University of Alberta

VIRTUAL APPLICATION APPLIANCES ON CLUSTERS

by

Erkan Unal

A thesis submitted to the Faculty of Graduate Studies anddtel
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Erkan Unal
Spring 2010
Edmonton, Alberta

Permission is hereby granted to the University of Albertarafies to reproduce single copies of this thesis and todend
sell such copies for private, scholarly or scientific reskgqurposes only. Where the thesis is converted to, or oteerw
made available in digital form, the University of Albertali@dvise potential users of the thesis of these terms.

The author reserves all other publication and other righ&ssociation with the copyright in the thesis and, excepieasin
before provided, neither the thesis nor any substantiglgrothereof may be printed or otherwise reproduced in any
material form whatsoever without the author’s prior writfgermission.

Examining Committee
Paul Lu, Computing Science
Alex Brown, Chemistry

Martin Jagersand, Computing Science

To My Parents
For always loving and supporting me.

Abstract

Variations between the software environments (e.g., liestapplications, versions of libraries) on
different high-performance computing (HPC) systems leaa heterogeneity problem. Therefore,
we design an optimized, homogeneous virtual machine (VMgaa virtual application appliance
(VAA). Scientists can package scientific applications, afidupporting software components, as
VAAs and run them independently from the underlying heterempus HPC systems. However,
securely moving data in and out of the VAA and controlling éh@cution of applications are not
trivial for a non-computer scientist. Consequently, wealep two automated stage-in/stage-out
secure data movement mechanisms. We also explore a mignagichanism to further simplify the
control of the VAA execution.

Empirical evaluation results show that VAAs achieve neative performance in widely used
bioinformatics applications that we tested. Data movemékt boot up, shutdown and migration

overheads of VAAs are negligible with respect to total rimets.

Acknowledgements

| would like to thank my supervisor Paul Lu for his guidancatipnce and continuous support
during my studies. Most importantly, he taught me how to beadgscientist. | must thank the
Trellis research group members Cam Macdonell, JordanrBattend Jeremy Nickurak for their
help when | had some problems with my research. Mark Berjafrskn the Prion research group
also deserves to be acknowledged for sharing his knowletypraviding GROMACS data and his
Python scripts for the evaluation part of my thesis.

My “buddy” Anum Usman (aka “Anum the Eks”). Thank you for yogreat friendship and all
the fun moments.

Finally, | would like to thank my mom and dad for their uncaiaal love and support. | am so

lucky to have them.

Table of Contents

Introduction 1
1.1 Contributions 6
1.2 ConcludingRemarks e 7
Motivation and Background 8
2.1 Benefits of Virtual Application Applianceson Clusters. 8
2.1.1 BenefitstotheUser. 9
2.1.2 Benefits of VM Migration o o 9
2.2 Challenges of Using Virtual Application Appliances olugters 10
2.2.1 Virtual Application Appliance Execution and Data Movent 10
222 SECUMtY o e 11
2.3 MotivatingExample e 11
2.4 Background 12
2.4.1 How Virtualization Became Widespread? 12
242 ConceptsandTerms 3
2.5 ConcludingRemarks e 15
Design and Implementation of Virtual Application Applian ces 16
3.1 KeyDesignDecCiSionsS e 16
3.2 Security Infrastructure e 17
3.2.1 Criteria of the Proper Security Policy 18
3.2.2 Security Policies Based On Initiators 18
3.3 VM Disks and Virtual Disk Repository 20
3.4 Data Movement Mechanisms: Secure Copy Over Network apy Over Shared
Memory e 22
3.5 Automated Execution of Virtual Application Appliancass Clusters 23
3.5.1 Remote Submission Script oL 24
3.5.2 LocalSubmissionScript 27
3.5.3 WrapperHostScript 27
3,54 VMExecutionScript 31
3.5.,5 ForcedCommand Script 34
3.5.6 Migration Functionality 37
3.6 ConcludingRemarks e 38
Empirical Evaluation 39
4.1 Scientific Applications forBenchmarks 39
4.2 TestEnvironment e 41
4.3 Details of the EvaluationMethod 43
4.4 Secure Copy over Network Data Movement Benchmarks 45
441 GROMACSVAABenchmarks. 46
4.4.2 GAFolderVAABenchmarks 49
443 HMMerVAABenchmarks 50
4.5 Copy over Shared Memory Benchmarks 54
4.6 MigrationBenchmarks 55
4.7 ConcludingRemarks e 59
Related Work 60
5.1 Aggregated Resource Management. 60
5.2 Virtual Appliances e 62
5.3 Migration e e e 64
5.4 ConcludingRemarks e 66

6 Concluding Remarks

Bibliography

68
70

List of Tables

3.1 Comparison of the security policies 20
4.1 The scientific applications and auxiliary applicationed in the benchmarks (Inside
the VAAsandonthehost) 04
4.2 Checkers cluster configuration L. 41
4.3 Bothaclusterconfiguration 42
4.4 Virtual disk repository (VDR) structure (64 denotestttiee applications or OSes
are 64 bit) e 42
4.5 The VAAs and their VM disk combinations 43
4.6 Total inputand outputfile sizes of the GROMACS 500 ps herarks (Compressed/Un-
compressed) e e e a7
4.7 Checkers cluster GROMACS benchmarks: All the resuftd®®chicken protein (in
Seconds) L e 48
4.8 Checkers cluster GROMACS benchmarks: All the resuitdéHe turtle protein (in
Seconds) e e 48
4.9 Checkers cluster GROMACS benchmarks: All the result#hie human protein (in
SECONdS) e 48
4.10 Checkers cluster GAFolder benchmarks: All the regintseconds) 49
4.11 Total input and output file sizes of the GAFolder benatk®6Compressed/Uncom-
pressed) e 50
4.12 Checkers cluster HMMer benchmarks: All the resultséoonds) 51
4.13 Total input and output file sizes of the HMMer Benchmdf&smpressed/Uncom-
pressed) e e 52
4.14 CSM vs SCN data movement overheads: All the resulte@orgds) 54
4.15 Total input and output file sizes of the GROMACS 50 ps herarks (Compressed/Un-
compressed) e 54
4.16 Migration overheads: All the results (in seconds) @se Figure 4.15) 58
4.17 The general conclusions and quantitative evidence &wpirical evaluations . . . 59

51

Feature comparison of aggregated resource manageppdicbdions 63

List of Figures

BO® W0 PWOWE ® WO WOEK NNN BRee
P PR PP RPROO0 ~N OO0 AWNRFE WNRF AP

»
(V)

4.3

4.4

4.5

[R5 w N — O

A problem scenarioinonecluster L e 2

A problem scenario in multipleclusters 3
VM solution to the software heterogeneity problem 5
TheVAcontents. 6
Save and restore type migration: Wall-time avoidance. 10
The VMM that runs ontop of the hardware 14
The VMM thatrunsontopoftheOS 14
The VM initiator securitypolicy 19
The Host initiator security policy ww o . 19
Avirtual disk repository (VDR) example 20
Secure copy over network (SCN) and copy over shared mef@&M) data move-
mentmechanisms 22
The scripts and their execution order for both mechasiism. 25
A sample GROMACS VAA remote submission script for the RPB8 TORQUE
batchschedulers 6 2
The general and example command-lines for the submis§iGROMACS VAA to

the batchscheduler. 26
The remote submission script execution for only onetefus. 27
A simple local submission script for the PBS and TORQUfElbachedulers . . . 27
A sample SCN wrapper host script (WHS) for the PBS andQOR batch schedulers 29
The commands for creating a shared memory region ond$ieamd copying the
compressed input file to the shared memory region

A sample VM script for the SCN data movement mechanism 32
A sampleun.shcontents for the execution of the GROMACS application iaghe
GROMACS VAA. 33
General forced command script (FCS) hw oL 35
A public key with a forced command scriptline 36

Total execution time of the GROMACS VAA for different VMamory sizes nor-
malized to the host execution time of the GROMACS applicatibhe GROMACS

VAA achieves near-native performance for all proteins (@al4.7,4.8,4.9). 46
Data movement overhead of the GROMACS VAA for differeiM Yhemory sizes
(The numbers inside the parentheses show the compresgad 6lgt sizes which
affect the most of the data movement overhead). The datameveoverheads of

the GROMACS VAA are small with respect to total GROMACS VAAegxition
times which are more than 15 hours (Tables 4.7,4.8,4.9). a7
Sum of boot up and shutdown times of the GROMACS VAA fofedtifnt VM mem-

ory sizes. VM boot up/shutdown overheads of the GROMACS VAéamall rela-

tive to total execution times of the GROMACS VAA which are radhan 15 hours.
(Tables 4.7,4.8,4.9). e 48
Total execution time of the GAFolder VAA for different VMemory sizes normal-
ized to the host execution time of the GAFolder applicatibhe GAFolder VAA's

total execution times are comparable with the host exectitioe of the GAFolder
application (Table 4.10). 49
Data movement overhead of the GAFolder VAA for differsi memory sizes
(The number inside the parentheses shows the compresqad &ilg size which
affects the most of the data movement overhead). The datanmeut overheads of

the GAFolder VAA are small with respect to total GAFolder VVAXecution times
which are more than 59 minutes (Table 4.10). 50

4.6 Sum of boot up and shutdown times of the GAFolder VAA fdiedent VM memory

sizes. The boot up/shutdown overheads of the GAFolder VAfsarall with respect

to total GAFolder VAA execution times which are more than 5wumes (Table

4.70). .. e 51
4.7 Total execution time of the HMMer VAA for different VM meory sizes normalized

to the host execution time of the HMMer application. The Ih@nsive applications

can also have reasonable performance inside the VAA (Tab®4 52
4.8 Data movement overhead of the HMMer VAA for different VMemory sizes (The

number inside the parentheses shows the compressed olgmizdi which affects

the most of the data movement overhead). The data movemerteads of the

HMMer VAA are small with respect to total HMMer VAA executidimes which

are more than 52 minutes (Table 4.12). . 53
4.9 Sum of boot up and shutdown times of the HMMer VAA for diéiat VM memory

sizes. The boot up/shutdown overheads of the HMMer VAA arallswith respect

to total HMMer VAA execution times which are more than 52 ntesi(Table 4.12). 53
4.10 Data movement overhead of the GROMACS VAA with the CSMimagism for

different VM memory sizes vs. data movement overhead of tROMACS VAA

with the SCN mechanism for 512 MB VM memory size (The numbesidie the

parentheses show the compressed output file sizes whict tifeemost of the data

movement overhead). The CSM mechanism performs betterttiegaBCN mecha-

nism (Table 4.14). e 55
4.11 Data movement overhead of the GAFolder VAA with the CSkthanism for dif-

ferent VM memory sizes vs. data movement overhead of the GIRF&AA with

the SCN mechanism for 512 MB VM memory size (The number intlideparen-

theses shows the compressed output file size which affeetstist of the data

movement overhead). For small data transfers, SCN is ddaetdriay the SSH's

authentication overhead which is not part of CSM (Table®.14 56
4.12 Data movement overhead of the HMMer VAA with the CSM naeghm for differ-

ent VM memory sizes vs. data movement overhead of the HMMek Wih the

SCN mechanism for 512 MB VM memory size (The number insidegtimentheses

shows the compressed output file size which affects the nfidse@ata movement

overhead). For small data transfers, SCN is dominated b§8td's authentication

overhead which is not part of CSM (Table4.14). 56
4.13 Thevirshcommand-line for the save operation 7 5
4.14 Thevirshcommand-line for the restore operation 57
4.15 All migration benchmarks’ results (The numbers indite parentheses show the

sizes of the saved state files). The migration overheadsnaaél eelative to total
execution times of the VAAs (Table 4.16). 58

List of Abbreviations

BBS
CPU
CSM
FCS
GCC
HMM
HPC
KVM
MAC
NIC
(O
PBS
SCN
SSH
VA
VAA
VD
VDE
VDR
VM
VMES
VMM
WAN
WHS

Bioinformatics Benchmark System
Central Processing Unit
Copy over Shared Memory
Forced Command Script
GNU Compiler Collection
Hidden Markov Models
High Performance Computing
Kernel Virtual Machine
Media Access Control
Network Interface Card
Operating System
Portable Batch System
Secure Copy over Network
Secure Shell
Virtual Appliance
Virtual Application Appliances
Virtual Disk
Virtual Distributed Ethernet
Virtual Disk Repository
Virtual Machine
VM Execution Script
Virtual Machine Monitor
Wide Area Network
Wrapper Host Script

Chapter 1

Introduction

Scientists need to use high performance computing (HPQereextensively. From biology to
physics, their research may involve complex and long rupeomputations and/or simulations.
Processing time of scientific applications may take yeasslimited low-budget workstation con-
figuration depending on the characteristics of data. Usities are investing heavily to build HPC
centers (e.g. clusters) with high computation power to gstilts faster for scientific applications.
Also, projects like Trellis [39] are looking for ways to aggate different HPC centers to increase
the computational power. The Trellis group, with the helpafputational biologists and chemists,
had performed the CISS-1 and CISS-2 experiments for thisqaar[38]. As long as scientists need
to run more computations and simulations in a relativelyrstime, demand for HPC centers will
increase.

However, in most cases, adapting the scientist’s work to BE denter is not a straightforward
task due to incompatibilities between the software systhaithe scientist uses to prepare her work
and the ones on the HPC center. Operating systems (OSea)y ilersions and even security infras-
tructures may be incompatible with some of the softwaressystthat are intended to be installed or
executed on them. Problems due to incompatible softwatersygscan delay the scientific work or
limit the scientist with a specific software environment.

We can clarify the problems caused by incompatible softwaseurces by explaining how a
scientist uses the cluster from the preparation of her worthé execution. The scientist starts
to prepare her data and data analysis components beforel@mel common way is to use her
workstation for the preparation. It is convenient becahsestientist has full control of her system,
however, she has restricted access to the cluster envirdnB8lee needs to prepare programs, scripts
and application-specific configuration files for her own pagin her workstation. Then, she debugs
and tests all the details of the components with differetst sesample data.

The preparation takes several steps. Let us consider egisbieho uses a molecular dynamics
application called GROMACS version 3.2.1 [7]. GROMACS wan the UNIX systems; there-
fore, the first step is the installation of the applicatiorhgr workstation by including necessary

external libraries. The installation can be done by heiwetfy an experienced third person. Then,

she needs to decide the requirements of her work. She probablto prepare a script for the ex-
ecution of GROMACS and data analysis. She can use a scriltirggage such as Python [45] or
Perl [28]. In our example, let us say it is Python. After dediing, corrections and tests, when she
is satisfied with the performance of the components, shayrto deploy her work to the cluster.
During the deployment phase, she may not find the suitableuéioa environment for her work.
The GROMACS version that her work is prepared on may not b#éadola or different than 3.2.1
(Figure 1.1). She has to ask the system administrator taliise specific version that she needs. A
possible answer would be that it is not possible due to otbeple’s job dependency on the currently
installed GROMACS version. However, this problem can beesmbby returning to the preparation
phase and adjusting her work to the GROMACS version on theteiu However, this reworking
process may cause significant delays. Similar compayilplibblems may apply to Python and
any other third party dependencies of her scripts. Theeetbe reworking process becomes more

complicated.

The Biologist’s Workstation Cluster A

6. Execute GROMACS

1. Prepare data .
w th these conponents.

and data anal ysi s

conponent s X ERROR
2. Debug GROVACS \Ver si on
3. Test is not conpetible

4. Performance Anal ysis

A

5. Mwe data and
data anal ysi s Gonponent s

Installed Software Installed Software
GROMACS 3.2.1 GROMACS 4.0.3
Python 2.6 Python 2.6

Figure 1.1: A problem scenario in one cluster

Deployment problems increase if she wants to use otherechiiir more computational power
(Figure 1.2). In addition to the single cluster problems khs to consider where to store the input
and output files on each cluster. The convenient placememdssingle location for all the output
files and spread out the input files across the clusters. Taement simplifies data analysis.
However, she has to do extra work for the placement of dataseraucross-domain file system
like TrellisNFS [11]. Even if a cross domain file system isitatae, as the Figure 1.2 shows that
the scientist can execute her work only on Cluster C. Theege&he cannot use the computational
power of other two clusters due to GROMACS version inconiyilitii on Cluster A and lack of
GROMACS software on Cluster B.

One well-known way is to use Virtual Machines (VMs) to soltie sbove-mentioned problems.

5. Qopy data and
data anal ysi s onponent s

6. Execute GROVACS
w th these conponents.

X ERROR

GROMACS Versi on
is inconpetible

Installed Software
GROMACS 4.0.3
Python 2.6

Cluster A

The Biologist's Workstation

1. Prepare data
and data anal ysi s
conponent s
2. Debug
3 Test
4. Perfornance Anal ysis

Installed Software
GROMACS 3.2.1

Python 2.6

5. Qopy ¢ata and
data anal ysi $ Conponent s

6. Execute GROVACS
w th these conponents.

X ERROR

GROMACS is not
installed

Installed Software
No GROMACS
Python 2.6

Cluster B

5. Qopy data and
data anal ysi s Conponent s

6. Execute GROVACS
w th these conponents.

V Executi on Successf ul

7.l lect Qut put

Installed Software
GROMACS 3.2.1
Python 2.6

Cluster C

Figure 1.2: A problem scenario in multiple clusters

A VM is an efficient solution in HPC to address the heteroggrmioblem for the deployment of
software systems. A VM can be deployed such that softwargeswged inside a VM even if the
software is incompatible with the underlying system (ilee host system). One can easily create
a VM and put every necessary requirement of the softwardersivVM image. These components
include an operating system (OS), libraries, applicatjpecic configuration files and virtual ver-
sions of its hardware resources. Hence, a VM creates a fudigtional environment for the software
without any change to the underlying system. The only respént of the VM solution is a single
application installed in the underlying system to execul4sV This type of application is called
virtual machine monitor (VMM) or hypervisor.

In Figure 1.3, we can see the VM solution to the problems iufgdL..2. In Cluster A, the VM
solves the version incompatibility problem. In Cluster Be /M can exeute the user’s job even if
there is no GROMACS software present on the underlying syst€luster B also shows that the
only requirement is an application such as KVM [25] that estes the VM. Consequently, without
the VM, the user has to limit herself to Cluster C but with thiel\6he can use the computational
power of other clusters too.

Apart from addressing the heterogeneity problem, HPC egfitins can also benefit from VM
migration. In this dissertation, we examine VM migrationsaecovery mechanism after failovers
and workaround for the cluster’s wall-time limit. VMMs caav& the VM states at regular intervals.
Later, VMMs can use these saved states to return to the p®giate of the execution in case a
failure happens. This technique is known as applicatiortigh@inting. Also, the batch scheduler
terminates the job after the wall-time has run out to pretlemtiser or user’s job from monopolizing
the cluster. Therefore, in case the user’s job needs moegtiromplete the execution, the VM state
can be saved just before the wall-time has run out and restam this saved state by resubmitting
the user’s job to the batch scheduler again.

Although VMs have all of these benefits, they introduce twompaoblems [32]. First, most
of the contemporary VM products can run only on x86 systenmeceSx86 systems are ubiquitous,
this limitation is not a big problem. The second and most irtgett problem is that applications run
slower when running on just an OS (host OS) and hardware be@W MM puts another software
layer between the OS and hardware.

To maximize the performance of a single application indideMMs, packaging the applications
as virtual appliances (VAs) is useful [40], [46]. A virtugd@aliance (VA) can be defined as a highly
optimized, pre-built and ready-to-run software packagh wicompatible operating system, running
under a virtual machine (VM) (Figure 1.4). A VA is a new softeaistribution mechanism such that
software can be easily delivered independent of the phiystitcecture of the computing environment.
The VA size can be reduced by eliminating unnecessary phttie guest OS, so that, a VA employs
less memory and executes faster than a general purpose M [35

Throughout this dissertation, the term virtual applicatappliance (VAA) is used. VAA refers

5. GQopy the W nage

mmmmmmemeaaan

6. Sat the W
VM Image

7. Execute GROVACS

wth these conponents.
Executi on Successful
8 @lect Qutput

Installed Software
GROMACS 3.2.1
Python 2.6

Installed Software
GROMACS 4.0.3
Python 2.6

KVM

Cluster A

The Biologist’s Workstation

VM Image

conponent s
2. Debug
3 Test
4. Rerfornance Anal ysis

Installed Software
GROMACS 3.2.1
Python 2.6

Installed Software
GROMACS 3.2.1
Python 2.6
KVM

5. Qopy the W nage

A4

6. Sart the W
VM Image

7. Execute GROVACS

wth these conponents.

J Executi on Successful
8.l lect Qitput

Installed Software
GROMACS 3.2.1
Python 2.6

Installed Software
No GROMACS
Python 2.6
KVM

Cluster B

5. Gpy the W nage

6. Sart the W
VM Image

7. Execute GROMACS

wth these conponents.

