero being cornered by the three m onsters described above.

W hen the hero chooses to attack a particular monster, this m onster m ust be killed before

the hero gets another choice o f actions.

Figure 4.15: Scenario: Cornered

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This scenario is almost identical to the sample scenario “Surrounded” . The difference

here is that the hero starts his journey adjacent to all the monsters. In the Surrounded

scenario the hero starts a few paces away from all the monsters. Starting the hero adjacent

to all the m onsters limits the possible actions taken and reduces the number of policies

produced.

In this scenario three monsters of different strengths and weaknesses attack the hero.

The hero can defend him self with one of two weapons and has at most four options; chang

ing weapons or attacking one of the three monsters with the weapon in his hand. With such

a small branching factor the policies can be enum erated exhaustively. The resulting data is

displayed in Figure 4.16.

2 0 0 -

180 -

160 -

140 -

T im e
12D-

1 0 0 -

80 •

60 -

40 -

20 J 1-------1------ .-------1------- 1-------1-------1-------1-------1-------1-------1—---- 1------
10 20 30 40 50 60 70 80 90 10 0 110 12 0 1 30 140 150

D a m a g e

Figure 4.16: Scenario: Cornered - Results

With only 48 policies each policy can be exam ined in detail. The large gap between the

two groups of policies is caused by the ogre. The ogre takes a long time to kill because he

has many hit points. If the hero does not start by killing the other two monsters the scale of

damage is completely shifted to the right. The left group consists o f policies where the ogre

is left for last and the right group of policies are those that incorporate killing the ogre with

other monsters still alive. There are six different sequences in which the monsters can be

killed. Each sequence in which the monsters are killed actually form eight policies. These

eight policies involve swapping weapons and killing the monsters. Even though the hero is

not allowed to swap weapons twice in a row, the following eight policies can be formed.

S will indicate swapping weapons and K will indicate killing a monster. The policies are:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

K K K , S K K K , K S K K , K K S K , S K S K K , S K K S K , K S K S K and S K S K S K .
The eight policies that involve starting by killing the ogre are the eight policies found at

125 damage and beyond.

4.3.4 Scenario: Cornered by Trolls

Actors:

• The hero can attack any troll but cannot move.

• The healthy troll has many hit points. He will always attack the hero.

• The wounded troll has fewer hit points than the healthy troll but identical in every

other respect. He will also always attack the hero.

• The sickly troll is at death’s door but otherwise identical to the other two trolls. The

sickly troll always attacks the hero.

Setup:

The scenario starts with the hero being cornered by the three trolls described above.

W hen the hero chooses to attack a particular troll, this troll will be killed before the hero

gets another choice of actions.

Figure 4.17: Scenario: Cornered by Trolls

This scenario was created as a simple way to illustrate that this method can be applied

to real commercial games. This particular scenario takes place in Neverwinter Nights.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Starting the game as a warrior and playing the module published with the game, this small

scenario will be encountered repeatedly over the first few levels. Since the hero has no

special powers or spells as an early level warrior, this scenario is almost identical to those

found in Neverwinter Nights. Since all the monsters in this scenario are identical except for

their hit points there is m uch less variance in the results o f different policies.

2 0 0 -

180 -

1 6 0 -

14 0 -

T im e
1 2 0 -

1 0 0 -

80 •

40 •

20 J ■-------- ■-------------------- ---------------.---------------------------- 1-------------- -- 1-.-,--1-------------- 1--------------1-----------------------------.--------------------
10 20 3 0 40 50 SO 70 80 90 W 0 110 120 130 1 4 0 1 5 0

D a m a g e

Figure 4.18: Scenario: Cornered by Trolls - Results

Figure 4.18 shows that there was an impact on the damage taken depending on which

monster the hero chose to kill first in this scenario. Killing the m onster with the least

number of hit points first yielded the best results.

This scenario was first attempted with all the trolls having the same num ber of hit points

as this is often the case in Neverwinter Nights. The results shown in Figure 4.19 were

obtained from this scenario. It can be easily noted that the policy chosen does not matter

much in this case. But the results are still interesting since they show that this encounter is

limited to a m axim um of approximately 42 seconds and 56 damage as well as a m inimum

of 32 seconds and 42 damage.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0 -

1S0-

160-

140 -

T im e
1 2 0 -

100 •

80 •

60 -

20 -I---------------.---------------.----------1---------------1----------------- .-------------1-------------- 1---------------1----------'-------------------1---------- 1-------------1---------------i-----------------'—
10 20 30 40 50 60 70 80 90 10 0 110 12 0 130 140 150

D a m a g e

Figure 4.19: Scenario: Cornered by Clones - Results

4.3.5 Scenario: The Hallway

Figure 4.20: Scenario: The Hallway

Actors:

• The hero is exactly as in the standard description.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• The two trolls are identical in every respect. They will move towards the hero and

attack him.

