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ABSTRACT

" An analytical model, based on an extended Rayleigh-Ritz
technique, has been developed for the purpose of predicting local
buckling behaviour of columns, beams, or beam-columns composed of
W shape sections. A tangent modulus buckling theory is used and a
tri-linear stress - strain curve for an elastic - plastic - strain-
hardening material is assumed. The effects of residual stresses as
well as the interactive effects of web - flange restraints are
included directly in the formulation. The flexibility of the
analytical model allows for the possibility of separate flange or
web buckling as well as simultaneous buckling of the web and flanges.
An elaborate formulation of plate component stiffness matrices per-
mits the use of varying material proﬁerties for longitudinal strips
of a member as yielding and strain-hardening progress during
loading.

A computer program based on the analytical model was
verified by an extensive comparison of results with available
classical results for elastic local buckling of plates. The validity
of the local buckling analysis beyond the elastic range was well-
established by comparison of computer results with the results of 57
tests conducted by various investigators using columm, beam, and
beam-column specimens.

Having thus been verified, the computer program was used

to conduct an exhaustive study of the effect of various parameters
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which were expected to have an important effect on local buckling
behaviour. As a result of this study, various modifications to
existing web and flange slenderness limitations for columns,
beams and beam—columns are indicated. Further research in the
form of full-size laboratory specimen tests is recommended and

various suggestions are made with regard to future testing.
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Chapter 1

INTRODUCTION

1.1 General

A large proportion of the members used in present-day steel
structures are uniform throughout their lengths and have I-shaped
cross-sections’ Such members are referred to as W shapes and are
particularly efficient when used as beams for transferring bending
moments within a structure. W shapes are also used as columns for
transferring pure axial compression and as beam-columns for trans-
ferring combined axial compression and bending. Depending on the
width-to~thickness ratios of their flanges, W shapes are classified as
Class 1, Class 2, Class 3, and Class 4 sections!. Because of their
thin-walled characteristics these members are particularly susceptible
to local bucklingl’z’3 of their component plates and this local
instability limits the load-carrying capacity of the members. Thus, in
limit states design!’" local buckling of component plates of W shapes

is one limit which must be met.

1.2 Local Buckling

In the present study the limit state of local buckling is
isolated from other limit states such as those related to overall

instability, material strength and excessive deflections!. This



procedure coincides with present design philosophies which require that
local buckling be prevented prior to the attainment of the maximum
strength of a member!’3’5., Since local buckling is isolated, a funda-
mental assumption is that all members are fully braced against overall
instability. Local buckling of W shapes may be defined as a bifurcation
phenomenon® whereby a component plate subjected to in-plane stresses may
be in equilibrium in its original planar configuration or in a
neighboring deflected configuration, This critical state can occur in
the elastic or inelastic regions of material response depending on the
level of yield stress, the plate width-to-thickness ratio, and plate

7232627 Because of the nature of buckling, it is

boundary conditions
more precisely defined by a mathematical formulation. In the present
study such a formulation is based on the principle of virtual work® and

is presented in Appendix A.

1.3 Design Considerations

23336’7’ a

As already established by previous investigators
significant parameter affecting the stability of a plate is its width-
to-thickness ratio. Therefore, a designer must consider the width-to-
thickness ratios of flanges and webs when determining the local buckling
resistance of W shapes. Other factors which affect plate stability in
W shapes are the type of plate edge supports at the ends of a member,
the type of stress distribution on a member cross-section, and the
material properties of the steel®?’’., Because of the significant effect
that the yield stress level has on plate buckling’, the present design

code" specifies limitations on the width-to-thickness ratios of webs and

flanges multiplied by the square root of the yield stress,



1.3.1 Current Requirements for Flanges and Webs

The current Canadian design standard used for steel®,
specifies width-to-thickness terms for four classes of W shape beam-
columns. It is required that Class 1 sections permit the attainment
of the reduced plastic moment and also allow for sufficient rotation
capacity for subsequent redistribution of load before local buckling
occurs. A Class 2 section is required to permit the attaimment of the
reduced plastic moment capacity with no provision for the requirement
of subsequent load redistribution, A Class 3 section must permit the
attainment of the reduced yield moment and for a Class 4 section the
limit state of structural capacity is local buckling of elements in
compression. Class 4 sections are light-gauge cold-formed sections and
their behaviour does not form a part of this study. The present design
limitations for Class 1, 2, and 3 sections are presented in detail in
Chapter 6. These limitations are such that for a given class of section,
local buckling of the component plates must not occur until the section
has satisfied the minimum requirements for its classification. Since
columns are not designed according to a required bending moment capacity,
they are not classified as above, However, it is usual to use the same
limitation for column flanges as that specified for Class 3 sections,

while column webs are limited by a maximum width-to-thickness term".

1.3.2 Previous Requirements for Flanges and Webs

Previous design codes® have presented width-to-thickness ratios
for flanges and webs of W shapes subjected to axial compression, bending,
and axial compression and bending combined. As will be examined further

in Chapter 2, these values are based on the results of an investigation



4
by Haaijer and Thurlimann’. Recently, however, studies performed at
the University of Alberta by Kulak et all?’11212213 p,u0 ghown that
previously specified width-to-thickness limitations were overly
conservative. As a result of these studies, the present code" uses
values that supersede previously specified width-to-thickness

limitations for component plates of columns, beams, and beam-columns.

1.4 Objectives

The investigations conducted at the University of Alberta
have been largely experimental and empirical in nature. The work has
resulted in new design equations and graphs which are presently in
use®. The present study is a continuation of this work with emphasis
on the theoretical nature of plate buckling as it relates to W shapes
subjected to axial compression, bending, and axial compression and
bending combined.

The objectives of the present study are as follows:

1. to establish an idealized mathematical model to study
local buckling of W shapes subjected to axial
compression, bending, or to axial compression and
bending combined,

2, to establish the validity of the mathematical
technique by comparing analytical results with
test results.

3. to present design equations and graphs for a broad
spectrum of practical cases for which test results
are not available,

4, to suggest, where appropriate, additional revisions



to presently specified width-to-thickness limitations

for component plates of W shapes.

1.5 Scope

The mathematical formulation presented herein permits an
analysis for local buckling of W shapes of various cross-sectional
dimensions and material properties. The analysis is performed for
axial compression, bending, and combined axial compression and bending
applied at the member ends. The effects of residual stresses are
included and web, flange, or combined web and flange buckling is
predicted in the elastic or inelastic ranges. The restraint interaction
of flanges and web is also accounted for by the mathematical model.

In Chapter 2 a review of the available literature that
relates to the present study is outlined. In Chapter 3 the general
mathematical formulation technique is discussed in detail and the
application of this technique to the general case of combined axial
compression and bending is presented in Chapter 4. In Chapter 5 the
analytical technique is applied to the investigation of local buckling
of 57 specimens that have been tested by various investigators.
Theoretical and test results are compared. Analytical results for .a
wide range of Class 1, 2, and 3 columns, beams, and beam—columns are
presented in Chapter 6, and in addition these theoretical results are
interpreted for application to design. Also presented .in Chapter 6 is
a study of the parameters considered important in the analysis. The
conclusions of the present study and the resulting design
recommendations are presented in Chapter 7.

The mathematical formulation of plate buckling based on the



principle of virtual work® is presented in Appendix A and the material
properties are discussed in Appendix B. Because of the nature of the
mathematical formulation which employs the use of matrix algebra as
well as the use of iterative techniques for the inelastic cases, hand
computation is highly impractical. Therefore, a computer program
coded in Fortran IV and suitable for use with an Amdahl 470V/6 or an
IBM 3032 computer was used for the computations. A listing of the
program with explanations of the subroutines and typical input data

is available in the Ph.D. thesis entitled "Local Buckling of W Shapes
Used as Columns, Beams, and Beam-Columns" by John L. Dawe as submitted
to the Faculty of Graduate Studies and Research at the University of

Alberta, Edmonton, Canada (Fall, 1980).



Chapter 2
LITERATURE SURVEY

A review of the available literature indicates that the
problem of elastic plate buckling has been thoroughly investigated
since the publication in 1891 of the original work done in this area'".
The theoretical investigations include the closed-form solutions of
single plates having regular geometric shapes and various stress and
displacement boundary conditions. These solutions have been well-
documented and are readily available in the literature??3°6215516

It was not until the 1920's that the problem of inelastic
plate buckling first began to receive some attention. In much the
same way as for columns, inelastic buckling of rectangular plates was
first treated by replacing the elastic modulus by a reduced modulus
or a tangent modulus above the proportional limit. Bleich®, for
example, assumed that above the proportional limit, the reduced modulus
would be effective in the direction of uniaxial stress while the
elastic modulus remained effective in the transverse direction. It was
further assumed that an effective shear modulus equal to the geometric
average of the elastic and reduced moduli would be applicable.
Alternatively, Ros and Eichinger!’, assuming isotropy in the inelastic
range, suggested using the reduced modulus in all directions. Of the
two, it was found that Bleich's assumptions led to values in closer

agreement with test results.

Other investigators have attempted to improve upon the



existing knowledge in this area by including the total elastic-plastic
stress—strain relationships in the plate buckling analysis. Prominent
among those investigators were Bijlaard'®, Ilyushinlg, and Stowell??
who used the deformation theory of plasticity® while Onat and Drucker?!?
and Handelman and Prager22 promoted the use of the incremental theoryB
in the plastic analysis of plate buckling. While the former method
showed much better agreement with test results, it has been recognized
that the latter method is the mathematically correct one’ 21923524,
The main reason for this paradox appears to be the prediction by the
incremental theory of a value of the shear modulus in the inelastic
range equal to its value in the elastic range7’21’23’25. It has been
shown that a reduction in this value leads to much better correlation
between theory and test results’?25,

Early investigations of web and flange stability for W shape
members were based on several simplifying assumptions, For both elastic
and inelastic buckling it was assumed that the plate components at web-
to-flange junctions were either rigidly supported or simply supported
and the effects of residual stresses were neglected. Using these
assumptions as well as Bleich's assumption of anisotropy in the
inelastic range it was possible to arrive at closed-form solutions for
several types of in-plane loadings??5725,

In the late 1950's Haaijer and Thurlimann published the
results of an investigation of inelastic local buckling in steel”.

The main purpose of this investigation was to determine maximum plate
width-to-thickness ratios for W shapes suitable for plastic design. An

incremental theory?? was used in the analysis and the inelastic value

of the shear modulus was reduced by 80 per cent. (The investigators



attributed this reduction to the effects of initial imperfectionms.

5, Lay discounted this effect

However, in a more recent investigation2
of initial imperfections and arrived at a similar reduction in the
shear modulus by applying slip-line field theory).

In their investigations, Haaijer and Thurlimann presented
analytical solutions for single web or flange plates assuming either
simple support or fully rigid support at the web-to-flange junctions.
The effects of residual stresses were not included directly in the
analysis. However, for the buckling strength of columns and plates in
uniaxial compression, an empirical transition curve was suggested for
use above the proportional limit. The experimental investigation of
W shapes included six axial specimens and six flexural specimens. The
present code limitations for flanges and webs of Class 1 W shapes
are based on the results of these tests".

Although Haaijer and Thurlimann did not test any specimens
subjected to axial and flexural loadings combined, they used the results
of a semi-empirical method to suggest plate width-to-thickness values
for such members. In this method it was assumed that values obtained
for axial specimens failing by web buckling would be applicable to an
average strain in the compression zone of the webs of beam-columns.

The present code limitations for plate components of Class 1 W shape
beam-columns are based on the results of this semi-empirical method".

In the years following the work of Haaijer and Thurlimann
many investigators published results of research concerning the elastic
and inelastic buckling strength of single plates. With the aid of
discretization techniques and computer methods it has been possible to

275289299530531532
*

investigate many different cases However, although
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useful, none of these works is concerned directly with the
understanding of local buckling behaviour in W shape members. More to
the point, other studies have been directed towards local buckling in

*, and McDermott®5, for

W shape beams. The studies of Lay®3, Culver?®
example, have all indicated a flange width-to-thickness limitation of
b V?;/Zt = 54 for sections required to reach the strain-hardening
strain. Results of tests performed by Lukey and Adams3® have
indicated that a flange width-to-thickness term of 64 can be used for
sections required to develop the full plastic moment capacity. A
study by Basler and Thurlimann®’ has indicated that webs of girders
required to reach M& can have a value of h/f;]w.as high as 980. More
recent research by Croce®® has indicated that hff;/w can have a

value as high as 750 for beams used in plastic design.

In 1973 a study of coupled local buckling in beam-columms
was presented by Rajasekaran and Murray®®. The method of analysis was
based on finite element techniques and could accommodate a large
variety of boundary conditions. The method assumed linear elastic
material response and did not include the effects of residual stresses.
It was found that the analysis gave good results for flange local
buckling but web buckling could not be accurately predicted.

In 1977, Akay, Johnson, and Will presented a study of

“0 A finite element

lateral and local buckling of beams and frames
technique using plate elements for webs and line elements for flanges
was used. The bﬁckling modes were restricted by the assumption that

straight lines across the flanges and normal to the web remain straight

during buckling. Although the method is quite general with regard to
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plate geometry and boundary conditions it assumes linear elastic
response and neglects the effects of residual stresses.

In 1978, a study of local,distortional,and lateral buckling
of W shape beams was presented by Hancock"!., A finite strip
technique was used in the analysis and an elastic, linear material
response was assumed. The effects of residual stresses were not
included in the analysis., Other studies using finite strip techniques
were presented in 1964 by Plank and Wittrick*? and in 1974 by Goldberg,
Bogdanoff, and Glauz"®, who extended the work of Przemieniecki®2,
Plank and Wittrick suggested a method for analysing thin-walled
sections for lateral-torsional buckling., Presumably local buckling
could be predicted by iterating on the length parameter. Plate
thickness as well as geometry, material properties, and loading could be
varied for a given member. However the effects of residual stresses
were not included and apparently the method was not suitable for local
buckling of W shapes since it was neither used, nor recommended, for

this purpose.

3 extended

As mentioned above, Goldberg, Bogdanoff, and Glauz"
the work of Przemieniecki®? to include lateral buckling modes as well
as more complicated states of stress. An elastic material response was
assumed and the effects of residual stresses were not included in the
analysis. Again, the method was neither applied to, nor recommended
for, the analysis of local buckling of W shapes.

None of the above-mentioned techniques has been applied to

an in-depth study of local buckling of Class 1, Class 2, and Class 3

"W shape sections. In 1973, Kulak initiated such a study on an

experimental basis'?. A total of ten beams (eight Class 2 and two
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Class 1 sections) were tested under equal third-point loadings. Based
on the results of these tests it was concluded that the existing web
width-to-thickness limitations for Class 2 sections were conservative and a
need for additional tests on beams and beam-columns was indicated. Other
tests followed, and in 1975 two Class 3 beams were tested and an
increase in the existing web limitations for Class 3 beams was
indicated!?,

In 1974 Kulak and Perlynn published the results of a study in
which nine Class 2 W shape beam-columns were tested under various
amounts of axial load'?, Again it was determined that the existing web
limitations were too conservative for Class 2 beam-columns and @ need for
additional tests on Class 3 beam—columns were indicated. In 1976, the
results of such a study were reported by Kulak and Nash!®, It was
indicated that web limitations for Class 3 beam-columns could also be
somewhat relaxed. As a result of the work carried out by Kulak, et al.
at the University of Alberta, significant changes in the web limitation
requirements for W shapes have been implemented for Class 2 and
Class 3 sections®.

The investigations carried out by Kulak,et al, were largely
experimental although two semi-empirical methods for determining
critical web width-to-thickness ratios were presentedlz. Method I
was based directly on test results and Method II combined test results
with a variation of the method used by Haaijer and Thurlimann’,

Because of the limited number of test results used, the methods were
valid only for sections that were similar to those tested. Furthermore,
the methods did not allow for variations in flange sizes, lengths of

specimens, residual stresses, and material properties. For the types of



specimens tested, the methods were valid only between the limits of
P/Py equal to 0.15 and 0.80 since these were the lower and upper
limits used in the tests. A purely analytical method was not

developed.

13



Chapter 3

GENERAL ANALYTICAL METHOD

3.1 Introduction

The problem of plate buckling in the elastic range has been
thoroughly investigated and solutions are available for many cases
including various plate shapes and stress and displacement boundary
conditions?’3?18°%%  golutions for the analysis of orthotropic plates
and for buckling capacities of plates in the inelastic range have also
been published?’®’!8’%% ~ The technigue for obtaining a mathematical
formulation for such problems is based on either an equilibrium
method or an energy method?.

In the equilibrium method?’®, the equations of equilibrium
are formulated on a deformed configuration of the plate. This
configuration is compatible with the expected mode of buckling, Once
the equations of equilibrium are solved simultaneously, the problem
reduces to that of the solution of a biharmonic differential equation.
This method makes use of the fact that, during buckling, a plate may
be in equilibrium in its original planar configuration as well as in
a neighboring buckled configuration; that is, the plate is at a point
of bifurcation.

Two commonly used energy techniques for formulating plate
buckling problems are the principle of minimum potential emergy and
the principle of virtual work®., Of these two methods, the principle

of virtual work is a more general statement of the principle of the

14
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conservation of energy. It does not require the assumption of the
existence of a strain energy function and it can be applied to an

1845, In the present analysis the

elastic or an inelastic materia
principle of virtual work is used for the formulation of a plate
buckling condition. In applying this method, a buckled configuration
is first assumed. Then, a virtual displacement® from a buckled
configuration is postulated. By equating the internal work done by

the equilibrium stress field existing in a plate during this virtual
displacement to the work done by the external forces acting on the
plate during the same displacement, an integral differential equation
is obtained. Using a Rayleigh-Ritz technique®’"*¢°%7 and a displacement
field defined in terms of a set of nodal displacement coordinates, a
matrix buckling condition is obtained and a standard eigenvalue

problem results"®’*9°5%  Thig technique is developed in detail in

Appendix A.

3.2 1Idealized Cross—section

The technique outlined above is applied to W shapes having
idealized cross-sections such as that illustrated in Figure 3.1, All
subsequent mathematical formulations are referred to the mid-planes of
the component plates of a W shape, Thus, the assumed height of web
extends into each flange by a distance equal to one-half the flange
thickness. Consequently, the area corresponding to each projection is
twice included in the calculations of axial loads and bending moments.
The purpose of this is to recognize that fillets at web-~to-flange
junctions do exist and that these additional areas of projection do, to

some extent, account for them.
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The width-to-thickness ratio for a flange is obtained by
dividing one half the flange width by the flange thickness, 1In
determining the width~-to-thickness ratio of a web it is assumed that
web-to-flange fillets have leg lengths equal to one-half the flange
thickness. Therefore, the length of the web is taken as the clear
distance between flanges minus the fillet leg lengths. The purpose of
this is to take into account, to some extent, the effects of the fillets
in decreasing the effective buckling height of a web.

As shown in Figure 3.1, variations in flange dimensions are
permitted by using different flange widths and thicknesses. In sub-
sequent discussions, in addition to the notations shown in Figure 3.1,

A. represents the area of a lower flange, Aw_represents the area of a

1
web, and Au represents the area of an upper flange. Furthermore, for

clearness of discussion, it is assumed that an upper flange is one that
will normally be in compression and a lower flange will normally be in

tension under an applied bending moment, The subscripts, 1 and u, are

used to refer to the lower and upper flanges respectively.

