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| ABSTRACT

Two problems have been presented ih”ﬁhis Thesis;
The first problem in Chapter 1 is a re-analysis of the
S R %—ﬂN'partial waves in a Singlé—channel N/D scheme.
The new features are inclusién of (1) inelastic unitarity,
and (ii) the forces generated by the exchange of a scalar
I=0 meson. This calculation shares the same difficulties
with the previous one-channel treatments in that (a) the
D13 resonance is absent, and (b) it is not.possible to
produce the nucleon as a bound state and at the same time
obtain a P11 resonanceT Apart from the_Sll, Pll'and D13
‘waves, one can secure good agreement between ‘theory and
ekperiments in other parfial waves. Chapter 2 is a model
one-channel N/D calculation for studying the effect of

inelasticity on position and width of a resonance.
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CHAPTER ONE

A ONE~CHANNEL N/D CALCULATION OF THE mN.

PARTTAL WAVES INCORPORATING INELASTIC UNITARITY
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1. INTRODUCTION

In recent years much progress has been made in
our understanding of pion-nucleon scattering. Due to
the rapid accumulation of experimental data and techniques
in analyzing these resultsl-S), 7N partial waves are now
known in considerable detail up to about 2 GeV pion
laboratory energy. On the theoretical side attempts
have been made to calculate these partial waves using
single or multi-channel N/D dispersion relationsG-ls).
The advantage of using dispersion relations is that one
can inject into the calculations well established prin-
ciples such as analyticity, unitarity, crossing symmetry,
Lorentz invariance, conservation of isotopic spin and
conservation of energy-moméntum. A success with theore-
tical models would provide us with a deeper insight into
the theory of strong interactions. .

In multi-channel treatmentsl3—15), the first
channel is 7N + 7N, the other channels are oN »> oN, etc.
Inelastic feactions such as 7N > oN arise from the
coupling of the first channel to other channels. The
complexity of a full calculation is enormous, but the
computed two-channel results are in good agreement with

those obtained by phase shift analysis of experimental

data.

Single-channel N/D dispersion relations6-l2) are

much simpler to handle. Here the elastic channel is



TN =+ 7N, and the coupling of this channel to other
channels is described by an inelastic parameter n.
Thus far the computed results for the J < g-partial
waves are unsatisfactory for the Sll’ Pll and Dle
partial waves. It is a general belief that the D13

wave should be solved in a multi-channel calculation.
However it is not clear whether correct results for S11
and Pll can only be obtained by using a muiti-channel
dispersion relation, or that the 'potentials' used were
inadequatelz). In this present work a reanalysis of the
J £ % partial waves is made by using a more complicated

potential. It is hoped that the results would shed some

light on the difficulties encountered.

T The convention 221 o7 is used to denote partial waves
3

with isospin I, total angular momentum J and orbital

angular momentum £.




2. THE J < % 7N PARTIAL WAVES

A. Results of Phase Shift Analysis

In recent years partial wave analysis of 7N scat-

2)  cErN3’ and

-tering has been carried out at Saclay
Berkeleyu). The most recent results from these centres
have been summarized by Lovelace in Reference 5 (a review
of older analyses is given by Donnachie in Reference 1).
Despite the‘useIOf different data and methods, the
results of different groups are consistent with one
another for large amplitudes and strong resonances. In

the following the main features of the J < g-partial waves

havé been summarized.:
Partial wave amplitudes, with I, J, zisuppressed,
are defined by

_ p)e2itn) g

‘where W is the sum of nucleon energy E and pion energy o,
n is the inelastic parameter, and 8§ is the real part of
phase shift (since no confusion arises, § will henceforth
be referred to as phase shift). The meaning of resonances

and its detection is given in Section 2B.

=% Scattering (Figures 1 and 2)

2

S The phase shift § increases from zero to

11
about 10° at 50 MeV pion laboratory energy. It remains

more or less constant at this value up to 300 MeV and
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then rises up 150° at 1800 MeV where it starts falling
rapldly. The inelastic parameter n in Figure 2 decreases
from unity (correspondihg to elastic scattering) at

400 MeV to n = 0.4 at 700 MeV, rises up to n = 0.9 at
1100 MeV and then decreases rapidly to almost zero
(corresponding to very inelastic scattering)at 2 GeV.

The rise of & through 90° at 900 MeV can be interpreted
"in terms of an S resonance with mass 1709 MeV.

11

P The phase shift is small and negative below

11
200 MeV and rises through 90° at 600 MeV to give a Pll
resonance with mass 1466 MeV. After passing through

180° at 1100 MeV it falls down rapidly to 120° and then
rises up more gradually. Figure 2 shows that n < 0.4

in the energy range 500 to 1500 MeV, so that a considerable

fraction of the force producing the Pll resonance arises

from inelastic channels.

P The phase shift is small and negative

13
(-25° < § < 0) up to 2 GeV. The inelastic parameter n is

close to unity up to 700 MeV, above which it decreases

gradually ton = 0.3 at 2 GeV.

.Dl3 The phase shift rises steeply through 90° at

600 MeV, (centre of mass energy 1526 MeV) accompanied by
a deep minimum in n (n = 0) at this energy. Above 800

-~

MeV § stays around 160° with n=0.7.
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I = % Scattering (Figures 3 and U4)

S There are dips in n at 800 MeV (n = 0.4)

31
and 1900 MeV (n = 0.2) accompanied by rapid drops in
the phase shift, which is negative at all energies.

P This phase shift decreases more or less

31
gradually from zero to -60° at 2 GeV. It is elastiec
. below 600 MeV. Above this energy n decreases slowly
to 0.5 at 2 GeV. There is a shallow minimum (n = 0.4)
at 1406 MeV.

P33 This partial Wave possesses the well known
N¥*¥ resonance, P33 (1236 MeV), at 200 MeV, where the
phase shift rises through 90O to reach 170o at 600 MeV
and remaiqs more or less constant there. The inelastic
parameter 1is very close to unity below 500 MeV and
decreases gradually to n = 0.5 at 2 GeV. There are
shallow minima at 900 MeV (n % 0.8) and 1900 MeV
(n = 0.5).

D This partial wave has small phase shifts

33
(18]<15°) and 1little inelasticity (n > 0.7) up to 2

GeV.

B. .Resonances

One of the most important results in partial wave
analysis is the discovery of resonances in the 7N system.
A resonance 1is defined as a pole of the S-matrix on the

unphysical sheet. However since the data exist for real
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energies alone, some resonance recognition criteria
have to be employed on the real energy axis. The
techniques currently favoured to detect the presence
of resonances in a given partial wave is to plot the
quantity 2kf on an Argand diagram (Figure 5).

For a pure elastic resonance (Figure 6) 2kf
traces out an arc of a circle with centre i in a
counterclockwise direction. The resonance energy WR
appears at the top of the circle, and the width T is
given by the difference of energies at the horizontal
diameter as shown.

