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Abstract

Variations between the software environments (e.g., installed applications, versions of libraries) on

different high-performance computing (HPC) systems lead to a heterogeneity problem. Therefore,

we design an optimized, homogeneous virtual machine (VM) called a virtual application appliance

(VAA). Scientists can package scientific applications, andall supporting software components, as

VAAs and run them independently from the underlying heterogeneous HPC systems. However,

securely moving data in and out of the VAA and controlling theexecution of applications are not

trivial for a non-computer scientist. Consequently, we develop two automated stage-in/stage-out

secure data movement mechanisms. We also explore a migration mechanism to further simplify the

control of the VAA execution.

Empirical evaluation results show that VAAs achieve near-native performance in widely used

bioinformatics applications that we tested. Data movement, VM boot up, shutdown and migration

overheads of VAAs are negligible with respect to total run-times.
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Chapter 1

Introduction

Scientists need to use high performance computing (HPC) centers extensively. From biology to

physics, their research may involve complex and long running computations and/or simulations.

Processing time of scientific applications may take years ina limited low-budget workstation con-

figuration depending on the characteristics of data. Universities are investing heavily to build HPC

centers (e.g. clusters) with high computation power to get results faster for scientific applications.

Also, projects like Trellis [39] are looking for ways to aggregate different HPC centers to increase

the computational power. The Trellis group, with the help ofcomputational biologists and chemists,

had performed the CISS-1 and CISS-2 experiments for this purpose [38]. As long as scientists need

to run more computations and simulations in a relatively short time, demand for HPC centers will

increase.

However, in most cases, adapting the scientist’s work to an HPC center is not a straightforward

task due to incompatibilities between the software systemsthat the scientist uses to prepare her work

and the ones on the HPC center. Operating systems (OSes), library versions and even security infras-

tructures may be incompatible with some of the software systems that are intended to be installed or

executed on them. Problems due to incompatible software systems can delay the scientific work or

limit the scientist with a specific software environment.

We can clarify the problems caused by incompatible softwareresources by explaining how a

scientist uses the cluster from the preparation of her work to the execution. The scientist starts

to prepare her data and data analysis components beforehand. One common way is to use her

workstation for the preparation. It is convenient because the scientist has full control of her system,

however, she has restricted access to the cluster environment. She needs to prepare programs, scripts

and application-specific configuration files for her own purpose in her workstation. Then, she debugs

and tests all the details of the components with different sets of sample data.

The preparation takes several steps. Let us consider a biologist who uses a molecular dynamics

application called GROMACS version 3.2.1 [7]. GROMACS works on the UNIX systems; there-

fore, the first step is the installation of the application toher workstation by including necessary

external libraries. The installation can be done by herselfor by an experienced third person. Then,

1



she needs to decide the requirements of her work. She probably has to prepare a script for the ex-

ecution of GROMACS and data analysis. She can use a scriptinglanguage such as Python [45] or

Perl [28]. In our example, let us say it is Python. After debugging, corrections and tests, when she

is satisfied with the performance of the components, she is ready to deploy her work to the cluster.

During the deployment phase, she may not find the suitable execution environment for her work.

The GROMACS version that her work is prepared on may not be available or different than 3.2.1

(Figure 1.1). She has to ask the system administrator to install the specific version that she needs. A

possible answer would be that it is not possible due to other people’s job dependency on the currently

installed GROMACS version. However, this problem can be solved by returning to the preparation

phase and adjusting her work to the GROMACS version on the cluster. However, this reworking

process may cause significant delays. Similar compatibility problems may apply to Python and

any other third party dependencies of her scripts. Therefore, the reworking process becomes more

complicated.

The Biologist ’s Workstat ion Cluster A

GROMACS 3 .2 .1
Py thon  2 .6

2.Debug

3. Test

4. Performance Analysis

GROMACS 4 .0 .3
Py thon  2 .6

5. Move data and

data analysis Components 

6. Execute GROMACS 

with these components.
1. Prepare data

and data analysis

 components

I n s t a l l e d  S o f t w a r e I n s t a l l e d  S o f t w a r e

X
 GROMACS Version

    is not compatible

ERROR

Figure 1.1: A problem scenario in one cluster

Deployment problems increase if she wants to use other clusters for more computational power

(Figure 1.2). In addition to the single cluster problems, she has to consider where to store the input

and output files on each cluster. The convenient placement isone single location for all the output

files and spread out the input files across the clusters. This placement simplifies data analysis.

However, she has to do extra work for the placement of data or use a cross-domain file system

like TrellisNFS [11]. Even if a cross domain file system is available, as the Figure 1.2 shows that

the scientist can execute her work only on Cluster C. Therefore, she cannot use the computational

power of other two clusters due to GROMACS version incompatibility on Cluster A and lack of

GROMACS software on Cluster B.

One well-known way is to use Virtual Machines (VMs) to solve the above-mentioned problems.
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GROMACS 3 .2 .1

Py thon  2 .6

2. Debug

3. Test

4. Performance Analysis

5.Copy data and

data analysis Components 

X

1. Prepare data

and data analysis

 components

GROMACS Version

    is incompatible

ERROR

I n s t a l l e d  S o f t w a r e

Cluster A

I n s t a l l e d  S o f t w a r e

GROMACS 4 .0 .3

Py thon  2 .6

GROMACS is not

installed

Cluster B

I n s t a l l e d  S o f t w a r e
No GROMACS

Py thon  2 .6

Execution Successful

Cluster C

I n s t a l l e d  S o f t w a r e

GROMACS 3 .2 .1

Py thon  2 .6

X ERROR

7.Collect Output

The Biologist ’s Workstat ion

6. Execute GROMACS 

with these components.

6. Execute GROMACS 

with these components. 6. Execute GROMACS 

with these components.

5.Copy data and

data analysis Components 5.Copy data and

data analysis Components 

Figure 1.2: A problem scenario in multiple clusters
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A VM is an efficient solution in HPC to address the heterogeneity problem for the deployment of

software systems. A VM can be deployed such that software is executed inside a VM even if the

software is incompatible with the underlying system (i.e. the host system). One can easily create

a VM and put every necessary requirement of the software inside a VM image. These components

include an operating system (OS), libraries, application specific configuration files and virtual ver-

sions of its hardware resources. Hence, a VM creates a fully functional environment for the software

without any change to the underlying system. The only requirement of the VM solution is a single

application installed in the underlying system to execute VMs. This type of application is called

virtual machine monitor (VMM) or hypervisor.

In Figure 1.3, we can see the VM solution to the problems in Figure 1.2. In Cluster A, the VM

solves the version incompatibility problem. In Cluster B, the VM can exeute the user’s job even if

there is no GROMACS software present on the underlying system. Cluster B also shows that the

only requirement is an application such as KVM [25] that executes the VM. Consequently, without

the VM, the user has to limit herself to Cluster C but with the VM, she can use the computational

power of other clusters too.

Apart from addressing the heterogeneity problem, HPC applications can also benefit from VM

migration. In this dissertation, we examine VM migration asa recovery mechanism after failovers

and workaround for the cluster’s wall-time limit. VMMs can save the VM states at regular intervals.

Later, VMMs can use these saved states to return to the previous state of the execution in case a

failure happens. This technique is known as application checkpointing. Also, the batch scheduler

terminates the job after the wall-time has run out to preventthe user or user’s job from monopolizing

the cluster. Therefore, in case the user’s job needs more time to complete the execution, the VM state

can be saved just before the wall-time has run out and restored from this saved state by resubmitting

the user’s job to the batch scheduler again.

Although VMs have all of these benefits, they introduce two main problems [32]. First, most

of the contemporary VM products can run only on x86 systems. Since x86 systems are ubiquitous,

this limitation is not a big problem. The second and most important problem is that applications run

slower when running on just an OS (host OS) and hardware because a VMM puts another software

layer between the OS and hardware.

To maximize the performance of a single application inside the VMs, packaging the applications

as virtual appliances (VAs) is useful [40], [46]. A virtual appliance (VA) can be defined as a highly

optimized, pre-built and ready-to-run software package with a compatible operating system, running

under a virtual machine (VM) (Figure 1.4). A VA is a new software distribution mechanism such that

software can be easily delivered independent of the physical structure of the computing environment.

The VA size can be reduced by eliminating unnecessary parts of the guest OS, so that, a VA employs

less memory and executes faster than a general purpose VM [35].

Throughout this dissertation, the term virtual application appliance (VAA) is used. VAA refers

4
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Figure 1.3: VM solution to the software heterogeneity problem
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to a special kind of VA that runs to produce a result and then ends execution after the result. In other

words, VAAs exclude VAs that are long-running such as databases and web servers. Therefore, most

scientific applications packaged as VAs can be examples of VAAs such as GROMACS, GAFolder

[18] and HMMer [21]. All the ideas and solutions throughout this dissertation are applicable to

VAAs but they may not be applicable to all VAs.

Although VAAs are useful in HPC, they provide few or no adaptability features for the clusters.

In the cluster, users generally have no idea about VAAs and how to use them. The users only

interact with the host OS. Also, If we allow VAA accounts access to the users’ accounts on the

host without any restrcition, the unwanted operations can be executed on the host. Therefore, some

security problems arise if we do not add strong authorization mechanism between the VAA and host.

Further, in the cluster, the users submit jobs to a batch scheduler which decides when to run them

according to availability of resources. In this case, interaction with the users may not be possible

and/or feasible. Therefore, automated and secure submission, authentication and data movement

mechanisms should exist between VAAs and host machines.

In the context of HPC workloads, the work done in this thesis proposes a solution for the efficient

execution of VAAs as well as automated and secure authentication and authorization techniques and

two automated stage-in stage-out data movement mechanisms. The first mechanism uses the net-

work secured by the secure shell-based (SSH-based) secure channel protocol. The second mecha-

nism uses a shared memory region between the VAA and host secured by the OS’s restrictions on

file access. Additionally, the VM migration functionality is examined. Finally, an evaluation of the

techniques used in this thesis is provided.

1.1 Contributions

Contributions of this thesis can be enumerated as follows:
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1. A bash script skeleton has been developed to automate datamovement between the VM and

the host in a secure and efficient manner. Two different mechanisms are designed for this

purpose: secure copy over network and copy over shared memory. In the copy over shared

memory mechanism, security is established by the OS’s restrictions on file access. However,

the secure copy over network mechanism uses SSH and its forced command feature. This

architecture eliminates interactivity due to the login process and encrypts all data movements.

Also, the user does not need to know anything about the VMs, security or details of data

movement.

2. VM Migration with a simple save and restore technique is examined. Basically, this method

saves the state of the VM and when it is necessary restores theVM from this saved state.

We have not implemented the automated migration in our scripts, however, we evaluate the

overheads of this migration technique.

3. An experimental study shows the performance impacts of our work. Benchmarks include

overheads due to data movement and virtualization and time spent for the save and restore

phases during the migration. One important contribution ofthis evaluation is the use of real

data provided by bioinformatics researchers for the GROMACS experiments.

1.2 Concluding Remarks

In this chapter, we discussed the problems that a scientist may encounter if she wants to use an HPC

center. We also explained how VMs can solve these problems. Then, we showed that VMs can be

further optimized as VAAs. Finally we briefly explained our techniques to adapt VAAs to the cluster

environment for the benefit of the user. In the next chapter, we discuss the motivation of this thesis

in detail and provide some background knowledge on virtualization.
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Chapter 2

Motivation and Background

In Chapter 1, we introduced the problems that a scientist canencounter when she wants to deploy her

work to clusters. Also, we briefly explained our VAA solutionfor these problems. In this chapter,

we provide the details about advantages of the VAAs on the cluster. We continue with presenting the

challenges of adapting the VAAs to the cluster environment.Finally, a real life motivating example

is followed by background knowledge on virtualization.

2.1 Benefits of Virtual Application Appliances on Clusters

In general, the VAAs have three major benefits over traditional software. First, the VAAs can run

on any x86 system independent of the OS. The only requirementis the installation of a virtual

machine monitor (VMM) application such as KVM which managesand runs the VMs. Second,

the installation cost is minimal. An application is generally ready to run once its VM image files

are copied to the system. The application is pre-configured in its package so that it has no extra

configuration burden for the specific OS environment. Third,the VAAs can possibly simplify the

maintenance of the software environment. The VAAs do not have the library, application or OS

dependencies in the underlying system. Hence the OS, libraries and applications do not have to be

optimized to work with each other in every VAA installation.

In the cluster environment, there are also specific benefits of the VAAs for the software hetero-

geneity problem which is the main problem in installing and configuring applications on the cluster.

The cluster machines may have different OSes installed or different versions of the same OS in-

stalled. Even if we get rid of these problems by installing the same OS and library files on every

machine, several library files and system files may still conflict with the application that is intended

to be used on the cluster. Further, different applications may require different versions of these files.

Furthermore, the users may have different preferences about application versions and/or configura-

tions (Section 2.1.1). The VAA’s isolated nature from the underlying system makes the VAA ideal

solution for the software heterogeneity problem on the clusters. Since all the necessary files and li-

brary files are included to the VAA package, there is no need toseek for these files in the underlying
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system. Also, each VAA has a separate execution environment, therefore, the library conflicts and

OS problems can be overcome by packaging the application, compatible OS and library files as a

VAA.

2.1.1 Benefits to the User

The VAA helps the user customize the application execution environment for her specific purpose.

For example, the user may want to run an application that requires a specific version of Python [45].

In the usual scenario, the user may not find this software on the cluster or this version of Python

may not be installed to the cluster because other users may beusing another version of Python.

Further, the desired Python version may be incompatible with the installed version of the OS. The

VAA solves these problems by creating a user specific software execution environment with all the

necessary applications, compatible OS and libraries. Therefore, the user does not need to worry

about various conflicts she may encounter on the cluster. Shecan only use this pre-configured VM

and execute her application on the cluster.

2.1.2 Benefits of VM Migration

As we stated in Chapter 1, we examine two benefits of VM migration. First, an application can be

recovered after failovers by saving the states of the VM (i.e. application checkpointing). Second,

the wall-time limit of the cluster can be avoided. This section explains these two conditions and the

solutions of VM migration.

The application checkpointing technique saves the state ofthe application at regular intervals.

Later, in case a failure happens, the application can be restarted from one of these states. However,

not all the applications, compilers or OSes support the application checkpointing. Hence, one can

package an application as a VAA and, regardless of the support for the checkpointing in the system,

the VAA state can be saved regularly by the VMM. Then, after a failover, the VAA can be restored

from one of the saved states and the application execution continues inside the VAA.

Another benefit of migration for the users is that it is a workaround for the cluster wall-time

limit. The system administrators generally put a maximum execution time limit to prevent the user

job from monopolizing the cluster. If the execution time of the user’s job exceeds the wall-time, the

batch scheduler simply kills the process when the wall-timehas run out. However, the user’s job may

last more than the wall-time. Therefore, the user needs to adjust her work and make assumptions

about the run-time of her scripts and/or programs and then she has to split her work to several

tasks and submit them to the cluster separately. Therefore,delays are unavoidable. However, if

she packages the applications of her job as a VAA, she can takeadvantage of the VM migration

mechanism. For example, in Figure 2.1, let us say the wall-time is 24 hours for the cluster and the

scientist estimates the GROMACS job will end in 5 days. We canscript the VAA execution and save

it in every 24 hours and resubmit it again after every 24 hours. After every resubmission, the VAA
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is restored from the last saved state and continue to the execution without any data loss.

           Virtual 
Appl icat ion Appl iance

3) Save the VM state
      after 24 hours

4) Resubmit the VAA

DISK

BATCH SCHEDULER

1) Submit VAA to 
  batch scheduler

2) Execute the VAA

5) Restore the VAA

THE USER

Loop 5 t imes

Figure 2.1: Save and restore type migration: Wall-time avoidance.

2.2 Challenges of Using Virtual Application Appliances on Clus-
ters

The VAAs run on the clusters as the other user jobs, therefore, the VAAs should be adapted to the

cluster environment. In the cluster environment, the user has to submit the job to a batch scheduler.

After the submission, interaction with the user is not desired and may not be possible. Additionally,

since the VAA has its own execution environment, input data has to be copied into the VAA and

output data has to be transferred back to the host. Therefore, the VAA execution should be automated

from the submission to the termination of the VAA. Hence, thechallenges are the execution of the

application inside the VM, authentication of the user to theVAA and data movement between the

VAA and host. Also, the authorization of the data movement operations and encryption of data

during data movement are important. Without any authorization and encryption, third parties who

gain control of the VAA can see the data and access to the user account on the host unconditionally.

In this section, we discuss the above-mentioned challengesand briefly explain our approach to these

challenges.

2.2.1 Virtual Application Appliance Execution and Data Movement

A simple manual VAA execution involves several steps. Initially, the user has to login to the VM

with a standard login procedure of the OS inside the VM (guestOS). Then, the user copies necessary

input files and runs the application. Finally, the user transfers the output data from the VM to the
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host.