3.3. Material Properties

In applying any mathematical technique to the prediction of
plate buckling capacities it is necessary to have an accurate
evaluation of the material properties to be used. In the method
presented herein, a uniaxially stressed longitudinal fibre of a W shape
section is assumed to have an idealized tri-linear tensile stress -
strain response such as that shown in Figure 3,2. It is further
assumed that this stress - strain response also applies to a fibre in

compression., At the point where yielding occurs in a fibre, the strain
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is designated by Ey and the corresponding yield stress is designated
by Oy. For values of strain less than the yield strain, the fibre has
an elastic modulus (also called Young's modulus) designated by E. At
the point where strain-hardening of a fibre begins, the strain is

represented by € For strains larger than this, the fibre displays

e
an increased resistance to further straining. This fibre stiffness
is evaluated as the strain-hardening modulus, Est'

In the intermediate range of strain between Ey and ES the

£
fibre yields and a yield modulus, E,, represents the slope of this
portion of the curve. If the value of E, is zero there exists no ex-
plicit and definable relationship between stress and strain. That is,
at the yield stress level, a fibre can assume an arbitrary value of
strain and, if the direction of loading is such that strains tend to
increase, it is likely that the strain-hardening modulus will govern
the behaviour of a fibre that has yielded, The assumption that strain-
hardening material properties govern buckling behaviour for strains
above the yield strain has been successfully used by several

:f.nvest::i.gat:orsz5’"“"51’52’53’5'+ and this assumption is also made in the

present investigation,

3.4 Analytical Technique

As explained in section 3.1 a plate buckling condition is
derived using the principle of virtual work. This derivation is
presented in detail in Appendix A and it results in an integral
differential equation for the buckling condition. For a uniaxially

stressed orthotropic plate, the buckling condition is as follows:
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j J P w, Ow, +Dw, Sw, +D w, b&w, +D w, O&w,
xly XXXy Uy Uyy xy Uy Uk yx Cxxyy

+4Gth,xy6w,xy)dxdy - JX JY NXW,XGW,xdxdy =0

(A-35)
where Dx’ Dy’ ny, and Dyx are plate bending rigidities, Gt is the
tangent shear modulus, and I is the moment of inertia per unit length
of plate. These properties are further discussed in Appendix B. Also
in Equation A-35, w represents the deflection of a point normal to the
middle plane of the plate, Ow represents a virtual deflection in this
direction, x and y represent Cartesian coordinate directions, and
differentiation is indicated using comma notation“’.

In Equation A-35 the first integral represents the virtual
work resulting from the strain energy of plate bending while the second
integral represents the virtual work done by the in-plane stresses
which act during buckling,

Once a plate buckling condition has been formulated into a
mathematical expression using an energy method, one may try to obtain
an exact mathematical solution or an approximate solution. Because of
the complexity of the present formulation, solutions are obtained using

the Rayleigh-Ritz technique®, This method has also been applied quite

successfully by other investigators"’*7248:49>50
A basic assumption of this technique is that the displacement

field describing a buckled shape can be expressed in terms of a set of

assumed shape functions and corresponding coordinate displacements®S.
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Together these must form a set of kinematically admissible generalized
coordinate displacements which requires that the assumed displacement
function satisfy the boundary conditions of the physical problem. The
development of appropriate shape functions is discussed in a later
section. However, it is appropriate here to state that a displacement

function can be defined as follows:
w = f<¢>{0} (3.1)

where {0} is a vector of displacement coordinates defined at distinct
nodal points in a cross-section (Figure 3.4) and <¢> is a set of shape
functions which interpolate the coordinate displacements over a cross-
section. The function, f, is a shape function which interpolates a
set of cross-sectional displacements over the length of a member. By
substituting this assumed displacement function into Equation A-35,

the problem is reduced from a continuum problem, with an infinite
number of degrees of freedom, to a problem with a finite number of
degrees of freedom equal to the total number of coordinate
displacements defined at the nodes. As a result, a system of algebraic
equations, rather than a partial differential equation, must be solved.
This procedure is carried out in detail in Appendix A where it is

shown that the problem of local buckling reduces to the form:
[[K]—A[KG]]{G} - {0} (a5

where [K] is a bending stiffness matrix depending on material properties
and plate dimensions, [KG] is a geometric stiffness matrix depending on

the distribution and magnitude of applied in-plane stresses, and A is a



20

multiple of the applied loading which causes buckling.

The expression in brackets represents the reduced stiffness
of a plate which buckles when, depending upon the value of ), the
determinant of the reduced stiffness matrix beomes zero. The
corresponding values of A and {6} are referred to as the eigenvalue
and eigenvector, respectively. The eigenvalue in this case is the
critical stress at which a plate buckles and the eigenvector defines
the critical buckled shape.

The solution to the buckling problem as presented herein
reduces to the problem of extracting the lowest eigenvalue from the
system of equations expressed by Equation A-51. If, in this equation,
[K] and [KG] are each of dimension n x n, then the characteristic
equation®® of the reduced stiffness matrix will have n roots, each one
corresponding to an eigenvalue of the system. However, in problems
concerning statical stability only the lowest of these roots is of
interest. A method that is commonly used to find the smallest
eigenvalue of a system, and also one that is readily adaptable to
electronic computation, is that of inverse matrix iteration®®.

Using this technique, Equation A-51 is first rewritten as:

[K1{6} = Alkgl{e}
(3.2)
Multiplying both sides of Equation 3.2 by the inverse of [K] and

dividing by A result in:

(K17 [k 1{6} = {6} (3.3)
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or:

[E]{8} = w{s} (3.4)
where,
[E] = [k]7'[k ] (3.5)
and,
=1
w=x (3.6)

In the solution of Equation 3.4, an initial shape vector,
'{9}0, is assumed and this vector is multiplied by matrix [E]. The
resulting vector, {6}1, is then normalized by dividing by the highest-
valued element of the vector. The process is then repeated with this

>0 that, after several cycles

new normalized vector. It has been shown
of iteration, w converges to the highest eigenvalue of the system. As
a result, the lowest critical value of A = 1/w is obtained for the
original system, Equation 3.2, and the corresponding eigenvector gives
the critical buckled shape.

In certain eigensystems the smallest eigenvalue may appear
as a positive value or a negative value. TFor example, the bending
stress required to cause local buckling in a doubly-symmetric W shape
may occur as a positive or negative eigenvalue of the associated
eigensystem, This result is due solely to the symmetry of the system
and the positivity or negativity of the eigenvalue has no physical
significance. It does however result in considerable mathematical

difficulty in achieving convergence during matrix iteration. This is

because the rate of convergence is proportional to the ratio of the
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lowest eigenvalue to the next higher value®?, and for values of this
ratio approaching 1,0 the rate of convergence is very slow. For
problems of the type described above, the first two eigenvalues of the
system are equal but of opposite sign; that is, Wy ==W,. Therefore,
the rate of convergence is wl/u)2 = ~1,0 and the technique will not
converge,

To avoid this problem, a constant shift, u, is applied to all
of the eigenvalues of the system, in which case the rate of convergence
is proportional to (wl—u)/(w1+u) < 1.0 and the method will converge.

Applying a shift, u, to the system, Equation 3.4 becomes:

[E]{6}-u{6} = w{p}-nis} (3.7)
or,

[[E]-u[I]]{e} = wé{e} (3.8)

where ws = -y and [I] is an identity matrix of the same dimension as
[E]. It has been shown®® that the eigensystem defined by Equation 3.8
has the same eigenvectors as those defined by the original system
described by Equation 3.4, The relationship between the eigenvalues

of the two systems is given by:

W=p = W (3.9)
or,

_1_
W =5 = Wt (3.10)

In subsequent sections, the eigenvalue problem is

formulated in such a way that only the smallest positive eigenvalue is
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required. Although the eigenvalue shift technique increases the rate
of convergence in most cases, it does not guarantee the convergence will
be to the lowest positive root. In some cases it is found that the
Process converges to the lowest negative root. It is desirable there-
fore to have a ﬁethod for eliminating certain eigenpairs from the
system so that inverse iteration can be repeated to determine the
lowest positive root. The method used to do this in the present
analysis is referred to as a sweeping technique*®’%?,

Since the eigenvectors, {¢}i, of an eigensystem are linearly
independent®?, they provide a vector basis for the system, and any

starting vector, {0}, may be expressed as a linear combination of these

eigenvectors, that is:

n .
{6} = jI; e o}y (3.11)

If it is desired to remove the kth eigenmode from the system, a starting

vector should be selected as follows:

The value of ¢, is found by pre-multiplying Equation 3.11 by <¢>[KG] and

k

using the orthogonality properties®’

of eigenvectors. Doing so, results

in:

<¢>k[KG]{6}

<¢> [ 1o, (3.13)

Cx

Substituting this value into Equation 3,12 gives:



24

{o} <o [k ]
<¢> [k Hod

{6}_

[s] {6} (3.14)
where [S]k is the desired sweeping matrix. Using this value of {9}0

as a starting value, Equation 3.8 becomes:

[[E] - u[I]][SJk{e} = w {6} (3.15)

which represents an eigensystem with the kth mode removed. In the
analytical technique presented herein this method is used to remove
negative eigenvalues and corresponding eigenvectors from a system. It
has been found that only one application of a sweeping matrix is
required for the majority of cases where the first eigenvalue

calculated is negative.

3.5 Effects of Initial TImperfections

As described previously, the present analysis uses a precise
mathematical formulation to describe the local buckling condition.
This implies that the maximum strength of a plate or system of plates
is limited only by critical local buckling and this is the basis on
which the formulation is made, The assessment of the effects of initial
imperfections on the buckling strength of plates is also based on this
type of formulation.

It is assumed for this purpose that'{eo} is a set of initial
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coordinate displacements defined at the nodes of a plate system.
Using the same interpolation functions as those in Equation 3.1,

initial deflections may be described by:
Yo T f<¢>{90} (3.16)

and additional deflections due to applied in-plane loads are given by:
wy = f<¢>{6} (3.17)
Therefore, the total out-of-plane deflection at any point is given by:

W= wo+w1

£<¢>{6_}+f<¢>{6} (3.18)

To evaluate the effects of initial imperfections, the appropriate
values of deflection are substituted into the buckling condition,
Equation A-35. Since the first integral in Equation A-35 represents
the work done by bending of a plate from its initially deflected

position to its buckled shape, the net deflection, w-w., must be used

)
to evaluate this integral?. The second integral in Equation A-35
represents the work done by the in-plane forces during buckling of a
plate. It can be evaluated by calculating the work done by the in-plane
forces acting through displacements caused by initial imperfectionmns
only, The net work is then obtained by subtracting this value from the
work done by the in-plane forces acting through displacements caused

by the total deflection of a plate. By proceeding in this manner, and

using the concepts of bending and geometric stiffness matrices, as used

in Section 3.4, Equation A-35 results in the following set of equations:
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[[K]-uxcl]{e} = AKg1o, ) (3.19)

From this relationship it can be seen that the effect of

initial imperfections is to simulate an equivalent lateral load of:

{F_} = AK;1{6_} (3.20)

The effect of this equivalent lateral load is to cause deflections

to increase gradually as the in-plane loads are increased. However,
the mathematical definition of buckling can be expressed by

setting the determinant of the reduced stiffness matrix equal

to zero. Since the reduced stiffness matrix formulated with
initial imperfections included is identical to that for the case of a
perfectly straight plate, initial imperfections do not affect the
value of the critical buckling load as defined herein. As the in-
plane loads increase, lateral deflecfions increase gradually and as
the critical buckling load is approached the lateral deflections

become asymtotic to the critical buckled shape.

3.6 Coordinate Systems

In the formulation of the theory for local buckling, the
shape functions are referred to a system of natural coordinates®’’%S,
Figure 3.3. illustrates the relationship between a natural coordinate
system for a plate of length %, and a Cartesian coordinate system.
Points 1, 2, and 3 in this figure are referred to as nodes at which

the coordinate displacements comprising the vector, {8}, are defined.

At these nodes the elements of {6} may represent translations,
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rotations, curvatures, and higher order derivatives. Using these
coordinates and an appropriate set of interpolating polynomials it is
possible to define a set of shape functions at a cross—-section for the
flanges and web of a W shape section,

Local natural coordinate systems for the flanges and web of
a W shape cross—-section as well as the corresponding node numbering
system are shown in Figure 3.4. Each coordinate displacement defined
at a given node is interpolated by a polynomial function over the
cross—-sectional edge of a flange or a web. The order of each such
interpolating polynomial is equal to the number of coordinate
displacements that must be interpolated for a flange or web. Thus,
for example, if a translation and a rotation are defined for each of
three nodes of a flange, a quintic polynomial interpolating function

is used for each nodal displacement,

3.7 Flange Shape Functions

Polynomial functions used to interpolate coordinate displace-
ments along a plate edge at a cross-section may be obtained by a
matrix techniquess or by inspection, Since the latter method is used
herein it is described in detail below. Quintic polynomials are used
to Interpolate the nodal displacements for flanges at a cross-section,
At each of three nodes on a flange, a translation and a rotation are
interpolated. These interpolation functions and their shapes are
shown in Figure 3.5.

The method of inspection for obtaining shape functions is
presented as an illustration for the particular case of interpolating

a translation at node number one of Figure 3.4, Since a total of six
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coordinate displacements are defined (a translation and a rotation
at each of three nodes) a fifth order polynomial is first assumed as

follows:
2 2
S(2) = g7 (-1 (a T+ ) (3.21)

A shape function evaluated at the coordinate displacement being
interpolated must have a value of 1,0 and must have a zero value when
evaluated at all other coordinate displacements. The first factor of
the above function ensures that the translation and rotation at =0
are both zero. The second factor ensures that the translation and
rotation at =1 are zero, The third factor is chosen so that the
function will be a fifth order polynomial. Also, the constants,

a, and bo’ can be determined so that at f=-1, the rotation is zero and

the translation is positive and unity. Evaluating a, and bo for these

two conditions results in the function:

1.2 2
s(z) = " (z-1) " (3z+4) (3.22).

The value of this expression is positive unity at the
coordinate displacement being interpolated while at all other coordinate

displacements its value is zero.

3.8 Web Shape Functions

Octic polynomials are used to interpolate nodal displacements
for webs at a cross-section. For the purpose of studying local buckling
of»W shapes, it is assumed that the line of intersection of two plates
at a flange-to-web junction does not translate during buckling. This

line appears as a nodal point on a cross-section of a W shape and the
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corresponding translations are not interpolated for the flange or web
since they have zero value. Therefore, octic polynomials are used to
interpolate rotations and curvatures of a web at its extremities and
translation, rotation, and curvature at its center for a given cross-
section. The interpolating polynomials for webs are obtained by the
method of inspection as described previously for flanges. The
polynomials and their corresponding shapes for coordinate

digplacements of a web at a cross-section are shown in Figure 3.6.

3.9 Longitudinal Shape Functions

A buckled shape which has been established at a cross-section
of a W shape member must be interpolated over the length of the member.
For plates simply supported at the loaded edges and subjected to
uniaxial stresses, it has been determined?*® that the buckled shape in
the direction of applied stress occurs in the form of a sine wave.

This result is inherent in the nature‘of the solution to a partial
differential equation which defines the plate buckling of a simply
supported rectangular plate subjected to uniaxial stresses.

For this reason, and because the Rayleigh-Ritz solution is

a4o47248s50 5 gine shape is

not very sensitive to the actual shapes use
included as a principle component of longitudinal shape functions used
in this study. As shown in Figure 3.7, the effect of various boundary
conditions can be accounted for by multiplying a sine function by a
polynomial function which adequately describes the boundary conditiomns.
Essentially, this technique applies an envelope to a sine function.

The general form of a longitudinal shape function is

BfE)Sin mmE. In this form B(E) represents a polynomial envelope of a
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sine function where m is the number of half sinewaves that occurs along
the length of a plate during buckling. The complete buckled shape of

a plate component of a W shape is given by:

w = P(£)Sin mm&<¢>{6} (3.23)

As described previously, <¢>{8} describes the buckled shape of a flange
or a web at a cross-section. Each polynomial of <¢> is a function of
when referring to a flange, and a function of n when referring to a web.
£ is the natural coordinate in the longitudinal direction of a member.
The natural coordinates, £, L, and n and the corresponding natural

coordinate systems are defined in Figure 3.8 for a W shape.

3.10 Integration of Cross-Sectional Shape Functions

As is evident from the formulation presented in Appendix A,
extensive use of integration and differentiation of shape functions is
required. Furthermore, shape functions expressed in terms of natural
coordinates must be integrated and differentiated with respect to
Cartesian coordinates. The function in Equation 3.22, for example,
may be integrated as follows:

b/2
b

j S(2)dy = EJ 5(2)de
0 0 (3.24)

In this operation, the limits of integration and the differential
element dy in the Cartesian coordinate system were transformed to a

natural coordinate system using the relationship,

Y
1
“ly

(3.25)
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as defined in Figure 3.5. Differentiation of the function in Equation

3.22 proceeds as follows:

38

3s(z) _ 3s . 3L _
3z (3.26)

dy z 2y

oo
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where the chain rule of differentiation®” and the relationship of

Equation 3.25 were used.

As indicated by Equations A-42 to A-51, it is necessary to
integrate many different functions and products of functions in order
to obtain a solution for a given problem. These operations are best
performed by computer if they are first expressed in terms of
matrices. As an jillustration of the technique, the following integral
from Equation A-48 will be considered:

[(D ] = J {¢s }<¢’ > dy
2 y vy vy : A-48

A set of shape functions, {¢}, may be expressed by:

{¢} = [c1{n} (3-27)

where [C] is a matrix of constant coefficients of shape functions and,

m = 4

5
\ g7/ (3.28)

for a quintic polynomial, Differentiating Equation 3.27 twice with
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respect to y gives:

{¢,yy}

[C]{H,yy}
( 0
0
2
6

ff [CJJ . P

12C2

\ 2023)

)

(3.29)

where the relationship given by Equation 3.25 was used.
Using the relationships of Equation 3.29, the integrand of

Equation A-48 may be written as follows:

T
{¢,yy}<¢,yy> [C]{H,yy}<H,yy>[C]

il

12 [c1{ ez Y <002 6z 122 2053>[c)T

1212
\20¢>
=4lg (cifo o 4 120 2422 sod|[c)T
b 2 3 4
0 0 12z 36z2 7200 120¢
0 0 24z 722 1442 2607
o o 40zd 120c* 2402 40028

(3.30)
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The integral of Equation A-48 may now be evaluated by integrating each
term in the matrix of variables in Equation 3.30, to obtain the

following:

y
[0 0 1%2
0 0 0 0 0 0
0 0 4z 6z 83 10;4
lg [clj0 o 6;2 12@3 18:;4 24§5 [C]T
b
0 0 8z 18z% 24z 40z°
6
0 o 102% 242° 4o (400/7zc1
i 2
1
(3.31)

where the elements of the matrix of variables are to be evaluated for
the integration limits, 21 and 22. Tﬁis method permits the use of
computer techniques to obtain the integral of functions between any
limits of integration. This is important because, depending on the
level of stress and the stress distribution, longitudinal strips of

a flange or a web may be elastic, yielded, or strain-hardened. There-
fore the integration over a cross-section of a plate component is
performed in a piecewise fashion between the limits of these zones so
that the differing material properties may be included in the evaluation
of a stiffness matrix. In this way also, abrupt changes in stress dis-

tribution may be accommodated in evaluating a geometric stiffness matrix.

3.11 Integration of Longitudinal Shape Functions

As shown in the formulation of the analytical technique in
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Appendix A, extensive integration is also required for longitudinal
shape functions. ¥For example, factor Fl in Equation A-42 is

expressed as:

- o2
Fl = j f,Xx dx
X (A-42)

As discussed in Section 3.9, the function, f(§), may be of the form,

£(E) = P(E) Sin(mmi) (3.32)

where P(£) is a polynomial function. As a result, the functions to be
integrated over the length of a member may be quite complicated
expressions depending on the order of the polynomial, P(f), and
therefore a numerical integration technique is used. The length of a

member is divided into a number of equal intervals over which Gaussian

50

quadrature is used to integrate a function. The total integral over
a length is obtained by adding together these sub-integrals. The

number of intervals used for a given length is equal to the number of
half sine wavelengths along a member and a 6-point Gauss integration®’

technique is performed for each interval.

3.12 General Procedure for W shapes

The procedure described in Section 3.4 is used to develop a
bending stiffness matrix and a geometric stiffness matrix for the web
and each flange of a W shape. These represent stiffness submatrices
that must be assembled into overall stiffness matrices for an entire
member. In assembling the matrices, compatibility between the

flanges and web at a cross-section is maintained by enforcing zero
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relative rotation between the plate components at a web-to-flange
junction.

