; e
17642 | - R
v ¢ LA : . : / - '
) . ) ' -.":’”‘ . . : .o ‘g = v 5
© . /NATIONAL LIBRARY . 28R BIBLIOFHPQUE NATIONALE
) o oTTAawa . ~' g , ~ OTTAWA S
- . v . ) i 0y
DR - ' ) /f \ ;' PO gvcnuuu ‘ . o
v ? . ; ' : v . S , ' , ; - . ‘.
NAME OF AUTHOR...V.V.../../‘ <"V‘/“ .ZT.V.". ‘A’OZ .p..f’..“
i )
TITLE OF THESI% ...... 5.‘7./.’4.?.9‘. AL P..r.czﬁ .“—izf..zf*f -
! ‘ . o
' 0?4/[/9"/7“ R [TeCall e '
2\ - '
v B Tgslems  dump da Che Flectie,
. ‘fov\ &772(;/46 Z“,c./t
UNIVEI(SITY...o.f....ﬁ.(. b.f.f..f.f\: .......................
T | P4..p
' DEGREE FOR WHICH THESIS WAS ‘PRES§NTED ......................
! : *
YEAR THIS DEGREE GRANTED. ..., ! 7V &, 7 5 ...... AR Ceee e
Permlssfon is hereby granted to THE NATIONAL LIBRARY’ - ,
OF CA’NADA to microfilm thls the51s and to lend or-sell copies
L . . >
of -the film - R o ‘ e@\\ y
— » The -author reserves other publlcatlon rlghts and
. — : i nelther the ‘thesis nor exten51ve extracts from 1t‘ may be (: .
pr;yﬁg‘g or. otherw1sg reprodue?d w1thout ~the author s A
" written perm1551on o Q,_ PR :
I (Slgned)%/(ﬂ“”"'/d,//&@,
_ ' ' PERMANENT ADDRESS: .
(-
. g e .0...‘.’..../.74.{?6. 4.?.?4.?.‘7. P‘”/%
e [JM 4 :1..7.(.?.&.( ....... - J’
. s
LA e e L
o DATED.ﬁ’K.}...}T.}.._.,/. 775 19 ‘ %/
| NL-91 (10-68) — | s
o ) _ .
) v N ‘ ° |
ER e o .
R S . ' o -
LERE . . . o e -
N 8 M » . < ' s -
P



] . : ~. N @f

. L Y - .
. - | L S
: , THE UNIVERSITY OFvaLBERTA

- ‘s o —— A
, ] ) »
< o - L o
. ' , .
’ THERMGDYNAMIC PROP“RTIES OF NON -MAGNETIC METALLIC
\ ' (SYSTEMS DUE TO THE ELECTRON ION INTERACTION
v o . ' ) e -
) Y - 4(
N AN »
' : y C ’ 3 ,
‘ S
i S |
: . by

: N, ¢ , WILLIAM P. O'LEARY! R -

‘(*f N ‘ . . ”‘i /
- » e 3 : “ » T 3\
N . - ‘A THESIS  «
SUBMITTED TG THE FACULTY OF GRADUATE STUDIES AND “RESEARCH
: IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
« . i OF DOCTOR OF PHILOSOPHY '
N SR ' ' ' S IN R
@ : . ) ' .
- Co s A THEORETICAL PHYSICS ‘
=t -w . . - ' . ,
\ .
: DEPARTMENT OF PHYSICS L
® . - \ |
e _ \\ ' o ’
S U a o ~ EDMONTON, ALBERTA = :
' [ % ’ ‘ : R o x .
\ ,
X \_ o - FALL, 1973 N ’ :
N \ : . ”_é - 3 o . /// o __/%;A*‘w



‘% THE UNIVERSITY.OF ALBERTA . .

FACULTY OF GRADUATE STUDIES, AND RESEARCH

. . 4 -, A
) . . [3 . !
« The undersigned certify thapathey_pave &ead, ahd
@ t' A . o . ) .

recommend to the Faculty of Graduate Studies and ~

: . - L ‘
‘Research,'for acceptance, a thesis entitled THERMODYNAMIC

F

. &
PROPE&TIES OF NON MAGNETIC METALLIC SYSTEMS DUE TO THE

¢

ELECTRON 10N INTERACTION submltted by William P. O'Leary

P . )
. ) R . . ; A>

in partial fulfillment of the requirements for the degree
of Doctor *of Philosophy in Theoretical Physics. .

T

. BN ' Superv1sor

i

v

. “‘ | o ‘ :‘ ‘_ ,: //’“\\\:....Hl..{j>25 »;7....,:. L:
L -’\/ _..?......%Q../\@é%

REN

ternal_Examlner




e

]

ABSTRACT T

P R . o ! .
A formalism is devgloped to describe those

- Al

thermodynamic prop-rties of .a metallic syster:which

N

are due to the clectron-ion interaction. It is

N R et

i ) . B ‘ . N .
shown, in s5ccond order perturbation thepry, that
the iree energy due to this interaction may be

expressed as a simple formula involving‘the electroni}
]

ion pseudopotentlals and the dynamical structure

factors of thellonlc system.

The resulghmay be appliedvto the usual range

of substances which lend themselves to pseudopotentlal

y

-

 treatment, and possesses con51derable generallty ‘It

‘ e
may be applled to pure metals and alloys (whether solid

or l1qu1d), allow1ng_for full generallty of the ion
&
dynamlcs, and 1nclud1ng those alloys in whlch mass

dlfferences and lattice dlstortlon effects are important.
A number of well known but dlverse,results are

obtained.as speé&al cases ~f the general'formalism,~and

' some numerical calculations are performed as illustra-

tive examples.” Co . o -
. w
. A partlcular example is the case-of Ag Au alloys.

(

The dev1atlon from llnearlty (1n concentratlon) of the

~

low-temperature specific heat.coeffipient has been -the

- object of some interest in recent .years, and a-mechani-

” “sm, ‘the dynamic "interference" part of the electron-ion

~ v

a . it
. = .
. _y /
[
. / .
L. . / N )

v - SRR

v



N
\ ] s ST
P D i 3 B
. FEUN . .. N - R S ’ ,'
e interaction, 1s proposed, which“seems to adequately:

account for the . observed behaviour, both ifi géneral
e . ‘ » ] . : ;L - u ~
magnitude and concentration dependence.
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properties which arise specifically from the interaction

tons of such substances.

-~ and will, in its most gen%ral'cases, be applicable to

: differences play.a.significant role.

'through a weak potentlal w1th a "gas" of conductlon

INTRODUCTION . .-

i

§0.1 Genefal Remarks

v

standing\o"' _.pertles of metals and allo§s has

progressedwconsk:erably, and one of the areas in-.this
field receiving partlcular attentlon has been, the
attempt_to enumerate andvexplain those phenomena or

n

between the conduction_electrons and the con?pituent

AS

. %

'The pfesent work will bé.R;imarily concerned with
the development of a formallsm Wthh can be used to in-
vestlgate those: thermodynamlc propertles of metalllc

systems which arise from the electron -ion. 1nteractlon. ,r;/.

The formalism Wlll apply to pure metals and alloys ;

‘v

‘those substances in which mass, size, and force constantr

4,

It has been known for a long time - . in inves—‘~

.tlgatlng the electronic propertles of metals \considefa—

ble qualltatlve success ce be obtalned by treatlng a. - :

'metal as a collectlon of statlonary 1ons 1nteract1ng,

electrons [l]

5.



' ,those of a free "gas". 1In this way, any scatterlng of

lelectrons by the 1ons would be due to - the dlfference

-« . N
- . , Vol 2.
? - 1 ﬁ) . 2~ .
y , K
’ \ -
4 | R
The success of this "Nearly Free Electron" model =~ =¥

n

would, at first sight, seem to be rather anomalous. T
v .

'The electron -ion Qnteractlon is essentlally & Coulo

)

potentlal- and for an electron close’ to the nucleus of . . ~
an*lon, the attractlve force is very large.;i

The flrst major contrlbutlon to our understandlng

of. thlS problem came in 1928 when Bloch [2] showed that y

}

> el
in a perfectly perlodlc potentlaL g

an electron mov;/?
1s not subjectc any scatterlng, apart from elastmc%'
, , } )

sagg'reflections. Thus,'ln the case. of a pure crystal- \ o

"11 e SOlld one may argue that if all the ions were B : l

hstatlonarv, and fixed at s?%es on a perfect lattlce,

Y

through the resultlng perlodlc structure. ' ‘.ﬂvu

BN - . N

It would then be tha dev1atlons from perlod1c1ty

due to 1onlc v1brat10ns, vacanc1es, 1mpur1t1es etc.

.that cause the electrons to be a fected by the ions,

and to haye thef& dynamlcal propertles altered from

-

»between the actual ionic potentlal and the perlodlc

potentlal of a pure statlc solld Under many circums-



. . - \
“ . . . .
W -

:ES] and Antonl

S g

Yo

, ) . L i 7?.' 6
If one turns to’ amorphous or llquld metals, how-
. : e o Vo / .
ever, the si uatlon Jhould beﬂgu1te dlfferent if one :
Do e ‘
‘were:r to us: the same _ine of reasonlng - Here one does '*

-

- not have the inizial perlodlc structure from whlch to

calculate dev1atlons in the 1on1c potentlal and there

is no reason tc suppose that the electron- -ion 1nterac—

tlon WO ld ‘not be qulte large 1ndeed .
. '; . »

Experlmentally,one knows, of course, that whlle

wthere agé marked changes, the electronlc propertles of

. .
a llquld metal are not enormously dlfferent fro 'those

»

of the correspondlng solld The res1st1v1ty Ol most-

metals for example, increases upon meltlng; but in most

.cases pliquid ~ 2pSolld or less, at the meltlng p01nt W

[1]. This 1ndlcates that the scatterlng of- electrons

does not 1ncrease in any drastic fashlon in-a non—.‘v

,#,ﬁperlodlc—sefueture and that even in lquld metals the

electron-lon 1nteractlon is rather ﬁeak in most.cases.3

.
4

ot Pl
T _ |
§0.2 Pseudopotentials

. The resolutlon of these dlffrgultles arose ultl-

mately out of the "Orthogonallzed Plane Wave" (OPW)

'*"'approach to energy band calculatlons developed by.

Herrlng in 194@1[3 4] By 1959, Phllllps and Klelnmany

N

k-.[6] had recast this procedure 1nto

HRCR

, what is now called "Pseudopotentlal Theory"~ and the

\

g
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"metalllc substances. See - 171 for ‘a recent rev1ew, .-k

:are bound td, and locallzed around -1nd1v1dual nuclel, 4

‘\K v"- .' ) ] - s v
subsequent'activi_y~along these lines-has led . to a

greatly 1mprove

)

ba
Thls method starts by leldlng the electrons
in-.a metal 1nto ‘two types, namely, core".electgons

and "valence" or ! conductlon" electrons. T..e former

N

’

while the latter aref not bound to partlcular 1gns, and

are thus able to move through ‘the body of the metal. @

‘For the llmltlng case of no electron -ion 1nter—

actlon, the wave function of a conductlon electron would

-~

be a plaég wave. Thus. one expresses the .wave function of

a conductlon electron as a sum,of OPW' s,.whlch look like

l]

plane waves in” reglons away from the nuclei, but are-

r'constructed SO as tg be orthogonal to all the core states.ﬂ

o Y
Thls orthogonallty condltlon must be observed 31nce the

?bapergy) of the same Hamlltonlan governlng the behav1our

\

?: the core electrons. » '_ A';_ e e

Hav1ng set up the prob%em in thlS way, 1t is’ then

,bp0551ble to rework the Schrodlnger equatlon for the con-

Jo

ductlon electrons 1nto a, form whlch 1s reduced to flnd-
. I 4

clng the rapldly converglng plane wave solutlon to a

Schrodlnger equatlon with a modlfled potentlal ThlS

-

pseudopotentlal?, then, cons1sts of the orlglnal one,
\ : . A; B i;'

.(, o ,

,understandlng cf what goes on in - :;,,g‘

h

e

o~

et
L
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A J‘ o
A 'plus a non-local’ Dart anOlVlng the wave functions of
.
v .
the coﬂg electrons. ‘ . ‘ N .

The-net result is that the strong part of theh

.Y original 1nteractlon (which is near thef

)

removed,,apd we are left with the ef rf¥3x_.interaction

ucleus) 1is

potential will be weak, in the sense that it will not -

have‘anx.boundhstates, but will not’afﬁays be weak in .
e " an absolute sense. This. need not be an %bstacle in B
practlcal calculatlons, however, since the NFE model
< ' i. : w1ll be appllcable to a given substance kﬁ the net‘
L o o scatterlng of aéﬁfnductlon electron from an ion ls small.

The pr1n01pal restrwctlons are that multrgle scattering
Y

. / .
effects must be* negllglble, and that the wave- functgons °
”ff“ " of core electrons on adjacent ions do. not appreciably

everlap. . - »

P g . - ’ C : . , -

One important aspect of these developments is

. that one can v1suallze, espec1ally in those cases where. .. -~

Lt “

L nonelocal effects are mlnlmal a metallic substance as
a collectlon of pseudo atoms" whiéh 1nd1v1dually cause
weak scatterlng of conductlon electrons. This concept

L is not restrlcted to perlodlc structur§s+_ormthese—wnrcﬁ“”—*ﬂﬁﬂ
C Structur

e e

e

- f4,m~~www~are“nearly' o, "and - one 1is thus able to treat lquldS

and d;sordered substances on much the same ba51s as

er-,w c regular s6lids. In the light of thlS 5. then,the"neax-. o

9
e -



i
Ias

free" behav1our of metalllc electrons is seen to be a
reasonable state of affalrs.

§0.3 Aim of Present Work

¥

The present work is 1ntended to apply to those
metals and alloys where the pseudopotentlals are such
that the scatterlng of conductron electrons\may be

treated adequately in the @orn approximation{

In the same spir‘t, “oerturbatlve approach is

used to calculate the chcrlbutlon to the free energy gr
due, to the 1nteractlon between the- electrons and 1ons

Whlch constltute the metallic substance under con51dera—

1

tlon.' It 1s well known (8] that peﬁ urbatlon theory - '

/

applled to the free energy Has the advantj%z that the\

contrlbutlons in each order do not*rnvolv e 51ngu—

v larities’ whlch may arlse when perturbatlon theory is

B e
—_— SO — [P, e

applled to “he Hamlltonran"and*asﬂsuch 1~ more appro—

prlate for systems hav1ng degenerate states.