/Execulion Successf ul
8.@lect Qtput

Installed Software
GROMACS 3.2.1
Python 2.6

Installed Software
GROMACS 3.2.1
Python 2.6
KVM

Cluster C

Figure 1.3: VM solution to the software heterogeneity peoil

VA

Libraries Application

Operating System

Figure 1.4: The VA contents

to a special kind of VA that runs to produce a result and thets@xecution after the result. In other
words, VAAs exclude VAs that are long-running such as databand web servers. Therefore, most
scientific applications packaged as VAs can be examples éfs\uch as GROMACS, GAFolder
[18] and HMMer [21]. All the ideas and solutions throughohistdissertation are applicable to
VAAs but they may not be applicable to all VAs.

Although VAAs are useful in HPC, they provide few or no ad#jtey features for the clusters.
In the cluster, users generally have no idea about VAAs awd toouse them. The users only
interact with the host OS. Also, If we allow VAA accounts aggdo the users’ accounts on the
host without any restrcition, the unwanted operations @executed on the host. Therefore, some
security problems arise if we do not add strong authoripatiechanism between the VAA and host.
Further, in the cluster, the users submit jobs to a batchdsdbewhich decides when to run them
according to availability of resources. In this case, iattion with the users may not be possible
and/or feasible. Therefore, automated and secure sulomjssithentication and data movement
mechanisms should exist between VAAs and host machines.

In the context of HPC workloads, the work done in this thesippses a solution for the efficient
execution of VAAs as well as automated and secure authéioticand authorization techniques and
two automated stage-in stage-out data movement mechani@masfirst mechanism uses the net-
work secured by the secure shell-based (SSH-based) sdwamaal protocol. The second mecha-
nism uses a shared memory region between the VAA and hosteseby the OS'’s restrictions on
file access. Additionally, the VM migration functionality @xamined. Finally, an evaluation of the

techniques used in this thesis is provided.

1.1 Contributions

Contributions of this thesis can be enumerated as follows:

1. A bash script skeleton has been developed to automatenetament between the VM and
the host in a secure and efficient manner. Two different m@shes are designed for this
purpose: secure copy over network and copy over shared myerimothe copy over shared
memory mechanism, security is established by the OS’sctistrs on file access. However,
the secure copy over network mechanism uses SSH and itddfocsemand feature. This
architecture eliminates interactivity due to the logingess and encrypts all data movements.
Also, the user does not need to know anything about the VMsyritg or details of data

movement.

2. VM Migration with a simple save and restore technique @sneixed. Basically, this method
saves the state of the VM and when it is necessary restoreghh&om this saved state.
We have not implemented the automated migration in our tcrippwever, we evaluate the

overheads of this migration technique.

3. An experimental study shows the performance impacts ofaamuk. Benchmarks include
overheads due to data movement and virtualization and tpaatdor the save and restore
phases during the migration. One important contributiothidf evaluation is the use of real

data provided by bioinformatics researchers for the GROBARperiments.

1.2 Concluding Remarks

In this chapter, we discussed the problems that a sciendigtamcounter if she wants to use an HPC
center. We also explained how VMs can solve these problefmsn,Twe showed that VMs can be
further optimized as VAAs. Finally we briefly explained oachniques to adapt VAAs to the cluster
environment for the benefit of the user. In the next chapterdiscuss the motivation of this thesis

in detail and provide some background knowledge on virzasibn.

Chapter 2

Motivation and Background

In Chapter 1, we introduced the problems that a scientisenanunter when she wants to deploy her
work to clusters. Also, we briefly explained our VAA solutiéor these problems. In this chapter,
we provide the details about advantages of the VAAs on the@&luWe continue with presenting the
challenges of adapting the VAASs to the cluster environmEimally, a real life motivating example

is followed by background knowledge on virtualization.

2.1 Benefits of Virtual Application Appliances on Clusters

In general, the VAAs have three major benefits over traditi@oftware. First, the VAAs can run
on any x86 system independent of the OS. The only requiremehe installation of a virtual
machine monitor (VMM) application such as KVM which managesl runs the VMs. Second,
the installation cost is minimal. An application is genbrakady to run once its VM image files
are copied to the system. The application is pre-configurdtsipackage so that it has no extra
configuration burden for the specific OS environment. Thing, VAAs can possibly simplify the
maintenance of the software environment. The VAAs do noklthe library, application or OS
dependencies in the underlying system. Hence the OS,ikisrand applications do not have to be
optimized to work with each other in every VAA installation.

In the cluster environment, there are also specific bendfttseeoVAAs for the software hetero-
geneity problem which is the main problem in installing andfiguring applications on the cluster.
The cluster machines may have different OSes installedftareit versions of the same OS in-
stalled. Even if we get rid of these problems by installing #ame OS and library files on every
machine, several library files and system files may still ¢endlith the application that is intended
to be used on the cluster. Further, different applicatioag nequire different versions of these files.
Furthermore, the users may have different preferenced alpplication versions and/or configura-
tions (Section 2.1.1). The VAASs isolated nature from th&lerlying system makes the VAA ideal
solution for the software heterogeneity problem on thetehss Since all the necessary files and li-

brary files are included to the VAA package, there is no neagék for these files in the underlying

system. Also, each VAA has a separate execution environrterefore, the library conflicts and
OS problems can be overcome by packaging the applicatianpatible OS and library files as a
VAA.

2.1.1 Benefits to the User

The VAA helps the user customize the application executisiirenment for her specific purpose.
For example, the user may want to run an application thatimesja specific version of Python [45].
In the usual scenario, the user may not find this software erclister or this version of Python
may not be installed to the cluster because other users magibg another version of Python.
Further, the desired Python version may be incompatible thi¢ installed version of the OS. The
VAA solves these problems by creating a user specific soétwaecution environment with all the
necessary applications, compatible OS and libraries. €fbex, the user does not need to worry
about various conflicts she may encounter on the clusterc&menly use this pre-configured VM

and execute her application on the cluster.

2.1.2 Benefits of VM Migration

As we stated in Chapter 1, we examine two benefits of VM migratFirst, an application can be
recovered after failovers by saving the states of the VM @gplication checkpointing). Second,
the wall-time limit of the cluster can be avoided. This seectexplains these two conditions and the
solutions of VM migration.

The application checkpointing technique saves the statkeo@pplication at regular intervals.
Later, in case a failure happens, the application can bartedtfrom one of these states. However,
not all the applications, compilers or OSes support theiegdn checkpointing. Hence, one can
package an application as a VAA and, regardless of the stifiqgdhe checkpointing in the system,
the VAA state can be saved regularly by the VMM. Then, aftaiver, the VAA can be restored
from one of the saved states and the application executiotinees inside the VAA.

Another benefit of migration for the users is that it is a wodkand for the cluster wall-time
limit. The system administrators generally put a maximumocetion time limit to prevent the user
job from monopolizing the cluster. If the execution time lo¢ tuser’s job exceeds the wall-time, the
batch scheduler simply kills the process when the wall-tia@&run out. However, the user’s job may
last more than the wall-time. Therefore, the user needsjtssader work and make assumptions
about the run-time of her scripts and/or programs and thenhsis to split her work to several
tasks and submit them to the cluster separately. Theredetays are unavoidable. However, if
she packages the applications of her job as a VAA, she canakantage of the VM migration
mechanism. For example, in Figure 2.1, let us say the walt-is 24 hours for the cluster and the
scientist estimates the GROMACS job will end in 5 days. Weszaipt the VAA execution and save

it in every 24 hours and resubmit it again after every 24 ho@sfter every resubmission, the VAA

is restored from the last saved state and continue to theiBeaavithout any data loss.

1) Submit VAA to

batch scheduler
THE USER > BATCH SCHEDULER

2) Execute the VAA

4) Resubmit the VAA

5) Restore the VAA

3) Save the VM state
Virtual after 24 hours

»
>

Application Appliance

Loop 5 times

Figure 2.1: Save and restore type migration: Wall-time dance.

2.2 Challenges of Using Virtual Application Appliances on Qus-
ters

The VAAs run on the clusters as the other user jobs, therefloeeVAAs should be adapted to the
cluster environment. In the cluster environment, the uasrtb submit the job to a batch scheduler.
After the submission, interaction with the user is not desnd may not be possible. Additionally,
since the VAA has its own execution environment, input data to be copied into the VAA and

output data has to be transferred back to the host. Theréfi@®AA execution should be automated
from the submission to the termination of the VAA. Hence, ¢hallenges are the execution of the
application inside the VM, authentication of the user to W&\ and data movement between the
VAA and host. Also, the authorization of the data movemergrapons and encryption of data
during data movement are important. Without any authddradnd encryption, third parties who

gain control of the VAA can see the data and access to the aseuat on the host unconditionally.

In this section, we discuss the above-mentioned challesugbbriefly explain our approach to these

challenges.

2.2.1 Virtual Application Appliance Execution and Data Movement

A simple manual VAA execution involves several steps. #&tlyj the user has to login to the VM
with a standard login procedure of the OS inside the VM (g@&3t Then, the user copies necessary
input files and runs the application. Finally, the user tfarssthe output data from the VM to the

10

host.

There are several problems associated with manual exeadiie to interaction with the user.
In a typical cluster, the user submits the job to a batch adeedThe batch scheduler queues the
job and if the resources are available, the batch schedwéeuges the job according to the job’s
requirements. The waiting time due to queuing is not prabietand depends on the number of
jobs and their priorities in the queue. Further, some battledulers do not support interactive
programs at all or system administrators may disable therantivity. Furthermore, when the job
begins, the user should be ready to login to the VAA. If the V&¥ecution begins when the user
is not available, the VAA sits idle and wastes CPU time. Tfaree after the submission, it is not
feasible or even possible to interact with the VAA for auttigation purposes. Similar problems
apply to data movement. The user has to be ready before ardiadt VAA execution to initiate
the data movement operations between the VAA and host. Qaesély, the user’s involvement

reduces efficiency of the user’s work as well as efficiencyefaluster.

2.2.2 Security

The data movement and authentication operations shoulkeidoeedd by some mechanism especially
if the VAA and data are in different administrative domaiegy(on Cluster A and Cluster B). The
main reason of the security requirement is that the data atiteatication information may pass
through the wide area network (WAN) (e.g. Internet). Theref the data transferred across the
WAN should be encrypted. Also, the security operations khminimize the user’s involvement
due to the interactivity problem that is mentioned in thevpmes section. Therefore, we cannot
allow the user to enter some authentication informatiot scthe username and password.

Our secure copy over network mechanism simply solves teedativity problem by automating
the security of the data movement and authentication dpasatvith the SSH’s data encryption and
public/private key authentication. Also, our scripts am#te the application execution, authoriztaion
and data movement operations. Additionally, our copy overrad memory mechanism uses a
shared memory region on the host and eliminates the SSH'gm@ian and authentication overheads

if the VAA and data are on the same host.

2.3 Motivating Example

The University Of Alberta’s Prion Project Group’s [18] meerbwho are involved in bioinformatics-
related research use the GROMACS molecular dynamics apiplicfor their experiments. They use
clusters because of their large number of jobs. The WestBraders [17] or University Of Alberta’s
cluster are the primary platforms to be used by the reseeschreorder to prepare their experiments,
the researchers need to script the execution of GROMACShfaigeneration of the models and
analysis of the results. Then, the GROMACS job is moved tathster but they encounter several

problems.

11

One problem is the GROMACS version mismatch. The reseasameed 3.2.1 to run their
simulations but, especially, the new clusters have highesions of GROMACS. One workaround
for them is to install GROMACS to their home directories. Hmer, the GROMACS developers
suggest the GCC version 3.X compilers which may not be @ailen all the clusters. Either, they
have to wait for the system administrator to install thewafe or choose another cluster.

They have also reported additional problems due to incoitmfités from their previous work.
Any script that they need to use for different purposes hastenpial to suffer from version incom-
patibilities or the software that they need may not be aldlat all (e.g. Python). Most importantly,
they should either modify their code for different clustavieonments with various software con-
figurations or limit themselves to one set of cluster thay tten use their scripts. The first choice,
the code modification, puts extra effort outside of theientfic research and the second one, the
limitation to one set of clusters, reduces their computetipower.

Also, they stated another problem due to the wall-time liofithe clusters. For example, the
WestGrid's glacier cluster has a wall-time limit of 10 dai#mwever, some of their work needs more
time to finish. Although, GROMACS has a restart option, theeeechers find it unreliable in older
versions. Therefore, the researchers often run their wotkeir workstations. Hence, the work is
completed in a long time.

The researchers also added that monitoring the executitimegbb is not trivial with current
mechanisms [37]. They stated that they need to monitor tiygubtiles and do some analysis on
them. If the results do not converge then they need to kiljdh@nd submit their work with different
parameters.

As this example shows, there are couple of benefits of the aAsgientists. Scientists reduce
preparation time of scientific applications and delays duegterogeneous software environments.
Most importantly they can be independent of the softwardrenment available on the cluster.

Finally, scientific applications can be executed withoetwhall-time limit of the clusters.

2.4 Background

Virtualization created its own concepts and terms. In thésettation’s context, we only consider the
system virtual machines which exclude the language-base@bmachines such as the Java virtual
machine. Hence, in this section, after a brief discussiovirtmalization’s current popularity, several
of the concepts will be introduced namely VMMs and its tygeb virtualization, paravirtualization

and virtual disk.

2.4.1 How Virtualization Became Widespread?

Virtualization of hardware and software resources are mevaidea but it gained its popularity after
the 1990s. Certain companies such as VMware [23] and Miétrf&2] have developed products for

enterprises. Unlike their early use for the software dgwelent projects [16], the enterprises started

12

to use them for several purposes such as server consofidsgiourity and fault-recovery [13]. This
potential of virtualization stimulated the CPU vendors dimely released CPUs with virtualization
extensions.

A popular use of the VMs in enterprises is to achieve highed @Rlization through server
consolidation [36]. The researches show that most of thees€@PUs are under-utilized (less than
30% utilized) in the enterprise data centers. Hence, thernses install the applications that tra-
ditionally run on dedicated servers to two or more VMs. Tlanes these VMs can be consolidated
into one or more physical servers. By doing so, the enterprisduce the power consumption and

maintenance costs.

2.4.2 Concepts and Terms

In this section, we introduce some concepts and terms frenvitttualization literature. We use

most of these terms throughout this dissertation.

Virtual Machine Monitor and Types

Virtual machine monitors (VMMS) bring virtualization togtcomputer systems. The VMM simply
puts a thin software layer on top of the hardware or OS anevaltaultiple VMs to run. Each VM
has its own operating system (guest OS) and virtualizedwsnelresources. Although, the guest
OS communicates with the VMM instead of directly with the piwal hardware, the VM has an
illusion of running on a completely physical system. In ttimtext, the VMM becomes a hardware
emulator and an isolator of the VMs.

We can categorize the VMMs in two types. The first type of theM#$kuns directly on top of
the hardware. (Figure 2.2). Therefore, they act as OSes iaindivmachine execution platforms.
Examples of this type include Xen [5], VMware ESX server andMK The second type of the
VMMs run on top of the OS (Figure 2.3). Therefore, they run excpsses and, to some extent,
controlled by the OS. Examples of this type are VMware séwakstation and Microsoft virtual
PClserver.

KVM is easy to install on clusters. The main KVM module is igtated into the mainline Linux
kernel after the version 2.6.20. Therefore, one does nat temstall a separate VMM. However,
some other VMMs such as VMware ESX server have to be instabgdrately. Needless to say,
this installation comes with a lot of maintenance problemd may not be possible due to some

dependencies to the Linux platform.

Full Virtualization and Paravirtualization

Full virtualization refers to full simulation of hardwaresources that can be found in a computer
system. In this type of virtualization, the guest OS doesm@re that it is running on the VMM and
the VMM controls the I/O requests from the VM. The OS can béailtesd without any modification

13

HARDWARE

Figure 2.2: The VMM that runs on top of the hardware

Fe===- wem———— '
i VM 1 VM
- n ; OTHER
PROCESSES
VMM
HOST OS
HARDWARE

Figure 2.3: The VMM that runs on top of the OS

and the OS uses the VMM's simulated hardware. Generallgethardware components are simple
and do not reflect all the features of the physical ones.

Paravirtualization reverses the idea of full virtualinati In a paravirtualized environment, OSes
are somewhat aware that they are running on virtualized@emvient. In the beginning, Xen started
paravirtualization to find a solution to traditionally nomtualizable instructions of the x86 instruc-
tion set because they were causing significant performaegeadation. To achieve that, Linux
kernel is modified to add virtualized versions of these urcdtons. However, after Intel and AMD
released their new CPU products with virtualization exiems, this idea become irrelevant and
OSes started to run without any modification and performdegeadation. Then, paravirtualization
changed its direction to other hardware resources. Insitatbdifying the OS, hardware drivers
started to become aware that they are running on virtuaipe@onmentvirtio, a KVM feature, is

one of the examples of this type of paravirtualization.

Virtual Disk

Afile that is responsible for storing the VM’s data is calledwal disk (VD). VD can also be defined
as virtualized hard drive. The VD may have several formatssires. One can define a virtual disk

with 8 GB capacity and allocate it before storing the dateerTlthe size of the VD becomes 8 GB.

14

However, one can also create a VD with 8 GB capacity and ertBlslamic allocation. Then, the
VD grows as the data that is written on it grows until the 8 GBitihas reached.

Another words that can refer to the VD are the VM image or VMkdisage. However, in this
dissertation, when we use the VM image, we refer to the coatioin of VDs that makes the VM
since the VM content can be stored in several VDs. Hence, Mallék image refers to only one
VD that is part of the VM.

2.5 Concluding Remarks

In this chapter, we discussed the motivation behind our ug@ism and it is followed by background
knowledge on virtualization. We started with explaining thenefits of the VAAs in general, on the
clusters and for the users. Then, we stated the challenghs 8AA execution on the cluster. We
concluded the chapter with brief history of virtualizatiand defining full virtualization, paravirtu-
alization, virtual machine monitors and its types and waltlisk concept.

In the next chapter, we continue with all the aspects of oul\\d&sign and implementation. We
explain the security infrastructure, virtual disk layofibar VAAs, data movement mechanisms and

scripts for the automated execution of the VAAs. Finally,aeenment on the migration functional-

ity.

15

Chapter 3

Design and Implementation of
Virtual Application Appliances

In the previous chapter, we discussed our motivation betimdirtual application appliance (VAA)
design. We also commented on background concepts relatétital machines. In this chapter, we
present the design and implementation of the VAAs. Througttis chapter, when we talk about
the design and implementation of the VAAs, we include all $hapts to automate the execution,
security infrastructure and data movement mechanismsceé{ere discuss the complete architecture

and implementation details of our work.

3.1 Key Design Decisions

Our goal is to create a portable VAA for the cluster environttleat handles security, data movement
and application execution automatically and transpamem fthe user. We make design decisions

under four category to accomplish this goal:

1. Security of the operations (Section 3.2)We need to move data securely, handle authenti-
cation automatically and check that the data movement tpasaare properly authorized.
To achieve this goal, we decide to use secure shell (SSHubead# SSH’s wide availability
on clusters. The SSH mechanisms such as encryption enbatéhée data transfer is secure,
the public-key authentication handles the authenticaifthe user and the forced command
with our forced command script checks the authorizatiorhef$SH operations. However,
the policy on how the SSH mechanisms are used is another iamatesign decision. We

decide that the best policy is to initiate all the SSH caltsrfrthe VAA.

2. Virtual Disk Layout (Section 3.3): We separate a VAA into four VM disks. The main reason
behind this idea is to construct new VAAs easily by reusiregehisting VM disks since most
of the software infrastructure are similar for differenpépations such as the type of the OS

and the SSH keys for security. Hence, we also add a virtull réisository (VDR) to our

16

design to store these VM disks in a convenient location feyecess. Different VAAs can

be created by selecting the necessary VM disks from the itepps

3. Stage-in Stage-out of Data (Section 3.4)NVe need to find ways to move data fast, reliably
and securely. If data and the VAA are on the different adrriafive domains, we decide to
move data over the network by issuing SSH calls. We call tata cthovement mechanism as
secure copy over network (SCN). However, if both the data\#lare on the same host, we
design another option to move data between the VAA and hastshared memory region on
the host. The shared memory region option eliminates the&@®Hentication and encryption
overheads and authorization is handled by the OS. We caltitita movement mechanism as

copy over shared memory (CSM).