Figure 3.9 illustrates the node numbering and coordinate
displacements for a typical W shape cross-section. The notations of
this figure will be used in describing the assembly of a stiffness
matrix. Since a bending stiffness matrix and a geometric stiffness
matrix are both assembled in exactly the same manner the procedure is
illustrated for a bending stiffness matrix assembly only. In Section
3.4 it was shown that a plate buckling problem reduced to an
eigenvalue form as shown by Equation A-52 which can be rewritten as

follows:
[K]{6} = A[K 1{6} (3.33)

The bending strain energy of a component plate during
buckling results in the term on the left hand side of this equatioen
Therefore, assembling the stiffness submatrices of the two flanges and
the web of a W shape section to obtain the assembled stiffness matrix
is, in effect, equivalent to adding together the plate bending strain
energies of the individual component plates. Using the notation given

in Figure 3.9, the left hand side of Equation 3.33 may be written as;

Y

[k1{8} = [Kllg u, $

(3.34)
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for a lower flange;

UD) ~-

-

[K1{6} = [Kw]{

-

3 ) (3.35)

for a web; and

(ul )

Ys

[K]{6} = [Ku]< ul >

u7

\u3 /

(3.36)

for an upper flange. The slopes ué and ué represent the rotations of

the flanges and web at the web-to-flange junctions of a W shape cross-
section. The fact that ué is common to Equations 3.34 and 3.35 and ué
is common to Equations 3.35 and 3.36 ensures compatibility (in this
case, rigidity of attachment) between the flanges and web. Therefore
in assembling the stiffness submatrices,[Kl], [Kw]’ and [Ku],to obtain
the total stiffness matrix of a W shape, stiffness elements of the
submatrices corresponding to ué and u! must be added directly. This

5

procedure is illustrated schematically in Figure 3.10.
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3.13 Iteration on the Number of Wavelengths

The vector of coordinate displacements, {6}, represents the
amplitudes of the shape functions defining the buckled shape of a
cross-section. This vector is automatically obtained as a natural
part of the process of matrix iteration®® for each assumed value of m,
where m is the number of half sine wavelengths of buckling along the
length of a member. The correct value of m is that value for which the
energy of a system is a minimum since this represents the lowest energy
state of the buckled configurationz.

In an actual solution, a starting value of m = 1 is assumed.
This value is successively incremented in steps of unity and at each
increment a matrix iteration is performed to determine an eigenvalue
and the corresponding critical buckled shape of a cross-section. As m
is incremented, the critical eigenvalue continues to decrease until a
point of minimum potential energy of é system is reached. Thereafter,
increases in m cause an increase in the potential energy. The correct
value of m is that value for which the potential energy of the system
is a minimum and the corresponding eigenpéir gives the critical stress

and the buckled shape of a cross-section.

3.14 Effect of Residual Stresses

Residual stresses acting on a W shape section alter the
characteristics of a geometric stiffness matrix and therefore influence
the value of a critical stress. TIn order to include this effect in
the analysis, a residual strain pattern, as shown in Figure 3.11, is
assumed, Such a pattern allows for a fairly general representation and

37951957558959

has been used successfully by other investigators in
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assessing the effects of residual stresses. At the outset of a
problem, values must be specified for €2, the residual tension strain
at the lower edge of a web, €3, the residual compressive strain at
mid-depth of a web, and 84, the residual tension strain at the upper
edge of a web. The values of €1 and €s> the residual strains at the
lower and upper flange tips respectively, are then determined using

the following conditions of equilibrium for a cross-section subjected

to residual stresses:

IF =0 (3.37)
IM=0 (3.38)

Equation 3.37 is an expression of translational equilibrium of a cross-
section in the longitudinal direction of a member, and Equation 3.38
expresses equilibrium of a cross-section with.respect to rotation about
an axis perpendicular to the web.

The residual strain pattern of Figure 3.11 may be transformed
into a stress pattern using a simple stress - strain relationship as
shown in Figure 3.2. The forces and moments due to the residual stresses
are obtained by integrating the effects of the stresses over the web and
each flange of a W shape. Performing this integration, Equations 3.37 and

3.38 may be written as follows:

-0,-0,) =0

4 71

IF = 2Au(05—o4) + 2A1(01—02) + AW(203

(3.39)

and,

Awh h
IM = 2% (603—504-02) + K; (05—04) =0
(3.40)



where, Oi(i=1,2,3,4,5) are stresses corresponding to the strains

ei(i=l,2,3,4,5), A, is the area of a lower flange, Au is the area of

1
an upper flange, AW is the web area, and h is the web height.
Solving Equations 3.39 and 3.40 simultaneously and using

Figure 3.2 to transform from stress to strains, results in the

following values:

A
w

€, =€, — ——— (g,-6€,+5€,)

17 % " 128 5270%5%E, 341
AW

®s = €2~ Ta; (5e,-6e4+e,) (3.42)

In subsequent formulations, residual strains are added to applied
strains so that their effects on yielding and strain-hardening as
well as their effects on decreasing a geometric stiffness matrix are

included directly in the analytical teéhnique.
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Chapter 4

ANALYSIS FOR COMBINED AXTAL COMPRESSION AND BENDING

4.1 Introduction

In Chapter 3 a general formulation was presented for the
analysis of buckling of plates subjected to piecewise linearly varying
uniaxial stresses. The inclusion of residual stresses was also
discussed and it was stated that the method could be applied to
buckling in the elastic as well as the inelastic range. A W shape
subjected to combined axial compression and strong-axis bending is
composed of three uniaxially stressed plates (two flanges and a web).
Because of the presence of residual stresses, uniaxial stresses on a
component plate are piecewise linear at a section. The problem of
local buckling of a W shape section is formulated by combining the
effects of the individual component plates to obtain the total
stiffness matrices for a member. In this chapter the procedure is
explained in detail for the general loading case of a W shape section
subjected to axial compression and strong axis bending combined. The
formulation for the general case may be applied to a particular case
of pure axial load or pure bending by setting the applied bending

moment or the applied axial load equal to zero, respectively.

4.2 Assumptions

In Appendix A, a plate buckling condition is developed for a

single uniaxially stressed rectangular plate. This buckling condition

49
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is derived using the principle of virtual work and it is applicable

to the elastic and inelastic ranges of stress. 1In addition to the

usual assumptions of plate buckling presented in Appendix A, the

following assumptions applicable to local buckling of a structural

steel W shape section are made:

1.

6.

The member is loaded in such a way that all longitudinal
fibres are subjected only to uniaxial stresses.

The idealized stress — strain response shown in Figure 3.2
applies for each longitudinal fibre in a cross-section.
The buckling condition expressed by Equation A-35 is
applicable to material which is elastic, yielded, or
strain-hardened.

Shape functions for a cross-section are continuous across
boundaries between elastic and yielded material and
between yielded and stréin-hardened material.

Local buckling of component plates may occur when a cross-
section is in any one of the following strain ranges:

(a) fully elastic range

(b) partly elastic and partly yielded range

(¢) fully yielded range

(d) partly yielded and partly strain-hardened range

(e) fully strain-hardened range

Member failure occurs when a plate component of a

cross-section buckles locally.
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4.3 Stiffness Matrix Formulations

4.3.1 Introduction

In the following sections, stiffness submatrices are
formulated for individual plate components of a W shape. An applied
uniform axial strain is superimposed on a general residual strain
distribution such as that shown in Figure 4.1 where ei(i=l,2,3,4,5)
are residual strains, and € is an axial strain. A bending moment
strain, eb, is then added. The resulting total strain distribution
is used to determine the stresses on each component plate as well as
the extent of yielded and strain-hardened regions within a plate.
Stiffness submatrices are formulated for each plate component for a
general case of material being partly elastic, partly yielded, and
partly strain-hardened. The component plate stiffness submatrices
are then combined as described in Chapter 3.

As previously mentioned, it is assumed for the purpose of
clarity, that a section is oriented with its web in a vertical plane.
Furthermore, it is assumed that the direction of an applied moment is
such that it tends to place the upper flange in compression and the
lower flange in tension. As a result of this assumption, the upper
flange will always be in compression under the actions of the applied
axial compression and bending loads combined. The lower flange, how-
ever, may be in tension when the axial load is low compared to the
flexural load or in compression when the flexural load is low compared
to the axial load. In the latter case, the general analysis of a

lower flange is identical to that of an upper flange in compression.
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4.3.2 Application of Incremental Bending Strains

In this analysis of local buckling of beam-columns, it is
necessary to apply additional increments of bending strains to a
cross-section. Before an increment is applied, a cross-section may
be partially yielded or strain-hardened as a result of previously
applied strains. Before additional bending strain increments can be
applied it is therefore necessary to update the location of the
neutral axis.

Figure 4.2(a) shows a cross-section which is partially
elastic and partially yielded as a result of -a total strain
distribution such as that shown in Figure 4.1. The neutral axis is
located at a distance, Yi» from the mid-depth of a web. This location
is determined from the requirement that a cross-section must be in
equilibrium under the action of applied loads. Once the neutral axis
has been located the bending strains,rec, at mid-depth of a web, and
eé, at the lower edge of a web may be determined from the strain
geometry.

Referring to Figure 4.2(b), the following expressions for €.

and €! may be obtained:

b
e - [2A).
c 2y1—h b

(4.1)

where h is the web depth and €, is the applied compressive bending

b

strain, and

h+2y
gl = [ 1]8 .
b h-2yl b (4.2)
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In these relationships €, and eg are given as functions of the applied
compressive bending strain, €y Thus the distribution of incremental
bending strains is completely specified when a value of the applied
strain, €y is specified. In subsequent formulations an analytical
technique is set up so that € is an eigenvalue which corresponds to a

critical buckling strain.

4.3.3 Stiffness Submatrices

In this section, bending and geometric stiffness submatri-
ces are formulated for individual plate components of a W shape. The
stiffness matrices, [K] and [KG], are formulated separately for a
compression flange, a tension flange, and a web. For the purpose of
analysis only, a web is considered to consist of two parts; the lower
half of a web between nodes 3 and 4, and the upper half between nodes
4 and 5 as shown in Figure 3.9, Chapter 3. Because the origin of
local coordinates is at node 4 of a wéb, this particular division
simplifies the analysis somewhat with regard to integration of
piecewise continuous functions along its height.

Equations A-53 and A-54 are expressions for bending and
geometric plate stiffness matrices, respectively. These expressions

are repeated below for ease of reference:

[K] = F;le;] (A-53)

[K,] = F.[0.]
¢ > (A-54)

where 1 = 1,2,3,4 and repeated subscripts indicate summation in

Equation A-53. In this expression, [@i] are integral matrices as
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defined by Equations A-47 to A-50, and Fi are material constants as
defined by Equations A-42 to A-45. The values of Fi depend on whether
the material is elastic, yielded, or strain-hardened. 1In Equation
A-54, F5 is a constant depending on the material thickness and is
given by Equation A-46, and [@5] is an integral matrix as defined by
Equation A-51.

Partial yielding or strain-hardening of a cross-section
results in non-uniform material properties and stresses defined
plecewise over a section. Therefore, the integral expressions
of Equations A-53 and A-54 are also defined piecewise over a section.
The limits of integration correspond to the locations of material
boundaries between elastic and yielded material and between yielded and
strain-hardened material within a plate cross-section. Therefore, in
order to carry out the integration required to determine [K], it is
necessary to locate boundaries corresponding to material discontinuities
within a plate cross-section. The evaluation of [KG] can be made once
the stress discontinuities and stress distributions are determined for
a plate cross-section. In the following sections these quantities are
evaluated and explicit values of [K] and [KG] are determined for each

plate component of a W shape.

4.3.3.1 Compression Flange

The distributions of strain and stress for a compression
flange subjected to combined residual, axial, and flexural stresses are
shown in Figure 4.3. In Figure 4.3(a), €, is an axial strain, vais a
bending strain, €, is a residual tensile strain, 85 is a residual

compressive strain, Ey is a yield strain, and €or is a strain-hardening
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strain. The corresponding stresses shown in Figure 4.3(b) are derived
from the strain diagram according to the stress - strain relationship
defined in Figure 3.2. 1In Figure 4.3(b), si(i =1,2,3,4,5,6) are
stress components and at and aé, in natural coordinates, are the
locations of the material boundaries between elastic and yielded and
between yielded and strain-hardened material.

The values of at and aé are listed in Table 4.1(a) for
various levels of strain. The second column of this table indicates
the material condition for the corresponding range of strain indicated
in the first column. For example, for the second strain range
indicated the material is partially elastic (e) and partially yielded
(v), and for the fifth strain range indicated the material is fully
strain-hardened (s). The stresses defined piecewise for the various
stress regions of Figure 4.3(b) are defined in Table 4.1(b). In this
table, Z is a natural coordinate as iandicated in Figure 4.3, E is the
elastic modulus, E, is the slope of the yield portion of a stress -
strain curve, and ESt is the strain-hardening modulus.

Using the limits of integration, o, and aé, as given in
Table 4.1(a), and expanding the expression in Equation A-53 over

the non-uniform material regions, the stiffness matrix for a

flange in compression is given as:

[K] = Fie[ i

L&)
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where subscripts, e, y, and s, indicate that material constants, Fi’
have elastic, yielded, and strain-hardened values, respectively. The
limits of integration are shown as subscripts and superscripts on
each integral matrix, and double subscripts, i, indicate summation.

The geometric stiffness matrix for a compression flange is
obtained by substituting the stresses, Si , from
Table 4.1(b) into Equation A-54 and integrating between the appropriate
limits defined in column one of Table 4.1(b). The following expression

is obtained:

[l - [l

K] = F ;sl (o] 7% + [2]
t t

\J

AR BENCRR N CA

t t] t t

t t (4.5)

where [C@s] is used to indicate that matrix, [@5], is multiplied by
natural coordinate, [, before integration is performed. This accounts

for linearly varying stresses on a portion of a plate cross-section.

4.3.3.2 Tension Flange

The strain and stress distributions for a flange in temnsion
are shown in Figure 4.4. 1In addition to the previously explained

symbols, € is the residual compressive stress at the flange tips and
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€,y is the residual tensile stress at the flange-to-web junction. The
strain ranges and limits of integration corresponding to Figure 4.4(a)
are listed in Table 4.2(a) and the corresponding stresses and stress
regions illustrated in Figure 4.4(b) are listed in Table 4.2(b).

The stiffness matrix for a tension flange may now be
obtained by performing the integration in Equation A-53 over the limits
indicated by Figure 4.4 and Table 4.2(a) and using the appropriate

material constants, Fi' The resulting expression is as follows:

(4.6)

The geometric stiffness matrix is obtained from Equation
A-54 by substituting the stresses given in Table 4.2(b) and
integrating over the appropriate limits as indicated in Figure 4.4

and Table 4.2(b). The resulting expression is as follows:

[K,)

£y fos % + [@s];b - Sz[[c“’s}jb ) [CQ-"];J

(4.7)
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4.3.3.3 Web - Tension Zone

The general strain and stress distributions for the lower
half of a web (loaded in the orientation described previously) are
shown in Figure 4.5. 1In this Figure, 81, Bi, 83, and B;, in natural
coordinates, locate the boundaries between elastic and yielded material
and between yielded and strain-hardened material. These values are
defined in Tables 4.3(a) and 4.3(b) for the various ranges of strain
indicated. The stresses corresponding to the stress regions
indicated, are listed in Table 4.3(c).

Referring to Figure 4.5 and Table 4.3 and proceeding in the
manner described previously for the flanges, the bending stiffness and
geometric stiffness matrices for the tension zone of a web are

obtained as follows:

[K] = FieCQi]:23+ Fiy[[@i]:Z} + [@i]::%]
1 1 3

" Fisf[cpi]"si +]°

-1 85 (4.8)

-

and,

st e [ [
1

«+. continued
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1

+5¢ [¢5J:zi + s6[n®5]::i + s7[c1>5]:zz
“nftsl |
3

(4.9)

4.3.3.4 Web - Compression Zone

Because of the complex yield pattern possible under the

actions of residual, axial, and flexural stresses combined, three
cases must be considered for the compression zone of a web.
These three cases correspond to the material condition at the center
of the web which may be elastic, yielded, or strain-hardened at the
time the incremental bending strains are applied. Each of the three
cases is considered separately.

The strain and stress distributions for the compression zone
of a web when the center of the web is elastic are shown in Figure 4.6.
In this case the total strain at a web center must not be greater than

the yield strain, and therefore,

ea+ec+€3.<.€
(4.10)

The material boundaries corresponding to the various ranges
of strain possible are given in Table 4.4(a) and the stresses
corresponding to the material zones indicated in Figure 4.6(b) are
listed in Table 4.4(b). Referring to Figure 4.6 and Table 4.4, and

proceeding as described for the previous cases, the bending and
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geometric stiffness matrices may be written as follows:

(K] = Fie[q,i]? + Fiy[cbi] 8y 4 Fis[<1>i]12 (.11

and,

+ S4 [@5] B2 + Sg [Cbs];é + 56 [(DB];é g ) |
.12

The center of a web is yielded when,

EY < €a * € * €3 S st (4.13)
and the corresponding strain and stress distributions as well as the
limits of integration and various material zones are described in
Figure 4.7 and Table 4.5. Using the appropriate values obtained
therefrom, the bending and geometric stiffness matrices for this case
may be written as follows:

Bé +E [cbi] By 4 F.q [cbi]l

[K] = Fie[cb.]ez

1

(4.14)

and,
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+ 84[n@5]2z + o505, + 56[1@5]1';
(4.15)

The third and final case which must be considered for the
compression zone of a web is that corresponding to the center of the

web being in the strain-hardened condition. In this case,

€E _<eg +e& +¢
st a c 3 (4.16)

The corresponding distributions of strain and stress are shown in
Figure 4.8 and the material boundaries and stress components for each
region are given in Table 4.6. The resulting expressions for the

bending and geometric stiffness matrices are as follows:

[K] = F,_ [@i]; + Fiy[(bi] By 4 F, . [cpiJ B,
2 (4.17)

and,
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(4.18)

4.4 Iterative Technique

In the solution of a particular problem, bending stiffness
and geometric stiffness submatrices for each flange and a web are
formulated as described in the previous sections. The global stiffness
matrices are then assembled as explained in Chapter 3. In any problem
of axial, bending, or combined loading, the required eigenvalue will be
either eb, the bending strain, or €, the axial strain. However,
because of material and stress non-linearities over a cross-section,
the bending stiffness matrix, [K], ana the geometric stiffness matrix,
[KG], are implicit functions of the eigenvalue strain., Therefore at
each successive value of an eigenvalue strain, it is necessary to
reformulate [K] and [KG] for that particular value of strain. Thus an
iterative technique is required.

As described in Chapter 3, an eigenvalue problem reduces to
the form:

[K] - [K;1]{e} = {0}

(4.19)
As stated previously, [K] and [KG] are implicit functions of (Eb + ea)

when a material is non-linear. Equation 4.19 may be re-written as
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follows:

(o)

[K] - » [k {6} = {0}
[ °[ ¢ ]] (4.20)

where,

_ 1
[KGO] Cogte, [%e] (4.21)

In the solution of Equation 4.20, a value of (eb + ea) is
assumed. Knowing this value, the elastic, yield, and strain-
hardening material zones in a cross-section as well as the
discontinuous stress distributions are fully defined. Therefore,
[K] and [KGO] are completely determinable and matrix iteration may
be performed to determine Xo. The solution to Equation 4.19 will be
obtained when,

A

[o]
= 1.0
bt €a (4.22)

€

In general, this will require the determination of several values of
Ao by matrix iteration. An exact solution is obtained when the eigen-
value, Ao’ is equal to the assumed value of eb + €, In general,

however, this will not be true, and,

>
|

o = A+ A (4.23)

where,

A=yt (4.24)

and A" is a residue which represents the amount by which Ao deviates
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from the exact value of (sb + ea). Thus, the problem reduces to that

of finding a value of Ao such that,

N[ =[x - 2" <e

o (4.25)

where e, is a small positive value which reflects the required
precision of a solution.

