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Ferns are well known for their shade-dwelling habits. Their ability
to thrive under low-light conditions has been linked to the evo-
lution of a novel chimeric photoreceptor—neochrome—that fuses
red-sensing phytochrome and blue-sensing phototropin modules
into a single gene, thereby optimizing phototropic responses. De-
spite being implicated in facilitating the diversification of modern
ferns, the origin of neochrome has remained a mystery. We pres-
ent evidence for neochrome in hornworts (a bryophyte lineage)
and demonstrate that ferns acquired neochrome from hornworts
via horizontal gene transfer (HGT). Fern neochromes are nested
within hornwort neochromes in our large-scale phylogenetic recon-
structions of phototropin and phytochrome gene families. Diver-
gence date estimates further support the HGT hypothesis, with
fern and hornwort neochromes diverging 179 Mya, long after the
split between the two plant lineages (at least 400 Mya). By analyz-
ing the draft genome of the hornwort Anthoceros punctatus, we
also discovered a previously unidentified phototropin gene that
likely represents the ancestral lineage of the neochrome phototro-
pin module. Thus, a neochrome originating in hornworts was trans-
ferred horizontally to ferns, where it may have played a significant
role in the diversification of modern ferns.

phototropism | chloroplast movement

Plant growth and development are modulated by photore-
ceptor systems that provide information about the surround-

ing environment. Major peaks in the action spectra of these
informational photoreceptors lie either in the UV-blue (e.g.,
cryptochromes and phototropins) or red/far-red (phytochromes)
light regions (1). The chimeric photoreceptor neochrome is a
remarkable exception. It fuses red-sensing phytochrome and
blue-sensing phototropin modules into a single molecule (Fig. 1A)
that mediates phototropic responses (1–4). Neochromes have a
restricted occurrence in the plant tree of life and are hypothe-
sized to have had two independent origins (5)—one in the green
alga Mougeotia scalaris and another in ferns. The possession of
neochrome may be evolutionarily advantageous, as evidenced by
the greatly enhanced phototropic responses in ferns with neo-
chrome (3, 4) and by its phylogenetic distribution within the fern
lineage. The early-diverging fern orders Osmundales and Schi-
zaeales do not possess neochrome (3). It has been reported only
in Cyatheales (6) and Polypodiales (3, 6), lineages that mostly
diversified following the Cretaceous/Tertiary establishment of

low-light, angiosperm-dominated forest canopies (7, 8). As a re-
sult, it has been suggested that the evolution of neochrome was
a key innovation that conferred a phototropic advantage on ferns
growing under low-light conditions, facilitating their modern di-
versification in the “shadow of angiosperms” (3, 7, 8). Although
potentially significant from an evolutionary standpoint, the ori-
gin of fern neochrome has remained a mystery.
In this study we investigated the origin of neochrome by

searching for homologous sequences in 434 transcriptomes, and
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Despite being one of the oldest groups of land plants, the
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implications for the evolution of photosensory systems in plants.
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40 whole or draft genomes of plants and algae (SI Appendix,
Table S1) and surprisingly discovered neochrome homologs from
hornworts (Fig. 1B and SI Appendix, Figs. S1–S3). Analyses of
the hornwort draft genome (Anthoceros punctatus) suggest that
neochrome originated in hornworts, independent from the green
algae. Large-scale phylogenetic analyses and divergence time
estimates further demonstrate that ferns acquired neochrome
from hornworts via horizontal gene transfer (HGT).

Results and Discussion
Algal Neochrome. The only published algal neochrome is from a
single species, Mougeotia scalaris (5). We identified homologs of
neochrome in the transcriptomes of all 10 sampled members
of the Zygnemataceae (9), including Mougeotia, Mesotaenium,
Cylindrocystis, and Zygnemopsis, but in no other algal transcriptomes
surveyed (SI Appendix, Table S1 and Fig. S1).