In general inelastic effects and non-resonant
backgrounds are present, and the locus of 2kf becomes
a smaller, distorted circle inside the unit circle

(Figure 7). Their effects will be discussed as follows:

(2) Inelasticity with negligible non-resonant background

The locus of 2kf at any given energy is an arc

of a circle with radius % and centre %, where
k|f]

is the ratio of total cross-section to elastic cross-
section. For R < 2 everywhere (Curve 1 in Figure 7)
the locus passes above the centre of the unit circle,
and § rises through 90° at the resonance in the same

manner as the pure elastic case. This is called a
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quasi-elastic resonance. For R > 2 everywhere (Curve 2)
the locus passes below the centre of the unit circlé.
lThis is called an inelastic resonance because § rises

to a maximum value which is less than 450, decreases
through 0° at the resonance to reach a minimum which is
greater than —450 and then rises agaiﬁ. In both cases

n is minimum and |[d(2kf)/dW|is maximum at the resonance.
(b) Inelasticity with strong non-resonant backgrounds

One way to include this backéround is to assume
that the resonance and the background multiply in the
S-matrix, so that each is unitary separately. This gives
§ = GR + GB’ n = nplps where the subscripts R and B denote
the resonance and background contributions respectively. |
The net result is to shift the locus for 2kf to the right
(1eft) if the background is attractive (repulsive).
Curves 3 and 4 in Figure 7 are examples with attractive
and repulsife backgrounds respectively. Since GB also
contributes to the phase shift §, the resonance position
is not determined either by the condition 8 rising through
900, or that Im f is maximum. It is normally chosen as
the energy with n minimum or |d(2kf)/dW| maximum.

In actual 7N phase shift analyéis, anything which

looped counterclockwise was considered a resonance

[Figure 8 is an example for S14 (1709 MeV), Pyq (1466 MeV)



Figure 8
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D,5 (1526 MeV) and P55 (1236 MeV) in the CERN set].

Sets of resonance parameters havé_been obtainéd with
2) | |

n minimum (CERN) s ld(2kf)/dW] maximum (Saclay)3)

and Imf maximum (Saclay also).
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3. ONE-CHANNEL N/D CALCULATION OF wN SCATTERING

A. Survey

The problem of calculating the ﬂN scattering ampli-
tude by solving the partial wave dispersion relation using
the one-channel N/D method has been discussed by various:
authors in the past6-l2). Of these authors Ball and Wongg)
were mainly interested in seeing if, in_a relativistic
treatment with a 'potential' generated by exchange of p,.
N and N¥ (1236 MeV), the N¥ resonance in P33 channel could
be produced simultaneously with a dynamically bound
nucleon in Pll channel. By using a single cut off on
the N/D equations, they succeeded in producing the N¥
at its correct position ﬁogether with‘a loosely bound
nucleon in Pll’ Other phase shifts for J < % were also
calculated, it being found that with the exception of

waves, the low energy results were in quali-
1-5)

S and P

11 11
tative agreement with experiments

11)

Choudhury et al. essentially repeated the

calculations of Ball and Wong with the inclusion of

isoscalar mesons in the t-channel without any improvement
on the above mentioned results.
Coulter and Shawlo’12) studied the same problem

with both elastic and inelastic unitarity. In their

10)

first calculation using a potential generated by

exchange of p, N and N¥, they found that with the excep-
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tion of 831 and P13 waves, better results were obtaiﬁed
with the inclusion of inelastic effects up to 700 MeV
pion laboratory energy. However the Sll and Pll waves
contiﬁued to disagree with experiments unless a nucleon
pole with the correct residue and position was included
in the s-channel, in which case the two coupled waves
agreed with experiments up to 600 MeV.

With the discovery of new resonances in Sll’ Pll’

and D channels, they carried out a second calcula-

S31 31

tionl3) with these particles included in the u-channel
continua. Their results showed that: (1) Compared with
exchange of N and N*¥ the contributions. to the s-channel
unphysical cut from the Sll’ P11 and 831 resonances were
small. (2) The D13 contribution was divergent at large
s; the effect of including this resonance in the u-
channel was to make the results worse. (3) The detailed
shape of the N¥ resonance reduced its contribution to
the exchange potential by 25% compared with the narrow
width approximation. The general conclusion on the
coupled Sll and Pll wave was that, in a simple one-
channel N/D treatment which forced the nucleon to appear
as a dynamical bound state, the computed phase shifts
disagreed with experiments. It was not clear whether

a more complicated potential was necessary, or that

a multi-channel calculation had to be berformed.
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The question whether the nucleon can be obtained
as a bound state in a single-channel calculation has

16)

been studied by Rothleitner and Stech » with the

conclusion that for the nucleon to be a bound state,
the P11 phase must have a negative sign at the inelastic
threshold; a positive phase excludes the bound state
plcture but allows a P11 resonance to occur..

From the préceding discussions it would seem that
a one-channel N/D calculation is not capable of produc-
ing satisfactory S;; and P, phase shift behaviour. In
this present work the problem has been reanalysed with
the inclusion of a scalar I = 0 meson (called o-meson)
in the potential. Inelasticity has also been included.
The results obtained indicate that discrepancies between
theory and experiment persist for the coupled Sll and Pll

phase shifts.

B. Kinematics

This section contains a brief summary of the
kinematics in 7N scattering. A more detailed discussion
can be found in many booksf. We would work in the centre

of mass system with a metric oo = 15 8117 855 = B33 ~ -1,

T See, for example, M. Jacob and G.F. Chew: Strong
Interaction Physics (W.A. Benjamin, Inc., New York,

1964).



Figure 9
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and units c¢=h=pu=1l, where u is the pion mass.
Referring to Figure 9 for wN scattering, the

kinematical invariants are

s =‘(pl + ql)2 = W2 = (E + w)2 s

_ 2 _ 2
t = (pl - p2) = =2k (l - X) s (3-1)
u = (pl - q2)2 = om? + 2 -5 - t R

where py» P, are the initial and final 4-momenta of the
nucleon with mass m, qqs@ and q2,B are the initial and
final 4-momenta and isospins of the pion with mass pu ,
and x is the cosine of the scattering angle 6. Suppress-
isospin indices, the S-matrix for elastic scattering
between the final state f and initial state i can be

written as

2m

ds )
2" (2m) bv2E. 2, , 20, 20,

_ ., L.y
Sfi = Gfi - i(2mw) s (p1 + q; - Py -

X Ua(p,) T(s,t,u) u;(p;) . (3.2)
The amplitude T(s,t,u) is a 4 x 4 matrix between spinors
uf(92) and ui(gl) wiﬁh the most general form

- _ 4t 4
T(S,t,u) = A(S,t,u) + T" B(S,t,u) (303)
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where A(s,t,u) and B(s,t,u) are invariants containing

all of the dynamics of #N interaction (Appendix A),

and ¢ = Y”qu

k
I O 0 o 0 1
Yo= ( ) ) Yk= k ) s 0'1"-( ) s
0 -I -0 0 1 O
0 -i 41 0
¢°= ( ) , o3= ( ) . (3.4)
i O o -1

This T matrix can be related to the 2 x 2 matrix

_ (g.gl)(g-g2)
£= £+ " f2 (3.5)

between 2-component spinors Xps Xq by

fl. A
1

where
1 E+m (W-m) (E+m)
a - -27 ( . (3‘7)
-(E-m) (W+m) (E-m)
Conversely
A W+m W-m
Eim 'm\ [f1)
= A4m / k : (3.8)
1 1 i
B E+m E-m £a2/

In terms of T and f, the differential cross-section is

given by
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%% = Ig%ﬁ Ha(py)T uy(p)|° = lngxilz,' (3-9)

The amplitudes fl and f2 are related to partial

wave amplitudes by

E[£,, (NP, (x) - £, (NP}  (x)],

£, (W)
1 I3

(3.10)

|
TN = [£, () - £, (D] Py(x)
with the inverse relation

1
S ax [£3(W) Py(x) + £,(P,, (x)] .
-1 - -
(3.11)

=

Lo (W) =

The convention is to write 2+ for J = £!:%’, since the
nucleon spin can combine with a given orbital angular
momentum % to produce two different total angular |

momentum states.

The phase shift representation for the partial

waves is
n2+(W)e2162:(W)-1
= (2.11),(3.12)

£, (W) =
Lz 21k

where Gzt(W) is the real part of phase shift, and nzt(w)
is the inelastic parameter.