For the purpose of illustration, Figure 4.9 shows a graph of
(Xo - A") vs. (Eb + sa). In the iteration technique, an initial wvalue
of (Eb + Ea) is choosen so that (Xo - k') is positive. Another value of
(Sb + ea) is found so that the corresponding value of (Ao - A" is
negative. Once these two starting values have been found (by trial and

! is used to determine a

error, if necessary) the method of bisection®
. value of (Eb + ea) for which Iko - A'| < e. Once the convergence

criterion is satisfied, the critical bending strain is given by:

cr (4.26)

This general technique may be used for pure bending when
e, = 0, or for pure axial load when Eb = 0. In the case of axial

compression and bending combined, Ea is a constant value of axial

strain depending on the magnitude of applied axial load.
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Location of Material Boundaries

Material ;
Strain Range Condition O¢ Ot
< -_—
eb+ea < ey €5 (e) 1.0 1.0
‘ €y+€4-€b—€a
- <
ey €5 < eb+ea < ey+e4 (e,y) €4+€5 1.0
< -
ey+e4 <gte, S € g, (y) 0.0 1.0
€ te,-e -¢
st 4 b Ta
- < .
Est™€ < €b+€a = €st+€4 (y,8) 0.0 €,+Es
est-+e4 < eb+ea (s) 0.0 0.0

(a) Strains

Stress Region Stress Stress Components

-1.0 < ¢ < ~og (s) 5175,0 s, = 0y+(€st—sy)E°+(eb+
E:a-gst_el;)Est
o sts-a () $378,% sy = (g, tco)E
-0 <z <0.0 (e) ss-s6c 8y = cy+(eb+sa—ey-s4)Eo
0.0 <t < a, (e) s5+s6c s4 = (€4+€5)Eo
o, ST <ar ) sqts,T S5 = (€b+€a-€4)E
aé <z <1l.0 (s) s1%8,8 s¢ = (€4+€5)E
(b) Stresses
Table 4.1 Stresses and Strains for a Compression Flange
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Location of Material Boundaries

Material .
Strain Range Condition Oy %y
€p7€a = &% (e) 0.0 0.0
' eé-—ea—eyﬂz
ey-ez < €€, < €y+€l (e,y) —Ic 0.0
172
et < g€, < E_ € (y) 1.0 0.0
€€y < Ep€, S £ FE (y,8) 1.0 Ef)_zi‘;zztﬂz
€ete) < el"—ea (s) 1.0 1.0
(a) Strains
Stress Region Stresses Stress Components
-l.0< ¢ < -0y (e) 81=8,0 sy = (Ea—e'-ez)E
- ¢S -of 6] 84-5,T sy = (€1+€2)E
-aé £t <0.0 (s) ss-s6c 4 = -quay-€2+€a—€é)Eo
0.0 < ozl') (s) s5+s62; 5, = (s:1+€2)Eo
al') £C< o (y) s3+s4C g = -cy-(est-sy)Eo+(est+
e 4ok e ke
oy £ T <1.0 (e) s1¥8,C s = (e17E,)E

(b) Stresses

Table 4.2 Stresses and Strains for a Tension Flange.
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Location of Material Boundaries

Material
Strain Range Condition 81 B{
| - < -
eb ea < ey Ez (e) 1.0 1.0
€a+€c+€y+83
- < ' < - =t J 2
€ €y < EyE, S E 6y (e,y) e te e 1.0
b ¢ "2 73
€a+ec+ey+€3 €é+€c+€st+€3
€ -€, < e'-¢€ (eay’s) T 1
st 2 b "a eb+ec+sz+e3 €b+ec+ez+€3
(a) Strains Adjacent to Lower Edge of Web
Material Location of Material Bou?darles
Strain Range Condition 83 53
<
ea+s:c+e:3 < ey (e) 0.0 0.0
€a+ec+e3—€
€ <e+c +e, < ¢ (e,y) - 0.0
y a ¢ 3 st €b+€c+€2+€3
€a+ec+53-€ €a+ec+€3—est
€ < € 4€ +€ (e,y,8) : T
st a ¢ 3 eb+ec+€2+83 €b+ec+ez+e3

(b) Strains Adjacent to Middle of Web

Table 4.3 Stresses and Strains for the Tension Zone of a Web -

... cont'd.



Table 4.3 -

continued

68

Stress Region Stress Stress Components
-1<n<-B) (s) 5,8, s, —oy—(est—ey)Eo+(ea+
8c+€st+€3)Est
-8 << -8, (¥ syts,N s, = (g€ tete)E
-Bl <ng -63 (e) sgtsn 54 —Oy+(€a+€c+€y+€3)E°
By <n< —Bé 6] s,+s,M s, = (e[+e +e,+e4)Eo
B3 <n<o (s) sgtsyn sg = (e e +€)E
S (81')+€c+€2+€3)E
s, oy+(aa+ec+e:3-ey)Eo
Sg cy+(est-ey)Eo+(ea+ec+

+
Est €B)Est

(¢) Stresses

Table 4.3 Stresses and Strains for the Tension Zone of a Web
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Location of Material Boundaries

Material -
Strain Range Condition B2 B2
<
eb+ea < ey+e4 (e) 1.0 1.0
€,7€37€."€,
e +e, < g+ < e _+e (e,y) - = - = 1.0
y 4 b "a st 4 €,"€."€3~€,
~E,~E —€ € ,"€E,—E —
€ +€, < g +4€ (e,v,8) ¥ o3 °cta st 3 “c"a
st "4 b a € —€ —€,-€ €, —€ —£,-€
b ¢ 3 74 b ¢ "3 74
(a) Strains
Stress Region Stresses Stress Components
0.0 <nc<8, (e) syFs,N s = (€a+€c+23)E
S, = €, "€ "€47€,
' 1 —
62 <ng 62 ) sq4ts,N 54 oy+(ea+ec €y+e3)E°
s, = (eb—sc—e3—€4)Eo
\J
62 <ngl.0 (s) s5+s6n Sg = 0y+(€st—sy)E°+(ea+
€c—est+€3)Est
sg = (65776378, gy
(b) Stresses
Table 4.4 Stresses and Strains in the Compression Zone of a

Web (Case I - Center of Web Elastic)
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Location of Material Boundaries

Material ;
Strain Range Condition B2 B2
€ —83-sa—ec
ete, < e te, (e) ___ey—s — 1.0
y b €378,
< <
ey+e4 eb+€a < est+e4 (e,y) 1.0 1.0
€ —€,~€ —-E € -£.-€ -€
t 3 a ¢ st 3 "a ¢
€ +& < g, +¢ (y,s) —S_—_— P
st 4 b "a eb ec 83 €4 Eb ec € 64
(a) Strains
Stress Region Stress Stress Components
0.0 < n¢g Bz (v s;ts,n 5 = cy+(ea+ec—sy+e3)E°
s, = (eb—ec_SB_EA)E°
8y = (ea+ec+€3)E
< 1 = - -—
Bz £ n g 82 (e) s4+s,M s, (s—:b+eC £q 54)E
gs. =0 +(e - )E,+
5 y ( s y) 1o}
(€a+€c-€st+€3)Est
t = — | —
82 <n<1.0 (s) Sgtsen Sg (eb €.7€5 84)Est

Table 4.5 Stresses and Strains for the Compression Zone of a Web

(b) Stresses

(Case II - Center of Web Yielded)
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Location of Material Boundaries

Material 8 a1

Strain Range Condition 2 2
€ ~-€,.-€ —E £ ,-€E.-€ -€
eb+€a s e +€4 (e,y,s) ey—e3—ea—ec esfe 38 fe :
Y b €c76378 b Ec€37€,
Est—€3—€a-€c

e+e, < g +e < e+ (y,s) 1.0 =

y 4 b a st 4 € ETE37E,

(s) 1.0 1.0

- < +
€st €4 €b €a

(a) Strains

Stress Region Stress Stress Components
0.0< n<§B (s) s;t+s,N s = cy+(est—ey)Eo+
(€a+€c_€s£+€3)Est
8y = (8p=€.7€376) gy
B, <n<B, (y) s4+s,M 53 = Ogt(e e m€ te3)Eo
5, = (eb-ec—e3—s4)Eo
32 <n<g1.0 (e) ss+s6n 85 = (€a+ec+€3)E
Sg = (sb—ec—e3—e4)E

(b) Stresses

Table 4.6 Stresses and Strains for the Compression Zone of a Web

(Case IIT - Center of Web Strain-hardened)
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Figure 4.3 Strain and Stress Distributions for a Flange in Compression.
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Figure 44  Strain and Stress Distributions for a Flange in Tension.
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Chapter 5

COMPARISON OF THEORETICAL PREDICTIONS WITH TEST RESULTS

5.1 Introduction

An analytical procedure for the calculation of critical
loads causing local buckling of plate components of W shapes has been
presented in Chapters 3 and 4. This procedure uses matrix techniques
to predict critical local buckling loads which may occur either in the
elastic or inelastic load region. Because of the large number of
iterative calculations required it was necessary to use a computer
program which was written for this purpose. In this chapter,
theoretical results are compared with the results of laboratory tests
perfesmed on 57 specimens. These tests inclﬁde six column specimens
and six Beam specimens tésted by Haaijer and Thurlimann'®. Of the
remaining 45 specimens, 4 were column specimens, 26 were beam specimens,
and 15 were beam-column specimens all tested at the University of
Albertall»12213:36 In all cases, local buckling of plate components

of W shapes was the principal point of interest during testing.

5.2 Prediction of Buckling Loads

In the analysis of local plate buckling as presented herein,
it is assumed that portions of a cross-section having strains higher
than the yield strain, have effective material properties corresponding
to those in the strain-hardening region. As mentioned previously, this

assumption has also been used successfully by other investigators in

81
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2553455155355k These material properties are presented in

this area
Appendix B and have values dependent on the elastic modulus, E, the
strain-hardening modulus, Est’ and Poisson's ratio, v. Where these
values are not reported for a given laboratory specimen, values of

E = 29,600 ksi., E__ = 800 ksi., and Vv = 0.3 are assumed. In the case

st
where a residual stress is not available, a value of 0.3 Oy is assumed®®®
as a maximum value of compressive and tensile residual stresses and the
distribution configuration shown in Figure 3.11 is used. For the
specimens tested by Haaijer and Thurlimann, specific values of Dx’ D

y

ny and Gt were reported for a value of ESt = 900 ksi. Consequently
these values are used in the prediction of local buckling capacities

for the specimens tested by Haaijer and Thurlimann.

5.3 Column Local Buckling Tests

Results of six column tests were published in 1958 by
Haaijer and Thurlimann’. The specimeﬁs were designed to study the
behaviour of W shape columns susceptible to local buckling beyond the
elastic range. Each specimen was placed flat-ended between fixed
plates in a testing machine and subjected to axial compression. During
the tests, observations were made at each load increment to determine
axial strains, web and flange deflections, and lateral movement.
Column lengths varied between 23 and 32 inches while b/f;/Zt varied
between 40 and 56 for the flanges and th;YW varied between 147 and
265 for the webs.

The resulting critical column loads at the point of local

buckling for these tests are shown in Table 5.1(a). The predicted

loads as determined from the analytical procedure presented herein as
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well as the ratios of the predicted to the experimentally determined
loads are also shown in this table. The letters, F and W in brackets,
indicate the plate component (flange or web) which initiated local
buckling in each case.

In 1979 at the University of Alberta, G.L. Kulak tested
four W shape column specimens for local buckling capacities. The end
edges of the flanges and web of each specimen were rounded and fitted
into grooved platens before being placed in a testing machine and
subjected to axial compression. During the tests, local strains and
plate deflections were recorded at various load levels so that a
continuous monitoring of local, lateral and axial deflections was
possible. The webs of all four specimens were proportioned to have a
value of h/f;/w = 200, Specimen numbers 1 to 3 were 36 inches long and
had a value of b/f;YZt = 72 for the flanges. Specimen number four was
24 inches long and the value of b/f;/Zt for the flanges was set at 100
by milling the flanges to the required thickness. The results of these
tests are presented in Table 5.1(b) where the values predicted by the
analysis presented herein as well as the ratios of predicted to

experimental values are also shown.

5.3.1 Discussion of Column Test Results

The ratios of predicted to experimental values of buckling
loads presented in Table 5.1 vary between 0.97 and 1.08. It appears
that there is better correlation of predicted and experimental values
for Kulak's specimens than for those tested by Haaijer and Thurlimann.
This difference in correlation for the two sets of test specimens is

attributed to the fact that the test values for the specimens tested by
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Haaijer and Thurlimann were scaled from published graphs whereas the
measured values for the specimens tested by Kulak were directly avail-
able. Although this is considered to be the main source of error,
other sources of error that are considered to be applicable to all

test results presented herein are discussed in Section 5.6.

5.4 Beam Local Buckling Tests

Theoretical values of critical moments causing local
buckling in W shapes are compared with corresponding test results for
32 beam specimens. Six beam specimen test results were obtained from

10

the work of Haaijer and Thurlimann™’ and twelve results were obtained

k'1*12, The remaining 14 test

from tests carried out by Holtz and Kula
results were obtained from experiments carried out by Lukey and
Adams3®.

The six beam sections tested by Haaijer and Thurlimann
were identical to those tested in the column test series mentioned
above. All beams were simply supported at the ends and loaded

symmetrically by two concentrated loads so that local buckling could be

expected to occur within the uniform moment region. Although the

specimens were laterally braced failure was initiated by flange local buck-
ling followed by some lateral movement between bracing points. It is to be
expected that this combined failure mode affects the results predicted
by the method presented herein although the extent of this effect is
difficult to estimate.

In table 5.2(a) bending moments at failure for each of the
six specimens tested by Haaijer and Thurlimann are compared with those

predicted by the analysis presented herein. As before, the letter, F,

in brackets indicates flange local buckling and in this case also, the
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letter, L indicates the presence of lateral buckling. The ratios of
experimental to predicted moment values are also shown.

In 1973, Holtz and Kulak'' reported test results for a
series of ten compact beam specimens. During testing, all specimens
were simply supported and loaded symmetrically with equal concentrated
loads so that a uniform moment region existed between load points. All
specimens were laterally braced at the load and reaction points so that
the possibility of lateral buckling was precluded. Similar tests were
performed on a series of two non-compact beams in 19752,

Table 5.2(b) shows the critical buckling moments obtained
for the bending tests performed by Holtz and Kulak. The corresponding
moments as determined by the analysis presented herein are shown as well
as the ratios of predicted to experimental values. The letters, F and
W, indicate which element (either flange or web) precipitated the local

failure.

The beam specimen tests performed by Lukey and Adams®® were

designed for the purpose of studying the relationship between flange
slenderness ratios and rotation capacities of W shape beams subjected
to a moment gradient. All specimens were simply supported and loaded
with a concentrated load placed at mid-span with lateral bracing

placed at reaction and load points. The analytical method presented
herein was not developed to predict local buckling capacities of beams
subjected to moment gradients. It was assumed, however, that a buckle
would normally occur in a localized region at the location of maximum
moment and that adjacent moment gradient regions would not significant-
ly affect the critical buckling moment. For this reason it was decided

to include the results of the beams tested under a moment gradient as
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described above.

The critical buckling moments for the specimens tested by
Lukey and Adams are presented in Table 5.2(c). The critical element
initiating local failure and the ratio of experimental to predicted

buckling moment values are also indicated for each specimen.

5.4.1 Discussion of Test Results

For the beam specimens tested by Haaijer and Thurlimann,
the ratios of predicted to experimental values of the buckling moment
vary between 0.97 to 1.13 as shown in Table 5.2(a). For five of the six
specimens tested, the predicted values are within five per cent of the
actual test values and for specimen number one the predicted value is
slightly high. This slightly high value is not unacceptable, however,
in view of the possible sources of error outlined in the next section.

The correlation between experimental and predicted buckling
moments for the specimens tested by Holtz and Kulak is generally quite
good as can be seen from Table 5.2(b). The ratios of experimental to
predicted values vary between 0.89 and 1.12. For ten of the twelve
specimens tested, the predicted values of buckling moment are within six
per cent of the test values. For specimen numbers 5 and 9 the error is
+12 per cent and -1l per cent respectively. Again, in view of the pos-
sible sources of error, as discussed in the next section for all test
series, these values are considered to be acceptable.

For the specimens tested by Lukey and Adams, the ratios of
predicted to experimental values of buckling moment vary between 0.87
and 1.08 for eleven of the fourteen specimens tested. For specimen

numbers 2, 4, and 13, the ratios of predicted to experimental values
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vary between 1.18 and 1.46 which must be considered as unacceptable
correlation between test and theory for these three specimens. 1In
attempting to explain this discrepancy between predicted and test
values, it must be pointed out that all of the beam specimens tested
eventually failed by a combination of local and lateral buckling. The
laterally buckled shape, in plan view, was an S-shaped buckle symme-
trically formed about the mid-span lateral brace. As a result, the
final buckling mode was that of a combined local and lateral buékle.

It is possible, therefore, that for specimen numbers 2, 4, and 13,
additional lateral bracing placed at the quarter-points may have pre-
vented lateral buckling thus permitting a failure by pure local buck-
ling. Under such circumstances a higher test load would be obtained
and a better correlation between .test and theory would result. Tor the
eleven remaining specimens, for which good correlation was obtained, it
is assumed that this effect was not as significant presumably because
the moment required to cause pure local buckling failure was either less

than or equal to that . required to cause a pure lateral buckling failure.

5.5 Beam—-Column Local Buckling Tests

Local buckling tests on nine beam-columns using compact"
sections were carried out by Perlynn and Kulak!?. An additional series
of tests consisting of six non-compact® beam-column specimens was car-
ried out by Nash and Kulak'3®. Each specimen for both test series was
aligned in a universal testing machine which was used to apply the prin-
cipal concentric load through steel rockers at the top and bottom of a
specimen. A moment was superimposed by using a center-hole jack acting

between loading arms rigidly connected to the ends of a specimen.
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As the eccentric load was increased to provide an increment of moment
the principal load was decreased so that the total axial load remained
constant and equal to a prescribed value. At each increment of
moment, web and flange deflections were monitored locally at various
points along the specimen, and overall rotations and deflections were
also recorded. Each specimen was laterally braced at mid-span and
adequate torsional restraint was provided at the ends by means of the
rigidly connected loading arms.

The critical buckling moments for the compact beam-columns
tested by Perlynn and Kulak are presented in Table 5.3(a). The ratio
of the applied axial load to the yield load is also shown for each
specimen. As mentioned previously, the critical element (either flange
or web) which precipitates a local failure is indicated by the letter
F or W. The predicted value of the local buckling moment as well as
the ratio of predicted to experimental moment is also shown for each
specimen. In a similar manner the results of the non-compact beam-

columns tested by Nash and Kulak are presented in Table 5.3(b).

5.5.1 Discussion of Beam-Column Test Results

For the specimens tested by Perlynn and Kulak the predicted
values of buckling moment are within 7 per cent of the test moment ‘for
seven of the nine specimens as shown in Table 5.3(a). For the remaining
two specimens, the errors are +12 per cent and +13 per cent. In view of
the possible sources of error as discussed in the next section, these
values are considered to be acceptable.

As shown in Table 5.3(b), for the specimens tested by Nash

and Kulak, the predicted values of buckling moment are in error with
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respect to the test values by less than 5 per cent for three specimens
and by +11 and -13 per cent for two of the remaining three specimens.
These errors are considered to be acceptable in view of the possible
sources of error as discussed in the next section. For specimen

number six the predicted load was only 64 per cent of the maximum load
recorded during the test. The validity of this test result is in doubt
when compared to that obtained for specimen number five. This specimen
was identical except for a 25 per cent increase in the h/Fy/w term
which is unlikely to result in a 40 per cent decrease in moment as is
apparent from Table 5.3(b). Additional doubt is cast upon the validity
of this test result since difficulty of specimen alignment at high axial
loads (P/Py = 0.7) was apparently evident during the testing

procedureeo.

5.6 Sources of Error

In addition to the sourcés of error discussed in the previous
sections for specific test series, the following sources of error are
applicable as noted:

(a) Material Properties

This area is probably the most significant source of error
as well as the least determinable. No investigator has as yet come up
with an unquestionable evaluation of plate buckling properties that can
be applied over the entire inelastic plate buckling range. Apparently,
the most reliable guidance presently available for these values in the
strain-hardening range is based on the works of Handelman and Prager??,

7

Haaijer and Thurlimann’, and Lay®®. 1In all cases these values are

apparently closely related to the strain-hardening modulus, E__, of a

st
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simple tension coupon test and any error involved in determining ESt
would doubtlessly be reflected in the theoretical values predicted.
No estimate in the error involved in determining ESt values is
available.

Because the specimens tested by Haaijer and Thurlimann
and Lukey and Adams were proportioned so that failure in the plastic

range was expected, an evaluation of ES was made for each specimen.

t
The specimens tested by Kulak et al on the other hand, were not
proportioned as plastic design sections and therefore the effect of
Est was not expected to be as significant. In these cases the value

of E . was not available for each specimen. However, a value of

ESt = 800 ksi. has been estimated from the available stress — strain
curves.

Assuming that various material properties have been
accurately determined from a simple Fension test, it is generally
accepted that these properties also apply to larger specimens of
different shape subjected to compression. It is further assumed that
the material is uniform throughout the test specimens. Local material
discontinuities due to welding and forming specimens may contribute to
error in this respect. No estimate of the error arising from the use

of tension coupon material properties is available.

