

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Ottawa, Canada K1A 0N4 Service des thèses canadiennes

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

*** **** ****

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylogra phiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséguents.

•

THE UNIVERSITY OF ALBERTA

SYNTHESIS AND REACTIVITY OF CYCLOHEPTATRIENYL-BRIDGED HETEROBIMETALLIC COMPLEXES.

by

STEPHEN THOMAS ASTLEY

(0)

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

EDMONTON, ALBERTA SPRING, 1990

•

Ottawa, Canada K1A 0N4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

AVIS

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de gualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

ISBN 0-315-60333-X

Canadä

THE UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR	STEPHEN T. ASTLEY
TITLE OF THESIS	SYNTHESIS AND REACTIVITY OF
	CYCLOHEPTATRIENYL-BRIDGED
	HETEROBIMETALLIC COMPLEXES.
DEGREE FOR WHICH THESIS	
WAS PRESENTED	DOCTOR OF PHILOSOPHY
YEAR THIS DEGREE GRANTED	1990

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

5. T. Ashler

Permanent Address <u>87 THE CAUSEWAY</u> <u>POTTERS BAR, HERTS</u>

ENGLAND

Dated 24 November 1989

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The Undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled SYNTHESIS AND REACTIVITY OF CYLCLOHEPTATRIENYL-BRIDGED HETEROBIMETALLIC COMPLEXES submitted by STEPHEN T. ASTLEY in partial fulfillment of the requirements for the degree of Doctor of Philospophy in Chemistry.

Supervisor, J. Takats Μ. Cowie S.W. Wanke Hunte J. Liu Ken

f.'Bitterwolf' External Examiner

Date November 20, 1989.

Abstract.

The utility of the anionic complexes, $(\eta^3 - C_7 H_7)M(CO)_3^-$ (M = Ru, Os) for the preparation of cycloheptatrienyl bridged heterobimetallic compounds has been investigated.

Thus, $(\eta^3-C_7H_7)Ru(CO)_3^-$ reacts with $[Ir(COD)CI]_2$ (COD = 1,5 cyclooctadiene) to give *cis*- $(\mu-\eta^3,\eta^4-C_7H_7)Ru(CO)_3Ir(COD)$, which contains a Ru-Ir bond with both Ru and Ir bonded to the same face of the sevenmembered ring. Displacement of the COD ligand from Ir by CO yielded *cis*- $(\mu-\eta^3,\eta^4-C_7H_7)Ru(CO)_3Ir(CO)_2$. The latter compound reacts with dppm to give *cis*- $(\mu-\eta^3,\eta^4-C_7H_7)(\mu$ -dppm)Ru(CO)_2Ir(CO), and with PPh₃ via substitution of CO at Ir. This completed a series of complexes, *cis*- $(\mu-\eta^3,\eta^4-C_7H_7)M(CO)_3M^{-}(CO)PPh_3$ (M=Fe,Ru; M⁻=Rh,Ir) in which the rate of intermetallic carbonyl exchange increases upon descending a triad for M and M⁻.

In contrast to the reactivity of the anionic Ru complex, $(\eta^{3}-C_{7}H_{7})Os(CO)_{3}$ reacts with the transition metal electrophiles $[M(COD)CI]_{2}$ (M = Rh, Ir) to give initially, the unsaturated trans cycloheptatrienyl bridged heterobimetallic complexes *trans*- $(\mu-\eta^{4},\eta^{3}-C_{7}H_{7})Os(CO)_{3}M(COD)$ in which the two metals are on opposite faces of the $C_{7}H_{7}$ ligand. The trans OsRh complex was isolated and fully characterized. Interestingly it undergoes isomerization to give its coordinatively saturated cis isomer, which contains a metal-metal bond. In addition, the trans OsRh complex reacts rapidly with

i v

dppm to give the cis dppm bridged complex $(\mu-\eta^3,\eta^4-C_7H_7)(\mu-dppm)Os(CO)_2Rh(CO)$.

In order to probe the reasons for the different reactivity of the anionic Ru and Os complexes, $(\eta^3-C_7H_7)M(CO)_3$, the solid-state and solution structure (of the AsPh₄+ salt) of the two complexes were investigated. It was found that the ground state structure of both complexes contains an η^3 -bonded C_7H_7 ring. This was taken to imply that subtle differences in the metal to $(\eta^3-C_7H_7)$ ligand bonding may account for the observed differences in reactivity.

The reactivity of *cis*- $(\mu$ -C₇H₇)Ru(CO)₃Rh(CO)₂ and *cis*- $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ toward alkynes [hexafluoro-2-butyne (HFB), acetylene] was also investigated and proved to be both metal and alkyne dependent. The RuRh complex reacts at room temperature with HFB by addition of one alkyne unit. In contrast, the reaction of the RuIr complex with HFB requires thermal activation and results in CO substitution via the uptake of two HFB molecules. A similar reaction occurs between the RuRh complex and C₂H₂ at room temperature. In all three cases, alkyne insertion between Ru and the C₇H₇ ring occurred.

V

ACKNOWLEDGEMENTS

The author wishes to express genuine appreciation to the following people for their assistance and their part in ensuring the tenure of these studies has been an enjoyable and rewarding experience:

Prof. Josef Takats for his enthusiasm, dedicated guidance, and sincere friendship.

Special thanks are also due to Dr. Gong Kiel for many enjoyable discussions (not all technical). Her invaluable assistance running crucial NMR spectra was above and beyond the call of duty.

Other associates (and students) from the chemistry department, for providing assistance when necessary, and an enjoyable and stimulating environment. In particular, Mike Burke, Achuta Vasudevamurthy, Mike Gagne, Melinda Burn, Fu Wenyi, Mark Sandercock, John Washington, Jurgen Jacke, Gary Paul, Bob McDonald.

Structural chemist, Bernie Santarsiero for providing two structure determinations and for helpful discussions. Rick Ball, John Huffman and William Streib for also providing structure determinations. Tom Nakashima and the NMR staff. In particular Glen Bigam, Gerdy Aarts and Lai Kong for their dedication and patience. John Olekszyk and Andrew Jodhan for obtaining mass spectra and providing interesting discussions. Darlene

vi

Mahlow and Andrea Dunn for prompt and accurate microanalytical determinations.

Professors Cowie, Hunter and McClung for providing helpful discussions, prompt and efficient proof-reading of this thesis and for technical assistance.

The University of Alberta, NATO and NSERC for providing the funds which were necessary for completing this research.

Finally I would like to thank my family members and friends overseas for their support and encouragement.

Table of Contents

Abstract	iv
Acknowledgements	vi
List of Tables	xiii
List of Figures	xv
List of Schemes	xvii
List of Abbreviations	xix

Chapter One - Introduction

 Bimetallic Compounds containing Cyclic Polyolefinic Bridging Ligands. The Cycloheptatriene (C₇H₈) and Cycloheptatrienyl (C₇H₇) 	1
1.3. The Cycloheptatriene (C ₇ H ₈) and Cycloheptatrienyl (C ₇ H ₇)	
	4
Ligand System	
Ligand System.	7
1.4. Typical Preparations of Heterobimetallic Compounds.	11
1.5. Cycloheptatrienyl Bridged Heterobimetallic Complexes and	
Scope of the Present Research.	14
1.6 References	17

Chapter 2 - Synthesis Properties, and Reactivity of cis-
$(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(L ₂) (L ₂ = COD, L = CO). Preparation and
Fluxional Behaviour of <i>cis</i> -(µ-C7H7)Ru(CO)3Ir(CO)PPh3.

2.1. Introduction.

24

2.2.	Results and Discussion.	
	2.2.1. Preparation of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(COD) and	
	(μ-C ₇ H ₇)Ru(CO) ₃ Ir(CO) ₂ .	25
	2.2.2. Preparation of (μ-C ₇ H ₇)Ru(CO) ₃ Ir(CO)(PPh ₃).	32
	2.2.3. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(CO) ₂ with dppm.	35
2.3.	Conclusion.	37
2.4.	Experimental.	38
2.5.	References.	44
Chapter 3	- Preparation, Properties and Reactivity of $(\eta^4-C_7H_8)Os(CO)_3$.	
	Synthesis of (η^3 -C ₇ H ₇)Os(CO) ₃ ⁻ and (η^5 -	
	C7H9)Os(CO)2[C(O)Bu].	
3.1.	Introduction.	46
3.2.	Results.	
	3.2.1. Preparation of $(\eta^4-C_7H_8)Os(CO)_3$.	47
	3.2.2. Reactivity of $(\eta^4-C_7H_8)Os(CO)_3$ with Bases. Preparation	
	of K(η ³ -C ₇ H ₇)Os(CO) ₃ .	51
	3.2.3. Preparation of [Ph ₄ As][(η^3 -C ₇ H ₇)Os(CO) ₃].	54
	3.2.4. Reaction of $(\eta^4-C_7H_8)Os(CO)_3$ with BuLi.	54
3.3.	Discussion.	59
3.4.	Experimental.	62
3.5.	References.	65

Chapter 4 - Reaction of $(\eta^3 - C_7 H_7)Os(CO)_3^-$ with $[M(COD)CI]_2$ (M = Rh, Ir). Formation, Characterisation and Derivitisation of Isomeric *cis*and *trans*-(μ -C₇H₇)Os(CO)₃M(COD) Complexes.

4.1	Introduction.	68
4.2.	Results.	
	4.2.1 Reaction of $K(\eta^3-C_7H_7)Os(CO)_3$ with [Rh(COD)Cl] ₂ .	69
	4.2.2. Solid State Structure of <i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD).	73
	4.2.3. Solid State Structure of <i>cis</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD).	79
	4.2.4. Reaction of $(\eta^3 - C_7 H_7)Os(CO)_3^-$ with [Ir(COD)CI] ₂ .	84
	4.2.5. Preparation of <i>cis</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(CO) ₂ .	85
	4.2.6. Reaction of <i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD) with dppm.	86
	4.2.7. Fluxional Behaviour of Isomeric (μ-C ₇ H ₇)Os(CO) ₃ M'(COD))
	Complexes (M' = Rh, Ir).	87
4.3.	Discussion.	
	4.3.1. Synthetic Aspects.	96
	4.3.2. Fluxional Behaviour in <i>cis</i> -(μ-C ₇ H ₇)Os(CO) ₃ ML ₂	
	Compounds	99
	4.3.3. Fluxional Behaviour in <i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD)	104
4.4.	Summary.	107
4.5.	Experimental.	108
4.6.	References.	120

Chapter 5 - Solid-State Structure and Fluxional Solution Behaviour of the		
A	mbident Organometallic Nucleophiles (C7H7)M(CO)3 ⁻ (M= Fe,	
R	л, Os).	

5.1.	Introduction.	123
5.2.	Results.	
	5.2.1. Solid State Structure of $(C_7H_7)M(CO)_3^-$ Compounds (1).	126
	5.2.2. Fluxional Solution Behaviour of Compounds 1.	130
5.3.	Discussion.	134
5.4.	Summary.	140
5.5.	Experimental Section.	141
5.6.	References.	148
Chapter 6	5 - Reactivity of the Heterobimetallic Complexes,	
	$(\mu$ -C ₇ H ₇)Ru(CO) ₃ M'(CO) ₂ with Alkynes (M' = Rh, Ir).	
6.1	Introduction.	151
6.2.	Results.	

	6.2.1. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Rh(CO) ₂ with HFB.	152
	6.2.2. Molecular Structure of (C7H7)(HFB)Ru(CO) ₃ Rh(CO) ₂ .	155
	6.2.3. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(CO) ₂ with HFB.	158
	6.2.4. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ M(COD) with HFB.	165
	6.2.5. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Rh(CO) ₂ with C ₂ H ₂ .	165
	6.2.6. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Rh(COD) with C ₂ H ₂ .	167
6.3.	Discussion.	
	6.3.1. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Rh(CO) ₂ with HFB.	169

	6.3.2. Reaction of (μ-C ₇ H ₇)Ru(CO) ₃ Ir(CO) ₂ with HFB.	171
	6.3.3. Reaction of $(\mu$ -C ₇ H ₇)Ru(CO) ₃ Rh(CO) ₂ with C ₂ H ₂ .	175
	6.3.4. Possible Explanation for the Observed Reactivity.	179
6.4.	Summary.	182
6.5.	Experimental.	184
6.6.	References.	193
Chapter 7	7. Fluxional Processes and Trends in Properties within a Series	of
	Cycloheptatrienyl Bridged Heterobimetallic Complexes.	
7.1.	Properties of the Cyclooctadiene Complexes,	
	(μ-C ₇ H ₇)M(CO) ₃ M'(COD).	197
7.2.	Rotation of the C ₇ H ₇ ring in Dinuclear (μ – η^3 , η^4 -C ₇ H ₇)	
	Complexes.	201
7.3.	General Conclusions.	204
7.4.	Experimental.	206
7.5.	References.	207

\$

2

List of Tables

2.1	Drying agents used in the distillation of solvents.	38
4.1	Selected interatomic distances in trans-(µ-	
	C7H7)Os(CO)3Rh(COD) (2a).	76
4.2	Selected interatomic angles in 2a.	77
4.3	Selected interatomic distances in <i>cis</i> -(µ-C ₇ H ₇)Os(CO) ₃ Rh(COD)	
	(2b)	82
4.4	Selected interatomic angles in 2b	84
4.5	Observed and calculated rate constants for	
	(μ-C ₇ H ₇)Os(CO) ₃ M'(COD) complexes.	101
4.6	Activation parameters for C7H7 rotation in	
	(μ-C ₇ H ₇)Os(CO) ₃ M'(COD) complexes.	101
4.7	Summary of activation parameters for the fluxional processes	
	occurring in (μ -C ₇ H ₇)Os(CO) ₃ M'(COD) compounds (M' = Rh, Ir).	102
4.8	Summary of crystallographic data for cis- and trans-	
	(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD).	117
4.9	Positional and equivalent isotropic parameters for the non-	
	hydrogen atoms in <i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD).	118
4.10	Positional and equivalent isotropic parameters for the non-	
	hydrogen atoms in <i>cis</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD).	119
5.1	Selected bond lengths for the anionic complexes, 1,	
	(η ³ -C ₇ H ₇)M(CO) ₃ ⁻ (M = Fe, Ru, Os).	128
5.2	Selected bond angles for anionic complexes, 1.	129
5.3.	¹ H and ¹³ C NMR Data of the η^3 -C ₇ H ₇ ligand in 1 and related	
	complexes.	133

xiii

5.4	^{13}C NMR Data of allylic fragments including $\eta^3\text{-}\text{C}_7\text{H}_7\text{-}$	137
5.5	Summary of crystallographic data for $(\eta^3$ -C ₇ H ₇)M(CO) ₃ ⁻	
	(M = Ru, Os).	145
5.6.	Fractional coordinates and equivalent isotropic thermal	
	parameters for (C ₇ H ₇)Ru(CO) ₃ ⁻ in 1b .	146
5 .7.	Fractional coordinates and equivalent isotropic thermal	
	parameters for (C ₇ H ₇)Os(CO) ₃ ⁻ in 1c .	147
6.1	Selected interatomic distances in	
	$(C_7H_7)(C_4F_6)Ru(CO)_3Rh(CO)_2.$	157
6.2	¹³ C NMR Data for compounds $(C_7H_7)(C_2R_2)_2Ru(CO)_2M(CO)_2$.	170
6.3.	Crystallographic data for (C7H7)(C4F6)Ru(CO)3Rh(CO)2.(3)	187
6.4.	Positional and thermal parameters for 3.	188
7.1	¹ H and ¹³ C NMR Data for <i>cis</i> -(µ-C ₇ H ₇)M(CO) ₃ M'(COD)	
	compounds (M = Fe, Ru, Os; M' = Rh, Ir).	200
7.2	¹ H and ¹³ C NMR data for bimetallic (μ – η ³ - η ⁴ -C ₇ H ₇)	
	Complexes.	202
7.3	Observed and calculated rate constants for the 1,2-metal	
	migration around the seven-membered ring in cis-	
	$(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(COD).	206

List of Figures

2.1.	¹³ C and ¹ H NMR spectra of (μ-C ₇ H ₇)Ru(CO) ₃ Ir(COD) (1) in	
	the C ₇ H ₇ and COD region.	27
2.2.	Variable temperature ¹ H NMR spectra of 1.	28
2.3.	Variable temperature ¹ H NMR spectra of	
	(μ-C ₇ H ₇)Ru(CO) ₃ Ir(CO) ₂ (2).	29
2.4.	Room temperature and low temperature ¹³ C NMR of 2.	31
2.5.	Variable temperature ¹³ C NMR spectra of	
	$(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(CO)PPh ₃ (3) in the carbonyl region.	33
3.1.	¹ H and ¹³ C NMR spectra of (η ⁴ -C ₇ H ₈)Os(CO) ₃ (1c).	50
3.2.	Room temperature and -100 °C ¹ H NMR spectra of	
	K(η ³ -C ₇ H ₇)Os(CO) ₃ (2c).	53
3.3.	¹ H and ¹³ C NMR Spectra of (η ⁵ -C ₇ H ₉)Os(CO) ₂ (C(O)Bu) (3c).	56
3.4.	Mass spectra and IR spectrum of 3c in the terminal	
	carbonyl stretching region	57
4.1	Molecular structure of <i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD) (2a)	
	(front view).	74
4.2.	Molecular structure of 2a showing chair conformation of C7H7	
	ring.	75
4.3.	Molecular structure of <i>cis</i> -(µ-C ₇ H ₇)Os(CO) ₃ Rh(COD) (2b).	81
4-4.	Low temperature (0 °C) ¹ H and ³¹ P NMR spectra for	
	(μ-C ₇ H ₇)(μ-dppm)Os(CO) ₃ Rh(CO) ₂ .	88
4.5.	Variable temperature ¹ H NMR spectra for 2a .	89

.

4-6	Variable temperature ¹ H NMR spectra for 2b .	90
4.7.	Variable temperature ¹³ C NMR spectra for 2b (and 3b).	93
4.8.	Variable temperature ¹ H NMR spectra of <i>cis</i> -	
	(μ-C ₇ H ₇)Os(CO) ₃ Ir(COD) (3b).	95
5.1.	Perspective views of $(\eta^3-C_7H_7)M(CO)_3^-$ (M = Ru, 1b;	
	M = Os, 1c).	127
5.2.	Variable temperature ¹ H NMR spectra of [AsPh ₄][(η^{3} -	
	C7H7)Os(CO)3]	131
5.3.	Schematic diagrams of the molecular orbitals of $Fe(CO)_3$,	
	$C_7H_7^-$ (D_{7h} symmetry), and $C_3H_5^-$.	136
6.1.	¹ H NMR Spectra of (C ₇ H ₇)(C ₄ F ₆)RuRh(CO) ₅ (3) and	
	(C ₇ H ₇)(C ₄ F ₆)RuRh(¹³ CO) ₅	153
6.2.	¹³ C and ¹⁹ F NMR Spectra of 3	154
6.3.	Molecular structure of 3.	156
6.4.	¹ H NMR spectra of (C ₇ H ₇)(C ₄ F ₆) ₂ Rulr(CO) ₄ (4) and	
	(C ₇ H ₇)(C ₄ F ₆) ₂ Rulr(¹³ CO) ₄ .	159
6.5.	¹⁹ F and ¹³ C NMR Spectra of 4.	16 1
6.6.	Variable temperature ¹⁹ F NMR spectra of 4.	163
6.7.	¹⁹ F NMR spectra of $(C_7H_7)(C_4F_6)_2$ Rulr(¹³ CO) ₄ and	
	(C7H7)(C4F6)2Rulr(CO)4.	164
6.8.	IR spectra of 4 and of $(C_7H_7)(C_2H_2)_2RuRh(CO)_4$ (5).	166
6.9.	¹³ C and ¹ H NMR spectra of 5 .	168

List of Schemes.