4. VAA operations for security, data movement and applicationexecution (Section 3.5)
Our design requires five script files in different locatioosautomate VAA operations. We
have to separate the VAA operations in five scripts becauieeoflocation dependence. The
first script, the remote submission script, performs theratens to prepare an user job for
submission to a batch scheduler on a remote cluster. Thij# sas to be located on the host
that the user prepares her input files. The second scriptpthésubmission script, performs
the operations to submit the user job to the batch schedal#hehead node of the cluster.
This script has to be located on the head node of the clustee. tfiird script, the wrapper
host script (WHS), performs the operations on the clusteside of the VAA, in other words,
on one of the nodes of the cluster that the VAA is running. €fae, this script has to
be located somewhere that is accessible by all the nodesdfltister. The fourth script,
the VM execution script (VMES), performs the operationsdasthe VAA. This script has
to be located inside the VAA. The fifth script, the forced coamd script (FCS), performs
the forced command operations that are authorization oSt calls, decompression of
the output compressed file and cleaning up at the beginnidgad of the VAA execution.

Hence, this script also has to be located somewhere thas#resubmits her work.

3.2 Security Infrastructure

The security infrastructure of our design relies on the SSt¢hmanisms to secure VAA execution
because of SSH’s wide availability on the clusters. Howethere are several policy options based
on who is the initiator of the SSH calls. The initiator is lzadly the entity that starts and coordinates
SSH calls. In the VAA context, the initiator may be the hostra VM.

Although both the host and VM initiator policies can estsiblihe same degree of protection and
privacy, several other criteria should also be consideyedhbose the most effective security policy
in the cluster environment. The following section enumesahese criteria based on efficiency,

portability and transparency. Then, Section 3.2.2 explaihy the VM initiator is chosen.

17

3.2.1 Criteria of the Proper Security Policy

Three main criteria are considered to choose the policy pfeaurity infrastructure:

1. Efficiency: An efficient security policy should not introduce signifitaverhead to perfor-
mance. It should not include extra SSH calls that can be etited easily with other policies.
Efficiency is especially important for the VAAs because thgady have the data movement,

hypervisor and guest OS overheads.

2. Portability : A portable security policy should be applicable to dififgreystems easily. It
should not introduce significant configuration changes ercthster. In our design, SSH, by
itself, mostly covers the portability criterion with its @é availability and easy installation

properties.

3. Transparency: A transparent security policy should be as transparenobassilple to the user.

The user’s involvement should be minimized for authenibcatauthorization and data secu-

rity.
3.2.2 Security Policies Based On Initiators

We explain the implementation of the VM initiator and hosti&tor policies in the next two sections.
Then, in the following section, we compare these two pdicied state the reasons why we choose

the VM initiator as our security policy.

3.2.2.1 VM Initiator

The VM initiator security policy initiates all the SSH caffem the VM and can be implemented by
several steps without any user involvement (Figure 3.1jially, the VAA designer should create
an account inside the VM to execute the application. The VAaigner creates a non-passphrase
protected private and public key combination for that actad the VM. Then, the system admin-
istrator puts this public key to all the usemithorizedkeysfile on the cluster. Therefore, the users
of the cluster give permission to the VM to execute commaitisvever, if we allow unrestricted
access to the cluster user’s files from the VAA, then a malieigerson who gain access to the VAA
can reach the cluster user’s files unconditionally. Heneeprepare a forced command script that
restricts the VAA to only specific data movement operatiana specific location, so that, the user
can be protected from the malicious attacks. In this casesythtem administrator should attach this

script’s path to the public key of the VAA account (SectioB.8B).

3.2.2.2 Host Initiator

The host initiator security policy initiates all the SSHIsdfom the host (Figure 3.2). In order
to implement this type of security policy, the user has tolved significantly. Initially, the

user has to create a public and private key of herself. Simeauiser is probably in the multiuser

18

VM
HOST (Initiator Of the SSH calls)

The user logs in SSH Server SSH Client

_—

Direction of the SSH calls

&
<

Public key of the VM account

Figure 3.1: The VM initiator security policy

cluster system, a non-passphrase protected private ke &enure. Therefore, she should enter a
passphrase during the creation of keys. Then, the desidribe & AA should include the cluster
user’s public key to the VAAsauthorized keyfile. After that, she has to russh-agenbn the host
and add her private key to this agent’s cache. This operfdioes the user to enter her passphrase.

Only after that, the user can submit the job to the batch sdeed

HOST

VM
(Initiator of the SSH calls)

The user logs in SSH Client SSH Server

—_—

Direction of the SSH calls

» |
L

Public key of the user

Figure 3.2: The Host initiator security policy

3.2.2.3 The Design Choice: VM Initiator

Our experience show that the VM initiator policy is the besterms of transparency and efficiency
criteria (Table 3.1). First, the VM initiator is more efficiebecause it eliminates all the extra SSH
calls of the host initiator. The host initiator policy shduoll the application state by extra SSH
calls. Every extra SSH call becomes a bottleneck in termffiofancy. Also, the user on the cluster
does not have to russh-agentype of programs in the VM initiator to store the private kbgsause
the cluster user’s private key is not used at all. Howevaer,hbst initiator has to use the cluster
user’s private key to communicate with the VM. Second, the Miator is more transparent to
the user than the host initiator because almost everytkidgme inside the VAA or by the system
administrator. However, in the host initiator policy, theeuhas to create the public/private keys and
runssh-agento cache the private key before the submission. Also, thehaseto provide the public
key to the VAA designer in order to authenticate to the VAAeTUser's requirements of creating
keys and communication with the VAA designer increases se¢'siinvolvement, therefore, reduces

the transparency. Third, in the VM initiator, a system adstiator can easily do the configuration

19

automatically or by request. However, in the host initialyr some mechanism, the administrator

has to change the keys of the VAA. This operation causes mdragement burden.

Security Policy Efficiency Portability Transparency

Host Initiator poor good poor
VM Initiator good good good

Table 3.1: Comparison of the security policies

Although the VM initiator policy has all these advantagedyds a non-passphrase protected
private key problem, therefore, it needs extra securitydgsign arrangements. A non-passphrase
protected private key can be a security concern if it can k@ &y third parties. However, this
drawback can be relieved by enforcing strong restrictiamsperations of the VAA with a forced
command script (Section 3.5.5). A forced command scriptrsguirement for the proper autho-
rization of the VAA operations. Also, in order to pass argatseof the application and necessary
parameters for the SSH connection, a parameter virtualgtiskld be manipulated by a program
and should be mounted to the VM.

3.3 VM Disks and Virtual Disk Repository

A virtual disk repository (VDR), in our design, stores the \tks of the VAAs in a convenient
place on the cluster (Figure 3.3). Hence, the user or thgdeschoose from a selection of VM
disks for different VAA constructions. Otherwise, cregtanVAA from scratch is more complicated
and has higher overhead. In this section, we explain thevacétcomposition of our VAA design.

Then, we discuss the types of VM disks to store software touweea VAA. Finally, we provide the

details of the VDR concept that we use in this work.

Virtual Disk Repository (VDR)

Root VM Disks Application VM Disks Parameter/Keys VM Disks
RootInstall Roow@v\ OMACS P@\‘ - Paral s
p- Bl S ; /

GROMACS VAA HMMer VAA
RootExecute ---> /VDR/RootVMDisks/RootExecute RootExecute ---> /VDR/RootVMDisks/RootExecute
GROMACS --> /VDR/AppVMDisks/GROMACS HMMer --> /VDR/AppVMDisks/HMMer
ParameterGROMACS ParameterHMMer
Keys --> /VDR/ParKeyVMDisks/Keys Keys --> /VDR/ParKeyVMDisks/Keys

Figure 3.3: A virtual disk repository (VDR) example

In our design, the software composition of a VAA consists gfiast OS, SSH client, main appli-
cation and auxiliary applications. The guest OS is chossadban the needs of the main application.

The SSH client is for communicating with the host and esshibtig the security infrastructure. The

20

main application is a scientific application that a VAA is paged for. For example, for the GRO-
MACS VAA, the main application is GROMACS. However, if theausvants to script the execution
of GROMACS, she needs a scripting interpreter such as PytiAdso, some of the executables
inside the GROMACS VAA need the C preprocessor (cpp) to rsidathe VM. Therefore, the
auxiliary applications are for the execution of the useipssror the execution of the tools inside
the application packages. Additionally, a VAA configuredhw\€CSM should have a guest OS kernel
module to interact with the shared memory region on the hoedtaur C programs to read/write
from/to the shared memory region on the host.

We store all the above-mentioned software, SSH-relatednpeters and key files in four VM
disks for each VAA (Figure 3.3). The virtual machine moni{gMM), the software which manages
virtual machines, mounts these four VM disks to execute a VilWthis dissertation, disk images
are named as root, application, keys and parameter. A rootliéilis the bootable disk image that
stores the system libraries and guest OS. We install thdi@yxapplications to the application VM
disk. However, if it simplifies the installation of the auaily applications, one can install them to
the root VM disk too. For example, if the auxiliary applicats reside in the software repository
of the Linux distribution, we generally cannot install thesuxiliary applications to a nonstandard
location. As the name implies, an application VM disk staites main application binaries and
possibly some auxiliary applications. A keys VM disk stottes private keys of the VAA accounts
for the SSH connections. A parameter VM disk image storesStBH parameters. These SSH
parameters, namely the username, IP address and currekihgvalirectory of the host, are the
minimum necessary parameters for the VM to initiate SSHsdallthe host. In our design, the
host cannot manipulate the VM after it starts executioniefoge, the VM needs to know how to
communicate with the host.

The advantage of using separate VM disks for a VAA is reudgbiDne can install the appli-
cation to an application VM disk along with a root image thantins necessary software for the
installation. Figure 3.3 shows this diskReotlnstall However, later, when she wants to execute the
VAA, she can mount another root VM disk which eliminates wessary software for the execu-
tion. Figure 3.3 shows this disk &botExecuteThe RootExecut®&M disk is the slimmed version
of RootInstallVM disk [35]. For example, the HMMer'RootExecut®¥M disk does not contain the
GNU compiler collection (GCC) because the GCC is only neaxgdar the compilation of HMMer
but not for the execution of HMMer. Hence, one can use a root digk for the installation of
several applications (e.gRootlInstal) to application VM disks and another root VM disk to execute
several different VAAs (e.gRootExecute Consequently, she does not need to create a VAA from
scratch by reusing the suitable root image. Also, we can dmkespace by few root VM disks for
every VAA instead of a complete VM disk for each VAA that alamtains the software of a root
image.

The VDR stores VM disks for each VAA. The repository can be ection of symbolic links

21

that points to the locations of the VM disks or the reposittam directly store the VM disks under
a certain directory structure (Figure 3.3). The advantdgsiog symbolic links is that the VM disk
images can be stored anywhere on the host and one can adthitk®int to these VM disk images
to the repository. However, if a link is broken or the VM diskinaccessible, the VAA execution
cannot start. A convenient way is to store the VM disks or thkesl under three categories: root,
application, parameter/keys. With this structure, a VAA easily be constructed by mounting one

VM disk from root and application category along with paraenend keys VM disks (Figure 3.3).

3.4 Data Movement Mechanisms: Secure Copy Over Network
and Copy Over Shared Memory

We consider two different design options for the data mov&meechanisms (Figure 3.4). The
first design option establishes data movement over the metihioough the secure channel of the
SSH protocol. We refer to this option as the secure copy oeérark (SCN) data movement

mechanism. The second design option establishes data reatémough the local shared memory
region between the VAA and host. We refer to this second athe copy over shared memory
(CSM) data movement mechanism. In this section, we dishessichitecture, advantages and

disadvantages of these data movement mechanisms.

SSH Secure Channel

H
H
| emmmmmmmseeeeeeeeen \/\
e T I : :
. : : : ——>{ shared >
H » ' P ' " VAA
H > ' L emory
' ' <
: { T VAR ' Region
' ' HE D I v u e
"""""""""" . /homel/input
/home/input H
H
Cluster A, Host A H Cluster B, Host B Cluster C, Host C
H
SCN CSM

* Arrows show the direction of the data movement

Figure 3.4: Secure copy over network (SCN) and copy overesharemory (CSM) data movement
mechanisms

The first design option, SCN, is useful when data has to be chover the network between the
host and VAA. This is generally the case when the VAA and de¢aba the different administrative
domains such as on two different clusters. SSH and its dgdedatures implement authentication
and authorization of the user. Also, SSH encrypts data shiasdnsferred across the network. How-
ever, every SSH connection has authentication and pereoytig/ption overheads. If the VAA and
data are on the same host, we can simply use CSM and eliminatgption and authentication
overheads.

SCN’s architecture is the combination of an SSH client on\tA&, SSH server and virtual
networking infrastructure on the host. In this architeetan SSH client on the VAA communicates

with an SSH server on the host. SSH’s own authentication ar@sh handles the authentication

22

part of the security. However, for the authorization, we dbjast rely on the file access rights of
the OS and put a forced command script between the host and(8&étion 3.5.5). This forced
command script checks the SSH calls that are initiated filerMAA for validity and only allows
read/write operations to a specific folder which we gatiual_root.

The second design option, CSM, has lower overhead than S@hnifplete local execution
is possible. In other words, CSM allows faster VAA execusidny eliminating the network and
SSH authentication and authorization overheads if thetifilgs and VAAs are on the same host.
However, CSM is not applicable if the VAA needs to run on thiéedént administrative domains
because the shared memory region can only be shared betveeéfA and host locally. Also, most
virtual machine monitors (VMMSs) do not support the sharedmogy architecture between the host
and the VAA. Therefore, we use a non-standard modificatidtiriax KVM and a kernel module
for the guest OS that add shared memory support. However, @&@DNise widely available SSH
implementations and unmodified VMMs.

The CSM's architecture is implemented by using Cam Macdsnebrk on KVM [31]. In this
architecture, a shared memory region which is accessibleolly the host and VAA is created on
the host. Basically, both parties read/write to this shanetnory region to transfer data. In our
implementation, we use Macdonell’s implementation whieguires a KVM modification to add
support for a shared memory region between the host and VA modification also requires a
kernel module installed to the VAA to communicate with thergld memory region on the host.
Instead of the SSH-based copy, two special programs areimgsited by us to extract/insert input
and output files from/to a shared memory region. Howeverlghgth of the output data being
moved is communicated via SSH. Hence, we still need the SteHt@n the VAA and networking

infrastructure and SSH server on the host.

3.5 Automated Execution of Virtual Application Appliances on
Clusters

We develop five separate script files to perform the data mememwperations, authorization and
VAA execution (Figure 3.5). The first script, the remote sigsion script, prepares the input files
and sends the SSH parameters and VAA arguments to the headohdige cluster. The second
script, the local submission script, submits the user'stfpthe batch scheduler with the necessary
arguments for the VAA execution. The third script, the wraphost script (WHS), executes the
operations initiated from the host and the fourth scrips, #¥M execution script (VMES), executes
the operations initiated by the VAA. In CSM, the WHS also esptihe compressed output file from
the shared memory region, decompresses it on the host andtese¢he clean-up operations. The
fifth script, the forced command script (FCS), is designedvdidity and authorization check for
the SSH operations initiated from the VAA. AdditionallyetiCS decompresses output files and

executes the clean-up operations in the SCN mechanism. $\th@8ash scripting language in our

23

implementation because of its wide availability in the LifDSes. However, these operations can
be easily ported to other scripting languages.

Throughoutthis chapter when we talk about the VAA argumewtgefer to either the arguments
of the main application or arguments of the user script tixatetes several commands related
to the main application execution. For instance, on the aarahthe user may prefer running
mdrunexecutable directly from the GROMACS VAA by providing seakrommand-line arguments
(Figure 3.7). In this case, the VAA arguments are the argusngfithemdrunexecutable. On the
other hand, she may optionally run her script file (iren.sh) that executes several GROMACS
executables and other operations that are necessary fovdnkr(Figure 3.13). In this case, the
VAA arguments refer to the arguments of the user script.

In the following sections, we explain the operations thatexecuted by each script in detail. We
examined the migration functionality in the previous clespTherefore, at the end of this section,

we comment on possible additions to these scripts if theatimr functionality is needed.

3.5.1 Remote Submission Script

The remote submission script allows the user to submit hek fvom a remote location other than
the cluster that she plans to execute her work (Figure 3n6)ut design, the user does not need to
login to the cluster that the VAA execution takes place. dadf she can prepare her input files on
her workstation or on another cluster that has an interretssc Then, she submits her work from
one of these remote locations. We call each of these remcaédos as the user’'s remote machine.

As Figure 3.6 shows, the remote submission script defineskantamber to distinguish the jobs
that are using the same VAA at line 11. In our implementatibe task number is just a folder name
that the job is submitted. Other options can be a ticket m@shathat assigns a unique job number
to each job or a batch scheduler’s task number that is agstgreach job. For example, TORQUE
and PBS assign a unique job number to each submission. Irategdiollowing the definition of the
task number, the remote submission script writes the VAAiargnts to the arguments file at line 14,
then compresses the input files at line 17 and prepares thgp8&irheters to be sent to the cluster
at line 21. These parameters are used by the VAA to connewtttiito the user’s remote machine.
Therefore, at the beginning of the VAA execution, the VAAg#ite input files and VAA arguments
directly from the user’s current working directory on theetls remote machine. At the end of the
VAA execution, the VAA puts the output files directly to theeu's current working directory on
the user’s remote machine. The only assumption of the resudimission script is that the user
has permission to authenticate to the cluster. Finallynasl24 to 27, the remote submission script
connects to the cluster’s head node, creates the execotaer on the cluster and then submits the
user’s job to the cluster’s batch scheduler by calling tlealsubmission script (Section 3.5.2).

The remote submission can only work for the SCN data movemenhanism (Figure 3.5). In

CSM, since the user has to login to the cluster and make sltfeeainput files are on the cluster

24

The Remote

The Forced Command
Submission Script

Script (FCS)

A

The User’'s Remote Machine

A 4

The Local The Wrapper Host

Submission Script ; Script (WHS)

The Forced Command
Script (FCS)

. Cluster A

.

U
* Y Y
. The VM
Execution Script (VMES)

The VAA

*Dashed arrows represents the CSM mechanism and the other arrows
represents the SCN mechanism.

Figure 3.5: The scripts and their execution order for botlcima@isms

25

#!/ bi n/ sh

#Assign current directory on the host to the crdir environment variable.
crdir="pwd

#1 P of the |ocal host
| ocal i p=* hostnane -i*

©CoOoO~NOOhWNPE

#Name of the current directory
10 dirnanme='echo $crdir | awk -F '/ "{print $NF}'*
11 t nunber=$di r nane

13 #Wite argunents of the application to the argunents file.
14 echo "$@ > args${dirnane}

16 #Conpress input files.
17 tar -zvcf ${tnunber}input.tar.gz *

19 #Prepare the command for the renmote host \

20 #to wite the ssh paraneters to the paramater VM di sk.

21 par command="par anet eradd $t nunber $crdir $l ocalip \

22 $USER \ "/ usr/ bot halOb/ Gr omacsExec/ $di r nanme/ par anet er - f | at . vidk\ ""

23 #Subnit the job to the batch schedul er on the renpte host

24 ssh $USER@eadnode. cl uster "nkdir /usr/bot halOb/ G omacsExec/ $di rnanme; \

25 cd /usr/bot halOb/ G omacsExec/ $di r nane; \
26 export VMvenory=2048; export jobname=$dirnane; \
27 submi t mdr unPBSApp64Bi t RM $par conmand"”

Figure 3.6: A sample GROMACS VAA remote submission scripttfee PBS and TORQUE batch
schedulers

(Section 3.4), the above-mentioned preparation linesldimimplemented in the local submission
script (Figure 3.6 atlines 3 to 22). Figure 3.7 shows gerardlexample submission command-lines
for the GROMACS VAA (arguments]refer to the GROMACS VAA's arguments for the execution
of GROMACS application).

General submission command-line for the Gromacs VAA:
JsubmitremoteGROMACS [arguments]

Example submission command-lines for thdrunexecutable:
JsubmitremoteGROMACS -0 a.trr -g a.log
JsubmitremoteGROMACS -0 a.trr -x a.xtc -c aconfout.gro

Figure 3.7: The general and example command-lines for themmsion of GROMACS VAA to the
batch scheduler.

As we stated previously, the only requirement of the useo isubmit the job from the folder
that the input files reside (Figure 3.8). For example, letaystie user stores the input files in the
/home/inpufolder. The only requirement for the user is to gaglilome/inpufolder and submit her

work by using our remote submission script with necessarj ¥guments.

26

L il '
1) cd /nome/input 2) ./submitremoteAPP [arguments]:
> : N VAA
- Execution
/home/input
The User’s Remote Machine The Cluster

Figure 3.8: The remote submission script execution for only cluster.
#1/ bi n/ bash

curdirectory="pwd’

priy=$@

gr pat h=" whi ch gr onppLl NUXPBSApp64Bi t RM sh'

#The submi ssion line of the user job for the PBS/ TORQUE type of schedul ers
gsub -N $j obnane -v paraneteraddline=\""$prty"\" $grpath

~NOoO O~ WNBRE

Figure 3.9: A simple local submission script for the PBS a@RQUE batch schedulers

3.5.2 Local Submission Script

The local submission script submits the WHS to the batchdidie of the cluster with a unique job
name (Figure 3.9). Every batch scheduler has differentiiootto define the jobname and other
parameters of the submission command. Therefore, thiststrould be specialized for different
batch schedulers or should contain different batch scleesiitdubmission parameters.

