BIBLIOTHEQUE NATIONALE
OTTAWA

NATIONAL LIBRARY
OTTAWA

6237

Permission is hereby granted to THE NATIONAL LIBRARY
OF CANADA to microfilm this thesis and to lend or sell copies

of the film.
The author reserves other publication rights, and
neither the thesis nor extensive extracts from it may be

printed or otherwise reproduced without the author's

written permission.

PERMANENT ADDRESS:
11242 - 97 Street

...........................

NL-91 €10-68)

THE UNIVERSITY OF ALBERTA

A VERSATILE AUTHORING LANGUAGE FOR TEACHERS

BY

@ EUGENE WILLIAM ROMANIUK

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF EDUCATIONAL PSYCHOLOGY

EDMONTON, ALBERTA

SPRING, 1970

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend
to the Faculty of Graduate Studies for acceptance, a thesis entitled
"A Versatile Authoring Language For Teachers' submitted by Eugene
William Romaniuk in partial fulfilment of the requirements for the

degree of Doctor of Philosophy.

A ek

Supervisor

Ll 2 ...

|4

C:?F Extélnal Examiner

Date _January 16, 1970

ABSTRACT

This study investigated the possibility of producing a new computer
authoring language. The new language, named VAULT (a Versatile
AUthoring Language for Teachers), was primarily designed for use by
teachers who wish to produce materials for computer based instruction.

The major objectives of the study were: (a) to design an authoring
language (VAULT) which separates logic and subject matter and uses
natural terms that are meaningful to the activities of the classroom
teacher; (b) to develop and implement a subset of VAULT; (c¢) to teach
VAULT to a group of teachers and appraise their attitudes toward the
language; (d) to evaluate the VAULT subset; and (e) to draw conclusions,
from the results obtained with the subset, regarding the feasibility of
developing and implementing the authoring language.

A subset of VAULT was developed. The VAULT compiler, written in
PL/1, was implemented on the IBM System 360, Model 67; it accepts VAULT
input and produces source code which is then assembled on the IBM 1500
Instructional System. A major portion of the facilities provided by the
1500 System could be controlled by VAULT with the exception of audio and
system functions.

The VAULT subset was taught to a group of teachers during the
summer of 1969. Tentative results indicate an increased authoring

efficiency which would make further investigation and research highly

desirable.

ACKNOWLEDGEMENTS

The author wishes to especially thank his supervisor, Dr. S. M.
Hunka, for his guidance and encouragement so willingly given throughout
the preparation of this thesis. I am also deeply appreciative of the
constructive comments and valuable suggestions of my committee members.

In appreciation of their dedication and assistance to the study the
author wishes to acknowledge Mr. Reg Jordan and Mrs. Wendy Birtch, IBM
systems engineers.

Finally, the author wishes to acknowledge his gratitude to the
University of Alberta for providing much needed assistance during the
past year and to the International Business Machines Corporation

(Canadian Laboratory) for providing grant support for the implementation

phase of this project.

DEDICATION

To my wife Camille.

TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION .« ¢ ¢ o o o o ¢ o o o o o o o o o o o o = 1
II. HISTORY AND REVIEW OF RELATED LITERATURE . . . « « « . 4
Digital Computers . . . « « o & o o« o o « o o o o o 5
Individualized Instruction . « « « « « ¢ o o o ¢ « & 5

Teaching Machines and Programmed Learning 6

Computers and Teaching Machines: Hardware and

Software Differences . . ¢« « = o o ¢ o ¢ o ¢ o 10

III. COMPUTER BASED INSTRUCTIONAL SYSTEMS . . . « « . « « & 12
Early CBI Laboratories . « « « « o « o o« o o o o o & 13

Current Major CBI Systems . « « « o ¢ o « ¢ c.0.0 & 17
Hardware . « « o o o o o o s o o o o o o s o o 17

SOFEWATE .« = « o o o o o o s o o o o o o o o o = 22

PLATO & « ¢ o o o s o o s o o o o a s o o o @ 23

BBN MENTOR SYSTEM . « ¢ ¢ ¢« ¢ o ¢ o o o o o & 30

PLANIT . ¢« ¢ ¢ o o o o o o s s o s o s s o o o 32

IBM 1500 Systeml . « o« « o« o o o o o o o o o o 39

IJV. THE PROBLEM . « &« ¢ ¢ o o ¢ o o s s o o o o o o o o o o 47
Criteria for Evaluation of CBI Languages . . « « « & L7
Meaningfulness . « « « « o ¢ o o o o o o o o o+ o ug

Extent of separation of logic and data Lg

Ease of handling subject matter « . . 50

Ease and power of response analysis « . . 51

Maintenance of and access to student

accounting informatiom . . . « « ¢ o o o o o 53

CHAPTER

Control over various types of interface

Evaluation of Current CBI Languages

Needs of CBI Teacher-Authors . . .

V. DESCRIPTION OF THE STUDY &

Rationale . « « ¢ o o o o o o o o

Description of VAULT

Organization of VAULT
Logic division
Data division « « « + &+ ¢ « .« .
Correspondence and internals of

Listings Produced

VI. RESULTS AND EVALUATION OF VAULT SUBSET

Background . « .« . . ¢ ¢ ¢ o o . .

Evaluation « « ¢ « o o ¢ ¢ o o o «

Parallelism with Existing COURSEWRITER

VII. SUMMARY AND IMPLICATIONS

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

devices

VAULT LOGIC PROGRAM PROVIDED TO TEACHERS

DURING WORKSHOP

HRRC WORKSHOP QUESTIONNAIRE .

RESULTS OF WORKSHOP QUESTIONNAIRE
VAULT LOGIC DIVISION SPECIFICATIONS

VAULT DATA DIVISION SPECIFICATIONS .

SAMPLE VAULT PROGRAM

PAGE

54

54

70

73

73

85

85

87

98

108

117

121

121

123

138

140

147

153

155

160

166

204

238

viii
LIST OF TABLES
TABLE SR ' PAGE
1. RESPONSE OF BOTH GROUPS TO QUESTION ONE (WHICH
LANGUAGE IS EASIER TO LEARN) . v & ¢ ¢ & ¢ ¢ o o o« » 161
2. RESPONSE OF BOTH GROUPS TO QUESTION TWO (SUGGESTED
SEQUENCE OF INSTRUCTION) . & ¢ « o« & ¢ o « o o o & o 161
3. RESPONSE OF BOTH GROUPS TO QUESTION THREE (TIME
TAKEN TO WRITE PROGRAMS IN VAULT RATHER THAN
COURSEWRITER) '« &« & o « o o o o o s o o o o o o « » 162
4. RESPONSE OF BOTH GROUPS TO QUESTION FOUR (SUPPLIED
LOGIC RESTRICTED COURSE PRESENTATION) . . « + « . . 162
5. RESPONSE OF BOTH GROUPS TO QUESTION FIVE (I WOULD
RATHER WRITE MY OWN LOGIC) &« & « « o & o o o o o o 163
6. RESPONSE OF BOTH GROUPS TO QUESTION SIX (IN WRITING
FURTHER PROGRAMS I PLAN TO USE « &+ «) ¢ & « ¢ & o+ & 163
7. RESPONSE OF BOTH GROUPS TO QUESTION SEVEN (CONNECTION
BETWEEN LOGIC AND DATA WAS DIFFICULT TO LEARN) . . . 164
8. MEAN LINES OF COURSEWRITER SOURCE CODE PRODUCED
PER HOURS BY USING EACH LANGUAGE . +« + « « « & « o 164
9. AGES OF WORKSHOP TEACHERS « « « + o« o ¢ o « o o « o o & 165

10. YEARS OF TEACHING EXPERIENCE . ¢ « &« ¢ ¢ o o o o o o & 165

LIST OF FIGURES
FIGURE PAGE
1. Major Levels of Correspondence Between Logic |
and Data « + ¢ « o ¢ o 4 o e s 6 4 6 s e s e e 4 o+ . 111
2. Vault Logic Program Provided to Teachers

During WOrkShOP « « « o ¢ o ¢ o o o o o o o o o o & 154

CHAPTER I

INTRODUCTION

Since the end of World War II and in particular since the orbiting
of the first Sputnik in 1957, there has been a tremendous surge of
interest in and commitment to the cause of education in America. The
past twenty years has provided us with what can be described as a
"knowledge explosion." As a result, this mushrooming of knowledge has
begun to change society and in turn the resulting social forces are
compelling educational institutions to redefine their functions and
processes.

Education, one of the cornerstones of our society, is faced with a
number of major challenges. Much attention and publicity has been
focused on the impending crisis of our educational resources in coping,
expanding, and adapting to changing education and technology (Mitzel,
1967). Schools must show progress and improvement throughout the entire
educational system in order to mezt the stresses and strains of the
dynamic and complex forces acting upon the educational imstitutions.

The public is demanding more and better education; students attend school
for more years than they have previously; more adults require job
retraining to counter job obsolescence and the increasingly more complex
new jobs becoming available as a result of new technologies; the student
population has become much larger due to an increase in population;
schools must impart more facts and ideas than ever before; students are

demanding new approaches and improved methods of teaching; and the cost

2
of education is ever increasing thus causing an increased burden on the
taxpayer.

Decision-makers and teachers involved in the educational process
are faced with these problems and must seek more efficient and productive
ways of operating our schools in a period when educational costs are grow-
ing at the fastest rate in history. However, although many segments of
the educational institutions are rising to meet the challenge society
presents, many schools are still geared to teach traditional matter in
much the same manner as it has been done for the last twenty-five years.
Due to the economics involved in administration of public schools, we
still use, to a large extent, a system in which students of the same age
level are grouped together and taught the same information at the same
rate.

Recently, students have become increasingly outspoken in their
criticism of the education they receive. Their cry has been for a more
liberal educational atmosphere in which the student can learn by inter-
acting with his teacher in a "Socratic" climate. This could perhaps be
interpreted as a demand for a form of individualized education in which
the student has some voice in what he learns.

Schools are slowly beginning to change in response to the funda-
mental difficulties facing education. The changing concept of education
includes an increasing awareness for a wide range of social problems. A
new concern is being raised as to who is taught, what is taught, how it
is being taught, and how well it is being taught. Generally, the ideal
of future education is that since education is a continuing process
during the life of the individual, a high quality education should be

made available continuously to all persons. Education is faced with the

task of finding new teaching methods and technologies to fill the
increasing need of an improved education in the rapidly changing schools.
One approach that may help alleviate some of the burden is computer based
instruction. "A computer can provide completely individualized instruc-
tion in which the pace and sequence of materials are independently
controlled for each student, based on his responses to the materials
[Coulson, 1966, p. 340]."

A history of computer based instruction and a review of relevant
research literature are presented in chapter two. Chapter three
describes a number of early computer based instructional systems and,
as well, the hardware and software features of current major computer
based instruction systems.

Three aspects of the problem under investigation are discussed in
chapter four. Included in that chapter are the set of criteria to be
used in evaluation of computer based instructional languages, an
evaluation of these languages, and a list of needs of teacher-authors.
Chapter five presents the rationale for and description of a new teacher
oriented computer authoring language while the results and evaluation of
the new language are contained in chapter six. The last chapter

discusses implications for future research.

CHAPTER II
HISTORY AND REVIEW OF RELATED LITERATURE

If at the turn of this century someone had forecast that a form of
individualized instruction would be provided by a distant relative of the
abacus, the person likely would have been branded an idiot. But the
electronic digital computer, which evolved from the abacus, has been used
as an experimental instructional device for nearly a decade. Yet in this
very short period of time significant changes have occurred in computer
hardware and software as well as in research directed toward the use of
computers as devices for imstructional purposes. But how did the digital
computer become involved with such an apparently unrelated field of
education as individualized iﬁstruction?

The first two sections of this chapter attempt to answer the above
query by tracing the histories of both individualized instruction and
digital computers from their early beginnings, through the point in time
when their paths first crossed in an experimental setting--this resulted
in the first published article describing computer-assisted instruction.
A brief review of developments in the area of programmed learning and
teaching machines is presented in the third portion of this chapter while
the final section views differences between teaching machine software and

compuier software.

I. Digital Computers

The abacus, a form of digital computer, was first used by the
Chinese about 3,000 B.C. It was not until nearly five thousand years
later, 1812, that an Englishman, Charles Babbage, conceived and attempted
to build a mechanical calculating device. Unfortunately, the machine was
never completely built and the development of computers was halted for
nearly one hundred years. In 1937, H. W. Aiken of Harvard University
built an electromechanical computer called the MARK 1. The first elec-
tronic digital computer, the ENIAC (Electronic Numerical Integrator and
Eglculator) was designed by J. P. Eckert and J. W. Mauchly at the
University of Pennsylvania in 1946 (Borko, 1962, p. 42). The demand for
electronic computers, primarily for scientific and data processing
purposes, increased at an accelerating pace. However, it was not until
1960 that educators became aware of the latent possibilities of the

computer as an instructional aid and research tool.

II. Individualized Imstruction

Approximately 2,000 years ago Socrates conducted what is now
generally regarded as the ultimate in individualized instruction. He
individually taught his students by using a method of question and
answer. This method of instruction, involving one student and one human
tutor, is often referred to as the "Socratic" method of individualized
instruction.

Since the beginning of the twentieth century, American education

has striven for but not achieved the ideal of individualized instruction

6
for every student. There are many reasons for not achieving this ideal
of individualized instruction; the principal reason being one of
logistics. Schools of Education simply cannot produce enough teachers
to reduce the pupil-teacher ratio to 1-1; nor can we yet pay for this

ratio.

III. Teaching Machines and Programmed Learning

In the last fifty years a number of devices were designed to help
the teacher communicate various aspects of the subject matter to the
student. Most of the teaching devices, ranging from the standard chalk
and blackboard to recent sophisticated audio-visual equipment, were aids
to the teacher but had one drawback--the devices were centered about the
teacher. A few educators in the early portion of this century recognized
the need for a device that could help students learn, in an individual-
ized manner, and yet not be centered about the teacher. A major break-
through in the search for a special type of teaching device occurred when
Pressey (1926, 1927, 1932) developed a machine which could automatically
teach drill material as well as administer and score tests. However,
psychological theory had not yet come to grips with the learning process
and Pressey's teaching machine was not widely accepted.

Pressey (1932) lamented the fact that instruments for use in educa-
tion were relatively underdeveloped. He forcast the advent of new
instruments and materials that would give impetus to research advances
in his field. Unfortunately, as has happened to the works of many
creative persons, the potential of Pressey's teaching machine had not

been recognized and the machine was all but forgotten.

7

It was not until Skinner (195%) published an article, "The Science
of Learning and Art of Teaching," that interest was rekindled in the
underlying principles and potential classroom applications of programmed
learning and teaching machines. In the article, Skinner described an
experiment in which mechanical procedures were used to arrange inter-
mittent reinforcement to condition the behavior of pigeons. The experi-
ment showed that pigeons could be taught to stand on one foot, play
ping-pong, dance, turn in circles, and other activities. The method of
intermittent reinforcement based on principles of learning theory have
since been adapted to programmed instruction. It should be noted that
Pressey focused attention on the teaching machine (or hardware) rather
than the "program" contained in the machine. Skinner on the other hand
was more concerned with the "program" (or software) than with the
machine (Stolurow & Davis, 196S).

Skinner's programmed instruction incorporated a method of individ-
walizing instruction by allowing the learner to proceed through a lesson
in a linear fashion through self pacing. The linear method requires the
learner to read and respond to a frame of information. If the response
is correct, immediate positive reinforcement is provided and the next
problem presented. However, if a wrong response is entered, the learner
is given a second attempt, a third, and so on until he responds
correctly. Movement to the next problem is permitted only upon entry of
a correct response. This method of progressing through a program in
small steps allows for the gradual buildup of information from the simple
to the more complex while allowing the learmer to progress at his own

rate (Skinner, 1958).

8

Crowder (1960) originated the: technique of branching or intrimsic
programming. This method was ba;ed and designed upon the concept of
multiple choice responses. In this method, the learner is presented
with a small amount of material and then asked to respond to a question
by selecting the appropriate choice. If an incorrect choice is entered,
the preceeding information is reviewed, the nature of the error explained,
and the question repeated. The frame to which the learner is branched
depends upon the choice selected.

Thus linear programming and intrinsic programming represented two
schools of thought regarding the types of programs to use in teaching
machines. In his research of literature related to programmed instruc-
tion, Schramm (1964) noted that only a handful of experiments made use
of intrinsic programming as compared to linear programming. Although
these two types of programs were mainly used other types were developed.
Glaser (1962) developed the spiraling method of programming which intro-
duced the concept of reviewing. Despite variations in complexity and
special features most programs provided some form or variation of the
tutorial or Socratic method of teaching. Basically the majority of
programs: (a) present the individual learner with a set of information
followed by a questions to be answered, problem to be solved, or exercise
to be performed; (b) request a response from the learner thus requiring
the learmer to actively participate in the learning situation; (¢)
provide some form of automatic feedback as to the correctness of the
response; and (d) allow the learner to advance at his own rate.
"Typically, they proceed in small steps of graded difficulty, so that
mastery of concepts, understanding, and skills are gradually built up

as the student advances through the program [Lumsdaine, 1959, pp. 13-14]."

9

During the short spén of time from 1958 to 1960 there were signifi-
cant developments in the types of machines or devices used to present
programs in instructional settings. Pressey's original teaching machine
had evolved into four different types of teaching machines or devices:
(a) the conventional teaching machine as originated by Pressey and
advocated by Skinner; (b) the automated teaching machine pioneered by
Briggs (1958) and Coulson and Silberman (1958); (¢) the programmed
textbook devised by Glaser, Homme, and Evans (1859) and Crowder (1959);
and (d) the electronic computer as a teaching machine as explored by
Rath, Anderson, and Brainerd (1959).

Since 1960, the educational market has been flooded by a prolifera-
tion of different types of teaching machines. Conventional and automated
teaching machines have not fared too well in competition with other
devices in the instructional field. This was a result of the many types
of conventional and automated machines that were sold to educational
institutions without the machines being thoroughly tested in experimental
settings. A major shortcoming of these machines was their expensive
cost, ranging in price from a few dollars to several thousands of
dollars. Inherent restrictions in the capabilities of the conventional
and automated teaching machines in turn restricted the types of programs
that could be implemented. Also, there was some evidence that students
using programmed texts performed just as well as students using conven-
tional teaching machines (Goldstein and Gotkin, 1962). These factors
brought about a decline in the use of conventional and automated teaching
machines in favor of the programmed text.

After a short "second life," Pressey's teaching machine appeared to

become obsolete. Because the programmed text is portable and at present

10

more economical in terms of instructional costs when compared with
computer based instruction, the programmed text will perhaps remain on
the instructional scene for a short time yet. But, it would appear that
in the near future the same fate is in store for the programmed text as
was for the conventional and automated teaching machines. At present,
computer based instruction systems are being developed to provide a means
for individual instruction. Many writers well known in the field of
teaching machines, such as Coulson, Glaser, Silberman, and Stolurow are
now working in the area of computer based instruction.

We have seen digital computers evolve from the abacus, enter the
instructional field, and offer education an opportunity to provide

students with the long sought ideal--individualized instruction.

IV. Computers and Teaching Machines:

Hardware and Software Differences

In the previous section mention was made of the fact that Pressey,
was primarily interested in the teaching machine (hardware) as it related
to the instructional process while Skinner placed more emphasis upon the
program (software) contained in the teaching machine. This section
defines hardware and software and their related functions in teaching
machines and computers.

The term hardware refers to the physical components of the computer
and to any operations which the computer can execute. These executable
operations are made possible by the interaction of the computer's
physical components. Hardware may refer to input/output devices and

memories as well as "wired" in logic. Modifications of the hardware

11

system can only be made by modifications to physical components or by
re-arranging their interdependencies through changing their physical
connections. For example, in some computers addition is carried out
through physical means (hardware) by having circuitry so designed as to
add binary numbers. In other machines this ability to add must be
specified by a human who through proper arrangement of instructions,
sequences a set of internal hardware operations to produce the desired
result. The specification of such instructions which sequence and
organize internal hardware functions to produce the desired result is
referred to as software.

In this sense teaching machines had relatively little or no software.
However, if one wishes to consider instructions which are executed by
the student, to modify the sequential presentation of questions by the
machine, for example, then in this sense there was some software capa-
bility. In some instances a pre-coded film or paper tape which contained
software was used on some of the more sophisticated teaching machines.
Such pre-coded instructions were necessary for automatic branching to
special instructional sequences.

Software implies, of course, a symbolism or notation which is
"peaningful"” to the hardware in the sense that the operation of the
machine is modified. There may be many levels of software to permit
an easy interface between the user and the hardware of a machine. Thus,
software becomes extremely important in computer based instructional
systems because it must not only permit organization of hardware for
purposes of reflecting instructional strategy, but it must also permit

subject matter to be presented.

CHAPTER III

COMPUTER BASED INSTRUCTIONAL SYSTEMS

This chapter is primarily concerned with the development of Computer
Based Instruction (CBI) systems. Focus will center upon history of early
explorations in the field of computerized instructional systems. In addi-~
tion, a brief description of recent advances in computer hardware, soft-
ware, and author languages is noted.

Research articles related to hardware and software components of
CBI systems are reviewed by Dick (1965), Gentile (1965), Hansen (1966),
Hickey and Newton (1967), and Zinn (1967b). Books edited by Borko (1%62),
Coulson (1962), Glaser (1965), Bushnell and Allen (1967), and Gerard
(1967) provide fairly extensive coverage of issues related to research,
theoretical orientation, philosophy, future prospects, and problems in
the area of CBI.

The first publication describing the experimental use of a computer
as an instructional device originated at International Business Machines
Corporation (IBM) by Rath et al. (1959). This publication described a
program which used a computer and an electronic typewriter to teach
binary arithmetic. Since this first attempt at using a computer as a

teaching machine, research in the area of CBI has accelerated.

13

I. Early CBI Laboratories

Initial experiments with computers as possible instructional devices

were carried out prior to 1962 at the following research centers.

International Business Machines (IBM)

IBM carried out much of its early research at Watson Research
Center in Yorktown Heights, New York. An IBM 650 computer, although
intended for purposes of scienmtific calculation, was maintained at the
Center and used for teaching-machine research. A number of input-output
devices such as magnetic tape, punched cards, and electric typewriters
were used as well as large random-access disk files for storage purposes.
Twenty special typewriter terminals in the Center were directly connected
to the computer. A number of terminals were located in various areas of
the U.S.A. and connected by telephone lines to the Yorktown computer.

The terminals were used for student-computer interaction (Uttal, 19623
Gentile, 1965). From 1959 to 1965 programs were developed in subjects

such as German, Stenowriting, Statistics, Audiology, etc.

Bolt, Beranek and Newman Inc. (BBN)

Located at Cambridge Massachusetts, BBN experimenters used a PDP-1
computer (Programmed Data Processor manufactured by Digital Equipment
Corporation) as a teaching machine. Input-output devices used were
typewriters, a reader, 16 computer-controlled relays, an oscilloscope,
and a "light pen" (Licklider, 1962, p. 218). This system was among the
first to use the "erase" feature which permitted correction of typing

errors. Another feature was the program mode in which the student was

14
able to sketch a curve on a display grid with his light pen and upon
completion of the sketching, the computer determined and displayed the
best fitting parabola corresponding to a particular equation. BBN
investigators were first to use a computer as a teaching machine to study

perceptual learning (Gentile, 1965, p. 18).

Coordinated Science Laboratories (CSL)

CSL was part of an engineering department at the University of
Illinois. A computer based instructional system called PLATO (Programmed
Logic for Automatic Teaching Operations) was developed by Bitzer, et al.
(18962). The system used the ILLIAC computer, a slide reservoir, the
screen of a closed-circuit television system which permitted material
to be displayed along with slides, and a student control panel or keyset.
The keyset was similar to a typewriter and allowed the student to enter
numeric or alphabetic data.

One of the main features of PLATO was its ability to instruct a
number of students concurrently by using time-sharing. Other features
were: (a) it gave students the computational devices of a powerful
digital computer; (b) it contained a teaching logic that was determined
by programs within the central computer; and (c) it automatically kept
detailed records of each student's progress through the course material.

By 1962, the PLATO system was already in its third revision.

System Development Corporation (SDC)

The experimental system at SDC, in Santa Monica, California,
consisted of three major units: (a) a Bendix G-15 general purpose

computer which read information from punched paper tape or cards; (b)

15
a random access slide projector which held a maximum of six hundred 35-mm
slides to display instructional materials to the student; and (c) an

electric typewriter which was used as an input-output device.

Thompson Ramo Wooldridge Inc. (TRW)

TRW's Modular Information Processing Equipment System was originally
developed for data processing. Using this system, investigators at TRW
designed an automatic tutoring device called MENTOR. The device selected
films on the basis of real-time responses, presented auditory and visual
displays and scored responses automatically. Colored or black and white
frames or motion picutres, drawings, text, charts, and graphs could be
displayed in any order desired (Chapman and Carpenter, 1962).

An important feature of these early systems was use of terminals
or response stations which served as input-output devices for student
responses or information displays. This device was crucial in the early
phase of these studies since the terminal represented the means of
communication between man and machine. Other important features that
were being used by some of the centers were time-sharing, oscilloscope,
light pen, and random access projectors. These significant features
were used only three years after the first attempt at computerized
instruction.

In February, 1963, the Training Research Laboratory (TRL) at the
University of Illinois ordered the first computer system to be used
solely for experimentation in the area of computer based instruction.

TRL was directed by Stolurow. The system used was called SOCRATES

(System for Organizing Content to Review And Teach Educational Subjects).

16
It was designed to meet the requirements of the ideographic contingency
model of teaching as well as for research towards testing the model
(Stolurow and Davis, 1965). The ideographic contingency model assumes
teaching to be divided into a pretutorial phase which selects the initial
teaching program required to achieve a desired outcome and a tutorial
phase which implements the teaching program and concomitantly monitors
the student's performance. This model, in addition to using the student's
last response, uses all other information to make decisions as to the
next instructional frame or sequence of frames to be presented.

The first commercially "package" CBI system was announced by IBM in
October, 1964. An author language called Coursewriter I (Maher, 1964)
was designed primarily for use by nontechnical persoms. Coursewriter I
enabled an author, with a minimum of training in the language, to con-
struct various sequences of teaching logic. This language provided
authors with opportunities to present information, ask questions, evaluate
responses in terms of correct amswer, wrong answer, or unanticipated
answer, and decision making power based on responses entered or numerical
values of counters. The counters could be used to accumulate results of
various learning outcomes. In addition, the author was able to employ
a record keeping process known as a Student Record, which recorded and
accumulated all student responses and response latency times.

The next two sections of this chapter present a review of the

developments in the area of CBI hardware and software.

17

II. Current Major CBI Systems

Since 1962, all but one of the early experimental CBI centers
mentioned in the previous section, Thompson Ramo Wooldridge Inc., have
remained very active in the field of CBI research. In that short period
of time the remaining centers have more fully utilized and further devel-
oped their CBI systems. Meanwhile, new CBI centers have evolved and
others are in the process of being developed. Concurrent with the growth
in the number of CBI systems, there has been a tremendous change in the
hardware and software capabilities of the systems. In order to view
some of the innovations and developments, this section presents a brief
discussion and appraisal of hardware and software features incorporated
at a few of the major CBI systems.

/7

Hardware

In this section, recent developments in computer hardware, as
related to CBI systems, are studied from two different areas. First, one
must consider the nature of the central processing units (CPU) so that it
is possible to discuss operations such as processing of student records,
time-sharing (multiprocessing), real-time, etc. Time-sharing refers to
the technique in CBI whereby a large number of people situated at ter-
minals appear to be simultaneously served by a computer. The computer
reacts so rapidly that it permits dialogue between users and machine or
even among users (Fano and Corbato, 1967). Real-time is the time taken
by the computer in physical processing of information to data. Processing
time should be sufficiently rapid so that information is available to

guide other physical processes. Some of the factors in the outcomes and

18

benefits of equipment in CBI systems as stated by Hansen (1966) are
feasibility, adaptability, flexibility, expandability, reliability, and
cost.

The second aspect of hardware to be discussed in this section is
the student-subject matter interface. Interface describes devices such
as the two-way typewriter, cathode ray tube, slide or image projector,
audio unit, etc., through which the student interacts with the subject
matter (Wodtke, 1967, p. 319).

Weaver (1963) cited one of the problems in communication as the
technical problem of how accurately and rapidly the symbols of communi-
cation can be transmitted from sender to receiver. The communication
problem was further investigated by Glaser, Ramage and Lipson (1964).
They extensively studied the relationships between interface requirements
and subject matter characteristics of elementary mathematics, reading
and science. In an evaluation of interface devices, Wodtke (1967)
mentioned that stimulus display and response processing characteristics
are two important dimensions of the interface. Since the study by Glaser
et al. (1964), a number of authors have viewed interface devices and the
related interchange time between student and computer as one of the
important hardware problems worthy of further investigation and develop-
ment (Dick, 1965; Hansen, 1966; Wodtke, 1967; Rogers & Gariglio, 1967).

The PLATO system (Bitzer, et al., 1962) under the guidance of its
criginator, Dr. D. L. Bitzer, has developed into one of the best known
CBI systems currently in use. PLATO hardware facilities consist of an
operating system connected to a CDC 1604 computer which uses magnetic
tape and paper tape for auxilliary storage and has a line printer avail-

able for printed output. According to the definition of time-sharing

19
used in this paper, PLATO, like a number of other "dedicated" CBI systems,
uses time-sharing.

At present, the PLATO system has twenty student stations with video
capability. The interface devices available to each station include an
electronic keyset and a television screen. A student sends information
to the computer by way of the keyset while computer prescribed informa-
tion, intended for viewing by the student, is presented on the television
screen. Information displayed on the television screen originates from
two sources. The first source is an "electronic book." The electronic
book projects slide images on the television screen, features a random-
access slide projector containing 122 slides, and has a slide access
time of 1 microsecond (one-millionth of a second). All students share
the same system projector since the slides are continually scanned thus
permitting students to view the same slides or different slides simul-
taneously (Bitzer, Lyman, and Easley, 1965).

A second source of video information, the "electronic blackboard,"
plots diagrams, symbols, and words on the television screen or it can
superimpose the material generated over slide projections already
featured on the screen. This procedure permits presentation of textual
material which requires students to "fill in the blanks." Other hardware
features worthy of note is the fact that the entire blackboard can be
erased in two-tenths of a second and also the absence of typewriters
allows student station areas to function in an atmosphere of relatively
low-noise level.

Current work at the PLATO Project laboratories is directed toward
developing an audio capability for the system. Also, experimental work

is being conducted to develop an 12 X 12 inch plasma flat tube (Bitzer,

20

1968, p. 10). The new display, which exhibits memory and does not
require continuous rewriting, will possibly be connected to the central
computer via telephone 1ines (Bitzer, Hicks, Johnson & Lyman, 1967).
Eventual production of the new display is expected to lower terminal
costs considerably and thereby enable PLATO to expand its facilities to
accomodate 4,000 remote terminals within the next few years (Entelek,
1967).

Bolt, Beranek and Newman Inc. (BBN) has put a great deal of effort
into the development of software rather than hardware. The BBN System
(MENTOR) uses a modified PDP-1 computer to which a number of teletype-
wpiters are connected. Cathode ray display devices which write alpha-
numeric characters and graphic displays are also used. Magnetic tape
and paper tape are used for auxiliary storage.

The PLANIT System is operated by System Development Corporation.
PLANIT originally used a time-sharing Q-32 computer with planned switches
to an IBM 360, Model 65 and then to an IBM 360, Model 67, as equipment
is acquired (Silberman, 1966). Auxiliary storage devices are drum, disk,
and tape. Fifty student stations are available but only twenty to thirty
can operate at peak periods of use. Most stations contain only 1 inter-
face device--a teletype. A few of the stationé include a CRT display,
light pen, keyboard input and and RAND graphic tablet imput.

Investigation with particular emphasis upon developing refinements
in CBI interface equipment is currently being conducted at the University
of Pittsburgh Learning Research and Development Center (Ragsdale, 1866).
This system uses a PDP-7 computer. Research efforts are being directed
toward further developments in cathode ray tubes, typewriters, random

access audio units, RAND tablets, and a touch-sensitive device (Hansen,

21
1966, p. 591). The touch-sensitive device consists of a filmed sheet
of paper on the front of the CRT--when a student puts his finger on the
sheet, the position of his finger on the sheet is identified by the
computer.

The IBM 1500 System (COURSEWRITER II) was the first integrated
system specifically designed for educational activities. A small number
of these CBI "packages" have been produced and leased to educational
institutions for research in CBI. The lSOO.System has as its base an
IBM 1130 computer with relatively limited immediate access core storage
(approximately 64,000 characters). About 5 million characters of "on-
line" storage is provided by 5 interchangeable disk drives. Auxiliary
storage can be provided by the addition of a tape unit. Other hardware
features included in the system are a card reader punch and a line
printer.

A maximum of 32 student terminals can be accomodated by the 1500
System. Each terminal can consist of a typewriter and/or any combination
of the following devices: a cathode ray tube with a modified keyboard,
a light pen for student responses, a film projector that shows black and
white or color film images, and an audio unit that plays or records
messages.

The CRT displays a maximum of 640 type characters or a limited set
of simple graphic displays. All characters or graphics are displayed as
configurations of white dots on a black background. This device does
not allow for half-tones. Student responses to the system may be made
by either using the light pen or keyboard. The film projector contains
1024 frames of 16-mm f£ilm and has a positioning speed of approximately

40 frames per second (IBM, 1967a, 1967b).

22

Project MAC (Man And Computer), located at Massachusetts Institute
of Technology, is directing much of its research toward on-line time-
sharing systems. A teletype is used as the student interface device but
efforts are being made to develop a visual display terminal.

RAND Corporation is exploring the possibilities of providing
increased possibilities for student response input. Under development
at RAND is a vertical CRT display for computer generated materials and a
horizontal tablet to be used by the student. The student communicates
by writing on the tablet with a special light pen. While writing, the
student watches the CRT which displays his writing. Everything on the
tablet is controlled by the computer except for one spot of light which
is controlled by the light pen. A special switch in the pen senses the
direction of the pen and the light moves leaving a line of light thus
enabling the student to construct symbols, shapes, or motion in a method

which simulates writing on the CRT (Ellis and Sibley, 1967).

Software

Varied and complex software features are embodied in most of the
CBI systems described in the previous section. Discussion of software
characteristics implemented by these systems is an almost impossible task
unless a "common base" or frame of reference is used in describing the
software. In order to provide this common base, the 14 categories used
in describing computer programming languages, as suggested by Zinn
(1967c, p. 2), were reduced to the following categories: system opera-
tions, author operations, material logic and strategy, material sequencing
and presentation, student operations, response acceptance and processing,

and proctor operations.

23
It is noted that systems discussed in this section feature either
CRT or TV type interface devices. Systems which use only a teletype
interface as a communication device and/or use languages basically
designed for mathematical problems will not be included in this sectionm.
However, evaluation of CBI languages, including a few mathematically

oriented languages, will be included in the next chapter.

PLATO(CATO)

System Operations. The PLATO compiler, CATO (Compiler for Automa-

tic Teaching Operation), is a FORTRAN-60 compiler which was augmented and
modified for PLATO use in 1964 (Bitzer et al., 1964). PLATO offers
time-sharing with possibility of authors and students using the system
"simultaneously."” A PROGSAVE procedure enables a terminated run to be
continued from its point of termination.

The method of recording study responses, called DOPE (Data Obtained
for Program Evaluation), permits a permanent record of the student's
number, key number depressed, mode number, and latency time. Other
information can be stored and several programs are now available to
analyze student response data.

Material Logic and Strategy. Since 1964, three basic types of

"logic" have been programmed for CATO--tutorial, inquiry, and general
(Lyman, 1968). This "logic" feature permits nontechnically trained
persons, such as classroom teachers, to specify the basic logic, learning
materials, and appropriate parameters for a specific lesson. Then CATO
automatically compiles the lesson flow for a particular lesson. Program-
ming all the lessons in a course becomes fairly simple because the basic

logic remains the same for all lessons and only the parameters need to

24

be changed.

The basic teaching logics offered by PLATO are:

1. Tutorial logic was primarily designed to insure that each
student would pass through a fixed sequence of materials but with a
flexibility for the student to branch to specified lesson elements. The
student is presented with information and then asked questions about
preceding material. Upon presentation of a question the student has the
following main options available: (a) he types his answers and then
asks the system to judge his answer; (b) he may ask the system to branch
him to a help sequence; and (c) he may ask to be branched to a "challenge"
sequence.

2. Inquiry logic presents a student with a series of problems to
be solved and upon request, an option to use reference material related
to the particular problem. In this approach the student is permitted to
choose his own strategy in searching for information needed to solve a
problem.

3. General logic represents a "combination" of the tutorial and
inquiry methods with a basic feature being the many options for branching.
Student control keys permit the student to continue or reverse pages
containing material and problems to be solved. Other control keys allow
tﬁe student to ask for help, speéial information, or a judgment to an
answer. Provision is made for students to type a "comment" in.any part

of the program.

Material Sequencing and Presentation. The material presented in

the main flow of the lesson logic is called the "main sequence." This
main sequence displays lesson material on the TV interface by means of a

series of pages and/or slides names "main pages." Some restrictions

25

associated with main pages are that each page may contain a maximum of:
(a) 18 lines containing 40 PLATO characters per line; (b) 18 typewritten
lines containing 45 characters per line (slides); and (c) 12 questions.
Also, each lesson is restricted to a maximum of: (a) 126 questions; (b)
150 pages (main, help, challenge, etc.); and (¢) 114 slides available
for use in main pages.

Four types of branching sequences are available in the logic of the
GENERAL program. These sequences are:

1. A maximum of six help pages can be assigned to each question in
the main sequence. Provision is also made for each specific wrong answer
to have a special help page.

2. The challenge pages, up to a maximum of six, operate similarly
to main pages with each page permitted answers and assigned help pages.

3. There are three basic pages used in information retrieval: (a)

general reference material or data pages which may contain information
relevant to problem; (b) dictionary pages containing definition of
various terms; and (c) investigate pages.

4. The comments page allows the student to type lines of comments
at any time. Usually, comments are not processed but are stored for
later retrieval by the instructor.

Branch pages along with the point in the main sequence where
branches may occur must be designed by the author. Students wishing to
exit from any of the branch sequences may do so at any time by pressing
the AHA key.

The lesson presented to the student flows along the main sequence
and may branch to other sequences if provisions are made for these

branches. Usually the next main page in a sequence is not presented

26
until all the questions on the preceding main page have been "filled in"

and judged to be correct.

Response Acceptance and Processing. The student communicates his

responses to the system by typing his answers on a keyset which contains
alphanumeric and control keys and resembles a standard typewriter key-
board. Whenever an illegal key is pushed an orange light flashes on and
remains on until a legal key is pushed. Student responses are restricted
to about 70 alphanumeric characters. After typing his answer the student
ﬁushes the JUDGE key which indicates to the system that the anser is
complete. The system responds to the answer by displaying a two charac-
ter code such as OK (correct), NC (not complete), NO (incorrect), or

SP (misspelled) next to the answer(s).

Answer analysis is carried out by subroutines called judgers.
Judgers enable the student's responses to be checked against the author's
stored answers. The judgers are referred to by number and are programmed
by the author to: (a) suppress spaces and judge alphanumeric responses;
(b) test for valid fixed point integers or variable names and floating
point integers or variable names; (c) display slides containing the
correct answers; (d) exactly or partially judge spelling, or keywords;
and (d) branch to special sequences or present the next page in the
sequence depending upon the response condition.