Defining

1
[Az(s,t,u), Bz(s,t,u)] = f [A(s,t,u),B(s,t,u)JPz(x)dx R

) (3.13)
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one can write

£ (W) - g fogghy + apoBy + anihp,) + aByad . (3.14)
Noting that
o*¥ (W) = a(W®) |, ]
g (W) = = apy (W), f . (3.15)
Ay (-H) = = ay, (W) y
6,17)

one gets the famous MacDowell's symmetry relation

which can be combined with the'reality condition

£,.(2%) = £,,(2) (3.17)
to give
Ny, (=W + ie) = Mp41)- (W+ ie), WwW> WI,-]
(3.18)
and
§op(-W + ig) = ~8(g41)- (W + ig), W>(m+l)

where WI is the inelastic threshold.

Equations (3.16) and (3.17) show that, for a given
total angular momentum J of the 71N system, the two orbital
angular momentum stafes £ =J % % are related to each

other by
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£leany- (W + 1e) = =£, (<W-1e) = £, (=W + 1e), (3.19)

so that one can solve for f2+(w + ie) in the positive
energy region and extract the results for f(2+1)_(w + ieg)
from the negative energy region. It also states that for
a given J the physical amplitude for one ofbital angular
momentum state should form part of the driving force for
the physical amplitude of the other orbital angular
momentum state. Thus, the two orbital momentum states
are coupled with each other and should be solved simul-
taneously.

The following relations are found useful and can
be verified easily,

s + m2 -1

oW 2

E

(3.20)

E+m

2 .2
k% = (8% - m®) = } {s-2(n+1) + (BSL)T

2 ..\2
-1)
55

t+2kS _ 1 2 s .. (m
= 5> {m“+1 5—u
2k - 2(E®-m)
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C. Interaction Terms

It is possible to discuss 7N scattering by con-
sidering the partial wave amplitude fzi. All of the
dynamics are contained in the invariants A and B. Due
o the lack of detailed informations on pion-nucleon
forces, approximate values for A and B will be obtained
with exchange of o, p, N and N¥ in the crossed channels
as shown in Figures 10 and 11. These are the longest
range forces known to exist; the remaining shorter
range forces will be taken into account by using a cut-
off parameter in Section 3E. The contributions from O,
p and N are computed using Feynman diagramsf, but those
from the N¥ resonance will be obtained with- dispersion
relations. A discussion of projection operators used

in this section is given in Appendix B.

g-exchange (I=0, J=0)

This is a hypothetical particle used to study the
effect of strong attractive force found to exist between
two ﬁions. While direct evidence for its existence is
not yet established, there are indicationsll’ 16-21) that
it has a mass 500-900 MeV and width 100-450 MeV. In the

present calculations the foliowiﬁg values will be used

T The convention is the same as the book by S.S. Schweber,
H.A. Bethe and F. de Hoffmann: Mesons and Fields, Volume

I (Harper and Row, Publishers, Inc., New York, 1954).
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m_= 4.0 (560 MeV) |,
(3.21)

An estimate for the coupling constants EsNN ° S will
be given in Appendix C.

With reference to Figure 10, let ¥(x), o(x) and
¢a(x) be the wave functions for the nucleon, o-meson and

pion respectively. The matrix element computed from an

interaction Hamiltonian density

a&(x) - &onm Wo + Bomnd-20

meson propagator

i 1
2
(217)Ll p2- mg

and vertex functions
L 4
gO’NN(eTr) 8 (Pl- p2- p) s

4.4
28 arp(2T) 8 (qy - a7 - D) Sgq >

where EsNT * Bonm 2Te coupling constants, is given by
1 [
(2m)3/2 [E(p,)

1 E%@:; i 1 1
e u, (py )3 — H }
(2‘11)3/2 E 1251 1721 (2m) p2-m§ (2ﬂ)3/2¢ 2w2

Spy = (-i)zfd”p { ﬁf(gz)}{goNﬁ(zw)aau(pl-pz—p)}
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- 1
x {2g cr_‘m(21r) 8 (q2 q;- p)asa} (2w)3/2 2ml}
= -i(ew)asu(pl+ Q- Py- q2) { 2m . }

(2m) *V2E(p, )28 (p,) 20, 2w

,6
x uf(QZX2goNﬁ goww £ m } Yy (pl) *

Using Equations (B9), (3.2) and (3.3), one gets+

!

lo. .3_ 2g N g N
255 D (s,6,u) = (131) —ofN _—omm |
m -t
o
(3.22)
1. 3
B*'2? 27 (s,t,u) =0 .
p-meson exchange (I=1, J=1)
Here
3QI= {a - Gm}wyuzw.g 15y {auwgw -

o, udph + 56 ok (9,06 - 2,9,6)

where G is a measure of the coupling between the charged
p-meson field P (x) and the electromagnetic field wy Y

due to the nucleon,and G measures the coupling between

the electromagnetic field and the 'electric and magnetic

1’.
The convention (I=%; I=%) for isospin index is used.
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momehts' of the p-meson. The p-meson propagator is

H.v
- 17; 212{guv"p‘;2'}
(2m)" p°- m mg

and the vertex functions are

4 4 ' Cpy
(27w) 78 (pl-pz—p){(Ge-Gm)yu + Eﬁ-(p1+p2)u}tg,

(Zﬂ) 6 (qe-ql p){ ;SGBE pw“(ql Q2) }

giving

2m
(2m)®/2E(p, ) 2E (g, ) 20, 2a,

_ 4.4
Sfi = <i(27) '8 (pl+ql-p2-q2) {

G d,+4
ﬁf(g2){ :Bf z T [om(p1+p,) (ag+a,)+2(6 =G 221 u(p, ).
o

Using equations (B10), (3.2), (3.3) and

(p1+ Py)(ay+ a,) = s-u=2s +t - 2m® - 2,

one has
1 3 —2m2-
A(Z’ 2) - (25-1)(6ﬂY2) §§i§_g§__g
m -t
p
(3.23)
1, 3 Y, +2my
8(z5 2) - (2;-1)(-12m) N —
m -t
p
where
6nyl = -Gernw N
(3.24)
G G
- _m pmm
6"Y2 - 2m
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The mass of the p-meson is given by -

m, = 5.4 (769 Mev) |, (3.25)

and the constants Y1» Yo has been'estimated9’10’22) to

have the approximate values

Y, = -0.84 R

(3.26)
Y, = 0.27 y; .

1

Nuecleon exchange (I=§,

=1
The matrix obtained with
# = gy PYsTV-0
nucleon propagator

i 1
(Zﬂjﬂi g-m

and vertex functions
4 4
gnNﬁYSTa(ZW) §'(p, - p - a;) >
=Y-T (2w)464( - - )
EaNNY57g P =P~ q

is-given by

. 4 h | 2m
So: = —i(2w) 6§ (p; + q- p,-a.){ 3
fi o 1 ) 1 2 72 (2n)6/2E(Rl)2E(92)2w12w2
d+d, g8 T T
u-m
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giving
i, 3
(55 =)
A 22 27 _ 0
& 3 &2 (3.27)
g2 20 _ (1;-2) TNN .
m-u
The coupling constant is
g2 7
. T (3.28)
and the mass of nucleon is
m=6.7 (939 MeV) . (3.29)

N* resonance exchange (I=§, =%0

If there is an N¥ resonance (mass my3= 8.8) domina-
ting the low energy region of the s-channel, it is
suffiecient to keep only the I=%, J=%', 2=1 term in the

expansion of f, and f, in Equation (3.10), i.e.
1 2

: 3
I==
Im £,(s) = 3x In £,_,(s),
Im f2(s) = =-Im f§+ (s) .