-4,

It lS found that to second order 1n the per-

turbatlon, the free energy of a metalllc system, ArlSm

_~_—~_#~’~JLJﬁIMP%heTEiéﬁfrOn 1gg,pseudopot*nt al 1nteractlon,‘

- may be expressed s1mply in terms Do -catterlng func—

tlon P(Q,w), whlch ’for’a pure su. Lance, is closé%y

[

#Jr,ﬂrelated~to-the“vﬁn Hove [9] dynamlcal structure factor . E

'. S(Q,m) : ' . ' Af', (

‘



-

Knowing the .free energy ¢, one ~may then Qalculate

%

any of the other thermodynamic propertles which are re-

oy lated to it by standard expressron. For the internal
e . -

energy ~ specific heat we have, for exXample:
= d¢ _ 37 ¢
ool ol
» oT \Y : 8T2
b . §0.4 Previous Work

The speoific heat‘of metallic systems is the sup-
ject of mueh 3nterest, and will be treated in‘applications
in;a later chapter. It would then"seem appropriate, at
this point, to.review_some'of the previous work done in
this area, using various technlques, in order to help

o put the results<of the present work 1nto proper perspec—v

} S

t1ve , e

e e I 1954 Bucklngham and Schafroth [10]" dld a free

energy perturbatlon calculatlon, u51ng a 51mp11f1ed

o

electron-phonon interaction to approxrmate the electron-

1

et

ion. 1nteract10n in a pure metal*WNEherr”object was to e

. s

_m_aw-~~'““'déterm1ne how the electronlc specific heat dlffered from
| the free~electron value because of the interaction. ;
They demonstrated that the electroqac spec1f;c.'
';f . heat coefflozent was 1ncreased appre01ably at T = 0°K,
1ncreased somewhat more as temperature was. raised, and
then decreased so that at hlgh enough temperatures 1t

._ylelded the free electron value.'



In the years follow1ng this work, a number of
workers have undertaken 1nvest1gatlons w1th a- v1ew ‘to

obtalnlng a more. complete and accurate underotandlng - - Z'F;

“of this problem. : |
These efforts have been directed at various

aspects of.the problem, sﬁbhvas; obtalngng results ‘uuA.“.”; L

that are valid when the interaction is not small,
largely through the use of Green's.function techniques;
using more realistic electron—ion'intéractions,‘usually

1nclud1ng the effects of Umklapp processes—,and conSL—

-dering the effect of the dlrect 1nteractlon between the
T

electﬂpns. o ’ o .
The works of Migdal [11 kﬂj a~andfwat555fflﬂ#
D e o T

_J~»-¥tf*”"f;T17T7ﬁAshcroft and Wilkins [13], and Rice M14] will
serve to illustrate these developments- and the s1tuatlon

as of about 1968 is rev1ewed at some length by WllklnS

e mm e 2

;1n hls lecture volume_"observable‘ﬂany Body Effects in

' . . [ SSER J———— it e T . . Y N i
— i ‘\’Iidjta'ls" [15]. ' o . N

At low temperatures, Wllklns shows that the ini- /
P AR
S /

ﬁ? tial lncrease of the electron—phonon enhancement is /

pr1nc1pally due to a T2 Rn T term, as was orlglnally.( : ¥

indicated’ by Bucklngham and Schafroth,

- B . .. At high temperatures, his calculations imply

that the change in the spec1flc heat actually becomes .

negatlve,,and thus the free -electron value is approached

from below roughly as l/TZ.



v . "

fn the case of metal alloys, of course, the

situation is more complex, and the scattering of

-~ conduction electrons is altered by a n er of impor— *

.l

tant factors. The variation of the ionic

- dllatlons of the lattlce,»due to dlfferences .in atomic
.volume, have a dlrect effect on the scatterlng”o
e L ductlon electrons. In addition to thisT\the potential,

""{h~ \big volume, and‘mass differences h:tween the individual -

S e ‘species alter.the dynaﬁic cpertles of the lattlce,

and thlS in turn causes further changes in electron;ﬁ, e

_§9é§terlng_rrr;w,

4

"

Two aspects of the alloy spec1ﬁ1c heat problem

have recelved partlcular attentlon in recent years, .

\ ' :
namely, the changes due to tHe potential drffe£6a§e37**‘““—’~——_~—

------- e ™
, - T ~
e —andtHGEE due to .the altered em1551on and absorption of

lattice v1bratlonal quanta. Papers by Stern and ﬁy : . o

Haga [17], as well as the references cr;ed~1n these

_ﬂ;;.,-~5—-~work§ wiIi“&IGé a good indication of the. type of effort

that has been made to date. The present work will look
at theseneffects in a unified way, as a”speciai appli-.

- cétion‘of the'general results, invChapuér 4, .
. ) . - ) . . X o

S “

o | BN
’80.5 Plan of the Thesis

e e e

The thesrs is dlvaded into four pr1nc1pal chapters,

)

with a short fifth chapter to summarize “the results and




» ) ‘ , , . o
conclusions of the work. ( e ,

- i ——.,

In_Chapter l we will develop. the main result of

the’ the51s, and comment on its appllcablllty . Chapter

S

) S

© 2 will be concerned with the dynamlcal structure
/ R = >

factors which, along with the electron-ion pseudo—

potentials,; are of central importance(to the formalism

of Chapter 1. ' S ~
. . N | .
In Chapter 3 we will show ;how one may obtain

\

some well known, but diverse results, as Spec1al cases

of the formallsm ‘and . will derive a- ‘concise expre551on

far the low—temperature electronlc specific heat changes RN

in an alloy, due to the dynamlc,part of the &lectron- ?\

‘ion interaction. I ,
ll__,;___;__4-;,,__EEQPLEI—A-éeﬁtainS’t € results of somé'simple»
: ' numerical calculations.‘ The eléctron- -phonon enhancement
. for Na is calculated and the" behgalour of the "inter-
b | - ference" and- .1mpurrty" contrlbutions to the specific ‘
heat is 1nvestlgated for a serles of "theoretlcal"'
allqys whose pseudopotentlals are similar to that of
Na. - ’ - : : ' 4 -
| In addltlon to thlS, we. calculate the electron
ﬁl’ ‘phonon enhancement for Ag and Au, and propose an explan—
ation for the concentratlon dependence of the electronlc

spec1flc heat coefflclent in Ag-Au alloys, in terms of

the dynamic "interference" part-of the electron—lonm;_
_ Y ‘ >CTI

I

-

¢-"interaction.




CHAPPER 1

" . \ &
\Y
FORMALISM \
§l‘l Operator Expansion

4 , ) D
In this Section we describe the operator expan-

i ; . . A l -
/“\ijbn that will be needed in the subsequent development‘

i 1
. Consider an operator A, and. an arb@trary functlon

*
of this’ operator whlch can be expressed S ‘a power serles.

[eed

F(A) = ZO CnA . Then take A to be further given by

A = Ao + gAl, where Ao is qn opérator whose elgen-problem

is assumed to be already solved: A ]a> i_ ]a>, and e is

the usual expan51on parameter used here to ketp track of

_ﬂ;_____;.f—tefms-—aﬁﬁ‘W1II be put equal to unlty at the end : We

™~

+

w1ll want matrlx elements of F(A) between elgenstate of

Ao' This expan31on was treated by Schafroth in l95l [181,.

- and the result is as follow5°

|
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. ' F(A Y F(xa.>

<d]FkA)[d'> ="<ala’ >F(A )4-€<a|Al|a >1{5 + }
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Note that for a' >0, the first { ;.}‘& F'(X ), and fpr

a'" > q' - a, the second;_444l_e_ J1~4X—%~*etc so‘thaf’

ilv



Sk
if the [a>'s are

also eigenstates of Al’ we obtain the

ordinary Taylor expansion,  The diagofial terms are seen

to be: 5

c<alF(A) fa> = F (A,

 ¢ = ¢0 T Edy + o€

+ e Z'['<oc[/\.ll.’oc">

Now, writing the.

2

‘¢%i s S 1

o

) + E<a!Alla>F'(Aa)

Ay
>

&

,2!(quka})Ff(Aa)—(F(Aa)—F(Aa,H

. 2..«

free energy and'Hamiltonian as:
<

+ ... H=H_ + ¢cH

12

}4-_0(62). L

RN

-

X S F()\) = eBA .__: eB(‘b—H)

+v52[<a[¢zla>8e-

and making the fo

A ¢

m
[l

hé- H ; A¢

we obtain, upon col’ecting powéfé of ¢:

<ale
BA

‘ B
{B(Aa—ka,)e

B(¢-H),d5 ; e

lleing choices and definitions;
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Then, applying the condition: _ ,
8- ‘ ‘ = -

B (op—H) ‘ 8(q)O"Ho)

.' Trle ] = Trle 1 =1

¥
and equating coefficients of powers of €, we obtain:

B(¢p _-E )

0p = JecliyJase O @
a Y
, .
b e, =Bl 7 | <oplHy [a >l x
: o ayat
* . {8 ) d‘“k'a‘i"'}e o = vO’. - e o )} -
X
5 .
_@ ) (Aa_za')
. . . B}\O(, N Bkal
B .2 . 2 (e - e
o=z e L <alH lats| 1
. 2 %17 L, 1 O Y

B(E.—E l)
{l—e « ‘

2(E E

. 8(¢O-EJ
o

e

|
(NTEeS

2 Gy 2
1+ Za'[<a1Hlla'>l

§1.2 Hamiltonian ,
The Hamiltonian for this problem is given by:
: . 2
| : ‘ Pi
(1.2) H—HI(IS)'*‘Z ﬁ-*-
i

,R) s

— JR— —

Z Hlnt ;
i — _—

"where rs and p; are the p051t10n and momentum coordln—

“~

_M_;‘#,M”Mmgates—of¥the*ith'conductlon electroﬁ:ﬂand the symbol R

denotes the set of all 1on1C-coord1nates, 1nclud1ng

‘momenta when necessary. HI descrlbes the 1onlc svstem
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in the absence of lnteractlon with thenconduct&on
electrons. Faof the general formalism, it is not ’
necessary to spec1fy thlS operator, and thus the
'vflnal results will be appllcable to a w1de class of
“ionic systems: “ — :
VR,  The pseudopotential'interaction for‘anlelectron
at p051t10n r is deflned by its actlon on an arbltrary
wave function n(r)
N
‘. , 1nt(r R)n(r) Z local(r_gj)n(g)”
: . ’ N » 7
) % gj Bcjwcj(r—gj)'Idr'wzj(gizgj)n(zi).
jWheFe‘ij'ls the wave functlon of the cjﬂlcore level of ;
the ion at B]" Note that Rj i’ the actual.position of :%gi
the jth ion, and not thé‘j th. site on a perfect lattlce.; - ?ﬁﬁ
/ The effects of electronlc screening Sf the - 1ons, | ?%h &
as well as ‘any dlrect 1nteractlons between the condud— .ﬁ%g
: o

tion electrons are assumed to have been already 1ncor—- é@%

—

porated into H £ by a prellmlnary calculatlon.

itonlan, u51 th seCond uantlzatlon scheme for. the“
v _,H gq

electrons, and to comblne the "dlagonal" part of the
';1nteractlon term w1th the - klnetlc energy of the unpers-

turbed electron gas. Thus, we may make,use of,the
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folIOW1ng prescrlptlon for a‘“one—electron" operatcr

a [19]:
I /
W= JEE) 7 <k'|at kech e '
e Lo i s
T kK, kT o~

LR

~

where ]k> is the plane wave state of a free electron

having momentum ﬁk and C ,aad~€ ‘are the Ferml creatlon

and an**hllatlon operators.z“The Hamlltonlan (1. 2) then

becomes G
’ »2 .2‘ 4;.
'~ T A7k R :
H=H_+) CC (== €..,C A (k,k';R)
g Kk " 2m Kok TRUET LTS TS
) : . .(‘M—._—W -
= Hp+ ) C;CkEk + 7 }‘:,ckA(k k';R) .
T ‘ k ~ o~ e k‘,k' e~ i ' Y
X =H_ + H, . -
s o] 1
- L}
'ffl ‘ The prlme on the summatlon 1nd1cates that the k = k!

~

terms are omltted and’ the follow1ng deflnltlons are

used:

(1.3) = —HI+}§CkCE H

1 ¢r 4
; == C, (C.A(k,k";R
° Kk l'ngk-',’f'~(' f)
: i(k-k'). - ‘ ,
A(k,k'";R) = J e ~~ ~J Wik, k)
| 3 oo
i S o itk=k').r '
(1.4):  wy(k,k')y=X [‘dr e T T ~ viocal(ny
- R A ‘ 3
. o dk'r . ik.r"
*7 1 ome far e Ty @faryl ne
c J i 1 : L



(L.5) B = + A, ; A warj(}g,k),

Inkthe general Case1wj(k,k'), and’ thus A(k,k';R),ky

interaction, That is,

depend on both k and k‘ separately, due to the non-

locality ‘of the& pseudopotential An simpler circums—

’tances,'where non—local effects may be- safely 1gnored

4

Wj-becomes a.function of q i'k-k' only, and is just

~

equal’ to the Fourier transform of the local part of the

In this case, A, > Ay =3 Wj(O); which is just a cons-
o K 3 N . | '
tant, equal to the average value of the interaction,

and simply»shifts'the_zero of energy for the‘electrons.

lWe will use this approx1matlon ‘in the numerlcal calcu-
lation in Chapter 4, but for the géneral development,

‘the full non- -local form Wlll be used.

‘ _As might be supposed, the eigenvalue problem'

<

for Hb is considered to have been.already solved, and .

H, will be regarded as a perturbation.
: e
1.3 Expression for Free Energy o T _ ' B .\\‘
the eigenstateg {|a>} of the unperturbed o

I

" system can be written as direct products of ionic states

. . L] . %
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=

~_.

{|n>} and the many-tody states of %he electron gas,

o> = Ln>]c Op +ee Op .}.>'; o = 0’or'lv
. & ) ~l ~2 ~m‘v’ . . ~m .

~_and w1th H, as given by (1.3), we have immediately . wei

bhat ‘ff_ = ‘» j" : o | : {.

’ L iz
<a|Hyla> =0 , + ¢, =0 , >
,3‘,‘ t 1 _ 1 v .
7

, Thus the'flrst non—zero correctlon to ¢ will come in
second order, rememberlng, of course, that ¢ refers }
to an unperturbed system the electron gas part of Wthh L

~has the "mdglfled" energy levels glven by (l 5)

o

In the Sﬁcond order term (1 1), the matrlx ele—

l,

ments of the perturbatlon may be galculated’ 1n the_

following manner;' ..” o 7 o . f&*ﬂrnst ‘ Vﬁyx.k'
. _ o ' ,% / | R
wlmlor = gonrfeat] ] cliodtxtm ol
' . ) ; }E }E ~ -~ 7
..I' : .