1.1	CoRh catalysed hydroformylation-amidocarbonylation of	
	pentafluorostyrene.	3
1.2	Complete transfer of a cyclopentadienyl ligand from Fe to Co.	4
2.1	Possible mechanism for the intermetallic CO exchange in	
	$(\mu$ -C ₇ H ₇)Ru(CO) ₃ Ir(CO)PPh ₃ .	35
3.1	Local CO exchange in (η ⁴ -C ₇ H ₈)Os(CO) ₃ .	51
3.2	Fluxional behaviour in (η ⁵ -C ₇ H ₉)Os(CO) ₂ (C(O)Bu) (3c).	55
3.3	Possible mechanism for the formation of 3c .	58
3.4	Reactivity of MeLi with tricarbonyl iron complexes of	
	α,β-unsaturated ketones	60
4.1	Preparation of OsRh heterobimetallic compounds.	72
4.2	Proposed formation of $(\mu$ -C ₇ H ₇) $(\mu$ -dppm)Os(CO) ₂ Rh(CO)	
	(2d).	98
4.3	Mechanism for local carbonyl exchange in cis-	
	(μ-C7H7)Os(CO) ₃ Rh(COD)	103
4.4	Fluxional Behaviour in 2d	104
4.5	1,2-metal shift of the C7H7 ligand with respect to Os and Rh in	
	<i>trans</i> -(μ-C ₇ H ₇)Os(CO) ₃ Rh(COD) (2a).	105
5.1	Reactivity of (C ₇ H ₇)M(CO) ₃ - with R ₃ EX	123
5.2	Reactivity of (C7H7)M(CO)3 ⁻ with [Rh(COD)Cl]2	124
6.1	Possible reactivity of alkynes with $(\mu$ -C ₇ H ₇)Ru(CO) ₃ M'(CO) ₂	
	[M' = Rh (3) and Ir (4)].	180
6.2	Reactivity of (PPh ₃) ₂ CpRu[C ₂ (CO ₂ Me) ₂ H] with HFB.	182

- 7.1 Rotation of the COD ligand in *cis*-(μ-C₇H₇)Os(CO)₃Rh(COD). 198
- 7.2 Mechanism for local carbonyl exchange and C₇H₇ rotation in
 cis-(μ-C₇H₇)Os(CO)₃Rh(COD). 199

List of Abbreviations

AGDP	anisotropic Gaussian displacement parameter
br	broad
Bu	butyl (C ₄ H ₉)
^t Bu	tert-butyl [C(CH ₃) ₃]
C.I.	chemical ionization
CHT	cycloheptatriene (C7H8)
COD	1,5-cyclooctadiene
COT	cyclooctatetraene (C ₈ H ₈)
Ср	cyclopentadienyl (C5H5)
Cp*	pentamethylcyclopentadienyl (C5Me5)
Cp'	methylcyclopentadienyl (C5H4Me)
d	doublet
dippe	1,2-bis(diisopropylphosphino)ethane
dmad	dimethyl acetylenedicarboxylate [C ₂ (CO ₂ CH ₃) ₂]
dppm	bis(diphenylphosphino)methane [(Ph ₂ P) ₂ CH ₂]
E.I.	electron impact
Et	ethyl
FAB	fast atom bombardment
Fv	fulvalene
HFB	hexaflouro-2-butyne
IR	infrared
m	medium (with reference to IR spectra)
m	multiplet (with reference to NMR spectra)
	and the second

m.p. melting point

- MS mass spectrometry
- Me methyl
- NBD norbornadiene (C₇H₈)
- NMR nuclear magnetic resonance
- Ph phenyl
- PPM parts per million
- PPN bis(triphenylphosporanylidene)ammonium [(Ph₃P)₂N]+
- iPr iso-propyl [CH(CH₃)₂]
- q quartet
- s strong (with reference to IR spectra)
- s singlet (with reference to NMR spectra)
- sp septet
- t triplet
- THF tetrahydrofuran
- TMS tetramethylsilane [Si(CH₃)₄]
- w weak
- v very

Chapter 1

Introduction.

1.1. Background to Dinuclear Transition metal Chemistry.

In the framework of organotransition metal chemistry, bimetallic compounds occupy a central position bridging the chemical properties of mononuclear transition metal compounds and transition metal clusters (and metal surfaces). For this reason, fundamental studies on bimetallic complexes are essential to obtain a global understanding of the bonding, reactivity and applications offered by transition metal organometallic compounds.

Probably the most important industrial application of transition metal compounds today is in catalysis¹. In this regard, it is hoped that the chemistry of dinuclear complexes may combine the properties of metalsurfaces (used in heterogeneous catalysis) and soluble mononuclear transition metal complexes (widely used as homogeneous catalysts). Hence, the presence of adjacent metal sites coupled with the ability to dissolve in organic solvents may provide special reactivity which is not seen in mononuclear complexes. The ultimate goal of such studies is to provide a smooth and logical progression from the chemistry of mononuclear compounds through bimetallic compounds to metal clusters and ultimately to metal surfaces².

1

Two of the many useful chemical transformations currently known to occur through bimetallic compounds are C-C coupling, and dinuclear reductive elimination of H₂ (equation $1-1)^3$. Additionally, there are

already come examples of homodinuclear compounds which are active in catalytic cycles. For example, dinuclear Rh complexes act as homogenous catalysts for the hydrogenation and hydroformylation of olefins, and the hydrogenation and cyclotrimerization of alkynes⁴. A further benefit of studying dinuclear compounds is that the new chemistry discovered may have applications in organic synthesis⁵.

A logical extension of the work centred on homodinuclear compounds is to study the chemistry of heterodinuclear compounds. Heteronuclear (or mixed metal) compounds are particularly interesting as a result of potentially combining the different reactivity properties of the constituent metals. In addition, the nature of the products may provide clues to the adopted reaction pathways, and hence to the role played by the individual metals. Therefore, these complexes are potentially very useful for catalysis, or for modelling catalytic reactions, since every catalytic transformation involves a number of steps and it is unlikely that the maximum selectivity and yield for each step will be obtained from one individual metal⁶. One recent example of a mixed-metal system which proved to have different properties than the constituent homometallic systems is provided by the $Co_2(CO)_8/Rh_6(CO)_{16}$ catalysed hydroformylationamidocarbonylation of pentafluorostyrene (PFS)⁷ (Scheme 1.1):

The hydroformylation-amidocarbonylation of PFS using $Co_2(CO)_8/Rh_6(CO)_{16}$ led predominantly to the branched chain product (path ii) with 80 % regioselectivity. In contrast, $Co_2(CO)_8$ catalysis led to the straight chain product (path i) with 90 % regioselectivity. In the mixed-metal system it was determined that the unsaturated heterodinuclear complex CoRh(CO)₇ is an active species in the formation of the branched chain product⁷.

1.2. Bimetallic Compounds containing Cyclic Polyolefinic Bridging Ligands.

There are several benefits to a polyolefinic bridging-ligand system. In addition to holding the two metals in close proximity to one another as a reaction proceeds, polyolefin type bridging units also have the ability to create sites of unsaturation by allowing ring slippage to occur⁸. This property, when combined with rearrangement of the remaining ligands can lead to a variety of possible coordination modes. Hence, the incipient coordinative unsaturation allows associative reaction pathways to occur, and the variable coordination modes accessible to the polyolefinic ligand thus allows a myriad of different reaction pathways. The extreme case of an olefinic bridging ligand changing bonding mode between two metals is provided by complete transfer of a cyclopentadienyl ligand from Fe to Co⁹. The proposed mechanism is shown below.

Clearly, depending on the ligand system adopted and the transition metal complexes used a variety of different structural types can be obtained. An interesting example of a bridging ligand adapting its bonding mode to suit the electronic requirements of the two coordinated metals is provided by the redox behaviour of the bis(cyclopentadienyl rhodium) cyclooctatetraene complex¹⁰:

In addition to cyclooctatetraene, there are examples known of dinuclear complexes bridged by cycloheptatrienyl (*vide infra*), benzene¹¹, and cyclopentadienyl¹² ligands. Ligands which contain more than one unsaturated ring system, either fused¹³ or linked by one¹⁴ or more¹⁵ methylene units are also known. The fulvalene (Fv) ligand system which contains two cyclopentadienyl ligands linked by a C-C bond has been studied by several groups¹⁶, and is shown below. One of the more complicated ligand systems being studied which is related to fulvalene is the tridentate trindenyl ligand¹⁷:

A further useful property of polyolefinic ligands is the ability to stabilise complexes that are coordinatively unsaturated or contain an odd number of electrons^{8c,16a-d,18}. This is particularly useful in dinuclear complexes as it enables complexes of mixed oxidation states to be prepared. One example of this is provided by the fulvalene complex, $Fe_2(Fv)(dppm)_2(PMe_3)_2^{3+}$ (dppm = bis(diphenylphosphino)methane), which exists as a delocalised mixed valence compound^{16a}.

The ability to bind transition metals in a trans fashion where the two metals occupy opposite faces of the ligand is also useful as it affords possible synthetic routes to triple-decker complexes and organometallic polymers^{13c,16e,19}. An interesting example of a symmetrical triple decker complex which contains only cyclic hydrocarbon ligands is the vanadium benzene complex shown below^{12g}.

1.3. The Cycloheptatriene (C_7H_8) and Cycloheptatrienyl (C_7H_7) Ligand System.

The first cycloheptatriene metal complex²⁰, $(\eta^{6}-C_{7}H_{8})Mo(CO)_{3}$ was prepared in 1958 at a time when organometallic chemistry was in its infancy but undergoing a very rapid development²¹.

Since that time, a very large number of olefinic and polyolefinic transition metal complexes have been synthesised and studied²². Within this category of compounds, although not as widely studied as the cyclopentadienyl ligand²³, cycloheptatriene and related ligands now have an extensive and varied story of their own²⁴. Apart from the η^6 coordination mode observed in (η^6 -C₇H₈)Mo(CO)₃, cycloheptatriene (CHT) is known to coordinate to single metal centres in η^4 and η^2 fashions. In these bonding modes, one and two double bonds are uncoordinated respectively. In addition, cycloheptatriene complexes may be used for the preparation of cycloheptatrienyl (C₇H₇) complexes by the abstraction of a hydride ion from the coordinated cycloheptatriene ligand²⁵:

In cationic complexes such as $(\eta-C_7H_7)M_0(CO)_3^+$ (shown above), the C₇H₇ ligand may best be regarded as a coordinated tropylium (C₇H₇+) ligand. Free tropylium exists in salts such as C₇H₇+Br⁻ which are stable solids due to the aromaticity of the seven-membered ring²⁶. However, they will react with nucleophiles such as OH⁻. For instance, when dissolved in H₂O, C₇H₇Br displays an acidity (Ka = 1.8 x 10⁻⁵) which is close to that of acetic acid²⁶.

$$C_7H_7^+ + 2H_2O = C_7H_7OH + H_3O^+$$
 (1-4)

This reactivity is not always replicated in cationic transition complexes due to a decrease in electrophilicity of the seven-membered ring²⁷. Thus, $(C_7H_7)Mo(CO)_3^+$, is much less reactive with H₂O than is free tropylium²⁷. Tropylium salts may, in some cases, be used for the direct preparation of cycloheptatrienyl transition metal compounds²⁸ (e.g. equation 1.5).

CpFe(CO)₂⁻ + C7H7BF₄ -----> CpFe(CO)(
$$\eta^3$$
-C7H7) + BF₄⁻ (1-5)

However, in many cases these reactions do not work and instead electron transfer reactions occur leading to the stable ditropyl, (C₇H₇)₂. Because of

this property, tropylium bromide may be used as an oxidising agent in the preparation of [CpCr(CO)₃]₂:²⁹

 $Na[CpCr(CO)_3] + C7H7Br -----> [CpCr(CO)_3]_2 + NaBr + (C7H7)_2$ (1-6)

Cycloheptatrienyl transition metal complexes can also be prepared by removal of a proton from coordinated cycloheptatriene complexes:³⁰

 $(\eta^{4}-C_{7}H_{8})Fe(CO)_{2} + BuLi ----> Li(\eta^{3}-C_{7}H_{7})Fe(CO)_{3} + BuH$ (1-7)

This contrasts with the known reactivity of cycloheptatriene which has proven difficult to deprotonate³¹. In fact, a satisfactory synthetic route to the cycloheptatrienide anion does not exist³¹. If one considers $(C_7H_7)Fe(CO)_3^-$ to be a coordinated complex of $C_7H_7^-$, this then provides one of the many examples of an organic fragment being stabilised upon coordination to a transition metal centre. Interestingly a related tropylium complex, [(η^5 -C₇H₇)Fe(CO)₃][BF₄⁻] is also known:^{27b}

As indicated, in these examples, and in accord with the 18-electron rule³², the seven-membered ring is not attached to iron via all seven carbon atoms but is bonded in an η^3 and η^5 mode respectively. The

different bonding mode represents the ligand's ability to change its bonding mode according to the electronic requirements of the constituent parts of the molecule and to allow charge delocalization onto the transition metal centre. This charge delocalization is also demonstrated in the average carbonyl stretching frequencies of $(\eta^{5}-C_{7}H_{7})Fe(CO)_{3}^{+}$, $(\eta^{4}-C_{7}H_{8})Fe(CO)_{3}$ and $(\eta^{3}-C_{7}H_{7})Fe(CO)_{3}^{-}$ which are 2095, 2025 and 1905 cm⁻¹ respectively. The dramatic effect on the carbonyl groups clearly demonstrates that the positive or negative charge in the ionic complexes is not solely residing upon the seven membered ring but that a modest distribution of charge occurs over the entire molecule. Apart from the η^{5} and η^{3} bonding modes of the C₇H₇ ligand as mentioned above, η^{7} and η^{1} bonding modes are also known²⁴.

Dinuclear complexes of CHT or C₇H₇ are also known. However, the first, and still the majority of compounds of this class are homodinuclear complexes. These complexes can be prepared by reaction of the parent ligand with the respective bi- or polymetallic compound³³ (equation 1-8).

$$Fe_2(CO)_9 + C_7H_8 -----> (CO)_3Fe ----Fe(CO)_3$$
 (1-8)

Dinuclear cycloheptatrienyl-bridged complexes may also be prepared via abstraction of a hydride from a coordinated CHT ligand. This reaction is illustrated for a dinuclear Rh complex (equation 1-9)³⁴.

The most common coordination mode of the μ -C₇H₇ ligand involves coordination of three carbon atoms to one metal centre and four carbon atoms to the second metal centre with both metals being on the same face of the ring (i.e. a cis η^3 , η^4 - bonding mode). Several examples of this type of coordination are mentioned in Section 1.5. Examples of dinuclear cycloheptatrienyl complexes in which two metals are on the opposite faces of the seven-membered ring in *trans*-(η^3 , η^4 -)³⁵ or *trans*-(η^1 , η^6 -) coordination modes³⁶ are also known (see below).

1.4. Typical Preparations of Heterobimetallic Compounds.

Of the wide variety of synthetic strategies used to produce heterobimetallic complexes^{6a}, one of the most commonly used involves a ligand substitution reaction at a mononuclear metal centre. This methodology includes substitution of an anionic ligand by an anionic metal complex (equation 1-10)³⁷, addition reactions, [where a second neutral metal can take the role of a ligand (equation 1-11)]³⁸, and bridge assisted substitution reactions (equation 1-12)³⁹.

```
Cp'(OC)_2(SiPh_3)Mn^- + Cp(OC)_2Fel ----> Cp'(SiPh_3)(OC)_2MnFeCp(CO)_4 (1-10)

Os(CO)_4PMe_3 + W(CO)_5THF -----> (OC)_5WOs(CO)_4PMe_3 (1-11)

Fe(CO)_3(PPh_2H)PPh_2^- + 0.5[Ir(COD)CI]_2 ----> (OC)_3Fe(\mu-PPh_2)_2IrH(COD) (1-12)
```

In this last strategy a bi- or poly-dentate ligand initially coordinated to only one metal is used to form a bridge in the reaction. The most commonly used bridging ligands are polyphosphines, however the method also works for other ligands including polyolefinic compounds.

One ligand that has played an extensive role in the development of the chemistry of bridged dinuclear complexes is the bridging diphosphine ligand, bis(diphenylphosphino)methane (dppm)⁴⁰. Recently this ligand has also been utilised for the preparation of heterobimetallic compounds. In this effort, the mononuclear iron compound, $Fe(CO)_4(\eta^1$ -dppm) has been used for the preparation of many bimetallic compounds including (OC)₄Fe(µ-dppm)RhCl(CO)⁴¹ (equation 1-13). In our group, the mononuclear compound Ru(CO)₄(η^1 -dppm) has recently been prepared, and its reaction with [Rh(CO)₂(solv)₂]+ has also been reported⁴².

 $Fe(CO)_4(\eta^1-dppm) + [Rh(CO)_2Cl]_2 -----> (OC)_4Fe(\mu-dppm)RhCl(CO) (1-13)$

In related work, Poilblanc has used $RuH_2(dppm)_2$ as a starting material for the synthesis of heterobimetallic compounds. Reaction with $[Rh(COD)Cl]_2$ and $[Ir(COD)Cl]_2$ yielded dinuclear compounds containing bridging and chelating dppm ligands⁴³ (equation 1-15). A similar chelate ring opening

 $\label{eq:RuH2} RuH_2(dppm)_2 + [M(COD)CI]_2 ----> (dppm)HRu(\mu-dppm)(\mu-CI)(\mu-H)M(COD) (1-15) \\ M = Rh, \ ir$

was seen in the reaction of $OsCl_2(dppm)_2$ with $[Rh(CO)_2Cl]_2^{44}$ to give $Cl_2Os(\mu-CO)_2(\mu-dppm)_2RhCl$. These reactions are surprising due to the general inertness of octahedrally coordinated bis dppm complexes of d⁶ transition metals⁴⁴ and presumably reflect the thermodynamic driving force of the reaction.

A different phosphorous containing ligand that is commonly used to bridge metal-metal bonds is the phosphido group^{6a,39}. In similar fashion to polyolefinic species, this ligand has the ability to adjust its coordination mode as it donates one electron to one metal in a P-M σ -bond and donates two electrons from the lone pair of electrons on P to the second metal in a dative fashion. In one unusual reaction, Dixneuf prepared a dinuclear RuCo complex in 35 % yield⁴⁵ (equation 1-16):

1.5. Cycloheptatrienyl Bridged Heterobimetallic Complexes and Scope of the Present Research.

A synthetic route for preparing *cis*-(μ - η^3 , η^4 -C₇H₇) bridged heterobimetallic complexes has been developed in this group⁴⁶. The initial route to these complexes involved utilization of (η^3 -C₇H₇)Fe(CO)₃⁻ and its reaction with transition metal carbonyl halide complexes such as [Rh(CO)₂Cl]₂^{46a}.

$$(\eta^{3}-C_{7}H_{7})Fe(CO)_{3}^{-} + \frac{1}{2}[Rh(CO)_{2}CI]_{2} ---> (\mu-\eta^{3},\eta^{4}-C_{7}H_{7})Fe(CO)_{3}Rh(CO)_{2}$$
 (1-17)
(1)

This has led to the preparation of a series of metal-metal bonded complexes, $(\mu-\eta^3,\eta^4-C_7H_7)Fe(CO)_3M'(CO)_n$, $(M' = Rh, Ir, Mn, Re)^{40a-c}$ and also more recently, through the use of $(\eta^3-C_7H_7)Ru(CO)_3^-$ and $[Rh(COD)CI]_2$, to $(\mu-\eta^3,\eta^4-C_7H_7)Ru(CO)_3Rh(COD)^{46d}$. It was found that the best reactants for the production of these heterobimetallic complexes were the Rh and Ir cyclooctadiene complexes, $[M(COD)CI]_2$, with the best yield (65%) being for the FeRh combination. Preparation of the FeRh cyclooctadiene complex has also been reported independently by Salzer³⁴, who noted that the ⁵³Fe and ¹⁰³Rh NMR indicated that the
anionic nature of the Fe centre, and cationic nature of the Rh centre in the starting materials was maintained in the product. The initially produced cyclooctadiene complexes react with CO in hydrocarbon solvents to give the corresponding pentacarbonyl complexes in almost quantitative yield (as shown for the RuRh complex):

Elementary reactivity studies on the FeRh and RuRh pentacarbonyl complexes, **1** and **2**, showed that rapid phosphine substitution reactions occur at the Rh centre^{46b,d}. This and the observed carbonyl scrambling processes known to occur have been attributed to the variable coordination mode of the seven-membered ring and the attendant incipient coordinative unsaturation at the metal centres. Further support for this suggestion came when the reaction of the RuRh pentacarbonyl complex, **2**, with dppm was monitored by low temperature ³¹P NMR and gave evidence for intermediates where ring slippage has occurred^{8b}. The ultimate product in this reaction was a bridging compound caused by substitution of one carbonyl group on each metal (equation 1-19).

 $(\mu-C_7H_7)Ru(CO)_3Rh(CO)_2 + dppm ----> (\mu-C_7H_7)(\mu-dppm)Ru(CO)_2Rh(CO)$ (1-19)

An extension of these studies has been provided by Salzer who found that reaction of $(C_7H_7)Fe(CO)_3^-$ with $[(allyl)PdCl]_2$ and

[(2-methylallyl)PdCl]₂ afforded fluxional iron-palladium complexes. In the same fashion, $(C_7H_7)Co(CO)_3$ (which is isoelectronic to the Fe anion) reacts with Rh(NBD)+ to give a cycloheptatrienyl bridged cationic CoRh complex⁴¹.

