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Abstract
Wildfires occurring in proximity to urban areas pose a potential risk to the safety and well-

being of the population, while also carrying the potential for substantial economic damage

through the destruction of infrastructure and private property. Canada, given its unique

geographical and climatic conditions, is among the countries facing significant wildfire

challenges. Alberta, in particular, has recorded the highest number of wildfires compared

to other Canadian provinces, making it increasingly susceptible to fires in Wildland Urban

Interface (WUI) regions. These are regions where natural vegetation intersects or mixes

with structures, and where the population is growing. Due to the vastness of human settle-

ments and infrastructure needed to be monitored, the precision of fire risk assessment plays

a crucial role in effective fire management. It is therefore necessary to advance a frame-

work to determine fire behaviour in WUI. In this study I focus on fire exposure within

the WUI, and a building in the City of Edmonton serves as a case study. Studies suggest

that the characteristics of a small portion of the WUI, known as the Home Ignition Zone

(HIZ), are a significant factor in determining the level of exposure in wildfire ignition.

The primary goal of this study is to develop an automated method that aligns with national

guidelines for characterizing vegetation land cover as various fuel types. This method

employs convolutional neural networks and incorporates topographical factors, including

the identification of ignition zones near buildings and accounting for slope effects. These

parameters are valuable for pinpointing potentially high-risk individual HIZ or clusters

of HIZ in a neighborhood. Summertime RGB satellite imagery is utilized to detect and

categorize tree canopies and grass-covered areas, while wintertime satellite imagery is

employed to address the challenge of distinguishing between conifer and deciduous trees,

two fuel types with differing fire behaviours. The methods described in this study can be
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combined with in situ data collection and extended for use in different regions to inform

hazard mitigation plans.
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Chapter 1
Introduction

Creating accurate vegetation maps is critical for urban planners to optimize climate

change adaptation and urban ecosystem services. Climate change is a significant

global issue that poses challenges for many countries worldwide. In Canada, air

temperatures increased by 1.5°C between 1950 and 2010, which is twice the global

average increase during that time period, according to observational records [1].

This suggests that Canada is particularly vulnerable to climate change impacts.

Several studies have shown that climate change is exacerbating the risk of wildfires

in Canada. For example, researchers at Environment and Climate Change Canada

have found that the hot and dry weather caused by greenhouse gas emissions has

increased wildfire activity in British Columbia up to fourfold and increased the

area burnt by wildfires up to elevenfold [2]. The scientific community predicts

that, due to climate change, Canada’s wildland areas will experience more dry

fuels that are prone to burning, more frequent lightning strikes that can initiate

fires, and more frequent and intense dry, windy weather that can spread the flames

[3]. Climate change impact assessment studies, such as Wotton et al. [4], suggest

that future wildfire occurrences in Canada could rise by as much as 140% as a

result of climate change.

As an example of a recent wildfire in Alberta, the wildfire season of 2023 can

be mentioned, setting new records for the extent of devastation compared to pre-
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vious years. Spanning from March 1 through October 31, the season saw 1,092

wildfires, which affected an extraordinary area of about 2.2 million hectares, a

size nearly tenfold the average of past years [5]. Although the count of wildfires

aligned with the five-year average, the sheer magnitude of land affected indicated a

significant escalation in fire severity. This challenging period led to the evacuation

of 48 communities, impacting the lives of more than 38,000 individuals [5]. More

specifically, in the City of Edmonton, a wildfire struck several communities west

of Edmonton in April 2023, leading to a widespread evacuation in some communi-

ties of the region and causing significant disruption to the affected community [6].

The wildfire in west of Edmonton was fueled by prolonged drought conditions,

high temperatures, and strong winds, which created ideal conditions for the rapid

spread of flames. The wildfire event in the area and the subsequent evacuation un-

derscore the importance of mapping hazard zones for urban areas to mitigate the

impact of fires.

Wildfires are a significant cause for concern in the Wildland-Urban Interface (WUI)

[7–9]. Urban areas, particularly those situated close to wildlands, are becoming

more vulnerable as they are located within or near densely forested areas. More-

over, structures such as houses can pose a significant threat by adding to the overall

fuel load and creating a domino effect, with the fire spreading to the surrounding

vegetation and rapidly intensifying in strength. A recent example is the fire that

occurred in the city of Lytton, British Columbia on June 30, 2021, which destroyed

151 buildings and claimed the lives of two people [10]. In another example, the

2018 Camp fire, which occurred in WUI area, resulted in the destruction of more

than 18,000 buildings and claimed the lives of 85 individuals [11]. Hence, it is vital

to regularly inspect and update the boundaries and characteristics of WUI regions,

particularly at the level of individual buildings.

Research into wildfire risk in the WUI usually involves modeling potential wild-

fire intensity or exposure using various factors like vegetation, topography, and

housing density [12–14]. While these large-scale assessments help with broad

spatial comparisons, they have a significant drawback: they cannot accurately pre-

dict wildfire risk at the level of individual buildings or neighborhoods. This lim-

itation arises because the threat to structures from wildfires is heavily influenced
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by local factors rather than broader landscape characteristics [15]. Both modeling

and experimental investigations have demonstrated that the potential for structure

ignition by wildfires is significantly influenced by a specific portion of the WUI sit-

uated within 30-100 meters of buildings. This critical area is commonly referred to

as the Home Ignition Zone (HIZ) [8, 16, 17]. The likelihood of ignition primarily

depends on how wildfires behave within the HIZ, which depends on factors such

as fuel types and slope [18, 19]. These insights have been incorporated into guide-

lines for mitigating ignition hazards by organizations like the National Research

Council Canada [20]. Mapping hazards within the HIZ would allow authorities to

assess the vulnerability of the urban area to wildfires and make informed decisions

regarding land management practices and building codes.

Compared to natural vegetation types like forests and rangelands, urban areas tend

to have fragmented vegetation cover. This is due to the irregular and diverse na-

ture of the urban landscape, which has made accurately mapping and identifying

vegetation cover more difficult [21]. Urbanization, land use changes, and human

activities contribute to the patchy nature of urban vegetation, which has varying

types of vegetation distributed throughout the landscape. To address these chal-

lenges, the field of remote sensing has been actively exploring and developing

methods to effectively map and extract land use types over urban vegetation cover.

Remote sensing data, which involves collecting data about the Earth’s surface from

airborne or satellite sensors, has become a widely used method for vegetation map-

ping in various environments [22]. Remote sensing data can provide detailed and

precise information on land cover types and vegetation present, enabling urban

planners to identify areas in need of vegetation and to plan more efficiently for

the future. However, due to the complexity of the urban environment, researchers

have had to develop innovative techniques and approaches to ensure the accuracy

and reliability of their findings.

Earth’s remote sensing has evolved significantly, beginning with aerial photog-

raphy in the 19th century and advancing to modern UAV-based remote sensing.

Today, remote sensing predominantly implies satellite remote sensing, which be-

gan in 1972 with the launch of Landsat-1 for civilian use [23]. Since then, satellite

remote sensing has witnessed numerous advancements, including the introduction
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1.1 Objectives and Scope

of optical and radar systems with higher spatial resolution, the development of

hyperspectral sensors, and the creation of valuable derivatives like the digital el-

evation model [23]. This progression has been pivotal in the field’s capability to

map and extract land use types in urban vegetation cover effectively. The afore-

mentioned methods laid the foundation for understanding urban landscapes and

classifying various types of vegetation cover. However, the increasing complexity

of urban environments has required more advanced and refined techniques.

The emergence of deep learning, a branch of machine learning, marked a sig-

nificant advancement in this evolution. Deep learning involves the use of neural

networks to process information [24]. Convolutional Neural Networks (CNNs),

which are a subcategory of deep learning algorithms, excel at processing images,

videos, and audio [25, 26]. They have the ability to classify the content of an im-

age or mask objects at a pixel level, a process known as semantic segmentation.

In remote sensing, the term ”segmentation” traditionally refers to dividing the im-

age into groups of pixels that share a similar spectral signature, which are then

classified by a traditional machine learning tool such as a support vector machine,

based on their color or other characteristics. On the other hand, ”segmentation” in

computer vision refers to the masking of entire physical objects. CNNs can per-

form object delineation and classification simultaneously, unlike traditional meth-

ods that involve multiple steps. As such, CNNs can be used to segment remote

sensing imagery, which is one of the topics covered in the presented work.

1.1 Objectives and Scope

The objective of this thesis is to develop a methodology using satellite imagery,

specifically through Google Engine, to assess the level of heat radiation that can

be created by a potential fire in urban areas, with a particular focus on a build-

ing in Edmonton. This study aims to assess the potential of satellite imagery in

identifying fire exposure levels in urban areas. It will examine key factors such as

local topography, including slope, and the proximity of fuel types near buildings

by utilizing artificial intelligence techniques. Employing a variety of satellite data,

the study will analyze landscape characteristics and fuel types in the area. The

anticipated outcomes, including a detailed fire exposure map in accordance with
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1.2 Thesis Structure

current wildfire guidelines, are expected to contribute to the effectiveness of wild-

fire management strategies in urban environments, enhancing public safety and

reducing property damage. This approach offers the possibility of automating the

heat exposure assessment process in a significantly shorter time-frame compared

to on-site inspections, which not only demand considerable time but also require

extensive human resources.

1.1.1 Limitations and Assumptions

The methodology focuses primarily on assessing heat radiation exposure and has

limitations in incorporating ember transfer exposure. Furthermore, incorporat-

ing weather factors, including wind speed, direction, and moisture levels, into the

analysis is challenging. These elements, being key components of the fire trian-

gle, require a constantly updating system to accurately reflect real-time conditions,

and integrating such dynamic data would necessitate an advanced computational

framework. The reference guideline used in this study, however, do not provide

a comprehensive method for including wind in the heat exposure assessment. As

the study’s main objective is to implement the guideline’s note within a remote-

sensing framework, weather-related factors, including wind, are not considered in

the analysis.

This study encounters a further limitation concerning the use of satellite imagery.

The assessment of heat exposure relies on mapping various fuel types, a process

predominantly conducted during the summer. However, this approach presents

challenges when satellite images from other seasons are used. For instance, in the

winter, identifying fuels like deciduous trees, which lose their leaves, and grass

areas potentially hidden under snow, becomes considerably more complex.

1.2 Thesis Structure

An overview of the thesis structure is presented below;

• Chapter 1: Introduction

• Chapter 2: Background and Literature Review

• Chapter 3: Methodology

5



1.2 Thesis Structure

• Chapter 4: Results and Discussions

• Chapter 5: Conclusions and Future Work
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Chapter 2
Background and Literature Review

This chapter is divided into six sections. Section 2.1 offers an introduction to aerial

imagery technologies applicable in remote sensing. Subsequently, Section 2.2 out-

lines the key parameters essential for understanding CNNs. Section 2.3 delves into

the ignition behavior of various fuel types, such as conifer and deciduous trees,

and introduces these different fuel categories as outlined in the National Guide

for Wildland-Urban Interface Fires [20]. Section 2.4 then defines the factors that

must be taken into account when determining priority zones. Section 2.5 explains

the terminology of exposure assessment, discusses the different modes of wildfire

transfer, and provides guidelines on how to take fire exposure levels into account.

Section 2.6 briefly presents fire statistics for Canada and Alberta and provides an

overview of the study area. Finally, Section 2.7 highlights previous studies related

to WUI wildfire risk, as well as those involving aerial-based remote sensing and

ground-based remote sensing.

2.1 Aerial/Satellite Imagery

Urban vegetation mapping has become more efficient and accurate due to the use

of satellite and unmanned aerial vehicle (UAV) imagery [27]. This technology

allows researchers to capture high-resolution images from different angles, making

it easier to map urban vegetation cover.
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2.1 Aerial/Satellite Imagery

The current space technology boasts a range of remote sensing satellites that are

specialized for different applications. For the purpose of deep learning image pro-

cessing, I will focus only on optical sensors, which are the most widely avail-

able and suitable. Among these, Landsat program satellites have been in orbit for

several decades, enabling the study of land cover changes over time. Other signifi-

cant optical remote sensing satellites include Pléiades 1A/B, the WorldView series,

QuickBird, and IKONOS. These satellites orbit the earth in a sun-synchronous,

poloidal trajectory at lower altitudes between 450 km and 800 km. Satellites cap-

ture images using a range of wavelengths, which are divided into multiple bands.

The red, green, blue, and near-infrared (NIR) bands, covering a range of approx-

imately 518-954 nm, are crucial for land cover classification. The difference be-

tween the red and near-infrared bands is particularly useful for determining the

amount of vegetation on the ground. As an example, QuickBird and IKONOS

satellites can capture images using visible and near-infrared wavelengths of light

and they are useful for mapping urban vegetation cover, as they can provide im-

ages with pixel resolutions of less than a meter [21, 28].

In 2010, Google launched the Google Earth Engine (GEE), an open-source cloud-

based platform for remote sensing [29]. It centralizes extensive publicly avail-

able data, enabling easy data import through user-friendly JavaScript and Python

APIs. Google Earth and Maps use satellite imagery from Landsat and the higher-

resolution Sentinel-2 satellite, along with aerial photography, for detailed map-

ping. Sentinel-2, operated by the European Space Agency, offers up to 10 meters

per pixel resolution, enabling finer mapping of urban areas and small features.