.o .O’kO'k| . e lO’k (Tk 7‘0 . (Gk—l)l(ok'+l) ’ ....>:‘

~l ~ )
=v°k(l—°k')doé T Gok Oy . "’6 (o ~1) pk.(o +l) ...; -
~ o R ~2 - .~1 ~ K1 X Lo
’ ) | P |
i
¢



USing'this result, we.then have

<" TA(K,k " R) [n><n[A (8,17 1R) [n'

U

2

<ot By [a>? =
- N kKR,

. . : - ] 6 ‘ .‘..6. ‘ \\1
Kk ek %k Og0g  Og104:" k,(c ]J /k,,(o

~ ~ ~

: S : .6 o '
y T o0,,(0,~1) ao,,, (o +1)°°° o
1% oty tp . AR TR k

Ndw;»the strihg of Kronecker.deltas can be non-zero only
e v , g

X

‘ : 'if 2 % k and gfv= E' ' Then, rememberlng that Oi ;:6k and I

~

(1= Gk) (1-c ), because of the fact that Ok 0 or l

~

C we' obtaln-“

4
7/

| 1 R SR
o o dxa[Hyfex|T = S T [<n'|A(k,k';R) [n> |2 o, (1-0, ;)
R B A S

. L . ? .
c. - B . {0 '1 6 l -c-(s o‘n} o.
, : S0y O Oy 0y ,(0 l) o , (o ,+l)
SEER K17k TRaky o _k TRy _E
R _' - B0 =E ).
. Now, w1th E E ‘+‘Z -, we can rewrlte e as

a product of statlstlcal factors for the 1ons apd elec~

[ o

: , N o
R Aswor-Ea*) B8 gTM-E )+ (g5 ECEON £ om0

[y

& -

-~
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B

o]

' . ((En—En

/

where P, is thé‘probability;bf finding the ions in state
|n>, and Plg. } in thefprobability of, finding the _electr
'k'_ ‘ e

gas with the set of-bccupatidn'gumbers {Ok}. s
7 ‘ . | ¢

v
v

ing expressibn foﬁ:¢é: 4 e
{ 6((En"_ﬁn” ﬁ(ck-qﬂk)‘Ek)
D A NPT N T S
2 » 11on~ {o, } v ) )
B R A " | 20,5 0 T (0 =0) ;)

. i )
en IRl E R [n> oy Aoy 0850 1o

-~

§ v
-1) O§;fo%,+l.

I ) . , _ o
Aﬁﬂere‘the‘aéuble brime on the,ffgduct indicates that.the
ltérmé Em: E and.§',are omitted. Now, -doing the suﬁioyer
"v{ci} first, fhe ohly“nbn~z§r§ terms éré givén by:

o CBUELEL )+ (0 m0 ) Bt (03 =0y ) By )

~ ~. ~

1 1
P T o TR (5. 5T IE
=0 0p= n " n' k “"k'7k k Tk 'k'

.-6'

|)"*.' (Ek—Ek')) 'C‘

~, -~

W ;__..'_"Ae B ¢ i
(e + (55,0

'

This gives' N

“.' - Using these results in (1.1), We obtain the follow-

4

19

Sop (0, -1) %)y 0, 4L | o



‘ 1 ' 1l - e ‘ ’
=5 L 1l.|p
_ﬁ‘ .Nz n“2((En—En,) + (5, E

" Then, noting that I P = <0, > = f the Fermi
- {0y} {o } k k" k !

"~
Q\’ -

BUELE L)+ (B By 1))

n,n' k,k! k k'))

-~

A 2 «
iR)In>|“ ) p o, (1-a,_,) ..

N T

distribution; and 1nclud1ng ‘a factor of 2 for the two

"“pos'sible spin states, we have:

(1.6) =~€5 3 £, (1 fk ) ¥ pn[<n'|A(k,5';g)1n>|2
. : N ]EI}E T A ‘n,n' ' ~ .
Bﬁ ,(wkkl - wn"-n)
1 ~-e ki
h(“kk' ~ Chry)
where ﬁwkkﬁa:‘ (Ek - Ek"), , and ﬁwn-'n; (En,— E ).
Now,define a function T (k,k',w) as follows:
’ ‘ ’ 1 1 : Va ' 2
(1.7)  r(k,k',0) =5 I  p,l<n'|Alk,k';R) [n>]|" s(w-w
T n,n' ST '
: -1 (w-uw yt
1dt o o Trlendn ' V.
T — JZTTN Pp e | <n |A(k k';R) ]n>l
J ’ y
(At -dwt o + | FH SN
= Jm il Y pn<n|A-(k,k'ﬂ;R) [n'><n'|e A(k,k";R)
, nont JRESREMER o ~rS S
! -gH,
e 7 |n>
= [dt e‘iwf'f p.<n|at (k,k";R(0))A K, k" ;R(E)) |n>
-ZTTN . . . g n ~'~ I~ ~,l~ 'l~ ‘ ',
o [t o ITELF xR (0) il |
E fme 4(15',35 ,13.(0))A(}§(1§ iR(E)) >0 o

)

20
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Here R(t) represents the Heisenberg ppsition operatorﬁ

of the unperturbed ionic system, and thus we have:
) . ’ v : 4

: ;o - i(k—k')?R.(t)

N (1.8) AGKKUR@E)D= ] W GE) e T T

TH t -  ~=H_t. ‘, . , o

- . R'I
R. () = R, (O .
Ry (£) = e’ © Ry(0) &

hY

’

\ : :
Next, note that using (1.7); we have:

: l - & ' —- ' 3 . 7
dw — Ik, k',w) : .
0[ LT e BN
! : | | v ' Bﬁ(wkk'_wn'n)
1 z f 1. 2]l1-e T
C= = p_l<n'|A(k,k"';R) 'n>| -
N on,nv ? T h(wkk' mn'n)
/ ' :
" and combining this‘result with (1.6)_g{ves,
SRR I P egﬁ(wEE'—w) B
R ka'- i 5 ‘de ﬁ(wkk' oy ) ]i,.,),,/

This relatlon can be further- s;mpllfled w1th the help of
a few easily obtained relations. 'From (1.4), we see

that W;(E'IE) = Wj(EIE')r aﬁd‘thus, -

»

DR

‘/Theh, from the definitionl(l.7), and using (1.8),
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' SN I 5.
: o F(E"E'—QXfiﬁ ng' pnéln',A(E';E7BLln>lv§(w+wn’n)

1 B |
SN2, ParlnlA0 AR [ne %o tmn )

3 A
5 |
=e"8ﬁw'1%f Z P, l<nlA(k k'iR) [n >l25(“’ “Untn)

" and from (1.7), we thus obtain,

(1,100 I(x',k,-0) = BﬁwI%k K w)

.y

Y _ It is also(ﬁeadilyeseen thatx\J

~

(1.11) ,*;5”(1-f ) = 1 ==
. i “~ ‘}E:l k = B(E |"‘U) .

i Then, for that part of ) arlsln from the second term
2 g

P 3

Vln the 1ntegrand of (l 9), we, may»obtaln, us;ng'(l;lO)

- ‘and (1. 11), o ‘ . | SRS
—_ . t
r ' -



‘ e : gt (wkk 1 w) .’ B ‘
K

)

£, (1-f dw £ &,k ,u
kg" k¢ )f;jo : “"kk‘"‘"r-PNE'}‘E )
] .
' | o e TRRlegare)
' R e - : )
o= - £, (1-£f, ) fdw IL(k',x
Tk e o] et
' Indiad : 7
= - z ' kl(l -£ )Qf e(w -w) - P(k'lkl—w)
R ' ~ 2
y }.S’}f v J‘oo }f]f ‘ -
z i .F(k’k'lw) - ‘ Y e
= =)' £ {1-F Y f dw - '
20 AN R O — -
& . - -
where e 1nd1cates that the: pr1n01pal value of the 1nte-
gral is to be taken, ThlS term gives exactly-the same.
S TeTm gives.
‘ #_._cgntfibuti6ﬁ—taﬂll free energy as the fiwst term, and
- o

thus ‘we finally. ¢ cain [20]

; 7 I (k,k',w)
£ (1-£ v ) J dw | —T_—:——_Y .
L3 A A A

‘This formula is the central result of this work,

and will figure promlnently in what is to follow. It

-

| 1s appllcable to SOlld or lquld metals and alloys,‘ .
1nclud1ng those whose constituents have dlfferent massn
i» .
~and volume; and 1t allows for arbltrary dynamical pro—

‘perties of the 1on1c system. The essential llmlta,ion

is that the ‘electron-ion interaction must be'adequately S



*

0

descrlbed by local or non-local pseud :entia;s of the
type deflned by equatlon (l 4) .,

Any contributions from elastic Bragg:scattering~
;ghould be excluded frem (l.l2),rsinee these are related
to the original band structu:e, and thhs belong with
the modified zero~-order results. Other than this, Ki*w?)
gives alllthe second order correctlons to the free energy,
and, by deduction, to such properties as the specific
‘heat,

s ~ . - , :
: Now, from the<form.of &l;lZ), it is apparent that

. Y2
P(k k L) contalns all the 1nformatlon that is needed for .

L a parttcular case, “and thus the determlnatlon of this ' y
‘function wil® be of prlmary importance. We shaLl, there-
fore, discuss ﬁ%ingsome detail, beginning with‘the work

in which. a similar type of functionlwas just used infthe

: . . - » ‘ . B
‘literature. - ‘ - <

o



CHAPTER 2

DYNAMICAL STRUCTUR@ FACTORS

§2.1 Introductory Remarks

- In 1954, Van Hove.[9] examined the problem'of

the inelastic scatterlng of thermal neutrons in a pure

Y

substance.A For this case, the 1nteractlon is well

]

represented by a "local" approximation, and will be

the same for one ion as for’ any other; that 1s, Wj(q)-—

WCq) for all j. If one calculatesrthe"cress—sectlon

for the inelastic scatterlng of a neutron from a ‘state

of wave—vector k to a state k', in the Born approx1ma—

.

4 tion, then the result may be expressed in the form,j

R dzc k' L . .’ ‘.c: :
.(2.1) m = const (E——)’ I‘(g,wkk,) )
(2.2)" T(q,wy,,) = lw(”)l?‘ S(q‘w )'
c Dryper = WL 278k

where S(q,w) 1s the Van Hove dynamical structure factor.
This function is the space tlme Fourier transform of
the tlme-dependent, quantum—mechanlcal pair distribution
. o . function for the @ons,.and,may_be written as: - B ii
— o ] fami ) g eyl f
: st = g eTiet oy T YHO ek,

A SR []

27N , . d
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f
where Cee>n indicates an ensemble average over the_
(unperturbed ionic‘sttem. |
.Now, the case of conduction electrons in a metal,
being scattered by the ions, can be treated in the.same
Qay in' the pseudopotential‘framework and one obtains
a result Wthh is 1dent1cal w1th (2. l), except that

3

I‘(q,wkk,) is replaced by IF'k,k'w) as glVen by (l 7)

5

The separation of T into atomlc—ang_strugtgraL__r__;w—————
y T

‘e~ﬁ~”"**ﬁ ~“f’actors,‘vas given by (2.2) in the . case of a pure subs—

tance in the local limit, is 1nd1cat1ve of a more

general state of affairs. 1In the case of an arbltrary

BRI component alloy, with non-local effects, we will show

“presently that P(k k',w) may be wrltten as a sum of

terms 51mllar to (2.2), 1nvolv1ng v different pseudo-~
potentials and v?2 dynamical structurebfactors‘(DSF!S).
In most cases, indeed in all cases, if the pseudopoten-

tials Mre taken  to be real, the number of DSF's may be

' reduced to v(v+l) /2. These functlons will ‘be found to .

depend on k and,k', only through the comblnatlon q'=

~ .

k-k', while the separate k and k! dependence’which

~
+

51gn1f1es non-local effects, will be confined to the .
pseudopotentlals W (k,k"), |

~An - 1mportant feature of belng able to separate’
P(k k',w) into ;iprm factors" and "structure factors"

\

is that it allows, at: least 1n pr1nc1ple, for the

e e T e
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experimental determlnatlon of the DSf‘s.' If one knows

the 1nteractlon potentlals for neutron scatterlng an a

solid say, then u51ng Van Hove-svresults (or thelr'¢ ;ft SRR
- extension to alloys), one should be . able to obtaln the” }»A
: A B
DSF's .from an analysis of thermal neutron scatterlng l.fgw'

data.

;ﬂﬁ__;h,__;_,.strcular~system——they may be then used to study any“—;Aﬁfi
‘scatterlng problem in that system. One need only know
the approprlate matrix elements”of the 1nteractlon, andi
' thus form F(k k‘ w) . Having done thls, one may proceed
directly to calculate such thlngs as free energy and
spe01flc heat correctlons from (1.12), or the electrical
re51st1V1ty of an alloy, which may be expressed as. a

L Y » dlfferent 1ntegral of the same scatterlng functlon [21]
o 7 "

§2.2 a—a"Structure Factors
- The structure factors of an alloy are closely
connected to ‘the operators whlch descrlbe the local
'number den51ty of each constltuent as a function of
tlme, and one ‘may express the DSF'! s dlrectly in terms
of these operators, ln a manner's1mllar to the procedure

- of Van Hove.

o

Thus, for;a AVE component alloy, with each type of .

v . ion labelled by an 1ndex a = l,2,...ﬁ%, we'may wrlteA

o

YeraT)
I ‘E
4.'/".; -

)
annf
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\

the local number density of type o as: . T,
. p : .

(2.3)  n_(r,t) = §{® 5 g(@) 4y,
~ . ~ ,~J

j.

[}

where the superScripted (a) indicates that‘the>sum is

only carried out over this type of atom.. The space

Fourver transform of thlS ogerato:_; ~then—given DY
2 i oy o o T L
(2.4kg§2éNa (g,t) = fdg e - (r,t)
e Jente o
"L . '

and using (1.8)y, we may thus_write,.

625) A (kK" R(E)) =j',2.,w&(k,k')Na(q,t)
o A -

it beingwassumed that'within an alloy of given‘composi—,

-
Lo

tion, each ion- of a partlcular type carries the same .

self—con51stent potentlal denoted here by~ W (k .
Now,u51ng (2 5) and (L.7); and Suppressing the

‘wave- vector dependence of W and Na_for the tlme being,

" we may write T as,

1t RN ~ lwt . | | o
F(]f']f_ ,w)—f% e <Zw Nt (0)5' Wa,Na,(t)>T .

lThen,'uponradding and subtracting terms involving




N;Y(O)Nd(t); we may rewrite T as,

(2.6) Tk = ] WW (S, (a, w)+—s‘ ) (q,u))
‘ - a,a! %O
' Where we have‘defined the DSF's

\ . e

29

- | Tat
@1 s g = [EE ety vf(g,00m,, (g,t)

Ngr (9/0IN (g, 60>

2.s) s(®) (q,w) = fﬁr—g et (g, 00, (q,t)

=t oo :
Ny (@ ON (qe)>

_ i ¥
Wé may note‘that since n, (r t) is'real valued, then

11’1"-.