The batch scheduler parameters are sent as arguments ttt¢hesbheduler’'s submission com-
mand which isgsubin Figure 3.9. However, most batch schedulers allow to adddtparameters
to the submitted scripts. In our design, the WHS is the sthigt is submitted. We choose not to
add the job name to the WHS. The user can assign a name to thg jsingjobnameenvironment
variable instead of modifying more complex WHS. Howeveatistparameters such as memory
and CPU requirements of the VAA can be added to the WHS sirgedb not change from one
execution to another. A sample parameters for the PBS-Isdestiulers that are embedded to the
WHS can be seen in Figure 3.10 at lines 4 to 7. For exampletRiBS -Vdirective exports all the
environment variables of the current shell to the submissiript and thetPBS nodes=1:ppn=4
directive requests 4 CPUs on one node. These batch schelitdetives should be added in the

beginning of the script before all the other operations.

3.5.3 Wrapper Host Script

The WHS controls the operations outside of the VM environnmnthe execution host of the
VAA (Figure 3.10). First, the WHS defines the environmentafales related to the VM execution.
Second, the WHS writes the SSH parameters to the parametelisk\wefore the VAA starts. Third,
the WHS starts the VAA. Fourth, after the VAA finishes exeanfithe WHS cleans up the execution
folder in the SCN mechanism. In the CSM mechanism, the WH$sdpe compressed output file

27

from the shared memory region, decompresses and execatele#m-up operations.

The preliminary operations assign paths of the VM disk insagied job specific variables to
several environment variables. As explained in Section 3a8hs are the places of the VM disk
images in the repository (Figure 3.10 at lines 25 to 33). Hawehe job specific variables are used
to define the job and its requirements for a specific VMM. Faaregle, in our implementation,
we use KVM as the VMM. KVM expects different media access mintMAC) addresses (i.e.
network identifiers) for the executions of the multiple jdlb@m the same VAA image. Otherwise,
the VAAs may not have network connectivity due to conflictM@C addresses. Therefore, one of
the environment variables is a random MAC address from th#IS\MAC address range (Figure
3.10 atlines 18 to 22).

After the environment variable definitions, the WHS exeswteveral sequential operations.

These operations are explained as follows:

1. The parameter virtual disk should be copied to the exewtdtilder before the VAA starts. In
our design, we simply copy a small template parameter VM ilisdge from the repository
to the current working directory because it should be uniquevery VAA execution (Figure
3.10 at line 41). At this point, if CSM is used, two additioisééps create a shared memory
region and copies the compressed input file to the shared myesgion (Figure 3.11). In our
implementation, we develop two C programs calbeehteshmanddumpfilefor this purpose.
createshntreates a shared memory region with the specified sizedampfilerunsmmap

system call to map the compressed input file to the shared nyaegion.

2. A program calleparameteraddnodifies the parameter VM disk image and adds the SSH
parameters (Figure 3.10 at line 46). Tirerameteraddlinenvironment variable, which con-
tains the SSH parameters, comes from the remote submissiph i SCN is used (Figure
3.6 at line 21) and from the local submission script if CSMsed. Basically this disk image
contains a file callegharameter.txt The parameteraddrogram seeks for the beginning of
theparameter.txfile and writes the necessary parameters to initiate SSH fraln the VAA.
These parameters are the task number, current workingaliyeasername and IP address of
the hostin SCN and CSM. Additionally, only in CSM, we add tlze ®f the input compressed

file to the parameters.

3. After the preparation of the parameter VM disk, a call ®¥WMM executable starts the VAA.
In our design, we used KVM as the VMM and its command line lolilkes in Figure 3.10
at lines 49 to 52. Th&KVMPATH argument is the full path of thkevmexecutable (Figure
3.10 at line 35). The first 8 arguments af@VMPATHmount the four necessary VM disks
namely root, application, keys and parameter as the zdnath second and third disks of the
VM. The -m argument specifies the memory size that's going to be assignthis VM. In
Figure 3.10 at line 50, the memory size is specified as 512 MB.

28

#!/ bi n/ bash

export all my environnent variables to the job
#PBS -V

#PBS -S /bin/sh

#PBS - q batch

#PBS -1 nodes=1: ppn=4

©CoO~NOUTA WNPE

10 if ["X$PBS_O WORKDIR' = "X"]; then
11 cd $PBS_O WORKDI R

12 el se

13 PBS_O WORKDI R=' pwd"*

14 fi

16 # generate a random mac address for the gemu nic
17 # shell script borrowed from user phel dens @qgenmu forum
18 generate_nmac() {

19 echo $(echo -n DE: AD:BE:EF ; for i in ‘seq 1 2' ; \

20 do echo -n ‘echo ": $RANDOVBRANDOM' | cut -n -c -3' ;done)
21}

22 mac='generate_nac’

23

24 #Path of the Root Image File

25 Root Pat h=\

26 "/usr/bot halOc/ unal / VMReposi t ory/ Root VMDi sks/ 64Bi t Root Wt hGCC3- 4NC. vdk™"
27 #Path of the Application | mage

28 APPPat h=\

29 /usr/bot halOc/ unal / VMReposi t ory/ Appl i cati onVMDi sks/ gr onacs64Bi t NC. vidk
30 #Keys di ski magepath

31 keyspat h=/ usr/ bot halOc/ unal / VMReposi t ory/ Par KeyVNMDi sks/ keys. vndk

32 #Paraneter disk i mage path

33 par pat h=/ usr/ bot halOc/ unal / VMReposi t or y/ Par KeyVMDi sks/ par anet er-fl at. vndk
34 #Path to kvm execut abl e

35 KVMPat h=/ usr/ bot halOb/ unal / kvnB6/ bi n/ genu- syst em x86_64

37 #The path of the current directory.
38 curdirectory="'pwd

40 #Copy paraneter disk file
41 cp $parpath $curdirectory

43 #write paraneter file to disk i mage of the keys. 1st |ine task nunber,
44 #Note: These paraneters are required \

45 # xxbefore file args${tnunber}** is brought in via ssh.

46 ‘echo $paranet eraddl i ne

48 #Run the VAA
49 $KVMPat h - hda $Root Path -hdb $APPPat h -hdc $keyspath \

50 -hdd $curdirectory/paraneter-flat.vndk -m 512 \

51 -vnc :12 $Root Path -net nic, vl an=0, macaddr =$mac \
52 -net vde, vl an=0 -snapshot

53

54 #Del ete current directory
55 rm-rf $curdirectory

Figure 3.10: A sample SCN wrapper host script (WHS) for th&RBd TORQUE batch schedulers

createshm $SHMPATH $SHM.SIZE
dumpfile $SHMPATH ${tnumbeginput.tar.gz

Figure 3.11: The commands for creating a shared memory rmegjiothe host and copying the
compressed input file to the shared memory region

29

The -vnc argument is an optional argument that denotes the VNC displenber of this
VM. One can view the VM’s display device by connecting to 44C display using a VNC
viewer. VM’s display device is equivalent to the monitor odl@sktop computer. If a display
is not necessary, replacing thenc :12argument with thenographicargument disables the
display. In this case, the user still can connect to the VMa@&SH if she wants to check the

status of the execution. However, she can not connect to kite display.

The-netargument determines the network options. The finstargument creates a virtual
network interface card (NIC) connected to the VLAN 0 with adam mac address denoted by
$mac The secondinetargument connects this virtual NIC to the VDE-based virhetivork

on the host.

The-snapshoargument tells KVM not to write any changes to the disk ima¢@4M writes

all the VM disk manipulations to the temporary files during #xecution of the VAA and after
the execution, KVM removes them. Thispy on write (COWjeature of the KVM allows us
to submit multiple jobs with the same VAA without copying ¥ disks for every execution

and causing any corruption to the base VM disks.

The-bootargument specifies which device will be used as a boot deViveboot device can
be a hard disk, floppy, cdrom drive or network card. If the badtice is not specified, like
in our WHS example, the default boot device is the hard disk ifymounted as the zeroth
virtual disk ¢hdain Figure 3.10 at line 49). Therefore, KVM boots the VAA frofmetroot
VM disk.

Finally, if CSM is used, this command line is followed by amat argument calledvshmem

[31]. Then, this argument is followed by the name and sizéhefghared memory region.
Since it has already been created by the WHS, KVM skips thetiorepart and directly adds
this file to the VM as another memory device. A samypsshmermargument that points to a

512 MB of shared memory region named as testfile as follows:
-ivshmemtestfile, 512

. During the execution of the VAA, the VMES and FCS take tipairts and the WHS waits for
the VAA to stop (Section 3.5.4 and 3.5.5). After the VAA exgon ends, the WHS removes
the execution folder in the SCN mechanism (Figure 3.10 at%i5).

In the CSM data movement mechanism, since the executiorehapm the current working
directory on the cluster, the execution folder and the cumerking directory are the same.
Therefore, instead of removing the execution folder, theW$sues the following additional
commands to copy the compressed output file from the sharewnygegion on the host and

to decompress the compressed output file:

readfile $SHM PATH ${t nunber}output.tar.gz $fil esize

30

tar -zxf ${tnunber}output.tar.gz

Finally, the WHS of CSM removes the compressed output and ¥fguments files at the
end of the WHS script. In the SCN mechanism, the decompmessid clean-up operations
happen inside the FCS since the WHS is not on the user’s rematgine (Figure 3.5 and
Section 3.5.5).

3.5.4 VM Execution Script

The VM Execution Script (VMES) controls the operationsdtesihe VAA (Figure 3.12). The VMES
starts its execution when the VAA runs and loads the guest @Sita services. For example,
for the Ubuntu Linux OS, we add a line to thelocal file to call the VMES. The Ubuntu OSes
executerc.local script right after the OS is loaded to the memory. Since we megworking, SSH
and related services before the VMES starts, this is the smstenient place to call the VMES.
The VMES have all the necessary instructions to completexieeution of the application or the
script that is prepared by the user. At the end of the executiee VMES shuts down the VAA
automatically.

The VMES starts with defining necessary environment vaegfir the SSH calls and applica-
tion execution. For example, in Figure 3.12 at line 4, the \@Atefines the path of the GROMACS
executables. At line 6, the VMES defines the maximum numb&SH calls before concluding on
an error due to connection problems. Then, the VMES loadsghegeris environment variables
at line 8, therefore, theshexecutable can locate the keys in the memory. 3$teagentool of
SSH caches the private keys of the guest OS accounts in thésiémory. From line 10 to 15,
the VMES reads the SSH parameters from phaeameter.txfile on the parameter virtual disk. In
the CSM mechanism, the VMES additionally reads the size @tcimpressed input file from the
parameter.txfile. Therefore, in the VMES of CSM, an additional variablde@dpar_4 is assigned
to the size of the compressed input file.

After that the VMES starts to execute several operationsy™an be enumerated as follows:

1. The VMES creates an execution folder for the user’s jolgufe 3.12 at line 23. This folder
stores the input files. Also, the application execution oséduaside this folder. Then, at the

following line, the VMES makes the execution folder the emtrworking directory.

2. In Figure 3.12 from line 27 to line 41, the VMES attempts tpy the compressed input
file from the host by using the SSH parameters that are reawl fin@ parameter.txfile in
the parameter virtual disk. If the VMES succeeds, the opmratcontinues, otherwise the if
block, between the line 36 and 41, stops the operations bedhe VAA execution cannot
continue without the input files. If the CSM mechanism is ysestead of an SSH call, the

readfileprogram copies the compressed input file from the shared myer@gion as follows:

31

©CoOoO~NOOhWNPE

#!/ bi n/ bash

#Export PATH
export PATH=$PATH: / usr/app/ bin

#Maxi mum nunber of attenpts before concludi ng on connection probl ens

maxt ry=60
#Load agent defaults
/ et c/ ssh-agent . env
#Read paraneters fromthe paraneter.txt file on parameter VM disk
i =0
while read line

do
export par_$i =$line
let i=%$i+1
done < /paraneter/paraneter.txt

#par _0: task nunber

#par _1: current working directory
#par _2: usernane

#par_3: host IP

#Create folder that input files will be put and go to that directory

nkdi r /usr/app/ gromacs_execut e
cd /usr/app/ gromacs_execut e

#Copy input tar files
i =0
until ssh -o StrictHost KeyChecki ng=no ${par_2} @{par_3} \

i nput : ${ par _1}/ ${par _O}input.tar.gz > ${par_O}input.tar.gz \
[l [$i -eq $maxtry]

do
sleep 0.5
let i=$i+1

done

if [$i -eq $maxtry]; then
rm-rf /usr/app/ gronacs_execute
echo "Failed to establish an ssh connection!"
halt -p
exit O

f

#Untar input files

tar -zvxf ${par_O}input.tar.gz

#Renove input tar file
rm-rf ${par_O}input.tar.gz

#Run gromacs

if [-f run.sh]; then
./run.sh ‘cat args${par_0}‘' &> outgromacs.txt
el se
mdrun ‘cat args${par_0}' &> outgromacs.txt
f
#Tar the output files

tar -zvcf ${par_O}output.tar.gz *

#Copy output files to the host
ssh ${par_2} @{par_3} output: ${par_1}/${par_O}output.tar.gz \
< ${par_O}output.tar.gz

#Renmove execution fol der
rm-rf /usr/app/gromacs_execute

#Shut down the VM
halt -p

Figure 3.12: A sample VM script for the SCN data movement raadm
32

#!/bin/bash
python 1U3M1_long GromPylgBer Ber RotRemGenVelXTC_VMware2.py $@

Figure 3.13: A sampleun.shcontents for the execution of the GROMACS application iastige
GROMACS VAA.

readfile /dev/ivshmem ${par_O}input.tar.gz ${par_4}

In Figure 3.12 at line 6, the VMES defines how many timesdsigprogram retries in case
a connection problem happens. Also, one should define tretidnrbetween every try (In
Figure 3.12 at line 32).

3. Before the execution of the application or the user'spctie last step is the decompression
of the compressed input file to the execution folder (In Fég8rl2 at line 44). An archive

utility such agtar can be used for the extraction.

4. The VMES is now ready to run the application or user’s gcrip our design, the user can
just run the main executable of the application package mipoally, can create a simple
run.shscript to add some other operations such as external agaf/gie output files. If the
user decides to createran.shscript, she has to call the main executable explicitly irs thi
script. For example, in Figure 3.12 at lines 50 to 54, the VMias therun.shscript if the
run.shfile exists. Otherwise, the VMES calls the main executabtb@ GROMACS package,
which ismdrun As discussed earlier, the user has tonout shscript to the same folder that
the input files reside, so that, it can be copied to the VAA glaiith the input files. Also, the
arguments of the VAA are provided on the same lines by reattieg@rguments file with the
catcommand (Figure 3.12 at line 51 and 53). An exampleshscript can be examined in
Figure 3.13. Note that, in Figure 3.13, the user callsnittunexecutable inside the Python
script, therefore, she also adds this Python script to theotiworking directory. Finally, the
VMES saves the output of tiran.shor the main executable to a file for further examination
since the output is invisible to both to the user and the bsttieduler during the execution.

This file isoutgromacs.txin Figure 3.12 at line 51 and 53.

5. At the end of the execution, the VMES compresses all the @ilejust the new files and
modified files to send to the current working directory on tlesth{Figure 3.12 at line 57).
In our design, the VMES simply compresses all the files. Talsbe compressed output
file to the host, in the SCN mechanism, the VMES initiates la@o8SH call (Figure 3.12 at
line 60), in the CSM mechanism, it caltimpfileprogram.dumpfilecopies the compressed
output file to the shared memory region on the host. Also, tNEES writes the size of this
file to thedumpsize.tdile and sends to the host via SSH since the shared memonnreg®

no information on the size of the file. An example line to copy tompressed output file to

33

the shared memory region on the host is the following:

dunpsi ze="/ usr/ app/ gromacsscri pt/dunpfile /dev/ivshmem\

${par\ _O}output.tar.gz'; echo $dunpsi ze > dunpsi ze. t xt

6. Fnally, the VMES removes the execution folder (Figur3iline 64). Then, it shuts down
the VM (Figure 3.12 at line 67). VAA execution ends at thismi@nd control returns to the
WHS.

During the VMES execution all the modifications of this stp the host is controlled by the
forced command script (FCS). Therefore, the VAA cannot eteanauthorized operations on the

host. We see the details of this script in the next section.

3.5.5 Forced Command Script

The FCS is placed on the host where the user submits the jbktigtlocal or remote submission
scripts, and checks the VAA's operations for the validitig(ffe 3.14). The FCS also decompresses
the compressed output file on the host and invokes the negedsan-up commands in the SCN
mechanism. Mainly, the FCS’s validity checks restrict thed\by only allowing the data movement
operations from/to the predetermined path which we callrasal_root. Therefore, the FCSis called
every time a VAA tries to execute a command on the host with@id 8all. The FCS'wirtual_root
concept is similar to thehroot command’gail concept [26]. However, the FCS is implemented
such that it does not need root privileges to execute command

In order for the FCS to be called, one needs to add the VAA ausbdpublic keys to the user’s
authorizedkeysfile on the host with the forced command line (Figure 3.15).é&s@mple let us say
Alice wants Bob to access Alice’s computer or home folderdertain operations. If Alice adds
only Bob’s public key to Alice’sauthorizedkeysfile, then Bob can access Alice’s home folder and
execute any operation that Alice can execute. HowevergAlas to permit only certain operations
and restrict others. Therefore, Alice adds Bob’s publictkdyerauthorizedkeydfile with additional
commandword (e.g. command="/etc/ForcedCommandScript.gtét the beginning of the public
key line. Alice can put a path to a script or simply put the pattthe command that Bob can
execute. In our design, we need a complex control for the VpArations, therefore, we develop
the FCS and add its path to the beginning of the public keglafehe VAA accounts in the user’s
authorizedkeysfile on the host.

If the public key is added with the forced command line, thé&iS8rver on the host calls the
FCS whenever a VAA initiates an SSH call to the host. ThenFB8 checks the command-line of
the SSH call which is passed by the SSH daemon &SHORIGINALCOMMANDenvironment
variable (Figure 3.14). We only allow data movement operesj therefore, the FCS can only accept
two command-line formats. The first command-line, the imgmmmand-line, format is for moving
the data from the host to the VAA:

34

©COoO~NO U WNPE

#!1/ bi n/ bash
virtual _root =/ home/ user
#Check if the data novenent is input or output operation
i nput =" echo "$SSH ORI Gl NAL_COWAND" | awk -F ':' "{print $1}’
pat h=" echo "$SSH ORI G NAL_COWAND" | awk -F ':’ "{print $NF}’
canon_readl i nk() {
Qutput a canonicalized version of what a link links to
Credit to Jesse Wlson @
http://publicobject.con 2006/ 06/ canoni cal - path-of-fil e-in-bash. htm
OLDWD="$(pwd) "
cd -P -- "$(dirname -- "$1")" &&
LINK="$(readlink -- "$1")" &&
cd -P -- "$(dirname -- "SLINK")" &&
LI NK=$(pwd - P)/ $(basenane -- "$LINK")
cd "$OL.DVWD"
}
#Check if path is synbolic Iink or not
if [-h"$path"]; then
canon_readl i nk $path
pat h=$LI NK
f
#Get the folder of the file path

fol der="echo "$path" | awk -F '/’ "{print substr($0,0,index($0, $NF)-1)}’
filefol der=$f ol der

#Check if folder exist or not
cd "$folder” > /dev/null 2>&1

if [$2 -ne 0] ; then
echo "File does not exist"
exit 0O

elif [-z "$folder"] ; then
echo "File does not exist"
exit 0O

f

#Check if folder is rooted fromvirtual root directory

fil epat h="pwd*

fol der="echo "$filepath" | gawk -v a=$virtual _root ' {
print substr($0,0,length(a))

if ["$folder"” I'= "$virtual _root"] ; then
echo "File is not in the virtual _root!"
exit 0

f

#Everything is OK
#Do the input or output data novenent
if ["$input" == "input"]; then

/bin/dd if="%path"
#C ean up after the input files are copied to the VAA
rm $pat h
elif ["$input" == "output"]; then
/ bi n/dd of =" $pat h"
tar -zvxf $path -C $filepath
#C ean up after the output files are ready.
rm $pat h
rm $fil epath/args${fil efol der}
el se
echo "Access Denied: Wong pattern in the string."
f

Figure 3.14: General forced command script (FCS)

35

conmand="/ et ¢/ For cedConmandScri pt.sh" ssh-rsa AAAAB3NzaClyc2EAAAABI wWAAAQEA4VRIA
TsyBj Zr oyem YnUl WKbz d3+49ZnmK8hNRn4dwXosb1xBpgi nhBj Vk9U4L4cOQ0zXxg2GKOSznd J1ab/ 3
1LA40KIVO2WB10K+CL1bVRcDWBJRVBLQZ5M zv67P3bFasSBi GbBlI 1gMaTHa7/ Kmeo7GOwWFsi cKB672
0+KKWKI J4maer aNMMC3nT pygnwp49hvg7dhRYZz7h7Xbl kK2LI 1zf 2Zs YUBzvXWWr hOVKYEOFt r aHf 8
hW/ | 57qVEYSormQXAV] w2XB5E/ Bno54vJDE7NIBQt 6N3Tki 50vpoUhkbFRF8gt UYOnAy | CRj g+HbJb
WRXLRI vNzxz7n2ZE8PBUQ== r oot @72. 16. 202. 134

Figure 3.15: A public key with a forced command script line

ssh usernanme@ost | P i nput: $virtual _root/[SOVEFOLDER] / $TASKNUMBERI nput . tar. gz \
> $TASKNUMBERi nput . tar . gz

The above command-line tells the FCS to cdpASKNUMBERInput.tar.gide from the host to
the execution folder on the VAA with the same name. As we arpthbefore, the data movement
operations can be targeted to only certain path on the hdss path is denoted asrtual_root in
the above command-line and in the FCS (Figure 3.14 at lindBgrefore, a valid command-line
must have a path under thigtual_root.