Setup:

The two trolls are placed at either end of a long hallway. The hero is placed between the

trolls in the hallway such that he is much closer to one o f the trolls as seen in Figure 4.20.

W hen the hero chooses to move towards a troll, he will not have a choice of actions until a

change of state occurs. Once the hero is in range of a troll and chooses to attack it, the hero

will not have a choice of actions until a change of state occurs. The state changes when a

troll dies or when a troll comes within weapons range of the hero.

200- j

180 - ■*

160 -

140 -

Time 120-

10 0 - :■

80 - .*

60 • • : :

40

20 J--------------1-------------- !--------------1--- I---------- I----------------- ---------------1-------------- 1------------ 1----------------1--------------1----------- .---------------
10 20 00 40 50 60 70 80 90 10 0 1 1 0 1 20 13 0 14C 150

D a m a g e

Figure 4.21: Scenario: The Hallway - Results

This scenario was another attempt at predicting the outcome. The scenario is simple,

one troll at either end of a tunnel and the hero much closer to one than the other. As the

designer, I anticipated that killing the troll closer to the hero followed by the other troll

would yield the best results. I also anticipated that running to the far troll while the other

chases the hero and then killing one or the other would end in bad results. The exercise

was successful and the Game Analyzer helped me verify that the scenario was working as I

had predicted. In Figure 4.21 the results resemble a slanted “V ” . The vertex where the two

branches of the “V ” meet is composed of policies where the hero kills the closer troll first.

The lower of the two branches corresponds to moving towards the far troll first. The hero

takes more damage in this branch than in the vertex since he ends up fighting both trolls

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simultaneously. The upper branch are those policies that tend to waste time such as waiting

for the trolls to reach the hero instead o f actively seeking them out.

4.3.6 Scenario: James Bond

Actors:

• The hero is exactly as in the standard description. From the starting position the hero

can sneak around and reach one trolls without alerting the other.

• The two trolls are identical in every respect. They will move towards the hero and

attack him.

Setup:

The two trolls are placed in a room with vision impairing obstacles. If the hero sneaks

around to reach one of the trolls, the other will only be alerted once the com bat begins but

will normally arrive too late to help his friend. If the hero does not sneak from the start

he will alert both trolls and will no longer be able to sneak. The path used for sneaking is

shown in Figure 4.22. W hen the hero chooses to move towards a troll, he will not have a

choice of actions until a change of state occurs.

Figure 4.22: Scenario: James Bond

This scenario is used to dem onstrate that the Game Analyzer is not only useful for

standard “hack and slash” RPGs. In this scenario the hero takes the role of James Bond and

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tries to stealthily dispatch the two guards in the control room. The bottom left of Figure 4.23

where the hero takes less than 45 damage corresponds to the policies in which the hero uses

stealth and dispatches the opponents quickly. Towards the right of the graph the hero is

taking more damage and this is mostly due to the lack of stealth. A bottleneck effect where

the hero stands in the door frame and fights the trolls one at a time was also observed when

the hero was allowed to wait by swapping weapons continuously. This bottleneck does not

provide the optimal policies but it does provide some of the policies in the 40 to 50 damage

range. Thus the hero is allowed to swap weapons continuously in this scenario and this

swapping is what is causing many of the deaths seen in the rightmost portion o f the graph.

2 0 0 -

180-

160-

140-

T im e
1 2 0 -

100

1 00 110 120 130 14 0 1 5010 20 30 40 50 60

Figure 4.23: Scenario: James Bond - Results

4.3.7 Scenario: RTS

Unlike the previous scenarios this one takes place in a toy Real-Time Strategy (RTS) engine.

In this engine damage is deterministic and the characters never miss a shot but there is an

added effect called cool-down. Cool-down time is the amount of tim e a unit has to wait

after firing before firing again. Armor in this scenarios is represented by hit points, it takes

longer to destroy a tank than it does to kill a marine. Since damage is determ inistic, all the

scenarios will run for the same length of time and the unit controlled by the Game Analyzer

cannot lose.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actors:

• The hero in this case is an allied Tank firing a 50 caliber machine gun. This gun has

no cool-down period and does little damage. The Tank can shoot at any opponent.

• The Enemy M arine wielding an M -16 has average hit points, causes very little dam

age and has no cool-down.

• The Enemy Heavy Weapons Expert wielding a Rocket Launcher has almost no hit

points, causes massive damage but has a long cool-down.

• The Enemy A rm ored Personnel Carrier (APC) has high hit points, causes average

damage and has an average cool-down.

Setup:

The scenario starts with all the units placed in range of each other. The hero gets to

choose an opponent and will shoot at it until it is destroyed. The opponents will continu

ously shoot at the hero.