This is supplemented with high-resolution aerial photos for maps and 3D models

[30, 31]. One of the advantages of using satellite imagery for urban vegetation

mapping is its ability to cover large areas quickly and efficiently. Additionally,

satellite imagery can provide data over extended periods, allowing researchers to

analyze vegetation cover changes over time.

UAV imagery provides even higher resolution images and is useful for mapping

small areas or capturing images of vegetation in difficult-to-reach locations. How-

ever, the use of satellite and UAV imagery has some disadvantages. Atmospheric

conditions such as cloud cover and haze can reduce the quality and accuracy of

these images. The cost of obtaining and processing satellite or UAV imagery can
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2.1 Aerial/Satellite Imagery

also be high, which may limit its use in some research projects.

2.1.1 Spectral Indices

By utilizing imaging bands beyond the traditional red, green, and blue, it is possi-

ble to take advantage of the unique spectral properties of various materials. One

particularly common substance found in nature is chlorophyll, which exists in mul-

tiple forms. As shown in Figure 2.1, the absorption spectra of two different types

of chlorophyll, found in plants, algae, and bacteria, can be utilized in remote sens-

ing applications.

Figure 2.1: Absorption spectra of Chlorophyll A and B [32]

The absorption spectra of the two chlorophyll variants presented in Figure 2.1

indicate that they exhibit absorption maxima in the blue (430 nm, 454 nm) and

red (643 nm, 662 nm) regions of the spectrum, with lower absorption observed

for longer wavelengths. Since chlorophyll-rich materials absorb most blue and red

light and reflect most infrared light, they appear green to the human eye. These

spectral properties can be utilized to develop various indices to distinguish between

different materials. For plant detection, the normalized difference vegetation index

(NDVI) is the most significant index. The NDVI can be calculated as follows:
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2.2 Convolutional Neural Network

Figure 2.2: An example of Normalized Difference Vegetation Index

NDVI =
NIR - red
NIR + red

(2.1)

The NDVI is a quantitative indicator that ranges between -1 and 1, where high

values indicate the presence of green vegetation and low values indicate the pres-

ence of non-vegetated surfaces such as bare soil or impervious areas. Negative

NDVI values can be indicative of water bodies, although the presence of algae can

sometimes complicate the interpretation. While there exist numerous other indices

that are traditionally employed for land cover classification, I will not delve into

those in this report since my focus is on providing an overview of the NDVI for a

specific region.

2.2 Convolutional Neural Network

CNN is a type of deep learning that excels in processing images, videos, and audio

[25, 26]. They have the ability to classify image contents and perform pixel-level

object masking, which is referred to as semantic segmentation. In computer vi-

sion, segmentation involves masking entire physical objects. The advantage of

using CNNs for segmentation is that they can perform both object delineation and

classification simultaneously.

2.2.1 Neural Networks

Renowned pioneers in the field of deep learning, namely LeCun, Bengio, and Hin-

ton, provide a definition of neural networks as ”computational models that consist

of multiple processing layers capable of acquiring representations of data with
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2.2 Convolutional Neural Network

varying levels of abstraction.” This quote highlights four essential concepts: com-

putational model, layer, learning, and abstraction [33]. Neural networks serve as

computational models, meaning they take in an input, process it, and generate

an output. The specific arrangement of components within the model determines

the types of tasks it can handle. This leads to the second concept: deep learn-

ing models are constructed with layers, which in turn comprise artificial neurons.

These artificial neurons are inspired by their biological counterparts, thus lending

the term ”neural network” its name. Every processing layer within a neural net-

work performs a specific mathematical operation on its input. The nature of these

operations relies on the connections between neurons and their respective connec-

tion strengths, known as connection weights. Given a model input x, there exists

a desired network output (referred to as the ground truth) yt , and an actual out-

put (predicted output) yp. Since the actual output is influenced by all the weights

within the network, there exists a specific set of weights for which the predicted

output yp is closest to the desired output yt . To discover this optimal solution, a

technique known as backpropagation is employed, which corresponds to the learn-

ing process mentioned as the second last key term. As an illustration, consider an

image serving as the input to such a network, with the objective of classifying the

depicted content. Referring to the final key term, the network in this scenario ab-

stracts from the specific pixel values of the image and assigns it to a category such

as ”car” or ”tree.” In the intermediate stages, the network generates ”multiple lev-

els of abstraction.” For instance, it may initially create an enhanced version of the

input with emphasized edges or filtered colors. However, as the layers progress,

the output becomes increasingly challenging for humans to interpret, leading to

criticism of neural networks for their lack of transparency [34]. The primary dis-

tinction between deep learning and traditional machine learning lies in how the

models derive their features for prediction. In traditional machine learning, hu-

mans manually craft the features used by the model, making them understandable

and interpretable. On the other hand, in deep learning, these features are gener-

ated through the backpropagation process and numerical optimization. The term

”deep learning” is indicative of the neural networks used, which can have numer-

ous layers, allowing for the exploration of complex relationships and patterns [35].

Numerous variations of neural networks exist, but for the purpose of this thesis, my
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Figure 2.3: The architecture of a general fully convolutional network for classification

focus will primarily be on CNNs. CNNs are particularly well-suited for tasks such

as image classification and segmentation. The provided Figure 2.3 illustrates the

architecture of a typical fully convolutional network (FCN) utilized in image clas-

sification. The architecture of a general FCN for classification can be outlined as

follows; initially, a convolution operation is applied to the input image, succeeded

by a non-linear activation function and a pooling operation, which reduces the

height and width dimensions by half. This sequence of convolution, activation,

and pooling is repeated in an alternating fashion until the output becomes com-

pact enough. Finally, a final convolution transforms the output into a vector that

represents the probabilities for each class.

The network receives an image as input, typically consisting of three channels (red,

green, and blue) in the depth dimension. However, in remote sensing satellite im-

ages, there can be a multitude of channels or bands. In Figure 2.3, the width and

height dimensions of the image are represented as a single condensed dimension.

The input image undergoes a series of operations: convolution, activation function,

and pooling. This sequence is repeated until a final convolution generates a vector

containing class probabilities. The convolution operation learns the necessary fea-

tures for classification, the activation function introduces non-linearity crucial for

the learning process, and pooling reduces the lateral dimensions while filtering out

the most pertinent information. As this particular sequence is commonly found in

neural network structures, these operations will be explained later in this study.
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Figure 2.4: Biological and artificial neurons that share certain characteristics [36].

Neurons

The neuron serves as the fundamental operational unit within the brain. It consists

of various components, including the cell body, dendrites, and axon. The dendrites

act as the ”receiving end” of the neuron, while the axon functions as the ”trans-

mitting end.” Neurons typically possess multiple dendrites, but only one axon,

although exceptions exist. Synapses facilitate the connection between the axon

of one neuron and the dendrites of another. These connections possess varying

strengths, dictating the efficiency of signal transmission between cells. In essence,

incoming signals received by the dendrites are consolidated in the cell body. If

the cumulative signal surpasses a certain threshold, it is then propagated to the

subsequent neuron via the axon.

For many years, researchers have been simulating this behavior through computer

experiments, and one prominent outcome is the perceptron, which was invented

by Rosenblatt in 1958 [37]. The perceptron is a network comprised of artificial

neurons. Figure 2.4 illustrates a simplified representation of a biological neuron

alongside its artificial equivalent, which forms the perception. Both biological and

artificial neurons share certain characteristics. In both cases, information received

from incoming axons is denoted as xi. The strength of synaptic connections is

represented by a weight parameter ωi. To simulate the integration process within

the cell body, a weighted summation is employed, followed by an activation func-

tion f, which determines whether the information is transmitted further or not. The
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resulting output y corresponds to the axon’s role, serving as the input for the sub-

sequent neuron.

The artificial neuron can be mathematically represented by Equation 2.2. This

equation encompasses a weighted summation of inputs, which is subsequently fol-

lowed by a non-linear activation function. The activation function imitates the

threshold mechanism employed by the cell body in biological neurons.

y = f (∑
i

ωixi +βi) (2.2)

Where the xi in input to the neuron, ωi is the weight parameter, βi is the additive

bias, f is the activation function, and y is the neuron output. The connection

weights ωi undergo a learning process known as backpropagation. Neurons can be

combined to form layers, and by connecting these layers sequentially, the network

can perform basic logic operations. As the complexity of the network increases, it

becomes capable of handling more intricate tasks.

Convolutional layers

The fundamental operation of convolution serves as the key component of CNNs,

hence their name. When dealing with discrete raster data, like images, convolution

involves two inputs: the image I and a kernel K, which is applied to the image.

In this context, both the image and the kernel are three-dimensional arrays. The

image, denoted as I, has dimensions of H pixels in height, W pixels in width, and

C channels in depth. Similarly, the kernel is represented as a matrix with dimen-

sions Hk ×Wk ×C, ensuring that the image and kernel share the same number of

channels. In terms of the lateral dimensions (height and width), the kernel is typi-

cally much smaller than the image, commonly having a size of 3×3 or 5×5 pixels.

The output of the convolution process results in a new array with dimensions of

(H −Hk +1)× (W −Wk +1), indicating that the depth dimension is ”consumed”

during convolution and the lateral dimensions are also reduced. The convolution

operation can be visualized as sliding the kernel across the input image, calculating

the element-wise product at each position (i, j). The following equation presents

the mathematical definition of convolution, as utilized in deep learning:
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Figure 2.5: An example for the calculation of convolution for a grayscale image [38].

(I ∗K)i, j =
Hk−1

∑
l=0

Wk−1

∑
m=0

C

∑
n=1

Ii+l, j+m,nKl,m,n (2.3)

Where I is the input image, K is the convolution kernel, i, j are the indices of

the convolution output array, and l,m,n are the spatial and channel indices. The

convolution operation can be reformulated to align with the neuron-equation (2.2),

thereby relating each element of the kernel to a weight that is learned by the net-

work through the backpropagation process. Figure 2.5 illustrates an example for

the calculation of convolution for a grayscale image. To maintain output with the

same lateral dimensions as the input, padding is applied. Padding involves mirror-

ing the border values of the input image with a suitable width.

Within a single convolutional layer, multiple convolutions are performed in paral-

lel on the same input, each utilizing a distinct kernel. As a result, N different two-

dimensional images known as feature maps are generated. These feature maps are

then stacked together to create the output of the convolutional layer, resulting in a

new dimension of (H −Hk + 1,W −Wk + 1,N). Typically, an activation function

follows the convolutional layer to introduce non-linearity, and pooling is applied

to reduce the lateral extent of the feature maps. The specific details of these oper-

ations will be explained subsequently.

Padding, stride, and dilation are techniques used to control the output size of a

convolution operation and how it extracts information from the input. Padding in-
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volves adding extra values around the borders of an image or feature map. This

can be achieved by either using a constant value (typically zero) or reflecting the

image border, as demonstrated in Figure 2.5. The width of the padding, denoted as

p, determines the extent of the output after the convolution. By applying padding,

the lateral size of a feature map can be preserved during the convolution operation.

The kernel in a convolutional operation can be moved across the input with a spe-

cific step width called the stride. A larger stride (s) leads to a smaller output image,

where a stride of two, for example, reduces the output size by half.

The concept of dilation involves inserting zeros into either the kernel or the convo-

lution input. When the input is dilated while using a non-dilated kernel, the output

size increases compared to a non-dilated input. On the other hand, if a dilated

kernel is used, its effective size becomes larger than its non-dilated counterpart,

resulting in a smaller output from the convolution. Dilation allows for the incorpo-

ration of long-range correlations into the feature map, as each pixel in the output

receives information from a larger area.

A comprehensive and detailed explanation of convolution arithmetic, covering as-

pects such as padding, stride, dilation, and transposed convolutions, can be found

in [39].

Activation Function

Neural networks offer a variety of activation functions [40], all of which share a

crucial characteristic: they are nonlinear functions. In contrast, the convolution

operation employed in neural networks is linear. Consequently, when multiple

convolutions are applied sequentially to generate an output, there exists a single

convolution operation that can yield the same output. This implies that a neural

network lacking non-linearities would be limited to performing linear regression

tasks exclusively. Hence, non-linearities are essential components in enabling neu-

ral networks to tackle complex problems beyond linear regression.

ReLU activation

The rectifying linear unit (ReLU) activation function, originally introduced in 1975

[41] to model the behavior of biological neurons, captures the firing mechanism
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of neurons. In biological neurons, firing occurs when the accumulated input sur-

passes a specific threshold, while the neuron remains inactive otherwise [42]. The

ReLU function emulates this behavior by setting all negative inputs to zero and

allowing positive inputs to pass through without modification, effectively setting

the threshold at zero. This activation function has demonstrated its effectiveness

in training neural networks efficiently [43]. The derivative of the ReLU function

corresponds to the Heaviside or step function.

ReLu(x) = max(0,x) (2.4)

Sigmoid activation

The sigmoid activation function, also known as the logistic function, is a com-

monly employed activation function distinguished by its distinctive ”S” shape.

It possesses continuous derivatives and is constrained within the range of 0 and

1. This property makes it suitable for mapping arbitrary values onto this interval.

The sigmoid function is often utilized as the final activation in binary classification

tasks due to its bounded output range. However, it is not suitable for categorical

classification. One advantage of the sigmoid function is its ease of computation

for calculating its first derivative.