In continuation of these studies and described in this thesis, the related ruthenium-iridium complex, *cis*-(μ - η^3 , η^4 -C₇H₇)Ru(CO)₃Ir(COD) (3) has been prepared, and the reactivity of the RuRh and RuIr complexes, 2 and 3 with alkynes has been investigated. Additionally, the synthesis and characterization of the anionic complex (η^3 -C₇H₇)Os(CO)₃⁻ has been accomplished and its reactivity with [M(COD)CI]₂ (M' = Rh, Ir) studied. Surprisingly, the reactivity was different from that of the analogous Fe and Ru anionic complexes. This led to the synthesis and spectroscopic characterization of isomeric cis and trans cycloheptatrienyl bridged OsRh complexes, and of *cis*-(μ - η^3 , η^4 -C₇H₇)Os(CO)₃Ir(COD). Comparisons of the spectroscopic properties of the cis heterobimetallic compounds (μ - η^3 , η^4 -C₇H₇)M(CO)₃M'(COD) (M = Fe, Ru, Os: M' = Rh, Ir) and of the precursor anionic complexes (η^3 -C₇H₇)M(CO)₃⁻ (M = Fe, Ru, Os) are also presented.

1.6. References.

- (a) Bond, G. C. Heterogeneous Catalysis: Principles and Applications.
 2nd Edition. Oxford University Press. 1987.
 (b) Masters, C. Homogeneous Transition-metal Catalysis; a gentle art.
 Chapman and Hall, London, 1981.
- 2. (a) Casey, C. P.; Audett, J. D. *Chem. Rev.* **1986**, *86*, 339 and references therein.
 (b) Muetterties, E. L. *Chem. Eng. News.* **1982**, 60 (no. 35), 28.
- (a) Saez, I. M.; Andrews, D. G.; Maitlis, P. M. Polyhedron 1988, 7, 827.

(b) Bitterwolf, T. E. J. Organomet. Chem. 1983, 252, 305.

4. (a) Kalck, P.; Randrianalimanana, C.; Ridmy, M.; Thorez, A.; tom Dieck, H.; Ehlers, J. *New. J. Chem.* **1988**, *12*, 679.
(b) Kalck, P.; Escaffe, P.; Serein-Spirau, F.; Thorez, A.; Besson, B.; Colleuille, Y.; Perron, R. *New. J. Chem.* **1988**, *12*, 687.
(c) Kubiak, C. P.; Eisenberg, R. *J. Am. Chem. Soc.* **1980**, *102*, 3637.
(d) Kubiak, C. P.; Woodcock, C.; Eisenberg, R. *Inorg. Chem.* **1982**, *21*, 2119.
(e) Cowie, M.; Southern, T. G. *Inorg. Chem.* **1982**, *21*, 246.
(f) El-Amouri, H.; Bahsoun, A. A.; Fischer, J.; Osborn, J. A. *Angew.*

Chem. Int. Ed. Engl. 1987, 26, 1169.

(a) Lewandos, G. S.; Doherty, N. M.; Knox, S. A. R.; Macpherson, K. A.;
 Orpen, A. G. *Polyhedron* 1988, 7, 837.

(b) Knox, S. A. R. Pure & Appl. Chem. 1984, 56, 81.

(c) Casey, C. P.; Konings, M. S.; Marder, S. R. *Polyhedron* **1988**, *7*, 881.

(d) Casey, C. P.; Konings, M. S.; Godhes, M. A.; Meszaros, M. W.

Organometallics 1988, 7, 2103.

(e) Muller, F.; van Koten, G.; Kraakman, M. J. A.; Vrieze, K.; Zoet, R.;

Duineveld, K. A. A.; Heijdenrijk, D.; Stam, C. H.; Zoutberg, M. C.

Organometallics 1989, 8, 982.

(f) Muller, F.; Dijkhuis, D. I. P.; van Koten, G.; Vrieze, K.; Heijdenrijk, D.;

Rotteveel, M. A.; Stam, C. H.; Zoutberg, M. C. *Organometallics* **1989**, *8*, 992.

(g) Mirkin, C. A.; Lu, K. L.; Geoggroy, G. L.; Rheingold, A. L.; Staley, D.
L. J. Am. Chem. Soc. 1989, 111, 7279.

 (a) Geoffroy, G. L. in Wilkinson, G.; Stone, F. G. A.; Abel, E. W. Comprehensive Organometallic Chemistry, Pergamon Press, 1982.
 P.763, and references therein.

(b) Geoffroy, G. L. Acc. Chem Res. 1980, 13, 469.

- 7. Ojima, I.; Okabe, M.; Kato, K.; Horvath, I. T.; *J. Am. Chem. Soc.* 1988, *110*, 150.
- 8. (a) O'Connor, J. M.; Casey, C. P. *Chem. Rev.* 1987, *87*, 307.
 (b) Vasudevamurthy, A.; Takats, J. *Organometallics* 1987, *6*, 2005.
 (c) Merkert, J.; Nielson, R. M.; Weaver, M. J.; Geiger, W. E. *J. Am. Chem. Soc.* 1989, *111*, 7084.
- 9. Efraty, A. J. Organomet. Chem. 1973, 57, 1.
- 10. Bieri, J. H.; Egolf, T.; von Philipsborn, W.; Piantini, U.; Prewo, R.; Ruppli, U.; Salzer, A. *Organometallics* **1986**, *5*, 2413.

- 11. (a) Omori, H.; Suzuki, H.; Take, Y.; Moro-oka, Y. Organometallics
 1989, 8, 2270.
 - (b) Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 5725.
 - (c) Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1987, 109, 1883.
 - (d) van der Heijden, H.; Orpen, A. G.; Pasman, P. J. Chem. Soc.,
 - Chem. Commun. 1985, 1576.
 - (e) Allegra, G.; Casagrande, G. T.; Immirzi, A.; Porri, L.; Vitulli, G. J.
 - Am. Chem. Soc. 1970, 92, 289.

references therein.

- (f) Jonas, K.; Wiskamp, V.; Tsay, Y.-H.; Kruger, C.; *J. Am. Chem. Soc.* **1983**, *105*, 5480.
- (g) Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H.-J.; Kruger, C. J. Am. Chem. Soc. **1983**, *105*, 5479.
- 12. Werner, H. Adv. Organomet. Chem. 1981, 19, 155.
- Ceccon, A.; Gambaro, A.; Santi, S.; Valle, G.; Venzo, A. *J. Chem. Soc. Chem Commun.* **1989**, 51.
 (b) Jonas, K.; Russeler, W.; Kruger, C.; Raabe, E. *Angew. Chem. Int. Ed. Engl.* **1986**, *25*, 928.
 (c) Bush, B. F.; Lagowski, J. J. *Organometallics* **1988**, *7*, 1945.
- 14. Bitterwolf, T. E.; Rheingold, A. L. Organometallics 1987, 6, 2138.
- 15. Buzinkai, J. F.; Schrock, R. R. Inorg Chem. 1989, 28, 2837.
- 16. (a) Lacoste, M.; Astruc, D.; Garland, M-T.; Astruc, D. *Organometallics* 1988, *7*, 2253.
 (b) Desbois, M.-H.; Astruc, D. *Organometallics* 1989, *8*, 1841 and

- (c) Desbois, M.-H.; Astruc, D.; Guillin, J.; Varret, F. *Organometallics* **1989**, *8*, 1848.
- (d) Desbois, M.-H.; Astruc, D.; Guillin, J.; Varret, F.; Trautwein, A. X.;
- Villeneuve, G. J. Am. Chem. Soc. 1989, 111, 5800.
- (e) Davis, H. J.; Sinn, E.; Grimes, R. N. *J. Am. Chem. Soc.* **1989**, *111*, 4776.
- (f) Drage, J. S,; Vollhardt, K. P. C. Organometallics 1986, 5, 281.
- (g) Huffman, M. A.; Newman, D. A.; Tilse, M.; Tolman, W. B.; Vollhardt,
- K. P. C. Organometallics 1986, 5, 1926.
- (h) Spink, W. C.; Rausch, M. D.; J. Organomet. Chem. 1986, 308, C1.
- 17. Lynch, T. J.; Helvenston, M. C.; Rheingold, A. L. Staley, D. L. Organometallics 1989, 8, 1959.
- 18. (a) Heck, J.; Rist, G. *J. Organomet. Chem.* 1988, *342*, 45.
 (b) Eischenbroich, C.; Heck, J.; Massa, W.; Schmidt, R. *Angew. Chem. Int. Ed. Engl.* 1983, *22*, 330.
 - (c) Eischenbroich, C.; Heck, J.; Massa, W.; Nun, E.; Schmidt, R. J. *Am. Chem. Soc.* **1983**, *105*, 2905.
- 19. Fagan, P. J.; Ward, M. D.; Calabrese, J. C. *J. Am. Chem. Soc.* **1989**, *111*, 1698.
- 20. Abel, E. W.; Bennett, M. A.; Wilkinson, G. *Proc. Chem. Soc.* **1958**, 152.
- 21. Fischer, E. O.; Werner, H. Angew. Chem. Int. Ed. Engl. 1963, 2, 80.
- 22. Pearson, A. J. Metallo-organic Chemistry. Wiley-Interscience. 1985.
- 23. Lukehart, C. M. Fundamental Transition Metal Organometallic Chemistry. Brooks/Cole. 1985.

- 24. Deganello, G. Transition metal complexes of Cyclic Polyolefins, Academic Press, London, 1979.
- 25. Olah, G. A.; Yu, S. H.; J. Org Chem. 1976, 41, 1694.
- 26. Doering, W.von.E.; Knox, L. H. J. Am. Chem. Soc. 1954, 76, 3203.
- 27. (a)Clack, D. W.; Monshi, M.; Kane-Maguire, L. A. P. *J. Organomet. Chem.* **1976**, *120*, C25.
 (b) Mahler, J. E.; Jones, D. A. K.; Pettit, R. *J. Am. Chem. Soc.* **1964**,*86*, 3589.
- 28. (a) Ciappenelli, D.; Rosenblum, M. J. Am. Chem. Soc. 1969, 91, 6876.
 (b) Heinekey, D. M.; Graham, W. A. G. J. Am. Chem. Soc. 1979, 101, 6115.
- 29. King, R. B.; Stone, F. G. A.; Inorg Synth. 1963, 7, 104.
- 30. Maltz, H.; Kelly, B. A. J. Chem. Soc. Chem. Commun. 1971, 1390.
- 31. (a) Doering, W.von.E.; Gaspar, P. P. J. Am. Chem. Soc. 1963, 85, 3043. The estimated pKa of CHT is 36^{31b,c}.
 (b) D_{6...}ben, H. J.; Rifi, M. R. J. Am. Chem. Soc. 1963, 85, 3041.
 - (c) Breslow, R.; Chu, W. J. Am. Chem. Soc. 1973, 95, 411.
- 32. Mitchell, P. R.; Parish, R. V. J. Chem. Ed. 1969, 46, 811.
- Emerson, G. F.; Mahler, J. E.; Pettit, R. Collins, R. J. Am. Chem. Soc.
 1964, 86, 3590.
- 34. Salzer, A.; Egolf, T.; von Philipsborn, W. Helv. Chim. Acta 1982, 65, 1145.
- 35. Cotton, F. A.; Reich, C. R. J. Am. Chem. Soc. 1969, 91, 847.

- Muller, H.-J.; Nagel, U.; Steimann, M.; Polborn, K.; Beck, W. Chem. Ber. 1989, 122, 1387.
- 37. Kunz, E.; Knorr, M.; Willnecker, J.; Schubert, U. *New. J. Chem.* **1988**, *12*, 467.
- Davis, H. B.; Einstein, F. W. B.; Glavina, P. G.; Jones, T.; Pomeroy, R,
 K.; Rushman, P. Organometallics 1989, 8, 1030.
- Rosenberg, S.; Mahoney, W. S.; Hayes, W. S.; Geoffroy, G. L.;
 Rheingold, A. L. Organometallics 1986, 5, 1065.
- 40. Chaudret, B.; Delavaux, B.; Poilblanc, R. *Coord. Chem. Rev.* **1988**,*88*, 191.
- 41. Jacobsen, G. B.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc. Chem. Commun. 1986, 13.
- 42. Kiel, G.-Y.; Takats, J. Organometallics 1989, 8, 839.
- 43. (a) Delavaux, B.; Chaudret, B.; Devillers, J.; Dahan, F.; Commenges, G.; Poilblanc, R. J. Am. Chem. Soc. 1986, 108, 3703.
 (b) Delavaux, B.; Chaudret, B.; Dahan, F.; Poilblanc, R.
 Organometallics 1985, 4, 935.
- 44. Iggo, J. A.; Markham, D. P.; Shaw, B. L.; Thornton-Pett, M. J. Chem. Soc. Chem. Commun. 1985, 432.
- 45. Regragui, R.; Dixneuf, P. J. Organomet. Chem. 1982, 239, C12.
- 46. (a) Bennett, M. J.; Pratt, J. L.; Simpson, K. A.; Lishing Man, L. K. K.; Takats, J. *J. Am. Chem. Soc.* **1976**, *98*, 4810.
 (b) Ball, R. G.; Edelmann, F.; Kiel, G.-Y.; Takats, J. *Organometallics* **1986**, *5*, 829.
 - (c) Edelmann, F.; Takats, J. J. Organomet. Chem. 1988, 344, 351.

(d) Edelmann, F.; Kiel, G.-Y.; Takats, J.; Vasudevamurthy, A.; Yeung,M.-Y. J. Chem. Soc. Chem. Commun. 1988, 269.

Chapter 2.

Synthesis, Properties, and Reactivity of *cis*-(μ -C₇H₇)Ru(CO)₃Ir(L₂) (L₂ = COD, L = CO). Preparation and Fluxional Behaviour of *cis*-(μ -C₇H₇)Ru(CO)₃Ir(CO)PPh₃.

2.1. Introduction.

As already mentioned in Chapter 1, previous studies in the Takats' group has involved the preparation and investigation of the chemical properties of cis cycloheptatrienyl-bridged heterobimetallic carbonyl complexes of FeRh², RuRh³, and FeIr⁴. As a result of these studies, it has been suggested that the variable bonding capacity, and the incipient coordinative unsaturation of the cycloheptatrienyl ring are responsible for facile CO substitution and carbonyl scrambling processes in these complexes. In this chapter, in an extension of these studies, the preparation and spectroscopic characterization of *cis*- (μ -C₇H₇)Ru(CO)₃Ir(L₂) [L₂ = COD (1), L = CO (2)] (COD = 1,5 cyclooctadiene) are described. Substitution reactions of 2 to give fluxional bimetallic complexes which contain a single phosphine ligand are also reported. The spectroscopic effects of replacing a ligand on the bimetallic unit are discussed, and comparisons with the analogous complexes of FeRh², RuRh³, and FeIr⁴ are made when available.

2.2. Results and Discussion

2.2.1. Preparation of $(\mu$ -C₇H₇)Ru(CO)₃Ir(COD) (1) and $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ (2).

Addition of $K(C_7H_7)Ru(CO)_3$ to $[Ir(1,5-cyclooctadiene)Cl]_2$ in THF at room temperature, followed by stirring for 12 hours gives a very dark brown solution. Removal of the solvent and extraction in hexane affords $(\mu-C_7H_7)Ru(CO)_3Ir(COD)$ (1, equation 2-1) as the only observed product.

$$K(C_{7}H_{7})Ru(CO)_{3} + \frac{1}{2}[Ir(COD)CI]_{2} + \frac{1}{2}[Ir(COD)CI]$$

Chromatographic work up leads to the isolation of complex 1 in 23%/yield as yellow, air stable crystals which are freely soluble in common organic solvents. The IR spectrum displays a three band pattern consistent with three carbonyl groups occupying terminal positions on Ru. Whilst the yield of 1 is poor, it is similar to that observed (30 %) for the analogous RuRh complex prepared under similar conditions⁵. On reaction with CO at 100 °C, 1 is quantitatively converted to $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ (2) over a two hour period (equation 2-2).

$$(\mu-C_7H_7)Ru(CO)_3Ir(COD) + CO -----> (\mu-C_7H_7)Ru(CO)_3Ir(CO)_2 (2-2)$$

$$(1) (2)$$

The same thermal conditions (100 °C, 1 atm CO) were required for preparation of the related FeIr complex, $(\mu$ -C₇H₇)Fe(CO)₃Ir(CO)₂. These

conditions are significantly more forcing than those required for the carbonylation of the analogous FeRh and RuRh cyclooctadiene complexes, which are both carbonylated in less than an hour at room temperature. Complex **2** is a yellow-orange air stable and thermally robust solid, also soluble in most organic solvents. The IR spectrum shows five peaks in the terminal carbonyl region as has been previously observed for the related FeRh, FeIr, and RuRh complexes.

As expected, the ¹H and ¹³C NMR data for 1 and 2 give evidence for rapid ring whizzing of the cycloheptatrienyl ligand at ambient temperature. However, as can be seen in Figure 2.1, rotation of the COD ligand in 1 is not observed, there being two sharp resonances for the olefinic hydrogens and carbons in the ¹H and ¹³C NMR spectra respectively. A similar observation was made in the corresponding FeIr compound⁴, but in the analagous RuRh complex⁵ rotation of the COD ligand occurs as evidenced by the single olefinic resonance in the room temperature ¹H NMR spectrum. This reflects the well known decrease in metal to ligand bond strength upon ascending a transition metal triad⁶. The observation that the Rulr pentacarbonyl complex, 2, requires temperatures of 70 °C to give complete enrichment with ¹³CO is also consistent with this trend. Surprisingly, the variable temperature ¹H NMR spectra of 1 and 2 indicate that the rotation of the μ -C₇H₇ ligand can be frozen out. As shown in Figures 2.2 and 2.3, the low temperature limiting spectra are approached at -100 °C for both complexes. Assignments of the resonances were made by comparison with the related OsIr complexes (Chapter 4) which

Figure 2.1. ¹³C (a) and ¹H (b) NMR spectra of 1 in the C_7H_7 and COD region.

Figure 2.2. Variable Temperature ¹H NMR Spectra of 1.

(a) Spectra recorded in toluene-d8.

(b) Spectra recorded in CD₂Cl₂.

Figure 2.3. Variable Temperature ¹H NMR Spectra of 2.

have been determined by a series of decoupling experiments. Another noteworthy observation is that high temperature ¹H NMR spectra of the Rulr cyclooctadiene complex, **1**, (60 °C, 100 °C, Figure 2.2) give evidence for rotation of the COD ligand. The fluxional processes involving the COD and C₇H₇ ligand, and complementary results in related Os complexes, will be commented upon more fully in Chapter 4 and in Chapter 7.

In their ¹³C NMR spectra, both complexes **1** and **2** display a sharp singlet for the three CO ligands on Ru due to rapid scrambling of the CO groups on one metal centre. Intermetallic CO exchange is not observed in 2 at ambient temperature; there being two sharp resonances at δ 196 ppm (CO_R_u) and δ 175 ppm (CO_l_r), easily distinguishable on the basis of their chemical shifts7. These signals remain sharp until 70 °C when slight broadening is noticed. Coalescence of the two signals was not observed upon heating an NMR sample of 2 in dodecane/toluene-d⁸ (ca. 10:1) to 120 °C. At these temperatures some decomposition of the sample occurs. Intermetallic CO scrambling was also not observed at elevated temperatures for the analogous FeRh, FeIr, and RuRh pentacarbonyl complexes. The variable temperature ¹³C NMR spectra of the pentacarbonyl complex 2 are shown in Figure 2.4. Although heating 2 failed to give evidence of global carbonyl scrambling, the low temperature NMR spectrum recorded at -80 °C (Figure 2.4) showed halting of the local carbonyl scrambling at the Ru centre. Thus two signals for the Ru(CO)3 carbonyls are observed at δ 199.9 (2C) and δ 189.3 (1C). Of course, at

this temperature the rotation of the seven-membered ring is also frozen out.