Neochrome in Hornworts. Among land plants, we documented the
occurrence of neochrome in 25 additional fern species (SI Ap-
pendix, Figs. S1–S3). Surprisingly, we also discovered neo-
chrome in hornworts, a small bryophyte lineage that diverged
early in the history of land plants. The exact branching order
among the three bryophyte lineages (hornworts, mosses, and
liverworts) is not resolved with certainty; previous analyses
have suggested that hornworts are sister to vascular plants (lyco-
phytes, ferns, and seed plants) (10), but this relationship was

challenged recently, and the monophyly of all bryophytes was
proposed (11). We confirmed the presence of neochrome in
hornworts through PCR and cloning, and isolated neochrome
sequences from the genera Nothoceros,Megaceros, Phymatoceros,
Phaeoceros, Paraphymatoceros, and Anthoceros, representing four
of the five hornwort orders (namely, Dendrocerotales, Phyma-
tocerotales, Notothyladales, and Anthocerotales). We were un-
able to obtain adequate material of the monotypic hornwort
Leiosporoceros to test for the presence of neochrome in Leio-
sporocerotales. To confirm that our hornwort neochrome se-
quence data were indeed derived from the hornwort nuclear ge-
nome and not from contaminant algae or ferns, we performed
genome-walking in Nothoceros aenigmaticus to obtain flanking
genomic sequences. Downstream of neochrome we found a
pseudogene for imidazoleglycerol-phosphate dehydratase (IGPD)
and, because its sequence is most closely related to other hornwort
IGPD genes (SI Appendix, Fig. S4), we are confident that neo-
chrome is present in the hornwort genome.

Neochrome HGT from Hornworts to Ferns. The phylogenetic distri-
bution of neochrome in land plants (present only in hornworts
and ferns) could be explained by (i) an ancient origin along the
branch that unites hornworts and tracheophytes, followed by
losses from lycophytes and seed plants, (ii) independent origins
in ferns and hornworts, or (iii) one or more instances of HGT
between hornworts and ferns. To distinguish among these three
possible scenarios, we compiled comprehensive sequence align-
ments of phototropin and phytochrome from across all land
plants and algae, which included the corresponding domains
from hornwort and fern neochromes, and evaluated the resultant
gene phylogenies. Maximum likelihood and Bayesian estimates
of phototropin and phytochrome phylogenies revealed that fern
neochromes are embedded within hornwort neochromes with
very strong branch support (Fig. 1 B and C and SI Appendix, Figs.
S1–S3). This nested relationship indicates that neochrome was
transferred horizontally from hornworts to ferns, along the stem
lineage leading to Phymatoceros + Nothoceros + Megaceros (Fig.
1C, arrow, and SI Appendix, Figs. S1–S3). The alternative pos-
sibilities, suggesting either an ancient vertical transfer of neo-
chrome (i.e., fern and hornwort neochromes were reciprocally
monophyletic) or an independent origin of neochrome (i.e., fern
neochromes were monophyletic with either fern phototropins or
phytochromes) were both rejected (P < 10−30) and were never
observed in the Bayesian posterior tree samples.
We used estimates of divergence time to assess our HGT

hypothesis further, reasoning that in a case of HGT the split
between hornwort and fern neochrome should be younger than
the split between the hornwort and fern lineages themselves. By
integrating fossil calibrations (SI Appendix, Table S2) with
a Bayesian relaxed molecular clock analysis, we estimated the
divergence date between hornwort and fern neochrome to be
∼179 Mya with a 95% highest posterior density interval of 133
and 229 Mya (Fig. 1B and SI Appendix, Fig. S5). This date is far
more recent than published divergence estimates between ferns
and hornworts (at least 400 Mya) (12) but is congruent with
the date estimates for the stem branch leading to Phymatoceros
+ Nothoceros + Megaceros (85–244 Mya) (13). The disparity in
divergence times rejects the hypothesis invoking multiple
neochrome origins or losses and reinforces the HGT scenario.
The origin of land plant neochrome within the hornwort lin-