S(x) =
1

1+ e−x (2.5)

S′(x) = S(x)(1−S(x)) (2.6)

Pooling

Pooling is a technique utilized to decrease the dimensionality of data, thereby re-

ducing the amount of information transmitted through the network. Various types

of pooling exist, with the most common one being max pooling. In max pool-

ing, an input array is divided into blocks of size n×n, and each block is replaced

with its maximum value. Alternatively, other pooling variants calculate the aver-

age value within each block. Pooling operates independently on each depth layer,

modifying only the lateral dimensions. For instance, using a 2×2 max pooling

size discards 75% of the input information, effectively reducing the number of pa-
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Figure 2.6: Example of max pooling with a 4x4 input array and 2x2 pooling

rameters in subsequent layers. This reduction mitigates the risk of overfitting and

accelerates computation speed.

Loss Function

The loss function evaluates the deviation between a prediction and the true val-

ues, serving as a crucial factor in the training success of a network. The choice

of the loss function depends on the specific task at hand, and there can be multi-

ple suitable options. Determining the appropriate loss function relies on empirical

analysis and consideration of the task’s characteristics. For instance, if the neu-

ral network aims to approximate a function, such as in regression tasks, the mean

squared error (MSE) is a suitable choice. However, for classification tasks where

the dependent variables are discrete (0 or 1), other loss functions are more appro-

priate since they accommodate the nature of classification. Classifications are typi-

cally represented as vectors, where the dimensionality of the vector corresponds to

the number of classes, denoted as C. Each entry in the vector represents a specific

class. When constructing a ground truth vector to represent class i, the ith entry is

assigned a value of one, while all other entries are set to zero. On the other hand,

the network output is obtained through functions, which produce real-valued en-

tries that are normalized to sum up to one. This network output can be interpreted

as a probability distribution. The discrepancy between the true probability distri-

bution and the predicted distribution is commonly assessed using metrics such as

binary/categorical cross-entropy [40].

H(yt ,yp) =−
C

∑
i=1

µiyt,i log(yp,i) (2.7)
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Where H represents the cross-entropy loss function, yt represents the ground truth

vector, yp is the predicted probability distribution vector, C is the number of classes,

and µi represents the weight or importance assigned to class i.

In a classification task where classes are mutually exclusive, the true probability

distribution only assigns a value of one to a single class. The categorical/binary

cross-entropy loss function takes this into account by disregarding predictions for

all other classes and placing logarithmic weight on the prediction for the true class.

As a result, the loss can range from infinity for a completely incorrect prediction

to zero for a perfectly accurate prediction. In segmentation tasks, the categori-

cal/binary cross-entropy is computed for each pixel in the output probability map

and then averaged across all pixels.

2.3 Fuel Type

Different geological conditions result in varied vegetation and tree species. How-

ever, it is not feasible to analyze all types of vegetation and trees due to the limited

scope of the project. The study will focus mainly on vegetation and tree species in

Alberta. Therefore, the primary sources for the study will be reports from either

the province or Forestry Canada.

In general, trees with needles (coniferous) burn faster and more intensely than

trees with leaves (deciduous) [44]. Nevertheless, there is a slight exception to this

general rule. Deciduous trees can become highly flammable in early spring, just

before the emergence of new leaves. At this time, the trees have low moisture

levels, which increases their susceptibility to fire until the new leaves grow [44].

Coniferous trees are known for containing a high quantity of sap in their branches,

which is a highly flammable substance that can accelerate the spread of wildfires.

Unlike deciduous trees, conifers tend to grow in closer proximity to one another,

allowing fires to easily spread from treetop to treetop. In Alberta, coniferous trees

such as lodgepole pine, black spruce, white spruce, and balsam fir are widespread

and can burn up to ten times faster than leafy trees due to the combustible nature

of their sap.

One may wonder why leafy trees burn at a slower rate. The behavior of fire differs
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based on the type of vegetation present. Deciduous forests usually function as

natural fuel breaks, as they slow down the spread of fire. In the boreal forest,

crown fires often stop when they enter an aspen stand. The fire’s ability to spread

depends on the understory plants and shrubs’ amount and type. Due to the lack

of ladder fuels in deciduous forests, fire does not usually reach the high crowns of

these trees. Aspen’s physical characteristics also help resist intense fire behavior,

including high crown base height, high moisture content in the leaves and stems,

and tight, smooth bark. In coniferous forests, the rough, loose bark can act as a

ladder, allowing fire to climb into the canopy, and can also produce embers that

spread ahead of the fire front [44]. Alberta has common species such as trembling

aspen, balsam poplar, and white birch.

Moreover, in a wildfire situation, structures such as houses can pose a significant

threat by adding to the overall fuel load. If these structures are ignited, it can create

a domino effect, with the fire spreading to the surrounding vegetation and rapidly

intensifying in strength. The situation can be particularly dangerous in suburban

and urban areas where buildings are often situated close together, making it easier

for fires to spread from one structure to another. The merging of multiple fires can

result in a firestorm, which is an extreme and life-threatening event that is very

difficult to contain. Firefighters may face challenges in protecting human life and

property once a firestorm has taken hold. Therefore, it is important to take proac-

tive measures to reduce the risk of structure ignition in high-risk areas. This can

be done through various methods such as minimizing the presence of flammable

materials around structures and using fire-resistant materials when constructing

buildings. By taking these precautions, the risk of structures becoming ignition

sources can be significantly reduced, ultimately helping to prevent the spread of

wildfires and safeguarding human life and property.

2.3.1 National Guide for Wildland-Urban Interface Fires

The National Guide for Wildland-Urban Interface Fires [20], developed by the

National Research Council of Canada (NRC), serves as a reference document for

assessing hazards and fire exposure, protecting property, enhancing community

resilience, and planning emergencies, all to reduce the effects of wildland-urban

20



2.4 Topography Analysis

Table 2.1: Wildland Fuel Types

Fuel Type Description

F0 Non-vegetated land
Cultivated or irrigated landscapes

F1 Deciduous forest
Mixed coniferous and deciduous forest with ≤ 25% conifer
Grassland and cereal cropland
(FBP Fuel Types: D1, M1 and M2 with ≤ 25% conifers, O1, S1, S2, S3)

F2 Mature conifer forest with ≤ 20% standing dead trees
Mixed coniferous and deciduous forest with > 25% conifers
(FBP Fuel Types: C1, C3, C5, C6, C7, M1 and M2 with > 25% conifers

F3 Upland boreal black spruce forest
Dense immature jack pine forest
Mature conifer forest with > 20% standing dead trees
(FBP Fuel Types: C2, C4, M3, M4)

interface fires.

The National Guide for Wildland-Urban Interface Fires provides Table 2.1, detail-

ing four unique types of fuels. These ”F” type fuels correspond to the categories

outlined in the Forest Fire Behavior Prediction (FBP) system [45]. For a clearer

insight into the fuel categorization as per the FBP system, Figure 2.7 shows a

flowchart representing the FBP-based classification of forest fuels, particularly fo-

cusing on those prevalent in Alberta. For an in-depth description of these fuel

types, refer to the appendix F of the National Guide for Wildland-Urban Interface

Fires [20].

2.4 Topography Analysis

The fire behavior triangle is composed of three main parameters, namely topog-

raphy, fuel, and weather. Topography, along with fuel and weather, plays a sig-

nificant role in determining how a fire will behave [20]. In general, fires spread

more rapidly up slopes compared to flat ground due to a number of factors. For in-

stance, slopes bring the upslope fuels closer to the flames, which results in shorter
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Figure 2.7: FBP classification flowchart from the composition of areas in Alberta, Canada
[46]

distances for energy transfer between the flames and fuels. Moreover, the ”view

factor” of fuels, in terms of receiving radiant energy that can preheat them ahead

of the flames, is improved by slopes. In the FBP System [45], a 70% slope is es-

timated to cause a spread rate ten times faster than an identical fuel on flat ground

under calm wind conditions.

Topography plays a significant role in determining the behavior of fires, as it can

influence not only the distribution of fuel and weather but also the flow of wind

and the exposure of slopes to solar radiation. For example, narrow canyons can

lead to localized increases in wind speed, while the aspect or orientation of a slope

can affect its solar radiation exposure. These factors, in turn, can affect the micro-

climate within fuel complexes and alter key elements of fire behavior, such as fuel

moisture and vegetation composition [20]. Therefore, it is important to consider

the topographical features of an area when assessing the potential for wildfires and

planning mitigation strategies.

According to the National Guide for Wildland-Urban Interface Fires, it is impor-

tant to manage fuel in specific zones around structures known as Priority Zones.

These Priority Zones are defined by a certain radius around the structure and are

based on the FireSmart zone concept [47]. The FireSmart program in Canada is a

national initiative aimed at reducing the risk of wildfire to buildings and communi-
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ties. It involves a multi-faceted approach that includes public education, commu-

nity planning, development and enforcement of building and land-use policies, and

various on-the-ground measures. Central to FireSmart’s approach is the identifica-

tion and management of priority zones around structures. The program typically

employs a range of tools for fire exposure assessment, including field surveys, his-

torical fire data analysis, and manual inspections, to identify vulnerable areas and

recommend protective measures. While FireSmart’s traditional tools rely more

on manual assessments and local knowledge, the approach in this study harnesses

the power of technology to offer a more data-driven and faster assessment. This

can potentially lead to more precise identification of high-risk areas in a relatively

shorter time. Figure 2.8 illustrates the Structure Ignition Zone, which comprises

Priority Zones 1 to 3. In the guideline [20], another ignition zone, 1A, is defined

expanding from 0 to 1.5 meters from a building. This area is highly susceptible

to immediate fire threats, as it is the first line of defense against the spread of

fire to the structure. Keeping it clear of combustible materials minimizes the risk

from embers and radiant heat, effectively creating a protective buffer. However,

the detection of fuels from satellite images within this small area near the border

of building edges is challenging and requires very high-resolution images. In ad-

dition, since ignition zone 1 takes this area into its buffer zone and the building

is longer in one dimension [20], the study focuses on priority zones 1 to 3. For a

more detailed understanding of the specific parameters and characteristics that de-

fine each priority zone within the guidelines, I strongly encourage readers to refer

to the guidelines themselves.

The impact of land slope on ignition zones can be a crucial factor that should be

considered in the Priority Zones specified as follows:

• Adjust the outer radii of Priority Zones 2 and 3 based on the slope of the

land.

• If the slope of Priority Zone 2 or 3 is between 30% and 55%, the outer radius

of the zone should be increased by (Figure 2.9):

– a factor of 2 in the downslope direction, and

– a factor of 1.5 in the horizontal direction.
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Figure 2.8: Structure ignition zone with priority zones

Figure 2.9: Considering of slope for adjustment of Priority Zones 2 and 3 [20]
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• If the slope of Priority Zone 2 or 3 exceeds 55%, the outer radius of the zone

should be increased by (Figure 2.9):

– a factor of 4 in the downslope direction, and

– a factor of 2 in the horizontal direction.

2.5 Fire Exposure Assessment

In wildfire management, understanding the distinctions between fire exposure as-

sessment, fire hazard assessment, and fire risk assessment is crucial. Fire exposure

assessment predominantly focuses on evaluating the potential radiant heat and em-

ber fire impacts on structures. This assessment evaluates the potential for structures

or areas to be impacted by heat of fire and falling embers, taking into account fac-

tors such as proximity to fire sources and the surrounding environment. Fire hazard

assessment, on the other hand, delves into the likelihood of an area to ignite and

sustain a fire, considering the environmental and physical characteristics such as

fuel availability, moisture content, and terrain. Lastly, fire risk assessment offers a

comprehensive view, intertwining the probability of fire occurrence (hazard) with

its potential consequences (exposure), thereby assessing potential damage to life,

property, and ecological resources. As the focus of the study is mainly on fire ex-

posure assessment, I will employ guidance on exposure factors, helping to create

a map for the fire exposure assessment of the city of Edmonton.

Wildfires can cause significant damage to buildings through three primary modes

of transfer. The first mode is convection, which involves the heating of air sur-

rounding the fire, potentially spreading the flames to nearby structures. The second

is ember transfer, a process where burning materials are lofted and carried by the

fire’s buoyant upward flow up to a 4-kilometer travel distance, resulting in what

is often referred to as ”ember rain.” This can transport embers hundreds of meters

downwind, with the density of these embers decreasing as the distance from the

fire source increases. The third mode is heat radiation, where heat radiates from

the fire source. This radiative heat transfer is influenced by both time and distance,

meaning that factors like weather have a less direct impact on it [20]. While the

intensity of radiant heat can be high, its peak duration is typically short, decreas-
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ing rapidly with distance from the fire, making it particularly critical for objects

within 100 meters of the fire source [20]. Wildland fires typically spread with a

continuous flame front, driven by wind direction, which preheats vegetation ahead

of the fire through radiation and facilitates the spread by lofting embers that can

ignite new fires. Figure 2.10 shows a simple visualization of ember and radiation

fire transfer.