Substitution into Equation (3.6) gives
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3 2 W+m W-m
Im A(s’t,u) Im A (S,t-,u) _g_ E—:‘i?n. 3x + ETIH-
= 3 = 4q Im f '
5 ol SR 1
Im,B(s,t,u) Im B (s,t,u) B 3% - 5=
3 ’ (3.31)

The expression for Im fl+(s) obtained with a narrow width

approximation is given by7)

3 8w m 2 :
2 33. gnNN 1,2 2 2

' (3.32)
where E33 1s the kinetic energy of the nucleon in N¥
resonance. '

For an N¥ dominafing the u-channel, the expressions
for Im A(u,t,s), Im B(u,t,s) are the same as Equation
(3.31) with exchange s «—»> u, since the u-channel is
obtained from the s-channel by excﬁange q; € g, The
contribution of this resonance in the u-channel to the

s-channel is obtained with crossing matrix (4.18). This

gives
1
A2(s,t,u) % © 3
1 Im Az(u',t,s) du'
3 - T \ u
2 : 1 2 u-u
A%(s,t,u) \35/ (m+1)
4
3 8y m
- o33 _ 2,,.733 _
= N 2 {(m33 m)(E33+m) +3 (m +m)[m +1-—5 s
3 33
2 2
s m =Dy (3.33)

2
2m33
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1

2 il
B (s,t,u) - =
>\ 8rvgs 23 2. ™33 (n2-1)
3 = > {-(E33+m) +§[m +1-—5 -5+ 1}
5 1 m33-u 2m33
B (s,t,u) - -3-
(3.34)
where
2
imys Envly _1_ . o.07 .

Y = +

For the sake of comparison with results in Ref.
9-11, a smaller value ys3= 0.06 will be used. This is
partially justified since Coulter and Shawlz)'have shown
that the detailed shape of the N¥ resonance reduces its
contribution to the direct channel by 25%.

The summation of contributions to A(s,t,u),

B(s,t,u) from ¢, p, N and N¥ in the crossed channels 1is

1.3 |
a2 2 o (1;1) SO+ (25-1) 22[25+t-2m2— 2]
m -t m--t
o P

8y
b1 33 _ 2
33
3 - 2 m§3 (m?-1)2
#3 (gt min? + 1 - 32 -5 + =511, (3.39)
2 “33 2 o2
G 2 .\ EmE Yyt
B2 2 = (13-2) gNN + (23-1)(-12m) _1.2___-2- + (- %; _ %)
m -u m_ - ¢ :
P
x =33 {(Egg) +3 (s 1 - 33 - 5 + {E5L)
337" 2m3 4

NP S ARI I Y Ya s a
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Y, = -0.84 Yy = 0.27 vq Y33= 0.06 ,
m_ = 4.0 s m, = 5.4 s m=6.7, (3.37)
82 T
my= 8.8, =146,
a_ = gcwnicNﬁ = %12 .

These contributions are regular in the physical region,

since none of the denominatoré vanishes for s 2 (m+l)2.

D. N/D Dispersion Relations

We would 1like to wérk in the W-plane and derive
the N/D partial wave dispersion relations for fzi. The
reason for working in the W-plane is to avoid kinematical
singularities which Wouid arise in computing quantities
such as /ﬁ? s Since the expansion of fzi in terms of Az,

B involves factors Eim coming from Dirac spinors. These

2
singularities are nowhere given or bounded by unitarity,

so that a self-consistent calculation in the W2—plane
would be very much complicated. Working on partial wave
amplitudes f2+ also makes 1t simple to impose unitarity

condition which reads, from Equation (3.12),

-1 2k
I f = - T —— [ ] L] 8
m ( li) T, (3.38)

FPor a given total angular momentum state J, we would

solve for f£+(W) in the positive energy region, and
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extract the f(z+1)5W) results from the negative energy

region with the aid of Equation (3.19).

To ensure that the computed partial waves has the

correct threshold behaviour, it is found convenient to

work with a new amplitude hy, (W) obtained from Tos DY

multiplication with a threshold factor, i.e.,

_ k
hg+(W) = E;:TWT f2+(W)

where

2J
_ (E+m)k
p£+(W) = -—;Fir——- .

This new amplitude satisfies the relations

hl+(z*) = h§+(z) s S

and
wed * ( )
(-W + ig) = —/——— f W+ ie
L+ (E-m)x29—1 ~(2+1)-

h

(3.39)

(3.40)

7 (3.41)

(3.42)

so that a solution of h2+ which is constant at W = (m#1)

and W = -(m*l) would give

2J 22+1

6£+(W) ~ k =k s

2J 2(2+1)+1
6(£+1)_(w) ~ (E=-m)k“° ~ k

at the thresholds of the two 2= J #

VT

(3.43)

orbital angular
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momentum states. Writing

No+(2)
Pp+(2) = 5 %)

with N‘Q'+ containing the unphysical U and ine;astic

(3.44)

I cuts, aﬁ&“ﬁzi“éoﬂtéiﬁihg the unitari--
ty P-cuts and at the same time satisfying the relation

*
Dy 4. (W) eZi%_(W)

ARG s (3.45)
Dy, W
one gets
2pg, (W)
Im D, (W) = - l-'-—n,LRW Re N, (W), [W|>(m+1);
(3.46)

1-n,, (W)

and otherwise

Im N, (2) = Dy, (z) Im h,, (z) . (3.47)

The dispersion relations for N£+(z), DL+(Z) with

normalization
D2+(z=0) =1 (3.48)
and

-(m-l-l) ©
= z aw!
1.32,’,(2)-1 + F{ j + (m{l)s we zwv_zs

2pz+(W') . .
x [. Ty B Ny, )J (3.149)
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_ 1 dz'
URORS J  LNOB MO
1-n, (W")
1 aw' L+
tE LWz Loz, Be Dy (W (3.50)

On substituting the expression for D2+ into N£+ and re-

arranging the orders of integration, one gets

2n, , (W) (@) 2 Y aw
Thng, () R N, (W) = By (W) + F{ 1 +(Iﬁ£-l§ e

szL(W ) Re Nz+(W )

o W .
with
f-WI o { pl=n,,(W")
_ u P aw L+
B2+(W) = Re hz_*_(W) + :I-I- { —;’; + V{;I} W'—W [2D,Q,+(W') ] (3-52)

where WI is the inelastic threshold. The quantity Re h (W)
is the contribution to Re h£+(w) from the unphysical cuts.

In the present calculation,

2J-1

W 1 U U
Re h2+( ) = BrmyR2I-T 1647{(E+m)[A + (W—m)B ]
+ (E-m)[-A2+l + (W+m) Bz+1]} s (3.53)
[ad, BY] = f [4, B] P,(x) dx (3.13')

with A,B given by Equations (3.35) and (3.36).
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To solve for N2+(W) and D£+(W), one first computes
B, (W) from Equations (3.35), (3.36), (3.13'), (3.53)
and (3.52) in this order. The solution for Re NZ(W) can
then be obtained from Equation (3.51). Values for
Re D£+(W), Im N£+(W) and Im D2+(W) then follow easily.