The redirection part of the above command-line-isSTASKNUMBERIinput.tar.gand it is for
the input stream to be written to a file on the VAA. If the commidime passes the validity tests, the
only thing that the FCS does is to read the input file from thté pa the host and redirect the file's
content to the standard output. Tsmhcommand on the VAA can read from the standard output and
with the redirection, the shell on the guest OS writes th@uaubf thesshcommand to the file. In
our implementation, thdd comand reads the content of the input file (Figure 3.14 atdifje

The second command-line, the output command-line, form&dri moving the data from the
VAA to the host:
ssh username@ost | P out put : $vi rtual _root/[SOVEFOLDER] / $TASKNUVBERout put . tar. gz \

< $TASKNUMBERout put . tar . gz

The above command-line tells the FCS to copy ildASKNUMBERoutput.tar.dite from the
VAA to the current working directory on the host. Inverseahge redirection part of the command-
line is < $TASKNUMBERoutput.tar.gand tells the shell on the VAA to put ttEiFASKNUMBER-
output.tar.gile’s content as an input stream to the standard input. Toerethe FCS can issue a
command and read the input stream to a file on the host . In qulementation, theld comand
reads the content of the standard input and writes to theHidpife 3.14 at line 58).

The above-mentioned operations can only be executed ifamenand-line is in the correct for-
mat and the operations target a path undevitiaal_root. Therefore, the FCS parses the command-
line and checks the validity of the operation in severalstép our design, the parsing and validity

checks can be enumerated as follows:

1. The parser breaks up the command-line into the path ofléharfd operation identifier which
is either input or output. In Figure 3.14 at line 5, we extthetoperation identifier and assign
it to theinputenvironment variable. At line 6, we extract the path of the &ihd assign it to

thepathenvironment variable.

36

2. After parsing the command-line, before the validity dtsgsove examine the file path and
check if it is a symbolic link or not. If it is a symbolic linkhen, we convert it to the path
that the symbolic link points to. In Figure 3.14 at line 22, aeeck if thepathis symbolic
link or not. If it is, we convert it to its canonical versionticanonreadlink function. The

canonreadlinkfunction is defined between the line 8 and line 19.

3. Now we can do our first validity check which examines if tb&lér that the file is copied
from/to exists or not (Figure 3.14 at lines 32 to 39). If it dowt, the FCS rejects the operation

with an error line (Figure 3.14 at line 34 and line 37)

4. The second validity check examines if the path is uwitémal_root (Figure 3.14 at lines 42
to 49). If it does not, the FCS rejects the operation with aardine (Figure 3.14 at line 47)

5. The third and the last validity check examines whethepferation identifier is valid or not
(Figure 3.14 at line 53 and line 57). It must be either inpubatput. If it is not one of them,
the FCS rejects the operation with an error line (Figure atléhe 64)

After the validity checks, the FCS executes the input or outfata movement operation as
explained previously and then executes the clean-up dpesafFigure 3.14 at lines 53 to 65).
After the input copy operation, the FCS removes the inputprassed file (Figure 3.14 at line
56). After the output copy operation, in the SCN mechanitimRCS first decompresses the output
compressed file and then removes this file (Figure 3.14 a Bi®to 61). Also, the FCS removes
the arguments file which is not necessary after the VAA exenwnds (Figure 3.14 at line 62). As
discussed before, In the CSM mechanism, these operatierimptemented in the WHS (Section
3.5.3).

3.5.6 Migration Functionality

Currently, we have not implemented the migration suppodunscripts due to some instabilities
in the libvirt library version 0.6.2 [29]. However, we performed enougpeziments to evaluate
the migration overheads by manually executingltheirt migration operations. In Chapter 4, an
evaluation of these migration overheads can be viewed. \&Wmmme the migration functionality in
this dissertation to perform application checkpointind amoid wall-time limit (Chapter 2). In this
section, we remember the brief explanations of the reaswnssing the migration functionality and
possible extensions to our scripts.

The two possible reasons that are mentioned in Chapter 2ecanrbmarized as follows:

1. To avoid the wall-time limit of the cluster. In the clusavironment, it is a common practice
to have a wall-time limit to prevent an application or usenfr monopolizing the cluster.
Therefore, the wall-time limit enforces the cluster’s lbescheduler to terminate the job after

some time. However, some scientific applications may neekriime than the specified

37

limit. Hence, the VAA can be saved before the wall-time hasout and restored from this

state by resubmitting to the batch scheduler.

2. To recover after failover by application checkpointinfjthe WHS saves several states of
the VAA (i.e. checkpointing), in case a problem happens ssch power outage, file system
corruption, guest OS errors and network failure, the VAA@i®N can be restored from one

of the saved states.

The WHS and in some cases the VMES could be extended to suppartigration. The WHS
saves the VAA state before the above-mentioned conditiappén and then resubmits the WHS
to the batch scheduler to restore the VAA from the saved.statsvever, in addition to the WHS
extension, if the checkpointing decision comes from the ¥AAternal state, an extension to the
VMES is also necessary. Even if the VAA decides the condition checkpointing, the WHS issues

the save and restore operations.

3.6 Concluding Remarks

In this chapter, we presented the design and implementafitiee VAA. We proposed a security
infrastructure that is transparent, portable and effickested on the authentication, authorization
and encryption mechanisms of SSH. We employ the VM initigturity policy strengthened by
the SSH's forced command feature that initiates all the S&ll4 &rom the VAA to conform to the
efficiency and transparency criteria. Then, we explainedsttual disk repository (VDR) concept
to store the VM disks of the VAAs in a convenient location. Wepmosed the secure copy over
network (SCN) data movement mechanism for the remote datement operations of the VAA.
Also, we proposed a faster alternative for data movemertearidcal executions called copy over
shared memory (CSM) data movement mechanism. The chapténwed with the explanation of
five scripts that implement all these data movement, segcanitl application execution operations.
Finally, we discussed the migration functionality and howan be implemented in our scripts to
avoid wall-time limit and recover after failovers. In thexhehapter, we evaluate the performance

impacts of our work with several benchmarks.

38

Chapter 4

Empirical Evaluation

In the previous chapter, we discussed all the design ptesigecurity infrastructure, features and
scripts of our VAA solution for the cluster environment. hig chapter, we demonstrate the per-
formance impacts of the application execution as a VAA, therleeads of our automated, scripted,
secure data movement mechanisms and the overheads of thegiarigoperations. We use three
bioinformatics applications for the VAA benchmarks. Thebof the experiments is to answer two
important questions: Are the VAAs competitive enough whie bare hardware execution of the
same application, which we call the host execution of thdiegion? Are the overheads of our data
movement mechanisms and migration operations negligittferespect to the total run-times of the
VAAs?

To answer these questions, we start this chapter by exptathie details of the scientific ap-
plications that we use. Then, Section 4.2 describes theetedtonment. Section 4.3 explains the
details of the performance measurements. Finally, theviallg sections after Section 4.3 present
and elaborate the results that our benchmarks provide, tlsgeneral conclusions and quantitative

evidence from empirical evaluations are summarized atrdeoéthis chapter in Table 4.17.

4.1 Scientific Applications for Benchmarks

We present three bioinformatics applications that we usthéobenchmarks: GROMACS, GAFolder
and HMMer (Table 4.1). We call these bioinformatics applmas as the main applications. We also
add auxiliary applications along with the bioinformatiggé#cations to the VAA. We use these aux-
iliary applications in the host execution too. The auxiliapplications are for the execution of
the user scripts or the execution of the tools inside theiegpdn packages. For example, the C
preprocessor auxiliary application is used by ghempptool of GROMACS. However, the Python
script interpreter is added because we use an user sctiji thdtten in the Python language, which
runs several tools from the GROMACS application packagestfopm simulations and analyze the
output files.

The first application, GROMACS, is a molecular dynamics aggplon package. GROMACS

39

Name Description Dataset(s) Auxiliary Applica-
tion(s)

GROMACS A software package to per- 3 proteins: Human| C preprocessor and
form molecular dynamics. | Chicken, Turtle Python

GAFolder Protein structure energy 1 protein: Ubiquitin | none
minimization software.

HMMer Hidden Markov Models| 1 protein: Globin BBS Perl Benchmark
(HMM) software for protein Script
sequence analysis.

Table 4.1: The scientific applications and auxiliary apgiicns used in the benchmarks (Inside the
VAAs and on the host)

represents the broad class of scientific applications thdibopns CPU-intensive computations.
Therefore, GROMACS is an interesting application to test performance of the VAAs. Gen-
erally, GROMACS input files are small in size, e.g. 964 KB, @amed to the output files, e.g.
215 MB. mdrun the main simulation program inside the GROMACS softwarekpge, is mostly
computationally intensive. In GROMACS, simulations mapeied on various random seeds; how-
ever, we use constant seeds and a homogeneous hardwaomerest to get deterministic results.
Hence, we can have a fair comparison between the VAA and thedxecutions of the application
in terms of performance. Three sets of proteins are analgugdg the benchmarks: turtle, human
and chicken. Also, for the data analysis and several segliextcutions of the GROMACS tools
we use the Python script provided by our collaborators atthigersity of Alberta.

The second application, GAFolder, is a protein structuie emergy minimization application
developed by the University of Alberta Prion Group. GAFoldea good candidate to investigate the
class of applications which are really a collection of stxignd executables with a driver program
that creates new processes (e.g. fork) for different taskiag the execution. We modify the source
code to have identical outputs each time we run GAFolder. @@d¥ can run in multi-threaded
mode but we limit the number of threads to a single thread &t the VAA and host executions.
We also eliminate all the random seed generator functiodg#ate constant seeds as their return
value. Hence, we can have a fair comparison between the VAAtlam host executions of the
application in terms of performance. We use an Ubiquitirtgirofile provided by our collaborators
in our experiments. No auxiliary program is used. The input autput files are small in size, e.g.
240 KB (input) and 648 KB (output), with respect to the GROMZ\Gnes.

The third application, HMMer, is a hidden markov models (HMapplication for protein se-
guence analysis. HMMer is another widely used applicatackpge. We use the BBS benchmark
package [44] which includes several HMMer benchmarks. Heweve only execute thbmm-
searchbased benchmark with a globin protein file, which comes #ithBBS benchmark package,
to evaluate the performance of this work for the 1/0 inteasapplications. Since this benchmark
searches a sequence database with a profile HMM file, it ddeasixe disk readshmmsearchs

also compiled as a single-threaded executaluemsearctsearches 2.1 GB database, provided by

40

NCBI [14], during the execution. We included this databasthe VAA too. We use 76 KB input

files andhmmsearciproduces 2092 KB output files.

4.2 Test Environment

We run our secure copy over network (SCN) benchmarks on Hiehaster called Checkers at the
University of Alberta (Table 4.2). Checkers, which is par\éestGrid, has 1280 cores powered
by 2 CPUs on each of 160 nodes. Checkers also has one heaconmmterol the job submission

and the cluster’s authentication. The 2.50 GHz quad cord Xe¢on CPUs are configured with
16 GB of RAM on each node. The operating system is Scientificxi4.7 (64 Bit) with 2.6.28.2

kernel in all the nodes. The TORQUE/Moab batch schedulerages the job submission to the
cluster. KVM is installed on all the nodes as the virtual niaetmonitor. The virtual distributed

ethernet (VDE) and dnsmasq (dhcp and dns server) applisadie configured on all the nodes for
the virtual networking. Checkers also has a NFS-mountadgéosystem. However, to avoid NFS-
related performance issues, we only allowed the applicatimd the VAAs to read and write to the

local storage of the nodes.

Number Of Nodes 1 head node & 160 compute nodes
Number Of Cores per Node 8

Total Cores 1280

CPU Model 2.50 GHz Intel Xeon L5420 quad-corg
Total RAM per Node 16 GB

Batch Scheduler TORQUE/Moab

Operating System Scientific Linux 4.7 (64 Bit)

Linux Kernel Version 2.6.28.2

Table 4.2: Checkers cluster configuration

We run our migration and copy over shared memory (CSM) bemackson four nodes of the
Botha cluster in the Department of Computing Science at thizddsity of Alberta (Table 4.3).
Three of these four nodes has 12 cores powered by 2 dual cdis @Peach of 3 nodes. The fourth
one is the head node to control the job submission and théeckiauthentication. 3.00 GHz dual
core Intel Xeon CPUs are configured with 4 GB of physical RAMaath node. The operating
system is Fedora Core 11 (64 Bit) with Linux kernel 2.6.2%%ll the nodes. TORQUE batch
scheduler manages the job submission to the cluster. KVMisiglled on all the nodes. However,
on Botha, KVM is compiled with shared memory support betwdenhost and the VM. As in
the Checkers cluster’s configuration, the VDE and dnsmapticapions are configured on all the
nodes for the virtual networking. Although Botha has a NF&4nted storage system, to avoid
NFS-related performance issues, we only allowed the agdics and the VAAs to read and write
to the local storages of the nodes.

As explained in Section 3.3, another component of our test@mment is a virtual disk reposi-
tory (VDR) which stores three sets of VM disks (Table 4.4)eTépository stores the VM disks that

41

Number Of Nodes 1 head node & 3 compute nodes
Number Of Cores per Node 4

Total Cores 12

CPU Model 3.00 GHz Intel Xeon 5160 dual-core
Total RAM per Node 8 GB

Batch Scheduler TORQUE

Operating System Fedora Core 11 (64 Bit)

Linux Kernel Version 2.6.29.5

Table 4.3: Botha cluster configuration

constitute a VAA when they are used together in the right doatton. The first set of VM disks,
the root VM disks, contains either the base OS installatiahthe auxiliary applications or the com-
bination of the base OS, the auxiliary applications and th&JG&ompiler Collection (GCC). The
root VM disks are for the compilation of the application oetlaxecution of the application. The
root VM disks can also be used for both purposes. For exari€4BitRootWithGCCAM disk
contains the GCC 4 compilers and is used for the compilatidtiMMer and GAFolder. During
the run-time, we use th@4BitRootVM disk to eliminate the GCC binaries which are unnecessary
for the executions of HMMer and GAFolder. However, B#BitRootWithGCC3/M disk is used
for both the compilation and the execution of GROMACS beedBROMACS version 3.2.1 needs
the GCC 3 series compiler during the compilation and the @noeessor, which is part of GCC,
during the run-time. The second set of VM disks, applicatidmdisks, stores the application bina-
ries after the compilation. For example, thmer64bivVM disk contains the 64 bit binaries of the
HMMer application. The third set of VM disks are the paraméti! disk and the keys VM disk
which are part of the VAA's security infrastructure as expéal in Chapter 3.

The VM disks are created by VMware server in VMware’s natmedkformat which are also
compatible with KVM. However, we convert themdgoowformat of KVM during the migration be-
cause migration is only supported wigsowtype of disks. Although the VM disks have predefined
maximum sizes, the VM disks are not pre-allocated, whichmadlaeir sizes grow gradually as data

is written on them.

64BitRoot

Root VM Disks 64BitRootWithGCC3
64BitRootWithGCC4
gromacs64Bit
Application VM Disks hmmer64Bit
gafolder64Bit
parameter

keys

Parameter and Keys VM Disks

Table 4.4: Virtual disk repository (VDR) structure (64 dégmthat the applications or OSes are 64
bit)

When we talk about a VAA, we talk about combination of a root \dMk, an application VM
disk, a parameter VM disk and a keys VM disk. Basically, KVMumts these four VM disks when

42

it starts the VAA. The only bootable one is the root VM disk. eTltobmbinations of the VM disks

that we use for the VAAs can be examined from Table 4.5.

VAA Name VM Disks

GROMACS VAA | 64BitRootWithGCC3 + gromacs64Bit + parameter + key
GAFolder VAA 64BitRoot + gafolder64Bit + parameter + keys

HMMer VAA 64BitRoot + hmmer64Bit + parameter + keys

&

Table 4.5: The VAAs and their VM disk combinations

4.3 Details of the Evaluation Method

The aim of our benchmarks is to show that the VAAs have acbépaerformance to run on the
clusters and our data movement mechanisms incur negligiehead. We also used different
types of software to understand the performance of the IfDcampute-intensive workloads. We
compared the results with the host execution time of theiegpdn.

We prepared three sets of benchmarks. The first benchmankesestures the performance im-
pacts of the SCN data movement mechanism. The second bericbehaneasures the performance
of the CSM data movement mechanism. The third benchmark sétaut the migration overheads.
In this set, the time spent for the save and restore opesatimmmeasured.

We divide the total scripted VAA execution into seven stadesng the execution of a VAA.
Other than th&/M Boot (B)andVM Shutdown (Stages, all the stages are explicitly measured. The

stages are explained as follows:

1. Input Files Compression (IC). We measure the time spent for the compression of the input

files into a single compressed input file with tiae command.

2. VM Boot (B): At this stage, we consider the time spent from the start e MM until the
beginning of the VM script, which performs the data movenesmd application execution
operations inside the VM. Note that we derive the time sperntHfis stage along with théM

Shutdown (S§tage as explained in the following performance measurtnpamagraph.

3. DataIn (I) : We measure the total time spent for the transfer of the cesggd input file to the
VM and decompression of the compressed input file to the ifilegtwith thetar command.

Note that we separate out the 1st stdgput Files Compression (ICjrom this total.

4. Application Execution (E): At this stage, the VM Script starts the application suchhes t
gafolderexecutable or the user script such as the Python script cBRR@MACS VAA as
explained in Section 4.1. Therefore, we measure the timet $pethe complete execution of

the application or the user script.

5. Data Out (O): After the completion of the application execution, we maashe total time

spent for the compression of the output files into a singlepressed output file with thear

43

command and transfer of the compressed output file to the Nost that we separate out the

7th stageQutput Files Decompressipfrom this total.

6. VM Shutdown (S): At this stage, we consider the time spent from the end of thles¢ript
operations to the end of the VAA execution. Note that we dgetlie time spent for this stage
along with theVM Boot (B)stage as explained in the following performance measuremen

paragraph.

7. Output Files Decompression (OD)We measure the time spent for the decompression of the

compressed output file to the output files.

Our performance measurements are as follows. The parestehew the corresponding com-

ponents for each performance measurement from the abomtemed stages.

1. Data Movement Overhead (IC + | + O + OD). This measurement includes all the data
movement stages. Therefore, it is equivalent to the totaihodé spent for compressing/de-
compressing/copying input files (IC + 1) and compressingdaepressing/copying output files
(O+0D).

2. Application Execution (E): This measurement is the equivalent of the 4th stage. Bath th
host execution and VM execution have an E component. Intlagthost execution does not

require any data movement and VM-related operations, finvergt has only this component.

3. Total VAA Execution (B + | + E + O + S): This measurement is recorded as a whole. In
other words,Total VAA Executions the time spent from booting up the VAA to shutting
down the VAA. It covers the time spent for the VM Script opéras and also the boot up
and shutdown procedures of the VAA. Most data movement @aath are in this total too:
copying/decompressing the input files (I) and compressomying the output files (O). After
the VAA ends, the user can finally reach to the compressedibfitp, therefore, we used this

measurement to compare with the host execution of the aialic

4. VM Boot Up/Shutdown Overhead (B + S) This measurement is the total time spent for
booting up the VM and shutting down the VM. We referred thisasweement as theM
start/stop overheaih the tables. We derive this total by the subtraction of kl-data move-
ment operations (I+0) anfpplication Execution (Efrom Total VAA ExecutiorfTotal VAA
Execution - | - E - Q, because we do not explicitly measure YHd BootandVM Shutdown

stages.