2.2.2. Preparation of $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)(PPh₃) (3).

Although the carbonylation experiments had required thermal activation, it was observed that 2 reacted with one equivalent of PPha cleanly at room temperature giving substitution of one CO ligand. The ³¹P NMR spectrum of the product shows one singlet at δ 5.2 ppm. The variable temperature ¹³C NMR spectra are shown in Figure 2.5. The ¹³C NMR spectrum in the carbonyl region displays one sharp singlet at room temperature indicating rapid intermetallic CO exchange. As seen in Figure 2.5, upon decreasing the temperature the signal broadens and coalescence is observed at -53 °C. At -85 °C intermetallic CO exchange is not completely frozen out, however, it can be seen that there are two resonances at δ 210 ppm and δ 179 ppm in a 3:1 ratio. These signals therefore indicate that phosphine substitution has occurred at Ir and that at - 85 °C, there is local carbonyl scrambling within the Ru(CO)3 group. At this temperature there is also one signal for the C7H7 ligand indicating that the seven-membered ring is also involved in a form of fluxional behaviour. Both of these processes are close to being frozen out at this temperature for 1 and 2, indicating that the presence of PPh₃ significantly enhances the fluxional behaviour of the bimetallic complexes. The site of attack in the formation of 3 is presumably determined by the more pronounced tendency of Ir to produce 16 electron species via ring dissociation⁸.

Figure 2.5.

Variable Temperature ¹³C NMR Spectra of **3** in the carbonyl region.

The IR spectrum of compound **3** is complicated due to the presence of both all terminal, (**3a**) and carbonyl bridged (**3b**) isomers, as has been previously noticed in the related FeRh² and FeIr⁴ complexes. The isomerization involves a change in the bonding mode of the (μ -C₇H₇) molety between the two metals as shown below. Rapid equilibrium

between these isomers would lead to interchange of carbonyl groups on Ru and hence explains the low temperature ¹³C NMR spectrum. Clearly there is a very low activation energy for this process.

The free energy of activation for intermetallic carbonyl exchange in **3** calculated at the coalescence temperature⁹ is 9.0 kcal/mole. This can be compared with the analogous complexes of RuRh (11.0 kcal/mole), FeIr (10.3 kcal/mole) and FeRh (15.4 kcal/mole). Of the several plausible intermediates available for this process, we have previously favoured the doubly bridged species **3c** (Scheme 2.1). The rationale behind our choice was that **3c** is easily achieved from both isomeric **3a** and **3b** while maintaining the μ - η^4 , η^3 bonding functionality of the cycloheptatrienyl ring. However the surprising and unexpected trend of increasing facility for carbonyl group migration (Ru > Fe and Ir > Rh) is difficult to reconcile with this postulate since it is contrary to the well known greater reluctance of

transition metals to accomodate bridging carbonyl groups upon descending a triad¹⁰.

It now seems possible that an alternative intermediate (**3d**) which contains only terminal carbonyl ligands may also be involved in this process and may gain importance upon descending a triad. The necessary change in bonding mode of the cycloheptatrienyl ring to μ – η^5 , η^2 may in this case dominate the energetics for global carbonyl scrambling, and account for the observed trend.

Scheme 2.1

2.2.3. Reaction of $(\mu-C_7H_7)Ru(CO)_3Ir(CO)_2$ with dppm.

The reaction of **2** with bis(diphenylphosphino)methane (dppm) was carried out under conditions similar to the reaction with PPh_3 , but this time the displacement of two CO groups was observed. The IR spectrum of the product shows three bands, all in the terminal carbonyl stretching region at

1980, 1936, and 1914 cm⁻¹. Two doublets were observed in the ³¹P NMR spectrum at δ 65.3 ppm (Ru) and δ 25.0 ppm (Ir) with P-P coupling constants of 125 Hz, typical of μ -dppm complexes¹¹. The ¹³C NMR in the carbonyl region now shows three resonances at room temperature at δ 208 ppm (Ru), δ 196 ppm (Ru) and δ 183 ppm (Ir).

These data are characteristic^{2,3} of the expected product $(\mu$ -C₇H₇)(μ -DPPM)Ru(CO)₂Ir(CO), **4.** The reaction was followed at room temperature by IR and ³¹P NMR spectroscopies, but these studies failed to give evidence for any intermediates. A reasonable explanation for this would be that the reaction proceeds via slow initial substitution at Ir, in a fashion similar to the PPh₃ reaction and this is followed by rapid substitution of a second carbonyl group at Ru leading to product formation (i.e. the chelate effect¹²). Unfortunately, crystallization failed to eliminate various phosphorus containing minor impurities which appeared erratically in the ³¹P NMR spectrum. In addition, **4** appears less thermally stable and is considerably more air sensitive than **3**, which renders purification more difficult. The decrease in stability upon addition of phosphorus donor ligands is probably electronic in origin and perhaps opens new channels for competing reaction pathways leading to the unexpected minor

byproducts. Due to these difficulties, complex **4** was not further investigated.

2.3. Conclusion.

The synthesis of the series of complexes (μ -C₇H₇)MM`(CO)₄L (M=Fe,Ru and M`=Rh,Ir: L=CO,PPh₃) has been completed. For L=PPh₃ a decrease in activation energy for intermetallic CO exchange is noticed on going from Fe to Ru and from Rh to Ir. Due to the necessary involvement of bridging carbonyl groups in this process, this is a surprising result in view of the greater tendency to accomodate bridging carbonyls for 1st row transition metals. It has however been noticed that substitution by phosphines increases the tendency for carbonyl groups to occupy bridging positions, and also the facility for carbonyl group migration¹³. This effect is dramatically demonstrated in our observation that intermetallic CO scrambling is facile for the phosphine complex **3**, but it is not observed in the pentacarbonyl complex **2**.

2.4. Experimental.

2.4.1. General Techniques.

Reactions and manipulations were carried out under purified nitrogen using standard Schlenk and canula techniques¹⁴ and carefully dried solvents. N₂ was purified by passage through a heated column (100 °C), containing BASF (Cu-based) catalyst R3-11 to remove oxygen and a column of Malinkrodt Aquasorb (P₂O₅ on an inert base) to remove water. Solvents were dried by refluxing and distilling from the appropriate drying agent under N₂ (Table 2.1).

Solvent	Drying Agent
Pentane	CaH ₂
Hexane	Potassium metal
Benzene	Potassium metal
Toluene	Sodium metal
THF	Potassium metal/benzophenone
CH ₂ Cl ₂	P ₂ O ₅ .

Table 2.1 Drying Agents used in the Distillation of Solvents.

Pentane and hexane were preconditioned before refluxing and distillation by washing with H_2SO_4 and water and drying over Na_2SO_4 in order to remove alkenes. All deuterated solvents were dried over molecular sieves except THF- d_8 which was distilled from Na-

benzophenone prior to use. Glassware was cleaned by treatment with KOH-ethanol solution and was oven-dried at 100 °C. Separation and purification of compounds was done by crystallization or by silica gel column chromatography (using.Merck Kieselgel 60 PF₂₅₄ silica gel) unless otherwise stated.

2.4.2.Physical Measurements.

Reactions were monitored by infrared spectroscopy with the aid of a Nicolet MX-1 Fourier Transform Interferometer over the range 2200 - 1600 cm⁻¹. Solution samples were held between KBr or KCI (0.1 mm) plates. Mass spectra and NMR spectra were recorded by the staff of the respective laboratories. Mass spectra were recorded an A.E.I. MS-12 spectrometer operating at 70 eV or 16 eV. The mass number of the molecular ion refers to the most abundant isotope combination. NMR spectra were recorded on a Bruker WH 200, Bruker AM 400 or Bruker AM 300 spectrometer. Variable temperature spectra were recorded on the Bruker AM 400 with samples which were either sealed under vacuum or by wrapping the plastic cap with parafilm. Solvent resonances (vs. TMS) were used as internal standards for ¹H and ¹³C NMR spectra. H₃PO₄ was used as a calculated external standard for ³¹P spectra (downfield being positive). Melting points were obtained on a Thomas Hoover apparatus in open capillaries and are uncorrected. Elemental analyses were performed by the Microanalytical Laboratory of this department.

2.4.3. Reagents for Chapter 2.

Bis(diphenylphosphino)methane (DPPM) was purchased from Pressure Chemical Company and triphenylphosphine, dodecane, and 1,5-cyclooctadiene (COD) from Aldrich, these materials were used as received. Ammonium hexachloroiridate (IV) was obtained from Engelhard. Potassium tertiarybutoxide (KO^tBu) was purchased from Aldrich and sublimed prior to use (150 °C, 10⁻³ mmHg). [Ir(COD)CI]₂¹⁵ and $(C_7H_8)Ru(CO)_3^5$ were prepared according to literature methods. Octane was obtained from Terochem Laboratories Ltd. and degassed by three freeze-pump-thaw cycles before use.

2.4.4. $(\mu$ -C₇H₇)Ru(CO)₃Ir(COD), (1).

 $K(C_7H_7)Ru(CO)_3$ (4.60 mmol, 1.45 g) was prepared by the addition of equimolar quantities of KO^tBu in THF (20 ml) to $(C_7H_8)Ru(CO)_3$ in THF (40 ml) at -78 °C. The anion was transferred to a jacketed dropping funnel which was cooled by dry-ice and was then added dropwise to a solution of [Ir(COD)CI]₂ (2.30 mmol, 1.54 g) in THF (40 ml) at room temperature. The dark solution was stirred for 12 hours at room temperature and evaporated to dryness. The brown residue was extracted with 2 aliquots of toluene (20 ml) and chromatographed on a 16 x 2.5 cm silica gel column (Merck, Kieselgel 60 mesh). Elution with hexane produced a large red band which was collected under nitrogen. The solvent was removed from the eluate and the residue was redissolved in hexane (20 ml) and cooled at -78 °C for 12 hours to obtain yellow crystals (0.462 g, 17%). Concentration of the mother liquor to 2ml yielded a final crop (0.140 g, 23% overall) mp 139 °C (dec). Anal. Calcd for C₁₈H₁₉IrO₃Ru: C, 37.49; H, 3.32. Found: C, 37.66; H, 3.40.

Mass spectrum (70 eV, 90 °C); M⁺, M⁺-*n*CO (*n* = 1-3).

IR (hexane): v_{CO} 2038(s), 1977(s), 1970(s) cm⁻¹.

¹H NMR (25 °C, CD_2Cl_2): δ 3.82 (s,7H,C₇H₇), 3.52 (m,2H,CH_{COD}), 3.16 (m,2H,CH_{COD}), 2.54 (m,2H,CH_{2 COD}), 2.24 (m,2H,CH_{2 COD}), 2.12 (m,4H,CH_{2 COD}).

(-100 °C): δ 2.80 (br,2H,C₇H₇), 3.54 (br,1H,C₇H₇), 3.76 (br,2H,C₇H₇), 4.72 (br,2H,C₇H₇).

¹³C {1H} NMR (25 °C, CD₂Cl₂): δ 33.5 (s, CH_{2 COD}), 34.7 (s, CH_{2 COD}), 60.0 (s, C₇H₇), 63.4 (s, CH_{COD}), 64.4 (s, CH_{COD}), 196.8 (s, CO_{Ru}).

2.4.5. $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂, (2).

 $(\mu$ -C₇H₇)Ru(CO)₃Ir(COD) (90 mg,0.16 mmol) was dissolved in octane (30 ml). The solution was degassed by two freeze-pump-thaw cycles. An atmosphere of CO was introduced to the reaction vessel, which was then heated at 100 °C for 2 hours and then evaporated to dryness in vacuo. The residue was redissolved in hexane (5 ml), concentrated to 0.5 ml, and then cooled to -78 °C over 12 hours to give yellow-orange crystals of 2 (72 mg, 73%) mp 126-127 °C.

Anal. Calcd for $C_{12}H_7IrO_5Ru$: C, 27.48; H, 1.35. Found: C, 27.94; H, 1.42. Mass spectrum (70 eV, 110 °C): M⁺, M⁺-*n*CO (*n* = 1-5). IR (hexane) v_{CO} : 2066(s), 2019(s), 2005(s), 1984(m), 1973(w) cm⁻¹ ¹H NMR (25 °C, CD₂Cl₂): δ 4.16 (s,7H,C₇H₇); (-100°C): δ 3.24 (br,2H,C₇H₇), 4.00 (br,2H +1H,C₇H₇), 5.24 (br,2H,C₇H₇). ¹³C {¹H} NMR (25 °C, CD₂Cl₂): δ 58.4 (s,C₇H₇), 175.4 (s,CO_{Ir}), 196.8 (s,CO_{Ru}).

2.4.6. Synthesis of ¹³CO enriched sample.

¹³CO (99.1%) was purchased from Isotech Inc. Compound **2** was enriched in ¹³CO by stirring an octane solution of **2** under 1 atm of ¹³CO at 70 °C for 1 hour. The enrichment was 94% as determined from the mass spectrum of the compound.

2.4.7. $(\mu - C_7 H_7) Ru(CO)_3 Ir(CO) PPh_3$ (3).

 $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ (31 mg,0.059 mmol) was dissolved in C₆H₆ (15 ml), and the solution was degassed. PPh₃ (15.5 mg,0.059 mmol) was added as a solid and the solution was stirred for 3 hours, and then evaporated to dryness. The orange residue was washed once with hexane and then recrystallised from CH₂Cl₂/hexane at -78 °C to give orange red crystals of **3** (34 mg, 76%) mp 138 - 139 °C (dec). Anal. Calcd for C₂₉H₂₂IrO₄PRu: C, 45.91; H, 2.92. Found: C, 45.82; H, 2.98.

Mass Spectrum (70 eV, 180 °C): M⁺, M⁺-*n*CO (n = 1-4). IR (C₆H₆) υ_{CO} : 2034(w), 2004(m), 1970(s,br), 1935(br), 1785(w,br) cm⁻¹ ¹H NMR (25 °C, C₆D₆): δ 7.6 (m,2H,Ph,o), 7.1 (m,2H,Ph,m), 7.0 (m,1H,Ph,p), 3.56 (s,7H,C₇H₇). ¹³C {¹H} NMR (25 °C, CD₂Cl₂): δ 60.5 (s,C₇H₇), 128.6 (d,J_P. c=10.5Hz,Ph,m), 130.6 (s,Ph,p), 135.6 (d,J_{P-C}=11.4Hz,Ph,o), 136.0 (d,J_P. $_{C}$ =40Hz,Ph,*ipso*), 199.7 (s,CO,averaged); (-86 °C): δ 209.6 (s,CO_{Ru}), 179.3 (s,CO_{Ir}).

³¹P {¹H} NMR (25 °C, C₆D₆): δ 5.15 (s, PPh₃).

2.4.8. $(\mu$ -C₇H₇)Ru(CO)₂Ir(CO)(μ -DPPM), (4).

 $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ (25 mg, 0.048 mmol) was dissolved in toluene (15 ml) and the solution was degassed. DPPM (18.3 mg, 0.048 mmol) was added as a solid. The solution was stirred for 3 hours during which time starting material was consumed and 4 was formed as monitored by IR spectroscopy. The solution was then concentrated to 0.5 ml and layered with hexane (2 ml). The vessel was then cooled at -78 °C to give a bright orange air sensitive solid, 4 which was analysed immediately by NMR spectroscopy mp 75 °C (dec).

Anal. Calcd for $C_{35}H_{29}IrO_{3}P_{2}Ru$: C, 49.29; H, 3.43. Found: C, 47.88; H, 3.86.

Mass Spectrum (70 eV, 200 °C): M+, M+-nCO, (n = 1-3).

IR (benzene) v_{CO}: 1980(s), 1936(s), 1914(m) cm⁻¹.

¹H NMR (25 °C, C₆D₆): δ 7.7-6.8 (m,20H,Ph), 3.82 (dt,1H,J_{H-H}=14Hz, J_H.

 $_{P}$ =12Hz,CH₂), 3.65 (s,7H,C₇H₇), 2.11 (dt,1H,J_{H-H}=14Hz,J_{H-P}=8Hz,CH₂).

¹³C {¹H} NMR (25 °C,toluene d_g): δ 208.2 (s,CO_{Ru}), 195.7 (d,J_P.

C=9Hz,CO{Ru}), 182.7 (d,J_{P-C}=9Hz,CO_{lr}), 138.2-129.3 (Ph), 57.2 (C₇H₇), 42.2 (dd,J_{H-P=}24,41Hz,CH₂).

³¹P {¹H} NMR (25 °C, C₆D₆): δ 65.3 (d,J_{P-P}=125Hz,Ru-P), 25.0 (d,J_P-R=125Hz,Ru-P), 25.0 (d,J_P-R=

_p=125Hz,Ir-P).

2.5. References.

- 1. This manuscript is adapted from: Astley, S. T.; Takats, J. J. Organomet.Chem. 1989, 363, 167.
- Ball, R. G.; Edelmann, F.; Kiel, G.-Y.; Takats, J.; Drews, R.
 Organometallics 1986, 5, 829.
- 3. Vasudevamurthy, A.; Takats, J. Organometallics 1987, 6, 2005.
- 4. Edelmann, F.; Takats, J. J. Organomet. Chem. 1988, 344, 351
- Edelmann, F.; Kiel, G.-Y.; Takats, J.; Vasudevamurthy, A.; Yeung, M.-Y.
 J. Chem. Soc. Chem. Commun. 1988, 296.
- Ziegler, T.; Tschinke, V.; Becke, A. J. Am. Chem. Soc. 1987, 109, 1351.
- Mann, B. E.; Taylor, B. F. ^{"13}C NMR Data for Organometallic Complexes". Academic Press, London, 1981, P.15.
- Dickson, R. S. "Organometallic Chemistry of Rhodium and Iridium". Academic Press, New York, 1983.
- 9. Shanon-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961.
- 10. Colton, R.; McCormick, M. J. Coord. Chem. Rev. 1980, 31, 1
- Pregosin, P. S.; Kunz, R. H. "The ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes". Springer-Verlag, 1979.
- 12. Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry" Wiley-Interscience, 4th Ed. 1980, P.71.
- 13. Band, E.; Muetterties, E. L. Chem. Rev. 1978, 78, 639.
- McNally, J. P.; Leong, V. S.; Cooper, N. J. in Wayda, A. L.;
 Darensbourg, M. Y. "Experimental Organometallic Chemistry". ACS

Symposium Series 357, American Chemical Society, 1987, P.6.

15. Crabtree, R. H.; Quirk J. M.; Felkin, H.; Fillebeen-Khan, T. Synth. React. Inorg, Met.-Org. Chem. 1982, 12, 407.

Chapter 3.

Preparation, properties and reactivity of $(\eta^4-C_7H_8)Os(CO)_3$. Synthesis of $(\eta^3-C_7H_7)Os(CO)_3^$ and $(\eta^5-C_7H_9)Os(CO)_2[C(O)Bu]$.

3.1. Introduction.

Complexes of formula (diene)Fe(CO)₃ compose one of the earliest studied family of transition metal organometallic complexes¹, and twenty five years later many applications of these compounds are still being studied². It is therefore not surprising that the synthesis and some properties of the (η^4 -cycloheptatriene)M(CO)₃ complexes (M = Fe; **1a**, Ru; **1b**) have for a long time been known³.

The synthesis of these compounds can be achieved by either thermal, or photochemical reaction of the appropriate binary metal carbonyl complex with cycloheptatriene, or by substitution of a labile ligand in a $LM(CO)_3$ complex such as (BDA)Fe(CO)_3 or (COD)Ru(CO)_3 (BDA = benzylidene acetone, COD = 1,5 cyclooctadiene)³. In our studies here, we have found the photochemical route to the Ru complex the most convenient⁴, and hence a similar approach was used for the synthesis of the corresponding Os complex (1c).

As the related Fe and Ru complexes (1a, 1b) are known to be deprotonated by strong bases⁴⁻⁶, the isolation of $(\eta^4-C_7H_8)O_8(CO)_3$ (1c)

provides a route to the anionic complex, $(\eta^3-C_7H_7)Os(CO)_3^-$ (2c). Some chemistry of the group of compounds $(\eta^3-C_7H_7)M(CO)_3^-$ [M = Fe (2a), M = Ru, (2b), M = Os, (2c)] has already been explored. In the case of Fe, these findings have provided some useful methodology for the synthesis of natural products containing seven-membered rings⁵. Additionally, these complexes react readily with inorganic electrophiles to produce metal-metal bonded complexes⁶ or to add substituents to the seven membered ring⁷. Reactions with the transition metal electrophiles [M(COD)CI]₂ (M = Rh, Ir), in an attempt to produce cycloheptatrienyl bridged OsRh and OsIr complexes, will be described in a later chapter. In this chapter, the preparation, and some elementary reactions of (η^4 -C₇H₈)Os(CO)₃ are described.