There are several problems associated with manual execution due to interaction with the user.

In a typical cluster, the user submits the job to a batch scheduler. The batch scheduler queues the

job and if the resources are available, the batch scheduler executes the job according to the job’s

requirements. The waiting time due to queuing is not predictable and depends on the number of

jobs and their priorities in the queue. Further, some batch schedulers do not support interactive

programs at all or system administrators may disable the interactivity. Furthermore, when the job

begins, the user should be ready to login to the VAA. If the VAAexecution begins when the user

is not available, the VAA sits idle and wastes CPU time. Therefore, after the submission, it is not

feasible or even possible to interact with the VAA for authentication purposes. Similar problems

apply to data movement. The user has to be ready before and after the VAA execution to initiate

the data movement operations between the VAA and host. Consequently, the user’s involvement

reduces efficiency of the user’s work as well as efficiency of the cluster.

2.2.2 Security

The data movement and authentication operations should be secured by some mechanism especially

if the VAA and data are in different administrative domains (e.g. on Cluster A and Cluster B). The

main reason of the security requirement is that the data and authentication information may pass

through the wide area network (WAN) (e.g. Internet). Therefore, the data transferred across the

WAN should be encrypted. Also, the security operations should minimize the user’s involvement

due to the interactivity problem that is mentioned in the previous section. Therefore, we cannot

allow the user to enter some authentication information such as the username and password.

Our secure copy over network mechanism simply solves the interactivity problem by automating

the security of the data movement and authentication operations with the SSH’s data encryption and

public/private key authentication. Also, our scripts automate the application execution, authoriztaion

and data movement operations. Additionally, our copy over shared memory mechanism uses a

shared memory region on the host and eliminates the SSH’s encryption and authentication overheads

if the VAA and data are on the same host.

2.3 Motivating Example

The University Of Alberta’s Prion Project Group’s [18] members who are involved in bioinformatics-

related research use the GROMACS molecular dynamics application for their experiments. They use

clusters because of their large number of jobs. The WestGridclusters [17] or University Of Alberta’s

cluster are the primary platforms to be used by the researchers. In order to prepare their experiments,

the researchers need to script the execution of GROMACS for the generation of the models and

analysis of the results. Then, the GROMACS job is moved to thecluster but they encounter several

problems.
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One problem is the GROMACS version mismatch. The researchers need 3.2.1 to run their

simulations but, especially, the new clusters have higher versions of GROMACS. One workaround

for them is to install GROMACS to their home directories. However, the GROMACS developers

suggest the GCC version 3.X compilers which may not be available on all the clusters. Either, they

have to wait for the system administrator to install the software or choose another cluster.

They have also reported additional problems due to incompatibilities from their previous work.

Any script that they need to use for different purposes has a potential to suffer from version incom-

patibilities or the software that they need may not be available at all (e.g. Python). Most importantly,

they should either modify their code for different cluster environments with various software con-

figurations or limit themselves to one set of cluster that they can use their scripts. The first choice,

the code modification, puts extra effort outside of their scientific research and the second one, the

limitation to one set of clusters, reduces their computational power.

Also, they stated another problem due to the wall-time limitof the clusters. For example, the

WestGrid’s glacier cluster has a wall-time limit of 10 days.However, some of their work needs more

time to finish. Although, GROMACS has a restart option, the researchers find it unreliable in older

versions. Therefore, the researchers often run their work in their workstations. Hence, the work is

completed in a long time.

The researchers also added that monitoring the execution ofthe job is not trivial with current

mechanisms [37]. They stated that they need to monitor the output files and do some analysis on

them. If the results do not converge then they need to kill thejob and submit their work with different

parameters.

As this example shows, there are couple of benefits of the VAAsto scientists. Scientists reduce

preparation time of scientific applications and delays due to heterogeneous software environments.

Most importantly they can be independent of the software environment available on the cluster.

Finally, scientific applications can be executed without the wall-time limit of the clusters.

2.4 Background

Virtualization created its own concepts and terms. In this dissertation’s context, we only consider the

system virtual machines which exclude the language-based virtual machines such as the Java virtual

machine. Hence, in this section, after a brief discussion onvirtualization’s current popularity, several

of the concepts will be introduced namely VMMs and its types,full virtualization, paravirtualization

and virtual disk.

2.4.1 How Virtualization Became Widespread?

Virtualization of hardware and software resources are not anew idea but it gained its popularity after

the 1990s. Certain companies such as VMware [23] and Microsoft [33] have developed products for

enterprises. Unlike their early use for the software development projects [16], the enterprises started
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to use them for several purposes such as server consolidation, security and fault-recovery [13]. This

potential of virtualization stimulated the CPU vendors andthey released CPUs with virtualization

extensions.

A popular use of the VMs in enterprises is to achieve higher CPU utilization through server

consolidation [36]. The researches show that most of the server CPUs are under-utilized (less than

30% utilized) in the enterprise data centers. Hence, the enterprises install the applications that tra-

ditionally run on dedicated servers to two or more VMs. Therefore, these VMs can be consolidated

into one or more physical servers. By doing so, the enterprises reduce the power consumption and

maintenance costs.

2.4.2 Concepts and Terms

In this section, we introduce some concepts and terms from the virtualization literature. We use

most of these terms throughout this dissertation.

Virtual Machine Monitor and Types

Virtual machine monitors (VMMs) bring virtualization to the computer systems. The VMM simply

puts a thin software layer on top of the hardware or OS and allows multiple VMs to run. Each VM

has its own operating system (guest OS) and virtualized hardware resources. Although, the guest

OS communicates with the VMM instead of directly with the physical hardware, the VM has an

illusion of running on a completely physical system. In thiscontext, the VMM becomes a hardware

emulator and an isolator of the VMs.

We can categorize the VMMs in two types. The first type of the VMMs runs directly on top of

the hardware. (Figure 2.2). Therefore, they act as OSes and virtual machine execution platforms.

Examples of this type include Xen [5], VMware ESX server and KVM. The second type of the

VMMs run on top of the OS (Figure 2.3). Therefore, they run as processes and, to some extent,

controlled by the OS. Examples of this type are VMware server/workstation and Microsoft virtual

PC/server.

KVM is easy to install on clusters. The main KVM module is integrated into the mainline Linux

kernel after the version 2.6.20. Therefore, one does not need to install a separate VMM. However,

some other VMMs such as VMware ESX server have to be installedseparately. Needless to say,

this installation comes with a lot of maintenance problems and may not be possible due to some

dependencies to the Linux platform.

Full Virtualization and Paravirtualization

Full virtualization refers to full simulation of hardware resources that can be found in a computer

system. In this type of virtualization, the guest OS does notaware that it is running on the VMM and

the VMM controls the I/O requests from the VM. The OS can be installed without any modification

13



VM VM VM VM

VMM

HARDWARE

...

Figure 2.2: The VMM that runs on top of the hardware
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Figure 2.3: The VMM that runs on top of the OS

and the OS uses the VMM’s simulated hardware. Generally, these hardware components are simple

and do not reflect all the features of the physical ones.

Paravirtualization reverses the idea of full virtualization. In a paravirtualized environment, OSes

are somewhat aware that they are running on virtualized environment. In the beginning, Xen started

paravirtualization to find a solution to traditionally non virtualizable instructions of the x86 instruc-

tion set because they were causing significant performance degradation. To achieve that, Linux

kernel is modified to add virtualized versions of these instructions. However, after Intel and AMD

released their new CPU products with virtualization extensions, this idea become irrelevant and

OSes started to run without any modification and performancedegradation. Then, paravirtualization

changed its direction to other hardware resources. Insteadof modifying the OS, hardware drivers

started to become aware that they are running on virtualizedenvironment.virtio, a KVM feature, is

one of the examples of this type of paravirtualization.

Virtual Disk

A file that is responsible for storing the VM’s data is called virtual disk (VD). VD can also be defined

as virtualized hard drive. The VD may have several formats and sizes. One can define a virtual disk

with 8 GB capacity and allocate it before storing the data. Then, the size of the VD becomes 8 GB.
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However, one can also create a VD with 8 GB capacity and enabledynamic allocation. Then, the

VD grows as the data that is written on it grows until the 8 GB limit has reached.

Another words that can refer to the VD are the VM image or VM disk image. However, in this

dissertation, when we use the VM image, we refer to the combination of VDs that makes the VM

since the VM content can be stored in several VDs. Hence, the VM disk image refers to only one

VD that is part of the VM.

2.5 Concluding Remarks

In this chapter, we discussed the motivation behind our mechanism and it is followed by background

knowledge on virtualization. We started with explaining the benefits of the VAAs in general, on the

clusters and for the users. Then, we stated the challenges ofthe VAA execution on the cluster. We

concluded the chapter with brief history of virtualizationand defining full virtualization, paravirtu-

alization, virtual machine monitors and its types and virtual disk concept.

In the next chapter, we continue with all the aspects of our VAA design and implementation. We

explain the security infrastructure, virtual disk layout of our VAAs, data movement mechanisms and

scripts for the automated execution of the VAAs. Finally, wecomment on the migration functional-

ity.
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Chapter 3

Design and Implementation of
Virtual Application Appliances

In the previous chapter, we discussed our motivation behindour virtual application appliance (VAA)

design. We also commented on background concepts related tovirtual machines. In this chapter, we

present the design and implementation of the VAAs. Throughout this chapter, when we talk about

the design and implementation of the VAAs, we include all thescripts to automate the execution,

security infrastructure and data movement mechanisms. Hence, we discuss the complete architecture

and implementation details of our work.

3.1 Key Design Decisions

Our goal is to create a portable VAA for the cluster environment that handles security, data movement

and application execution automatically and transparent from the user. We make design decisions

under four category to accomplish this goal:

1. Security of the operations (Section 3.2): We need to move data securely, handle authenti-

cation automatically and check that the data movement operations are properly authorized.

To achieve this goal, we decide to use secure shell (SSH) because of SSH’s wide availability

on clusters. The SSH mechanisms such as encryption ensures that the data transfer is secure,

the public-key authentication handles the authenticationof the user and the forced command

with our forced command script checks the authorization of the SSH operations. However,

the policy on how the SSH mechanisms are used is another important design decision. We

decide that the best policy is to initiate all the SSH calls from the VAA.

2. Virtual Disk Layout (Section 3.3): We separate a VAA into four VM disks. The main reason

behind this idea is to construct new VAAs easily by reusing the existing VM disks since most

of the software infrastructure are similar for different applications such as the type of the OS

and the SSH keys for security. Hence, we also add a virtual disk repository (VDR) to our
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design to store these VM disks in a convenient location for easy access. Different VAAs can

be created by selecting the necessary VM disks from the repository.

3. Stage-in Stage-out of Data (Section 3.4): We need to find ways to move data fast, reliably

and securely. If data and the VAA are on the different administrative domains, we decide to

move data over the network by issuing SSH calls. We call this data movement mechanism as

secure copy over network (SCN). However, if both the data andVAA are on the same host, we

design another option to move data between the VAA and host over shared memory region on

the host. The shared memory region option eliminates the SSHauthentication and encryption

overheads and authorization is handled by the OS. We call this data movement mechanism as

copy over shared memory (CSM).

4. VAA operations for security, data movement and applicationexecution (Section 3.5):

Our design requires five script files in different locations to automate VAA operations. We

have to separate the VAA operations in five scripts because oftheir location dependence. The

first script, the remote submission script, performs the operations to prepare an user job for

submission to a batch scheduler on a remote cluster. This script has to be located on the host

that the user prepares her input files. The second script, thelocal submission script, performs

the operations to submit the user job to the batch scheduler on the head node of the cluster.

This script has to be located on the head node of the cluster. The third script, the wrapper

host script (WHS), performs the operations on the cluster outside of the VAA, in other words,

on one of the nodes of the cluster that the VAA is running. Therefore, this script has to

be located somewhere that is accessible by all the nodes of the cluster. The fourth script,

the VM execution script (VMES), performs the operations inside the VAA. This script has

to be located inside the VAA. The fifth script, the forced command script (FCS), performs

the forced command operations that are authorization of theSSH calls, decompression of

the output compressed file and cleaning up at the beginning and end of the VAA execution.

Hence, this script also has to be located somewhere that the user submits her work.

3.2 Security Infrastructure

The security infrastructure of our design relies on the SSH mechanisms to secure VAA execution

because of SSH’s wide availability on the clusters. However, there are several policy options based

on who is the initiator of the SSH calls. The initiator is basically the entity that starts and coordinates

SSH calls. In the VAA context, the initiator may be the host orthe VM.

Although both the host and VM initiator policies can establish the same degree of protection and

privacy, several other criteria should also be considered to choose the most effective security policy

in the cluster environment. The following section enumerates these criteria based on efficiency,

portability and transparency. Then, Section 3.2.2 explains why the VM initiator is chosen.
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3.2.1 Criteria of the Proper Security Policy

Three main criteria are considered to choose the policy of our security infrastructure:

1. Efficiency: An efficient security policy should not introduce significant overhead to perfor-

mance. It should not include extra SSH calls that can be eliminated easily with other policies.

Efficiency is especially important for the VAAs because theyalready have the data movement,

hypervisor and guest OS overheads.

2. Portability : A portable security policy should be applicable to different systems easily. It

should not introduce significant configuration changes on the cluster. In our design, SSH, by

itself, mostly covers the portability criterion with its wide availability and easy installation

properties.

3. Transparency: A transparent security policy should be as transparent as possible to the user.

The user’s involvement should be minimized for authentication, authorization and data secu-

rity.

3.2.2 Security Policies Based On Initiators

We explain the implementation of the VM initiator and host initiator policies in the next two sections.

Then, in the following section, we compare these two policies and state the reasons why we choose

the VM initiator as our security policy.

3.2.2.1 VM Initiator

The VM initiator security policy initiates all the SSH callsfrom the VM and can be implemented by

several steps without any user involvement (Figure 3.1). Initially, the VAA designer should create

an account inside the VM to execute the application. The VAA designer creates a non-passphrase

protected private and public key combination for that account of the VM. Then, the system admin-

istrator puts this public key to all the users’authorizedkeysfile on the cluster. Therefore, the users

of the cluster give permission to the VM to execute commands.However, if we allow unrestricted

access to the cluster user’s files from the VAA, then a malicious person who gain access to the VAA

can reach the cluster user’s files unconditionally. Hence, we prepare a forced command script that

restricts the VAA to only specific data movement operations to a specific location, so that, the user

can be protected from the malicious attacks. In this case, the system administrator should attach this

script’s path to the public key of the VAA account (Section 3.5.5).

3.2.2.2 Host Initiator

The host initiator security policy initiates all the SSH calls from the host (Figure 3.2). In order

to implement this type of security policy, the user has to be involved significantly. Initially, the

user has to create a public and private key of herself. Since the user is probably in the multiuser
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Figure 3.1: The VM initiator security policy

cluster system, a non-passphrase protected private key is not secure. Therefore, she should enter a

passphrase during the creation of keys. Then, the designer of the VAA should include the cluster

user’s public key to the VAA’sauthorized keysfile. After that, she has to runssh-agenton the host

and add her private key to this agent’s cache. This operationforces the user to enter her passphrase.

Only after that, the user can submit the job to the batch scheduler.

Public key of the user

HOST
V M

The user logs in

Direction of the SSH calls

SSH ServerSSH Client

(Initiator of the SSH calls)

Figure 3.2: The Host initiator security policy

3.2.2.3 The Design Choice: VM Initiator

Our experience show that the VM initiator policy is the best in terms of transparency and efficiency

criteria (Table 3.1). First, the VM initiator is more efficient because it eliminates all the extra SSH

calls of the host initiator. The host initiator policy should poll the application state by extra SSH

calls. Every extra SSH call becomes a bottleneck in terms of efficiency. Also, the user on the cluster

does not have to runssh-agenttype of programs in the VM initiator to store the private keysbecause

the cluster user’s private key is not used at all. However, the host initiator has to use the cluster

user’s private key to communicate with the VM. Second, the VMinitiator is more transparent to

the user than the host initiator because almost everything is done inside the VAA or by the system

administrator. However, in the host initiator policy, the user has to create the public/private keys and

runssh-agentto cache the private key before the submission. Also, the user has to provide the public

key to the VAA designer in order to authenticate to the VAA. The user’s requirements of creating

keys and communication with the VAA designer increases the user’s involvement, therefore, reduces

the transparency. Third, in the VM initiator, a system administrator can easily do the configuration
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automatically or by request. However, in the host initiator, by some mechanism, the administrator

has to change the keys of the VAA. This operation causes extramanagement burden.

Security Policy Efficiency Portability Transparency

Host Initiator poor good poor
VM Initiator good good good

Table 3.1: Comparison of the security policies

Although the VM initiator policy has all these advantages, it has a non-passphrase protected

private key problem, therefore, it needs extra security anddesign arrangements. A non-passphrase

protected private key can be a security concern if it can be seen by third parties. However, this

drawback can be relieved by enforcing strong restrictions on operations of the VAA with a forced

command script (Section 3.5.5). A forced command script is arequirement for the proper autho-

rization of the VAA operations. Also, in order to pass arguments of the application and necessary

parameters for the SSH connection, a parameter virtual diskshould be manipulated by a program

and should be mounted to the VM.