5. Total Scripted Execution (IC+ B +1+E + O + S + OD): This measurementis the total of all
the stages from the 1st to the 7th. In other woflddal Scripted ExecutionoversTotal VAA

Executionand non-VM data movement overheads (IC+OD). We derive ti@ by adding

44

the time spent fomput File CompressioandOutput File Decompressicstages tdotal VAA
Execution(Total VAA Execution + IC + O,

We collect all the above-mentioned performance measurerf@rthe SCN benchmarks. How-
ever, we only collect the data movement overhead measutdarehe CSM benchmarks since the
only change is in the data movement mechanism. This charggemd affect the application exe-
cution or the VM boot up/shutdown times. Additionally, foigration benchmarks, we collect the

following time measurements:

1. Save Overhead It measures the time spent for saving the VM state to the digk initiate
the save operation in the middle of the application exeaufltnis measurement also includes

the time spent for destroying the VM process.

2. Restore Overhead It measures the time spent for restoring the VM state to teenory.
After this operation, the VAA starts and the application@x@®n continues where it had left
off.

4.4 Secure Copy over Network Data Movement Benchmarks

In these benchmarks, we evaluate the above-mentionedeadstand the performance measure-
ments for the SCN data movement mechanism. In all the bendismae use 64 bit binaries of
the applications and 64 bit Ubuntu Jeos 8.10 OS inside the \##untu Jeos allowed us to have
a minimal OS without extra burden. The rationale behind gi€i4 bit binaries is to have a fair
comparison between the 64 bit environment on the host andeirtise VAA. However, the user is
not restricted to use a 64 bit OS or application binariedimshe VAA. KVM can also run 32 bit
VAAs on the 64 bit host. We execute the VAAs locally and theamek transmission between the
host and VAA happens inside the cluster environment. We nkeame virtual processor inside the
VM. Also, the VM disks are growable VM disks which are not @i#ocated to their full sizes.

We run instances of the VAAs in 2048 MB, 1024 MB, 512 MB, 256 Midal28 MB of VM
memory sizes. We want to understand that how variationsa/tti memory sizes affect the per-
formance. We also run the applications along with their Baryi applications and the user provided
scripts on the host for the comparison purposes. We reskeverte whole node of the cluster to
the host or the VAA execution of the application. Therefave,ensure that the node contention is
as low as possible. We submit the jobs to the batch schedatértene and let the batch scheduler
to find a free node. Every protein’s performance numberstaaterage of 20 runs for each VM
memory size. Similarly, the host execution times are alsatlerage of 20 runs.

In thetotal VAA execution times normalized to the host execuitioesgraphs, the standard de-
viations are less than one percent of the total executioalftiie bars, therefore, they are not shown.

Also, boot up/shutdown overheaptaphs show a simple subtraction of in-VM data movement-oper

45

ations (I+0O) andApplication Execution (Efrom Total VAA ExecutioffTotal VAA Execution - | - E

- 0). Therefore, they do not include the standard deviatiorishvimay not be accurate.

4.4.1 GROMACS VAA Benchmarks

Three proteins, human, turtle and chicken are analyzeddoGROMACS VAA and the host instal-
lation of GROMACS. The simulation time parameter is 500 p#.ti#e results of the GROMACS
benchmarks for the SCN mechanism can be examined from Tél7e4.8, 4.9.

Figure 4.1 shows the result of the total GROMACS VAA exeautimes normalized to the host
execution time of GROMACS. From this figure, we can conclide GROMACS is suitable for the
VAA-based execution. Most of the time total VAA executiomé is close to the host execution time
of GROMACS. Although we always see a performance degraad#diothe 128 MB VM memory
sizes, the memory limit does not add an extra overhead eXoeplie chicken protein. One of
the reasons for the chicken protein’s significant perforceasiegradation may be its high memory
usage due to more computations from other proteins. Alsoegthe VM memory sizes over 128 MB
had similar performance, we can also conclude that our GROBIAimulations are not memory-

intensive, therefore, GROMACS VAA has reasonable resotggairements.

host ===
12| 128 MB
. 256 MB ::
512 MB
1024 MB &
2048 MB i

1 - -
)
£
=

- 08 R
2
5
(5]
9]
>
w

s 06]
@
N
©
£
2

04 R

0.2 R

Turtle Chicken Human

Figure 4.1: Total execution time of the GROMACS VAA for difest VM memory sizes normalized
to the host execution time of the GROMACS application. TheOMACS VAA achieves near-
native performance for all proteins (Tables 4.7, 4.8, 4.9).

The data movement overhead is directly affected by the siteeaccompressed input and output
files. Table 4.6 shows the input and output files total sizekthrir compressed sizes. A regu-
lar GROMACS VAA has a negligible data movement overhead itampare it with the total VAA

46

execution. For example, chicken protein total VAA execni®61749.5 seconds and the data move-
ment overhead is only 39.19 seconds with 2048 MB memory €Tal¥). Figure 4.2 shows that the
data movement overheads are less than 45 seconds in allgbs, deowever, total run-times are

longer than 55000 seconds.

Protein Input Files | Output Files Compressed Compressed
Name Total Size Total Size Input File Size | Output File Size
Turtle 1000 KB 202 MB 189 KB 94 MB
Human 964 KB 215 MB 175 KB 99 MB
Chicken 1064 KB 220 MB 193 KB 102 MB

Table 4.6: Total input and output file sizes of the GROMACS pSbenchmarks (Compressed/Un-
compressed)

45
128 MB £Zzz2
i T 256 MB ity
! i 512 MB "
40 - & ix 1024 MB ¢ 1
T \q>‘ 2048 MB 7xx2
4 OV
S ok H
35 o X — -
N 873 A
PO < o
XK A RO
S > X oY
5 R 7
. ; K
30 | o 2 p0% 1
N <A J
Xy X A
O e 0
S LK >x
/>>‘. A// ;\/\/,
25 | 2 & <&]
%) - X > X K
° A, @ x‘((,/)(V,
5 {7 A, (XK
N SOy S
o % Ko LKL
Q x> N o
a 20 Y yK\ % a
v KA X
2 A %
e et %
N S D
KK X N
< e 5
15 - > A o b
Vo 25 S
XX N e
<4 5 (0
5] o Se
10 %% oS R -
% S5 O
x K Y L\
A X o
A4 X X
P XA X
20 I e
e N7 -
5 958 O << .
s % D0
e K >
,/>'>< AN A ~\/\ 5
% ; o L s
0 $: ; ¢
Turtle (94 MB) Chicken (102 MB) Human (99 MB)

Figure 4.2: Data movement overhead of the GROMACS VAA fofedént VM memory sizes (The
numbers inside the parentheses show the compressed olgmitdis which affect the most of the
data movement overhead). The data movement overheads GROMACS VAA are small with
respect to total GROMACS VAA execution times which are mdrant 15 hours (Tables 4.7, 4.8,
4.9).

Another important overhead is the total of boot up and shutdtmes of the VAA. In the
standard OS installation, the boot up time and shutdown tirag become significantly high due
to extra processes such as graphical user interfaces, éngyvesitomounters and office applications.
However, with this minimal OS it takes at most 39 secondsuy(fEgt.3). Therefore, this overhead is

also negligible with respect to the total execution timehaf VAA.

47

50

40

30

seconds

20

128 MB
256 MB
512 MB

1024 MB .
2048 MB xx3

Turtle

Chicken

Human

Figure 4.3: Sum of boot up and shutdown times of the GROMAC& Y different VM memory
sizes. VM boot up/shutdown overheads of the GROMACS VAA analkrelative to total execution
times of the GROMACS VAA which are more than 15 hours. (Takl€s 4.8, 4.9).

GROMACS Chicken 128MB | 256 MB | 512 MB | 1024 MB | 2048 MB Host
Application Execution 66147.06| 61660.13| 61667.25| 61651.91| 61684.67| 61902.89
Data Movement Overhead 37.37 39.51 38.33 37.91 39.19 N/A
VM start/stop Overhead 34.76 34.91 36.62 34.76 35.26 N/A
Total VAA Execution 66211.84| 61724.86| 61733.64| 61715.71| 61749.50 N/A
Scripted Total Execution | 66219.43| 61734.73| 61742.66| 61724.80| 61759.52 N/A

Table 4.7: Checkers cluster GROMACS benchmarks: All thaltgedor the chicken protein (in

seconds)
GROMACS Turtle 128MB | 256 MB | 512 MB | 1024 MB | 2048 MB Host
Application Execution 55674.17| 55469.56| 55468.74| 55487.9| 55449.16| 55709.37
Data Movement Overhead 34.13 34.93 36.34 34.12 37.09 N/A
VM start/stop Overhead 35.98 35.26 34.9 35.05 35.08 N/A
Total VAA Execution 55737.48| 55531.46| 55530.8| 55549.08| 55512.99 N/A
Scripted Total Execution | 55744.54| 55539.95| 55540.2| 55557.32| 55521.54 N/A

Table 4.8: Checkers cluster GROMACS benchmarks: All thaltesor the turtle protein (in sec-

onds)
GROMACS Human 128MB | 256 MB | 512 MB | 1024 MB | 2048 MB Host
Application Execution 60393.61| 60166.28| 59836.03| 59891.28| 59907.19| 60160.89
Data Movement Overheagd 36.28 35.96 35.19 35.58 34.92 N/A
VM start/stop Overhead 38.53 36.05 35.14 35.23 35.11 N/A
Total VAA Execution 60461.17| 60230.67| 59899.41| 59954.29| 59970.01 N/A
Scripted Total Execution | 60468.85| 60238.57| 59906.60| 59962.28| 59977.41 N/A

Table 4.9: Checkers cluster GROMACS benchmarks: All theltedor the human protein (in

seconds)

48

4.4.2 GAFolder VAA Benchmarks

Ubiquitin protein is analyzed by the GAFolder VAA and the hstallation of GAFolder. The
simulation time is adjusted by setting the simulation itierss to 200. All the results of the GAFolder

benchmarks for the SCN mechanism can be examined from Talde 4

GAFolder Ubiquitin 128 MB | 256 MB | 512 MB | 1024 MB | 2048 MB Host
Application Execution 4452.81| 3596.79| 3595.64| 3599.66| 3598.70| 3959.10
Data Movement Overhead 1.83 1.8 1.73 1.29 1.73 N/A
VM start/stop Overhead 36.87 36.67 36.73 36.84 36.58 N/A
Total VAA Execution 4490.74| 3634.69| 3634.86| 3637.86| 3637.17 N/A
Scripted Total Execution | 4491.44| 3635.57| 3635.56| 3638.38| 3638.03 N/A

Table 4.10: Checkers cluster GAFolder benchmarks: All &saiits (in seconds)

The GAFolder VAA's total execution times are comparabldwiite host execution time of the
GAFolder application (Figure 4.4). We can only concludet tBAFolder computations need at
least 256 MB of VM memory to have reasonable performanceutrbenchmarks, GAFolder VAA
performed better than the host execution of GAFolder VAAeptc128 MB of VM memory size.
We cannot explain the reason behind this unusual perforenaitb our benchmarks and it is out
of this thesis’s scope. However, the variety of researcthénfteld explains the reasons as CPU
instructions, memory management and input/output opétigans. For example, Adams et. al [2]

discuss the CPU instructions optimizations by performiagobenchmarks.

1.2
host zzz=2
128 MB
256 MB
512 MB
1k 1024 MB XXz |
2048 MB #ixwi
2
K
P5%
g osf N =
5 5%
2 O
3 R
£ 0.6 Q%]
w ! &\(;
=] KK
K 5es
s b
X
E St
= 04 /v\> X B
X
K
AN
o
b
K
0.2 | \/‘\/‘>, .
. 5%
oS
Of’
/v\?
4
x

Ubiquitin
Figure 4.4: Total execution time of the GAFolder VAA for d@ifent VM memory sizes normalized

to the host execution time of the GAFolder application. Th&FGIder VAA's total execution times
are comparable with the host execution time of the GAFolgetieation (Table 4.10).

Other VAA related overheads namely the total boot up/shwidiimes and the data movement

49

overheads are not significant with respect to the total VAAcexion times. Table 4.11 shows that
the GAFolder VAAs compressed input and output file sizedese than 120 KB, therefore the data
movement overheads are less than 3 seconds (Figure 4.5).tiAésVM boot up/shutdown times are
similar to the GROMACS VAA's totals and do not add significantrheads to the total execution
times of the VAA .

Protein Input Files | Output Files Compressed Compressed
Name Total Size Total Size Input File Size | Output File Size
Ubiquitin 240 KB 648 KB 39KB 118 KB

Table 4.11: Total input and output file sizes of the GAFoldendhmarks (Compressed/Uncom-
pressed)

128 MB
256 MB «
512 MB ¢
1024 MB
2048 MB 7xx2
25 B
2 - -
AT
%) S,
2 e
S
S 15} PR E
=} N Y
D 9 \>~ ><_<,\"
@ / SIS
I
I
S OTXK
SR
SO
1 X]
RS
X
<>/\’x</
AN =
N KO
N /\/\/\/\
SO
SR
0.5 D1058 4
x>
XK
KA XL
OIRR
S
PO G
X ‘/\/\/\/\
0K

Ubiquitin (118 KB)

Figure 4.5: Data movement overhead of the GAFolder VAA fdfedént VM memory sizes (The
number inside the parentheses shows the compressed olgmitdi which affects the most of the
data movement overhead). The data movement overheads GfARelder VAA are small with
respect to total GAFolder VAA execution times which are mitian 59 minutes (Table 4.10).

4.4.3 HMMer VAA Benchmarks

Globin protein is analyzed by the HMMer VAA and the host ifistéon of HMMer. The simulation
time depends on the database size, therefore, we choos®2at@base from the BBS benchmark
suite to achieve a comparable run-time with the real lifdiappons. All the results of the HMMer

benchmarks for the SCN mechanism can be examined from Tdlf#e 4

50

40
128 MB rzz2
256 MB fomny
TS 512 MB 2
Seoste 1024 MB i
2505658 2048 MB 137K

» %
2 xy\,</ O
g 20 o 2%
L 7 {]
o \'/\(\/fz\/\/
b o
L
AN K
N X, N/
230K
NSRS
L Satesed i
15 <
NN
ORI
DX K
\: KN
NS
e
RN .

10

Ubiquitin

Figure 4.6: Sum of boot up and shutdown times of the GAFold®A Yor different VM mem-
ory sizes. The boot up/shutdown overheads of the GAFoldek ¥fe small with respect to total
GAFolder VAA execution times which are more than 59 minufiesb(e 4.10).

HMMer Globin 128 MB | 256 MB | 512 MB | 1024 MB | 2048 MB Host
Application Execution 3252.14| 3157.12| 3159.06| 3158.92| 3159.23| 3156.3
Data Movement Overheag 1.95 1.57 11 1.08 0.62 N/A
VM start/stop Overhead 37.83 38.46 42.43 40.07 38.43 N/A
Total VAA Execution 3291.92| 3197.15| 3202.59| 3200.06| 3198.28 N/A
Scripted Total Execution | 3293.05| 3198.39| 3203.35| 3200.82| 3198.57 N/A

Table 4.12: Checkers cluster HMMer benchmarks: All the lisgin seconds)

HMMer VAA execution times are higher than the host executiore of HMMer (Figure 4.7).
However, the overhead is at most 4.4% in 128 MB VM memory tdsis a middle ground 512 MB
memory size, the overhead is as low as 1.47% which makes ligitdg with respect to the total
search time. This benchmark shows that the 1/O intensivdicgtions can also have reasonable
performance inside the VM.

Our results are different from Macdonell et al.’s identibahchmark results [32]. Denoted as
thehmmer-with-nr-1CPWenchmark in their paper, they report that this HMMer benatknimcurs
7.7% overhead on average with respect to the host execimiendf the same benchmark. They
only use 2 GB of VM memory configured with Gentoo Linux kernetsion 2.6. With the same
amount of memory, we measure only 1.33% overhead. The maswoneof this difference is that
Macdonell et al. choose VMware server as the VMM which hafedéht code base than the KVM
VMM’s code base. Other reasons may include some signifigéatehces in our VAA design from

Macdonell et al.'s VA design. For example, we use minimal @8mized for the VMs, however,

51

Macdonell et al. use a standard Linux distribution.

12
host =2
128 MB &
256 MB &
512 MB &
1024 MB
2048 MB &

SRS
XA
>

\,
<2
> X

RO

0.8 -

,‘\/,‘Nv\/\‘,
RSN
SIS
SRS
QL XK

X

LA
X

X
KON
A

Normalized Execution Time
o
(2]
T

04 |

ST
SEENE
RS
X KX
RIS
PRGOS
1

0.2 |

VAN
<'/~_>‘ X
\/

X
RO

R8s
MK
Y X

%
4

SIS

Globin

Figure 4.7: Total execution time of the HMMer VAA for differeVM memory sizes normalized
to the host execution time of the HMMer application. The If@ensive applications can also have
reasonable performance inside the VAA (Table 4.12).

Similar to the GAFolder VAA benchmarks, other VAA relatedeohreads of HMMer VAA,
namely the total boot up/shutdown and data movement ovdshe® not significant with respect
to the total VAA execution times. Table 4.13 shows that HMMAA's compressed input and out-
put file sizes are less than 330 KB, therefore the data movieorerheads are less than 2.5 seconds
(Figure 4.8). One important point is that the HMMer VAA's dahovement overhead is reducing
as the memory size grows which we do not encounter in othechmarks. Also, the VM boot
up/shutdown times are similar to the GROMACS VAA's and GAderlVAA's totals and do not add
significant overheads to the total execution time of the VAkerefore, we can conclude that, with
the similar software structure other than the main appticand the auxiliary applications, the total

boot up/shutdown times are fairly constant for each VAA etien in all the benchmarks.

Protein Input Files | Output Files Compressed Compressed
Name Total Size Total Size Input File Size | Output File Size
Globin 76 KB 2092 KB 12 KB 327 KB

Table 4.13: Total input and output file sizes of the HMMer Bamarks (Compressed/Uncom-

pressed)

52

128 MB
256 MB
512 MB
1024 MB &
2048 MB

h
AT
ERRREATIAY
15 | RTINS .
. ARNRRTNN
ARRTARRANY
SRR AN
ERREATRNNY
AARETEEARNY
ARV
IORRVANRANY
AN,
RRER RS
ARERRLANRANY
NI
ASRNRNTAN
NSNS
N

seconds

NN
RN
IR
ERRSANENNY
ERRSANEANY
ARERREARY
ERERANIAN
ERRRANSNS
Y
IRERANRY
EARRRRRANY
ARERRIREY
ARERNRANS

IRRSANRNS
- ARNERARAN

ARERANANN

ERRERNRNNS

ARSI

ARERNRARG
NNRAN

\
RN
W
ENRIRERN
\
ARUNRNN
NARANN
NRRRANNS
SRR
NANRRNN
AN
CNNSNN

W,
W,

\
N\
\\\\\\ \\\\\\
05

- ARRRRRANY

s

AN
AN

Globin (327 KB)

Figure 4.8: Data movement overhead of the HMMer VAA for difiet VM memory sizes (The
number inside the parentheses shows the compressed olgmitdi which affects the most of the
data movement overhead). The data movement overheadsdfAlter VAA are small with respect
to total HMMer VAA execution times which are more than 52 ntesi(Table 4.12).