eage is supported by its relationship to hornwort phototropin.
The single hornwort phototropin gene in the Anthoceros punc-
tatus draft genome completely lacks introns (Fig. 1D) and thus
closely resembles the C-terminal end of both fern and hornwort
neochromes. We found this intron-free phototropin in all horn-
worts examined by using PCR on genomic DNA (SI Appendix, Fig.
S2 and Table S3). All other phototropins characterized to date,
including those of ferns, contain more than 20 introns. We
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Fig. 1. The origin of fern neochrome. (A) Neochrome is a chimeric photo-
receptor in which the N terminus consists of a phytochrome sensory module
fused to an almost complete phototropin sequence at the C terminus. Thick
and thin lines represent exons and introns, respectively (length not to scale).
(B) Dated phylogeny of phototropin and neochrome, showing neochrome
HGT from hornworts to ferns (details are given in SI Appendix, Fig. S5). The
blue, brown, and yellow branches represent hornwort phototropin, horn-
wort neochrome, and fern neochrome, respectively. (C) Portion of the
phototropin phylogeny showing relationships of fern neochrome (Fern
NEO), hornwort phototropin (Hornwort PHOT), and hornwort neochrome
(Hornwort NEO), with highly supported branches thickened (details are
shown in SI Appendix, Figs. S1 and S2). (D) A schematic depicting the origin
of fern neochrome involving retrotransposition of a phototropin gene (and
hence the loss of introns), its fusion with a phytochrome, and HGT from
hornworts to ferns.
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explored whether this gene might be a partial neochrome mas-
querading as a phototropin by using inverse PCR to obtain the 5′
upstream genomic region inN. aenigmaticus. Multiple stop codons
were encountered upstream of the Nothoceros phototropin gene,
and there was no indication of nearby phytochrome domains.
These data suggest that hornworts might not have a canonical
phototropin gene. Instead, hornwort phototropins are most
closely related to fern and hornwort neochromes (Fig. 1 B and
C and SI Appendix, Fig. S2), implying that they likely represent
the ancestral, retrotransposed phototropin lineage that gave rise
to neochrome through fusion with the phytochrome module
(Fig. 1D). On the other hand, in the phytochrome phylogeny,
hornwort phytochromes are not resolved as sister to hornwort
and fern neochromes (SI Appendix, Fig. S3), although there is no
branch support for this nonmonophyletic relationship. The phy-
tochrome progenitor of neochrome therefore remains unclear.

Recurrent Fern-to-Fern HGT. We detected an extraordinary in-
congruence between our fern neochrome gene tree and the
published phylogeny of ferns (SI Appendix, Fig. S6) (14). By
examining the entire Bayesian posterior tree sample, we found
that none of the trees resolved neochromes from the same fern
family as being monophyletic. This conflicting pattern is not
observed in other fern phylogenies based on nuclear genes (15)
and is not seen in the hornwort neochrome tree (Fig. 1C), which
perfectly mirrors the published phylogeny of hornworts (13).
Here we investigate and discuss the possible causes of the in-
congruent gene tree/species tree in ferns.
Incomplete sampling of extant neochrome homologs is not

likely to be the explanation, because neochrome has been shown
by Southern blotting to be a single-copy gene in Adiantum capillus-
veneris (2). This result was corroborated by the cloning efforts that
produced most of our sequence data (SI Appendix, Table S3).
Except for Deparia spp., in which two divergent sequences were
found (SI Appendix, Fig. S6, arrowheads), we were able to isolate
only a single neochrome from each fern species.
Next, we investigated whether an aberrant nucleotide substi-