3.3 VM Disks and Virtual Disk Repository

A virtual disk repository (VDR), in our design, stores the VMdisks of the VAAs in a convenient

place on the cluster (Figure 3.3). Hence, the user or the designer choose from a selection of VM

disks for different VAA constructions. Otherwise, creating a VAA from scratch is more complicated

and has higher overhead. In this section, we explain the software composition of our VAA design.

Then, we discuss the types of VM disks to store software to execute a VAA. Finally, we provide the

details of the VDR concept that we use in this work.

RootInstall RootExecute

...

GROMACS HMMer

...

Parameter Keys

Root VM Disks Application VM Disks Parameter/Keys VM Disks

Virtual  Disk Repository (VDR)

GROMACS VAA
RootExecute ---> /VDR/RootVMDisks/RootExecute

GROMACS --> /VDR/AppVMDisks/GROMACS
ParameterGROMACS

Keys --> /VDR/ParKeyVMDisks/Keys

HMMer VAA
RootExecute ---> /VDR/RootVMDisks/RootExecute

HMMer --> /VDR/AppVMDisks/HMMer
ParameterHMMer

Keys --> /VDR/ParKeyVMDisks/Keys

Figure 3.3: A virtual disk repository (VDR) example

In our design, the software composition of a VAA consists of aguest OS, SSH client, main appli-

cation and auxiliary applications. The guest OS is chosen based on the needs of the main application.

The SSH client is for communicating with the host and establishing the security infrastructure. The
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main application is a scientific application that a VAA is prepared for. For example, for the GRO-

MACS VAA, the main application is GROMACS. However, if the user wants to script the execution

of GROMACS, she needs a scripting interpreter such as Python. Also, some of the executables

inside the GROMACS VAA need the C preprocessor (cpp) to run inside the VM. Therefore, the

auxiliary applications are for the execution of the user scripts or the execution of the tools inside

the application packages. Additionally, a VAA configured with CSM should have a guest OS kernel

module to interact with the shared memory region on the host and our C programs to read/write

from/to the shared memory region on the host.

We store all the above-mentioned software, SSH-related parameters and key files in four VM

disks for each VAA (Figure 3.3). The virtual machine monitor(VMM), the software which manages

virtual machines, mounts these four VM disks to execute a VAA. In this dissertation, disk images

are named as root, application, keys and parameter. A root VMdisk is the bootable disk image that

stores the system libraries and guest OS. We install the auxiliary applications to the application VM

disk. However, if it simplifies the installation of the auxiliary applications, one can install them to

the root VM disk too. For example, if the auxiliary applications reside in the software repository

of the Linux distribution, we generally cannot install these auxiliary applications to a nonstandard

location. As the name implies, an application VM disk storesthe main application binaries and

possibly some auxiliary applications. A keys VM disk storesthe private keys of the VAA accounts

for the SSH connections. A parameter VM disk image stores theSSH parameters. These SSH

parameters, namely the username, IP address and current working directory of the host, are the

minimum necessary parameters for the VM to initiate SSH calls to the host. In our design, the

host cannot manipulate the VM after it starts execution, therefore, the VM needs to know how to

communicate with the host.

The advantage of using separate VM disks for a VAA is reusability. One can install the appli-

cation to an application VM disk along with a root image that contains necessary software for the

installation. Figure 3.3 shows this disk asRootInstall. However, later, when she wants to execute the

VAA, she can mount another root VM disk which eliminates unnecessary software for the execu-

tion. Figure 3.3 shows this disk asRootExecute. TheRootExecuteVM disk is the slimmed version

of RootInstallVM disk [35]. For example, the HMMer’sRootExecuteVM disk does not contain the

GNU compiler collection (GCC) because the GCC is only necessary for the compilation of HMMer

but not for the execution of HMMer. Hence, one can use a root VMdisk for the installation of

several applications (e.g.RootInstall) to application VM disks and another root VM disk to execute

several different VAAs (e.g.RootExecute). Consequently, she does not need to create a VAA from

scratch by reusing the suitable root image. Also, we can savedisk space by few root VM disks for

every VAA instead of a complete VM disk for each VAA that also contains the software of a root

image.

The VDR stores VM disks for each VAA. The repository can be a collection of symbolic links
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that points to the locations of the VM disks or the repositorycan directly store the VM disks under

a certain directory structure (Figure 3.3). The advantage of using symbolic links is that the VM disk

images can be stored anywhere on the host and one can add linksthat point to these VM disk images

to the repository. However, if a link is broken or the VM disk is inaccessible, the VAA execution

cannot start. A convenient way is to store the VM disks or the links under three categories: root,

application, parameter/keys. With this structure, a VAA can easily be constructed by mounting one

VM disk from root and application category along with parameter and keys VM disks (Figure 3.3).

3.4 Data Movement Mechanisms: Secure Copy Over Network
and Copy Over Shared Memory

We consider two different design options for the data movement mechanisms (Figure 3.4). The

first design option establishes data movement over the network through the secure channel of the

SSH protocol. We refer to this option as the secure copy over network (SCN) data movement

mechanism. The second design option establishes data movement through the local shared memory

region between the VAA and host. We refer to this second option as the copy over shared memory

(CSM) data movement mechanism. In this section, we discuss the architecture, advantages and

disadvantages of these data movement mechanisms.

Cluster A, Host A

/home/ input

Cluster B, Host B

VAA

SCN

/home/ input

VAA

Cluster C, Host C

CSM

SSH Secure Channel

Shared
Memory
Region

* Arrows show the direct ion of the data movement

Figure 3.4: Secure copy over network (SCN) and copy over shared memory (CSM) data movement
mechanisms

The first design option, SCN, is useful when data has to be moved over the network between the

host and VAA. This is generally the case when the VAA and data are on the different administrative

domains such as on two different clusters. SSH and its security features implement authentication

and authorization of the user. Also, SSH encrypts data that is transferred across the network. How-

ever, every SSH connection has authentication and per-byteencryption overheads. If the VAA and

data are on the same host, we can simply use CSM and eliminate encryption and authentication

overheads.

SCN’s architecture is the combination of an SSH client on theVAA, SSH server and virtual

networking infrastructure on the host. In this architecture, an SSH client on the VAA communicates

with an SSH server on the host. SSH’s own authentication mechanism handles the authentication
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part of the security. However, for the authorization, we do not just rely on the file access rights of

the OS and put a forced command script between the host and VAA(Section 3.5.5). This forced

command script checks the SSH calls that are initiated from the VAA for validity and only allows

read/write operations to a specific folder which we callvirtual root.

The second design option, CSM, has lower overhead than SCN ifcomplete local execution

is possible. In other words, CSM allows faster VAA executions by eliminating the network and

SSH authentication and authorization overheads if the input files and VAAs are on the same host.

However, CSM is not applicable if the VAA needs to run on the different administrative domains

because the shared memory region can only be shared between the VAA and host locally. Also, most

virtual machine monitors (VMMs) do not support the shared memory architecture between the host

and the VAA. Therefore, we use a non-standard modification toLinux KVM and a kernel module

for the guest OS that add shared memory support. However, SCNcan use widely available SSH

implementations and unmodified VMMs.

The CSM’s architecture is implemented by using Cam Macdonell’s work on KVM [31]. In this

architecture, a shared memory region which is accessible byboth the host and VAA is created on

the host. Basically, both parties read/write to this sharedmemory region to transfer data. In our

implementation, we use Macdonell’s implementation which requires a KVM modification to add

support for a shared memory region between the host and VAA. This modification also requires a

kernel module installed to the VAA to communicate with the shared memory region on the host.

Instead of the SSH-based copy, two special programs are implemented by us to extract/insert input

and output files from/to a shared memory region. However, thelength of the output data being

moved is communicated via SSH. Hence, we still need the SSH client on the VAA and networking

infrastructure and SSH server on the host.

3.5 Automated Execution of Virtual Application Appliances on
Clusters

We develop five separate script files to perform the data movement operations, authorization and

VAA execution (Figure 3.5). The first script, the remote submission script, prepares the input files

and sends the SSH parameters and VAA arguments to the head node of the cluster. The second

script, the local submission script, submits the user’s jobto the batch scheduler with the necessary

arguments for the VAA execution. The third script, the wrapper host script (WHS), executes the

operations initiated from the host and the fourth script, the VM execution script (VMES), executes

the operations initiated by the VAA. In CSM, the WHS also copies the compressed output file from

the shared memory region, decompresses it on the host and executes the clean-up operations. The

fifth script, the forced command script (FCS), is designed for validity and authorization check for

the SSH operations initiated from the VAA. Additionally, the FCS decompresses output files and

executes the clean-up operations in the SCN mechanism. We use the Bash scripting language in our
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implementation because of its wide availability in the Linux OSes. However, these operations can

be easily ported to other scripting languages.

Throughout this chapter when we talk about the VAA arguments, we refer to either the arguments

of the main application or arguments of the user script that executes several commands related

to the main application execution. For instance, on the one hand, the user may prefer running

mdrunexecutable directly from the GROMACS VAA by providing several command-line arguments

(Figure 3.7). In this case, the VAA arguments are the arguments of themdrunexecutable. On the

other hand, she may optionally run her script file (i.e.run.sh) that executes several GROMACS

executables and other operations that are necessary for herwork (Figure 3.13). In this case, the

VAA arguments refer to the arguments of the user script.

In the following sections, we explain the operations that are executed by each script in detail. We

examined the migration functionality in the previous chapter. Therefore, at the end of this section,

we comment on possible additions to these scripts if the migration functionality is needed.

3.5.1 Remote Submission Script

The remote submission script allows the user to submit her work from a remote location other than

the cluster that she plans to execute her work (Figure 3.6). In our design, the user does not need to

login to the cluster that the VAA execution takes place. Instead, she can prepare her input files on

her workstation or on another cluster that has an internet access. Then, she submits her work from

one of these remote locations. We call each of these remote locations as the user’s remote machine.

As Figure 3.6 shows, the remote submission script defines a task number to distinguish the jobs

that are using the same VAA at line 11. In our implementation,the task number is just a folder name

that the job is submitted. Other options can be a ticket mechanism that assigns a unique job number

to each job or a batch scheduler’s task number that is assigned to each job. For example, TORQUE

and PBS assign a unique job number to each submission. Immediately following the definition of the

task number, the remote submission script writes the VAA arguments to the arguments file at line 14,

then compresses the input files at line 17 and prepares the SSHparameters to be sent to the cluster

at line 21. These parameters are used by the VAA to connect directly to the user’s remote machine.

Therefore, at the beginning of the VAA execution, the VAA gets the input files and VAA arguments

directly from the user’s current working directory on the user’s remote machine. At the end of the

VAA execution, the VAA puts the output files directly to the user’s current working directory on

the user’s remote machine. The only assumption of the remotesubmission script is that the user

has permission to authenticate to the cluster. Finally, at lines 24 to 27, the remote submission script

connects to the cluster’s head node, creates the execution folder on the cluster and then submits the

user’s job to the cluster’s batch scheduler by calling the local submission script (Section 3.5.2).

The remote submission can only work for the SCN data movementmechanism (Figure 3.5). In

CSM, since the user has to login to the cluster and make sure all the input files are on the cluster
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*Dashed arrows represents the CSM mechanism and the other arrows
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Figure 3.5: The scripts and their execution order for both mechanisms
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1 #!/bin/sh
2
3 #Assign current directory on the host to the crdir environment variable.
4 crdir=‘pwd‘
5
6 #IP of the localhost
7 localip=‘hostname -i‘
8
9 #Name of the current directory
10 dirname=‘echo $crdir | awk -F ’/’ ’{print $NF}’‘
11 tnumber=$dirname
12
13 #Write arguments of the application to the arguments file.
14 echo "$@" > args${dirname}
15
16 #Compress input files.
17 tar -zvcf ${tnumber}input.tar.gz *
18
19 #Prepare the command for the remote host \
20 #to write the ssh parameters to the paramater VM disk.
21 parcommand="parameteradd $tnumber $crdir $localip \
22 $USER \"/usr/botha10b/GromacsExec/$dirname/parameter-flat.vmdk\""
23 #Submit the job to the batch scheduler on the remote host
24 ssh $USER@headnode.cluster "mkdir /usr/botha10b/GromacsExec/$dirname; \
25 cd /usr/botha10b/GromacsExec/$dirname; \
26 export VMMemory=2048; export jobname=$dirname; \
27 submitmdrunPBSApp64BitRM $parcommand"

Figure 3.6: A sample GROMACS VAA remote submission script for the PBS and TORQUE batch
schedulers

(Section 3.4), the above-mentioned preparation lines should be implemented in the local submission

script (Figure 3.6 at lines 3 to 22). Figure 3.7 shows generaland example submission command-lines

for the GROMACS VAA ([arguments]refer to the GROMACS VAA’s arguments for the execution

of GROMACS application).

General submission command-line for the Gromacs VAA:
./submitremoteGROMACS [arguments]

Example submission command-lines for themdrunexecutable:
./submitremoteGROMACS -o a.trr -g a.log
./submitremoteGROMACS -o a.trr -x a.xtc -c aconfout.gro

Figure 3.7: The general and example command-lines for the submission of GROMACS VAA to the
batch scheduler.

As we stated previously, the only requirement of the user is to submit the job from the folder

that the input files reside (Figure 3.8). For example, let us say the user stores the input files in the

/home/inputfolder. The only requirement for the user is to go to/home/inputfolder and submit her

work by using our remote submission script with necessary VAA arguments.
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The Cluster

    VAA 
Execution 

Figure 3.8: The remote submission script execution for onlyone cluster.

1 #!/bin/bash
2
3 curdirectory=‘pwd‘
4 prty=$@
5 grpath=‘which gromppLINUXPBSApp64BitRM.sh‘
6 #The submission line of the user job for the PBS/TORQUE type of schedulers
7 qsub -N $jobname -v parameteraddline=\""$prty"\" $grpath

Figure 3.9: A simple local submission script for the PBS and TORQUE batch schedulers

3.5.2 Local Submission Script

The local submission script submits the WHS to the batch scheduler of the cluster with a unique job

name (Figure 3.9). Every batch scheduler has different notations to define the jobname and other

parameters of the submission command. Therefore, this script should be specialized for different

batch schedulers or should contain different batch schedulers’ submission parameters.

The batch scheduler parameters are sent as arguments to the batch scheduler’s submission com-

mand which isqsubin Figure 3.9. However, most batch schedulers allow to add these parameters

to the submitted scripts. In our design, the WHS is the scriptthat is submitted. We choose not to

add the job name to the WHS. The user can assign a name to the jobby usingjobnameenvironment

variable instead of modifying more complex WHS. However, static parameters such as memory

and CPU requirements of the VAA can be added to the WHS since they do not change from one

execution to another. A sample parameters for the PBS-basedschedulers that are embedded to the

WHS can be seen in Figure 3.10 at lines 4 to 7. For example, the#PBS -Vdirective exports all the

environment variables of the current shell to the submission script and the#PBS nodes=1:ppn=4

directive requests 4 CPUs on one node. These batch schedulerdirectives should be added in the

beginning of the script before all the other operations.

3.5.3 Wrapper Host Script

The WHS controls the operations outside of the VM environment on the execution host of the

VAA (Figure 3.10). First, the WHS defines the environment variables related to the VM execution.

Second, the WHS writes the SSH parameters to the parameter VMdisk before the VAA starts. Third,

the WHS starts the VAA. Fourth, after the VAA finishes execution, the WHS cleans up the execution

folder in the SCN mechanism. In the CSM mechanism, the WHS copies the compressed output file
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from the shared memory region, decompresses and executes the clean-up operations.

The preliminary operations assign paths of the VM disk images and job specific variables to

several environment variables. As explained in Section 3.3, paths are the places of the VM disk

images in the repository (Figure 3.10 at lines 25 to 33). However, the job specific variables are used

to define the job and its requirements for a specific VMM. For example, in our implementation,

we use KVM as the VMM. KVM expects different media access control (MAC) addresses (i.e.

network identifiers) for the executions of the multiple jobsfrom the same VAA image. Otherwise,

the VAAs may not have network connectivity due to conflictingMAC addresses. Therefore, one of

the environment variables is a random MAC address from the KVM’s MAC address range (Figure

3.10 at lines 18 to 22).

After the environment variable definitions, the WHS executes several sequential operations.