End States:

All three opponents are destroyed. The hero cannot be destroyed as this is guaranteed

by the deterministic setting.

This scenario was created to help solve a small question. W hen the hero tank meets up

with three opponents the goal is to find the optimal sequence in which to kill the opponents

to reduce the dam age the hero takes. This is a one vs. N real-tim e strategy scenario and

the question is “Is there an easy formula to assign target selection?” In the simplest case the

following equation can be used:

(Enemy DamagePotential) / (TimetoKMEnemy)
By introducing a cool-down period in which the opponent cannot deal any damage this

formula breaks down. The example in this scenario is one for which this formula does

not work. Using the dam age over time formula the heavy weapons expert should be killed

first then the marine and then the APC. But because of cool-down it is possible to kill

the marine and the heavy weapons expert before the heavy weapons expert fires a second

time. Therefore the optimal solution is to kill the marine first then the heavy weapons

expert followed by the APC. Since this scenario is deterministic and very small the Game

Analyzer returns the results in Figure 4.24 instantly. The left most dot is the optimal solution

just described.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 -I-------------- 1--------------1--------------1--------------'--------------1--------------> ■ i--------------1--------------1-------------- 1-------------- i--------------------
10 20 30 4 0 5 0 60 TQ 8 0 9 0 1 0 0 1 1 0 120 130 140 150

D a m a g e

Figure 4.24: Scenario: RTS - Results

4.4 Evaluating the Game Analyzer

Data was gathered during the executions of all the test scenarios to evaluate the functioning

of the Game Analyzer. Each test scenario was executed multiple times to insure accuracy.

The data was gathered to establish the Game A nalyzer’s usefulness. The Game Analyzer is

meant to help game developers produce better games. The test scenarios have demonstrated

that the results are quite useful but nothing has been said about the costs associated with

these results.

In the scenario “The T Junction” (Section 4.3.1) it was mentioned that fine tuning the

scenario took approximately an hour. Creating the scenario and defining the abstract states

and actions in the first place took about the same time. But creating subsequent scenarios

in the same environment and using the same abstract actions and abstract state takes much

less time. Subsequent scenarios took approximately 15 minutes to create. This time will

vary based on the skill of the person using the Gam e Analyzer.

The time the Game Analyzer takes to execute a scenario can be measured. Of all the

test scenarios “Cornered by Trolls” (Section 4.3.4) was the fastest to execute. It took less

than one second for the Game Analyzer to build the model and evaluate it completely. The

CCTree contained on average 225 nodes and always generated 48 policies. Each policy was

executed one hundred times. The Model Builder played the game on average 500 times to

build the CCtree and all policies were discovered on the first build.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“The M aze” (Section 4.3.2) was the longest scenario to execute. It took fifty three

minutes to build the entire model and and evaluate all the resulting policies. The CCTree

contained more than eighteen thousand nodes. The CCTree contained over fifty-eight thou

sand policies and each policy was executed one hundred times. The Model Builder played

the game on average 110,000 times to build the CCTree. The Model Builder had to expand

the tree two to four times to discover all the policies. For each expansion run the Model

Builder played the game an additional two to five thousand times.

The sample scenario “Surrounded” used in Section 4.2.1 took on average two minutes to

execute. The CCTree for this scenario contained slightly more than three thousand nodes.

The CCTree contained 3808 policies which were executed one hundred times each. The

Model Builder needed to play the game approxim ately twenty-one thousand times to gener

ate the tree. The M odel builder needed to expand the tree at most once during the evaluation

and needed to play the game less than five hundred times to complete the expansion.

The data shows that the Game A nalyzer can play a scenario approximately three thou

sand times per second. This is an average from all test scenarios described in this thesis.

Depending on the scenario the Game Analyzer varied between one and six thousand sce

nario executions per second the average being approximately three thousand. The test sce

narios took anywhere from 20 seconds to over 3 minutes to finish depending on the policy

used. If the game engine used in these tests were to be played by a human it would be run in

real time and a game tester playing the test scenarios using a single policy would take from

twenty seconds to three minutes to play the scenario once. On average a good policy would

take the human forty seconds to a minute to play. In forty seconds the Game Analyzer can

play the scenario one hundred and twenty thousand times.

The Game Analyzer requires a few hours o f w ork to create the state abstraction, the

interface layer and to hook up to the game engine. Then the scenarios might take an hour or

two to set up for the Game Analyzer. Assum e that the total time is eight hours to hook up the

Game Analyzer to the game engine and preparing a scenario. In these eight hours a single

human tester could play the scenario about 500 times. After these eight hours the Game

Analyzer would need a fraction of a second to play the scenario 500 times. Any subsequent

scenarios would not require the initial setup and could be hooked up to the Game Analyzer

in an hour or so.