tution process may have misled the phylogenetic reconstruction.
For example, pervasive positive selection or variation in guanine/
cytosine (GC) content can obscure true phylogenetic signal (16–
18), thereby causing a gene tree to be incongruent with the
species tree. Using codon models for tree inference potentially
can accommodate complex selection profiles by allowing differ-
ent nonsynonymous/synonymous substitution rate ratios to fall
into distinct classes (19). However, we found that incorporating
codon models did not improve the incongruence between the
gene tree and species tree; the resultant tree largely matches that
from the nucleotide substitution model, with comparable branch
support values (SI Appendix, Figs. S6 and S7). Similarly, infer-
ences based on first + second-codon positions or only on third-
codon positions also yielded topologies discordant with the
species tree (SI Appendix, Fig. S7).
We then used a random effects branch-site model to infer the

dynamics of positive selection across the neochrome tree (20).
Only five fern branches were identified as having experienced
significant episodic positive selection (SI Appendix, Fig. S7D),
and the proportion of positively selected codon sites along each
of these five branches is very low (<3%). These results suggest
that positive selection operated on very few codons over a lim-
ited number of branches. Similarly, a sliding window analysis of
GC content found none of the fern sequences to be deviant in
base composition (SI Appendix, Fig. S7E). Taken together, the
nucleotide substitution processes among fern neochromes ap-
pear to be unexceptional and are not likely to explain the in-
congruence between the gene tree and species tree.
We therefore hypothesized that the incongruent tree could

be the result of (i) multiple fern-to-fern HGT events, (ii) an
elevated gene turnover rate that may have been selected for after

HGT (21, 22), or (iii) a combination of both factors. We have
some evidence suggesting recurring fern-to-fern HGT might
have been involved. For example, we discovered neochrome
genes from two early-diverging fern orders [Gleicheniales (Dip-
teris conjugata) and Cyatheales (Alsophila podophylla and Pla-
giogyria spp.)] that likely were derived from secondary HGT
events (SI Appendix, Fig. S6, arrows). These neochromes are not
phylogenetically resolved, as would be predicted based on pub-
lished fern species relationships (14), but instead are nested
among Polypodiales (SI Appendix, Fig. S6). Furthermore, the
split between these and other fern neochromes (81 Mya, 95%
highest posterior density interval: 59–106 Mya; SI Appendix, Fig.
S5) occurred long after the estimated organismal divergence
dates for Gleicheniales (276 Mya) and Cyatheales (223 Mya) (8),
a pattern that may be explained best by fern-to-fern HGT.
Our hypothesis of potentially recurrent HGT events within

ferns is not unprecedented. In angiosperms, rampant HGTs have
been documented for the mitochondrial cox1 homing intron.
This intron is believed to have experienced one initial “seed
transfer” from fungi that was followed by at least 80 incidents
of plant-to-plant HGT among 833 diverse angiosperm species
(23–25). Perhaps neochrome is similarly associated with mo-
bile elements that may have facilitated its movement across
species boundaries.

Evolutionary and Physiological Implications of Neochrome in Hornworts.
Our discovery of neochrome in hornworts is an important step
toward understanding the evolution of photosensory systems
in plants. In the moss Physcomitrella patens, both red and blue
light can elicit directional chloroplast movements, and these
movements are mediated by molecular interactions between
physically separate phytochrome and phototropin proteins (26).
The hornwort neochrome represents a strikingly different strat-
egy for integrating these two photosensory systems, combining
them into a single, chimeric gene. Light-induced directional
chloroplast movement has not yet been observed in hornworts,
probably because their epidermal cells usually contain only one
chloroplast that occupies most of the cellular space. However,
nearly 50 y ago, Burr (27) documented an unusual chloroplast
photoresponse in Megaceros hornworts; she discovered that the
large chloroplasts “contract” to form compact shapes under
strong light. Although we confirmed this phenomenon in horn-
worts (SI Appendix, Fig. S8), future studies are needed to ex-
amine if neochrome is responsible for the contraction response
and to explore other possible physiological roles.