' equation (2. 4) 1mplles ‘that N (q t) = N_(-g, t). = Thus,

from (2 7) and (2 8), we may see that the s, are real-
valued and symmetric (Wlth respect to 1nterchange of a
and a ),‘whlle the S(az are antl symmetrlc and pure

1maglnary. Thus lf the pseudopotentlals are real,

at least. satlsfy W |W [e , where Y is the same for

all a, then the contrlbutlons from the terms 1nvolv1ng jﬂ%

(a)

ad' are zero. Moreover, as Bhatla [22] has pointed out,

" because of the ensemble average in the deflnltlon (2 8),

the symmetry ?f most systems would requlre that Sca) =0,



&

N R N
- ! X

At any rate, we shall not include the anti-symmetric®

terms, and thus obtain,

(2.9)  T,K',0)= § WOk, O,k (L)
v a,a’ - T ~
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This methrod of rltlng I' is 51mple and dlrect

s1nce it glves the de- comp051tlon in terms of the corre-

-latloﬁs ‘between the p051tlons of the dlfferent types of

ions whlch maVe up the alloy.' There are other wayS‘of

-

constructlrg 1 however, and one may define dlfferent

but equlvalent sets of DSF's, Wthh mlght have the

effect of accentuzting some phy51cal\features of par-

ticular interest, or whlch may be more ea31ly related
S

to some.experimental data. By choos1ng the" proper set,

‘1t may also be p0551ble to reduce the number of struc—

ture factors" needed if some parameter, such as the'lonio

volume, for example, is’ roughly the shme for all the
constltuents.

\

N

§2.3" N—C.Structure Faotors (Binary AllOys)b

For a binary alloy, Bhatla and ‘Thornton [21]
1ntroduced a set of three DSF s which express the
dynam*cs of the alloy in an 1nstruct1ve manner. They .

wrote T as, , BRI AN

o
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7

o | _._‘_-2. , 2 ' ¥
(2.10) v:(g,w)—,(w) SNN(g,w)A+ (Wl—Wz) Scc(g,w)
T -— ‘ ‘ ‘ : . ,QA
+ 2W Wy) Syclg s w) C |
o - . . |
ﬁ%ﬁ where W = chl + CZWZ' and Ca is the concentration of*
AR -

N o

.type «a. SNN /qulte srmllar to the 51ngle structure

; factor of a purejSubstance, and describes the cofrela—

tions’ between the fluctuatlons in partlcle densrty.
SCC descrlbes the correlatlons between concentratlon b ’
fluctuatlons, and. SNC is the Ccross- correlatlon between
the two. |

These DSF's will be properly deflned later on,f

but for the moment we may make a few over— 51mpllf1ed

'remarks about the phy51cal 31gn1f1cance of the dlfferent

parts of (2.10). The flrst temm represents a;“dynamlc
v1rtuaL crystal" contrlbutlon, 1nﬁyh1ch the ionic Vlbra—'
tions are taken 1nto account whlle the second term

arlses ba51cally from an "electron 1mpur1ty" 1nterac- h\\L\’

ptlon.‘ This latter term. may be often well represented

A

Ve ‘
by the "statlc approx1matlon", in which 1ts frequency

dependence is. glven by a factor G(w) : The third term

reflects predomlnantly those effects whlch owe thelr

: orlglns to dlfferences in 51ze and shape between the

.two types of 1ons iIt w1ll be generally hegllglble if -
. . ¥

v

> /i'
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_they have-close to the same volume{ thus leaving i : ‘jlk
only two indepeﬁdent'DSE's in suoh cases. ‘,. | ‘

In a paper subsequent to [21], Bhatia and
Tnofﬁtoﬁ“ifgj derlved‘g;act expre551ons for the h1gh7,
temperagzée,,long—wavelength (q n 0) limit of the
"statlc" structure factors (SNN(q) de Sy (q,w) etc.),
from fluctuation theory. For the case of a cublc
crystal, the ekplicit ekpressions‘are: A |

S - : . T
. : . - ¢
Sy @) = @ kgTe(d) + [-—z—’—cc—g:—] cc(Y" R
;oo : L : : - ' ¢
See ) = S L . TV
.CCﬁ , 825 , 5. N s
: [—-—2 + V8B (1 - B k(y)) N ,
91 1, 5,N o |
J
Sy = - o8 € (¥)Sge ()

where y lS a. unlt vector 1n the direction of q (remem-

~

berlng that lql v 0), g is the GlbbS free energy,"BTh

is the 1sotherma1 bulk modulus, ol is the’ oonoentration

of species 1, and ¢ 1s the stress tensor. K(y)lis'given

by the expression A R
k) = ] “"Y‘ﬁ”—' -
g2y }
&= PV E

/\‘W'
(RS I r 19y
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Iwave-“propagating along § with velocgty v

where ey £ is' the (unit) polarization vector for a
. ’

and

. _ yeg !

p is the density of the substance. The symbol 6§ is

LY

defined as’

Lol

§ = €11 = eyy = e3q

where e,y = (agll/ac1 T, » with ¢ being the straln
A

tensor. If the strains 1ntroduced by the dlfkerlng

volumes of the alloyeq species are quite small, then

8 1s.closely equal to (vl—vz)[(clvl+c2y2), where Vi 1is

the molar volume of species i.. Thus one readily sees

that the requirement for'S NC to be zero. in this case is.

essentlally that vl— Vyr as we have mentioned above.

' We also note that for thlS case

2
~
H

n
Q
9]

n
.
oY)
c«[

'QJA
g
13

and thus for:a random alloy S = c(l-c).

CcC
For shorter wavelengths (larger q), exact expres-
i . o . . ~\" . N
sions are not available (in explicit for@) for these

B . . o
“structure factors, but as noted in [23], one may obtain

33

some quéiiEEEiX9“£nﬁormat&enﬂfycm“fﬁewfesults of X-ray -

g

scatﬁering theory, which essentiaily deals with the

I

: Bl . : . ‘ N
static structure factors. 1In particular, one may deduce’y

Pl
L0

S

a2
V

o

ﬂ

o
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vy

from the works of Huang [24]. and K- "voglaz [2 ] that

for an elastically isotropic random alloy,

Sxe (9) . $ BT q- (G ~q)
Scczg; v C I l2

“where G is the reciprocal lattice vectof closest to d,
and Cq1 is one of the elastic constahts. We mdy note .
that this expression is again edu{z tn zero for V= Vo,
- . In addition, we see tniE/éZis result becomes
infinite for q ='§, and one would thus'expect‘large
\contributions to any quantity involving SNC for values
of q in*this'region. We will encounter similar behav1our
in Chapter 4 when we con51der the umklapp contrlbutlons
to the e;ectronlc specific heat. The pr1nc1pal diffe~

rence is that for the present case we have (for g parallel

to G): 4
Sye ——ﬂm E ;

“while in Chapter~4 we will have (lposely speaking)i

. 2 » -]

S « 9 e T

NIN... -
(G-q)‘{.

which ?s a stronger effect, but of the same type never-’

A

theless.
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,‘(f i ' K

§2.4 N-C Structure Factors (v-Component k. .loys)

Now,'procgeAing-to the éase.of a V—éompongnt alloy,
we may fQ;lbw Bhatia énd Thornton, and relate the DSF's
to the fluctuations in the local number density of the
alloyed species, rather than the full number density.

In fact, if one déscribes the local fluctuations of type

a by,
sni (r,t) = n (r,t) - n
o ~ d.l ~ a
. ig.r
M) = fare T n e
7 \ . (Cl)
': X(OL) el%.lj (t) - N s
X ‘ ) a gq,0
j ~

where Ea = NG/V, and further fecognizes that élastic
- forward scattering (k.= k') has no effect on the
structure—dépendent'electfpn?ion processes, then the

preceding devélopment+ frbm (2.3) to‘(2.9),.goes through

exactly as before, except that there are a lot of terms

/

. involving_§ = &k T which are simply ignored,
T 4 .

y,0
Now, in order to construct a set of DSF's which

Vreéuce to. S SNC' and SCC in the binary case, we will \

NN’/
)define an operator which. describes the fluctuations in

local concentration of a given species by, : ‘
' T Lo A

Sca(f,t)'=-gv/N)(éna(E,t?-cddn(g,t%y @ .

A



-

_”where 6n(r t) = Z én (r t) is the operator descrlblng
;the total fluctuatlon in number den51ty, and Sy NZ/N.

K The Fourier transform of dc (r t) -is glven by,
¥ 14

f\’j , - 1 " iq.r R
Seab e @ - & de e " se_(x,b), .

]

i

1, L N
W Wy (art) = c g e))
-(&ith N(q}t) ;~Z Na(q;t).,AAlso note that,
‘ LR ” o T L
(2.12) Le, (x,t) =7.C (q,8) =0 .
Now, usihg (2.11), we may write,(

Na-(g,t) :NCJO'L(g,t) + ;‘CaN(g‘,’t) |

36

and thus, from'12.5), we have, : .
ALk, k'R(E)) = W(k,k')N(q,t) + N J Wo(k,k')C_(q,t)
" with w<§,§'{ z;g c W Uk, k"), '4 o SR !

In .case of a binary ailéy-(a =1 2), we see from :

. ) ¥ o . .
(2.12) that Cilg,t) = -C,(q,t) =’ C(q t), and that we may

thﬁs write,
Alk,k';R(E)) = W(q,t) FNMW - Wy)Clg,t) . §

<

. In the generél case also, it will often be-édvanéageougj'
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' to work in terms of differences, father than full
peeuddpotentials; andfthus, taking advantage of (2.12),

we may write

AKK';R(E)) = BN(g,t) + N L (W,-W )C_(g,t)
| i @ oV erEn

-

where’ v nay represent any one of the alloyed spec1es.
+ .

Us1ng thlS relatlon ln (1. 7), we then obtaln,,

.

(2.13) T (k,k',w) = fg?% Mt T (g, 00m (g, t)
k! W (gL 0N (g

. 2 . ’ *x, * ‘ : ’f‘ ' - -‘ S
+ N oL,Za",(wm_wv)(WOL.— wv)ca(g,O)ea,(g,t)
’ A B

N Z(W*(wa—wv)N*(g,O)ca(g,t)+W(w;-w:>c§<g,q>N(g,t>>I>T.
o - N '

Then, . follow1ng the same type of arqumentwthat~pfeceded

2o, we may "symmetrize" this form of-F, and 6btain,

¢ P
- A»v
.-
;

- | 2 . '
(2.14) Tk kY w) = (WSS (q,w)+ ] ,(Wé‘wi)(Wd"Wv)x
_ _ o,
o x S (q,w)
) CyCyt = .
e , N
+,§[w (W, wv)+wxwa—wv)]qu;g,w)

where we have defined,

' ‘ dt  _-iwt_ F
(2.15a) . SNN(Q'Q%ﬁﬂJEFﬁ:e <N (q,O)N(q t) >,
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(] " . “ ' r

(2.15b). s (q,w)

[dat  -igt .t ' |
c.c,, | B el @ oe, g0

-} 27N

-f-'
+clig,0e, @05,
c DN [ df it
2.15e) s (g = 5 [ S Tl (g 00e (g 0

+ C(l (gIO)N.(g,t)>T ‘ .

By expre351ng C (q,t) and N(q t) 1n terms of the

-~

-N (q t), one may ea81ly verify that 901ng from (2. 13)'

" to (2. 14) is exactly equlvalent to the progre551on from

(2. 6) to (2. 9),'and that ope result 1mp11es the other.

Just as there are, v(v+l)/2 1ndependent DSF'S of

4

the'SuCﬂ type, there are the same numberwhnwthe*set ot

UMz oncentration DSF' s, of which

1 is of the (NN) type,

(v-1) are of the (NC) type, °

v(v—lj

> are of the (CC) type.

- One. may also, of course,'write a. given set of .

'lstructure factors as a llnear comblnatlon of any other

¥

properly deflned set; and for :the two types just given,

we have, g ' o .
Suqt (Qrw) = CoCorSyn(drw) ¢ S, Cf'(q,w)

+ CQSNC , (E{,“w) + Ca'SNCa ,(qlw)

(0] ) - '.



and the inverse relations,

SNN (grw) = Z , S ol (glw)
. a,o ¢
S | (ql(i)) = Z (8 - ¢ )S ' u.(qlw)
NCy < &',or 'O LA
S = - - '
Caca.(g'w) a-gap.(éa"a ‘Ca)ﬂ%”a1 ca‘)sa"a"xg’w)

'

from whi:;—zzkis apparent that

. _ Z,SNC (g,m) =y Sc ¢ (qrw) =0
. o )

39

as is'required by (2.12). and-the uerlnltlons (2.15).

This is 51mply a statement of the fact that, whlle’
there are locallzed fluctuatlons throughout the subs—
tance, the total number of ions is fixed.

§2.5 Structure Factors for a Substitutional Alloy i

Although one might hope for progress 1n the
'experlmental determlnatlon of the DSF' s, it is at
present a dlfflcult undertaklng to attempt accurate
theoretlcal calculatlons of these functlons. Never-

theless, it is Stlll possible to obtain useful 1n51ght

'

into many phy51cally 1nté“ést1ng processes by conSlder—-

1ng somewhat 1deallzed 51tuat10ns.