E. Calculation and Results

With A, B given by Equations (3.35) and (3.36)
respectively, the integral in Equation (3.51) is diver-
gent and a cut-off WC is introduced to yield results
depending on its value. This same cut-off applied to
the integral in Equation (3.52) imposes, at *WC, a con~
dition n + 1 which can be relaxed by taking the limits
of the integral to i= instead. For numeriéal purposes
the integra; in this equation is cut-off at 1500 (notation
WIC will be used for this cut-off). The values of Re Noy
(|W|<14) calculated with this value of cut-off is found
to differ~from those calculated with WIC = 2500 by less
than 0.5%. Once WC andvW¥C are fixed, Re N,, is solved
by matrix inversion with éo to 90 meshes. Values of n up
to W = 15 are taken from Ref. (5), and higher energy
values are represented by n = constant. The results can

be divided into four separate cases:

(1) Elastic unitarity with exchange of p, N and N¥

Here one finds two different values of cut-off.

WC = 18.5 and 25.1, which produce N¥ at W = 8.8 (1236 MeV




by

centre of mass energy) in P33 channel (Figure 12).
The lower cut-off gives the same results as in Ref.
(9) to (11), and produces the nucleon as a bound
state in'P11 channel. The higher cut-off, however,
gives positive scattering lengths aq and a3 in S11

and S channels respectively, and at the same time

31
the bound state nucleon pole moves above threshold to

give a P, resonance (Figures 12 and 14 to 21).

(2) Inelastic unitarity with exchange of p, N and N¥

With inelasticity included, the P33 and D33
waves were computed first by assigning values to n
(W > 15.5) for these channels in such a manner that the
minimum of the curve for output P33 resonance position
plotted as a function of WC appears at W = 8.8 (Figure
13). The value cf cut-off at this minimum is then used
to compute the other J < %-partial waves. The results

and D 3 partial waves up to 1500 MeV

for Pl3’ P31, P33 3

pion laboratory energy are found to be in betfer agree-
ment with experiments than in Reference (10). 1In the
case of 831 wave, inelasticity tends to make the
results worse unless a lower cut-off WC = 18 is used,
in which case a very good fit to experimental results
for both S and P wavés can be obtained. It may be

31 31
noted from Table I that the computed values of WC in the
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J=%, I=% waves are around 21.0, and that a choice

n=1l for W > 15.5 in 831 has been made in using a cut-
éff WC = 21.1. In the coupled Sll and Pll waves,
adjusting n (W > 14.5) in these channels to obtain a
bound nucleon at W = 6.7 in P11 gives negative values
of phase shifts for all energies in both channels, in
disagreement with experimental results. If . n (W > 14.5)
in these channels are adjusted to give a correct value
of scattering length a, = 0.18 in S,7» the nucleon

pole is pushed above the threshold to give a Pll resonance.

It is not possible to produce a D13 resonance in this

calculation.

(3) Elastic unitarity with exchange of o, p, N and N¥

The main reason for ihcluding the isoscalar o-
meson in the potential is to study its effect on the
coupled Sll’ P11 waves. Two values of the coupling
constant Go’ Go= t12, are considered and the cut-off
WC is again computed from the coupled P33, D33 waves by
demanding a P33 resonance at W = 8.8. The results show
that the effect of the o-meson with the same cut-off is
to shift the computed N¥ resonance position down if Gc

is positive (Figure 13). It may be noted that there is
8.8

1603

no value of cut-off which produces the N¥ at W

if Gc = =12, The cut-off's for Go = 12 are WC
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and 27.7, and the J < 3 phase shifts computed with these
cut-offs are similar to those in case (1) with WC = 18.5
and 25.1 respectively. For a given cut-off WC, it is
found that the effect of o-meson is to make the nucleon
more tightly bound in Pll if Gc is positive. To be more
specific, with WC = 21.1, Go = 12 gives a bound state
nucleon at W = 7.5 while Gd = 0 gives a resonance at

W = 8.1 (the nucleon bound state is lost), and G, = -12

results in the phase shift rising to a maximum of about

85° at W = 9.6 (Figures 15 and 23).

(4) Inelastic unitarity with exchange of o, p, N and N#¥

With inelasticity and requiring that there be
only one cut-off WC giving N¥* at W =V8.8, the effect of
increasing Go (Go > 0) is to require the high energy
D33 partial waves to be more and more inelastic, and
correspondingly the high energy.P33 wave less and less
inelastic (see Table i). The coﬁputed cut-offs are
around 20.5. It is also found that a positive value of
Go makes the nucleon more tightly bound in Pll channel.
For example, with WC = 21.1 and requiring a; = 0.18 in

S = 12 gives a bound state nucleon at W = 7.6,

11> G4

G, = 0 gives a Pll resonance at W = 8.6 while Gc = =12

has the phase shift rising to a maximum of about 80° at

W = 10.1.
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VALUES OF INELASTIC PARAMETERS FOR W>15.0 AND CUT-OFFS

FOR DIFFERENT PARTIAL WAVES

Table I
G, | WwC 23 2 |y (W>15.5) Imn(g.qy.(W>15.5)
12 | 20.1 3 3 1.00 0.54
-12 20.1 | 3 | .3 0.55 0.80
-12| 20.9 3 3 0.63 - 1.00
0o | 21.1 3 3 0.94 1.00
o | 21.1°| 3 3 . 0.89 0.80
0 | 21.1 3 3 0.82 0.90
o | 21.1 3 1 0.10 0.80
0o | 21.1 1 3 0.60 1.00
Table II -
¢, | we 23 | o1 n;+(w§14.5) ny_(W>14.5)
12 | 21.1 1 1 0.62 0.69
0o |21.1 1 1 0;32 0.75
-12| 21.1 1 1 0.17 0.73
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F. Conclusion

The foregoing analysis shows that oneAcén obtain
good results for the S31, P3l’ P13, P33'and D33Vphase
shifts with the inclusion of inelasticity above 700 MeV
pion laboratory energy, and freedom to adjust the cut-
offs for different coupled waves. The success of multi-
channel calculations on Pll partial wavel3-15), and the
non-equivalence of single- and multi-channel treatments23’2a)
confirms the general belief that one cannot secure both
a dynamical bound nucleon and a Pil resonance in one-

channel calculations..
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APPENDIX A

MANDELSTAM REPRESENTATION OF INVARIANT AMPLITUDES

It was shown in Section 3B that the dynamics of
7N scattering is contained in the invariant amplitudes
ABa(s,t,u), Bsa(s,t,u). Ignoring isospin considerations,
crossing symmetry implies that these amplitudes also
describe physical.scatterings T™N > 7N in the u-channel
region obtained by replacement'ql > -q,, and nw +.Nﬁ
in the t-channel by replacement p; & -q,. To obtain
a meaningful continuation of A and B from one physical
region to the other, Mandelstam®’’) conjectured that A, B
bare analytic'functidns of s,t and u. 7All its singularities

arise from bound states and kinematical cuts in the.s,t,u

channels. Hence,

1 T
Rs Ry o o B,,(s',u")

- 1
B(S:t:u) = 2os + m2_u + ,n__2 s 2dS' f 5 dut (s'-s)(u'_u),
) (m+1) (m+1)
0 ) B . (s',t")
1 st 2
(m+1)
© © But(u',t')

(A1)

1l
+ Tr—z f 2 du’ {; dt' (u'-u)(t‘-t) s
(m+1)



62

which can be rewritten in a one-dimensional fixed s

dispersion relation

Bls,tou) = -+ — *%ﬁ“'—?:r-

B (s,u') ‘
1 ® N
- ( S S , (42)
m+1)
with
© B_.(s',t")
By(s,t') = & f as' =2E 2
(m+1)°
; @-1)%-tr By (s',t)
- F S ds s'=s > (A3)
-0
B rou!
B,(s,u') = L ? ds!’ su:?-; :
(m+1)°2
2 4 1 1
1 2m -2=1 But(s u )
- — ]
- S ds =TS . (AL)