It is possible for authors to allow for the "connect feature" which
permits interaction between students at various terminals. This feature
has been used in a number of on-line experiments (Bitzer, et al., 1967).
These experiments have attempted to simulate real-life experiences as

would be found, for example, in political conferences.

27
An important software feature of PLATO is the DOPE (Data Obtained
For Program Evaluation) routine. DOPE records the student number, iey
number, mode number (main, help etc.), time, and identification tag.
The author has the option of asking for a recording of the page number,
problem number, and judging result (Lyman, 1968, p. 53). A number of
programs which sort and analyze student responses are available for

author use.

Student Operations. Students progress through a lesson by pressing

special control keys thus permitting some freedom in controlling course
flow. If a student wants help with a problem he presses the HELP key
and may be automatically branched to a remedial sequence, if provided
for by the author. If the HELP sequence has not been programmed by the
author, and the student presses the HELP key the orange light will flash
on. This indicates to the student that an illegal key has been pushed.
A few control keys and their functions are:

AHA returns the student to the main sequence at the point from

which he branched to an auxiliary sequence

ANS provides the correct answer to a question

BKSP erases last character typed

COMNT permits student to enter comment

CONT moves student to next page in sequence or back to main sequence
if last page in HELP sequence has been encountered

DATA initiates pages of useful information
DICT presents list of definitions available
ERASE erases the last answer entered

HELP Dbegins a help sequence

INV takes the student to first page of investigation sequence

28

JUDGE appraises student's answer

REPL replots any blackboard writing which was previously on the TV
screen

REV presents the previous page in the sequence

The student may terminate a lesson by simply leaving the station.
When he returns next day, providing the lesson has been saved by the
author, the student begins the session by merely typing his name and
pushing the REPL key.

Author Operations. An author using the PLATO program GENERAL

usually plans his lesson by completing an answer master form. The
answer form contains necessary parameter information in the following

columns:

USE This column designates the page as being main, help, investigate,
etc.

PAGE NO. Each page must be identified by a unique number between
1 and 150.

SLIDE NO. A slide, numbered between 1 and 114 is assigned to the page
on the corresponding line of the form.

EFFECTS In this column, the special effects associated with the
main page are specified.

PROBLEM NO. Problems on each page are usually designated by ordinal
numbers.

JUDGER NO. The number associated with a particular judger is entered
in this column.

ANSWERS One or more acceptable correct answers can be listed by the
author.

SPECIAL WRONG ANSWERS A maximum of six special wrong answers are
permitted.

HELP PAGES This column contains the help page or help pages associated

with a problem.

29

SPECIAL HELP PAGES The same numbers of special help pages are the
numbers of special wrong answers is required.

Once the answer master form has been "filled-in," an author enters
the lesson parameters pertinent to GENERAL logic on-line from a PLATO
terminal. Due to the length of program GENERAL, authoring procedures
are usually carried out in three steps.

Normally, the first step includes use of a program, called GENAUTH,
which provides the author with a great deal of flexibility in programming
lesson parameters. An author is permitted to: (a) enter, advance,
delete, or insert main page numbers ; (b) indicate special effects and
challenge sequences associated with a particular main page; (c) specify
a list of eight character dictionary terms available to the student; and
(d) enter lists of names to be displayed in the investigate sequence.

In the second step the author describes each unique lesson (global)
pa:: by assigning slide numbers and problems to the global page. A
problem description consists of judger numbers, answers, special wrong
answers, help page numbers, and special help page numbers. Help pages
are described in a manner similar to the description of global pages
although help pages cannot have help sequences associated with them.
Also, dictionary and investigate pages are assigned page numbers and
corresponding slide numbers.

Finally, the third authoring step uses a program called CONSTNT.

In this step the author specifies special arrays of words to be used as
acceptable keywords in the investigate subroutines.

An author entering lesson parameters may use these three steps in
any order. The parameters are stored on magnetic or paper tape. Since

input parameters are very detailed, the author may check lesson parameters

30
by using a computer program called PRINT which uses the computer line-
printer to provide a listing of the parameters. The author wishing to
make parameter deletions, insertions, or replacements may do so by using

the .appropriate steps to modify the parameter tape.

BBN Mentor System (MENTOR)

The MENTOR system (Feurzeig, 1964, 1965, 1967; Swets, et al., 1965),
developed by Bolt, Beranek, and Newman (BBN), uses a language called
MENTOR which was primarily designed to permit teacher-authors to program
conversational tutorial dialogues. MENTOR is embedded in the list
processing language LISP and offers authors a powerful and convenient
way to program complex textual material. Essentially MENTOR is a verbal
language rather than a computational language. Another instructional
language currently used by this system is a flexible on-line computa-
tional language called TELCOMP (Myer, 1967).

System Operations. MENTOR uses a modified DEC PDP-1 computer, LISP

compiler, and MENTOR interpreter. Although MENTOR is used with the PDP-1,
it can be used with smaller and slower computers. Terminals consist of

a teletype keyboard and a display screen.

Material Logic and Strategy. The author wishing to construct an

instructional program must first conceive of a model of the problem and
define pedagogic strategies to be used in the interaction between student
and system. Next the author must specify the possible contexts and
possible inputs within that context. Inputs allowed for the student are
listed in the form of acceptable questions and declarations. These lists

may be as extensive as desired by the author.

31

In a program designed to study problem-solving, the emphasis is
upon having the student gradually acquire information necessary to solve
a problem by having him make inquiries or declarations in response to
questions put to him by the computer. The author may devise conditional
strategies so that the system answers 'good" questions, reproves hasty
conclusions, questions grounds of inference, suggests new approaches,
etc. In this way the student is able to converse with MENTOR while
attempting to solve a problem posed by the system. Thus the student may
view MENTOR as both a guide and a critic.

Student Operations. To begin a session, the student types his name

and the course he wishes to work on. MENTOR checks the student's perfor-
mance record and poses an appropriate problem or question. The type of
student questions or assertions that may be made in response to MENTOR's
queries are limited to a specified vocabulary permitted by the author.
This means that student responses must be made according to the format
of acceptable input statements. After processing an input statement,
MENTOR examines the student's previous actions as well as information he
possesses and then responds in natural English by posing a question or by
making an assertion or comment.

MENTOR continually evaluates a student's performance during the
session. Thus, when a student signs off, the system automatically
records the student's evaluative data and a brief list of areas requiring
further study in a particular topic (Feurzeig, 1967, p. 84).

Author Operations. Instructional programs are prepared by using

an on-line teletype. Authors are usually encouraged to construct their
programs in a flexible manner so that a student progressing through a

course feels that MENTOR is under his control. If desired the author

32
may specify nonverbal material such as tables, graphs, pictures, and

audio messages.

PLANIT

PLANIT (Programming LANguage for Interactive Teaching) is a user-
oriented author language developed at SDC (Feingold, 1966, 1968; Feingold
and Frye, 1966; Silberman & Rosenbaum, 1966). Originally, PLANIT was
designed to enable teacher-authors to develop instructional lessons in
statistics. However, the language was so flexible and powerful that it
has been used by authors in developing courses in history, spelling,
psychology, etc. (Feingold, 1968, p. Hit).

System Operations. The PLANIT system currently operates on the SDC

Q-32 time-sharing ccmputer with plans to change to the IBM 360/67 System.
Feingold (1968) indicated that SDC plans to develop PLANIT to operate

on any IBM 360 system which is equivalent to or larger than the IBM 360/40.
This new version of PLANIT would accomodate 50 to 100 students simultan-
eously and would operate as one of the following types of systems: (a)

a dedicated system; (b) in connection with an operating system; or (c)
under the control of a time sharing system.

PLANIT is written in JOVIAL and the system uses the JOVIAL compiler.
Programs and student records can be stored on disk or tape. Student
records are updated and stored on disk only if the student indicates to
the system that he has "finished" a particular segment of a lesson. Lost
material or records cannot be recovered. The author can copy student
records from disk to tape but student performance records cannot be saved
directly onto tape. When a student completes the sign-on, PLANIT

automatically continues from the frame the student has "finished"

33
previously and keeps tpack of the student's progress throughout the lesson,.
The terminal interface device used is usually a teletype although

a graphic input tablet has been modified so that a CRT image can be
projected on its surface. However, these tablets have been found to be
too fragile and expensive for general use (Frye, 1968, p. 37).

Material Sequencing and Presentation. A lesson author would use

either the command, lesson building (CO), calculate (CALC), or execution
(EX) operation modes. The PLANIT command and lesson building modes
permit an author to construct, edit, and store a lesson in the desired
sequence while the EX mode is required to present the lesson to the
student. Finally, the CALC mode camn be used either by the author in
calculating a numerical value or by the student in executing the lesson.

One feature of PLANIT is that it can provide the course author
lesson building information while the lesson is being constructed.
Information, if requested by an author, is provided at two levels.

The VERBOSE level provides fairly elaborate information regarding
construction rules and is usually used by beginning authors. Experienced
programmers normally work at the CONCISE level which supplies the author
with a minimum of coded information.

In PLANIT, a lesson is composed of a series of frames. Each frame
is composed of groups and each group is composed of lines of information
which can contain text, questions, answers, specifications, etc. There
are five basic types of frames that can be presented in a lesson (an
example of the concise level appears in parenthesis): (P)roblem,
(Q)uestion, (M)ultiple choice, (D)ecision, and (C)opy.

The P frame was originally designed for specialized use in teaching

statistics but now can be used for presenting three kinds of information.

34

Authors can specify population parameters for generation of random
samples data related to normal or skewed distributions. The student can
then be asked to compute various statistics such as range, mean, variance,
etc.. ' Alsecond use of the P frame is that a set of "hints" called "STEPS"
may be made available for students having difficulty in solving a parti-
cular problem. Thus a student can type the word STEP aud may receive a
hint to help him correctly answer the problem. Finally the author can
provide the student with control over mathematical functions required to
solve a specific problem (Feingold, 1968, p. 47).

The Q and M frames are constructed in a similar manner except the
M frame lists a series of possible answers and the student is required
to select the most appropriate choice. In the Q frame a question is
asked and the student must supply an answer. The logic of these two
types of frame is similar to the answer format of COURSEWRITER. The
author can enter anticipated correct, wrong, and unrecognizable answers
and specify the appropriate action corresponding to each of the answers.
Four types of action commands are available to authors constructing a

lesson:

F--This action permits an author to feedback an appropriate message

to the student regarding the correctness of the answer. If the author
does not include any text following "F," PLANIT will randomly select
an appropriate message from two lists, one for correct answer and the

second for incorrect answers.

R--This letter provides a repeat action in that a message will be
generated to the student and the system waits for the student to enter
another answer. The author has the option of specifying the message
or of defaulting the text and using the system comment "WRONG, TRY
AGAIN."

C--PLANIT prints the comment: "THE CORRECT ANSWER IS----."

35
B--This instruction initiates the branch operation. Since all frames
are numbered or labelled, a branch may be made to any frame number or
jabel. PLANIT also provides the author with the facility to branch a
student to another lesson. Upon encountering the end of the lesson
or the command "B" followed by no specified location for branching,
PLANIT will return to the next frame in original lesson from which the
branch was made.

Branching decisions are made available to the author by the D frame.
PLANIT permits an author to check a student's performance regarding
response latency, errors, functions used, path taken through the lesson,
etc. over any portion of the lesson and to specify branching conditions
based on this performance data (Feingold, 1968, p. 44), The C frame aids
the author by allowing him to build a frame which is a copy of a modifi-

cation of a frame already used in the lesson.

Response Acceptance and Processing. PLANIT accepts alphanumeric

and special characters as input from the electric teletypewriter. During
construction of each frame the author indicates to the system whether the
student's response is to be a literal string or whether it is to be an
expression or function which must first be evaluated. The author must
prefix all lines in an answer set by either a letter or a numeral from
1 through 8. An answer set prefixed by letters indicates to PLANIT that
the student's response will be in literal form. If the answer set is
tagged by numerals, then PLANIT assumes the author's entry is an expres-
sion or function and must first be evaluated before the student's
response is compared with it.

Correct answers are indicated by a plus sign (+) inserted between
the answer and the answer line identifier. Therefore, if the student's
response matches the prescribed correct answer for the frame, PLANIT will

search for the corresponding line identifier in the action group and

36

carry out the operations designated by that line. Provision is made for
the author to specify appropriate action for an unrecognizable or unan-
ticipated response. This is achieved by omitting the line tag and pre-
facing the action statement by a negative sign. If an unrecognizable
answer is entered, the system usually generates an appropriate random
message from a specified list and repeats the problem or types the
correct answer.

Five PLANIT commands permit the author with the facility to specify
a wide range of answers rather than restricting answers to a particular
set of anticipated responses. The WAIT command permits a lesson author
to specify maximum latency response time in seconds or minutes. If the
student has not responded before expiry of the WAIT interval specified,
PLANIT will advance to the action group and search for the line indica-
ting time out procedures. A non-tagged statement in the action group,
prefaced by an apostrophe, is used as to specify an action such as give
the student a "hint" or branch him to another frame. A second command
allows a numeric response to be judged as an answer match if it lies
"WITHIN" a particular numeric interval of the prescribed answer.

The remaining three commands or services routines are PHONETIC,
KEYWORD, and FORMULAS. When these routines are turned "ON," the
following occurs: The PHONETIC routine reduces both the author's
prescribed answers and the student's response to encoded answers and
then compares the encoded messages for a phonetic match; the KEYWORD
poutine searches the student's response for words that match the
prescribed answer in a specified order; and the FORMULAS routine permits
PLANIT to check for an algebraic match between the student's response

and the prescribed answers. Any combination of these cperations may be

37
used in response analysis. For example, if the author wished to check
for keywords but was not concerned with their order, then he would turn

on both KEYWORD and FORMULAS routines.

Student Operations. The student who interacts with PLANIT may do

so by alternating between the EX (execution) and CALC modes. If the
student is required to perform arithmetic computations to arrive at an
answer he may do so by typing a left pointing arrow (+) followed by an
arithmetic expression or an appropriately defined mathematical function.
when the student presses the return key, indicating that he has completed
his answer, the machine performs the specified operation and types the
calculated answer almost immediately. To enter his answer the student
must return to EX mode by typing an "up arrow" (4) followed by the answer
which may be a numeric value, mathematical expression, literal string,

or letter corresponding to the appropriate choice in a multiple choice
frame.

If the student is not sure of the mode in which he is operating he
needs only to type a question mark (?) when a respomse is required and
PLANIT will respond by telling him what is expected. While interacting
with a problem frame the student is permitted by PLANIT to enter the CALC
mode to ask questions of a general nature. The student's question is
communicated by PLANIT to a program called "PLQST" which tries to match
meaningful words from the question with a previously stored base of
information and then generate a meaningful response. By striking the
non key the student may be provided with further relevant answers to his
question.

Another feature of the P frame is that it provides the studenmt with

an option to ask for hints to help him in solving the problem. This is

38

achieved by entering the CALC mode and typing STEPS. The machine replies
by typing a hint to the student from a list entered by the lesson
designer.

One of the most important student operations occurs when the student
wishes to leave the lesson at the end of the sitting. Usually he is
required to enter the CALC mode and type FINISHED. This operation
automatically updates the student performance record om disk. If the
student does not perform the FINISHED operation, his record for that
particular sitting will be lost.

Author Operations. The lesson designer prepares a lesson on-line

from a teletypewriter and is permitted to alternate between command,
lesson building, calculate, and execute modes. If the designer is not
sure of hié present mode he may type "?" and PLANIT will display a diag-
nostic message describing what is expected. As mentioned previously, a
lesson is composed of frames, groups, and lines. The author constructs
a lesson using five types of frames: problem, question, multiple choice,
decision, and copy. After selecting the type of frame desired, the
author is led through a specified series of steps by PLANIT which inter-
acts with the author and provides him will various diagnostic messages.
These diagnostic messages may be quite detailed if the author is in the
VERBOSE mode or abbreviated if in the CONCISE mode.

#hile in the command mode the lesson designer may alter a frame or
group of frames by using the EDIT commands: print, delete, or insert.
Also, this mode permits an author to save or delete a lesson on disk or
tape. The author can not directly save a student's record since this

record can only be saved by a command from the student himself. If the

39
student has saved his record for the sitting the author can then transfer

the record from disk to tape.

IBM 1500 System (COURSEWRITER II)

System Operations. The operating system (supervisory program) of

the IBM 1500 Instruction System functions under the directions of a
programming language called COURSEWRITER II (CW). Some of the functions
carried out by the supervisory program include: (a) storing and main-
taining program data; (b) providing each station with the facilities of
the system; (c) notifying the proctor of a student's request for assis-
tance; and (d) accumulating recordings of the student's performance.

Two major programs used by the 1500 System are the CW assembler
and CW interpreter. The assembler translates and assembles CW state-
ments into a form that can be executed by the interpreter. COURSEWRITER
statements assembled during processing are automatically stored on disk.
Instructional courses may be assembled on-line from either a CRT keyboard
or a typewriter similar to an IBM SELECTRIC. Another method of assembling
a CW instructional program is to enter CW statements that have been
punched into cards.

One of the features of this system is the program which automatically
maintains a record of disk of the student's performance during an
instructional session. Information to be recorded is usually specified
by the author when he registers a student for a course. A listing of the
performance recordings for students taking the course may be printed on
the 1132 printer. It is possible for a programmer with knowledge of

FORTRAN and CW ASSEMBLER to rewrite portions of the listing program and

40
thus enable the format of the record listings to be altered into a form

desired by the teacher-author.

Material Sequencing and Presentation. COURSEWRITER material is

designed to be organized similarly to that of classroom instruction.
Usually course material comsists of a maximum of 128 "chapters" (or
segments) which are comprised of small independent units called Wlessons."
Each lesson contain "problems" which present concepts and associated
questions. These problems enable the author to break difficult concepts
into less complex problems and then based on the student's performance
to vary the instructional pace to the rate of each individual student by
skipping problems, branching to a new lesson or a remedial lesson,
repeating a lesson, etc. Although developed as if one student were
taking the course, various alternative paths must be provided for the
many combinations of progressing through the course.

COURSEWRITER permits use of either the typewriter or a combination
of CRT and light pen or keyboard, image projector, and audio unit. This
language does not contain any "built-in" teaching logic as does PLATO.
Thus the author must first organize the course into its basic teaching
units. Then he must decide on the type or types of teaching logic he
wishes to use, interface devices to be used at specific points in the
presentation, and which kind of input device to use--keyboard, lightpen,
or audio.

Before the course is programmed the author usually codes, onto a
special coding sheet resembling a picture of the CRT, all the material
that may eventually appear on the CRT during a course session. Then he
begins coding the instructional and content portion of the course which

must be in a format conforming to CW's control facilities. Once a

41
portion or all of the program is coded, the author enters the CW instruc-
tions into the system. Each instruction contains from ome to four major
parts depending upon the operation it is to perform. The four major
parts of a CW imstruction are the: (a) label--used to identify specific
instructions; (b) operation code--a two letter mnemonic describing the
principal computer operationj (¢) modifier--a single letter identifier
which permits an operation code to perform several functions; and (d)
parameter field--which may consist of a group of parameters which supply
additional information regarding the required operation.

Usually, program statements are executed sequentially by the CW
interpreter but an author may specify a procedure whereby the inter-
preter "branches" within the chapter to a statement not in sequential
order. This instruction is called a branch (br) and may occur as a
result of a student's response or his performance in a particular portion
of a course chapter. Three types of branching statements are permissible
in CW: @L) explicit or unconditional branching--this is a statement
initiated by the author which directs the interpreter to a specific
location in the chapter; (b) conditional branching--occurs only if a
specified set of conditions are met; and (c) implicit branching--is
initiated by the Course Flow Decision Table (IBM, 1967a, p. 37). The

first two kinds of branches may be made to one of four reference peints:

(a) a label;
(b) the point in the program where the student last entered a response;
(c) a return register; and

(d) the Nth next problem or the next problem designated as a restart
point.

42

An author may wish to branch a student to a specific lesson in the
chapter (i.e., review lesson) which is entered from several different
portions of the chapter. If he then wishes to return the student to the
point from which he had originally branched, the author may do so by
using any one of six return registers. These return registers provide
an author with the facility to vary his course and perhaps allow the
student to ask for help, review, answer, etc., and to return to the point
of entry if need be.

Since branching may occur only within a course chapter (segment),

a "transfer" command is used to permit movement between chapters. Thus,
a student may be transferred (tr) to the next sequential chapter, a
remedial chapter, or a chapter containing a specialized routine but
without the provisions of being returned to the original chapter by
using a previously loaded return register.

COURSEWRITER can be used to present various dictionary characters
and graphic displays on the CRT. The standard keyboard includes upper
and lower case alphabetic characters, numerical characters, and special
characters. Thus an author wishing to present a foreign language course
may do so by coding the dictionary characters required by the language
and associating (equating) this dictionary to the course.

Occasionally an author coding his program discovers that groups of
common statements are repeated a number of times with little or no modi-
fication. This type of repetitive coding can be prevented by using CW's
"macro" facility which enables an author to group sets of commonly used
instructions and their variable parameters into macro routines and store
them on disk. Whenever a particular group of instructions are required

during program entry, the author would enter the macro name and required

43
parameters thus causing the CW assembler to assemble the macro statements
with the given parameters as part of the program. Proper use of the
macro facility can reduce the time required by an author to code and

enter certain repetitive routines.

Response Acceptance and Processing. Instructional programs which

use COURSEWRITER often consist of textual material followed by requests
for the student's response to the material. The student's response may
be accepted either by the audio unit, typewriter, instructional keyboard ,
or light pen. Only responses entered via the last three devices can be
processed by the system.

If a response is to be entered from the light pen, a "P" is
displayed in the lower right hand corner of the screen. Input from the
instructional keyboard is accepted whenever a "K' is displayed in the
lower right hand cornmer and a cursor appears in the position on the CRT
where the first character is to be entered. As each character is typed,
the cursor moves to the right and is replaced by the typed character. A
request for an enter and process from keyboard may be modified so that
the cursor can be inserted onto a displayed line and the student "fills-
in" the answer.

Once the student's response has been entered, it may be processed
and analyzed by using the implicit branching procedures implemented by
CW's Course Flow Decision Table. An important constituent in this answer
analysis procedure is the answer set stored by the author, which includes,
in the form of separate entries, all the anticipated correct, wrong,
additional, and unrecognizable responses. A keyboard answer set contains

keyboard characters while a light pen answer set includes CRT coordinates.

ul

All instructions in the answer set are called majors. Each major is
usually followed by a group of minor instructions. COURSEWRITER answer
analysis executes any major which matches the student's response as well
as all minor instructions until the next major instruction.

Special functions, composed of instructions coded in 1130 assembler
language, are available to help perform special processing not provided
for by COURSEWRITER. If a function is called by a statement in the
program this initiates the Course Flow Decision Table for Functions (IBM,
1967b, p. 48), executes the function, and then returns control back to
COURSEWRITER. The following is a list of a few routines offered by some

of the functions and their effects on a student's response:

--upshift or downshift all alphabetic characters

—-replace any group of synonyms with a fixed word or group of
characters

—-delete or replace punctuation or specified characters
—-extract an integer portion and place in counter

—-move the response into a specially designated buffer
--determine if a numeric answer is within specified limits
--keyletter match or percentage match

--key word match ordered or unordered

Other functions allow an author to generate random numbers within
specific limits and place them in counters, move the contents of a
counter into a buffer so that the number may be displayed on the CRT,
connect two or more terminals to permit terminal interaction, etc.

Student Operation. The student must first be registered by a

proctor and assigned a special student number for the course. To sign

45

non" a student types the course name and his student number. When noti-
fied by a message, on the CRT, that he has been signed-on the student
proceeds with the course until he wishes to leave. To terminate the
session he signs "off" and leaves. If the student signs himself on to
the course he will begin from the last restart point encountered in a
previous setting.

Instructions to students regarding procedures for terminal operation
vary with the ability level of the student. Usually students are
instructed: (a) to recognize the particular type of input device the
system is ready to accept in response to a request for an answer; (b)
how to erase portions of their keyboard responses, and (c) how to "enter"

their responses.

Author Operations. COURSEWRITER programs may be entered on-line

from a terminal keyboard or off-line by punched cards. When an author
"signs on" he is automatically provided with a set of author commands

in one of two control modes--assembly and checkout. In assembly mode,
the CW assembler permits an author to "323229" "insert," "replace,"
ndelete," "move," or "display" statements in the program. The checkout
author mode enables the author to assume a student's role and checkout
the flow and presentation of the program. This mode allows an author

to: (a) "execute" any part or parts of the program; (b) "load" switches,
counters, buffers and return registers with pertinent data; and (¢)
"show" the contents of switches, counters, buffers, and return registers.
When an author signs off, the course program is automatically updated

and stored on disk.

Proctor Operations. A proctor is usually the person in charge of

the system during the periods of operation. While proctering he is the

46
priority user meaning that he has control over any author or student
station. This person often has a general knowledge of the operating and
instructional system as well as the course material being conducted at
a particular setting.

The proctor is responsible for registering course segments, authors,
and students for specific courses. He assigns performancé recordings for
students registered in designated courses, controls the maximum course
session time for each student and may provide assistance by communicating

on-line wiih students through the instructional stations.

CHAPTER IV
THE PROBLEM

This chapter deals mainly with an evaluation of CBI lénguages from
the viewpoint of the teacher-author. A major drawback encountered while
attempting to evaluate CBI languages was the lack of a standard set of
criteria. Thus, the first section of this chapter contains a set of
criteria, formulated by the writer, as well as a number of guide lines
to be used in evaluating CBI languages. Section two includes an evalua-
tion of a number of CBI languages and lists a few features from these
languages that would possibly be desirable in a CBI language. A discus-

sion of current needs of CBI authors is presented in the final section.

I. Criteria for Evaluation of CBI Languages

A common set of criteria has been devised in order to facilitate a
more objective evaluation of CBI languages. Since this thesis deals
primarily with the educational uses of CBI in developing environments
for learning, the criteria perhaps show a slight bias toward the teacher-
author point of view. The criteria used in this evaluation include:

(a) meaningfulness, (b) extent of separation of logic and data, (c) ease
of handling subject matter, (d) ease and power of response analysis,
(e) maintenance of and access to student accounting information, and

(£) control over various types of interface devices.

48

Meaningfulness

A prime requisite in any CBI language is that it be meaningful to
the needs and activities of the principal users. If CBI is to be used
in schools then it is imperative that teachers not spend a great deal of
time in learning to use a language or in becoming "expert" programmers.

A language, if it is to be meaningful, should be natural, flexible, and
oriented towards the main activities of the principal users. A teacher
should be able to use meaningful words rather than abbreviations or code
words to specify operations to be executed in a CBI program. Instead of
using terms that are foreign to the ongoing activities of teachers, an
ideal situation might be one in which CBI languages provide terms that
are familiar to and commonly used by teachers. However, this means that,
as in any other computer language, the words need to be precise in their
meaning.

Another aspect of a meaningful language is the provision of succinct
error messages to pinpoint specific errors and specify remedial courses
of action. In addition, if more than one type of error occurs in any
input statement then unique error messages should be provided with

reference to that statement.

Extent of Separation of Logic and Data

It seems odd that programmers who use languages such as COBOL,
FORTRAN, PL/1, etc., design programs that can be used again and again
with different data sets. Once a statistical program has been written
to calculate correlation coefficients between n-variables, then that
program can be used as many times as required with different sets of

data. On the other hand, most CBI programs, with the exception of those

49
using PLATO, tend to combine their logic and data into single programs.
This means that a teacher-author who writes a CBI program and then wishes
to use the same basic logic with a new data set must rewrite the entire
program. However, teacher-authors simply can not afford the luxury of
spending a great deal of time in writing redundant code. Therefore, the
logic and data (subject matter) should be separate portions of a program.

From a CBI point of view, it would be ideal to make available
various logic programs that have been designed, written, tested, and
researched by teams of educational psychologists, learning theorists,
curriculum specialists, teachers and experienced programmers. The
teacher-author would then select a logic he desires and provide the data
(subject matter).

Separation of logic and data could provide educational institutions
with a powerful research tool to test various teaching strategies and
provide modifications to learning enviromments in an attempt to furnish
instruction suited to the needs of individual students. Thus the team
producing the logic would be given the sometimes difficult and time
consuming task of producing complex conditional branching based on the
student's past history and current status in the course. The teacher-
author, on the other hand, would only need to match subject matter to
the logic requirements.

Allowing teachers to furnish subject matter insures, somewhat, that
teachers will be involved in the learning process. Also, the teacher's
personality would possibly permeate each program through his method of
presenting subject matter, asking questions, and providing reinforcement

messages.

50

Ease of Handling Subject Matter

Most teachers who use a chalkboard as a means of presenting written
material would likely be dismayed if they were first required to write
their daily lesson notes on a coding sheet representing the classroom
chalkboard. Imagine the added consternation if they were next asked to
write their pre-coded notes on the chalkboard so that each line of text
would be an exact duplicate of the lines of text on the coding sheet.

The final blow, of course, would occur when a number of teachers find
that a portion of the chalkboard contains material that may not be erased.
This means that the textual material would need to be recoded before it
could be written on the chalkboard.

The above example may sound far-fetched, yet this procedure is often
carried out by teacher-authors who wish to present textual material on a
cathode ray display screen. Thus it would perhaps be safe to say that
the ease with which the language handles subject matter is of great
importance to all teacher-authors.

Ideally, a language should permit an author to enter textual mater-
ial in large blocks varying in length from a single word to a complete
chapter. The language compiler would then edit teacher supplied
textual material and format this material so that it conforms to the
screen area specified by display parameters in the logic. Thus
if there is need to change the portion of the screen to be used for
display purposes then only the logic coordinates would need to be altered.

Further, the language should be designed so that the author himself
decides to what depth he wishes to learn the language. + should be
possible for a teacher to learn only basic fundamentals regarding data

entry. This means that he would provide data to match a very simple

51

pre-programmed logic which does not use complex branching and relies
mainly on logic default options. Moreover, the language should be easy
enough to learn so that those who wish to use more sophisticated logics
may do so without having data entry become much more difficult. It
should also be possible for the teacher to begin writing his own logic
or to modify available logics in order that they meet his particular
needs.

An author should easily be able to debug or edit subject matter
that has already been processed. When the author executes his program
and decides to add, delete, replace, or modify any portion of the subject
matter he should be able to do so either on-line or off-line. In addi-
tion, the language should provide numeric capabilities and the facility
to insert program comments for documentation purposes. Comments should
appear only in the hard copy course listing. Also, the author should
easily be able to change spacing between lines of text, to indicate
hyphenation or non-hyphenation of words, and to specif& the beginning of
a new screen of text. Therefore, the language should be extremely viable

in that the subject matter and/or the logic could be easily revised or

modified.

Ease and Power of Answer Analysis

Included in the evaluation of a language with regard to response
analysis are: the ease with which responses may be entered by an author,
available answer matching routines, the power and sophistication of these
routines, and the associated logical branching that may be specified.

These features are very important to CBI since meaningful student-teacher

52
interaction is made possible by the routines associated with response
analysis.

The logic should specify the parameters to be used, conditional
courses of action to be followed, and perhaps the accumulation of various
student performance data. For example, the logic might specify the
following action if a correct answer has been encountered:

IF CORRECT THEN PERFORM
DISPLAY MESSAGE CORR251
PAUSE 10 SECONDS

PLAY MESSAGE TAPE 251
IF CORRECTS IN LESSON>12 THEN GO TO LESSON 2

END PERFORM

A teacher using the above portion of logic would necessarily supply
only the correct answer(s) and the accompanying reinforcement message to
be displayed on the keyboard or graphic screen.

Also, the language should permit a logic programmer to specify, for
example, that all keyboard responses first be edited in a designated
manner before any analysis is conducted. This editing feature would then
be considered as being enabled for the entire program unless it is over-
ridden for small segments of logic. Further, the logic programmer
should be able to indicate that during analysis of keyboard responses
only responses containing at least a given percentage of correct spelling
be considered acceptable; or if a group of words is entered that they
must be in the same order as indicated by the teacher-author supplied
answer.

It should be possible for the teacher-author to have the option
either to provide his own reinforcement message which reflects his person-

ality as well as suits the student response; to default to an appropriate

53
system message randomly selected from a pool of items; or to provide no
message at all.

Languages which permit light pen responses add further complications
to the ease with which an author may specify a portion of the screen to
be associated with a particular type of answer. Usually coordinates
corresponding to an answer must be specified in the code rather than the
answer(s) as is the case with keyboard responses. Beginning teacher-
authors should not be required to enter screen coordinates to represent
an answer. Perhaps a meaningful labelling scheme should be allowed for
indicating light pen responses.

Finally, the language should be flexible enough that a logic author,
in certain circumstances, could specify a hierarchy of response analysis
be conducted and that complex conditional branching be carried out on the

final outcome of that analysis.

Maintenance of and Access to Student Accounting Information

If CBI is to provide the means for individualizing instruction then
a file containing pertinent facts regarding each student's progress
through the program must be maintained. To be of value in deciding
courses of action, the student's performance file should be accessible
during any portion of the program. This means, therefore, that the
language should provide some easy method of automatic maintenance of a
performance file without the author having to repeatedly specify that a
particular numeric value be added to a counter or that a switch be turned
off. 1In addition, it should be possible to have auxilliary service
routines provide the author with a hard copy listing of the group and

each individual student's progress through the course, responses made at

54
particular entry points, particular answers from the teacher supplied
answer set that were matched, and the status of various counters,
switches, buffers, etc. Finally, the lénguage should provide the teacher
with a method of insuring that when the students return the next day, they
continue from a logical starting point within the lesson they left the

previous session.

Control Over Various Types of Interface Devices

As the number of communication devices controlled by a CBI language
increase then, hopefully, the more versatile the language becomes in the
types of presentations that could be made and in the types of persons
that could be reached. However, from an author point of view, the
greater the number of devices controlled by a language then, generally
speaking, the more difficult it is to learn how to use the language.

Yet, this should not be any more difficult than that required of a
teacher who wishes to use various multi-media devices in the classroom.

One major aspect related to the use of the interface devices is that
the author should be able to maintain control over the devices. TFor
example, if the system harware characteristics are such that film or tape
search is slow then it should be possible for the author to control each
device during the session so that the tape or film is always positioned

prior to its actual use.

II. Evaluation of Current CBI Languages

The evaluation of CBI languages has been restricted primarily to the

four languages discussed in Chapter III, due to the following factors:

55

1. Author languages used by computer based instructional systems
have grown rapidly in number during the past decade. Zinn (1968, p. 23)
stated that nearly 30 computer languages and dialects have been specifi-
cally developed for use in the area of computerized instructional conver-
sation. Documentation of a number of these languages, including some of
the "established" languages, however, is quite sparse and at times diffi-
cult to obtain.

2. Languages such as APL (Iverson, 1962; Hunka, 1967; Falkoff and
Iverson, 1968), BASIC (GE, 1967a, 1967b), and TELCOMP (BBN, 1966) are
basically mathematical and as a rule do not provide simplified system
functions for answer matching, performance recordings, restart points,
etc., which are available in some of the conversationally based languages.

An important evaluative point in discussing CBI author-languages
concerns the availability of the system used as a base for each language.
Currently COURSEWRITER II, PLANIT, APL, BASIC, and TELCOMP are being used
by a number of establishments, but of these languages only COURSEWRITER
II (the IBM 1500 System) makes extensive use of the CRT as an interface
device. IBM produced the present version of the 1500 System for purposes
of research and development and has leased these "packages™" to thirty
higher educational institutions in Canada and the United States. A
maximum of thirty-two student terminals are available with each 1500
System.

PLANIT presently runs on SDC's Q-32 time-sharing system and has been
or is being used via remote terminals by eight establishments in various
parts of the United States. SDC plans to make PLANIT available for use
on the IBM 360/65 and recently this corporation was awarded a contract,

by the National Science Foundation, to implement PLANIT on the IBM 360/40

56

or on equivalent or larger machines. This new system could possibly
handle 50 to 100 student terminals and will be able to act either as a
dedicated system, in connection with an operating system, or as part of
a time-sharing system (Feingold, 1968, p. 47). No mention has been made
as to whether this new system will include student terminals containing
CRT and light pen devices, but SDC researchers have indicated that an
experimental graphic input tablet, modified to project CRT images, proved
too fragile for general use (Frye, 1968, p. 37).

PLATO and MENTOR are each used at only one location--the Computer-
based Educational Research Laboratory at the University of Illinois, and
Bolt, Beranek, and Newman Inc., at Cambridge, Massachusetts. The PLATO
system uses a CDC 1604 computer as the central control unit along with
special hardware features which permit projection of film images and
computer generated displays onto a CRT device. BBN's MENTOR uses a
modified DEC PDP-1 computer and occasionally employs a CRT display device.
Author-languages such as PLANIT, APL, BASIC and TELCOMP are currently
available, on a rental basis, to remote users. PLANIT (SDC), BASIC (GE),
and TELCOMP (BBN) remote users are connected by teletype terminals, to
the various systems offering these CBI languages.

Two versions of APL are presently available at a few establishments
using the IBM System/360 or the IBM 1500 Instructional System. APL/360
is used with the IBM 360 computer, Model 40 or larger, and is occasionally
available on a rental basis to remote users via electric typewriters
connected to a central computer through either a "dial-up" telephone
network, leased telephone line, or by private line. APL/1500 is not
available to remote users but may be used via any terminal in the 1500

System's terminal configuration.

57

Meaningfulness

A primary concern of teachers wishing to author CBI course material
often focuses upon the problem of time required to learn the language and
the ease with which the language may be coded. (Frye, 1968, p. 35)
stated that an author could learn CW II or PLANIT ", ., . well enough in
two or three hours to begin writing his instructional lessons easily."
This statement is quite misleading, at least as far as learning CW II is
concerned, since most authors require that length of time to learn how
to display a line of text on the CRT. Each CBI language, perhaps is not
difficult to learn, but they all involve a large amount of detail that
must be learned if an effective instructional program is to be produced.

PLANIT actually guides an author by reminding him of choices avail-
able to him as he enters his program. However, an author must have some
understanding of frame types, author modes, answer analysis action speci-
fication, branching procedures, function specifications, matrix declara-
tions, etc., before he can begin writing lessons other than those similar
to linear type drill and practice. Authors learning CW II usually spend
much of their time alternating between the Course Plahning Guides (IBM,
1967a, 1967b) and the on-line instructional keyboards. To be able to
write an effective CW II lesson a beginning author must learn concepts
pelated to author control commands, format of instructional statements,
problem presentation, response requests, macro building, graphic and
dictionary displays, functions, timing control, etc. Beginning PLATO
authors initially learn that PLATO lessons are divided into main, branch,
and help sequences.

From a beginning author's point of view, numerically oriented langu-

ages use meaningful operators and therefore are perhaps slightly easier

58

to learn than the languages discussed in Chapter II. It should be
remembered, however, that languages such as APL, BASIC, and TELCOMP are
designed more as student computational languages rather than as a base
for presenting various types of instructional course material. Of these
three numeric languages, APL is possibly the easiest to learn due to the
fact that the symbolism specified is that customarily used in mathematics
and logic. Therefore, students can use the language for simple numeric
computation or to define functions similar to those used in other program-
ming languages.

Most CBI languages do not provide meaningful error messages. Only
PLATO and TELCOMP offer explanatory messages while others merely pro&ide

brief error codes.