.. ‘
- . . N




Oﬁe such example, which we shall make use of
later'on, is that of a substitutionai alloy. The
basic assumption operéﬁihg in this case ié that one -
may interchangéhions of the various‘specieé at random,
without Caﬁsing significant changes in the local ionic !
structure. This implies a certain degree gf uniformity
in size and shape, of‘course, but is not entirely un= -
realistic. One knows experimentélly that iﬁ is diffi-

cult to form homogeneous alloys from constituents which

differ markedly‘from one another in this respect, the

40

Hume-Rothery 15% ruie_[26} being the g¢lassic..indicator——

This rule states that if the cbnstituents differ from
one anéther by‘more than'abdut 15%-in linear dimenSions,
then their mutual solﬁbility will be severely_:estrictéd
(i.e. to less than about.S%).

| In order to introduce the degree of randomness
required in»this‘case, we ﬁgke the probability that a .
given position in the alldy i;:occupied by an ion of
ﬁype o as being équal to S ﬁhe‘conceht;ation of that -

species in the allby. Wae thus obtain the configurational

average:
) . e v * ' ‘_ ) i-.k_ '
| (2.16) ij.j' = éjj‘g c WiW. + (1 ij')'gcqwag,ca'wa'-
4 . - I | . ! . . .
: 2 2 2
) .= W +6--’ i W - w .
D N I CHLA IR R

',"\\
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o~

This result may be cast into a varlety of equivalent
rforms, and for present purposes, in° order to facilitate
comparlson with (2.14), we introduce the pseudopotential

differenc es (Wa—wv), and obtain
2

* - ' 2 : *__‘* -
ij., = lgcawal + 8 55 ReaZa'}a(daa CL,)(wm W) (W, w,).

v

Then, writing F(%,%',w) explicitly as’

J
: : . -ig-R. (0) ig-R.,(t)
| L) = [BE gmivt g e TR () AR
(2.17) P(lf,]f ,w)‘;l'm e -/ JJ' _] j. .’1‘ — 7T
' | A ' ‘
" and replac1ng WJW by from (2.16), we have

}

(2.18) Ik k! o) =4l %s S (/)

+ {Re ) c, (6

, - 5;%:e;; 1}
e ala-j Cal) (WG_\'Y\)) (W%l—w\)) SI (glw)

wherevSNN(g,w).and Si(g,w) are given by

L ~ig+R. (0) ig-R..(=) -
dt, -fot I e Ry
Sy (Qrw)= [ZW e T <Z.'e , = >0
| © 33
)
| ' - . =ig-R. (0) ig-R. (t) )
| v_[dt _-iwt 33 375 o
(2.19) SI(q'w)"[ﬁEﬁ,eA ) e e > . -
T L.

j
-SNﬁ(q w), as defined here, 1s exactly the ‘same as 2.15a),

of course, and by comparlng the forms of (2 14) and
RS a
(2. 18), we may deduce that T A \

\

3
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~

'SNCa(q,m) =0 for allva

which means that the‘fluctuatibns in number denéity
and concgntration aré independent'of~one another, as
might be expected from the discussion of §£.3 and‘the
assuﬁption of no lattice digportioﬁ in the present
casé. In éddition, we sée that

)

SCaCal (g,w) = ca(aa'a B Ca')sl(g'u))

ra

P -5 U . .
T CTAATIOIID dLle

By
2O

which shows that the concent
all correlated through the same‘dYnamical behaviour,

- ' ) ! R . .
with each contribution to the 'scattering being weighted

by the concentrations of the various species, and by
the relative\strénéths of the pseudopotentiéls. Thus
in this simplifigd case one has'only two independent

structure factors to deal with.

14

The first and second terms in (2.18) Correspond

exactly to the "coherent" and "incohkreént" scattering
L ' , L . . . _
‘cross~sections thdt one encounters in the current treat-

» [}

ment of thermal neuﬁron scattering [25]. Indeed, one

may see from (2.16) £hat the coefficient of-SI(q,m) is
just (%7 - WZ), which is the form more commonly seen in
neutron scattering theory. The W's are‘differentz of

course, but the form is the same, and the structure

£ _.tors af@[exactly thé~same, Aas has been stated earlier.

K
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CHAPTER 3

-

§3.1 Preliminary‘Remarks

For a given system, represented by its appro-
priate pseudopoténtia}s and DSF's in the sSgattering

function T (k,k',w), expression (1.12) gives\a straight¥

APPLICATI&{S ,‘ o

.forward prescription for galculating the Sehnn“‘gfd°L
4 . ‘ . o)

corrections to the free energy; A significant aspact

. ! ) -
of this result is that it embodies, in a §imple concis

expreésidn, many results which are usuaily~treated;quite ‘\\\\\

[

sepafately from one anothé;, using different techniques.
These techniques are often difficult to extend without'
a complete reformulation, While'(l.lé); withdin the pasic -
limitatidns discussedleaf;ier, is vefy génerai.
As illustrative exémples, we shall consider a
_number ofirepresentative*caéés, which willaservébtov

demonstrate the utility of this formula. .

§3.2 Harmonic Soiid»

Sa
4 . 3
‘e

As a first exapple, let us apprdximaté a pure

metal by a sy§stem of 1ons executing harmonic vibratiqné

about equilibrium positions on a perfect laftice,‘whiéh'.

is the usﬁal’"phonop" model.

43 -
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o
In this.case,,the Hamiltonian is giVeggpy
. o ..

1]
o

o + 1
AHI —:g ﬁws(asas + 7)

- where s indicates one of the- 3N vibrational modes of

the crystal. This index may be further written as

s = (Q,8), with each of the N wave-yvectors '(Q) corres-
. . \\t

o e

ponding to three polarization-medes (& = T,ﬁ,é)l'haviug

44

. ~ ' . - ‘ \ .
~unit vectors ey and frequencies Wy - The Bose creation .

and annihilation operators, ag and as,’satisfy the

.commutation relation

“

[asfaZ']‘= 6

[

ss'! Col

Trwrt

- Then if xjvis the.jthfidnic site:on the perfect

lattice, we may write

R.(t) = x. + u. t
~J( ) ~J}_A~J§ga

where u. (t) is given by the standard theory [27] as

(

—i(wst—Q?x.)

.
. . _ . ﬁ 2 A pod "'J 1— . [
G- =1 Gmg) Sslage T rage

with'M as_the'ionic mass; From (3.1) we may'teadily

: déduge that

CBL (q,t) = '[—'ig-'ljj (0),ig-us(t)]

J°3
» iﬁ A2  sin(wst:; gf(fj'_ §_):
= ﬁﬁﬁz*(g'gs) [ : ]
. » iy

S

i

v

i(w ?fg-fj)}

!/
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- which is an ordinary c-number. Thus we may write

-ig.R. (0) ig-R.,(t) Cige (%, ,-%.). -ig.u. (0) ig.u,,(t)
<e ~ ~J e ~ ~J m=e 7 "l e 23 e.” ~J >p

cige (xy,-x.) %6.,.(g,t
lg (“'31 ~]) ZJl](g )

= e
o

o “a

iq. (gj ' (t)—1~1j (0))

e >

<
e T‘
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T——

' which is valid if [A,[a,B]] = [B,[a,B]] = 0.

The exponent of the term to be averaged can be
thus seen as a Simple sum over phonon states, with each
term commuting with every other term. Then, since we
may write an iohic state: in this approximatidn, as
[n> = H[nsé, whereTaS]nS> = (nsf;) [ns+l> etc., the

S _ . T
average becomes® a product over all modes of terms of

the form
! L % F 4 *' o
(3.2) <el(Ysas+Ysas)> =‘e4a%Ys(2?s+l)
_ ‘ , _ v =
N . . - Bﬁws -1
(see Messiah [28]), where n, = (e - 1), and in

the prese~t case, wé have

-—. ﬁ . . . _i (wst—g.i{j'), M igo}f.
Yo = (m—ug) (g-es) (e / ' " e ‘ ) .

Using ‘this result in (3.2), we obtain

~

T . s ' 1
where we have used”&he common identity eAeB= BB eZ[A'B],



. _ eiq-Rﬁ(O) ig-R., (£) - dge(xg,-x.) 0 e
(3.3) <e ~ = ~,\§$:d"j’ >T,=e R A )

o

ﬁ(q»e ) 'i(wsteQ.(xj,~xj)) '
—Eﬁ—————{(n +l)e +
e. _
’~ =1 {w i‘—-Q (X T )g.)).
+ n_e S o~ =10 -3 - (2n+1) }.

We must then 1nsert this 1nto formula (2 l7) in

order to obtaln r(k k w) . Because of the dlfflculty

e}

in performlng the time 1ntegratlons, hOWever, one ma

Y
resort to the procedure of expandlng the second factof/’//

L

~in a power serles andaperformlng the 1ntegratlons term .

by term. Then, maklng use of the fact that o Q/

~ lq-((v,i(."él:_' v
3.3 N

where G is a vector of ¢t ce; we keep

.only firSt order te As in the expansron an&‘thus obtaln '

q

the "one phonon approxrmatlon"~

(3.9 Tkt =N[W,k) % Tis(ws. .
o T G - ‘
. ~ 2
, ﬁ(q é ) L v flg.e )™ - o

"v . .’ ) } - N : ) - . ‘ : v v . ! )
s’ 7gq+Q,G: : @ A '
A ' . (—'/

: . v hiqg.& )} A
4:l%(515')12§§s (1) 8 w-uy) + & R L



Waller factqr"i

wherevwe %ave dropped the elastic Bragg terms (Gq G)
14

'ln line with the remarks made earlier, and used
2 a .
(g-89,¢)" = (3-8 g, S ot

The higher order, or "multi-phonon", terms in.’
the expansion of (3.3) may be obtained directly, but

we will confine burselves here to first order. Zne

p01nt to be noticed, however, is that the "Debye-

$ . z)

A 2
ﬁ(gfes)

-2D (q) _ 5 2NMms
e = e

(2§S+l) .

need not be expanded for the purpose of performing the
time 1ntegratlons, and may thus be- left in exponential
form, as is the practice in X-ray scatterlng problems.
But there have been arguments to the effect that thlS

term and the tlme—dependent terms may substantlally s

cancel one'another‘in(higher orders [29]., This matter

.remains somewhat unsettled, however, and for present

‘purp ses we will adopt the policy of expahding,(3.3)

con51stently to the same order in the exXponent, treat-

ing the Debye—Waller part 1n the same way as the rest.

Note that uS1ng the definition of ns,”and_the
relation f(a)é (x-a) = £(x)6(x~a), we may rewrite. (3.4}

in the alternate forms

- 47
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s
' /. T ~
C Wk 2 x(geE,
r(k,k"w) = . R — ) - ,
(k, k" w) ol L e_Bbw) ot 5 (6(m w,) 6(w+ws»6g—9,§
y,
L 2lWoe,xn |2 1i(g-8_)°
= - § - § :
|w] (l—e_Bﬁw) G,s 2M . w .ws) 9-2.G

which are sometimes useful for calculations.
= L , | : \
Inserting (3.4) into (1.12) and performing the

frequency integrations gives for the free energy correc-

tion
2 .
(g-e_) . R
2
(3.5) 27" 1 ————5——[w(k,k')| § Lo
R A gl TR g,
(ns+;)fk{d—fk,) - £, (1-£)

w - W
kk' s

This is a more complete version of the express1on used
by’ Bucklngham and Schafroth [10] in thelr spec1f1c heat
calculations. In thelr case the umklapp ‘G7£O) terms
wete;drOpped —an 1sotrop1c Debye model was used for the
;phonons, and the factor Wk, k! )[ (g.es) /2M@S was
'.replacedvby a simplified "iﬁteractien pafameter" which
varied'linearly:with.|9|L' ‘ - - _NQQJ .
. Expression (3.5) may be separated.dhto'two terms,
'one of Wthh depends only .on "virtual" phonon processes,
,'whlle the ether depends dlrectly ‘on the phonon occupatlon

numbers. This glves ‘
{ v
v \ . -
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N |
(g-3,) i )
s, 1" g 65T

2wkk,
lw(k m')lz 40,6l wz]fkﬁs
. = - kk" s

‘where it is undérstood that the sums will’eventually

be converted to integrals and pr1nc1pal values taken
when the 51ngular1t1es present problems.
The second term lS zerO’at T = 0, and does not

contrlbute to the electronlc spec1flc heat coefficient.

It may "be 1nterpreted as representlng a renormallzatlon

of the speed of sound,‘ The flrst term in (3. 6) will

yield the "electron-phonon enhancement" of the electronic

specific heat, which is'finitegat T = 0, and becomes -

.zefo at high tempe;atures,\as'disoussed in §0.4. (See"

[10] and [151). . . |

v o BE

®

§3.3 Liquid Metal = - S o o f“%ﬁ

Beyond the meltinghPOintrof a metal there w1]1

be some degree of short- range order, but there is no

'regular lattxce, and such concepts as. band stiucture : N

and Bragg rellectlons are no longer applxcable. In

such 01rcumstances, the scatterlng funttlon nust 1nclude

Jall elasth and 1nelast1c processes.' Indeed the elastlc .

procesqes w1ll teno to domlnate the scatterlng to a

Yoo

L s . . . D 4 ’,

Se
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large extent, since they may no 1onger be a351gned o
the band structure. Thls fact. makes it easy to obtaln

good first approx1matlon to the eiectronrc propertles

‘of lquld metals. EE 3 a A
In sett'ﬁ; up an exoression for the electrical
resistivity cr netallic substance nsing'the'current'

varlatlonal approach oné flnds that the Scattering

Rl

functlon enters in an 1ntegral of ‘the form

o R B |
(3.7) L (C~1) = [ dw (m——) ,F(g,‘,.u)) ,
o ‘e -1 - o X

in the local pseudopotentlal approx1matlon [217. Thnsf

¢

at liquid metal temperatures, and for the range of.enerf

gies acce551ble to the system,

~

, oo
Bhw << 1 , and 1I(q) 2 J dw T (q,w)
. X . -0 B :
H\In the case at hand, we are dealing with the
;same scattering processes that are responSLble for the

reslst1v1ty, and in the same approx1matlon, we mayﬁusel
S(g,w) = S(g) 6(@;)

where S(q) is the "statlc" structure. factor, S(q)
de S(q w) , which glves the total scatterlng in a- glven

J,dlrectlon g. Using thlS relatlon in (1. 12), we obtaln



‘'which may be written as

belowuthe'"Fermi temperature", we may expand. - (3. 9) in

‘terms.

' : . ' b (I-£,.,) Ty
s 27 ' 2 2 ~ b g
(3.8) Y= 5P I W&,k [° s(q) — (&2
C e ‘ k,k' - - k k! "
- k
' 2 r 2 ~
‘) =<pP 7 [W(k,k") | s(q) '
N N Kok ~ 12 < Ek— Ek'

.{ . .

(3.9) ¢2 = gdek'no(Ek)fk G(Ek).
where e
1o e W,k | ?s (q)
G(Ek)?ﬁyjmf T BB By) —5——%
g Co ~ -~ k k!
2 ) \

ana n_(Ey v/ (2m) 3y amk? /(dEk/dk) is the density
4"of states, for each spln,D of the "modified" free | \

electron gas, with Ek given by (l 5) as E = (H2k2/2m)+A

~

Assuming that the "liquid metal is still much

the usual manner [l], and obtain for the flrst two

2

1(3.10) ¢, =2 fb T g (B 6 () + T (x T) ng ()G (u_)

k
0 .

c

'where,po i's the chemicdl potential at T =0, and G'(uo)=

| [dG.(Ek)’/.dE_k]F; .

'k



The second term in (3.10) gives a correction
to the specific heat, according to the formula AC,, =

. 2 2 L .
—Tja ¢2/8T )V , which is &? 3

e —_ -
(3.11)acy/ey = <6 ng) s

o ‘ .
2k2n (”o)T, as the specific heat of the

with gg,; = 3 7r
free electren gas; MIncview of the-high»temperature,
‘ howeVer) this correction wils be conpletely dominated~
by other effects) and.may ne‘safeiy ignored..