These operations are explained as follows:

1. The parameter virtual disk should be copied to the execution folder before the VAA starts. In

our design, we simply copy a small template parameter VM diskimage from the repository

to the current working directory because it should be uniquefor every VAA execution (Figure

3.10 at line 41). At this point, if CSM is used, two additionalsteps create a shared memory

region and copies the compressed input file to the shared memory region (Figure 3.11). In our

implementation, we develop two C programs calledcreateshmanddumpfilefor this purpose.

createshmcreates a shared memory region with the specified size anddumpfilerunsmmap

system call to map the compressed input file to the shared memory region.

2. A program calledparameteraddmodifies the parameter VM disk image and adds the SSH

parameters (Figure 3.10 at line 46). Theparameteraddlineenvironment variable, which con-

tains the SSH parameters, comes from the remote submission script if SCN is used (Figure

3.6 at line 21) and from the local submission script if CSM is used. Basically this disk image

contains a file calledparameter.txt. Theparameteraddprogram seeks for the beginning of

theparameter.txtfile and writes the necessary parameters to initiate SSH calls from the VAA.

These parameters are the task number, current working directory, username and IP address of

the host in SCN and CSM. Additionally, only in CSM, we add the size of the input compressed

file to the parameters.

3. After the preparation of the parameter VM disk, a call to the VMM executable starts the VAA.

In our design, we used KVM as the VMM and its command line lookslike in Figure 3.10

at lines 49 to 52. The$KVMPATH argument is the full path of thekvmexecutable (Figure

3.10 at line 35). The first 8 arguments after$KVMPATHmount the four necessary VM disks

namely root, application, keys and parameter as the zeroth,first, second and third disks of the

VM. The -m argument specifies the memory size that’s going to be assigned to this VM. In

Figure 3.10 at line 50, the memory size is specified as 512 MB.
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1 #!/bin/bash
2
3 # export all my environment variables to the job
4 #PBS -V
5 #PBS -S /bin/sh
6 #PBS -q batch
7 #PBS -l nodes=1:ppn=4
8
9

10 if [ "X$PBS_O_WORKDIR" != "X" ]; then
11 cd $PBS_O_WORKDIR
12 else
13 PBS_O_WORKDIR=‘pwd‘
14 fi
15
16 # generate a random mac address for the qemu nic
17 # shell script borrowed from user pheldens @ qemu forum
18 generate_mac() {
19 echo $(echo -n DE:AD:BE:EF ; for i in ‘seq 1 2‘ ; \
20 do echo -n ‘echo ":$RANDOM$RANDOM" | cut -n -c -3‘ ;done)
21 }
22 mac=‘generate_mac‘
23
24 #Path of the Root Image File
25 RootPath=\
26 "/usr/botha10c/unal/VMRepository/RootVMDisks/64BitRootWithGCC3-4NC.vmdk"
27 #Path of the Application Image
28 APPPath=\
29 /usr/botha10c/unal/VMRepository/ApplicationVMDisks/gromacs64BitNC.vmdk
30 #Keys diskimagepath
31 keyspath=/usr/botha10c/unal/VMRepository/ParKeyVMDisks/keys.vmdk
32 #Parameter disk image path
33 parpath=/usr/botha10c/unal/VMRepository/ParKeyVMDisks/parameter-flat.vmdk
34 #Path to kvm executable
35 KVMPath=/usr/botha10b/unal/kvm86/bin/qemu-system-x86_64
36
37 #The path of the current directory.
38 curdirectory=‘pwd‘
39
40 #Copy parameter disk file
41 cp $parpath $curdirectory
42
43 #write parameter file to disk image of the keys. 1st line task number,
44 #Note: These parameters are required \
45 # **before file args${tnumber}** is brought in via ssh.
46 ‘echo $parameteraddline‘
47
48 #Run the VAA
49 $KVMPath -hda $RootPath -hdb $APPPath -hdc $keyspath \
50 -hdd $curdirectory/parameter-flat.vmdk -m 512 \
51 -vnc :12 $RootPath -net nic,vlan=0,macaddr=$mac \
52 -net vde,vlan=0 -snapshot
53
54 #Delete current directory
55 rm -rf $curdirectory

Figure 3.10: A sample SCN wrapper host script (WHS) for the PBS and TORQUE batch schedulers

createshm $SHMPATH $SHM SIZE
dumpfile $SHMPATH ${tnumber}input.tar.gz

Figure 3.11: The commands for creating a shared memory region on the host and copying the
compressed input file to the shared memory region
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The -vnc argument is an optional argument that denotes the VNC display number of this

VM. One can view the VM’s display device by connecting to thisVNC display using a VNC

viewer. VM’s display device is equivalent to the monitor of adesktop computer. If a display

is not necessary, replacing the-vnc :12argument with the-nographicargument disables the

display. In this case, the user still can connect to the VM using SSH if she wants to check the

status of the execution. However, she can not connect to the VM’s display.

The -net argument determines the network options. The first-netargument creates a virtual

network interface card (NIC) connected to the VLAN 0 with a random mac address denoted by

$mac. The second,-netargument connects this virtual NIC to the VDE-based virtualnetwork

on the host.

The-snapshotargument tells KVM not to write any changes to the disk images. KVM writes

all the VM disk manipulations to the temporary files during the execution of the VAA and after

the execution, KVM removes them. Thiscopy on write (COW)feature of the KVM allows us

to submit multiple jobs with the same VAA without copying theVM disks for every execution

and causing any corruption to the base VM disks.

The-bootargument specifies which device will be used as a boot device.The boot device can

be a hard disk, floppy, cdrom drive or network card. If the bootdevice is not specified, like

in our WHS example, the default boot device is the hard disk that is mounted as the zeroth

virtual disk (-hda in Figure 3.10 at line 49). Therefore, KVM boots the VAA from the root

VM disk.

Finally, if CSM is used, this command line is followed by another argument called-ivshmem

[31]. Then, this argument is followed by the name and size of the shared memory region.

Since it has already been created by the WHS, KVM skips the creation part and directly adds

this file to the VM as another memory device. A sample-ivshmemargument that points to a

512 MB of shared memory region named as testfile as follows:

... -ivshmem testfile,512

4. During the execution of the VAA, the VMES and FCS take theirparts and the WHS waits for

the VAA to stop (Section 3.5.4 and 3.5.5). After the VAA execution ends, the WHS removes

the execution folder in the SCN mechanism (Figure 3.10 at line 55).

In the CSM data movement mechanism, since the execution happens on the current working

directory on the cluster, the execution folder and the current working directory are the same.

Therefore, instead of removing the execution folder, the WHS issues the following additional

commands to copy the compressed output file from the shared memory region on the host and

to decompress the compressed output file:

readfile $SHM_PATH ${tnumber}output.tar.gz $filesize
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tar -zxf ${tnumber}output.tar.gz

Finally, the WHS of CSM removes the compressed output and VAAarguments files at the

end of the WHS script. In the SCN mechanism, the decompression and clean-up operations

happen inside the FCS since the WHS is not on the user’s remotemachine (Figure 3.5 and

Section 3.5.5).

3.5.4 VM Execution Script

The VM Execution Script (VMES) controls the operations inside the VAA (Figure 3.12). The VMES

starts its execution when the VAA runs and loads the guest OS and its services. For example,

for the Ubuntu Linux OS, we add a line to therc.local file to call the VMES. The Ubuntu OSes

executerc.local script right after the OS is loaded to the memory. Since we need networking, SSH

and related services before the VMES starts, this is the mostconvenient place to call the VMES.

The VMES have all the necessary instructions to complete theexecution of the application or the

script that is prepared by the user. At the end of the execution, the VMES shuts down the VAA

automatically.

The VMES starts with defining necessary environment variables for the SSH calls and applica-

tion execution. For example, in Figure 3.12 at line 4, the VMES defines the path of the GROMACS

executables. At line 6, the VMES defines the maximum number ofSSH calls before concluding on

an error due to connection problems. Then, the VMES loads thessh-agent’s environment variables

at line 8, therefore, thesshexecutable can locate the keys in the memory. Thessh-agenttool of

SSH caches the private keys of the guest OS accounts in the VAA’s memory. From line 10 to 15,

the VMES reads the SSH parameters from theparameter.txtfile on the parameter virtual disk. In

the CSM mechanism, the VMES additionally reads the size of the compressed input file from the

parameter.txtfile. Therefore, in the VMES of CSM, an additional variable called par 4 is assigned

to the size of the compressed input file.

After that the VMES starts to execute several operations. They can be enumerated as follows:

1. The VMES creates an execution folder for the user’s job in Figure 3.12 at line 23. This folder

stores the input files. Also, the application execution occurs inside this folder. Then, at the

following line, the VMES makes the execution folder the current working directory.

2. In Figure 3.12 from line 27 to line 41, the VMES attempts to copy the compressed input

file from the host by using the SSH parameters that are read from theparameter.txtfile in

the parameter virtual disk. If the VMES succeeds, the operations continues, otherwise the if

block, between the line 36 and 41, stops the operations because the VAA execution cannot

continue without the input files. If the CSM mechanism is used, instead of an SSH call, the

readfileprogram copies the compressed input file from the shared memory region as follows:
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1 #!/bin/bash
2
3 #Export PATH
4 export PATH=$PATH:/usr/app/bin
5 #Maximum number of attempts before concluding on connection problems
6 maxtry=60
7 #Load agent defaults
8 . /etc/ssh-agent.env
9 #Read parameters from the parameter.txt file on parameter VM disk

10 i=0
11 while read line
12 do
13 export par_$i=$line
14 let i=$i+1
15 done < /parameter/parameter.txt
16
17 #par_0: task number
18 #par_1: current working directory
19 #par_2: username
20 #par_3: host IP
21
22 #Create folder that input files will be put and go to that directory
23 mkdir /usr/app/gromacs_execute
24 cd /usr/app/gromacs_execute
25
26 #Copy input tar files
27 i=0
28 until ssh -o StrictHostKeyChecking=no ${par_2}@${par_3} \
29 input:${par_1}/${par_0}input.tar.gz > ${par_0}input.tar.gz \
30 || [ $i -eq $maxtry ]
31 do
32 sleep 0.5
33 let i=$i+1
34 done
35
36 if [ $i -eq $maxtry ]; then
37 rm -rf /usr/app/gromacs_execute
38 echo "Failed to establish an ssh connection!"
39 halt -p
40 exit 0
41 fi
42
43 #Untar input files
44 tar -zvxf ${par_0}input.tar.gz
45
46 #Remove input tar file
47 rm -rf ${par_0}input.tar.gz
48
49 #Run gromacs
50 if [ -f run.sh ]; then
51 ./run.sh ‘cat args${par_0}‘ &> outgromacs.txt
52 else
53 mdrun ‘cat args${par_0}‘ &> outgromacs.txt
54 fi
55
56 #Tar the output files
57 tar -zvcf ${par_0}output.tar.gz *
58
59 #Copy output files to the host
60 ssh ${par_2}@${par_3} output:${par_1}/${par_0}output.tar.gz \
61 < ${par_0}output.tar.gz
62
63 #Remove execution folder
64 rm -rf /usr/app/gromacs_execute
65
66 #Shut down the VM
67 halt -p

Figure 3.12: A sample VM script for the SCN data movement mechanism
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#!/bin/bash
python 1U3M1 long GromPy1gBer Ber RotRemGenVelXTC VMware2.py $@

Figure 3.13: A samplerun.shcontents for the execution of the GROMACS application inside the
GROMACS VAA.

readfile /dev/ivshmem ${par_0}input.tar.gz ${par_4}

In Figure 3.12 at line 6, the VMES defines how many times thesshprogram retries in case

a connection problem happens. Also, one should define the duration between every try (In

Figure 3.12 at line 32).

3. Before the execution of the application or the user’s script, the last step is the decompression

of the compressed input file to the execution folder (In Figure 3.12 at line 44). An archive

utility such astar can be used for the extraction.

4. The VMES is now ready to run the application or user’s script. In our design, the user can

just run the main executable of the application package or, optionally, can create a simple

run.shscript to add some other operations such as external analysis of the output files. If the

user decides to create arun.shscript, she has to call the main executable explicitly in this

script. For example, in Figure 3.12 at lines 50 to 54, the VMEScalls therun.shscript if the

run.shfile exists. Otherwise, the VMES calls the main executable ofthe GROMACS package,

which ismdrun. As discussed earlier, the user has to putrun.shscript to the same folder that

the input files reside, so that, it can be copied to the VAA along with the input files. Also, the

arguments of the VAA are provided on the same lines by readingthe arguments file with the

cat command (Figure 3.12 at line 51 and 53). An examplerun.shscript can be examined in

Figure 3.13. Note that, in Figure 3.13, the user calls themdrunexecutable inside the Python

script, therefore, she also adds this Python script to the current working directory. Finally, the

VMES saves the output of therun.shor the main executable to a file for further examination

since the output is invisible to both to the user and the batchscheduler during the execution.

This file isoutgromacs.txtin Figure 3.12 at line 51 and 53.

5. At the end of the execution, the VMES compresses all the files or just the new files and

modified files to send to the current working directory on the host (Figure 3.12 at line 57).

In our design, the VMES simply compresses all the files. To send the compressed output

file to the host, in the SCN mechanism, the VMES initiates another SSH call (Figure 3.12 at

line 60), in the CSM mechanism, it callsdumpfileprogram.dumpfilecopies the compressed

output file to the shared memory region on the host. Also, the VMES writes the size of this

file to thedumpsize.txtfile and sends to the host via SSH since the shared memory region has

no information on the size of the file. An example line to copy the compressed output file to
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the shared memory region on the host is the following:

dumpsize=‘/usr/app/gromacsscript/dumpfile /dev/ivshmem \

${par\_0}output.tar.gz‘; echo $dumpsize > dumpsize.txt

6. Fnally, the VMES removes the execution folder (Figure 3.12 at line 64). Then, it shuts down

the VM (Figure 3.12 at line 67). VAA execution ends at this point and control returns to the

WHS.

During the VMES execution all the modifications of this script on the host is controlled by the

forced command script (FCS). Therefore, the VAA cannot execute unauthorized operations on the

host. We see the details of this script in the next section.

3.5.5 Forced Command Script

The FCS is placed on the host where the user submits the job with the local or remote submission

scripts, and checks the VAA’s operations for the validity (Figure 3.14). The FCS also decompresses

the compressed output file on the host and invokes the necessary clean-up commands in the SCN

mechanism. Mainly, the FCS’s validity checks restrict the VAA by only allowing the data movement

operations from/to the predetermined path which we call asvirtual root. Therefore, the FCS is called

every time a VAA tries to execute a command on the host with an SSH call. The FCS’svirtual root

concept is similar to thechroot command’sjail concept [26]. However, the FCS is implemented

such that it does not need root privileges to execute commands.

In order for the FCS to be called, one needs to add the VAA accounts’ public keys to the user’s

authorizedkeysfile on the host with the forced command line (Figure 3.15). For example let us say

Alice wants Bob to access Alice’s computer or home folder forcertain operations. If Alice adds

only Bob’s public key to Alice’sauthorizedkeysfile, then Bob can access Alice’s home folder and

execute any operation that Alice can execute. However, Alice has to permit only certain operations

and restrict others. Therefore, Alice adds Bob’s public keyto herauthorizedkeysfile with additional

commandword (e.g. command=” /etc/ForcedCommandScript.sh”) at the beginning of the public

key line. Alice can put a path to a script or simply put the pathof the command that Bob can

execute. In our design, we need a complex control for the VAA operations, therefore, we develop

the FCS and add its path to the beginning of the public key lines of the VAA accounts in the user’s

authorizedkeysfile on the host.