AT T 2048 MB
INNCANNYY S5
RREIRNN s
N O
\:\\\\\\\\\\:\\\ Ko V\/\\/\
ORI g
35 | ey (OSER% 4
DRNRARRRRNY (XA
DARAARANRNR LS
NARRARRNN %5
AN SN
NARSARINN 5%
SN KA
OSENL
30 |+ ANRARRNINN (XA, 4
TN
ONNESANARRNG X KD
AN, A N
AANRNRNN KA XX
ANIRRRNAN KO X <o
Y @»/f, v
SRR TR
OISR XSS
25 | RRRARRRNRNY KX 4
n NSARANRRNY RO RO
° AR ANMNE
= ARAARIRRNY 355K
ARERRERAE Y N e
o ARRUNRNNN MR M
o X
Q AR SRR
7] 20 F ANSRRRRENN KA a
NN SIS
NNSARAANY £S5K,
AANAREARNNY \/\»\/‘\/(\/“
NN D %
OO
ANRRNRY KSR
NRNONN ALK
15 | NN O IR. 4
IANRARRNRY XA
RRRANANRANY WO,
RRRRNSRON X X PSPD
\ Ot
ERRRANANRRY ,\'</ \>/\x
NN \\\\\\) SV X
ANNERRNNN S
Ay, ST
10 } DURERREANAN MR A N
DUNRRRRN LSO
NN OO
AN Y N
IARNARRARNANY AN
NUNNNNN KA
ANAARARNANY N XN
AR S e
5 ARRRRNRRY O
- DN S, 4
SNSRI K
NRARRRNRN N
NRRINRANNRY 575K
Wy, X X
IR DX KA
NAREANNNN AR
NRNARSANNN &8 />'\/x
ERRERRINEN 825

Globin

Figure 4.9: Sum of boot up and shutdown times of the HMMer VA different VM memory
sizes. The boot up/shutdown overheads of the HMMer VAA arallswith respect to total HMMer
VAA execution times which are more than 52 minutes (Tabl@}.1

53

4.5 Copy over Shared Memory Benchmarks

In these benchmarks, we compare the data movement overhéiael GSM mechanism with the

SCN data movement mechanism (Table 4.14). In all the bendtsnae use the same VAAs as in
the SCN benchmarks. We only change the VM Script's SSH-bdatdmovement parts to the CSM
operations as explained in Chapter 3. Also, we add the shmesdory kernel module to the guest
OS and start the VAA with this driver enabled.

VAA and Protein Name | 128 MB | 256 MB | 512 MB | 1024 MB | 2048 MB | SCN 512MB
(Data Size)

GROMACS Chicken 16.08 16.21 16.20 16.15 16.10 32.41
GROMACS Turtle 14.20 14.66 14.49 14.23 1451 26.51
GROMACS Human 15.60 15.87 15.16 15.17 15.15 28.24
HMMer Globin 0.14 0.14 0.14 0.15 0.22 7.49
GAFolder Ubiquitin 0.09 0.08 0.08 0.09 0.48 8.28

Table 4.14: CSM vs SCN data movement overheads: All thetse6nlseconds)

We execute the same benchmarks as in the SCN benchmarks execegtiluce the GROMACS
benchmark’s run-time by reducing the simulation time patento 50 ps (This change also affects
the file sizes (Table 4.15)). By reducing the run-time, we tonget results faster for the GRO-
MACS VAA since we only measure the difference between SCN@8W. We also execute the
benchmarks of SCN data movement mechanism with 512 MB of VIvhorg on Botha to compare
the performance of our data movement mechanisms. We uséuitermodes and batch scheduler
with the same way that we use in the SCN benchmarks. Evergipi®performance numbers are

the average of 5 runs for each VM memory size.

Protein Input Files | Output Files Compressed Compressed
Name Total Size Total Size Input File Size | Output File Size
Turtle 1000 KB 177 MB 189 KB 70 MB
Human 964 KB 189 MB 175 KB 74 MB
Chicken 1064 KB 198 MB 193 KB 81 MB

Table 4.15: Total input and output file sizes of the GROMAC$5benchmarks (Compressed/Un-
compressed)

A shared memory file is created with 512 MB size. One impornpant of these benchmarks
is that due to the bug in the Macdonell's shared memory codk¥d/, the shared memory size is
added to the total memory size. Therefore, the results dizriexamined with additional 512 MB
of VM memory. However, differentiation in memory is not sifjcantly effective in the CSM’s data
movement overhead.

Our aim in these benchmarks is to show that if the completel legecution is possible the
CSM mechanism is a better choice than the SCN mechanism.efbiner we only measured the

data movement overhead of both data movement mechanismsalsé/ealculated the standard

deviations.

54

30

Secure Copy 512 MB
Shared Memory 128 MB &
Shared Memory 256 MB
Shared Memory 512 MB &
25 | Shared Memory 1024 MB

Shared Memory 2048 MB

77
20 | 4 317 g

‘\/é‘
i

b2
X
X

15

seconds
NN
>‘/\>< ‘<\<>

N,/
N

%
K|

>

X

>

Turtle (70 MB) Chicken (81 MB) Human (74 MB)

Figure 4.10: Data movement overhead of the GROMACS VAA wlith €SM mechanism for dif-
ferent VM memory sizes vs. data movement overhead of the GRCBNAA with the SCN mech-
anism for 512 MB VM memory size (The numbers inside the pdresds show the compressed
output file sizes which affect the most of the data movemepttwmad). The CSM mechanism
performs better than the SCN mechanism (Table 4.14).

Figures 4.10, 4.11 and 4.12 show the GROMACS, GAFolder andidMVAAs’ CSM perfor-
mance with respect to the SCN performance. We conclude Bkt ferforms at least 30% better
than the SCN in all the applications. Also, we speculate firasmall data transfers (Figures 4.11
and 4.12), SCN overhead is dominated by the SSH’s authdéinticaverhead which is not part of
CSM. Every SSH connection starts with the key exchange pobtaf SSH, which guarantees that
the sender has enough credentials to initiate a data tratostae receiver [48], [6]. Therefore,
this authentication overhead is independent from the da¢a 8Ve also speculate that the per byte
overheads of TCP/IP and SSH encryption protocols are theipent reasons of the performance

degradation during the data transfer in the SCN mechanism.

4.6 Migration Benchmarks

We explore the migration as a mechanism to recover afteviais and avoid the cluster wall-time
limit (Chapter 2). The VMM can save several states of the VA8 ase one of these saved states
to return to the previous execution point in case a failugpleas. Also, the migration functionality
can be a workaround to the cluster’s wall-time limit. Aft@etwall-time has run out, the batch
scheduler terminates the user’s job. However, if the ugal'ss longer than the wall-time, by using
the migration functionality, the VMM can save the curremitstof the application before the wall-

time has run out and resubmit it to the batch scheduler. Ttheryser job can be restored from this

55

1.4

12

0.8

seconds

0.6

0.4

0.2

Secure Copy 512 MB ¥zz2A
Shared Memory 128 MB &
Shared Memory 256 MB :
Shared Memory 512 MB &

Shared Memory 1024 MB 137X
Shared Memory 2048 MB

Ubiquitin (118 KB)

Figure 4.11: Data movement overhead of the GAFolder VAA withCSM mechanism for different
VM memory sizes vs. data movement overhead of the GAFoldek With the SCN mechanism
for 512 MB VM memory size (The number inside the parenthebesvs the compressed output
file size which affects the most of the data movement overhdeaar small data transfers, SCN is
dominated by the SSH’s authentication overhead which ipardtof CSM (Table 4.14).

15

seconds
-

0.5

Secure Copy 512 MB rZz72
Shared Memory 128 MB & vl
Shared Memory 256 MB :
Shared Memory 512 MB

Shared Memory 1024 MB

Shared Memory 2048 MB &

Globin (327 KB

Figure 4.12: Data movement overhead of the HMMer VAA with @@M mechanism for different
VM memory sizes vs. data movement overhead of the HMMer VAfhwhie SCN mechanism for
512 MB VM memory size (The number inside the parenthesesstiomcompressed output file size
which affects the most of the data movement overhead). Fall siata transfers, SCN is dominated
by the SSH's authentication overhead which is not part of GSable 4.14).

56

saved state and application execution continues.

In this section, we investigate if migration’s two importanerheads of save and restore are neg-
ligible enough to employ the migration functionality. Thégnation benchmarks measure the time
spent for saving the VM state to a file and restoring the VM fithis saved state. We usibvirt
[29] library and its command line toafirsh for the save and restore operatiotibvirt provides a
virtualization API that supports several VMM platforms buas KVM and Xenvirsh provides sev-
eral command-line options to execute the VM-related opmmatsuch as starting the VM, shutting
down the VM, saving the VM state, restoring the VM from the VMts file and defining resource
requirements.

We use the GROMACS, GAFolder and HMMer VAAs with 512 MB of memaAlthough we
execute the VAAs until completion, we only measure the sawkrastore times. We check that, at
the end of the execution, the resultant files have correattseand the same as the non-migration
executions. We execute the applications until half of tiheir-times to ensure that their CPU and
memory usages are steady. Then, we issue the save commasdwenthe state file to the disk.
(Figure 4.13). Finally, we restore the VAA from this savedtstand let the execution end (Figure
4.14). The operations are executed by submitting the VAA jotthe batch scheduler.

virsh -c gemu:///session save GAFolderVAA /home/user/GIAErVAA.save

Figure 4.13: Thevirsh command-line for the save operation

virsh -c gemu:///session restore /home/user/GAFoldergare

Figure 4.14: Thevirsh command-line for the restore operation

One source of confusion may come from the terminology of sndmnd resume versus save
and restore. We use save and restore bed#nsg uses these terms to define the operations that
we execute for the non-live migration. However, insteadadfesand restore, some papers in the
literature may refer to the same operations as suspend anthee Therefore, they can be used
interchangeably depending on the context.

The save operation creates a save file (i.e. state file) amddibstroys the VM process. For
example, in Figure 4.13jrsh saves the state of tt@AFolderVAAYM to the /home/user/GAFolder-
VAA . savdile. The save file contains the resource definitions, the GRLhaemory state of the VM
andlibvirt-related headers. After the save operation, the saved fildeanoved locally anywhere
on the host, however, the VM disk images should stay in thigiral paths.

The restore operation restores the VM from the state fileistaeated by the save operation. For
example, in Figure 4.14irsh restores the VM from théhome/user/GAFolderVAA. .sastate file.
The restore operation redirects the contents of the stattofthe KVM monitor’s pseudo-terminal.

Therefore, KVM reads the state file from the monitor’s psetetminal and starts the VM from the

57

point that the VM is saved. In these benchmarks, the time ureasent for the restore phase is until
completion ofvirsh's restore command. We test that, right after the restorencand returns, we
can connect to the VAA and the VAA is responsive to the usenests. Therefore, the restore times
in this section guarantees the usability of the VAA afterréagtore operation.

All the results of migration benchmarks are shown in Figud&4nd Table 4.16. We conclude
that as the size of the state file grows, the time spent forahe and restore operations grows. Also,
even with the large state files, e.g. HMMer's 425 MB state fiat is close to the 512 MB memory
size the save time is approximately 15 seconds and the eesitoe is approximately 5 seconds.
Therefore, the migration overheads are also negligiblh véspect to the total execution times of
the VAAs.

16

14

12 %
10 %% ZI7

seconds
o]

GROMACS GAFolder HMMer

vZzA Save 22 Save TEXR Save
LOIITay Restore & 7t Restore 2w Restore

Figure 4.15: All migration benchmarks’ results (The nunsiaside the parentheses show the sizes
of the saved state files). The migration overheads are selative to total execution times of the
VAAs (Table 4.16).

VAA and Protein Name Save | Restore
GROMACS Chicken 10.59 1.14
GROMACS Turtle 11.19 1.73
GROMACS Human 9.86 1.56
HMMer Globin 14.61 5.1
GAFolder Ubiquitin 4.65 2.23

Table 4.16: Migration overheads: All the results (in sec)ri®ee also Figure 4.15)

58

4.7 Concluding Remarks

In this chapter, we evaluated the performance impacts of/Adrdesign. The general conclusions
and quantitative evidence from empirical evaluations arersarized in Table 4.17. We performed
three sets of benchmarks to understand the overheads daugedVAA execution, data movement
mechanisms and migration operations. We varied the VM mgrsiaes to examine the effect of
the memory size on the performance of the VAA. We also contphtire VAA execution times of
the applications with their host execution times. We useditita files and simulation times that are
similar to the real life applications. We executed the aggtlons and the VAAs on the real clusters.

Through the first set of benchmarks, we saw that our SCN datement mechanism incurs
negligible overhead with respect to the total executioretirof the VAAs. Further, we concluded
that the total VAA execution times of the applications areyvelose to the host execution times
of the applications. Furthermore, we saw that even the Iténsive application of our test suite
achieves near-native performance.

The second set of benchmarks were used to verify that our C&&l rdovement mechanism
is a better choice when the complete local execution is plessWe saw that the CSM approach
achieved much better results. Also, we speculated thatfiatl glata transfers, SCN is dominated
by the SSH’s authentication overhead which is not part of CSM

The third set of benchmarks were performed to examine theatiign overheads of the VAAs.
We measured the time spent for the save and restore operaiMnconcluded that as the state file
size grows the total time spent for the save and restore tipesagrows. However, even if with a
425 MB file size that is close to the 512 MB memory size of the VAl#e overhead number is in

seconds and negligible with respect to the total executines of the VAAs.

Conclusion Figures Raw Data Tables

The VAAs can achieve near-native performance 4.1,4.4,47) 4.7,4.8,4.9,4.10,4.1}
The data movement overheads are small relative to total 4.2,4.5,4.8| 4.7, 4.8, 4.9, 4.10, 4.11
VAA execution times
The VAA boot up/shutdown times are small relative|to 4.3,4.6,4.9| 4.7,4.8,4.9,4.10,4.12
total VAA execution times

CSM performs better than SCN 4.10,4.11,4.12 414
For small data transfers, SCN is dominated by the SSH’s 4.11, 4.12 4.14
authentication overhead which is not part of CSM

The migration overheads are small relative to total execu- 4.15 4.16

tion times of the VAAs

Table 4.17: The general conclusions and quantitative ecieléfom empirical evaluations

59

Chapter 5

Related Work

Our project contributes to the research in HPC mainly indglo&tegories: the management of clus-
ters, adaptation of the VMs to the cluster environment argtation of VMs for easy control of the
application execution. Therefore, we can discuss theaglabrk in three categories. The first cate-
gory isAggregated Resource Managemtiat focuses on managing the VMs and/or applications in
the distributed systems. The second catego¥jrisial Appliancesvhich includes the research that
is related to the virtual appliances and their uses. The ttategory isMigration which presents
papers from the VM migration research. The following sewtidiscuss the related work in the

above-mentioned categories.

5.1 Aggregated Resource Management

Aggregated resource management tools control the creatidfor distribution of resources. Also,
these tools coordinate the applications that use thesane=oacross the distributed systems. In this
dissertation’s context, we focus on the tools that adap¥itis into the cluster environment, which
we call asvirtual Cluster Implementationsnd tools that use non-VM mechanisms to manage the
resources and applications to deal with the software hgéereity problem. In these categories, the
tool can be the part of a bigger project such as Globus Vikéakspaces [24] or the tool itself can
be the center of other management components such as in d80#land In-VIGO [1].

The virtual cluster implementations use the VMs as the prymuit for the management of
clusters. These tools aim to integrate the VMs into the ibisted systems and optimize the cluster
environment for the efficient execution of the VMs. They galflg virtualize all the physical com-
ponents of the distributed system such as the memory, CPUWetmark interfaces. When we use
the verb virtualize, it means we provide virtual versionghbysical components to the software in
the context of the VMs rather than exposing physical resmaito the software as they are. From
the cluster management side, virtualization gives fleiybih the management and distribution of
resources.

One of the virtual cluster implementations is In-VIGO whitles to virtualize entire cluster

60

environment by creating a virtual cluster model and virtnétrfaces. The virtual cluster model
consists of virtualized versions of file systems, applaadi(In-VIGO's virtual applications are very
similar to the virtual appliances) and networks. In-VIG@izhitecture also includes a resource
manager which handles the creation of virtual resourcesaeadution of user jobs using these vir-
tual resources. Further, In-VIGO aims to be user-friendihws web-based user interface manager
for the creation of the VMs and the management of the user falrshermore, In-VIGO can benefit
from VMPlants [27] which dynamically creates virtual resoes when they are needed. VMPlants
gathers the information about the necessary resourcestfremser via a web interface. This in-
formation can be the type of OS, applications to be instatledesource definitions such as the
configuration of networking with specific MAC/IP addresstbe CPU type and memory size. In-
VIGO's virtual file system (VFS) implementation stays on wfNFS and redirects the RPC calls
from the client to a NFS server. As a result, In-VIGO provitidsS-like file system features in a
virtualized environment. The In-VIGO's authenticationehanism can use a standard password file
of UNIX, LDAP or SQL database. For authorization, In-VIGQies on user classes and application
access constraints, which can also be defined by the user.

Similar to In-VIGO, the Globus Toolkit 4 [15] introduces Glas Virtual Workspaces as part
of the Globus Toolkit's service-oriented architecture thoe distributed computing. Services under
Virtual Workspaces configure the VM as a virtual workspac®Vy deploy it to the cluster and
define the operations such as starting and stopping of the. UM¥irtual Workspaces, a VW is
managed by a web service and the definition of VW is depictatiénform of an XML schema.
Virtual Workspaces heavily uses other Globus Technolagieh as GSI with X.509 certificates [8]
for the security and GridFTP [3] for data movement.

A different implementation with similar features as In-\@Gand Virtual Workspaces is Virtual
Cluster Installation System (VCIS) [19]. VCIS provides astallation request submission system
that installs the necessary software and also allows thiéggemation of the software inside the VM.
Further, VCIS uses caching techniques to accelerate thipheW'M creation.

Virtual Cluster Implementations use the VMs to deal with software heterogeneity problem;
however, BOINC [4] and Condor use different techniques fiersgame purpose. BOINC and Con-
dor distribute the data and computation across the cliemsaim to use the redundant cycles of
various computer systems in this distributed environmidotvever, their approach differs in terms
of handling the target systems and management of resolBEHSIC targets the public computers
connected via Internet across the globe and uses them asadiopl execution platforms. BOINC
users can benefit from several tools to describe the datacamplutations as well as to create and ex-
ecute the applications in the BOINC installed computersidoo, however, does not require special
programs to be designed for the distributed environmemdopsimply aggregates several worksta-
tions and controls them with a scheduler. The user prepareg based submission script to define

the hardware and software requirements of a user job. Thamj@ chooses the best suitable exe-

61

cution platform from a pool of workstations. Unlike BOINCp@dor targets the computer systems
across the LAN. However, Condor can also be used in the pobfigputing. If a specific worksta-
tion becomes busy, Condor can migrate the jobs if possib#ogs and restarts the jobs in another
workstation. To achieve this type of migration, Condor uses|/O redirection, checkpoint/restart
and transparent process migration mechanisms. Furthedd@supports the VMs but this support
is limited to locating the necessary VMM to run the VMs witkethresource descriptions.

The feature comparison of the aggregated resource managémoés and our design can be
examined in Table 5.1. We compare our work with the virtualstédr implementations (VCIs)
since we use the VMs. The main difference between our desigrttee VCls is that the VCI's
resource management application has to be installed oruk&cbefore the VCI can perform its
functions. However, we benefit from the shell scripts, C paogs and widely used batch schedulers.
Therefore, we eliminate the need for the non-standard neanagt software. Although they have
some mechanisms for automated data movement, they leaaerdatement decisions mostly to
the user who needs to be aware of the VMs. However, data mowdmaek and forth from the
original location is an extra burden for the user. The ussr alants the output files to be organized
in the predetermined locations automatically. Our secata thovement mechanisms provide this
flexibility without a user interaction with the VM. Additiaily, we argue that dynamic VM-creation
features of the above-mentioned implementations do noéattd advantage for the user who needs
extensive customization of the software environment. Tést lsase for the user is to have her
workstation or test environment virtualized. Thereforesreif the user has a VM with a compatible
OS and base software installation, she has to configure théovier own purposes. Further, one
common advantage of the dynamic VM-creation is to simplify ¢reation of multiple VM images,
but this can also be done more efficiently by the static VMatios. For example, after the user tests
her work in one VM and decides to deploy it, she can simply dofmymultiple nodes with a simple
script and run it across the cluster. Also, KVM has a snapsptibn which basically executes
the VM in the read-only mode and any modifications to the VMwariten to temporary files (i.e.
copy on write). After the execution finishes, all the chargesdestroyed and the base image stays
the same. With the KVM'’s snapshot option, the user can eretuitiple copies of the same VM
without any change to the base VM image; therefore the uses dot need multiple copies of the

same VM if the image stays on a shared file system.

5.2 Virtual Appliances

A VAA refers to a special kind of virtual appliance (\VVA) thatirs to produce a result and stop execu-
tion after the result. We further optimized the VAAs for stiéic applications with data movement
mechanisms and a security infrastructure. However, theeaWAgenerally functional units for differ-
ent distributed system management solutions. In this@ectie see a complex VA-based solution

to address the software heterogeneity problem and a bemkltimaé shows the performance impacts

62

Features In-VIGO Virtual BOINC Condor VAA
Workspaces
Solution for the | Virtualization| Virtualization| Plug-in I/O redirec-| Virtualization
software hetero- | with with architecture | tion with KVM
geneity problem VMware Xen and
and IBM | VMware
zVM
VM Creation Dynamic Dynamic N/A N/A Static
Security - Authenti- | The user| GSI (X.509| The BOINC | GSI, ker-| SSH pub-
cation manager certificates) | manager beros, lic/private
(LDAP, (password | windows, key
passwd file authentica- | anonymous
and/or ex- tion) etc.
ternal SQL
database)
Security - Autho- | The user| GSI (Map | None or the| User-based | Standard
rization manager files) project spe- linux au-
(Role- cific thorization
based) and forced
command
restrictions
Security - Data | Data move-| GridFTP None or | Optional en-| SSH encryp-
Movement ment across (GSS API| project cryption tion
trusted extensions) | specific
sources, no
encryption
User Data move-| Manual data| Optional Automated | Automated | Automated
ment movement | automatic stage-in data move-| stage-in
to a NFS-| stage-in stage-out ment stage-out
mounted stage out
folder

Table 5.1: Feature comparison of aggregated resource reaneag applications

63

of the VAs.