Figure 2.10: Visualization of wildfire transfer from ember and radiation. Image generated
by DALL·E, OpenAI, 2024

Although wind-driven embers pose the most significant risk to residential proper-

ties during wildfires, this study focuses on heat radiation for its exposure assess-

ment. This approach is primarily driven by two reasons. First, assessing ember

exposure necessitates detecting fuels over a larger area (up to 4 km), including

various types like wooden sticks and leaf litter, a task that is difficult to accom-

plish using satellite imagery. Second, the dynamics of ember transfer are greatly

influenced by changing weather conditions, including wind speed and direction.

Given that such factors demand a constantly updating, dynamic system to reflect

real-time conditions, incorporating this data into the study would necessitate a so-

phisticated computational framework and real-time data integration, which adds

complexity to the analysis.

When Figure 2.12 shows a Hazard Level greater than 1, an exposure assessment

needs to be conducted to determine the risk of wildfire to a location. This assess-

ment considers factors like the type and amount of fuel present and the topography.

Therefore, in accordance with the guidelines provided in [20], table 2.2 has been

compiled to assist in performing an exposure assessment that focuses on heat ra-

diation transfer within the priority zones, as illustrated in Figure 2.8.
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Table 2.2: Exposure from fuels in priority zones (0-100 m from the structure)

Distance
from

structure,
m

Surface fuel Fuel type Exposure

Green lawn, non-woody
plant, or non-vegetated

- Nil

Continuous plant litter,
dry grass, bark mulch

- Moderate
0-10

Hazard shrubs or trees - High
Deciduous or no tree (F0, F1) Nil

≤ 25% conifer tree cover (F2, F3) ModerateGreen lawn or vegetation
> 25% conifer tree cover (F2, F3) High

Deciduous or no tree (F0, F1) Low
≤ 25% conifer tree cover (F2, F3) High

10-30
Continuous plant litter

or dry grass
> 25% conifer tree cover (F2, F3) High

F0 Nil
F1 (Fuel cover < 10%) Low

F1 (Fuel cover 10−50%) Moderate
F1 (Fuel cover > 50%) High
F2 (Fuel cover < 10%) Moderate

F2 (Fuel cover 10−50%) High
F2 (Fuel cover > 50%) High

30-100 -

F3 (Fuel cover > 5%) High

2.5.1 Building Resilience: Strategies Against Wildfires

In the context of increasing wildfire risks, particularly in regions prone to such nat-

ural disasters, the resilience of residential and commercial structures against fire

becomes a matter of paramount importance. The focus on enhancing a building’s

resistance to wildfires typically centers around its structural design and the materi-

als used in its construction. In the following, I will explore a range of strategies and

best practices from guidelines [20, 48] for constructing and maintaining buildings

in a manner that reduces their vulnerability to wildfires.

• Exterior walls: Using fire-resistant materials for exterior walls is crucial.

Materials with a high fire-resistance rating, such as non-combustible siding

or treated wood, can significantly reduce the vulnerability of the structure.
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Ensuring that all joints in the external wall cladding are covered and sealed,

leaving no unprotected gaps larger than 3 mm, further prevents the ingress

of embers.

• Foundation walls: Constructing foundation walls from insulating concrete

forms or unit masonry not only provides structural stability but also adds a

layer of fire resistance. This helps in preventing the spread of fire from the

ground level upwards.

• Roofing materials: The choice of materials for the roof, including compo-

nents like pipes, flashing, roof curbs, and tiles, should be non-combustible.

This choice is vital as the roof is often the first part of a building exposed to

flying embers.

• Windows and doors: Windows should ideally be dual-paned with one pane

of tempered glass to withstand heat. Doors should be solid and made from

non-combustible or fire-resistant materials to prevent easy penetration by

fire.

• Vents and openings: Any vents in the building should be covered with

metal mesh to prevent embers from entering. Sealing gaps in the building’s

envelope, especially in areas like wood decking, is crucial to prevent embers

from igniting materials inside or underneath the structure.

• Roof design: The roof’s design should minimize area where debris can ac-

cumulate, such as valleys or flat surfaces. As shown in Figure 2.11, the right

building roofing design is more fire-resistant.

• Fire breaks: Creating natural or artificial fire breaks, such as gravel path-

ways or concrete barriers, can help prevent the spread of fire to the building.

Developing such a tool that can create a map for assessing the heat exposure level

in the case of fire for any individual building by detecting fuel types using machine

learning techniques, in accordance with guideline notes has potential applications

and users across various sectors. To address the question of ”Who” can use this

method and ”How”, the following options can be considered:

• Urban planners: The proposed method can be valuable in designing fire-
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Figure 2.11: Structural design for fire safety in uphill

resilient communities. They can make informed decisions on building ma-

terials, construction methods, and community layouts to mitigate a portion

of fire hazards.

• Fire departments: The agency can utilize the proposed methodology for

pre-incident planning and risk assessment. The ability to map potential heat

radiation exposure can aid in developing more effective firefighting strate-

gies and evacuation plans.

• Environmental and forestry agencies: These organizations can use the

method for managing forested areas near urban developments. By analyz-

ing fuel types and potential fire behavior, they can implement targeted fire

prevention measures, such as controlled burns or vegetation management.

• Homeowners and community associations: They can use the method to

assess the risk to their properties and take proactive steps to reduce fire haz-

ards. This could include modifications to landscaping and building materi-

als.

! To facilitate the application of this method, the creation of an intuitive soft-

ware tool that integrates this methodology could broaden its accessibility,

making it more user-friendly for a diverse array of users such as homeown-

ers.
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2.6 Study Area

2.6.1 Statistics of Fire Across Canada and Alberta

Canada, with its unique geographical and climatic conditions, is one of the coun-

tries that face significant challenges with wildfires. With an increasing population,

expanding cities, and growing infrastructure, the issue of wildfires has become

even more pressing. In this section, I will delve into the statistics of fires that have

occurred in Canada, with a particular focus on the province of Alberta. To gather

the data, I relied on the National Forestry Database of Canada [49], which provides

a comprehensive picture of the wildfire situation across the country.

The hazard level of wildfires in a given area is a critical aspect that requires close

attention. The image presented in Figure 2.12 depicts a historical wildfire hazard

map that is based on spatial burn probability outputs obtained through simulations

of wildfire growth using historical weather and wildfire location data. The map

was generated by analyzing 30 years of fire history data. In the map, areas are

classified according to four hazard levels, with a rating of 1 indicating no fur-

ther action is required [20]. In addition to that, the data presented in Figure 2.13

shows the incidence of wildfires across Canada spanning from 1990 to 2021. The

visual representation indicates a gradual decline in the frequency of wildfires as

time progresses. This trend may be attributed to the implementation of preven-

tative measures as well as the increase in public awareness about wildfire safety.

Nonetheless, it is important to note that despite the decreasing trend, it is still crit-

ical to remain vigilant in protecting ourselves from the danger of wildfires. We

must not become complacent in our efforts to prevent and manage wildfires and

instead continue to take all necessary precautions to safeguard our communities

from this natural hazard. By doing so, we can ensure the safety and well-being

of ourselves and our surroundings, and minimize the potential damage caused by

these catastrophic events.

Figure 2.14 shows the total area of land that was burned by wildfires in Canada

between 1990 and 2020. The data reveals that approximately 746,000 km2 of land

were affected/burned by wildfires during this period, which equates to approxi-

mately 7.5% of Canada’s total land area. This statistic is particularly alarming and
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Figure 2.12: historical wildfire hazard map. Generate from a 30-year fire history [20]

Figure 2.13: Number of fires across Canada between 1990 to 2021 [49]
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Figure 2.14: Burned area in Canada as a result of wildfire between the year 1990 to 2020
[49]

highlights the significant impact that wildfires can have on the environment and

communities in Canada. Canada experienced 302,905 wildfires from 1981 to 2018,

out of which 0.2% (685 fires) necessitated the evacuation of roughly 400,000 indi-

viduals. Furthermore, a total of 96 of these incidents resulted in the loss of build-

ings, including residential homes, recreational properties, and businesses, leading

to the destruction of approximately 4,015 structures [50].

The chart in Figure 2.15 illustrates the incidence of fires across various provinces

in Canada in the year 2020. It is evident that the majority of the fires occurred in

Alberta, with Quebec and British Columbia following closely. Therefore, it can

be inferred that Alberta requires significant and effective preventive measures to

mitigate the occurrence and spread of fires. This information could prove useful in

developing targeted strategies and allocating resources to areas most susceptible to

fires.

The chart depicted in Figure 2.16 shows the count of fire incidents that occurred on

a monthly basis in the province of Alberta, covering the period from 1990 to 2019.

The graph offers a visual representation of the frequency of fires during each month

in the mentioned period, highlighting any potential seasonal patterns or trends. It

is evident that the period of middle spring and early summer experiences the most
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Figure 2.15: Number of fires by province in Canada in the year 2020 [49]

significant frequency of fires.

2.6.2 Study Area Overview

To obtain a broad understanding of the distribution of green vegetation across the

city of Edmonton, I conducted an analysis using the NDVI. This analysis facilitated

the assessment of vegetation presence and density throughout the city, offering

valuable insights into the overall green landscape. To gather the satellite imagery

required for conducting NDVI analysis, I initiated the process by accessing the

Landsat 8 satellite images with TIF format (Tagged Image File Format) consisting

of 11 distinct bands through the USGS global visualization viewer [51]. To ensure

that the imagery provided a comprehensive representation of green vegetation, I

implemented a careful selection process that restricted the cloud cover to a range

of 0 to 20%. Furthermore, I specifically opted for satellite images captured during

June, taking advantage of the favorable environmental conditions during that time.

The reason behind choosing a summer satellite image for NDVI analysis is as fol-

lows: during summer, vegetation is typically at its peak, resulting in higher NDVI

values indicative of dense, healthy greenery. Conversely, in winter, vegetation

may be obscured by snow, leading to lower or even negative NDVI values. The
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Figure 2.16: Number of fires by month in the province of Alberta [49]

presence of snow and ice, which reflect visible light while absorbing near-infrared

light, further impacts NDVI readings. Seasonal atmospheric conditions, such as

varying levels of cloud cover, humidity, and particulate matter, also affect the light

reflection and absorption, thereby influencing the imagery. Additionally, the sun’s

angle changes with the seasons, altering landscape illumination and potentially

creating more shadows in winter, which can impact NDVI calculations.

Figure 2.17 shows the NDVI values using a color ramp from red to green. In this

representation, green indicates healthy vegetation (with a maximum value of 1),

various shades of yellow represent areas with limited or no vegetation, and mov-

ing towards red signifies regions devoid of any vegetation (with a minimum value

of -1). The findings presented here demonstrate that water and developed areas

exhibit very low NDVI values (depicted as dark shades). This suggests that these

land covers reflect more light in the visible band than in the near-infrared. In con-

trast, the urban build-up areas display low to moderate NDVI values, represented

by various shades ranging from light green to orange. On the other hand, more

densely vegetated regions show moderate to high NDVI values, presented in vary-

ing shades of green. These areas have stronger near-infrared reflectance, indicating

healthier vegetation or varying chlorophyll content.

Various studies have proposed NDVI values for different major classes in urban
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Figure 2.17: NDVI map for the entire city of Edmonton

areas, e.g., [52, 53]. In this study, I adapted the suggested threshold values to

accurately identify land cover types based on satellite imagery. The water class

falls within the range of -1 to -0.04, build-up and barren areas within -0.04 to 0.25,

grassland and sparse vegetation within 0.25 to 0.4, and dense vegetation within 0.4

to 1. The classified NDVI map for the city of Edmonton is shown in Figure 2.18.

The obtained result from the analysis provides valuable insights into identifying

areas and buildings that are more susceptible to experiencing high fire exposure

during a wildfire event. This assessment is made possible by considering both the

amount and density of vegetation present in the vicinity of the designated areas

or buildings. By utilizing the NDVI data and analyzing the vegetation distribution

across the landscape, it becomes feasible to pre-evaluate the potential fire risk

associated with different regions.

The Kinsmen Sport Center building holds significance as one of the notable loca-

tions identified by the City of Edmonton for assessing and mapping the wildfire
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Figure 2.18: Classified NDVI map for the entire city of Edmonton

hazard in its vicinity. Given that the project received funding from the city, the re-

search efforts were primarily directed toward examining this specific building. In

addition, the building presents an excellent opportunity for satellite analysis due

to its proximity to various fuel types such as deciduous trees, conifer trees, and

ground vegetation (grass). These factors render the building susceptible to wild-

fires. Google’s 3D model of the Kinsmen Sport Center and its neighborhood is

illustrated in Figure 2.19.
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Figure 2.19: Google’s 3D model of the Kinsmen Sport Center and neighborhood. Imagery
©Google, Imagery ©2022 Maxar Technologies

2.7 Previous Studies

2.7.1 WUI Wildfire Risk

Research into wildfire risk in the WUI usually involves modeling potential wild-

fire intensity or exposure using various factors like vegetation, topography, and

housing density [12–14]. While these large-scale assessments help with broad

spatial comparisons, they have a significant drawback: they cannot accurately pre-

dict wildfire risk at the level of individual buildings or neighborhoods. This lim-

itation arises because the threat to structures from wildfires is heavily influenced

by local factors rather than broader landscape characteristics [15]. Both modeling

and experimental investigations have demonstrated that the potential for structure

ignition by wildfires is significantly influenced by a specific portion of the WUI sit-

uated within 30-100 meters of buildings. This critical area is commonly referred

to as the Home Ignition Zone [8, 16, 17]. The likelihood of ignition primarily de-

pends on how wildfires behave within the HIZ, which depends on factors such as

fuel types and slope [18, 19]. These insights have been incorporated into guide-

lines for mitigating ignition hazards by organizations like the National Research

Council Canada [20].
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Despite the critical role of local factors in wildfire risk, only a few numbers of

spatially detailed studies focus on the HIZ. Gibbons et al. [54] conducted research

on an Australian wildfire measured variables such as the coverage of trees/shrubs

within 40 m, the upwind distance from homes to vegetation, and the count of

buildings within 40 m of buildings. Research conducted in southern California

[55] and Alberta, Canada [56], assessed the spatial morphology of buildings and

their connection to ignition risks. A study on the Hayman Fire in Colorado as-

sessed elements like terrain slope, distance to a fire station, density of vegetation,

and the extent of defensible area around buildings [57]. The utilization of Light

Detection and Ranging (LIDAR) to characterize the pre-fire land cover and topo-

graphical analysis within HIZ [58]. Such studies emphasize local scales such as

individual buildings and local communities, generally using parameters related to

land conditions (usually limited to the percentage of vegetation cover) and topog-

raphy (typically limited to slope). Nevertheless, these studies often require ex-

tensive manual creation of a dataset and analysis, which can be time-consuming,

especially for assessments of large-scale areas.