- The expressions for A(s,t,u) are similar, with the
exception that the poles in s and u are absent as a result
of the bseudoscalar property of the pion. The double
spectral fphctions Bsu’ etc., are real and vanish outside
The regions whose asymptotic limits are the limits of the
integrals in Equation (Al). A detailed discussion of these

boundary curves is given in Reference (25).
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When 1sospin is taken into account, the matrix

} e |
Toy = Agog + —2— BBa , - | (A5)

between final pion isospin index B and initial index o

can be,decompdsed into symmetric and antisymmetric

parts
_ + .1 n -
Tog = Sga T * 3 [%B, L (46)
Comparing with
3 3 i1 :
_ m2 A2 2 2
Tgy = T° Qg * T Qg (AT)
and using Equations (B2), (B3)
+
+ 1 2 2
T 3 3 T
- 5 , (A8)
- 1 1 2
T 3 -3 T
from which
= mt -
T, + =T - T
TP>+T P
(A9)
T =T +q" .
TPp>T D

Crossing relation between the s- and u-channel
amplitudes can be obtained. from the fact that the amplitude

* is invariant under exchange qq > =45, B e a. Since
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=35
tion reads,

Qg = =g implies s «= u, t — t, the crossing rela-

TBa(s,t,u) = Tas(u,t,s) : (A10)
which, with Equation (A5), gives
+ +
T (s,t,u) = ¢ T (u,t,s) . (A11)

The amplitudes A and B are independent of each
other, since B depends on nucleon spin but A does not.

Their corresponding equations read

_ + 1 -
Aoy = Sgoh” + 3 [tgst, ] &7 (A12)
- + .1 B
Bgy = 8guB * 3 [ie,ra] B~ , (A13)
A+ B+ % %_ A1/2 B1/2
- s (A1lY)
- - 1 1 3/2 3/2
A B 3 3 A B
and
+ +
A7 (s,t,u) = £ A" (u,t,s) , (A15)
+ ' - _+
B (s,t,u) = ¥+ B (u,t,s) . (A16)

The inverse relations are

al/2 gl/2 1 2 A
( , A

1372 32
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1 1 | 1 1
2%(s,t,u)  B2(s,t,u) -% % 2%(u,t,s) -B2(u,t,s)
3 3T 3 3 |
A%(s,t,u) B3(s,t,u) % % A%(u,t,s) -B%(u,t,s)

- (A18)
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APPENDIX B
PROJECTION OPERATORS

For 7N scattering (Figure 9) with a bound state
nucleon in the s-channel as an intermediate state, the

matrix element Sfi contains a factor TBTa which must be

proportional to the projection operator QE& ohto'isospinj

space I = % of the 7N system. By property of projection

operator

Q% Q% = q* (B1)

one arrives at

(B2)

The projection operator Q3/2 onto isospin space I = 3/2

is given by

3/2 _ 1

Q = Gsa -3 TgTy (B3)
since it satisfies

Q372 @372 = 372 ‘ (B4)
and

Q32 Q% =232 =0 . ' (B5)
With the aid of relations

TgTy + ToTg = 2 GBa’ (B6)

;E.Era"rs]= i €aBy T'Y’ (BT)
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(B8)

(B9)

(B10)
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APPENDIX C

AN ESTIMATE OF THE COUPLING

CONSTANTS g AND GG

omT

The isoscalar o-meson (I=0, J=0) is a hypothe-

tical particle with mass and decay width I'(o»ww) in

»

the range
m_ = 500 - 900 MeV , l
(c1)
I' = 100 - 450 MeV . /}

The dipion resonance can be employed to take into account
the strong attractive force between two pions. Its mass
and coupling to the nucleons has been estimated by Bryan

and Scottls) in the analysis of N-N scattering to be

mG = 560 MeV
and (c2)

EsNN
—E?——9.4 .

We would assume ggNﬁ = giNN in our calculations.

In order to estimate the value of'g?,mr from the
decay width I'(o+mm), consider the decay at rest of o,

momentum p, into two pions of momenta d475 Qp with

X, =g, 009

pu

]
~N\
£

9) ) qli = (w, g) > 4y T (w, —C_l)
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and vertex function

n .
2gmm(21r)46 (p - ql - q2)

. 80 that

1 1 |
H } ox
(2m)3’ %35 (2m)3/% 3

Sey = (-1) {

b 4 ' 1
{2g___(27) "6 "(p-qq-a,)}{ I
OTT 1 2 (2,",)3/2/21110-
Recalling that the units are'ﬁ=c=p=1 ahd the volume per
particle is (27)3, the transition probability per unit

time per unit volume is

2 2
: -4
1 2 .3 3 gcnw o
T'(o»mm) = ———=— SS|S,. d q-.4d = .
(21) ~3vT 18,17 9,879, = 57 mg
(c3)
Hence
2 2
=g _my T'(o»>7m) - 1
Qo — - 5
2_y
(o]
(ca)
g g\
G, = %.‘M =~ *11.7

with choice m = 560 MeV = 4y , and T = 420 MeV = 3u .

It is not possible to determine the sign of Gc’ since

only the quantities ggNﬁ and ggﬂ“ can be calculated.
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CHAPTER TWO

EFFECTS OF INELASTICITY ON RESONANCES
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Real part of S-wave phase shift vs s.

— -~ -~ Elastic unitarity, A4= =500, A2=3228.7,

—-—f-}—0=0.1, a=16, b=2%,
— —~ — 0=0.25,a=16, b=2k,

————— 0=0.25,a=18, b=22,

Figure 2

——————Elastic
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—— iy .a=0.25,

Figure 3
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A=l
A=l
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Real part of S-wave phase shift vs
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a=21, b=29, A=l;

unitarity;

a=21, b=29, A=l;

a=23, b=27, A=2;

Real part of S-wave phase shift

SR=25.0, I'=10.59

unitarity;
a=36, =38, A=i;

a=30, b=38, A=4;

a=32, b=36, A=2;

25.0, T

R

25.0,

= 2000;
10.59.
r=1.09

S

=20.6,

g=19.6, I=0.18

55=20.2, I=0.26

S'
I'=10.59

sp=24.6, I=0.92
sp=24.0, I=0.26

sg=24.6, TI=0.22

Vs s.
sR=33.0, r=1.21

sg,=21.7, Ty =16.0,
Sg,=32.9, Tp =0.24
sg,=23.3, Tp =12.8,
SR2=33.2, FR2=0.43
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Figure 4 :. Real part of P-wave phase shift wvs s.
————Elastic unitarity, Al=2.515, sl=100;
sR=25.O, T =13.07
— == i4=0.1, a=16, b=24, A=k; s5=26.0, I=9.61
— ——=- 0=0.25, a=16, b=24, A=l; sR1=16.O, rR1=1.42,
s, =27.3, PR2=7.53
—— =7 0a=0.25, a=18, b=22, A=2; SR1=17‘6’ PR1=1.2&,
sR2=26.3, PR2=9-03 91
Figure 5 : Real part of P—wéve phase shift wvs s.
Elastic unitarity; sR=25, I'=13.07
—- ——0=0.1, a=21, b=29, A=l; sp,=20-6, Ip,=3-41,
sR2=29.6, rR2=9.41
———0a=0.25, a=21, b=29, A=4; sR1=l8.l, PR1=30.3,
st=32.5, PR2=9.47
———==0=0.25, a=23, b=27, A=2; s; =20.0, Ig,=3-82,
st=30.2, PR2=8.85 92

Figure 6 : Real part of P-wave phase shift vs s.