The first term, however, is of more interest.
It is seen to be independent of temperayhre, and since
the total energy is equal to the free energy at T =0,
we may, in v1ew‘of the form of (3L8), interpret this
term as a correction to the electron enetgy.l Thus wé,

write the energy of an electron in a state k, to second

order, as

(k) = B + NG

This is the usual result that is normally obtained from
pertupbatlon theory applled to the Hamlltonlan., it may

be -used, for example, to calculate the electronlc

den51ty of étates in a kiguid metal [30].



"self-correlation terms, one. £f&r each ion, and ‘thus

§3.4 Binary Alloy - Static Effects

From expression (2.18), we may write the seat-
tering function for a binary substitutional alloy, W e
with c.as the concentration of species 2, as - v Gy
. AR

%
)

(3.12) T(k,k',w) = @, k") |2 sy (q,w)

o) iy G- Ok 12 8@
T\ . /_." » ’ ..

The first term is the "virtual crystal" contribution’

to the scattering, and its behaviour. will be much the

same as that of a pure substance with an average

BN

potential W associated with each site.

'
pa—

1

. The second term represents the scattering'due

to deviations from the mean potential. It is a sum of

4

dlsplaYS no "coherence effecte. The"static part of -

S (q,w) w1ll often domlnate the contrlbutlon from thlS

term,. as may be seen from the follow1ng con51deratlons.
' i
If we consider a blnary alloy ln whlcg the two types ’

- of ions dlffer @nly in thelr respectlve potentlals,
>
then in the one- phonon approx1mat10n, we obtaln from

}
(2.19) and'(3.3)

fi(q.&_)°

St (q,m) 6(w)+z ﬁb-,1—~---‘—{(n +l)6(w w )+n 6(w+w )—(2n +l)6(w)}




| | G
Using this, we obtain, after some rearrangement

jSI(g,w)dw, N f(q:8,)% ug (Rg+l)  w h_ )]

= 1_'2
(wk'kaﬁ',w) ﬁwk’k, { s 2NM(JJS o UJS wk,k. (.Us+wk(t)k|

)

The term involving the phonons may be estimated by

using an isotropic Debye mOdél; and at low tempera- o

&

tures, its maximum value will be Sf the order of

—

2 E. %

m
( (ﬁ) (ﬁ_w];) x 4(3) ‘ for g= ZkF .

N W
4=t

9,
kF
. B | : :
In those cases where this ‘estimate is reasonable, we -

may replace SI(qu) in (3.12) by §(w), and thus obtain

for the free energy correction due to this term

~

| ‘ /2

B il W, |

| \ ,
2 Nopogi X777k Rop o
X . ""
e ey (2
20(-e) g Wy Ge, k) - W, O k') % £y
e ke Ep= By

Then, Ws#hg the same prodedure as was used.to obtain
e e e e

(3.11), we :find the corfeétion to the electron specifi¢g

. heat arising -from this term to be

/ (1) ,.ey _ _ _' 2 -
(ACV /Cv? = -c(1 C)GI(po)
Gy ) = 30 [t T an,, e 1ol
1) =8 | K BB .
I 5 - S T
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'Thls result was obtalned by Stern in 1966 [16], for
the case of a blnary substltutlonal albéé; in whlch

the 1onsqwere flxed at, sites on a perfect gattlcgb

. Stern’ apprled thlS Jesult to the cése of Ag:A:~
"alloys-in an attempt to account fgi the dewaatlon of A
the electronlc spe01f1c heat from 11near 1nterpolat10n,
in concentratlon, between the values for pure Ag and
pure Au. Subsequent measureme nts of the low tempéfh-
ture spe01f1c heat by Dav1s and Rayne [31] 1ndlcated
that while the concentratlon dependence of this result
is essentlally correct, 'its size (as estimated by Stern)
is too s£all by about a. factor of three. o »

The reason for this lack of agreement is to be
foundfin th@.negiect of the ion dynamics. While it
is'true that the term involving S (q w) in (3.12) may
be adequately treated in the static approx1matlon, as
we have roughly 1nd1cated thlS does not mean that one
'may treat all aspects of the electron -ion 1nteractlon
in thlS way. At iowltempe atures, in fact, the dynamic}
effects, usually referred to in terms of the electron-
phonon interaction, are commonly known to be guite
important and we shall return to thlS p01nt after
obtalnlng some necessary formulae 1n the follow1ng
sectlons.i In partlcular we shall - perform Some numeri-~
cal calculatlons for the Ag—Au system, in order to ‘
indicate the importance of the electron -phonon effects'm”y“”/&

in thvs case. _



‘
i
v

"y

§3.5 Low Temperature Specific Heat

In thid section we shall cCerive an approxXimate
Y

expression for the correction to the low temperature

- electronic-specific heat coefficient "Yﬂrdue to the

term 1nvolv1ng SNN(q w) The unperturbed value W
taken to be the free electrogbvalue in the case of a .
disordered system, or the zero-order band structure
value in those cases where thlS concept has meanlng.,
In elther case, the SNN term represents scatterlng of
electrons around the Fermi surface due to the em1581on
anqbabsorptlon of lattlce v1brat10nal quange and the

fact that the Permi- energy is much larger than the

energy of the v1bratlonal quanta is an essentlal p01nt.

4

in the derlvatlon.' ' _ ar

In addltlon to this,~we‘will'use the fact that

the low. temperature spec1flc heat is proportlonal to

the den51ty of states, and use ‘the approx1matlon

>

¥ An(Ep) N

9 ' '
—1 = z - [—fT—T AE (k)]
Yo IH;EF) aEkQ - T E

(o) _
kK Top
where A indicates the change in'each quantity from the
unperturbed‘value} (k) w1ll be obtained bj noting

' o,

that'at T =0 the free energy is equal to the total

energy, ‘and us1ng Landau S qua51 partlcle" prescrlp—‘

‘tlon for the energy 1n a state k

56



fQ@) e %%~ = %%— at T =0 , - . ’
Part of the development Will follow a procedure used
successfully by Ashcroft and WllklnS [13 15] in an//
.examlnatlon of the electron phonon enhancement of the
spe01f1c heat in pure s1mple metals. - -

For the free energy correctioncdue tOFSNN(g,Q)L
we have |

dw SNN(g,m)
A (w

NN _ 2 o E ry |2

and we thus obtaln dlrectly, omittipg the superscrlpt

(o) )

on E for convenlence, anc taking account of the two

~

spin states,

a¢gN l'ﬁv L , ) - 1- £, £y o
B W ! ' ~ _ ~
3E, T F k';le(}g,}g )| ° d SNN(g,w)[Ek_Ek‘_ﬁa EE me
L o 8 (Ey ,~Ep) G(EF—Ek,)
= = Wk, k) dw S . (g,w) [ e —— A

iaere 8(E.-F ,) s the Fermi function at T = 0,

1 if  E < E



' Changlng the .Sum over k' to an 1ntegral we have

A B . ' ’ -
v ’ I

8¢2 ;&lr[ dE k! ‘

9f, ~ T k'n (Ek') ""—‘IW(k k! )I do Sy (grw) -
P ’ (8 (B -EQ) 0 (EF Ek.) :
- - N - +’ -
| | k Ek ‘hw, Ek'Ek'+ﬁw . 3

L8 ' ko, .
= = J dek.n (E +ek,)j = IW(k k') | de Syn (Qrw) -
] “Ep o .
’ (o 8(ey) 0 (-, ,)
= N =
[Ek“ak"-m Ek‘?k'*ﬁ“f] ro

where Ek' (E' - EF). Usiﬁg the 6-functions to define

kl
--the llmltS of 1ntegratlon expllcltly, and treatlng

the flrst and second terms separately we obtain

o . " dae. , . a)” . |
3¢2 1 k lét % dw SNN(q,w)
1 — T ~ ;
of, T N J dek'n (EF+€k')J [W k l jE -£. y—~hw
: . K ”‘t}».j ‘ ’ ' » "’S’l | ‘
. leF ; dQ _ . dw Sy (drw)
- +-ﬁ. j dsk.n (E Ekl )J ,W(k }f'y[ Jsk.*_ekl.*. Aw
-0 N : ~ ~
: h P |
n_(E ) < ko ) 1
- 1
~ S J ey, IW(k,E ) | de SNN(q w)[ c. R
| “x"Fk
0 o . : : ~~
,‘af_?ﬁ/‘q. . - :
8 V;’;’;:Fg‘ ‘ . A ’ ) /
"}; “.'-‘-“‘ . . . ' . <
S
Y T o , extep i)
5
i
} ot
' ‘} .
¢



7 )
whetevit has been-assﬁmed that EF is much greater than'
those values of Ek, for which the 1ntegrand is appre-
01ably different from. zero, and that the s%ro-order
-density of states does not vary greatly over thlS inter--
val. S o _ s

From this expression we then obtain,

. | NN
RN RS EEN L
Y T T 3E. T3E- _ T Fe.. 3F _
.9 -k KBy =E, ! K ke, =0
ag
no(EF)

14

k' . . :
. = 21 . .
S Jde,, fz?—IW(g,gf)J fdeNN(%'“’;

O
e

- where’we;have)negleCtédJany explicit energ§'dependence

Eof the pseudOpotentlals. Con51stent with: thlS, we,

: w1ll treat thelpseudopotentlals in the local or fdn-.
Ferml sphere" approx1matlon in the rest of thledevel-
“ﬂopment 'so that they may be wrltten as a functlenaof'

q = k k! only\ Then 1ntroduc1ng the iunctlon, oo
" NL")" ""K" : . .7“'
‘U\ tg w “\‘ i .

o . ..4 - . '.’..":,\L__-‘jv—' -



(q,w)
F(g) = lW(q)lZfdw NNﬁ;

7 L] ’ g

ZnO(E )

‘Sv"‘

we are led to the following results:

60

- i
P ‘NN de, ' ,
(3.14) " (Ay™N _ J kX F(k-x")
Yo 47 RV
; k . k! _ _ .
= [ rewn
‘ : dQ, (dQ '
1 2 A K [ .
" ~>k—4 Jdk k 5(k—kF)Jdk-'k' S (k'~k )J ﬂj I F(lf (‘}f’)
o - TF . - .
= —-—i—fd-”kjd?’k F (k=K' )6 (k- kp)§ (k'=k)
2,2 B .
(4 k) 2%,
o . ¢ ," .
i = ———12—2J d3kjd3k-F(q)a(k—kF)es(lk—ql—kF) .
- (47k%) ~ ~ ‘ il L
- F q<2kF : C
rThe 1ntegral of the delta functlons over d k may be
evaluated directly as |
- 21 41 = S :
2 2, 2 3
| d¢| du [dk keé(k—kF)d((k +q -2kqu)*= - kF)
A 0D ‘ _l 0 n\.‘ . .
+1 | ) |
Co=2mk? [ au s ((kPrq?-2k qu)® =x_) '
-1 : -
2nkF.l‘.}'{F+ql .
= a f ndx x G(X k ),
pmal 2T
2. . g '
= 2")n'kF ’ | ::. 14 )
, o
N e TLA«WEer““”“"?'l“f—‘"A‘ '“EL”'ff: - . .

e
e
-

d



" we obtalpmthetfinal_resultﬁrﬁrflvfﬁ¢

!

.Using this result in (3.14), separatlng the angular

varlables, and deflnlng a function e
3
dq _
(3.15)  Fpgla) = J4n Flg)
- NetEs 2 " "NN: 2 ,
= < f 4ﬁlw(g)j jdw N TR

. ‘/
& ~ et

S 2k
(3.16) A= = = J dqg g F,.,(g) . ,
Y 2 AV PSSR
e} _ ZkF 0 o -

e g . (=3

The form of this re%ﬂlt is scen to be quite.

4 .‘\.

similar to the varlatlonal eXpreSSLOn for the resis-—

61

t1v1ty OL‘the tjpe of substances which we are consider—-

1ng here [21]. The dlfferences are that in the”
re51st1v1ty formula there 1s an extra factor q in
the 1ntegrand and F(o) is replaced by a functlon
proportional to I(g) given by (3.7).

Indeed, in the present'case,'oﬁe may replace
]W(q)l2SNN(q,w) by the full scattering function I'(g,w)

as lon as any "static" contrlbutlons, involving 6(w),
g Y

t

'are treated separately, such as in the preceding’} -

sectlon. ‘ o , - '



CHAPTER 4 . . o

NUMERICAL CALCULATIONS

4.1 Electron-PHonon Enhancement “for Na

In the one—phonon approx1mailon, we may use (3 4)

to obtain for a pure substanﬂe at T = 0:

0
! ) ’ ~ 2 ) ) B e
o _ S(g,uw) g (q-es) R R
(4.1) jdw ‘?’v—'——z__ e P Abﬂ_ :
‘ %S ;
’ ’ P S : o7
Z (g'eg__g’g)
A 2 .
G,z 2M
~’f> wq"G,E
. ’/.. <~ o~ ‘
.On wﬁe other hand if We calcuﬁate the structure factor
&
(q) = I(q)/[W(q)l aqpearlng in the re51st1vity'formu~ -
la, we have w‘/
‘J . : // ) . . -
S = fan B8 gig,, :
- e 7 -1 [
I ~
| fi(g-8 )2 *q-0,G -
i = 2gh '~2 “Eh = BRw :
G, s Mo (eB Ys'~1)(1-e °S) )
7 | .
At high temperatures this reduces to
~ 2 ¥ f
(g-eq_g ;) ©
S(q) = 2k.7 J = _976.f - :
B gl oMl ’
. ~‘l . ’ g_g, é- , j
L
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»

o ) . . "/ . ) ‘}b\
which, apart from tpetfactor'Zk T, is identical with
§ ekpre531on (4.1), recognlzlng of course, that the

phqndh frequencres are sllghtly dlfferent in the two

: L, . : , [
Ceas ~‘cases- : , S Q59 _
s ".,ét‘” } u"x o /| f

lgnoring this difference for present purposes,

(// ' we see that FAy(ql is proparticnal-te-theangular

PPN

averaged structure factor SAV(q)}

aq

o ‘ g ’ .
Foy (@ s_szu(q) = Jjﬁ; ‘S(g) SR

E | Greene and . Kohn [52] have calculated thls func—
tion for Na and found that it was small and essentlally
constagt for low q:values'(normal processesyhand‘rose
1steeplyias One‘approached;q‘é ZkF (um’.1.pp processes)

This"behaviour.is not peculiarwtonNah f course, and is

a cnaracterlstlc fe&ture of the. structure factors. In

vgeneral one will f;nd sharp peaks in S(q) whenever q'.