2.7.2 Aerial-Based Remote Sensing

Detecting individual trees and determining their location and species is a difficult

task that necessitates high-resolution aerial-based images and, if feasible, height

information collected by LIDAR. This section delves into recent effective tech-

niques that have demonstrated promising outcomes in the realm of vegetation re-

mote sensing, along with a few previous studies pertaining to the topic.

Different machine learning techniques have been used in a new era in the field

of aerial-based vegetation mapping. These advanced computational methods have

enhanced the precision and efficiency with which I can analyze and interpret aerial

images to map vegetation cover. Supervised classification techniques, as a sub-

category of machine learning, are frequently utilized to create vegetation maps

using aerial-based images. For example, Réjichi and Chaâbane [59] used the sup-

port vector machine (SVM) method to generate spatial-temporal vegetation maps,

while Wei et al. [60] utilized the decision tree algorithm to map vegetation cover.

Zhang and Xie [61] used an artificial neural network (ANN) to produce a vege-
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tation map from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data,

while an SVM approach was used by Tigges et al. [62] to classify urban vegeta-

tion from various temporal and spectral band mixtures of five RapidEye images

for Berlin, Germany. To classify urban vegetation characteristics from QuickBird

satellite images for Vancouver City, Canada, Tooke et al. [22] employed spectral

unmixing and a decision tree approach. On the other hand, unsupervised classifi-

cation algorithms such as the Iterative Self-Organizing Data Analysis (IOSDATA)

technique [63] and K-Means [64] method have been commonly used for vegeta-

tion cover classification from aerial imagery [65]. Deep neural networks (DNNs),

a type of ANN, are increasingly used in remote sensing applications as they are

able to detect features in multiple levels of representation [24]. The popularity of

these techniques stems from their ability to encode both spectral and spatial infor-

mation directly from raw images without the need for preprocessing[66]. Xie et

al. [67] utilized CNN to differentiate between tree species in urban areas based

on a single-band image called the Canopy Height Model (CHM). CHM, which

is captured from a satellite view, represents the height of various objects such as

buildings and trees through pixel values rather than colors.

The majority of tree species identification tools have primarily concentrated on

forest regions, with very few investigations assessing the effectiveness of high-

resolution imagery for identifying urban tree species. In contrast to forested re-

gions where trees are often closely spaced and the surrounding terrain is relatively

uniform, urban areas have diverse and complex land cover, which poses partic-

ular difficulties for tree species classification. Urban areas face the challenge of

shadows caused by tall buildings that obscure or entirely block spectral data from

shaded tree species, making them difficult to classify or interpret. The classifica-

tion of densely packed trees in urban regions poses a significant challenge due to

the presence of multiple tree categories and the difficulty in detecting individual

tree canopies [68, 69].

Zhang et al. [70] put forth a collection of RGB optical images obtained by UAV

which included ten urban tree species. The aim was to investigate whether deep

learning models such as AlexNet, VGG-16, and ResNet-50 could be employed

for the classification of individual tree species. They reported that ResNet-50 had

a higher accuracy of 92.6% for tree species classification compared to AlexNet
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and VGG-16. The model was trained using approximately 80% of 30,000 im-

ages. However, the accuracy was lower for tree canopy images with complex

backgrounds than those with simple backgrounds. Furthermore, the classification

accuracy of ResNet-50 for deciduous tree species was higher in summer than in

autumn.

Abdollahi and Pradhan [71] implemented a DNN model in vegetation mapping

from high-resolution remotely sensed imagery. For classification purposes, they

chose three images from the Aerial Imagery for Roof Segmentation (AIRS) dataset

[72], which had a spatial resolution of 7.5 cm and dimensions of 2500 × 3000. Be-

cause the images used were RGB, they decided to use the HSV (hue, saturation,

and value) color space of the images instead of RGB. Using the HSV color space

helps distinguish between color and illumination and reduces the impact of illumi-

nation variations on the color of the object. An explanation model called Sharpley

additive explanations (SHAP) was utilized for interpreting the output of the DNN

model [73, 74]. Based on their results, authors achieved a classification of vege-

tation into two groups - High-Vegetation and Low-Vegetation. Their method was

able to attain an accuracy rate of 92.66% for the F1 score 1. While the model

was successful in accurately identifying vegetation, it was not able to differentiate

between different categories of vegetation.

Pu et al. [75] conducted a study in which they compared the effectiveness of

IKONOS and WorldView2 satellites for classifying seven types of trees in Tampa,

Florida, USA. They first classified the vegetation by using a threshold value of

0.25. The findings indicated that WorldView2 data achieved a higher overall clas-

sification accuracy of approximately 55% than IKONOS. However, the results also

revealed that even with the information provided by the WorldView2-8 Band data2

(which provide way more information than 3-band RGB data), the accuracy of

identifying and mapping all seven tree species/groups was still relatively low and

did not meet the general requirement for most applications.

The studies mentioned below focused on identifying individual palm trees. Srestasathiern

and Rakwati [76] carried out their research in Thailand using Quickbird and WorldView-

2 images with four spectral bands and 60 cm spatial resolution. They used a data

1A measure used in machine learning for evaluating the accuracy of binary classifications.
28 multispectral bands includes: coastal blue, blue, green, yellow, red, red edge, NIR1, and NIR2
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transform and maximum extraction to determine the palm positions based on a

vegetation index, achieving an F1-Score ranging from 89.7% to 99.3%. It is worth

noting, however, that their algorithm was tested on plantations where the individ-

ual palm trees were distinct and there were no overlapping crowns, and where the

plantation boundaries were already delineated.

Li et al. [77] conducted a study on classifying urban trees in WorldView-3 images

at a 30 cm resolution. They segmented the images into super-pixels using a region-

growing algorithm and then extracted various features such as mean, variance, and

spectral indices for each polygon. An SVM classifier was employed for classi-

fication. The authors achieved an accuracy rate of 80% - 92% for five different

species; however, they were unable to detect the individual trees or classify them

by species.

Rezaee et al. [78] utilized satellite imagery from the same source to classify trees

in Canada. They followed the same image segmentation approach as Li et al.

[77], but used a VGG16 CNN to classify the polygons into four species. They

obtained their training data from on-ground sources and achieved an accuracy of

82% overall. However, the authors did not provide sufficient information about

their dataset, so the extent of their accomplishments is uncertain. In addition, they

used the source images from Worldview-3 satellite which has 8 visible-near in-

frared bands.

In a study conducted in Finland, Nevalainen et al. [79] obtained an extensive

on-ground validated set of 4100 reference trees. They used a UAV to capture hy-

perspectral data of the study area with a high resolution of 5 cm and 33 bands.

Using automatic image matching, they created a three-dimensional digital surface

model (DSM) from this data. The watershed transform was then applied to seg-

ment individual tree crowns. These segments were classified into four different

species using either a multilayer perceptron (MLP) or a Random Forest algorithm,

achieving an overall accuracy of 95%. While the results are impressive, the pro-

cess involved complex preprocessing to generate the DSM and required significant

manual labor for operating the UAV.
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2.7.3 Ground-Based Remote Sensing

Remote sensing techniques, such as aerial and satellite imagery, have been widely

used for vegetation mapping and monitoring in urban areas. However, it is im-

portant to note that these methods may not provide dynamic and up-to-date infor-

mation about the current condition of plants. This is because satellite images are

often not updated frequently enough across a city to capture changes in vegetation

health or growth on a regular basis. Therefore, while remote sensing techniques

can be an effective tool for the initial mapping and monitoring of urban vegetation,

they should be complemented with ground-based surveys and other data sources

for a more comprehensive understanding of vegetation dynamics in urban areas.

This will provide more accurate and up-to-date information for decision-making

and management of urban vegetation.

In reality, many local governments continue to rely on time-consuming manual

surveys to gather and maintain records of public trees, while private trees often

go undocumented. Even though urban trees play a crucial role, national and mu-

nicipal tree inventory sources suffer from insufficient detail, inconsistency, and

quantity, mainly because of the high expenses involved in tracking and monitoring

trees over vast areas and extended periods [80].

Recent literature has highlighted two trends in assessing urban greenery along

street networks over large areas at a low cost, which has gained attention and is

promoted by a larger number of municipalities [81]. The first trend is the growing

availability of low-cost, detailed, and crowd-sourced street-level imagery, which

comprises photographs of street scenes taken from the ground [82, 83]. The sec-

ond trend is the success of CNNs in extracting abstract features and objects in

imagery, out-competing other methods [84]. Street-level imagery is being used

to estimate the percentage of detected tree canopy cover pixels relative to the total

number of pixels in an image, which quantifies the ”perceived urban canopy cover”

[85]. Similarly, Li et al. [86] used green pixels in street view scenes to estimate

the percentage of vegetation in streets.

The technique of using street-level imagery along with deep learning has been em-

ployed to improve the accuracy of tree inventories based on coarse street addresses

with accurate geographic coordinates [87]. Laumer et al. [87] utilized this method
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and were able to match 38% of over 50,000 identified street trees to their respective

street-level addresses. Meanwhile, Wegner et al. [88] developed a workflow that

combines the results of Faster Region Convolutional Neural Network (R-CNN)

tree detection from Google Street View (GSV) and aerial imagery with data from

Google Maps in a probabilistic model to automatically detect and geolocate street

trees. They were able to classify eighteen different species among the detected

trees by using street-level and aerial imagery.

Wegner et al. [88] developed a system that uses CNN to detect and categorize

different tree species in urban areas. Their approach involves utilizing a dataset

of around 80,000 trees labeled with species information and geographic locations,

combined with a diverse range of images from Google Maps, such as aerial and

street view images. By leveraging this information, they were able to detect, clas-

sify, and maintain a public inventory of trees with GPS location. The results of

their study indicate that aerial and street-view images are the most valuable sources

for detecting and classifying trees.

Stubbings et al. [81] aimed to develop an automated, consistent, and scalable ap-

proach to estimate the hierarchical area-level score of urban street-level trees using

recent advances in Deep Convolutional Neural Networks (DCNN) and multilevel

regression modeling. They used over 200,000 street-level images from GSV of

Cardiff, UK, to apply semantic image segmentation using the PSPNet [89] to clas-

sify image pixels and estimate the percentage of vegetation cover. They opted to

utilize the Pyramid Scene Parsing Network (PSPNet) with a Chainer implementa-

tion by Tokui et al. [90], utilizing a scene parsing approach. The selection of PSP-

Net was based on three primary reasons. Firstly, PSPNet is particularly designed

to analyze urban scenes, making it an appropriate choice for identifying vegeta-

tion in street-level images. Secondly, PSPNet utilizes a unique pyramid parsing

architecture that leverages both local and global contextual information within im-

ages to classify pixels. This enables objects to be classified in the context of other

objects, such as a branch within a tree. Lastly, PSPNet has demonstrated supe-

rior performance compared to several other popular deep learning algorithms. The

method they employed, PSPNet, exhibited a precision and R2 value of 82% and

83%, respectively, which surpassed the results obtained by other methods such as

Random Forest and green-pixel analysis.
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Seiferling et al. [85] developed and tested a new method for rapid quantification

and mapping of urban vegetation, specifically trees, using more than 400,000 geo-

tagged images from GSV in New York City. Their method aimed to demonstrate

the ability to accurately quantify the presence and perceived cover of street-side

trees at a high spatial resolution at the city-scale. The approach involved sampling

sequential neighboring image scenes of the streetscape, using a trained predictor

to segment the amount of tree cover in each image, and modeling the relationship

between the tree cover of neighboring viewpoints. They compared the accuracy

and utility of their approach to contemporary remote-sensing techniques, such as

object-based image analysis of high-resolution LIDAR data and multispectral im-

agery. The images were collected along city roads with a sampling rate of approx-

imately every 15 meters. The test dataset yielded an r-square value of 0.73 and a

root mean square error value of 0.28. According to their findings, the performance

of the streetscape tree cover predictor was optimal when the images were aligned

parallel to the street direction, meaning that the camera’s heading was aligned with

the street’s heading.