Thus the Game Analyzer produces inform ative output at a reasonable cost. The time

to set up the game engine to be used with the Game Analyzer is time well spent. The test

scenarios show that even with a simple visualization tool many important questions can be

answered.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Related Work

5.1 Semi-Automated Gameplay Analysis

Research similar to the Gam e A nalyzer has been conducted independently at the University

of Alberta. SAGA-ML [11] [14] is a m achine learning program that attempts to discover

unintended functionalities in gameplay. The goal o f SAGA-ML is to augm ent the abili

ties of the game designer by providing a largely automated analysis o f the game behavior.

SAGA-M L has been applied to FIFA ’99, a video soccer game developed by Electronic

Arts. The results obtained from SAGA-M L identified sweetspots (exploitable weaknesses)

and hardspots (unintentional difficulties) in the game of FIFA ’99. Other research on com

mercial sports games involves genetic algorithms [5]. This research is sim ilar to that of

SAGA-M L but differs even more from the Game Analyzer.

SAGA-ML and the Game Analyzer share almost identical goals but the functionality of

the two programs differ. SAGA-M L consists of an active learning methodology. SAGA-

M L starts with a uniform random sam pling o f the param eter space. The initial setup of

the scenario consists of param eters and the space of all possible parameter settings is what

is being sampled. For a soccer one-on-one kick scenario these parameters could be the

location of the goalie, the location o f the kicker and the angle and power of the kick. The

results from the samples are fed into a m achine learning algorithm. These results are binary,

did the kick score or not. The m achine learner takes this binary output and attempts to

build a decision tree. The learner guides future waves of sampling by putting emphasis on

the ambiguous areas in order to find boundaries. This cycle continues until the boundaries

between areas are clear and the decision tree is accurate. The results are then shown through

a game specific visualization tool.

SAGA-ML starts the sampling process without ever building a model. The Game Ana

lyzer builds a model o f the entire scenario before attempting to sample. This major differ

ence separates the two approaches. SAGA-M L is better suited for sports games where the

Game Analyzer is better suited for Role-Playing Games.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Markov Decision Process

As described by Russell & Norvig [10] an M DP has three defining components: the initial

state S0, a transition model T (s , a, s ') and a reward function R(s). The transition model is

a table of probabilities T(s, a , s ') that denotes the probability of reaching state s ' starting

from state s and executing action a. The reward function R(s) is used to guide the MDP

solver in its search for an optimal solution.

The reason this simple transition model T(s, a , s ') works is because the transitions are

assumed to be Markovian. Russell & Norvig [10] define a transition model as Markovian

if “the current state depends on only a finite history of previous states” .1 Therefore the

transition probabilities depend only on a finite history of previous states. This can be further

simplified by using a first order M arkov Decision Process which assumes that the current

transition probabilities depend only on the current state.

A solution to an M DP takes the form of a policy 7r. Each policy contains entries 7r(s)

which represent a probability distribution over the actions to be taken in state s. The policies

contain an entry 7 r (s) for every possible state s .

When comparing an M D P to the CCTree some similarities can be noted. They are

both used for sequential decision problems. Both use M arkovian policies. Even though the

policies used with the CCTree are deterministic they can be considered a distribution over

the action space where m ost actions have a 0 probability. Both the M DP and the CCTree

have transition models. The transition model of an M DP is explicit and takes the form of a

table of probabilities. This table is given to the M DP but can be learned prior to its use in

the MDP. The transition model of the CCTree can be found in the chance nodes. They keep

track of all resulting states from a state-action pair and they can be queried for statistics like

probabilities of reaching a certain state.

Even though MDPs and CCTrees are sim ilar they are fundamentally different. There

are superficial differences between the M D P and CCTree such as M DPs are typically used

to solve for the optimal solution and the CCTree is used to accum ulate data on all solu

tions. But the real differences are much more profound. The CCTree does not use a reward

function and it does not rank its policies in any fashion. But the biggest difference is that

the CCTree is non-M arkovian. Since the transition from a state in the CCtree to another

depends on all previous states it is possible for a triplet T(s, a, s ') to appear more than once

in the tree and with different probabilities. This is not possible in an M DP since the tran

sition probabilities arising from state s depend only on the state s and the action a. This

difference may arise because of the differences in how the state is observed. In an M DP it

is assumed that the state is fully observable where the CCTree only sees a state abstraction

'Page 539

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which can hide many of the details of the state.

5.3 Partially Observable Markov Decision Process

A Partially Observable M arkov Decision Process (POM DP) is an M DP in which the state

is not fully observable. To illustrate the difference let us consider the RPG scenarios we

have been working with all along. In a normal M D P the entire state is observable, all the

characters positions, exact health points and which weapon they are using are available and

the M DP can base its choice on complete information. In a POM DP only a partial state

is observable, it could be the case that the POMDP, like our game evaluator, only sees if

characters can hit each other or are simply alive or dead. This makes decision making for a

POM DP much more challenging and very sim ilar to the Game A nalyzer’s situation.