3.2. Results.

3.2.1. Preparation of $(\eta^4-C_7H_8)Os(CO)_3$.

At the start of this work, the synthesis of $(\eta^4-C_7H_8)Os(CO)_3$ (1c) had been accomplished in 80% yield starting from $Os(CO)_5$ and cycloheptatriene (CHT)⁸. This procedure however, requires the preparation of $Os(CO)_5$ from $Os_3(CO)_{12}$ and hence a more convenient synthesis of 1c directly from $Os_3(CO)_{12}$ was sought. It was found that an overnight photolysis of $Os_3(CO)_{12}$ and CHT in benzene gave a yellow solution. The IR spectrum of this solution indicated that the required (η^4 - $C_7H_8)Os(CO)_3$ was the major product.

The reaction was cleanest when efficient cooling of the benzene solution was allowed in order to avoid reflux. This was accomplished by stirring the solution in a reaction vessel with a large surface area for the volume of solvent and placing the lamp inside a water-cooled quartz immersion well at least 10 cm from the reaction vessel. This method allows dissolution of Os₃(CO)₁₂ and hinders competitive thermal reaction pathways. The drawback of this procedure is that it limits the quantity of solvent that can be used. This, combined with the low solubility of Os3(CO)12 in benzene limits the amount of Os3(CO)12 to about 0.3 g in 100 ml solvent. Under these conditions, most of the starting material has dissolved after about three hours photolysis, probably due to the unavoidable warming of the solution from the absorbed irradiation. After 12 hours the reaction is essentially complete. Solvent removal gives a yellow brown oil which can be purified by chromatography. When this is carried out, two bands become visible; the first band is pale yellow in colour, and this is followed directly by an orange band. The pale yellow band, which corresponds to the desired product, was eluted with pentane. The following band is thought to be a mixture of trinuclear compounds. Mixtures of polynuclear compounds have been observed in the thermal reaction between CHT and Ru₃(CO)₁₂9. However, when one monitors the

eluted solvent by IR spectroscopy, it becomes apparent that in the colourless solvent prior to the first visible band there are small amounts of carbonyl containing compounds. Again, by analogy to the types of compounds obtained from the thermal reaction between CHT and $Ru_3(CO)_{12}$, it is thought that these are due to a mixture of $(\eta^4-C_7H_8)O_8(CO)_3$ and $(\eta^4-C_7H_{10})O_8(CO)_3$. No attempt was made to isolate and identify the by-products.

Removal of the pentane solvent from the desired fraction gave a pale yellow-green oil which was purified further by vacuum distillation at room temperature to a dry-ice cooled probe. This procedure eliminates the baseline impurities which are often visible in the IR spectrum of the compound after chromatography, and gives the pure product in about 60% yield. The IR spectrum of (1c) as expected gives three bands in hexane at 2066, 1994, 1984 cm⁻¹. The ¹H and ¹³C NMR spectra in the cycloheptatrienyl region are shown in Figure 1¹¹. The spectra display signals due to a rigid seven-membered ring in similar fashion to those reported for the related Fe and Ru complexes^{9,10}. There is also a weak, broad signal in the ¹³C NMR spectrum at 176.3 ppm due to the CO groups on Os. This indicates that the Os(CO)₃ group is rotating whilst the seven-membered ring is static (see Scheme 3.1). This feature of the compound is expected from the known fluxional behaviour of related (diene)Fe(CO)₃ compounds¹².

≠ = residual CH₂Cl₂; * = solvent.

3.2.2. Reactivity of $(\eta^4 - C_7 H_8)Os(CO)_3$ with bases. Preparation of $K(\eta^3 - C_7 H_7)Os(CO)_3$.

Prior to this work the preparation of $(\eta^3-C_7H_7)Os(CO)_3^-$ had been accomplished from $(\eta^4-C_7H_8)Os(CO)_3$ (1c) and KO^tBu. In order to further study the chemistry of 1c and to possibly find more convenient deprotonating agents, 1c has been reacted with several alternative bases. It was found that 1c was not as acidic as the analogous Fe and Ru complexes. For instance, in contrast to Fe and Ru, no reaction occurred when a toluene solution of 1c was stirred with Na[(Me_3Si)_2N] at room temperature over 24 hours. Additionally, no carbonyl containing products were observed in the room temperature reaction of 1c with KH in THF solution¹³. The attempted deprotonation of 1c using BuLi is discussed later in this chapter. Consequently, as in the case of Ru, the most convenient base was found to be KO^tBu. Upon addition of one equivalent of KO^tBu to (η^4 -C₇H_8)Os(CO)_3 at room temperature, the yellow-green THF solution rapidly turns to a bright orange colour.

$$(\pi^{4}-C_{7}H_{8})Os(CO)_{3} + KO^{t}Bu ---> K(C_{7}H_{7})Os(CO)_{3} + HO^{t}Bu$$
 (3-2)

The IR spectrum of the bright orange solution [1961 (s), 1884 (s), 1863 (sh)] shows the expected shift to lower energy from the starting material. As shown in Figure 3.2, the room temperature ¹H NMR spectrum shows a single peak for the C₇H₇ ligand. This is expected for rapid rotation of the seven membered ring. This process, which is stopped at -100 °C, will be commented upon more fully in Chapter 5. In the room temperature ¹³C NMR spectrum, there is a single peak for the C₇H₇ ligand, and one sharp resonance for all three CO groups on the Os centre.

One surprising observatio.. about this reaction was that it was found to be temperature dependent: Thus, when a dark orange solution of K(η^3 -C7H7)Os(CO)₃ (2c), prepared from reaction of 1c with KO^tBu at room temperature, is allowed to stir at -78 °C the solution will regain the original pale yellow-green colour and IR spectroscopy indicates substantial reformation of (η^4 -C7H8)Os(CO)₃ (equation 3-3). This led to

 $K[(\eta^3 - C_7 + H_7)Os(CO)_3] + HO^{t}Bu = (\eta^4 - C_7 + H_8)Os(CO)_3 + KO^{t}Bu = (3-3)$

complications in some reactions of **2c**, as a minor pathway was often reprotonation to give back **1c**. For this reason, in certain instances it was deemed desirable to isolate the anion in the solid state in the absence of HO^tBu, and hence the preparation and isolation of [Ph₄As][(η^{3} -C₇H₇)Os(CO)₃] was carried out.

Figure 3.2. Room Temperature and -100 °C ¹H NMR Spectra of **2c**.

3.2.3. Preparation of [Ph₄As][$(\eta^3$ -C₇H₇)Os(CO)₃].

Crystals of the AsPh₄+ salt of the Os anion, were prepared by reaction of a freshly made THF solution of $K(\eta^3-C_7H_7)Os(CO)_3$ with AsPh₄Cl. Upon addition of the anionic solution to a slurry of AsPh₄Cl in THF at room temperature, most of the suspension dissolves to give a dark red solution of [Ph₄As][(C₇H₇)Os(CO)₃] and a precipitate of KCl. The IR spectrum of the supernatant solution [1963 (s), 1883 (s), 1864 (s)] indicates complete cation exchange by the much sharper bands for the carbonyl stretching vibrations¹⁴. Separation of the supernatant solution followed by filtration and rapid crystallization from THF/toluene gives dark red crystals of [Ph₄As][(C₇H₇)Os(CO)₃]·THF. The maximum yield obtained as crystals is a'out 40 % as the compound has a tendency to form an oil in the presence of any slight impurities such as (η⁴-C₇H₈)Os(CO)₃.

3.2.4. Reaction of $(\eta^4-C_7H_8)Os(CO)_3$ with BuLi.

Addition of one equivalent of BuLi to a THF solution of **1c** gave a colour change from pale yellow-green to yellow-orange as expected for formation of an anionic complex. Surprisingly the IR showed only two sharp bands at 1955 and 1883 cm⁻¹ which contrasts with $K(\eta^3-C_7H_7)Os(CO)_3$ [1961 (s), 1884 (s), 1863(sh)]. Addition of this anion to [Ir(COD)CI]₂ failed to give a clean reaction. Following this experiment, the ¹H NMR spectrum of the anionic complex was run. Instead of the expected single peak for Li(C₇H₇)Os(CO)₃, a very complicated spectrum was obtained indicating that a different product had been formed. This was verified when hydrolysis of the anion followed by work-up gave a light green oil (**3c**)

which was determined not to be $(\eta^4-C_7H_8)Os(CO)_3$. The ¹H and ¹³C NMR spectra of **3c** are shown in Figure 3.3. It can be seen that there are too many peaks to be assigned to a single C₇H₇ ring. The structure as depicted in the figure was deduced from homonuclear decoupling experiments. Assignments of the ¹³C signals were according to literature reports of cycloheptadienyl¹⁵ and acyl¹⁶ compounds.

It can be seen from the figure that two of the ring signals (H₂ and H₃) have a slightly broad nature. This is also reflected in the ¹³C NMR spectrum of the respective signals. The broad nature of two of the signals can be explained by interconversion of the two enantiomeric forms of the asymmetric isomer. This is accomplished by rotation of the $Os(CO)_2[C(O)Bu]$ group with respect to the C_7H_9 ligand (Scheme 3.2)¹⁵. Consistent with this postulate, the CO resonance is also broad due to the exchange of two distinct resonances. In the symmetric isomer, only one sharp resonance would be expected.

The IR spectrum for **3c** (Figure 3.4) shows two strong bands in the terminal CO stretching region at 2020 and 1963 cm⁻¹ (hexane).

Figure 3-3 ¹H and ¹³C NMR Spectra of $(\eta^5-C_7H_9)Os(CO)_2[C(O)Bu]^a$

a Spectra recorded in CD_2Cl_2 ; \ddagger = solvent * = unidentified impurity.

a) electron impact (16 eV, 100 °C), b) chemical ionisation (NH₃)

A weak band outside the terminal CO stretching region due to the acyl CO group can also be observed at 1635 cm⁻¹. The observation of only two strong bands in hexane solution at very similar frequencies has also been seen for several closely related acyl compounds $Cp(OC)_2Fe(C(O)R)$ (R = aryl)¹⁷. The electon impact and chemical ionization mass spectra of 3c are also shown in Figure 3.4. The electron impact mass spectra has large peaks due to (P+ - Bu) (most intense peak = 369). In addition the cluster of peaks centred at 339 is due to $(P^+ - Bu - CO)$ (most intense peak = 341) and $(P^+ - Bu - CO - H_2)$ (most intense peak = 339). The ready loss of alkyl groups on acyl substituents has previously been observed¹⁶. In addition, strong peaks due to (M+ - CO - H₂) are typical of exo substituted cyclchexadiene compounds¹⁸. Using chemical ionization (NH₃) as the ionization method, the cluster of peaks due to the parent ion at 427 (P+ +1)¹⁹ is observed. The MS data were simulated using a locally available program. The mechanism of formation of this compound, which is discussed further in the next section, is most likely nucleophilic attack at the carbonyl ligand, followed by protonation at the C7H8 ligand as shown below.

3.3. Discussion

It may appear surprising that the reaction of **1c** with BuLi is different from that observed for the analogous Fe and Ru compounds. However, it has previously been observed in (dienyl)M(CO)₃ cations that nucleophilic attack at CO is more prone for M = Os than for M = Fe²⁰. One possible reason for this, is that in the case of Os there is more negative charge delocalised onto the CHT ligand than onto the carbonyl ligands, making nucleophilic attack at CO more amenable. Nucleophilic attack of BuLi on carbonyl groups of both Os and Ru cluster compounds leading to stable acyl anions has been previously observed²¹. In addition, nucleophilic attack by aryl lithium compounds has been seen on (η^4 -C₇H₈)Fe(CO)₃²²:

 $(CHT)Fe(CO)_3 + Lio-CH_3C_6H_4 ----> (CHT)(CO)_2FeC(OLi)o-CH_3C_6H_4$ (3-4)

A series of <u>acyle e</u> iron complexes has been prepared in this fashion. This, of course, contrasts to the deprotonation which occurs when BuLi is used in place of Lio-CH₃C₆H₄²³. In addition, and also very recently, butyl lithium has been observed to react in similar fashion with related tricarbonyl iron complexes of α , β -unsaturated ketones²⁴. Rearrangement of the resultant acylate compounds upon reaction with Bu^tBr ultimately gives products useful in organic synthesis.

The second step in the formation of **3c** is the hydrolysis of (η^{4} -C₇H₈)Os(CO)₂C(OLi)Bu. In this reaction, protonation occurs at the sevenmembered ring instead of the acylate group. This is consistent with the known reactivity of (cyclooctatetraene)Fe(CO)₂(C(OLi)(aryl))²⁵ where, upon reaction with [Et₃O][BF₄] in H₂O at 0 °C (or in CH₂Cl₂ at -30 °C), protonation at the ring is the favoured pathway.

The complexes 2c, 1c, and 3c; $(\eta^3-C_7H_7)Os(CO)_3^-$, $(\eta^4-C_7H_8)Os(CO)_3$, and $(\eta^5-C_7H_9)Os(CO)_2(C(O)Bu)$ provide an interesting series of complexes with increasing coordination to an unsaturated sevenmembered ring. The variable temperature ¹H and¹³C NMR spectra of these complexes thus affords information about the changing interaction between the metal centre and the seven-membered ring within this series. As already mentioned, and as expected²⁶, very rapid fluxional behaviour of the C₇H₇ ring and Os(CO)₃ group is observed for 2c. This will be discussed more fully in Chapter 5. Complexes 1c and 3c, again as expected, show decreased fluxional behaviour. No ring movement is observed for 1c. A net 1,3 shift motion is possible²⁷ however, it is not expected to occur at room temperature²⁸. No such process is available for **3c** due to the lack of uncoordinated sites of unsaturation in the sevenmembered ring. Interestingly, both **1c** and **3c** display a broad signal in their ¹³C NMR spectra for the CO resonances at room temperature indicating both are undergoing a rotation of the Os(CO)₂L group with respect to the seven membered ring at close to the same rate. In the related complex, (η^4 -C₇H₈)M(CO)₃ (M = Ru) a very similar observation was made²⁹. However, for the analogous iron complex (M = Fe), a fairly sharp singlet for the three carbonyl groups was observed which broadens only when the sample is cooled below 0 °C¹². This indicates that the process may be slightly more facile for Fe, which, of course, is in accord with the well-known increase in metal-ligand bond strengths³⁰ as a transition metal triad is descended.

3.4. Experimental.

3.4.1. General Techniques and Reagents, Chapter 3.

Os₃(CO)₁₂ was prepared according to the literature³¹. Cycloheptatriene and tetraphenylarsonium chloride hydrate were purchased from Aldrich Chemical Company. Cycloheptatriene was distilled prior to use, and tetraphenylarsonium chloride hydrate was dehydrated by evacuation (10⁻³ mm Hg) at 110 °C for 24 hours, or until no further weight loss was observed. Butyl lithium was bought from Aldrich Chemical Company as a 1.6 M solution in hexanes. Elemental analyses on oils **1c** and **3c** were not attempted due to difficulties in separation from solvents.

3.4.2. Typical Synthesis of $(\eta^4-C_7H_8)Os(CO)_3$, 1c.

 $Os_3(CO)_{12}$ (0.28 g), cycloheptatriene (6 ml) and C₆H₆ (90 ml) were placed in a pyrex 3 x 18 cm Schlenk tube which was purged with N₂ for 10 minutes and then fitted with a water cooled condenser. The pale green solution was placed 11 cm from a 450 W high pressure Hanovia mercury lamp and the solution was then irradiated for 12 hours with shielding of the lamp and vessel by aluminium foil on only one side. The solvent was removed from the resultant yellow solution to leave a yellow brown residue which was chromatographed on a silica gel column (3 cm x 5 cm, Merck, Kieselgel 60, 230 - 400 mesh) with pentane. A pale yellow-green band due to (n⁴-C₇H₈)Os(CO)₃ was easily visible. This band was followed by a slow moving orange band. The eluent was collected from the beginning of the pale yellow-green band until the beginning of the orange band. The solvent was then removed to obtain a pale yellow-green oil (0.18 g, 62%). Further purification could be accomplished by distillation under vacuum at room temperature to a dry-ice cooled probe. The solid could then be washed from the probe with pentane into a separate flask. Removal of the solvent afforded (n^{4} -C₇H₈)Os(CO)₃ as a pale yellow-green oil (0.16 g, *ca.* 55%). IR v_{CO} (hexane) 2066, 1994, 1982 cm⁻¹. ¹H NMR: (22 °C, CD₂Cl₂); δ 5.74 (1H,m,H₅) 4.91 (1H,m,H₆), 4.77 (1H,m,H₃), 4.63 (1H,m,H₂), 2.72 (2H,m,H₁+H₄), 1.56 (m,H₇), 0.89 (m,H₇). For numbering scheme see text.

3.4.3. Synthesis of [AsPh4][(η^3 -C₇H₇)Os(CO)₃], 2c.

 $K[(\eta^3-C_7H_7)Os(CO)_3]$ in THF (15 ml) was made directly from $(\eta^4-C_7H_8)Os(CO)_3$ (85 mg, 0.23 mmoles) and KO^tBu (26 mg, 0.23 mmoles)⁸. The dark red solution was transferred under nitrogen to a separate flask containing a slurry of AsPh₄Cl (97 mg, 0.23 mmoles) in THF (15 ml). The solution was filtered and then the solvent was removed to leave a dark orange residue which was redissolved in THF and cystallised rapidly at room temperature by addition of toluene to give dark red crystais of [AsPh₄][(η^3 -C₇H₇)Os(CO)₃]·THF (70 mg, 41%). The inclusion of one molecule of THF was determined from integration of the ¹H NMR spectrum in CD₂Cl₂.

Anal. Calcd for C₃₈H₃₅AsO₄Os: C, 55.55, H, 4.29. Found: C, 55.80; H, 4.38.

IR (THF) υ_{CO} : 1963(s), 1883(s), 1864(s) cm⁻¹. ¹H NMR (25 °C, THF-d₈): δ 7.7 - 7.9 (20H,Ph) 4.66 (s,7H,C₇H₇); (-115 °C): 6.42 (m,2H,H₃), 4.87 (dd,J_{H3-H4}=8.3, 3,7 Hz, 2H,H₄), 3.83 (dd,J_{H2-H3}=7.5 Hz; J_{H1} H₂=7.5 Hz, 2H,H₂), 2.19 (t,J_{H1-H2}=4.5 Hz,1H,H₁). ¹³C {¹H} NMR (25°C, THF-d₈): δ 191.9 (s,CO), 135.3 (s,Ph,*p*) 134.4 (s,Ph), 131.8 (s,Ph), 89.2 (s,C₇H₇); (-110°C): 142.0 (s,C₇H₇,C₃) 111.9 (s,C₇H₇,C₄), 37.9 (s,C₇H₇,C₁+C₂).

3.4.4. Reaction of $(\eta^4 - C_7 H_8)Os(CO)_3$ with Butyl Lithium and Subsequent Hydrolysis.

1c (130 mg, 0.36 mmoles) was dissolved in a 100 ml reaction vessel in THF (15 ml) under nitrogen. To this pale green solution was added 0.25 ml of 1.6 M butyl lithium solution in hexane (0.40 mmoles) from a new bottle . This gave a yellow-orange solution to which was added three drops of water. The solution lightened and was then extracted in hexane and dried over Na₂SO₄. The solvent was removed to give a yellow-brown residue which was chromatographed on silica gel (CH₂Cl₂/acetone; 25:1) and then vacuum distilled to give a pale green oil (60 mg, 40%). IR (hexane) v_{CO} : 2020 (s), 1963 (s), 1635 (w) cm⁻¹. ¹H NMR: (22 °C, CD₂Cl₂) δ 6.22 (1H,t,J=6Hz,H₁), 5.24 (2H,br,m,H_{2/2}'), 4.58 (2H,br,m,H_{3/3}'), 2.62 (2H,m,C(O)CH₂), 2.20 (2H,m,H₄), 2.08 (2H,m,H₄'), 1.34 (2H,m,CH₂), 1.25 (2H,m,CH₂), 0.88 (3H,m,CH₃). ¹³C NMR: (22 °C, CD₂Cl₂) δ 224 (C(O)Bu), 183 (br,CO), 106.2 (br,C_{2/2}'), 87.3 (C₁) 79.2 (br,C_{3/3}'), 68.1 (C(O)CH₂), 34.0 (C_{4/4}'), 27.4, 22.6 (CH₂), 14.2 (CH₃).