- —Elastic unitarity; sR=25, r=13.07

—-=—a=0.1, a=30, b=38, A=4; SR1=22'5’ rR1=8’17’
sR2=39.6, rRz=29'00

— —~—a=0.25, a=30, b=38, A=4; sR=20.4, T =5.17

————=—0=0.25, a=32, b=36, A=2; sR=21.8, T =7.03 93

Figure 7 : Output & evaluated with inelastic potential

only. 95



75

1. INTRODUCTION

In the field of strong interaction physics
resonances that can be understood in the elastic
approximation are very few. The only such example in
7N scattering is the N¥(1236 MeV) resonance which has
been studied by various authorsl). When dynamical
calculations were performed on other resonances sﬁch as
the p-mesonz)_using elastic unitarity, the width invari-
ably came out too large compared with experimental results.
Since inelastic channels had been ignored, it was hoped
that the results could be improved with the inclusion of
inelasticity.

The effect of inelasticity on a resonance has not
been investigated in the general case. While the correct
approach is to solve a full multi-channel problem, the
complexity of this calculation is enormous and forbidding.
Special cases with two or three channels have been studied
by many authors, notably Fulco, Shaw and WongB), and Nath
and Der Sarkissianu). In the examples examined Fulco et
al. found that inelasticity moved resonances closer to the
threshold with reduced widths; Nath and Der Sarkissian
also found that the effect of inelasticity on a resonance
was attractive, but the width could be increased or

decreased. An example of single channel N/D calculation
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with inelastic unitarity is the p-meson problem studied
by Coulter and Shaws). It was found that the resonance
width was reduced on inclusion of inelasticity.

The present work is a study of the effect of in-
elasticity on the position and the width 6f resonances
in a more general scheme using a simple model. The
model is so designed as to be (1) amenable to an analytic
solution in the absence of inelasticity, and (2) to
obviate the need for a cut-off. It is assumed that a
single-channel calculation faithfully simulates the
results of a multi-channel calculation. This precludes
the possibility of the inelastic channel being so strong
as to produce a bound state in the continuum region of

the elastic channe1.6)

2. KINEMATICS

Consider the s-channel elastic scattering of two

equal mass, spinless particles with mass m and 4-momenta
P>

a; +a, > ag +ay, .
The Lorentz invariant amplitude A can be written as a
function of three variables

)2

s = (py+ p, (pgt p4)2= 1(k%+ n®)3in®

t = (py- p3)2 = (p,- p4)2= ~2k?(1-cos6)<0 (2.1)
)2

u = (pl- p4)2 = (p2- p3)°= -2k2(1+cose)<0
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satisfying the condition
S+t +u-=4m? (2.2)

imposed by conservation of energy-momentum. Here, working
in the centre of mass system, 6 is the scattering angle,
k is the magnitude of 3-momentum, s is the square of total
energy, and t,u are momentum transfers.

Two other physical scattering processes can be
related to the s-channel reaction by crossing:

(1) t-channel scattering

where 52, 53 are antiparticles of. a5, a3 respectively.

The momenta of these antiparticles are given by

(2.3)

I
|
'C

p—
3

Here, t (tz#mz) plays the role of energy variable and s,u
(s,ug0) as momentum transfers.

(2) u-channel scattering

aq

where 52, 54 are antiparticles with momenta

(2.4)
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Here u (u 2 4m2) is the energy variable and s,t (s,t <0)
are momentum transfers.

The physical regions for the s-, t- and u-channels
are separated from each other by an unphysical region
which does not corresponding to any physical process at
all. To obtain a meaningful continuation of the ampli-
tude from one region to another, Mandelstam7) postulaﬁéd
that A(s,t,u) is an analytic function of s,t and u. All
discontinuities arise from bound states and physical cuts

in this channel. Thus, except for possible subtractions,

® p,(s") o p,(t")
A(s,t,u) = % J ds! 2 - + % J dat! =2 +
4 1
4m2 s'-s 4m2 t'-%
o po(u’) ® p,(st,t")
% S du! 3 4 _;2_ f f ds'dt! 12 2 +
v | |
leZ u'-u m umz um2 ( S S ) (t t )
= 5§ at'qur —23 7 +
ki) amz um2 (t'-t)(u'-u)
© © P (u',s )
4%- J J du'ds’ 31 . (2.5)
™ 4m2 4m2 (u'=u)(s'-s)

The one dimensional integrals arise from Feynman graphs
with single particle intermediate states. The double
integrals arise from intermediate configurations where

two or more particles are present in all three channels.



79

An extensive discussion on the evaluation of these double

spectral functions and their boundary curves can be found
8)

in Reference ’. 1In terms of s and 6 ::.

A(s,8) = =fds' ——— + = Jat'
T st-s 7 t1+2k%(1-cos0)

Au(s,4m2—s-u',u')

+ %-I du! 5 (2.6)
u'+2k“(1l+coso)
where
3 ]
1 P1o(s",t)
At(s,t,u) = p2(t) + Ff ds! —sT=s
‘ p,o(ust)
+ %Idu' '2—3'—-:u_' (2.7)
P (u,st)
= 1 7
Au(s,t,u) = p3(t) + 1TJ'ds' -
Pro(u,t')
+ %fdt' '2_1?-:?@_ . (2.8)
The discontinuity At can be written as a sum
At(s,t,u) = Vz (s,t,u) + Ai(el)(s,t,u) (2.9)
S(el) [ A
p (s',t)
a3V (s pu) = Lrasr 22— (2.10)

where piéel) is the contribution to P12 from elastic

intermediate states in the s-channel and V: is the

'generalized potential'7’8) for the s-channel generated
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by the t-channel. Similarly

A (s,t,u) = V:(s,t,u) + Ai(el)(s,t,u) (2.11)
s(el) .
P (U.,S')

Ai(el)(s,t,u) = %ufds' 31 - (2.12)

with V: playing the role. of generalized potential for the
s-channel generated by the u-channel. Once Vg, Vg are
given, the scattering amplitude A(s,0) can be solved
completely.

The usual representation for partial wave amplitude

with orbital angular momentum £ is

2ié8(s)
_ _n(s)e -1
A(s) = 2ip(s) s (2.13)
p(s) = ; " (2.14)
giving
2
Im A(s) = p(s)[A(s)]|® + l—-ﬂpngé—sl . (2.15)

Here n (0 € n<1) is the inelasticity parameter, § is the
real part of phase shift and p(s) is a kinematical factor.’
The units used will be h=c=1l. Comparing this with the
partial wave projection for A(s,8) in Equation (2.6) and

using Equations (2.9) and (2.10), the imaginary parts of

A(s) are
Pl 2 1 1
Im A "7 (s) = p(s)|A(s)]|® = 35— J d cos® P, (cos8) x
-1
Im A:(el)(s,t',ﬂmz—s-t') Im Ai(el)(s,HmZ—s—u',u')
{ rate: 5 — + [ du’ 5
t' + 2k“(1 - cos8) u' + 2k“(1 + cos8)

(2.16)
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on the unitarity cut P (4m2 £ 8 £ ®),

_ 1 - n2(s)

Im AQIA'(S) = Ty

1
1
pl(s)sz,o + 5= _{ d cos6 Pz(cose) x

t
Im VS(s,t',hmZ-s-t')

{sat >
t' + 2k“(1 - cos®)

Im Vg(s,4m2-s-u',u')
1 (2.17)

+ [ du? 5
u' + 2k°(1 + cose)

on the inelastic cut I (sI £ S £ ) with threshold Sts

and

1
J d cosé P,(cos6){Re At[ﬁ(k2+m2), -
-1

nj -

Im AU(s) = -

2k2(1 -~ cos8), -2k2(1 + cos@)] +

Re Au[ L (k2+m2), —2k2(l-cose), -2k2(1+ cos8)]}
(2.18)

on the unphysical cut U (-» < s < 4m2).