In a recent study, Lumnitz et al. [91] developed a new technique to automati-

cally detect and locate trees along street networks in urban areas. Their approach

utilized monocular depth estimation [92] and triangulation (to reduce duplicate ob-

servations of individual tree predictions and correct their position) to accurately es-

timate tree locations from a single image without requiring additional data sources.

To extract and mask fuzzy features like trees in the images, they employed deep

learning frameworks for instance segmentation using Mask Regional CNN archi-

tecture, which involves both object detection and pixel masking. They evaluated

their approach using images from GSV and validated their model by comparing

its output with on-site tree location measurements in the Metro Vancouver area.

Their method was able to accurately detect over 70% of public and private trees

that were manually recorded in a ground-truth campaign conducted throughout

Metro Vancouver. The most remarkable method in their study is the depth estima-

tion using MonoDepth, which is a readily available fully trained unsupervised deep

learning model for depth estimation with an error margin of less than 20% [92].

To estimate depth, the model computes disparities (D) between objects in each

panoramic image. Afterwards, disparities are transformed into absolute depth in
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meters (depth = W0×F
D ) through a post-processing step that takes the focal length

(F) and baseline of the camera (W0) used to capture the training images as an in-

put. Lumnitz et al. [91] found the distance from ground-truth to tree predictions

for street trees ranged from 0.26 to 13.14 m with a mean of 4.31 m and a standard

deviation of 2.76 m.
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Chapter 3
Methodology

The upcoming chapter provides a concise overview of the methodology, including

the topography analysis, vegetation analysis, and mapping hazard zone.

The initial stage involves gathering the topographic data for the entire city of Ed-

monton. Subsequently, the elevation data points are identified and integrated into

the map. Moving on, the next step entails delineating the ignition zones surround-

ing buildings in accordance with the National Guide for Wildland-Urban Interface

Fires [20] guideline outlined in Section 2.3.1. As discussed in Section 2.6.2, the

Kinsmen Sport Center Building is the ideal candidate for satellite analysis because

of its close location to diverse fuel sources like deciduous and conifer trees, as

well as ground vegetation, such as grass. This proximity makes the building more

vulnerable to wildfires. To address this, a fuel detection model utilizing a CNN

was employed to classify the aforementioned vegetation types and determine their

spatial relationship with the building’s position. The final step of the methodology

involves quantifying the extent of each fuel type within the designated ignition

zones. This information is then utilized to create a hazard map specifically tai-

lored to the Kinsmen Sports Centre. By incorporating the data on fuel types and

their distribution, the hazard map provides valuable information regarding the po-

tential risk of a wildfire event and allows for effective mitigation strategies to be

developed.

Overall, this chapter serves as a comprehensive guide to the methodology em-
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ployed in the study, highlighting the steps involved in extracting topographic in-

formation, mapping ignition zones, utilizing a fuel detection model, and generat-

ing a hazard map. Through these methods, I aim to enhance the understanding of

wildfire risks and contribute to effective wildfire management strategies.

The chapter is classified into five different sections that are listed below:

1. Section 3.1: Overview

2. Section 3.2: Topography Analysis

3. Section 3.3: Tree and Grass Cover Semantic Segmentation

4. Section 3.4: Integration of Topography Analysis and Vegetation Segmenta-

tion

3.1 Overview

Figure 3.1 illustrates the comprehensive approach of satellite analysis employed

for studying wildland-urban interface fires. The analysis comprises three funda-

mental steps, each playing a significant role in understanding and assessing fire

hazards.

The first step involves topography analysis, where the topographic information of

the study area, such as the city of Edmonton, is extracted. This process entails

capturing and incorporating elevation data points and coordinates of buildings to

accurately represent the slope and buildings’ location on a map. The second step

focuses on tree detection, aiming to identify and delineate areas with dense or sin-

gle tree cover. By employing CNN techniques, satellite imagery is analyzed to

detect and map the distribution of trees in the study area. This step is crucial as

trees play a significant role in fueling wildland fires and understanding their dis-

tribution helps in assessing fire risk and potential spread. The third step involves

ground vegetation mapping, such as grass, within the study area. This informa-

tion is vital in assessing the fuel availability and flammability of the landscape.
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Through the use of CNNs, satellite imagery is analyzed to classify and map the

ground vegetation type. By integrating the outcomes of these three steps, a hazard

zone map is created around a specific building, such as the Kinsmen Sports Centre

in this context. The hazard zone map takes into account the topographic features,

tree distribution, and ground vegetation types within the proximity of the building.

This comprehensive approach provides valuable insights into the potential wildfire

risks associated with the building, considering factors such as fuel availability and

vulnerability.

Satellite Analysis

Topography 
Analysis

Slope 
Effect

Building’s 
coordinates

Ignition 
Zones

Fuel Analysis

Tree 
Detection

Tree Type 
Detection

Tree

Area & 
Location

Grass 
Detection

Area & 
Location

Hazard Map

Ground 
Vegetation

Figure 3.1: A schematic of satellite analysis
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3.2 Topography Analysis

3.2.1 Extraction of Buildings’ Coordinates

All the coordinates for the registered buildings were collected from a publicly

available database provided by Statistics Canada [93]. The dataset includes in-

formation on the location of each building as a Shape File. In Figure 3.2, all the

registered buildings are visualized on a map. The Kinsmen Sport Center Build-

ing is highlighted with a red marker. It is important to mention that a rotation of

19-degrees was applied to the coordinates to align them with the orientation of the

map, which differs from the satellite image. This adjustment is necessary due to

the distinct map projection employed by Google Maps. Therefore, a comparative

analysis of two points, one from the dataset and the other from Google Maps, de-

termined that an approximate 19-degree rotation aligns the coordinates with the

projection used by Google Maps. Figure 3.3a shows the plotted geometry of the

Kinsmen Sport Center Building. By rotating the coordinates by 19 degrees, the

outer layer of the designated building was superimposed on Google Maps using

the ”gmplot” library [94] (seen in Figure 3.3b).

In order to map the building’s edges on Google Maps, it was necessary to convert

the distance from the center of the building to its edges and the bearing angle φ

(the angle between the center of the building and each edge point) into latitude and

longitude coordinates on the Earth’s surface. Therefore, Equations 3.1 and 3.2 are

used for the conversion.

Latitudes = sin−1
(

sin(α)× cos
(

∆

R

)
+ cos(α)× sin

(
∆

R

)
× cos(φ)

)
(3.1)

Longitudes = β + atan2d
(

sin(φ)× sin
(

∆

R

)
× cos(α),

cos
(

∆

R

)
− sin(α)× sin(Latitudes)

) (3.2)

where the R = 6371000 represents the approximate average radius of the Earth

in meters. α and β are the latitude and longitude of the center of the building,

respectively. ∆ is the relative location of the edge of the building with respect to

the center of it.
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3.2 Topography Analysis

Figure 3.2: Location of all the registered buildings in the city of Edmonton; location of
Kinsmen Sport Center with a red marker

(a) Plot of building (b) Rotating the coordinates and overlaying on
Google Maps

Figure 3.3: Kinsmen Sport Center Building; (a) plotted geometry; (b) layout the plot on
Google Maps, Maxar Technologies, Map data ©2022
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3.2.2 Slope Analysis

Initially, the topographic details of the entire city of Edmonton are obtained from

the publicly accessible CanVec Series database [95] administered by the Govern-

ment of Canada. The resulting elevation map of Edmonton can be observed in

Figure 3.4.

Once the elevation data points are acquired, the percent ground slope is calculated

according to the guidelines outlined in the National Guide for Wildland-Urban In-

terface Fires [20]. This calculation is performed using Equation 3.3. This parame-

ter is employed to adjust the ignition or priority zones encompassing the building

(see Section 3.2.3), which necessitates fuel treatment measures to mitigate the risk

of wildfires spreading and causing harm to the structure.

% Ground Slope =
Elevation

Horizontal Ground Distance
×100 (3.3)

It is important to note that the ground slope can exceed 100% when the vertical el-

evation change surpasses the horizontal ground distance, indicating a slope steeper

than 45 degrees. The topographic map and the corresponding percent ground slope

of the vicinity surrounding the Kinsmen Sport Center Building are depicted in Fig-

ures 3.5.

Figure 3.4: Elevation map of Edmonton city
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3.2 Topography Analysis

(a) Height map (b) Slope magnitude map

Figure 3.5: Topographic map around the Kinsmen Sport Center Building

3.2.3 Ignition Zones

As described in Section 2.3.1, the management of fuel in designated areas sur-

rounding structures, referred to as Priority Zones, is crucial. These Priority Zones

are defined by a specific radius around the structure in accordance with National

Guide for Wildland-Urban Interface Fire [20].

The first priority zone, spanning from 0 to 10 meters around the building, includes

a non-combustible zone of 1.5 meters. Within this zone, fire-resistant vegeta-

tion should be present, while removing potential fuel sources such as mulch and

wooden debris. Cured grass should be regularly trimmed to reduce the risk of ig-

nition and fire intensity. Moving outward, the second priority zone stretches from

10 to 30 meters. In this area, trees should be pruned, with branches cut at least

2 meters from the ground and spaced at least 3 meters apart. Dry grass, debris,

and needles should be consistently cleared. Lastly, the third priority zone covers

the range of 30 to 100 meters and necessitates the inclusion of fire breaks between

trees and other potentially flammable vegetation [20].

The process of determining the priority zones involves a series of steps. Firstly,

it is necessary to locate the particular building of interest, in this case, the Kins-

men Sport Center Building, as detailed in Section 3.2.1 of the study. This building

serves as the focal point for the subsequent analysis. The next step entails the ap-
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plication of morphological dilation, a mathematical operation, which generates a

buffer zone around the building. This buffer zone represents the extent of the prior-

ity zones associated with the structure. By enlarging the area around the building,

the priority zones are effectively defined and demarcated. The generated buffer

zone, encompassing the priority zones provides a clear representation of the spa-

tial distribution.

Morphological dilation is a commonly utilized technique in image processing to

enlarge objects or regions of interest. It involves adding pixels to the boundaries of

objects using a predefined structuring element. By iteratively applying the struc-

turing element to each pixel, overlapping areas with objects are expanded. This

process is repeated for every pixel, resulting in an enlarged representation of the

original objects [96]. Figure 3.6 presents a simplified schematic procedure of mor-

phological dilation. In the context of identifying priority zones around buildings,

morphological dilation is employed to create a buffer area surrounding the target

building. This buffer area encompasses the desired priority zones, allowing for

effective analysis and planning in fire prevention and management strategies.

Figure 3.6: Schematic procedure of morphological dilation

The adjustment of priority zones is necessary, taking into account the surrounding

slope, as topography plays a crucial role in the propagation of fires. According to

the National Guide for Wildland-Urban Interface Fire [20], modifications to the

second and third priority zones should be made based on the slope conditions in

the following manner.
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3.2 Topography Analysis

1. If the slope within the 2nd and 3rd priority zone falls between 30% and 55%

(inclusive), the following adjustments should be made:

(a) The priority zones should be expanded by a factor of 2 in the downward

direction:

i. The 2nd zone is extended from 30 to 60 meters.

ii. The 3rd zone is extended from 100 to 200 meters.

(b) The priority zones should be expanded by a factor of 1.5 in the hori-

zontal direction:

i. The 2nd zone is extended from 30 to 45 meters.

ii. The 3rd zone is extended from 100 to 150 meters.

2. In cases where the slope within the 2nd and 3rd priority zone exceeds 55%,

the following adjustments should be implemented:

(a) The priority zones should be expanded by a factor of 4 in the downward

direction:

i. The 2nd zone is extended from 30 to 120 meters.

ii. The 3rd zone is extended from 100 to 400 meters.

(b) The priority zones should be expanded by a factor of 2 in the horizontal

direction:

i. The 2nd zone is extended from 30 to 60 meters.

ii. The 3rd zone is extended from 100 to 200 meters.

The left side of Figure 3.7 illustrates the slope adjacent to the Kinsmen Building

neighborhood, while the right side represents the slope falling within the specified

ranges mentioned earlier (30% ≤ slope ≤ 55%, and slope > 55%).

In order to emphasize the criticality of slope adjustment for priority ignition zones,

two illustrative examples are presented. The objective is to shed light on the signif-

icance of considering the slope factor in determining the extent of ignition zones,

as outlined in the National Guide for Wildland-Urban Interface Fire [20].

The first example, illustrated in Figure 3.8, shows a detailed slope adjustment
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3.2 Topography Analysis

Figure 3.7: Adjustment of slope, (up-right) slope greater than 30% but less than 55%;
(down-right) slope greater than 55%

analysis conducted on a randomly selected building situated in close proximity

to high-slope regions. By examining the impact of slope on the spatial distribution

of ignition zones, this example highlights the direct influence of slope conditions

on the expansion of these zones. This analysis serves as a practical demonstration

of how slope characteristics can significantly affect the determination of ignition

zones, ensuring a more accurate assessment of potential exposure risks and en-

abling effective preventive measures.

Conversely, an additional example involves the examination of a building that is

not in close proximity to any slope regions exceeding 30%. In this case, the West

Edmonton Mall serves as a representative example. The purpose of this example is

to demonstrate that when no significant slope is present in the vicinity, the adjusted

ignition zones remain the same as the original zones. Figure 3.9 visually presents
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this example.