If the public key is added with the forced command line, the SSH server on the host calls the

FCS whenever a VAA initiates an SSH call to the host. Then, theFCS checks the command-line of

the SSH call which is passed by the SSH daemon as anSSHORIGINALCOMMANDenvironment

variable (Figure 3.14). We only allow data movement operations, therefore, the FCS can only accept

two command-line formats. The first command-line, the inputcommand-line, format is for moving

the data from the host to the VAA:
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1 #!/bin/bash
2
3 virtual_root=/home/user
4 #Check if the data movement is input or output operation.
5 input=‘echo "$SSH_ORIGINAL_COMMAND" | awk -F ’:’ ’{print $1}’‘
6 path=‘echo "$SSH_ORIGINAL_COMMAND" | awk -F ’:’ ’{print $NF}’‘
7
8 canon_readlink() {
9 # Output a canonicalized version of what a link links to

10 # Credit to Jesse Wilson @
11 # http://publicobject.com/2006/06/canonical-path-of-file-in-bash.html
12
13 OLDWD="$(pwd)"
14 cd -P -- "$(dirname -- "$1")" &&
15 LINK="$(readlink -- "$1")" &&
16 cd -P -- "$(dirname -- "$LINK")" &&
17 LINK=$(pwd -P)/$(basename -- "$LINK")
18 cd "$OLDWD"
19 }
20
21 #Check if path is symbolic link or not
22 if [ -h "$path" ]; then
23 canon_readlink $path
24 path=$LINK
25 fi
26
27 #Get the folder of the file path
28 folder=‘echo "$path" | awk -F ’/’ ’{print substr($0,0,index($0,$NF)-1)}’‘
29 filefolder=$folder
30
31 #Check if folder exist or not
32 cd "$folder" > /dev/null 2>&1
33 if [ $? -ne 0 ] ; then
34 echo "File does not exist"
35 exit 0
36 elif [ -z "$folder" ] ; then
37 echo "File does not exist"
38 exit 0
39 fi
40
41 #Check if folder is rooted from virtual_root directory
42 filepath=‘pwd‘
43 folder=‘echo "$filepath" | gawk -v a=$virtual_root ’ {
44 print substr($0,0,length(a))
45 }’‘
46 if [ "$folder" != "$virtual_root" ] ; then
47 echo "File is not in the virtual_root!"
48 exit 0
49 fi
50
51 #Everything is OK.
52 #Do the input or output data movement
53 if [ "$input" == "input" ]; then
54 /bin/dd if="$path"
55 #Clean up after the input files are copied to the VAA.
56 rm $path
57 elif [ "$input" == "output" ]; then
58 /bin/dd of="$path"
59 tar -zvxf $path -C $filepath
60 #Clean up after the output files are ready.
61 rm $path
62 rm $filepath/args${filefolder}
63 else
64 echo "Access Denied: Wrong pattern in the string."
65 fi

Figure 3.14: General forced command script (FCS)
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command="/etc/ForcedCommandScript.sh" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA4VR9A
TsyBjZroyemlYnUIWXbzd3+4qZmK8hNRn4dwXosb1xBpginhBjVk9U4L4cO0zXxg2GKOSznGIJ1ab/3
1LA40KJVO2w81oK+CL1bVRcDw8JRvBLQZ5Mrzv67P3bFasSBiObBI1gMaTHa7/Kmeo7GCwFsicKB672
o+KKWKlJ4maeraNMMC3mrpyqnwp49hvg7dhRYZz7h7XblkK2LI1zf2ZsYUBzvxwVrhOVkY6OFtraHf8
hWv/I57qVEYSomnQXAVjw2XB5E/Bno54vJDE7N9BQt6N3Tki5CvpoUhkbFRF8gtUYOqAyICRjg+HbJb
wRXLRlvNzxz7n2ZE8PBUQ== root@172.16.202.134

Figure 3.15: A public key with a forced command script line

ssh username@HostIP input:$virtual_root/[SOMEFOLDER]/$TASKNUMBERinput.tar.gz \
> $TASKNUMBERinput.tar.gz

The above command-line tells the FCS to copy$TASKNUMBERinput.tar.gzfile from the host to

the execution folder on the VAA with the same name. As we explained before, the data movement

operations can be targeted to only certain path on the host. This path is denoted asvirtual root in

the above command-line and in the FCS (Figure 3.14 at line 3).Therefore, a valid command-line

must have a path under thevirtual root.

The redirection part of the above command-line is> $TASKNUMBERinput.tar.gzand it is for

the input stream to be written to a file on the VAA. If the command-line passes the validity tests, the

only thing that the FCS does is to read the input file from the path on the host and redirect the file’s

content to the standard output. Thesshcommand on the VAA can read from the standard output and

with the redirection, the shell on the guest OS writes the output of thesshcommand to the file. In

our implementation, thedd comand reads the content of the input file (Figure 3.14 at line54).

The second command-line, the output command-line, format is for moving the data from the

VAA to the host:

ssh username@HostIP output:$virtual_root/[SOMEFOLDER]/$TASKNUMBERoutput.tar.gz \
< $TASKNUMBERoutput.tar.gz

The above command-line tells the FCS to copy the$TASKNUMBERoutput.tar.gzfile from the

VAA to the current working directory on the host. Inversely,the redirection part of the command-

line is < $TASKNUMBERoutput.tar.gzand tells the shell on the VAA to put the$TASKNUMBER-

output.tar.gzfile’s content as an input stream to the standard input. Therefore, the FCS can issue a

command and read the input stream to a file on the host . In our implementation, thedd comand

reads the content of the standard input and writes to the file (Figure 3.14 at line 58).

The above-mentioned operations can only be executed if the command-line is in the correct for-

mat and the operations target a path under thevirtual root. Therefore, the FCS parses the command-

line and checks the validity of the operation in several steps. In our design, the parsing and validity

checks can be enumerated as follows:

1. The parser breaks up the command-line into the path of the file and operation identifier which

is either input or output. In Figure 3.14 at line 5, we extractthe operation identifier and assign

it to the input environment variable. At line 6, we extract the path of the file and assign it to

thepathenvironment variable.
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2. After parsing the command-line, before the validity checks, we examine the file path and

check if it is a symbolic link or not. If it is a symbolic link, then, we convert it to the path

that the symbolic link points to. In Figure 3.14 at line 22, wecheck if thepath is symbolic

link or not. If it is, we convert it to its canonical version with canonreadlink function. The

canonreadlink function is defined between the line 8 and line 19.

3. Now we can do our first validity check which examines if the folder that the file is copied

from/to exists or not (Figure 3.14 at lines 32 to 39). If it does not, the FCS rejects the operation

with an error line (Figure 3.14 at line 34 and line 37)

4. The second validity check examines if the path is undervirtual root (Figure 3.14 at lines 42

to 49 ). If it does not, the FCS rejects the operation with an error line (Figure 3.14 at line 47)

5. The third and the last validity check examines whether theoperation identifier is valid or not

(Figure 3.14 at line 53 and line 57). It must be either input oroutput. If it is not one of them,

the FCS rejects the operation with an error line (Figure 3.14at line 64)

After the validity checks, the FCS executes the input or output data movement operation as

explained previously and then executes the clean-up operations (Figure 3.14 at lines 53 to 65).

After the input copy operation, the FCS removes the input compressed file (Figure 3.14 at line

56). After the output copy operation, in the SCN mechanism, the FCS first decompresses the output

compressed file and then removes this file (Figure 3.14 at lines 59 to 61). Also, the FCS removes

the arguments file which is not necessary after the VAA execution ends (Figure 3.14 at line 62). As

discussed before, In the CSM mechanism, these operations are implemented in the WHS (Section

3.5.3).

3.5.6 Migration Functionality

Currently, we have not implemented the migration support inour scripts due to some instabilities

in the libvirt library version 0.6.2 [29]. However, we performed enough experiments to evaluate

the migration overheads by manually executing thelibvirt migration operations. In Chapter 4, an

evaluation of these migration overheads can be viewed. We examine the migration functionality in

this dissertation to perform application checkpointing and avoid wall-time limit (Chapter 2). In this

section, we remember the brief explanations of the reasons for using the migration functionality and

possible extensions to our scripts.

The two possible reasons that are mentioned in Chapter 2 can be summarized as follows:

1. To avoid the wall-time limit of the cluster. In the clusterenvironment, it is a common practice

to have a wall-time limit to prevent an application or user from monopolizing the cluster.

Therefore, the wall-time limit enforces the cluster’s batch scheduler to terminate the job after

some time. However, some scientific applications may need more time than the specified
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limit. Hence, the VAA can be saved before the wall-time has run out and restored from this

state by resubmitting to the batch scheduler.

2. To recover after failover by application checkpointing.If the WHS saves several states of

the VAA (i.e. checkpointing), in case a problem happens suchas a power outage, file system

corruption, guest OS errors and network failure, the VAA execution can be restored from one

of the saved states.

The WHS and in some cases the VMES could be extended to supportthe migration. The WHS

saves the VAA state before the above-mentioned conditions happen and then resubmits the WHS

to the batch scheduler to restore the VAA from the saved state. However, in addition to the WHS

extension, if the checkpointing decision comes from the VAA’s internal state, an extension to the

VMES is also necessary. Even if the VAA decides the conditions for checkpointing, the WHS issues

the save and restore operations.

3.6 Concluding Remarks

In this chapter, we presented the design and implementationof the VAA. We proposed a security

infrastructure that is transparent, portable and efficientbased on the authentication, authorization

and encryption mechanisms of SSH. We employ the VM initiatorsecurity policy strengthened by

the SSH’s forced command feature that initiates all the SSH calls from the VAA to conform to the

efficiency and transparency criteria. Then, we explained the virtual disk repository (VDR) concept

to store the VM disks of the VAAs in a convenient location. We proposed the secure copy over

network (SCN) data movement mechanism for the remote data movement operations of the VAA.

Also, we proposed a faster alternative for data movement in the local executions called copy over

shared memory (CSM) data movement mechanism. The chapter continued with the explanation of

five scripts that implement all these data movement, security and application execution operations.

Finally, we discussed the migration functionality and how it can be implemented in our scripts to

avoid wall-time limit and recover after failovers. In the next chapter, we evaluate the performance

impacts of our work with several benchmarks.
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Chapter 4

Empirical Evaluation

In the previous chapter, we discussed all the design principles, security infrastructure, features and

scripts of our VAA solution for the cluster environment. In this chapter, we demonstrate the per-

formance impacts of the application execution as a VAA, the overheads of our automated, scripted,

secure data movement mechanisms and the overheads of the migration operations. We use three

bioinformatics applications for the VAA benchmarks. The goal of the experiments is to answer two

important questions: Are the VAAs competitive enough with the bare hardware execution of the

same application, which we call the host execution of the application? Are the overheads of our data

movement mechanisms and migration operations negligible with respect to the total run-times of the

VAAs?

To answer these questions, we start this chapter by explaining the details of the scientific ap-

plications that we use. Then, Section 4.2 describes the testenvironment. Section 4.3 explains the

details of the performance measurements. Finally, the following sections after Section 4.3 present

and elaborate the results that our benchmarks provide. Also, the general conclusions and quantitative

evidence from empirical evaluations are summarized at the end of this chapter in Table 4.17.

4.1 Scientific Applications for Benchmarks

We present three bioinformatics applications that we use for the benchmarks: GROMACS, GAFolder

and HMMer (Table 4.1). We call these bioinformatics applications as the main applications. We also

add auxiliary applications along with the bioinformatics applications to the VAA. We use these aux-

iliary applications in the host execution too. The auxiliary applications are for the execution of

the user scripts or the execution of the tools inside the application packages. For example, the C

preprocessor auxiliary application is used by thegrompptool of GROMACS. However, the Python

script interpreter is added because we use an user script that is written in the Python language, which

runs several tools from the GROMACS application package to perform simulations and analyze the

output files.

The first application, GROMACS, is a molecular dynamics application package. GROMACS
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Name Description Dataset(s) Auxiliary Applica-
tion(s)

GROMACS A software package to per-
form molecular dynamics.

3 proteins: Human,
Chicken, Turtle

C preprocessor and
Python

GAFolder Protein structure energy
minimization software.

1 protein: Ubiquitin none

HMMer Hidden Markov Models
(HMM) software for protein
sequence analysis.

1 protein: Globin BBS Perl Benchmark
Script

Table 4.1: The scientific applications and auxiliary applications used in the benchmarks (Inside the
VAAs and on the host)

represents the broad class of scientific applications that performs CPU-intensive computations.

Therefore, GROMACS is an interesting application to test the performance of the VAAs. Gen-

erally, GROMACS input files are small in size, e.g. 964 KB, compared to the output files, e.g.

215 MB. mdrun, the main simulation program inside the GROMACS software package, is mostly

computationally intensive. In GROMACS, simulations may depend on various random seeds; how-

ever, we use constant seeds and a homogeneous hardware environment to get deterministic results.

Hence, we can have a fair comparison between the VAA and the host executions of the application

in terms of performance. Three sets of proteins are analyzedduring the benchmarks: turtle, human

and chicken. Also, for the data analysis and several sequential executions of the GROMACS tools

we use the Python script provided by our collaborators at theUniversity of Alberta.

The second application, GAFolder, is a protein structure and energy minimization application

developed by the University of Alberta Prion Group. GAFolder is a good candidate to investigate the

class of applications which are really a collection of scripts and executables with a driver program

that creates new processes (e.g. fork) for different tasks during the execution. We modify the source

code to have identical outputs each time we run GAFolder. GAFolder can run in multi-threaded

mode but we limit the number of threads to a single thread for both the VAA and host executions.

We also eliminate all the random seed generator functions and place constant seeds as their return

value. Hence, we can have a fair comparison between the VAA and the host executions of the

application in terms of performance. We use an Ubiquitin protein file provided by our collaborators

in our experiments. No auxiliary program is used. The input and output files are small in size, e.g.

240 KB (input) and 648 KB (output), with respect to the GROMACS ones.

The third application, HMMer, is a hidden markov models (HMM) application for protein se-

quence analysis. HMMer is another widely used application package. We use the BBS benchmark

package [44] which includes several HMMer benchmarks. However, we only execute thehmm-

search-based benchmark with a globin protein file, which comes withthe BBS benchmark package,

to evaluate the performance of this work for the I/O intensive applications. Since this benchmark

searches a sequence database with a profile HMM file, it does extensive disk reads.hmmsearchis

also compiled as a single-threaded executable.hmmsearchsearches 2.1 GB database, provided by
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NCBI [14], during the execution. We included this database to the VAA too. We use 76 KB input

files andhmmsearchproduces 2092 KB output files.

4.2 Test Environment

We run our secure copy over network (SCN) benchmarks on the real cluster called Checkers at the

University of Alberta (Table 4.2). Checkers, which is part of WestGrid, has 1280 cores powered

by 2 CPUs on each of 160 nodes. Checkers also has one head node to control the job submission

and the cluster’s authentication. The 2.50 GHz quad core Intel Xeon CPUs are configured with

16 GB of RAM on each node. The operating system is Scientific Linux 4.7 (64 Bit) with 2.6.28.2

kernel in all the nodes. The TORQUE/Moab batch scheduler manages the job submission to the

cluster. KVM is installed on all the nodes as the virtual machine monitor. The virtual distributed

ethernet (VDE) and dnsmasq (dhcp and dns server) applications are configured on all the nodes for

the virtual networking. Checkers also has a NFS-mounted storage system. However, to avoid NFS-

related performance issues, we only allowed the applications and the VAAs to read and write to the

local storage of the nodes.

Number Of Nodes 1 head node & 160 compute nodes
Number Of Cores per Node 8
Total Cores 1280
CPU Model 2.50 GHz Intel Xeon L5420 quad-core
Total RAM per Node 16 GB
Batch Scheduler TORQUE/Moab
Operating System Scientific Linux 4.7 (64 Bit)
Linux Kernel Version 2.6.28.2

Table 4.2: Checkers cluster configuration

We run our migration and copy over shared memory (CSM) benchmarks on four nodes of the

Botha cluster in the Department of Computing Science at the University of Alberta (Table 4.3).

Three of these four nodes has 12 cores powered by 2 dual core CPUs on each of 3 nodes. The fourth

one is the head node to control the job submission and the cluster’s authentication. 3.00 GHz dual

core Intel Xeon CPUs are configured with 4 GB of physical RAM oneach node. The operating

system is Fedora Core 11 (64 Bit) with Linux kernel 2.6.29.5 in all the nodes. TORQUE batch

scheduler manages the job submission to the cluster. KVM is installed on all the nodes. However,

on Botha, KVM is compiled with shared memory support betweenthe host and the VM. As in

the Checkers cluster’s configuration, the VDE and dnsmasq applications are configured on all the

nodes for the virtual networking. Although Botha has a NFS-mounted storage system, to avoid

NFS-related performance issues, we only allowed the applications and the VAAs to read and write

to the local storages of the nodes.

As explained in Section 3.3, another component of our test environment is a virtual disk reposi-

tory (VDR) which stores three sets of VM disks (Table 4.4). The repository stores the VM disks that
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Number Of Nodes 1 head node & 3 compute nodes
Number Of Cores per Node 4
Total Cores 12
CPU Model 3.00 GHz Intel Xeon 5160 dual-core
Total RAM per Node 8 GB
Batch Scheduler TORQUE
Operating System Fedora Core 11 (64 Bit)
Linux Kernel Version 2.6.29.5

Table 4.3: Botha cluster configuration

constitute a VAA when they are used together in the right combination. The first set of VM disks,

the root VM disks, contains either the base OS installation and the auxiliary applications or the com-

bination of the base OS, the auxiliary applications and the GNU Compiler Collection (GCC). The

root VM disks are for the compilation of the application or the execution of the application. The

root VM disks can also be used for both purposes. For example,the64BitRootWithGCC4VM disk

contains the GCC 4 compilers and is used for the compilationsof HMMer and GAFolder. During

the run-time, we use the64BitRootVM disk to eliminate the GCC binaries which are unnecessary

for the executions of HMMer and GAFolder. However, the64BitRootWithGCC3VM disk is used

for both the compilation and the execution of GROMACS because GROMACS version 3.2.1 needs

the GCC 3 series compiler during the compilation and the C preprocessor, which is part of GCC,

during the run-time. The second set of VM disks, applicationVM disks, stores the application bina-

ries after the compilation. For example, thehmmer64bitVM disk contains the 64 bit binaries of the

HMMer application. The third set of VM disks are the parameter VM disk and the keys VM disk

which are part of the VAA’s security infrastructure as explained in Chapter 3.