3.5. References.

- 1. Pettit, R.; Emerson, G. F. Adv. Organomet. Chem. 1964, 1, 1.
- 2. (a) Pearson, A. J.; Zettler, M. W. J. Am. Chem. Soc. 1989, 111, 3908.
 b) Howard, P. W.; Stephenson, G. R.; Taylor, S. C. J. Organomet. Chem. 1989, 370, 97.
 (c) Donaldson, W. A.; Ramaswamy, M. Tetrahedron Lett. 1989, 30, 1339.
- Deganello, G. Transition metal complexes of cyclic polyolefins.
 Academic Press, 1979, London.
- 4. Edelmann, F.; Kiel, G.-Y.; Takats, J.; Vasudevamurthy, A.; Yeung, M.Y. J. Chem. Soc. Chem. Comm. 1988, 296.
- 5. (a) Williams, G. M.; Rudisill, D. E.; *Tetrahedron Lett.* 1986, 3465.
 (b) Airoldi, M.; Barbara, G.; Deganello, G.; Gennaro, G. *Organometallics* 1987, 6, 398.
- 6. (a) Reuvers, R. G. A.; Takats, J. Organometallics, accepted for publication.
 - (b) Kiel, G.-Y.; Takats, J. Organometallics **1987**, *6*, 2009.
- LiShingMan, L. K. K.; Reuvers, R. G. A.; Takats, J.; Deganello, G.
 Organometallics 1983, 2, 28.
- 8. Kiel, G.-Y.; Muhandiram, D. R.; McClung, R. E. D.; Takats, J. manuscript in preparation.
- Burt, J. C.; Knox, S. A. R.; Stone, F. G. A. J. Chem. Soc. Dalton Trans. 1975, 731.

- 10. Burton, R.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1961, 594.
- 11. ¹³C NMR spectrum provided by Fu, W. personal communication.
- 12. Kruczynski, L.; Takats, J. Inorg. Chem. 1976, 15, 3140.
- 13. Kiel, G.-Y. personal communication.
- 14. Maher, J. M.; Beatty, R. P.; Cooper, N. J. Organometallics 1985, 4, 1354
- Blackborow, J. R.; Grubbs, R. H.; Hildenbrand, K.; Koerner von Gustorf, E. A.; Miyashita, A.; Scrivanti, A. J. Chem. Soc. Dalton Trans. 1977, 2205.
- Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A. C.;
 Gladysz, J. A. Organometallics 1983, 2, 1852.
- 17. Chen, J.; Yin, G.; Lei, G.; Wang, Y.; Lin, G. J. Chem. Soc. Dalton Trans. 1989, 635.
- (a) Brown, D. A.; Glass, W. K.; Hussein, F. M. J. Organomet. Chem.
 1980, 186, C58
 - (b) Haas, M. A.; Wilson, J. M. J. Chem. Soc. (B) 1968, 104.
- 19. Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic Chemistry. McGraw-Hill. 1980. P.198.
- 20. (a) Bryan, E. G.; Burrows, A. L.; Johnson, B. F. G.; Lewis, J.;
 Schiavon, G. M. *J. Organomet. Chem.* **1977**, *129*, C21.
 (b) Burrows, A. L.; Hine, K.; Johnson, B. F. G.; Lewis, J.; Parker, D. G.;
 Poe, A.; Vichi, E. J. S. *J. Chem. Soc. Dalton Trans.* **1980**, 1135.
- 21. Kaesz, H. D.; Jensen, C. M. Polyhedron 1988, 7, 1035.
- 22. Chen, J.; Lei, G.; Pan, Z.; Zhang, S.; Tang, Y. J. Chem. Soc. Chem. Comm. 1987, 1273.

- 23. Maltz, H.; Kelly, B. A. J. Chem. Soc. Chem. Comm. 1971, 1390.
- 24. Danks, T. N.; Rakshit, D.; Thomas, S. E. J. Chem. Soc. Perkin Trans. I. 1988, 2091.
- 25. Chen, J.; Lei, G.; Xu, W.; Pan, Z.; Zhang, S.; Zhang, Z.; Jin, X.; Shao,
 M.; Tang, Y. Organometallics 1987, 6, 2461.
- 26. Mann, B. E. Chem. Soc. Rev. 1986, 15, 167.
- 27. King, J. A.; Vollhardt, K. P. C. J. Organomet. Chem. 1989, 369, 245.
- 28. Karel, K. J.; Allbright, T. A.; Brookhart, M. Organometallics 1982, 1, 419
- 29. Vasudevamurthy, A. M. Sc. Thesis. University of Alberta. 1986.
- 30. (a) Lewis, K. E.; Golden, D. M.; Smith, G. P. J. Am. Chem. Soc. 1984, 106, 3905.
 (b) Ziegler, T.; Tschinke, V.; Becke, A. J. Am. Chem. Soc. 1987, 109, 1351.
- 31. Johnson, B. F. G.; Lewis, J. Inorg. Synth. 1972, 13, 92.

Chapter 4.

Reaction of $(\eta^3 - C_7 H_7)Os(CO)_3^-$ with $[M(COD)CI]_2$ (M = Rh, Ir). Formation, Characterization and Derivatization of Isometric *cis*and *trans*-(μ -C₇H₇)Os(CO)₃M(COD) Complexes.

4.1 Introduction.

Of the many useful synthetic reactions available to anionic carbonyl complexes of the transition metals, a particularly important and currently topical application is the ability to produce heterobimetallic complexes upon reaction with suitable electrophilic transition metal substrates¹. As already mentioned in this thesis, we have for some time been involved in the chemistry of the ambident organometallic nucleophiles (η^3 - C₇H₇)M(CO)₃⁻ (M = Fe, 1a, Ru, 1b). Thus reaction of 1a with group 14 electrophiles R₃SiCI and R₃GeBr gives ring substituted complexes², whereas reaction of 1a and 1b with [M'(COD)CI]₂ (M' = Rh, Ir)³ leads to the formation of cycloheptatrienyl bridged heterobimetallic complexes; *cis*-(μ -C₇H₇)M(CO)₃M'(COD) (M-M') (M' = Rh, Ir; COD = 1,5-cyclooctadiene), in which both metals are situated on the same side of the seven-membered ring.

As described in Chapter 2, the synthesis of the anionic osmium complex $(\eta^3-C_7H_7)Os(CO)_3^-$ (1c) has been accomplished and its structure is compared to that of the analogous Fe and Ru derivatives in

Chapter 5⁴. In brief, it was found that in the solid state all three compounds contain an $\eta^{3}\mbox{-bound}$ cycloheptatrienyl moiety and it is believed that the $(\eta^3 - C_7 H_7)M(CO)_3^-$ formulation is maintained in solution as well. Accordingly, 1c reacts with Ph3SnCl to give the anticipated product, (n³-C₇H₇)Os(CO)₃SnPh₃⁵ containing an Os-Sn bond. However, unexpectedly and in contrast to Fe and Ru, the reaction of the osmium anion with $[M'(COD)Cl]_2$ (M' = Rh, Ir) gives heterobimetallic complexes where the two metal fragments occupy opposite faces of the bridging cycloheptatrienyl moiety, trans-(μ -C7H7)Os(CO)₃M'(COD) (M' = Rh, 2a, Ir, 3a) as the initial product. Subsequent isomerization yields the thermodynamically more stable, and ubiquitous product of previous reactions, cis-(μ -C₇H₇)Os(CO)₃M'(COD) (M' = Rh, **2b**, Ir, **3b**). In this chapter, the synthesis, characterization, and structure of complexes 2 and 3, are described, and a detailed triad comparison of the fluxional solution behaviour of the thermodynamically more stable cis-(μ -C7H7)M(CO)3M'(COD) compounds (M = Fe, Ru, Os; M' = Rh, Ir) is also given.

4.2 Results

4.2.1 Reaction of $K(\eta^3-C_7H_7)Os(CO)_3$ with $[Rh(COD)Cl]_2$.

The reaction of K[(C₇H₇)Os(CO)₃] (**1c**) with [Rh(COD)Cl]₂ at -78 °C in THF solution followed by solvent removal at room temperature leads to the isolation of two new products, in addition to a small amount of the reformed starting material, (η^4 -C₇H₈)Os(CO)₃. The mass spectra and elemental analyses of these new compounds, separated by fractional crystal/lization, identified them as two isomers of the expected product; $(\mu$ -C7H7)Os(CO)₃Rh(COD) (2).

K(C7H7)Os(CO)₃ +
$$\frac{1}{2}$$
 [Rh(COD)Cl]₂ --> (μ -C7H7)Os(CO)₃Rh(COD) (4-1)
(1) [**2a**(11%) + **2b**(5%)]

The IR spectrum of one of these compounds (2b) (2030, 1962, 1957 cm⁻¹) is very close to the expected spectrum for *cis*-(μ -C₇H₇)Os(CO)₃Rh(COD). Compound 2b is a bright orange, air stable solid which can be purified further by chromatography. In contrast the larger yield product (11%, 2a) is more sensitive to air or trace impurities and does not survive chromatography. This product was crystallised from CH₂Cl₂/hexane over 12 hours at -40 °C and was obtained as a tan-yellow microcrystalline solid which can be stored for several days in the solid state under inert atmosphere without noticeable decomposition. Darkening of the compound does occur at room temperature after more prolonged periods. The IR spectrum of this compound in the carbonyl region (2060, 1991, 1979 cm⁻¹) is very close to that observed for (n⁴-C₇H₈)Os(CO)₃, (2066, 1994, 1982 cm⁻¹). On the basis of these observations this compound (2a) was assigned to be *trans*-(μ -C₇H₇)Os(CO)₃Rh(COD) and 2b was assigned to be its cis isomer.

When the reaction was repeated in diethyl ether and the reaction mixture was not allowed to warm above -10 °C the yield of **2a** was

doubled. In this reaction, only a trace amount of 2b was formed implying that the cis compound may have been formed via isomerization of 2a during attempted work up. When the reaction was carried out using the $Ph_{4}As^{+}$ salt of 1 instead of K⁺ the reaction followed a different path. Again the initial product appeared to be 2a, based on IR spectroscopy. However, upon warming to room temperature, work up of the orange residue did not give any 2a, but yielded 25% of cis compound 2b in addition to a small amount of $(n^4-C_7H_8)O_8(CO)_3$. This indicated that in this reaction the isomerization of 2b to 2a had been much cleaner presumably due to the presence of AsPh₄Cl in solution. To account for this, and the significant increase in yield we suggest that the increased concentration of chloride ion in solution can act as a catalyst in this process as shown in Scheme 4.1. This hypotheses was strengthened when the reaction of 2a with 0.5 equivalents of PPNCI was carried out. The THF solution darkened from yellow to orange-brown and complete consumption of starting material had occured after stirring for 15 minutes at room temperature. Although the reaction was not clean, the major product (25%) was **2b**, with a small amount of $(\eta^4-C_7H_8)Os(CO)_3$ also visible in the IR spectrum of the hexane extract. There were apparently no other carbonyl containing products formed. The variable temperature ¹H and ¹³C NMR spectra of compounds 2 (vide infra) were consistent with these assignments however in view of the unexpected results it was deemed necessary to confirm the assignments by X-ray structural characterization.

Scheme 4.1 Preparation of OsRh Heterobimetallic Compounds.

4.2.2. Solid State Structure of 2a.

X-ray quality crystals of 2a were obtained by crystallization from CH₂Cl₂/hexane (1:1) at -40 °C for 2 days under inert atmosphere. This produced a small amount of thin yellow plates. The molecular structure of 2a was determined from one of the thickest crystals by Dr. B. D. Santarsiero of the Structure Determination Laboratory of this department. The structure is shown in Figures 4.1 and 4.2. Selected interatomic bond lengths and angles are given in Tables 4.1 and 4.2. As can be seen from Figure 4.1, the central seven-membered ring is separated into an allylic portion bonded to Rh, and a diene unit bonded to Os. The two parts of the C₇H₇ ring are separated by relatively long C-C bonds. The orientation of the ring can be referred to as being in a chair conformation. This conformation was also observed in the trans-(μ - η^3 , η^4 -C₇H₇) complex. $Cp(OC)_{2}Mo(12+C_{7}H_{7})Fe(CO)_{3}^{6}$. The main features of the sevenmembered ring are very similar in both cases. Thus the allylic C-C bond lengths are typical at ca. 1.40 Å and the terminal allylic carbons are bonded to the outer diene carbons by long bonds of ca. 1.50 Å. Within the diene section of the seven membered ring the central bond is relatively short at 1.391 (18) Å. The two remaining outer diene C-C bonds are intermediate at ca. 1.45 Å. The Os(CO)₃ group is bonded to the diene fragment in a close to symmetric fashion with distances to the outer diene carbons of 2.252 (10) (C3) and 2.232 (10) (C6) Å. The Os to inner carbon bond distances are shorter and approximately identical at ca. 2.18 Å. The Os centre thus can be thought of as having an approximate square-

Figure 4.2.

Molecular Structure of 2a showing chair conformation of C7H7 ring.

33.2 ppm) in the ¹³C NMR spectrum which was previously assigned to a saturated carbon atom. Hence **4a** is the preferred structure.

Consistent with the above structure are the known coupling constants and chemical shifts of related bridging allylidene functionalities. There have been complexes reported in the literature which contain CF3 groups on similar allylic functions as 4a and which show coupling constants in the range of 14 - 16 Hz¹⁷. The fourth CF₃ group is out of the plane of the pseudo metallacyclopentadiene fragment due to the sp³ hybridization of C11. This CF_3 group is staggered with respect to the CF_3 group on the adjacent carbon, and the observed F-F coupling between these two groups is 9 Hz. This can be compared to F-F coupling between staggered CF₃ groups on an η^2 -vinyl mciety of ca. 5 Hz in [Cp(HFB)(SC₆H₄Me-4)W{n²-C(CF₃)C(CF₃)(PEt₃)}, reported by Davidson¹⁸. The ¹³C chemical shifts of complexes containing similar bridging allylidene and the very closely related "three alkyne flyover" functionalities are also consistent with this assignmnent¹⁹. Other support for the proposed geometry include the 2 Hz coupling between a ¹³CO group on Ir to H5 (see Figure 6.4) and the 4 Hz coupling between $CF_3(9)$ and H7. Both of these through space interactions could easily occur for 4a. Additionally, in 4a one could expect hindrance of the $CF_3(8)$ group with a CO group on Ru and it is unlikely that any of the other three CF3 groups would undergo restricted rotation. In summary, for the following reasons we favour structure 4a to be the accurate description of the geometry of the bis alkyne moiety in 4:

(a) The ¹³C chemical shifts of the α , β , γ , and δ , carbons are in the expected range for bridging allylidene carbons and an alkyl carbon respectively.

(b) The ${}^{5}J_{F-F}$ coupling constants indicate a cis relationship of the α , β , and γ CF₃ groups, and a staggered relationship of the γ and δ CF₃ groups.

(c) The through space interactions of the δ CF₃ group with CO_{Ru} and of the γ CF₃ group with H₇ are easily explained by this structure.

(d) The high field resonance of C5 suggests that the bonding mode of the ring is more appropriately represented by **4a** than by **4b**.

6.3.3. Reaction of $(\mu$ -C₇H₇)Ru(CO)₃Rh(CO)₂ with C₂H₂.

The reaction of 1 with the acetylene, C₂H₂ is much slower than that observed with the electron poor acetylene, HFB. Due to difficulties in isolation, this product was investigated only by its IR and NMR spectra, however, these proved quite informative. According to the IR spectrum (Figure 6-8), a product closely related to complex 4 [(C₇H₇)(HFB)₂Ru(CO)₂Ir(CO)₂] is obtained. The ¹³C NMR spectrum clearly showed that only two of the three double bonds of the sevenmembered ring were coordinated to a metal. A series of homonuclear proton decoupling experiments showed clearly that two acetylene units had coupled and inserted between the seven-membered ring, and a metal centre. It is assumed that this metal centre is Ru due to the absence of Rh coupling to the terminal hydrogen atom (H11). The chemical shifts of carbons 11, 10 and 9 are again close to those observed in 4 and in the related bridging allylidene and flyover complexes. However there are several features in the spectra of 5 not consistent with those of 4 (see Table 6.2). For instance, all four of the carbons of the linked alkyne unit show Rh-C coupling. Also, the carbon atoms C4 and C8 which were at 33.2 and 10.0 ppm respectively in 4 are at much lower field in 5 (75.2 and 65.6 respectively). This suggests these carbons are best represented as coordinated olefinic carbons rather than sp³ hybridIzed saturated carbon atoms. In order to satisfy these requirements two likely alternative structures (5c and 5d) could be envisioned:

Structure **5c** contains a μ - σ - η^4 -butadiene fragment. This type of bonding of a butadienyl fragment to a dinuclear compound has been previously observed and structurally characterIzed in [(dippe)Rh]₂(μ - η^4 - σ -C₄H₅)(μ -H)²⁰ [dippe = 1,2-bis(diisopropylphosphino)ethane]. The construction of **5c** is based on that structure. In this case the four carbons of the diene fragment are close to being planar and occupy an s-cis configuration. An alternative structure (**5d**) can also be imagined where the diene occupies an s-trans configuration. Apart from the configuration of the diene unit, the other main difference between **5c** and **5d** is that the hydrogen atoms on the double bonds between C11 and C10 and between C9 and C8 are in a cis-trans arrangement in **5c** but are trans-cis in **5d**. Structures containing a cis-cis relationship or a trans-trans relationship were ruled out as neither would meet the requirements set by the ¹³C NMR spectrum. In order to elucidate which structural alternative (**5c** or **5d**) may most accurately describe the bonding in **5**, a survey of H-H coupling constants in coordinated diene systems was carried out.

Both configurations of the diene unit (s-cis and s-trans) have been noted previously in Cp₂Zr(butadiene)²¹, CpMo(NO)(butadiene)²² and CpMo(CO)₂(butadiene)⁺ complexes²³. Typical H-H coupling constants in these complexes (where α and δ represent the terminal atoms) are s-cis: $J_{H\alpha-H\beta} = J_{H\gamma-H\delta} = 8-10.5$ (cis-H), 10.5 - 12.5 (trans-H), $J_{H\beta-H\gamma} = 6-11$; strans: $J_{H\alpha-H\beta} = J_{H\gamma-H\delta} = 6-8$ (cis-H), 7-16.5 (trans-H), $J_{H\beta-H\gamma} = 7-16$. The magnitude of the coupling constants is very dependent on the system and the bonding of the diene fragment to the transition metal. For example, the $H\beta$ -Hy coupling constant is much larger for $Cp_2Zr(butadiene)$ complexes than for CpMo(CO)₂(butadiene)⁺ complexes, possibly due to an increased double bond character of the central C β -C γ bond in the former complexes.²⁴ The observed coupling constants for 5 ($J_{H\alpha-H\beta} = J_{H\gamma-H\delta} =$ 11, $J_{H\beta-H\gamma} = 8$) are therefore consistent with the formulation of a diene unit containing two separate double bonds with little double bond character between them. This may be expected as the structure is probably twisted due to the coordination requirements and may be better viewed as two

olefinic units rather than a conjugated diene functionality. Apart from this observation, however it is difficult to make any further predictions. On the basis of a precedential compound structurally related to **5c** we very tentatively favour **5c** over **5d**.

In summary, 5 clearly has a structure related to 4, where two acetylene units have coupled and inserted between Ru and the C₇H₇ ring, however for this complex we tentatively suggest that the adopted structure is closer to 5c than to 4a for the following reasons:

(a) The observation of Rh-C coupling constants of 8, 3, 8, and 8 Hz for carbons 11 - 8 and no Rh coupling to carbons of the seven-membered ring.

(b) In the ¹³C NMR spectrum, the resonances for C11 and C10 are close to those expected for **4a** or **4b**. However, the resonance for C9 and especially that for C8 are at much lower field than in **4**, and are more characteristic of a coordinated olefin^{10b}. Similarly the H9 and H8 resonances are more consistent with a coordinated olefin^{14a,b} than a bridging allylidene unit¹⁷.

(c) The H-H coupling constants of the C_4 fragment suggest a diene unit with not much double bond character of the central C10-C9 bond.

(d) There are few similarities in the ¹H and ¹³C NMR spectra of the C_7H_7 ring between 4 and 5. In particular, the chemical shifts of the outer carbons of the diene fragment coordinated to Ru show large differences (5; C1; 52.1, C4; 75.2. 4; C1; 61.1, C4; 33.2). Other noteworthy features of 5 which are not reflected in the spectra of 4 are the surprisingly high field shifts of H1 (0.84) and the uncoordinated olefinic proton H6 (2.84).

6.3.4. Possible Explanation for the Observed Reactivity.

The rapid reaction of **1** with HFB can be explained by rapid electrophilic attack of the HFB moiety at the electron rich Ru centre, Scheme 6.1. The insertion could occur via an ionic intermediate or by a concerted pathway. This reaction is closely related to the insertion of HFB into a Ru-Cp bond observed by Stone²⁵.