Evolutionary Significance of Plant-to-Plant HGT. This study pinpoints
the origin of land plant neochrome within the hornwort lineage
and demonstrates that neochrome was transferred horizontally
from hornworts to ferns. The life history of ferns may help ex-
plain their hypothesized susceptibility to HGT. Most land plants
share a common sexual life cycle that alternates between a dip-
loid sporophyte and a haploid gametophyte; only in ferns and
lycophytes are the sporophytic and gametophytic phases both
free-living and fully independent. Seed plants insulate their
gametophytes from outside interactions with relatively impervi-
ous cell walls in microgametophytes and by embedding mega-
gametophytes within protective sporophyte tissues. In contrast,
almost all fern gametophytes are not enclosed and grow in direct,
intimate contact with other fern and bryophyte gametophytes
(including those of hornworts). These characteristics may facili-
tate the entrance of foreign genetic elements into fern germ lines
(i.e., via the gamete-producing structures, the antheridia and
archegonia, that are exposed to the environment) (28).
To date, most documented examples of plant-to-plant HGT

involve mitochondrial DNA and/or parasite–host transfers (29–
36); only a handful of cases include functional nuclear genes
(34, 37, 38), and even fewer have possible adaptive implications
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(39). Consequently, plant-to-plant HGT generally has been over-
looked as a potentially significant factor in plant evolution.
Given that neochrome may have played a major role in pro-
moting the diversification of ferns under the Cretaceous/Tertiary
angiosperm canopy (3, 7, 8), our study has important impli-
cations for the macroevolutionary significance of plant-to-
plant HGT.

Materials and Methods
Mining Transcriptomes and Whole-Genome Sequences for Homologs of Neochrome,
Phototropin, and Phytochrome. All but one of the 434 transcriptomes used
were generated by the One Thousand Plants Project (1KP; www.onekp.com);
these transcriptomes were derived from a diverse selection of brown algae,
red algae, green algae, bryophytes, lycophytes, ferns, and seed plants (SI
Appendix, Table S1). Details on RNA extraction, sequencing, and assembly
for 1KP can be found in Johnson et al. (40). Additionally, a whole-plant
normalized Illumina transcriptome library was constructed and sequenced
for Pteridium aquilinum using pooled RNA from six sporophyte tissues
(young sporeling leaf, rhizome tip, fiddlehead, mature sterile pinnae, and
pinnae with developing and mature sporangia). The Pteridium tran-
scriptome was assembled using default parameters in the Trinity RNA-seq
pipeline version r2012-01–25p1 (41). The sequencing reads were deposited in
National Center for Biotechnology Information (NCBI) Sequence Read Ar-
chive (SRA) under experiment SRX423244.

For the 1KP transcriptomes, we used both Short Oligonucleotide Assembly
Package (SOAP) de novo and SOAP de novo trans assemblies. For each as-
sembly, a BLAST database was constructed using the BLAST+ package (42).
Neochrome, phototropin, and phytochrome sequences were queried sepa-
rately (by tBLASTn for 1KP and by BLASTn for Pteridium assemblies), and the
significant hits to transcriptome scaffolds were extracted (e-value threshold
of <10−5). For each scaffold, the best ORF was identified, the sequence was
translated into amino acids, and then BLASTp queried against the NCBI
nonredundant protein database (nr). The scaffolds were discarded if they
did not match neochrome, phototropin, or phytochrome homologs in the nr
database with an e-value threshold of <0.001. For 1KP transcriptomes, the
filtered scaffolds from SOAP de novo and SOAP de novo trans assemblies
were merged using CAP3 (43). We carried out the above procedures using
our Python pipeline BlueDevil (see http://dx.doi.org/10.5061/dryad.fn2rg).
We also searched for and obtained photoreceptor homologs from 39 plant
and algae whole-genome sequences through Phytozome (44) and the
Amborella Genome Database (www.amborella.org) (45).