The VM disks are created by VMware server in VMware’s nativevmdkformat which are also

compatible with KVM. However, we convert them toqcowformat of KVM during the migration be-

cause migration is only supported withqcowtype of disks. Although the VM disks have predefined

maximum sizes, the VM disks are not pre-allocated, which means their sizes grow gradually as data

is written on them.

Root VM Disks
64BitRoot
64BitRootWithGCC3
64BitRootWithGCC4

Application VM Disks
gromacs64Bit
hmmer64Bit
gafolder64Bit

Parameter and Keys VM Disks
parameter
keys

Table 4.4: Virtual disk repository (VDR) structure (64 denotes that the applications or OSes are 64
bit)

When we talk about a VAA, we talk about combination of a root VMdisk, an application VM

disk, a parameter VM disk and a keys VM disk. Basically, KVM mounts these four VM disks when
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it starts the VAA. The only bootable one is the root VM disk. The combinations of the VM disks

that we use for the VAAs can be examined from Table 4.5.

VAA Name VM Disks
GROMACS VAA 64BitRootWithGCC3 + gromacs64Bit + parameter + keys
GAFolder VAA 64BitRoot + gafolder64Bit + parameter + keys
HMMer VAA 64BitRoot + hmmer64Bit + parameter + keys

Table 4.5: The VAAs and their VM disk combinations

4.3 Details of the Evaluation Method

The aim of our benchmarks is to show that the VAAs have acceptable performance to run on the

clusters and our data movement mechanisms incur negligibleoverhead. We also used different

types of software to understand the performance of the I/O and compute-intensive workloads. We

compared the results with the host execution time of the application.

We prepared three sets of benchmarks. The first benchmark setmeasures the performance im-

pacts of the SCN data movement mechanism. The second benchmark set measures the performance

of the CSM data movement mechanism. The third benchmark set is about the migration overheads.

In this set, the time spent for the save and restore operations are measured.

We divide the total scripted VAA execution into seven stagesduring the execution of a VAA.

Other than theVM Boot (B)andVM Shutdown (S)stages, all the stages are explicitly measured. The

stages are explained as follows:

1. Input Files Compression (IC): We measure the time spent for the compression of the input

files into a single compressed input file with thetar command.

2. VM Boot (B) : At this stage, we consider the time spent from the start of the VM until the

beginning of the VM script, which performs the data movementand application execution

operations inside the VM. Note that we derive the time spent for this stage along with theVM

Shutdown (S)stage as explained in the following performance measurements paragraph.

3. Data In (I) : We measure the total time spent for the transfer of the compressed input file to the

VM and decompression of the compressed input file to the inputfiles with thetar command.

Note that we separate out the 1st stage,Input Files Compression (IC), from this total.

4. Application Execution (E): At this stage, the VM Script starts the application such as the

gafolderexecutable or the user script such as the Python script of theGROMACS VAA as

explained in Section 4.1. Therefore, we measure the time spent for the complete execution of

the application or the user script.

5. Data Out (O): After the completion of the application execution, we measure the total time

spent for the compression of the output files into a single compressed output file with thetar
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command and transfer of the compressed output file to the host. Note that we separate out the

7th stage,Output Files Decompression, from this total.

6. VM Shutdown (S): At this stage, we consider the time spent from the end of the VM script

operations to the end of the VAA execution. Note that we derive the time spent for this stage

along with theVM Boot (B)stage as explained in the following performance measurements

paragraph.

7. Output Files Decompression (OD): We measure the time spent for the decompression of the

compressed output file to the output files.

Our performance measurements are as follows. The parentheses show the corresponding com-

ponents for each performance measurement from the above-mentioned stages.

1. Data Movement Overhead (IC + I + O + OD): This measurement includes all the data

movement stages. Therefore, it is equivalent to the total oftime spent for compressing/de-

compressing/copying input files (IC + I) and compressing/decompressing/copying output files

(O+OD).

2. Application Execution (E): This measurement is the equivalent of the 4th stage. Both the

host execution and VM execution have an E component. In fact,the host execution does not

require any data movement and VM-related operations, therefore, it has only this component.

3. Total VAA Execution (B + I + E + O + S): This measurement is recorded as a whole. In

other words,Total VAA Executionis the time spent from booting up the VAA to shutting

down the VAA. It covers the time spent for the VM Script operations and also the boot up

and shutdown procedures of the VAA. Most data movement overheads are in this total too:

copying/decompressing the input files (I) and compressing/copying the output files (O). After

the VAA ends, the user can finally reach to the compressed output file, therefore, we used this

measurement to compare with the host execution of the application.

4. VM Boot Up/Shutdown Overhead (B + S): This measurement is the total time spent for

booting up the VM and shutting down the VM. We referred this measurement as theVM

start/stop overheadin the tables. We derive this total by the subtraction of in-VM data move-

ment operations (I+O) andApplication Execution (E)from Total VAA Execution(Total VAA

Execution - I - E - O), because we do not explicitly measure theVM BootandVM Shutdown

stages.

5. Total Scripted Execution (IC + B + I + E + O + S + OD): This measurement is the total of all

the stages from the 1st to the 7th. In other words,Total Scripted ExecutioncoversTotal VAA

Executionand non-VM data movement overheads (IC+OD). We derive this total by adding
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the time spent forInput File CompressionandOutput File Decompressionstages toTotal VAA

Execution(Total VAA Execution + IC + OD).

We collect all the above-mentioned performance measurements for the SCN benchmarks. How-

ever, we only collect the data movement overhead measurement for the CSM benchmarks since the

only change is in the data movement mechanism. This change does not affect the application exe-

cution or the VM boot up/shutdown times. Additionally, for migration benchmarks, we collect the

following time measurements:

1. Save Overhead: It measures the time spent for saving the VM state to the disk. We initiate

the save operation in the middle of the application execution. This measurement also includes

the time spent for destroying the VM process.

2. Restore Overhead: It measures the time spent for restoring the VM state to the memory.

After this operation, the VAA starts and the application execution continues where it had left

off.

4.4 Secure Copy over Network Data Movement Benchmarks

In these benchmarks, we evaluate the above-mentioned overheads and the performance measure-

ments for the SCN data movement mechanism. In all the benchmarks, we use 64 bit binaries of

the applications and 64 bit Ubuntu Jeos 8.10 OS inside the VAA. Ubuntu Jeos allowed us to have

a minimal OS without extra burden. The rationale behind using 64 bit binaries is to have a fair

comparison between the 64 bit environment on the host and inside the VAA. However, the user is

not restricted to use a 64 bit OS or application binaries inside the VAA. KVM can also run 32 bit

VAAs on the 64 bit host. We execute the VAAs locally and the network transmission between the

host and VAA happens inside the cluster environment. We use only one virtual processor inside the

VM. Also, the VM disks are growable VM disks which are not pre-allocated to their full sizes.

We run instances of the VAAs in 2048 MB, 1024 MB, 512 MB, 256 MB and 128 MB of VM

memory sizes. We want to understand that how variations in the VM memory sizes affect the per-

formance. We also run the applications along with their auxiliary applications and the user provided

scripts on the host for the comparison purposes. We reserve the one whole node of the cluster to

the host or the VAA execution of the application. Therefore,we ensure that the node contention is

as low as possible. We submit the jobs to the batch scheduler each time and let the batch scheduler

to find a free node. Every protein’s performance numbers are the average of 20 runs for each VM

memory size. Similarly, the host execution times are also the average of 20 runs.

In thetotal VAA execution times normalized to the host execution timesgraphs, the standard de-

viations are less than one percent of the total execution forall the bars, therefore, they are not shown.

Also, boot up/shutdown overheadgraphs show a simple subtraction of in-VM data movement oper-
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ations (I+O) andApplication Execution (E)from Total VAA Execution(Total VAA Execution - I - E

- O). Therefore, they do not include the standard deviations which may not be accurate.

4.4.1 GROMACS VAA Benchmarks

Three proteins, human, turtle and chicken are analyzed by the GROMACS VAA and the host instal-

lation of GROMACS. The simulation time parameter is 500 ps. All the results of the GROMACS

benchmarks for the SCN mechanism can be examined from Tables4.7, 4.8, 4.9.

Figure 4.1 shows the result of the total GROMACS VAA execution times normalized to the host

execution time of GROMACS. From this figure, we can conclude that GROMACS is suitable for the

VAA-based execution. Most of the time total VAA execution time is close to the host execution time

of GROMACS. Although we always see a performance degradation for the 128 MB VM memory

sizes, the memory limit does not add an extra overhead exceptfor the chicken protein. One of

the reasons for the chicken protein’s significant performance degradation may be its high memory

usage due to more computations from other proteins. Also, since the VM memory sizes over 128 MB

had similar performance, we can also conclude that our GROMACS simulations are not memory-

intensive, therefore, GROMACS VAA has reasonable resourcerequirements.
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Figure 4.1: Total execution time of the GROMACS VAA for different VM memory sizes normalized
to the host execution time of the GROMACS application. The GROMACS VAA achieves near-
native performance for all proteins (Tables 4.7, 4.8, 4.9).

The data movement overhead is directly affected by the size of the compressed input and output

files. Table 4.6 shows the input and output files total sizes and their compressed sizes. A regu-

lar GROMACS VAA has a negligible data movement overhead if wecompare it with the total VAA
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execution. For example, chicken protein total VAA execution is 61749.5 seconds and the data move-

ment overhead is only 39.19 seconds with 2048 MB memory (Table 4.7). Figure 4.2 shows that the

data movement overheads are less than 45 seconds in all the cases, however, total run-times are

longer than 55000 seconds.

Protein
Name

Input Files
Total Size

Output Files
Total Size

Compressed
Input File Size

Compressed
Output File Size

Turtle 1000 KB 202 MB 189 KB 94 MB
Human 964 KB 215 MB 175 KB 99 MB
Chicken 1064 KB 220 MB 193 KB 102 MB

Table 4.6: Total input and output file sizes of the GROMACS 500ps benchmarks (Compressed/Un-
compressed)
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Figure 4.2: Data movement overhead of the GROMACS VAA for different VM memory sizes (The
numbers inside the parentheses show the compressed output file sizes which affect the most of the
data movement overhead). The data movement overheads of theGROMACS VAA are small with
respect to total GROMACS VAA execution times which are more than 15 hours (Tables 4.7, 4.8,
4.9).

Another important overhead is the total of boot up and shutdown times of the VAA. In the

standard OS installation, the boot up time and shutdown timemay become significantly high due

to extra processes such as graphical user interfaces, browsers, automounters and office applications.

However, with this minimal OS it takes at most 39 seconds (Figure 4.3). Therefore, this overhead is

also negligible with respect to the total execution time of the VAA.
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Figure 4.3: Sum of boot up and shutdown times of the GROMACS VAA for different VM memory
sizes. VM boot up/shutdown overheads of the GROMACS VAA are small relative to total execution
times of the GROMACS VAA which are more than 15 hours. (Tables4.7, 4.8, 4.9).

GROMACS Chicken 128 MB 256 MB 512 MB 1024 MB 2048 MB Host
Application Execution 66147.06 61660.13 61667.25 61651.91 61684.67 61902.89
Data Movement Overhead 37.37 39.51 38.33 37.91 39.19 N/A
VM start/stop Overhead 34.76 34.91 36.62 34.76 35.26 N/A
Total VAA Execution 66211.84 61724.86 61733.64 61715.71 61749.50 N/A
Scripted Total Execution 66219.43 61734.73 61742.66 61724.80 61759.52 N/A

Table 4.7: Checkers cluster GROMACS benchmarks: All the results for the chicken protein (in
seconds)

GROMACS Turtle 128 MB 256 MB 512 MB 1024 MB 2048 MB Host
Application Execution 55674.17 55469.56 55468.74 55487.9 55449.16 55709.37
Data Movement Overhead 34.13 34.93 36.34 34.12 37.09 N/A
VM start/stop Overhead 35.98 35.26 34.9 35.05 35.08 N/A
Total VAA Execution 55737.48 55531.46 55530.8 55549.08 55512.99 N/A
Scripted Total Execution 55744.54 55539.95 55540.2 55557.32 55521.54 N/A

Table 4.8: Checkers cluster GROMACS benchmarks: All the results for the turtle protein (in sec-
onds)

GROMACS Human 128 MB 256 MB 512 MB 1024 MB 2048 MB Host
Application Execution 60393.61 60166.28 59836.03 59891.28 59907.19 60160.89
Data Movement Overhead 36.28 35.96 35.19 35.58 34.92 N/A
VM start/stop Overhead 38.53 36.05 35.14 35.23 35.11 N/A
Total VAA Execution 60461.17 60230.67 59899.41 59954.29 59970.01 N/A
Scripted Total Execution 60468.85 60238.57 59906.60 59962.28 59977.41 N/A

Table 4.9: Checkers cluster GROMACS benchmarks: All the results for the human protein (in
seconds)
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4.4.2 GAFolder VAA Benchmarks

Ubiquitin protein is analyzed by the GAFolder VAA and the host installation of GAFolder. The

simulation time is adjusted by setting the simulation iterations to 200. All the results of the GAFolder

benchmarks for the SCN mechanism can be examined from Table 4.10.

GAFolder Ubiquitin 128 MB 256 MB 512 MB 1024 MB 2048 MB Host
Application Execution 4452.81 3596.79 3595.64 3599.66 3598.70 3959.10
Data Movement Overhead 1.83 1.8 1.73 1.29 1.73 N/A
VM start/stop Overhead 36.87 36.67 36.73 36.84 36.58 N/A
Total VAA Execution 4490.74 3634.69 3634.86 3637.86 3637.17 N/A
Scripted Total Execution 4491.44 3635.57 3635.56 3638.38 3638.03 N/A

Table 4.10: Checkers cluster GAFolder benchmarks: All the results (in seconds)

The GAFolder VAA’s total execution times are comparable with the host execution time of the

GAFolder application (Figure 4.4). We can only conclude that GAFolder computations need at

least 256 MB of VM memory to have reasonable performance. In our benchmarks, GAFolder VAA

performed better than the host execution of GAFolder VAA except 128 MB of VM memory size.

We cannot explain the reason behind this unusual performance with our benchmarks and it is out

of this thesis’s scope. However, the variety of research in the field explains the reasons as CPU

instructions, memory management and input/output optimizations. For example, Adams et. al [2]

discuss the CPU instructions optimizations by performing nanobenchmarks.
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Figure 4.4: Total execution time of the GAFolder VAA for different VM memory sizes normalized
to the host execution time of the GAFolder application. The GAFolder VAA’s total execution times
are comparable with the host execution time of the GAFolder application (Table 4.10).

Other VAA related overheads namely the total boot up/shutdown times and the data movement
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overheads are not significant with respect to the total VAA execution times. Table 4.11 shows that

the GAFolder VAA’s compressed input and output file sizes areless than 120 KB, therefore the data

movement overheads are less than 3 seconds (Figure 4.5). Also, the VM boot up/shutdown times are

similar to the GROMACS VAA’s totals and do not add significantoverheads to the total execution

times of the VAA .

Protein
Name

Input Files
Total Size

Output Files
Total Size

Compressed
Input File Size

Compressed
Output File Size

Ubiquitin 240 KB 648 KB 39 KB 118 KB

Table 4.11: Total input and output file sizes of the GAFolder benchmarks (Compressed/Uncom-
pressed)
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Figure 4.5: Data movement overhead of the GAFolder VAA for different VM memory sizes (The
number inside the parentheses shows the compressed output file size which affects the most of the
data movement overhead). The data movement overheads of theGAFolder VAA are small with
respect to total GAFolder VAA execution times which are morethan 59 minutes (Table 4.10).

4.4.3 HMMer VAA Benchmarks

Globin protein is analyzed by the HMMer VAA and the host installation of HMMer. The simulation

time depends on the database size, therefore, we choose 2.1 GB database from the BBS benchmark

suite to achieve a comparable run-time with the real life applications. All the results of the HMMer

benchmarks for the SCN mechanism can be examined from Table 4.12.
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Figure 4.6: Sum of boot up and shutdown times of the GAFolder VAA for different VM mem-
ory sizes. The boot up/shutdown overheads of the GAFolder VAA are small with respect to total
GAFolder VAA execution times which are more than 59 minutes (Table 4.10).

HMMer Globin 128 MB 256 MB 512 MB 1024 MB 2048 MB Host
Application Execution 3252.14 3157.12 3159.06 3158.92 3159.23 3156.3
Data Movement Overhead 1.95 1.57 1.1 1.08 0.62 N/A
VM start/stop Overhead 37.83 38.46 42.43 40.07 38.43 N/A
Total VAA Execution 3291.92 3197.15 3202.59 3200.06 3198.28 N/A
Scripted Total Execution 3293.05 3198.39 3203.35 3200.82 3198.57 N/A

Table 4.12: Checkers cluster HMMer benchmarks: All the results (in seconds)

HMMer VAA execution times are higher than the host executiontime of HMMer ( Figure 4.7).