In contrast, the analogous Rulr complex (2) requires thermal activation of 100 °C to enable a reaction to occur. The presence of an Ir centre instead of the 2nd row Rh centre clearly leads to the increased inertness. The most logical initial step in the Rulr reaction at 100 °C is coordination of an HFB unit to one of the metal centres. Due to the lack of a product analogous to 3 [(C_7H_7)(C_4F_6)Ru(CO)₃Rh(CO)₂] and the inability of 3 to insert cleanly one more equivalent of HFB upon heating, the next step is apparently not insertion of the alkyne moiety between Ru and the sevenmembered ring. Instead upon subsequent approach of a second HFB moiety to the dinuclear complex, coupling between the two alkynes and insertion between Ru and the seven-membered ring must occur to obtain Scheme 6.1. Possible reactivity of alkynes with 3 and 4.

5c

the observed product. Clearly the formation of the Rulr complex (4) is far more complicated than the path followed in the RuRh reaction. One obvious contender for the formation of **4a** involves a metallacyclopentadiene complex as shown in the scheme. Numerous examples of similar complexes are known, and further insertion reactions of these complexes with extra alkynes are well documented^{5,13a,28}. Hence the observed C-C bond formation in our complex is easily envisioned.

The reaction between 1 [(μ -C₇H₇)Ru(CO)₃Rh(CO)₂] and HC₂H follows a similar path to the reaction between RuIr and HFB although the geometry of the final product appears to be different. This is probably a consequence of the different steric requirements of the alkynes in the coupling step. The effects of the very different electronic demands of HFB and C2H2 cannot be entirely ruled out, however. A very similar reaction was observed between the cyclooctadiene complex 1b and HC₂H although the final product in this reaction maintained the COD moiety. Thus these reactions are alkyne dependent as well as metal dependent. The decrease in the observed rate of reaction, and reversal of reactivity going from HFB to C₂H₂ suggests that the path followed for the reaction of 1 with HFB reaction is heavily favoured for alkynes with electron withdrawing substituents. This is consistent with the ionic intermediate shown in the scheme. Zwitterionic intermediates have been previously proposed in related C-C bond forming reactions²⁶. In one related example, such an intermediate is proposed to undergo addition to an HFB ligand²⁷:

6.4. Summary.

 $(\mu$ -C₇H₇)Ru(CO)₃Rh(CO)₂ (1) undergoes a rapid addition reaction with the activated alkyne HFB. However the analogous reaction of (μ -C₇H₇)Ru(CO)₃Rh(COD) (1b) produces no such product. Clearly replacement of two CO groups on Rh with the bulky COD ligand blocks the reaction pathway. Alternatively, (μ -C₇H₇)Ru(CO)₃Ir(CO)₂ reacts with HFB under thermal conditions with loss of 1 CO ligand to give the complicated product 4. In this case substitution of two CO groups on Ir with the COD ligand in the starting material has little effect on the reactivity and the same product (4) is produced in lower yield. Thus the first step in the reactions of the Rulr complexes with HFB may be substitution of a ligand at the Ir centre. Also consistent with this proposal was the observation that no product analogous to **4** is produced when **3** is heated in the presence of HFB. Thus implies that insertion of one HFB moiety between Ru as the first step in these reactions followed by a second insertion is not likely. These observations suggest that replacement of Rh with Ir in the starting pentacarbonyl compounds (μ -C₇H₇)Ru(CO)₃M(CO)₂ decreases the nucleophilicity of the Ru centre and hence alters the reaction pathway.

6.5. Experimental.

6.5.1. General Techniques and Reagents, Chapter 6.

Hexafluorobut-2-yne (HFB) was bought from S. C. M. Speciality Chemicals. Acetylene was purchased from Matheson Gas Products Canada, and passed through a cold trap at -78 °C to remove small amounts of acetone. For ¹⁹F NMR, CFCl₃ was used as a calculated external standard. (μ -C₇H₇)Ru(CO)₃Rh(CO)₂ (1) was made according to the literature^{2a}. The preparation of (μ -C₇H₇)Ru(CO)₃Ir(CO)₂ (2) is described in Chapter 2. The complete solid-state structural determination of compound **3** was carried out by Dr. R. G. Ball of the Structure Determination Laboratory of this department. Some relevant information from the structure report is included in this thesis. Further information including listings of observed and calculated structure factors may be obtained from Dr. J. Takats of this department.

6.5.2. Preparation of $(\mu - C_7 H_7)(\mu - C_4 F_6) Ru(CO)_3 Rh(CO)_2$ (3).

 $(\mu$ -C₇H₇)Ru(CO)₃Rh(CO)₂ (25 mg) was dissolved in hexane (10 ml) and freeze-thaw degassed. A slow stream of HFB was then bubbled through the reaction mixture for 1 minute. The red-brown solution was then stirred for 5 minutes with no colour change. The solvent was then removed to leave a brown residue which was chromatographed on a silica gel column (3 cm x 1.5 cm) eluting with hexane. The major band which is an orange colour is collected and crystallized from hexane to leave yellow-orange crystals of **3** (16 mg, 45 %).
Anal. Calcd. for C₁₆H₇F₆O₅RhRu: C; 32.18, H; 1.35. Found: C; 32.35, H; 1.22.

M. S. (90 °C, 16 eV, 70 eV) P⁺ = 598, P⁺ -n(CC), n = 0 - 5.

IR (vco, hexane); 2089 (m), 2056 (s), 2035 (m), 2015 (m).

¹H NMR (22 °C, CD₂Cl₂) δ 3.66 (1H,t,H7,J_{H7-H1}=J_{H6-H7}=7), 4.12

(¹H,t,H1,J_{H1-H2}=J_{H7-H1}=7), 4.96 (1H,dd,H3,J_{H2-H3}=5.5,J_{H3-H4}=9.5), 5.10

(1H,dd,H2,J_{H1-H2}=7J_{H2-H3}=5.5), 5.96 (1H,dd,H4,J_{H3-H4}=9.5,J_{H4-H5}=6.5)

6.04 (1H,dd,H6,J_{H5-H6}=9.5,J_{H6-H7}=7), 6.48 (1H,dd,H5,J_{H4-H5}=6.5,J_{H5-}

н6=9.5).

¹³C NMR (22 °C, CD₂Cl₂) δ 42.0 (C7), 73.2 (C3), 77.9 (C1), 80.1 (C2),

83.5 (C4), 127.2 (C5), 138.3 (C6), 101.1 (m,Cβ), 125.5 (q,J_C.

 $F=220Hz,C(CF_{3}\beta)), 129.0 (q, J_{C-F}=220Hz,C(CF_{3}\alpha)), 157.6 (m,C\alpha), 188.8$

(d,CO_{Rh},J_{Rh-C}=80 Hz), 189.6 (d,CO_{Rh},J_{Rh-C}=70 Hz), 192.6 (s,CO_{Ru}),

195.4 (s,CO_{Ru}), 197.7 (s,CO_{Ru})

¹⁹F NMR (22 °C, CD₂Cl₂) δ -61.1 (3F,q,J_{F-F}=14Hz,CF₃ β), -40.2 (3F,dq,J_{F-F}=14Hz,J_{Rh-F}=3Hz,CF₃ α).

6.5.3. Solid-State Structure Determination of 3.

The structure determination was carried out by Dr. R. G. Ball of the Structure Determination Laboratory of this department. The following information was extracted from SDL report number SR: 200111-03-87. A vellow crystal of 3 was mounted on an Enraf-Nonius CAD4 automated diffractometer. All intensity measurements were performed using MoKa radiation with a graphite crystal, incident beam monochromator. The automatic peak search and reflection indexing programs in conjunction with a cell reduction program showed the crystal to be monoclinic and from the systematic absences of h0l, h + l odd; 0k0, k odd the space group was determined to be P21/n, (an alternative setting of P21/c). Cell constants were obtained from a least-squares refinement of the setting angles of 24 reflections in the range $14 < 2\theta < 28^{\circ}$. The various crystal parameters are given in Table 6.3. The structure was solved using the direct methods program MITHRIL²⁹ which gave the positional parameters for the Rh and Ru atoms. The remaining non-hydrogen atoms were located by the usual combination of least-squares refinement and difference Fourier synthesis³⁰. An empirical absorption correction was applied, using the Fourier filter scheme of Walker and Stuart³¹. The positional and thermal parameters of the non-hydrogen atoms are given in Table 6.4.

 Table 6.3. Crystallographic Data for Compound 3.

		3		
empirical formula		C ₁₆ H ₇ F ₆ O ₅ RhRu		
colour of crystal		yellow		
crystal dimensions (mr	n)	0.20 x 0.24 x 0.43		
space group		P21/n		
cell dimensions	a (Å)	9.875(2)		
	b (Å)	13.583(2)		
	c (Å)	13.636(4)		
	β (^ο)	102.09(2)		
Z (Molecules/cell)		4		
V (Å ³)		1788		
d (calcd), (g/cm ³)		2.218		
wavelength (Å)		0.71069		
mol wt		597.20		
linear abs coeff (cm ⁻¹)		18.22		
detector to sample dist	(cm)	20.5		
scan type		ω-2θ		
scan rate (deg/min)		10.1 - 2.6		
scan width (deg)		0.70 + 0.35tan(θ)		
data collection 20 limit(deg)	55.00		
aperture size (mm)		2.40 x 4.0		
total no. of refletns coll	ected	4518		
no. of unique intensitie	S	4232		
no. with $I > 3.0\sigma(I)$		3369		
observations/variables	ratio	3369/262		
R1		0.023		
R2		0.033		
goodness of fit for the la	ast cycle	1.22		
corrections applied		absorption correction		
data collection index ra	nge	h,k,±l		

Atom	x	у	Z	U,Ų
Rh	6333.8(2)	2603.7(2)	_ 7865.3(1)	3.168(6)
Ru	3759.0(2)	1983.2(2)	7966.5(2)	3.436(6)
012	3232(3)	3815(2)	9104(2)	8.05(9)
013	3839(3)	829(2)	9920(2)	8.27(9)
014	718(3)	1666(3)	6992(3)	8.6(1)
015	8985(3)	3520(2)	7489(3)	8.2(1)
O16	6682(3)	3471(3)	9942(2)	10.4(1)
C12	3426(3)	3139(2)	8669(2)	5.1(1)
C13	3772(3)	1242(3)	9201(2)	5.31(9)
C14	1843(3)	1755(3)	7373(3)	5.3(1)
C15	7979(3)	3192(2)	7606(3)	4.73(9)
C16	6572(4)	3117(3)	9179(2)	5.7(1)
C2	5075(3)	581(2)	7800(2)	4.02(8)
С3	6474(3)	904(2)	8237(2)	4.00(8)
C4	7505(3)	984(2)	7708(2)	4.40(9)
C5	7384(3)	686(2)	6674(2)	4.58(9)
C6	6248(3)	760(2)	5948(2)	4.50(9)
C7	4993(3)	1316(2)	6075(2)	3.81(8)
C1	4352(3)	791(2)	6852(2)	3.87(8)
C9	4370(3)	2878(2)	6886(2)	3.47(7)
C11	3693(3)	3864(2)	6602(2)	5.1(1)
C8	5265(3)	2411(2)	6344(2)	3.49(7)
C10	5828(4)	2941(3)	5538(2)	5.3(1)
F1	3395(3)	4022(2)	5619(2)	8.85(9)
F2	2479(2)	3959(2)	6866(2)	8.76(8)
F3	4410(3)	4638(2)	6995(2)	9.3(1)
F4	6073(2)	3895(1)	5710(1)	6.47(7)
F5	7039(2)	2572(2)	5416(2)	7.17(7)
F6	4985(3)	2865(2)	4632(2)	8.9(1)

Table 6.4. Positional (x 10^4) and Thermal (x 10^2) Parameters for 3.

The equivalent isotropic thermal parameter is given by: $U = 1/3\sum r_i^2$ where r_i are the root-mean-square amplitudes of vibration.

6.5.4. Preparation of $(\mu$ -C₇H₇)(C₄F₆)₂Rulr(CO)₄ (4).

 $(\mu$ -C₇H₇)Ru(CO)₃Ir(CO)₂ (50 mg) was dissolved in octane (10 ml) and freeze-thaw degassed. One atmosphere of HFB gas was then introduced to the frozen solution which was warmed to 100 °C and stirred for 2 hours. The solvent was removed from the dark orange solution to leave an orange-brown residue which was washed with hexane (4 ml) and chromatographed on a silica gel column (9 cm x 1.5 cm) eluting with 40 % CH₂Cl₂/hexane. There appeared to be two major bands. The first band is yellow, which is followed by a green band, however the IR and NMR spectra of the two bands showed few differences. Both fractions were combined, and the solvent was removed to leave a cream solid which was recrystallIzed from CH₂Cl₂/hexane to give pale yellow-green crystals of 4 (40 mg, 51 %).

Anal. Calcd. for C₁₉H₇F₁₂OIrRu: C; 27.81, H, 0.85, Found, C, 27.74, H, 0.84.

M. S, (FAB), $P^+ = 822$, $P^+ -n(CO)$, n = 0 - 4.

IR (v_{CO} , hexane); 2095 (m), 2055 (s), 2049 (w), 2005 (m). ¹H NMR (22 °C, acetone d₆); δ 3.13 (1H,dd,H4,J_{H3-H4}=7.5,J_{H4-H5}=9), 4.08 (1H,t,J_{H1-H2}=J_{H7-H1}=7.5), 4.94 (1H,t,H3,J_{H2-H3}=J_{H3-H4}=7.5), 5.14 (1H,t,H2,J_{H1-H2}=J_{H2-H3}=7.5), 5.38 (1H,m,H7), 6.23 (1H,t,H5,J_{H4-H5}=J_{H5-H6}=9), 6.62 (1H,dd,H6,J_{H5-H6}=9,J_{H6-H7}=6)

¹³C NMR (22 °C, acetone-d₆); δ 10.0 (q,C8,J_{C-F}=30), 25.9 (s,C7), 33.2

(s,C4), 48.5 (m,C9), 61.1 (s,C1), 64.1 (s,C3), 71.1 (s,C2), 98.6 (m,C10),

124.0 (q,CF₃,J_{C-F}=280), 124.5 (q,CF₃,J_{C-F}=280), 129.5 (q,CF₃,J_{C-F}=275),

130.0 (q,CF₃,J_{C-F}=280), 133.7 (s,C6), 136.3 (s,C5), 159.8 (s,CO_{Ru}), 166.2 (s,CO_{Ru}), 191.4 (s,CO_{Ir}), 195.3 (s,CO_{Ir}).

¹⁹F NMR (22 °C, acetone-d₆); δ -67.0 (br,CF₃δ), -55.4(sp,J=16Hz,CF₃β), -51.2 (qqd,J_{F-F}=14,9Hz,J_{H7-F}=4Hz,CF₃γ), -45.5 (q,J=16Hz,CF₃α). (-95 °C); -72.3 (t,J_{F-F}=115), -70.3 (qt, ²J_{F-F}=115, ⁵J_{F-F}=25), -58.9 (t,J_{F-F}=115).

6.5.5. Reaction of $(\mu$ -C₇H₇)Ru(CO)₃Rh(COD) with HFB.

 $(\mu$ -C₇H₇)Ru(CO)₃Rh(COD) (**1b**) (10 mg) was dissolved in hexane (10 ml) to give an erange solution. The solution was degassed and then introduced to 1 atmosphere of HFB gas. The solution was then stirred for 12 hours at room temperature with no colour change. An IR spectrum of the reaction mixture at this point showed approximately half of the starting material had been consumed. The solvent was removed and the residue was redissolved in hexane (5 ml) and rapidly cooled to -78 °C for 15 minutes. The supernatant solution was then transferred to a separate vessel. An IR spectrum of this solution showed only bands due to the starting RuRh(COD). Extraction of the residue in hexane gave no carbonyl containing compounds. The residue did dissolve in CH₂Cl₂ however the IR spectrum showed several bands all of very low intensity.

6.5.6. Reaction of $(\mu$ -C₇H₇)Ru(CO)₃Ir(COD) with HFB.

 $(\mu$ -C₇H₇)Ru(CO)₃Ir(COD) (**2b**) (30 mg, 0.052 mmoles) was dissolved in toluene (5 ml) and freeze-thaw degassed. The frozen solution was then introduced to one atmosphere of HFB gas and the closed reaction vessel was placed in an oil bath which was heated to 118 °C. The solution was

stirred for 1 hour, cooled and then the solvent was removed. The residue was dissolved in hexane and filtered to a separate reaction vessel. An IR spectrum of the extract showed primarily **4**. Chromatography and crystallization of 4 as described above yielded 7 mg (14 %) of **4**.

6.5.7. Preparation of $(\mu - C_7 H_7)(C_2 H_2)_2 RuRh(CO)_4$ (5).

 $(\mu$ -C₇H₇)Ru(CO)₃Rh(CO)₂ (30 mg) was dissolved in toluene (5 ml) and freeze-thaw degassed three times. The frozen red solution was then put under 1 atmosphere of HC₂H and warmed to room temperature. The solution was then stirred for 2 hours to give a black solution. The solvent was then removed and the dark residue was evacuated for 1 further minute before it was reintroduced to an acetylene atmosphere. Toluene d₈ (0.6 ml) was then added to the reaction vessel. The dark black solution was then filtered by canula into an NMR tube under acetylene pressure. IR (v_{CO}, hexane); 2055 (m), 2014 (s), 2004 (w), 1958 (m).

¹H NMR (22 °C, toluene-d₈); δ 0.84 (dd,H1,J_{H1-H2}=8,J_{H1-H3}=1.5), 1.78 (d,H7,J_{H7-H8}=8), 2.84 (d,H6,J_{H5-H6}=8), 3.88 (t,H4,J_{H3-H4}=J_{H4-H5}=8), 4.38 (dd,H2,J_{H1-H2}=8,J_{H2-H3}=5), 4.64 (ddd,H3,J_{H1-H3}=1.5,J_{H2-H3}=5,J_{H3-H4}=8), 5.32 (dd,H8,J_{H7-H8}=8, J_{H8-H9}=11), 5.42 (t,H5,J_{H4-H5}=J_{H5-H6}=8), 6.08 (dd,H9,J_{H8-H9}=11,J_{H9-H10}=7), 7.66 (ddd,H10,J_{H9-H10}=7,J_{H10-H11}=11,J_{H10-Rh}=2), 9.78 (d,H11,J_{H10-H11}=11).

¹³C NMR (22 °C, toluene-d₈); δ 34.8 (s,C7), 52.1 (s,C1), 65.6 (d,C8,J_{C8-Rh}=7), 68.2 (s,C3), 75.2 (s,C4), 77.5 (d,C9,JC9-Rh=8), 82.6 (s,C2), 110.6 (d,C2,J_{C2-Rh}=2.4), 130.0 (s,C6), 133.4 (s,C5), 150.5 (d,C11,J_{C11-Rh}=8),

186.4 (d,CO_{Rh},J_{C-Rh}=61), 190.4 (d,CO_{Rh},J_{C-Rh}=73), 194.7 (s,CO_{Ru}), 196.6 (s,CO_{Ru}).

6.5.8. Reaction of $(\mu$ -C₇H₇)Ru(CO)₃Rh(COD) with C₂H₂.

 $(\mu$ -C₇H₇)Ru(CO)₃Rh(COD) (26 mg) was dissolved in hexane (18 ml) and placed in a 100 ml 'pop-bottle' which was connected to a vacuum line and an acetylene tank. The red solution was then freeze-thaw degassed and introduced to 15 psi above atmospheric of HC₂H. The solution was then stirred for 24 hours before the pressure was released. The solution was then filtered, concentrated to 3 ml and cooled to -78 °C for 16 hours. The orange supernatant solution was then separated from the brown residue and crystallIzed from hexane/(Me₃SiO)₂ at -30 °C to give an orange-red residue which was used for the NMR sample.

IR (vco, hexane); 2004 (s) 1941 (s) cm⁻¹.