The POM DP contains all the elements of the MDP. It has a transition model and a

reward function but also contains an observation model 0(s,o). The observation model

defines the probability of being in state s and observing the observation vector o. From

this observation model the POM DP constructs belief states. A belief state is a probability

distribution over all states detailing how likely we are to be in each state. Transitions from

the transition model are converted using the belief states into belief transitions from one

belief state to another. Once the belief state transitions T(b. a, b') are obtained the POMDP

over real states can be solved as an M DP over the belief states.

Even though belief states used in POMDPs seem sim ilar to abstract states used in the

CCTree, in reality they are quite different. Both the belief state and abstract state obscure

the real state observations. A belief state is a set o f real states along with the probabilities

of being in each state. An abstract state corresponds to a distinct set o f real states associated

with the abstract state. The difference here is that a belief state contains a probability

distribution over all possible states and could be any real state with some probability. The

abstract state is a mapping from a group of sim ilar real states to a single abstract state.

Abstract states divide the underlying state space into disjoint sections where the belief states

do not divide the state space at all. The belief state is used to solve the POM DP for real

states and the abstract state is meant to group inform ation from sim ilar real states. The

abstract state is used as a tool to abstract a com plex space to facilitate search over this

space. The belief space on the other hand is forced upon the user due to his innability to

fully observe the real state.

Equipped with belief states a POMDP is reduced to an MDP. This M DP is now solved

over belief states much like the CCTree and its abstract states. Yet the two remain different

since again the transition model for the M DP T(b, a, b’) is a first-order M arkov decision

process. The transition to belief state b' is based only on the action taken at belief state b.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CCTree depends ultimately on all previous states encountered in the path. The MDP

groups all transitions T(b, a, 1/) together no matter where they occur. The CCTree on the

other hand keeps them separate unless the entire path they followed throughout the scenario

was identical.

5.4 Reinforcement Learning

Sutton and Barto [12] describe Reinforcem ent Learning as “a computational approach to

learning whereby an agent tries to maximize the total amount of reward it receives when

interacting with a complex, uncertain environment.”2

There are two ways to approach reinforcement learning. The first is the model-free

approach. In this approach the algorithm is specifically looking for the optimal policy. Hill

clim bing is used and any non-optimal policies are discarded. This approach is entirely

unlike the Game Analyzer.

The second approach is the model-based approach. In order to use a model-based ap

proach a model of the complex and uncertain environment is created. This is typically

done by learning an M DR Once the M DP is learned there are m ultiple ways to solve it.

Temporal-difference learning, dynamic programming and M onte Carlo methods are the

three solutions discussed by Sutton and Barto [12].

In solving the MDP, policies are created which are similar to the policies used in the

Game Analyzer. Each policy has an action or probabilistic distribution over actions avail

able for each state. Unlike the Game Analyzer, the Reinforcem ent Learning policies are

based on an M DP and because the M DP model contains no information about reachability

each policy m ust account for all states in the environment.

The policies created are evaluated in a similar fashion to those of the Game Analyzer.

The major difference here is that the Reinforcem ent Learner is trying to find an optimal

solution to the problem presented. In order to find the optimal solution an accurate proba

bilistic model is needed. The probabilities of the state transitions m ust be accurate in order

to find the optimal solution. The Reinforcem ent Learner strives to score each policy ac

cording to the probabilistic model in order to obtain the optimal policy quickly. The Game

Analyzer does not need an accurate probabilistic model. The Game Analyzer needs a rough

reachability model, as long as most reachable states for a policy have in fact been reached

the results for that policy will be accurate.

Even though both the Game Analyzer and Reinforcem ent Learners guide an agent

through complex and uncertain environments their goal is ultimately different.

2taken from the book jacket

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Statistical Software Testing

Statistical software testing is used to test the inputs given to a program to see if the program

conforms with the expected output. W hittaker & Thomason [13] describe this black box

approach as “Given a program P with intended function / and input domain d, the objective

is to select a sequence of entries from d, apply them to P, and compare the response with the

expected outcome indicated by / . Any deviation from the intended function is designated

as a failure.”3

This testing m ethod repeatedly runs the program trying different input sequences. The

stopping criteria for the tests is based on the reliability of the program. The goal o f this

process is to test if the program is reliable and to discover any inconsistencies betw een the

functionality of the program and its expected functionality.