(a) Unadjusted ignition zones (b) Unadjusted ignition zones with slope regions be-
tween 30%-55%

(c) Unadjusted ignition zones with slope regions
greater than 55%

(d) Adjusted ignitions zones

Figure 3.8: Random building in a region with high slope

3.3 Tree and Grass Cover Semantic Segmentation

In this section, I employed the ResNet50 model to segment tree canopies such as

conifers and deciduous trees, and surface fuels (grass) within the Kinsmen Sport

Center region in Edmonton. This approach was chosen to facilitate the mapping of

fuel distribution in the vicinity. The canopy detection encompassed various types

of tree cover present in the area. Satellite data from Google Maps was utilized for
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3.3 Tree and Grass Cover Semantic Segmentation

(a) Unadjusted ignition zones (b) Unadjusted ignition zones with slope re-
gions between 30%-55%

(c) Unadjusted ignition zones with slope re-
gions greater than 55%

(d) Adjusted ignitions zones

Figure 3.9: West Edmonton Mall Building

data gathering due to its convenient accessibility as well as its free data Python-

based extractor. The objective of this undertaking was to generate hazard zone

mappings surrounding the specific building.

3.3.1 Deciduous Canopy and Grass Cover Segmentation
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3.3 Tree and Grass Cover Semantic Segmentation

Data Gathering and Labeling

To train the machine learning models, a total of 479 images were obtained from

Google Maps, capturing various areas within the city of Edmonton. Each image

had a pixel size of 640×640. In these sample images, the tree crowns, which in-

clude both deciduous and conifer trees, and grass (surface fuel) were manually

delineated using Labelme software. Although no on-ground validation was con-

ducted for this data, it is anticipated that the label accuracy is reasonably high

due to the high resolution of the images. For the data preparation, the dataset

was partitioned, as seen below, to enhance the performance of the machine learn-

ing model. A major portion, 70%, was assigned to training, enabling the model

to identify patterns and relationships in the data. To mitigate overfitting and re-

fine the model’s parameters, 20% of the dataset was dedicated to validation. This

validation phase is vital for impartially assessing the model’s fit during training,

allowing for necessary modifications prior to the final assessment. The remain-

ing 10% was used for testing, which is essential in providing a neutral evalua-

tion of the model’s efficiency on a separate dataset, demonstrating its potential to

adapt to unfamiliar data. The process assures not just the model’s accuracy on

training data but also its effectiveness and dependability for an unseen dataset.

Data
Training

70%

Validation

20%

Testing

10%

The outlined polygons were transformed into masks with the label ”canopy” and

”surfacefuels”. Whatever remains, excluding canopy and surfacefuels, is a void

mask. In the context of image processing and computer vision, a mask is a binary

image (the value of 1 represents the foreground, and the value of 0 represents the

background) that serves as a visual representation of certain regions or objects of

interest within an image. It is commonly used for tasks like segmentation, where

the goal is to separate specific objects or areas from the background. Figure 3.10

illustrates an example of a couple of randomly selected images alongside their

corresponding masks. All the training dataset along with their masks are stored in

a publicly available repository [97].

An image augmentation strategy employed in the dataset preparation is provided.
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3.3 Tree and Grass Cover Semantic Segmentation

Figure 3.10: Randomly selected images with their corresponding masks that include two
classes
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3.3 Tree and Grass Cover Semantic Segmentation

This augmentation process is a crucial step in enhancing the robustness and gen-

eralizability of the machine learning model. The augmentation strategy involves

randomly applying various transformations to the images and their corresponding

masks in the dataset. These transformations can include changes in orientation

(like rotations and flips). The augmentation is applied conditionally, meaning that

not every image-mask pair undergoes these transformations. This approach en-

sures a balanced mix of original and augmented data, providing the model with a

diverse and comprehensive learning experience.

Segmentation Model

In this section, I will delve into the models utilized in this study. The computer ex-

periments involve two primary tasks: classification and semantic segmentation. In

the classification task, an entire image is assigned a specific class, while in the seg-

mentation task, each pixel is assigned a class. To tackle these tasks, I will employ

CNNs constructed with the building blocks outlined in the theory section. Specif-

ically, I will utilize the ResNet50 architecture [35] for semantic segmentation as

well as classification.

ResNet50:

In the methodology section of this thesis, the model architecture chosen for the

study is the ResNet50 [35], a CNN known for its depth and effectiveness in image

classification tasks. The ResNet50 model, renowned for its 50-layer structure, is

utilized here as a pre-trained encoder within a Feature Pyramid Network (FPN)

segmentation model. This model is pre-trained with weights from ImageNet, a

large and diverse visual database often used for enhancing the accuracy of visual

recognition tasks.

Along with adapting the ResNet50 model for segmentation, a crucial aspect of the

methodology was hyperparameter tuning to optimize the model’s performance.

Hyperparameter tuning involved adjusting various parameters such as the activa-

tion function, batch size, loss computation, learning rate, the number of epochs,

and the learning rate drop factor, which are explained subsequently, to find the

most effective combination for the task.

60



3.3 Tree and Grass Cover Semantic Segmentation

The segmentation model employs the ’softmax2d’ activation function, which is

particularly suitable for classifying each pixel in image data into distinct cate-

gories. For the management of training and validation datasets, DataLoaders are

implemented with a configured batch size of 8, and shuffling is enabled to ensure

a diverse set of data in each training batch. The loss computation for the model

is conducted using the Cross-Entropy Loss function, which is adapted with class

weights to address imbalances in the dataset effectively. The initial learning rate

was set to 0.001, a critical parameter in controlling the rate at which the model

learns. The learning rate drop strategy involved reducing the learning rate by a

factor of 0.5 periodically, to fine-tune the convergence. This approach is effective

in making smaller adjustments as the model gets closer to the optimal solution, pre-

venting overshooting. The Adam optimizer was utilized for adjusting the weights

of the network, known for its efficiency in handling large datasets and complex

architectures. The model training spanned 40 epochs, where an epoch represents

a complete pass through the entire training dataset. This duration was chosen to

allow sufficient time for the model to learn and adjust its parameters. Each epoch

involved training the model with the training dataset and validating its performance

using a separate validation dataset.

3.3.2 Conifer Cover Segmentation

The segmentation of the conifer canopy is addressed separately due to differences

in the data collection process compared to the previous section.

Data Gathering and Labeling

The process of collecting data for conifer canopies differs from the earlier section,

which focused on deciduous trees and surface fuel. The previous section’s data

was sourced using Python scripts and the Google Maps API key, centered around

Google Maps satellite images taken during seasons of lush vegetation like spring

or summer. These images captured all forms of vegetation, including conifers,

which posed a challenge in distinguishing conifer canopies from deciduous ones,

particularly in densely vegetated zones. As highlighted in Section 2.3, the fire

behavior varies between coniferous and deciduous vegetation. This necessitated
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creating separate maps for each tree type to generate a comprehensive wildfire

hazard map. One approach to discern conifer canopies in satellite pictures involves

using wintertime shots. During this season, deciduous trees are leafless, whereas

conifers remain green and easily identifiable. Python-based extraction of historical

satellite data from the Google Earth engine is feasible using the Sentinel-2 satel-

lite. However, its resolution is not suitable for the objective, as illustrated in Figure

3.11. To secure higher resolution images, Google Earth Pro, which grants access to

historical data from commercial satellite providers like DigitalGlobe and Airbus,

becomes an option. Yet, the satellite imagery obtained this way is not open for

programmatic extraction due to licensing restrictions. Consequently, I manually

extracted 80 images from the Google Earth Pro application centered on Edmon-

ton City. These images, sized 1485X904 pixels and dated March 2022, contain

conifer canopies intended for segmentation. The subsequent steps, including im-

age preparation for the training set and mask set, align with the previous section,

with a notable exception; there are only two single masks, the canopy mask and

void mask (whatever is not canopy). Figure 3.12 illustrates an example of a couple

of randomly selected images alongside their corresponding conifer mask. All the

training dataset along with their masks are stored in a publicly available repository

[97].

Figure 3.11: Winter satellite image of Edmonton using Sentinel-2 satellite; date: 02/2023
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Figure 3.12: Conifer cover; randomly selected images with their corresponding masks

Segmentation Model

The CNN model employed for segmenting and classifying winter satellite images

is identical to the model utilized for summer satellite imagery analysis. However,

with the introduction of a new training dataset comprising winter satellite imagery,

minor adjustments were made to the hyperparameter tuning process. Initially, the

alteration involved changing the number of classes for the activation function from

three to two. Moreover, given that the winter satellite images have a higher reso-

lution compared to the summer images, the batch size has been decreased to four.

This modification is designed to counterbalance the limited RAM availability dur-

ing the model’s training phase.

3.3.3 Model verification

To verify the results from the semantic segmentation, the region within the three

ignition zones near the Kinsmen Sport Centre building was manually annotated
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(referred to as the ”true label”), utilizing the Google Pro engine as a basis for

this process. Due to the difficulty in distinguishing conifer trees from deciduous

ones in satellite images, which makes manual labeling challenging, UAV photos

captured during winter were utilized. The coordinates of each conifer tree were

gathered from these photos to aid in accurately identifying and labeling conifer

trees. Afterward, two methods can be employed to assess the accuracy of the

semantic segmentation:

Comparison of binary masks (Regular accuracy)

The method involves converting both the true and detected masks to binary forms

in pixel scaling and measuring the true positives (TP), where both masks have the

same class. The accuracy can be determined as follows:

TP

True Mask (TM)

Accuracy = Area of TP / Total Area of TM

Intersection over Union (IoU)

This method measures the IoU by dividing the area of overlap between the true

mask and the detected mask by the area covered by either of the masks (union)

and penalizing false positives. The IoU can be determined as follows:

True Mask TM

Predicted Mask PM

TP

IoU = Area of TP / Area of (TM ∪ PM)
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3.4 Integration of Topography Analysis and Vegetation
Segmentation

After the CNN-based detection and segmentation of deciduous, coniferous, and

grass-covered regions, the next step involves quantifying the extent of each fuel

category (deciduous, coniferous, and grass-covered) within the defined three igni-

tion zones, as outlined in Section 3.2.3. This information is crucial for exposure

assessment of the risk of wildfire to a location/building, as stated in Table 2.2.

An example of topography analysis integration with vegetation segmentation can

be seen in Figure 3.13. The fuel type, tree canopies and grass, are detected within

the three slope-adjusted ignition zones of two random buildings in the City of Ed-

monton.

The type of fuel in each ignition zone of the building can be identified using Table

2.1 guidance. Subsequently, referring to Table 2.2, it is possible to assess the

exposure level based on the fuel type in each ignition zone. The exposure level can

reflect the likelihood of a potential fire spreading to and coming into contact with

the structure.
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(a) Adjusted ignition zone of a building (b) Fuel map within the ignition zones

(c) Adjusted ignition zone of a building (d) Fuel map within the ignition zones

Figure 3.13: Fuel map within the ignition zones
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Chapter 4
Results and Discussions

4.1 Ignition Zones

Based on the information provided in section 3.2.3, three ignition zones surround-

ing the Kinsmen Sport Center Building were identified and visualized in Figure

4.1. It should be emphasized that the figure represents the ignition zones without

taking the slope into account. Consequently, the first, second, and third ignition

zones are defined as spanning 0-10 meters, 10-30 meters, and 30-100 meters, re-

spectively. Upon initial observation, it becomes evident that the third zone encom-

passes a combination of trees and grass, highlighting the need to incorporate fire

breaks between the trees and other vegetation that may be prone to catching fire.

As per the guidelines provided in the National Guide for Wildland-Urban Inter-

face Fire [20], adjustments to the second and third priority zones need to be made

based on the slope conditions outlined in Section 3.2.3. Specifically, when con-

sidering slope regions ranging from 30% to 55%, Figure 4.2a shows the overlay

of these regions on the corresponding Google image, highlighting the areas on the

map where the slope falls within the specified range. Figure 4.2 provides a visual

comparison between the unadjusted slope and the adjusted ignition zones.

In aligning with the National guideline [20], it’s crucial to account for the impact of

both upslope and downslope orientations. For instances where there’s an upslope
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Figure 4.1: Ignition zones around the Kinsmen Sport Center Building without slope ad-
justment

ranging from 30 to 55 percent towards a building, it’s recommended to double the

ignition zone in the direction of the slope and increase it by a factor of 1.5 in other

horizontal directions. Conversely, in scenarios where the slope descends towards a

building, the doubling factor in the slope’s direction is not applicable, although an

expansion by a factor of 1.5 is still advised in all directions. The rationale behind

this lies in the behavior of fire on sloped terrain; fire tends to burn faster and

more intensely uphill than on flat ground, leading to higher heat radiation. The

inclination of the slope effectively brings the fuels on the upslope nearer to the

flames, reducing the distance for energy transfer. This closer proximity enhances

the ’view factor’ for the fuels, allowing them to receive and absorb radiant energy

more effectively, which preheats them prior to the flames’ arrival. Consequently,

this necessitates the expansion of the ignition zone to accommodate the heightened

risk, explaining the increase of zone expansion in all directions with a factor of 1.5.