(b) Residual Stresses

The actual magnitudes and distributions of residual stresses

were not available for the specimens tested by Haaijer and Thurlimann,
and of the tests carried out by Kulak et al, residual stresses were
available only for the column specimens. In these cases the residual

stress distribution shown in Figure 3.11 with a maximum value of
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residual stress of 0.30y was assumed. Residual stresses vary in
magnitude and distribution from specimen to specimen®? and affect the
local buckling capacity. The effect of changing residual stress
values is studied parametrically in Chapter 6.

(¢) End Conditions

The end conditions existing at the longitudinal extremities
of a local buckle depend largely upon the method of testing and
usually they will lie between the pinned and fixed end conditions. In
the analysis presented herein, after careful consideration of the
methods of testing used in each test series, it was decided that pinned
end conditions best represent the end support conditions of the column
specimens. Because of the elastic moment gradient region adjacent to
either end of a local buckle developing in the beam specimens tested,
fixed-end support conditions were assumed. The very rigid attachment
of the loading arms to the beam—columns tested resulted also in the
assumption of fixed ends for these séecimens. The effects of end
conditions vary with the length of a specimen? and therefore any
resulting errors will be more significant for shorter members. With
the reduction in plate bending stiffnesses due to inelastic action, it
is expected that the affects of end conditions would be lessened. For
these reasons it is felt that the effects of estimating degrees of end
fixity are not likely to contribute significantly to error.

(d) Iterafive Technique

All specimens buckled beyond the elastic range and therefore
a considerable amount of iteration involving matrices was required to
arrive at a solution for each specimen. Although tolerances were set

at 0.1 per cent in the computer program, round-off error is expected to
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contribute to the total error.

(e) Analytical Technique

The buckled shapes of the webs and flanges of specimens
are approximated using polynomials which result in the least energy

*18 that this

shapes for a given specimen. It has been shown®
technique results in over-estimation of buckling loads when theoretical
shapes do not exactly fit the true buckled shapes. The present
technique and associated computer program were checked for this source
of error by comparing elastic critical values of plates with values
presented by Timoshenko'® and Bleich'®. It was found for rectangular
plates with various boundary conditions and loadings that this error
varied from zero per cent for simply supported plates to about 3.0 per
cent for fixed boundary conditions. Since neither web plates nor flange
plates of these specimens are fully fixed, it is expected this source
of error would be below 2.0 per cent in the majority of cases.

(f) Scaling from graphs

The values reported by Haaijer and Thurlimann’ and by
Lukey and Adams®® were presented in graphical form and the critical
loads were scaled from these graphs. It is estimated that the error
involved in this procedure would be about *1.0 per cent.

(g) Test Measurements

No test difficulties, other than those mentioned above,
were reported by the investigators. There are no other significant
errors attributable to this source, although, as in all tests, some
error, either human-related or machine-related, or both, is probable.

(h) Mode of Failure

It is apparent that in several tests, local buckling was
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closely followed by, or in fact coupled with lateral buckling. Since
the analytical method presented herein specifically excludes the

occurrence of lateral buckling, such effects have not been evaluated.
In any case, the degree to which lateral buckling was involved in the
actual failure mechanism is not clearly known, and no estimate of the

error involved is available.

5.7 Summary of Test Results

As explained previously, four of the 57 test results
included herein, are not considered to be valid for the purpose of
verifying a theoretical method which does not include the effects of
lateral buckling. For the 53 specimens remaining, the predicted
results were within 5 per cent of the test results for 60 per cent
of the specimens, and within 10 per cent of the test values for 85
per cent of the specimens. The error was between *10 percent
and an overall maximum of *13 per cent for only 15 per cent of the
specimens. Overall, the ratio of theoretical to test values (of
either critical load or critical moment) varies from -0.87 to +1.13
with a mean value of 1.00 and a standard deviation of 0.065. In all
but four cases, the prediction of the critical component (either
flange or web) which initiated the local buckling failure agreed with

buckling observations made during the tests.

5.8 Summary

As outlined above, a comprehensive survey of available
test data was used to substantiate the validity of the theoretical

analysis presented herein as well as the associated computer program.
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The comparison between predicted and experimental results has
indicated satisfactory agreement between test and theory. In Chapter
6 this same technique is used to evaluate the effects of various
parameters which are considered to be of some significance in

affecting theoretical predictions.



Load at Buckling

Specimen Experimental

Predicted Ratio
Number LE-(kips) LT—(kips) (LT/LE)
1 330 (F) 357 (F) 1.08
2 232 (F,W) 253 (F) 1.09
3 442 (F) 429 (F) 0.97
4 514 (F,W) 548 (F,W) 1.07
5 380 (F) 374 (F) 0.98
6 207 (W) 221 (W) 1.07
1 kip = 4.448 kN
(a) Results of G. Haaijer and B. Thurlimann
Load at Buckling
Specimen Experimental Predicted Ratio
Number LE-(klps) LT-(klps) (LT/LE)
1 1010 (F) 1015 (F) 1.01
2 1010 (F) 1018 (F) 1.01
3 1000 (F) 1019 (F) 1.02
4 680 (F) 693 (F) 1.02

1 kip = 4.448 kN

(b) Results of G.L.Kulak

5.1 Comparison of Experimental and Predicted Values for

Columns.
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Moment at Buckling

Specimen Experimental Predicted Ratio
Number ME—(in.—kips) MT—(in.—kips) (MT/ME)
1 1325 (F) 1491 (F) 1.13
2 812 (F,L) 842 (F) 1.04
3 1825 (F¥,L) 1797 (F) 0.98
4 2951 (L) 2848 (F) 0.97
5 1280 (F,L) 1295 (F) 1.01
6 819 (F,L) 847 (F) 1.03
1 in.~kip = 112.98 N-M
(a) Results of Haaijer and Thurlimann
Moment at Buckling
Specimen Experimental Predicted Ratio
Number M -(in.-kips) M.~ (in.~kips) (MT/ME)
1 3840 (F) 3851 (F) 1.00
2 4910 (F) 4893 (F) 1.00
3 5740 (W) 6091 (F,W) 1.06
4 6820 (W) 6796 (W) 1.00
5 3940 (W) 4400 (W) 1.12
6 3380 (F) 3571 (F,W) 1.06
7 3770 (W) 4005 (W) 1.06
8 3910 (F) 3790 (F) 0.97
9 4580 (F) 4092 (F) 0.89
10 4780 (F) 4588 (F) 0.96
11 5367 (W) 5452 (W) 1.02
12 5696 (W) 5939 (W) 1.04

1 in.-kip = 112.98 N-M

(b) Results of Holtz and Kulak

5.2 Comparison of Experimental and Predicted Values for

Beams.

..cont'd



Moment at Buckling

Specimen Experimental Predicted Ratio
Number ME—(in.—kips) M- (in.-kips) (M/Mp)

1 2251 (F) 2324 (F) 1.03

2 1845 (F) 2698 (F) 1.46

3 549 (F) 476 (F) 0.87

4 463 (F) 548 (F) 1.18

5 487 (F) 491 (F) 1.01

6 488 (F) 463 (F) 0.95

7 390 (F) 423 (F) 1.08

8 701 (F) 628 (F) 0.90

9 656 (F) 643 (F) 0.98

10 659 (F) 645 (F) 0.98

11 698 (F) 639 (F) 0.92

12 679 (F) 647 (F) 0.95

13 391 (F) 525 (F) 1.34

14 440 (F) 403 (F) 0.92

1 in.~kip = 112.98 N-M

(¢) Results of Lukey and Adams

5.2 Comparison of Experimental and Predicted Values for
Beams.



Moment at Buckling

Specimen P/P Experimental Predicted Ratio

Number Y ME-(in.—kips) MT—(in.kips) (MT/ME)
1 0.2 2370 (F) 2376 (F) 1.00
2 0.2 2732 (F) 2534 (F) 0.93
3 0.2 2887 (W) 2796 (W) 0.97
4 0.4 1606 (F) 1808 (F) 1.13
5 0.4 1829 (F) 1781 (F) 0.97
6 0.4 2303 (F,W) 2157 (F,W) 0.94
7 0.8 738 (F) 825 (F) 1.12
8 0.8 694 (W) 660 (W) 0.95
9 0.8 582 (W) 588 (W) 1.01

1 in.-kip = 112.98 N-M

(a) Results of Perlynn and Kulak for Compact Sections

Moment at Buckling

Specimen P/Py Experimental Predicted Ratio

Number ME—(ln.-klpS) MT—(ln.klpS) (MT/ME)
1 0.15 3704 (F) 3698 (F) 1.00
2 0.15 2622 (F) 2923 (F) 1.11
3 0.30 2827 (W,F) 2712 (W,F) 0.96
4 0.30 2488 (F) 2171 (F) 0.87
5 0.70 668 (W,F) 682 (W,F) 1.02
6 0.70 1095 (F) 705 (F) 0.64

1 in.—kip = 112.98 N-M

(b) Results of Nash and Kulak for Non-Compact Sections

5.3 Comparison of Experimental and Predicted Values for
Beam—-Columns.



Chapter 6

THEORETICAL STUDY AND EVALUATION OF PARAMETERS

6.1 Introduction

As presented in Chapter 5, test results are available for
a limited number of local plate buckling specimens subjected to axial,
flexural, and combined axial and flexural loadings. The number and
variation of dimensions of these specimens are not sufficient in
themselves to be able to establish general design parameters. Further-
more, the critical buckling loads may be significantly influenced by
certain parameters which have not been specifically studied in the
tests. In this chapter, analytical results in the form of critical
plate buckling curves are presented and discussed for a wide variety of
columns, beams, and beam-columns. Additionally, the effects of
important parameters on local plate buckling capacities are evaluated
and discussed. Unless specifically varied the following basic values
are used in the parametric study: E = 29,600 ksi., Gy = 44 ksi.,
€ = oy/E, €re = 0.3€y, ESt = 800 ksi., flange aspect ratio = 4,

y
and web aspect ratio = .2,

6.2 Columms

Figure 6.1 shows the variation of the critical load ratio
(Pcr/Py) with respect to the web width-to-thickness term (h/f;/w) for
various values of the flange width-to-thickness term (b/f;YZt). The

knee portion of each curve results from the presence of unavoidable
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residual stresses. For the sake of comparison a curve corresponding

to a theoretical value of zero residual stress is also shown. By this
comparison it can be seen that the effects of residual stresses are
most pronounced in the elastic and partially elastic regions. Assuming
a residual compressive stress 0o = O.30y, yielding begins at

Pcr/Py = 0.7 and h/f;/w = 475. As th;/w decreases, flange buckling
becomes predominant as the yield load is approached, and at lower
values strain-hardening occurs. The dashed curve respresents the
elastic buckling solution.

The CSA S16.1-1975 Standard" specifies a flange slenderness
value for column flanges of 100. As illustrated in Figure 6.1, the
analysis presented herein predicts that this value is slightly uncon-
servative. At the currently specified limitations" of b/f;/Zt = 100
and h/?;/w = 255 for columns, the analysis presented herein predicts a
value of Pcr/Py = 0.9. Also, the figqre shows that Pcr/Py does not
reach a value of 1.0 until be;/Zt has been reduced to 72 and values
of hvf;YW are less than 300.

This theoretical result for columns has been substantiated
by the results of four column specimens tested by Kulak at the
University of Alberta. As discussed in Section 5.3, three of the
specimens had flange slenderness values of 72, and the fourth specimen
had a flange slenderness value of 100. The value of web slenderness
was 200 for all four specimens. The flanges of the three specimens
having bJF;/Zt = 72 buckled at or slightly above Pcr/Py = 1.0, while
the flanges of the specimen having b/f;/Zt = 100 buckled at Pcr/Py =
0.9. These test results as well as the theoretical analysis presented

herein indicate that a value of b/f;/Zt = 72 (as opposed to the current



limitation* of b/f;/Zt = 100) should be used for columns. For this
reason, subsequent parametric studies presented herein are based on
a value of flange slenderness of 72 for columms.

In order to be able to later tie in column local buckling
behaviour as one limiting case of beam~columns, the local buckling
strength curves for axially loaded Class 1, Class 2, and Class 3
sections are shown in Figure 6.2. The rounded portion of each curve
between values of h/?;/w of about 300 and 475 is due to gradual
yielding in the presence of residual stresses. A curve corresponding
to zero residual stresses as mentioned previously is also shown in
Figure 6.2. For web slenderness values greater than 475, elastic
buckling of the web occurs and for values between 475 and 300, web
buckling occurs in the inelastic range. For values of web slenderness
less than about 300, flange buckling in the yielded and strain-
hardening ranges occurs at values of Bcr/Py equal to or greater
than 1.0.

A column local buckling curve is shown in Figure 6.2 for a
value of b/F;/Zt = 64 corresponding to the present CSA-S16.1

* for a Class 2 section. For a Class 1 section with

specification
be;YZt = 54, a similar column curve is shown in Figure 6.2. Although
these two sections are not explicitly designated for use as columms,
the corresponding column curves are presented here so that the effect
of the b/f;/Zt term for columns may be evaluated. Also, these sections
subjected to column action, represent a limit of the corresponding
beam-columms when bending moments are negligible.

The effect of the flange slenderness values can be seen by

comparing the curves in Figure 6.2. TFor values of h/ﬁ;/w greater than

101
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300, where web‘buckling is predominant, varying b/F;/Zt from 54 to 72
has virtually no effect on the web buckling capacity. The effect of
this term is most significant for values of h/f;/w less than 300
since that is the region wherein flange buckling is predominant. For

72 strain-hardening of the section begins at a value of

b/F_/2t
/Fy/

hJﬁ;/w
progressively higher values of h/f;/w, the upper limit being h/f;/w =

220. As bV?;YZt is decreased, strain-hardening begins at

325 for a Class 1 section with a flange slenderness value of 54.

6.2.1 Effects of Residual Stresses

The effects of residual stresses on the local buckling
loads of columns is shown in Figure 6.1 for b/F;/Zt ratios of 72, 80,
90, and 100, and in Figure 6.2 for bv?;/Zt ratios of 54, 64, and 72.

In these figures, column local buckling curves for a theoretical value
of Ope = 0 are cdmpared with those corresponding to a more practical
value of Ore = 0.30_ and a residual sfress distribution as shown in
Figure 3.11. The value of O.c = 0.30y is representative of values used
by other investigators3°5°61°82 for the purpose of including the
effects of residual stresses when exact values are unknown.

By comparing the curves corresponding to O = 0 with those
corresponding to O.c = 0.30y,itcan be seen that, in the range where
elastic web buckling occurs (at values of h/F;Yw greater than about
475), a residual stress of 0.30y reduces the critical buckling load
ratio by about 25 per cent. The influence of residual stresses dimin-
ishes as the value of Pcr/Py approaches 1.0, and completely disappears

as strain-hardening becomes imminent at lower values of hVFy[w

According to the theoretical method presented herein, the
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values of bvf;/Zt = 100 as presently specified for W shape columms”

appears to be too liberal when a residual stress of 0. = 0.30y is
assumed. In Figure 6.1, the curve corresponding to b/f;/Zt = 100 and
Grc==0.30y reaches a value of Pcr/Py = 0.9 at the presently specified”
web slenderness ratio of 255. The curve corresponding to b/F;/Zt =

100 and the theoretical value of o&c = 0 on the other hand, reaches a
value of Pcr/Py = 1.0 for values of web slenderness as high as 475.

For this reason therefore, the analytical method presented herein sug-
gests that the presently specified value of b/f;/Zt = 100 is too liber-
al because of the effects of residual stresses. The analytical method
presented herein predicts that when a W shape colummn is proportioned so

that bJF_y /2t < 72 and h/Fy /w < 300 a value of Pcr/Py > 1.0 can be

reached for an assumed residual stress of Orc = 0.30y.

6.2.2 Effects of Strain-hardening Modulus

Figure 6.3 shows the effects of strain-hardening modulus
values of 700, 800, and 900 ksi. on the local buckling capacity of col-
umns. These values of strain-hardening moduli were chosen because they
are representative of values that have been determined by several inves-—

5575 36 .
275 35554559,61,62 = por columns proportioned so

tigators in this area
that bvﬁ;/Zt = 72, variations in the values of the strain-hardening mod-
ulus are influential for values of h/f;/w less than about 200. In this
region the curve separatés into three branches corresponding to the
three different values of the strain-hardening modulus investigated. As
would be expected in this region, for a given value of web slenderness,

the value of Pcr/Py increases as the strain-hardening modulus increases.

As can be seen from Figure 6.3, in the practical ranges of plate
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proportions for W shape columms (bJF;/Zt = 72 and th;Yw = 300), the
value of the strain-hardening modulus has negligible effect on

column local buckling strength.

6.3 Beams

Figure 6.4 shows values of the ratio of critical local
buckling moment to the yield moment plotted against the web width-to-
thickness term (hvf;/w), for various values of the flange width-to-
thickness term (bJﬁ;YZt). Again, the effects of residual stresses are
included as is evident from the rounded knee portions of these curves.
For values of hV?;/w greater than about 1100, local buckling of the
slender web occurs in the form of warping due to the presence of

residual stresses.

6.3.1 Class 3 Beams

According to the CSA S16.1-1975 Standard", the flange
width-to-thickness term for a Class 3 beam is set at 100 and is the same
as that for a column. The currently specified web width-to-thickness
ratio is 690. For these values, Figure 6.4 shows that Mcr/My = 0.9.

Comparing similar curves for various values of bJF;/Zt in
Figure 6.4, it is seen that Mcr/M§ attains a value of 1.04 at b/f;/Zt =
72 over a large range of web slenderness (up to about hV§;7w = 800).
Although M __ slightly exceeds M& (by only 4 per cent) for b/F;/Zt = 72,
this value seems to be appropriate for a Class 3 beam in that it corre-
sponds with the value suggested for columns. In this way, the same
value may be used throughout for a Class 3 beam-column which has as its

limits, pure axial load at one end of the loading spectrum, and pure

flexure at the other. For be;/2t= 72, Figure 6.4 shows that for curves
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of web slenderness greater than 975 the web buckles elastically. For
values of web slenderness between 800 and 975 the web buckles in the
inelastic range as a consequence of the influence of residual stresses.
The mode of failure changes from web buckling at a value of 800 to
flange buckling for values less than 800. At a web slenderness value
of 260 the curve begins to increase rapidly as strain-hardening

becomes influential.

6.3.2 Class 2 Beams

The Standard” specifies that Class 2 beams have a flange
slenderness value not exceeding 64 and a web slenderness wvalue not
exceeding 520. In Figure 6.5 values of the ratio of critical moment,

M to the plastic moment, Mp, are plotted against the web width-to-

cr’
thickness term, hJF;/w, for a flange width-to-thickness value of 64.
For values of hJF;/w greater than 1100, local buckling occurs in the
form of warping of the slender web subjected to residual stresses.
Referring to the curve corresponding to a value of b/f;YZt = 64, local
buckling of the web occurs in the inelastic range between values of
hVF;/w of about 800 and 975. For values of h/ﬁ;/w less than 800,
flange buckling occurs at a value of Mcr/My = 1.0, and at h/ﬁ;/w = 300

strain-hardening of the section begins and strength increases rapidly

as h/l?/w decreases further.

6.3.3 Class 1 Beams

For Class 1 beams the Standard" specifies a flange slender-
ness of 54 and a web slenderness limit of 420. Values of Mcr/Mp are
plotted against hv@;Yw for a value of be;/2t==54 as shown in Figure 6.5.

For h/F;Yw greater than 800, the behaviour of these beams is similar to
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that described previously for Class 2 sections. Because of the
increased sturdiness of the flanges however, web buckling continues
to be the mode of failure for values of h/f;/w as low as 600. Below
this value, flange buckling occurs. For values less than 800, Mcr/Mp
is greater than 1.0 and this implies that the strain in the flanges
can reach the strain-hardening range before local buckling occurs.
Therefore, these sections can undergo sufficient rotation to permit
redistribution of stresses while sustaining the plastic moment value,

as required of Class 1 sections2®3’"%,

6.3.4 Effects of Residual Stresses

The critical buckling moment ratio is plotted against
values of web slenderness for values of flange slenderness of 72, 80,
90, and 100 in Figure 6.4 and for values of flange slenderness of 54
and 64 in Figure 6.5. Again, the assumed residual stress value is
Oe = 0.30y and the assumed residualistress distribution is similar
to that shown in Figure 3.11. For the purpose of comparison, these
curves are also plotted for the theoretical value of Ore = 0.0, 1In the
range where web buckling is critical (Pcr/Py < 1.0 and th;Yw > 800)
residual stresses have their greatest effect in reducing the critical
buckling moment capacity. For values of hVF;/w greater than about
1100, the residual stress causes web buckling in the form of warping of
the very slender webs. As values of hv?;Yw decrease below 800, the
significance of residual stresses diminishes and as strain-hardening
is approached their effects become negligible.