The method used by W hittaker & Thomason [13] consists of creating M arkov chains

of input to the program and testing those chains on the program. A M arkov chain can be

considered a single policy in an MDP. Using these chains W hittaker & Thom ason [13] test

the program repeatedly to see if the program functions as expected. W ith these results they

can calculate certain information such as the failure rate of the program and the mean time

between failures.

W ith statistical software testing an M DP is used in a fashion similar to the way a CCTree

is used. The tests are used in order to obtain information from as many policies as possible.

The tests done in statistical software testing are completely M arkovian, the belief is that

once you reach a state it does not m atter how you got there. These tests are normally used

on software like menus, forms and databases in which case it is mostly true that the current

state does not depend on previous states.

There are other statistical software testing methods such as the Cleanroom Approach

[8] or SFAST [4], These approaches use statistical methods to generate test data. The data

is then processed to obtain results about the softw are’s behavior. The results are completely

skewed towards the program ’s performance in the way of bugs and crashes. These statistical

software testing methods are made to analyze the failure rate of a specific piece of software

and not its actual function.

Even though the similarities are substantial there are differences. The state space is not

abstracted for statistical testing as the goal here is to find unique cases which cause fault.

But the major difference is that the CCTree is non-M arkovian, it contains duplicate states

along different branches and the goal is not to find bugs or estimate the m ean time between

failures.

3pg. 812

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Other Software Testing Methods

There are other methods that have been applied to software testing. Some of these methods

are based on m achine learning [3] [9]. The classification trees used here differ greatly

from the CCTree. For exam ple the trees used by Porter & Shelby [9] represent models of

components based on their measurable attributes. The evaluation of the classification trees

relates again to the traditional results expected from software testing. These methods are

trying identify the troublesom e parts of the program. Genetic algorithms [2] have also been

used to test software with these goals in mind.

5.7 Heuristic Search

Kovarsky [6] used heuristic search to generate move sequences for Real-Time Strategy

games during run-time. This research is meant to augment the scripted behaviors of the

computer controlled units. This provides RTS game designers with an improved game

AI that could enhance current RTS games. Research is currently being conducted at the

University o f A lberta to include the heuristic search algorithms developed by Kovarsky into

the ORTS f l] system.

Kovarsky’s research looks for optimal policies and does not build a model of any kind

which is quite different from the Game Analyzer. Even though his particular goals are

different, his overall goals are the same. To provide better tools to video game developers.

This should in turn provide better video games to the players.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusion

6.1 Summary

This research started with the goal o f helping game developers improve their products. The

result is a tool that tests video games rapidly and provides useful feedback to the developer.

This tool can be used to fine tune games to reflect the designer’s original expectations.

With the tool a developer can analyze the behavior of his video game quickly and make

adjustments as necessary.

The user connects the Game Analyzer to his game engine through an interface layer.

Once this is accomplished the Game Analyzer can be given scenarios to test out. The Game

Analyzer will explore each scenario using the set o f allowed actions defined by the user.

As the Game Analyzer explores a scenario it creates a CCTree which contains information

about game states and actions taken. The CCTree is a compact representation of the space

o f possible policies. Each policy contains the actions that the Game Analyzer will execute

at any reachable state during this scenario.

Once the CCTree is completed the Game Analyzer can retrieve all or a sample of all

the policies from the tree. Each policy is then executed repeatedly in order to accumulate

data. The data accumulated can be anything that can be measured in the game engine. The

user of the Game Analyzer can specify what kind of data should be accumulated. The data

can then be used in visualizations or further computations. The visualization tool used in

this document is only an example of what could be done using the data. The data could be

used in clustering algorithms, statistical calculations, prediction models and more advanced

visualization tools. These visualizations and computations can then be used by the game

developer to fine tune his game. Once the scenario or game engine is modified the Game

Analyzer can be used to produce a new set o f data. By obtaining subsequent test results the

game developer can track his progress.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Limitations

Like everything else in this world, the approach described in this document has limitations.

At first glance the Game Analyzer seems to do away with game testers. A human tester

playing the game takes hours to com plete something that the Game Analyzer can do in

minutes. The human tester can test out only a few strategies where the Game Analyzer can

test out thousands.

Taking a closer look at the Game Analyzer som e limitations can be found. The Game

A nalyzer is not as autonomous as a human tester. A human tester can be told to play the

gam e and report any bugs found as well as any perceived flaws with the game. The human

tester can then learn the game and play it. The Game Analyzer must be informed through

files which actions it can take in the game and does not report bugs directly. The Game

A nalyzer does provide different feedback than a human tester since it is limited to taking

only actions that have been specified and could miss an important flaw in the game. Unlike

a human tester the Game Analyzer requires a lot o f initial information about the game such

as how to abstract states, which inform ation to collect and which actions are possible.