~
‘e

Cis close to a rec1procal_latt1ce vector, the shortest

of Which lies just abgove 2kE'for the monOvalent metals,

and just below 2k for the polyvalent metals, P '

~r

. o Anothej feature of the results of. [32] -is that
e T | at high' and 1low temperatures allke (273°K and 40°K),.

j-the‘ratlo of the structure factor at q = 2k to that

at q =0 lS Jnchanged ~and 1n both cases 1is found to be:




‘ | Spy (k)

SAV(O);
4,
We may readily obtain a qualitative understand-
W 9
1ng(of these effects by conSlderlng the case whenﬁh I AT

~ . _,_~,».z.x—

1s~pa£a;lel_toéonerof'tne rec1procal lattlce vectors»l,

e

G.  If we ignote’ disper31on, the value of (4. l) in this -

~

dlrectlon is given by

2

v {4.2) 1‘2 [8(g - q). .+ e(q ~ —) ——9—-—]
o 2MsG (g-G)

» ~where sG is the. veloc1ty of a longlttdlnal wave in the
-9
dlrectlon of G , and 6 1s.the.un1t step function,‘ The

function in curly brackets is equal to unity up to-the*f
zone boundary (g = G/2), and thereafter rises steeply

;as q approaches G. For Na (B. c. C. structure) the

srimin )

shortest G is the (llO) dlrectlon, and the ratlo of

L Ty . La
~ - LI

et Dy s .
(g_Z) evaluated at q = 2kF to the valuye. at q-= 0 'is’. ’7A*‘$,2
w2 _ . {-: IR
given . by T IRORCRR
. . ‘ {": . ‘v’. ) .-';g\" ) : O B i .
2kF 2 . ' v
( ———) = 50 - ' 4 ¥
2kp = G519 | | LTy
with llo/2k .= 1.141. This result'is the same at ail O
htemperatures, since k and G are both proportlonal to };;h{a“

R - : L,
the. inverse of the lattlce constant e RIS

.

In order to do a simple calculatl n*of the'

r.electron-phonon (e.p.)‘enhancement facto'.for Na,-we
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will use the functional form given by (4.2) in place

of the aVeragedrstructure;factor, modified to the

e
PEIVEUUEE,

extent that we will deflne an effect;ve*G~ G~-such””—*”‘””

b ke 2

“""fhat !

e
EL -6

which gives G/ZkF 1. 158 The behav1our of (4 2)

l/-crr“'./ .
for this value.of G is 1llustrataé§1nx§ =5 1. It |
&0
o
dlffers from the correct form of~the structure factor

in that thé’ latter is a llttle higher in the inter-
mediate (g m’kF) region, this difference being mainly

due to our neglect ofudispersion. For polyvalent metals,
)

of course, our approx1matlon for S may not be used,

because of the dlvergence at g = G, and'cne must do a
more careful calculation in these csases. See, for
example, the resistivity calculations of Dynes and

’Carbotte [33]. ' v fﬁefﬂ’@ef!

Usihg (4.2);inv.(3.l§§~and'g3‘16“vthus glves'

be

: , T 2n (EF) -EF - a/zn ’
4.3y by o 2 T TR (F U ax %W x) | 2
Yo NE 2
O e.p. F Ms 0 i
. : E . L4
A 1 -3
S + d% —F— IW(X)I J
i ) a/z (X_a) | ¢

. Lo ~ A
where a = G/2kF7 X = q/2k and no(EF) % 3N/2EF.

.‘

N
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A value for E,F/Ms2 is obtained by calculating this '

quantity for longitudinal waves in the (100), (110)

ang (111) directions, gnd,gveraging the resulfs.‘;
2 ‘ ’

.This gives a value for Na of Ep/Ms® = 1.22,

For a pseudopotential, we will use the simple

“;.\

functional form suggested by Veljkovié and sSlavié [34],
namely :

(sin bx)

which they fitted to the Heine-Abarenkov form factors’

¥

[35,36] for a number of simple metals. In real_space;

Ko

this corresponds to a pseudof ntial of the form: - -

 V/N

vir) = - G ey Y s (rer )
o : 74ﬂr i

"defining a "pseuddb-atom" of radius r = b/2k_ , which:
e ng TN A : o . B

turns out to be a little smallgélthaﬁ the atoh}cﬂradihs.:

For Na, these autho;s.give‘a value b ="2ﬂ(.5612i), and

we obtain, upon performing the integrat%oﬁs in (4.3):
. y A sen . . . N

'(é%- o= ,20 . . (Na)
5 e.p. C

‘with 30% of this vélue,goming from the umklapp processes.
This result compares well with-.the value .18

given by Ashcroft and Wilkins [13], and if we add the
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W =_(l~c)Wl+chi; we have - ..

(4.5) T@ﬂﬂ <1cuwﬂ Nwan+c Wyl %S (g w)

electron-electron cdntribution of .06 quoted by theée

.authors, we arrive at

,,(%;) = 1.26  (Na)

‘compared w1th the experlmental value 1.25 quoted in

f[13]

“54 2. Blnary Alloys - lnterference and Impurlty

-

Contrlbutlons‘

g, -

To re turn to “the ulnarj suostltutlonaL alloy,

- we wrlte tne scatterlng functlon, with local pseudo—

\

\
approx1matlon, as

'potent1a1s, and treatlng th8 SCC part in the "static"

S ’ B

-

r(g,w) = LW(q)l Sy (9 w)*—c(l c)[AW(q)I 5(w)

where AW (q) = W, (q] - Wz(ql;AfWe>may‘note=that‘since

L% .

Wl = (1ié)2w2 + czwg + 2c(l c)w My

N o7 . o 9 ' . N ‘ ' < 7 . ’ -
= d-e)wd & i - cf@;c)ggwyz ,
and .thus T(q,w) may be written ‘as. DR

. ‘;:.,,1:“ - Y

A d

%

’.,53¢ﬁ%fé)IAWJ;SNN(gf”’ffa?(i‘9jrAWl?§(“y '




When we use this expression to calculate corrections

to the electronic specific heat coefficient we. will L ' 7
have four contributions. The flrst two terms w1ll S e
) . l.’ o

give the llnear 1nterpolatlon between the electron— p
ion enhancement factors for the pure substances,lqg;leﬁj. -
the third and fourth terms represent qnadratio deVia—h

tions due to dynamic and static effects respectiveiy;

It is interesting to note‘that the last two'termS‘in

(4.5) have the same concentration dependence, and .

involve the same combination of pseudoporentialslV"A-v‘

4/
. - , 1
similaf result is also true for v-comporent alloys. '
, ] A | .
The,contributions to the specific'heat~coeffi<
.client due to the non-linear terms may be wrltten, us1ng
(3. l6) and (3.13), as
"2k, - '
(él) = ~c(1l-c) —9—4%— { dq q]AW(q)[ J4 qjdw NN,~J\ '
Yo int / - Nk T Ao
F OO : B )
n (E.) . .3 | 4w (q) | 2
Ay, : o'"F’ (2m)T d . L , :
G, =cel-e) —o— v & s E - Eji_ ~
Yo imp Nkg : ag#0 “k-gq k,k?kF . - o
where int = "interference", imp = "impurity").and' we %
have taken E = 2k2/2m.;

In order to 1nvest1gate the qualltatlve behav1our .

and relative lmportance of thesé two}terms, we Wlll

again use (4.2) as an approximationito the'structure

factor, and thus obtain, after some,direct'algebra: B g

S



(AY,) = [c(1-c)

Yo~ int

(él) = {c(l-c)

Yo imp .

where we have defined:

Ep 2 3 oy
S 4.8) f == () ] ax x| AW |+ | ax S aw(x) |
. int Msz' » (x-a)2 .
0 a/2 - ’
@.7) £ =pl axe 2x2)(l_x2—l x+l Weo 12
: imp b <2, 2 T4x. in 1) oW (x) | .

It is-intereSting‘to note that-the factor invelv—
ing the logarlthms is- the well known screenrng functlon
for the e&ectron gas. /Ms2 in this context is to be
v1ewed asran averaged of the pure metal . values. i

The 1nterference term is always negatlve, and thus
yconstltutes a reductlon of the electron phonon enhance—
A ment upon alloylng; The\lmpurlty term may be of elther
sign,.and for [AW(X)[ = c nstant it is zero. It will
be p051t1ve if the 1ntegrand (apart from the factor
ul/(x —l)) is greater to the right of the singularity,
-and negatlve if it is greater to the left of it.

For 1llustratrve purposes, we w111 examlne a"
series: of "theoretlcal" alloys in whlch each constltuent
has a pseudopotential of the_form‘(4.§),'thus givlng'for

LN

AW: , , L ] - ' | -

70
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,Thus, if we allow Bl and‘Bz_to vary between

-in Wthh 95 is the same for both constltuents, so that .5

71

B sin-2nle ’ -sin 2n82
AW(x) = Wl(O)(——jjggzg—J-— W (0)(——§;§;———

. : ) t

) .

For most metals, the published“informatiOn indi=-

cates that the first zero,(qo) of the pseudopotentials .

~occurs betweern q = k_, and g = 2k, [7]. For the form

F F

which we have chosen, the first zero occurs at

.5 and 1.0,
we will cover t%§ range of interest.

We will &fse the F.C.C. latti structure,'and

in each case w1¥ _calculate £, for two Values of "a",

R int
namely'a = 111/3%& and a'= 200/2k "These dre the

two‘shbrtest vectors for this lattice, and should repre-

sent upper’ and lower bounds for fint'e .

€ase 1 : By = -'82'

As a first example, we shall con51der the case

C i . 2 ‘
o) |2 = Jawio)|? (SHEERE

In this"case, both f. nt and f. mp are negative

for all values of’ B, and the results of the computa-

tions are glven in Fig. 2, with. EF/MS2 = l.

—



Arbitrary Units

- ik \

16 T I l T
25 .6 7 8 .9 1.0
- B -
L | . -
Fig. 2. 1Interference and impurity contributions to
élloy‘specific heat. Sec §<.2 (case 1)
200 ' 111
A _.fimp” B fintf L'_'fintf
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The "correCt" value for'the interference term

(111) a (200)
nt an rnt

of course, to scallng, dependlng on whether EF/Ms is .

should 1lie somewhere between f subject,
less than Oor greater than unlty.

In any case, we see that both the impurity and .
1nterference terms are of comparable magnltude, a-Con—
clusion whlch w1ll ‘not likely be altered in substance,‘

for real materials.

Case 2 : Wl(O) = W, (0)

In this examole, the pseudopdte ntials for each
constltuent have the same value at g ; b, but have
~different values of q The 1mpur1ty contrlbutlon takes 4
on- both negatlve and p051t1ve values for dlfferent com— .
' blnatlons.of B andABZ, as indicated in Fig. 3.-
We see that for a flxed value of 8 say, fimn‘
tends to negatlve Values 1f B < 32 and wrll thus actx

in the same dlrectlon\aS‘f For BI-> 82, however,

int”
the tendency 1s to p051t1ve Values for f\mp. One m}ght
thus expect some cancellatlon between f t‘and'fimp for, :

'these cases s1nce both functlons are again in the_same
range as far as magnitude’ 1s concerned as one may see,

from Flg.‘4 and Fig. 5; These results are for182 fixed
at .65 and .85 respectlvely, w1th'Bl ranging from'Q.S--'

to 1.0. S SRR
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Fig. 3.

/

Sign of impurity term for various combina-

tions 'of‘fBl and B,. See §4.2 (case 2).
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f " .
! - . .
vKOne may also see that fint and fimp tend to

assu@eftheir largestw(absolute) values when Bi‘ahd

X 2 are apprec1ably dtherent from one another. Thisg
would be expected 1ntu1t1vely, since different values.
of these parameters are an - 1ndlcatlon of different
scattering propertles for the alloy cohstituents.

The same trédnd: is Followed when W, (O) and W, (0)

are allowed ‘to Vary at the’ same time as Bl and 82, and-

/

“the qualltatlve nature oF the resu are much te/same°

(ﬂ

) : - §4.3 ‘Ag—AuVSystem - General'Considerations

Continﬁing from (4.5), we may write the elec—

tronlc spec1f1c neat coeff1c1ent as:

/"_ . .. toe .
» o , . ) )
P (1) 2,
4 = - \ - '
(4.8) vy {o+<%,C)AYep_+CAYep (1 C)FAylnt Aylmp)

‘“ A' ) - e

O

where we have changed notatlon sllghtly, in order to -
<€, .

write the concentratlon factors expllc1tly

S e
If we now’ assume tbat the Zeyro- order cotff1c1ent

varies no more than llnearly between the pure metals,

_"- : ' and Write_lt as&‘£> . - . P
: a (L) (2) =
a4 A AR .
(4.9) Yo (1 é)Yo + cy - . ‘
8 . 5 - ' . - . :
. R T B y‘\\ L
we r‘“ay.»;‘S\ee uha& > : g C \ o
\ .57‘ ° A. ) -
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m\g\i\ terms'inv(4,8j, we may defines - ' _ :

,/
.o

(1) (2)

!:'V
Y=g (l—C)AYep teby ol C(l—C)(AYint+Ayimp)
. = , +
Y B £1) (2) . - (1) (2)
o (1 E)Yo +CYOY . (l, _C>,_Yo ey T

»

On 'the cher hand, if‘we-gollect all the linear

- 1), . (1 N
(£.10) o= o) trgaur B+ oty P sy 2

-5 Ce(lec) (v, . 4 Ay..o )
R C51>C)(?Ijnt - AiéTp) @y,
T, (l—C)(YS :%AYep')%-C(Yo Ay o)

® 0T

For ¢ = 0 or 1, ?O_is equal to the measured value of

\

v

the specific heat coefficeent

iy, Pure metals

(including band structure aPlEs Fi-pheonon dévia—

.‘% iR

tions rrom the free electron vaLucsé; and is the inedr

<

-int crpolqt+on between these values for ¢ # 0 or 1.

DaVlS and Ravpo [31] fltted their electfonic

~

specific heat me rements@for A —Au ailo 'S to an
PE g o

expressiqh“ofxé?e rorm ] - e S
) , :) . - Y I SR v

L12) © = g c(l-c) - R
vy _(c) : i Lo
. o :

—
1=
[

Ty

’ o " . . . , ¢ . . o o &3y ) é»'b‘

. - . A ) = .
in which y~(c) wé? toe llnear ~nterpolatlon betweep‘

' \ N - . #

Coa

_tqeir ehanlgggFaLﬁreSL' -'for Dure Ag dnd Au > A laast

»écﬁ es. fit to thelr data gave a valhe of ko= 138

with Lhe 1argevt chlatvons bevnq at the Au -ena 'f'the‘””

o
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.efgects of the 1nteraCLlon through Ay

“eff1c1en&ehas moye than l}near varlatlon with c?ncen“

alloy series, as one may see from Fig., 6 6, where we have

-
plotted the1¢.5esults
Thooe authors asgiuned Yo {¢) to be the zero-order

»
"band structure" coefflcient*gdven by (4.9). This was
corfsistent w1th the model of Stern [16], which they
w1shed to test for concentratlon deDendence, and .in -
which the dynamic contrlbutions are 2 s3umed to be zero.