Assembling and Mining an Anthoceros punctatus Draft Genome for Homologs
of Neochrome, Phototropin, and Phytochrome. To generate a draft genome for
Anthoceros punctatus, genomic DNA was sheared into ∼400-bp fragments
and sequenced using Illumina HiSeq2000, giving a total of 25 million 90-bp
paired-end reads (about 20× genome coverage). The reads were subjected
to two cycles of read error correction using the ALLPATHS-LG FindError
program (46) before being assembled using Velvet (47). Assemblies were
generated for a range of kmer values (k = 21, 31, 41, 51, and 61) and then
were combined. The redundant scaffolds were removed using Usearch (48),
and overlapping contigs were subject to additional assembly using CAP3 to
produce a draft genome assembly. The final assembly contains 29,582 con-
tigs with a total combined assembly length of 99.5 Mb and the N50 contig
length of 4,955 bp. The contig length ranges from 919 bp to 76.5 kb, with
1,643 contigs over 10 kb. The median and mean assembled contig coverage
is 18.1× and 44×, respectively. The raw reads were deposited in NCBI
under SRA096687.

This assembly was searched for homologs of neochrome, phototropin, and
phytochrome using tBLASTn. Although phototropin and phytochrome genes
were readily identified, no contig was found containing a putative neo-
chrome sequence. To search for any A. punctatus neochrome gene that
perhaps failed to be assembled, all sequencing reads were searched against
a library of neochrome protein sequences using BLASTx. Reads obtaining an
e-value of ≤10−10 were isolated and assembled using Velvet with liberal
assembly parameters (-cov_cutoff 1 -min_pair_count 1 -edgeFractionCutoff
0.1 -scaffolding yes -min_contig_lgth 90) at five different values for kmer
length (21, 31, 41, 51, and 61). The resulting assemblies were combined,
redundant contigs were discarded using Usearch, and overlapping contigs
were merged using CAP3. All sequencing reads then were mapped to these
seed contigs using Bowtie2 (49) with the very-sensitive-local option. Paired-
end reads where at least one read mapped to the seed contigs were se-
lected. All the selected reads then were reassembled as above. This mapping
and assembly process was repeated until no further reads could be identified

and contigs could no longer be extended. The final assembly contained
a single contig comprising a 797-bp fragment of neochrome. This fragment
then was extended to include almost the entire ORF using a combination of
PCR (see below) and additional read mapping and assembly.

Cloning of Neochrome, Phototropin, and Phytochrome. To verify empirically
the presence of the hornwort photoreceptor genes found in the tran-
scriptomes and to obtain intron/exon information, we cloned the genes from
genomic DNA from five hornwort species (SI Appendix, Table S3). In addition,
neochrome sequences were obtained from 25 fern species by PCR and
cloning (SI Appendix, Table S3). Genomic DNA was extracted using the
Qiagen DNAeasy Plant Mini Kit (Qiagen). The gene fragments were ampli-
fied using Phusion DNA polymerase (New England Biolabs) or Denville
Choice Taq (Denville). The primers and detailed PCR conditions are sum-
marized in SI Appendix, Tables S3 and S4. The amplified products were
cloned into Promega pGEM-T (Promega) and sequenced.

Genome-Walking In Hornwort Phototropin and Neochrome. To rule out the
possibility that the phototropin gene found in hornworts might be a partial
neochrome, we used inverse PCR (50) to obtain the flanking genomic region.
Genomic DNA of N. aenigmaticus was digested by apoI (New England
Biolabs) and self-ligated using T4 DNA ligase (New England Biolabs). Then
nested PCRs were conducted on the circularized DNA. The amplicons were
cloned using Promega pGEM-T and sequenced. To search for the genes
flanking neochrome in N. aenigmaticus, we used the Clontech GenomeWalker
kit (Clontech) and followed the manufacturer’s manual. The resulting PCR
amplicons were cloned and sequenced. In total, we obtained 3,291-bp and
4,578-bp regions up- and down-stream, respectively, of neochrome. The
primers for the above PCR reactions are listed in SI Appendix, Table S4.