The Game Analyzer is also lim ited in the types o f games it can analyze. The Game

Analyzer works very well with role-playing games. There have been many examples of

RPG scenarios in Chapter 4. A real-tim e strategy game scenario was also present. This

scenario was very simple due to the large branching factor in RTS games. The Game

Analyzer cannot handle RTS games as well as RPG games in its current form. Some aspects

of first person shooting (FPS) games can be approxim ated by the Game Analyzer as seen

in Section 4.3.6. The Game Analyzer cannot approxim ate the use of GUI functions such as

aiming and jum ping. The current version of the Game Analyzer is only moderately useful

in analyzing FPS games.

A Turn Based Game is a game in which players (including com puter players) take turns

to accomplish their goals. An exam ple of such a game is chess. Each player has a turn

and during this turn the player can do a specific num ber of actions. Once the player’s turn

is ended the other player gets a turn. New types of turn based games like “Syd M eyer’s

Civilisations” may require tuning of game parameters. The Game Analyzer has not been

tested on this type of game for lack of time and game engine source code. The Game

Analyzer is well suited for these types of games and would require little or no modifications

to adapt to turn based games.

Sports Games are games that sim ulate a sport. Soccer, hockey, football and many more

sports have been converted into video games. These games run in real time and attempt

to follow all the rules and physics of the sport they simulate. The Game Analyzer could

be used in sports games. The state and action abstractions would have to be well thought

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out in order to reduce the resulting policy space to a m anageable size. The Game Analyzer

may need some modifications to work with sports games but these would be minimal. The

Game Analyzer is not as well suited as SAGA-M L[11] to analyze sports games but would

work in a similar fashion.

In Racing or Simulation games the players takes the role of the driver or pilot for any

number of vehicles. The game approximates the physics related to the vehicle and the

player pilots the vehicle through a series of missions or races. The Game Analyzer is

poorly suited to analyze these games. These games rely on near-optimal play from the

user therefore the widespread policy evaluation of the Game Analyzer would not convey

pertinent information.

The greatest lim itation of the Game Analyzer is technology. M ost games have a large

branching factor. The branching factor causes an exponential explosion in the number of

nodes in the CCTree. This increasingly large num ber o f nodes takes an increasing amount

of time to process. The experiments done in this docum ent took between one second and

five minutes to run. As the experiments get more and m ore complicated the time it takes to

run them increases drastically. Therefore scenarios m ust be limited in size.

Another limitation is the game engine itself. The game engine has to be modified to

allow for certain information to be extracted from the game state as well as to allow resetting

the game engine to a start-of-scenario game state. Resetting the game engine is usually an

easy task since many games allow you to save your current game state and load previous

game states. Nonetheless some additional work has to be done in order to connect the game

engine to the Game Analyzer. But some modifications m ust be made to the game engine

even with a human tester. To evaluate the human tester’s performance the game engine

requires additional information gathering methods in order to accumulate data.

6.3 On the Road to Neverwinter Nights

This research first attem pted to use Neverwinter Nights, an award winning Role-Playing

Game created by Bioware, as a test bed. The problems encountered were m inor but crip

pling. Lacking access to the source code the graphics could not be removed. The Game

Analyzer would have to play each game exactly as a hum an would therefore losing its abil

ity to compute thousands of times faster. With access to the source code, the game engine

could have been stripped of its graphics and hooks could have been placed in order to allow

the Game Analyzer to function with this game.

If the source code was available then the natural place to put the Game Analyzer would

be in the Aurora Toolset. With the versatility o f the Aurora Toolset supplied with Never

winter Nights it could be possible to incorporate the Gam e Analyzer directly in the game.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The state abstraction would simply be a menu of check boxes in which the user can select

what to track. Since the gam e mechanics are the same for all scenarios created with the

toolset the state abstraction can also be standard. Start with state variables for the hero

and add state variables for each monster. Then the user could point out with the click of

a mouse useful locations or objects that the hero could go to or m anipulate and add those

to the abstraction. Then the user invokes the Game Analyzer. The results com e back in an

easy to use visualization tool and the user can see the analysis o f his labor.

This tool could then be available to the public and the m ultitude of people already

designing scenarios for Neverwinter Nights could benefit from it. O f course a more detailed

tool could be m ade available only to the game designers. This tool could enable the tracking

of all sorts o f variables like gold accumulation or total time played.

6.4 Concluding Statement

Human game testers are a necessity for creating new and exciting video games. The goal

of the Game A nalyzer is not to replace these game testers but to enhance their ability to test

the games. The speed and power of the Game Analyzer could reduce the developm ent time

of future video games drastically. The information provided by the Game Analyzer can be

used by the game developers to enhance the games they create. In the end, with the Game

Analyzer lies the prom ise o f better video games.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Policy Estimation

The algorithms described in this appendix are used to estimate how many policies, # (i V) ,

can be found below a single node N. To obtain an estimate of the number policies repre

sented by the CCTree compute #(Root).
The M odel Builder normally requests an estim ate of the num ber of policies, # (i V , A),

taking a single action, A, from a choice node N. This is found by estimating all policies be

low the chance node that results from this action. The pseudocode for the initial estimation

can be found in Table A .I.