However, the overhead is at most 4.4% in 128 MB VM memory tests. For a middle ground 512 MB

memory size, the overhead is as low as 1.47% which makes it negligible with respect to the total

search time. This benchmark shows that the I/O intensive applications can also have reasonable

performance inside the VM.

Our results are different from Macdonell et al.’s identicalbenchmark results [32]. Denoted as

thehmmer-with-nr-1CPUbenchmark in their paper, they report that this HMMer benchmark incurs

7.7% overhead on average with respect to the host execution time of the same benchmark. They

only use 2 GB of VM memory configured with Gentoo Linux kernel version 2.6. With the same

amount of memory, we measure only 1.33% overhead. The main reason of this difference is that

Macdonell et al. choose VMware server as the VMM which has different code base than the KVM

VMM’s code base. Other reasons may include some significant differences in our VAA design from

Macdonell et al.’s VA design. For example, we use minimal OS optimized for the VMs, however,
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Macdonell et al. use a standard Linux distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Globin

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

host
128 MB
256 MB
512 MB

1024 MB
2048 MB

Figure 4.7: Total execution time of the HMMer VAA for different VM memory sizes normalized
to the host execution time of the HMMer application. The I/O intensive applications can also have
reasonable performance inside the VAA (Table 4.12).

Similar to the GAFolder VAA benchmarks, other VAA related overheads of HMMer VAA,

namely the total boot up/shutdown and data movement overheads are not significant with respect

to the total VAA execution times. Table 4.13 shows that HMMerVAA’s compressed input and out-

put file sizes are less than 330 KB, therefore the data movement overheads are less than 2.5 seconds

(Figure 4.8). One important point is that the HMMer VAA’s data movement overhead is reducing

as the memory size grows which we do not encounter in other benchmarks. Also, the VM boot

up/shutdown times are similar to the GROMACS VAA’s and GAFolder VAA’s totals and do not add

significant overheads to the total execution time of the VAA .Therefore, we can conclude that, with

the similar software structure other than the main application and the auxiliary applications, the total

boot up/shutdown times are fairly constant for each VAA execution in all the benchmarks.

Protein
Name

Input Files
Total Size

Output Files
Total Size

Compressed
Input File Size

Compressed
Output File Size

Globin 76 KB 2092 KB 12 KB 327 KB

Table 4.13: Total input and output file sizes of the HMMer Benchmarks (Compressed/Uncom-
pressed)
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Figure 4.8: Data movement overhead of the HMMer VAA for different VM memory sizes (The
number inside the parentheses shows the compressed output file size which affects the most of the
data movement overhead). The data movement overheads of theHMMer VAA are small with respect
to total HMMer VAA execution times which are more than 52 minutes (Table 4.12).
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Figure 4.9: Sum of boot up and shutdown times of the HMMer VAA for different VM memory
sizes. The boot up/shutdown overheads of the HMMer VAA are small with respect to total HMMer
VAA execution times which are more than 52 minutes (Table 4.12).
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4.5 Copy over Shared Memory Benchmarks

In these benchmarks, we compare the data movement overhead of the CSM mechanism with the

SCN data movement mechanism (Table 4.14). In all the benchmarks, we use the same VAAs as in

the SCN benchmarks. We only change the VM Script’s SSH-baseddata movement parts to the CSM

operations as explained in Chapter 3. Also, we add the sharedmemory kernel module to the guest

OS and start the VAA with this driver enabled.

VAA and Protein Name
(Data Size)

128 MB 256 MB 512 MB 1024 MB 2048 MB SCN 512MB

GROMACS Chicken 16.08 16.21 16.20 16.15 16.10 32.41
GROMACS Turtle 14.20 14.66 14.49 14.23 14.51 26.51
GROMACS Human 15.60 15.87 15.16 15.17 15.15 28.24
HMMer Globin 0.14 0.14 0.14 0.15 0.22 7.49
GAFolder Ubiquitin 0.09 0.08 0.08 0.09 0.48 8.28

Table 4.14: CSM vs SCN data movement overheads: All the results (in seconds)

We execute the same benchmarks as in the SCN benchmarks except we reduce the GROMACS

benchmark’s run-time by reducing the simulation time parameter to 50 ps (This change also affects

the file sizes (Table 4.15)). By reducing the run-time, we aimto get results faster for the GRO-

MACS VAA since we only measure the difference between SCN andCSM. We also execute the

benchmarks of SCN data movement mechanism with 512 MB of VM memory on Botha to compare

the performance of our data movement mechanisms. We use the cluster nodes and batch scheduler

with the same way that we use in the SCN benchmarks. Every protein’s performance numbers are

the average of 5 runs for each VM memory size.

Protein
Name

Input Files
Total Size

Output Files
Total Size

Compressed
Input File Size

Compressed
Output File Size

Turtle 1000 KB 177 MB 189 KB 70 MB
Human 964 KB 189 MB 175 KB 74 MB
Chicken 1064 KB 198 MB 193 KB 81 MB

Table 4.15: Total input and output file sizes of the GROMACS 50ps benchmarks (Compressed/Un-
compressed)

A shared memory file is created with 512 MB size. One importantpoint of these benchmarks

is that due to the bug in the Macdonell’s shared memory code for KVM, the shared memory size is

added to the total memory size. Therefore, the results should be examined with additional 512 MB

of VM memory. However, differentiation in memory is not significantly effective in the CSM’s data

movement overhead.

Our aim in these benchmarks is to show that if the complete local execution is possible the

CSM mechanism is a better choice than the SCN mechanism. Therefore, we only measured the

data movement overhead of both data movement mechanisms. Wealso calculated the standard

deviations.
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Figure 4.10: Data movement overhead of the GROMACS VAA with the CSM mechanism for dif-
ferent VM memory sizes vs. data movement overhead of the GROMACS VAA with the SCN mech-
anism for 512 MB VM memory size (The numbers inside the parentheses show the compressed
output file sizes which affect the most of the data movement overhead). The CSM mechanism
performs better than the SCN mechanism (Table 4.14).

Figures 4.10, 4.11 and 4.12 show the GROMACS, GAFolder and HMMer VAAs’ CSM perfor-

mance with respect to the SCN performance. We conclude that CSM performs at least 30% better

than the SCN in all the applications. Also, we speculate thatfor small data transfers (Figures 4.11

and 4.12), SCN overhead is dominated by the SSH’s authentication overhead which is not part of

CSM. Every SSH connection starts with the key exchange protocol of SSH, which guarantees that

the sender has enough credentials to initiate a data transfer to the receiver [48], [6]. Therefore,

this authentication overhead is independent from the data size. We also speculate that the per byte

overheads of TCP/IP and SSH encryption protocols are the prominent reasons of the performance

degradation during the data transfer in the SCN mechanism.

4.6 Migration Benchmarks

We explore the migration as a mechanism to recover after failovers and avoid the cluster wall-time

limit (Chapter 2). The VMM can save several states of the VAA and use one of these saved states

to return to the previous execution point in case a failure happens. Also, the migration functionality

can be a workaround to the cluster’s wall-time limit. After the wall-time has run out, the batch

scheduler terminates the user’s job. However, if the user’sjob is longer than the wall-time, by using

the migration functionality, the VMM can save the current state of the application before the wall-

time has run out and resubmit it to the batch scheduler. Then,the user job can be restored from this
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Figure 4.11: Data movement overhead of the GAFolder VAA withthe CSM mechanism for different
VM memory sizes vs. data movement overhead of the GAFolder VAA with the SCN mechanism
for 512 MB VM memory size (The number inside the parentheses shows the compressed output
file size which affects the most of the data movement overhead). For small data transfers, SCN is
dominated by the SSH’s authentication overhead which is notpart of CSM (Table 4.14).
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Figure 4.12: Data movement overhead of the HMMer VAA with theCSM mechanism for different
VM memory sizes vs. data movement overhead of the HMMer VAA with the SCN mechanism for
512 MB VM memory size (The number inside the parentheses shows the compressed output file size
which affects the most of the data movement overhead). For small data transfers, SCN is dominated
by the SSH’s authentication overhead which is not part of CSM(Table 4.14).
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saved state and application execution continues.

In this section, we investigate if migration’s two important overheads of save and restore are neg-

ligible enough to employ the migration functionality. The migration benchmarks measure the time

spent for saving the VM state to a file and restoring the VM fromthis saved state. We uselibvirt

[29] library and its command line toolvirsh for the save and restore operations.libvirt provides a

virtualization API that supports several VMM platforms such as KVM and Xen.virshprovides sev-

eral command-line options to execute the VM-related operations such as starting the VM, shutting

down the VM, saving the VM state, restoring the VM from the VM state file and defining resource

requirements.

We use the GROMACS, GAFolder and HMMer VAAs with 512 MB of memory. Although we

execute the VAAs until completion, we only measure the save and restore times. We check that, at

the end of the execution, the resultant files have correct results and the same as the non-migration

executions. We execute the applications until half of theirrun-times to ensure that their CPU and

memory usages are steady. Then, we issue the save command andsave the state file to the disk.

(Figure 4.13). Finally, we restore the VAA from this saved state and let the execution end (Figure

4.14). The operations are executed by submitting the VAA jobs to the batch scheduler.

virsh -c qemu:///session save GAFolderVAA /home/user/GAFolderVAA.save

Figure 4.13: Thevirsh command-line for the save operation

virsh -c qemu:///session restore /home/user/GAFolderVAA.save

Figure 4.14: Thevirsh command-line for the restore operation

One source of confusion may come from the terminology of suspend and resume versus save

and restore. We use save and restore becauselibvirt uses these terms to define the operations that

we execute for the non-live migration. However, instead of save and restore, some papers in the

literature may refer to the same operations as suspend and resume. Therefore, they can be used

interchangeably depending on the context.

The save operation creates a save file (i.e. state file) and then destroys the VM process. For

example, in Figure 4.13,virshsaves the state of theGAFolderVAAVM to the /home/user/GAFolder-

VAA.savefile. The save file contains the resource definitions, the CPU and memory state of the VM

andlibvirt -related headers. After the save operation, the saved file can be moved locally anywhere

on the host, however, the VM disk images should stay in their original paths.

The restore operation restores the VM from the state file thatis created by the save operation. For

example, in Figure 4.14,virsh restores the VM from the/home/user/GAFolderVAA.savestate file.

The restore operation redirects the contents of the state file to the KVM monitor’s pseudo-terminal.

Therefore, KVM reads the state file from the monitor’s pseudo-terminal and starts the VM from the
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point that the VM is saved. In these benchmarks, the time measurement for the restore phase is until

completion ofvirsh’s restore command. We test that, right after the restore command returns, we

can connect to the VAA and the VAA is responsive to the user requests. Therefore, the restore times

in this section guarantees the usability of the VAA after therestore operation.

All the results of migration benchmarks are shown in Figure 4.15 and Table 4.16. We conclude

that as the size of the state file grows, the time spent for the save and restore operations grows. Also,

even with the large state files, e.g. HMMer’s 425 MB state file,that is close to the 512 MB memory

size the save time is approximately 15 seconds and the restore time is approximately 5 seconds.

Therefore, the migration overheads are also negligible with respect to the total execution times of

the VAAs.
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Figure 4.15: All migration benchmarks’ results (The numbers inside the parentheses show the sizes
of the saved state files). The migration overheads are small relative to total execution times of the
VAAs (Table 4.16).

VAA and Protein Name Save Restore
GROMACS Chicken 10.59 1.14
GROMACS Turtle 11.19 1.73
GROMACS Human 9.86 1.56
HMMer Globin 14.61 5.1
GAFolder Ubiquitin 4.65 2.23

Table 4.16: Migration overheads: All the results (in seconds) (See also Figure 4.15)
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4.7 Concluding Remarks

In this chapter, we evaluated the performance impacts of ourVAA design. The general conclusions

and quantitative evidence from empirical evaluations are summarized in Table 4.17. We performed

three sets of benchmarks to understand the overheads causedby the VAA execution, data movement

mechanisms and migration operations. We varied the VM memory sizes to examine the effect of

the memory size on the performance of the VAA. We also compared the VAA execution times of

the applications with their host execution times. We used the data files and simulation times that are

similar to the real life applications. We executed the applications and the VAAs on the real clusters.

Through the first set of benchmarks, we saw that our SCN data movement mechanism incurs

negligible overhead with respect to the total execution times of the VAAs. Further, we concluded

that the total VAA execution times of the applications are very close to the host execution times

of the applications. Furthermore, we saw that even the I/O intensive application of our test suite

achieves near-native performance.

The second set of benchmarks were used to verify that our CSM data movement mechanism

is a better choice when the complete local execution is possible. We saw that the CSM approach

achieved much better results. Also, we speculated that for small data transfers, SCN is dominated

by the SSH’s authentication overhead which is not part of CSM.

The third set of benchmarks were performed to examine the migration overheads of the VAAs.

We measured the time spent for the save and restore operations. We concluded that as the state file

size grows the total time spent for the save and restore operations grows. However, even if with a

425 MB file size that is close to the 512 MB memory size of the VAA, the overhead number is in

seconds and negligible with respect to the total execution times of the VAAs.

Conclusion Figures Raw Data Tables
The VAAs can achieve near-native performance 4.1, 4.4, 4.7 4.7, 4.8, 4.9, 4.10, 4.12
The data movement overheads are small relative to total
VAA execution times

4.2, 4.5, 4.8 4.7, 4.8, 4.9, 4.10, 4.12

The VAA boot up/shutdown times are small relative to
total VAA execution times

4.3, 4.6, 4.9 4.7, 4.8, 4.9, 4.10, 4.12

CSM performs better than SCN 4.10, 4.11, 4.12 4.14
For small data transfers, SCN is dominated by the SSH’s
authentication overhead which is not part of CSM

4.11, 4.12 4.14

The migration overheads are small relative to total execu-
tion times of the VAAs

4.15 4.16

Table 4.17: The general conclusions and quantitative evidence from empirical evaluations
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Chapter 5

Related Work

Our project contributes to the research in HPC mainly in three categories: the management of clus-

ters, adaptation of the VMs to the cluster environment and migration of VMs for easy control of the

application execution. Therefore, we can discuss the related work in three categories. The first cate-

gory isAggregated Resource Managementthat focuses on managing the VMs and/or applications in

the distributed systems. The second category isVirtual Applianceswhich includes the research that

is related to the virtual appliances and their uses. The third category isMigration which presents

papers from the VM migration research. The following sections discuss the related work in the

above-mentioned categories.

5.1 Aggregated Resource Management

Aggregated resource management tools control the creationand/or distribution of resources. Also,

these tools coordinate the applications that use these resources across the distributed systems. In this

dissertation’s context, we focus on the tools that adapt theVMs into the cluster environment, which

we call asVirtual Cluster Implementations; and tools that use non-VM mechanisms to manage the

resources and applications to deal with the software heterogeneity problem. In these categories, the

tool can be the part of a bigger project such as Globus VirtualWorkspaces [24] or the tool itself can

be the center of other management components such as in Condor [30] and In-VIGO [1].

The virtual cluster implementations use the VMs as the primary unit for the management of

clusters. These tools aim to integrate the VMs into the distributed systems and optimize the cluster

environment for the efficient execution of the VMs. They generally virtualize all the physical com-

ponents of the distributed system such as the memory, CPU andnetwork interfaces. When we use

the verb virtualize, it means we provide virtual versions ofphysical components to the software in

the context of the VMs rather than exposing physical resources to the software as they are. From

the cluster management side, virtualization gives flexibility in the management and distribution of

resources.

One of the virtual cluster implementations is In-VIGO whichtries to virtualize entire cluster
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environment by creating a virtual cluster model and virtualinterfaces. The virtual cluster model

consists of virtualized versions of file systems, applications (In-VIGO’s virtual applications are very

similar to the virtual appliances) and networks. In-VIGO’sarchitecture also includes a resource

manager which handles the creation of virtual resources andexecution of user jobs using these vir-

tual resources. Further, In-VIGO aims to be user-friendly with its web-based user interface manager

for the creation of the VMs and the management of the user jobs. Furthermore, In-VIGO can benefit

from VMPlants [27] which dynamically creates virtual resources when they are needed. VMPlants

gathers the information about the necessary resources fromthe user via a web interface. This in-

formation can be the type of OS, applications to be installedor resource definitions such as the

configuration of networking with specific MAC/IP addresses,the CPU type and memory size. In-

VIGO’s virtual file system (VFS) implementation stays on topof NFS and redirects the RPC calls

from the client to a NFS server. As a result, In-VIGO providesNFS-like file system features in a

virtualized environment. The In-VIGO’s authentication mechanism can use a standard password file

of UNIX, LDAP or SQL database. For authorization, In-VIGO relies on user classes and application

access constraints, which can also be defined by the user.