As discussed for columns, it appears here also that the

presently specified flange slenderness” of 100 is too liberal for
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Class 3 beams when a value of Ore = 0.30y is assumed. Referring to
Figure 6.4, for a value of flange slenderness of 100 and 0. = O.3Gy,
the critical local buckling moment is 90 per cent of the yield

moment at the presently specified web slenderness" of 690. The
theoretical curve for which be;/Zt = 100 and Orc = 0, on the other
hand, shows that the critical local buckling moment reaches the yield
moment for values of web slenderness as high as 800. This suggests,
therefore, that the value of be;/Zt = 100 for Class 3 beams is too

liberal because of the effects of residual stresses.

6.3.5 Effects of Strain-hardening Modulus

The effect of varying the strain-hardening modulus upon the
local buckling behaviour of beams is shown in Figure 6.6 for a value of
b/F;YZt = 72 and in Figure 6.7 for a value of be;/Zt = 54, As for
columns, the same three values of strain-hardening modulus are used
here for beams. Figure 6.6 shows that for sections with b/f;YZt =72,
the effect of strain-hardening is evident only for values of h/f;/w
less than about 280. Although not explicitly shown herein, it has been
determined that these same observations apply to compact sections" with

*, Figure 6.7

a value of be;/Zt = 64 . For plastic design sections
shows that the effect of strain-hardening is influential for values of
hVF;YW less than 800. This is because the very sturdy flanges
(b/?;YZt = 54) enable these sections to reach strain~hardening strains
at relatively high web slenderness values.

For the values of Est examined, there are no significant

differences in local buckling strength for beams having flange

slenderness values of 72 and 64 when practical values of web slenderness
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are used. The local buckling strength of plastic design sections, on
the other hand, are significantly affected by changes in the strain-
hardening modulus for all values of web slenderness less than about
800. As would be expected, this effect increases as web slenderness

values decrease.

6.4 Beam—Columns

The previous section has indicated that suitable flange
slenderness values for flexural members are b/f;/Zt = 54, 64, and 72
for Class 1, 2, and 3 respectively. Further, a suitable value for
axially loaded members is b/f;/Zt = 72.. These will therefore be the
values principally investigated for beam—-columns. The analysis will
be based on the assumption that an axial strain less than the critical
one will be applied first. A flexural strain is then superimposed and
gradually increased until local buckling occurs.,

At each increment of flexﬁral strain, equilibrium of a
cross—-section is satisfied and the position of the neutral axis is
updated to account for yielding of a section. For a given flange
width-to-thickness term, values of the ratio of applied load to yield
load can then be plotted against values of the ratio of critical moment
to yield moment or plastic moment for various web width-to-thickness
terms. The web width-to-thickness term is varied from 300 to 800,
corresponding to the limits determined previously for a pure column
(zero flexural strain) and a pure beam (zero axial strain). In this
way, for a given b/f;/Zt value, a set of interaction curves is

generated for various h/f;/w values.



6.4.1 Class 3 Beam—Columns

As discussed in Section 6.3.1, the present code value of
b/F;/Zt = 100 for a Class 3 section appears to be too high according
to the theory presented herein. Furthermore, a value of b/f;/Zt = 72
was found to be adequate for local buckling requirements of columns
and for beams required to reach the yield moment, M&, before local
buckling occurs. 1In this section, therefore, interaction curves are
generated for beam-columns corresponding to a b/F;/Zt value of 72
and various values of h/f;/w.

Ratios of applied load to yield load are plotted against
the ratios of critical moment to yield moment for various h/f;/w values
in Figure 6.8. Values along the vertical axis represent pure column
behaviour and those along the horizontal axis represent pure beam
behaviour. For each curve corresponding to a fixed h/f;/w value, as
MCr/M§ increases above zero, a point of tangency is approached on the
line joining the points P/Py = 1.0 and Mcr/M§ = 1.04. At the point of
tangency the mode of failure changes from web local buckling to flange

buckling and beyond this point each curve remains tangent to the .line.

The sloping dashed line, M&c M& (1—P/Py), represents the strength

interaction equation for a Class 3 beam-column .

6.4.1.1 Current Specifications

For Class 3 beam-columns the web limitations are currently

specified as follows:

h/FT}:/w = 690 (1-2.60 P/Py) 0 < P/Py < 0.15 6.1)

109
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h/i*;/w = 450 (1-0.43 P/P ) 0.15 < P/P_ £ 1.0
y v 6.2)

These web limitations are based on test results obtained by Kulak
and Nash'®. Since the time of publication of these limitationms,
additional work in this area by Kulak and Nash'® has indicated the

following increases:

n/F_/w = 690 (1-1.69 P/P ) 0 < P/P_ < 0.15

v y v (6.3)
h/F_/w = 535 (1-0.28 P/P.) 0.15 < P/P_ < 1.0

Y v 7 (6.4)

Although the theory presented herein indicates that a
b/f;]Zt value of 72 should be used for Class 3 sections, the specimens
tested by Kulak and Nash were designed on the basis of the existing
code value of bJF;/Zt = 100, Furthermore, the specimens were able to
reach, and in some cases exceed the value of M.y reduced in the presence
of axial load. The theory presented herein also predicts values in good
agreement with these test results when the effects of the rigid plate
boundary constraints (necessitated by the attachment of the loading
arms to the test specimens) are included in the analysis. In practice,
however, the effects of these rigid supports for longer members are
negligible. Omitting the effects of these supports, the present method
predicts that a value of be;/Zt = 72 is indicated for Class 3 sectionmns.
For this value, the web limitations as predicted by the theory

presented herein are discussed in the following section.

6.4.1.2 Theoretical Limitations as Determined Herein

For a Class 3 section the beam~column interaction curves are
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plotted in Figure 6.8 for various values of th;/w. At various values

of P/Py each curve intersects the line described by:

M= My(l-P/Py)- 6.5)

In Figure 6.9 these values of P/Py are plotted against
the corresponding values of h/f;/w. For pure beam action at P/Py =0,
the predicted web limitation is h/f;/w = 850. As P/Py increases,
the slope of the curve decreases rapidly and becomes constant in the
region of P/Py between 0.42 and 0.75. As P/Py further increases the
slope decreases slightly as pure axial strains are approached at
P/Py = 1.0 and a minimum value of h/f;/w = 300 is reached.

A linear approximation to the curve described above is also

shown in Figure 6.9 and it is given by the following relationship:
= . - . < < .
hJF;/w 725 (1.0-0 59(P/Py)) 0 < P/Py < 1.0 (6.6)

This approximation deviates marked1y>on the conservative side from the
theoretical curve for low values of P/Py. In this region however, a
conservative limitation is desirable in order to account for small
residual axial loads occurring in service and as well to avoid the
sensitivity of the steep theoretical gradient in this region. The
relationship of Equation 6.6 as well as the limitations described by
Equations 6.1 and 6.2 are also shown in Figure 6.9.

Referring to Figure 6.9, the theoretical method presented
herein indicates a web limitation of th;/w==725 at P/Py = 0.0 for beams.
As P/Py increases, a linear decrease in h/F;/w as a result of decreasing
web flexural tension, is indicated. For pure column action, at P/P_ =

y

1.0, a minimum value of hJ?;Yw of 300 is reached. This theoretical
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limitation differs from that presently specified by Equations 6.1 and
6.4 in the region of pure beam action (P/Py = 0.0) by about +5 per cent.
As P/Py increases this difference reaches a maximum of about +60 per
cent at P/Py = 0.15 and from there it decreases to +18 per cent at

P/Py = 1.0. This comparison should be considered in light of the fact
that the theoretical web limitations are based on the assumption of a
flange slenderness ratio of b/f;/Zt = 72 ( as previously explained),
whereas the present limitations are based on the results of test

specimens whose flange slenderness ratios were b/f;/Zt = 100.

6.4.2 Class 2 Beam—Columns

As already indicated, it will be assumed that a Class 2
beam-column is proportioned so that the flange width-to-thickness term
is bJF;YZt = 64. According to the theory presented herein, this value
was found to be adequate for compact beam sections as illustrated in
Figure 6.5. At the other extreme of Béam—column action, namely pure
axial load, these sections can reach a Pcr/Py value of 1.0 for a value
of h/F;Yw = 300, as shown in Figure 6.2. Accordingly, these beam~column
sections were investigated for a range of Pcr/Py ratios between zero and
one, with the hyf;/w ?alues varying from 300 to 800. The results of
this investigation are presented in Figure 6.10.

In this figure, values of the ratio of applied load to yield
load are plotted against ratios of critical moment to plastic moment
for various values of hV?;Yw. The flange width-to-thickness term for
all curves has a constant value of 64. For these curves, the same
discussion as presented for Class 3 beam-columns in Section 6.4.1, is

valid here for Class 2 beam—-columns.



113

6.4.2,1 Current Specifications

The present limitations specified for web width-to-

thickness terms for Class 2 beam-columns are as follows":

hJF;/w 520 (1-1.28 P/Py) 0 < P/Py < 0.15

(6.7)

h/ﬁ;/w 450 (1-0.43 P/Py) 0.15 < P/Py < 1.0

(6.8)

These web limitations are based on test results from a series of nine
compact beam-columns tested by Perlynn and Kulak'Z. As presented in
Chapter 5, the analytical method presented herein substantiates these
results when the effects of rigid supports necessary for testing
purposes are included in the analysis. Conservatively omitting the
effects of these rigid supports however, the analysis presented herein
shows that the conventional value of plastic moment reduced for the

presence of axial load®3’%",

M e = M 0 <P/P_<0.15
P P y (6.9(a)
and,
M =1.18 M (1-P/P) 0.15 < P/P_ < 1.0
pc P 4 y (6.9(b)

cannot be attained by compact sections when hff;/w is greater than 250.
Such a limitation however would severely restrict the choice of web
sizes available for use in compact sections. As shown in Figure 6.10,
the analytical method presented herein predicts a maximum local

buckling strength for compact sections of:

Mpc = Mp (1-P/Py), (6.10)
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when the web slenderness ratio varies between 300 and 800. Therefore,
in accordance with the analytical results presented in Figure 6.10,
Equation 6.10 is suggested for use with compact sections and, in this
way, all values of h/f;/w up to 800 can be utilized for Class 2

sections.

6.4.2.2 Theoretical Limitations as Determined Herein

As shown in Figure 6.10 the curves corresponding to various
values of h/f;Yw become tangent to the line described by Equation
6.10 at various values of P/Py. In Figure 6.11 these values of h/F;/w
are plotted against the corresponding values of P/Py. The resulting
curve has a value of h/f;/w = 800 for pure beam action (P/Py = 0.0).
As P/Py increases, the slope of the curve rapidly increases to a
constant value in the region of P/Py between 0.42 and 0.75. As P/Py
further increases, the slope decreases slightly as pure axial strains
are approached at P/P_ = 1.0. At this value of P/Py a minimum value
of h/f;Yw = 300 is reached.

The curve described above may be approximated by a linear

relationship given by:

WF_/w = 660 (1-0.55 (P/P.)) 0 <P/P_<1.0
v v Y (6.11)

This relationship as well as the relationships defined by Equations
6.7 and 6.8 as established by Kulak and Perlynn12 are shown in Figure
6.11.

In establishing the above linear approximation a line was
drawn from point A at the end of the curve at P/Py = 1.0 to the point

of tangency at B and extended to intersect the vertical axis at
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h/F;/w = 660. This approximation results in conservative limitationms
of h/F;Yw for low values of P/Py. This is desirable however in order
to avoid the sensitivity of the steep theoretical gradient in this
region as well as to recognize the possibility of small unavoidable
axial loads that may occur in service.

As can be seen from Figure 6.11, the theoretical method
presented herein predicts more liberal web limitations than those
presently required for Class 2 sectioms. Howe?er, implicit in these
limitations is the use of MPc as defined by Equation 6.10 based on
local buckling considerations rather than the use of Mpc as defined on
a strength basis by Equations 6.9. Referring to Figure 6.11, the web
limitation for pure beam action at P/Py = 0.0 is hvﬁ;Yw = 660, As
P/Py increases, the web is subjected to decreasing amounts of flexural
tension. As a result, the h/F;/w limitation decreases linearly to a
minimum value of 300 for pure column action at P/Py = 1.0. In the
region of pure bending (P/Py = 0.0), this theoretical limitation
differs by about +27 per cent from that presently specified by
Equations 6.7 and 6.8. As P/Py increases this difference increases to
a maximum of about 45 per cent at P/Py = 0.15 and decreases to a
minimum of +18 per cent for pure column action at P/Py = 1.0, As
explained previously, the theoretical limitations are based on the
assumption that the maximum moment in the presence of axial load is
that given by Equation 6.10. The presently specified limitations, on
the other hand, are based on the results of test specimens whose
moment capacities equalled or exceeded that given by Equations 6.9.

In addition to the above theoretical limitations, the analytical method

presented herein also gives results in good agreement with these test
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results when the effects of the rigid plate boundary constraints
necessary for testing are included. The marked difference between

the theoretical limitations and the presently specified limitations is
therefore largely attributable to the effects of necessary constraints

used during testing.

6.4.3 Class 1 Beam-Columns

A Class 1 beam-column is proportioned so that the flange
width-to-thickness term b/f;/Zt = 54. As discussed in Sections 6.2
and 6.3.3, this value was found to be adequate at the two extremes of
beam-column action, namely pure axial strain and pure flexural strain.
The behaviour of Class 1 beam-columns was inﬁestigated for a range of
values of P/Py between zero and one, and for values of th;YW between
325 and 800. The results of this inﬁestigation are presented in the
form of interaction curves in Figure 6.12, where values of P/Py are
plotted against ﬁalues of Mcr/Mp for Qarious ﬁalues of hJ?;/W.

Unlike those for Class 2 and Class 3 sectioms, the inter-
action curves for Class 1 sections do not become tangential to a line
joining the points at P/Py = 1.0 and Mcr/Mp = 1.0. For Class 2 and
Class 3 sections it was found that at a giﬁen value of P/Py, the
maximum critical moment value is determined by flange local buckling
capacity. wae?er, in the present case, local buckling is controlled
by the web for Values of Mcr/Mp less than about 1.05. Since web
buckling controls, for a given Qalue of P/Py an increase in the
sturdiness of the web (corresponding to a reduced h/F;/w ﬁalue) will
result in an increase in the value of Mcr/Mp‘ Thus the curves in

Figure 6.12 do not become tangential but rather, they are separated to
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the right of one another as hff;/w decreases.

In the region of pure flexural strains, an upward sweep of
the curves is evident for values of h/F;/w less than or equal to 600,
This is apparently due to two factors. Firstly, as the region of pure
flexural strain is approached in the vicinity of Mcr/Mp = 1.05, the
mode of failure changes from web buckling to flange buckling. The
second factor which contributes to this upward sweep is the effect of
strain-hardening on the flange. (It is shown in Figure 6.15 that
a reduction in the value of Est reduces this upward sweep).

Referring again to Figure 6.12, the equation of the line
joining the points, P/Py = 1.0 and Mcr/Mp = 1.0 is gi?en by Equation
6.10 and is restated here as follows:

M _/M_= (1-P/P.)
cr P J (6.10)

For all values of hfﬁ;/w corresponding to the curves shown in the
figure, the moment ratio given by Equation 6.10 is either equalled or
exceeded for certain values/of P/Py. This implies that the strain-
hardening strain may be reached or exceeded for these wvalues:and
therefore the hinge rotation necessary for plastic design sections is
attainable. TFor values of hV?;Yw equal to 325 and 350, the effect of
strain-hardening is more pronounced as indicated by the increased
slopes of the corresponding curves.

The cross—-sectional strength interaction equation commonly

63564 js also shown in Figure 6.12.

used for plastic design sections
This :is described by Equations 6.9 as stated previously and repeated

here for convenience as follows:
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M =M 0 < P/P_< 0.15

pC P y (6.9(a))
M =1.18 M_ (1-P/P) 0.15 < P/P_ £ 1.0

pc P y y

(6.9(b))

These values are applicable as long as local and overall instability

do not occur. The validity of Equations 6.9 has been verified
experimentally using W12 x 36, W8 x 31, W4 x 13, and Wl4 x 78
sections®?83264966 ith values of b/f;/Zt of 38, 60, 39 and 53, and
values of h/F;/w of 206, 153, 84 and 186, respectively. For these

plate width-to-thickness terms the theory presented herein verifies that
local buckling indeed is not critical in these sections and therefore
does not interfere with the strength limitation as given by Equations
6.9. However, it should be noted that the specimens used for the
experimental verification of the strength limitation are considerably

sturdier than those presently designated as Class 1 sections.

6.4.3.1 Current Specifications

As mentioned previously, Class 1 sections are those for
which the flange width-to-thickness term is presently limited to 54.
Under pure axial loading the web width-to-thickness term for all W
shapes is presently limited to 255 and for pure beam action the limit"
is set at 420 . In the intermediate range where beam-column action is
required, a bi-linear curve is applicable. This bi-linear relationship

is presently expressed as follows":

h/F /w = 255 0.28 < P/P_ < 1.0
y y (6.12)
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nF_/w = 420 (1-1.4 P/P_) 0 < P/P_ < 0.28
y y y (6.13)
The current code width~to-thickness limitation for column
webs is set at hJF;/w = 255. This value is based upon the results of
specimen D6, one of six tested by Haaijer and Thurlimann’. The
current web limitations for Class 1 beam-colummns are based on semi-em-
pirical values obtained by Haaijer and Thurlimann. Although no beam-
columns were tested, they used the test results of specimens D2, D4,
and D6 in which the webs were uniformly compressed. It was then
assumed that values obtained at the level of critical strain for these
specimens could be applied at the level of mean strain in the
compression zone of a beam-column. Although the analysis did not
directly incorporate the effects of residual stresses, in the region of
critical stress between the proportional limit and complete yield, a
transition curve was fitted on the basis of geometric considerationms.
According to the present theory, the current value of
b¢§;72t = 54 is an adequate limitation for Class 1 sections and no
reduction or increase is indicated. It is apparent, however, that the
present web width-to-thickness limitations for these sections are
conservative. The present theory predicts that the value of h/f;/w

can be increased for all values of P/Py.

6.4.3.2 Theoretical Limitations as Determined Herein

Class 1 beam—columns are required to reach and sustain the
reduced plastic moment capacity through a hinge rotation sufficient for
the redistribution of stresses within a structure prior to

collapse“’33°63 Because of the stricter requirements, these sections
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should be expected to satisfy the strength limitations of Equations
6.9. In fact, the theoretical method presented herein predicts that
this is so and that the present web limitations are somewhat
conservative for Class 1 sectioms.

Values of P/Py versus Mcr/Mp are plotted for various
values of h/ﬁ;/w for Class 1 sections as shown in Figure 6.12. The
strength relationship given by Equations 6.9 is also plotted in this
figure. As shown in Figure 6.12 the local buckling capacity equals
or exceeds the strength capacity of Equations 6.9 for some values of
th;Yw. Values of P/Py may be determined at the points of intersection
of the local buckling curves with the strength curve of Equations 6.9.
The corresponding values of hff;/w are plotted against P/Py values in
" Figure 6.13.

The resulting curve has a value of h/f;Yw = 800 for pure
beam action (P/Py = 0.0). For a relatively small increase of P/Py
from zero to about 0.08 the h/f;/w values decrease rapidly to a
value of 430. As P/Py increases, a sharp knee portion of the curve
occurs and at P/Py = 0.23 and th;YW = 370 the curve becomes linear
with a slight drop in hJF;/w to about 360 as P/Py increases to 0.75.
As P/Py increases further, a slightly rounded portion of ‘the curve
occurs with a gradual decrease in slope. The hvﬁ;Yw term reaches a
value of 325 for pure column action (P/Py = 1.0). (This value of
hJF;Yw is in contrast to a value of 300 for Class 2 and 3 sections.
The slightly higher value for Class 1 sections is due to the effect of
the sturdier flanges).