Start at the root of the CCTree
Recursively move down the tree

Stopping condition: leaf node L
Set #(L) = 1 and return #(L)

Recursive condition 1: chance node N
Recurse down all children, C,;, to compute # (C i)
w = n i # (c ,i)
Return # (i V)

Recursive condition 2: choice node N
Recurse down all children, Ct , to compute # (C i)
* (N) = E , #(G;)
Return #(JV)

End Recursion

Table A .l: Number of Policies Estimation Algorithm

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The initial estim ate is stored in each node to speed up future calculations. W hen a

policy containing duplicate states is found the # (N) and #(N ,A) are revised for all the

common ancestors of the duplicate states. In this way the estimates are reduced to closer

reflect reality. The pseudocode for doing this revision is found in Table A .2. Note that if a

common parent is found, the common parent will always be a chance node.

For each abstract state X , encountered during the current sample do
Let S x = (Ni,Ei = 1 ,VA : # (N U A))
where N, are all nodes whose state is X,

Ei is the “multiplying factor” associated with A,,
and # (W j, A) is the number of policies following action A at node Ni

W hile \Sx\ > 1 repeat
Find the set o f nodes S in S x at the greatest depth
Check if any of the nodes in S have a common parent
If there is no common parent then for each Ni in S

Remove (Ni, VA : # (N i,A)) from Sx
Add (Pi,Ei * #(P i)/# (N i) , VA : A)) to Sx where Pi is the parent o f Ni
If Pi is a choice node update #(Pi) = Y j # (C j) where Cj is a child of Pi
If Pi is a chance node update Y (P) = 11, # (C ';) where Cj is a child of Pi

End If
If nodes N a and N b have a common parent Nj> then

Remove (Na,E a,VA : # (N a,A)) from Sx
Remove (iV&, E\,,\IA : A)) from S x
Add (NP, 1, VA : # (iV P , A) = Ea* # (N a, A) * Eb * # (N b, A)) to Sx ,
Update # (A rp) = E a # { n p , A)

End If
End While

End For

Table A.2: Estim ate Reduction Algorithm

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] M. Buro. ORTS: A hack-free RTS game environment. In International Computers
and Games Conference, pages 85-99 , 2002.

[2] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan. Evolutionary behavior
testing of commercial com puter games. In Proceedings of the 2004 Congress on
Evolutionary Computation, pages 125—132, 2004.

[3] T.J. Cheatham, J.R Yoo, and N.J. Wahl. Software testing: a machine learning exper
iment. In Proceedings of the 23rd Annual Conference on Computer Science, pages
135-141, 1995.

[4] H. Chu and J. Dobson. A statistics-based framework for automated software testing,
1996.

[5] J. Denzinger, K. Loose, D. Gates, and J. Buchanan. Dealing with parameterized ac
tions in behavior testing of com m ercial computer games. In Proceedings of the IEEE
2005 Symposium on Computational Intelligence and Games, pages 51-58, 2005.

[6] A. Kovarsky. Heuristic search applied to abstract combat scenarios. M aster’s thesis,
University of Alberta, 2004.

[7] M. Molineaux and D.W. Aha. TIELT: A testbed for gaming environments. In Pro
ceedings of the Twentieth National Conference on Artificial Intelligence. PA: AAAI
Press, 2005.

[8] J. Poore and C. Trammell. Cleanroom Software Engineering: A Reader. Blackwell
Publishers Inc., 1996.

[9] A.A. Porter and R.W. Shelby. Em pirically guided software development using metric-
based classification trees. IEEE Software, 7(2):46-54, 1990.

[10] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Pearson Educa
tion, Inc., 2003.

[11] F. Southey, G. Xiao, R. Holte, M. Trommelen, and J. Buchanan. Semi-automated
gameplay analysis by m achine learning. In Proceedings of the 2005 Conference on
Artificial Intelligence in Interactive Digital Entertainment, pages 123-128, 2005.

[12] R. Sutton and A. Barto. Reinforcement Learning. The M IT Press, 1998.

[13] J.A. W hittaker and M .G.Thom ason. A M arkov chain model for statistical software
testing. IEEE Transactions on Software Engineering, 20(10):812-824, 1994.

[14] G. Xiao, F. Southey, R. Holte, and D. W ilkinson. Software testing by active learning
for commercial games. In Proceedings of the 20th National Conference on Artificial
Intelligence, pages 783-788. PA: AA A I Press, 2005.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