Extent of Separation of Logic and Data

Once an author-instructor has learned the language and is ready to
begin planning, organizing, and programming a lesson, he runs into the
problem of assembling lesson content according to some type of instruc-
tional strategy or logic. Different authors often desire different
convenience and capability factors when specifying instructional state-
ments. PLATO authors, for example, select one of three instructional
logics and then merely provide the text, slides, answer processing rules,
and appropriate parameters. On the other hand, authors using PLANIT must
plan the sequencing of frame types, but are led through a series of steps
requiring the author to specify text, problems, answers, questionms,
branching decisions, etc. The MENTOR author is required to first conceive
of a model of the problem and then to define pedagogic strategies to be

used in student-computer interaction.

59

COURSEWRITER II requires the course author to define his own program
logic in a manner somewhat similar to PLANIT and MENTOR. The inability
of being able to separate logic from content often provides beginning
CW II authors with a great deal of difficulty in programming instructional
material. In order to be able to work concomitantly with logic and
content, authors are often encouraged to "flow chart" the lesson and take
into account factors such as lesson objectives, course material, media
to be used at specific points in the program, scorekeeping, branching
locations and conditions, etc. Therefore, in contrast, an author wishing
to plan a CW II program must devote a great deal of time to the fairly
detailed and complex task of alternating between logic and content aspects
of the lesson while the PLATO author selects a particular teaching logic,
£3i11s in the lesson parameters pertinent to the logic and enters the

program in three separate steps.

Ease of Handlingﬁ?ubject Matter

Most of the languages discussed in this chapter are assembled on-
line with the exception of PLATO which compiles a lesson by searching the
author's parameter tape according to the teaching logic selected. Elec-
tric computer-controlled keyboards or teletypewriters are most often used
as interface units for entry of programs, although CW II programs may be
assembled either from punched cards or magnetic tape. Programs in MENTOR
are stored on magnetic or paper tape, PLANIT on magnetic tape or disk,
and CW II on magnetic tape, disk, or punched cards. PLATO and CW II
authors are often faced with the additional task of providing the auxi-
liary instructional material required for the image projectors and audio

tapes. TELCOMP programs and associated data may be entered on-line from

60

a teletype or off-line by paper tape. APL/360 data may be entered off-
line from punched cards or on-line from an electric typewriter. COURSE-
WRITER II provides authors the option of entering programs on-line or by
punched cards that are assembled off-line. An advan;age of having
programs assembled on-line is the direct conversation 2llowed between
author and computer. As soon as a statement is entered the assembler
checks for typing and syntax errors and if any are found, error messages
are immediately displayed.

Perhaps the main advantage of on-line authoring is the immediate
feedback regarding the assembler's acceptance or rejection of a statement.
This type of interaction permits an author to proceed to the next step
only after the assembler accepts the present step. Programs entered and
edited off-line usually require a number of rums before achieving error
free assembly. Since only one run is often performed each day, the off-
line procedure could take a fairly long period of time.

It would appear, at first glance, that on-line program entry might
take less time than off-line procedures because program editing may be
carried out whenever an error condition is encountered. However, a
number of CW II authors have found difficulty in obtaining enough on-line
authoring time to enter their programs. They discovered that programs
can be quickly punched on cards, assembled off-line, and then debugged
on-line. However, this procedure won't work too well for remote
terminals. Perhaps an investigation should be conducted regarding the
possibility of permitting remote users to conctruct their programs off-
line, on a device such as magnetic tape, and quickly input the program

upon sign-on.

61

All languages that offer on-line authoring facilities also provide
debugging features which permit authors to enter either the edit mode or
the execute mode. Basically, the edit mode is used by authors to display,
replace, delete, or insert program material. A few of the languages
incorporate ﬁnique editing features. For example, CW II provides the
capability to move a statement or group of statements from one section of
the program to another. It also allows the contents of return registers,
buffer, counters, and switches to be pre-set and then displayed before
and/or after execution. MENTOR, PLANIT, and PLATO all offer editing
features somewhat similar to those of CW II. Although APL does not
contain CW II's move command, it permits editing portions of program
statements. Thus an APL author may edit sections of a statement rather
than replacing the statement.

A debugging feature, the execute mode, permits CW II, MENTOR, PLANIT,
and PLATO authors to take the student's role. In this mode an author may
execute entire programs, portions of programs, or even single statements
to test lesson logic, material presentation or correctness of coding.
Authors debugging BASIC or TELCOMP programs are somewhat restricted due

to the fact that entire programs must be executed.

APL offers authors a powerful mode which, in a sense, combines both
edit and execute. The author, once he has constructed his program,
begins execution. If an error condition arises in APL the line number,
statement, location in statement where error was encountered, and a brief
error message is typed. Then, the system releases control to the author.
At this point, the author may do some "tnouble shooting" by asking for
displays of variables and calculation of various expressions. Once the

error has been discovered, the line can be edited, and execution continued

62

from that particular line. This procedure can be followed until the
program is executed and at the same time, hopefully, debugged. Another
feature of this APL mode is that a program may be interrupted during
execution. Once an interrupt occurs, control is transferred to the
author who may specify a branch to another location in the program. Once
the branch is specified APL resumes control, branches to the statement
indicated and continues execution from that particular statement. In
this way APL authors can be quite selective in the program sections they
desire to execute.

Another unique APL editing feature is it's "trace'" routine. Often
authors find that their programs are executable but produce results that
are in error. The author, if unable to find the error in logic, may put
on a trace. During execution, the trace indicates line numbers executed
and the results associated with each line. Thus, the author may then
follow the logic of execution and perhaps find the error in an easier
fashion than attempting to "hand pick" his ﬁay through a program listing.

Only one of the CBI languages, PLANIT, fulfills requirements of
authors desiring a language which offers both numeric and non-mumeric
powers. COURSEWRITER II, MENTOR, and PLATO are primarily non-numeric
languages while APL, BASIC, and TELCOMP are almost exclusively numeri-
cally oriented.

MENTOR, like CW II and PLATO, lacks computational power, but
provides author facility for writing programs which allow student-
computer interaction in natural English. The pedagogic strategies used
can be described as conversational tutorial dialogues by the system.
Courses programmed in MENTOR include exercises for medical students in

medical diagnosis and for business students in management decision-making.

63

The initial aim in development of PLANIT was to produce an author-
language flexible enough to enable a lesson author to design and build
instructional material in statistics. However, PLANIT evolved into a
powerful language that could be used for both numeric and non-numeric
purposes and has been utilized in presenting instructional material rang-
ing from elementary school spelling and vocabulary to an undergraduate
course in economics.

APL, BASIC, and TELCOMP were primarily designed for use by students
and are often referred to as student computational languages. These
languages provide highly interactive computing power and because of their
simple arithmetic notation are quite easy to learn. Thus it is possible
for students to design, code, enter, debug, and execute their own programs.

Finally, an important point in evaluation of CBI languages concerns
the amount of time required by an author to produce a program equivalent
to one hour of student terminal time. Program preparation, of course,
refers to activities such as gathering and preparing lesson material,
planning strategies, coding, entering, and editing the program. The
authoring time required to perform relevant programming activities
depends upon a number of factors. These factors include the author's
previous programming experience, familiarity with material presented,
types of logic and interface devices used, etc.

It is difficult to ascertain which language requires the least
amount of authoring time per hour of student terminal time. Programs
already produced have employed a large number of diverse logics and have
been used to present a wide range of subject matter. Perhaps one method
of comparing CBI languages, regarding programming time, would be to

select competent authors from each language and have them prepare a

64
series of specific programs using a different logic with each type of
program. Unfortunately, such a comparison is feasible only if a research
team has access to all languages. At present, this type of research

study could be considered next to impossible.

An examination of the literature reveals that documentation regarding
authoring time is very sparse. This may be due to the fact that until
recently most of the CBI jnstallations have been used for research pur-
poses. However, indications are that preparation time for one hour of
computerized instruction ranges from 75 hours (Swets & Feurzeig, 1965)
to more than 300 hours (Bernstein, 1967). The average preparation time

was conservatively estimated by Rogers (1968) to be at least 100 hours.

Ease and Power of Response Analysis

One aspect of non-numeric CBI languages that differentiates and
perhaps shows their superiority over the numeric languages is in the
domain of answer processing and types of answer-matching routines
provided. All languages incorporate the exact answer match routine but
CW II, PLANIT, PLATO, and MENTOR also feature auxiliary routines which
allow the author to accept responses which vary in predictable ways from
specified lesson answers. All four of the above mentioned languages
feature a keyword matching poutine which matches each word in the
student's response against the author's specified answer. 4 keyword
match is recorded only if the response contains keywords in the same
order as specified by the author. PLANIT and CW II permit an option
which will disregard keyword order, while CW II also allows the author
to specify a further option which will record a keyword match provided

that at least one of the words embedded in the student's response matches

65

a word in the listed answer. Both CW II and PLATO have routines that
estimate similarity of characters in the student's response with the
specified answer. The minimum percentage required for a spelling match
in PLATO is fixed at 80% while in CW II the author can easily use
available functions to specify the minimum number or percentage of char-
acter matches required before a response is regarded as acceptable.
COURSEWRITER II also incorporates a function which will mark the student's
response and return a display of the correct portion of the response.

PLANIT and PLATO permit a student's calculated numeric response to
be matched with the result calculated by the computer. Authors using
CW II, PLANIT, or PLATO can also specify that a numeric response is
acceptable if within specified limits of the actual answer. PLANIT
provides two features not available in CW II, PLATO or MENTOR; it can
perform a phonetic match in searching for words that sound alike and also
check an algebraic response to see if it is mathematically equivalent to
the listed answer.

Answer matching routines such as the calculated numeric match and
numeric match with limits are easily implemented in the numeric CBI
languages. However, it would be fairly difficult for an author, without
a mathematical and linguistic background, to write functions which
perform many of the other types of answer matching.

Every CBI language offers some form of branching which, on the basis
of the student's response and/or previous performance, modifies the
course presentation for the student. PLANIT and CW II are the only
languages which provide an implicit branching procedure in the answer
analysis, to control course flow; although, MENTOR provides alternate

branches to be taken if questions are repeated. All languages feature

66

conditional branching to provide for individualized sequencing of
material. The most dynamic and viable conditional branching is provided
by APL, PLANIT, and TELCOMP. APL enables an author to specify, in a
single statement, many condition sets accompanied by an equivalent number
of entry locations. Thus, when APL executes a branch statement, it
creates the possibility of branching to one of many locations depending
on the condition set that is true. On the other hand, PLANIT's decision
frame is used to specify branching conditions based upon combinations of
variables such as latency, errors, help received, time taken to execute

various segments of the lesson etc.

Maintenance of and Accessibility to Student Accounting Information

All four author-languages discussed in Chapter II incorporate pro-
cedures for recording certain aspects of each student's performance as
he progresses through an instructional session. COURSEWRITER II, MENTOR,
and PLATO automatically update the student's performance records when he
signs off. PLANIT, however, will not add a student's record for a parti-
cular session to his cumulative performance record unless he indicates to
the system that he has "finished" the session. Performance recordings
are maintained on magnetic tape by both PLATO and MENTOR and on disk or
magnetic tape by CW II and PLANIT. Course-authors are permitted, by
PLATO and PLANIT, to display student records on-line. PLATO further
provides each author with the facility to request a graphic trace of any
student's progress or to retrieve and review certain aspects of the
recordings. An off-line printer supplies performance listings for CW II

and MENTOR authors.

67

Occasionally, the contents of counters and switches are used by
CW II authors to specify certain branching conditions. This presents
the author with the problem of anticipating and keeping a running account
of branching conditions, relevant data kept in counters, significance of
switch status, contents of buffers and return registers, etc. The job of
maintaining scorekeeping documentation, coupled with CW II's primitive
single condition branch statements, adds greatly to the time taken to
plan and code the lesson. On the other hand, PLANIT and PLATO access
student performance records to obtain relevant data for branching condi-
tions rather than relying on the contents of counters and switches. This
ability to reference performance recordings certainly enhances an
author's power to make numerous conditional branches based on the

student's past and present performance.

Control Over Various Types of Interface Devices

A basic question that can be asked in evaluating CBI languages
pertains to the designed use of these languages: Does each language
enable an author to present students with diversified instructional
material as would be presented in the classroom, seminar room, labora-
tory, library, etc.?

Obviously none of the present CBI languages considered fully meet
these instructional aspects, but COURSEWRITER II perhaps comes closest.
COURSEWRITER II was originally designed to be used primarily by teachers
wishing to program diverse subject matter for students of various age and
ability levels. One of the outstanding features of CW II is that it
permits presentation of material through a variety of media such as the

audio unit, CRT, and image projector and permits the student to use the

68

instructional keyboard or light pen for response input. This means, for
example, that these interface devices combined with specially designed
dictionary characters and graphic displays can be used in helping teach
a foreign language, grade one students to read, physics students to
understand Ohm's law, etc. Presently, lack of computational power is
regarded as the major drawback of CW II. Once CW II has a computational
feature such as APL/1500 added to its repetoire, then this language will
become a much more effective tool for instructional purposes.

APL/360, BASIC, PLANIT, MENTOR, and TELCOMP rely almost exclusively
upon either a teletypewriter or a computer controlled electric typewriter
as the student-subject matter interface. This type of interface is
advantageous for users desiring remote terminals. However, these
terminals make a certain amount of noise and may present a serious noise
factor if a number of terminals are located in the same room. A review
of CBI literature indicated no available research related to the effect
of machine noise upon rate of learning.

Another terminal feature requiring consideration is terminal speed
in displaying information. Wodtke (1967, p. 321) indicated that type-
writers and teletypes are quite slow in displaying text thus rendering
them as inefficient interface devices for highly verbal students. There-
fore, if the lesson requires rapid textual displays, the CRT might be a
more effective display device than the typewriter or teletype.

APL/1500, CW II, and PLATO provide authors with control of the
keyboard, CRT, and image projector. PLATO, however, does not enable
easy change of dictionary characters or graphic displays as does CW II.

Because of the types of interface devices used, users of these three

languages are not faced with problems of noise and slow display speed as

69

are users of the languages mentioned above. COURSEWRITER II, in addition
to the interface devices mentioned, controls a light pen and an audio
unit. Thus, CW II currently furnishes authors with control over the
largest number of auxiliary interface devices. However, the variety of
interface devices does not necessarily mean that CW II is the best
available CBI language for presentation of material. Travers (1964)
concluded that if a student was required to attend to a diverse range of
sensory stimuli, the realism provided by multi-media presentation would
hinder rather than aid information transmission. He was in favor of a
student being exposed to only one type of semsory stimull at any specific
time. On the other hand, Glaser, et at. (1964) indicated that a wide
range of multi-media presentation is not necessarily detrimental. The
problem appears to be one of finding the proper "mix" of interface
devices to facilitate learning for each student.

In review, there are a number of desirable and undesirable features
associated with each language. The following list contains a series of
CBI language features deemed desirable from an author-instructor point of
view:

1. Provision for isolating the instructional logics from the
content of instructional sequences. (PLATO)

2. A calculation mode, with powerful computing ability, which could
be used by both author and student. (PLANIT)

3. Easy author access to student performance records. (PLANIT and
PLATO)

4. Lesson building information available to authors upon request.

(PLANIT)

70

5. Control over a wide variety of interface devices. (CW II and
PLATO)

6. Powerful branching. (APL, MENTOR, and PLANIT)

7. A variety of conditiocnal branching, based upon direct refer-
encing of student performance records. (PLANIT and PLATO)

8. On-line and off-line author facilities. (CW II)

9. Simple arithmetic operations which enable use of common mathe-
matical notation. (APL)

10. Easy debugging of logic. (APL)

11. Editing features which enable authors to edit portions of

statements. (APL)

III. Needs of CBI Teacher-Authors

Until recently, formal education systems such as schools and univer-
sities relied predominantly upon book publishers and companies special-
izing in production of various educational supplies to provide them with
necessary curriculum material. However, since CBI is a relatively new
concept, school systems wishing to implement computerized instruction
find their former sources do not provide required CBI curriculum material.
One reason for lack of CBI material is the proliferation of languages
and systems currently in use. Hardware, software, and instructional
programs used by one system are usually incompatible with those of other
systems. Thus, any curriculum material produced for one language would
be useful to only a small subset of all CBI users.

In the near future, it is likely that quality curriculum material

will be produced by book publishers and companies specializing in

71
production of CBI materials; but this situation will probably not materi-
alize until additional systems are available and more research and testing
has been carried out with present languages (Rogers, 1968). Another
contribution that would facilitate mass production of curriculum materials
is the development of a common CBI language(s) which could be used on a
number of teaching logics.

Since availability of CBI curriculum materials from outside agencies
is negligible, the only other promising source of CBI materials is the
classroom teacher (Rogers, 1968). In the last section, it was noted that
the teacher-author requires a minimum of 100 hours to construct a program
equivalent to one hour of student terminal time. It is quite improbable
that teachers would be able to find enough time in their teaching
schedules to construct one hour of CBI material per week. A proposal of
this sort would presumably be rejected by classroom teachers because of
the seemingly unrealistic amount of program preparation time required,
and also by school administrators due to reasons of economics and logis-
tics.

Therefore, the problem is one of finding ways to reduce the amount
of time required to prepare programs. Programming time could possibly
be reduced if: (a) the author was not required to spend a great deal of
time learning the language; and (b) the author could write programs
without the requirement that he possess the combined qualities of a
curriculum specialist, learning theorist, programmer, typist, artist,
etc.

In order to reduce the amount of time spent by a teacher-author in
producing CBI material, there appears to be an urgent need for either a

new language or at least an enhancement of present languages. If a new

72

language is developed, it would necessarily be a more natural language
than present languages and, hopefully, more meaningful and easier for
authors to learn. A desired feature of this language would be the separ-
ation of course logic from course content. This type of course separa-
tion would enable authors to have the logic portion of a lesson designed
by a team of curriculum specialists, behavioral psychologists, experi-
enced programmers, etc. Teachers wishing to prepare a lesson would be
able to select a desired pre-programmed logic and enter only the required
content. Thus, this new language would not only reduce the amount of
authoring time, but also provide a varied array of programs to be used
for extensive research and testing into learning strategies and the

interface "mix" required to provide optimum learning enviromments in

various subject areas.

CHAPTER V

DESCRIPTION OF THE STUDY

An IBM 1500 Instructional System was installed at the University of
Alberta during the early months of 1968. In the ensuing period of time
a number of disadvantages have been noted with CW II as a CBI language.
The most prominent drawback noted was the amount of time required to
construct a course. Authoring times ranged to 600 hours for every hour
of student terminal time. Author opinions were varied but indications
were that, in addition to the amount of time required to adequately
learn CW II, an excessive quantity of time was needed in planning, coding,
entering, debugging, and documenting programs.

Based upon experiences with COURSEWRITER as an authoring language
and the needs of CBI authors, as described in the last chapter, a new
computer language was designed. The first section of the chapter provides
the rationale for a new language while the second, and final section,

presents a comprehensive description of the new language.

I. Rationale

As stated in the previous chapter, there is a need for a suitable
authoring language primarily designed for teacher use. This means that
CW II should either be augmented or be replaced by a completely new
authoring language. If CW II is to be augmented, by adding various
enhancements, the basic nature of the language could not be changed

without modifications to the 1500 System or at least a rewriting of the

74

CW II assembler. Modification of the 1500 System would be, in a program-
ming sense, a large undertaking requiring the services of experienced 1130
Assembler language programmers. Rewriting the assembler would present
problems with core allocations and the resulting liason with the time
sharing system. Otherwise, programs would need to be run as batch jobs
on the IBM 1130 Computing System, which forms the base for the IBM 1500
Instructional System. Batch mode refers to complete execution of one
program before the computer begins execution of the next program in a
particular set of programs.

Because the 1130 System is quite small, programs can only be pro-
cessed with the 1130 System completely dedicated to that particular
"background" job. A background job is defined as the automatic execu-
tion of lower-priority programs when higher-priority programs are not
using the system resources. This means that while programs are processed
on the 1130 System, the 1500 System could not be used for any other
activities. A large number of these background jobs would likely require
extra operating time and probably force the hiring of an extra computer
operator. Thus, augmenting CW II would be an expensive venture due to
the lack of qualified 1130 assembler programmers, excessive programming,
and the extra system resources and personnel required to process programs.

To overcome these difficulties, the author concentrated on the
feasibility of designing a new CBI authoring language. The new language,
named VAULT (a Versatile AUthoring Language for Teachers), was based upon
the following three major areas stated in chapter IV: (a) desirable
criteria determined by reviewing other CBI languages; (b) desirable
features from other CBI languages; and (¢) current needs of CBI teacher-

authors. Once designed, a subset of VAULT was developed and implemented

75
to test the feasibility of the total language. It should be noted that
the basic design of VAULT was occasionally modified as unanticipated
authoring needs were encountered. This was especially true when VAULT
was used in training a group of teachers to prepare CBI materials.

The initial aim was to separate VAULT into a logic division and a
data division. The VAULT logic division was designed to be used by
experienced VAULT programmers who also had some background and experience
in COURSEWRITER. This division corresponds to a normal concept of a
computer program as in any other computer language (i.e., FORTRAN). It
was envisioned that each logic program would be prepared by a team of
instructional specialists consisting of educational psychologists,
learning theorists, curriculum specialists, philosophers, etc. Material
prepared by these specialists would then be programmed by experienced
VAULT authors. Once researched and documented these "programmed logics"
would be documented and added to a library of VAULT logics. The teacher
or subject matter specialist would select a suitable programmed logic
from a pool of available logics and, through the VAULT data division,
enter subject matter to compliment that particular logic. An important
point is that the logic program forms the basic framework to which parts
of data must conform.

By separating logic and data the study endeavoured to provide a
means whereby: (a) the time taken to learn VAULT would be less than
that taken to learn COURSEWRITER; (b) teacher authoring time would be
effectively reduced; (c) pre-programmed logics would provide educators
with a powerful research tool for testing various learning theories and
instructional strategies; and (d) the data division would provide the

teacher with a quick method of entering subject matter.

76

Both the logic and data divisions of VAULT accept two types of

entry records. The Division Control Record (DCR) is used in both

divisions while the VERB record is used only in logic and KEYWORD record
in data. Three types of DCR's used by VAULT are: (a) major DCR's which
are necessary for organizing or subdividing a course into formalized
instructional domains; (b) minor DCR's which are required for internal
organization and modification of the course domains; and (c) leading
DCR's which supply information to the VAULT compiler.

The logic author would use major DCR's primarily to define hierar-
chical levels or instructional domains within a course. The domains, in
descending hierarchical level are BLOCK, LESSON, and PROBLEM. Any
course programmed in VAULT usually subsumes several BLOCKS, each BLOCK
contains a series of LESSONS, and each LESSON, in turn, is composed of
a number of PROBLEMS.

The domain of a BLOCK is analogous to the group of specific instruc-
tional methods or techniques utilized by a classroom teacher to achieve
educational objectives that are related to a particular unit or chapter
of a course. A varying number of LESSONS would usually be required to
obtain the desired cobjectives for each BLOCK. The domain of a VAULT
LESSON could be analogous to a single classroom period in which a
particular instructional sequence is used by the teacher in attempting
to teach a specific concept.

Contained within the boundaries of each LESSON domain are a series
of contingent interactions between the student and the computing system.
The domain (level) at which these interactions take place is called the

PROBLEM. Basically, logic instructions are entered at the PROBLEM level.

77

The three domains of a VAULT produced course (BLOCK, LESSON, and
PROBLEM) are important to both the logic and the data authors; First,
let us examine the implications of these domains to the logic programmer.
Further to providing the means for logically subdividing a course the
major DCR's would automatically initiate a series of system defaults.
These defaults would be activated within any PROBLEM that requires a
student response. If activated (enabled), system defaults would: (a)
specify parameters for conditional branching based upon the student's
performance only within that particular PROBLEM; and (b) include automatic
accunulation of student performance data.

When a BLOCK level is initiated by a major DCR that particular
BLOCK would acquire default options identical to those specified for the
entire course. If the logic author decides that he does not wish
conditional branching to occur when a student has "timed out" a specific
number of times, within any PROBLEM subsumed by the BLOCK, he would
merely enter a minor DCR that overrides and disables the default related
to timed out conditions. It is also possible that within the same BLOCK
the author desires to enable the timed out condition for a specific
LESSON. If so, the author would immediately follow the LESSON major DCR
by the minor DCR that modifies timed out conditions. Included in the
minor DCR would be conditional parameters to be used in evaluating
timed out conditions within any PROBLEM contained in the boundaries
of the LESSON domain. Thus each hierarchical level obtains its defaults
from the next higher level within the domain. However, any default
could be overriden or modified at any of the three hierarchical levels.
Thus the author could accept the systems defaults or modify them to meet

the particular requirements of the course.

78

The VERB is the second type of record accepted by the logic divisionm.
This record permits an author to use meaningful action words to indicate
points in the logic program where specific computer units are to be used
and associated material from the data division is to be accepted and/or
to control the logical flow of the program. The use of VERBS is restric-
ted to the PROBLEM level.

VERBS which specify use of particular computer units would have
names similar in meaning to the author actions necessary to activate
the unit. For example, the teacher would DISPLAY material on the CRT,
ERASE the CRT, SHOW a film on the image projector, PLAY a recorded
message, etc. Designation of the computer unit is not a difficult task.
However, specifying positional parameters with these types of VERBS could
prove troublesome, especially to the beginning logic author. Therefore,
a number of VERBS that require parameters would be supplied with special
default parameters. This VERB default feature would permit the beginning
author to write simple logic programs without need of knowing about the
associated VERB parameters.

Another worthy VERB characteristic would be the IF (condition) ---
THEN (action) conditional statement. The author could easily control
the student's path through a course by specifying conditional action
based upon the student's response to a question or upon certain aspects
of his performance in the course (i.e., IF WRONG THEN GO TO NEWPR). The
author would also be provided with a VERB (i.e., STOP) that enables him
to specify execution of a course to be terminated. (IF COUNTER-15<8
THEN STOP).

VAULT attempts to provide the logic author with some mathematical

capability by allowing him to ASSIGN numerical values to variables

79

through use of mathematical expressions. These variable names could be
used to replace parameters associated with any logic record. When VAULT
processes records containing variables, the variables would automatically
be restored to their numeric equivalents.

The VAULT data author should find entry of subject matter easier
to learn and simpler to use than that of the COURSEWRITER author. A
primary reason, of course, is that the data author begins with a pre-
programmed logic that forms the basic framework for the method in which
data is to be entered. The data DCR's are not as complicated to use as
those in logic because no system defaults are involved. For the most
part, major DATA DCR's are used only to subdivide subject matter into
BLOCK, LESSON, and PROBLEM. These data domains, upon entry, would be
matched against those in logic. However, the data DCR's provide an
author with some control over use oé certain portions of the pre-program-
med logic. Occasionally the data author finds that the amount of subject
matter, to be used in a program, is either more or less than anticipated
by the logic author. He would then use the major DCR's to control move-
ment from one logic domain to another. Initially the first three DCR
levels in data (BLOCK, LESSON, and PROBLEM) are synchronized with the
first three corresponding levels in logic before processing of data
begins. As each PROBLEM is encountered in data VAULT would skip to the
next PROBLEM in the logic LESSON domain. If the last PROBLEM in the
current logic LESSON has already been passed, VAULT would then return to
the first logic PROBLEM within the LESSON domain and begin a second
pass through that logic LESSON. Thus VAULT would continue iterating
sequentially through the PROBLEMS within a logic LESSON until a LESSON

is encountered in data. When a new LESSON is encountered in the data

80
material then VAULT would automatically skip to the next logic LESSON
and continue matching logic and data.

Similarly, if a new LESSON is encountered in data but the last
logic LESSON, within the current logic BLOCK, has already been passed
VAULT would return to the first logic LESSON in the BLOCK and continue
processing data. If an end of data record is encountered then VAULT
would skip the remainder of the logic program and stop any further
processing.

The second type of data record, called the KEYWORD, provides the
teacher with a method for entering the subject matter or course material.
Some of the KEYWORDS must correspond to the VERBS in the logic division.
Thus, if during processing, VAULT encounters a VERB that indicates textual
material is to be displayed on the CRT (i.e., DISPLAY) then the next
data record must contain a specific conformable or synchronous KEYWORD
(i.e., TEXT). It is important that each conformable KEYWORD be meaning-
ful and, as well, synchronous with the VERB to which it corresponds in
logic. Non-conformable KEYWORDS, on the other hand, do not conform with
any VERBS. These KEYWORDS are associated with instructions which
specify entry of student responses. They permit the teacher to easily
enter complete lists of answers and, also, reinforcement messages.

A number of important features, embedded in the data division,
permit the teacher-author to quickly and easily enter data material.

The VAULT data '"text editing" feature represents a significant improvement
over the tedious and time consuming coding method required by COURSEWRITER
authors. The data author would merely enter textual material in free

form and let VAULT edit and format the text according to screen parameters

from the corresponding VERB in logic. 1In addition, as VAULT generates

81
code to display the textual material it also examines the VERB para-
meters to determine which portion of the screen is to be erased and
when indefinite pauses are to be inserted. Thus the VAULT data author
uses a quick one step method to enter textual material.

A second important feature is that the VAULT data author can string
together a complete list of answers of one type (i.e., CORRECT). This
could be accomplished by entering the answer list on the non-conformable
KEYWORD record that denotes the answer classification (i.e., CORRECT,
WRONG, etc.). To accomplish the same effect a COURSEWRITER author
would need to enter single COURSEWRITER statements to test each answer
included in the VAULT answer list.

Also, the VAULT author does not need to supply each answer with a
unique answer analysis identifier as does the COURSEWRITER author. Each
answer in the data answer list is automatically supplied with an iden-
tifier by VAULT. Further, VAULT checks the system default optioms,
available at the current logic PROBLEM level, and generates the required
score keeping statements.

Another feature of VAULT data is that a teacher could immediately
follow a particular answer list by a reinforcement message. VAULT would
examine the parameters of the VERB requesting the student response,
determine the portion of the CRT allocated for a reinforcement message,
edit the textual material, and produce code to display the message. If
the teacher does not include a message he could then request VAULT to
display an appropriate "system" reinforcement message. VAULT would
maintain a series of reinforcement messages that correspond to particular
answer types (i.e., WRONG, UNREC, CORRECT, etc.). Upon request from the

teacher—author, VAULT would randomly select a message from a group of

82

messages corresponding to the type of answer and then display this
message in the CRT area designated by logic VERB which requested the
student response. To ensure that each student has ample opportunity to
pead the reinforcement message an indefinite pause would be generated
along with a system message which informs the student that he may proceed
by pressing the space bar.

Since the construction of VAULT logic is quite independent of the
data division VAULT permits logic material to be compiled without neces-
sarily being followed by data input. This means that the logic author
would be given the opportunity to debug logic material before it is made
available to a data author. However, since much of the data material
must synchronize with the logic material VAULT does not permit data to be
compiled and processed unless first preceeded by an error free logic
program.

VAULT programs would be run in batch mode on the IBM System 360,
Model 40 or larger. Output from the logic division would be integrated
with the teacher's input to the data division, by the System 360, and
COURSEWRITER source code would be the final product. The COURSEWRITER
source could then be transferred to the 1500 System for program assembly.

There were a number of reasons for selecting the System/360 over
the 1130 System. The anticipated difficulties with implementing an
augmented CW II language in the 1130 System were discussed earlier in
this section. Similar difficulties likely would arise if VAULT were to
be used with the same system. Also, as more programs are written and
the 1500 System used mainly by students, authors will probably find their
on-line authoring time reduced. In fact, authoring time will probably

be restricted to program debugging.

83

On the other hand, institutions using the 1500 system will probably
have access to an IBM System/360. The System/360 offers high speed,
larger core, and a greater number of peripheral storage devices than does
the 1130 System. On this basis, it was decided that VAULT would be
processed by a pre-compiler written in PL/l, which is a high level program-
ming language designed to serve both scientific and commercial program-
ming needs. Statements written in VAULT would be punched on cards, run
as a batch job on the System 360, and then COURSEWRITER source code would
be output and assembled on the 1500 System.

Since VAULT programs are to be run off-line, on the System 360, it
is necessary that course authors be provided with options for obtaining
comprehensive program listings. Different sets of listings would, of
course, be required from the logic division and from the data division.
The logic author would need a listing of the logic input cards and, as
well, a listing of the output code that is passed on to the data division.
Included in the latter listing would be a number of tables containing
information to help the logic author debug his program. These tables
would provide a complete inventory of items such as alphabetic labels
used, the input statement number where the label occured, the level at
which the label occured and whether or not branch statements were made
to that label. If branch statements are encountered in the logic input,
a table would be displayed indicating the input record number containing
the branch statement and the label to which it refers. These features
could prove quite beneficial to the logic author in his efforts to
either expand upon the logic program or just in debugging and editing

the input material.

84

The data division would provide the teacher with a listing of the
data entry records and also a listing of the COURSEWRITER source code
produced by VAULT. Since the amount of COURSEWRITER code could be
fairly extensive the latter listing would separate the code according
to its correspondence with the data LESSON levels. The listing would be
designed so that each LESSON level would begin only at the top of a new
page. Included at the top of each LESSON page would be a message indi-
cating the beginning of a LESSON and, in addition, a statement which
indicates the number of the data LESSON entry record that corresponds
to this LESSON of COURSEWRITER code.

If any errors are encountered, by VAULT, during processing of logic
or data material then error messages would be included in the listings.
Each error message would be listed immediately following the record at
which the error occurs. All errors which occur would be classified into
one of three levels of severity.

The lowest error level would merely notify an author of a specific
error, the system would assume certain default conditions, and processing
would continue normally. If the second level of error is encountered
this would be severe enough to suppress either logic or COURSEWRITER
output depending, of course, upon the VAULT division in which the error
occurs. However, VAULT would continue syntax checking all input records
for that division only. When the most severe level of error occurs
VAULT would immediately terminate further processing of input records.

A f£inal note is that the VAULT compiler will be "table driven."
This means that all major terms and messages and decisions used by VAULT
will be incorporated into a series of tables. Most of the terms would be

basically teacher oriented, but it is possible that teachers will find a

85
few terms confusing. If so, these terms could be easily replaced by
more meaningful terms. Also, as the language is expanded and augmented,

new terms could be added to the tables.

Since the compiler is table driven it should be possible to convert
the English terms to their counterparts in other national languages
(i.e., French, German, etc.). In this way VAULT could be made available

to teachers working with similar CBI installations in other countries.

II. Description of VAULT

Basically, VAULT was designed with major objectives being to pro-
duce a meaningful, teacher oriented language which separates logic and
data. The desired outcomes were to reduce learning time by teachers,
decrease coding effort, increase production of CBI courses, and increase
pesearch activities related to CBI. However, designing a new CBI language
was one problem, but being able to demonstrate the operational feasibility
of the language was, of course, a very different problem. In order to
demonstrate the feasibility of VAULT, a decision was made to code only
a subset of VAULT. The emphasis in determining the subset was to select
sections of VAULT which beginning authors could easily use to produce
most types of courses currently written by COURSEWRITER authors.

The remaining sections of this chapter have been included to give
a description of the following facets of VAULT: (a) organization of
VAULT; (b) logic division; (c) data division; (d) correspondence and
internals of the two divisions; and (e) listings produced.

Organization of VAULT. VAULT is separated into two main divisions:

LOGIC and DATA. It is the logic division which sets course strategy,

86
selects interface devices, and specifies types of student accounting
records to be maintained. The data division primarily provides the
teachers' course material or subject matter.

Because VAULT is divided into two sections, it provides educational
researchers with a vehicle for researching learning theories and also
provides teachers with a quick and easy method of subject matter entry.
Persons using VAULT would not necessarily need to know data processing
techniques since VAULT uses natural, meaningful words to convey what the
author wants done. Those persons possessing only a very general know-
ledge of computer concepts could easily learn to use VAULT.

It was intended that the logic division would be programmed by
experienced authors while the data division would be used by all types
of authors, particularly teachers. Logic programmers would use VAULT
to effect various teaching strategies that have been thoroughly
researched and tested. It is assumed that VAULT logic programs would
be formulated by teams of educational researchers. The programmed
logics would then be documented and made available to teachers. A
teacher wishing to produce instructional material would first select a
suitable available logic. Then he would use the data division as a
means of entering desired subject matter. Next, the two divisionms
would be integrated by the IBM 360/67. Final output from the System 360
would be in COURSEWRITER II code which, in turn, would be used as input
to the IBM 1500 System. Perhaps, at this point, it should be noted that
the data section is dependent upon the logic program for its logical
structure. This means, therefore, that some portions of the data section

are necessarily conformable to the logic section specifications.

87

A principal type of instruction contained in both divisions is the
Division Control Record (DCR). The DCR's are divided into three groups:
leading, major, and minor. The leading DCR is similar in concept to a
part of job control language used in conjunction with other computer
languages. It is the leading DCR's which enable an author to supply
instructions to the VAULT compiler regarding production or suppression
of various listings, COURSEWRITER source code, assembly cards, etc.
Major DCR's could be used to subdivide either logic or data into three
hierarchical levels or subsets called BLOCKS, LESSONS, and PROBLEMS.
The PROBLEM represents the lowest level or smallest subset within these
two divisions. Usually, although not always, a PROBLEM may be
associated with a student response. Each LESSON may contain up to 99
PROBLEMS and each BLOCK may include 99 LESSONS. Finally, the total
COURSE may consist of 99 BLOCKS. The intent of the LESSON was that it
would represent the logical structure associated with presentation of a
particular concept or perhaps be the equivalent of a single ''classroom
period." Being the largest subset, the BLOCK could perhaps be analogous
to a course unit or textbook chapter. Minor DCR's in the logic section
supply specifications regarding strategies within any subset of BLOCK,
LESSON, or PROBLEM.

Logic division. Any logic input is classed either as a division
control record (DCR) or as an action record (VERB). In general the DCR
and VERB in the logic provide the logical course structure which is
later complemented by subject matter from the data division. In order
that logic authors not confuse the two records, all DCR's are prefixed

by two dollar signs (i.e., $SLOGIC).

88

A. Division control records (DCR's) are divided into the following

categories: (a) major DCR's--$$LOGIC, $SBLOCK, $SLESSON, $SPROBLEM,
$SENDLOGIC; (E) minor DCR's--$SLATENCY, $STIMEOUTS, $SCORRECTS, $SWRONGS,
$SCWSTART, $SCWEND; and (¢) leading DCR's--$SLIST, $SLOGICNAME.

These DCR's were designed to enable the programmer to:

1--signify the program beginning with the DCR $SLOGIC and program
ending with the DCR $SENDLOGIC. Each card containing these DCR's may
contain comments. The end of logic file, or $$ENDLOGIC, dezotes that

all further logic input will be ignored.

EXAMPLE: $SLOGIC BEGINNING OF MULTIVARIATE ANOVA

$SENDLOGIC END OF MULTIVARIATE ANOVA.

2--subdivide the logic section into subsets containing hierarchical
levels of BLOCKS, LESSONS, and PROBLEMS. These levels are formed by the
major DCR's $$BLOCK, $SLESSON, and $$PROBLEM. Each of these DCR's may
be accompanied by a unique alphanumeric label of six characters or less.
Labels permit references or branches to be made to any labelled major

DCR from any point in the program.

EXAMPLE: $$BLOCK STATS1
SSLESSON CORREL
SSPROBLEM LINEAR

3--specify system default options that are to be in effect for BLOCK,
LESSON, or PROBLEM levels. Minor DCR's are important because they
provide the author with means for modifying system defaults or options
concerning student responses. VAULT defaults would be in effect for an
entire course, however they may be overridden for any subset by use of

minor DCR's.