Sequence Alignment for Neochrome, Phototropin, and Phytochrome. We built
two large alignments for phototropin and phytochrome, with each align-
ment including the corresponding domains from hornwort and fern neo-
chrome. The phototropin dataset contains 163 sequences from 106 species,
and the phytochrome dataset includes 139 sequences from 76 species. To
reduce ambiguities in sequence alignment, we included only the conserved
domains (i.e., LOV1, LOV2, and STK for phototropins; PAS, GAF, PHY, PAS
repeats, HisKA, and HATPase for phytochromes). The domain boundaries
were identified by querying each scaffold against the NCBI Conserved Do-
main Database (51). Each domain was aligned separately (based on the
amino acid sequences) using Muscle (52) and then was concatenated. We
developed a Python script, DomainDivider (see http://dx.doi.org/10.5061/
dryad.fn2rg), to automate these processes. We also generated a separate
alignment for hornwort and fern neochromes. This alignment was based on
entire neochrome sequences rather than on domains. All alignments were
inspected manually, and ambiguously aligned regions were excluded before
phylogenetic analyses. The phototropin, phytochrome, and neochrome
alignments contain 1,716, 2,802, and 4,002 bp, respectively. The GenBank
accession numbers are listed in SI Appendix, Figs. S1–S3.

Phylogenetic Analyses of Phototropin and Neochrome. Phototropin and neo-
chrome phylogenies were inferred based on their nucleotide alignments. We
used PartitionFinder (53) to identify the optimal data partition schemes and
nucleotide substitution models under the Akaike Information Criterion.
Based on this analysis, each codon position was treated as a distinct parti-
tion. For phototropin, the first, second, and third positions were assigned
GTR+Γ+I substitution models; for neochrome, GTR+Γ+I, GTR+Γ+I, GTR+I
models were applied to each codon position respectively. We used Garli (54)
to obtain the maximum likelihood tree under the aforementioned models,
with genthreshfortopoterm set to 1,000,000 and eight independent runs.
Multiparametric bootstrapping was done using RAxML (55) with 1,000
replicates. For the neochrome alignment, we also carried out the same
maximum likelihood analyses on the first + second-codon positions and on
the third-codon positions separately. We used MrBayes (56) to conduct
Bayesian tree inference under the same models, with two independent
Markov chain Monte Carlo (MCMC) runs, four chains each, and trees sam-
pled every 1,000 generations. Substitution parameters were unlinked, and
the rate prior was set to vary among partitions. The MrBayes output was
inspected using Tracer (57) to ensure proper convergence and mixing (ef-
fective sample sizes all >200), and 25% of the total generations were dis-
carded as burn-in before making the 50% majority consensus tree. Because
the stationary, homogeneous assumptions of GTR might be violated in cases
associated with HGT and deep divergence (58), we also used a nonsta-
tionary, heterogeneous nucleotide substitution model implemented in
nhPhyML (59) to infer the phototropin tree. The analysis was carried out
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with 10 discrete categories of GC equilibrium frequencies, and the required
starting tree was the best tree from the Garli analysis. To conduct boot-
strapping in nhPhyML, we created a Python wrapper, and for each replicate,
RAxML was used to input the starting tree. In addition to the nucleotide
substitution model, we also used codon models to infer phylogenies, which
were carried out in CodonPhyML (19) under a maximum likelihood frame-
work. We used the Goldman-Yang (60) model with four categories of
nonsynonymous/synonymous substitution rate ratios drawn from the dis-
crete gamma distribution, and codon frequencies were estimated from the
data under the F3 × 4 model (19). The tree topology search was done using
the nearest neighbor interchange approach, and branch support was esti-
mated using the SH-like aLRT (61, 62) method.

Phylogenetic Analyses of Phytochrome. For the phytochrome phylogeny, we
used the protein alignment following the analytical strategy of Mathews
et al. (63). Using ProtTest (64), JTT + F was found to be the best empirical
substitution model under the Akaike Information Criterion. For the maximum
likelihood analyses, we used Garli to search for the maximum likelihood tree,
with genthreshfortopoterm set to 1,000,000 and eight independent runs, and
RAxML to conduct the multiparametric bootstrapping with 1,000 replicates.
For Bayesian tree inference, we used MrBayes with two independent MCMC
runs, four chains each, and trees sampled every 1,000 generations. After
25% of the total generations were removed, the 50% majority consensus
tree was calculated. Codon-based tree inference also was carried out as
described above.