The discontinuities At’ Au are made up of contri-
butions from different kinds of intermediate states, and

I (s) are similarly composed of additive

Im AY(s), Im &
parts. For example, an intermediate state of mass u in
the t- or u-channel would give a non-zero contribution to

Im AU(s) in the interval s = - to (4m2—u2). Thus one
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expects the least massive particles which produce the
longest range forces to dominate the néarby region of
the s-axis below the physical threshold. As one goes
farther and farther to the left more and more massive
particles which produce shorter range forces enter the
picture as well. This result is very useful. It
implies that low energy scattering is dominated by the
longest range, much better known forces; the shorter
range, less understood forces can be taken into account

approximately by a few parameters such as cut-offs and/

or distant poles.

3. EQUATIONS

We shall consider the S- and P-wave scattering
of two unit mass, pion-like particles in the centre of
mass system with the partial wave amplitude given by
Equation (2.13),

_n(s) e216(s) -1

A(s) = 51p(5) . (2.13") (3.1)

This amplitude can be written as a sum of Cauchy integrals

over the unitarity cut P, inelastic cut I and unphysical

cut U,

A(s) = aF(s) + al(s) + aUcs) . (3.2)

If one writes

~
4]

A(s) = g

1]

) (3.3)
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and proceed to solve the N/D integral equations for

A(s), the threshold condition

1s not satisfied for 2>1. To ensure the correct
threshold behaviour, we follow the Frye and Warnock

prescriptionB) by constructing a new amplitude

A(s)= 6(s) A(s) = HEM(s) (3.5)
8(s) =(s - 4)7% (3.6)

.and proceed to solve the integral equations for [6N] and

D. Choosing the phase D(s) in any partial wave as

%%g— = 218(s) s >4 (3.7)
one has

In D(s) = - 2280 Re N(s), s >4, (3.8)

In N(s) = 2535 re D(s), s 3 s, (3.9)

and on the unphysical cut U,
Im N(s) = D(s) Im A(s) . (3.10)

The integral equations for BN] and D are as follows
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_ 1 e(s )D(s! )Im A(s'") .
8(s)N(s) = F ! e ds' +
< ! 8 lgg%g}% Re D(s')]ds' (3.11)
and
D(s') = 1+ —0 ; [L _20(s") o N(s') s
87 = T3 I3%T§TT ¢ Nis (s'-s)(s'-égf .

(3.12)

A subtraction has been made on the D function at the
symmetry point 5,= %u. On substituting Eq. (3.12) into

(3.11) and reversing the order of integration,

. ) 1, '
lig(:}[ﬁ(s)Re N(s)] = Q(S)B(s) + %'é 291 isnzg$§ )

6'-s,)0(s")B(s")=(s-5_)8(s)B(s)
8(s')Re N(s {] [ G =) (5= so) ]ds
s >4 (3.13)
where
= =1 ,8(s)Im A(s*) ., . 1 8(s")fl-n(s")]._,
8(s)B(s) = ;-é TS ds' + =P f sT=5 | 2p(sT) ds'.

(3.18)

The resonance width, with kinematical factors included,

is obtained from the Breit-Wigner form
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Lim A(s) =« 1 T (3.15)
S*sSp (ER-E) - 5T
to give
_ V/s=& Re N
I'=s-s@my TreD (3.16)
ds s=sg

where SR is the resonance position definéd as the energy
where § rises through 90°.

The potentials chosen are such that one can solve
the dispersibn relations analytically when elastic uni-
tarity is employed. For the S wave (%=1, 61) the model

1s that of scattering by two exponential potentials,

. 2 A
% I EETALEL ds' = 3 s+; (3.17)
U 5°=8 i=1 i

with Ai, Sy chosen. to give a short range attraction with
a repulsive barrier.  In the P wave [2=1, 6(s)=(s-&)-1]-

a single pole is used

A
1 8(s') Tm A(s') 5., - _"1
T s -s ' sy o (3.18)

To avoid divergence difficulties, the inelastic parameter
used is a step function with rounded edges, i.e.
l-2¢ +'acos(§§§ m), a<s<a+A
n(s) =¢ 1 - 2a > a%A<ssb-A (3.19)
l1-oa+ acos(gi§jﬂ s b=A<s<b ,

1 s Otherwise
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4. RESULTS AND DISCUSSIONS

An elastic resonance at an arbitrary point sR=25-
was secured by adjusting the pole parameters Ai, Sy -
With these parameters fixed, three separate cases with
Sp (a) above the inelastic region (region where n(s)#1),
(b) embedded in the inelastic region, and (c¢) below the
inelastic region were studied. The results were as
follows:

S wave

The choice of parameters that gave an elastic
resonance at s,=25 was A= =500, A,= 3228.7, s,= 150,
S, 2000. Inelasticity was then switched on and the
following three situations were studied:

(a) b < Sp (Figure 1)

We found that inelasticity switched on and off
below Sg decreased the resonance mass and reduced its
width; weaker inelasticity made these effects less
pronounced.

(b) a < Sg < b (Figure 2)

With the parameters used, the results were similar

to case (a).

(¢) a > Sk (Figure 3)
If n was sufficiently different from unity, double
resonances were produced - one (denoted by Rl) below Sgp

and the other (R2) above it. Compared with the original
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resonance, R2 had a smaller width whereas Rl had a
larger width. It was also found that Rl disappeared
if the extent by which n departed from unity was
reduced.

P wave

The parameters used to give a resonance at sR=25
were Al= 2.515, S,= 100.

(a) b < sp (Figure 4)

We found that a weak inelasticity (n = 1) increased
the resonance mass and decreased its width; stronger
inelasticity enhanced these effects and at the same time
produced a second resonance (denoted by Rl) below Sp-

A narrower inelastic region had the two resonances
closer together.
(b) a < sp <b (Figure 5)

It was found that the general features were very
much similar to case (a). In the examples given, double
resonances were obtained.

(e) Sp <a (Figure 6)

Double resonances were obtained if n=1l in a narrow
region. The higher mass resonance disappeared if the
width of this region was increased, or the value of 7

differed considerably from unity.

From the definition of generalized potential and

the Ball-Frazer mechanismg), one expects the inelastic
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channels to produce an energy dependent potentiél which
is attractive below the region where n#l (s. <a) and
repulsive above it (s > b). If the elastic potential
is monotonic, as is the case in the P-wave problem, the
total potential at energies s < a would be more attrac-
tive and thus i1f there was an elastic resonance at

Sp < a one would expect it to move toward the elastic
threshold. On the other hand if the elastic resonance
was at an energy Sp > b then one would expect it move
away from the elastic threshold.

The Ball-Frazer mechanism also indicates that the
effect of inelasticiﬁy in a limited.energy region is to
put a wiggle on the phase shift. This is demonstrated
in Figure 7 where the phase shift has been sketched for
the case where inelasticity alone 'drives' the reaction.
The wiggle may be large enough in certain cases, in
particular for broad resonances, to take the phase shift
through 90°, bring it down below 90o and finally take it
up through 900 again as the energy increases, thereby
producing double resonances.

Our results for the P-wave problem bear out this
intuitive picture. The centrifugal barrier provides the
resonance trapping mechanism. The elastic potential is

attractive and monotonic. The results of the S-wave




Figure 7

‘95 




problem however demonstrate that the intuitiverpiCture
which worked so Well for the P;wave breaks dQWn."The

reason probably is that the S-wave potential used wés

not mohotonic., A repulsive barrier (with:a relati#elyv
short range)_was provided to trap the reSohance and it
1s not so clear as to how one should expect the

resonance to behave once lnelasticity is sWitched on.
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