89
The following VAULT system defaults specify action to be taken

regarding student responses:

LATENCY--The maximum latency default for any keyboard or lightpen
response is 90 seconds. If the latency time is exceeded, the
response would be considered as a timeout.

CORRECT--Normally the student would be passed to the next PROBLEM
if a correct answer is entered.

TIMEOUT, WRONG, UNRECOGNIZABLE--If any of these three conditions

is encountered the student would be permitted to retry answering the

question. However, if any single condition is encountered a total

then the student would be taken back a maximum of three PROBLEMS for
review. The system would not branch a student back past the
beginning of the current LESSON.

System defaults may be overridden by using minor DCR's such as
$SLATENCY, $$STIMEOUTS, $$CORRECTS, $SWRONGS, or $SUNRECS immediately
following any of the three major DCR's which set up the hierarchical
structure. Each minor DCR will effect a change in the system action
for all PROBLEMS at that level or any immediately following levels that
are lower in the hierarchy. For example, if a minor DCR is encountered
after a SSLESSON then its options will apply for all PROBLEMS within
that LESSON. It is also possible to use further minor DCR's with
different options to modify system defaults for any PROBLEM within that
LESSON.

The procedure for deciding which system defaults and associated
modifications will be in effect for each level could be accomplished as
follows. When a $$BLOCK is met the VAULT system defaults (discussed
above) are passed from the COURSE level down to the BLOCK level and will
pemain in effect for that entire BLOCK. Next, the VAULT compiler checks

for immediately following minor DCR's and modifies the BLOCK defaults if

any ape found. Whenever a $SLESSON is encountered, the BLOCK defaults

90

are duplicated at the LESSON level. Again, any minor DCR's following

a $SLESSON would modify the defaults only for that particular LESSON.
Note that any logical level within the hierarchical structure

always receives its basic default options from the last processed higher

level. Thus it is possible for an author either to omit minor DCR's

and simply rely on system defaults throughout the course or he may

carefully combine major and minor DCR's to produce sophisticated default

branching.

An explanation and example of use of these minor DCR's is listed

below.

$SLATENCY 75

This record specifies that all questions occuring as a subset of
the level containing this minor DCR shall have a latency period of
7.5 seconds. The latency parameter is expressed in tenths of
seconds. Normal system latency time is 90 seconds.

$STIMEOUTS YES,6,2
$SWRONGS YES,6,2
$SUNRECS YES,6,2

These three minors have been grouped together because the resulting
action is similar. For example, the above examples specify that a
student will be branched back a number of PROBLEMS (i.e., 2), for
review purposes, if the individual cumulative count of either
TIMEOUTS, WRONG, or UNRECOGNIZABLE answers in any single PROBLEM
reaches a particular maximum (i.e., 6).

$STIMEOUTS NO
$SWRONGS NO
$SUNRECS NO

The single parameter NO specifies that no individual cumulative
count is to be kept of answers which were timed-out, wrong or
unrecognizable. The system action will merely be to permit the
student to retry the question if a correct answer is not entered.

91

$$CORRECTS YES,25,20
Since VAULT permits only one question per PROBLEM, this minor DCR
actually operates at the LESSON level. When this minor is enabled,
VAULT will accumulate the number of correct responses within a
LESSON. Once the total number of correct answers within the LESSON
reaches a particular value (i.e., 25) the system will branch the
student ahead according to the number of PROBLEMS specified by the
parameter (i.e., 20). Note that if there are not enough PROBLEMS
left in the current LESSON to accommodate the desired branch, then
the student will be branched to the beginning of the next LESSON.
The usual system action for a correct answer is to skip the student
on to the next PROBLEM.

$SSCORRECTS NO
This record specifies that no cumulative count of correct responses
is to be maintained. If a correct answer is encountered the system
continues on to the next PROBLEM.

4. Modify student performance recordings. One feature of VAULT
is that various counters, switches, buffers, and return registers are
peserved to maintain student accounting information. The system will
maintéin a running total of the number of problems, attempts (not
including timeouts), timeouts, corrects, and wrongs or unrecognizable
answers in each BLOCK and LESSON as well as in the entire course. In
addition, count is maintained of the number of timeouts, wrong and
unrecognizable answers entered in any PROBLEM.

By allowing the system to control these counters the author is
pelieved of some of the drudgery of specifying counters to be incre-
mented, decremented, etc. If the logic author wishes to use a number
of peserved counters for other tasks or perhaps does not wish to have
particular counters altered by the system he would specify the parameter
UNO" with any minor DCR (i.e., $$WRONGS NO). The counters affected
depend upon the level at which these minor DCR's would be used. For

instance, if $SCORRECTS NO is specified at the LESSON level, the counter

92
reserved for accumulating the number of correct answers within a LESSON
would not be cleared at the beginning of that LESSON. This could be
useful to the author who wishes to test the number of correct answers
obtained in the LESSON completed prior to the current LESSON.

In addition, VAULT will use return register 1 to store the label
of the current data PROBLEM and return register 2 for the label of the
last executed PROBLEM.

5--supply compiler information. The two leading DCR's $SLIST and
$SLOGICNAME provide information to the VAULT compiler. Information as
to whether or not the author desires a listing of the logic records
entered and/or a listing containing the label table, go to table,
variable table, and table of object code produced by the logic division
would be included in the accompanying parameter. In this way the
author could ask for none, one, or both listings. If the $SLIST record
is omitted only a listing of logic entry records would be provided.

Each course generated by the logic program requires an alphabetic
name containing five characters or less. The record $SLOGICNAME would
be used to enter a unique name. However, the author could omit this
record and the system would default to the name VAULT.

6--provide facility for inserting COURSEWRITER II code. By using
+he minor DCR's $SCWSTART and $$CWEND it is possible for the logic
author to enter actual COURSEWRITER II source cards. The $$CWSTART
record indicates the beginning of the COURSEWRITER cards while the
$SCWEND record denotes the end of COURSEWRITER source (Appendix D,

p. 180). These two DCR's enable an author to enter certain COURSEWRITER

capabilities currently not possible with the VAULT subset.

g3

B. VERBS or action words perform two basic functions: (2) to
provide means for accepting subject matter from the data division; and
(b) to control the logic structure of the COURSEWRITER II program which
is finally produced by VAULT. The combination of DCR's and VERBS
provides the underlying logic which is to be used in conjunction with
the data division.

VERBS used to accept subject matter from the data section are:

DISPLAY
QUESTION
POINT
SHOW

These verbs indicate locations at which the teacher-author would provide
subject matter. Also, each verb contains sets of parameters to be used
for controlling entered data. The logic author would use either the
system default parameters or enter specific parameters to suit his
particular-needss. |

The VERB DISPLAY (Appendix D, p. 182) indicates that the data
section must provide textual material. Accompanying parameters, if
given, specify the portion of the screen to be reserved for entry of
subject matter from the data division. If no parameters are given,
VAULT would then default to the uppermost 28 rows of the CRT. Since
the verb DISPLAY denotes the CRT will be used for exhibiting textual
material, VAULT first erases the screen of any previously displayed
material. However, if fhe author wishes to retain a particular CRT
display and further display subject matter on a designated portion of
the CRT he would do so by adding the modifier INSERT and a few associated
coordinates to the record containing the DISPLAY verb. For example,

the instruction DISPLAY INSERT 10,5,10,20 specifies that the portion of

g4
the screen beginning at row 10, column 5 and extending for 10 rows and
20 columns should first be erased and then reserved for subject matter
from the data section. In addition, the author could affix a label to
the DISPLAY record. The label could be used in later logic statements
to pefer to the set of coordinates associated with the DISPLAY record.

If textual material entered by the teacher exceeds the screen area
specified by the DISPLAY parameters then an indefinite pause would be
generated. Thus the student would be given the opportunity to control
the pace at which more than one screen of textual material is to be
presented. Note that the system does not generate an automatic pause
for a DISPLAY instruction unless the subject matter entered, in the
data division, exceeds the screen area specified by the parameters
associated with the verb DISPLAY. A logic programmer who desires to
control the length of time a particular set of material is to be
displayed would do so by entering the verb PAUSE along with the
parameters.

Any coordinates in the parameters specified could be represented
by variable names. Care must be taken to provide display coordinates
that lie within the allowable limits of the screen.

The format for the verb QUESTION (Appendix D, p. 185) is similar
to the verb DISPLAY. QUESTION provides the author with the means to
present the student with a question, accept a keyboard response, and
display a reinforcement message. Also, by use of the modifier INSERT,
it is possible to specify particular parameter coordinates or to use
system default parameters as well as to affix a label.

Instead of a single set of parameters as used by the verb DISPLAY,

three sets of parameters are associated with QUESTION. The first set

95
of paramters specifies the CRT area to be used in displaying question
material; the second set of parameters refers to the CRT area where
student responses would be entered; and the third set of parameters
refers to the portion of the screen where reinforcement messages would
be displayed. An author, instead of specifying the QUESTION parameters,
could default to the system parameters. VAULT defaults to 10 rows for
textual material, 4 rows for the response, and 6 rows for the rein-
forcement message.

The verb POINT (Appendix D, p. 187) is used to enable teacher-authors
to specify conditions for a light pen respomse. It is similar in format
to both DISPLAY and QUESTION but does not allow for use of the modifier
INSERT.

The POINT record includes two sets of parameters. The first set
of parameters refer to the CRT area where the teacher could pose a
question and the second set of parameters refer to the CRT area where
reinforcement messages could be displayed. If any parameters are
omitted then system defaults would be used.

Usually the verb POINT is preceeded by a number of DISPLAY INSERT
records each accompanied by a label unique to that problem. Labels are
associated with display coordinates which define various areas where
light pen responses could be made. The teacher-author could use these
logic labels to indicate various areas of the screen containing answers
which are correct, wrong, etc.

To indicate use of the image projector a logic author would enter
the verb SHOW (Appendix D, p. 188). This verb provides the parameters
necessary for controlling presentation and sequencing of filmed material.

Three optional parameters could be used by the author. Proper sequencing

96

of these parameters permits specific film frames to be located, the
shutter to be opened or closed, and, if opened, the amount of time the .
shutter is to remain opened.

A group of VERBS which require no corresponding entry from the data
section are ERASE, PAUSE, IF---THEN, GO TO, STOP, and ASSIGN. Some of
these VERBS also permit the logic author to control logical flow of the
COURSEWRITER II program that is output as the final product of VAULT.

A brief description of each of the above mentioned verbs is included
in this section.

The logic programmer would use the verb §§é§§_(Appendix D, p. 184)
to erase all or any portion of the CRT. Usually ERASE is accompanied
by a set of two coordinates although it is possible to omit the coordin-
ates and default to the system coordinates. Omission of the ERASE para-
meters causes the entire screen to be erased. If a parameter set is
specified it could contain the coordinates for the starting row and the
number of rows to be erased. It is possible to use a DISPLAY label to
represent the specified area to be erased. The label would provide VAULT
with the screen coordinates. It should be noted that the label used as
an ERASE parameter would have previously been defined in the particular
problem in which it is used.

The verb géggg_(Appendix D, p. 185) could be used by authors to
insert specified pauses which would effect action during execution of
the COURSEWRITER II program. The author could include a single parameter
defining length of pause in tenths of seconds or may omit the parameter
entirely. Omitting the parameter would cause execution of the COURSE-
WRITER program to be halted indefinitely and a message displayed which

would direct the student to "press the space bar to continue.”

97

When the verb Eg_zg.(Appendix D, p. 188) is encountered, VAULT
treats it as an unconditional branch statement to be inserted into the
logical flow of the COURSEWRITER program. Each GO TO instruction must
be followed by a label. This label must appear at any of the BLOCK,
LESSON or PROBLEM levels, must be alphanumeric, begin with an alphabetic
character, and must be less than seven characters in length.

The verb IF---THEN is contained in two separate entry records and
specifies that if a certain condition is true (i.e., IF CORRECT) then
the following action would be carried out during student execution of
the program (i.e., THEN GO TO NEXTOl). With the current VAULT subset,
the IF condition could be associated with counters, switches, types of
answers, time taken to respond, etc.

An author could use the STOP verb to halt a student's progress
through a course. During execution time the student would be branched
to the end of that block. Also, this VERB could be used as the indicated
action in an IF---THEN conditional statement (i.e., IF WRONGS>=25 THEN
STOP).

Occasionally the verb ASSIGN (Appendix D,cP.191)tis:called ac:compile
time verb because it is used only during logic compilation and is not
directly used by the data section. The verb ASSIGN allows an author to
assign numeric values, within the range -32768 to +32767, to variables.
These variables must be alphanumeric, begin with an alphabetic character,
and can not exceed six characters in length.

Assigned numeric values could take the form of mathematical
expressions which use either the add, subtract, multiply, or divide
operators. However, any expression used in an assign statement may not

contain more than one operator although several assign statements could

g8
be made in a single ASSIGN record (i.e., ASSIGN A=2 X1=Y-5). If the
author wishes to delete any variable name from the file containing
variables he would do so by using the verb ASSIGN followed by the
variable name minus any numeric assignment to that variable. For
example, the record (ASSIGN A=A+2 X1=3 Y) assigns numeric values to

variables A and Xi and deletes Y from the file of variable names.

DATA Division. Entry of data is accomplished through use of either

a Division Control Record (DCR) or a keyword. A number of data DCR's
have similar names to and perform functions quite similar to those in
the logic division. Keywords, on the otherhand, perform functions which
are very different from those of VERBS in logic.

Each keyword ends with a colon because a few of the keywords have .
names similar to the VERBS in logic. Use of the colon was intended
to permit authors to conceptually keep keywords separated from VERBS
and thus not confuse their functions while alternating between logic

and data.

A. Division Control Records (DCR's) in the data division, as was

the case in the logic division, are classified into the following types:
major, minor, and leading. Major DCR's are used to signify the beginning
and end of the data records and to subdivide the subject matter into
BLOCKS, LESSONS, and PROBLEMS. The minor DCR's supply various editing
features while the leading DCR's provide VAULT with necessary informa-
tion for use in preparing COURSEWRITER output for assembly on the 1500
System.

The major DCR $$DATA signifies the beginning of the teachers' data

records. Any information accompanying these two DCR's would be treated

a9

as a comment. Content material or subject matter is divided by the DCR's
$$BLOCK, $SLESSON, and $SPROBLEM in a manner similar to that in the logic
division. However, no information from jmmediately following minor DCR's
is incorporated as would be the case in the logic division. The main
function of the latter three major DCR's is primarily to group subject
matter in units that could easily be handled by the teacher.

No BLOCK may contain more than 99 LESSONS and, in turn, no LESSON
may contain more than 99 PROBLEMS. Any labels associated with the data
DCR's SSBLOCK, $SLESSON, and $SPROBLEM would not be used by the compiler.
These labels, however, would be produced in the COURSEWRITER listings as
an aid for the teacher in identifying various subdivisions of the subject
matter entered.

Only two minor DCR's, both associated with editing of textual
display materials, are available for use by the teacher-author. The
first minor DCR, $SROWSIZE, would be used to specify spacing of text on
the CRT. Normally the system uses two CRT rows for any simple line of
text and does not attempt to place any blank rows below that line of
textual material on the screen. However, the teacher could specify that
a number of blank rows, up to a maximum of 26, be inserted below each
line of text.

The parameter used in conjunction with $SROWSIZE is numeric and is
determined by using the basic two rows required to display a simple line
of text and then addir the required number of blank rows to be inserted
following each line of text. For example, $SROWSIZE &4 specifies that

two blank rows are to be inserted below each line of text to be displayed

on the CRT.

100

In order that textual material is presented in the portion of the
screen designated by parameters of the verb DISPLAY in the logic division
all text entered by the teacher is edited by VAULT. This means that
occasionally some words at the end of a display line must be hyphenated.
The teacher could maintain some control over hyphenation of words
through use of the minor DCR SSHYPHEN. If this record is not entered
by the teacher VAULT would not attempt to hyphenate any words less than
six characters in length. However, if the $SHYPHEN record is encountered
VAULT would, if necessary, hyphenate any word which has at least as many
characters as specified by the HYPHEN parameter. When any word is
hyphenated VAULT places at least the last two characters of the hyphen-
ated word on the next display line.

Leading DCR's in the data section would be used to provide VAULT
with all information necessary for production of instructions required
to assemble the COURSEWRITER source program on the 1500 system. These
DCR's include $SAUTHOR, $$COURSENAME, $$CWDECK, $SLOGPK, $$STARTBLOCK,
and $SSTARTLBL. To obtain COURSEWRITER source code either in punched
cards or on tape the author would usually include the first four leading
DCR's and their associated parameters. If the data to be entered repre-
sents an addition to an already existing BLOCK then the author would
include SSSTARTLBL. The parameter on the record $SSTARTLBL indicates
the label, in the existing COURSEWRITER program, after which the
additional program is to concatenated. When the teacher wishes to
assemble a new BLOCK of COURSEWRITER code he would include a $SSTARTBLOCK

record containing the number of the new BLOCK.

B. Keywords represent means by which a teacher-author would enter

subject matter for any COURSEWRITER program produced by VAULT. The

10l

current VAULT subset contains the keywords TEXT:, QUESTION:, TIMEOUT:,
CORRECT:, WRONG:, ADDITIONAL:, UNRECOGNIZABLE: or UNREC:, and SHOW:.
Note that all keywords end with a colon. The colon was included as part
of the VAULT keywords in an attempt to remove any confusion that could
perhaps arise from the correspondence and similarity bétween keywords in
data and VERBS in logic.

Four major uses of keywords are: (a) to provide curriculum
material; (b) to provide a method for requesting and accepting student
responses; (c) to specify various answer lists to be used for comparison
" with student responses; and (d) to provide correctional or reinforcement
messages.

Basically, each record used as an entry to VAULT could use any
portion of a punched card from column 1 through 71. Thus any material
punched in card columns 72 through 80 would be disregarded by the VAULT
compiler. The above condition holds for any entered record whether it
be in logic or data.

Since the logic section contains the basic logical structure for
production of COURSEWRITER there are certain VERBS in logic which require
specific keywords to be entered at corresponding locaticns in the data
section. Keywords required at specific locations in data are called
conformable keywords. The two conformable keywords in data are TEXT:
and QUESTION:.

The keyword TEXT: provides a quick and easy method for entry of
textual material that is to be presented on the CRT. Each TEXT: record
conforms to and must maintain the same relative location within a data

PROBLEM as the corresponding DISPLAY verb within a logic PROBLEM.

102

An author who wishes to display text ranging from a single character
to an entire "chapter" would probably do so by placing the desired
material on as many cards as required providing that the first card of
that group of text is headed by the keyword TEXT:. The VAULT compiler
would read the material on the TEXT: card and any immediately following
cards until an end-of-text or "enter" symbol is encountered. The enter
character is produced by using the 0-2-8 key on the IBM 029 cardpunch.
In all examples of VAULT code the enter symbol will be represented by
"D" .

This means, of course, if the set of text designated as a single
display cannot be completed within the first 71 columns of the initial
card containing TEXT: that the remaining text would be punched in a
continuous stream on as many cards as required. When all material
related to the preceeding keyword TEXT: has been entered, the author
would then conclude the material by concatenating an "enter" character
to the text. Therefore any material contained between TEXT: and the
enter symbol would be edited and formatted by VAULT to fit the CRT area
designated by the coordinates of the corresponding DISPLAY in logic.

Since all VAULT programs are currently entered through use of
punched cards the format for any special characters used by the 1500
System are described in the 1500 CAI Programming Systems Reference Card.
There are, however, four special characters used in data entry that are
unique to VAULT.

These special characters have been included to aid the teacher in
editing and debugging textual material. The character "*" indicates,
to the compiler, that any material that follows must be displayed on the

next CRT display line; "-*" specifies that the remainder of the card is

103

to be disregarded and material from the next card is to be displayed on
the next CRT display line; "-$" denotes that the remainder of the card
is to be disregarded, an indefinite pause inserted into the COURSEWRITER
source, the display area erased during execution time, and material from
the next card to be displayed at the uppermost line of the display area;
n_gn indicates that the compiler should disregard the remainder of the
card and continue "reading" material from the next card in a manner
similar to the case when the 71st column of a text card is normally
processed.

Thus through the use of these four special sets of characters the
teacher could exercise control over placement of text on the CRT. Also,
it should be emphasized that any time the amount of textual material
exceeds a designated display area VAULT inserts an indefinite pause into
the COURSEWRITER source.

The second conformable keyword, QUESTION:, normally heads a series
of non-conformable keywords used in response analysis. Depending upon
the corresponding VERB in logic, each QUESTION: and its associated key-
words perform one of the following two functions: (a) display a question,
accept a keyboard response, supply sets of criterion answer lists,
analyze the response, and supply a reinforcement message; or (b) display
question material, accept a light pen response, supply labels correspon-
ding to the CRT locations of various types of answers, and display a
reinforcement message.

When considered separately from the other keywords, the QUESTION:
record permits a teacher to ask a question or provide instructions to
the student before he makes his response. The format for the QUESTION:

record is the same as that for TEXT:. The first card used with this

lo4

type of record contains the word QUESTION:, followed by the question
material or instructions, and ended by the enter symbol. As many cards
as required to present the material could be used because the VAULT
compiler keeps processing data until an enter symbol is encountered. If
the amount of question material exceeds the question portion of the CRT,
defined by coordinates of the corresponding VERB, then an indefinite pause
would be generated automatically.

Immediately following the processing of any QUESTION: record, VAULT

expects to encounter at least one non-conformable keyword. A non-con-

formable keyword does not have any VERBS in logic with which it is
associated. These keywords would be used by teachers to provide
information for use in the analysis of student responses.

Non-conformable keywords currently available to the teacher-author
are TIMEOUT:, UNREC: (or UNRECOGNIZABLE:), CORRECT:, WRONG:, and
ADDITIONAL:. The former two keywords in the above list provide a data
author with the facility to enter specific reinforcement messages if the
student either exceeds the latency time specified for the q¢restion or
enters a response not included in the teacher provided list of anticipated
responses. The format for these two records is exactly the same as that
for TEXT: and QUESTION: (i.e., TIMEOUT: <Y>OU HAVE TAKEN TOO LONG TO
ANSWER.<T>RY AGAIN.[]).

An author who wishes to provide a different message each time the
student enters an unrecognizable answer, within any single problem,
would do so by providing a number of UNREC: records each containing the
desired message. These records would necessarily be entered in the same

sequence as the anticipated presentation of messages associated with

each record.

105

Note that UNREC: records are usually entered in sequence following
the other non-conformable keywords. This sequencing requirement is
necessary due to the fact that once the section of COURSEWRITER response
analysis which deals with unrecognizable answers is encountered, the
student's answer is then considered as being unrecognizable..

One important facility provided by VAULT is the generation of
appropriate reinforcement messages. If the author indicates that he
wishes a system generated message VAULT would randomly select a message
from files of messages reserved for each non-conformable keyword. To
obtain a system reinforcement message for either a TIMEOUT or UNREC
condition the author would need only to omit entry of the associated
keyword records.

To suppress reinforcement messages for TIMEOUT and UNREC conditions,
the author needs only to enter the associated keyword followed by a space
and an enter symbol (i.e., UNREC: [J). These two characters, in effect,
instruct the VAULT compiler that no message is to be displayed.

Whenever a reinforcement message is displayed VAULT automatically
produces an indefinite pause and a message, at the bottom of the CRT,
which instructs the student to press the space bar when he is ready to
continue. This feature was included to insure that each student has an
opportunity to read each message and could control the pace at which he
moves on to the next portion of the course. However, if the author
suppresses the reinforcement message no pause would be generated and the

course execution would proceed.

The other three non-conformable keywords are CORRECT:, WRONG:, and

ADDITONAL:. In addition to providing the same facilities for displaying

reinforcement messages as the keywords TIMEOUT: and UNREC: these three

106

keywords permit the teacher to enter sets of anticipated correct, wrong
or additional answers. The format for these keywords differs from the
format for TIMEOUT: and UNREC:. When using any of these three keywords,
the author would immediately follow the designated keyword either by a
set of answers, if a keyboard response is to be entered, or by a list of
TEXT or DISPLAY labels if a lightpen response is to be entered. The
reinforcement message would follow the answer list.

Each answer or label in the teacher supplied list would necessarily
be followed by a semicolon with the last answer or label being immediately
followed by an enter symbol (i.e., "WRONG: YELLOW ;BLUE ; VIOLET[J<T>HAT COLOR
IS NOT INCLUDED IN THE LIST.O"). Also, it is possible to enter a number
of records which use the same keyword. This permits the author to
provide unique messages for particular types of answers. Thus, in the
previous example listed, the author could have entered three different
WRONG: records each with a specific message for the accompanying wrong
answer(s).

If the author wishes to accept any response and consider it as
either correct, wrong, or additional then he would enter a record con-
taining the desired keyword followed by an enter symbol and message.

For example, if a QUESTION: record is immediately :Followel rby..the:record
"CORRECT: [J<C>ORRECT.[" then the following would happen when a student
passes through corresponding portion in the COURSEWRITER program--(a)

if the student exceeds the latency time then a system produced TIMEOUT
message would be displayed because the author omitted the TIMEOUT:
record; or (b) if the student enters a response it would be considered
as a correct response and the message "Correct.” displayed along with the

system message 'Press Spacebar to Continue".

107

In the above example any student response would be considered
correct because the CORRECT: record was encountered first in the input
sequence and was not accompanied by an answer list. However, if that
particular CORRECT: had been preceeded by the record "WRONG: O<T>RY
AGAIN.(" then regardless of the answer entered by the studenf it would
be considered a wrong answer.

In each of the latter two examples a reinforcement message was
included following the specified answer set. Actually, the method for
indicating a particular type.of reinforcement message is much the same
as that for TIMEOUT: and UNREC: with the exception being that message
specification must follcw the answer set rather than the keyword. Thus,
to indicate display of a teacher supplied reinforcement message, the
desired message would follow the first enter symbol (i.e., WRONG:
COLUMBUSO<N>0, HE SAILED IN 1u492.[0); to request an appropriate system
message the first enter character would be immediately followed by a
second enter character (i.e., WRONG: COLUMBUS[I]); and to suppress the
display of any reinforcement messages the first enter symbol would be
followed by a space and an enter symbol (i.e., WRONG: COLUMBUS om.

The non-conformable keyword ADDITIONAL: has format requirements
similar to that of CORRECT: and WRONG: with the exception that VAULT does
not generate system messages for an additional answer. There is a
difference, however, in the method of answer analysis during execution
of a COURSEWRITER program. For example, if the student's response is
included in the set of answers included on a particular CORRECT: record
then that response is judged correct and execution continues according
to specifications in the logic division. On the other hand, if the

response is included in the set of answers listed on an ADDITIONAL:

108
record then a specific counter is assigned a numeric value according to
the relative position of that answer within the list. This means that
if a response matches the fifth answer in the ADDITIONAL: answer set then
a designated counter would be assigned the value 5. Thus, in using the
ADDITIONAL: record, the teacher would first need to become familiar with
documentation of the logic program regarding the effect of particular
positioning of answers or labels within that record.

The keyword SHOW: is optionally conformable in that it may be
omitted even though the corresponding verb SHOW exists in the logic
section. When the SHOW: record is included in data it would contain a
single parameter specifying the frame number of the film to be presented
(i.e., SHOW: 835). If this record is omitted VAULT would use the frame

number supplied in the logic section.

Correspondence and Internals of Both Divisions

Basically VAULT consists of two divisions or sections called LOGIC
and DATA. The logic division first accepts high level input from a logic
programmer and maintains a file of VAULT "object code" which contains a
description of the basic logical structure of the course. This basic
logical structure consists of a series of "logic vectors" sequentially
built up as material is entered into the logic division.

Upon encountering the DCR $SENDLOGIC, VAULT logic makes a single
pass through the file of logic vectors and checks all branch (GO TO)
statements for unresolved labels. If no serious errors are encountered
during logic processing then the file of logic vectors would be stored
on disk. Also, a listing of this particular disk file could be obtained

through use of the logic DCR $SLIST. A description of this listing is

108

included in the next section.

Once the logic section has wrapped up its activities, by storing
the logic file on disk, procedures would be initiated for entry of
material to the data division. When the major DCR $SDATA is encountered
the data division then retrieves groups of logic vectors from the file
on disk. This file dictates, to a large extent, the type of conformable
keywords acceptable for entry at particular points in the data section.

Therefore, material entered in the logic section could be compiled
without necessarily being followed by subject matter input from the data
section. The converse, however, does not hold true. The data section
needs to be immediately préceeded by associated logic material input
before any teacher-author data could be entered.

Logic vectors corresponding to BLOCK, LESSON, and PROBLEM levels
each contain information regarding system and author specified
default conditions. Author specified defaults were indicated by minor
DCR's immediately following any major DCR in logic. A series of logic
vectors, each corresponding to a separate VERB entry record, follow each
PROBLEM logic vector.

The teacher-author, in using a pre-programmed logic, would have the
option of supplying exactly as much subject matter as indicated by the
logic or of skipping or repeating certain portions of the logic program.
If the course represents an attempt to obtain experimental information
the teacher would, perhaps, enter the exact amount of data required by the
logic program. However, it is nearly impossible for persons designing
logic programs to anticipate the amount of subject material a teacher
desires to supply. Therefore, VAULT permits a teacher-author to skip

or repeat certain portions of the programmed logic.

110

The teacher, in designing data entry records to correspond to the
logic material, would begin by matching major DCR's (i.e., $SBLOCK,
$SLESSON, and $SPROBLEM). Actually, the data DCR $$SLESSON is the key
which permits a teacher to modify amounts of data material to be entered
and thus skip or repeat portions of logic. During normal entry of data
records VAULT sequentially proceeds through the file of logic vectors
and matches logic and data. However, only when a $SLESSON is processed
in data would the next LESSON level in logic be used. This means that
if the end of a current LESSON is encountered in logic but a new $SLESSON
is not processed in data, VAULT would return to the first PROBLEM within
that logic LESSON and continue processing data records.

For example, Fig. 1 (p. 111) illustrates the correspondence between
two PROBLEMS in logic LESSON ONE and three PROBLEMS in data LESSON SOC.
Notice, however, that as soon as a $$SLESSON is encountered in the data
section VAULT "wraps up" activities associated with the current logic
PROBLEM, skips the remainder of the logic LESSON, and initiates action
to begin processing the next LESSON in both divisions. Therefore, the
number of data PROBLEMS entered within any data LESSON could be less
than, equal to, or greater than the number of PROBLEMS contained within
the corresponding logic LESSON.

In addition to being able to control the number of data PROBLEMS,
within any given lesson, the teacher could also control the number of
data LESSONS within any BLOCK. The resulting action is much the same
as that for controlling the number of data PROBLEMS. Again the key to
skipping or repeating LESSONS within any given BLOCK is the data DCR

S$SLESSON.

111

CORRESPONDENCE
of LOGIC with DATA

LOGIC DATA
$SLOGIC $SDATA
$SBLOCK START $SBLOCK SOCST
$SLESSON ONE $SLESSON SOC
SS$PROBLEM ONEl1 S$SPROBLEM SOCl —1 PROBLEM
— ONE1l
$SPROBLEM ONE2 S$SPROBLEM SOC2 PROBLEM
— ONE2
——————————————— $SPROBLEM SOC3 B PROBLEM
— ONEl —
$SLESSON TWO $SLESSON INTR
$SPROBLEM THWOl S$SPROBLEM INTR1
—] PROBLEM
| TWOl
S$PROBLEM TWO2 - - B
$SLESSON THREE S$SLESSON LAKES
SSPROBLEM THREEL SSPROBLEM LAKEL - PROBLEM
— THREEL1
$SENDLOGIC SSPROBLEM LAKE2 PROBLEM
— THREE1
SSPROBLEM LAKE3 PROBLEM
— THREE1-
$SLESSON RIVER
S$SPROBLEM RIVER1 —1 PROBLEM
—1 ONE1
$SENDATA |
Figure 1. Major Levels of Correspondence Between

Logic and Data

LESSON
ONE

LESSON
TWO

LESSON
THREE

LESSON
~ ONE

112

When the condition exists that a $$LESSON is encountered in data
and the last logic LESSON has been processed VAULT normally returns to
the beginning of the logic vector file and repeats the first logic LESSON.
The SSENDATA record, on the other hand, signals VAULT to complete the
current PROBLEM and stop further processing regardless of the number of
logic LESSONS used. Thus the number of data LESSONS within a BLOCK, as
is the case with number of data PROBLEMS'within a LESSON, could be less
than, equal to, or greater than the number of logic LESSONS within any
BLOCK.

The remainder of this section presents a detailed description of
methods and decisions used by VAULT in integrating the logic vector file
and the subject matter entered in the data section. The final product, of
course, is COURSEWRITER source code.

When the data DCR $$BLOCK is processed VAULT initiates its basic
labelling procedure. All major data levels, whether BLOCK, LESSON, or
PROBLEM are supplied with a unique six character numeric label within
the course. The first set of two digits represent the number of the
current BLOCK, the next two digits the number of the current LESSON
within that BLOCK, and the last two digits the number of the current
PROBLEM within that LESSON. For example, the label 052683 could be
read as the eighty-third PROBLEM of the twenty-sixth LESSON of the fifth
BLOCK. Therefore, in examining the COURSEWRITER listing produced by
VAULT, the author could examine the most recent label and easily deter-
mine the particular BLOCK, LESSON, and PROBLEM.

Once the BLOCK level is labelled (i.e., 010000) VAULT checks the
first logic vector to ascertain which system defaults and student

accounting records are to be maintained throughout that particular BLOCK.

113

Appropriate counters and switches would then be cleared. A similar
procedure would be carried out when the first data $SLESSON is processed.
It is at the PROBLEM level that a major portion of COURSEWRITER

source is produced. When the first $$PROBLEM within a LESSON is
encountered VAULT merely moves on to the first logic vector contained

in the current LESSON and produces COURSEWRITER code which at student
execution time would initiate a restart point (i.e., PRR), clear various
PROBLEM level counters for use in student accounting, and load the labels
of the last executed PROBLEM and the current PROBLEM into return regis-
ters. When this particular initiation routine is finished VAULT would
begin sequential processing of the logic vectors within the currect
LESSON.

If the current logic vector contains a VERB which requires a con-
formable keyword in daia the next data record would be processed. The
first word on this record would be extracted and a check made to deter-
mine if it is the required keyword. For example, if the logic vector
represents the verb DISPLAY then VAULT would examine the first word on
the next data card and check for the keyword TEXT:. If the keyword TEXT:
is sensed VAULT would check the display logic vector for an accompanying
label and, if one is found, store the CRT display coordinates and label
in a special display file. This file would be available for use by the
verb ERASE or to supply coordinates for use in the analysis of light
pen responses. Next, VAULT would sequentially process data records until
an enter symbol is encountered. All textual material would be edited
and formatted according to the logic display parameters. Thus, once the
processing of a PROBLEM has begun, it is necessary that all required data

be available and conform to the PROBLEM logic since currently it is not

114
possible to skip or repeat any portion of a logic within a PROBLEM.

In the above example, if the conformable keyword TEXT: is not
encountered in data, while VAULT maintains a "pointer" at the display
logic vector, then a message indicating that "data is out of synchroniza-
tion with logic" would be printed on the data input listing. All data
cards to the next S$SLESSON would be listed but no syntax checking carried
out. When the next SSLESSON is encountered, in data, VAULT would
normally move on to the next logic LESSON and resume processing.

Only the logic verbs DISPLAY, QUESTION, and POINT require conformable
keywords to be processed in data. Upon encountering either QUESTION or
POINT, in the logic vector file, VAULT checks the next data card in search
of the conformable keyword QUESTION:. If the keyword is present COURSE-
WRITER source would be produced to permit a student response to be
entered and processed. Included in this code would be a ten character
response identifier consisting of the six character numeric label in the
current COURSEWRITER PROBLEM and the initial four characters of the label
associated with the QUESTION or POINT logic vector.

Any logic control verbs (i.e., PAUSE) which immediately follow the
QUESTION (or POINT) logic vector but preceed the first IF---THEN vector
would be converted to appropriate COURSEWRITER code and inserted
following the code for the enter and process. The IF---THEN conditions
contained in subsequent logic vectors, within the current PROBLEM, would
be stored in files corresponding to TIMEOUT, CORRECT, ADDITIONAL, WRONG,
and UNREC response groups. At this point, the teacher's QUESTION
material and data records containing non-conformable keywords associated
with the QUESTION would be processed. As each non-conformable keyword

is encountered various counters would be modified to maintain student

115
accounting information as directed by the defaults for that PROBLEM,
LESSON, and BLOCK.

Each teacher supplied answer within a PROBLEM would be affixed with
a sequential two character answer analysis identifier. The first
character of the identifier would be alphabetic and would correspond
either to the initial letter of the answer type or to the next letter in
the alphabetic sequence (i.e., TIMEOUT-T&S; CORRECT-CED; ADDITIONAL-AEB;
WRONG-WEX; UNREC-U&V) while the second character would be alphanumeric
(i.e., 1-98A-Z). TFor example, the list of correct answers within a
single PROBLEM would be sequentially identified by answer analysis labels
beginning with Cl and ranging to DZ (i.e., c1,c2,C3,...,C3,CA,CB,...
cz,D1,D2,...D2). This means that each answer grouping could contain
70 unique identifiers. If more than 70 answers are supplied for any one
group (i.e., WRONG:) then the latter half of the identifiers would be
repeated (i.e., X1,X2,...,X2).

When the end of data record, $$ENDATA, is encountered VAULT begins
its final "wrapup" procedures. A check would be made of the most severe
type of error, if any, that occured during data processing. All errors.
encountered during data entry would be listed in the form of four
character error messages (i.e., E213) immediately following the record
at which the error was discovered. The first character of the message,
either X, E, or W, indicates the severity of the error and the general
action to be taken by VAULT; the last three characters provide a refer-
ence number, ranging from 000 through 999, to be used by the teacher in
a "look-up" of the possible cause of error and appropriate corrective

procedures to rectify the error.

116

An X-level (TERMINAL) error is the most severe type of error that
could occur during record entry. When an X-level error is encountered
further processing would be immediately terminated and no listing nor-
punched cards of COURSEWRITER source code would be provided.

The E-level (SEVERE) error would cause suppression of further
COURSEWRITER code. However, syntax checking of input data records would
continue. If this error occurs and the $$LIST parameter indicated a
listing of COURSEWRITER code then a listing of code, up to the point in
the program where the first E-level error occured, would be produced.
Output of punched cards would be totally suppressed.

When a W-level (WARNING) error is encountered certain default
features are assumed but processing continues normally. The W-level
message was intended to warn teacher-authors that particular portions
of the data input and statements in the COURSEWRITER source would be
altered to meet logic vector requirements.

During final wrapup procedures VAULT checks parameters from the
leading DCR's initially entered to the data division. These parameters,
as well as severity of errors encountered during processing, determine
whether none, one, or both of the following would finally be output:

(a) a listing of COURSEWRITER source code; and (b) a punched deck or
tape containing source code. If any one of the above conditiomns is
fulfilled then VAULT automatically inserts an extra six-character
numeric label at the end of each LESSON.

As VAULT produces a listing and/or punched deck of COURSEWRITER code
each branch statement is first checked for unresolved labels. Unresolved
branches likely would occur due to the teacher entering data which

repeats or skips certain portions of logic. To resolve these statements

117
the following procedures would be conducted: (a) if a COURSEWRITER
branch statement refers a label that does not exist within an indicated
LESSON then the statement would be modified so that the branch would be
made to the last label within the indicated LESSON; and (b) if a
COURSEWRITER branch statement refers to a LESSON that does not exist
within the current BLOCK then the referenced label is inserted at the
end of the BLOCK of code. Every COURSEWRITER statement that fulfills
any one of the above conditions would be immediately followed by a

W-level error message.