The curve described above may be approximated by a bi-

linear relationship given by:
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h/F‘;/w 430 (1—0.93(P/Py)) 0 < P/Py < 0.15

6.14)

and,

h/F_y/w 382 (1—0.22(P/Py) 0.15 € P/Py < 1.0

(6.15)
This approximation as well as the present web limitations given by
Equations 6.12 and 6.13 are also shown in Figure 6.13.

In arriving at the above approximation, point A is located
at P/Py = 1.0 and h/f;/w = 300. This value of h/f;/w is used here so
that for pure column action, the web limitations for Class 1, 2, and 3
beam-columns would coincide at a value of th;Yw = 300. (As
explained preﬁiously, the value of h/f;/w = 325 for Class 1 sections is
due’to the sturdier flanges). Point C on Figure 6.13 is located on the
vertical axis opposite point D where the initial portion of the curve
first deviates from the tangent to the curve at P/Py = 0. Through
points A and C, tangents to the curﬁe are drawn and extended to
intersect at point B (P/Py = 0.15).
| The reason for constructing line BC in this manner is
twofold. 1In the region of low axial loads (corresponding to line CD)
the web width-to-thickness term is very sensitive to small changes in
the axial load. This is witnessed by the very steep gradient of the
initial portion of the curﬁe. Since a value of low axial load would
be very difficult to pin-point with any great degree of accuracy (in
a practical design case) line BC is constructed to eliminate the
effect of this high sensitivity for practical applications. Further-

more, in practical cases, it is very likely that residual axial loads

of low magnitudes will be present to .some degree even in members
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designed for pure bending. This effect is also accounted for by the
above construction.

As seen from Figure 6.13, the theoretical method presented
herein predicts more liberal web limitations than those presently
required for Class 1 sections. TFor pure beam action at P/Py = 0.0,
the present theory indicates a web limitation of h/f;/w = 430 which is
about 2 per cent greater than the presently specified value of 420
(Equation 6.13). As P/Py increases to 0.15, h/f;/w decreases to 370
and, as P/P_ further increases, the maximum difference between the
presently specified value of th;Yw and that predicted by the analysis
presented herein occurs at P/Py = 0.28. At this point, the presently
specified value of hff;7w is 255 whereas the theory presented herein
predicts a value about 40 per cent higher. As P/Py increases, this
difference decreases and at P/Py = 1.0 the theory presented herein
indicates a value about 18 per cent higher than the presently

specified value of h/li; /w = 255.

6.4.4 Effects of Residual Stresses

The effects of residual stresses on the local buckling
capacities of beam-column sections were investigated for values of
bJF;/Zt = 54, 64, and 72. Since the effects are similar in all three
cases, only one such case will be presented here. For a value of
flange slenderness of 54 (corresponding to a Class 1 section) and
various values of web slenderness, beam—column interaction curves are
shown in Figure 6.12 for O = 0.30y and in Figure 6.14 for a

theoretical value of Orc = 0.

The rounded knee portions of the curves in Figure 6.12 are
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due to residual stresses which result in a gradual yielding within a
cross-section. As shown in Figure 6.14, these rounded knee portions
change to an abrupt transition in the absence of residual stresses.
As can be seen, a Class 1 beam-column can perform adequately over a
range of web slendernesses between 440 and 1000 where the residual
stress has a theoretical value of zero. 1In the presence of a
practical value of residual stress of O = 0.30y, on the other hand,
Figure 6.12 shows that these web slenderness values are reduced to

325 for pure column action and 800 for pure beam action.

6.4.5 Effects of Strain-hardening Modulus

The effect of varying the strain-hardening modulus on the
local buckling capacities of beam-columns was studied for flange slen-
derness values of 54, 64, and 72. The same three values of strain-hard-
ening modulus used in the study of column and beam local buckling were
also used here. For b/f;/Zt values of 72 and 64 and practical values
of h/F;/w between 300 and 800 as used in the interaction diagrams and
shown in Figures 6.8 and 6.10, the values of Est investigated had no
effect on local buckling capacities. For Class 1 sections (b/?;/Zt'=
54) and practical values of web slenderness between 325 and 800 (as
used in Figure 6.12) the effect of varying the strain-hardening modulus
is significant for certain values of h/f;/W,

For the values of strain-hardening modulus considered,
Figure 6.15 shows the interaction curves corresponding to b/F;/Zt = 54
and values of hJF;/w of 325, 500 and 800. These three values were
chosen as being representative of the range of web slendernesses

considered practical for Class 1 sections. When th;/w = 325, the
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effect of strain-hardening is present over the entire length of the
curve. For pure beam action (P/Py = 0), the effect of the strain-
hardening modulus is quite significant. As P/Py increases this effect
diminishes and is least significant when pure column action (Pcr/Py =
1.0) is approached. As hy?;/w is increased the significance of strain-
hardening (for the values investigated ) becomes less noticeable. At

th;Yw = 500 the effect of varying ES is noticeable at the point of

t
pure beam action (P/Py = 0). As P/Py increases, this effect decreases
and is no longer evident for values of P/Py between 0.5 and the critical
load ratio. As h/f;/w is further increased, the effect of varying the
strain-hardening modulus over the range considered also decreases. At
h/f;YW = 800 no effect of changing the value of the strain-hardening

modulus is evident. As can be seen from Figure 6.15, for the range of
values of strain-hardening modulus considered, a Class 1 beam—column

section has adequate performance with regard to local buckling

capacity.

6.4.6 Effects of Specimen Length

It has been thoroughly demonstrated by several investi-
gatorsz’s’s’ls"26 that critical plate buckling stresses approach
relatively high values with decreasing values of aspect ratio (the
ratio of the length of a plate in the direction of uniaxial stress to
its transverse dimension). At a theoretical aspect ratio equal to zero,
the critical buckling stress is infinite and as the aspect ratio in-
creases for a given specimen, the predicted critical buckling stress
rapidly decreases. At some point a value of the aspect ratio will be

reached above which the predicted critical stress becomes stable. This
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behaviour is illustrated in Figure 6.16 for a column having a flange
slenderness value of 72 and a web slenderness value of 300. As the
length, L, increases from zero, the critical load ratio drops rapidly
and reaches a stable value for length values greater than 12. This
corresponds to an aspect ratio of 2.4 for the flanges and 1.2 for the
web for this particular specimen.

Investigations similar to the above have been carried out
for additional columns, beams, and beam—columns of various dimensions.
From this analysis it was determined that stable values of critical
local buckling stress would be reached for all specimens having
minimum aspect ratios of 4 for the flanges and 2 for the webs.

Figure 6.17 summarises the findings of this investigation
by showing the length effects on the interaction diagrams of Class 1
beam—-columns having web slenderness values of 325, 500, and 800. A
Class 1 beam-column was chosen so that the length effect could be
evaluated for a range of values of load ratio and moment ratio as well
as a range of material conditions from elastic to fully strain-
hardened. These include those values that occur: (1) at an elastic
or partially yielded stress level (h/f;/w = 800), (2) at an elastic,
partially yielded, or a strain-hardened stress level (hVﬁ;/w = 500),
and (3) at a strain-hardened stress level (h/f;/w = 325).

Each curve in Figure 6.17 was plotted for values of the
length, L, of 15, 20, 25, and 30. These values correspond to flange
aspect ratios of 3, 4, 5, and 6, and to web aspect ratios of 1.5, 2.0,
2.5, and 3.0. For all specimens the length effect is negligible in
the region for which M2 Mp(l—P/Py). This corresponds to the region

where complete yielding has occurred and strain-hardening is imminent.



Presumably a negligible effect of the variation of aspect ratios
investigated occurs in this region because of the reduced stiffness
of the material in the strain-hardening region. In the elastic
region (the initially flat portion of the curves corresponding to
h/f;/w = 500 and 800) and the partially yielded region (the
remaining portion of these curves up to the line Mcr = Mp(l-P/Py)),
the length effects are noticeable. For all cases considered
however, the length effects are negligible for #alues of length of
20 or greater. A length value of 20 corresponds to a flange aspect
ratio of 4 and a web aspect ratio of 2. As a result of this
investigation, these aspect ratios were the minimum values used for

all specimens in the parametric studies presented herein.

126
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Chapter 7

'SUMMARY AND CONCLUSIONS

7.1 Introduction

The problem of local buckling of flange— and web-plate
components of W-shapes subjected to axial compression, flexural
compression, and axial and flexural compression combined has been
extensively investigated. A review of the available literature in
this area has revealed that a few investigators have previously
attempted to deal with various aspects of this problem which is complex
with respect to the practical difficulties of laboratory testing as
well as with respect to theoreticél modelling. At the present time,
among the more‘notable contrdbulidipe $ this area are those of Haaijer
and Thurlimann’, Bleich®, Timoshenko?’%%, and Kulak!?’11°12213  71p a1l
cases, however, the theoretical investigations have been either totally
or partially empifical or semi-empirical in nature. Futhermore, only
the latter investigator has attempted to include all aspects of the
problem in an experimental program for Class 1, 2, and 3 sections
subjected to the three types of loading mentioned above. The present
investigation is an extension of this work and is primarily an attempt
to formulate a sound theoretical basis for predicting both elastic and
inelastic local buckling capacities of W shapes. In the following
sections the scope of the theory is summarised, the findings are

discussed with respect to existing design limitations and suggested

modifications are indicated.

144



145

7.2 Summary of the Theoretical Method

The theoretical method presented herein has been
formulated for the analysis of local buckling capacities of uniform
members of W shape cross-sections. These members may be end-loaded
in axial compression, flexural compression or combined axial and flex-
ural compression. The flange - web restraint interaction is included
directly in the formulatibn and the ends of a member may be rigidly
supported or pinned with respect to plate buckling. The presence of
residual stresses is accounted for by including their effects directly
in the formulation of the local buckling geometric stiffness matrices
of the plate components. Using an eigenvalue matrix iteration tech-
nique the elastic local buckling capacity is determined. If this
value exceeds the proportional limit, an applied linear strain is
gradually incremented above this limit and, at each level, gradual
yielding of the section is evaluated and the position of the neutral
axis is updated so that equilibrium conditions on the cross-section
are satisfied. The member is then analysed for a critical eigen-
value strain. Essentially, when the critical eigenvalue strain is
zero, the applied strain corresponds to the critical buckling strain.
In this manner, the increase in strains and gradual yielding of a
cross-section simulate actual conditions. Because of the flexibility
of the shape functions used in the formulation, the method is capable
of predicting separate flange or web buckling or a combination of both.

7.3 Summary of Findings

The present theoretical method has been verified by com-
parison of predicted results with the results of 53 test specimens of

various dimensions and subjected to various load combinations.
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Additionally, in the elastic range, the method gives results which
agree with those predicted using widely acceptable classical

methods2?®, A large number of hypothetical beams, columns, and beam-
columns for each class of section has also been investigated. As a
result of this study the analytical method presented herein indicates
that the present code limitation for flanges of Class 3 sections is in-
adequate. This limitation is based on a purely theoretical torsional
analysis of the flange'. For Class 1 and 2 sections, on the other hand,
the analytical method presented herein substantiates the flange slender- -
ness limitations of 54 and 64 which have been well established by ex-
perimental investigations. It is clear therefore, that the same theory
which substantiates flange slenderness values of 54 and 64 based on
experimental results for Class 1 and 2 sections, casts doubt upon the
flange slenderness value of 100 based on an approximate torsional anal-
ysis of a Class 3 section flange. Assuming the above flange modifi-
cation as indicated, presently specified web plate width-to-thickness

limitations may be increased for columms, beams, and beam-columns.

7.4 Recommendations for Design

As a result of the theoretical investigation presented

herein certain modifications of the present code values"

of plate
width-to-thickness limitations are indicated. These modifications
apply to W shapes subjeéted to axial, flexural, and combined axial and
flexural loadings.that are uniform along the member lengths.
Additionally, certain flange width-to-thickness limitations presently

‘set by the code have been substantiated. These results, as summarised

in Figure 7.1, are discussed in the following sectionms.
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7.4.1 Class 1 Sections

The present theory substantiates the use of b/f;/Zt = 54
for the flanges of Class 1 sections. It is indicated that the present
limitation of h/f;/w = 255 for pure axial loading can be safely
increased to 300. For pure flexural loading an increase of h/?;/w
from the present code value of 420 to a vaiue of 430 is indicated. 1In
the intermediate range,where combined axial and flexural loadings occur,

the following increases in h/ﬁ;/w are indicated:

1l

h/E;YW 430 (1-0.93 (P/Py)) 0 < P/Py < 0.15

(6.14)

hvf;/w 382 (1-0.22 (P/Py)) 0.15 < P/P_< 1.0

v (6.15)
For these values the present theoretical method indicates that the
following maximum moments reduced for axial load, can be sustained for

adequate plastic design behaviour:

M o = M 0 <pP/P <015

P P y | (6.9(a))
M =1.18 M (1-P/P ) 0.15 < P/P £ 1.0

pc P y y (6.9(b)

7.4.2 Class 2 Sections

According to the present theoretical method, the value of
b/f;YZt = 64, as presently set by the code for Class 2 sections, is
adequate with respect to local buckling provided that the maximum

reduced moment value is set at:
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M = Mp (1-P/Py)

pe (6.10)

For pure axial loading it is indicated that the present web limitation
of th;Yw = 255 can be increased to 300. For pure flexural loading

the present value of hvf;YW = 520 can be increased to 660. In the
intermediate range of combined axial and flexural loading the following

increases are indicated:

wF_/w = 660 (1-0.55 (P/P.)) 0 < P/P_ < 1.0
y y y (6.1D

7.4.3 Class 3 Sections

The present theoretical method indicates that the value of
b/f;]Zt = 100 for flanges of Class 3 sections is too high. A reduction
to a value of 72 is indicated. In the presence of pure axial loads the
present value of th;/w = 255 can be increased to 300 and, for beams,
the present code value of h/f;/w = 690 can be increased to 725. 1In the
intermediate range where combined axial and flexural loadings occur the

following increases are indicated:

hWF_/w = 725 (1-0.59 (P/P_)) 0 < P/P_< 1.0
y y y (6.6)

For these values a maximum moment value of

Myc= My (1-P/Py)) (6.5)

can be reached in the presence of axial load. The above indicated

modi fications for Class 1, 2, and 3 sections are summarised in
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Figure 7.1.

7.5 Further Recommendations

As a result of the tests performed by Kulak
et all0211212513 " j,.reases in web limits for Class 2 and 3 sections
have recently been implemented by the present code“. The theory
presented herein indicates that these increases are also justified on
a purely theoretical basis. Furthermore, according to this theoretical
method, additional increases in web slendernesses are indicated with
the reservations that Class 3 flange limits be set at b/f;/Zt = 72 and
that Mbc for Class 2 beam-columns be limited to the value given by
Equation 6.10. Increases in web limits for Class 1 sections are also
indicated by the theoretical results presented herein.

Before these additional increases are implemented, however,
it is suggested that further testing of laboratory specimens be carried
out. These tests should be berformed in the light of certain
implications arising from the present theoretical analysis. The items
of particular relevance to test specimens and testing procedure are

listed below:

1. End Conditions

As nearly as possible, the end supports of test specimens
should approximate simply-supported plate edges with respect to local
buckling. For axially loaded members this is not a difficult problem.
However, for members that must be subjected to axial and flexural loads
combined, it would be necessary to use end-moment connections requiring

very rigid support of the plate edges. A solution to this problem
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would be to use members sufficiently long so that the effects of
rigid edge restraints are reduced. An aspect ratio of at least 4

for webs and flanges is suggested.

2. Lateral Support

To ensure a local buckling mode of failure, adequate
lateral support must be provided in order to preclude overall lateral-
torsional instability. Lateral supports should be designed so as not
to interfere with local buckling. It is suggested that knife-edge

lateral supports be placed at web-to-flange junctions if possible.

3. Residual Stresses

If local buckling is expected to occur in the elastic or
partially yielded regions, an exact determination of residual stress
magnitude and distribution is especially important. In the present
correlation of theoretical and test results this information was not
available and therefore, typical values had to be assumed. As a
result, partially due to this lack of information, discrepancies
between theoretical predictions and test results are evident. Future
experimental investigations of local buckling should incorporate the

exact determination of residual stresses as part of the test program.

4. Material Properties

At the present time there are conflicting opin-
iong®?22224527333 45 to what values of material properties are appli-
cable in the range of strain between the yield strain and the strain

at the onset of strain-hardening. Further investigations in this area
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would be desirable. Values of the strain at the onset of strain-
hardening as well as values of the strain-hardening modulus were not
available for several of the test specimens referred to in the present
investigation. Therefore, typical values had to be assumed and this
partially contributed to discrepancies between theoretical predictions
and test results. In future testing, it is recommended that attempts
be made to determine strain-hardening strains and moduli during stan-

dard tension coupon tests.

7.6 Conclusions

A sound theoretical analysis similar to a finite strip
technique has been developed and verified for the purpose of determining
critical local buckling loads for W shape structural members. These
members may be end-loaded by axial loads, flexural loads, or axial and
flexural loads combined. The method predicts local buckling of flanges
and webs in the elastié and inelastic ranges and the interaction of the
flanges and web is accounted for in the formulation of the problem.
Also, the effects of residual stresses are included directly into the
theoretical formulation. The calculations were performed by computer
and the theoretical results were verified by comparison with available
test results as well as with the predictions of classical analysis for
elastic plate buckling.

A wide range of Class 1, 2, and 3 sections of varying
dimensions were analysed for axial loadings, flexural loadings, and
axial and flexural loadings combined. As a result, interaction diagrams
were generated for each class of section and these diagrams were used

to determine maximum web limitations for a range of axial loads varying
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from zero to the yield load. It was generally indicated that present

web limitations are too restrictive and appropriate increases have

been suggested. Additionally, it has been suggested that more

testing of laboratory specimens be carried out and appropriate

recommendations have been made regarding the design of such tests.
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APPENDIX A

DERIVATION OF A PLATE BUCKLING CONDITION

A-1 Introduction

In this section a plate buckling condition is established
using the principle of virtual work®?®®°%5 For a body in equilibrium,
the principle states that the work done by an internal equilibrium
stress field, cij’ is equal to the work done by the surface tractions,
Ti’ when the body is subjected to a virtual displacement field, Gui.

The principle may be expressed as follows:

g, .0e, dV = T, 6u,dS
vy 13 1j S i i
(A-1)

where Geij is the virtual strain field resulting from a virtual
displacement field, Gui,, V refers to the volume,'and S refers to
the surface area over which surface tractions, Ti’ are specified. 1In

this expression, the effects of body forces, Fi’ have been neglected.

A-2 Assumptions

In the following derivation it is assumed that:

1. second order strain terms resulting from in-plane
displacement components due to buckling are small and
may be neglectede.

2, at the point of bifurcation of a plate, an in-plane or

a buckled equilibrium configuration is possible while

160
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the system of external forces remains constant,

3. a state of plane stress’® exists within the
plate,

4. the plate thickness is small relative to the surface
dimensions,

5. deflections are small relative to the plate
thickness,

6. straight lines perpendicular to the middle surface
of an undeformed plate remain straight and
perpendicular to the middle surface after
buckling,

7. longitudinal strips of a plate may be elastic or
inelastic,

8. étresses are constant or vary linearly across
the thickness of a plate,

9. stretching of the middle plane of the plate during

buckling is small and may be neglected.

A-3 Strain -~ Displacement Relationships

The strain - displacement relationships in tensor form

may be written as follows®:

e,, = %-(u .t u )

. . L T
ij i,) J.1 k,i "k,j (A-2)

where i,j, and k cyclically represent the subscripts x, y, and =z
corresponding to Cartesian coordinates., In this and subsequent

expressions, the comma-notation is used to represent differentiation,
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and double subscripts indicate summation'®, Here also, e and u
represent strain and displacement components, respectively.
In the present case of plane stress, Equation A-2 may be

expanded to the following components of strain:

_ 1,2 2 2

e, = U, + 2 (u,x + Vg + W’x) (A-3)
_ 1,2 2 2

ey = v,y + 2 (u,y + V’y + w,y) (A-5)
= l-(u +v, +u, v, +w, w,)

Xy 2 'y ’x ’x y ’x 'y (A-5)

where u, v, and w represent displacement components in the x-, y-,
and £2-coordinate directions, and subscripts x, v, and z indicate
differentiation with respect to that particular variable.