¹H NMR (22 °C, toluene-d₈); δ 1.08 (dd,H1,J_{H1-H2}=8,J_{H1-H3}=1.5), 1.96 (m,2H,COD), 2.01 (1H,m,H6), 2.08 (d,H7,J_{H7-H8}=8), 2.10 (m,2H,COD) 2.56 (m,2H,COD), 2.76 (m,1H,COD), 2.94 (m,2H,COD), 3.62 (m,1H,COD), 4.20 (m,1H,COD), 4.28 (t,H4,J_{H3-H4}=J_{H4-H5}=8), 4.70 (m,2H,COD), 4.82 (dd,H2,J_{H1-H2}=8, J_{H2-H3}=5), 5.22 (dd,H3,J_{H1-H3}=1.5,J_{H2-H3}=5,J_{H3-H4}=8), 5.46 (dd,H8,J_{H7-H8}=8,J_{H8-H9}=11), 5.84 (t,H5,J_{H4-H5}=J_{H5-H6}=8), 6.29 (dd,H9,J_{H8-H9}=11), 7.70 (dd,H10,J_{H9-H10}=7,J_{H10-H11}=11), 10.26 (d,H11,J_{H10-H11}=11).

6.6. References.

- This chapter to be submitted to Organometallics: Astley, S. T.; Takats, J.
- (a) Ball, R. G.; Edelmann, F.; Kiel, G.-Y.; Takats, J.; Drews, R.
 Organometallics 1986, 5, 829.
- Edelmann, F.; Kiel, G.-Y.; Takats, J.; Vasudevamurthy, A.; Yeung,
 M.-Y. J. Chem. Soc., Chem. Commun. 1988, 269.
- 4. Chapter 2 in this thesis.
- 5. (a) Vollhardt, K. P. C. Acc. Chem. Res. 1977, 10, 1.
 (b) Dickson, R. S.; Fraser, P. J. Adv. Organomet. Chem. 1974, 12, 323
 - (c) Shore, N. E.; Chem. Rev. 1988, 88, 1081.
- 6. Kiel, G.-Y. personal communication.
- 7. Vasudevamurthy, A. M. Sc. Thesis, University of Alberta, 1986.
- Alt, A. G.; Engelhardt, H. E.; Rausch, M. D.; Kool, L. B.; *J. Am. Chem.* Soc. 1985, 107, 3717.
- 9. (a) Williams, J. P. Wojcicki, A. *Inorg. Chem.* 1977. *16*, 3116.
 (b) Dickson, R. S.; Fallon, G. D.; Jenkins, S. M.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* 1986, *314*, 333.
- 10. (a) Kao, S. C.; Lu, P. Y. P.; Pettit, R. *Organometallics* 1982, *1*, 911.
 (b) Mann, B. E.; Taylor, B. F. 13C NMR Data for Organometallic Chemists, Academic Press, London, 1981.
- 11. Cullen, W. R.; Dawson, D. S.; Can. J. Chem. 1967, 45, 2887.
- 12. Green, M.; Taylor, S. H. J. Chem. Soc. Dalton Trans. 1975, 1142

- 13. (a) Bainbridge, C. W.; Dickson, R. S.; Fallon, G. D.; Grayson, I.; Nesbit, R. J.; Weigold, J. *Aust. J. Chem.* **1986**, *39*, 1187.,
 (b) Dickson, R. S.; McLure, F. I.; Nesbit, R. J. J. Organomet. Chem. **1988**, *349*, 413.
- 14. (a) Davidson, J. L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem. Soc. Chem. Commun. 1975, 286.
 (b) Blackmore, T.; Bruce, M. I.; Stone, F. G. A. J. Chem.Soc. Dalton Trans. 1974, 106.
 (c) Greco, A.; Green, M.; Stone, F. G. A. J. Chem.Soc. (A) 1971, 3476.
- 15. Lee, G-H.; Peng, S.-M.; Lush, S.-F.; Mu, D.; Liu, R.-S. Organometallics 1988, 7, 1155.
- 16. (a) Emsley, J. W.; Phillips, L.; Wray, V. Prog. N.M.R. Spec. 1976, 10, 83.

(b) Hilton, J.; Sutcliffe, L. H. Prog. N.M.R. Spec. 1975, 10, 27.

- 17. (a) Dickson, R. S.; Fallon, G. D.; Jenkins, S. M.; Nesbit, R. J. Organometallics 1987, 6, 1240.
 (b) Dickson, R. S.; Fallon, G. D.; Nesbit, R. J.; Pain, G. N. Organometallics 1985, 4, 355.
- 18. Carlton, L.; Davidson, J. L. J. Chem. Soc. Dalton Trans. 1987, 895.
- 19. (a) Casey, C. P.; Woo, L. K.; Fagan, P. J.; Palermo, R. E.; Adams, B. R. *Organometallics* 1987, *6*, 447.
 (b) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. *J. Chem. Soc. Chem. Commun.* 1980, 804.

(c) Brammer, L.; Green, M.; Orpen, A. G.; Paddick, K. E.; Saunders, D.R.; J. Chem. Soc. Dalton Trans. 1986, 657.

(d) Sumner, C. E.; Collier, J. A.; Pettit, R. *Organometallics* **1982**, *1*, 1350.

- 20. (a) Fryzuk, M. D.; Jones, T.; Einstein, F. W. B. J.Chem. Soc. Chem. Commun. 1984, 1556.
 (b) Fryzuk, M. D.; Piers, W. E.; Rettig, S. J.; Einstein, F. W. B.; Jones,
 - T.; Allbright, T. A. J. Am. Chem. Soc. 1989, 111, 5709.
- 21. Benyunes, S. A.; Green, M.; Grimshire, M. J.; *Organometallics* 1989, *8*, 2268.
- 22. (a) Hunter, A. D.; Legzdins, P.; Nurse, C. R.; Einstein, F. W. B.; Willis, A.
 C. J. Am. Chem. Soc. 1985, 107, 1791.

(b) Hunter, A. D. Ph. D. Thesis, University of British Columbia, 1985.

- 23. Yasuda, H.; Nagasuma, K.; Akita, M.; Lee, K.; Nakamura, A. Organometallics **1984**, *3*, 1470.
- 24. Erker, G.; Kruger, C.; Muller, G. Adv. Organomet. Chem. 1985, 24, 1.
- 25. Davidson, J. L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem. Soc. Dalton Trans. **1977**, 287.
- 26. Otsuka, S.; Nakamura, A. Adv. Organometal.Chem. 1976, 14, 245.
- 27. Blackmore, T.; Bruce, M. I.; Stone, F. G. A.; Davis, R. E.; Gartza, A. J. Chem. Soc. Chem. Commun. 1971, 852.
- Green, M.; Kale, P. A.; Mercer, R. J. J. Chem. Soc. Chem. Commun. 1987, 375.
- 29. MITHRIL is a multiple solution direct methods program by C. J. Gilmore, Department of Chemistry, University of Glasgow (1984).

- 30. The computer programs used include the Enraf-Nonius Structure Determination Package. Version 3 (1985, Delft, The Netherlands) and several locally written programs.
- 31. Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.

Chapter 7.

Fluxional Processes and Trends in Properties within a Series of Cycloheptatrienyl Bridged Heterobimetallic Complexes.

7.1. Properties of the Cyclooctadiene Complexes, $(\mu$ -C₇H₇)M(CO)₃M'(COD).

As a result of the studies reported in this thesis, the series of cis heterobimetallic complexes (μ -C₇H₇)M(CO)₃M'(COD) (M = Fe, Ru, Os; M' = Rh, Ir) is complete. Within this series of complexes, the inertness of the isolated complexes increases as either metal triad is descended. One way that this can be demonstrated is by looking at the substitution reaction of the COD ligand at the group 9 metal centres. For example carbonylation of the Rulr¹ and Felr² cyclooctadiene complexes occurs only upon thermal heating whereas this reaction occurs readily at room temperature for the related RuRh³ and FeRh⁴ complexes. More interesting was the observation that the same effect, albeit less dramatic, was seen when the group 8 metal was changed. For example, reaction times for the FeRh⁴, RuRh³ and OsRh⁵ complexes at room temperature are 5 mins, 90 mins, and 150 minutes respectively. The net effect thus appears to be a greater amount of electron donation from the M(CO)₃ to the M'(COD) fragment as the M triad is descended.

197

A more quantitive method of comparing the strengths of the M'-COD interaction is by comparing the free energies of activation for rotation of the COD group. This process, which is shown diagramatically in Scheme 7.1 involves change in geometry at the M' centre from square pyramidal to trigonal bipyramidal⁴ and back to the original ground state structure.

The free energies of activation for COD rotation were obtained from the approximate expression, equation 7.1, which relates the free energy of activation, ΔG^{\ddagger} , coalescence temperature, Tc, and chemical shift separation Δv (Hz) for a pair of equal singlets undergoing exchange⁶.

$$\Delta G^{\ddagger} = 4.57 \text{Tc}[9.97 + \log(\text{Tc}/\Delta v)]$$
(7-1)

The coalescence temperature and chemical shift separation between exchanging pairs of olefinic or aliphatic carbon/hydrogen signals were obtained from variable temperature NMR studies. Although it is recognized that approximating the ¹H NMR signals as singlets is strictly not correct, the errors introduced by neglecting H-H coupling are less than the error due to the uncertainties in Tc (\pm 5 K). Beside, in view of the approximations, we have much more reliance on the trends exhibited by ΔG^{\ddagger} than the absolute values obtained for a specific compound. The resultant free energies of activation are listed in Table 7.1. As expected, when one replaces Rh(COD) with Ir(COD) there is a considerable stabilization of the metal-olefin bonding as evidenced by an increase of 4 kcal/mole in ΔG^{\ddagger} . What is more interesting and pleasing to see is the effect of the non-participating metal. When the spectator metal is changed from Fe to Ru to Os there is a sequential increase in ΔG^{\ddagger} of 1 kcal/mole. This trend parallels the observed trend in the average ¹³C chemical shift of the olefinic carbon atoms resonance to higher field upon descending the triad. Shifts to higher fields in the ¹³C NMR spectrum of coordinated olefinic ligands have been associated with enhanced metal to ligand back-bonding⁷ and hence stronger metal-olefin bonds.

The other two fluxional processes occurring in these complexes involve the metal tricarbonyl unit, and the seven membered ring. As mentioned in Chapter 4, these processes appear to be related and are explained in Scheme 7.2.

Table 7.1. ¹³C NMR Data and ΔG^{\ddagger} for COD rotation in *cis*-

 $(\mu$ -C₇H₇)M(CO)₃M'(COD) compounds (M = Fe, Ru, Os; M' = Rh, Ir).

M-M'	δC _o ave	Tc/ºCa	Δδ/Hz	∆G‡/kcal/mole ^b
Os-Ir	63.3	95 (Ha)	130	18
Ru-Ir	64.7	80 (Ca)	180	17
Fe-Ir	68.0	60 (Co)	80	16
Os-Rh	75.2	15 (Co)	100	14
Ru-Rh	80.9	0 (Ca)	100	13
Fe-Rh	84.2	-30 (Ha)	140	12

a Coalescence of: Ha; aliphatic hydogens, Ca; aliphatic carbons, Co; olefinic carbons, of COD ligand.

b Errors in ΔG^{\ddagger} are approximately 1 kcal/mole.

The carbonyl scrambling process is best considered as a trigonal twist of the octahedral $M(CO)_3$ group. In the trigonal prismatic intermediate involved in this process, one of the CO ligands comes into close proximity of the second metal centre thus allowing the formation of a bridging intermediate. This would also involve concommitant change in bonding mode of the C₇H₇ ring. In this mechanism, the two exchange processes are coupled and hence each is influenced by the nature of both metal centres. Thus on going from complex **3** (c-OsIr) to **2** (c-OsRh), a dramatic effect on the carbonyl scrambling in Os(CO)₃ is observed (see Chapter 4). In contrast the local carbonyl scrambling in both complexes **1** (c-RuIr) and **2** (c-OsRh) is frozen out at about - 80 °C, despite the fact that one is considering a $Ru(CO)_3$ group in **1** (see Chapter 2) versus an Os(CO)₃ group in **2**.

7.2. Rotation of the C₇H₇ ring in dinuclear (μ - η ³, η ⁴-C₇H₇) complexes.

In this thesis the preparation of the cis-cycloheptatrienyl bridged heterobimetallic compounds (μ -C₇H₇)M(CO)₃M'(COD) [MM' = Rulr (1), OsRh (2), OsIr (3)] have been described. In all three cases, the low temperature ¹H and ¹³C NMR spectra have displayed signals for the static molecule. This was quite surprising as the number of examples of bimetallic compounds which contain a *cis*-(μ - η^3 , η^4 -cycloheptatrienyl) ring in which freezing out of metal migration around the ring is observed is still quite limited. Table 7.2 gives the chemical shifts of the ring hydrogens in those bimetallic compounds where the slow limiting spectrum has been attained. Apart from the series of complexes prepared in our group a cis-CoCr complex, Cp^{*}Co(μ - η^3 , η^4 -C₇H₇)(μ -H)Cr(CO)₃ (4), and a trans-FeMo complex, (OC)₃Fe(μ - η^3 , η^4 -C₇H₇)Mo(CO)₂Cp (5) are also included in the table. Whilst the data set is still limited, there are three trends which can be found:

a) For both trans complexes, the slow limiting spectrum is obtained relatively easily. Also, the average chemical shift for the ring hydrogens is at lower field in the trans compounds than in the cis complexes.

Table 7.2. ¹H and ¹³C NMR data for bimetallic (μ - η ³- η ⁴-C₇H₇)

Complexes.

Compound	Ta	∆G‡	<u>δH1</u>	δH2	δНЗ	δH4	δHave	δCave
3 (c-Oslr)	-30	14b	3.07	3.30	2.03	3.81	3.34	-
2b (c-OsRh)	-100	10 ^c	4.10	3.56	2.54	4.50	3.68	80.8
1 (c-Rulr)	-100	8.4 ^c	3.54	3.76	2.80.	4.72	3.82	60.0
4 (c-CoCr) ^d	-73	-	1.55	2.58	2.68	4.07	2.92	68.2
5 (t-FeMo) ^d	-71	13 ^c	4.82	4.37	3.77	5.37	4.57	-
2a (t-OsRh)	-50	12 ^b	4.90	4.24	3.88	4.74	4.43	-
6 (c-FeRh)	-	-	-	-	-	-	3.76	-
7 (c-RuRh)	-	-	-	-	-	-	3.75	-
8 (c-Felr)	-	-	-	-	•	-	3.82	-

a Temperature at which the slow limiting spectrum was recorded.

- b ∆G[‡] (for C₇H₇ rotation) obtained from spin inversion experiments (see Chapter 4)
- c ΔG^{\ddagger} obtained from simulation of spectral data [\pm 1 kcal/mole (approx)].
- d 4 is Cp^{*}Co(μ - η^3 , η^4 -C₇H₇)(μ -H)Cr(CO)₃⁸; 5 is (OC)₃Fe(μ - η^3 , η^4 -C₇H₇)Mo(CO)₂Cp⁹; Spectrum in CDCl₃/ toluene-*d*₈ (4:1).
- e 6 is (μ-C₇H₇)Fe(CO)₃Rh(COD)³, 7 is (μ-C₇H₇)Ru(CO)₃Rh(COD)⁴, 8 is (μ-C₇H₇)Fe(CO)₃Ir(COD)².

b) For cis complexes 3 and 4 in which the limiting spectrum has been obtained relatively easily, δH_{ave} is at relatively high field.

c) For complexes containing identical ligands, the activation energy for ring rotation increases as the metal triad is descended. In the ciscycloheptatrienyl bridged complexes of FeRh, FeIr, and RuRh, complexes ring rotation has not been frozen out upon cooling, and values of δH_{ave} are close to 3.8.

A possible explanation for these observations is that for cis complexes of the lower transition series there is increased back-bonding from the metal into antibonding molecular orbitals of the C7H7 ligand. This should result in increasing the metal-ligand bond strength and consequently decreasing fluxional behaviour. This is likely as increases in metal-ligand bond strengths upon descending a triad are well known¹⁰. The CoCr complex 4 is an exception to this rule. This may be the result of different electronic contributions to the seven-membered ring as a consequence of the bridging hydrogen atom. Alternatively the presence of the highly electron donating ligand, Cp* may allow strong back-bonding to the seven-membered ring such that its rotation may be stopped. The high field shift of the ring hydrogens in complexes **3** and **4** is consistent with this proposal as an increase in backbonding from the metals to the sevenmembered ring should lead to an increase in sp³ character of the ring hydrogens. There is some precedent to these claims as both olefin rotation barriers have been shown to increase¹¹, and the bond order of

unsaturated organic substrates coordinated to a transition metal, have been shown to decrease upon descending a transition metal triad¹².

7.3. General Conclusions.

As discussed in this chapter, both metals appear to have an effect on the local and global fluxional behaviour of the complexes (µ- C_7H_7)M(CO)₃M, COD) (M = Fe, Ru, Os; M' = Rh, Ir). This effect is also extended to the chemical properties of these complexes. Thus, in Chapter 6 it was observed that the reactivity of $(\mu - C_7 H_7)Ru(CO)_3Rh(CO)_2$ with HFB at the Ru centre was not replicated when Rh was replaced by Ir, almost certainly due to electronic reasons. Substitution of COD with carbonyl groups appeared to have little effect on the fluxional behaviour of the bimetallic compounds (see Chapter 2), although a dramatic effect in the reactivity of $(\mu$ -C₇H₇)Ru(CO)₃Rh(COD) with HFB was observed. This was presumably due to steric reasons. Upon coordination of a PPh₃ ligand to the group 9 metal centre a change in the electronic properties of the bimetallic complexes occurs such that the expected compounds, $(\mu$ -C₇H₇)M(CO)₃M'(CO)PPh₃ exist in equilbrium with the carbonyl bridged compounds, $(\mu-C_7H_7)(\mu-CO)M(CO)_2M'(CO)(PPh_3)$ in which there is a reversal of the bonding mode of the C7H7 ligand. In these phosphine substituted complexes, (M = Fe, Ru, M' = Rh, Ir), the fluxional behaviour is greater than the parent pentacarbonyl complexes as evidenced by the appearance of relatively facile global carbonyl scrambling. However, a more surprising result is the trend in free energies of activation (Fe > Ru

and Rh > Ir) for the intermetallic carbonyl scrambling process. A possible explanation for this phenomenon was offered in Chapter 2.

7.4. Experimental.

The synthesis, NMR Data and deduction of activation parameters for complexes **2a**, **2b**, and **3** were described in Chapter 4. The synthesis of **1** was described in Chapter 2. The values of the activation parameters for **1** were calculated by the method which was described in Chapter 4. The observed and calculated rate constants for **1** are given in Table 7.3, and the deduced activation parameters are given below.

Table 7.3. Observed and Calculated Rate Constants for the 1,2-metal migration around the seven-membered ring in 1.

Temperature Rate Constant					
	Observed	Calculated			
213	15000	16353.71			
203	7000	6436.10			
183	800	740.32			
173	250	109.13			
163	50	50.77			
158	20	23.42			

Activation Parameters for 1 Δ H[‡]; 7.60 (0.53) kcal/mol, Δ S[‡]; -2.92 (2.90) cal/mol K (standard deviation in parenthesis). This gives a calculated vaue of Δ G[‡] of 8.5 kcal/mole.

7.5. References for Chapter 7.

- 1. Astley, S. T.; Takats, J. *J. Organomet. Chem.* **1989**, *363*, 167., Chapter 2 of this thesis.
- 2. Edelmann, F.; Takats, J. J. Organomet. Chem. 1988, 344, 351.
- Edelmann, F.; Kiei, G.-Y.; Takats, J.; Vasudevamurthy, A.; Yeung, M.-Y.
 J. Chem. Soc., Chem. Commun. 1988, 269.
- Ball, R. G.; Edelmann, F.; Kiel, G.-Y.; Takats, J.; Drews, R.
 Organometallics 1986, 5, 829.
- 5. Astley, S. T.; Santarsiero, B. D.; Takats, J. To be submitted to *J. Am. Chem. Soc.*; Chapter 4 of this thesis.
- 6. Shanan-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961.
- Mann, B. E.; Taylor, B. F. ¹³C NMR Data for Organometallic Compounds, Academic Press, 1981, London.
- Wadepohl, H.; Galm, W.; Pritzkow, H. Angew. Chem. Int. Ed. Engl. 1989, 28, 345.
- 9. Cotton, F. A.; Reich, C. R. J. Am. Chem. Soc. 1969, 91, 847.
- Lewis, K. E.; Golden, D. M.; Smith, G. P. *J. Am. Chem. Soc.* 1984, *106*, 3905.
 (b) Ziegler, T.; Tschinke, V.; Becke, A. *J. Am. Chem. Soc.* 1987, *109*, 1351.
- 11. Rushman, P.; van Bauren, G. N.; Shiralian, M.; Pomeroy, R. K. Organometallics 1983, 2, 916.
- 12. Ball, R. G.; Burke, M. R.; Takats, J. *Organometallics* **1987**, *6*, 1918 and references therein.