Listings Produced

Both the logic DCR SLIST and the data DCR $SLIST enable an author
to request different sets of listings regarding a particular VAULT
program. The files and tables which comprise a VAULT listing could be
easily identified by the following headings: (a) VAULT LOGIC DIVISION,
(b) LABEL TABLE, (c) GO TO TABLE, (d) ASSIGN TABLE, (e) LOGIC OUTPUT,
(é? VAULT DATA DIVISION, and (g) COURSEWRITER OUTPUT. The remainder

of this section contains a brief description of each of the above files

and tables.

A. The VAULT LOGIC DIVISION file simply prints a copy of every

logic record entered in the logic division. This particular portion of
the total VAULT listing could be obtained by including "YES" as the first
parameter accompanying the logic DCR S$SSLIST.

Each statement in this listing is preceeded by a statement number
representing the relative position of that card within the entire logic

entry deck. The statement numbers were intended to aid the logic

118
programmer during debugging stages since the four listings that follow
occasionally refer to these statement numbers. Further, to enable an
author to easily check logic input and quickly locate particular LESSONS
or PROBLEMS, VAULT inserts a long dashed line before each SSLESSON
statement and a short dotted line before each $SPROBLEM statement.

All error messages produce in VAULT logic, or data for that matter,
would be listed in the following manner: ''#** ERROR E 193 **%", An
error message would always appear in the line directly below the state-

ment to which it refers.

B. The LABEL table lists all labels entered in associated $$BLOCK,

$SLESSON, and $$PROBLEM logic cards. Every BLOCK, LESSON, and PROBLEM
level is assigned a VAULT generated six character numeric label regard-
less of whether or not the author includes an alphanumeric label as the
parameter on the corresponding entry record.

Each statement contained in the label table is comprised of the
following: (a) the numeric label, (b) the teacher provided label--it
could be blank, (c) the DCR level (B, L, or P), (d) the statment number
at which the record appeared in the VAULT LOGIC DIVISION listing, and
the symbol "Y" if this label was referenced by a GO TO statement.
Currently all labels are listed in the order they were entered. Once
the label table is listed and all logic records have been entered VAULT
would check all branch statements for unresolved labels. If any
unresolved labels are encountered then, following the label table, a
message would be printed listing the label and the statement number of

the input record which contained the unresolved GO TO statement.

C. The GO TO table lists all author provided labels referred to

in GO TO statements as well as the associated statement number in the

119
listing of the VAULT LOGIC DIVISION file. This listing could be useful
to the author who wishes to add new DCR levels and labels to the current
logic program. Before entering a new label the author could check the
new label name against labels listed in the LABEL table to guard against
duplication of label names. VAULT does not permit duplication of logic
labels due to the confusion that could arise by using branch statements
which refer to one of these duplicate labels. Further, the author could
also use this listing to locate every GO TO statement that refers to a
particular label, especially if he desires the change that particular

label name.

D. The ASSIGN table lists all variables specified by the author

and used during compilation of the program. In addition to the variable
name, the listing includes the numeric value of the variable at conclu-

sion of compilation.

E. A file called LOGIC OUTPUT is the final logic listing produced

by VAULT. This file, along with the previous three tables, could be
obtained providing no serious error occurs during compilation. To
request these listings the author would enter the word "YES" as the
second parameter in the logic DCR $SLIST.

The LOGIC OUTPUT file contains a series of logic vectors. If no
serious errors have occured, to this point, then this file becomes part
of the output from logic and later is input to the data division. Usually
this portion of the VAULT listing would be used only by experienced logic
programmers who are familiar with the special code. All information
contained in the logic vectors would have been checked and edited to

provide the data division with all the information necessary for

120

accepting data records to produce COURSEWRITER source code.

The format for this listing is similar to the listing of logic
input records. A long dashed line is placed above the statement which
represents each LESSON logic vector. Inserted between each dashed line
and the LESSON logic vector is an expression indicating the statement

number in the VAULT LOGIC DIVISION which contains the corresponding

$SLESSON input record.

F. The VAULT DATA DIVISION file presents a copy of each teacher-

author input record. A format similar to the one used in listing the
logic input records would be used. There is no method by which the
teacher could suppress this particular listing.

To aid the teacher in debugging his data, LESSON levels are

separated two parallel dashed lines and PROBLEM levels are separated by

short dotted lines.

G. COURSEWRITER OUTPUT is the final and, perhaps, the longest

listing provided by VAULT. To obtain this listing the author would
either omit the data DCR $SLIST and permit the system to use its default
option to produce this listing or he could include the word "YES" as the
parameter on the data DCR $SLIST. This listing could be suppressed by
using "NO" as the parameter on the data DCR $SLIST.

Since there is usually a great deal more COURSEWRITER code produced
than data records received VAULT begins each LESSON of COURSEWRITER code
at the top of a new page. Each new LESSON page is headed by the word
"LESSON" which is then followed by a VAULT statement indicating the data

input statement number which contains the corresponding $SLESSON card.

CHAPTER VI

RESULTS AND EVALUATION OF VAULT

This chapter is composed of three sections--the first presents a
resume of the history and background of VAULT, the second a detailed
evaluation of VAULT, and the third a parallel between two existing
COURSEWRITER programs and two similar programs written in VAULT.
Included in the second section is an examination of: (a) the fulfill-
ment of original objectives; and (b) the attainment of criteria for an
evaluation of CBI languages, as stated in the first portion of Chapter

Iv.

I. Backggound

One of the major aims of this study was to design a new CBI
authoring language which would better meet the needs of teachers who
wish to produce computer-based instructional materials. A number of
current CBI languages were reviewed and an attempt made, from a
teacher-author point of view, to include desirable features from these
languages into the design of a new language. This new language is named
a Versatile Authoring LAnguage for Teachers.

The design phase of VAULT began in November, 1968, and was completed
about three months later. Once basically des;gned, VAULT, theoretically,
possessed many qualities necessary for a teacher oriented authoring
language. The next step in determining the feasibility of VAULT was, of

course, to develop and implement the language specifications. Because

122

of the estimated time and effort required to code the entire language a
decision was made to concentrate upon a subset of VAULT. This subset
included the portions of VAULT which would enable teachers to easily
program CBI instructional strategies such as drill and practice, tutorial,
and simulation.

The development phase began in February, 1969, and was carried on
for five months. VAULT was coded in PL/1 and programs were tested on
the IBM System 360/67 at the University of Alberta. Finally, in July,
1969, the VAULT subset was ready for use by teachers and experienced
COURSEWRITER authors.

During the month of July, 1869, a workshop to train teachers to
program the IBM 1500 System was held at the University of Alberta. The
workshop, sponsored by the Alberta Human Resources Research Council
(HRRC), was conducted during a four week period. Each teacher who
completed the workshop received an honorarium of 75 dollars. The group
consisted of four elementary school teachers, four junior high teachers,
two senior high teachers, one teacher from a school for retarded children,
and a university professor. Subject areas taught by these teachers
ranged through mathematics, science, and social studies in elementary
school; art, social studies, and mathematics in junior high school;
mathematics and physical education in high school; and music education
in university.

The twelve teachers in the workshop were randomly assigned to two
groups of six. One group, consisting of two females and four males,
with median age 28 years, received instruction in VAULT while the other
group, one female and five males, with median age 37 years, received

instruction in COURSEWRITER. After two weeks, the groups were reversed

123

and received training in the other language.

Following the workshop, each participant completed a questionnaire
(Appendix B, p..155). The questionnaire was intended to provide biogra-
phical data as well as information regarding the teachers' attitudes
toward VAULT and COURSEWRITER. Also, as a portion of the implementation
and evaluation phase this writer selected two diverse instructional

programs, coded in COURSEWRITER, and constructed two parallel courses

in VAULT.

II. Evaluation

The evaluation of many computer languages (i.e., APL, COBOL, FORTRAN,
PL/1, etc.), as to whether or not they should be developed and made
available to other institutions, certainly did not depend on any tests
of statistical significance regarding the relative merits of various
languages. Rather, each language was basically designed to meet the
needs of major user groups and examined to determine how well it met
previously formulated criteria. Periodically many of these "complete"
languages are re-evaluated and then revised and/or augmented to meet
the growing needs of the primary users.

Similarly, it would be somewhat meaningless to try to show any
statistical difference between authors using VAULT and COURSEWRITER,
especially in view of the fact that only a subset of VAULT was developed
and implemented. The importance, therefore, is not to show that VAULT
is a "better" or a "worse" authoring language than COURSEWRITER but,

rather, to determine how well certain objectives were achieved.

12y

Some data, included in Appendix C, were obtained from the HRRC
teacher workshop. These data were intended primarily to provide
descriptive information regarding teachers' criticisms regarding VAULT
design concepts, difficulty in learning and using VAULT, and adequacy of
the DATA manual provided. This information, along with a measure of
teacher attitudes toward the VAULT subset was used as a part of the data
for evaluating VAULT as a CBI language.

The major objectives of this study were: (a) to design a new,
natural, high-level authoring language (VAULT) which would separate
course logic from course content and use terms meaningful to teachers;
(b) to develop and implement a su$set o%-VAULT which could be applied to
produce a wide range of teaching strategies similar to those already
programmed and available; (c) to effectively reduce the amount of
teacher time taken to learn and use VAULT, rather +than COURSEWRITER,
in producing CBI materials; (d) to appraise teacher-author attitudes
towards VAULT; and (e) to draw conclusions regarding the feasibility of
the total language from the results obtained within the subset.

With the exception of the latter objective, all these objectives
are included within the six major criterion groups, listed in Chapter
IV, and are used in evaluating VAULT as a CBI language. Therefore,
discussion related to the above objectives is integrated within the
following criteria: (a) meaningfulness; (b) extent of separation of
logic and data; (c) ease of handling subject matter; (d) ease and power
of response analysis; (e) maintenance of and access to student accounting

information; and (f) control over various types of interface devices.

125

Meaningfulness

VAULT fulfills the prime requisite that a CBI language be meaning-
ful to the needs and activities of its principal users. Although
VAULT can be used by authors with varying degrees of programming
experience, it is the data section that is specially oriented to the
classroom teachers who now and then wish to program CBI materials but
do not want to spend a great deal of time learning the language. In
examining VAULT, it is noted that most instructions have connotations
synonymous with terms related to ordinary classroém activities (i.e.,
LESSON, PROBLEM, QUESTION, CORRECT, etc.).

Though sophisticated logic programs would probably be written by
experienced VAULT programmers the subject matter to compliment logic
programs would most likely be provided by classroom teachers. In order
to supply data material teacher-authors should be able to easily read
logic instructions. This is achieved, in VAULT, through use of mean-
ingful action words called VERBS. For example, the verb DISPLAY means
textual material is to be displayed on the CRT, ERASE specifies that a
portion of the CRT is to be erased or cleared, POINT indicates a light
pen response is to be accepted from the student, etc. It should be noted
that VAULT could be easily learned because natural, complete words are
used to specify instructions to the VAULT compiler (i.e., IF WRONG THEN
GO TO REMED1).

Meaningful data words, called KEYWORDS, are used rather than the
abbreviations or operation codes used in COURSEWRITER. To enter subject
matter a teacher needs to learn and master only a very limited number of

KEYWORDS.

126

Also, as an aid to help teachers quickly and easily learn VAULT,
concise error messages are provided at three levels: warning, severe,
and terminal. Each error message contains an explanation of the
probable cause of error and specific corrective procedures to be taken.
The warning level assumes certain default conditions and modifies the
program according to these defaults. A severe error causes suppression
of COURSEWRITER source code but syntax checking of data input continues.
If more than one error is encountered in a single input record then
unique error messages would be l1isted below the statement in error.

Examination of results of the HRRC workshop shows that, in the
initial two week period, the group trained in COURSEWRITER learned to
display textual material on the CRT, partially learned to accept keyboard
responses and performed simple response analysis. The VAULT group, on
the other hand, learned to use the VAULT data section and were able to
display textual material on the CRT after the first day of instruction,
accepted keyboard responses on the second day, specified sophisticated
answer analysis on the third day, accepted light pen responses on the
fourth day, and began coding their own logic programs on the fifth day.
During the first five days the VAULT group was provided with the pre-
programmed logic illustrated in Figure 2 (p. 1s4).

The first item in the HRRC questionnaire was intended to provide an
indication as to whether teachers in the workshop found COURSEWRITER much
easier, easier, as easy or as difficult, more difficult, or much more
difficult to learn than VAULT. Questionnaire respones, illustrated in
Table 1 (p. 161), show that nine teachers (75%) found COURSEWRITER more

difficult to learn.

127

Extent of Separation of Logic and Data

VAULT is somewhat similar to PLATO in that the teacher selects a
logic and provides the subject matter, answer processing rules, etc.
Usually, the VAULT author enters a single program which contains both
the logical structure of the course and the corresponding subject matter.

It is possible to compile VAULT logic material without any accom-
panying data, but VAULT does not accept any data unless data material has
been immediately preceeded by material from the logic division. Once a
logical structure has been programmed, for a specific course, it is
possible to supply various types of subject matter to compliment the
logic program, providing the data conforms to the logic. This does not
mean, however, that a teacher-author is restricted only to available
programmed logics. It is possible to reverse the procedure and have a
logic program written to suit speéific data formats.

Teacher-authors who only occasionally program materials would
probably rely upon available programmed logics. Thus, once a logic
program has been tested and researched by educational researchers it
would be made available to teachers.

During the HRRC workshop, both groups of teachers received training
in VAULT and each teacher was provided with a common pre-programmed,
documented logic program. An illustration of this pre-programmed logic
is contained in Figure 2 (p. 154). The teachers' attitudes toward the
provided logic program were measured by items four and five of the
questionnaire. Each teacher responded to the two items in terms of five
categories of agreement or disagreement.

Table 4, which represents teacher responses to item four, shows

that seven teachers (59%) agreed and one teacher (9%) strongly agreed

128

that the logic program, which was supplied, restricted the manner in
which they could present course material. Teacher reaction to the pre-
programmed logic possibly could have arisen due to the fact that the
provided logic program was primarily intended as a teaching aid. As they
progressed through each LESSON of the logic program the teachers easily
learned to match data DCR's to those in logic as well as learned which
logic VERBS required conformable keywords in data.

Response to questionnaire item five is contained in Table 5. The
results from Table 5 indicate nine teachers (77%) agreed and two teachers
(17%) strongly agreed that if they were to write more VAULT programs they
would like to write their own logic material. This reaction, of course,
could be a carry over from item four of the questionnaire. However, it
is likely that the teachers felt they could adequately program logics to
suit their own individual needs. It must be remembered that at the end
of the two week training period VAULT authors were providing their own
logic and data material. Another possible reason for teachers wanting
to write their logic programs was the fact that the entire group
represented a varied range of subject matter specialization. Because
of their varied interest areas, different logic programs would have been
needed to handle the types of presentations they wished to make. An
interesting point is that, in most cases, the teachers were able to
modify their data to conform to the original logic program. At present,
there appears to be a need for a wide range of logics to be made avail-

able for use by teachers who have mastered the rudiments of entering

VAULT data material.

129

Ease of Handling Subject Matter

VAULT provides the teacher-author with a quick and easy method of
entering CBI material. Separation of course logic from course content
is advantageous to the teacher using VAULT because now he can concentrate
upon the task of entering subject matter to match a specific course
logic. This means that the teacher needs only to learn enough data
division procedures to be able to handle simple logic programs. As the
teacher learns more VAULT data procedures the easier it will be for him
to move on to use more complicated logic programs. Since VAULT provides
the logic author with system default options and since specification of
parameters is easily learned, any teacher who requires a specific course
logic could quickly learn to write his own logic programs.

The data author who initially uses VAULT would find that the most
obvious labor saving feature provided is the editing routine. The
teacher merely enters textual material and VAULT formats the text accor-
ding to the paramters specified by the corresponding VERB in the logic
division. If a particular word exceeds the space available at the end
of a CRT line that word would be checked to determine whether it is to
be hyphenated. Any word, containing less characters than the minimum
required for hyphenation, would be displayed on the next CRT line.
Control over the size of words to be hyphenated is maintained by the
data author although he could use the system hyphenation default.

The logic author is provided with a number of VAULT system defaults
designed to simplify entry of logic verb parameters. These system
defaults could be overridden by having the author enter specific para-
meters. Further, VAULT provides the logic author with a small measure

of mathematical ability through the use of the verb ASSIGN. However,

130

since the final product is COURSEWRITER source code, there is, at
present, no mathematical capability passed on to the student.

All entry of VAULT material is accomplished through off-line
procedures. Logic and data entry material, in the form of punched cards,
is run in batch mode on the System 360/67. Final COURSEWRITER source
generated by VAULT is stored either on tape or punched cards. Finally,
the VAULT produced COURSEWRITER source is assembled on the 1500 System.
Contained in Appendix F is a copy of a sample VAULT program.

A number of experienced COURSEWRITER authors who have used VAULT
expressed concern regarding the off-line authoring procedure. Most of
the experienced COURSEWRITER authors at the University of Alberta had
previously entered their programs on-line and therefore were apprehensive
about the off-line turn around time of one day. This means that, once a
VAULT program is entered for processing, there is no immediate
feedback regarding error free compilation of the program as there would
be during on-line COURSEWRITER authoring.

However, the teachers in the HRRC workshop did not seem to share
the concern of the experienced authors regarding on-line authoring.
Actually, the only on-line procedures conducted by the VAULT authors was
execution of their programs. During on-line sessions, authors executed
their COURSWRITER programs and checked the presentations against the data
entry material which was illustrated in their VAULT DATA listings.
Program changes, if any, were usually noted on the VAULT DATA listings.
Rather than making changes on-line, teachers were encouraged to edit
their VAULT entry cards. A special set of characters ("~#") enabled
teachers to modify only those data pecords containing errors. Once the

VAULT cards were edited the teachers would resubmit their programs for

131

processing on the System 360/67.

A teacher who wishes to redefine a particular CRT display area
would need only to change the particular logic DISPLAY parameter(s) in
question and resubmit the entire VAULT program. Thus a teacher-author
could make minor modifications to either logic or data entry material
and VAULT would reformat and edit the material to desired specificationms.
This means that a teacher could easily make changes in a program without
tediously recoding the material as would be required with COURSEWRITER.

During their on-line sessions the VAULT group, from the HRRC work-
shop, concentrated mainly upon debugging their programs through the use
of the execution control mode. They would execute entire programs or
sections of programs. Each textual display, for example, would be checked
for spelling errors, ease of reading, placement of text, etc. Upon
encountering a response request (QUESTION), the teachers would enter
every expected answer as well as a few unexpected answers to check the
answer matching routines, accompanying reinforcement messages, and the
resulting system action.

It is interesting to note that during on-line sessions VAULT authors
preferred not to execute programs while most terminals were being used
by COURSEWRITER authors for on-line entry of course material. These
teachers indicated that system reaction time was slowed considerably
when a number of authors simultaneously used the 1500 System for purposes
of on-line program entry.

The third item of the HRRC questionnaire requested teachers from
the workshop to compare the estimated amount of authoring time required
to write a program using VAULT and the time required to write a similar

program using COURSEWRITER. Results of teacher responses to item three

132
are illustrated in Table 3 (p. 162). Ten teachers (85%) estimated that
a program written in VAULT took much less authoring time than a like

program in COURSEWRITER.

Examination of Table 8 (p. 164) discloses that teachers who initially
received instruction in VAULT produced 18.7 times as many lines of VAULT
generated COURSEWRITER code, per hour of authoring time, than they did
lines of COURSEWRITER during the COURSEWRITER instructional period. The
second group, which initially received training in COURSEWRITER, produced
11.6 times as many lines of VAULT generated COURSEWRITER, per hour of
authoring time, during the VAULT training session, than lines of COURSE-
WRITER material produced per hour of authoring during the initial
COURSEWRITER session. Overall, the ratio was 13.6 times as many lines
of COURSEWRITER produced, per hour of authoring, using VAULT rather than
COURSEWRITER.

The results from the HRRC workshop indicate that VAULT effectively
inereased the number of lines of COURSEWRITER code produced per hour of
authoring. One teacher commented, in section G of the questionnaire,
that programming in VAULT gave him a psychological advantage over
programming similar material in COURSEWRITER.

A number of aspects related to entry of VAULT material, however,
appear to be in need of revision or improvement. For example, card
columns 72 through 80 of each input record are ignored; perhaps this
portion of the card could be used for data entry and thus reduce some
confusion that results from use of various types of coding forms. Also,
some method of providing numeric capability, for use by students is
urgently needed. Provision of the verb ASSIGN was a valuable step in

the direction of allowing mathematical variables but more mathematical

133
power is needed. Perhaps a verb (i.e., INCREMENT) could be used to enable
a particular variable to be incremented by a particular numeric value,
either negative or positive (i.e., INCREMENT X by 2; Y by -1). Thus each
time the variables X and Y would be encountered, in logic, they would be
incremented by the value specified in the "INCREMENT" record. If an
author wishes to change the value by which a variable is to be incremented

he would need only to enter a new INCREMENT record with different para-

meter specifications.

Ease and Power of Response Analysis

The method whereby a teacher-author supplies data answer lists and
reinforcement messages is very simple to learn and easy to use in VAULT.
However, VAULT does not provide the author with a very powerful type of
analysis for evaluating students' keyboard responses. As mentioned
previously, VAULT generated COURSEWRITER source code is assembled on the
1500 System. This signifies that if sophisticated answer analysis is to
be performed the program source code must contain statements which call
special COURSEWRITER functions. The VAULT subset, unfortunately, does
not automatically call any COURSEWRITER functions. This single feature
restricts, to a large extent, the type of analysis and editing of student
responses that may be achieved through use of VAULT.

To overcome this current drawback a logic author could activate
specific COURSEWRITER functions, to edit or analyze student respomses,
by inserting appropriate COURSEWRITER code between the logic DCR's
$SCWSTART and $$CWEND and placing these records in the desired location
in logic. The disadvantage of using this method for calling COURSEWRITER

functions is that the logic coding could eventually contain a great deal

134

of COURSEWRITER statements. If this happens, then, in some instances,
an author would be further ahead to code the entire program in
COURSEWRITER. Also, if COURSEWRITER code is used in portions of logic,
a further restriction is imposed because the logic author must then have
an adequate grasp of COURSEWRITER.

The lack of power in the analysis of student supplied answers mainly
concerns the need for a few improvements in versatility and power of the
VAULT logic division. Provision of a VAULT system default to edit each
keyboard response, more specifically to downshift a response, would
provide automatic inclusion of the COURSEWRITER "EDIT" function and
also decrease coding effort associated with specification of teacher
supplied answer lists. For example, if the teacher expects the answer
"RED" to be entered in response to a question then his supplied answer
1list would likely contain three versions of the answer (i.e., CORRECT:
RED;<RED;<R>ED[M]). If the edit default was included in VAULT only one
answer would be required (i.e., CORRECT: RED[M]). This additional
feature could save coding time especially if a large number of expected
answers are to be listed by the teacher-author. As is the case with the
other system defaults a teacher should have the option to override the
edit default.

A positive feature provided by VAULT logic is the default condi-
tional branching associated with a student's performance within any
problem. Whenever the system automatically branches a student back a
number of problems, due to system provided defaults or author specified
defaults provided by logic minor DCR's, a random message is displayed on
the CRT notifying the student he will be reviewing previous material.

One possible addition to this method of supplying default branching

135

would be to allow a logic author to enter parameters with the logic
minor DCR to allow either backward or forward default branching (i.e.,
$SWRONGS YES,3,-1 or $SWRONGS YES,3,2).

" It is noteworthy ‘that system default branch statements could be
preceeded by conditional branches entered through use of the logic
IF---THEN records. However, complex conditional branch statements,
such as those possible in PLANIT, can not be used in VAULT logic. Only
a single condition is permitted in each VAULT IF record.

The writer noted a particular weakness in VAULT IF--THEN statements
and their versatility in response analysis. Each THEN record may only
be followed by associated GO TO action. There are occasioms, though,
when the author may desire a number of system activities to be performed
when a certain condition is satisfied. For example, if a conditional
statement is satisfied the author may wish to initiate the following
series of activities: erase a portion of the CRT, display a message,
open the image projector, pause for a designated period of time, close
the image projector, and branch to a new lesson. It is possible to
perform all the above activities within the scope of the current VAULT

subset but with considerably more code than the following:

IF CORRECT THEN PERFORM
ERASE X,Y

DISPLAY INSERT A,B,C,D
SHOW OPENED,456 ,TIME6
GO TO NEXT1

END PERFORM

The VAULT subset seems to provide teacher-authors with a much
easier method of entering answers than does COURSEWRITER. A certain

lack of power is evident in the VAULT logic division although all desired

136
types of response analysis and conditional execution of particular groups
of statements could be accomplished through the current VAULT subset.

The addition of certain improvements to the logic division such as the
edit default option, specification of COURSEWRITER functions, do-loop
action, and complex IF (condition) statements would increase the ease

and power of response analysis.

Maintenance of and Access to Student Accountingﬁ;nformation

A time consuming portion of authoring, that of maintaining student
accounting information, appears to have been substantially simplified
and reduced by VAULT. System default options, available to logic authors,
provide a means for maintaining student accounting information through
automatic updating of specific counters, switches, buffers, and return
registers. Thus, once a logic program is prepared, the teacher-author
is not burdened with the task of entering code to continually update
performance data.

The logic minor DCR's (i.e., S$SSCORRECTS) enable the logic author
to specify various accounting defaults to be used within particular
BLOCK, LESSON, or PROBLEM levels. Thus a particular number of counters
used for student accounting, by VAULT, can be activated or disabled for
specific levels of logic by use of the parameter "NO" on the appropriate
logic minor DCR. The counters used for accounting purposes provide
information as to the cumulative number of PROBLEMS presented, attempts
made, and answers which were timed out, correct, and unrecognizable or
wrong within the course the current BLOCK, and the current LESSON. As
well, other counters at the current PROBLEM level maintain the time

taken to respond to a question, number of timeouts, unrecognizables,

137 -
wrongs, and the numeric value representing the position of the student's
answer within the teacher supplied list of additional answers. Therefore,
by simply using the system default optioms an author's task could be
greatly simplified and, of course, made easier. A drawback which exists,
even with the added accounting facilities provided by the VAULT subset,
is that no provision exists for logic author to use VERBS such as ADD,
MULTIPLY, LOAD, etc., to perform operations upon the accounting devices.

Another highly useful feature of VAULT is the provision of a unique
response identifier with each enter and process statement. This means
that performance recordings are much simpler to analyze since each
response is always identified by a ten character identifier. The
jdentifier denotes the BLOCK number, LESSON number, and PROBLEM number
where the response originated in data as well as the label assoclated
with the corresponding QUESTION or POINT in logic. In addition, each
teacher supplied answer within a PROBLEM is associated with a unique
two character identifier.

The final noteworthy student accounting aspect of the VAULT subset
is provision of restart points. When a student signs off a course and
then returns to continue the course, at some later period of time, he
begins from the last restart point encountered during the previous
session. This does not mean that he necessarily begins from the problem
last executed. Therefore, within each LESSON, VAULT provides restart
points at the first PROBLEM and at every tenth PROBLEM in that lesson.
This means that a student who returns to continue a course could repeat
a maximum of only nine PROBLEMS.

The VAULT procedures described above represent a step forward in

maintaining student accounting information and providing access to that

138

information. However, these procedures do not fully meet the ideal
situation where performance data, from any portion of the course, could

be directly accessed during program execution time.

Control Over Various Types of Interface Devices

The data author, in entering subject matter, does not need to worry
about entering instructions to control interface devices. Control over
interface devices would have been previously defined by the logic author.
Actually, the VAULT logic author has control over all interface devices
except the audio unit and display of graphic characters. These two
VAULT omissions could be activated, however, through use of the logic
DCR's $SCWSTART and $SCWEND.

Meaningful logic VERBS, such as DISPLAY or SHOW, enable the author
to display textual material, to accept keybard or light pen responses,
and to activate the image projector for varying periods of time. The
teacher-author who uses a preprogrammed logic merely supplies the needed
textual material or the new film frame number if the number specified in
the logic program differs from the frame number of the film to be shown.
Further, VAULT permits the teacher to changé dictionaries where needed

in the display of textual material.

Parallelism With Existing COURSEWRITER

In order to provide a comprehensive evaluation of the VAULT subset
this writer selected two diverse programs, already available in COURSE-
WRITER, at the University of Alberta, and prepared two corresponding
VAULT courses that were parallel in logic and data to the two COURSE-
WRITER courses. Emphasis was placed upon discovery of particular types

of COURSEWRITER produced action that could not be duplicated by the

138

VAULT subset.

One program, a patient-management simulation, intended for third and
fourth year medical students, takes subjects through a number of various
paths that could be followed by a medical doctor in consultation with a
fictious patient. Stages of the interview included obtaining a medical
history, performing a physical examination, requesting and receiving
laboratory tests, diagnosis and therapy. The second program, on the
other hand, was for a graduate course in educational psychology (analysis
of variance) that mainly provided information in a linear fashion but
permitted the student a great deal of control in movement through the
course.

The results were very encouraging in that both programs were gquite
easily duplicated, by the VAULT subset, thus indicating that VAULT could
be used to produce a wide range of programs already available in COURSE-
WRITER. In addition, this writer found that with slight modification a
simple basic logic could have been produced by VAULT. This means that
new VAULT programs could be produced quite easily merely by providing
different subject matter, but the reverse would be difficult to achieve
in COURSEWRITER.

The above procedure is not recommended for conversion of existing
COURSEWRITER programs to VAULT logic and VAULT data. Ideally, the precise
documentation of the COURSEWRITER logic should be used to specify VAULT
logic since varying amounts of jnefficiency are introduced in abstracting
COURSEWRITER logic from a COURSEWRITER program and the procedure does

not guarantee the optimum definition of the VAULT logic division.

CHAPTER VII
SUMMARY AND IMPLICATIONS

Originally this study began due to two major drawbacks encountered
by teacher-authors at the University of Alberta, who were using COURSE-
WRITER as an authoring language in producing computer based instructional
material. Firstly, the teachers found COURSEWRITER a difficult language
to learn and, secondly, an excessive amount of authoring time was
required to produce one hour of student terminal time. Therefore,
alternative methods of authoring materials for the 1500 System were
investigated and the final result was a new teacher oriented authoring
language called VAULT.

The study consisted of the following five phases: inves%igation,
design, development, implementation, and evaluation. In the initial
portion of the investigative phase a review of literature related to
CBI languages was conducted. Findings from the literature review were
combined with the expressed needs of CBI teacher-authors at the U of A
and resulted in a set of criteria to be used in evaluation CBI languages.
A number of current CBI languages, including COURSEWRITER, were then
evaluated. An outcome of this evaluation was a list of CBI language
features deemed desirable for inclusion in an authoring language.
Consideration was given to augmenting COURSEWRITER to include these
features. However, due to anticipated difficulties in rewriting the
COURSEWRITER assembler and portions of the 1500 System a decision was

made to design a completely new high-level authoring language.

141

The second phase consisted of designing the language. Further
examination of the criteria indicated that VAULT should be divided into
two divisions (LOGIC and DATA). The logic division was intended for use
by persons skilled in CBI. This division accepts high-level statements
that set the instructional strategy for the course while data division,
on the other hand, provides the teacher with an easy method for entering
subject matter. A restriction is that VAULT data must conform, in
certain respects, to the framework set down by the logic program.

In order that authors could easily enter material to both divisions
natural, educationally oriented terms were used. An input record, called
the data control record (DCR), was used in each division to subdivide a
course into logical groupings. The logic DCR is more sophisticated than
the data DCR because it offers an author some control over a series of
system defaults. System defaults were provided to automatically initiate
maintenance of student performance data and various branching procedures
and thereby reduce authoring time associated with these procedures as is
the case in COURSEWRITER.

A series of meaningful action words, called VERBS, were made
available to the logic author. VERBS specify the type of subject
matter expected from the data division, specific computer units to be
used and, also, control the logic flow of the program during student
execution time. A set of paramters is usually associated with each
VERB. Parameters would usually be entered to regulate the computer unit
or indicate conditional course flow. Default parameters are supplied to
most VERBS, by VAULT, so that beginning logic authors could quickly
learn to program "simple logics" without necessarily knowing that VERBS

contain associated parameters.

142

The data division permits the teacher to easily enter course
material by means of KEYWORD records. Most KEYWORDS chosen are words
that often are used by teachers in classroom situations (i.e., QUESTION,
CORRECT, WRONG, etc.).

Since portions of the data entry material must conform (synchronize)
with the logic program KEYWORDS were classified into two forms, confor-
mable and non-conformable. A teacher would sequentially follow the
logic statements, within a particular level (domain), and when a VERB
that requires data material is encountered he would supply matter on an
appropriate KEYWORD record. The non-conformable KEYWORD, on the other
hand, permits the teacher to supply answer lists and reinforcement
messages. Although the logic program controls the type of data entry
records to be input an author does have the option to control movement
through the various logic domains.

Some of the features initiated by VAULT logic were: (a) system
default options for automatic maintenance of student accounting infor-
mation at various logic levels; (b) system default options for specifying
conditional branching based upon the student's previous performance;

(c) provision of some mathematical ability to the author through use of
the compile time verb ASSIGN; and (d) default parameters for a number

of VERBS. Prominent features provided by the data division were: (a)
editing of textual display material; (b) some control over the hyphenation
(breaking) of words; (c) editing of strings of answers entered in answer
lists; (d) use of display labels for identifying CRT areas in specifica-
tion of light pen answers; (e) randomly selected reinforcement messages;
(£) unique response and answer analysis identifiers; and (g) the option

to add material to a previously constructed course.

143

Once the basic model of VAULT was designed the language was ready
to be developed. Due to a number of difficulties anticipated in using
the IBM 1130 System, the IBM System 360/67 was chosen as the computing
system on which VAULT was to be implemented. A VAULT compiler, that
could be described as table driven, was coded in PL/1 and implemented
on the System 360. The function of the compiler was to process logic
material and then integrate output from the logic division with data
material supplied to the data division. The final output, COURSEWRITER
source code, is then available to be assembled on the 1500 System.

In July, 1969, a group of twelve teachers attended a four week
workshop for training in preparing computer based instructional material.
The teachers were randomly divided into two groups of six. During the
initial two weeks one group received training in COURSEWRITER and the
other group received training in VAULT. During the last two weeks the
groups were reversed and received training in the other language. This
workshop represented the first major attempt at having VAULT implemented
by teachers.

Following the workshop a questionnaire (Appendix A) was completed
by each teacher. Results of the questionnaire indicated that the amount
of authoring time required to produce CBI material in VAULT was reduced
by about a factor of 13 when compared with similar material authored in
COURSEWRITER. Also, the teachers indicated that COURSEWRITER was more
difficult to learn that VAULT. It is noteworthy that all 12 teachers
expressed interest in using the 1500 System during the following year.

There were very few '"bugs" in the VAULT compiler throughout the
workshop period and in the ensuing period since the workshop. The only

major problem that arose was the lack of a logic manual which, at the

1uh

time, was just being written. Originally the teachers had difficulty
in understanding the correspondence between logic and data. This prompted
the writting of an author's concepts and facilities manual. Other areas
of VAULT that caused some difficulty were: (a) the lack of a symbol
for specifying that textual material is to be displayed on a new screen;
(b) the lack of a symbol to improve the ease with which teachers could
edit data records containing keypunching errors; (c) the need for an
improved hyphenation routine; and (d) the format of listings of the
VAULT logic entry records and data entry records was to compact making
it difficult for authors to easily f£ind the PROBLEM levels. As each of
the above areas of difficulty were encountered, by the teachers, they
were improved upon during the workshop.

Although only a subset of VAULT was developed an experienced VAULT
author could produce most programs that can currently be written
in COURSEWRITER. However, the process could become quite complicated.
Therefore, there is need for a number of major improvements to the VAULT
subset. These improvements could be achieved by applying a majority of
the features from the original design specifications of VAULT.

Following are some suggested improvements to the VAULT logic
division. Firstly, in conjunction with the logic minor DCR's, an
author should be provided with capabilities for positive or negative
default branching. Further, the default conditions should automatically
include the COURSEWRITER "edit," "keyletter," and "order" functions, but
with provision that a logic author could override these defaults. In
addition a number of minor DCR's should be made available to allow an
author to completely suppress system defaults which automatically alter

the contents of counters, switches, return registers, etc. (i.e., $SCOUNTERS) .

145

The types of logic statements should also be expanded to permit new
VERBS, more powerful IF statements, and another compile time VERB. A
few of the VERBS which should be added: (a) PERFORM--to permit do loop
action; (b) LOAD, ADD, SUBTRACT, MULTIPLY? and DIVIDE--to allow expanded
scorekeeping instructions; (c) CALL--to activate COURSEWRITER functionms;
(d) PLAY and RECORD--to> permit use of audio units; and (e) RETRY--to
specify that the student is to attempt another response to the question.
In addition the word GRAPHIC would be available as an optional parameter
to accompany the verb DISPLAY.

Currently, the THEN statement only allows the verbs GO TO and STOP
to be included as action words. Expansion of the VERBS permitted as

action words in the THEN statements would permit an author to enter

statements such as:

IF WRONG THEN PERFORM
DISPLAY
PAUSE 100
PLAY
SHOW OPENED
RETRY
END PERFORM
IF CORRECT
THEN LOAD COUNTER-15 INTO COUNTER-18
Addition of the compile time verb INCREMENT would increase the ease
with which variables could be used. For example, the statement
"INCREMENT X by 2" would cause the variable X to be incremented by the
value 2 each time X is encountered by the compiler.
Basically the data division requires very few additions. The single
major improvement that is needed is a feature which permits VAULT to

recover from situations where data entry material is out of synchroniza-

tion with the logic output material. One possibility, when a

146

synchronization error occurs, it to accept and list data input records
up to the next data LESSON but not to perform any syntax checking. At
the next data LESSON, however, VAULT would move on to the next LESSON
in logic and resume processing data recoﬁds. Another addition would
be to modify the text editing routine to include right justification
of textual material to appear on the CRT.

There are a number of implications concerning the use of VAULT in
the area of computer based instruction. By separating the logic and
data portions of a course VAULT provides education with a vehicle
whereby teachers could become activly involved in the preparation of CBI
materials. As more légic programs are tested, researched, and made
available then more varied types of courses can be made available. Also,
if VAULT takes less time to learn and also, less time to author course
materials costs associated with production of CBI materials would also
be reduced. This would be an important economic factor in the decision
of school districts in accepting costs associated with computer based
instruction.

Further, VAULT holds certain implications to educational researchers.
Now it is possible to define instructional strategies and program these
through use of the VAULT logic division. Each logic couid then be tested
by using various types of subject matter to compliment these logics. In
addition, it is possible to write various logic strategies and apply them

to a relatively fixed set of subject matter.

SELECTED REFERENCES

Atkinson, R. C. Instruction in initial reading under computer control:
The Stanford Project. dJournal of Educational Data Processing,
1967, 4, 175-192.

Berlyne, D. E. Conflict arousal and curiosity. New York: McGraw Hill,
1960.

Bernstein, R. RCA Instructional Systems Conference, 1967, 1. Cited by
J. L. Rogers, Current problems in CAI. Datamation, 14(9), 1968.