Topology Test. We used the Swofford–Olsen–Waddell–Hillis test (65) to
compare the inferred HGT tree topology (i.e., fern neochromes embedded
within hornworts) against the alternative topologies suggestive of vertical
inheritance or independent origin, using the program sowhat (66) with
RAxML and Seq-Gen (67). For testing the vertical inheritance topology, to-
pological constraints forcing fern and hornwort neochromes to be re-
ciprocally monophyletic were used; for independent origin, constraints were
placed to have all fern genes to be monophyletic (i.e., monophyly either as
neochrome + phototropin or neochrome + phytochrome). To calculate the
posterior probability of the vertical transfer and independent origin topol-
ogies, we filtered the posterior tree samples from MrBayes and calculated
the frequency of trees given the monophyly constraints. The filtering was
done by PAUP* (68). We applied this same approach to examine the pos-
terior distribution of fern neochrome gene trees. We searched for to-
pologies that exhibited better congruence with the published species
relationships (compared with the inferred gene tree). The constraint for
tree filtering required that neochromes from the same fern family be
monophyletic.

Phylogenetic Analysis of the IGPD Gene. As a result of genome-walking in
N. aenigmaticus, we discovered an IGPD pseudogene downstream from
neochrome. To place this pseudogene in phylogenetic context, we resolved
an IGPD phylogeny for land plants. A subset of the transcriptomes and
whole-genome sequences was mined for IGPD homologs (SI Appendix, Fig.
S4) using BlueDevil, and an alignment of IGPD (624 bp in length) was con-
structed manually. We partitioned the data by codon position, with each
partition given a GTR+Γ+I model as suggested by PartitionFinder under the

Akaike Information Criterion. Maximum likelihood analyses were carried out
in RAxML with 100 random starting trees, and multiparametric bootstrapping
was done with 1,000 replicates.

Divergence Time Estimation of the Phototropin Gene Family. We used BEAST
(69) to infer simultaneously the divergence times and phylogeny of the
phototropin gene family. As recommended by PartitionFinder, the photo-
tropin dataset was partitioned by codon position, each with the GTR+Γ+I
substitution model. A total of 15 calibration priors were used (see SI Ap-
pendix, Table S2 for details) (8, 13, 70–77), and a birth–death speciation prior
was used as the tree prior. We used the uncorrelated relaxed-clock model
with rates drawn from a lognormal distribution. A starting tree was first
estimated by r8s (78) and was provided to BEAST to initiate the run. Two
independent MCMC runs were carried out, and the output was inspected in
Tracer to ensure convergence and mixing (effective sample sizes all >200).
The trees from the two runs were combined in LogCombiner (69) with a 25%
burn-in and were summarized in TreeAnnotator (69). It should be noted that
the stationary, homogeneous GTR model used here could be violated, es-
pecially in the case of HGT, and might affect the divergence estimates.
However, there is no nonstationary, heterogeneous model that is currently
implemented in divergence time analyses, and our results should be revisited
in the future when more sophisticated methods are available.

Inferring Episodic Selection and GC Content Variation in Neochrome Evolution.
To investigate whether fern neochromes had experienced pervasive episodic
positive selection, we used the unrestricted, random effects branch-site
model (20) implemented in the HyPhy package (20, 79). Branches with epi-
sodic positive selection were identified by the sequential likelihood ratio test
(20). The neochrome alignment and the best maximum likelihood tree were
used as the input data. The analyses were carried out on the Datamonkey
server (79, 80). A GC content sliding window was constructed using a custom
Python script; each window is 400 bp in size, and the window slides every
50 bp.
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