According to Assumption No. 1, strain terms depending on
the squares and products of Usys u,y, Vs and v,y may be neglected.
Second order terms based on L and w,y result from a buckled
configuration and therefore they are retained. Thus, Equations A-3

to A-5 may be rewritten as follows:

_ 1.2
e T Wy T3V, (4-6)
- 1.2
ey = v,y + 5 W,y (A-7)

1
e = —2' (u9 +v, +w, W,y) (A-8)
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A-4 Displacement Components

Figure A-]1 shows a plate oriented in a 3-dimensional
Cartesian coordinate system. The displacement components of a point

in the middle plane of the plate during buckling are given as:

u=u' (A-9)
v =v' (A-10)
w=w (A-11)

Figure A-2 shows a portion of a plate before and after
buckling in the x - y plane. During buckling, a point P moves
tangentially to P' by a distance u'. Due to out-of-plane deflection,

P' moves to P" by a distance equal to w. As a result of rotation of

a cross-section of the plate, P'" moves to P'''., Making use of
Assumption No. 5 concerning small deflections, and recognizing similar
observations for buckling in the y - z plane, the following displacement

components are obtained:

usuom sy (A-12)
v=v'- zw,y (A-13)
w=vw (A-14)

Using these results in Equations A-6 to A-8, the following strain-

displacement relationships are obtained:

€x T Wox T Tk + 2 Yoy (A-15)
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' 1
e =v, - zZw, + = w,
y y yy 27y (A-16)
1., vy 1
exy 2(u,y + V,x) zw,Xy + > w,xw,y (A-17)

A-5 Application of the Principle of Virtual Work

Using Equations A-15 to A-17, the left hand side of
Equation A-1, for the case of plane stress, (Assumption No. 3), may

be written as follows:

[ ooy -] |
v ij i3

N Su! + N _(Su! + &v) ) + N_&v,_{dxdy
x 'y X X Xy y X y y

+ J J N w, 6w, + N_ (w, Sw, + w, Ow,_ )
xJy x ’X X Xy %X Yy y %

|

+ N w, 0w, (dxdy + J
vy ’y] YT, y

Pﬁ 8w,
X UxXxX

+ 2M Sw, + M 0w, (dxdy
. Xy Xy y ¥y
(A-18)

In developing this expression, the following relationships were used:

0..8e,. =0 08e + 20 _8e + o Qe
ij7i3 Txx Xy xy Y ¥ (A-19)
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= ' -
Gex Su ' sz,xx + W,xéw,x (A-20)
Se. = 6v', - zbw, + w, Ow,
Gy T Vg T EOyy vy (A-21)
1 ' '
e =+ (Su', + 6v', ) - z8w,
xy 2 y X Xy

1
+ 5 (w,x(Sw,y + w,yGW,X)

(A-22)
from Equation A-15 to A-17, and,
t/2
Nx= oxdy
-t/2 (A-23a)
Jt/Z
N = o._.dz
A (A-23b)
t/2
N = J Gydzf
Yy ¢/ (A-23c)
t/2
M = - J 0, 2de
X -t/2 (A-24a)
Jt/Z
M =- O..,zdz
xy —t/2 (A-24b)
t/2
M = - J oyzdz
y -t/2 (A-24c)

where N , N , and, N are forces and M , M , and M are moments
X y X xy y
per unit length of a plate having a thickness, t.
The first integral on the right hand side of expression

A-18, may be integrated by parts as follows:
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J Nx6u'|a + N Gv'la dy + J N 6v'|b + N 6u'|Plax
y o *¥ o x[¥ lo * o

- Su' (N + N dxdy - Sv' (N + N dxd
Jx[y ( X,X XY:Y) ey J J v ¥s¥ XY’X) it

(A-25)

where a and b refer to the length and width of a rectangular plate as
. shown in Figure A-1. The first two integrals of this expression
represent the virtual work done by the applied forces per unit length
evaluated at the boundaries of the plate. If body forces are

228546 require that the last

negligible, the conditions of equilibrium
two integrals of this expression equal zero. Therefore the first
integral on the right hand side of expression A-18 represents the
virtual work done by the applied external forces acting through mid-
plane displacements.

It is assumed that the strain in the middle plane of

a plate at buckling is negligible. Therefore, from Equations A-15 to

A-17,
o212
Uiy 2 ’x (A-26)
D12
Uy 2 vy (A-27)
_]; ] ' = - 1
2(u ’y tv ’x) 2Yx Vsy (A-28)

Substituting these values into the first two integrals of
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expression A-25 gives:

J J N Su', + N _(Su', + 68v', ) + N 8v', |dxdy =
e y X y o’y

JJ

, wa,xﬁw,x + ny(w,xéw,y + w,yGw,X) + Nyw’y6w5y dxdy

(A-29)

Using this relationship in Equation A-18, the left hand side of

Equation A-1 finally reduces to:

[ oo - ||
v 34 X

M S&w, +M 8w, + M dw, dxdy
gl * Tk Uxy Ty Uy

(A-30)

The right hand side of Equation A-1 represents the work done
by the surface tractions when the body is subjected to a virtual dis-
placement field. This quantity has already been evaluated in
expression A-29 above. Using expressions A-29 and A-30, Equation A-1

finally reduces to:

J J Méw, +2M 6w, + M 8w, dxdy
X XX Xy Xy yvolyy

; NXW,XGW,X + ny(w,xﬁw,y + w,yGw,X) + Nyw,yGw,y dxdy

(A-31)



168

In this equation, the integral on the left hand side represents
the strain energy of bending of an equilibrium stress field when a
virtual displacement field is superimposed on a buckled configuration.
The integral on the right hand side represents the virtual work done by
the in-plane stresses acting at the boundaries. In this form, Equation
A-31 defines the buckling condition of a plate subjected to in-plane
stresses,

In the present analysis, the equilibrium stress field is
derived from the general stress-strain relationships for an orthotropic
plate. The moments per unit length can be expressed in terms of the

plate deflections as follows”:

M o=- DXW’XX - DXYw’yy (A-32)

=-Dw, ~-D
My yyy T Cyxxx ’ (A-33
M&y = - 2Gth’xy (A-34)

where Dx’ Dy’ D , and Dyx are plate bending rigidities, Gt is the tangent

Xy
shear modulus, and I is the moment of inertia per unit length of the
plate. These properties are further discussed in Appendix B.

Substituting Equations A-32 to A-34 into Equation A-31, the

buckling condition for a uniaxially stressed plate may be expressed as:
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+D w, &w
yX XX

J J DO w, 6w, +Dw, 0bw, + D w, 6w, .
x XX XX Ty 'yy yy | xy 'yy xx yy

X'y

+ 4GtIW’xy6w’xy)dXdy - ijy NXW,XGW,dedy =0
(A-35)

A~-6 Development of a Matrix Buckling Condition

The first integral of Equation A-35 leads to the bending
stiffness matrix of a plate and the second integral results in a
geometric stiffness matrix. The subscript, x, refers to integration
along the length of a plate, and the subscript, y, refers to integration
along its width. In the present analysis, the integration along x is
continuous since material properties along the length of a strip of
plate under uniaxial stress will be constant. In the transverse direc~-
tion of a plate however, the uniaxial stress may vary in intensity and
therefore certain longitudinal strips may be yielded while others are
still elastic or strain-hardened. To account for this, integration in
the y direction is done in a piecewise manner and the appropriate material
properties for a given strip are incorporated into the integration in
a piecewise fashion.

As explained in Chapter 3, 2 Rayleigh-Ritz technigue is

applied using a displacement function of the form:
w = f<¢>{e} (A_36)

In this expression, f is a function of x only and it describes the

buckled shape in the longitudinal direction, <¢> is a row vector of
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interpolating functions of y only and {6} is a column vector of nodal
coordinate displacements. Together, <¢> and {6} define the transverse

buckled shape of a plate.

The derivatives and corresponding variations for w are

defined as follows:

Wy

XX f’xx<¢>{e} Gw’xx = f’xx<¢>{66} (A-37)

=
]

yy = £<6, >{83 8w, gy = £<0, - >{86} (A-38)

L f,x§¢,y>{e} sty = f,x<¢,y>{66} (A-39)
W, = f,x<¢>{9} Sw,x = f,x<¢>{59} (A-40)
Substituting these expressions into Equation A-35 gives:
<ae>[Fl[¢l] + F,[0,]1 + File,] + F4[¢4]}{9}
-<69>[F5[¢5]]{e} =0
(A-41)
where the following relationships have been used:
2
F1 = Dx I f ’xxdx’
X ' (A-42)
F2 =D I fzdx,
Y g

(A-43)
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F, = 2D J frf,ypxdx,
3 xy ),

(A-44)
2
F, = 4G 1 f £, dx,
) Fx (A-45)
F5 = t I fgxdx’
* (A-46)
and,
[¢1] = J {¢}<p>dy
v (A-47)
[e,1 = I {¢, I<¢, >dy
y oW ot
[®3] = jy[{¢’yy}<¢> + {¢}<¢,y§> dy
(A-49)
[(I>4] = J {¢9y}<¢9y'>dy
7 (A-50)
[¢5] = j o {o}<dp>dy
7 (A-51)

where, for a plate of constant thickness, t, Nx = O4t is used.

In Equation A-41, the virtual displacement coordinates are
completely arbitrary and therefore the relationship muét hold for all
values <66>. Therefore the buckling condition defined by Equation A-41

may be written as follows:
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[k1{6} - [k ]{6} = {0} (A-52)

where the bending stiffness matrix, [K] is given by:

[K] = F;[0;] + Fpl0,] + F3l051 + F 10,1 = Filo; 1 (453

where, = 1 = 1, 2, 3, 4, and repeated subscripts indicate

summation, and the geometric stiffness matrix, [KG] is given by:

[Kgl = F5lo] (A-54)

In Equations A-53 and A-54, the ¢ matrices are evaluated by piecewise
integration across the width of a plate. The integration is performed
for each strip of plate which may be in the elastic, the yielded, or
the strain-hardening region. For each such strip, the appropriate
bending rigidities, as defined in Appendix B, are used in Equation

A-53.



Figure A-1 Rectangular Plate Subjected to Plane Stress

0=w,,

‘ . tangent to
AU = -zw,, middle plane

Figure A-2 Plate Buckling in the x-y Plane
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APPENDIX B

MATERTAL PROPERTIES

B-1 Introduction

The determination of material properties used in the present
study is based on a tangent modulus concepts, and therefore, the
material properties that determine a critical buckling strain, are those
that exist in a plate at the instant before buckling. This concept is
considered to give very good correlation between predicted and test

3’5’6, and the correlation is

results in inelastic buckling of columns
further improved with the inclusion of residual stress effects®, as in

the present study.

B-2 Incremental Stress—Strain Relationships

Figure B-1(a) shows a stress ~-strain relationship for a strain-
hardening material. An increment of total strain, AZ, is assumed to be
sufficiently small so that it may be separated into an elastic strain

increment and a plastic strain increment??. Thus,

de,. = de, . ® 4 qe, P
1] 1] 1] (B-1)

Elastic strain increments are related to elastic stress increments as

follows?:

(e) _ 1ty Vo
degjy " = Gg)doyy - g o by (B-2)
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In these relationships, Cartesian tensor notation is used“®, and

Gij 1 for i = j, and

6ij 0 for i # j,

and V and E are Poisson's ratio and Young's modulus respectively“e.
The relationship between plastic strdain increments and
corresponding stress increments may be defined for an assumed yield
criterion, an associated flow rule, and a work hardening rule“5;7l.
For a material which yields according to von Mises yield
criterion®’7?, the plastic strain increment tensor coincides with the
plastic stress deviator tensor and the following relationship may be

45
used”®?71:

(p) _
deij = Sijdk (B-3)

where d\ is a positive constant of proportionality and the stress

deviator tensor is defined as:
Si5 = %35 ~ 73 %ij (B-4)

According to von Mises yield criterion, yielding occurs when the
second invariant of the stress deviator tensor reaches a critical

value71, This may be expressed as:

J2 -k =0 (B-5)
where,

1
Jp =32 Sijsij (B-6)
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and k is a critical constant.
When a work-hardening material is subjected to a uniaxial

stress state, 0, Equation B-6 gives:

_1 2
Jp=30 (B-7)

or,

al
n

- /3
33, = /2 544545

where 0 is an effective stress invariant corresponding to an effective

(B-8)

plastic strain, E(p). In a similar manner, an effective plastic strain

(p)

increment, de may be obtained. For a uniaxial stress state,

Equation B-3 gives:

=(p) _ 2
de =3 odA (B-9)
Equation B-3 may be written as:
de, @ ge, ®) s s ar? = 2 a2
ij ij ij74ij 3 (B-10)

Combining Equations B-9 and B-10 results in the following effective

plastic strain increment:

-(P) _ /2 (p) (p)
de = //3 deij deij (B-11)

Figure B-1(b) shows a plot of the effective stress &,

plotted against effective plastic strain, E(P)i The slope of this

curve is defined as:
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a5
H' = .
as(®) (B-12)

It is assumed that for all monotonic loading paths the same T - é(p)
relationship is obtained.

Combining Equations B-8 and B-11 with Equation B-10 gives:

(®
de do _ 3 4o

C5 )5 =283 (B-13)

dx =

N w

where the value H' is defined in Equation B-12. Substituting this
value of dA into Equation B-3 gives the following relationship between

plastic strain and corresponding stress increments:

(p) _ 3 do
deyi " =2 HG Sij (B-14)

;. Referring to Figure B-1(b), the slope of the effective stress

vs. plastic strain curve is given by:

(B-15)
where Ae is the total effective strain increment, AC is the effective
stress increment, and E is Young's modulus. In this relatiomship, AG/E
is the elastic portion of the total strain increment. Multiplying the
numerator and the denominator of Equation B-15 by E/Ae and taking the

limit gives:

o o 1qm  EOO/AE PR
Az » o E-A0/he E-E (8-16)

where the tangent modulus is defined as:

(B-17)
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B-4 Stress—-Strain Relationships for Plane Stress

In the case of plane stressqs,

z ZX yz (B-18)

and the effective stress for this case may be obtained from

Equation B-8 as follows:

- 2 2 2
o= /ox + cy - oxoy + 3Txy . (B-19)

The effective stress increment is obtained from Equation B-19 as:

&
fl
Nll—'

y

Qi

[(20 - g )do + (206 - 0. )do_ + 6T__4dT
p.4 y p:4 y X"y Xy X

(B-20)

In the present analysis a plate element before buckling is
in a uniaxial stress state defined by o £ 0, Gy = Txy = 0, and

therefore:

0 =0, (B-21)

Immediately after buckling the same element is subjected to a state of
plane stress. In applying a tangent modulus theory, only the resulting
increment of effective stress is of interest, and it is given by

Equation B-20 as:

5 = _1
d5 = do, - 5 dog (8-22)
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The corresponding increments in plastic strain are obtained by using
these values of G0 and dG in Equation B-14 where Sij is the stress
deviator tensor for a state of uniaxial stress prior to buckling. The

resulting plastic strain increments are:

do do
de P o _X_ _ ¥
X H' 24’ (B-23)
do do
de P X, _¥
2H' 4y’ (B-24)
(» _
d'exy =0 (B-25)

Combining Equations B-2, B-23, B-24, and B-25 with
Equation B-1, the increments of total strain may be obtained for the

strain-hardening region as:

2 S P

de, = (F+gndo, - G+ 5pndoy (B-26)
AN S 1,1

dey - (E + 2H')d0x + (E + 4H')d0y (B-27)
C14v

dexy T E dey (B-28)

B-5 Stress *,Stfain Relationships for an Orthotropic Plate

For the general case of a homogeneous elastic body, the

generalized stress - strain relationship is given‘by“sz
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%3 = k1% (B-29)

where Ci; is a fourth-order tensor representing a total of 81

jkl
constants. This number is reduced to 21 independent constants when
the symmetry of the stress and strain tensors, and the existence of a
potential energy function are considered®?%%s72,

If a material is orthotropic and the x, y, and z axes
coincide with the principle directions of the material, the following

stress-strain relationships applyu7’72:

(o] V. 0O v 0
e =X _ _Y¥Xy _ _2zX2Z
x Ex Ey Ez (B-30)
AV ) (0} V. O
_ Xy X, VY zy z
e = = + -
y E E E
X y Z (B-31)
Vez7x vyzoy z
& = TE E TE
X y z (B-32)
T
Yy = Xy
xy ny (B-33)
T
y = Jz
yz Gyz (B-34)
¥ = ZX
Zx sz (B-35)

where each Poisson ratio, vij represents the strain in the j direction
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per unit strain in the i direction for i, j = x, y, z. The above
relationships contain 9 independent material constants and:
AY) AY) \Y A\
yX _ _Xy ZX _ Xz "zy _ _yz
E E ’ E ’ E
y X Ex Ez y (B-36)
Referring to Equations B-30 to B-35, the incremental stress -
strain relationships for an orthotropic plate element subjected to a

state of plane stress may be written as follows:

1 Vv

de_ =-};:—d0x-EXdo
x y y (B-37)
Vx

de =-=do + + do

y Ex X Ey y (B-38)
=1
dexy T 26 dey (B-39)

B-6 Effective Moduli in the Strain Hardening Range

A steel plate subjected to a uniaxial stress yields by the
formation of slip bands along preferential shear planes characterised
by a dissipation of minimum plastic distortional energy67’6°. For a
thin steel plate these shear planes will be normal to the stress axis
and inclined with respect to the middle plane of the plate. As a
result, in the strain-hardening range, the steel plate will be ortho-
tropic at the instant before buckling.

Based on a tangent modulus theory, the effective moduli in

the strain-hardening range may be obtained by comparing Equations B-37



to B-39 with Equations B-26 to B-28%3,
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Using the results .of this

comparison and the value of H' as given by Equation B-16 .gives the

following effective tangent moduli:

Ex = Et
e - 4E-Et
+
y 3Et E
. E
6. = € = 3am)

and the corresponding Poisson's ratios:

(Zv-l)Et+E
X 2E

4vXE
Vy = 3E,+E

B-7 Material Properties Used in the Present Analysis

(B-40)

(B-41)

(B-42)

(B-43)

(B-44)

In the elastic range, the tangent modulus is equal to

Young's modulus, E, and Equations B-40 to B-44 reduce to:

(B-45)

(B-46)

(B=47)
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In the yielding range, the tangent modulus Et = 0 and Equations

B-40 to B-44 give:

Ex B Ey =0 (B-48)
Gt =G (B-49)
Vg = 0-3 (B-50)
v, = 2.0 (3-51)

The results given by Equations B-40 to B-44 were originally
presented by Handelmann and Prager??. However, since that time it has
been well recognized that these values may result in significant error
in the prediction 6f inelastic critical plate buckling stresses. It
has further been observed that these discrepancies are mainly due to
an over-estimation of the effective shear modulus, Gt’ at stresses
above the yield?*28233:70

For E = 29,600 ksi.and v = 0.3, Equation B-42 gives a value
of Gt = 11,385 ksi. Using experimental results, Haaijer and Thurliminn
determined that the value of Gt for steel above the yield should be
between 2000 and 3000 ksi;z, with an actual value selected at 2400 ksi.
This 79 per cent reduction in the theoretical value of Gt’ which re-
sulted in better correlation with test results, was attributed to the
effects of initial imperfections. Independently, Lay®3 disregarded the

effects of initial imperfections and, using slip field theory, predicted

a value of G of about 3000 ksi. As a result of this work, Lay
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presented the following expression for the tangent shear modulus for

strain-hardening:

_ 26
t E
1+
4Et (1+v) (B-52)

where G is the elastic shear modulus, E is Young's modulus, Et is the
tangent modulus, and v is Poisson's ratio. For E = 29,600 ksi., G =

11,385 ksi., v = 0.3, and Et = 800 ksi., Equation B-52 gives a value

of Gt = 2806 ksi. In the present study, Equations B-40, B-41, B-43,

B-44, and B-52 are used to determine material properties in the

inelastic range.

B-8 Plate Bending Rigidities

The plate bending rigidities D , D , D , and D were
Xy xy yx
introduced in Appendix A. In terms of the material properties
discussed previously the plate bending rigidities may be expressed as

follows’?.

EI

D = —m

X 1—\)x\)y (B-53)
E I

D =Tl—

y Vy (B-54)

Dy ™ Vy Px (B-55)
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Dyx - vny (B-56)

where I is the moment of inertia per unit length of a plate.
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