The virtual appliance concept first appears in a series oézdipom Sapuntzakis et al. as the
main unit of the Collective project [41], [9], [40]. The Cefitive project aims to achieve homoge-
neous software environment from heterogeneous sourcescaection of VAs. From this point of
view, the main motivation of the Collective project is siarito our motivation. However, the Col-
lective project is intended to simplify the deployment ofta@re in general. Also, the Collective
researchers add maintenance features as part of a VA solltidike our model, which uses avail-
able resources across a distributed system, the Collqutdject proposes a new way of software
deployment concept. The Collective user has different \@xgffferent purposes such as a VA for
a firewall software, VA specialized for office applicatiomsdaVA specialized for a communication
application. However, the users do not install the appbiceto the VAs and, whenever they want to
use the VA, they get the up to date version of the applianaa ffe centralized repository. Similar
to our architecture, in the Collective architecture, thame separate VM disks for each appliance,
which are the data and OS VM disks. However, whenever thewsets to access a VA, she sees
a unified environment. Also, the VAs of the user can commuaieath each other across the net-
work. Some of the collective system’s other features arenguage called CVL to define the VAs
and its resource requirements, authentication systenméosecurity and user specific management
and caching mechanism for reducing the amount of data #aosér the network.

From the performance point of view, Macdonell et al. [32]\pde several benchmark results
with VMware-based VAAS. Macdonell et al. use the BBS benchmark suite for the BLAST an
HMMer VAA benchmarks. For the Gromacs VAA benchmarks, theg Gromacs benchmarking
system calledymxbenchAccording to theivmstatresults, the BLAST benchmark varies in its 1/O
intensity. The HMMer benchmark is a database search ben&hntach is 1/0O intensive. GRO-
MACS benchmarks mainly rumdrunfrom the GROMACS application suite which is compute-
intensive. They found that compute-intensive jobs incur@%ess overhead and I/O intensive ones
incur 5.6% or more overhead on average. However, our regithsGROMACS and HMMer (with
different test sets) show a KVM-based VAA with minimal optimg system can achieve near-native
performance in both I/O and compute-intensive jobs (Chafte The reasons may include the

differences in the VMM software and minimal OS of the VM.

5.3 Migration

VM migration mechanisms can be divided in two categories:litre (online) or non-live (offline)
migration. In the live migration approach, the VMs can be naigd without interrupting the VM
execution. The VM state is copied to another machine whigeMN is still running on its current

machine. Once all the state is copied to the target machiradentical VM on the current host is

1n their paper, Macdonell et al. use the term Virtual Appties, however, we define the type of VAs in their paper as
Virtual Application Appliances.

64

suspended and then, the modified part of the state duringubkfgension phase is also copied to the
target host if it exists. At this point, the VM process is degéed on the current host. Finally, the
VM is restored on the target machine and continue to the éxacan the new host. In the non-live
migration approach, the VM state is saved to a file and theWMerocess is destroyed. Later, the
VM state is copied to the target machine and restored frosmtigichine.

Non-live migration is also referred as save-copy-restoseiepend-copy-resume migration. The
precedents of the non-live migration methods appears icgzomigration techniques which we also
discuss in this section. In our design, we assume a resulomisghe scheduler; therefore, the VAA
job has to be destroyed before the restore operation. Ifbeution can be initiated from the shared
file system, there is no need for the copy phase. Although wd the term the VM state here, the
dominant part of VM migration is the memory migration andesthsuch as the migration of the
network interfaces and disks depends on the configuratitimeoxecution environment.

Clark et al. [10] proposes a pre-copy based live migrati@hnéue. In this technique, the
mechanism for copying the VM state differs in the memory asahl resources such as the VM
disks and network interfaces. To migrate memory, Clark & mlechanism iteratively copies the
memory pages from one machine to another in rounds. In eeenyd; the mechanism copies the
modified pages from the previous round. To migrate the lcesdurces, Clark et al. relies on some
assumptions for the execution environment since they dtangét WANSs. For the networking, they
simply migrate the IP address of the VM to the target host. 8smimption of this IP migration is
that the host and target machines are in the same LAN. Fagganigration, Clark et al. assume
that the execution environment has a shared file system battte host and the target system;
therefore, Clark et al. do not address the migrating of the disks from one machine to another.
This technique is integrated to Xen.

Similar pre-copy live migration approaches are also iratgt into the hypervisors from KVM
and VMware. KVM uses a similar iterative process and reliesh® same assumptions about the
local resources with Xen [25]. VMware in it8Motiontechnique adapts the pre-copy live migration
approach [34]. For the migration of IP addresses and netimtekfaces/Motionrelies on VMware
ESX Server’s virtual networking architectudMotion, similar to Xen, assumes a shared file system
between the target and the host machines.

The pre-copy approach tries to minimize the downtime wHike testore phase occurs on the
target machine. However, since the VM on the host runs duhiggtime, significant amount of
modified pages may be resent to the target machine if thecapipln is memory-intensive. Also,
after suspending the original VM, the size of the modifiedgsatp be transferred could be signif-
icantly high which increases downtime of the VM. Hines etmbpose a post-copy based method
to overcome the limitations of the pre-copy approach in mgrratensive applications [20]. This
post-copy method first copies the minimal CPU state by swudipgrthe VM. Then, their mechanism

resumes the VM and starts to copy the memory pages. Hineswtes 4 techniques to reduce the

65

downtime and pages that are resef#mand pagingndactive puskensures that each page is copied
only once to the target machirge-pagingtries to understand VM'’s page access patterns to reduce
the VM's resume timeDynamic Self Balloningrevents the migration of the unallocated pages to
reduce the number of pages transferred.

Although the live migration techniques have all these athges, they are not suitable to our
design because we assume that the batch schedulers aregge olithe resource management on
the clusters. Therefore, we can not assume that the batellsiehns are aware of the VM live
migration as well as specific VMM’s live migration capabjlitin fact, the main batch scheduler
that we use during our experiments is TORQUE and it lacksdajsbility. However, the non-live
migration can be achieved by just resubmitting the saved Y##he batch scheduler that eliminates
the necessity for a migration-aware batch scheduler. Gpresely, we explored a non-live migration
technique by using KVM'’s migration mechanisms witinsh tool from thelibvirt library (Section
4.6).

Non-live migration techniques moves the VM state in threpst save the VM state to a file,
copy the state file to the target host (if necessary) andnest@ VM from the state file. These
techniques try to reduce the size of the image with a set dfioastto minimize the copy overhead
across the network. Generally, they are adapted for the WA reon-shared file systems. An
example of a non-live migration technique is the Collecsivmigration technique [42]. Collective
uses a non-live migration technique because it targets ivdwidth networks across the WAN to
distribute the VAs. The internet suspend/resume [43] amalil§l 7] projects also propose non-live
VM migration techniques.

Previously studied process migration techniques arerpirdiries of today’s VM migration tech-
nigues. Condor’s transparent process migration methoddspendent of the OS, however, the
MOSIX OS’s [22] and Sprite OS’s [12] process migration teiqjues are integrated to the operating
system. The OSes like Sprite and MOSIX are especially desifpr the distributed systems. There-
fore, these OSes aim to achieve load balancing and easy eraeag of the processes across the
distributed systems by the process migration. Althoughptteeess migration techniques get con-
siderable attention from the research community, they dayaim many practical uses. The main
reason is that the relative complexity of implementing éhtechniques due to the process depen-
dencies such as the open file descriptors and local resdif@lediowever, if we migrate the VMs
then most of these dependencies are also migrated acroskiser, which reduce the overheads

and failures.

5.4 Concluding Remarks

In this chapter, we reviewed some previous work in the fiefdsggregated resource management
for the distributed systems, virtual appliances and VM aign. We pointed that the presented

resource managers install a non-standard managemenasefmperform their functions. However,

66

we integrate the widely-used applications, shell scripts@ programs to achieve similar goals. We
argued that the dynamic VM-creation does not add extra ddgarior the users who need extensive
customization for their VMs. Another advantage of the dyiawiM creation is to simplify the
multiple VM creation, however, the dynamic VM-creation aat be simpler than just copying the
VM to all the nodes of the cluster. In a shared file system, \atedta better solution that is the
KVM's snapshot feature, which uses copy-on-write mechari® multiple VM executions from
the same base image. Finally, we stated the reason of clgoasion-live migration technique as

easy adaptation to the batch schedulers that are not awtre lbfe VM migration.

67

Chapter 6

Concluding Remarks

We presented the design and implementation of our virtyaliegtion appliance (VAA) solution to
the software heterogeneity problem on clusters. Our masigdegoal is to create a special VM,
named as a VAA, for only the execution of a specific scientifipleation. Our VAA design puts
together the main scientific software and its auxiliary ations along with the compatible OS and
necessary libraries. We integrated widely available apfibns on the clusters with shell scripts and
C programs to make the VAA execution transparent from the tfence, the user can run the VAA
as she runs a regular application.

We scripted the execution of the VAA to make VM-related opierss transparent from the user,
so that, the user does not need to have VM knowledge. The ngeneeds to know how to execute
the application not the VM-related operations such as dateement, authentication and authoriza-
tion. As long as the user runs the application from the fotat the input files reside, our scripts
execute the VAA and, at the end, put the output files, stanolatput and error contents back to the
current folder. Our scripts also automate the job submissi@ batch scheduler by hard-coding the
necessary resource requirements for the VAA. For examgtleisl say the user stores the input files
in /home/input The only requirement for the user is to golbome/inpufolder and submit her work
by using our submission script with necessary argumentedoapplication. Furthermore, we do
not restrict the user on how to use the VAA. The user can cleatewn scripts related to the main
application execution such as analysis scripts and exéatsitee the VAA.

A key decision in the design of this work is the mechanism te@tbhe data in and out of the VM
automatically and securely because the VAAs provide erlyarlof indirection and the VAAs and
data may be in different administrative domains. We impletaé two stage-in stage-out data move-
ment mechanisms which are called the secure copy over ne{8a@N) and the copy over shared
memory (CSM). In the SCN mechanism, data movement is estedaliover network. Also, we used
the SSH’s public/private key authentication and SSH'sédrcommand feature to establish the se-
curity of data movement. In the CSM mechanism, the VAA reagimfa shared memory region and
writes to the shared memory region. Therefore, the onlyri#fgaroncern, authorization, is handled

by the file access rights of the OS. SCN is the only choice ferrémote VAA executions, which

68

files have to be copied securely over the network betweeardift administrative domains. CSM,
however, is a better choice only for the local VAA executitmsliminate the network overhead and
the SSH-related authentication and encryption overheads.

After our main VAA design and implementation, we explored \figration. VM migration
allows the user to save several states of the VAA and use otteesé saved states to restore the
VAA in case a failure happens. Also, VM migration can be usadlie resubmission to the batch
scheduler after the wall-time is exceeded. If the run-tifthe user’s job is longer than the wall-
time, the VAA state can be saved at the end of the wall-tim@nTthe user or an external script can
resubmit the job back to the batch scheduler. This scriptestore the VAA from this state without
any data loss.

We have evaluated the performance impacts of our mechamighmwidely used bioinformatics
applications called GROMACS, HMMer and GAFolder. We aimedind whether the overheads
of our mechanisms and VMs are negligible enough to use thesvéffectively on the clusters. We
found that the data movement overhead and the VM boot up aridahin overheads are negligible
enough with respect to total run-times of these applicatiddhen we compared the total VAA exe-
cution time with the host execution time of the same appbcatve noticed that the VAAs achieved
near-native performance. Further, we saw that the CSM datement mechanism performs at
least 30% better than the SCN data movement mechanism. tlsanigration tests showed that
even if more than 400 MB state has to be saved and restorddggae VM took at most tens of

seconds and restoring the VM took at most a few seconds.

69

Bibliography

[1]

(2]

Sumalatha Adabala, Vineet Chadha, Puneet Chawla, Béngtieiredo, Jose Fortes, lvan Kr-
sul, Andrea Matsunaga, Mauricio Tsugawa, Jian Zhang, MimapZ Liping Zhu, and Xiaomin
Zhu. From virtualized resources to virtual computing grithe in-vigo systemFuture Gener.
Comput. Syst21(6):896—-909, June 2005.

Keith Adams and Ole Agesen. A comparison of software aadiWare techniques for x86
virtualization. InProceedings of the 12th international conference on Aetitral support
for programming languages and operating systepages 2—13, New York, NY, USA, 2006.
ACM.

[3] W. Allcock. Gridftp: Protocol extensions to ftp for theid. Global Grid Forum 2003.

[4]
[5]

[6]
[7]
(8]
[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

D. P. Anderson. Boinc: a system for public-resource cuatimg and storage. 1Grid Comput-
ing, 2004. Proceedings. Fifth IEEE/ACM International Waitkp on pages 4-10, 2004.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Harith Rarris, Alex Ho, Rolf Neuge-
bauer, lan Pratt, and Andrew Warfield. Xen and the art of &lization. INSOSP '03: Pro-
ceedings of the nineteenth ACM symposium on Operatingsygignciplespages 164-177,
New York, NY, USA, 2003. ACM Press.

Daniel J. Barrett, Richard E. Silverman, and Robert Grrigg. SSH, the Secure Shell: The
Definitive Guide O'Reilly Media, Inc., 2005.

H. J. C. Berendsen, D. Van Der Spoel, and R. Van Drunen.maas: A message-passing
parallel molecular dynamics implementatid®omp. Phys. Comn81:43-56, 1995.

R. Butler, V. Welch, D. Engert, |. Foster, S. Tuecke, Jirver, and C. Kesselman. A national-
scale authentication infrastructu@omputey 33(12):60—-66, 2000.

Ramesh Chra, Nickolai Zeldovich, Constantine Saputitszand Monica S. Lam. The collec-
tive: A cache-based system management architecturrdeeedings of the 2nd conference
on Symposium on Networked Systems Design & Implementd8&1{05), pages 1-11, May
2005.

Christopher Clark, Keir Fraser, and H. Steven. Live ratgn of virtual machines. IINSDI
'05, pages 1-11, 2005.

Mike Closson and Paul Lu. Bridging local and wide aredwoeks for overlay distributed file
systems. IrSecond Workshop on Real, Large Distributed Systpages 49-54, 2005.

Fred Douglis and John Ousterhout. Transparent pron&gsition: design alternatives and the
sprite implementationSoftw. Pract. Exper21(8):757—-785, August 1991.

Kris Buytaert et al. The Best Damn Server Virtualization Book Period: Includifgware,
Xen, and Microsoft Virtual ServeSyngress Publishing, Burlington, MA, 2007.

National Center for Biotechnology Information. htfp:ww.ncbi.nim.nih.gov/.

lan Foster. Globus toolkit version 4: Software for Seevoriented systems. IWIP Inter-
national Conference on Network and Parallel Computingigper-Verlag LNCS 377%ages
2-13, 2005.

Robert P. Goldberg. Survey of virtual machine resealeEE Computer1974.
Western Canada Research Grid. http://www.westgaid.c

70

[18] University Of Alberta Prion Research Group. http://wws.ualberta.ca/ prion.

[19] Satoshi Matsuoka Hideo Nishimura, Naoya Maruyamatudirclusters on the fly - fast, scal-
able, and flexible installation. IRroceedings of the Seventh IEEE International Symposium
on Cluster Computing and the Grigdages 549-556, Rio de Janeiro, Brazil, May 2007. IEEE.

[20] Michael R. Hines and Kartik Gopalan. Post-copy baseelVirtual machine migration using
adaptive pre-paging and dynamic self-ballooningVEE '09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual ekeauenvironmentspages 51-60,
New York, NY, USA, 2009. ACM.

[21] HMMer. http://www.hmmer.org/.

[22] Lau F.C. Ho R.S.C., Cho-Li Wang. Lightweight procesgration and memory prefetchingin
openmosix. IrProceedings of IPDP008.

[23] VMware Inc. http://www.vmware.com/.
[24] Kate Keahey. Virtual workspaces in the griguroPar 2005 September 2005.

[25] Awvi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthnoy Liguori. kvm: the linux virtual
machine monitor. IfProceedings of the Linux Symposiymages 37-42, 1996.

[26] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, ReaKaashoek, Eddie Kohler, David
Maziéres, Robert Morris, Michelle Osborne, Steve VanDgdt and David Ziegler. Make
least privilege a right (not a privilege). HOTOS’05: Proceedings of the 10th conference on
Hot Topics in Operating Systenages 21-21, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[27] Ivan Krsul, Arijit Ganguly, Jian Zhang, Jose A. B. Fastand Renato J. Figueiredo. Vmplants:
Providing and managing virtual machine execution envirents for grid computing. I'$C
'04: Proceedings of the 2004 ACM/IEEE conference on Supepeding Washington, DC,
USA, 2004. IEEE Computer Society.

[28] Perl Language. http://www.perl.com.
[29] Libvirt. http://libvirt.org.

[30] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor-a huntef idle workstations. IrDis-
tributed Computing Systems, 1988., 8th International €amnfce onpages 104-111, 1988.

[31] Andrew Macdonell. PhD Thesis in progress.

[32] Cam Macdonell and Paul Lu. Pragmatics of virtual maekifor high-performance computing:
A quantitative study of basic overheads. Rroceedings of High Performance Computing &
Simulation Conference (HPCS’Q2007.

[33] Microsoft. http://www.microsoft.com.

[34] Michael Nelson, Beng H. Lim, and Greg Hutchins. Fashs$marent migration for virtual
machines. IPATEC '05: Proceedings of the annual conference on USENIXuAhFechnical
Conferencepage 25, Berkeley, CA, USA, 2005. USENIX Association.

[35] Jeremy Nickurack. MSc Thesis in progress.

[36] Padala Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Sihgimal Kang G. Shin. Performance
evaluation of virtualization technologies for server agigation. Technical report.

[37] Jordan Patterson. Jole: a library for dynamic job-l@arallel workloads. Master’s thesis,
University of Alberta, October 2009.

[38] Christopher Pinchak, Paul Lu, Jonathan Schaeffer,Matk Goldenberg A. The canadian
internetworked scientific supercomputer.ltnl7th Annual International Symposium on High
Performance Computing Systems and Applications (Hp@&es 193-199, 2003.

[39] Trellis Project. http://www.cs.ualberta.ca/ palilicellis/.

[40] Constantine Sapuntzakis, David Brumley, Ramesh Claridickolai Zeldovich, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. Virtual appliancesdfeploying and maintaining
software. INLISA '03: Proceedings of the 17th USENIX conference on 8yatiministration
pages 181-194, Berkeley, CA, USA, 2003. USENIX Association

71

[41] Constantine Sapuntzakis and Monica S. Lam. Virtualliappes in the collective: A road
to hassle-free computing. IAroceedings of the 9th conference on Hot Topics in Operating
Systems(HOTOS’'03)ages 55-60, Berkeley, CA, USA, May 2003. USENIX Assooiati

[42] Constantine P. Sapuntzakis, Ramesh Chandra, Ben, Bfaff Chow, Monica S. Lam, and
Mendel Rosenblum. Optimizing the migration of virtual camgrs. InProceedings of the 5th
Symposium on Operating Systems Design and ImplementBgémember 2002.

[43] Mahadev Satyanarayanan, Benjamin Gilbert, Matt Toljisaj Tolia, Ajay Surie, David R.
O’Hallaron, Adam Wolbach, Jan Harkes, Adrian Perrig, Dakliérarber, Michael A. Kozuch,
Casey J. Helfrich, Partho Nath, and Andres. Pervasive patsmmputing in an internet
suspend/resume systefEEE Internet Computingl1(2):16-25, 2007.

[44] Bioinformatics Benchmark System. http://www.biadnfatics.org/.

[45] G. van Rossum. Python tutorial, technical report cs2@®centrum voor wiskunde en infor-
matica (cwi), May 1995.

[46] VMware Virtual Appliancesht t p: // www. viwar e. conf vt n/ .

[47] Andrew Whitaker, Marianne Shaw, and Steven D. GribBleale and performance in the denali
isolation kernel SIGOPS Oper. Syst. Re86(SI):195-209, 2002.

[48] Tatu Ylonen. Ssh - secure login connections over theritgt. InProceedings of the 6th
USENIX Security Symposiypages 37-42, 1996.

72