In Figure 4.3b, the regions with a slope greater than 55% are overlaid. It is evident

that these regions, which fall outside the spanning area, do not impact the ignition

zones. Therefore, the adjustment of the ignition zones was only based on the slope
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(a) Unadjusted ignition zones (b) Adjusted ignition zones

Figure 4.2: A comparison between the ignition zones when considering slope adjustment
and when not considering slope adjustment. The focus is on slope regions ranging from
30% to 55%.

range of 30% to 55%.

(a) Unadjusted ignition zones (b) Adjusted ignition zones

Figure 4.3: A comparison between the ignition zones when considering slope adjustment
and when not considering slope adjustment. The focus is on slope regions greater than
55%.

Figure 4.4a shows the overlay of the plotted Kinsmen Sport Center Building and

the calculated ignition zones around it on Google Maps. On the other hand, Figure

69



4.2 Vegetation Segmentation and Integration with Topography Analysis

4.4b demonstrates the same overlay with the adjusted slope, as discussed previ-

ously.

(a) Ignition zone map without slope adjustment (b) Ignition zone map with slope adjustment

Figure 4.4: Ignition zone map around Kinsmen Sport Center

4.2 Vegetation Segmentation and Integration with Topog-
raphy Analysis

Figure 4.5 is a comparative visualization of fuel types, grass-cover and tree canopies,

in the vicinity of the Kinsmen Sport Centre Building. Figure 4.5a shows the Masks

of fuel where the colors blue and red are used to denote tree canopies and grass

areas, respectively. This stylized map provides a clear and simplified view of the

distribution of vegetation types that can contribute to fire fuel loads in the area.

Figure 4.5b shows the ’Masks of fuel overlay on Google Maps’, where the same

color scheme is applied to an actual aerial image from Google Maps. This super-

imposition allows for a real-world correlation of the predictive mapping with the

actual geographical layout surrounding the Kinsmen Sport Centre Building.

The detection and classification of the coniferous, deciduous, and grass-covered ar-

eas using the CNN within the priority zones of the Kinsmen Sport Centre Building

is illustrated in Figure 4.6. It seems like that the grass-covered and deciduous ar-
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(a) Masks of fuel (b) Masks of fuel overlay on Google Maps

Figure 4.5: Prediction of fuels, including grass-cover and tree canopies, in the vicinity of
Kinsmen Sport Centre Building

eas appear predominant, especially in open spaces around the building. Deciduous

vegetation can be seen interspersed throughout the neighborhood, while coniferous

trees are sporadically located, possibly in designated green zones and forest-like

areas. Visual verification of detection in grassy regions may be straightforward,

but identifying coniferous areas within dense vegetation from summer satellite

captures is almost unfeasible. Yet, employing winter satellite imagery makes this

task appear achievable.

The covered area and percentage of each fuel type in three ignition zones are shown

in Table 4.1. The total vegetation coverage within ignition zones 1, 2, and 3 is 43%,

54%, and 75% of their respective total areas. In the entire ignition zones, the ex-

tent of deciduous canopy coverage surpasses that of grass-cover and coniferous

canopies, establishing it as the primary fuel source for fire propagation. These

findings can serve as a basis for measuring the fire exposure level from each fuel

type near structures.

Table 2.1’s fuel type category guideline, along with results from Table 4.1, were

used to classify fuel types. For deciduous forests with less than 25% conifers, the

fuel type is categorized as F1. This category also includes grass-cover. In ignition

zones 2 and 3, due to the low presence of coniferous trees in tree canopies, the fuel
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type is identified as F1. In ignition zone 1, although coniferous trees make up more

than 25% of the canopies, the area is not forested, leading to the classification of

the fuel type as ”continuous plant litter” (F1), according to the National guideline

[20]. According to Table 2.2, the vegetation of ignition zone 1 (consisting of ”haz-

ardous shrubs or trees”) has a high fire exposure level. The heat exposure level

in ignition zone 2 is classified as low, primarily based on the fuel type category

F1. While deciduous trees generally pose a lower fire risk, it is important to note

the significant influence of conifers on the overall fire hazard due to their higher

flammability. In the guideline [20], one critical factor in determining the risk level

of a fuel category is the proportion of conifer trees present. In scenarios where

conifer content exceeds 25 %, the risk is typically elevated due to the higher inten-

sity and heat output of burning conifers. In the case of ignition zone 2, the conifer

presence, though less than 25 %, still presents a notable risk factor, especially

when in proximity to structures. The presence of any percentage of conifers near

buildings should warrant attention, as their inherent flammability can significantly

amplify the risk of fire spread and heat exposure. Therefore, while the overall

classification of Ignition Zone 2 as a low-exposure area aligns with the guideline’s

criteria, it is important to acknowledge the potential for heightened risk posed by

the presence of conifers, regardless of their proportion.

In ignition zone 3, the F1 fuel type, covering more than 50%, results in a high

exposure classification. The fire exposure level map for the Kinsmen Sport Center

Building is shown in Figure 4.7. This type of map can serve as a basis tool for

understanding the spatial distribution of fire risks around any individual building.

The contribution of the mapping heat exposure level assessment using remote-

sensing framework lies in bridging the gap between advanced remote-sensing tech-

nologies and practical wildfire risk assessment. By automating the WUI guideline

notes [20] and utilizing satellite imagery, the methodology offers a faster, more

efficient way to assess heat exposure risks. This is particularly crucial in regions

prone to wildfires, where timely and accurate risk assessment can significantly im-

pact prevention and mitigation strategies. As for the gaps in this field, one key area

is the resolution limitation of satellite imagery, which may not capture fine details

required for precise fuel type identification, and as a result, the outputs are mainly

settled for large-scale assessment. The proposed tool, however, addresses this by
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4.2 Vegetation Segmentation and Integration with Topography Analysis

providing a rapid detailed fuel mapping through publicly available satellite im-

agery that can cover a large area at once and provide a micro-scaling assessment.

Furthermore, implementing this method in a user-friendly application can enhance

the accessibility of sophisticated wildfire risk assessment to a broader audience,

including local governments, urban planners, and even homeowners, who may not

have the expertise or resources to conduct detailed analyses.

Figure 4.6: Classification of canopy and surface fuels for the Kinsmen Sport Center,
overlaid with original image

Table 4.1: The amount of each fuel type in the ignition zones

Ignition
Zone

Grass Deciduous Tree Coniferous Tree

Cover
(%)

Area
(km2 ×10−3)

Cover
(%)

Area
(km2 ×10−3)

Cover
%

Area
(km2 ×10−3)

1 25 1.71 14 0.93 4 0.26

2 14 4.25 32 9.49 8 2.37

3 34 43.64 36 46.55 5 6.62
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Table 4.2: Semantic segmentation verification results

Class Accuracy (%) IoU (%)
Grass 83.8 77.7
Conifer 81.8 61.2
Deciduous 95 88.7

Figure 4.7: Map of exposure class within the ignition zones

4.3 Models Performance and Verification

Figures 4.8 and 4.9 illustrate the loss and accuracy metrics over each epoch for the

segmentation of canopy/surface fuels (grass) and conifer canopies, respectively.

The convergence trends of training and validation losses for both segmentation

models imply effective generalization capabilities without indications of overfit-

ting, as evidenced by the validation loss remaining consistent with the training

loss. The parallelism of the trajectories between training and validation indicates

74



4.3 Models Performance and Verification

the notion of successful model generalization. The absence of overfitting is further

supported by diminishing training losses and augmenting training accuracies, in-

dicating that the models are adequately complex to handle the given segmentation

tasks. No evidence of underfitting is present since the training losses decrease and

the training accuracies increase, which suggests that the models’ capacity is suffi-

cient for the complexity of the tasks.

The validation accuracy and loss for the conifer canopy segmentation exhibit fluc-

tuations, likely reflective of the diverse characteristics inherent to the validation

dataset across different epochs. Furthermore, the batch-by-batch computation and

subsequent averaging of validation loss and accuracy introduce an element of vari-

ability. Ideally, a larger batch size might have smoothed these trends, yet compu-

tational resource constraints necessitated a smaller batch size. Nevertheless, the

model demonstrates decent accuracy, with no discernible signs of overfitting or

underfitting.

Figure 4.8: Loss and accuracy for the tree canopy and surface fuel (grass) segmentation
task during training and validation phase

Figure 4.9: Loss and accuracy for the conifer segmentation task during training and vali-
dation phase

The model accuracy for the segmentation task was assessed based on the ground

truth data (denoted as True mask) using regular accuracy and IoU methods. As
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can be seen in table 4.2, for deciduous trees and grass, both methods obtained

a relatively high accuracy level, indicating effective segmentation. However, for

conifer trees, while the binary mask comparison showed reasonable accuracy, the

IoU presented a lower value, underscoring the complexities involved in accurately

segmenting this class. This issue is largely attributed to the quality of the training

dataset. Although the resolution of the winter satellite images used for the segmen-

tation of the conifer class was sufficient, the combination of the sun’s positioning

at that time of year and the satellite’s image capture angle resulted in the pres-

ence of shadows (see Figure 3.12), which posed a significant challenge to effective

detection. Addressing this challenge, one solution could be to utilize UAV photos

taken during winter across the City of Edmonton for the training dataset. However,

this approach necessitates substantial manual effort in managing and operating the

system.

Supplementary figures (Figure 4.10 - 4.12) illustrate the mismatches in the masks

between the detected and true labels for each class, offering a visual representation

of the areas where segmentation was less accurate.

(a) True label (b) Detected (c) Mismatch

Figure 4.10: Validation for grass cover detection
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(a) True label (b) Detected (c) Mismatch

Figure 4.11: Validation for conifer cover detection

(a) True label (b) Detected (c) Mismatch

Figure 4.12: Validation for deciduous cover detection
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Chapter 5
Conclusions and Future Work

Conclusions

A suite of methods was presented that is designed to extract specific information

about the HIZ. As of today, several methods already exist in classifying fuel types

in wildland areas for mapping hazard zones. This study focused on WUI regions

to map the ignition zones around the vicinity of buildings to help mitigate the

risk of fire exposure. The process of topography analysis began with locating the

buildings of the entire city. Next, three priority zones with the adjustment of slope

conditions in accordance with guidelines for WUI fires, were mapped around a

building.

The topography analysis was followed by determining and classifying the frag-

mented or small forest vegetation area based on the different types of fuel cat-

egories stated in the FBP system by the application of CNNs. Satellite images

during the summer were utilized to detect tree canopies and grass-covered areas.

To overcome the challenge of detecting conifer trees among tree canopies, win-

ter satellite images were used, as conifer foliage stands out distinctly among the

leafless deciduous trees. The CNN model exhibited reasonable precision in the

detection and classification of three vegetation categories. The accuracy of this

model has the potential to be augmented with the expansion of the training dataset.

Finally, the results from vegetation detection were combined with the topography
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analysis to map the three ignition zones around a specific building.

This automated technique showed to have the potential to provide insights toward

the risk of WUI fires and provide valuable opportunities, such as mapping the level

of fire exposure, for decision-makers to mitigate fire hazards in urban areas.

Future work

The scope of this thesis has brought to light a number of areas that can benefit

from further exploration in the realm of identifying fuels using satellite images for

wildfire risk assessment in urban areas. A central focus should be on addressing

the limitations and developing newer techniques for enhanced data accuracy.

Satellite images, while comprehensive, pose challenges in accurately identifying

different fuels, determining the vertical size of fuels, consideration of seasonal

changes such as the leafing of trees and the curing of grass, which are all essential

characteristics in fire ignition and dynamic spread risk assessment. Therefore, to

complement the satellite fuel detection and hazard analysis (that was investigated

in this study), crowdsensing street-level methodology could be incorporated in.

• Street-level Crowdsensing: To bridge the data gaps left by satellite im-

agery, future studies should explore the potential of street-level crowdsens-

ing. Videos from car-mounted cameras can offer details of fuel characteris-

tics. For instance:

– CNNs can be employed to identify the type of fuel, the seasonal changes

in deciduous trees, and the curing stage of grass.

– Incorporating Global Navigation Satellite Systems (GNSS) in cameras

like GoPro™ can be instrumental in estimating the crown base height

of conifers, a crucial parameter for fire behavior analysis. The princi-

ple behind this is based on perspective distortion where objects appear

smaller or larger based on distance. With a moving vehicle, this can be

used to determine the dimensions of objects from video frames.

– CNN models can segment grass cover and then determine its curing

state by analyzing the greenery factor using color analysis techniques.
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Street-level crowdsensing is not without limitations. Its scope is restricted to ar-

eas along roads, neglecting interiors of forested and parkland regions devoid of

road access. Thereby, there is a need to integrate the large-scale but low-detailed

satellite analysis with the small-scale but high-detailed crowdsensing information

to have a more precise updated understanding of the fire risk for wildfire in urban

areas.

Fire behavior, as defined by the FBP system, hinges on factors like Rate of Spread

(which is the number of meters consumed by the fire per minute (m/min)) and

Head Fire Intensity (which is the amount of energy released per meter progress of

the fire front line per second and is often reported in kW/m). Understanding these

parameters demands more detailed mapping. By considering both satellite and

crowdsensing data, a comprehensive picture of potential fire risks can be painted,

potentially saving habitats and urban landscapes from the devastating impacts of

wildfires.
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