P. 32.

Bitzer, D. L. Some pedagogical and Engineering design aspects of
computer-based education. Paper presented at the 16th International

Congress of Applied Psychology, 1968.

Bitzer, D. L., Braunfeld, P. G., & Lichtenberger, W. W. PLATO II: A
multiple-student computer-controlled automatic teaching device. In
J. E. Coulson (Ed.), Programmed learning and computer based instruc-
tion. New York: Wiley, 1962. Pp. 205-216.

Bitzer, D. L., Lyman, E. R., & Easley, J. A. Jr. The uses of PLATO:
A comEuter—controlled teaching system. Report R-268, Urbana:
Coordinated Science Laboratory, University of Illinois, 1965.

Bitzer, D. L., Hicks, B. L., Johnson, R. L., & Lyman, E. R. The PLATO
system: Current research and developments. IEEE Transactions on
Human Factors in Electronics, 1967, HFE-8(2), 64-70.

Bolt Beranek and Newman Inc. TELCOMP Manual. Cambridge, Mass: TELCOMP
Services, 1966.

Borko, H. (Ed.) Computer applications in the behavioral sciences.
Englewood Cliffs, N. J.: Prentice-Hall, 1962.

Briggs, L. J. Two self-instructional devices. Psychological Reports,
1958, 4, 671-676.

Bushnell, D. D. Applications of computer technology to the improvement
of learning. In D. D. Bushnell and D. W. Allen (Eds.), The computer
in American education. New York: Wiley, 1967. Pp. 59-76.

Bushnell, D. D., & Allen, D. W. The computer in American education.
New York: Wiley, 1967.

Chapman, R. L., and Carpenter, J. T. Computer techniques in instruction.
In J. E. Coulson (Ed.), Programmed Learning and computer-based
instruction. New York: Wiley, 1962. Pp. 240-253.

Coulson, J. E. (Ed.) Programmed Learning and computer based instruction.
New York: Wiley, 1962.

148

Coulson, J. E. Automation, electronic computers, and education. Phi
Delta Kappan, 1966, 47, 340-3uk.

Coulson, J. E., & Silberman, H. F. Results of initial experiment in
automated teaching. Santa Monica: System Development Corporation,
July, 1959.

Coulson, J. E., & Silberman, H. F. Effects of three variables in a
teaching machine. Journal of Educational Psychology, 1960, 51,
135-143.

Crowder, N. A. Automatic tutoring by means of intrinsic programming.
In E. H. Galanter (Ed.), Automatic teaching: the state of the art.

New York: Wiley, 1959, Pp. 109-116.

Dick, W. The development and current status of computer-based instruc-
tion. American Educational Research Journal, 1965, 2, 41-51.

Ellis, T. 0., & Sibley, W. L. On the development of equitable graphic
I/0. IEEE Transactions on Human Factors in Electronics, 1967,
HFE-8(1), 15-17.

Entelek L x score on CAI programs. Newburyport, Mass.: Entelek Inc.,
May, 1967.

Falkoff, A. D., & Iverson, K. E. APL/360: User's Manual. Yorktown
Heights, New York: IBM Corporation, 1968.

Fano, R. M., & Corbato, F. J. Time sharing on computers. In D.
Flanagan (Ed.), Information. San Francisco: Freeman and Co.,
1966. Pp. 76-95.

Feingold, S. L. PLANIT (Programming language for interactive teaching).
Third ONR Conference on CAI, Santa Monica: System Development
Corporation, 1866, September, 4-6.

Feingold, S. L. PLANIT - A language for CAI. Datamation, 1968, 14(9),
41-47,

Feingold, S. L., & Frye, C. H. User's Guide to PLANIT: Programming
language for interactive teaching. Technical Memorandum TM-3055/
000/01, Santa Monica: System Development Corporation, October,
1966. ' '

Feurzeig, W. A. A conversational teaching machine. Datamation, 1964,
10(6), 38-u2. -—

Feurzeig, W. A. New instructional potentials of information technology.
IEEE Transactions on Human Factors in Electronics, 1967, HFE-8(2),
84-88.

Frye, C. H. CAI languages: Capabilities and applicationms. Datamation,
1968, 1u(9), 3u-37.

1u8

General Electric Co., BASIC language. (Rev. ed.) Bethesda, Maryland:
Information Service Department, 1967. (a)

General Electric Co., Introduction to programming in BASIC. (Rev. ed.)
Bethesda, Maryland: GE Information Service Department, 1967. (b)

Gentile, J. R. The first generation of computer-assisted instructional
systems: An evaluative review. University Park, Pa.: Computer
Assisted Instruction Laboratory, Pennsylvania State University,
November, 1965.

Gerard, R. W. Computers: Their impact on society. AFIPS Conference
Proceedings, 1965, 27(2), 11-16.

Gerard, R. W. (Ed.) Computers and education. New York: McGraw-Hill,
1967.

Glaser, R. Some research problems in automated instruction: Instruc-
tional programming and subject-matter structure. In J. E. Coulson
(E4.), Programmed learning and computer-based instruction. New
York: Wiley, 1962. Pp. 67-85.

Glaser, R., Homme, L. E., & Evans, J. L. An evaluation of textbooks in
terms of learning principles. A paper read at the meeting of the
American Educational Research Assoc., Atlantic City, N. J., Feb.,
1959. In A. A. Lumsdaine and R. Glaser (Eds.), Teaching machines
and programmed learning: A source book. Washington: National
Education Association, 1960. Pp. 437-4u5.

Glaser, R., Ramage, W. W., & Lipson, J. I. The interface between student
and subject matter. Pittsburg: Learning Research and Development
Center, University of Pittsburg, 1964.

Gleason, G. T. Computer assisted jnstruction - prospects and problems.
Education Digest, 1968, 33, 14-17.

Goldstein, L. S., & Gotkin, L. G. Review of research: Machine vs. text.
Journal of Programmed Instruction, 1962, 1, 29-36.

Hansen, D. N. Computer assistance with the educational process. Review
of Educational Research, 1966, 36, 588-603.

Hickey, A. D., & Newton, J. M. Computer-assisted instruction: A survey
of the literature. (2nd ed.) Newburyport, Mass.: Entelek Inc.,
January, 1967.

Hunka, S. M. Introduction to APL 360/67 programming. Research and
information report CAI-5-67. Edmonton: Educational Research
Services, University of Alberta, 1967.

International Business Machines Corporation. IBM 1500 Coursewriter
author's guide Part I: Course planning. San Jose, Calif.: IBM
Corporation, 1967. (a)

150

International Business Machines Corporation. IBM 1500 Coursewriter II
author's guide Part II: Course program development. San Jose,
California: 1BM Corporation, 1967. (b)

Iverson, K. E. A programming language. New York: Wiley, 1962.

Lee, J. A. The anatomy of a compiler. New York: Reinhold Publishing,
1967.

Licklider, J. C. R. Preliminary experiments in computer-aided teaching.
In J. E. Coulson (Ed.), Programmed learning and computer-based
instruction. New York: Wiley, 1962. Pp. 217-239.

Lumsdaine, A. A. Teaching machines and self-instructional materials.
Audio-Visual Communication Review, 13859, 7, 163-181.

Lumsdaine, A. A., & Glaser, R. (Eds.) Teaching machines and programmed
learning: A source book. Washington: National Education Associ-

ation, 1960.

Lyman, E. R. Instructions for using the PLATO logic, GENERAL. CERL
Report X-1, Urbana: Computer-based Education Research Laboratory,

University of Illinois, May, 1968.

Maher, A. Computer-based instruction (CBI): Imtroduction to the IBM
project. Research Report RC1l14, White Plains, N. Y.: IBM, 1964.

Mitzel, H. E. (Ed.) The development and presentation of four college
courses by computer teleprocessing. University Part, Pa.: United
States Department of Health, Education, and Welfare, June, 1967.

Myer, R. H. TELCOMP manual for users. Cambridge, Mass.: Bolt Beranek
ard Newman Inc., 1966.

Pressey, S. L. A simple apparatus which gives tests and scores - and
teaches. In A. A. Lumsdaine, and R Glaser (Eds.), Teaching Machines
and programmed learmning: A source Book. Washington: National
Education Associatiom, 1960. Pp. 35-4l. Reprinted from School

and Society, 23, 1926.

Pressey, S. L. A machine for automatic teaching of drill material.
In A. A. Lumsdaine and R. Glaser (Eds.), Teaching machines and
rogrammed learning: A source book. Washington: Nationmal

Education Association, 1960. Pp. 42-u6. Reprinted from School
and Society, 25, 1927.

Pressey, S. L. A third and fourth contribution toward the coming
"industrial revolution" in education. In A. A. Lumsdaine and R.
Glaser (Eds.), Teaching machines and programmed learning: A source
book. Washington: National Education Association, 1960. Pp. 47-51.
Reprinted from School and Society, 36, 1932.

151

Ragsdale, R. The Learning Research and Development Center's computer
assisted laboratory. DECUS Proceedings Fall 1965, Maynard, Mass.:
Digital Equipment User's Society, 1966, 65-68. Cited by D. N.
Hansen, Review of Educational Research, 1966, 36, 590.

Rath, G. J., Anderson, N. S., & Brainerd, R. C. The IBM Research Center
teaching machine project. Imn E. H. Galanter (Ed.), Automatic
teaching: the state of the art. New York: Wiley, 1959. Pp. 117-
130.

Rodgers, W. A., & Gariglio, L. M. Toward a computer based instruction
system. Saginaw, Michigan: Saginaw Township Community Schools,
1967.

Rogers, J. L. Current problems in CAI. Datamation, 1968, 14(9), 28-33.

Schramm, W. The research on programmed instruction: An annotated
bibliography . Washington: United State Department of Health,
Education, and Welfare, 1964.

Silberman, H. F. Overview of CAI at SDC. Third ONR Conference on CAI.
Santa Monica: System Development Corporation, 1966, September, 1-2.

Silberman H. F., & Coulson, J. E. Automated teaching. In H. Borko (E4d.),
Computer applications in the behavioral sciences. (2nd ed.)
Englewood Cliffs, N. J.: Prentice Hall, 1962. Pp. 308-335.

Silberman, H. F., & Rosenbaum, J. Computer-based instruction in
statistical inference. Technical Memorandum TM-2914/003/000.
Santa Monica: System Development Corporation, March, 1967.

Skinner, B. F. The science of learning and the art of teaching. Harvard
Educational Review, 1954, 24, 86-97.

Skinner, B. F. Teaching machines. Science, 1958, 128, 969-977.

Stolurow, S. M. Computer-based instruction: Psychological aspects and
systems conception of jnstruction. Journal of Educational Data

Processing, 1967, 4, 193-215.

Stolurow, L. M., & Davis, D. Teaching machines and computer-based
systems. In R. Glaser (Ed.), Programmed learning II: Data and
- direction. Washington: National Education Association, 1965.

Pp. 162-212.

Suppes, P. The uses of computers in education. In D. Flamagan (Ed.),
Information: A scientific American book. San Francisco: W. H.
Freeman & Co., 1966. Pp. 157-174.

Swets, J. A., & Feurzeig, W. Computer-aided instruction. Science,
1965, 150, 572-576.

152

Travers, R. M. V. Research and theor related to audio visual informa-
tion. Salt Lake City: University of Utah Bureau of Educational
Research, 1964. Cited by K. H. Wodtke, Educational Requirements
for a student-subject matter interface, 1967. P. 32i.

Uttal, W. R. On conversational interaction. In J. E. Coulsen (Ed.),
Programmed learning and computer-based instruction. New York:

Wiley, 1962. Pp. 171-190.

Weaver, W. Recent contributions to the mathematical theory of communi-
cation. In C. E. Shannon and W. Weaver (Eds.), The mathematical
theory of communication. Urbana: University of Illinois Press,

1963.

Wodtke, K. H. Educational requirements for a student-subject matter
interface. In H. E. Mitzel (Ed.), The development and presentation
of four college courses by computer teleprocessing. University
Park, Pa.: United States Department of Health, Education, and

Welfare, June, 1967. Pp. 319-327.

Zinn, K. L. Computer technology for teaching and research on instruction.
Review of Educational Research, 1967, 37, 618-63u. (a)

Zinn, K. L. Computer assistance for instruction: a review of systems
and projects. In D. D. Bushmell and D. W. Allen (Eds.) The com-
puter in American education. New York: Wiley, 1967. Pp. 77-107.

(b)

Zinn, X. L. Summary of programming languages and author assistance in
computer-based educational systems. Ann Arbor, Michigan: University
of Michigan, March, 1967. (Mimeographed draft) (c)

Zinn, K. L. Instructional uses of interactive computer systems.
Datamation, 1968, 1u(9), 22-27.

APPENDIX A

VAULT LOGIC PROGRAM PROVIDED

TO TEACHERS DURING WORKSHOP

sy

$SLOGIC

$$BLOCK

$SLESSON INTRO
$SPROBLEM PREFCE
DISPLAY

$SLESSON ONE
S$SPROBLEM QUEONE
QUESTION

$SLESSON TWO

$SPROBLEM QUETWO

ERASE
DISPLAY INSERT 10,0,2,40 A
DISPLAY INSERT 14,0,2,40 : B
DISPLAY INSERT 18,0,2,u40 c
DISPLAY INSERT 22,0,2,40 D
DISPLAY INSERT 26,0,2,40 E
POINT 0,0,8,40/28,0,2,40
$SENDLOGIC

F Figure 2. VAULT Logic Program Provided To Teachers

During HRRC Worksop

APPENDIX B

HRRC WORKSHOP QUESTIONNAIRE

156
HRC WORKSHOP QUESTIONNAIRE

July/69

Age : Sex

Years of university education

Years of teaching experience

Grade levels taught

Number of previous Computing Science courses

CAI language first learned in workshop:
(VAULT or CW)

I. In the following section you will be presented with a number of
statements, each containing a blank. Each statement is followed by a
number of short phrases. Please select the letter corresponding to the
phrase which you think best expresses your feelings toward the comple-
tion of the statement. Then, enter the letter onto the blank.

1. After learning both CW and VAULT, I found, in comparing the two
languages, that CW was to learn.

a. much easier

b. easier

c. as easy or as difficult
d. more difficult

e. much more difficult

2. If I were to recommend instruction for teachers wishing to learn how
to program instructional materials, I would suggest .

a. CW only

b. VAULT only

¢c. CW followed by VAULT
d. VAULT followed by CW

3. 1In comparing the amount of time taken to plan and code my CAI pro-
grams, I am of the opinion that the programs written in VAULT took
time than the one written in CW.

a. much less

b. 1less
¢c. nor more nor no less
d. more

e. much more

157

In using VAULT, I felt that the LOGIC which was originally supplied
restricted the manner in which I could present my course material.

a. strongly agree

b. agree
c. undecided
d. disagree

e. strongly disagree

If I were to write more programs in VAULT, I would rather write my
own LOGIC.

a. strongly agree

b. agree
¢. undecided
d. disagree

e. strongly disagree

Once this workshop is completed, I plan .

a. to continue writing programs by using CW only.
b. to continue writing programs by using VAULT DATA only.

c. to continue writing programs by using VAULT (LOGIC and DATA) only.

d. to continue writing programs by using a combination of CW and one
or more divisions of VAULT.
e. not to continue writing programs.

One of the most difficult concepts required in learning VAULT was the
connection between the LOGIC division and the DATA division.

a. strongly agree

b. agree
c. undecided
d. disagree

e. strongly disagree

158

II. During the past four weeks you have been briefly introduced to
two CAI languages. We would greatly appreciate your written criticisms
(positive and negative) regarding the following areas:

A. Difficulties encountered while learning concepts in:

1. COURSEWRITER
2. VAULT-DATA
3. VAULT LOGIC
4. On-line authoring

B. Materials used during workshop.
1. COURSEWRITER lab problems
2. VAULT 1ab problems

3. VAULT DATA manual.

Method of CAI language presentations (would you like less lecture
and more coding and consulting time, etc.?)

D. Class time

Would you rather have had classes at times other than

l.
8-10 a.m. during this summer session? If so, at what times?

Did you find the one hour alloted for authoring sufficient

2.
enough for you to become familiar with the 1500 System?

E. Would you like to author programs and use the system during the

coming year?
No

Yes
If yes state the days (Monday to Saturday) and times of day preferred.

159

F. Money is available for bus transportation and substitute teachers.
Do you think you will require either next year?

Yes No

G. Please comment about VAULT regarding general design concepts such
as DCR's and keywords, as well as anything you would like to see
included in the updated version of VAULT.

F. From the program(s) you have written, please estimate:

CW
produced
CW by VAULT

Number of lines
Hours of coding time

Minutes of student execution time

APPENDIX C

RESULTS OF WORKSHOP QUESTIONNAIRE

TABLES 1-10

TABLE 1
RESPONSE OF BOTH GROUPS TO

QUESTION ONE (WHICH LANGUAGE IS EASIER TO LEARN)

161

GROUP
CW-VAULT VAULT-CW TOTAL
(a) Much easier 0 1 1
(b) Easier 1 0 1
(¢) As easy or as difficult 1 0 1
(d) More difficult 1 2 3
(e) Much more difficult 3 3 6
TABLE 2
RESPONSE OF BOTH GROUPS TO QUESTION
TWO (SUGGESTED SEQUENCE OF INSTRUCTION)
GROUP
CW-VAULT VAULT-CW TOTAL
(a) CHW only 0 0 0
{(b) VAULT only 2 0 2
(c) CW followed by VAULT 1 0 1
(d) VAULT followed by CW 3 6]

162
TABLE 3
RESPONSE OF BOTH GROUPS TO QUESTION
THREE (TIME TAKEN TO WRITE PROGRAMS IN VAULT RATHER

THAN COURSEWRITER)

GROUP
CW-VAULT VAULT-CW TOTAL
(a) Much less 5 5 10
(b) Less 0 1l 1l
(c) No more nor no less 0 0 0
(d) More 1 0 1l
(e) Much more 0 0 0
TABLE 4
RESPONSE OF BOTH GROUPS TO QUESTION
FOUR (SUPPLIED LOGIC RESTRICTED COURSE PRESENTATION)
GROUP
CW-VAULT VAULT-CW TOTAL
(a) Strongly agree 1 0 1
(b) Agree [3 7
(c) Undecided 0 1l 1
(d) Disagree 0 2 2
(e) Strongly disagree 1 0 1

TABLE 5

RESPONSE OF BOTH GROUPS TO QUESTION

FIVE (I WOULD RATHER WRITE MY OWN LOGIC)

163

GROUP
CW-VAULT VAULT-CW TOTAL
(a) Strongly agree 2 0 2
(b) Agree 4 5 9
(c) Undecided 0 1 1
(d) Disagree 0 0 0
(e) Strongly disagree 0 0 0
TABLE 6
RESPONSE OF BOTH GROUPS TO QUESTION SIX
(IN WRITING FURTHER PROGRAMS I PLAN TO USE . . .)
GROUP
CW-VAULT VAULT-CW TOTAL
(a) CW only 0 0 0
(b) VAULT data only 0 0 0
(c) VAULT logic and data only 1l 1 2
(d) CW & VAULT 5 5 10
(e) Not to author 0 0 0

ie4a
TABLE 7

RESPONSE OF BOTH GROUPS TO QUESTION SEVEN

(CONNECTION BETWEEN LOGIC AND DATA WAS DIFFICULT

TO LEARN)
GROUP
CW-VAULT VAULT-CW TOTAL
Yes 6 6 12
No 0 0 0
TABLE 8

MEAN LINES OF COURSEWRITER SOURCE CODE

PRODUCED PER HOUR BY USING EACH LANGUAGE

LANGUAGE USED

GROUP CH VAULT RATIO %3—1'1
CH-VAULT 16.69 311.76 18.7
VAULT-CW 7.96 92.56 11.6

Total 10.91 148.18 13.6

165
TABLE 9

AGES OF WORKSHOP TEACHERS

MEDIAN MEAN ST. DEV.
Females ' 30 34.67 13.61
Males 34 33.78 7.78
CW-VAULT 37 39.33 8.98
VAULT-CW 28 28.67 4,72
Total 34,5 34.00 8.82
TABLE 10

YEARS OF TEACHING EXPERIENCE

MEDIAN MEAN ST. DEV.
Females 11 14.0 14.7
Males 9 9.4 5.6
CW-VAULT 9.5 15.0 8.9
VAULT-CW 7 7.2 6.2

Total 9.5 10.6 8.1

APPENDIX D

VAULT LOGIC DIVISION SPECIFICATIONS

167

TABLE OF CONTENTS FOR APPENDIX D
Page
SYNTAX « o o o o o o o o o s o o o o s o o o o o o o o o = o0 169
DIVISION CONTROL RECORDS « « « o o o o o o o o o o o o o o o o ¢ 170
Major DCR'S o o o o o o o o s o o o o o o o s om0 et sy 170
SSLOGIC « o « o o o o o o o s o o o o o o o o o 0 000 00 171
$$ENDLOGIC.........................l7l
SSBLOCK « o o o o o s o o o o o o s o s o s o 0 o oo 0 o0 172
SSLESSON « o o« o o o o o o s o o o s o o o o o o s 0 s o o0 173
SSPROBLEM ¢ « o o o o o o o s o o o o o o o o o o o o & 0 174
Minor DCR'S « « o o o o o s o o o o o o o s o o o o o o o o ¢ 174
$$LATENCY.........................174
SSCORRECTS « o o o o o s o o o o o o o o o o s s o o s o 00 175
SSWRONGS o ¢ o o o o o o s o s o o o o o o o o o o o o 0 00 176
SSUNRECS o « o « o o o o o o o o o s o o o s o o o 0 0 o o0 178
SSTIMEOUTS « o« o o o o o o o o o o o o o o s o o o oo = o0 179
SSCWSTART ¢ o o o o o s o o o o o o o o o o o o 0 o0 0 000 180
$$CWEND..........................180
SSLIST « o 0 00 181
Comments Car@ « « « o o o o o o s-s o o o o o o o o 0 0 00000 181
VERBSlBl
DISPLAY « « « ¢ s o o o o o s o o o s o o s o o o o o o o ¢ 182
ERASE ¢ o o o o o o o o o o o s o s o o o o o o ¢ &0 0 000 184
PAUSE o o « o o o o o o o o o o o o s o o o s o o o = o o 185
QUESTION o« « + o ¢ o o s o o = o o o o o o o 0 o o 00 000 . 185
POINT « o« o o o o o o s o o o o o s o o o o s o o o o0 =8 187

SHOW L] e o e o o o+ & . ¢ ® e« o o o e o &] e o e o o ¢ o o 18 8

168

Page

BO TO « o« ¢ o o o o o 5 o o o o o o » o o ¢ o s o o o s o o 189

IF === THEN « o o o o o o o o o s s o o o s o o o o o« o« 190

STOP » o o o « o o o o o o s ¢ s o o o s s o o c oo oo oo 181
ASSIGN o o o o o o ¢ o s o s o o a o o o ¢ o s o o o o o o o 191
Maintenance of Student Performance Information . « « « « ¢ « « & 192
COUNLELS o o « o o« ¢ o o o o o s o o o o o s o o s s o o o o o 192
Return RegiSters . o« « o« « o o o o o o o o o o o o o o o o o ¢ 193
BUFEFEDS « o « o o o o o o o o o e o o s s s o o o o s o & o o 183
SWItChes « « « o o o o o o o o o o e e e e e e e e e e e 193
Specific Counters Used . « « « « o« o« o o o o o o o o o o o o o 193
ERROR MESSAGES .« o « o+ 194
WeLeVel o« « o o o o o o s o o o o o o o o o o o o & o o o o o 185

E-Level e o o o ® o o o o e o o s o o e s s o s o © ¢ o s o o 198

168

I. ngtax

When coding VAULT LOGIC care must be taken to observe syntax rules
and to ensure that data has been entered correctly.

For both DCR's and VERBS a parameter list will quite often be
available. If a parameter is enclosed in square brackets, i.e.,
[parameterl], then it may either be included or omitted completely, as
the programmer desires. If a set of pafameters are enclosed in paren-

theses, 1i.e.,

parameterl
parameter?

then only one of the parameters must be chosen.

For VERBS where CRT screen coordinates are parameters, care must
be taken to ensure that the bounds of the screen are not exceeded. The
screen has 32 rows, numbered 0 to 31, and 40 columns, numbered 0 to 39.
Thus possible coordinates are: X,¥, where x is 0 to 31, and y is 0 to
39. One line of text takes up two rows of the screen however. There-
fore there are effectively only sixteen text lines available on the CRT
screen.

Vapiable names and labels are also included as part of the para-
meter list for some DCR's and VERBS. They can be no more than six
characters in length. Also, variable names must start with an alphabetic
character and have no imbedded special characters. Labels can be

alphabetic or numeric. It should be noted that all labels must be

unique.

170

II. Division Control Records

These records are used to:

(1) set up logical subdivisions of BLOCKS, LESSONS, PROBLEMS;

(2) specify the options that are to be in effect for specific
PROBLEMS, LESSONS, and BLOCKS;

(3) signify the beginning and the end of the program;

(4) allow actual Coursewriter code to be inserted in the program,
and;

(5) specify options desired for the compilation.

Format of DCR's

All DCR's begin with two dollar signs (i.e., $SPROBLEM). Following
the DCR, at least one blank space is required after which the desired
parameters may be punched. Parameters may begin anywhere following the
DCR and a blank, but must end on or before column 71. Card column 72
has been reserved for use by VAULT.

Any information punched in card columns 73-80 will be ignored to
allow this area to be used for card sequencing.

Certain DCR's are optional and may be omitted. If this is done
then a standard set of options is used by VAULT if required.

The DCR's are divided into two categories: major DCR's and minor
DCR's. Major DCR's such as $$BLOCK, $SLESSON and $SPROBLEM, logically
subdivide the program and determine the extent of influence of minor
DCR's such as SSLATENCY, S$SCORRECTS, $SWRONGS, $SUNRECS, $STIMEOUTS.
For example, if a minor DCR is entered after a $SBLOCK and before the

first $SLESSON then its options will usually apply throughout the entire

171
BLOCK. However, the LOGIC programmer may override any option within any
LESSON or PROBLEM simply by entering the same minor DCR but with a
different parameter list. Similarly, if a minor DCR is entered after a
$SLESSON and before the first $$PROBLEM of that LESSON, then its options
will hold for every PROBLEM within that LESSON except for those PROBLEMS
containing the same minor DCR with different options. The options in
a minor DCR entered after a $SPROBLEM will apply only for that particular
PROBLEM and will revert back to the options specified for the LESSON as
soon as the PROBLEM is completed.

The use of the minor DCR's in conjunction with the major DCR's is
very important, therefore, in determining the logical structure of the
program and great care must be taken in sequencing the input cards so
that the desired results will be obtained. The method of using major
and minor DCR's to control the LOGIC will become clearer as each parti-

cular DCR is explained and examples are given.

$SLOGIC
This DCR specifies the beginning of the LOGIC DIVISION input and

must be the first card. The remainder of the card following this DCR

is disregarded and may be used for comments.

SSENDLOGIC

The DCR specifies that the last LOGIC DIVISION input card has been
reached. This record must be the last one since all further input is
ignored. As in the DCR $SLOGIC, the portion of the card following

$SENDLOGIC is disregarded and may be used for comments.

172
Example: $SLOGIC DRILL AND PRACTICE SEQUENCE

$SBLOCK
$SLESSON

$SENDLOGIC END OF DRILL & PRACTICE

$$BLOCK

This DCR specifies that all of the following input records are to
form a BLOCK, a logically associated subdivision of a course. Only one
BLOCK may be compiled at a time. Each BLOCK may contain up to 99
LESSONS.

A BLOCK may be labelled and branches can be made to this label.

Format: $$BLOCK [1label]

Example: $$BLOCK TRIG30

Any "minor" DCR's that immediately follow the $$BLOCK (i.e., they
precede the $$LESSON and $$PROBLEM), supply modifiers that will hold for

the entire BLOCK unless overridden at a LESSON or PROBLEM level.

Example: $$BLOCK
$SLATENCY 400
SSLESSON ONE

$SLESSON TWO
SSLATENCY 50

$SLESSON THREE

$SENDLOGIC

In this example the latency throughout the BLOCK will be 40.0
seconds except during LESSON TWO in which case the LATENCY will be 5.0

seconds. LESSON THREE will have a LATENCY of 40.0 seconds.

173
$SLESSON
This DCR signifies the beginning of a LESSON, a logically associated
group of records that are a subdivision of a BLOCK. All input records
up to the next S$SLESSON will be part of this LESSON.

A BLOCK may contain from 1 to 99 LESSONS, each of which may contain

up to 99 PROBLEMS.

LESSONS may be labelled and branches made to the label.

Format: S$SLESSON [labell]

Example: $SLESSON SINES

Any "minor" DCR's that immediately follow the $SLESSON (i.e., they
precede the next $$PROBLEM) supply modifiers that will hold for the

entire LESSON unless overridden at the PROBLEM level.

Example: $SLESSON
S$SLATENCY 405
$SUNRECS NO
$SPROBLEM ONE

$SPROBLEM TWO
$SUNRECS YES,3,4

S$SPROBLEM THREE
SSLATENCY 300

$SPROBLEM FOUR

éSLESSON

In the above example the LATENCY will be 40.5 seconds in PROBLEMS
ONE, TWO, and FOUR. No accumulation of UNRECOGNIZABLE answers will be
done in PROBLEMS ONE, THREE, and FOUR. Only PROBLEM THREE will have a

LATENCY of 30.0 seconds. Only PROBLEM TWO will have the UNRECOGNIZABLE

174

answers accumulated.

$SPROBLEM

This DCR signifies the beginning of a PROBLEM, a logically associ-
ated group of records that are a subdivision of a LESSON. All input
records up to the next $SPROBLEM will be part of this PROBLEM.

A LESSON may contain from 1 to 99 PROBLEMS.

A PROBLEM may be labelled and branches made to that label.

Format: $SPROBLEM [label]

Example: $SPROBLEM ACUTE
SSLATENCY 400

$SPROBLEM OBTUSE

In this example the latency in PROBLEM ACUTE will be 40.0 seconds,
but in PROBLEM OBTUSE the latency will revert back to the latency

specified for the LESSON.

$SLATENCY

This record specifies in tenths of seconds the amount of time that
will be allowed for a student to make a response to a question. The
range allowed is 0 to 9999 (i.e., 0 to 999.9 seconds). If this record

is omitted then a standard LATENCY time of 90.0 seconds will be used.

Format: SSLATENCY tttt

where tttt is the latency time in tenths of seconds.

Example: SSLATENCY 800

175

This specifies that students will be allowed a maximum of 80

seconds to answer a gquestion.

$SCORRECTS

This DCR specifies the action to be taken in a Coursewriter program
if a correct response is given by a student. It specifies that the
programmer wishes to override the current strategies associated with
each BLOCK, LESSON and PROBLEM.

The parameters specify:

(1) Whether or not any system action is to be automatically performed.

(2) The absolute number of correct responses necessary to generate
system action.

(3) The number of PROBLEMS that will be skipped by the system if a
correct response is made.

NO
Format: $$CORRECTS {[YES .]mm[,nn]}

where: mm is the absolute number of correct answers required in a
LESSON before the student is skipped forward;
nn is the absolute number of PROBLEMS that will be skipped
forward when the branch is taken; and
mm and nn can not exceed 99.
If there are not enough PROBLEMS left in the LESSON to accomodate
the branch, then the student will be branched to the beginning of the

next LESSON.

If this record is not entered at all, then the system will just
pass the student on to the next PROBLEM if he answers correctly.
Example 1l: $SLESSON

$$CORRECTS YES, 10,5
$SPROBLEM

176
In this example, if the student gives ten correct answers then he
will skip the following five PROBLEMS. If there are not five PROBLEMS
left in the LESSON, then he will skip to the beginning of the next
LESSON.

Example 2: SSLESSON MATH
SSPROBLEM ONE

$SPROBLEM TWO
$SCORRECTS NO

$SPROBLEM THREE
$SLESSON MATHOl

In this example, if PROBLEM TWO is answered correctly, the tally
of correct answers will not be incremented. However, the tally will be
incremented for the remaining problems within LESSON MATH.

Similarily, if $$CORRECTS NO is placed directly after a $SLESSON,
then the tally of correct answers will not be incremented for any correct

answers given in this LESSON.

NOTE: It is possible to conditionally branch the student to the
next LESSON regardless of the number of PROBLEMS remaining
in the LESSON. This is done by specifying nn as Q9.

Example 3: $SCORRECTS 5,99

In this example the student will be sent to the next LESSON when

he answers five PROBLEMS correctly.

$SSWRONGS

This DCR specifies the action to be taken by the system if a wrong
response is given by a student. It specifies that the programmer wishes

to override the corrent strategies associated with each $$BLOCK, $SLESSON,

177
and $SPROBLEM.

Normally on a wrong answer, the system will branch to repeat the
last executed QUESTION or POINT. If however, a student answers the same
QUESTION incorrectly three times, then the student will be taken back to
repeat the last three PROBLEMS. If there are less than three preceding
PROBLEMS in the LESSON then the system will start again at the beginning
of the LESSON.

The LOGIC programmer can change this strategy by use of the $SWRONGS

card.

. NO
Format: SWRONGS 4 ['vEs Juml ,nnl}

where: mm is the number of wrong answers entered for a particular
QUESTION that will cause the student to branch back to review;
nn is the number of PROBLEMS that will be skipped when branching
back. The system will never branch back past the start of the

LESSON; and
mn and nn cannot exceed 99.

If NO is specified then no action will be taken when a wrong answer
is given except to keep repeating the QUESTION until another type of

answer is entered. Also, the tally of WRONG answers will not be incre-

mented.

Example: $SPROBLEM ONE

$$PROBLEM TWO
$SWRONGS 2,1

In this example, if the student gives two wrong answers to PROBLEM

TWO, he will be branched back to PROBLEM ONE.

NOTE: It is possible to conditionaliy branch a student to the
beginning of a LESSON regardless of the number of PROBLEMS
within the LESSON. This is done by specifying nn as 99.

178

Example: $SWRONGS 10,98

In this example, if a student responds wrongly to any PROBLEM ten

times, he will be sent to the beginning of the LESSON for review.

$SUNRECS

This record specifies the system action to be taken in the event
that the student gives an unrecognizable (or unanticipated) response.
The system default on an unrecognizable response is to repeat the last
executed QUESTION or POINT. If three unrecognizable responses are given,
then the student will be branched back three PROBLEMS.

However, the programmer may override the system defaults by speci-

fying appropriate parameters in the SUNRECS card.

) NO
Format: $SUNRECS {[YES » Jmm[,nn]}

where: mm is the number of unrecognizable answers given for the current
QUESTION that will cause the student to branch back to review;
nn is the number of PROBLEMS that will be skipped when branching
back to review; and
mm and nn must not exceed 99.

1If NO is specified then the tally of UNRECOGNIZABLE answers will
not be incremented and the student will be presented with the same

PROBLEM continually until he gives a recognizable answer.

Example: $SUNRECS 4,2

In this example, when 4 unrecognizable answers have been given for
the same QUESTION then the student will be skipped back 2 PROBLEMS for

review.

179

It is possible to cause the student to be branched conditionally
to the beginning of the LESSON. See the Note under $SWRONGS for details.
NOTE: Outside the PROBLEM level VAULT makes no distinction
between UNRECOGNIZABLE and WRONG answers. (i.e., only

one counter is used to tally both types of responses at
the LESSON and BLOCK levels.)

SSTIMEOUTS

This DCR specifies the system action to be taken in the event the
student takes too long to respond (i.e., the student times-out).

Normally when a student "times-out," he will be given the current
QUESTION again. However, if he times-out on the same PROBLEM three
times then he will be branched back three problems for review. If there
are less than three preceding PROBLEMS in the LESSON then he will be
branched to the beginning of the LESSON. In either case the system
will give the student a message telling him he has timed-out. The

programmer may again override the system action by the use of this DCR.

NO
Format: STIMEOUTS '{iyES,]mm[,nni}

where: mm is the number of times the student is allowed to time-out
on the same QUESTION before he is branched back to reviews

an is the number of PROBLEMS that will be skipped when branching
back for review; and
mm and nn must not exceed 99.

If NO is specified the tally of the number of TIMEOUTS will not be
incremented and the student will be presented with the same PROBLEM

until he answers it in the time allotted.

NOTE: It is the SSLATENCY DCR which determines how long a
student has to answer a QUESTION before he is considered

to have timed-out.

180

Example: $$PROBLEM

$SLATENCY 300

$STIMEOUTS YES,2,5

QUESTION
Thus, if the student does not answer the QUESTION within 30 seconds

he will have timed-out. If he times-out three times then he will be
skipped back five PROBLEMS for review.

If desired, a student can be branched to the beginning of a LESSON

for review. Please see the Note under $SWRONGS for further detail.

$SCWSTART

Tﬁis DCR signifies that the input pecords following are actual
Coursewriter II source cards. No editing of the following input records
will be done and they will be written directly in the LOGIC DIVISION
output. They will then become part of the Coursewriter output that is
produced by the DATA DIVISION. An "en" opcode, or *END in cols. 1-4

must never be included in this Coursewriter input.

$$CWEND

This DCR signifies the end of the Coursewriter source input records.
VAULT will then resume checking of input for valid LOGIC division input
cards. If this card is encountered in the input stream without a pre-

ceding $$CWSTART DCR then a warning message will be generated and the

record ignored.

Example: $SPROBLEM
QUESTION
SSCWSTART
$$CWEND
$SPROBLEM

18l

$SLIST

This DCR is used to specify whether or not a listing of the LOGIC

input and the LOGIC output is required.

. (yes] [,YES]
Format: SSLIST {[NO] [,NO]}

where the first parameter refers to the listing of the input and the
second parameter refers to the listing of the output.

1f this DCR is omitted then only a 1isting of the input will be

provided.

Exmaple: $SLIST NO,YES

In this case no listing of the input will be produced but the

LOGIC division output will be listed.

$ Comments

Any card with a $ in column 1 and a blank in card column 2 will be
treated as programmer comments. The card will be printed but no action

will be taken by VAULT.

II%. VERBS

In general, VERBS have two uses:

(1) to control the logical flow of the Coursewriter II program; and,

(2) to provide the means for accepting data from the DATA DIVISION.

The logical control verbs are PAUSE, ERASE, IF --- THEN, GO TO, and

ASSIGN. They provide all the necessary information to the Coursewriter

182
II program and no additional information is required from the DATA
DIVISION.

On the other hand DISPLAY, QUESTION, POINT? and SHOW indicate the
points at which data should be provided by the DATA DIVISION. The
particular VERB used will determine what type of data should be entered,
and the parameters given will provide the means for controlling the input
DATA. TFor example, the DISPLAY VERB specifies that textual data is
required and the parameters prescribe the area of the CRT screen to be
used.

In effect then, these VERBS in LOGIC provide a logical course

structure which will be filled in by the cerresponding KEYWORDS in DATA.

DISPLAY

The DISPLAY VERB requires that text data should be provided by the

DATA DIVISION at this point in the program.

Format: DISPLAY [INSERT] [SR,SC,NR,NC [aaaaaal]

SR specifies the starting row of the material to be displayed on
the CRT screen.

SC specifies the starting column of the material to be displayed
on the CRT screen.

NR specifies the maximum number of rows on the CRT that can be
used for the display of the textual material.

NC specifies the maximum number of columns to be used for display
of the textual material on the CRT screen.

aaaaaa is an alphabetic name of six characters or less that can be
given and later used to refer to this set of coordinates.

INSERT specifies that textual material is to be "inserted" in text
text that is already on the screen.