F \In point of fact however, since - Yo (c) was

obtaﬁned from the: experimenta 1 d a, it is ‘clear that

this function is identical with Yo as defined by (4.10),

and alrecdy 1ncludes the llnear electron—phonon'enhance—'

by

ment,

' Thus, in reallty, the‘!bnctlon whlch Davis and.
Rayne fltted to thelr di:ta is .given by (4. lli, and the
coefficient "K" determlned by them contalns thé dynamlc
f nt’ asp%ell as
the statlc contrlbutlon lnvestlgated by Stern and

glven 1n our case by . AY ?.' We will con51d°r these
9 .

\efr@CtS more explrcwtly in the follow1ng SGCthH$.~

-, .

Mp§e that for cases in whlch ‘the zero-order co—

»
.

. - ' ¢

«

..tratlon, tnls will, 51mply add‘amothel term to the

+

'~nume“ator ot (4 l),-dn%hmay be thus r rflly lnciudea

2. - 1

- By 1] . . a .. . <
. - P N N "
’ g P 3
~ t . . ‘
. , . d .
. . N . ‘ . . + >
. X . o
.

1n,the analy51s.“; . . ff_ R PR .
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§4.4 Electron-Phonon Enhancement for Ag and Au

For Ag and Au (F.C.C. structure),.the first.

reeiprocal lattice vector (Glll) is shorter than the

El

shortest vector (Gllo) for Na,‘and one .could thus

‘ expect Lhe structure factor: to be relatively larger

jin" the back scatgerlng region (g ~v 2k ). We w111 use

" the form (4.2) to reDresent the structure facbor and‘

'in’ the absence of any published information, will

choose a value of "a" such that SAV(Zk )/S (O) is

ﬂ/S“Wf the valae ca7culated with the shortest rec1procal
>

lattice vector, as in Na, ThlS gives a- G/2kF= 1.123,

eand &

Then, using expression (4. ') and'the‘pseudopetentials

7

'Pa7culaeea bj Morlarty [37] (Fié 7), we obtaln, using

E%/Ms? =6.34 and 0,24 for Ag and Au respectlvely »
A m R
. = .36 (=2) . (Aq) -
o, e T : .
By s .42-<$—9') © (A o
e.n. T -

o ' - @

' The  umklapp processes account for 77% of the value for

Ag; ana 86% for Au. R K T o ‘.

e
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We have set n (E ) = (3N/2E )(mb/m where mb

is the effectlve mass that would be obtalned from a

vand structure caLcuLatlon The exlstlng band struc—

ture calculatlons for Ag a“d Au are . not in much

e “ .

"agreement, and the’ publlshed Values for the band mass
my (in. unlts of m) vary between .88 and .98 for Ag;
'a“d between 85 and l O‘ for Au.:;See‘[38,39,40] and

,rererences-therein; U

. L

If w2”.us

0]

P I
~gur a_LL,u_L

L

ced arues for  (4vy) ep ahd

worP backwards, we' rlnd band'ﬁasses‘of .79 and .81 for

s

Ag aud Au respectlvely.- These values seer somewhat

N

low, of course, but 1n'v1ewlof theﬂexistir~ disparﬁty

3

in the literature, oneg snould use Morlarty S pseudo-

potentlals tce calculate the band structure as well,

v

one 1is LO make a sen51ble comparison. As one'md? see °

‘from Flg 7, Morlarty S pseuaopotentvals are Jguite larée}
especially in’ the backward dlrectloh and may well alter
the band -mass (relatlve to the free eleCtron value) more
than the potentlals used in prev1QuS'calculations,

'j’ . ,‘G'. . i .>‘L

[
. - . . v /.?

.5 Interferenceﬁﬂerm for Ag—Au

’

‘ore, ws use»,

f")

Follom1ng the same Droced re as be

_‘.7), w1th AW obtalned from. norlarty s pseudopo: entlals,
“

to\qalculate the interférence contribution for the

:b
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Ag-Au system. We take EF/M's2 = .29, i.e. the simple ///

average of the pure metal values, and thus arrive at

(A—Y—) = -.037 c(1-c) (E) ) T
YO int ©m . ! T e .

a

. - L . N ~ ,
with this value coming entirely_from the umklapp pro- .

cesgses. Thls result is con51derably smaller than it ,,:>
sbotld De and the problem appears to be with the»
pseuagpotential‘differences used in the calculation.

Indeed, if we use the same values for AW to calculate

the residual*resistivity of this alloy, we obtain:

| 9'w‘3 o)

2
e (2mE_ l EF

1 ,

b 5
j dzc vx }AW(X)[Z : _ -
0 , :

£ —
=
»

= 9.65 c(l-c) ph-em °

in eentfast with the"experimental value

-

pol= 35.06Ac(lfc}uQ—cm | .

obtained by Davis and Rayne.’ Thus it would’seem‘that
the'values~of AW a-e oo small 1n tne umklapb reg1@n<

at. least, by almost a factor of two. This does nqtﬂf"
DU PO R :

meran that the pseuqopotentlals for theg~ pure meTals are

‘ofr bv thls much’, of course, but 51nce both of these P

e
¥

2 o
functlons rise. steeply 1n the umklasp re61on, any small,

i

'uerrors in each one will be macnlfled in the difference.




In.fact 1f one were to 51mply move -the Ag pseudo-
potentlal to the rlght by 0.1 k the differences

would ' increase by more than a'factor of two in this

region.
Thus if we increase the values of AW by

1
(35.06/9.65)™@ in the c-lculation of m{ t’ we. arrive

4

at

~

(A, = -.13 c(l-c) (;9)

o int
3

which is a substantialkcontribution~to the experimen-

tal value (- .138 c(l-c}), even if the band mass is as

-

low as .8.

§4.6 impurity Term for Ag—-Au

e

, /

b
N - .. . a'i' S

K3 AT e
N a2

of q- the pseudopotentlals Wlll be agaln essen—

to calculate AYimp’ since the values are not given for
" We may rote, however, from Fig. 7, that AW is

P ftlpally zero for q < 1. 5 VF and beglns to 1ncrease,

pocentlal” (AW) for AgﬂAu to- be ptaked axlone value

« We cannot use AW from Morlatty s pseudopotentlals

Ably to a peak just to the right of %k At large

2

jfﬁ&t ‘dly zero . Thus we may tentatlvcly expect tAe "diloy—

All

gt NUNEE LR
\-,”“fﬁaereﬁis foishilch 01rcumstant¢al" evidence to sup-
LT RETERSS BRS

port this v1ew 1f we ”on51der the - Ccd- Mg Hg system.

%

“,aﬁd"to decrease rather qulcPTy away from this wvalue.

85



. S N
ey . >

ﬁ”ﬁ,uhree“of these elements have esSentially the same
P wn) : R :
valence, size, and Fermi energy, Jjust as do Ag and

9

Au. The data publlshed by Inglesfield [41] on the
alloys of- these three metals demonstrates that the
"alloying~-wavenumber characterlstic", which is

esSené@ally lAle tlmes the screenlng function

n{.
. - L. A
appearing in (4 7). has a n*onﬁ

- p2Y

‘a0 )
partlcular value of q. and falls off rapidly other-

nced reak for

>
L=

wise., . : - : g
. . B ,

At\any rate, to obtain some_idea of what might
be the case for Ag-Ad, we take a 51mple funCtlonal

’ o
form for |AW|* and calculate f and fimp" We'chocﬁeﬁﬂ

nt &
L —(X/X-* |
[AW(X)[2= Azxg»e v -

which has a single peak at q = q;= 2k_x and perrorm

Fo17
the cemputa ions for ql Varylng between G and 4 k .
‘taking EF)’MS2 = .29.' The principal value’integration

3 . for fiﬁb is,readily rerformed by’noting,that

wh1ch is easl Y evaltated nuTerlcally The results
QQ are gi Lven in Flg 8 as a fun&t“on of q1. We see the -

characterlstlc change of 51gn‘lor £, mpvas the welght

\

of the 1ntegrand ShlftS to the rlght, while fint becomes

monotonically more negative.

-
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A 'easonable inference from this calculatlon
'c"‘ - T . f‘

is that the 1mpur1ty term for Ag~Au alloys is small

!

and poss1bly Jf elther 31gn,‘and that the 1nterference
term causes most of the dev1atlon fyom llnearlty -

N o / i‘
heat coefjicient'

b

(in concentratlon)of the spelelc
’/J'

at T = 0. -
At hi&h temperatures; of'course,foﬁly the @tatic

impurity term will'Survive, ince - the dynamlc effects
of the eWectron—’on 1nteractlon become negllglble in
.  This fact

»

v,
llmlt as ‘we have remarked earlier

this
H = ) .
~means of experlméntally deter—

: .' ma}}l’
L
these,two contribu—

por ance of.

mining t 1
"i Hm'netlc'suscegtlblrlty, for

v

‘not seem to be available. ~
‘ - o
. ]

‘54.7 Scncludlng Rcﬂarks on Interference 1nd Imemwty
h . EY . .
: : : C . l -

B Contrvbutlons

From the rcsults of the p“ececlng sectrpns, we

. . : _ . - ylsa;L‘,,; .
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may conclude tnat, in addwtlon to thc lel t/éwn 1mpor—

tance -of the electr0u~phonon Aenhancement,

J_lntexference
”impurity";effectslat

tend to dominatetthe-statlc

the dynamic

effects are as”impbrtant as, ‘and actually
1bw



"temperatures - This 1s maln due to the fact that

the umklapp proces%es glve risa’ to 1arge peaks in .
o

the stiucture fad%or}close to the rec1procal lattice

)

vectogs. ¥ - Z

For monqvalent metals, the shortest.such vector
. .

is larger than 2k 'and thus only the steep "shoulder

FI
“of the structure factor enters the calculatlon. For
;- the/polyvalent metals, one or m&re of these peaks are
included in the range of integration, ahdxone may
[

- ——’—('—/_'/‘ C- . . RENTE Y

-

B expect the dynamic effects to becom?;EXSE—TSEE—E£9:~t”—’”—“——~f~

-
P

v B .’f’{l’*‘ PR '.\J ' » - ' . v | | ) ;

. - . 4 . . . - N h ’
LW : > ' ‘ o S :
T _ o) ST
oo . = '
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4

‘dlfferences etc.) play an 1mportant role,

L] . d hd
! Y
’ A - '
.-
CHAPTER 5 -
.. 7 SUMMARY AND CONCLUSIONS - >
P ‘ yg : A ‘4\( '\- ’
. a . | ' |

We have developed a formalism which describes,

in second order perturbation theory, those thermodyex

)

namig properties of a metallic system arising froms

the electron-ion interaction. The central result is

——— T

given by an expressi ‘ é’f}é@'éEEE}?fin terms
— B ; -2

of tﬁe electron-ion pseudopotentials and the dynamical

‘structure factors“of'the ionic system.

£

ThlS result may ‘be applled to the W1de range of
AY

vmetals (and thelﬁ selid and liquid alloys) whic@ may

be adequately treated by pseudopotentlal methods. ‘By

u51ng approprlate.dynamlcal structure factors (whether

vtheoretlcally or experlmentally determlned) the forma—

o ~.

-
llsm alloée for arbltrary dynamic propértles of “the

~

~1on1c system, andrls valid -for alloys in which mass
q

dlfferences and lattlce dlstortkon (due to volume

3

o 1 ‘icant aspect of the central formula As
@ o : ,

‘that zt m 2.i-'s, in a .single concise expiession,

. many res. +hich afe usually treated quite separately,
‘many zg | ly t3 quite s _

dsing a variety of differeht'techniqueSJ which are,

often dlfflcult to ‘extend wlthout a complete ref nu-

R . N ¢ 2 R
latlon. »'i _ ' S c

. e -
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‘~—__-————~JE3Lgglatlons-we—use"tﬁlsﬂfo;mula to perform some"p‘ .

\_fan ‘effect whlch is’ well known in re51t1v1ty calcula—;

*»
t

- - He have shown. how one may s4imply obtaln‘a

Y

-number 3& sugh results from the general formallsm,
[N N ” . o N

and have furtherjderlved a conc1se0express19n for
the low-temperature electromac spec1f1c heat changes
in a sﬁbstltutlonal alloy, due to. the dynamic jpart

N

fof the  electron-ion 1nteractlon. 'In the numeJ:J,g:aJ.,.<~——~—~~f~

e

- .

-

51mple 1llustrat1ve calculatioWs of "the electron—

2
1

phonon.enhancement factor.
An interesting part of the calculatlons was !
dbncerned w1th a comparlson of the relatlve impor- |
ftance of the dynamic ' .1nterference" and static
fmpurlty"'contrlbutlons to the\gow—temperaturé
electronlc spe01f1c heatngoeff1c1§nt 1n binary alloys.
For a serles of "theSEet\cal" alloys, both of -

these terms were found to fall generally within the:

'same order of magnltude, with- the 1nter?eren¢e term

demonstratrng a tendency-to domlnate. The 1mportance

&
‘of thls term is largely due to the fact that the‘
‘umklapp,processes gl&% rise to pronounced peaks in
the structure factors near rec1procal lattlce vectors,

* L

thHS . .
. . ] 3

For Ag—Au alloys, the dev1atlon from llnearlty~

> (in concentratlon) of the low temperature electronlci

\

T messra i
i e

> 4 ) : i . ’ . N . ) : ) “ '
. . : - . ". E b ° -

)



i

- P
’ 3 . . . a ; “ s
r specific heat coefficient was examihed, and our results
} / . .

/ o . - ) ’ ol !

seem to indicate that the interference term in this
I : ‘ . .
‘case is capable of'adequatelf accounting for both the

: general magnitude and con >ntration dependence of .the —%
2 R

~#_,i,_~~~—e&leee—rvezi"b‘éﬁé’iour.

-The relative importance of thewinterference,aﬁd?'
impuriiy terms rlghttactually be determined.experimen—
tally from eltctngn paramagnetlc susceptlblllty mea-—

asurements.‘ This property 1s proportlonal to the

‘density of"states, and is measurable both at
and. low temperatures;7 At*high temperatﬁres €
ference term, along with the ‘other dynamlc parts of -

. the electron—lon 1nteractlon, becdine negllglble, while

the static'impurity‘term remains essentially unchanged.

-~

,One mlght thus be able to separate the two terms in

£
“this way, lf detglled experlmental data ‘were avallable.
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