Similar to In-VIGO, the Globus Toolkit 4 [15] introduces Globus Virtual Workspaces as part

of the Globus Toolkit’s service-oriented architecture forthe distributed computing. Services under

Virtual Workspaces configure the VM as a virtual workspace (VW), deploy it to the cluster and

define the operations such as starting and stopping of the VMs. In Virtual Workspaces, a VW is

managed by a web service and the definition of VW is depicted inthe form of an XML schema.

Virtual Workspaces heavily uses other Globus Technologiessuch as GSI with X.509 certificates [8]

for the security and GridFTP [3] for data movement.

A different implementation with similar features as In-VIGO and Virtual Workspaces is Virtual

Cluster Installation System (VCIS) [19]. VCIS provides an installation request submission system

that installs the necessary software and also allows the configuration of the software inside the VM.

Further, VCIS uses caching techniques to accelerate the multiple VM creation.

Virtual Cluster Implementations use the VMs to deal with thesoftware heterogeneity problem;

however, BOINC [4] and Condor use different techniques for the same purpose. BOINC and Con-

dor distribute the data and computation across the clients and aim to use the redundant cycles of

various computer systems in this distributed environment.However, their approach differs in terms

of handling the target systems and management of resources.BOINC targets the public computers

connected via Internet across the globe and uses them as application execution platforms. BOINC

users can benefit from several tools to describe the data and computations as well as to create and ex-

ecute the applications in the BOINC installed computers. Condor, however, does not require special

programs to be designed for the distributed environment. Condor simply aggregates several worksta-

tions and controls them with a scheduler. The user prepares atext based submission script to define

the hardware and software requirements of a user job. Then, Condor chooses the best suitable exe-
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cution platform from a pool of workstations. Unlike BOINC, Condor targets the computer systems

across the LAN. However, Condor can also be used in the publiccomputing. If a specific worksta-

tion becomes busy, Condor can migrate the jobs if possible orstops and restarts the jobs in another

workstation. To achieve this type of migration, Condor usesthe I/O redirection, checkpoint/restart

and transparent process migration mechanisms. Further, Condor supports the VMs but this support

is limited to locating the necessary VMM to run the VMs with their resource descriptions.

The feature comparison of the aggregated resource management tools and our design can be

examined in Table 5.1. We compare our work with the virtual cluster implementations (VCIs)

since we use the VMs. The main difference between our design and the VCIs is that the VCI’s

resource management application has to be installed on the cluster before the VCI can perform its

functions. However, we benefit from the shell scripts, C programs and widely used batch schedulers.

Therefore, we eliminate the need for the non-standard management software. Although they have

some mechanisms for automated data movement, they leave data movement decisions mostly to

the user who needs to be aware of the VMs. However, data movement back and forth from the

original location is an extra burden for the user. The user also wants the output files to be organized

in the predetermined locations automatically. Our secure data movement mechanisms provide this

flexibility without a user interaction with the VM. Additionally, we argue that dynamic VM-creation

features of the above-mentioned implementations do not addextra advantage for the user who needs

extensive customization of the software environment. The best case for the user is to have her

workstation or test environment virtualized. Therefore, even if the user has a VM with a compatible

OS and base software installation, she has to configure the VMfor her own purposes. Further, one

common advantage of the dynamic VM-creation is to simplify the creation of multiple VM images,

but this can also be done more efficiently by the static VM-creation. For example, after the user tests

her work in one VM and decides to deploy it, she can simply copyit to multiple nodes with a simple

script and run it across the cluster. Also, KVM has a snapshotoption which basically executes

the VM in the read-only mode and any modifications to the VM arewritten to temporary files (i.e.

copy on write). After the execution finishes, all the changesare destroyed and the base image stays

the same. With the KVM’s snapshot option, the user can execute multiple copies of the same VM

without any change to the base VM image; therefore the user does not need multiple copies of the

same VM if the image stays on a shared file system.

5.2 Virtual Appliances

A VAA refers to a special kind of virtual appliance (VA) that runs to produce a result and stop execu-

tion after the result. We further optimized the VAAs for scientific applications with data movement

mechanisms and a security infrastructure. However, the VAsare generally functional units for differ-

ent distributed system management solutions. In this section, we see a complex VA-based solution

to address the software heterogeneity problem and a benchmark that shows the performance impacts
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Features In-VIGO Virtual
Workspaces

BOINC Condor VAA

Solution for the
software hetero-
geneity problem

Virtualization
with
VMware
and IBM
zVM

Virtualization
with
Xen and
VMware

Plug-in
architecture

I/O redirec-
tion

Virtualization
with KVM

VM Creation Dynamic Dynamic N/A N/A Static
Security - Authenti-
cation

The user
manager
(LDAP,
passwd file
and/or ex-
ternal SQL
database)

GSI (X.509
certificates)

The BOINC
manager
(password
authentica-
tion)

GSI, ker-
beros,
windows,
anonymous
etc.

SSH pub-
lic/private
key

Security - Autho-
rization

The user
manager
(Role-
based)

GSI (Map
files)

None or the
project spe-
cific

User-based Standard
linux au-
thorization
and forced
command
restrictions

Security - Data
Movement

Data move-
ment across
trusted
sources, no
encryption

GridFTP
(GSS API
extensions)

None or
project
specific

Optional en-
cryption

SSH encryp-
tion

User Data move-
ment

Manual data
movement
to a NFS-
mounted
folder

Optional
automatic
stage-in
stage out

Automated
stage-in
stage-out

Automated
data move-
ment

Automated
stage-in
stage-out

Table 5.1: Feature comparison of aggregated resource management applications
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of the VAs.

The virtual appliance concept first appears in a series of papers from Sapuntzakis et al. as the

main unit of the Collective project [41], [9], [40]. The Collective project aims to achieve homoge-

neous software environment from heterogeneous sources viaa collection of VAs. From this point of

view, the main motivation of the Collective project is similar to our motivation. However, the Col-

lective project is intended to simplify the deployment of software in general. Also, the Collective

researchers add maintenance features as part of a VA solution. Unlike our model, which uses avail-

able resources across a distributed system, the Collectiveproject proposes a new way of software

deployment concept. The Collective user has different VAs for different purposes such as a VA for

a firewall software, VA specialized for office applications and VA specialized for a communication

application. However, the users do not install the application to the VAs and, whenever they want to

use the VA, they get the up to date version of the appliance from the centralized repository. Similar

to our architecture, in the Collective architecture, thereare separate VM disks for each appliance,

which are the data and OS VM disks. However, whenever the userwants to access a VA, she sees

a unified environment. Also, the VAs of the user can communicate with each other across the net-

work. Some of the collective system’s other features are a language called CVL to define the VAs

and its resource requirements, authentication system for the security and user specific management

and caching mechanism for reducing the amount of data transfer over the network.

From the performance point of view, Macdonell et al. [32] provide several benchmark results

with VMware-based VAAs1. Macdonell et al. use the BBS benchmark suite for the BLAST and

HMMer VAA benchmarks. For the Gromacs VAA benchmarks, they use Gromacs benchmarking

system calledgmxbench. According to theirvmstatresults, the BLAST benchmark varies in its I/O

intensity. The HMMer benchmark is a database search benchmark which is I/O intensive. GRO-

MACS benchmarks mainly runmdrun from the GROMACS application suite which is compute-

intensive. They found that compute-intensive jobs incur 6%or less overhead and I/O intensive ones

incur 5.6% or more overhead on average. However, our resultswith GROMACS and HMMer (with

different test sets) show a KVM-based VAA with minimal operating system can achieve near-native

performance in both I/O and compute-intensive jobs (Chapter 4). The reasons may include the

differences in the VMM software and minimal OS of the VM.

5.3 Migration

VM migration mechanisms can be divided in two categories: the live (online) or non-live (offline)

migration. In the live migration approach, the VMs can be migrated without interrupting the VM

execution. The VM state is copied to another machine while the VM is still running on its current

machine. Once all the state is copied to the target machine, the identical VM on the current host is

1In their paper, Macdonell et al. use the term Virtual Appliances, however, we define the type of VAs in their paper as
Virtual Application Appliances.
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suspended and then, the modified part of the state during thissuspension phase is also copied to the

target host if it exists. At this point, the VM process is destroyed on the current host. Finally, the

VM is restored on the target machine and continue to the execution on the new host. In the non-live

migration approach, the VM state is saved to a file and then theVM process is destroyed. Later, the

VM state is copied to the target machine and restored from this machine.

Non-live migration is also referred as save-copy-restore or suspend-copy-resume migration. The

precedents of the non-live migration methods appears in process migration techniques which we also

discuss in this section. In our design, we assume a resubmission to the scheduler; therefore, the VAA

job has to be destroyed before the restore operation. If the execution can be initiated from the shared

file system, there is no need for the copy phase. Although we used the term the VM state here, the

dominant part of VM migration is the memory migration and others such as the migration of the

network interfaces and disks depends on the configuration ofthe execution environment.

Clark et al. [10] proposes a pre-copy based live migration technique. In this technique, the

mechanism for copying the VM state differs in the memory and local resources such as the VM

disks and network interfaces. To migrate memory, Clark et al.’s mechanism iteratively copies the

memory pages from one machine to another in rounds. In every round, the mechanism copies the

modified pages from the previous round. To migrate the local resources, Clark et al. relies on some

assumptions for the execution environment since they do nottarget WANs. For the networking, they

simply migrate the IP address of the VM to the target host. Theassumption of this IP migration is

that the host and target machines are in the same LAN. For storage migration, Clark et al. assume

that the execution environment has a shared file system between the host and the target system;

therefore, Clark et al. do not address the migrating of the VMdisks from one machine to another.

This technique is integrated to Xen.

Similar pre-copy live migration approaches are also integrated into the hypervisors from KVM

and VMware. KVM uses a similar iterative process and relies on the same assumptions about the

local resources with Xen [25]. VMware in itsVMotiontechnique adapts the pre-copy live migration

approach [34]. For the migration of IP addresses and networkinterfacesVMotionrelies on VMware

ESX Server’s virtual networking architecture.VMotion, similar to Xen, assumes a shared file system

between the target and the host machines.

The pre-copy approach tries to minimize the downtime while the restore phase occurs on the

target machine. However, since the VM on the host runs duringthis time, significant amount of

modified pages may be resent to the target machine if the application is memory-intensive. Also,

after suspending the original VM, the size of the modified pages to be transferred could be signif-

icantly high which increases downtime of the VM. Hines et al.propose a post-copy based method

to overcome the limitations of the pre-copy approach in memory-intensive applications [20]. This

post-copy method first copies the minimal CPU state by suspending the VM. Then, their mechanism

resumes the VM and starts to copy the memory pages. Hines et al. uses 4 techniques to reduce the
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downtime and pages that are resent.demand pagingandactive pushensures that each page is copied

only once to the target machine,pre-pagingtries to understand VM’s page access patterns to reduce

the VM’s resume time.Dynamic Self Balloningprevents the migration of the unallocated pages to

reduce the number of pages transferred.

Although the live migration techniques have all these advantages, they are not suitable to our

design because we assume that the batch schedulers are in charge of the resource management on

the clusters. Therefore, we can not assume that the batch schedulers are aware of the VM live

migration as well as specific VMM’s live migration capability. In fact, the main batch scheduler

that we use during our experiments is TORQUE and it lacks thiscapability. However, the non-live

migration can be achieved by just resubmitting the saved VAAto the batch scheduler that eliminates

the necessity for a migration-aware batch scheduler. Consequently, we explored a non-live migration

technique by using KVM’s migration mechanisms withvirsh tool from thelibvirt library (Section

4.6).

Non-live migration techniques moves the VM state in three steps: save the VM state to a file,

copy the state file to the target host (if necessary) and restore the VM from the state file. These

techniques try to reduce the size of the image with a set of methods to minimize the copy overhead

across the network. Generally, they are adapted for the WAN and non-shared file systems. An

example of a non-live migration technique is the Collective’s migration technique [42]. Collective

uses a non-live migration technique because it targets low bandwidth networks across the WAN to

distribute the VAs. The internet suspend/resume [43] and denali [47] projects also propose non-live

VM migration techniques.

Previously studied process migration techniques are preliminaries of today’s VM migration tech-

niques. Condor’s transparent process migration method is independent of the OS, however, the

MOSIX OS’s [22] and Sprite OS’s [12] process migration techniques are integrated to the operating

system. The OSes like Sprite and MOSIX are especially designed for the distributed systems. There-

fore, these OSes aim to achieve load balancing and easy management of the processes across the

distributed systems by the process migration. Although theprocess migration techniques get con-

siderable attention from the research community, they do not gain many practical uses. The main

reason is that the relative complexity of implementing these techniques due to the process depen-

dencies such as the open file descriptors and local resources[10]. However, if we migrate the VMs

then most of these dependencies are also migrated across thecluster, which reduce the overheads

and failures.

5.4 Concluding Remarks

In this chapter, we reviewed some previous work in the fields of aggregated resource management

for the distributed systems, virtual appliances and VM migration. We pointed that the presented

resource managers install a non-standard management software to perform their functions. However,
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we integrate the widely-used applications, shell scripts and C programs to achieve similar goals. We

argued that the dynamic VM-creation does not add extra advantage for the users who need extensive

customization for their VMs. Another advantage of the dynamic VM creation is to simplify the

multiple VM creation, however, the dynamic VM-creation cannot be simpler than just copying the

VM to all the nodes of the cluster. In a shared file system, we stated a better solution that is the

KVM’s snapshot feature, which uses copy-on-write mechanism on multiple VM executions from

the same base image. Finally, we stated the reason of choosing a non-live migration technique as

easy adaptation to the batch schedulers that are not aware ofthe live VM migration.
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Chapter 6

Concluding Remarks

We presented the design and implementation of our virtual application appliance (VAA) solution to

the software heterogeneity problem on clusters. Our main design goal is to create a special VM,

named as a VAA, for only the execution of a specific scientific application. Our VAA design puts

together the main scientific software and its auxiliary applications along with the compatible OS and

necessary libraries. We integrated widely available applications on the clusters with shell scripts and

C programs to make the VAA execution transparent from the user. Hence, the user can run the VAA

as she runs a regular application.

We scripted the execution of the VAA to make VM-related operations transparent from the user,

so that, the user does not need to have VM knowledge. The user only needs to know how to execute

the application not the VM-related operations such as data movement, authentication and authoriza-

tion. As long as the user runs the application from the folderthat the input files reside, our scripts

execute the VAA and, at the end, put the output files, standardoutput and error contents back to the

current folder. Our scripts also automate the job submission to a batch scheduler by hard-coding the

necessary resource requirements for the VAA. For example, let us say the user stores the input files

in /home/input. The only requirement for the user is to go to/home/inputfolder and submit her work

by using our submission script with necessary arguments forher application. Furthermore, we do

not restrict the user on how to use the VAA. The user can createher own scripts related to the main

application execution such as analysis scripts and executeinside the VAA.

A key decision in the design of this work is the mechanism to move the data in and out of the VM

automatically and securely because the VAAs provide extra layer of indirection and the VAAs and

data may be in different administrative domains. We implemented two stage-in stage-out data move-

ment mechanisms which are called the secure copy over network (SCN) and the copy over shared

memory (CSM). In the SCN mechanism, data movement is established over network. Also, we used

the SSH’s public/private key authentication and SSH’s forced command feature to establish the se-

curity of data movement. In the CSM mechanism, the VAA reads from a shared memory region and

writes to the shared memory region. Therefore, the only security concern, authorization, is handled

by the file access rights of the OS. SCN is the only choice for the remote VAA executions, which
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files have to be copied securely over the network between different administrative domains. CSM,

however, is a better choice only for the local VAA executionsto eliminate the network overhead and

the SSH-related authentication and encryption overheads.

After our main VAA design and implementation, we explored VMmigration. VM migration

allows the user to save several states of the VAA and use one ofthese saved states to restore the

VAA in case a failure happens. Also, VM migration can be used for the resubmission to the batch

scheduler after the wall-time is exceeded. If the run-time of the user’s job is longer than the wall-

time, the VAA state can be saved at the end of the wall-time. Then, the user or an external script can

resubmit the job back to the batch scheduler. This script canrestore the VAA from this state without

any data loss.

We have evaluated the performance impacts of our mechanismswith widely used bioinformatics

applications called GROMACS, HMMer and GAFolder. We aimed to find whether the overheads

of our mechanisms and VMs are negligible enough to use the VAAs effectively on the clusters. We

found that the data movement overhead and the VM boot up and shutdown overheads are negligible

enough with respect to total run-times of these applications. When we compared the total VAA exe-

cution time with the host execution time of the same application, we noticed that the VAAs achieved

near-native performance. Further, we saw that the CSM data movement mechanism performs at

least 30% better than the SCN data movement mechanism. Also,the migration tests showed that

even if more than 400 MB state has to be saved and restored, saving the VM took at most tens of

seconds and restoring the VM took at most a few seconds.
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