183

If no parameters are given the system will default to:
DISPLAY 0,0,28,40

The parameters can never exceed the limits of the screen, that is
pows 0 to 31 and columns 0 to 39. Also rows 30 and 31 are reserved for
system messages and should not be used by the programmer.

Any of the coordinates can be represented by variable names
provided:

(1) the name does not exceed six characters and has no imbedded
special characters.

(2) a numeric value has been previously assigned to this variable
name.

(3) the numeric value does not cause the coordinates to exceed the
1imits of the screen.

When a DISPLAY is given, the whole screen will be erased before the
text for this DISPLAY is presented. If a DISPLAY INSERT is given, only
the portion of the screen specified by the coordinates will be erased
before the INSERT text is presented.

An indefinite pause will also be automatically generated after each
page of text associated with the DISPLAY thus allowing the student to
control the pace at which data is presented. There will be no automatic
pauses generated for a DISPLAY INSERT.

If the programmer wishes a different action to be taken then he
must supply the appropriate PAUSE and ERASE VERBS himself.

Example: $SPROBLEM
DISPLAY 10,0,10,40

84
This will cause textual material supplied by DATA DIVISION to be

displayed starting in row 10 and column 0 for 10 rows and 40 columns.

ERASE

This VERB specifies that all, or a certain portion of the CRT screen

is to be erased.

Format: ERASE [SR,NR] }
[2aaaaal

SR specifies the starting row of the area on the CRT screen to be
erased.

NR specifies the number of rows to be erased on the CRT screen.
aaaaaa specifies the label name to be erased.

This label name must correspond to a label which was previously
defined in a DISPLAY verb and the coordinates given in that DISPLAY
will be used to define the area of the screen to be erased.

If no parameters are present on this record then the total screen

will be erased.

Example: $SPROBLEM
DISPLAY INSERT 10,0,4,8
PAUSE 50
ERASE 10,4

¢$PROBLEM

This would cause the material displayed to be erased after five

seconds.

NOTE: Under current VAULT implementation, if a label is used
with ERASE when that label must have been defined in the
immediately preceding VERB.

185

PAUSE

This VERB specifies that the execution of the program shall pause

for a certain length of time.

Format: PAUSE [tttt]
tttt specifies the number of tenths of seconds that will pass
before execution is resumed. The range of the parameter is
0 to 9999.
The parameter can also be a variable providing it is:
(1) no longer than six characters;
(2) has no imbedded special characterssand,
(3) has been previously assigned a value within the allowable
numeric range.

If no parameter is specified for this VERB then execution will be
halted indefinitely until the student depresses a key on the keyboard.
Example: $SPROBLEM

DISPLAY

PAUSE 50

QUESTION
$SPROBLEM

This will cause a pause of 5 seconds between the presentation of

textual material and the question presentation.

QUESTION
The QUESTION VERB is used to supply the necessary parameters SO that
the teacher can present the student with a question, accept his answer

and issue a reinforcement or correctional message.

Format:
QUESTION[INSERT] [SRl,SCl,NRl,NCl/SR2,SC2,NR2,NC2/SR3,SC3,NR3,N03]

186

INSERT specifies that the question text is to be inserted on a
screen that already has text displayed on it.

The first set of parameters (those ending in 1) refer to the area
on the CRT screen where question textual material is to be

displayed.

The second set of parameters (those ending in 2) refer to the area
on the CRT screen where the student response is to be entered.

The third set of parameters (those ending in 3) refer to the area
on the CRT screen where a reinforcement message is to be given.

SRn specifies the starting row of area n
SCn specifies the starting column of area n

NRn specifies the number of rows in area n
NCn specifies the number of columns in area n

If no parameters are given the system defaults are:
QUESTION 6,0,10,40/17,0,4,40/22,0,6,40

Previously assigned variables may be used to specify any of the
coordinates provided the variable name conforms to the rules for names.

Also any of the coordinates may be omitted and the system defaults

will be used instead.

Example: QUESTION 2,,,5/,3 would be the same as
QUESTION 2,0,10,5/17,3,4,40/22,0,6,40
Example: $SPROBLEM
DISPLAY

QUESTION 2,0,10,5/17,3,k4,40/22,0,6,40

$SPROBLEM

This example will display textual material then pause until the

student is ready to continue. The student will then be presented with

QUESTION text in rows 2 to 1ll; his answer will be accepted in rows 17

to 20 and a reinforcement message will be given in rows 22 to 27.

187
POINT
The POINT VERB is used to supply the necessary parameters so that
the teacher can present the student with a question, accept a light pen

response and issue a reinforcement or correctional message.
Format: POINT [SRl,SCl,NRl,NCl/SR2,SCZ,NR2,NC2]

The first set of parameters (those ending in 1) refer to the area
on the CRT screen where question textual material is to be displayed.

The second set of parameters (those ending in 2) refer to the area
on the CRT screen where a reinforcement message is to be given.

SRn specifies the starting column of area n

SCn specifies the starting column of area n

NRn specifies the number of rows in area n
NCn specifies the number of columns in area n

If no parameters are given the system defaults are:
POINT 0,0,6,40/22,0,6,u40

Previously assigned variables may be used to specify any of the
coordinates provided the variable name is alphameric and not more than

six characters.

Also any of the coordinates may be omitted and the system defaults
will be used instead.

The POINT VERB is used in conjunction with the DISPLAY INSERT in
the following manner. The POINT will provide the parameters for the
question text and a number of labelled DISPLAY INSERTS are given to
define areas where different light pen respomses can be received.

Separate labelled text will be given in DATA for each DISPLAY INSERT

188
thereby providing a set of multiple choice answers for the student to

choose from.

Example: $SPROBLEM

ERASE

DISPLAY INSERT 1l
DISPLAY INSERT 1
DISPLAY INSERT 1l
DISPLAY INSERT 1
DISPLAY INSERT 2
POINT 0,0,8,40

NN WOoOwOo

In this case the area from row 0 to row 7 will be used for the
question text. The areas labelled A,B,C,D,E, will be used to display
separate multiple choice answers and a light pen response can be
accepted from any one of these areas. The reinforcement message will

be given in rows 25 and 26.
SHOW
This VERB gives the necessary parameters for using the Image

Projector. The Image Projector can be controlled completely from the

LOGIC DIVISION or else one of the parameters may be overridden in the

DATA DIVISION.

Format: SHOW [[CLOSED,JFFFF[,nnnn]]

CLOSED specifies that the film is to be positioned only and that
the shutter is to remain closed.

FFFF specifies the film frame number that is to be projected and
must be in the range 1-1022 (this parameter may be overridden
in the DATA DIVISION).

nnnn specifies the number of tenths of seconds for which the frame
is to be exposed and must be in the range 0 to 9999.

If there are no parameters present, then the system will assume

that the frame at which the Projector is currently positioned is to be

189
projected for an indefinite amount of time. If the word CLOSED is not
present, then it is assumed that the shutter should be opened.

The third parameter, (if any), will be ignored if CLOSED is used.
1f CLOSED is the only parameter then the shutter of the Image Projector

will be closed and no film positioning will be done.

GO TO

This VERB is used to control the logical flow of the program. It

specifies that an unconditional branch should be taken.
Format: Go T0 [label]

The label must be a maximum of six characters in length beginning
with an alphabetic and having no embedded special characters. This
label must match precisely with one specified with a $$BLOCK, $SLESSON,
or $SPROBLEM.

When the DATA DIVISION is compiled, the instruction will then be
modified to branch to the label of the BLOCK, LESSON or PROBLEM in
DATA which corresponds to the one referred to in LOGIC. The instruction
will be further modified if the number of subdivisions (BLOCKS, LESSONS,
PROBLEMS) in the DATA DIVISION is different from that in the LOGIC

DIVISION.

Example: GO TO PROB2

$$PROBLEM PROB2

When the Coursewriter II program is executed it will branch to the
PROBLEM that was associated with PROB2 in LOGIC. If no DATA is supplied
. for PROBLEM PROB2 then a dummy label will be created to accommodate the

branch.

190

IF --- THEN

This VERB specifies that if the specified condition is true, during

execution of the program, then the specified action will be taken.

Format: IF (condition)
THEN (action)

The condition can be a logical comparison of counters versus numbers
or variables, or it could be a description of a possible student anser.

The allowable conditions are:

CORRECT

WRONG

UNREC

TIMEOUT

ADDITIONAL

CORRECTS (relation) nn

WRONGS (relation) nn

UNRECS (relation) nn

TIMEOUTS (relation) nn

ADDITIONALS (relation) nn

TIME (relation) tttt

COUNTER.CC (relation) LCOUNTER-CCI
[xxxxx]

SWITCH-SS (relation) y

where: (relation) is either >,<,=,#,>=,<=
nn is a number from 0-88
+ttt is the number of tenths of seconds in the range 0-9999

CcC is the counter number from 0-30
xxxxx is a number in the range -32768 to +32767
SS is the switch number from 0-31
y is 0 for OFF
1 for ON

The action to be taken by the THEN must be GO TO or STOP with the

necessary parameters .

The THEN section of this VERB must be on a separate input record

from the IF section.

191

Example 1: IF CORRECT
THEN GO TO START
Example 2: IF COUNTER-4 = 25
THEN STOP
STOP

The STOP VERB is used to halt execution of the program at any point

in the program. There are.no parameters associated with this VERB.

Format: STOP

Its main use will be with the IF --- THEN VERB to halt execution

if a certain condition occurs.

Example: IF WRONGS = 20
THEN STOP
ASSIGN

This VERB is used only during LOGIC DIVISION compilation and is not
used to provide information directly to the DATA DIVISION. It allows an
expression to be evaluated and the value assigned to a particular variable.
The variable can then be specified as a parameter, and its assigned value
will be extracted and used.

Format: ASSIGN [expression-1 [expression-2----]]

£

The expressions are mathematical expressions using either the add
(+), subtract (-), multiply (¥*) or divide (/) operators. The right hand
side of the expression can have no more than 2 operands. The expression

will be evaluated and stored for future use in the LOGIC compilation.

192

Example: ASSIGN TIME=SECS*60

This will evaluate the value of the variable SECS multiplied by 60
and store it as the variable TIME.

If the expression has no equal sign

(i.e., ASSIGN PROB)

then that variable will be deleted. If no expressions are given, then all
variables currently defined will be deleted.

The variable name must begin with an alphabetic character and have
no imbedded special characters. It's length cannot exceed six characters.

The evaluated expression must be in the range -32768 to +32767.

IV. Maintaining Student Performance Information

Counters
Counters 0-15 and 25-30 are used in the Coursewriter II program

produced by VAULT and normally cannot be used by the programmer. However,
counters 1-15 can be made inoperative by the use of:

$$SCORRECTS NO

$SWRONGS NO

$SUNRECS NO

$STIMEOUTS NO

These counters will then be available for programmer use. Counters

0, 13, and 25-30 should not be altered by the programmer.

Return RQgi;ters

Return Register 1 and 2 are the only return registers used by the
Coursewriter II output from VAULT. At the start of each PROBLEM, the
address (label) of that PROBLEM is stored in return register 1 and the
last executed PROBLEM label in return register 2. These addresses may
then be used by the programmer for any branching he may want to do in
Coursewriter. At present VAULT does not provide any facilities for

making effective use of this address.
Buffers
Buffer 5 contains the students name if his name was used when he was

registered.

Switches

Switch 31 is turned on if the student has started the course before.

Specific Counters Used

0 Time in tenths of seconds the student took to respond to a request
for keyboard or light pen entry.

Number within current PROBLEM

TIMEOUTS } Total number within current LESSON
Total number within current BLOCK
Total number in the course

£ wn

Total number within the current LESSON
CORRECT Total number within the current BLOCK
Total number in the course.

N oO;m

8 Total number of UNRECOGNIZABLE answers within the current PROBLEM
9 Total number of WRONG answers within the current PROBLEM

11 and Total number within current BLOCK

10 UNRECOGNIZABLE Total number within current LESSOf}
12 WRONG Total number in the course

194

13 the rank value of the student response within a set of ADDITIONAL
answers as specified in the DATA DIVISION.

13 RESERVED FOR FUTURE USE
15 RESERVED FOR FUTURE USE

16-24 Available for programmer's use

25 Total number within the current LESSON (not including
TIMEOUTS)

26 attempts4 Total number within the current BLOCK (not including
TIMEOUTS)

27 Total number in a course (not including TIMEOUTS)

28 Total number presented in a course

29 PROBLEMS 4 Total number presented within the current BLOCK

30 Total number presented within the current LESSON

V. VAULT LOGIC Error Messages

All error messages in VAULT are given a four character number. The
first character E, or W, indicates the severity of the error and the
general action taken by VAULT. The last three characters provide a
preference number to look up the appropriate explanation and correction

procedure.

E-Level (Error)

This type of error is sufficient to cause total suppression of all
the following output. Error checking will normally continue however on

all the remaining input. NO LOGIC output will be produced.

W-Level (Warning)

When this error is encountered processing will continue. Depending
on the nature of the error, the input card will either be ignored com-

pletely or else VAULT will try to correct the condition by assuming

185
certain default conditions. Therefore, the user should check carefully
both the input card and the reference manual to be sure he will get the

results he expects. The error message will indicate exactly what action

VAULT has taken on a particular error.

W-Level Errors

Wo10 A blank card has been encountered in the input cards. The card
will be by-passed but the programmer should check his input
carefully to ensure that he did not intend to put a valid LOGIC

card in this position.

w020 More than 9999 LOGIC cards have been processed. No further
input cards will be processed and LOGIC will be terminated in

the normal way for those cards already processed.

w022 An end-of-file condition was raised on the input file before
$SENDLOGIC card was read by VAULT. The same action will be
taken as if a $SENDLOGIC had been read at this point. The
programmer should check to make sure all the input cards he

intended to include were actually processed.

W033 A SSCWEND was encountered without a preceding $SCWSTART with
which to associate it. The $SCWEND will be ignored and pro-

cessing will continue normally.

W035 The label in a $$BLOCK, $SLESSON or $SPROBLEM exceeds six
characters. The label will be truncated on the right and

processing continues.

w038 $SCOMPTYPE is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

WO039 $SKEYL is not yet available in VAULT LOGIC. The card is

ignored and processing continues. -

woul

wou2

wou3

woLl

w050

w063

w066

w067

wos8o0

196

$SLOGICNAME is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

$SORDER is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

$SOUTPUT is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

SSPHONETICS is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

$$SPELLING is not yet available in VAULT LOGIC. The card is

ignored and processing continues.

There are more than two parameters in a DISPLAY verb not
including INSERT or GRAPHIC. (note also that the coordinate
set counts as one parameter for counting purposes). All other

parameters then will be ignored and processing will continue.

The label on the DISPLAY card is more than six characters in
length. Therefore it will be truncated on the right and only

+he first six characters used.

GRAPHIC is not yet available as a DISPLAY parameter. This

DISPLAY card is ignored and processing continues with the next

input card.

There are more than five parameters on an input card. Check
the card to be sure that unnecessary blanks are not imbedded
in the paréheter set. The action that will be taken by VAULT
10GIC with regard to using or ignoring the extra parameters
will depend upon the particular VERB involved.

w030

W095

w100

W1l0

Wisl

W195

w193

w221

197

The variable name of a set of coordinates is more than six
characters in length. The name js truncated on the right and

the first six characters used.

A given variable name is more than six characters. It will

be truncated on the right to six characters.

The label in the POINT card is more than six characters in
length. The label is truncated on the right to six characters

and processing continues.

In an ASSIGN card the variable that is specified to be deleted
can not be found in the variable table. That is, it has not
been previously defined. The variable will be ignored and
processing will continue with the next expression on the

ASSIGN card.

The parameter in the IF statement is an expression rather than
a single word but the First word of the expression does not

end in "S". "S" is added to the first word and normal proces-

sing continues.

There is only one "parameter" in an IF card and it is a single
word rather than an expression. However, this parameter ends
in an "S". The "S" is removed from the end of the parameter

and normal processing continues.
The argument in an IF TIME statement is not in the range 0-9999.

A label of more than six characters is specified in a GO TO
statement. The label is tpruncated on the right and normal

processing continues.

198

E-Level Errors

EO030 The DCR in the input card is jnvalid. Either it has been

spelled incorrectly or it has not yet been made available for

use in LOGIC.

EO31 No parameter was found in one of the following DCR's: LIST,
LATENCY, CORRECTS, SPELLING, TIMEOUTS, UNRECS, WRONGS. A
parameter is required for each of these DCR's and must be

included.

E032 There were too many parameters in one of the following DCR's:
LATENCY, CORRECTS, TIMEOUTS, UNRECS, WRONGS, or else one of

the parameters that was there was incorrect.

EO34 A SSDATA was encountered and this is not valid in the LOGIC
DIVISION. This $$DATA is treated as a $SENDLOGIC, and the

LOGIC division compilation is terminated immediately.

E035 More than 200 labels have been generated for this particular
BLOCK which is being processed and the system can not handle

any more. LOGIC is terminated immediately.

E039 A label was encountered that has already been used in a
previous DCR. This is an illegal condition. Please check the
complete program for any branches to this label and correct

all invalid references.

EO036 A LESSON number greater than 99 has been encountered for this
BLOCK. As the maximum is 99, the system cannot handle this
LESSON number and LOGIC is terminated immediately.

E037 A PROBLEM number greater than 99 has been encountered for this
particular LESSON. As the maximum is 99, the system cannot
handle this PROBLEM number and LOGIC is terminated immediately.

EO040

E0uS

EOu46.

EO48

EOR9

EO051

EOS1

EO065

E066

~199

Either there was no parameter on a $SLIST card or else the

parameter was not YES or NO.

One of the following rules for the parameter in a LATENCY card
has been violated: the parameter is a variable name of more
than six characters, the variable has not been previously
assigned, or the value of the vapiable is not in the range

0-9999.

A LATENCY card is not preceded by a $SPROBLEM (either actual
or implied as with the first PROBLEM in the course).

The parameter in one of the following DCR's ends with a commaj;
CORRECTS, WRONGS, UNRECS, TIMEOUTS. This is not legal syntax

and therefore the card cannot be processed.

The parameter in CORRECTS, WRONGS, TIMEOUTS, or UNRECS is
either not numeric or it is not in the range 1-99 if it is
pumeric. This is an illegal condition and therefore no

further output will be produced.

A CORRECTS, WRONGS, TIMEOUTS or UNRECS is not preceded by a
PROBLEM, LESSON or BLOCK DCR. No further output is produced.

Syntax checking continues.

A VERB has been encountered which is not valid. Either it has
not been made available for use yet or it is spelled incorrec-

tly.

More than 4 coordinates have been specified for a DISPLAY verb.
LOGIC cannot handle this invalid condition so the card is not

processed and no further output is produced.

The first character of the label associated with the DISPLAY
verb is not alphabetic. Therefore, the label cannot be

processed.

E070

EO071

EQO80

E0S0

E091

E095

E096

200

The label in an ERASE verb does not match the label in the
jmmediately preceding DISPLAY card which gives the coordinates
to be erased. This card can therefore not be processed as no

coordinates are available for its use.

Only one coordinate is specified in an ERASE card. Both
coordinates must be specified if coordinates are being used

rather than a label.

An "en" card or *END label was found in user Coursewriter II
input. As this will terminate the program when it is run on
the IBM 1500 it is assumed that the programmer did not intend

to include it.

More than two parameters were found in a QUESTION card (not
including "INSERT"). Note that the set of coordinates counts
as one parameter and therefore there should be no imbedded

blanks in the coordinate set.

For a particular card type, the set of coordinates given do
not fall within the allowable range. Check the rules for the
particular VERB in question and correct the coordinate values
accordingly. In most cases syntax checking of imput will

continue but no further output will be produced.

For a particular card type the value of a parameter does not
fall within the specified range. Check the rules for the
particular card type which caused the error to see what the

range should be.

A variable given in an input card has not been previously
defined and therefore a required value cannot be obtained for
an input card. In most cases syntax checking of input will

continue but there will be no further output produced.

E097

E100

E101

El02

E103

E105

E190

201

The value previously assigned to a variable does not fall
within the limits for the parameter in question for a particular
card type. Check the rules for parameters for the card which
caused the error. In most cases syntax checking of input will

continue but there will be no further output.

An undefined variable has been used in an expression to be
evaluated by an ASSIGN and therefore, the expression cannot

be evaluated.

The numeric value to be assigned to a variable by ASSIGN
exceeds the range + 32,767. As this is the maximum number

allowed, the ASSIGN cannot be completed.

The programmer has tried to ASSIGN values to more than 50
variables. As 50 is the maximum number that can be handled
by VAULT LOGIC, this ASSIGN cannot be processed. The program-

mer should delete any unnecessary variables.

An attempt was made to divide by zero when evaluating an
expression in an ASSIGN card. This cannot be carried out and
the programmer should check the expression and variables
involved and rectify the problem. This error will be raised

also if the evaluated expression is not in range -32768 to 32767.

An imbedded blank was found in an expression to be evaluated
by an ASSIGN card. This cannot be handled and therefore the
programmer should check the syntax rules for ASSIGN expressions
carefully and rectify the problem.

No parameters were found in an IF card. As this makes the IF
meaningless no action can be taken by VAULT LOGIC.

E192

E1S3

E185

E196

E197

E198

El99

E200

E201

202

The parameter in the IF card was an expression but the first
word in the expression was not one of the following TIME,
ADDITIONALS, WRONGS, UNRECS, CORRECTS, TIMEOUTS and it was
also not a COUNTER, BUFFER or SWITCH. As no other parameters

are valid the IF card could not be processed.

The BUFFER, COUNTER or SWITCH number specified in an IF state-
ment was not within its required limits that is 0-5 for BUFFER,
0-30 for COUNTER, and 0-31 for SWITCH. The IF card can there-

fore not be processed.

A single word parameter was detected in an IF statement but it
was not one of the following: ADDITIONAL, WRONG, TIMEOUT,
UNREC, CORRECT. No other single word parameters are allowed

so the IF statement can not be processed.

The right hand argument of an IF SWITCH is either COUNTER,
BUFFER or SWITCH which are all invalid.

The right hand argument of an IF COUNTER is either BUFFER or
SWITCH which are invalid.

COUNTER number of right hand argument of an expression exceeds
the limits 0-30.

The right hand argument of BUFFER is not BUFFER.

A THEN statement has been encountered with no preceding IF
statement. As THEN is meaningless in this context it cannot

be processed.

An IF statement has already been processed but there is no
THEN statement following it. This is an illegal situation and

makes the IF statement unusable.

E220

E221

E222

E250

E251

ES00

203

In a GO TO statement either "TO" is missing or else the label

to which the program should branch is missing.

The first character of a label in a GO TO statement is not
alphabetic. This not a valid label and therefore the GO TO

cannot be processed.

200 branch (GO TO etc.) statements have already been encountered
in this run of VAULT LOGIC. As this maximum of 200 cannot be

exceeded this GO TO statement cannot be processed.

Either the parameter in a PAUSE statement is a label which does
not have an alphabetic character for the first character, or,

the actual number specified is greater than 9999.

The variable specified in the PAUSE card cannot be found in the
variable table or if it was found its value is not in the

range 0-9999.

A $$BLOCK card was encountered after another major DCR, e.g.,
$SLESSON or SSPROBLEM. The sequence of the input cards should
be checked carefully.

APPENDIX E

VAULT DATA DIVISION SPECIFICATIONS

TABLE OF

DIVISION CONTROL RECORDS .
Major DCR's .« « « « « &
SSDATA &+ ¢ ¢ o o o o o
SSENDATA « « o o o o &
SSBLOCK ¢ ¢ « o o o o
$SLESSON « ¢ « o ¢ « =«
SSPROBLEM . ¢« « ¢ « =«
Leading DCR's
SSCWDECK « .« « ¢ o« =« &
SSAUTHOR . + ¢ « o o &
SSCOURSENAME =«
SSLIST « «. + o « o o =
$SSTARTBLOCK . .+ « « .
SSSTARTLBL « « « « o =«
SSLOGPK « ¢ « « o o =
Optional DCR's
SSROWSIZE .« « « o =« -
CSSHYPHEN « . « « « .
KEYWORDS ¢ ¢ ¢ ¢ o o o o o
Conformable KEYWORDS . .

TEXT . . ¢« o o o @ . .

QUESTION . « + « + « «

CONTENTS FOR APPENDIX

Light Pen Respomse Request . . « o « ¢ « o «

Optionally Conformable KEYWORDS . « o « o o =

SHOW o « ¢ ¢ o o o o =

205

Page
207
208
208
208
208
209
210
211
211
211
212
212
213
213
21y
21y
214
215
215
217
217
220
221
221

221

206

Page

Non-conformable KEYWORDS . « « o o o o o o o s o o o s s o o ¢ 222
TIMEOUT . & « o« o o o o o o o o s o« o o o s o o s o o o o o 223
CORRECT « o o o o o o o o s o o o o o o o o o o o o o o o o 224
WRONG « o o o « o o o o o o o o o o o o o o o o s s o o s o 225
UNRECOGNIZABLE « o« « o 226
Light Pen ReSDONSES « « « o o + o o o o o o o o o & o o o o ¢ 227
VAULT DATA Error MeSSagesS . o« o o o o o o o o o o ¢ o o o o o o o 228
HWoLeVel .« o « o« o o o o o o o o o o » o o o o o o o o o o o = 230

E-LeVel .« « o o ¢ o o o o o s o o o s s o o o s o o o & o o o 234

07

I. Division Control Records (DCR)

These records have three functions:
(1) to logically subdivide the program into BLOCKS, LESSONS,

PROBLEMS 3

(2) to provide the IBM 1500 Instructional System with the necessary
information to execute the program, and;

(3) to signify the beginning or end of the program.

All DCR's begin with two dollar signs ($%).

Following the name, at least one blank space is required after which
the desired parameters may be punched. The parameters may begin anywhere
after the name and a blank, but must end on or before card column 71.

Any information punched in card columns 73-80 will be ignored to
allow this area to be used for card sequencing.

Certain DCR's may be omitted. If this is done, a standard set of
options which is associated with each DCR will be automatically provided
by VAULT.

Three of the DCR's ($$BLOCK, $SLESSON, $SPROBLEM) referred to as
"major" DCR's, are matched against the incoming LOGIC to modify presen-
tation. It is not necessary that these DCR's conform either in number,
or parameters with the LOGIC.

Any labels that are used (see discussion of labels under specific
DCR's) must begin with an alphabetic character, and be not more than six
characters in length. The characters other than the first can be
alphabetic or numeric.

$SDATA and $SENDATA signify the beginning and the end of the program

respectively and should not be omitted.

208

All the DCR's listed below are optional and are not compared in any

way with the LOGIC DCR's.

$SAUTHOR
$SCOURSENAME
$SLIST
$$STARTBLOCK
$$STARTLBL
$SLOGPK
S$SROWSIZE
S$SHYPHEN
$SCWDECK

Major DCR's
$SDATA

This signifies the beginning of the input to the VAULT DATA DIVISION.
It should normally be the first input record. All card columns following

$SDATA are ignored by VAULT and may be used simply for comments by the

author.

Format: $SDATA [comments]

Example: S$SDATA THIS IS THE BEGINNING OF TRIGONOMETRY

NOTE: If a parameter is enclosed in square brackets, i.e.,
[comments], then it may be optionally included or omitted
by the programmer.

$SENDATA

This DCR signifies the end of the input cards. It should be the
last card since any cards following will be completely ignored. Any
information punched following $$ENDATA will be ignored by VAULT and may

be used for comments.

Format: S$SENDATA [comments]

209

Example: S$SENDATA THIS IS THE END OF TRIGONOMETRY
NOTE: S$SENDATA has only one "D."
$$BLOCK

This DCR signifies that all following material is to be treated as
a logical grouping on the IBM 1500, much like a chapter in a textbook.
This record may be omitted.

This BLOCK (chapter) may be given a one-word label (name). Anything
further on the card will be disregarded.

Only one $$BLOCK record may be compiled at one time and it must
precede the other major DCR's and the keywords. More than one $$BLOCK
record will cause VAULT to stop further processing and to output any
Coursewriter II code that has alfeady been generated.

A BLOCK may contain as many as 99 LESSONS or as few as one.

Format: $$BLOCK [labell
Example: $$BLOCK MATH10
SSLESSON

This DCR signifies that the following input up to the next SSLESSON
is to be treated as a logical subdivision of the BLOCK. The first
S$SLESSON record may be omitted.

As many as 99 LESSONS are allowed, each one of which may contain
from 1 to 99 PROBLEMS. If more than 99 S$SLESSON cards are encountered,

VAULT will stop processing and any Coursewriter II code already generated

will be output.

210

When this record is encountered, the LOGIC is checked for a corres-
ponding LESSON DCR. If it is at a LESSON DCR already, then VAULT will
proceed normally. Otherwise, intervening LOGIC will be skipped until a
LESSON DCR is encountered. If there are no further LESSONS in LOGIC,
then VAULT will go back to the beginning of the LOGIC BLOCK and continue
processing from the first LESSON in the BLOCK (chapter).

The LESSON may also be labelled (i.e., named) if desired by supply-

ing a label on the record.

Format: $SLESSON [labell
Example: S$SLESSON PART1
$SPROBLEM

This DCR signifies that the following imput to"“the next S$$PROBLEM
is to be treated as a logical subdivision of the LESSON. The first
PROBLEM within a LESSON does not require a $$PROBLEM pecord.

As many as 99 PROBLEMS may be entered in any LESSON. If more than
g9 are encountered, then VAULT will stop processing records within that
LESSON. If there are no further LESSONS in this DATA, then all the
Coursewriter II code already generated will be output.

If more PROBLEMS are supplied in the DATA DIVISION than exist in
the LOGIC, VAULT will return to the beginning of the current LOGIC LESSON
and continue processing DATA from the figgE_PROBLBM in that LESSON. In
this way, the DATA DIVISION can have more , as many, or less PROBLEMS
than in the corresponding LOGIC.

The PROBLEM may also be labelled by punching a label, or name, oOn

the card.

211
Format: S$SPROBLEM [labell]

Example: $SPROBLEM PRO15

Leading DCR's

$SCWDECK

It is probable that a teacher would want to only have a printed
listing of his program output at first until he is sure that all coding
errors have been removed from his input. Until such time he would not
be ready to try his program out on the IBM 1500.

This DCR, SCWDECK, is designed to permit the production of
Coursewriter II cards. This record may be omitted, in which case a deck
will not be produced.

If the author wishes to have a deck produced he should punch YES as
the parameter. If he does not yet require a Coursewriter II deck he

should either omit the card or enter the parameter NO.

) LYES
Format: $$CWDECK ‘(FNO]
Example: $SCWDECK NO

This would cause suppression of punching of Coursewriter II cards.

$SAUTHOR

This record specifies the author “hame" for the IBM 1500 Instruc-
tional System. The name must begin with the letter A through I and be 4

or less characters in length.

This record may be omitted, in which case VAULT will use A0Ol as

the author "name."

212

Format: SSAUTHOR XXXX
Example: $SAUTHOR D176
$SCOURSENAME

This record specifies the name of the course that is being program-
med. The name should be five characters or less in length. It must
begin with an alphabetic character, and the remaining characters must be
either alphabetic or numeric.

This record may be omitted, in which case VAULT will use one
supplied in the LOGIC. However, as this is the name that will be used
when calling the program for execution on the 1500 system, this DCR

should be included to ensure a unique course name.

Format: S$SCOURSENAME XXXXX
Example : $$COURSENAME MATH
$SLIST

This DCR specifies whether or not a printed listing of the Course- -
writer II code is desired. If a listing is desired, punch YES on the
card anywhere following $SLIST. If a listing is not desired, punch NO.

This record may be omitted, in which case a listing will be produced.

. [YES]
Format: $SLIST {[NO] }

Example: $SLIST NO
(This would cause VAULT to NOT list the Coursewriter II code.)

NOTE: $3LIST does not effect error messages. They will always be
printed.

213

$$STARTBLOCK

Since the BLOCK is like a chapter in a textbook, this DCR supplies

a number to the chapter (BLOCK).

If this record is omitted, the number assumed is 1 (i.e., chapter 1).

Format: $$STARTBLOCK XX

where: XX is a number between 1 and 99 inclusive.

Example 1: $SSTARTBLOCK 3
Example 2: $$STARTBLOCK 15
NOTE: If $$STARTLBL (see page 21%) is also used and the label

specified is numeric, (e.g., $SSTARTLBL 150304) then the
first two digits must equal the STARTBLOCK number (chapter

number).
The following example is correct.

$SSTARTBLOCK 10
$$STARTLBL 100514

The following example is incorrect.

$SSTARTBLOCK 10
SSSTARTLBL 150309

SSTARTLBL (Start Label)

It will often occur that a course or BLOCK is only partially com-
pleted one day and processed by VAULT. Later om, an author could produce
additional VAULT code which he wants processed. In this case, it would

be necessary to provide VAULT with the last label used. The $$STARTLBL

does this.

The label given must already exist in the COURSEWRITER II program to

which the teacher wishes to add. If the label is numeric then any

214

further labels generated by VAULT will sequentially follow the label
given in the $$STARTLBL card. If the label is alphabetic then VAULT
would produce labels stating at a $SSTARTBLOCK parameter (01), LESSON (01),

and PROBLEM (01). Note that the DATA input will be matched with the

beginning of the LOGIC program.

$SLOGPK

This DCR specifies the number of the IBM 1500 disk pack on which an
author desires this course to be stored. The number given must be
between 0 and 32767 inclusive. It is suggested that an author check
with the IBM 1500 System Manager before using this DCR. If this input

record is omitted then the logical pack number assumed will be 00000.

Format: $SLOGPK XXXXX
Example 1: $SLOGPK 1043
Exampel 2: $SLOGPK 0

Optional DCR's

$SROWSIZE

This DCR allows an author to specify what kind of spacing is desired
on the 1500 Display Screen (I.E., single spacing, double spacing, etc.)
The number given normally has limits of 2 through 28. If this DCR is
omitted, the system will use $SROWSIZE 2, i.e., single spacing. A

particular ROWSIZE will remain in effect until another ROWSIZE DCR is-

encountered in DATA.

Format: SSROWSIZE XX

215

Example 1: $SROWSIZE 3

Example 2: $SROWSIZE U4

NOTE: The IBM 1500 requires two rows to display one line of
textual material. Therefore, the following record is
invalid:

$SROWSIZE 1

SSHYPHEN

This DCR permits the author to specify the minimum size of word that
may be hyphenated (broken) when a word is too long to fit into the

number of columns that remain on the current row of the CRT. If this

record is omitted the system default will break a word only if it contains

at least 6 characters. A restriction is that the parameter may not be

as large as or larger than the screen width defined by the logic para-

meters.

Format: $SHYPHEN XX
Example 1: SSHYPHEN 8
Exampel 2: $SHYPHEN 20

I1I. Kezzords

Keywords have four uses:

(1) to provide curriculum material that is to be presented to the
student.

(2) to provide textual material that is to be presented in the form
of a question to the student.

(3) to specify expected answers of the student (i.e., correct
answers, Wrong answers, etc.)

216
() to provide corrective or reinforcement material that is to be
presented to the student depending on his type of answer.

Basically, any portion of a card may be used from card column 1
through 71. The keyword, however, must be the first word punched on the
card and it must be completed by card column 71. All keywords should be
followed by a colon (:) and onme blank space.

Following is a list of VAULT keywords.

TEXT:

QUESTION:

CORRECT:

WRONG:

ADDITIONAL:

TIMEOUT:

UNRECOGNIZABLE: or UNREC:
SHOW:

Since the LOGIC that has been provided has already defined the
particular devices to be used, the order in which they are used, etc.,
it is required that the DATA input be somewhat conformable to the
specified LOGIC. For example, if the LOGIC calls for material to be
displayed on the 1500 Display Screen, it is necessary that correspond-
ingly the DATA input provide the material to be displayed. If the LOGIC
expects some material to be presented in the form of a question, then
the DATA must, at that time, provide the question material.

Necessarily then, the teacher must be aware of the requirements of
the LOGIC, and adapt his subject matter input correspondingly.

There are eight keywords available to the teacher. Two of these,
TEXT: and QUESTION:, must be conformable in position to LOGIC. The

keyword SHOW: is optionally conformable. The others are not matched in

any way to the LOGIC.

217

Following is a list of the keywords by conformity:

optionally

conformable conformable non-conformable

TEXT: SHOW: TIMEOUT:

QUESTION: CORRECT:
WRONG:
ADDITIONAL:
UNRECOGNIZABLE:
UNREC:

Conformable Keywords

TEXT:

The purpose of this keyword is to provide textual material which
will be presented to the student on his Display Screen.

Since the precise placing of text on the screen is defined in LOGIC,
the relative position of this keyword within a PROBLEM must be the same
as that within the LOGIC PROBLEM. A short look at the LOGIC will tell
one where to place this record.

The textual material is expected to begin following the keyword, a
colon and a space. The material must end with an end-of-text character

(i.e., 0-2-8 punch). This is normally signified in writing by a small

box (0).
Format: TEXT: [Display material]ll
Example: $$PROBLEM

TEXT: <I>N 1534, <J>ACQUES <C>ARTIER SAILED FROM
<S>T. <M>ALO IN <F>RANCE.O
Note the characters surrounding the I in "IN," the J in "JACQUES,"
the C in "CARTIER," etc. These characters, and other are necessary for
the computer. As one can check, the keypunch only punches capital

letters, unlike a normal typewriter or the IBM 1500 Display Terminal.

28
It is necessary therefore to tell the computer when a capital is desired,
and when a lower case is desired. Furthermore, certain characters on the
keypunch keyboard are differently placed from the Display Keyboard. The
difference also requires special keypunching techniques. (For example,

note the "=%, the "%", etc.) Five special keypunching requirements

should be noted:

(1) new paragraph character—-""="

This character (%) indicates the following material is to begin a new
paragraph.

TEXT: <F>OLLOWING ARE THE TOPICS WE WILL DISCUSS TODAY:

Example:
*%SINE*COSINE*TANGENT.[

This will cause the following material to be presented to the student:

Following are the topics we will discuss today:

sine
cosine
tangent

Pakd

(2) new paragraph beginning on the next card--"-%

These two characters together (=*) signify that the material beginning
, i.e., the remainder of

on the next card is to begin a new paragraph
the present card will be disregarded.

TEXT: <TYPES OF ANGLES>~*THIS WILL NOT APPEAR
<S>UPPEEMENTARY*<C>OMPLEMENTARY*(A)CUTE*(O)BTUSE*(R)IG

HTO

Example:

CRT display: TYPES OF ANGLES
Supplementary
Complementary
Accute
Obtuse
Right

(3) new screen characters--"-$"

These two characters (=$) specify that an indefinite pause followed

by an erasure of the screen is required. VAULT reads a new card and
places this new material at the top of the screen area as designated
by the parameters of the corresponding DISPLAY verb in logic.

29

Example: TEXT: <F>OLLOWING THIS MATERIAL SHOULD BE A MESSAGE
TELLING THE STUDENT TO 'PRESS THE SPACE BAR TO CONT

INUE' o—ls
<T>HIS MATERIAL SHOULD NOW APPEAR AT THE TOP OF THE

SCREEN.[

(4) continuation of text characters—-"-#"

These two characters are primarily intended for editing punched VAULT
cards. When these characters (-#) are encountered VAULT reads a new
card and continues editing the text in a manner similar to the
situation when card column 71 has been processed.

Example: TEXT: <T>HE R-#
E-#
D HORSE.O

The following material would appear on the CRT:

The red horse.

(5) end-of text character—-"[I"
This is a 0-2-8 punch (numeric "T" on the keypunch). It signifies

that the end of the textual material has been reached. The remainder
of this card will be disregarded.

Labelliggﬁ9f Text

There are times when labelling of textual material becomes desirable,
particularly when working with the "light pen" rather than the student's
keyboard. This is simply done by following the keyword and its colon
by a space, a label, a colon, and a space (note: Do not omit the colons).
Example: TEXT: HIST1l: <I>N 1483 <C>ARTIER SAILED AGAIN FOR THE NEW

WORLD.[
This material and its section on the Display Screen may be referred
to by use of label HIST1. This means that the student may point to any

portion of the CRT defined by the parameters of the corresponding DISPLAY

verb in logic. Please refer to sections dealing with light pen respomses

220

to determine in what way labelling becomes useful.

QUESTION:
The purpose of this keyword is two-fold:
(1) to provide the textual material that is to be presented to the
student as a question, and;
(2) to request a keyboard response or a light pen response when it
is expected from the student.

The corresponding LOGIC, to this point, would specify three things:

(1) the precise placing on the screen of the QUESTION, the student
response (when a keyboard response is required), and any rein-
forcement or corrective messages;

(2) the relative position of this keyword within the PROBLEM; and,

(3) the sequence of information presentation to the student depending
on his type of answer.

Since these things have been previously specified, the relative
position of this keyword within the PROBLEM must be the same as that

within LOGIC. A look at the LOGIC will tell one where to place this

record.
Format: QUESTION: [material to be displayed]d

The general format of this record is similar to that of the TEXT:
record. The question material is to begin following the keyword, a
colon, and a blank. The material must end with an end of text character
(0-2-8 punch). This is normally signified in writing a small box (D).

Example: QUESTION: <F>ROM WHAT CITY IN <F>RANCE DID <C>ARTIER
SAIL IN 153420

221

The question material following a QUESTION: keyword is handled in

the same manner as the material following a TEXT: keyword. Therefore,

the various special characters required to signal to the computer such
things as capital letters, etc., must be included in the information.
(Please refer to the TEXT keyword for further information about these

characters.)

NOTE: It is very important that the end-of-text characters
(0-2-8 punch) not be omitted.

Light Pen Response Request

A student can respond to a question on a 1500 in one of two modes,
either by typing in his answer on the display keyboard or by pointing
with the light pen to the answer chosen. The particular device or
method of response that is to be used is specified by the verbs DISPLAY
and POINT in the LOGIC. However, in +he DATA DIVISION, only cne
keyword (QUESTION:) can correspond to either of these two VERBS. The
teacher must be aware of which type of device is called for by the LOGIC.
For further detail, as to why one must be aware of what the LOGIC has

called for, please refer to the section dealing with light pen responses

under answer analysis.

Optionally Conformable KEYWORD

SHOW:

This keyword supplies the frame number of the film that is to be

shown to the student on the IBM 1512 Film Projector. The number must

range from 1 through 1022.

222

This keyword is optionally conformable in that the record may be

omitted even though its counterpart in the LOGIC does exist. If it is

omitted, then the frame number will be supplied by the LOGIC. If the
record is present, however, then it must be conformable as to the relative

position within the PROBLEM.

Format: SHOW: XXXX

Example: SHOW: 597

Non-conformable KEYWORDS

The keywords in this section generally provide two things:

(1) various answers anticipated by the teacher, and;

(2) reinforcement or corrective message material.

Any or all of these keywords may be omitted or used more than once.
If the keywords TIMEOUT: or UNRECOGNIZABLE: are omitted, then VAULT will
automatically provide the necessary Coursewriter II code to handle these
situations. If the other keywords (i.e., CORRECT:, WRONG:, or
ADDITIONAL:) are omitted then no Coursewriter II code will be generated
for those conditions. Because of this, the teacher should be aware of
what answer analysis techniques have been planned for in the LOGIC, even

though these keywords do not have to conform to the LOGIC.

NOTE: If all of these keywords are omitted then any answer the
student gives providing he does not timeout will be
treated as UNRECOGNIZABLE.

Following is a list of the keywords available for answer analysis:

223
TIMEOUT:
CORRECT:
WRONG =

ADDITIONAL:
UNRECOGNIZABLE: or UNREC:

TIMEOUT :

This keyword is used to specify the message that will be given to
the student if he does not answer in the time alloted to him by the LOGIC.

If the teacher wishes to provide his own corrective message for the
TIMEOUT condition then this keyword should be included. If this keyword
is omitted then the computer will automatically randomly select a message
from a predetermined list to be displayed to the student informing him
that he has taken too long to respond. Occasionally the teacher may
specify that no message is to be displayed; this would be achieved by
punching one blank on the TIMEOUT: record.

This keyword should normally follow a QUESTION keyword record and

should normally precede the other answer analysis keywords.

Example: [a teacher supplied messagel

TIMEOUT: <Y>OUR HAVE TAKEN TOO LONG TO RESPOND.—*
<P>LEASE RESPOND MORE QUICKLY-{]

NOTE: The rules for textual presentation are the same as they
are in the text keyword (i.e., the special characters for
upshifting, downshifting, etc., must be included and the
text must end with an end-of-text character.)

Example: [a request that no message be supplied]

TIMEOUT: O

224
CORRECT :

This keyword specifies all the answers that the teacher wishes to
be considered as correct answers, and the message that the teacher wishes
to be presented to the student if his answer matches any of those supplied
and if he responds within the time alloted.

Each answer that the teacher wishes to be considered correct must
be separated by a semi-colon and the last answer followed by an enter
symbol. After the list of answers is completed, a reinforcement message
may be specified by the teacher. If this message is omitted (two enter
symbols in succession are encountered) then the computer will automati-
cally randomly select a reinforcement message from a predetermined list
to be displayed to the student. The teacher could follow the first enter
symbol by a single blank and then an enter symbol; this would specify
that no system message is to be generated.

This keyword should normally follow a QUESTION: and a TIMEOUT:
keyword and should precede the UNRECOGNIZABLE: keyword.

The teacher has the option of specifying that any answer on any
response that the student should make should be considered CORRECT. To
do this the teacher need only omit the 1list of CORRECT answers.

This keyword requires that two end-of-text characters folléw the
keyword, at some point. That is to say, an end-of-text character must
follow the last of the list of CORRECT answers, and one must follow the
end of the reinforcement that is supplied. If any answer is to be
considgred correct, an end-of-text character should be in the first
column following the keyword, the colon, and the blank. If the teacher
wishes the computer to choose the reinforcement message, then two end-

of-text characters should follow the last supplied correct answer. Note

2‘.2 5'._
that again all the special characters that are required for the computer

to handle textual information must be supplied in the reinforcement

message.

Example: [a teacher supplied message]
QUESTION: <F>ROM WHAT CITY IN <F>RANCE DID <C>ARTIER
SAIL IN 153420
CORRECT: <S>T. <M>ALO[<T>HAT IS CORRECT. <L>ET'S CONTI
NUE.O

Example: [a system supplied reinforcement messagel
CORRECT: <S>T. <M>ALO

Example: [suppression of any reinforcement message]
CORRECT: <S>T. <M>AL0O O

WRONG :

This keyword specifies all the anticipated answers which the teacher
wishes to be considered WRONG. It also specifies the corrective message
that a teacher wishes to be displayed to the student should his answer
match one of those in the list.

The general format is precisely the same as that for the CORRECT:
keyword. (i.e., a list of specified answers separated by semi-colons,
an end-of-text character, and a corrective message followed by an
end-of-text character.) The teacher, similarly to the CORRECT: keyword,
has the option of omitting this record, of specifying that any answer
the student should make is to be considered WRONG, or to have the computer
randomly select a message applicable to a WRONG answer. For details of
the format please see the CORRECT keyword.

I+ should be noted that more than one WRONG card can be given for a

question. This enables the teacher to give different correctional or

226

reinforcement messages to the student depending upon which answer he

gives.

Example: QUESTION: <F>ROM WHAT CITY IN <F>RANCE DID <C>ARTIER
SAIL IN 153420
CORRECT: <S>T. <M>ALO]
WRONG: <P>ARIS;<L>ONDON;<C>HERBOURGD<T>HAT ANSWER IS
INCORRECT. <L>ET'S GO BACK AND REVIEW.[

NOTE: It is very important that both end-of-text characters

follow the keyword at some point.

UNRECOGNIZABLE: or UNREC:

This keyword is used to specify the message displayed to a student
when his answer does not correspond to any of the ones anticipated by

the teacher. This keyword may be omitted.

The message supplied must follow the normal rules for textual
specification (i.e., include all necessary special characters and

conclude with an end-of-text character).

Example: QUESTION: <W>HO SAILED FROM <S>T. <M>ALO IN 153420
CORRECT: <J>ACQUES <C>ARTIER; <C>ARTIER; <JACQUES
CARTIER]

ADDITIONAL: CARTIER; JACQUES CARTIERO<Y>OU MUST C

APITALIZE PROPER NOUNS.[]
UNREC: <I> DID NOT CATCH YOUR ANSWER. <P>LEASE TRY

AGAIN.(O
Notice in this example that the judicious use of special characters

in the answer lists have allowed the teacher to verify that the student

did not capitalize proper names.

NOTE: If this keyword is used more than cnce each succeeding
unrecognizable message specified by the teacher will
appear each time the student answers unrecognizably to
the same QUESTION. Thus, if the student has entered his
third UNREC answer to the current problem then VAULT

227

checks if at least three UNREC messages exist for that
problem. If less than three UNREC messages exist then
last UNREC message will be displayed; if three or more
UNREC messages exist then the third UNREC message will

be displayed.

Example: QUESTION: <W>HO SAILED FROM <S>T. <M>ALO IN 153420
CORRECT: <J>ACQUES <C>ARTIER; <C>ARTIER; <JACQUES
CARTIERD

ADDITIONAL: CARTIER; JACQUES CARTIERO<Y>OU MUST C

APITALIZE PROPER NOUNS.[
UNREC: <I> DID NOT CATCH YOUR ANSWER. <P>LEASE TRY

AGAIN.[
UNREC: <A>GAIN <I> MISSED YOUR ANSWER. <P>LEASE CH

ECK YOUR SPELLING.(]

In this example, the first time the student answers unrecognizably
he will see the message--"I did not catch your answer. Please try again."
The second and succeeding times he will see the message--"Again I missed

your answer. Please check your spelling.”

Light Pen Responses

The teacher should be aware of whether or not the LOGIC requested
a light pen response (POINT) as opposed to a keyboard response (QUESTION).
This is necessary to produce valid answer analysis.

All the answer analysis keywords are available for light pen
response analysis and the general formats remain the same. However,
the answers in the answer lists (i.e., those separated by colons) must
be labels from immediately preceeding TEXT keywords. If labels were not

used in the DATA division then the teacher must refer to the ones

supplied by LOGIC.

Example:

228

TEXT: STMALO: <H>E SAILED FROM <S>T. <M>ALO IN <F>RANC
EOD

TEXT: LONDON: <H>E TOOK A BOAT TRAIN FROM <L,>ONDON.O
TEXT: PARIS: <H>E LEFT <P>ARIS FOR <C>HERBOURG AND SAI
LED FROM THERE.[

TEXT: FRANCE: <H>E SAILED FROM <F>RANCE.[

QUESTION: <H>OW DID <C>ARTIER BEGIN HIS VOYAGE IN 1534
20

CORRECT: STMALOO<V>ERY GOOD0

WRONG: LONDON ;PARIS[]

ADDITIONAL: FRANCE(<C>LOSE, BUT NOT QUITE.O

Notice the following with regard to the above example:

(1)

(2)

(3)

(4)

(5)

NOTE:

The answers listed after the CORRECT, WRONG, and ADDITIONAL
keywords are labels associated with TEXT keywords.

1f the student pointed with his light pen to any portion of the
area labelled STMALO he would have displayed to him the message
"Very good."

If he pointed to either of the areas labelled LONDON or PARIS the
computer would have automatically chosen a message to be displayed
to the student.

If he pointed to the area labelled FRANCE he would have seen the
message "Close, but not quite."

The use of the end-of-text characters (0) is very important.

The keywords TIMEOUT and UNRECOGNIZABLE are also available
for light pen answer analysis.

III. VAULT DATA Error Messages

All error messages in VAULT are given a four character number. The

first character, X,E, or W, jndicates the severity of the error and the

general

action that is taken by Vault. The last three characters provide

the teacher with a reference number used to look up the appropriate

explanation and correction procedure.

229

X-Level (Terminal)

This type of error message is generated when an error is so severe
as to cause immediate termination of VAULT processing. Normally, this
error would be generated if VAULT itéélf made an error. It is unlikely
a teacher would be able to recover from this error and he should convey

his problem to the program authors.

E-Level (Error)

This type of error is sufficient to cause total suppression of all
the following output. Error checking will normally continue however on
the remaining input. No COURSEWRITER II deck will be produced if either

an E-level or X-level error is encountered.

W-Level (Warning)

When this error is encountered processing will continue. Depending
on the nature of the error, the input card will either be ignored
completely or else VAULT will assume certain default conditions. There-
fore the use should check carefully both input card and the reference
manual to be sure that he will get the results he expects. The error

message will indicate exactly what action VAULT has taken on a particular

error.

NOTE: There are also some messages that are not associated with
an error number. Instead, VAULT will produce a textual
message directly on the printed listing indicating what
kind of error has occurred. These error messages will
generally be E-level errors but they will not be refer-
enced in the following error documentation.

230

W-Level Errors

w010

w020

w022

w500

W512

A blank card was encountered in the input. The card was
bypassed and no action was taken by VAULT. The teacher should
remove this card and check to be sure he did not intend an

actual DATA card to be in this position.

More than 9999 cards have been pead in the DATA input. This
is the maximum number of cards that can be handled by VAULT

and therefore processing will stop immediately.

An end-of-file condition on the input DATA was sensed by VAULT
before a SSENDATA. This is, there were no more input cards
available to VAULT. VAULT proceeds as though an $SENDATA had
been encountered and performs the necessary functions to
complete processing. The teacher should check, however, to be
sure all the DATA that he intended to use was included in his

input cards.

A DCR has been encountered by VAULT which has no parameter.
Although some DCR's do not require a parameter this one must
have one present. VAULT therefore, assumes a likely parameter
and continues. However, the teacher might not get the results
intended, therefore, this card should be checked and the

desired parameter included.

No colon was present directly after a KEYWORD. VAULT will
check successive columns until a pon-blank entry is found. If
that entry is not a colon, then VAULT assumes that data from
that column on is the text or parameter information it is
looking for. If that entry js a colon, then VAULT checks the
next column for a blank. If it is not a biank VAULT starts
processing data from the first non-blank pﬁsition after the
colon. If it is a blank then VAULT will start processing in
the next column after the first blank. The teacher should

check the rules in the reference manual for this keyword

231

carefully and be sure he adheres to them to avoide possiblé'

errors.

WS4l An author name can only be made up of four characters. There-
fore VAULT truncated the name on the right and only used the

Fipst four characters of the name supplied on the input card.

W555 An answer analysis card, WRONG, has been encountered by VAULT
but no preceding QUESTION card was processed with which to
associate the WRONG. VAULT assumes that the teacher has a
definite reason for placing the card there and will produce
the corresponding Coursewriter II code. However, the teacher
should check carefully the sequence of his input and be sure

the cards are properly placed as he intended.

W561 Only five characters for a COURSENAME are allowed by VAULT.
As more were supplied by the teacher, VAULT truncated the name
on the right and only the first five characters were used. The
teacher should check the input rules in the reference manual

carefully.

W570 An illegal parameter was entered on the $SLIST card. Only
YES or NO are allowed as parameters, therefore VAULT disregarded

the parameter in the input card and assumed the parameter YES.

W60l The label parameter in the $$STARTLBL card was more than six
characters in length. The label was therefore truncated on

the right and only the first six characters used by VAULT.

w620 An illegal parameter was entered in the $$CWDECK card. Only
YES or NO are allowed as parameters, therefore, the compiler
disregarded the parameter in the input card and assumed

$SCWDECK NO. .

w655

wesu

W665

We75

W6S0

232
An answer analysis card, UNRECOGNIZABLE or UNREC, has been
encountered by VAULT but no preceding QUESTION card was
processed with which to associate the UNRECOGNIZABLE. The

same action will be taken as for W555.

An UNRECOGNIZABLE answer analysis card has already been pro-
cessed for this QUESTION. VAULT will put out the Coursewriter
II code for this UNRECOGNIZABLE card also, and it will be
executed when the student enters his second UNRECOGNIZABLE
response for this particular QUESTION. The teacher should
check carefully to be sure he intended to use the message
automatically produced by VAULT before he uses his own message.
A more detailed explanation of how more than one UNRECOGNIZABLE
answer analysis card may be used for the same QUESTION can be

found in the reference manual.

An answer analysis card, ADDITIONAL has been encountered by
VAULT but no preceding QUESTION card was processed with which
to associate the ADDITIONAL. The same action will be taken
as for W555.

An answer analysis card, CORRECT, has been encountered by
VAULT but no preceding QUESTION card was processed with which
to associate the CORRECT. The same action will be taken as

for WS55.

There are too many PROBLEMS in the DATA division for them to
be accomodated by the corresponding LOGIC. The teacher need
not necessarily have used more than 99 PROBLEMS but because of
repetition or branching in the LOGIC more than 99 PROBLEMS
might be assumed to be present. The teacher should therefore,
check the LOGIC division carefully to be sure he understands
what it is doing and reduce the number of problems in DATA

accordingly.

W705

w704

W790

w791

w80l

233

An answer analysis card, TIMEOUT, has been encountered by VAULT
but no preceding QUESTION card was processed with which to
associate the TIMEOUT. The same action will be taken as for

W555.

A TIMEOUT answer analysis card has already been processed for
this QUESTION. The VAULT will put out the Coursewirter II
code for this TIMEOUT card also but it will never be executed
when the program is run on the IBM 1500. The teacher should
check carefully to see which TIMEOUT he intended to use and
pemove the other TIMEOUT card from his input DATA and also
pemove the corresponding Coursewriter II data from the output
deck, if one was produced. This will eliminate the need for
running VAULT again to get the desired results in the Course-

writer II program.

Only 32 different display areas are allowed on the screen for
detection of light pen response for any particular problem.
Therefore, any further labelled areas supplied to VAULT will
be disregarded and it will not be possible to detect a light
pen response on such an area. The teacher should reorganize
his data so that a maximum of 32 possibilities ére available

for light pen response for any problem.

A label on a TEXT card can only consist of six characters. As
more characters were present on the input card VAULT truncated

the label on the right and only used the first six characters.

VAULT can not automatically put out a reinforcement message to
the student as the display area assigned for such a message is
too small to accomodate any of those messages automatically
produced by VAULT. The teacher can compensate by putting out
a message of his own as long as it is small enough to fit in
the prescribed area. The LOGIC division should be checked to

see exactly how large a message area has been allowed for this

particular response.

w802

We0l

234

The message supplied by the teacher is too long for the display
area specified by the LOGIC parameters. Check the parameters
in the corresponding LOGIC VERB and shorten the message

accordingly.

The above COURSEWRITER branch statement has been altered. This
has resulted because less PROBLEMS have been entered in this

DATA LESSON than anticipated in the corresponding LOGIC LESSON.

E-Level Errors

E510

ES20

ES30

E540

VAULT was expecting a keyword as the first word in the input
card and there was none present. The teacher should check the
spelling of the keyword in his card or check the sequence of
his input cards so that a proper keyword will be provided to

VAULT at this point in the program.

A TEXT card is required by VAULT at this peint in the program
to go with the corresponding DISPLAY verb in LOGIC. A TEXT
keyword was not found as the first word in the input card.
The teacher should check the sequence of the input cards and

ensure a TEXT card is put in at this point.

Too many special characters were present in a section of TEXT
cards. Only two Coursewriter II cards can be used to produce
one line on the display screen. However, there are so many
special characters in the input that more than two Coursewriter
IT cards would have to be produced for one display line and
this situation can not be handled. The teacher will have to
reorganize his TEXT so that fewer special characters are

required.

The parameter in the $SAUTHOR card, that is, the author number,
must begin with the letter A through I. FPlease check the

reference manual for rules regarding this DCR.

E560

E580

E581

E582

ESS0

E581

E600

235

The first character of the COURSENAME must be alphabetic. Also
no special characters are allowed anywhere in the COURSENAME.
As these rules were not adhered to by the teacher, the refer-
ence manual should be checked to ensure the $$COURSENAME para-

meter entered correctly.

The SSSTARTBLOCK parameter either was not numeric, or if it
was numeric, it was not in the rnage 0-89. As not more than
99 BLOCKS are ever allowed by Coursewriter II the STARTBLOCK

number must be in this range.

Either, more than one $SSTARTBLOCK DCR was found in the input
DATA or else the $SSTARTBLOCK was not encountered before the
first KEYWORD. Either of these conditions will cause an error
in VAULT. Check the reference manual for rules regarding

$$STARTBLOCK.

A $SSTARTLBL with a numeric label has already been processed
by VAULT. The fiprst two digits, which indicate the starting
BLOCK number, do not match the number in the $$STARTBLOCK

card just read. The parameters in these two DCR's should be

reconciled.

The parameter in the $3LOGPK card is not numeric. Check the

reference manual for restrictions on $SLOGPK.

The pack number on the $SLOGPK is not in the range 0-32767 as
is required. Check the reference manual for rules regarding

the use of this DCR.

Only one $$STARTLBL DCR is allowed in a run of VAULT and it
must be placed before the first KEYWORD in the program. As

these rules were not followed, an error occurred in VAULT.

E603

E610

E611

E630

E640

E680

E710

236,

A SSSTARTBLOCK DCR has already been processed by VAULT. The

parameter in the $$STARTLBL card just read does not match the
BLOKC number. The reference manual should be checked for the
relationship between these two DCR's and the parameters

reconciled accordingly.

The parameter in the SHOW card was not numeric as required.

Check the reference manual for SHOW restrictions.

The parameter in the SHOW card was not in the range 1 to 1022

as required for the film projector.

VAULT expacts a QUESTION keyword at this point in the course
and one was not found in the DATA input. The teacher should
be sure his cards are in the sequence required by LOGIC or
that no mistakes have been made in the spelling or format

of the QUESTION card.

The ROWSIZE specified by the teacher is too large for the area
provided in LOGIC so that it is not possible to put any text

on the screen. This will be the case of an area of four rows,
say, is provided by the LOGIC and the ROWSIZE specified by

DATA is six rows. The LOGIC should be checked to see what size
of area is provided and the teacher should adjust his ROWSIZE
accordingly. Also, this condition could arise if the teacher
attempts to subscript or superscirpt characters that increase

the ROWSIZE outside the limits specified by the logic.

The dictionary character specified for some DATA text 1is not
0,1,2,3,. As these are the only numbers that are allowed the
input card should be checked and changed to produce the desired
results.

One of the following illegal conditions have been detected in
the ROWSIZE parameter: no parameter at all is present; or the

parameter consists of more than two characters; or the parameter

E710

E740

E750

E780

E899

237

is non-numeric; or the parameter is not in the range 1 to 28.
The teacher should check to see which rule has been violated
and make the required changes according to the specifications

in the reference manual.

VAULT expects a QUESTION keyword at this point, to correspond
to a POINT in the LOGIC, and one was not found in the DATA
input. The teacher should be sure his cards are in the
sequence required by LOGIC, or that no mistakes have been made

in the spelling or format of the QUESTION card.

More than one S$$BLOCK was read in this run of VAULT. As only
one BLOCK can be processed at a time, each BLOCK should be
separated and processed separately by VAULT. All the Course-
writer II output can then be linked together to form a com-

plete course for the IBM 1500.

More than 99 BLOCK's have been presented to VAULT for processing
As 99 is the maximum that can be accommodated, no further

processing will be done.

VAULT is unable to process an answer analysis specifying a
labelled portion of TEXT. Either the label was not previously
defined, that is it was not associated with a particular portion
of TEXT or else more than 32 labelled areas were defined for a
particular PROBLEM and after the thirty-second label no more
were processed by VAULT. The teacher should check the section
in the reference manual on Light Pen Responses for a detailed

explanation on the correct use of labelled TEXT.

More than 5000 Coursewriter II records have been produced by
VAULT and therefore, processing has stopped. This is a

prestriction of the current version of VAULT being used.

APPENDIX F

Sample VAULT Program

239

STMT, VAULT
NO. ¥ L 36 7T C DIV ISTON %%
1 $$LOGIC
2 $$BLOCK
3 SSUNFECS NP
4 $SLESSUN
5 $SPROBLEM INE
é DISPLAY
®0b e 0e 00O SSee RSO IPEXEERFEFERNEN ENNERESESENEN]
7 $SPROBLEM TWO
8 QUESTION
S 1F WRONG
10 THEN STOP
11 $SPROBLEM THREE
12 DISPLAY 591092430
13 DISPLAY INSERT 8+y10,2+30
14 DISPLAY IMSERT 11,10,2,30
15 DT SPLAY INSERT 14,10+2+30
16 POINT
17 $SPROALEM FOUR
18 DISPLAY
.19 $SENDLOGIC
s END VAULT LOGIC DIVISIONS=®=*ZX®

240

STMT. vauytrrT
N3J. #%x%x) AT 4 DTVISTI ON xxx

1 $SNDAT2

2 $SCURSENAME GENE

3 $$LOGPK 110

4 $SAUTHNR AQL3

S $$STARTRLNCK &6

6 $SSRLNCK ANQV A

7 $SLESSCN INTRD

8 $$PRAOBLEM AN

° $SHYPHEN 10
10 TEXT: =%
11 i dackided CNPGANIZATION OF VAULT —$
12 <MANY FCATURES AF KVAULTY> WERE DESIGNED TO FACILITATE THE PR-#
13 OGRAMMING NF <CT21> COURSES. <H>OWEVER, THE BASIC DESIGN CONCEPT THAT WA
14 S INCLUDED WAS SEPARATION GF COUKSE LOGICAL STRUCTURE OR TEACHING METHO
1€ DOLJGY FROM THE CURRICULAR CONTENT., <TOHIS MOST IMPORTANT FEATURE MADE
16 PASSIRLE SUCH AIMS AS PEDUCED LEARNING TIME FOR THE TEACHER, DECREASED
17 CIDING EFFCRT, TNCREASE IN PPODUCTION OF <CAI> COURSES AND INCREASED RE
18 SEARCH ACTIVITIES.-S

10 ASICALLY THEN, <VAULT> IS DIVIDED INTO TWO DIVISIONS, <LOGIC> A
20 M) <DATA>. <I>T 1S THE <LNGICY> DIVISIOM WHICH SETS THE COURSE STRATEGY s
21 CHDNSES THE COMPUTER UNITS, AND SPECIFIES THE RECORDING OF STUDENT PER
2z FNGMANCE. <TDHE <DATA> DIVISINN PEIMARILY SUPPLIES COURSE MATERIAL AND
23 EXAMIMATION MATSQTAL T RE PRESEMTED T0 THEZ STUDENT .~*
24 CT>HT SEPERATION, IF IT wAS TO BE EFFECTIVE, REQUIRED SIMILARITIES
25 IN THE THD DIVISINMS. <F>OR THIS REASOM, TEACHER-ORTENTED SUBDIVISIONS
26 WERF CHISEN,
27 $SPROBLEM

28 QUFESTIOMN: CTI>E YO WOULD LIKE TO CARRY ON WITH THE DRGANTZATION OF
24 CVBULT> THFN TYPE <YrS>, CTHERWISE TYPE <MO

30 CORRECT: YES3<Y=S3IKY>ES CL>ETS CAPRY ON.

21 WOANG: <ML

3z UNEEC: <7>YPT DMLY LY:S> P <

241

32 $SPRCBLEM

34 TEXT: A: @ <OME

35 TEXT: Bz A <TWN

36 TEXT: C: @ <THREE

37 TEXT: D: @ <MORE THAN THREF

38 QUESTION: <H>NW MANY DIVISIONS DDES <VAULT> CONTAIN?
39 CORRECT: B .

«0 WRONG: AsCsD NO THERE ARE TWO DIVISIONS==TRY <TWD
4l $$ENDATA

« = ®x ENN V AULT DATE DIV ISTON®Z=H¥

22

eeC D UR ST WRITER O U TP U T*xx

CRDASY

GENE_ 04600110 TMNGENE AO13

460000 ANOVA 46000001
LR 460000-/RR1 46000002
LD__ BO~/BS 46000003
PR 46000004
LD 00-~/C03 46000005
LD 00~/CO6 46000006
LD 00-/Cll 46000007
LD 00-/C25 ’ 46000008
LD 00~/C27 46000009

460100 INTRO . e " 46000010
PR 46000011
LD 00~/C02 46000012
LD 00-/C05 46000013
LD ..00~/Cl0 46000014
LD 00~/C2S5 46000015
LD 00-/C30 46000016

460101 AN1 ONE, 46000017
PRR 46000018
FN SF=/9=/RR1~/RR2 46000019
LR 460101-~/RR1 46000020
LD 00-/C01 46000021
LD 00-~/CO0° 46000022
LD 00-~/Cl3 46000023
DE_00-~/32 : 46000024
DT 12+00-~702412-/40,00~/ <ORGANIZATION OF VAULT 46000025
DT 30,4~/2430~/40,0~/-—<PRESS SPACE BAR TQ CONTINUE>—- 46000026
PAE . 46000027
DE 30-~/02 46000028
DE 00-~/32 46000029
DT 00,00-/02,00-/40,00~/ CMANY FEATURES OF VAULT> WERE 46000030

DT 02,00-~7024,02~/40,00~/DESIGNED TO FACILITATE THE PROGRAMMING 46000031
DT 04,00-702,04~/40,00~/0F <CAI> COURSES. <H>OWEVER, THE BASIC 46000032

0T 06100*/02!06ﬂ/40'00ﬂ/DESIGN'CONCEPT THAT WAS INCLUDED WAS 46000033
DT 08 400-~/02,08-~/40,00~/SEPARATION OF COURSE LOGICAL STRUCTURE 46000034
DT 10,00-/02,10~/40,00~/0R TEACHING METHODOLOGY FROM THE 46000035
DT 12,00-/024+12~/40,00~/CURRICULAR CONTENT. <T>HIS MOST IMPORTANX46000036
T 46000037
DT 144+00-/02,14~/40,00-~/FEATURE MADE POSSIBLE SUCH AIMS AS . 46000038
NT 16,00-/02,16-/40,00~/REDUCED LEAGNING TIME FOR THE TEACHER. 46000039
DT 18+00~/0218~/40+00~/DECREASED CODING EFFCRT, INCREASE IN 46000040
DT 20,00-/02,20-~/40,00~/PRODUCTION NF <CAI> COURSES AND INCREASEX 46000041
D 46000042
NT 22.00~/029 22~/40400~/RESEARCH ACTIVITIFS. 46000043
DT 3044~/2+30~/40,0~/-—<PRESS SPACE BAF TN CONTINUE>—— 46000044
PAE : 46000045
DE 30-~/02 46000046
DE 00-/32 46000047

DT 00,00~/02,00~/40,00~/ CBOASTCALLY THEN, <VAULT> IS DIVIDEX46000048

243

46000049

DT 02,00-/02,02~/40,00~/INTO TWO DIVISIONS, <LOGIC> AND <DATA>. X46000050

<I>T - 46000051
DT 04500~/02304~/40,00~/1S THE <LOGIC> DIVISION WHICH SETS THE 46000052

0T 06,00~/02,06~/40,00~/COURSE STRATEGY, CHOOSES THE COMPUTER 46000053

DT 08,00~/02,08~/40,00~/UNITS, AND SPECIFIES THE RECORDING OF 46000054

DT 10,00-~/02+10~/40,00~/STUDENT PERFORMANCE. <T>HE <DATA> DIVISIX46000055

ON) 46000056
DT 12,00-/02,12-/40,00~/PRIMARILY SUPPLIES COURSE MATERIAL AND 46000057

DT 1%4900~/02y 14~/ 40, 00~/EXAMINATION MATERIAL TO BE PRESENTED TO 46000058

DT 16400-/02,16~/40,00~/THE STUDNENT. 46000059
DT _16,00~/02,18~/40,00~/ CTOHE SEPERATION, IF IT WAS TO BE 46000060
DT 20,00~/02420~/40,00~/EFEECTIVE, REQUIRED SIMILARITIES IN THE 46000061
DT 22,00=/02,22-/40,0C~/TWQ DIVISIONS. <F>CR THIS REASON, 46000062
0T 245,00~7/02424~/40,00~/TEACHER-DRIENTED SUBDIVISIONS WERE 46000063
DT 26900-/02+26~/40,Q0-/CHOSEN, 46000064
DT 3094~/2530~/40,0~/~-=<PRESS SPACE BAR TN CONTINUED> = 46000065
PAE 46000066
. DE 30-~/02 46000067
460102 TWO 46000068
PR 46000069
FN SF-/9-/RR1-/0BR2 46000070
LR 460102-/RR} 46000071
LD 00-~/CO1 46000072
LD 00-~/C0° 46000073
LD 00-~/C13 46000074
DE 00~/32 46000075
DT 06500-/02,04~/40+C0~/ <I>F YOU wOULD LIKE TO CARRY ON WITHX46000076
’ 46000077

DT 08,00-/02,08~/40,00~/THE ORGANIZATION OF <VAULT> THEN TYPE <YX46000078
ES>y 46000079
DT 10,00-/92+10~/40,CC~/0THERWISE TYPE <NO 46000080
EP 17500~/044~/40,00~/0800~/~/460102 46000081
FN ED=~/~/3Ds8=/ =/ 46000082
NX 46000083
AD 1-~/CO1 46000084
AD 1-/C02 46000085
AD 1-/C03 46000086
AD 1~/C04 46000087
DT 22400-/2+~/40,00~/ <I> HAVE NOT RECEIVED YOUR ANSWER. 46000088
BR 0102-~/C1-~/1-~/03 46000089
DY 24500~/2,-/40,00=/ <LD>ET'S GO BACK. 46000090
DT 3094~72+30~/4040~/-—<PRESS SPACE BAR TO CONTINUE> == 46000091
PAE 46000092
DE_22-/06 46000093
DE 30-~/02 46000094
BR 460101 46000095
AA <8 46000096
AD 1-/C25 46000097
AD '1-~/C26 46000098
AD 1-~/C27 46000099
CA YES~/C1 46000100
CB <YES~/C2 46000101
CB _ <Y>ES~/C3 46000102
apD 1-/C5 46000103
AD 1-/Cé 46000104
AD 1-/C7 46000105
DT 224+C0-/02422-/40,00~/ <L>ETS CAPRY ON. 46000106
DT 30y4n/2430~/40,0~/~-<PRESS SPACE BAR TO CONTINUE> == 46000107

PAE 46000108

244

NE 22-/06 46000109
DE 30-/02 46000110
BR 460103 46000111
WA NO=/W1 46000112
WB <NO~/W2 46000113
WB__ <N>O~/W3 ©6000114
AD 1-~/C09 46000115
AD 1-~/C0 46000116
AD__1-~/C11 46000117
AD 1-~/C12 46000118
BR 99999 46000119
UN__ Ul , 46000120
DT 22,00-702+22-740500~/<T>YPE ONLY <YES> OR <NOD 46000121
DT 2094~/2930~/40,0~/--<PRESS SPACE BAR TO CONTINUE>=- 46000122
PAE 46000123
DE 22-/06 46000124
_ DE 30-~/02 46000125
BR__RE 46000126
0102 46000127
EA 46000128
DT 264400~/24~/40,00~/ CH>AVE ANOTHER_TRY. 46000129
DT 3014~/2¢30~74040~/——<PRESS SPACE BAR TG CONTINUE>-—- 46000130
PAE 46000131
DE__ 22-/06 46000132
DE _ 30-/02 46000133
BR RE 46000134
460103 THREE 46000135
PR 46000136
FN SF=/9~/RR1~/RR2 46000137
LR __460103~/8R] 46000138
LD 00-~/CO02 46000139
LD 00-/C03 46000140
LD 00-~/C1% 46000141
DE 00-~/32 46000142
DT 05,410~/02,05~/30,10-~/2 <ONE 46000143
DTI 08,10~/02,08~/30,10~/3 <TWO 46000144
DTI 11,10~/02+11-/30,10~/@ <THREE 46000145
DTI 14510-/02,14~/30,10~/2 <MORE THAN THREE 46000146
DT 00,00~/02,00~/40,00~/<H>CW MANY DIVISIONS DOES <VAULT> CONTAIX46000147
N? 46000148
EPP 0900-~/460103 46000149
NX 46000150
AD 1-~/CO% 46000151
AD 1~/C02 46000152
AD _1~/C03 46000153
aD 1~/C0N4 46000154
DT 22+00-/24~/404590~/ <P>LEASE RESPOND QUICKLY. 46000155
BR 0103~/ 1~/1~/03 4500C156
DT 24+00—~72,~740,00~7 <L>ET'S REEXAMINE THE PREVINUS MATERIAL. 46000157
DT 3044~/2430~/40,0~/-—<KPRESS SPACE BAP 'TO CONTINUE>—- 46000158
PAE 46000159
DE 22-/06 46000160
DE 30-/02 46000161
BR 460101 46000162
AR <8 46000163
AD 1~/C25 46000164
AD__ 1-~/C26 46000165
AD i~/C27 26000166
CAP 02,0R,30,10~/C1 46000167
AD _1-/C5 46000168

245

AD 1-~/C6 46000169
AD 1-~/C7 469200170
DT 22300/29~/40,00~/ <CORRECT> .« 46000171
DT 3054-/2430~/40,40~/--<PRESS SPACE BAR TO CONTINUE> == 46000172
PAE - 46000173
DE_22~/06 46000174
DE 30-~/02 46000175
BR 460104 46000176
WAP 02,05,30,510~/4W1 46000177
WBP 02911930,10~/W2 46000178
WBP 02414930,10~/W3 46000179
AD 1-~/C09 £6000180
AD 1-~/C10 46000181
AD 1-~/C11 46000182
AD 1-~/C12 46000183
OT 22,00-/02,22~740,00~/ NO THERF ARE TW0 DIVISIONS==TRY <TWO 46000184
DT 3044-/2,30~/40,0~/--<PRESS SPACE BAR TO CONTIMUED>~- 46000185
PAE 46000186
DE 22706 46000187
DE 30-702 46000188
BR__RE~/CO~/1~/03 46000189
DT 24+400-/24~/40,00~/ KLD>ETIS REDO A FEW PROBLEMS. 46000190
DT 30,4~/2,20~/40,40~/=--<PRESS SPACE BAR TO CONTINUE> == 46000191
PAE 46000192
DE 22~/06 46000193
PE. 320-/02 46000194
BR__ 460101 46000195
UN U 46000196
DT 22,00-~/24=/40,00~/ <Y>2U DID NOT GET IT. 46000197
DY 24,00~/23/40,00~/ <H>AVE ANOTHER TRY. 46000198
DT 30,4~/245C~/4C,0~/=—=<PRESS SPACE BAR TO CONTINUE>-—- 46000199
PAE 46000200
DE 22-~/06 46000201
PDE 30-~/02 46000202
BR. RE 46000203
0103 46000204
A 46000205
DT 24900-/29~/40,30~/ <H>AVE ANOTHER TRY. 46000206
DT 30,4m/2,30~/40,0~/——<{PFESS SPACE RAR TO CONTINUED—- 46000207
PAE 46000208
DE 22-~/06 46000209
DE__30-~/02 46000210
BR RE 46000211
460104 46000212
S0g99 46000213
EN 46000214
46000215

*CSND

